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Roadmap

503.1: Fundamentals of Traffic Analysis: Part I «
503.2: Fundamentals of Traffic Analysis: Part II
503.3: Application Protocols and Traffic Analysis
503.4: Open Source IDS: Snort and Bro

503.5: Network Traffic Forensics and Monitoring

503.6: IDS Challenge

Welcome to SANS Security 503: Intrusion Detection in Depth. We'll spend the next several days of this
comprehensive course understanding the fundamentals of traffic analysis, TCP/IP, learning to use traffic
sniffing and analysis tools such as tcpdump and Wireshark, becoming familiar with Snort and Bro, using a
variety of other tools such as SiLK to analyze traffic, comprehending network forensic analysis, network
architecture, and correlation. Finally, you’ll put all of your knowledge to work on the last day, where you will
participate in a hands-on challenge where you analyze an actual intrusion to discover why and determine how
the intrusion occurred.

We hope that you find this material instructive and engaging. So, put your seats and tray tables in the upright
position as we prepare for take-off!

There have been many wonderful contributors and reviewers who deserve recognition — Mike Poor, Guy
Bruneau, Marty Roesch, Jess Garcia, Nathan Benson, Jen Harvey, Tim Collyer, Jesse Bowling, Vern Stark,
Adrien de Beaupre, and Carrie Roberts. Dave Hoelzer and Johannes Ullrich wisely recommended some
important updates and Johannes created and maintains the VM. I'd like to thank and acknowledge all of them
for their assistance.

Special gratitude is extended to two amazing people who have also become friends - Sally Vandeven and
Andy Laman for their major contributions of thorough review, testing labs, and insightful feedback.

Judy Novak
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Today's Roadmap
Fundamentals of Traffic Analysis: Part I

Concepts of T P/IP\*‘ ;y)‘oi ,ag”“”}
— S

Introduction to Wireshark

The Network Access/Link Layer

The IP Layer
— IPv4
— IPv6

Here is a roadmap for Day 1. We'll begin with some concepts of TCP/IP — network communication models,
numbering systems binary and hexadecimal to view packets in raw form, and discuss the concept of "normal"
in terms of protocols because you have to know normal to find abnormal.

Next, there will be an introduction to Wireshark. The purpose of this introductory Wireshark section is to get
you comfortable navigating Wireshark and to learn some of its basic capabilities. We'll delve into Wireshark
more later in the course, but there is a need to expose you to it early since many of the screenshots on the slides
are from Wireshark output.

We'll then start to examine the lower layers of TCP/IP — the link layer, and the IP layer. We'll cover both IPv4
and IPv6.
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We will be covering many tools and products today. We would like to cite the author or vendor of each in
advance and give credit to them for their contributions.

Tool Vendor/Author
tepdump Van Jacobson, Craig Leres, Steven McCanne, Michael Richardson, Bill Fenner
Wireshark Gerald Combs, CACE Technologies
VMware Vmware, Inc.
Snort Marty Roesch, Sourcefire, Inc.
Packetrix The Flamboyant Mr, Mike Poor
Firefox Mozilla Corporation and Mozilla Foundation

Internet Explorer

Microsoft, Inc.

Safari Apple, Inc.

arpwatch Lawrence Berkeley National Laboratory
ISIC Mike Frantzen, Shu Xiao

nmap Fyodor Vaskovich aka Gordon Lyon
Ping O' Death Unknown

Teardrop Unknown

OpenBSD IPv6 mbufs attack

Core Security Technologies
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Concepts of TCP/IP

e Concepts of TCP/IP

¢ Introduction to Wireshark
¢ The Network Access/Link Layer

¢ The IP Layer
- IPv4
- IPv6
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Objectives

e Understand the notion of communication models

Become familiar with network traffic data representation
- Bits, nibbles, bytes
— Number systems and conversions — binary, decimal, hexadecimal

Brief introductory exposure to Wireshark and tcpdump

L 4

Our job involves finding problems or abnormalities, but how
do we know what is normal in the first place?

Intrusion Dé_téc:icn_yIn—Depth

This section introduces you to the foundations required to perform traffic analysis for intrusion
detection/prevention. You can rely exclusively on the interpretations and alerts from your Intrusion Detection
System (IDS) or Intrusion Prevention System (IPS) to protect your network. But, if you’ve run either an IDS
or IPS you know that it is not wise to believe everything that it tells you. Notably, there is the issue of false
positives, where your IDS/IPS generates an alert that does not represent malicious traffic. For instance, if your
IDS/IPS warns you of a malicious attack for an Apache web server, yet you do not run one, the alert is a false
positive. But, you have to understand what the alert is about and be able to pursue the issue based on your
ability to analyze traffic and packets. This pertains to false negatives too where you do not get any indication
of malicious traffic. If you are informed by some other tool, for example anti-virus, that there has been
malicious activity for which you believe your IDS/IPS provides protection, you'll need to examine both the
traffic and IDS/IPS signatures and configuration to understand the issue.

We’ll cover the communication model upon which TCP/IP is based—including the notion of layering and
encapsulating other layers of the network stack. This is important because it dictates how network traffic
contains a standard format and order, based on these models. Another topic of great value is understanding
how packet data is represented, the terminology associated with the representation, such as bits and bytes, and
the ability to know different numbering systems — binary, decimal, and hexadecimal — and be able to convert
values among these numbering systems with relative ease.

Next, we’ll very briefly cover an overview of two of the main tools that will be used throughout the class to
analyze and parse traffic — namely tcpdump and Wireshark, two open source tools. And, before we begin to
attempt to find abnormalities or signs of malice, we must know where to go to try to discover what is normal
and expected in different protocols.

Note: Throughout the course, the terms packet and datagram are used interchangeably.

© 2015 Judy Novak
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TCP/IP Communications Model

TCP/IP Model

|HTTP, SMTP, DNs | | Application
TCP, UDP Transport
P Internet
IEEE 802.x I;J\g(t:v(\e/g;k

I_ntr_u’sio‘n; t)ctecﬁon' In-Depth

We must understand the concept of network communication models because network traffic is created,
formatted, and disassembled based on these models. Frames, packets, headers, and data emulate the layers of
the network models.

Conceptually, years ago, Charles Bachman on Honeywell Information Services in conjunction with the
International Organization for Standardization came up with a proposed standard of how networked hosts
would communicate using what is known as the OSI (Open Systems Interconnection) Model. It was offered as
a universal communication standard. This model has seven layers of different functions that are to be
performed by the communicating hosts. This is the origin of a given function being referred to as a “layer.”

The OSI model did not gain as much favor as another model - the TCP/IP model. The TCP/IP model is
conceptually similar to the OSI model, however it contains four layers instead of seven. We’ll examine the
concepts associated with each of these layers in the next several days.

A communication model is important for segregating the functions that are required for communications. This
modularizes the concepts and hence the implementations of them. Hosts transparently communicate with each
other at peer layers. In reality, though, layers talk to above and below layers to pass or receive part of the total
message to be sent. In essence, we have what has been commonly known as a stack.

You'll no doubt hear the term "layer" when discussing networks. If you hear someone say that a particular
piece of software/hardware operates at Layer 3, they are referring to the Internet layer. Typically, when
someone talks about a layer, it is in reference to the older OSI model. For instance, Layer 5 is the session layer
or more commonly Layer 7 is the application layer. Throughout the course, communications and associated
functions are referenced as a 4-layer TCP/IP module. We'll try to avoid referencing by layer numbers since
this may lead to confusion.

© 2015 Judy Novak
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One Layer’s Header is Another Layer’s
Data: Sending Traffic

P e e e —— . —

‘ Application PayloadJl

Data = Application
| TCP Header Data payload
l Data = TCP Header +
| IP PaCket Header Data App[jcation Pay[oad

‘7 Frame Header l_)

Data = IP Header +
Data TCP Header +
Application Payload

Encapsulation of layers in the TCP/IP stack

Intrusion Detection In-Depth

We see how the TCP/IP model works in this slide. When some type of data is packaged by the sending host’s
TCP/IP stack, each lower layer in the stack adds something to this message.

Starting at the top of the TCP/IP stack, the application layer is the one that supplies the payload or the data that
appears after all the encapsulating headers. The application layer passes the payload down to the transport layer.
In this slide, we are relying on a transport layer that involves TCP. The transport layer - in this case, TCP, adds
a TCP header to the application data. It provides fields such as the source and destination ports as well as many
fields which ensure that the TCP segment is reliably delivered.

Once the transport layer adds its header, it passes the message constructed so far down to the Internet layer. The
Internet layer adds its own IP header to be able to deliver this packet to the correct destination IP by advancing
hop to hop. The TCP header melds into what now becomes the IP data because as far as the IP or networking
layer is concerned, it doesn’t distinguish between the TCP header and the application data. It has no need to be
concerned about destination ports or other transport layer data nor does it need to consider data payload.

Finally, the IP packet is passed to the network access layer. The network access layer supplies a frame header to
the IP packet that contains information such as source and destination Media Access Control (MAC) addresses.
And, the IP packet with all its “data” consisting of the IP header, transport header, and data is injected into

frame data.

The process of adding header information as a packet is passed down the TCP/IP stack is known as
encapsulation. When the destination host receives the frame, it has to strip off headers and pass the message to
the appropriate upper layer. It essentially reverses the encapsulation process with a process of its own known as
de-encapsulation.

© 2015 Judy Novak 9



Data Encapsulatioh Dispnlay
from Wireshark

Network Internet Transport Application
Access Layer Layer Layer Layer
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Note: When you see the star in the left-hand lower corner, you
can follow along on the VM using the directions in the notes page.

y

+ _Intrusion Detection In-Depth b

Let’s look at a unit of traffic that has traversed the network. We’ve captured it and displayed it using an open-
source tool called Wireshark. We’ll discuss Wireshark in great detail, but for now, we’re simply using it to see
how its display mimics the concept and format of layering. Specifically, we examine a DNS query that we’ve
captured.

Wireshark's illustration of layers inverts the depiction we've used of the TCP/IP models. The lower layers are
displayed in Wireshark first followed by layers that are theoretically above. This may take a little inverted
thinking to view the layers as they are meant to be.

At the lowest echelon, we have the network access layer, also known as the link layer. The first line of
Wireshark output is labeled “Frame”, but this contains some summarized metadata, not the actual frame
(network access layer) header itself. That is found in the next line under “Ethernet I1”. Wireshark displays the
source and destination MAC addresses. A standard MAC addresses is a 6-byte unique designation for the
network interface card. This value is assigned at the factory where the card is manufactured and is not
alterable. We’ll discuss MAC addresses in more detail in later.

+ Open a terminal on the VM to enable you to enter the commands to view demonstrations.

10

Day1 demonstration pcaps are found in /home/sans/demo-pcaps/Day1-demos on the VM.

Navigate to the proper directory:
cd /home/sans/demo-pcaps/Dayl-demos
Next open Wireshark with the pcap for the demonstration. Enter the following on the command line:

wireshark data-encapsulation-examplel.pcap

© 2015 Judy Novak



Next, Wireshark logically displays the IP layer that follows the frame header. The transport layer — in the
above output UDP — logically follows the IP header, again since this is the order in the frame. Wireshark
shows the source and destination ports in its summary line. The destination port is 53 that is usually
associated with DNS. Finally, a brief description of the application payload — a DNS query is displayed last.

© 2015 Judy Novak 11




Wireshark Display of Detailed
Encapsulated Layer
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Length 38
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b Flags: 0x0100 i.atandard query) Appllcatlon Layer
Quastions: 1

Answer RRs: ©
Authority RRs: @
_ Additional RRs: ©
b Queries

<\/>> : ~Intrusion Detection In-Depth xata sucapslation:

This is a more detailed look at the fields and values found at each layer of the DN'S query. Wireshark is able to
expand the detail associated with a given layer or multi-value field by clicking on the right facing triangle to
the left of an expandable field. We see Wireshark’s interpretation of the frame. This is an important point to
stress for both Wireshark and tcpdump — what is displayed is an interpretation only by the tool of the fields and
values. Most times the tool — either Wireshark or tcpdump — will display an interpretation that is meaningful to
you and is an accurate representation of the bits and bytes in the actual frame, packet, header, or payload.

Yet, there are instances where the interpretation is confusing, wrong, or incomplete.

Bear in mind, though, that the most accurate way to validate that the output is correctly rendered is to examine
the bytes in the layer or field of interest. These values are represented in hexadecimal. If you were to validate
the translation, you would need to know the layout of the given protocol that you are examining and how to
convert the hexadecimal values into a more meaningful decimal representation. Don’t worry, you will get
plenty of practice decoding headers and protocols and making sense of the associated values!

Expand each of the layers (Ethernet II, Internet Protocol, User Datagram Protocol, and Domain Name System)
by clicking the right facing triangle to the left of each layer name.
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Data Display in Hexadecimal
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Application Layer
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Intrusion Detection In-Depth

Let’s drive home the point of hexadecimal interpretation of a given protocol(s). Perhaps you don’t want to rely
on a tool’s interpretation, perhaps no protocol dissector exists to interpret a protocol, or perhaps you are just
curious how the interpretation is actually performed.

This slide depicts how Wireshark performs interpretation by layer. We’ve honed in on a particular portion of
the Wireshark display known as the packet bytes pane. We’ll discuss more about Wireshark output panes
when we learn to navigate and use Wireshark. This is the bottom pane of the Wireshark display and it displays
the hexadecimal values that are found in the frame, packet, header, payload, etc. The top packet bytes pane is
the hexadecimal output of the entire frame. There is no notion of layers in this particular output; it is presented
above to give you the template frame of hexadecimal values from which the layers shown below it are derived.

In the previous slide, Wireshark’s packet detail pane was shown. This is Wireshark’s more human readable
interpretation of a particular layer or protocol of interest. When we clicked on the “Ethernet 11” network
access layer using the expandable arrow, we saw the packet detail pane. Concurrently, the bytes pane
highlighted in blue appeared. These are the hexadecimal bytes in the frame associated with the network access
layer exclusively. This is repeated for each of the other layers in the frame to highlight the hexadecimal output
associated with them.

The point here is that we are now looking at the hexadecimal representation of the layers. We’ve examined
the layers as theory, yet here the concept is manifested as hexadecimal data depicted as encapsulated layers of
the TCP/IP model. The data following any one of the above layers is payload data to the given layer. For
instance, if we examine the IP header beginning with hexadecimal 0x45 and ending with hexadecimal 0x01, all
the bytes that follow that represent the UDP header transport layer and the DNS query are considered data for
the IP layer. As you can see in the rightmost column of data, Wireshark renders printable characters in ASCIL.

© 2015 Judy Novak 13



One Layer’s Header is Another Layer’s
_Data: Receiving Traffic

LApp!ication Payload f

Data = A lication
L TCP Header Data Payload ppv ‘ '

: I___, Data = TCP Header +
l 1P Packet Header Data Application Payload
Frame Header Data = IP Header +
T Data TCP Header +

De-encapsulation of layers in the TCP/IP stack

Intrusion.chtécdon In-Depth

The reverse process of encapsulation occurs when traffic is received. It has to be interpreted by the receiver
and this process is performed using something known as de-encapsulation.

A frame arrives at the receiver. The network access layer gets the frame, analyzes the data in it, figures out
where the IP layer begins, strips off the frame header, and passes the IP header and everything that follows
it as data up to the Internet layer. The Internet layer performs a similar analysis, strips off the IP header and
passes the remaining data — transport header and what follows to the transport layer. The transport layer
analyzes the header, strips it off and passes the remaining data up to the application layer.

Each layer processes the data that is associated with it and nothing more or nothing less. This layer
independence permits modifications of a particular protocol by those who define the standards, without
affecting any other layer.

The process of de-encapsulation sounds simple enough. Though, there must be some information in each
layer that facilitates the process. This is discussed next.

© 2015 Judy Novak



What Knowledge is Required to
De-encapsulate Data?

|Tpplication payload i

l TCP Header ] Data

| 1P PacketHeader | — Data

| Frame Header l—» Data
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Lower layer has to know:
What follows?
Where does it start?

Intrusion Detection In-Depth

If you think about it, a chunk of data eventually arrives at the network access layer via a network access card.
From there the receiving TCP/IP stack must properly interpret the header and data portions at each layer. How
exactly does this happen? First, the lower layer must know its own format and which upper layer to pass the
data for appropriate translation. The upper layer inherently knows its own format and how to make sense of it.

Another important data question is where does the current layer’s header stop and the upper layer’s data start?
Some layer headers, such as an Ethernet link layer header are a fixed size and need not designate that size in
the header. This is known as an implied length as it goes unstated? Other layers may have a variable length
header or portion of the header. Any data in the header that is variable length must have an accompanying
length to delimit one field from the next. For instance, both the IP and TCP layers have optional data that can
be supplied in the header. Therefore, both have a header size that reflects the number of bytes in the header to
indicate whether or not optional data is present.

There are some portions of the IP and TCP headers (the options fields in each that can carry one or more
options) that supply the option code for each option present. Unlike layer decoding, this does not indicate the
option code that follows; rather, it identifies the current option. This is self-identifying, rather than pre-
identifying the layer that follows. Since there can be one or more IP or TCP options, each designates it own
length for determination of where the current option ends and the next begins.

Finally, there are lengths that are derived, notably the size of the TCP data. We'll examine this notion in a few
slides.

© 2015 Judy Novak 15



ReqUired Fields in a Protocol to
De-encapsulate or Interpret Data

[

=

An indication of protocol
— Typically a layer indicates what follows
- Infrequently the protocol has a self-contained identifier

A length of the current protocol
— Standard fixed length does not need to be stated

— Variable length requires the length to be available in the protocol
header/field itself

— Derived length computed from other lengths

Intrusion D,éteétio'n In-Depth

Let's examine the required fields in any given protocol to de-encapsulate layers, and let's extend the concept to
include interpreting data within a layer. As we've seen, there must be some identifier of a protocol. Usually this
can be found in the previous layer. At times, there is an identifier within a given field of a protocol. For instance,
IP and TCP options field may contain one or more options. Each option has a field that identifies the option type.
It is self-contained rather than being derived from the previous layer.

And, there has to be a means of knowing where the given layer or field within stops and another one begins. This
is accomplished via a length value. When a protocol or field is a standard fixed size, there is no need to include it
in the protocol itself since it wastes bytes. If a protocol or field may vary, a length is required. For instance, there
may be optional TCP values after the standard TCP header, necessitating that a header length be stored in the
header.

Finally, there can be a derived length. There is a length value in the IP header for the length of the entire packet.
Yet, you'd think that if every subsequent protocol had some indication of size this would be unnecessary. There is
no length associated with the data that follows the TCP header, as an example. But this can be computed as we'll
see.

Perhaps you are thinking to yourself, "Why do we need to go into such detail about how to disassemble a given
protocol and what follows? After all, don't we have Wireshark and tcpdump to do this?” Indeed they are
excellent tools and we anticipate that you will rely on them most of the time. However, we feel it is an invaluable
skill to be able to view a packet in hex and figure out the basics of it — what protocols are contained and where
they are located in the frame or packet.

This is helpful for a couple of reasons. First, you cannot always rely on the accuracy of Wireshark and tepdump —
remember they make interpretations only of protocols. It's infrequent when they get something wrong, but it
happens on occasion. And, perhaps there is a new protocol that doesn't have a dissector. This requires you to find
some documentation on it and be able to disassemble or reassemble it yourself. Comfort and familiarity with the
process will make it easier.

16 © 2015 Judy Novak



What Follows?

Data

Protocol = TCP

Data

TEthernet Type = IPv4

Data

Now, let's follow a particular frame through the process of de-encapsulation. The network access card
supports a given link layer protocol such as Ethernet or wireless. It inherently knows how to interpret that
particular link layer. This means it knows the format and layout of all fields in the frame header. We'll use
Ethernet 802.3, one of the most common link layers in this example. There has to be some indication of
what protocol follows the Ethernet header. For instance, it can be [Pv4 or IPv6. The data must be passed to
the appropriate IP layer software to handle. This is determined by a type field in the Ethernet header.

Let's say that we are dealing with [Pv4. The Ethernet layer passes all data following the Ethernet header to
the code that processes [Pv4. The IPv4 header protocol field designates the transport layer that follows.
The transport layer has no notion of the application that follows, nor of the protocol format associated with
the application. For instance, suppose you have a TCP header that contains a destination port of 80. We
may assume that this is HTTP, but it does not have to be. The application layer, HTTP, is correctly parsed
because the receiving host has application software that listens on a given port and knows what application
it is and the application's data format.

© 2015 Judy Novak
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Where Does It End/Start?
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Ethernet 802.3 is a standard fixed 14-byte length so there is no need to include a length field and consume space
in the header. Therefore the data following the Ethernet header begins 14 bytes after the Ethernet header. This
is the data that is passed to the IP layer.

Let's say that we are dealing with IPv4. The Ethernet layer passes all data following the Ethernet header to the
software that processes IPv4. An IPv4 standard header is 20 bytes long, however, there can be IP option data
causing the IPv4 header to expand to a variable length up to 60 bytes long. The IP header has a field that
contains the header length so it knows where the data that follows the IP header begins, enabling it to pass it to
the transport layer. The IP header has a field for the entire IP datagram length. For some protocols, such as
UDP, specifying the IP datagram length is unnecessary (yet still specified) since it can be derived. The IP
header indicates its length and the UDP header length includes the UDP header size plus the UDP data. But,
TCP and ICMP do not include a length for the data that follows. Without this, there is no way to validate the
size of the data and ensure that the length of the packet matches the expected length. After all, it is possible for
someone to craft a malformed packet or for a packet to get corrupted in transit, requiring validity checks.

The transport layer header that follows the IP header may be a variable length with options as with TCP, or it
may be a fixed length as with UDP and ICMP. This allows the transport layer to strip off the appropriate data
and pass it up to the application layer. Let's look at TCP as an example. It has a TCP header length value,
delimiting where the header stops and the data begins. But, how much data follows the TCP header? This is a
derived length, the formula is:

Total IP datagram length — IP header length — TCP header length = data length

18 © 2015 Judy Novak



Let's use a real example. Suppose a packet has an IP header length of 20 bytes, a total IP datagram length
of 1500 bytes, and a 40-byte TCP header - 20 bytes of standard header and 20 bytes of TCP options. Using
our formula:

1500 — 20 — 40 = 1440
1440 bytes are expected to follow the TCP header.

Finally, let's examine the format of the TCP header options. This same scheme is used for [P options as
well. As mentioned, there can be multiple TCP options. Any IP/TCP option that is greater than a single
byte adheres to the format of an option code, an option length, and option data. We have a self-identifying
option code — it identifies the current option, not the next one. The length includes the data, and the option
code, and the length field itself. There are two IP/TCP options — EOOL, also known as EOL (end of
options list 0x00) and NOP (no operation 0x01) that are self-identifying. They consist of the option only,
no data, so there is no need for a length field. You may be wondering the purpose of these two one-byte
options. IP/TCP options must fall on a 4-byte boundary. If they naturally do not, either one or more NOP
or EOL option must be used to pad to the 4-byte boundary. The EOL, if used, should be the last option. The
NOP can appear anywhere in the IP or TCP options to pad a single or a subset of options to the 4-byte
boundary. .

AOP is used for padding

© 2015 Judy Novak
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) Concépts of TCP/IP
Bits, Nibbles and Bytes, Binary,

Hexadecima! |

_ Inmusion Detection inDepth
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Bits, Nibbles, Bytes, and Hex
(Oh My")

e Terminology:
- Bit = smallest unit - has a value of 0 or 1

— Nibble = 4 bits or one hexadecimal value

— Byte = 8 bits or 2 nibbles or 2 hexadecimal characters

Ultimately, in the next few slides, the goal is to introduce you to how to make sense of all that hexadecimal output
used by many tools like Wireshark and tcpdump. But first, let's make sure you understand the concepts of
network data representation. All data is represented as a single or series of binary values — either 0 or 1 — known
as a bit. This is the smallest unit of representation. Often times we will transpose bit representations into a more
succinct format, and ultimately more readable, known as hexadecimal, hex for short. But, let's first examine bit
values. Bits are actually represented as powers of base 2, also known as binary.

Another term used is a nibble. This is half a byte (hence the comical label of nibble), or 4 bits long. We’ll see in
the next slide that 4 bits are typically represented using hexadecimal notation because binary is way too long and
unwieldy. The final unit of interest is the byte. It is 8 bits, or 2 nibbles, or 2 hexadecimal characters.
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Hexadecimal (Base 16)
Representation
23 22 21 20 (Hex) 23 222t 20 (Hex)
00 00 =0 1 00 0 =38
00 01 =1 1 001 =09
00 10 =2 1 01 0 = 10(a)
00 11 =3 1011 11 (b)
01 00 =4 1100 = 12(c)
01 01 =25 1 101 = 13(d)
01 10 =6 1 110 = 14(e)
01 11 =7 1111 =15(@
Tntrusion I_)lg:teéri(‘mv In-Depth

The output in this slide shows you all the values in the hexadecimal numbering system. When representing
hexadecimal, we have a numbering system that goes from 0 to 15. The problem comes in representing values
above 9 in a different scheme so that we can differentiate decimal and hexadecimal. A value of 10 decimal is a
different value than 10 hexadecimal. A value of 10 hexadecimal has a value of 16 in decimal.

So, when we get to values above 9, we use letters to represent 10 — 15 as you can see in the values in
parentheses above. Since hex and decimal representations are both used and may be confused, whenever you
see the notation of “0x” before a value, this means that it is a hex value. For instance, 0x32 is the hexadecimal
characters “32”. The decimal value of 32 is different from the decimal value of 0x32.
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Decimal/Binary/Hex Representations

Base 10 Arithmetic — Decimal
102 10t 100

1 9 8 = 1*¥100 + 9*10 + 8*1 = 198

Base 2 Arithmetic — Binary
27 26 25 24 23 22 21 20

11000110 = 1*128+ 1%64 + 1*4 + 1*2 = 198

Base 16 Arithmetic - Hexadecimal

16! 160 |
c 6 = 12*%16 + 6*1 = 198

When we are dealing with packet data we need to be able to effortlessly shift and translate among different
numbering systems. The numbering system with most familiarity to us is base 10 or decimal. The number 198
has intrinsic meaning to us because we are so used to dealing with it. However, when you break it down into
its base 10 components, you represent each of the digits as increasing powers of 10 from right to left. As you
see, we arrive at (1 * 10?) + (8 x 10%) + (9 * 10"). Any base with a power of 0 assumes a value of 1. Easy
enough?

Let's transpose that same theory to binary. You may be wondering why you need to know binary. When all is
said and done, all data is represented as bits, or binary data. Most of the time we manage to avoid binary
simply because it is too verbose and unwieldy to use. Instead we use hexadecimal that is really just a
summarized version of binary. We primarily examine data in binary form when we are dealing with individual
bit settings in a byte(s) or nibble(s). There are fields that are a bit in length, such as the IP header Don't
Fragment flag. As well, there are fields such as the TCP flags where each bit in the byte represents a unique
flag setting.

First, let's take a look at the decimal value 198 in binary. We begin by representing base 2 values as
incrementing powers of 2 from right to left. Turning on the bits in the proper powers of 2, we can arrive at 198
again.

You'll see hexadecimal values when sniffers such as tepdump or Wireshark display low level packet data.
Decimal value 198 translation to hex uses the same theory as binary. The only difference is that we use a
representation of powers of 16, and so we once again arrive at 198.
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From Binary to Hex

27 285 25 24 | 23 22 21 20
0 0 0 1 1 1 1 1
16t 16°
Ox1 Oxf

Iﬂgh-order nibble ] LLow-order nibble —I

Intrusion Detection In-Depth

We’re part way to unraveling the mystery of deciphering hexadecimal output and making sense of it. Before
we continue, it’s helpful if you are able to convert binary to hexadecimal and vice versa. This will come in
handy when we look at hex output of a packet and need to examine a field that has many individual bit
settings. We’ll spend a lot of time on determining what TCP flags are set given two hexadecimal characters
for this byte-long field. There are 8 different TCP flag fields, each representing a unique TCP flag. That
means you need to be able to take the TCP byte value represented by two hex characters and discern which bits
or flags are set.

Let’s examine the binary value of the byte 0001 1111. The 4 bits that comprise the rightmost nibble of the byte
are called the low-order nibble because they represent decimal values 1-15 of a byte. The 4 bits that comprise
the leftmost nibble of the byte are called the high-order nibble. They have greater values based on their
placement in the whole byte. When paired with a low-order nibble, the high order nibble takes on successive
powers of 2 with exponents of 4, 5, 6, and 7.

The rightmost or low-order nibble is 1111 in binary. If you add up all these bit settings, you get 1+2+4+8=15.
The bits in the high-order nibble (from left to right) take on the values of 16, 32, 64, and 128. Therefore, the
high order nibble above has a 1 in the bit that represents a decimal value of 16. If we add this to the value of
15 from the low-order nibble, the result is a decimal 31.

The final step is to translate the individual nibble values to hexadecimal for a more readable format. Each
nibble represents a single hex character. For now, we disregard the nibble's place in the byte when computing
this and examine it as a nibble with values of 20— 23, The low-order nibble has a value of 15 or 0xf and the
high-order nibble has the value of 1 or 0x1.
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“ Conversion of Hex Packet
Data to Decimal

o IP datagram length in IP header is 2 bytes or 16 bits
Suppose you have a value of 0x0054 in this field

¢ 16 bits = 4 hex characters
» Start at the right-most character

+ Take each hex character and represent it as a power of 16

0 0 5 4
16 162 161 160

5%161 + 4*160 = 84

Finally, we arrive at our goal of interpreting packet data represented in hexadecimal. Let’s see how this is
done. First, figure out where the field you need to convert begins and ends. Then start at the rightmost or least
significant hex character and label that as a power of 16*

Simply continue labeling the remaining hex characters of the field you are converting as increasing powers of
16. Finally, after all of the characters are labeled as powers of 16, multiply the hex character by the
appropriate power of 16 where it falls in the field.

In the above example, we are looking at the IP datagram length field. We have 4 hex characters because the
length is a 16-bit field; because they are non-zero, we really only need to label the two right-most characters.
After we do this, we find we have a 4 in the 16° position meaning we have 4*1 or 4. The next character of 5 is
in the 16! position. So, we multiply 5*16 for a product of 80. Therefore, we add these two values together
(4+80) for the decimal conversion of 84.
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Figuring Out Decimal Values
_for Hex Output

(1) Use reference to discover where fields start and end

(2) Each character in the hex output is a power of 16

@ Start at the rightmost character and increase power of 16

@ Multiply base number by exponent, add all values
UDP header

Source Port Dest Port Length Checksum

16162 161 16" | [16° 167 161 167 | [ 16° 162 161 160][ 16° 162 167 16° | (@)
04 01 0 035 0 04 c 1 fd7 % G

What are decimal value of source and destination ports?
@ Source port = 4%162 + 1*¥16° = 1024 + 1 = 1025
Destination port = 3¥16! + 5¥16° =48 + 5 = 53

Intrusion Detection In-Depth

Let’s assume that we are looking at a field or fields that have numeric values. In other words, we are not
looking at a string payload. Let’s use 8 bytes of hexadecimal output from a UDP header to describe the
process of figuring out the decimal values of all the fields.

The first thing that you need to do is to identify what protocol or field that you are examining. This is the 8-
byte UDP header. You’ll need to use some reference, such as TCP/IP [lustrated, Volumel by Richard
Stevens or the references at the back of the course or the TCP/IP Pocket Reference Guide you received in
your course materials to identify the fields in the UDP header. Remember that each character that you see in
the output is one hex character (4 bits). You’ll discover that there is a 16-bit source port, a 16-bit destination
port, a 16-bit UDP length and a 16-bit checksum in the UDP header. Coincidentally, these are all 2 byte
fields — or 4 hex characters. You see that we divide up the hex output accordingly.

Next, start with the rightmost hex character for the field in the packet that you are interested in and label it
with an exponent of 16°. For each hex character associated with the field you are examining, move left and
increase the power of 16 until you hit the leftmost hex character in the field. Then, multiply the base by the
exponent above it and add all the values.

Using the source port 0401 as an example of our field of interest, we start with the rightmost character (1) and
label the exponent 16°. Next, we only have one more character (4) that is non-zero with an exponent 162,
Now, we multiply the rightmost character 1 by 16° and get a result of 1. Then we multiply the 4 by 162 to
arrive at 1024. Therefore the source port is 1025. Let’s move on to the destination port. There isa 5 in the
169 position yielding 5, and a 3 in the 16! position to get 3 * 16 =48. Our destination port is 53, the well-
known port associated with DNS.

© 2015 Judy Novak



Your Turn

These are the first four bytes of the IP header

4500 0030

Use the reference pages at the end of the course or your
TCP/IP Pocket Reference Guide to figure out what the 16-bit
total length is in decimal.

Here is your opportunity to use what you've just learned. Figure out the decimal value of the 16-bit total
length. Use the reference materials that you've been given to find a layout of the IP header and where the 16-
bit total length falls in the IP header. Once you’ve discovered that field, use the methods discussed in the
previous page to figure out the decimal equivalent of the hex value.

© 2015 Judy Novak
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Answer

IS TOS
Version 16-bit total length
i} L
163 162 16! 16°
0030
1 3*16! = 48
IP header
b .
ength __J Answer: 48 bytes in the IP datagram
g

In_trusiqri/Dét'éétic‘m In—Depth

The first thing we do is look at the layout for the IP header. When you are dealing with offset placement of a
field from the beginning, counting begins at 0, not 1. This means that the 16-bit total length field is found in
the 27 and 3t bytes offset from the IP header. We find a value of 0030 in these 2 bytes. We methodically
label all the hex digits in this field as increasing powers of 16 starting at the rightmost hex character: because
we only have one non-zero value in the IP length field, we really only need to figure out its value.

The non-zero value of 3 is located in the 16! position. So, we simply multiply 3*16 and discover that the IP
length is 48 bytes.

The TOS field name has been changed to the differentiated services byte in case you see it labeled as such.
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tcpdump Hexadecimal Output

tcpdump ‘;i:‘d&ta—egcapsuié_tion—ekéxﬁélel.p_cap -n -x

10:24:05.570246. 1P 192.168.11.65.52635 >,192‘168;11.1.53:
8409+ A? www.sans.org. (30)

 0x0000: 4500 003a 013a 0000 4011 ele6 c0a8 ObAl
~ 0x0010: c0a8 0b01 cd9b 0035 0026 4elc 20d9 0100
0x0020: 0001_0000 _0000 0000 0377 7777 0473 6l6e

: 0x0030: 7303 6f72 6700 0001 0001

~ Byte Offset . IP packet displayed in hex

Legend:
IP Layer

"‘ranspcrt '(.;ayar

Let’s analyze data-encapsulation-examplel.peap by displaying it as tepdump hex output. Tcpdump is another
tool in addition to Wireshark that we’ll use often in the material. It is not nearly as pretty as Wireshark in the
beauty contest of network traffic output. However, it is quite useful for a more succinct view of the data
without the overhead of a GUIL

examplel.pcap

The tcpdump command has many command line options or switches to allow you to read, write, and display
data in different formats. By default, tcpdump does not display output in hex. However, the command switch
of —x was included to show the packet in hex. The tcpdump command used reads the filename (-r) that
follows, and the —n option informs tcpdump to disable hostname and port or service resolution. Hostname
resolution involves doing DNS lookups, consuming time and resources. The recommendation is to disable
DNS resolution whenever feasible. The —n option also displays well-known port or service names instead of
the numeric representation.

The default output of ASCII mode is displayed below the tepdump command. The first field is the timestamp

of the capture time. This is followed with “IP” indicating that is the protocol that follows the link layer header.

Next, is a combination of source IP (192.168.1.65) and source port (52635) a delimiter of “>” to separate
source and destination output followed by a combination of destination IP (192.168.11.1) and destination port
(53). Tcpdump does some minimal DNS protocol decode. We’ll talk more about DNS and its fields later in
the course.

+ Exit from Wireshark and enter the following on the command line:

tcpdump -r data-encapsulation-examplel.pcap -n -x

© 2015 Judy Novak
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Now comes the hex output. There are 16 bytes (32 hex characters) per line. The line begins with the offset
into the packet expressed in hex (like you really want more opportunity to do hex to decimal conversions).
Remember when dealing with byte offsets into the packet counting begins at offset 0, not offset 1.
Tepdump makes no attempt to delineate the layers in the hex output for easier comprehension. The IP layer
is in black text with a single underline. The transport layer, in this case UDP, has a ridged underline. Last
is the application layer, DNS, with a dashed underline.
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‘Find the IP Identification
Field and Value

What is the decimal value of the IP identification number?

0%0000: 4500 003a 013a 0000 4011 ele6 cOa8 Obdl
0x0010: c0a8 0b01 cdgb 0035 0026 4elc 2049 0100
0x0020: 0001 0000 0000 0000 0377 7777 0473 6l6e

. 0x0030: 7303 6£72. 6700 0001 0001 : =

Legend:
IP Layer

Transpoz:t Layer

(PRt s

Being able to decipher hex values in an entire packet may come in handy. Well, at least with high certainty, it
will be handy to know if you take the certification exam since it is considered a vital skill to have. Let’s start
analyzing packet data with this challenge. What is the decimal value associated with the IP Identification
field?

Remember the prescribed method of determining this. First, use your IP header reference to discover where in
the IP header the identification field is found and how many bytes it is. Now, begin at the rightmost hex
character of the field and represent each hex character from right to left as incrementing powers of 16. Once
you have done that, multiply the base value by the exponent value and add all the individual results up to yield
the answer.
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Answer

0%163+ 1*162+ 3*16! +a*160=

evaluation
0

+ 256 + 48 +10=31

Our

i

< Internet Protocol, Src: 192.16&1}_.65 (192.168.11_.65) Dst: 192.168.11.1 (1_9_2‘168'5 2

[Reaes Hoader leng»t‘hﬂ éé“by{es Ll el e el e —— HmAm&yu[wjreshark

b Differentiated Services Field: 6xB0 (DSCP 0x00: Default; ECN: 6x00) evaluation
Total Length: 58

_ Mdentification: [6OT5 (14|

e i S

<\/>> i Intrasion Defecion In"Depth 20t sncansulation-

examplel.pcap

Here is an IPv4 header with the first 6 bytes of hexadecimal data found on the previous slide. If you take each hex
character and place it in a nibble, you find that the value of the identification field is 0x013a. Once again, represent
the values as powers of 16 beginning at the rightmost nibble of the field, in this case Oxa. This yields a value of Oxa
* 16°that equals 10. The next hex character to the left is 3, and 3 * 16! = 48. The next hex character to the left is 1
and 1 * 162 = 256. Therefore the identification value in this packet is 10 + 48 + 256 = 314.

We can do a final check to compare our result with Wireshark’s evaluation of the Identification field. As you see,
it has a value of 314.

That does it for the fundamentals of bits, nibbles, bytes and translating from binary to decimal to hexadecimal and
back! You should be more comfortable with hexadecimal dump output so that you can perform magical
conversions yourself,
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Concepts of TCP/IP
Standards for Normal Traffic
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What Is Normal?

S— S— E—— — J— — . -

T T S

e Much of analysis involves finding something that is not

normal or expected
e How do we know what the expected behavior should be?

* Request For Comments (RFC) are documents that elaborate
expected behavior of protocols

e More about RFCs can be found at:

— http://www.rfc-editor.org/

~ Intrusion Detection In-Depth

Before we go off and start our analysis, we have to understand what is normal or expected. We need to know
this because our job as an analyst often involves finding something that is unexpected or abnormal. But, what
isnormal? We can discover what is normal and expected about protocols by looking at documents called
Request for Comments (RFC). A given RFC elaborates the expected standards for a particular protocol.

Once issued, RFCs do not change. Protocol revisions are documented by issuing new/superseding RFCs.
RFC:s of special interest may be:

RFC 793 - Transmission Control Protocol describes the functions to be performed by TCP, the program that
implements it and its interface to programs or users that require its services.

RFC 768 - User Datagram Protocol which describes the functioning of UDP, which is an unreliable
connectionless protocol.

RFC 791 - Internet Protocol or IP which discusses the protocol that provides for transmitting blocks of data
called packets from sources to destinations.

RFC 792 - Internet Control Message Protocol (ICMP) which discusses the protocol to deal with an error in
packet processing.
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RFC Implementation Issues

@

¢ Standard Request For Comments (RFC) guidance:

i

May be hard to understand or ambiguous

May not cover a particular aspect

May be ignored

Revisions/changes may be introduced

May not be properly implemented

Tntrusion Détection I’n—'Depth

While guidance is offered by a given RFC, that doesn’t necessarily mean that it is implemented properly or
even implemented at all! If you’ve ever had the pleasure of reading an RFC for amusement or relaxation, you
know that many of them are notoriously hard to understand — bordering on incoherent at times. Given this type
of direction, it is easy to see why different implementations may vary.

In addition to being hard to understand or ambiguous, a particular RFC may not cover all aspects of a given
protocol. For instance, what if TCP segments arrive that overlap each other? Should the first or subsequent
one be honored? Also, some implementers disregard the RFC standards altogether and create their own
incarnation of a given protocol. Microsoft has been known to do this a time or two. And, sometimes RFC's
are revised and an implementer may not make the changes right away, if at all. Finally, there are those
implementations that are just not done correctly.

As an IDS/IPS analyst should you care about RFC implementations? Let’s take the example of the
overlapping TCP segments. Let’s say that the first segment contains some innocuous content and the
overlapping segment contains a payload of the same length, but with exploit content. Further, let’s suppose
that the IDS/IPS honors the first segment and doesn’t alert or block the exploit segment. Finally, let’s say that
the target host rejects the first segment and accepts the overlapping segment. If the exploit is successful, it
goes undetected.

In this case, the exploited host’s operating system TCP implementation elected to accept the overlapping
segment. But, other operating system TCP implementations may accept the first segment. The only way for
an IDS/IPS to deal with this and other ambiguities is for the IDS/IPS to have foreknowledge of the target
host’s operating system and to be aware of its TCP reassembly preference for overlapping segments. This is
known as target-based awareness and is available in Snort versions 2.8 and later that employ the stream5
preprocessor. We'll discuss this concept in more detail later in the course. p
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RFC 2119 — RFC Imperative
_Meanings: Huh, Say What???

Ty

[ ——

1. MUST - This word, or the terms "REQUIRED" or "SHALL", mean that the
definition is an absolute requirement of the specification.

2, MUST NOT - This phrase, or the phrase "SHALL NOT", mean that the definition
is an absolute prohibition of the specification.

3. SHOULD - This word, or the adjective "RECOMMENDED", mean that there may
exist valid reasons in particular circumstances to ignore a particular item, but
the full implications must be understood and carefully weighed before choosing
a different course.

4. SHOULD NOT - This phrase, or the phrase "NOT RECOMMENDED" mean that
there may exist valid reasons in particular circumstances when the particular
behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior
described with this label.

Intrusion Detection Tn-Depth

RFC 2119 "Keywords for use in RFCs to Indicate Requirement Levels" defines words that describe the
"imperatives" for a given facet of protocol implementation. There are five different definitions — two follow
on the next slide. There are positive and negative conditions for all but the last requirement level.

I don't know about you, but I need a non-RFC to interpret this RFC®!  First, there are alternate descriptions
of many of the requirements levels. "MUST", "REQUIRED", and "SHALL" are interchangeable. "SHOULD"
is the same as "RECOMMENDED". For goodness sake — pick a single description for each and stick to it to
eliminate confusion.

The first two imperatives of "MUST" or "MUST NOT" appear straightforward, indicating that
implementation is or is not required. "SHOULD" or "SHOULD NOT" are less precise seeming to encourage or
discourage implementation, but ultimately making it an implementer choice.
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More Definition Confusion

5. MAY - This word, or the adjective "OPTIONAL", mean that an item is truly optional.
One vendor may choose to inciude the item because a particular marketplace
requires it or because the vendor feels that it enhances the product while another
vendor may omit the same item. An implementation which does not include a
particular option MUST be prepared to interoperate with another implementation
which does include the option, though perhaps with reduced functionality. In the
same vein an implementation which does include a particular option MUST be
prepared to interoperate with another implementation which does not include the
option (except, of course, for the feature the option provides.)

6. Guidance in the use of these Imperatives

Imperatives of the type defined in this memo must be used with care and sparingly.
In particular, they MUST only be used where it is actually required for interoperation
or to limit behavior which has potential for causing harm (e.g., limiting
retransmissions) For example, they must not be used to try to impose a particular
method on implementers where the method is not required for interoperability.

- "MAY" is synonymous with "OPTIONAL" and appears to be "truly optional". But, if you read on you see
conditions, expressed with the "MUST" verbiage to denote that inclusion or omission of a given feature must
work with another implementation (perhaps another OS) of the same protocol feature that excludes or includes
the given feature. If the text in the parentheses of the discussion of "(except, of course, for the feature the
option provides)" leaves you shaking your head in befuddlement, you are not alone!

As if imperatives 1-5 are not baffling enough, the guidance offered for the use of these imperatives in section
6 takes the whole blurry jumble to a new level of confusion. It appears to be exhorting the use of these
imperatives when creating the RFC only when advising about characteristics required for protocol
interoperability or when possible harm may result from the lack of specific imperative use.

It is no wonder implementers interpret RFC's diversely. The particular RFC description itself may introduce
unclear guidance. As well, the definition of the selected imperative for whether or not a given feature should
be included is so arcane. The point is that determining what is "normal" behavior for a particular protocol
implementation may be extremely difficult for the implementer to understand.
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Concepts of TCP/IP Review

s 30 3 S ST G SN MR )

* Network communication model provides standard for how
traffic is sent and received
— Based on layers of encapsulation/de-encapsulation

» Hexadecimal typically used to show network traffic

e Protocol standards of "normal" set by RFC's — yet no way to
guarantee universal acceptance and compliance

IﬁtrUSioh:Dct‘.ecﬁQn 'In—Dépt‘:h

As we've seen the TCP/IP communication model provides a standard for sending and receiving traffic. It uses
the notion of layers — specifically the network access or link layer at the bottom, followed by the IP layer,
followed by the transport layer, and finally the application layer. Each layer encapsulates the next higher layer
when data is sent. Each layer strips off the current header, and passes the remaining data to the appropriate
higher layer, a process known as de-encapsulation.

We covered the topic of representation of data in binary and hex. Hex is typically used to show network traffic
by tools like Wireshark. Data is represented in bits, nibbles (4 bits), and bytes (2 nibbles or 8 bits).

When a new protocol is created or an existing one amended, the Request for Comments documents act as
guidance to suggest how to implement it. Yet, implementers may not follow the guidance for many different
reasons. We hope to establish a foundation of normal using the RFC guidance so we know abnormal when we
see it.

© 2015 Judy Novak



Concepts of TCP/IP Exercises

Exercise: . "Concepts of TCP/IP"
Introduction: . Page5-A
Questions: ~ Page6-A

Answers: L ~ Page9-A
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Introduction to Wireshark

e Concepts of TCP/IP
o Introduction to Wireshark
e The Network Access Link/Layer

e The IP Layer
- IPv4
— IPv6

Intrusion Detection InéDéptl1 -

This page intentionally left blank.

© 2015 Judy Novak



Objectives

Learn to navigate Wireshark

*®

Capture/save packets

Learn about Wireshark statistics

Understand some features by examining a sample
application

~ Follow a session

— Find a packet based on value in the payload

This section shows you how to get around in the Wireshark interface. Wireshark has the capability to give you
some statistics that are helpful to get an idea or overview about a particular pcap or set of traffic that you've
captured.

The best way to demonstrate some of the features of Wireshark is to show you a simple application where we
follow an entire session, allowing Wireshark to reconstruct many different related packets. We'll also see how
a particular packet(s) can be found based on some value in the payload.
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Very Powerful Tool

— T T

5

e Feature-rich:
- Sniff live traffic or read previously captured traffic
Follow TCP/UDP streams and turn into conversations
Examine packet layers in component details
Drill down into protocols to view component fields/values

View/select specific packets based on protocols, field values, or
content

Variety of high-level overview of traffic — conversations
Export web objects for further investigation
Many more features...

I

~ Intrusion Detection In-Depth

You had an opportunity to take Wireshark for a short test drive in the first section if you followed the
Wireshark output on the VM. We’ll learn to use some of the basic and necessary functionality in this section
of Wireshark. Additional features and functions are covered in sections of following days' material.
Wireshark has built-in features to help you examine any portion of any packet or packet content that you’d
like. It can also decode many protocols into relevant fields and values. Wireshark allows you to search
through records for particular traits. And, much like tcpdump, it can capture or sniff traffic and it can also read
pcap files.

Another extremely useful feature is reassembling a TCP or UDP conversation. Wireshark is able to
reassemble all segments in a TCP or UDP session to recreate each side of the conversation. This is very
powerful for analyzing a particular session of interest. Wireshark is particularly adept at decoding many
different protocols. This permits you to see values associated with specific protocol fields and allows you to
search these fields for values; for instance, if you wanted to select all records that contain an "HTTP" GET
method. This is possible because Wireshark can dissect the HTTP protocol into its component fields and
values.

Wireshark offers many different configuration options. It also has many different views of the traffic,
including a variety of overviews such as the source and destination IP addresses of all conversations and
statistics of packets. It can also write captured records in many different formats and can export web objects.

There are many Wireshark features that will not be covered in the course just because Wireshark has so many
capabilities that all of them cannot be covered in the time we have. The references page at the end of this
section points you to other resources in case you'd like to pursue learning Wireshark in more depth.
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Wireshark vs. tcpdump

Wireshark tcpdump
Pretty GUI, easy navigation, Clunky command line input, ugly
coherent output output
Decodes many protocols Minimal incomplete decodes
Many support functions (stream Support functions better from
reassembly, search/find, etc.) OEhPSF tools (ngrep, chaosreader,
etc.

Interprets traffic for you : ) )
Cumbersome with large pcaps Do-it-yourself interpretations
History of buffer overflows Easily handles large pcaps
May be over zealous in translation Rare buffer overflows

Better for inspection of limited Do-it-yourself intérpretations
amount of traffic Better for quick superficial visual

overview

Both Wireshark and tcpdump will be used throughout the remainder of this course for packet display and
processing. Many years ago, tcpdump was pretty much the only tool for packet analysis. It had been around
for a long time when Wireshark (initially named Ethereal) came along. We’ll spend a great deal of time using
both tools and discovering their benefits and limitations. If you are new at traffic analysis and try both tools,
you may think why ever use down-and-dirty tepdump? It’s got ugly output generated by esoteric command
line directives compared to Wireshark’s lovely GUI, menus galore, and coherent output.

Wireshark has support to decode many different protocols — some quite familiar — such as TCP, DNS, etc.
Other protocols are more arcane, yet common and uncommon protocols are presented in a manner where you
can see all the fields in the protocol and the associated data decoded for you. In contrast, tepdump has minimal
protocol decodes — such as DNS, and even so, the decodes are incomplete. You may see the DNS query that
was requested, but you won’t see other related fields and values of the query. You’ll also find that Wireshark
is what the marketing people call “feature-rich” or chock full of easy to use functionality for all sorts of tasks
such as session reassembly, finding packet content, saving output in many different formats, and searching for
any field in any protocol as a few examples. Tcpdump, on the other hand, has very few support functions and
relies on other tools that we’ll examine later in the course, such as ngrep and chaosreader for search and
session reconstruction.

Basically, Wireshark interprets the traffic for you, packet by packet, protocol by protocol, and field by field.
Tcpdump mostly requires you to do the interpretation. You may be thinking to yourself once again, why
would I ever use tepdump? Well, what if Wireshark code is wrong and misinterprets some kind of translation?
Tepdump can be used in its raw hexadecimal format to allow you interpret the protocol yourself. Also, if you
try to bring up large pcaps — over 1GB or so, Wireshark groans and wheezes before finally coming up.
Tepdump can process large peaps much better and far more quickly. Suppose you want to find a specific
packet in a large or even medium sized pcap when you have a unique characteristic about the packet to supply
as the search criteria. Tcpdump is quick, has minimal overhead, and is more efficient.
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_ Wireshark Plus tcpdump

P

e It's not a contest of which tool is superior
o They needn't be used exclusively

e Best used with each other
- Use tcpdump to filter an item of interest

— Use Wireshark to inspect details

* Intrusion D»‘e}tecti'oh In-Depth

The comparison of Wireshark versus tcpdump was not meant to incite a holy war like Firefox vs. Internet
Explorer versus Safari over which is superior. The reality is that they don’t have to be mutually exclusively
employed. There will be times when one or the other may suit your needs entirely. There may be other times
when you will find that they can be used to complement each other.

For instance, say you have a very large pcap that tcpdump easily handles but that Wireshark is slow to ingest.
Imagine that there is some unique trait of interest that can be easily selected using tcpdump filters. We’ll cover
these in much detail, but for now, know that they are a means for selecting one or more packets based on some
value(s) in the protocol headers or payload. You can extract the records of interest using tepdump and then
feed them into Wireshark to inspect the details, perhaps reconstruct a session, or export objects.

We’ll examine many different tools in this course. Some are more focused on a specific task, such as
attempting to determine an operating system associated with a given packet. Others are broad and full-
featured such a Wireshark. No one tool is likely to meet all of your needs so use each for its strengths.
Ultimately, you may find that many used in combination deliver the results you want.
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Introduction to Wireshark:
Navigating in Wireshark

B

Let’s first examine Wireshark’s main viewing interface. Wireshark has many features and its interface is quite
intuitive. It's important to become acquainted with the menus so that you know how to access its features to
navigate your way around.

© 2015 Judy Novak 45




Entry Menu

Ele Edit View Go Capture Analyze Statistics Telephony Jools Heip

B@8iy B o

= Interface List 8 Open Website
Live kst of the capture intestaces (counts incoming packets) Open a poeviousty caprured file Visit the project's wabmie

User's Guide

Tha Uar's Guwse ((ozal vession, i nctaliad)

Start capture on interface;

i Capture Options
Stat & casture with oedalled options @ Security
Wory, with Vireshatk a3 secutely a3 postile

@ How to Capture

Stap by 5tep 0 & suczessful copture Sxup

Network Media Rmp/scapyVIMixs {118 K8)
Spesiic ixormation Jor cupturing ao: Etesnet, WIAN, ... @ Sample Captures
A ricr pysartmens ot examole capture fies on the w8

erofile: Default

I3 Beady 16 load or capture

When you invoke Wireshark, this menu allows you to select options to configure the capture interfaces. And, it
allows you to get help for capturing packets or access the user’s guide online.

The middle column displays the pcap file names that were most recently viewed using Wireshark. The
Wireshark website has gathered a collection of pcaps that can be accessed via the “Sample Captures” link.
These are pcaps of some common protocols in case you have a particular interest in examining one or more of
them.

Many of the toolbar items are grayed out since they pertain to functions that are used for a given pcap. For
instance, the binocular icon finds a certain packet based on criteria that you supply. It makes no sense to have
this function available unless there is a pcap loaded or traffic captured, which is not the case yet.

<¢> To invoke Wireshark from the command line, enter:

46

wireshark
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Main Menu
_Capture traffic §

L0 35 99899

,'i Packet list pane a ;

b Frame 1 (98 bytes on wire, 98 bytes captured} H
;b Ethernet II, Src: Digitalg _Do:B8a:04 {@a:08:64:008:0a:04), Dst: Vmware 03:23:19 (883

ib Internet Protocol, Sre: 192.168.11.65 (192.168.11.65), Dst: 192,168,11.13 (192.1681
N ssage Pratocol {

folchXc)

60 46 66 40 @1 a3 Ga O a8 @b 41 O aB

0020 08 68 6d 45 87 1T 66 61 8c d6 1f 56 ea e@

ae3e 08 09 Ba ob Bc @d Ge 6f 10 11 12 13 14 15

0640 18 19 la 1b 1c 1d e 1f 20 21 22 23 24 25 $RS%
Qe30

28 29 2a 2b 2¢ 2d 2e 2T 30 31 32 33 34 35 &' ()*+,- /012335
67

i Packet bytes pane §

O Fite: “ping.pcap" 480 Bytes 00:00:00

. Profife: Default

Status bar

Packets: 4 Displayed: 4

This is the main menu for examining a particular pcap or the result of collecting live traffic. At the top,
Wireshark’s main menu options offer you choices for analysis using one of these pulldown options. The icons
beneath the menu options comprise the main toolbar. If you hover your mouse over any of the highlighted
icons, a brief description will appear.

There are three different Wireshark “panes”. The packet list pane displays all the captured/read packets. This
gives basic information about each packet. The packet details pane breaks down the selected packet by
protocol. For instance, the selected record has a frame, Ethernet, IP and ICMP header. Each of these can be
examined in more detail by expanding the protocol by selecting its associated right pointing triangle. The
packet bytes pane shows the hexadecimal bytes and ASCII interpretation for the selected packet or portion of a
packet.

The status bar on the bottom indicates the file name that has been read, the number of packets captured and/or
displayed. The “Profile: Default” shows that the Wireshark configuration or preferences and settings it the
default one that is supplied with Wireshark.

+ To display file ping.peap do either of the following:
1. Exit Wireshark and invoke it again at the command line;
wireshark ping.pcap

2. Or stay in Wireshark and select the pulldown menu File > Open and navigate to the directory
location of /home/sans/demo-pcaps/Dayl-demos and select ping.pcap

For viewing all future demonstration pcaps, you have this same choice, although the first option only is
provided.
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Collapsing and Expanding Panes and
__Protocols/Fields

Fle Edit View Go Capture Analy;

Time Sousce Destination : Protocol
2 8.000269 . 192.168.11.13 192.168.11.65 T Icwe
3 €.998996  192.168.11.65 192,168,11.13 cup
. 40.999196  192.168.11,13  193.168.11.65 :
ol 7 " 14 R SR e

N> Frame 1 (28 bytes on wire, 98 bytes captured) |

VIt Ethernet I, Src: Digitalk 60:0a:04 (22:60:04:00:05:04), Dst: Vmware_03:23:13 (80:}
;b Intermet Protocol, Src: 192.168.11.65 (192.168.11.65), Dst: 192,168.11.13 (182,168
b Internet Control Message Protocal |

i : oy i T % LA
Q6pR 0B 6C 29 B3 23 19 az OB 04 00 0a 04 08 8O 45

616 06 54 BO ©& 40 90 40 01 a3 Ga cb as Gb 4l ¢@
0626 0b QU 08 06 od d5 67 1f 00 Bl 8¢ U6 If 50 ea
DE3C 01 00 0B G9 ba Bb Gc Od e Of 10 11 12 13 14
0640 16 17 18 19 1a 1b ¢ 1d e 1f 20 21 22 23 24
0656 26 27 28 29 2a 2b 2¢ 2d 2e 2f 20 31 32 33 34

paaa 36 37
O File: “ping.pcap” 480 Bytes 00:00:00 Packets: 4 Displayed: 4 ...  Profile: Default
ﬁ}% ... Intrusion Detection In-Depth =

Wireshark presents you with a summary of the pcap data. You can expand and collapse display areas easily.
Wherever you see a right facing triangle next to a protocol or field, for instance the "Frame 1" field where you
see the arrow on the left side of the slide, you can expand the field by placing the cursor over it and clicking
the mouse. Conversely, you can collapse the display by doing the same thing to a down facing triangle that
replaces the right facing triangle when expanded.

You may also want to expand or collapse one or more of the packet pane areas to obtain a particular view of
the data. There is a gray bar below the two left-right blue scroll bars separating the three panes that is used to
expand and collapse the pane display area. Place your mouse on this scroll bar and a double ended pointing
arrow appears. Just hold down the left mouse click and move the bar up or down to reveal or conceal a pane
area.
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Introduction to Wireshark:
Sample Traffic Analysis

This section will introduce you to some of the more common Wireshark tasks you can perform when you are
examining traffic.
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Pcap File for Analysis

Destination

8 173.255.224.56 g
3 10.000600  65.55.111.78 173.255.224.66
4 12.088808  173.255.224.66 65.55.111.78 SHTP smtp
5 16,000608  65.55,111,78 173,255,224, 66 SMIP 64770 smtp

i : ; 5 R : i )54
b Ethernet II, Src: Cisco_a4;04:ff (88:4;e1;a4:ad:ff), Dst: fe:fd:ad:ff:e@:42 (fe:fd:ad:ff:e0:42)

b Internet Protocol, Src: 65.55.111.78 (65.55.111.78), Dst: 173.255.224.66 (173.255.224.66)

b Transmission Control Protocol, Src Porti 64776 (64776), Dst Port: smtp (25), Seq: 8, Len: &

IO Frame {frame), 62 bytes Packets: 858 Displayed: 838 Marked: 0 * Profile: Default

Let’s say that you have a pcap named phishing-attack.pcap, which as the name implies, is traffic of an
attempted phishing attack. You are also given some more details that the string “filename=pdf641” in an
HTTP session is indicative of a user visiting the link included in the phishing e-mail that directed the user to
download some malicious code. That’s all you know.

on Detection In-Depth H oo

On the command line, open Wireshark to read the file “phishing-attack.pcap”, located in the /home/sans/demo-
pcaps/Day1-demos directory:

wireshark phishing-attack.pcap
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Statistics

) Telephony Tools * Help
Tmmary
Protocol Hierarchy
Conversations
Endpoints

Packet Lengths...
10 Graphs

Conversation List
Endpoint List
Service Besponse Time

frann 1l 3 ,
b Ethernet II, Src: Cisco_ad:04:1f;
b Internet Protocel, Sre: 65.55.111
b Transmisiion Control Protocel, st

“idrad:Tfrep:42 (Te:fd:ad:Tf:eq:42}
155,224,66 (173.255.224.66)
%t; smtp {251, Seqa B, Leni 80

Flow Graph... ;
HTTP > %
1P Addresses... i
1P Destinations... ;
1P Protocol Types...
ONC-RPC Programs.

UDP Multitast Streams.
WLAN Traffic...

k) Frame {frame), 62 bytes Packets; 858 Displayed: 858 Marked ¥ Profile: Defadlt

hishing-
‘attack.pcap

Wireshark offers many different views and types of statistics associated with traffic. We don’t know much
about the composition of the records in the pcap — other than there must be some kind of Simple Mail Transfer
Protocol packets and sessions and some HTTP session per the guidance given. Let’s look at some statistics that
may be helpful.

This is a great place to start when trying to profile some activity. It helps you get the big picture overview of
what might be useful to investigate in more detail.

+ Select the pulldown menu “Statistics”.
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Su'mmary and Protocol
Hierarchy Statistics

File 1
Name: phrishing-attack.pcap 1 .
Lengih 538668 bytes AR e Display filler: fone ;. o o
Formal: Witesharkacpdampl... - tibprag :Protocol % Packets : Packets Bytes Mbit/s End Packets End Byte
Eopsulation; Ethemet £ T i
Pocket size limit: 65535 bytas ¥ Frame H3B.534916; D002 o
{7 Ethemet 856 539916 0.002 o
'";“‘ . P i = Intemet Protocol 858 539916 0.002 0
0%l packet: g .18 H o
Last pp:ckex: 2000-01-01 09:01:19 ] v Transmission Control Pratacol 769 506060 0.002 343 T
Elapsad. 042,09 « Simple Mail Transfer Protocol 182 41830 0.000 169 3541
Eiote fntemet Message Format 136412 0.000 B sl
Data 236 387156 0.001 236 3871
¥ Hypertext Transfer Protacol 4 3840 0.000 2 9%
Media Type 2 2908 0.000 2 290
Display Secure Sacket Layer 4 1774 0000 4 173
fitrer: ‘
Disgley flten Tere @ User Datagram Protecol 8928856 0.000 [ :
Tatfic Captores Gisplayed  Mark( £ : ¥ f i : 5 i
g‘““”‘-" st ares . f:ﬁq b 2 Hypestext Transfer Protocal 76 27040 6,000 7% 2704
etiveen At and Jast packet 2539000 xe¢ . H
g, packemmec 0318 NetBIOS Datagram Service 1 162 0.000 1 14
Avg packet size

Intrusion Detection In-Depth S

This output is the result of looking at two different options present in the Statistics pull-down menu. The display
on the left is a Summary of traffic and the one on the right is the Protocol Hierarchy. The summary presents the
number of bytes found in the pcap as well as the number of packets recorded. It displays the time when the first
and last packets were captured. And, if you are interested, it gives a bunch of statistics of averages. You may
notice that the file length under the File section at the top indicates that the file is 548668 bytes. Yet, when you
look at the Display section at the bottom, the number of bytes is listed as 534916. The byte count represents the
actual bytes in the packets only, whereas the file byte count includes those same bytes, yet has to keep metadata
associated such as the timestamp for each record. The metadata is not considered to be packet bytes because it
is not included in the packets themselves, only in the pcap file for statistics.

Another quite useful overview of the data in the pcap is found in the Protocol Hierarchy option in the Statistics
pull-down menu. As you can see it categorizes the traffic by layers and indicates the approximate percentages,
packets, bytes, etc. for each distinct category. This gives you an overview of the types of traffic that are found
in the pcap as a good starting point for examining the data.

With your astute eye, you may see that there is over 8% of UDP HTTP traffic. What's that all about? As we'll
later learn, if you click on the HTTP entry under UDP and right click, a filter menu appears. If you follow the
Apply as Filter -> Selected options and click you will see the records that were included in HTTP UDP entry.
The port 80 traffic is definitely TCP as that is the protocol found in the IP header of those records so that
appears to be erroneous. The other traffic is identified as "SSDP". According to Wireshark's wiki:
http://wiki.wireshark.org/SSDP, it is the Simple Service Discovery Protocol and it is described as an HTTP-like
protocol. This explains why Wireshark considers it to be UDP HTTP traffic.

To view this output, select the Statistics pull-down menu. The output on the left is a result of selecting the
Summary option while the output on the right is generated from selecting the Protocol Hierarchy option.

52 © 2015 Judy Novak



IP/TCP Endpoint Statistics

Ethernet: 10 F Pus IPX JKTA L NCP. RSVP STTP . TCPi27

iPv4 Conversations
Packets A-B

Bytes A-B | Packe

Address A Address 8 Packets  Bytes
5 ZA255 774,56 13t D20 501
65.55.111.101  173.255.224.66 161 24796 7 18251

173.255.224.8  173.255.224.88 2 202 1 120
1;31‘3‘5{;?1‘:31 :;*;’;gzg:zg Ethernet: 10 | Filire Channel: FDDI IPVA; 16 | 1Pvs | IPX . JKTA | NCP. REVE  S0TR GCP: 39 _;
10.100.100.111  173.255.224.88 TCP Conversations
10.100.100.200  173.255.224.88 Address A Port A Address 8 PortB . Packets  Bytes  Packets A-B
10.100,100.100  173,255.224.59 ? 73 IKESTABE | At e ; 338 4
173.255.224.1  239,255.255.250 55.55.111.78 60334 173.255.224.66 smEp 23 3938 1
74125226181  173.255.224.101 65.55.111.78 24514 173.255.224.66 smtp 23 3934
68.87.73.246  173.255.224.101 65.55.111.78 17053 173.255.224.66 smtp 23 3936
76.96.58.143  173.255.224.101 65.55.111.78 54824 173.255.224.66 smtp 23 3938 1
74125226149 173.255.224.101 65.55.111.78 7291 173.255.224.66  smtp 23 3936 1
o . n 65.55.191.101 57036 173.255.224.66 smtp 23 3544
65.55.111.101 50182 173.255.224.66 smtp 23 3544
65.55.111.701 33654 173.255.224.66 smip 23 3542
65.55.111.101 21893 173.255.224.66 smtp 23 3540
65.55.111.101  emprise-lls 173.255.224.66 smtp 23 31542 1
65,55.111.101 40829 173,255.226.66 smtp 23 3542 1
65.55.111.101 28444 173.255.224.66  smtp 23 3542 1

5 fishing:

attack.pcap

The Statistics option Endpoints provides good insight into the IP addresses and/or TCP/UDP ports. This is
more helpful with smaller pcaps or larger more uniform ones with fewer IP addresses and protocols. The IP
endpoints on the top of the screen, selected with the IPv4 tab, displays statistics for each unique IP of number
of packets, bytes, transmitted and received packets and bytes. There are even some country designations based
on IP address allocations.

Similarly, TCP endpoints below, selected by the TCP tab shows those same types of statistics by port
associated with a given IP address.

You may notice the columns for country and city. Geolocation is available in Wireshark; however, it does not
come natively. You need to download database and software support for geolocation. For more information
on how to use it, look at the Wireshark wiki link:

http://wiki.wireshark.org/HowToUseGeolP

Select the pull-down menu Statistics = Endpoints. Select the IPv4 tab to view the output in the upper display
in this slide, and the TCP tab to view the output in the lower display.
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Analyze a TCP Session

8 ST ST e TS : DL S
File Edit View Go Capt ... Spustics Telephony Tools Help
g & @ T g play Filters... w
. = Display Filter Macros...
Apply as Filter > e
Prepare a Filter > Source port info

ination port

17;1 Enabled Pratocols... Shift+Ctri+E popep

2 5,060080" sty ed7Ie
3 16.060008 65.5, Decode As... e 54778 smtp
412.000000  173.  yser specified Decodes... SMTP setp 64770
5 16.0080808  65.5 ... R i SMTP 64770 smtp
6 21,000000  173. ~Foiow TCP BeD TP seip 64770
7 25,000006  173.; STP smip 64770
8 26.800000 « 65.5 - : SMTP 64778 setp
5 36.808008 173, v i i SMTP  smtp 64770

16 32.088000  65.5 Expertinfo SUTP 64770 sntp

11 33.800000 173 pypert info Composite SR smtp 63770

|- iy s ion Filter dhooid

i Frame 1 (62 bytes on wire, ‘62 bytes” captured)” "

I Ethernet TT, Sre: Cisco ad:04:ff (88:43:e1:24:04:7f), Dst: fe:fd:ad:Tf:ep:42 (fe:fd:ad:ffre0:42)
b Internet Prot:

(PR R

0010 00 3¢ 60 01 00

0020 @
0630 |
[ Transmission Control Protocol {tcp)... . Packets: 858 Displayed: 858 Marked: 0 Profile; Defaalt
- S — hishing-
_ Intrusion Detection In-Depth B e

One of the most power features of Wireshark is the capability to reconstruct TCP or UDP sessions. Tools like
tepdump are capable of seeing and analyzing traffic as single packets. That’s fine if you are looking for
something in an individual packet or two, but inadequate when you would like to see related packets in terms of
a reconstructed stream or session. You are able to see both sides of the “conversation” in terms of the payload
that is carried by all packets in the session. This is invaluable when trying to reconstruct what has transpired.

Let’s follow a TCP stream in our phishing-attack.pcap — namely the session or stream associated with the first
packet. You must select any packet associated with the session and then select the Analyze pulldown menu and
the Follow TCP Stream option.

Select the first record displayed by Wireshark. Next, select Analyze = Follow TCP Stream option. You should
see the output that appears in the next slide.
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TCP Session

Steam CONLEnt- i

{1228 demo.packetdanage. com
ERLO blub-ome2-s3.blud hotmail. com
250-dero, pucketdanage. com

250-PIPELINING

256-SIZE 16248800

1258-VRFY

250-ETRR

1250 ENHANCEDSTATUSCODES

250-8BITHINE

256 DSN

FAIL FROM:<loserdhotmail.com> SIZE=1982
250 2.1.0 0K

RCPT TO:<cdilstongdem, packetdanage, coms

2.1.5 0k
1558 5.1.1 <horaceidemn.packetdanage. com>: Recipient address rejected: User unknown in local recipient table
558 5.1.1 <maria@deno,packetdamage.con>: Recipient address rejected: User unknown in local recipient table
in local recipient table

;559 5,1.1 <terrence@denoc.packetdanage conet Recipient address rejected: User unkaown in

DATA

354 End data with <CRo<LFx.<CR><LF>
Received: from BLUIS2-W4T ([65.55.111.71]} by blub-omc2-53.Llub.hotmail.com wilh Microsoft SHIPSVC(6.6,3796.4675);
i Mon, 4 Jul 2€31 12:09:33 -87G@
t 95F9bARGLOFZETEGALSCOR0BX . 0bL>

tire conversation (2680 bytes)

2 13 ASCH > EBCDIC 73 Hex Dump & C Amays @ Raw

)

!

 Filter Out This Stream | | Clase

phishing-_
“attack.pcap

This is the actual “conversation” that occurred in the selected TCP session associated with the first packet in
the pcap. You cannot tell from the black and white output in the slide above, but when examining this pcap in
Wireshark, the client side of the conversation is in blue and the server side in red. This particular stream
content is SMTP. We’ll cover the SMTP protocol later in the course. But, this gives you a good idea of the

power of Wireshark. Stream reconstruction is one of the most used and most valuable functions of Wireshark.

+ Close the Follow TCP Stream window.
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Make All Packets Available Again

r(»fcg.smeamEQQ :

Time i Source

606080 73,255,224,
12.608080  173.255.224.66 65.55.111,78
16.680000  65.55.111.78 173.255.224.66
21.060000  173,255.224.66 65.55.111.78
25.000000  173,255.224.66 65,55,111.78

26000000 .65, 55,111 78......00. ..o 173,255,224,66.....

S

O Frame {frame), 62 bytes i ", packets: 858 Displayed: 23 Marked: 0  Profile: Default
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Whenever you select a function in Wireshark that selects a given session or selects packets with a specific trait,
you exclude all other packets from Wireshark’s present evaluation. Once you are finished looking at your
selected packets, you need to inform Wireshark that you want to see all packets again.

You might wonder what operations cause Wireshark to exclude records. There are many. Ifyou see the Filter
text block with text and a green background, that means that Wireshark is able to perform tasks exclusively on
those packets. Filters that you or Wireshark create in this text block are known as display filters. You will
have an opportunity later to create your own display filters - as the name implies display certain packets only.
In this instance, Wireshark is considering packets from “tcp.stream eq 0”. Wireshark numbers its streams and
the stream assigned the number 0 is the one currently active. You must clear the current filtered session to
bring back all packets. Once you select Clear, the filter input becomes blank again and all records are once
again available for evaluation.

One distinction that you should understand is the difference between the results of Wireshark display filters
and Wireshark capture filters. Wireshark display filters simply show those records that match, however all
other records are still available after the "Clear". Wireshark capture filters select only those packets matching
the filter criteria and reject /do not collect those that do not match.

Select the clear button will make all packets available again.
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Find a Packet

T e
Find Prayious

1ark Packet (toggie}

Find Next Mark Shift+Clr+N 255.224.66
find Previous Mark shifceCrriB B ;1;2';5

Mark All Packets Cii+A %51'11 .,;365
unmark Ali Packets ctriD §,131.78

- 255.224.66
SetTime Reference {toggle) QT 5.111.78

Find Next Reference Shift+Ctr+Alt+N 255.224,66
5.111,78

Fing Previous Reference Shift+Cld +AR+B

Configuration Profiles... Shift+Ctri+A

b Ex  Preferences... Shift+Ctl+P 34:¥F), Dst: fe:fdiad:ff:e8:42 (fe:fd:ad:¥f:
b Intérnet Brotacol, STE: 65.55.111,78 (65.55.111.78), Dst: 173.255.224,66 (173.255.224,66)
b fon Control Protecol. STc Port: 64776 (64778), Dst Port: sutp (25), Seq: 9, Len: 8-

S :
“packets: 858 Displayed: 23 Marked: 0 Profile: Default

Y Frame (frame), 62 bytes

phishing-
“attack.pcap

Another very useful capability found in Wireshark is finding a given packet based on some indicator that you
supply. Select the Edit-> Find Packet menu option to bring up the menu to designate what you want Wireshark
to see.

+ Select the Edit=> Find Packet menu.
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Menu to Find a Packet

a8 | wiresh e
Find X
By: > Display filter ¢ Hex value 5
§ i

Jier | filename=641.paf |

Search in--—w ,+String Options -
O Packet list
(> Packet detail

(e |

+ . Intrusion Detection In-Depth - PHishing:

attack.pcap

The dialog box seen in this slide is used to supply the details to Wireshark to find the packet you want.
Remember earlier that one of the facts you received about this traffic was that string “filename=641.pdf” is
likely to be associated with malicious traffic. Let’s search for that. We are looking for a string value and we
want to look in the packet bytes — or payload for the string.

There are other search options. You can search for a hexadecimal value in either the packet details (header
fields) or packet bytes field (payload). The display filter option allows you to find the packet based on display
filters that Wireshark supports. We’ll go into great detail about display filters, but for now understand that
Wireshark has its own designations for protocols or fields in protocols. For instance a Wireshark display filter
of “udp.port == 53” informs Wireshark to examine UDP port 53 (typically DNS) traffic only. The display
filter selection does not allow you to select a “Search in” button — all of them turn gray. That’s because this is
a self-contained search and Wireshark knows where to apply its own display filters.

The “Search in” section has a selection of “Packet list” which means that you must supply a string format for
Wireshark to match with what it calls the Info column. This is the column that has headers like Source,
Destination, etc. By the way, just hovering over the “Packet List”, or any of the other choices in this dialog

box causes Wireshark to give you a short description of the field. Speaking of help, Wireshark has extensive
help support under the Help pull-down menu option.

Select the “String” option, enter a filter of “filename=641.pdf”, select the Packet bytes option and hit the Find

button. If you did not press the Clear button to restore all records after selecting Follow TCP Stream, you will
not find the string.
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Found the Packet,
Follow the Session

e Edit View Go Copure Anayze Statisucs Telephany Rools  Help

{tcpstreany 0q 17

Sorce pore | Destination podt  In

Timoe Saurce Destiation
669 1923800060, 173,255, 224 .86 10.168.106.200 U ¥Ch xtone-desig hrtp
666 _1926.060066 16.100,100.260 173255224188 7N hrep ““stone-designi1
667 1922, 460a88 173.255,229.48 30,1pa.300.200 1T YCPT stane-desig it F

665 '1929.889000 173,255,224

16,180,100.208 HTTP stong-gesig HTLp
669 1937040000 18,180,168 t4

.88
280 173.255.224.88 TCP. stone-dusign-1

Mask: Packet (toggie)
Set Time Referesce {toggie) 3 : stone-design-1  (

Apply a5 Filter

i Frane 676 (1454 bykes on wire, 1454 b : :
b Ethecnat X1, Sre: Vmeare Bh:b:2d fog o oPe ARl % Fichuise 106:0¢:29:20:cn148)

I Internet Protocol, Sre: 16.109.100.2g  SonversationfFilter > 5.224.88 (173.255.224.08)

> Transmission Costral Protocal, Src Py Colorize Conversation >Hesign 1 (1392), 5eq; k. AcK: 433, Len: 140

Source purt: http (68)
0SLinATION posT: STORE-dRsign: L
Istrean index: 17}

Sequance Aurber: L irelative s
[uaxt seguence aumbsr: 146l {re
Acknawisdgement mumber: 413 (n
Heander length: 26 bytes

Flags: DXID T1ACKY

window iz 0432

Follow TCP Stream

Ccony
Decode AS..
PN,

Show Packe in New Vindow

-

& 45768
©5 4G 00 B1 6 0D 40 96 77 d3 Ga G4 63 c& ad It
9020 €6 52 0O 50 05 G4 35 3¢ le a3 b 23 22 40 50 10
0030 15 20 =3 b G0 ©6 4% 54 34 30 2f 31 2s 31 1D 52
9640 30 3¢ 28 ¢F 4L €d 2a 44 1 74 6% 3a 26 49 Of Ge
Besh  2¢ 20 32 32 20 4a 75 6e 20 32 34 30 35 25 31 30
506G 33 31 38 33 33 38 26 47 Ad 34 6d 83 $3 €5 72 76
looTn €5 72 3w 20 43 YD 61 €3 G 6% 2f 32 Ze 32 2e 33 er: Apsc be/2.2.3

k5 texe item Dizpiayad: 47 Marked: 0

Profile: Default

attack.pcap

Wireshark takes us to the packet where the text is found. But, it is more helpful if we can see the string in the
session related to the found packet so we’ll combine this with the Follow TCP Stream capability. Wireshark
has navigated to the packet so all you have to do is right click the mouse and a menu is presented that has
Follow TCP Stream. Select that menu option. The result is shown in the next slide.

Wireshark has navigated to the packet so all you have to do is right click the mouse and a menu is presented
that has Follow TCP Stream. Select that menu option.
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Session Reconstruction

Stream Content: .
GET /ing/ptqa.php HITA/101

heeept: image/gif, image/x-xbitwap, image/jpeq, image/pipeg, application/x-shockwave-flash, application/msword, applicationsund.ms-

‘powerpoint, applicationsund.ws-excel, */*

Referer: htip://trughtss,con/

Accept-Language: en-us

UA-CPU: X85

‘Accept-Encoding: gzip, deflate

User-Agent: #azilla/4.0 (conpatible; BSIE 7.0; Windows NT 5.1)
Host: trughtsa.com

Connection: Keep-Alive

HTTP/1.1 206 OK

Date: Hon, 22 Jun 2089 18:18:30 GMY
Server: Apacne/2.2.3 {Cent0s)
X-Powered-By: PHP/5.1.6
‘Accept-Ranges: bytes

Content-Length: 26397

Content-Disposition: inli-ne
Connection: close

fontent-Type: application/pdf

5PDF-1.3
3 6 obj
<</Type /Page]
YParent 1 € R

ASCIE £ EBCDIC 3 Hex Dump > C Arrays % Raw

G

 Filter Out This Stream | |

Close

R

phighing-
attack.pcap

You see the HTTP session where the user has requested a file. The HTTP server returns some information in

the second section above (in blue if you are following along in Wireshark) including a header that has

“filename=641.pdf”. If we wanted, we could investigate the rest of the session reconstruction to see what

transpired.

Close the Stream Content stream.

Exit Wireshark for now.
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Introduction to Wireshark Review

L]

Data displayed in three different panes

L

Different options available to capture and save traffic

Statistics available for an overview of traffic

Capability to reconstruct a session

Capability to find packets based on user input

Wireshark has three different display panes — the packet list pane to show a one line summary of each packet,
the packet details pane — one of the most useful features to dissect protocols and show you individual fields
and values, and the packet bytes field that shows you the hex output.

Wireshark has a Statistics tab that displays many different types of overviews of the traffic, including
conversation endpoints, protocols used, and a hierarchy of protocols all with summaries of the number of bytes
and packets exchanged.

One of the most used Wireshark capabilities is to take multiple associated packets and reconstruct that stream
of the entire conversation. This is invaluable when attempting to determine what transpired in a particular
session. Finally, Wireshark is able to find one or more packets based on user input for a payload value, a
protocol header value, or a particular Wireshark header characteristic.
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Introduction to Wireshark Exercises

T R S R B

Exercise:
Introduction:

Questions:

Answers:

~ Workbook

R T TR

"Introduction to Wireshark"

Approach #1 -
Approach #2 -
Extra Credit -

 Intrusion Detection In-Depth

Page 15-A
Page 16-A
Page 20-A
Page 22-A

Page 23-A

For just about all of the exercises Approach #1 and Approach #2 contain the same questions. Approach #1

gives more guidance and hints to assist in answering the questions.
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References/Links

e http://www.wireshark.org/docs
e http://wiki.wireshark.org

The information found at these Wireshark website links is very detailed and comprehensive.
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The Network Access/Link Layer

S v e e Y SN T LA

Concepts of TCP/IP

Introduction to Wireshark
The Network Access/Link Layer

The IP Layer
— IPv4
— IPv6

This page intentionally left blank.
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Objectives

¢ Introduce the 802.x link layer
e Discover how the network access/link and IP layers
communicate using ARP

e Examine how ARP is not a secure protocol

— How to spoof ARP

— Consequences of ARP poisoning

The network access layer, also called the link layer, is based on the Institute of Electrical and Electronics
Engineers (IEEE) 802.x standards. Our primary focus with the link layer is the need for a mechanism to
communicate between link layer MAC addresses and IP layer IP addresses. The Address Resolution Protocol

(ARP) protocol accomplishes this translation.

ARP is not sophisticated, subjecting it to misuse. This is accomplished with ARP spoofing resulting in ARP
cache poisoning. This allows an attacker to launch a man-in-the-middle (MITM) attack.
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IEEE 802.x Link Laye

T T % 5

[

e A family of standards developed by Institute of Electrical
and Electronics Engineers (IEEE)

e Most link layers you will use fall in the 802.x family
-~ 802.3: Ethernet
— 802.11: Wireless
— 802.15.1: Bluetooth

Imrusibn_bD“e.tecﬁon 'In¥De'p th

The 802.x link layers are a family of standards developed by a professional association known as the IEEE —
usually pronounced I triple E. They maintain the standards for existing technologies and recommend standards
for new technologies for the 802.x family. The name 802 is alleged to have been the year and month that the
committee first met in February 1980. We'll examine 802.3 Ethernet traffic for the course, however you may be
familiar with, and even capture, other 802.x protocols such as 802.11 — wireless, and 802.15.1 — Bluetooth.

The term link layer frame refers to the Ethernet header plus all the layers that follow. Ethernet supports a
maximum size of 1500 bytes of data that follows the Ethernet header itself, The data that follows can be IP and a
following transport protocol and possibly data or it can be ARP.

The Ethernet header itself is 14 bytes long. The minimum Ethernet frame size is 64 bytes. If there are less than
64 bytes from the combined 14 bytes of Ethernet frame header and data that follows, a trailer of 0's must be added
to pad the number of bytes to 60.

7~

The Ethernet frame has a 4-byte trailer also known as the CRC (Cyclic Redundancy Check) that is used to detect
frame corruption. Thus, the maximum 802.3 Ethernet frame length is 1518 bytes of which 18 bytes are Ethernet
protocol overhead. The remaining 1500 bytes can be used for user data such as an IP packet. The 4-byte trailer is
not captured by tcpdump and most other sniffers since it is really not considered to be data.

—
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Link Layer MAC Addresses

o—

e Communications via Media Access Control addresses

« Internet layer talks to network access layer - need
translation:
IP address+——MAC address

e MAC address is 48-bit number represented as 6 bytes
delimited by colons, i.e. aa:00:04:00:0a:04

e Translation done:
— In IPv4 using Address Resolution Protocol (ARP)

— In IPv6 using Neighbor Solicitation/Advertisement
¢ ARP not a routable protocol

Intrusion Detection In-Depth

The network access layer involves the device drivers and the Network Interface Card (NIC) that must be used to
communicate between the host and the physical medium on which it resides. A NIC has a MAC address burned
into it. These are also known as hardware addresses that are 48-bit numbers that are not changed. The IPv4
address is a 32-bit software address that can be changed. Similarly, an [Pv6 128-bit address can be modified.

When the network or IP layer talks to the link layer, an IP-to-MAC address association must occur. The Internet
layer speaks in IP addresses and the link layer speaks in MAC addresses. ARP is responsible for making the
association between an IP address and a MAC address in IPv4. IPv6 uses something known as a Neighbor
Solicitation to issue the request for a MAC address associated with a given IPv6 address and a Neighbor
Advertisement to send the response. We’ll examine these transactions when we study IPv6. In IPv4, the host that
needs to send the IP packet to the network access layer will issue an ARP request to determine the MAC address
of the receiver. Once determined, a frame header will be constructed that contains both the sender’s and the
receiver’s MAC addresses.

The first three bytes of a MAC address represent an Organizational Unique Identifier (OUI), designating the
manufacturer of the card. For instance a MAC address that begins with 00:1F:33 indicates that Netgear produced
the card. The last three bytes are the device ID.

One thing that you should understand is that MAC addresses are used for hosts found on the local network
segment. If you need to send traffic to a host on another physical segment, it will have to be routed there using
the Internet layer first before being delivered to the network access layer. What this means is that ARP isnota
routable protocol since it resolves MAC addresses for local segments only. When a frame traverses a routing
device, the existing source MAC address in the frame is substituted with the source MAC address of the routing
device.
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192.168.11.65 Internet 192.168.11.13
-[: Network @
aa:00:04:00:02:04 — Access [ 77 00:0c:29:03:23:19

)

ff.ff:ff.ff.ff.F who has 192,168.11.13
- _ B 1192.168.11.13 is-at 00:0c:29:03:23:19
tepdump -r arp.pcap —tne

aa:00:04:00:0a:04 > ff:ff:ff:ff:ff:f¥, ethertype ARP (Ox0806)}
Request who-has 192.168.11.13 tell 192.168.11.65

00:0c:29:03:23:19 > aa:00:04:00:0a:04, ethertype ARP (0x0806) :
Reply 192.168.11.13 is-at 00:0c:29:03:23:19

<<>> Intrusion Detection Iﬁ?Dcpth ‘ arp.pcap

In this slide, we see ARP in action. We have host 192.168.11.65 that wants to talk to a host on the same local
segment with IP address 192.168.11.13. Because both hosts reside on the local segment, we need to use the network
access layer to send a frame from source to destination. Yet, 192.168.11.65 doesn’t know what MAC address
corresponds with TP 192.168.11.13.

So, it sends a broadcast ARP request to all MAC addresses on the local segment using a broadcast destination MAC
address of fEAf.fE:ff.ff:ff. The broadcast ARP request asks any host to respond if it has IP address 192.168.11.13.
When the broadcast frame is read by the host with IP address 192.168.1 1.13, it will respond with a unicast (one host
to another host) frame to the requester with the MAC address for 192.168.11.3 - 00:0¢:29:03:23:19. The reply
knows to return the response to the MAC address of 192.168.11.65, because it was included as the sending MAC
address in the broadcast ARP request.

Now that 192.168.11.65 knows that the MAC address associated with 192.168.11.13 i5 00:0¢:29:03:23:19, it can
supply it in the frame header and place it on the network access layer and the two hosts can communicate
seamlessly. The IP layer that follows the frame/link layer header includes an IP header with the destination address
0f192.168.11.13

Another important concept to introduce at this point is cache. The MAC addresses will not change legitimately
unless a new NIC is placed on a host. So it can be stored on other hosts for a while to reduce the number of
broadcasts required to support communications. Also, any hosts on the network that are listening for broadcasts will
see the initial ARP request and can cache the requester’s MAC and IP addresses for future communications with the
requester. This too will reduce the potential number of ARP requests (broadcast traffic) that consume bandwidth.

To see the traffic displayed enter the command:

tcpdump —net —r arp.pcap
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This traffic was displayed using tcpdump is an abbreviated interpretation of the traffic. We'll see the Wireshark
interpretation in the next two slides. Tepdump uses command line switches to determine how to display the
traffic and it uses filters — also known as Berkeley Packet Filters (BPF) to select which traffic to display. We'll
cover the topic of BPF in much more detail in material later on in the course. This particular tcpdump command
uses the command line switches of -n and -e and -t.

Command line switches can be stacked or piggybacked upon each other if there is no required intervening
parameter. For instance, the —r switch reads a pcap file, in this example arp.pcap, and requires a file name to
directly follow. The —n switch disables port and hostname resolution. This means that tcpdump uses port
number instead of the equivalent service name (port 80 instead of HTTP) and does not perform DNS resolution
on the IP address. Performing DNS resolution on a sizeable pcap is highly discouraged because this takes much
more time due to the DNS lookups for IP addresses. The —e option displays the link layer, in this case, Ethernet.
By default, tepdump does not display the link layer. Finally, the —t switch suppresses the output of a timestamp
associated with the capture time. We're not interested in the time and it creates some visual clutter if you don't
care about it.

ARP is specified by RFC 826 in case you want to read more about ik,

ARP is replaced by something known as Neighbor Discovery Protocol (NDP) in IPv6. NDP is a special
ICMPv6 type and protocol. We’ll cover this in more detail in the IPv6 module.
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ARP Request

Ce

(Rtrer |

xpression... | Clear & Apply |

to.. Time Protocol  Source port  Destinatii -

[ i 1]

b Frame 1 (42 bytes an wire, 42 byres captured)
« Ethernet II, 5rc: DigitalE oo 4

v hddress Resolution Protocol (request)
Hardware type: Ethernet (£x@661)
Protocol type: IR (OxpSes)
Hardware size: 6

Protocol size: 4

Gpzode: request (6x08B1)

{1s gratuitous: False)

Targel IP address: 192.168.11.13 (192.166.11.13)

0000 Tf fF £f 1t {5 11 aa 00 04 00 02 04 I G 01
0010 08 00 06 03 00 01 aa 00 04 00 0z 04 <O a6 Ou 41
0028 00 00 @0 60 08 @6 0 38 b 00

R T e Packets: 2 Displayed: 2 Marked: 0 “Profile: Default

<<>> : Lo Intrasion De_t'etﬁbnln-:De?th ‘: b arp.pcap

This is an ARP request as decoded by Wireshark. The Ethernet IT and ARP protocols have been expanded
to show you the fields within each. The Ethernet II header details that the sending MAC address is
aa:00:04:00:0a:04 and the destination MAC address is the link broadcast of ff: ff-ff:ff-££:ff. The "Type"
field in the Ethernet link layer header indicates that the ARP protocol follows designated by the Ethernet
type of 0x0806.

If we examine the ARP layer that follows, we note that this is a request — signified by the opcode of
0x0001; you see both the sender's MAC address and IP address of 192.168. 11.65. The destination or
target IP address is 192.168.11.13 and since the destination MAC address is unknown, a place holder
value of 00:00:00:00:00:00 is supplied.

All the listening hosts will either update or place a new entry of the IP and MAC address pairings of the
requester 192.168.11.65.

+ To examine the ARP request, enter the following on the command line:

wireshark arp.pcap
This is the first record in the pcap. Expand the Ethernet IT and ARP protocols to see all fields.
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ARP Reply

Time Squree - i
0.080006  Digitalk ee:emu:6d Broadcast

b Frame 2 {42 bytes on wire, 42 byres captured) ! : N

« Ethernet II, SFC; Veware 03:23:19 (89:6¢:29:03:23:19), Ost: DigitalE 00:62:04 (aa:00:04:00:0a:
b Oestinetion: Digitalf $o:8s:04 {as ap:6a:8)
b Source: Umware §3:23:19 (08:8¢:28:63:23:18)

Type: ARP (Bx0B8G)

Protocol type: IR (8x0586)
Hardware ¢ize: 6

Protocel size: 4

tpcode: reply (Bx8002)
{Is gratuitous: False]
Sender MAC address: Vewsre 83123:19 {60:0¢:25:163:23:15)
Sender 1P addressc 192.168.11.13 {182.168.11.13)

Yarget MAC address: DigitalE 00:02:83 {aa:D6:94:80:0a:04)

08 “o8 64706 03 64706 6¢” 39703 23 19 0F 06
0210 66 G0 06 04 0D 02 00 Oc 29 03 23 19 <6 a8 68
0026 a2 68 @4 09 63 83 £9 a8 6 41

| Hardware type (arp:hw.type), 32 bytes  Packets: 2 Displayed: 2 Marked: 0 profife: Defoult

This is the ARP reply that ostensibly is from 192.168.11.13. It reports a MAC address of 00:0c:29:03:23:19.
192.168.11.65 and any other host that is able to see this traffic will cache the IP and MAC address pairings.

+ To examine the ARP reply, enter the following on the command line:

wireshark arp.pcap

This is the second record in the pcap. Expand the Ethernet II and ARP protocols to see all fields.
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ARP Spoofing/Cache Poisoning

L5 it e s e

e ARP not a secure protocol
* No way to validate authenticity of sender

e Listening hosts add or update a cache entry when a new
IP/MAC pairing is observed in an ARP request or reply

* An attacker on the local network can spoof an ARP request
or reply, convincing listening hosts that a given target host

is the attacker's host

Intrusion Detection In-Depth

As you have most likely surmised by now, ARP is not a secure protocol. There is no way to validate that a host
issuing an ARP request or reply is the host it alleges to be. In other words, if a malicious host on the network
can convince other hosts that it is the owner of a given MAC address, the attacker's host can pose as another
host or a local router.

ARP is stateless and naive. A host will cache a MAC address received in an ARP response even if it did not
make the request. As if this is not bad enough there are some more weaknesses with the protocol that
exacerbate the problem. Remember that ARP requests are made to the broadcast address making it a noisy and
disruptive protocol. Eventually, ARP cache entries will expire, but until they do, unnecessary duplicate
requests will not be issued. As well, ARP cache entries will be overwritten when a new ARP reply is seen.

All of these conditions combine to make it very easy for a host to pose as another host or even a router. If this
can be accomplished, a man-in-the-middle (MITM) attack may be possible, where a host poses as another node
on the network, receives the traffic — examines it or alters it and forwards it to the eventual destination. The
malicious host can process the traffic again before being returned to the original sender.

Most carrier class switches have some kind of ARP spoof protection mechanism by tracking MAC and IP
address pairings and discarding invalid ones that do no match existing binding entries.
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MITM with ARP — Part I

e

X\L/>192,163‘11,65 . L f19$2,1__68.11'.13 ‘

2a:00:04:00:02:04 l ; - 00:0¢:29:03:23:19
SRR who has 192.168.11.1 ‘
_ Wants MAC Address of Router

192.168.11.1
:

192.168.11.1 is-at 00:0c:29:03:23:19
Returned MAC address of attacker

Router

00:00:0c:01:9a:bd

Suppose 192.168.11.65 uses router 192.168.11.1 for the next hop device for its traffic. Now, suppose that
192.168.11.65 does not have the MAC address of 192.168.11.1 in its cache. In step 1, it issues a link layer
broadcast for the MAC address of the router. All hosts on the broadcast network can see this ARP request.
Further suppose that there is a malicious actor on the local network at host 192.168.11.13. It sees the ARP
request and in step 2 responds to 192.168.11.65 that the MAC address for the router is 00:0¢:29:03:23:19. But,
that is the MAC address for 192.168.11.13 — not the router.

Oh, no! 192.168.11.13 has performed an ARP spoof and managed to poison the ARP cache of 192.168.11.65
and any other host that caches this bogus pairing. Hosts may update their cache before an entry expires. If this
is true about the target host, the attacker must issue the bogus ARP reply after the router's reply.
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MITM with ARP — Part II

ey

2

(3) 192.168.11.65 (55
192.168.11.13

L]

http://mypersonal-data.com

192.168.11.1

[o—

Router

: Intrusion_DetectiQh In—Dé'pth'“ :

Now, in step 3 192.168.11.65 wants to go to a site that stores some personal data on a web server. The traffic
is not encrypted so it can be seen in the clear. In preparation for traffic from 192.168.11.65 the attacker on
192.168.11.13 has put her/his host in [P forwarding mode. This reads packets from the network and forwards
them as in step 4, in this case, to the router 192.168.11.1 that 192.168.11.65 wanted to find.

Now, the attacker can read all the traffic from 192.168.11.65. As well, all traffic that is returned via
192.168.11.13 if the attacker manages to convince the router that the attacking host has the MAC address of
192.168.11.65. An alternative is to set up some kind of proxy on 192.168.11.13 so that the outbound traffic
carries the IP address of 192.168.11.13 and the return traffic is automatically sent to it without having to
poison the router's ARP cache. The traffic is then returned to 192.168.11.65 — perhaps intact, or perhaps
altered either outbound or inbound.
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ARP Spoof

Fue.. Time Source * Destination Protocol | Saurce port  Destination port_afa I
18.000000  DigitalE 00:00:04  Broadcast ARP ¥ho has 192,168.11,137 Tell 192,168.11.65 §

b Frane 2 (42 bytes on wire, 42 bytes captured)
b Ethernet II, Src: Vmware 03:23:19 (60 :

Pratocol type: 1P {0x0866)

Hardvare size: 6

Protocol size: 4

Gpcode: reply {6x0802)

[Is oratuitous: False]

Sender MAC address: Veware 63:23:19 (09:8¢:28:83:23:19)
Sender IP address: 192.168,11.13 {192.166,11.13)

Target MAC address; Digitalf €0:0a:04 (pa:00:04:00:02:04)
Target IP address: 192.168,11.65 {192.168,11.65)

arpspoof.pcap

Let's look at an example of a spoofed ARP reply. The first record reflects an ARP request from 192.168.11.65
for the MAC address of 192.168.11.13. The legitimate reply follows in record 2. The host 192.168.11.13
replies that its MAC address is 00:0¢:29:03:23:19. Inrecord 3, a spoofed reply comes from a host alleging to
be 192.168.11.13, yet having an associated MAC address of 11:22:33:44:55:66. This particular bogus MAC
address is used to make the ARP spoof/poisoning more obvious.

If host 192.168.11.65 caches the MAC address on the spoofed ARP reply, its cache is poisoned with this bad
pairing. Even though the legitimate ARP data has not yet expired, the cache is updated with the poisoned
paring. Now, when 192.168.11.65 wishes to send traffic to 192.168.11.13, it will really be sending it to the
host with the MAC address of 11:22:33:44:55:66.

+ To see the above output:

You should be in Wireshark already. Just open a new file by navigating to the File-> Open menu and selecting

file arpspoof.pcap from the appropriate directory.
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Gratuitous ARP

R e T R SR e
b Frame 1 (60 bytes on wire, 60 bytes captured)
v Ethernet II, Src: Vmware cB:00:61 (00:50:56:¢0:00:01), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
b Destination: Broadcast (Ff:ff:ffiff:ffiff)
b Source: Vmware c8:86:01 (80:50:56:¢0:00:061)
Type: ARP {06x0806)

B I

Rolatonne

Hardware type: Etherpet (0x8601)
Protocol type: IP (Gx0808)
Hardware size: 6

Protocol size: 4

Opcode: request {6x6001)

[Is gratuitous: True]

Sender MAC address: Vmware C6:06:81 (00:50:56:¢0:00:01)
Sender IP address: 192,168.11.200 (192,168.11.200)
Target MAC address: Vmware ¢B:00:91 {00:50:56:¢9:00:01)
Target IP address: 192,168.11.200 (192.168.11.208)

%>> ~ Intrusion Detection In-Depth ik

There is a particular ARP known as a gratuitous ARP. This is when a host sends an ARP request to the
broadcast address, like a normal ARP request, yet the sender and target addresses are the same. A gratuitous
ARP asks for the MAC address for its own IP address. This accomplishes broadcasting it's IP and MAC
pairing to all the hosts on the network. Sound strange?

There are a couple of situations when a legitimate gratuitous ARP is used. The first is to determine if there are
duplicate IP addresses. If a legitimate response is received, there is a duplicate IP address. This should be
resolved by the system administrator. The second situation is where a host receives a new network interface
card with a new MAC address. The gratuitous ARP serves to notify all hosts to cache the new IP address and
MAC address pairing, possibly overwriting the old one, if cached.

How can you tell a gratuitous ARP from a regular one? Well, Wireshark designates it as gratuitous, but there
are some unique characteristics that define it as such. Both the Sender and Target MAC address fields in the
ARP request portion of the packet are the same as are the Sender and Target IP address. A regular ARP
request will have a Target MAC address of 0.0.0.0 and a Target IP address that is different from the Sender IP
address.

To see the above output:

You should be in Wireshark already. Just open a new file by navigating to the File> Open menu and selecting
file gratuitous-arp.pcap from the appropriate directory.
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Gratuitous ARP Gone Wrong

b Ethernet TI, Srct aa:bb:cc:dd:ee:ff (an:hbiccidd:ee:ff), Dst: Broadeast {ff:ffiffiff:ff.f
v| Address Resolution Protocol {request/gratuitous ARP)
Wardvare type: Ethernct (6XG081)
Protocol type: IP (0x0800)
Hardware size: 6
protocol size: 4

1

{Is gratuitous: True]
sender PAC address: aa:bbicc:ddiee:ff (aa:bbiccidd:ee:ff)
Sender IP address: 192.168.11.206 {192.168.11.200)

Target MAC address: aa:bbicc:ddiee:ff (aa:bb:cc:dd:ee: 1)
Target IP address: 192.168.11.286 {192.168.11.200)

e ,
. gratarp.pcap

The Wireshark output in this slide shows a gratuitous ARP request. This can be a real gratuitous ARP or it can
be an ARP poisoning attack causing listening hosts to cache false MAC and IP address pairings. The ARP
reply above professes to be from host 192.168.11.200 and to have a MAC address of aa:bb:cc:dd:ee:ff. This
particular bogus MAC address is used to make the ARP spoof/poisoning more obvious.

You should be in Wireshark already. Just open a new file by navigating to the File> Open menu and selecting
file fake-gratarp.pcap from the appropriate directory.
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How Do You Protect Against ARP
_Spoof Attacks?

« Difficult since the ARP protocol is not secure
e Switches provide MAC address -> Physical port pairings
— Entries stored in CAM table

s S e i e RSP R e g 3]

— Frames are forwarded to appropriate port based on MAC address
— CAM table flood causes switch to act like hub

 Use a tool like arpwatch to inform you of issues with IP ->
MAC address pairings

Intrusion Detection In-Depth

ARP cache poisoning is a simple nasty, yet very effective attack. As we've seen ARP is not secure; there is no
validation of the authenticity of the sender. In addition, those hosts not directly involved in a given ARP
request/response exchange, naively add or update cache with observed pairings in ARP packets. It's almost as if
the ARP specifications encourage bad behavior.

A hardware switch may offer some protection. Switches store MAC address to physical switch port pairings.
This means that when a frame is received, it is forwarded to the physical switch port that has that destination
MAC address associated with it. This is what differentiates a switch from an unintelligent hub that forwards all
packets out all ports. The switch stores the MAC address and port pairings in something known as a Content
Addressable Memory (CAM) table stored in memory. However, there is an attack where a switch receives a
flood of MAC addresses, filling up the CAM table. After this occurs, an attacker can circumvent the built-in
protection of port to MAC address pairing by sending a spoofed ARP packet. Also, a successful attack on the
CAM table causes the switch to act like a hub by sending all frames to all switch ports instead of exclusively to
the actual port associated with the destination MAC address. This can permit the attacker to see, sniff, and
possibly alter traffic that she otherwise could not.

The point is that it is possible for the pairing of switch ports to observed MAC addresses protection mechanism to
be overridden. However, there are countermeasures such as port security that restricts the association of a port
with a single source MAC address. Additionally, some switches can be configured to disable sending frames to
all switch ports. Most enterprise switches have protection against ARP spoofing,

The good news is that the attacker must already be in the network to perform any of these ARP attacks. Yet, the
bad news is that it is relatively easy to poison a host's ARP cache if security mechanisms are not present. There
are tools like the venerable arpwatch that sit on the local network and track the MAC => IP pairings. If anything
seems amiss, arpwatch will log a message for further processing to alert the analyst.
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Sample arpwatch Output

Bug 23 08:52:37 jnovak-desktop arpwatch: new station

 192.168.11.65 aa:0:4:0:a:4 : Lo

Bug 23 08:52:42 jnovak-désktop arpwatch: new station"
192.168.11.13 0:c:i29:3:23:19 - - Lo

Aug 23 08:52:42 jnovak-desktop arpwatch: changed ethernet
address 192.168.11.13 11:22:33:44:55:66 (0:¢:29:3:23:19)

W%ﬁ o Ciihas ‘;’fﬁ:ﬁ(\?ﬁi :

ARP, Request who-has 192.168.11.13 tell 192.168.11.65, length
Sipg i , e , e j
ARP, Reply 192.168.11.13 is-at 00:0c:29:03:23:19, length 28
ARP, Reply 192.168,11.13 is-at 11:22:33:44:55:66, length 28

This is a sample of the type of output you see from arpwatch as it observes the traffic shown as tcpdump records
on the bottom of the slide. The first entry notes the presence of a new host on the watched network. The new

host is 192.168.11.65 with a MAC address of 2a:00:04:00:0a:04. A second host appears on the network with an
IP address of 192.168.11.13 with a corresponding MAC address of 00:0¢:29:03:23:19. Everything is fine so far.

Now an ARP reply appears on the network where IP address 192.168.11.13 professes to have a MAC address of
11:22:33:44:55:66 . This appears to be a spoofed MAC address with an attempt to poison the cache of
192.168.11.65 or any other host that sees the ARP reply. The MAC address 11:22:33:44:55:66 is ostensibly the
MAC address of the attacker.

The tepdump output that caused the generation of the arpwatch messages is shown. First 192.168.11.65 requests
the MAC address of 192.168.11.13. The first reply, we assume, is from the real host, although we cannot tell
just by looking at the output that this is the real host. We'd have to manually investigate the network hosts to
determine whether the first or second ARP reply is the real one. Now, a second ARP reply is sent indicating that
host 192.168.11.13 is at MAC address 11:22:33:44:55:66. When 192.168.11.65 sends traffic to what it believes
is 192.168.11.13, the traffic is actually going to the host associated with MAC address 1 1:22:33:44:55:66 — we
suspect the attacker's host. The unrealistic MAC address of 11:22:33:44:55:66 is used in this demonstration to
make it more obvious which is the spoofed ARP reply.

The tepdump output can be generated with the command:

tcpdump —r arpspoof.pcap -nte.
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Link Layer Other Than Ethernet
- 802.11 - Wireless

B

File gdit yieh»rA Qo Capﬁum Analy;e Vrsatistl_csr Telephqnx TJools ‘);!elp
: R e 3 F

| v i Expressio

Time Source Destination Pratocal  Source port  Destination port
1.@.0529990 Buffalo 40:db:2d . Broadcasi IEEE 802

P F

b Radiotap Header v@, Length 25

(v IEEE 802.11 Beacon frame, Flags: ........ 4

‘ Type/Subtype: Beacon frame (0xBE)

{ b Frame Control: €x8580 {Normal)
Duration: ©
Destination address: Broadcast (ffiff
Source address: Cisco-Li ad:98:0
B85S Id: Cisco-Li_ad:98:6a (68:7f:74:ad:98:83)
Fragment number:
Sequence number: 1522

} b Frame cheek sequence: Bxce704285 [correct]

|7 1EEE 802.11 wireless LAN management frame

b Fived parameters (12 bytes)

b Tagged parameters (216 bytes)

i
0EEH 0B 8¢ 19 06 bf 68 00 00
©010 16 02 BS GB 80 06 bs al €0 8O 06 60 Q0 ff ff #f
0820 fF Ff f 68 7f 74 ad 98 @a 68 7f 74 ad 9¢ G2 26
£030 5f 98 cc %3 3¢ 8b 01 B0 60 64 06 61 @4 00 OF 43

G File: “wireless-fram-macpeap- 25 . Packete: 100 Displayed: 160 Markad: 0 Profile; Default

<<>> . Intrusion Detgﬁtﬁoﬁlﬁ'—Depth' ; PR R from-

mac.pcap

Remember that there are other 802.x link layer protocols such as 802.11 wireless. Capturing 802.11 packets
for data is typically not done since the traffic should be encrypted. However, there are still clear text
management frames in 802.11 traffic that can provide some insight about the packet. Beacon frames show the
advertisement by a wireless access point of its Service Set Identifier (SSID), probe requests can indicate an
attempt to scan the wireless traffic, authentication frames can be used to indicate brute-force attacks when
found in abundance, deauthentication frames, association and dissociation essentially register and unregister
with the wireless access point, recording each mobile device for proper frame delivery.

The Wireshark display shows an 802.11 beacon frame, consisting of an IEEE 802.11 header followed by the
management beacon data.

You should be in Wireshark already. Just open a new file by navigating to the File> Open menu and selecting
file wireless-from-mac.pcap from the appropriate directory.
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The Network Access/Link Layer |
Review

L]

Known as 802.x family of protocols
Frame is term for Ethernet header and anything that follows
MTU for Ethernet = 1500
ARP is a very simple protocol
- It is easily abused

— Consequences of successful abuse are a MITM

— Very difficult to prevent ARP spoofing and ARP cache poisoning

The link layer uses the 802.x family of protocols overseen by IEEE. In this course, we examine Ethernet

802.3 link layer, however there are other 802.x link protocols such as wireless and Bluetooth. An entity that
begins with an Ethernet header is known as a frame. The MTU for Ethernet is 1500 bytes — meaning that is the
maximum size the link layer can handle of data following the Ethernet header. The Ethernet header is 14
bytes, but not included in the maximum 1500-byte frame size. The smallest frame size is 64 bytes, including
the CRC. When the length of the Ethernet header and subsequent data such as the IP header and its payload is
less than 60 bytes, it must be zero-padded to be 60 bytes.

We learned that ARP is the means by which the IP layer discovers the link layer address for a given IP address.
This association allows the two layers to communicate. However, ARP is pretty simple and easily spoofed,
resulting in ARP cache poisoning. This allows the attacker to create a MITM going through the attacker's
computer, permitting the traffic to be viewed or perhaps altered. It is almost impossible to prevent ARP
spoofing, however there are tools like arpwatch that can assist you in discovering attempts of ARP cache
poisoning.
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Network Access/Link Layer Exercises

Workbook
Exercise: "Network Access/Link Layer"
Introduction: Page 30-A
Questions: Approach #1 - Page 31-A

Approach #2 - Page 33-A

Extra Credit - Page 34-A
Answers: Page 35-A

Intrusion Detection In-Depth
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The IP Layer

Concepts of TCP/IP

Introduction to Wireshark

The Network Access/Link Layer

[ ]

The IP Layer

— IPv4
— IPV6

This page intentionally left blank.
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84

Objectives

Discuss header length fields and computations

Examine the fields and purpose of the fields of IPv4 and
IPv6 headers

Understand fragmentation

Become familiar with the concept of checksums

'_ IntrUsipﬂfDétéctiuﬁ In-Depth

The IP layer is responsible for getting packets from hop-to-hop. We'll examine the IPv4 and IPv6 header
values and formats for how this is accomplished. Fragmentation is a result of splitting an oversized IP packet
into one or more packets. We'll see how this is performed and the packet formats that result. Another concept
that is important to know is checksums. The checksum is a computation done on a given header and perhaps
data to detect any corruption that may have occurred in transit.
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The IP Layer — IPv4
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Internet (IP)

S T S T T

e Uses IP addresses for communication

e IP address translation done via DNS

e IP addresses placed in IP packet header
» Concerned about hop-to-hop delivery

e IP packets individual entities that can travel different routes
e Unreliable protocol

e Role of moving packets

. Inttusiun‘Detecti()n'l’n—Dépth :

The Internet layer uses source and destination IP addresses to communicate between hosts. As users, we tend
to refer to hosts by their hostname rather than their IP addresses. Usually, we can remember hostnames more
easily than IP addresses and we rely on the Domain Name Server (DNS) to make the translation between
hostname and IP address and vice versa. We’ll explore DNS very thoroughly later in the course.

The IP addresses are stored in the IP header of the IP packet. IP is concerned about transmitting a packet from
hop-to-hop. These IP packets are individual entities that are directed to the destination host as they move. It is
even possible for different IP packets that share the same source origin and sent to the same destination IP's to
trave] different routes. There may be a change in routing based on the dynamics of the Internet. It is possible
that a router has gone down or that different routes become optimal ones. The real role of the Internet layer is
to move packets.

It is important to understand that IP is not a reliable protocol. It makes no guarantees about delivery of the
packet. The packet can get lost, or expired, or dropped and IP will not know and will not care. That sounds
kind of heartless, but that is not the function of IP. Reliability is the responsibility of the transport protocol or
the responsibility of an application that will notice the packet loss and try to rectify the problem.

RFC 791 discusses IP in much more detail.
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IPv4 Header - Length Fields
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Objectives

et A e T T e R - - ]

e There are three different lengths in an IPv4 header
— IP header length
~ IP datagram/packet length
- Fragmgn(tation offset value  C

o IP header ‘iength and frqgmgntation offset values
repféséﬁted as multiples

Intrusion Detecton In-Depth

Remember early in the first section of today that we discussed how de-encapsulation required most protocols
to have length values to know where a given header/data stopped and another started. The IP header has three
different length fields required for determining this. The IP header length and the IP datagram length are used
for all traffic, whereas the fragmentation offset only for fragments. The IP datagram length is straightforward
and expressed as a normal value. The IP header length and fragmentation offset values require some
explanation as the values found in the IP header must be multiplied by a fixed value to determine the actual
value.
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IP Header Length Fields

Byie

otse by L ,,/37\ 1 RN TN |3 [ B R
o] version (| ™ e 1) ype of Senice (T08) Total Length b
, e————————T T

1o 5 ™
¢ ‘t‘w‘g” Fragmont Ofiset
x DM R — 20

Bytes
e T WL
i Source Address (g“ig‘;‘
i i B e S A o i o o 5,V 0 S, i 1 L:r; )
% Destination Address '

l’ﬁi O 4-bit header length — muttiply by 4 to convert to bytes 1
' [0 16-hit total IP datagram length ~ already expressed in bytes S

Bi ml ("] 13-bit fragment offset ~ multiply by 8 to convert to bytes
e B W ]

The IP header has to indicate lengths of different aspects of IP. Some of these length fields are straightforward
where the value in the field is the number of bytes of length. However, there are others that are represented as
a multiple of a certain value. If you look at the IP header above, you’ll see that there are three different fields
containing lengths. None of these fields except the 16-bit IP datagram total length is the actual byte length of
the field. Let’s examine these fields in more detail.

Many of these length fields are used to break the packet down. When you get a hex dump of a packet that
you'd like to analyze without a tool, it is pure nonsense unless you can figure out where headers stop and
embedded protocols or payload begin. For instance, you always have to be able to figure out where the IP
header stops and the embedded protocol begins after it since the IP header can be variable in length if there are
IP options. All of this is necessary to interpret the actual meaning of the packet.
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IP Header Length

8 v o T e —

IP Header Length: 5 = 5%4 bytes = 20 bytes

IP 192.168.11.65 > 192.168.11.13: ICMP echo request,  id
26399, seq 1, length 64

offset —>01 23 45 67 8 9 1011 1213 1415
0x0000: 4500 0054 0000 4000 4001 a30a c0a8 0b4l

0x0010: c0a8 0b0d 0800 0dd5 671f 0001 8cdé 1£50
0x0020: eae0 0100 0809 0a0b 0cO0d 0eOf 1011 1213
0x0030: 1415 1617 1819 lalb lcld lelf 2021 2223
0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233

0x0050: 3435 3637

<<>> ~Intrusion Detection In-De‘pth i ping.pcap

The first of the length fields is the IP header length that includes the IP header only. Most IP headers have a
standard length of 20 bytes, however it is possible to have a packet with options such as source routing that
require more space for the IP header. This means that one of the first steps in de-encapsulation of a datagram is
to calculate the IP header length.

Remember that when you are dealing with hex bytes that counting always begins with zero. We often need to
express a field by its offset from the beginning of the data under inspection.

The IP header length is found in the low-order nibble (4 bits) of the zero byte offset into the IP header. In the
above slide, we see that the IP header length is 5. This is not 5 bytes as one might assume. This is actually 5 32-
bit/4-byte units. Years ago, this entity was called a "word" and was associated with the processor design of the
time. What this means for you is that you have to use a multiplication factor of 4 to figure the actual number of
bytes. In this case, we see that we have 20 bytes. Since this field is 4 bits long, the greatest value that can be
found in it is a binary 1111 or a hexadecimal Oxf which is a decimal 15. This means the longest IP header can
be 60 bytes (15*4).

You may be wondering why you have to go through this conversion — why didn’t they just make the field long
enough to express in bytes? That would require 2 additional bits (26 = 64) to represent the maximum of 60
bytes. This would require every IP datagram to be 2 additional bits longer — increasing the amount of data in the
IP header. While an additional 2 bits are practically inconsequential today, this was not the case when TCP/IP
was conceived years ago when there were much slower wire speeds and architectures.

To view this output, enter from the command line:
tecpdump —r ping.pcap —ntx —cl

The —c1 option tells tcpdump to show a single record — count 1.
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" IP Header Length When
IP Options Present

TP 192.168.11.65 > 192.168.11.13: ICMP echo request, id 0,
seq 0, ~length 8 :

0x0000: 4600 0020 0001 0000 4001 d73a cOa8 0bdl
0x0010: c0a8 0bOd 0703 0400

Now, let’s look at a datagram that has IP options. If there are IP options, the header length will be greater than the
standard 20 bytes. Examining the header length field, we see that it has a hex value of 0x6. Multiplying that by 4,
we know that the IP header length is 24 bytes. If you count the underlined bytes representing the IP header, you’ll
see that indeed it is 24 bytes.

Look at the type of IP option that is in this datagram found in the 201 byte offset. This is convention to place the
first IP option in the 20t byte offset of the IP header. Each of the various IP options, such as loose and strict source
routing, has a different one byte representation .

See http://www.iana.org/assignments/ip-parameters to see the possible different IP options.

In the above output, there is a hex value of 0x07 in the 20% byte offset, indicating an option known as record route.
This attempts to collect IP addresses for all routers through which the datagram travels. Each route IP takes up 4
bytes. The record route option itself has 4 bytes in the IP header as overhead. This means if the maximum IP header
is 60 bytes and we must have 20 bytes for the standard header, we only have 40 bytes left for recording IP addresses.
This allows 9 timestamps to be collected which may not be enough to record all router IP's through which the
datagram travels. This is basically what a traceroute finds, except as we'll learn tracertoute uses a transport layer
protocol to determine the routers. Some sites block traffic that attempts to assess the network so it is possible that
this type of option may not make it to its destination. A

The hex dump shows an ICMP echo request with a header length of 24 bytes. The standard header ends at offset 19
and the 4 bytes of remaining TP options directly follow. All of the IP header bytes are underlined. The ICMP
message header and data follow.

<¢> To view the output, enter in the command line:
tepdump —r ipoption.pcap —ntx

Where space permits, there may be multiple IP options following the IP header. Each is distinguished by an IP
option type, a length value if the IP option is greater than one byte, and the accompanying value. The length field is
used to find the end of the current IP option and the beginning of the next, if one follows.
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IP Datagram Length

IP Datagram Length: (5 * 161) + (4 * 16°) = 80 + 4 = 84

IP 192.168.11.65 > 192.168.11.13: ICMP echo request, id 26399,
seq 1, length 64

0x0000: 4500 0054 0000 4000 4001 a30a c0a8 Ob4l
0x0010: c0aB8 0b0d 0800 0dd5 671f 0001 8cd6 1£50
0x0020: eae0 0100 0809 0alOb 0cO0d 0e0f 1011 1213
0x0030: 1415 1617 1819 lalb lcld lelf 2021 2223
0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
0x0050: 3435 3637

+‘ ;  Intrusion Detection In‘-.Depth" . : ping.pcap

The IP datagram length is straightforward. You simply move to the 27 and 3 bytes offset of the datagram and
convert from hex to decimal to see how long the expected length will be. The IP datagram length is the length of
the entire packet including the IP header, the transport header, and any data.

The IP datagram length can be used to derive the length of the transport protocol data where the transport protocol
header does not maintain that value. For instance, the UDP transport layer header has a length of the number of
bytes in the UDP header and data that follows. However, neither TCP nor ICMP has such a value. As you may
recall from a previous discussion the number of payload bytes for TCP or ICMP is computed as follows:

IP datagram total length — IP header length — protocol header length = data bytes
+ To view this output, enter from the command line:

tcpdump —r ping.pcap —ntx —cl

The —c1 option tells tepdump to show a single record — count 1.
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Fragmentation Offset Field
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Intrusion Detection In-Depth

Looking at the above slide, the fragmentation offset field is found in the 13 low-order bits of the 6 and 7%
bytes of the IP header. We'll cover the theory of fragmentation in detail in upcoming slides.

What you need to know right now is that fragmentation causes a single too-large packet to be divided into Wi As & ‘)\Ao‘f
multiple packets. There is no guarantee that these packets will arrive at their destination in the same orderin (/¢ (L5@

which they were sent. Nor is there a guarantee that all will arrive. Therefore, it is imperative that there is 7(‘/ by
some kind of scheme to denote chronology — or where this fragment falls among all the others. This is JigaBL AR R
specified by something known as a fragment offset found in every fragment of the entire fragment train. .\ ( I &

{
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Fragmentation — Total Length
_First Fragment

Frciens R TG T v DR w3

tecpdump -r fragment.pcép sHtxV==c 1

IP (tos 0x0, ttl 64, id 1234, offset 0, flags [+], proto
ICMP (1), length 1500)

192.168.11.65 > 192.168.11.13: ICMP echo request, id 0,
seq 0, length 1480

0x0000: 4500 05dc 04d2 2000 4001 b8b0 cba8 0bdl

0x0010: c0aB8 0b0d 0800 cad2 0000 0000 4141 4141

0x0020: 4141 4141 4141 4141 4141 4141 4141 4141

0x0030: 4141 4141 4141 4141 4141 4141 4141 4141
etes

IP Datagram Length: (5 * 162) + (13 * 16%) + (12 * 169) = 1280 + 208 + 12 = 1500

+ e Iﬂt_]:uSiOﬂ Detecﬂ()n Iﬂ-Dt‘pd’l ; fragment.pcap

The tepdump output shows the first fragment in a series of related fragments of a long ICMP echo request.
The tepdump options of —ntxv produced this output and serve to suppress name resolution and timestamp
display, show the output in hexadecimal, and the —v option designates verbose in order to see more details in
the first ASCII line about the fragment.

When a datagram becomes fragmented, the total length will change for each fragmented datagram. For all
fragments but the last, this should be the MTU size of the link that caused the fragmentation — this case
Ethernet with a size of 1500 bytes. Examining the tepdump output for the fragment, we see that the fragment
has a length of 1500 bytes according to the value in the 2rd byte offset from the IP header (IP packet length)
and this is the first fragment of the fragment train since it has a zero offset.

If you look at the IP datagram length field, you see that we have a hex value of 0x05dc which computes to
1500 decimal. So, it appears that this packet was originally larger than 1500 bytes and needed to be placed on
an Ethernet network. The 1500 represents the 1480 bytes of embedded fragment data plus the 20 byte IP
header.

To view this output, enter at the command line:

tecpdump —r fragment.pcap —ntxv —c 1

This will show the output above as well as that seen on the next slide.
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Fragmentation — Total Lehgth |
Last Fragment

{tcpdump f"oiitput' from reading fragment.pcap continued)

IP (tos 0x0, ttl 64, id 1234, offset 1480, flags [nome],
proto ICMP (1), length 48) ' : L '
192.168.11.65 > 192.168.11.13: icmp

0x0000: 4500 0030 04d2 00b9 4001 dda3 c0a8 0bdl
0%0010: c0aB Ob0d 4141 4141 4141 4141 4141 4141
0x0020: 4141 4141 4141 4141 4141 4141 4141 4141

IP Datagram Length: (3% 161) = 48

ragment.pcéb

This is the 274 and last fragment associated with the fragment viewed in the previous slide. You can see
that the total length of 0x30 is 48 bytes. This is 20 bytes of IP header followed by 28 bytes of data. The
last fragment of a fragment train probably will not have the maximum 1480 bytes of data since it is
whatever data is leftover from the previous fragment.

+ To view this output, enter at the command line:

tcpdump —r fragment.pcap —ntxv
This will show the output above as well as that seen on the previous slide.
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Computing Fragmentation Offset

T T T T e B P S S s s

Possible total IP datagram value 216 = 65536 bytes
» Fragment offset length 213 = 8192 bytes

* How do you specify a fragment offset > 8192
65536 /8192 =8

Need to multiply fragment offset by 8

Intrusion Detection In-Depth

Theoretically, it is possible to have a datagram that is 65535 bytes long since the datagram length field is 16
bits. Given this, it is also theoretically possible that a fragment offset can be very close to this 65535 limit.
But, the fragment offset field is only 13 bits with a possible maximum value of 8192 bytes. Therefore, some
multiplication factor must be applied to the offset value in the 13-bit field to be able to represent all possible
fragment values.

We see that if you divide the maximum possible IP datagram size value — 216 (actually 216— 1) by the
maximum fragment offset size 2!3 (actually 2!3— 1) - you have 23 which is 8: More simply, 8192 * 8 = 65536.
This is how we arrive at the multiplication factor of 8 for the fragment offset length. So, whenever you find a
value in the fragment offset, it must be multiplied by 8 to convert to actual bytes that represent the number of
bytes of transport header and payload data that came before this fragment in the associated fragment train.
What this means too, is that the minimum size for any fragment is 8 bytes and every fragment size is a multiple
of 8 bytes except the last fragment,

As an aside, you may see the values of 65535 and 65536 associated with the length and size of an IP datagram.
Let's try to clarify this. As mentioned previously, there are 16 bits allocated for the length. The number of
discrete values associated with the field is 65536 and those values range from 0 to 65535. Therefore, the
maximum possible value is 65535.

If the use of a 13-bit field to represent a 16-bit value seems convoluted to you, don't worry — it is! Again, this
was a bit-saving measure long ago when the use of extra bits was more of a burden.
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Fragmentation — Offset Length

(tcpduymp'; output fromreadlng fragment,pcap - ond
. fragment/record) '

IP (tos Ox0, ttl 64, id 1234, offset 1480, flags [nomel],
proto ICMP (1), length 48) - .

 192.168.11.65 > 192.168.11.13: icmp ,
0x0000: 4500 0030 04d2 00b9 4001 dda3 c0a8 Obdl
0x0010: c0ag 0bOd 4141 4141 4141 4141 4141 4141

0x0020: 4141 4141 4141 4141 4141 4141 4141 4141

Fragment Offset Length: (11 * 16%) +(9 * 16%) = 176 + 9 = 185
Multiply by 8: 185 * 8 = 1480

fragment.pcap

This record represents the 27 fragment in the fragment train.

We find a fragment offset of 0xb9 which translates to a decimal 185. But, this must be multiplied by 8 to
compute the actual offset which is 1480. This indicates that a previous conventional fragment had a
payload of 1480 and an IP header of 20 bytes traveled through an Ethernet network with a MTU of 1500.
All fragments should have the same size except the last. That's why we know that a single fragment
preceded this one if conventionally generated. It is very possible for someone to craft different sized
fragments — typically a sign of abnormal behavior.

To view this tecpdump —r fragment.pcap —nt

output, enter at the command line:

This is output from the second record/fragment only.

© 2015 Judy Novak

97




What Is the IP Packet Len"gth and
_Fragment Offset in this Packet? (1)

IP (tos 0x0, ttl 64, id 12345, offset 2?7, flags [nonel], proto
ICMP (1), length 2?)

10.3.8.108 > 10.3.8.239: icmp
0x0000: 4500 001lc 3039 0002 4001 2546 0a03 086c
0x0010: 0a03 08ef 4343 4343 4343 4343

/)"/‘ ’. {I«/," ' -

Y f I —”Zﬁ (

doe? - \C

14 ,/ a2 A
\ \\ ot g e Ltnef v
’l\’\\ fwm afe fhey e TS
/w :_.‘f,' _
2w intusiondetection dn-Depth fragoffset.pcap

Look at the hex dump and figure out the length of the packet and the fragment offset of the second
fragment in the pcap.

+ To view the output, enter on the command line:

98

tcpdump —r youtry-fragoffset.pcap —ntxv
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What Is the IP Packet Length and
Fragment Offset in this Packet? (2)

IP (tos 0x0, ttl 64, id 12345, offset 16, flags [none]
: proto ICMP (1), length 28) :

10 3.8: 108 > 10.3.8.239: icmp
0x0000: = 4500 00l1c 3039 0002 4001 2546 0a03 686c :
OxOOIO: 0a03 08ef 4343 4343 4343 4343 e

IP Packet Length: (1 * 161) (Oxc * 169) = 16 + 12 = 28
Fragment Offset Length: (2 * 160) = 2
Multiply by 8: 2 * 8 = 16

We see that the IP packet length is 28 (20 bytes of header and 8 bytes of data) and that the fragment offset
is 16 bytes after the first fragment.

+ To view the output, enter on the command line:

tcpdump -r youtry-fragoffset.pcap —ntxv
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The IP Layer —IPv4 Header Fields

_Intrusion Detection In-Depth

We'll examine the header values in IP in this section. We'll do so with a perspective of the function of a given
field as well as in the perspective that an attacker might view the field.
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IP Version

€

 Found in high-order nibble of zero byte offset of IP header

Valid value 4 (IPv4) and 6 (IPv6)

Receiving host must check this value

If not valid, silently discarded

Intrusion Detection In-Depth

The IP version field must be validated by a receiving host and if not valid, the datagram will be discarded and
no error message will be sent to the sending host. RFC 1121 states that the datagram must be silently
discarded if an invalid value is discovered. So, crafting a datagram with an invalid IP version would serve no
purpose other than to test if the receiving host complies with the RFC. If a packet arrives at a router with an
invalid IP version, it should be discarded silently as well.

The only valid version numbers currently in use are 4 and 6, for IPv4 and IPv6, respectively. We cover IPv4
in this section and IPv6 in the next. Perhaps you are wondering what happened to IPvS. It was reserved for an
experimental protocol Internet Stream Protocol that later morphed into ST and ST+ that has never been
implemented.
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. Abnormal IP Version

» ISIC software can generate bad IP versions
+ Done to test integrity of receiving host IP stack

isic -5 192.168.11.65 -d 192.168.11.1 -p 10
source IP dest IP #packets

020030: 8f

version = 10

-V 100

%bad IP versions

192.168.11.65 > 192.168.11.1: ip-proto-61 29

0x0000: ab5pb3 0031 0001 0000 513d 7149 c0a8 0b4l
0x0010: cOa8 0b01l ffb3 358a f6f4 a962 4bc6 93cb
0x20020: 5376 97f0 0b29 cebe 3772 £52b a2cc ddbs6

+ : i Inttﬂxisidn Detectlon F'In-D'ep»t»h e

The IP Stack Integrity Checker, ISIC, software is intended to test the integrity of a receiving host’s IP stack. It
can also be used to see how firewalls or intrusion detection/protection systems react to mutant packets. We

generate an isic command to craft abnormal IP version values. We specify a source IP of 192.168.11.65 using
the —s option and specify a target host of 192.168.11.1.1 using the —d option.
packets to be sent using the —p option — in this case 10. And, using the —V option we can indicate the number of

packets that will have bad IP versions — in this case, all of the packets.

We have captured the output sent using tcpdump. The standard tepdump output indicates an IP version of 10
(IP10). If you dump the packet in hex, it is easier to see that a bogus version of Oxa or decimal 10 has been

generated.

We can designate the number of

More information on ISIC, including downloads can be found at: http://isic.sourceforge.net.

+ To view the above output, enter at the command line:

tcpdump —r isic.pcap -ntx
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IPv4 Protocol Number

L

Found in 9t byte offset of IPv4 header

Indicates the type of embedded protocol

List of supported protocols found at:

http://www.iana.org/assignments/protocol-numbers

Most commonly found values are:

- 1 for ICMP
- 6 for TCP
— 17 or Ox11 for UDP

The protocol number found at the 9 byte offset in the IPv4 header specifies the protocol/transport layer that
follows the IP header. The most common values for the protocol are 1 for ICMP, 6 for TCP, and 17 or 0x11
for UDP. As we learned early on, one of the pieces of data a given layer needs to know is the protocol that
follows it so that it can hand it off to the appropriate software decoder.

If you are decoding a packet displayed in hexadecimal output, this is one of the first fields that you need to
examine. That is because you need to know what the subsequent layer is that follows the IP header so that you
can interpret it properly.
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Scanning IP Protocols

s i T e L T S SR DES

e Nmap can scan all 256 possible protocol numbers
» Determines what protocols are active on a host
» Negative responses can be used for host mapping

nmap -sO 192.168,11.1

Protocol State Name

1 open icmp
2 open igmp
6 open tep

17 open udp

S IntrusibﬁDeteCdon In-Depth

Nmap is an excellent open-source scanner that we will discuss several times in this course. Nmap is probably
better known for its functionality of scanning for open ports on a target host or doing remote operating system
identification.

Conveniently, versions of Nmap have the ability to scan a remote host for supported protocols. This is done
using the —sO option. The target host is scanned for all 256 possibilities of protocols.’ Protocols are deemed
listening or filtered when no ICMP error message is returned to say that the protocol is unreachable.
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[

IP:192.168,.11.65 > 192.168:11 . 1

IP&192. 168511 65 > 192016811 1 ip-proto-79 0

TP 192.168.11.65 > 192.168:11.1: - ip-proto=218 0

TP 192.168.11.65 > 192.168.11.1: ip=proto—~209 0

TP 192.168.19:1: > 192168711 .65 ICMP-192.168.11.1 protocol
240 unreachable

IP 192.168.11,1 > 192,168.11,65¢ ICMP 192:168.11.1 protocol
79 unreachable

IP 192.168.11.1 > 192.168.11.65: ICMP 192.168.11.1 protocol
218 unreachable

IP-192.168.11.1 > 192.168.11,65: ICMP 192.168.11.1 protocol
209 unreachable

ip-proto-240 0

<\/>> Intrusion Detection In-Depth: Drntoscan pcap

Nmap scans all 256 different protocol types. A host that receives this type of scan should respond with a protocol
unreachable message to any protocols that it doesn’t support. You can see that 192.168.11.1 is the target IP address
and it responds with several different protocol unreachable messages to the scan by 192.168.11.65.

While the supported protocols of a host are mildly interesting, another possible piece of reconnaissance from this
type of scan is that the host is alive. This is a more stealthy type of scan. However, if the site has a “no ip
unreachables” statement on the outbound interfaces of the gateway router or blocks outbound ICMP, this
information will not be leaked to the scanner.

It cannot be assumed that the absence of an ICMP "protocol unreachable" message means that the protocol is
listening. Conditions such as the scanned site blocking outbound ICMP messages will prevent the Nmap scanner
from getting these messages. There are other conditions such as dropped packets that may also cause the loss of
packets and falsely influence Nmap. However, the author of Nmap tried to consider such situations. Nmap will
send duplicate packets for each protocol to deal with the problem of packet loss. Also, if Nmap gets no ICMP
protocol unreachable messages back at all, it doesn’t assume all protocols are listening. Instead, it wisely assumes
that the traffic is being “filtered” and reports this.

A recurring theme in this course is that the absence of a response — in this case an ICMP "protocol unreachable"
message — does not necessarily indicate that a protocol is listening. Let's use a real world analogy to help clarify this
concept. Suppose your physician draws some blood on your annual visit and tells you that you will receive a phone
call if there are any problems. You cannot assume that the absence of a call definitively means that nothing is
wrong. After all, the blood sample may be lost in transit to or from the lab, or the results may be misplaced when
returned, or someone may neglect to call you. A similar concept applies to packets.

The output is an excerpt from the following command:
tecpdump —r ip-protoscan.pcap -nt
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Time to Live

sending () routerx
. host ] tt o
1 /\/ router 5
= o router 6
router 1 Hi1
e
router 4
tti3
ICMP "time exceeded in transit"

TTL given initial value, decremented by 1 at each hop,
packet flushed if TTL value will be 0

; .I_ntrusionvDé_técﬁon In-Depth

TCP/IP needs a way to flush a lost packet from the Internet, perhaps a packet that is in some kind of routing loop
where it bounces aimlessly among routers. The means used to prevent this wayward packet activity involves a
field in the IP header known as the time to live (TTL) value. It's not really a time at all - it is a count of "hops to
live" before being discarded.

Different operating systems set different initial TTL values. When a packet traverses a router on its travel from

the source to destination, each router will decrement the TTL value by 1. If the value ever becomes 0, the router
will discard the packet and send an ICMP "time exceeded in-transit" message back to the sending host.
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Wireshark Display of Time
Exceeded in Transit

b Ethernet II, Src: DigitalE_08:02:04 (4a:00:04:00:0a:04), Dst: Buffalo 4
< Internet Protocol, Sr¢: 192.168.11.62 (192.168.11.62), Dst: 192.168.1.1
Version: 4
Header length: 20 bytes
b Differentiated Services Field: @x00 (DSCP ox88: Default; ECN: 6x08)
Total Length: 28
Identification: Gx8081 {1)
b Flags: 0x00

Fragment offset: §
Protacol: P {UXe
b Header checksum: x2¢51 [corr

Source: 182.168.11.62 (192,16
Destination: 192.1868.1.1 (192

LES UL UL

vrnternet Control Message Protocol }

Type: 11 {Time-to-live exceeded)

! code: 8 {Time to live exceeded in transit)

; Checksum; Bxf4ff [correct]

i b Internet Protocol, Src:i192.168.11.62. (192,168,11.62), Dst: 192,168.1.1
< Internet Control Message Protacel

t;l-eipire.péap

The two different extracts of Wireshark displays illustrate what happens when the TTL expires. The
upper output shows a host that sends an ICMP echo request that needs to traverse two routers to get to
192.168.1.1, however the TTL has a value of 1.

The lower display shows the results, We haven't covered the specifics of ICMP just yet, but you can get
the general idea of what has transpired. The router returns an ICMP "Time to Live exceeded in transit"
message, indicating that the packet cannot be forwarded. You see an IP and ICMP layer depicted beneath
Wireshark's interpretation of the ICMP error message. When we examine ICMP more thoroughly, we'll
discuss how an [CMP error message contains part of, or the entire sender's packet in the limited number of
bytes allocated for that purpose. This informs the original sender's TCP/IP stack which sent packet caused
the error.

To view the output, enter on the command line:

wireshark ttl-expire.pcap
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Differentiated Services Byte

Explicit Congestion
Notification (ECN) Bits

f"—"'A""'"\

0 o0

051
===0
{eeel

ECN Bit Values

No ECN

ECN Aware

ECN Aware

Congestion Experienced

In truSi‘oﬂ» D;;técﬁoh Ih—Dep i

A field originally known as the Type of Service byte, found in byte 1, now known as the differentiated
services field, has undergone several rounds of alterations since its incipient specification. One of these
alterations in RFC 2481, and more currently REC 3168, calls for the two low-order bits of the differentiated
services field byte to be used for Explicit Congestion Notification. The purpose here is that some routers are
equipped to do Random Early Detection (RED) or active queue management of the possibility of packet loss.

When congestion is severe, it is possible that a router can drop packets. RED attempts to mitigate this
condition by calculating the possibility of congestion in the queue to a router interface and marking packets

that might otherwise be dropped as experiencing congestion. If the ECN-aware bits are set in the

differentiated services field, that indicates the sender and receiver are ECN-aware. If the end-hosts are ECN-
aware, the router will attempt not to drop the packet, but instead send it with the Congestion Experienced
(CE) bits enabled and the receiver will respond appropriately. We’ll discuss the receiver’s response in more
detail when we cover the TCP fields in the next section. Currently, this mechanism is available only for TCP.
ECN has really failed to catch on, yet operating systems continue to support it. When we discuss TCP, we'll

discover that there is a TCP component associated with ECN — namely two TCP flags that assist in

identifying that state of ECN — that work in conjunction with the IP header differentiated services byte.

ECN Bit Values

0 0 Either one or both hosts are not ECN-aware or they are in the process of

negotiating if they are ECN-capable (done during SYN and SYN-ACK exchange of three-

way handshake)

0 1 Either of these next two pairs of bit settings indicates that both end-hosts are ECN

1 0 } aware after the SYN and SYN-ACK exchange
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IPv4 IP Numbers

e 32-bit fields (4 bytes)
o Unnatural values for source IP numbers entering network:

~ IP numbers that fall in your network range
— Private address space
— Loopback address — 127.0.0.1
= Unnatural values for destination IP numbers entering network

— Broadcast addresses

¢ Unnatural values for source IP numbers leaving network

. — IP numbers that don’t fall in your network range
— Private address space
s Unnatural values for destination IP numbers leaving network

— Broadcast addresses

The source TP number is located in the 12th-15% bytes offset of the IPv4 header; the destination IP number is
located in the 16%-19™ bytes offset of the IPv4 header. If you see an IP number entering your network that
purports to be from your network, there is a problem. Most likely someone has crafted this packet. A packet-
filtering device should shun this traffic.

Traffic leaving your network should have a source [P number that reflects your network’s address space. 1f
you see an IP number that originates from inside your network, yet has an IP number of a different address
space, it is either being spoofed or there is a misconfiguration problem with a host. In either case, this traffic
should not be allowed to leave your network. This will prevent hosts in your network from participating in
distributed denial of service attacks since participant hosts usually use spoofed source IP number so that they
cannot be located. Other types of scans use “decoy” or spoofed source IP’s as a smokescreen. By disallowing
outbound traffic that is not part of your address space, these will be ineffective as well.

You should also never see the loopback mode address leaving or entering your network since that identifies the
local host. Internet Assigned Numbers Authority (IANA) reserved private network addresses such as
192.168.0.0/16 and 172.16.0.0/12 are intended to be used for local networks only and are not supposed to be
routed outside of your network. These address ranges can be found at:

http://www.iana.org/assignments/ipv4-address-space
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IP Options

TR,

IR

Options (source routing, record route, record timestamp)
that may be supplied after the standard 20-byte header

* May include one or more different IP options

Must fall on 4-byte boundary

Mostly obsolete, once used for troubleshooting

- Many sites block

Intrusion Detection In-Depth

We briefly discussed IP options — mostly in terms of their effect on the IP header length. IP options, as the
name suggests, are optional parameters that can be placed in, at maximum, 40 bytes after the standard IP
header. Mostly, though, these are obsolete and tend not to be used — or perhaps that should be rephrased to
tend not to be used for benevolent purposes. Many sites block packets that have IP options.

Where space permits, there may be multiple IP options following the IP header. Each is distinguished by an IP
option type, a length value if the IP option is greater than one byte, and the accompanying value. The length
field is used to find the end of the current IP option and the beginning of the next, if one follows. The total
field of aggregate IP options must fall on 4-byte boundaries. If they do not naturally end on a 4-byte boundary,
they are padded with either NOP (0x01) or EOL (0x00) bytes to extend the field to a 4-byte boundary.

You especially should be aware of the danger of allowing IP options loose routing or strict routing. They
specify the routers through which the packet should travel on its way to the destination. Strict source routing
requires all the routers along the route to be designated in the IP options; while loose routing requires you to
designate some of the routers and allow normal routing to find others that might be necessary to send the
packet to the destination. These options were intended to be used for troubleshooting. When the destination
host responds, convention dictates that the same routing data be placed in the IP header, but in reverse order.

Suppose an attacker is able to route traffic through a node under her/his control. This does not bode well if an
attacker can spoof a source IP and is able to redirect and possibly alter traffic to the node under control.
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The Don't Fragment (DF) Flag

o If this flag is set, packet will not be fragmented
o If fragmentation required, packet will be discarded

e May be set by sending host to determine smallest MTU on
path to destination

e Once determined, packets will be sent with a size smaller
than MTU

Intrusion Detection In-Depth

As the name implies, if the Don't Fragment flag is set, the packet will not be fragmented by any device through
which it passes. If this flag is set and the packet crosses a network where fragmentation is required, the router
will discover this, discard the packet and send an ICMP error message back to the sending host.

The ICMP error message will contain the MTU of the network that required the fragmentation. Some hosts
intentionally send an initial packet across the network with the DF flag set as a way to discover the MTU for a
particular source to destination path. If the ICMP error message is returned with the smaller MTU, the host
will then package all packets bound for that destination into small enough units to avoid fragmentation. This
process is known as path MTU discovery.

Fragmentation comes with some overhead so it is desirable to avoid it altogether. As you will learn in the
fragmentation section, if one fragment is not delivered, all fragments will have to be re-sent. Because of this,
when some TCP/IP stacks send data, they will send a discovery packet with the DF flag set. If the packet goes
from source to destination without any ICMP errors, then the selected datagram size of the discovery packet is
used for subsequent packets. If an ICMP message is returned with an unreachable error — "need to frag"
message and the MTU is included, then the packet is resized so that fragmentation does not occur. This
assumes the site allows these ICMP messages inbound to receive the MTU information.
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The IP Layer - Checksums
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Checksums

T —— R, N

e Ensure that packet data remains unchanged in
transit

e Different layer checksums — IPv4, TCP, UDP, ICMP

o Important because receiving host should discard packet
if invalid

o IDS or IPS must do the same

» Why should you care?

— If you ever change a packet (payload, headers), you must
make sure the checksums are correct, otherwise:

e IDS/IPS should drop
e End host should discard

Intrusion Detecdon Iﬁ-Depth

Checksums are more complex in theory than many of the other IP header fields so we'll digress to discuss them.
Checksums are a method used to ensure that data has not gotten corrupted in transit from source to destination.
There is a standard algorithm used to compute checksums. The sending host applies this algorithm to all the
fields involved in the checksum computation and places the resulting value in the appropriate header's checksum
field. For instance, the IPv4 header checksum value is computed by applying the checksum algorithm to all
fields in the IP header and the resulting value is placed in the IP checksum field — a 16-bit field in the IP header.

The receiving host must validate that the checksum is correct. It does so by applying the same algorithm over
the fields in the IP header. If the resulting value matches the value in the IP checksum field in the IP header, the
packet is passed up to the transport layer. If the value does not match, the packet is silently discarded.

The algorithm used for TCP/IP is to divide the data that is being checksummed into 16-bit fields. Each 16-bit
field has a 1’s complement operation done on it and each of these 1’s complements values are added. The final
value is considered to be the checksum. A 1's complement is an operation that flips/inverts all the bits in a
value.

As we’ll see, different layers of the TCP/IP stack have their own checksums. For instance, the IP checksum is a
value that routers forwarding packets must validate after decrementing the TTL. The transport layers have their
own checksums to make sure that header and data information was not changed in transit.

Why do we really care about checksums? They are an important consideration when interpreting or crafting
packets. They can also become an issue if you are trying to understand why your IDS or IPS may be discarding
packets that seem perfectly reasonable to you. Destination hosts or devices must validate checksums and
discard packets with invalid ones. An IDS or IPS must discard invalid packets with invalid checksums. If you
are using an IDS/IPS such as Snort and you think you should be getting alerts on some traffic you are testing,
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but you see no alerts — one of the first things you should examine is that your packets have correct checksums on
all layers — IP, TCP, UDP. Otherwise, they will be dropped or discarded by Snort. If you check the mailing list
archives for Snort, you’ll see that this topic has been discussed several times.

Also, if you craft or alter packets that you send to an end host or run past an IDS/IPS, you must make sure that the
program that you are using recomputes the checksums.

Note: RFC 1071 "Computing the Internet Checksum" uses the terminology of "1's complement" when performing
a part of the checksum computation. In actuality, the computation involves something known as "2's
complement". Don't worry about the difference in the two. This is mentioned only because the terminology used
in this course is "1's complement" to agree with the RFC.
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IP Checksum

IP checksum

0x0000: 4500 0054 0000 4000 4001 a30a c0aB8 Ob4l
0x0010: c¢0a8 0b0d 0800 0dd5 671f 0001 8cdé6 1£50
0x0020: 'eael 0100 0809 0al0b 0cOd 0eOf 1011 1213
0x0030: 1415 1617 1819 lalb 1lcld lelf 2021 2223
0%0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
0x0050: 3435 3637

Intrusion Detection In-Depth

The IP checksum is found in the 10t and 11% bytes offset of the IPv4 header. This IP checksum covers all
fields in the IP header only. This checksum is different than the checksums that are computed for the
embedded protocol fields because it is validated along the path from source to destination. Embedded protocol
checksums such as TCP, UDP, and ICMP are validated by the destination host only. The IP checksum is
validated by each router through which it passes from source to destination and finally validated by the
destination host as well.

If the computed checksum does not agree with the one found in the datagram, the datagram is discarded
silently. No attempt is made to inform the source host of a problem. The idea is that higher level protocols or
applications will detect this and deal with it.

In IPv6, IP header checksums are eliminated altogether. This becomes more efficient since any device such as
a router that alters the TTL value must recompute the IP checksum. IPv6 requires the transport layer only to
carry a checksum.

N E ¢ 74 Sben 1S L?Ce &
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Formula for TCP/IP Checksums

P

e Separate IP header into 16-bit fields
e Take the 1s complement of each 16-bit field

e Sum all the 16-bit 1s complement values

4 5 0 0 Hex Representation

0100 0101 0000 0000 Binary Representation
1011 1010 1111 1111 1's Complement

Intrusion Dcteétioﬂ;In—De’p‘th o

The formula above is shown for the IP header checksum, but it is used for all other IP datagram checksums as
well. In the case of the IP header, we divide it into 16-bit fields. Since the IP header length is always a
multiple of 4 bytes, we will not have to worry about extra fields that do not fall on 16-bit boundaries.

Once all of the fields are separated, we take the 1s complement of each. This operation simply flips the bit.
All of these individual 1s complement values are added to form the checksum.

Above you see the first 16 bits of a very common beginning to a datagram. Each hex value is represented in 4
binary bits and each of these bits is flipped. This becomes the 1s complement value. This operation is
commutative so you can add the hex values of the 16-bit fields and then take the 1s complement and the
resulting checksum should be the same.

We show all pairs of 16-bit fields and represent the 1°s complement values and add them together. Thisisa
fairly straightforward operation, but there is a consideration we must note. When the high-order bits of both
16-bit fields have a value of 1, we get a result of 1, but we also need to carry over a 1. This cannot be
discarded; it must be wrapped around and added to the low-order bit. The actual addition of the carry-bit may
be deferred so that it is optimized by adding them all at once to the low order bits. This is possible because the
operations applied in the checksum are commutative — the order in which they are performed does not matter.

This same process is performed for all the 16-bit fields that are eventually summed together to derive the IP
checksum.

To read more about IP checksums, look at RFC 1071,
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How Is IP Checksum Used?

o If IPv4 IP checksum invalid, datagram discarded
« Every router examines IPv4 checksum
o If valid, decrements TTL value and recomputes new checksum

o IPv4 IP checksum ensures integrity of IP header data only

_ Router1 ' ' L : L
‘ @Datagram IPv4 checksum vahd’r' L No — Discard

:Sending - Yes
‘HQSt s DecrementTTL ;

- , ~ Recompute IP checksum Fowd————————* ‘ -

_to next hop

The IPv4 IP checksum is examined and recomputed for each hop on the way from source to destination. Every
router that examines the datagram must validate the checksum. If it is invalid, the datagram is silently
discarded. If it is valid, the TTL value is decremented by 1. This will change the value of the actual IP
checksum so it needs to be recomputed, placed in the IP header field, and then sent on its way. Remember this
checksum validates the fields in the IP header only — not the rest of the datagram that consists of the embedded
protocol header and data.

The rationale for checking the IP checksum for each hop makes sense when you think about it. The worst case
scenario is that the destination IP becomes corrupted. It makes no sense to forward a packet that has been
corrupted because the corruption may alter a field like the destination IP address.
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Can IP Header COrruption

Go Undetected?

e If 16 bit fields are swapped, checksum remains the same

4500

4500
003c

003c

003c
4500

]

003c

0100 0101 0000 0000
0000 0000 0011 1100

4500

0000 0000 0011 1100
0100 0101 0000 0000

1011
111 %

1010
1 1.3

bl
1100

1111
0011

10047

AK7 5l
1011

1010

AA3;
1010

1100

1100
1151

0011 +—

0011
1111

10711

1010

1100

0011 +—

. Intrusion Detectiunr\lnf—Dep’th

While the IPv4 IP checksum and all other embedded protocol checksums found in the datagram will find most
packet corruption, there is a problem. It is possible for entire 16-bit fields to be swapped and yet the checksum
will remain the same.

As you can see, we try this for the first 2 16-bit fields in the IPv4 header. The computed checksum for the first
2 fieldsis 1011 1010 1100 0100. But, if we reverse the fields and compute the checksum, it is exactly the
same. A datagram with 16-bit fields swapped is a vastly different datagram in meaning and resolution when

fields are swapped. So, this is a drawback of using this computation.

Why not use a more complicated and reliable algorithm for the checksum? This computation is done for each
packet that a router or host receives. The simpler the algorithm, the quicker the computation time. The
checksum algorithm is a fast and mostly reliable algorithm and the exact swap of 16-bit fields is a rare

occurrence.
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* Wireshark Display of Bad ”
IP Checksum

Protocol tengtt Info
I0MP - 58 Foh

Ho. Time Source Destination

»Ethernet 11, Src: DigitalE 00:0a:04 (aa:00:04:00:0a:04), Dst: Vmware 03:23:19 {60:0c:29:03:23:19)

ersion; 4
Header length: 20 bytes
pDifferentiated Services Field: 0x08 (DSCP 8x80: Default; ECH: 0xG0: Not-ECT (Not ECN-Capable Transport)
Totsl Length: 84
Identification: 6x0008 (8)
»Flags: 6x62 (Don’t Fragment)
Fragment offset: ©
Time to live: 64
Protocol: ICHP (1)

_badip- )
checksum.pcap

Wireshark computes IP, TCP, UDP checksums if the preferences are configured to enable checksum
validation. Tt highlights in red any protocol that has an invalid checksum. For instance, there is an
obvious invalid IP checksum in the display thanks to Wireshark's highlighting. This displayed packet will
be silently dropped at the next node — router or destination host.

+ To view the output, enter from the command line:

wireshark badip-checksum.pcap
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Wireshark Dispiay/ of Invalid
_UDP Checksum

HNo. Tine Source Destination Protocol Length Info

36674 (36674)
Destination port: domain (53)
gth: 39

" badudp-
checksum.pcap

We have not talked about the transport layer yet. But, TCP, UDP and ICMP all have their own
checksums. The receiving host validates these checksums and silently drops a packet where the
embedded protocol checksum is invalid. For instance, there is an invalid UDP checksum in the display.
Wireshark informs us that the checksum is 'incorrect, should be Oxccbe (maybe caused by "UDP"
checksum offload?")'

Checksum offload refers to the capability of having the NIC take care of all checksum computations. This
frees the protocols from having to perform the computation. While the checksum formula is efficient, in
aggregate, it does take CPU resources. The checksum offload is a valid explanation for a bad checksum
only for outbound traffic because Wireshark views the traffic before it reaches the NIC. Inbound traffic
should have traveled from the NIC where the checksum computation has already occurred by the time
Wireshark sees the packet.

Wireshark must be configured to validate UDP checksums. To do so, do the following:

Edit = Preferences = Protocols (bottom of the first column)
Expand Protocols and scroll down to UDP. Check "Validate the UDP checksum if possible:"

+ To view the output, enter from the command line:

wireshark badudp-checksum.pcap
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IPv4 Exercises

Workbook
Exercise: - "TPy4"
Introductibn': - o 'Parge'41-,A- -
Quest'ions:u: i Ap{:,roach #1 -  Page 42-A“ '
' ~ Approach #2-  Page43-A
~ ExtraCredit-  Page 44-A

AnsWers:, o | o i'Page 4,5'-A‘

- This page intentionally left blank.
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The IP Layer - Fragmentation

_Inwusion Detecton In-Depth

This page intentionally left blank.
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Objectives

¢ Discuss fragmentation concepts

e Examine “normal” fragmentation

» Examine “abnormal” fragmentation

Attackers can attempt to use fragmentation to mask their probes and exploits. There are availability (or denial
of service) attacks that use highly fragmented traffic to exhaust system resources. These are some of the
many reasons that you may want to learn about fragmentation.

By understanding how this facet of IP works, you will be equipped to detect and analyze fragmented traffic
and discover if the fragmentation you encounter is normal or if it’s being used for more nefarious purposes.

We will look at fragmentation to see what is happening at the packet level. We need to be aware of “normal”
fragmentation before we can identify “abnormal.”

© 2015 Judy Novak
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Normal Fragmentation

- Intrusion :D'e‘tectioh Iﬁ—Depth '."

Fragmentation can be a very normal and naturally occurring effect of traffic travelling between variously

sized networks. We will consider the theory and composition of normal fragmentation first to acquaint you
with how it should operate.
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Fragmentation Theory

e Occurs when maximum transmission unit (MTU) is smaller

than packet

e Original oversized packet split into several equal-sized
(except the last) smaller ones that <= size of MTU

o Reassembled by destination host
— Should be reassembled by an IDS/IPS

e Can be used as an attempt to bypass IDS/IPS

Intrusion Detection In-Depth

Fragmentation occurs when an IP packet travelling on a network has to traverse a network with a
maximum transmission unit (MTU) that is smaller than the size of the packet itself. For instance, for
Ethernet, the maximum transmission unit or maximum size for an IP packet is 1500 bytes. If an IPv4
packet that is larger than 1500 bytes needs to traverse an Ethernet link it must be fragmented. This may be
done by a router or the sending host.

The original oversized packet is split into two or more same sized (except for the last) packets that are less
than or equal to the MTU size. The last fragment contains the leftover or remainder of the original packet
that probably is not an exact multiple of the MTU size. Each fragment has an IP header that is similar to
the original oversized packet, with modifications to each to express unique values associated with each
fragment. We'll use the term "fragment train" to mean all related fragments that were created from the
original oversized packet.

Fragments continue on to their destination where they are reassembled by the destination host. While
fragmentation is a perfectly normal and naturally occurring event, it is possible to craft fragments for the
purposes of evading detection by IDS/IPS solutions that don’t deal well with fragmentation.

© 2015 Judy Novak
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Three IPv4 Header Fields Used
__for All Fragments

&

e [P Identification number

— All fragments in a given "fragment train" must have same IP ID, also
known as a fragment ID, value

— Distinguishes one set of fragments from another
e Fragment offset value

— What is the position of this fragment relative to all fragments?
* More Fragments flag (MF)

— Do additional fragments follow the current one?

.Intrdsion;Detection In-Depth

Each fragment has its own IP header in order to get from source to destination. The IP headers of all
fragments share the same IP addresses, the same next protocol, and other miscellaneous fields as well. The
fields we need to understand for fragmentation are the IP ID, the fragment offset value, and the MF value. The
IP ID number is 2-byte number (0-65535), typically uniquely generated when the original packet is first
created. If fragmentation occurs, all the resulting fragments (fragment train) share this same IP ID value. If a
subsequent oversized packet from the original sender gets fragmented too, it will have a unique IP ID value in
all fragments, distinguishing the first set from the second set of fragments. The receiving host knows which
fragments are associated with each other by the unique IP ID value.

The portion of the original packet that becomes fragmented is the protocol header following the IP header and
the payload following the protocol layer from the original oversized packet. As we learned, packets - and
fragments are packets as well - may travel different routes from source to destination and there is no guarantee
of arrival nor is there a guarantee that they will arrive in the same order in which they were sent. Therefore, it
is imperative for each fragment to have a means to identify its place or chronology among all the other
fragments. The fragment offset is used to determine chronology. The fragment offset value is relative to the
beginning of all the fragmented data (the protocol header and payload following the IP header). The receiving
host uses the fragment offset to order all fragments that share the same IP ID value, source and destination IP's
and embedded protocol.

The receiving host has to know whether all fragments have arrived; after all there is no guarantee of delivery.
So far, we have a means only to associate fragments via the IP ID number and a method of specifying each
fragment's place in the entire fragment train. The one-bit MF flag designates whether or not more fragments
follow. A value of 1 means that there are more fragments, a value of 0 means there are no more fragments.
This means that every fragment except the last one should have the MF bit set.
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The Fragment ID/IP ID

Each fragment has an identifying number - fragment ID

Taken from IP identification field

®

Value set by a host sending packet

Value usually increases by 1 for each new packet sent

— Newer TCP/IP stacks randomize this value

Let's examine the origin of the field that identifies fragments. The IP identification value is a 16-bit field
found in the TP header of all packets. This uniquely identifies each packet sent by the host. This value may be
incremented by 1 for each packet the host sends, although the trend now is to have TCP/IP stacks randomize
this value. When the packet is fragmented, the host or router that fragments the packet will include the same
IP identification number, or the fragment ID, in the IP header of each fragment to facilitate later reassembly.

© 2015 Judy Novak
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Fragment Offset

fuecais

* Number of bytes displaced from beginning of original
unfragmented packet
— Displacement count begins after the IP header - (transport layer)

 Always a multiple of 8 since fragment offset field represents
values as multiples of 8

Intrusion Detection In-Depth ’

Earlier, we learned that the fragment offset field is a 13-bit field that éxpresses fragments as multiples of 8.
Therefore every fragment has to be a multiple of 8.

There may be some confusion where in the packet to begin the offset count. If you examine the original
unfragmented packet, the data that follows the IP header is considered the "fragmentable" part. So, the offset
counting begins at the transport layer.
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More Fragments Flag

» Used to indicate more fragments follow current fragment
e Should appear on all but last fragment

¢ Fragmentation identified by:

- MF=1 (and/or)

— Non-zero fragment offset

The more fragments (MF) indicates whether or not one or more fragments follow the current one. All
fragments except the final one should have the MF flag set. The way that a receiving host will detect
fragmentation is that MF flag is set and/or the fragment offset field in the IP header is non-zero.
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Dissecting Fragmentation Fields Bytes
_6-7 of IP Header

Byte 6 Byte 7
R |[D |M
E_LF
Flags Fragment Offset (13 bits)
(3 bits)
MF = 1 = fragment Fragment Offset > 0 = fragment

- Intrusion Detection In-Depth

Let’s revisit the IP header, but this time with an intent of detailed examination of the actual bytes and bits
associated with fragmentation fields in the IP header to determine if a datagram is fragmented or not. The
fields associated with fragments are located in the 6t and 7t bytes offset from the beginning of the IP header.
The 6" byte is a combination of the high-order 3 bits for IP flags and the lower 5 bits for the fragment offset.
The entire 7™ byte, is assigned for fragment offset bits only.

As you can see the 13-bit fragment offset is split between bytes 6 and 7. We are really not concerned about the
fragment offset value for this discussion, just the determination of whether or not the bits and bytes that are in
these two bytes indicate that the datagram is fragmented. How would you go about ascertaining whether or not
a particular datagram is part of a fragment train simply by looking at these two bytes? There are two different
fields that need to be examined. The first is the MF bit found in byte 6. When set, it indicates that more
fragments follow. This bit should be set in every fragment except the last. Next, the fragment offset found in
the 13 bits split between bytes 6 and 7 indicates whether or not this is the first or subsequent fragments.

Here’s a little theory before we put it into practice. If the MF flag is set or the fragment offset is non-zero, it is
a fragment. If the MF flag is set and the fragment offset is 0, it is the first fragment. When the MF flag is set
and the fragment offset is non-zero, you have a fragment that is neither the first nor the last — somewhere in
between the two. And, finally when the MF flag is not set, yet the fragment offset is greater than zero, you
have the last fragment.
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Is the Datagram Fragmented? (1)

If it is fragmented, is it the first, last, or neither first nor last?
Flags Fragment Offset

v

A\
S

R ID
E

Mz

1 [olololo|o|loololojojofo]|1]|olojo

Let’s test that theory with three example IP header bytes 6 and 7. Take some time to examine each of these
examples to determine first whether or not the datagram is a fragment and second, the fragment’s place in the
entire fragment train - first, last, neither first nor last (somewhere between the first and last).
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o

Fragmentation Usihg ICMP
Echo Request

20 8 4000 bytes of ICMP data

.......... see ICMP data......u-uuu veveracavannennsnsreveny

IP header l
ICMP

header
(ICMP echo request)

Ethernet MTU = 1500

4028 total bytes in IP_packet

1500 bytes

1500 bytes

1068 bytes

Intrusion Detection ‘In—Dcpth‘

Original 4028 byte fragment broken into 3 fragments of 1500 bytes or less

L] owe?
g

8

~
e

Let's follow the process of fragmenting an oversized packet into fragments. Here we have a packet of 4028
bytes. This is an ICMP echo request bound for an Ethernet network that has an MTU of 1500. So, the 4028
byte packet will have to be divided into fragments of 1500 bytes or less. Each of these 1500 byte fragmented
packets will have a 20 byte IP header, so that leaves 1480 bytes maximum for data for each fragment. We'll
scrutinize in the next series of slides the values and data found in each of the created fragments.

Normally, you shouldn’t encounter a 4,000+ byte echo request. The reason that this was used for the example
and for instructive purposes is to allow the generation and capture by tcpdump of the packets you see in the

upcoming several slides.
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The Breakdown

- 4028 total bytes in pre-fragmented 1P packet :
20 8 - ‘ 4000 bytes of ICMP data

‘ reveterertataratrrrererosnne < ICMP data. ..................................... >
G 7 PR R A _

is00 Vo 1500 1068 ;

1472 ICMP data ~ 1480 ICMP data f 1048

1472 + 1480 + 1048 = 4000 bytes of ICMP data

Here is how each fragment is actually formed. Before the IP packet is sent on the link that has an MTU of
1500 bytes, we see that is has a total of 4028 bytes total.

What we have seen is that this IP packet is divided into three separate fragments each with a cloned IP
header. Creation of the second and third fragments requires two new IP headers — each 20 bytes for a
standard IP header. So, we really need a total of 4068 bytes to send all of this traffic.

The first fragment gets a slightly modified original IP header, along with the 8 bytes of the ICMP header for a
running total of 28 bytes. With a maximum packet size of 1500 bytes, 1472 bytes remain for ICMP data.

The second fragment gets a cloned IP header of 20 bytes, and has the remaining 1480 bytes for ICMP data.
The final fragment again gets another cloned 20-byte IP header and carries the final 1048 bytes of ICMP
data. As a cross check, we see that we have 1500 + 1500 + 1068 bytes of data sent for a total of 4068 bytes.
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The First Fragment

P b e

20 8 1472

\1 20 8 1472

|IP header || 1500 total bytes

ICMP header Offset = 0
ICMP echo Data Length = 1480
request More Fragments = 1

~ Intrusion Detection In-Depth

Let's turn our concentration to the initial fragment in the fragment train. The “original” IP header will be
cloned to contain the identical fragment identification numbers for the first and remaining fragments.
Remember, all fragments must be carried in an IP packet. An IP packet requires an IP header to direct it to
its destination.

The first fragment is the only one that will carry with it the ICMP message header. This is true for all
fragment trains created. The first fragment only carries the protocol header. All remaining fragments carry
data only. This is important to remember when creating any kind of tepdump or Wireshark filter to view
fragments. If you erroneously attempt to filter all fragments in a given fragment train using a value found in
the transport protocol header, you will see the first fragment only. For instance, suppose that a packet with
TCP destination port 80 (HTTP) is fragmented. With normal fragmentation, the first fragment is the only one
that contains the TCP header, including the destination port of 80. If you were to try to use a filter that
selects fragments with a destination port of 80, you would see the first fragment only.

As we see, the first fragment has a 0 offset, a data length of 1480 bytes, 1472 bytes of data and 8 of ICMP
header, and more fragments follow so that more fragments flag is set.
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Composition of the First Fragment

First fragment 11500 total bytes in IP packet
20 | 8 | 1472ICMP data bytes
IP Header cmp pseudo-hea‘der ‘

Protocol = ICMP
Fragment ID = 21223

‘More Fragments Flag = 1

Fragment Offset = 0
Data Length = 1480

Type = ICMP echo request

Examine the configuration of the first fragment in the fragment train. The first 20 bytes of the 1500 bytes are
the IP header. The next 8 bytes are occupied by the ICMP header. Recall that this was an ICMP echo
request that has an 8 byte header in its original packet. The remaining 1472 bytes are for ICMP data.

In addition to the normal fields carried in the IP header such as source and destination IP and protocol, in this
instance, ICMP, there are fields that are specifically for fragmentation. The fragment ID with a value of
21223 will be the common link for all the fragments in the fragment train. The more fragments flag is set to
1 to indicate that more fragments do follow. Also, the offset must be stored of the data contained in this
fragment relative to the embedded data in the prefragmented packet. For the first record, the offset will be 0.
The 1480 bytes of data represent the 8 byte ICMP header followed by the first 1472 bytes of the ICMP data;

this does not include the 20 bytes of IP header.
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The Second Fragment

1480

20 ﬂ 1480

1500 total bytes

Offset = 1480
Data Length = 1480
More Fragments = 1

I-nt,ru'sitmt Detection In—Depth

We focus on the next fragment in the fragment train. An IP header will be cloned from the original IP header
with an identical fragment identification number, and most of the other data in the IP header such as the
source and destination numbers will be replicated for the new header. Embedded after this new IP header
will be 1480 ICMP data bytes. You may be wondering why the offset is 1480 instead of 1500 bytes. After
all, the first fragment had a total of 1500 bytes. But, remember that the fragments are created from the data
that follows the oversized packet's IP header. Therefore the size of the IP header of the first, and all
subsequent packets is not considered part of this data and is not counted in the offset value.

As we see, the second fragment has an offset of 1480, a data length of 1480 bytes, and one or more fragment
follow so the more fragments flag is set.
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” Composition of the
Second Fragment

Secbhd fragment

1500 total bytes in IP packet

20

1480 ICMP data bytes

1P Header

Protocol = ICMP
Fragment ID = 21223

Data Length = 1480

More Fragments Flag = 1
Fragment Offset = 1480

Continuing with fragmentation, we examine the IP packet carrying the second fragment. As with all fragments,

it requires a 20-byte IP header. Again, the protocol in the header will indicate ICMP. The fragment
identification number remains 21223. And, the more fragments flag is turned on because at least one more
fragment follows. The offset is 1480 bytes into the data portion of the original ICMP message data. The
previous fragment occupied the first 1480 bytes of ICMP header and data. This fragment will have 1480 bytes

of data as well and it is composed entirely of ICMP data bytes.

Remember that the ICMP header in the first fragment doesn’t get copied along with the ICMP data is
subsequent fragments. This means if you were to examine this fragment alone, you could not tell what the

ICMP message type is — in this case, an ICMP echo request. However, since each fragment inherits a cloned 1P

header, you can tell the embedded protocol of each fragment — in this case ICMP.
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The Third Fragment

1048
20 1048 ﬂ
1068 total bytes

Offset = 2960
Data Length = 1048
More Fragments = 0

Intrusion Detection Tn-Depth

" Finally, examine the third and last fragment in the fragment train. Again, an IP header is cloned from the
original header with an identical fragment identification number, and other fields will be replicated for the new
header. Embedded in this new IP packet will be the final 1048 ICMP data bytes.

As we see, the third fragment has an offset of 2960, a length of 1048 bytes, and no more fragments follow, so
the MF flag is 0.
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Composition of the
Final Fragment

Thirdfragment 1068 total bytes in IP Datagram
. 20 1048 ICMP databytes

IP Header

Protocol = ICMP
Fragment ID = 21223
More Fragments Flag = 0
Fragment Offset = 2960
Data Length = 1048

Here is a depiction of the last fragment in the fragment train. Again, 20 bytes are reserved for the IP header.
The remaining ICMP data bytes are carried in the data portion of this fragment. The fragment ID is 21223, the
more fragments flag is not set because this is the last fragment. The offset is 2960 (this is the sum of the two
1480 byte previous fragments). There are only 1048 data bytes carried in this fragment comprised entirely of the
remaining ICMP message bytes.

This fragment, like the second one, will have no ICMP header and therefore no ICMP message type to reflect
that this is an ICMP echo request.
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tcpdump Fragmentation Output

foomaca:: )

192.168.11.65 > 192.168.11.3: ICMP echo request
(id 21223, offset 0, flags [+], proto ICMP (1), length 1500)
192.,168.11.65 > 192.168.°11.3: Tcmp
(id 21223, offset 1480, flags [+], proto ICMP (1), length
1500)

192168411 065 221921685 1 103wl cmp

(id 21223, offset 2960, flags [none], proto ICMP (1),
length 1068)

- Fragments
Fragment follow
1D

No more
fragments
follow

Offset into
the data
that this
fragment
falls

Number of

bytes in IP
packet

s

o N T g ment-
Intrusion Detection In-Depth i ncas

The above output was created using the tepdump verbose option (-v), however the format was edited to make
it more readable and coherent.

The first line shows 192.168.11.65 sending an ICMP echo request to 192.168.11.3. The reason that tcpdump
can identify this as an ICMP echo request is because the first fragment contains the 8-byte ICMP header which
identifies this as an ICMP echo request (type 8, code 0). Now, let’s look at fragmentation notation from
tcpdump. The verbose option displays the fragment/IP ID value of 21223. The fragment offset is apparent,
and “+” is used to signify that the “more fragments” bit is set or “none” to indicate it is not. The length of the
entire packet including the IP header is shown - in this case it is 1500 bytes — 20 bytes for the IP header and
1480 bytes for fragment data.

The second record is somewhat different. Notice that there is no ICMP echo request label. This is because
there is no ICMP header to tell what kind of ICMP traffic this is. This fragment contains only ICMP data. The
IP header still has the protocol field set to ICMP if you were to examine the 9th byte offset of the IP header,
you’d find a value of 0x01 for ICMP. Yet that is all you can tell about the embedded protocol looking at this
fragment alone. The fragment ID is 21223, and the offset is 1480. This is a little confusing since the first
fragment had a length of 1500, but remember it includes a 20-byte IP header. The displayed value of 1480
represents only the number of bytes that follow the IP header. More fragments follow and the length of this
fragment again including the IP header is 1500 bytes.

The last line is very similar to the second one in format. It shows the same fragment ID of 21223, and an
offset of 2960 - the cumulative total of bytes from the two 1480 fragments before it. As you can see, there are
no more fragments that follow since “flags[none]” means this is the final fragment. It has a length of 1068 —
20 bytes of IP header and 1048 of fragment data.

+ To see the output similar to that above, enter at the command:
tepdump -nvt —r fragment-breakdown.pcap
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Wireshark Display of Fragmentation

RT3
=ICHP GX0L, of

hig

Y 6.680600
1 6.6805%

Sk
packet data
v Internet Protocol, Src: 192.168.11.65 (192,68,11,65), Dst: 192.168.11,3 (192,168,11.3}
versien: 4
Header length: 20 bytes
 Differentiated Services Field: 8xB0 {RSCP £x88: Default; ECH: 6x88)
Total Length: 1058
Tdentification: fxa2e? {21223}
b Flags: 6169
fFraguent offset: 2060
Tire to live: 64
protocol: TGP (6xe1)
b Header checksum Oxbae3 fcorrect]
Soarce: 192.366.1%.65 {192.168. 11,65}
Pestination: 192.168.11.3 {192.188.11.3)

1 (TP Fragrents (4008 bytest: #L(1480), 201480}, #3(10461] ]
I T PTIROCOT

o T9mR2 BBk (ninnt remyestd

fragment-
. breakdown.pcap -

This is the way that Wireshark displays that same set of fragments. Wireshark does some interpretation of the
fragments. You may find this helpful or confusing depending on your point of view. The tcpdump
interpretation is pretty straightforward, giving you the necessary detail and allowing you to perform the
"translation" of the fragments. Wireshark, however takes the liberty to perform some of the translation,
omitting some details and requiring you to rely on it for the interpretation.

You see the same three fragments from tepdump. The ID number is expressed as the hex value 0x52¢7 instead
of the 21223. This is strictly a matter of preference whether you want to see the value in decimal or hex.
Either way the IP ID is consistent. But, let's take a look at some of the other fields. For instance, if you look at
the Protocol field column you see that the first two packets have a protocol of "IP", while only the last one has
a protocol of "ICMP". This really is not correct — all three fragments carry the value of 1 in the protocol field,
designating ICMP. The Info column correctly details the protocol.

Also, Wireshark offers the reassembly of all fragments in line 3. It interprets the reassembled fragments as an
ICMP echo request. Recall that the protocol header is found in the first fragment only so it would be more
accurate to have this interpretation on line 1. While Wireshark intends to be helpful and deliver you what it
considers the pertinent data and translation, it takes license in its interpretation. Perhaps you don't care about
the details and this is sufficient for your purposes. However, the interpretation that tcpdump offers is more
esoteric to the novice, yet it is also more pure in that it doesn't get overly zealous in translation.

To see the output above, enter the following at the command line:

wireshark fragment-breakdown.pcap
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Miscellaneous QuestionslA'bout
., __Fragments (1)

e What about the fragment(s) length?
¥ The original IP header had the length of the pre-fragmented packet

+ Each fragment gets its own new length of the IP header bytes +
what follows
¢ What about the fragment(s) checksums?
— Each fragment gets its own new IP checksum
— First fragment only has the embedded protocol checksum
— The embedded protocol checksum is performed on the pre-
fragmented protocol and data

Intrusion Detection In-Depth

What happens to the IP header datagram length value with fragments? As you are aware the pre-fragmented
[P header contains a length for the number of bytes in the IP header plus all that follow. This is replaced in
each fragment with the IP header length of the fragment plus the bytes that follow in that fragment only.

The concept of the IP checksum does not change. Since each fragment essentially gets a new unique IP header
designating its offset value in the fragment train and whether or not any fragments follow, each IP header has a
unique IP checksum computed for its fragment header.

While we have not discussed embedded protocol checksums such as TCP, UDP, and ICMP, they each have
their own checksums stored in the respective TCP, UDP, or ICMP header. Since the protocol header appears
in the first fragment only of normal fragmentation, the embedded checksum protocol value remains
unchanged.
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Miscellaneous QUestions About
L Fragments (2)

e What happens to IP options present on pre-fragmented

packet
— Do they get copied to each fragment or remain only on the first
fragment? It depends:

— Examine the option value

- — If the high order bit is 0, only the first fragment
— If the high order bit is 1, all fragments

Timestamp = 68 oo 0100 No |
Loose Source Routing = 131 [1/000 0011 Yes J

Intrusion Detection InJ)epth

Suppose there are one or more IP options and a packet that needs to be fragmented. Do those IP options
accompany each fragment or just the first? It depends. It seems that whoever created the numbering scheme
for the value of any given IP option had forethought about this situation. Any IP option value that has a 1 in
the most significant bit of the 1-byte field has all the IP options present in every fragment. In other words, any
IP option value that is greater than 127 accompanies every fragment. Conversely, an IP option value that has a
0 in this same bit accompanies the first fragment only.

Take the Timestamp option with a value of 68. This option captures the timestamp for each hop of its journey.
Apparently, maintaining the timestamp values for the first fragment only appears to be sufficient. However,
the loose source routing option value of 131 requires all the fragments to keep the routing information. If you
remember, the loose source routing option suggests a series of routers through which the packet traverses. It
makes sense that all fragments must maintain that data.

© 2015 Judy Novak 145



IDS/IPS and Fragmentation

e IDS/IPS must properly reassemble fragments to detect
malicious traffic

e Normally not a problem
¢ What about:

— Overlapping fragments
— Fragment time-out differences?

» Must be handled like destination host handles using target-
based reassembly

Intrusion Detection In-Depth

Since reassembly of fragments is absolutely vital for an IDS/IPS to examine the entire packet, it is imperative
for the IDS/IPS to do it properly. But, what is properly? Most of the times proper reassembly means that the
IDS/IPS must reassemble all fragments that have the same source and destination IP addresses, protocols, and
identical IP identification numbers using the fragment offset values found in the IP header of the fragments.
This is a trivial task for the IDS/IPS to perform.

But, an attacker can craft traffic to deliberately introduce ambiguities for an IDS/IPS. For instance, what about
fragments that overlap? How should it handle two fragments that have identical offsets, but contain different
payload. Does the IDS/IPS honor the first or second fragment? What if it chooses to accept and evaluate the
first fragment that has innocuous payload and ignores or does not block the second fragment that contains an
exploit payload? The damage depends on whether the destination host accepts the first or second fragment. If
it accepts the first fragment, no harm is done. However, if it accepts the second fragment and the exploit is
successful, the IDS or IPS has failed to do its job.

Consider a different situation that involves a crafted set of fragments where one is late or delayed. Some
operating systems may wait for over a minute for a delayed fragment to arrive before timing them out. What if
an IDS or IPS has a shorter wait time and flushes the fragments before the destination host? This also poses a
potential threat to that IDS/IPS. A busy IDS/IPS that handles possibly gigabytes of traffic may not have the
luxury of allowing a minute’s worth of idle activity for fragments since it needs to be stingy with memory
resources. If the IDS/IPS does not handle fragments as the destination host does, it is possible for the delayed
fragment to contain an exploit payload and compromise the destination host.

The solution to this problem and other TCP/IP related ambiguities is for the IDS/IPS to be target-based. In
other words, it must know what the destination host is and how it reacts to overlapping or delayed fragments.
The IDS/IPS must behave identically to the destination host in reassembling fragments, otherwise it can be
evaded.
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Mapping Using Incomplete Fragments

Another scanning technique

Intent: Elicit ICMP error "Fragment reassembly time
exceeded"

Scanning host sends incomplete set of fragment(s)

If target host returns an ICMP “Fragment reassembly time
exceeded” message, ostensibly the target host exists and
isup

Tntrusion Detection Iri—Dépth

A mapping technique to find active hosts on a remote network is to try to elicit an ICMP "IP/fragment
reassembly time exceeded" message from hosts on a scanned network. This method may be used instead of

more conventional scans, such as an ICMP echo request, because those methods may be blocked from network
entry. This can be done by sending an incomplete set of fragments to hosts that are being mapped. For this to

work properly, the destination host has to be listening on the port or protocol that is used. If it does, when it

receives the first fragment (not necessarily the zero offset fragment), it will set a timer.

If the timer expires and the receiving host has not received all the fragments, it will send the ICMP “Fragment
reassembly time exceeded” error back to the sending host. It is important to note (according to RFC 792) that

in order for the ICMP “Fragment reassembly time exceeded” error to be generated, the zero offset fragment
must not be the missing one. RFC1122 recommends that the timer expire between 60 seconds and 2 minutes,

though we’ll see in the next slides that is not always the case.
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Incomplete Fragment Scan

& . T 5 7 3 =

hping3 -c 1 -1 -x 192.168.11.1

| No.. Time Source Destination

i M M i 3 % 2 & 3 ARy . XK R % 0
b Ethernet II, Src: DigitalE_00:8a:04 (aaA0§T34:e@:Ba:04), Dst: Buffalo 40
v Internet Protocol, Src: 192,168.11.65 (192,168.11.65), Dst: 192.168.11.1

Version: 4

Header length: 20 bytes

b Differentiated Services Field: Ox00 (DSCP 0x00: Default; ECN: 0x00)
Total Length: 28
Identification: Bx4did (19741)

M Flags: Ox01 (More Fragments) ]
Fragment offset: 0
Time to live: 64
Protocol: ICMP {0x01)

P Header checksum: 0x7631 [correct]
Source: 192.168.11.65 (192.168,11.65)
Destination: 192.168.31.1 (192,168.11.1)

i e ot
~Intrusion Detection In-Depth router.pcap

To simulate this scan, the open source packet crafting tool hping3 command is enlisted. The —c 1 option tells
hping3 to generate one packet, otherwise it will continue until you stop it. The -1 options designates the use of
ICMP - by default, an echo request, and the —x option to set the more fragment flag. Our target host is
192.168.11.1. Yet, we send no more fragments.

+ To see the output, enter the following on the command line:

wireshark frag-timeout-router.pcap

The first of the two records is shown above.
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Fragment Reassembly Time
Exceeded Response

Ho. (Time Source Destination Protocol L
1:0.060000  192,168.11.65 192.168.11.1 IPv4
220.992436 [T52,166.11.1  — ]192.168,11.65 XCHP
FUETHETRET L1, S FET BUTTA L0 481001207 (4CTeBT/BTAUIONTA), T DSTY DIgITALE Yy
» Internet Protocol Version 4, Src: 192.168,11.1 (192,168.11.1), Dst: 192,
v Internet Control Hessage Pi col

TR DUm . WAl Iy [COTTenT]
v Internet Protocol Version 4, Src: 192,.168.11.65 (192.168,11.65), Dst:
Version: 4
Header length: 20 bytes
» Differentisted Services Field: 6x00 (DSCP Gx08: Default; ECN: ex80: N
Total Length: 38
Identification: @xddid (13741)
Flags: 6x01 {More Fragments)
Fragment offset: ©
Time Yo live: 64
Protocol: ICHP (1)
» Header checksum: 6x7631 [correct)
Source: 192.188.11.65 {152.168.11.65}
Destination: 192.168.11.1 {192.168.11.1}
» Data (8 bytes)

v

frag-timeout-
router.pcap

After almost a half a minute (look at the time field in the packet pane) elapses before 192.168.11.1 sends back
an ICMP error message of "Fragment reassembly time exceeded". We'll cover ICMP formats and messages
later in the course. However, you may notice that following the ICMP error message, there appears to be
another packet embedded in the ICMP message. As we'll learn, the host that sends the error includes part of the
packet that caused the error to occur. This gives the message some context, otherwise the recipient host of the
error message would have a hard time pairing it with a stimulus packet. This takes all the guesswork out of it.

It is also possible that sending an incomplete set of fragments can help to identify the target host remotely. A
30-second timeout is common and would not identify a unique OS, but perhaps paired with other reconnaissance
or probes, might serve to validate a guess or supplement some other data.

"é’ This is the second record of the file frag-timeout-router.pcap.
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Malicious Fragmentation

_ TInwusion Detection In-Depth

We now examine the topic of fragmentation used for purposes other than the intended ones.
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Fragmentation Attacks

Many fragmentation attacks first appeared in mid to late
1990s, but still resurface today

This is about the time that the Internet became available to

the masses

Attackers have discovered most IPv4 fragmentation attacks

Current operating systems hardened against them

The IPv4 fragmentation attacks that are discussed in the upcoming slides occurred in the mid to late
1990s. Coincidentally, this is about the same time that the Internet became available to just about anyone
with a computer, a modem, and dial-up access. Hackers quickly developed all kinds of attacks. Some
favorite ones were denial of service attacks using fragmentation in unexpected and harmful ways.

At the same time, developers and maintainers of the most popular operating systems of the day had to
combat all of the new, curious users of the Internet and their devious attacks. They more thoroughly
examined their code and supplied patches to prevent denial of service attacks using fragments. It is
important to be familiar with the history of and evolution of these fragmentation attacks to understand how
attackers took advantage of the flaws.

Attackers may still try these attacks. We're seeing older attacks resurfacing in IPv6 testing to see whether
or not newer implementations of protocols are hardened against these attacks.
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1562

Ping O Death
‘hFragmgntation Attack |

[

 Uses fragmented ICMP packets for denial of service

Very large packet crafted using fragments

When reassembled by victim host, maximum IP packet size
of 65,535 bytes exceeded

Caused some vulnerable hosts to crash or freeze

Intrusion Detection In-Depth

The Ping O’ Death fragmentation attack is a denial of service attack that used a ping command to create an
IP packet that exceeded the maximum 65535 bytes of data allowed by the IP specification. The oversized
original packet was fragmented and then sent to a victim host. Some older operating systems would crash,
hang, or reboot when they received such a maliciously crafted packet. This attack is not new, and all OS
vendors should have fixes in place to handle the fragment reassembly of oversized packets.
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Ping O’ Death

Hostile Host

Total byte length of fragments > 65,535

]

| I I | |

 Frag 1 Frag2 Frag3

VictimHost

Reassembled length > 65,535

65535

In the pictorial representation of Ping O' Death, we see a hostile host crafting an oversized IP packet from
smaller fragments. When the victim host received these fragments and attempted to reassemble them, it may
have experienced a denial of service failure when its reassembled packet length exceeds 65535 bytes.
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Ping O’ Death Attack

Source Destination Protocol - Source port - Destinationport ~ Info
192,166,11.65 182,168,113 1p Fraguented IP protocol (proto=ICMP Bx81, off=53280, 1D=52€7)
192.166.11,65 192.166.11.3 b4 Fragnented IP protocol {proto=ICHP 8481, off=54768, 1D=52e7)
192,168, 11.65 192.266,11.3 P Fragnanted IP protocal {proto=ICHP 6x81, 0ff=56248, 10=52e7)
192.168.11.65 192.166,11.3 P Fragnented IP protocol (proto=ICHP Ox61, off=57226, 1D=527)
192,168.11.65 192.168.11.3 i Fragnented IP protacal (proto=1CHP 6xB1, off=39268, 10=52e7)
182,168.11,65 192,168.11.3 i Frageented IP protocol (proto=ICMP 0x81, off=60686, 10=52¢7)
152,168.11.85 182,168.11.3 jid Fragnented IP protocol (prato=ICUP Bx81, off=52168, 1D=52¢7)
192.166.11.65 192,166.11.3 I? Frageented IP protocol (proto=ICHP Bx81, off=63649, ID=52e7)
192,168.11.65 192.166.11.3 i Frageented IP protocol {proto=ICHP &x81,[off=55126, 1D=52¢7)
| S

Each fragment = 1480 byte

65120 + 1480=66600
66600 > 65535

, T s
<\/>> . Inuusion Detection In-Depth kSt

This is how Wireshark interprets Ping O' Death traffic. We have a view of the packets right before the
value of the reassembled packet exceeds the maximum size of 65535. Each of these fragments is 1480
bytes in length. Thus, when the packet depicted at the bottom is sent with an offset of 65120 and an

additional 1480 bytes, a receiving host that was vulnerable to the Ping O' Death would crash or freeze.

+ To view the output, enter in the command line:
wireshark pingodeath.pcap
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| tcpdump Output of |
— Teardrop Attack

¢ What is wrong with this tcpdump output of the fragmented
traffic

IP (tos 0x0, ttl 64, id 242, offset 0, flags [+], proto UDP
CL1)5 Le_ngﬂﬂ)
192.168.11.65.139 > 192.168.11.46.139: UDP, length 8
IP (tos 0x0, ttl 64, id 242, offset 8, flags [none], proto
UDP (17), length 28)
192.168.11.65 > 192.168.11.46: udp

Length value includes 20 bytes of IP header

<<% Intrusion Detection In-Depth : teardrop.pcap

Now we see another earlier type of denial of service using UDP. The Teardrop attack exploited weaknesses in
the reassembly process of fragments. The Teardrop program created fragments with overlapping offset fields.
When these fragments were reassembled at the destination host, some older operating systems will crash, hang,
or reboot. Again, this attack has been around for several years so patches should be available for vulnerable
systems.

The first fragment has a length of 36. This includes a 20-byte header, 8-byte UDP header, and 8 bytes of
payload. This means that the final 16 bytes are the fragment payload. The next in-order fragment should have
an offset of 16. However, look at the offset of the second fragment — it is 8. This means that the two
fragments overlap for 8 bytes of data because the second fragment has 20 bytes of IP header and 8 bytes of
data that begin at offset 8 bytes into the first fragment.

To view the output, enter the following in the command line:

tcpdump —r teardrop.pcap -nvt
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Teardrop Attack

S— S IR e s s

192.168.11.65.139 > 192.168.11.46.139: udp (id 242, offset 0,
flags[+], length:36
192.168.11.65 > 192.168.11.46: (id 242, offset 8, flags|[none],

length 28)
Byte 0 Byte 7 Byte 15
P Fragment 1 R
<C> e Iﬁtrus-i(m Detection In-Depth 'b teardrop.pcap

Let's examine the tcpdump output from Teardrop fragmentation alongside a depiction of it. The first
fragment delivered is UDP and has a fragment ID of 242, a length of 36 data bytes and an offset of
zero. It spans bytes 0 through 15 inclusive.

Now, the second fragment comes along. It is associated with the first fragment because of fragment ID
of 242, it has a length of 28 — 20 bytes of header and 8 bytes of fragment payload. It begins at an offset
of 8 bytes into the payload portion. As you can see, it actually overlaps offset bytes 7 through 15 of the
first fragment.

To view the output, enter the following in the command line:

tepdump —r teardrop.pcap -nvt
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Fragmentation Review

« Necessary when packet crosses a network smaller than the
packet length

o Packet divided into fragments which will be reassembled by
the receiving host by using:

— The fragment ID
— The fragment offset
— The More Fragments flag

¢ Only the first fragment contains the transport protocol
header that follows the IP header

 DF flag can be used for path MTU discovery to avoid
fragmentation

We’ve seen where fragmentation is a normal occurrence for a packet travelling from a larger to a smaller
network. If a packet requires fragmentation along the path to the destination, a router on the network with the
smaller MTU will fragment the packet if the Don’t Fragment flag is not set.

Each fragment is encapsulated in an IP packet. Every IP header contains information such as the fragment ID,
the offset, and whether other fragments follow. Remember that only the destination host reassembles the
fragments. No intermediate routing devices should reassemble them. However, an IDS/IPS must reassemble
them to make sure that malicious content is not spread between fragments. The DF flag can be used as a
mechanism to discover the MTU to the destination host and provide more appropriate packet packaging thus
avoiding fragmentation all together.

Remember that only the first fragment contains the transport layer header. All other fragments contain data
only. This is important to remember when you are filtering fragments. If you specify a filter that includes a
field and associated value from the protocol (ICMP, TCP, UDP), you will probably be baffled why you
received the first fragment only.

One final point to remember is that IP is not a reliable protocol and it is possible for one or more fragments to
get lost. In fact, if one or more fragments does not arrive at the destination, all must be re-sent. The receiver
begins a fragment timer — different operating systems have different values ranging from 30 seconds to over a
minute — when a fragment arrives. The receiver has to inform the sender if all fragments do not arrive when
the timer expires to make the sender aware that it needs to resend all the fragments. The receiver informs the
sender using ICMP — specifically an "IP/fragment reassembly time exceeded" message.
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IPv4 Review

Concerned about getting packets to the next hop

Not guarantee of reliability

Checksums help maintain integrity of IP header

Fragmentation occurs when the packet is larger than an
MTU in its path

Intrusion Detection In-Depth

The main function of the IP layer is to move packets from one hop to the next. IP has no means to guarantee
reliability. Instead, upper layer protocols — transport or application layers — must include some means to assure
that packets make it to their destination. Checksums validate that the data in the IPv4 header does not get
corrupted in transit, using a simple formula whose result is placed in the IPv4 header and must be validated by
routers en route and the receiver to assure the integrity of the data.

Fragmentation occurs when a packet is larger than the next link layer MTU. Fragmentation causes some
overhead because it creates several different packets and if any fails to reach the destination, all must be sent
again. It is best for a host to avoid this in the first place. That may be done using path MTU discovery to find
the smallest MTU from source to destination and format all packets to fit within that MTU length.
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Fragmentation Exercises
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The IP Layer — IPv6

This page intentionally left blank.

160 © 2015 Judy Novak



Objectives

o Discuss the need for IPv6

o Examine differences between IPv6/IPv4
e Look at composition of IPv6 addresses

e Understand Neighbor Discovery Protocol
o Examine IPv6 packets

o Explain extension headers

¢ Look at IPv6 in transition

For years and years, we've heard that IPv6 is right around the corner and its implementation is imminent. It's
taken far longer than expected just because of all the infrastructure and implementation issues. But it is
becoming more imperative now that the IPv4 addresses are gone. Some of the more agile or future-looking
sites have already deployed IPv6. This section introduces you to the basic IPv6 concepts.

This section discusses the obvious need for IPv6, looks at some of the major differences between it and its
predecessor — IPv4, examines the new [Pv6 address format, Neighbor Discovery Protocol to find other hosts
and routers on the local network, the structure of IPv6 packets, the concept of extension headers to chain
protocols, and transition issues surrounding the deployment of IPv6.

You are most likely mistaken if you believe you have no IPv6 traffic on your network. Modern operating
systems support it and generate traffic. You or your IDS/IPS should be examining it since your enemies
definitely will try to find it and use its weaknesses for attack or use its invisibility to exfiltrate.
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Why IPv6?

s

¢ Simpler routing

Address exhaustion

Optional built-in security mechanisms
- Encryption for privacy

— Inspection for integrity to make sure no alteration
= Authenticity to identify sender

Better quality of service features
Larger packet payloads

Intrusion Detection In-Depth

IPv4 was not created with the notion that the Internet would grow to be an international sensation complete
with stationary computers, mobile devices, thieves, and miscreants. And, while it has provided adequate
service for several decades, there are inherent problems that must be fixed.

Every router is encumbered by the requirement to recompute the IPv4 checksum because it decrements the
TTL. Routers are also burdened with having to fragment packets that are larger than the support MTU.
Finally, the size of the routing tables in IPv4 is unwieldy. IPv6 advocates route aggregation (creating simple
hierarchical routes) so the number of routes that need to be stored in the routing table is more manageable.

Another problem is that the 32-bit addressing scheme no longer provides enough combinations of IP
addresses to accommodate the growth of the Internet and all of the many devices that now need addresses.
IPv4 addresses were officially exhausted in early 2011 as IANA allocated the remaining blocks of available
addresses. Although Network Address Translation (NAT) and reserved private network addresses (such as
10.0.0.0/8 and 192.168.0.0/16, etc.) have helped alleviate a more rapid exhaustion of IP addresses, a larger
address space is needed. The 128-bit address scheme in IPv6 provides this relief.

And, while add-ons such as IPSec can be used for security mechanisms, they are not built into IPv4. IPv6
provides these mechanisms as extensions to a fixed-size IP header. Therefore, optional encryption and
authentication can be employed to provide confidentiality and ensure the integrity and authenticity of packets
without the need to retrofit protocol layering.

Better quality of service features needed for real-time applications are also available. And, now with jumbo

packets, the 65,535 byte limitation on the packet size has been increased in IPv6. These are just a few of the
many reasons for the creation of IPv6.
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The IP Layer —
IPv6 Header and IPv6 Addresses
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IPv4 Versus IPv6

T T TS e T T —— S— S ——

IPv4 IPV6
IP Header Greater than-or |40 bytes
Length equal to 20
bytes
IP Address 32 bits 128 bits
Length
Name Changes
ITL HOp he ue ;J}/
Type of Service | Traffic class (/% y /
Protocol Next header a Lo

.  ———4 opTT°
Intrusion Detection In-Depth

Probably the most discussed feature of IPv6 is the extended address space (more later). However, a few other
things have been “fixed.” The header is now limited to exactly 40 bytes. Instead, additional “extension headers”
are used to express functionality covered by IPv4 fields and options. This format is intended to ease parsing of
the header and transmission speed. Routers will have to consider the 40-byte IPv6 header only in order to pass a
packet on.

What used to be known as ""Type of Service” is now known as “Traffic Class” allowing for 256 different traffic
classes. These traffic classes can be used to adjust quality of service (QoS) parameters in routers. While similar
in function to the IPv4 "TOS" field, it provides for many more variations.

The IPv4 protocol field that indicates the protocol that follows the IP header is now known as "Next Header"
field in the IPv6 header. In addition to indicating the transport layer protocol, it may also be used to indicate the
type of extension header, if there is one. Some of same protocol numbers from IPv4 are still used, but some
change for IPv6 — notably ICMPv6.

The IP datagram header length has been deleted from the IPv6 header since the header is a fixed 40 bytes. If any
of the old IP options are required, they are implemented in an extension header that follows the IPv6 header and
precede the transport layer of the packet. Other fields — fragmentation offset, IP ID, and flags, all support
fragmentation - another extension header (a packet can have multiple extension headers). Finally, the IPv4
checksum that validated the IPv4 header is gone. Now, the protocol checksums (TCP and UDP, and ICMP, for
instance) are considered sufficient since they have pseudo-headers that validate portions of the IPv6 header.

This also relieves routers from having to re-compute IP checksums after decrementing the TTL (now known as
the HOP limit value).

Fields removed: Fragmentation, Flags, Checksum, Options, IPID, Length
Fields added: Flow Label
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IPv6 Unicast Addresses

e 128 bits = IPv6 “Killer Feature”

« 340,282,366,920,938,463,463,374,607,431,768,211,456 available
addresses (compare t0 4,294, 967 296 for IPv4~ “b|Ehons” of IPs for each
square inch of earth)

¢ Cumbersome notation: ,

~ 2001:0DB8:1111:2222:0000:0000:CCCC:DDDD

Shortcuts:

¢ Remove leading zeros

¢ Replace ":0000:" with "::"

* Replace multiple 0- groups with "i:" in one place

‘ , 2001: 0DB8:1111: 2222 0000: 00 c:ccc DDDD

N

2001:DB8:1111:2222} CCCC DDDD

Remembering IPv6 addresses is challenging. Typically, they are written down in 8 groups of 2 bytes in
hexadecimal. A couple of shortcuts can be used. For example, leading zeros may be dropped. Groups of 0’s may
be replaced with "::" However, this can be done only once per IP address in order to avoid ambiguity. Consider
this example:

2001:0DB8::2222:3333::4444 ~ DOES NOT WORK

because it could either stand for:
2001:0DB8:0000:0000:2222:3333:0000:4444 or
2001:0DB8:0000:2222:3333:0000:0000:4444

Subnets are noted like in IPv4, but the trailing 0’s may be dropped. e.g.
2001:0DB&/32

Here is a quote with two analogies to illustrate the vastness of IPv6 space:

“The available address space has been variously described in analogies from ‘as many addresses as there
are stars in a galaxy’ or ‘as many as there are grains of sand on the planet’.”

http://www.ip-performance.co.uk/blog/ipv6readiness
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IPv6 Addresses

3AAA:AAAA:AAAA:BBBB:CCCC: CCCC:CCCC: CCCC

e Prefix: This part of the address is used for routing. A company network
may be assigned one or more prefixes. The first three bits are '001' for
unicast addresses.

e Subnet ID: Identifies a particular subnet with one or more hosts. A flat
network may set this to '0'.

» Interface ID: Each network interface is assigned at least one IP address.
It can be derived from the MAC address ("EUI-64"),

- Inrrusion Detection In-Depth

It is up to the registrar (ARIN, APNIC, RIPE...) to decide how to divide the address space. ARIN currently
allocates IPv6 blocks with a minimum initial size of /32. Additional blocks are available with a size of /48.
ARIN further specifies that most “sites” (e.g. a company) should be allocated a /48. A /64 is to be used if only
one subnet is needed (e.g. For a consumer). (http://www.arin.net/policy/nrpm.html#six21)

The interface ID may be derived from the MAC address using scheme known as EUI-64 format:

Use the upper 24 ("half") of the MAC address, append "FFFE", followed by the lower 24 bits of the MAC
address. The upper 24 bits of the MAC address are also referred to as the Organizationally Unique Identifier
(OUI) and identify the manufacturer of the equipment. The lower 24 bits should be unique for a particular
manufacturer.

Sample IPv6 unicast address:
2AAA:AAAA:AAAA: :0050:56FF: FECO: 8

The first nibble has to be 2 or 3 as for unicast addresses, the first 3 bits are "001",

In this example, the MAC address is 00:50:56:C0:00:08. The last four digits "0008" are written as "8" according
to the rule that allows us to omit leading 0°s. The subnet id is "0" in this case, and compressed to "::"'.

166 © 2015 Judy Novak



IPv6 IP Numbers

e 128-bit fields (16 bytes)
« Unnatural values for source IP numbers entering network:

— IP numbers that fall in your network range
~ Private address space —*1111 111" or "1111 110" for the first seven bits
— Loopback address — ::1 (0:0:0:0:0:0:0:1)
e Unnatural values for destination IP numbers entering network
— Multicast/anycast addresses
« Unnatural values for source IP numbers leaving network
— IP numbers that don't fall in your network range
~ Private address space
« Unnatural values for destination IP numbers leaving network

— Multicast/anycast addresses

The source IP number is located in the 8-237 bytes offset of the IPv6 header; the destination IP number is
located in the 24%-39t bytes offset of the IPv6 header. The same caveats apply to inbound and outbound IP
addresses found in [Pv6 as IPv4. Make sure traffic leaving your network has a legitimate source and
destination IPv6 address otherwise, block it. The same applies to inbound traffic as well.

For more information on IPv6 address assignments:

http://www.iana.org/assignments/ipv6-address-space
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Other Address Types
1Pv4 IPv6

Loopback 127.0.0.1 :11/128
Link Local 169.254.0.0/16 fe80::/10
“Global Unicast Any routable IP 2000::3

address g
IPv4-Mapped N/A :ffff/96
IPV6 to IPv4 N/A 2002::/16
Documentation 198.18.0.0/15 2001:0db8::/32
Multicast 224.0.0.0/4 f00::8
Teredo N/A 2001:0000::/32
Private 10.0.0.0/8 fc00::/7

192.168.0.0/16

172.16.0.0/12

Intrusion Déte_ctioh In—Deptb

There are several different address types for both IPv4 and IPv6. IPv4 knows unicast, multicast and broadcast
addresses. IPv6 no longer uses “broadcast.” For the larger flat networks proposed as part of IPv6, broadcast in
its original use would be inappropriate. The closest thing to broadcast is “link local.” Link local is limited to a
physical link, not necessarily to a logical network address block.

A global unicast address is one that can be connected to the Internet and is routable. IPv4-mapped addresses
are used to embed an IPv4 address in an IPv6 address. This can be used when transitioning from a dual stack
host. TPv6 to IPv4 is a method for IPv6 to be carried over IPv4, typically when IPv6 is supported between the
sending and receiving networks, but not the route between.

The documentation/example category is used when you want to refer to a legitimate example network. For
instance, in this course any fictitious traffic that is created for the purpose of documenting should use these
ranges. You are probably familiar with multicast to send traffic to a group of multicast hosts. Teredo, as you
will learn, is an ill-conceived way to route IPv6 over UDP. And, the private networks are ones used locally
and not intended to be routed over the Internet.
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IPv6 Length Field in Header

o No more IP header length field as in IPv4

e IPv4 packet length field found in IPv4 header
represented the length of the entire packet

- Included header and payload
 IPv6 length is payload length only
— Doesn'’t include the static 40 byte IPv6 header length

e IPv4 packet length field and IPv6 payload length field
are both 2 bytes with @ maximum value of 65535
— IPv4: 65535 represents IP header and payload

— IPv6: 65535 represent payload only
e 65535 + 40 = 65575 maximum

Used to accommodate presence of variable length IPv4 options.
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The IPv6 header has a single length field representing the size of the payload following the IPv6 header. There
is no need for a field with the IPv6 header size since it is static and always 40 bytes. If you recall, it was
necessary to have two length fields in IPv4 — one for the IPv4 header length and another for the total IPv4
packet length that included the IPv4 header and payload bytes. This was necessary because of the possibility
of IP options that caused the IPv4 header length to be greater than the standard 20 bytes. IPv6 IP options are

IP Length Fields in Header

&

* IPv4 had two length fields:
— IPv4 header length

— Entire packet length (header + payload)
— Necessary because of IP options

e IPv6 length is payload length only
— Static size IPv6 header length of 40 bytes

IPv4 packet length field and IPv6 payload length field:
— 2 bytes with a maximum value of 65535 (2**16 - 1)
— IPv4: 65535 represents IP header and payload

- IPv6: 65535 represents payload only
* 65535 + 40 = 65575 maximum size

- IntrusionfDété‘Cﬁon vI;i—Dfepth

placed in an extension header that follows the static 40-byte IPv6 header.

Both the IPv4 total packet length and the IPv6 payload length are 2 bytes long, meaning that the maximum
value that can be placed in it is 2#*16 — 1 or 65535. And, that creates a limit in the number of bytes that can be
placed in a packet when not including jumbograms. This means that the IPv4 total packet length is 65535.
However, since the IPv6 payload length maximum is also 65535, but does not include the 40-byte IPv6 header,

the maximum IPv6 packet size is 65575.
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IPv6 Checksums

¢ No IP checksum in IPv6 header
— Smaller IPv6 header
- More efficient for routers

~ Encapsulated protocols responsible for validation

e Embedded protocol pseudo-header computation responsible
for vital IP header fields

There is no longer an IP checksum associated with IPv6 traffic. This eliminates a field in the IPv6 header
making it more compact. Also, there are big efficiency gains in terms of routing. If you recall, each router
after decrementing the TTL had to recompute the IPv4 header checksum since a field in the IP header had
changed. Routers that support IPv6 traffic no longer have to do this.

What happens if there is corruption in a field in the IPv6 header? If the receiving protocol wants to ensure that
the IP header has not been altered in transit, it must support some kind of checksum computation. We have
not discussed pseudo-header checksums yet because the they apply to embedded protocols following the [P
header that we will discuss later in the course. However, the concept is that these protocols include some vital
fields from the IP header (IP addresses, protocol/next header) in their checksum computations. While the IPv4
header checksum included all the fields in the IP header, those computed by the IPv6 pseudo-header checksum
are the ones that are most vital for getting the traffic from source to destination uncorrupted. Essentially, the
function of validation of the vital IPv6 header values has shifted from the IP layer to the transport layer.
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IPv6 and Common Protocols (1)

» No substantial changes to TCP and UDP

~ Same next header (NH) value (equivalent of IP header protocol value)
as IPv4

e NHof 6 = TCP
« NHof 17 = UDP

— Retrofits to accommodate jumbograms
¢ TCP Maximum Segment Size of 65535

+ UDP header length of 0

TCP and UDP remain mostly the same in IPv6 as in IPv4. In IPv6 there is a concept of the next header or NH
to identify the protocol that follows the current header. 1Pv4 had a similar concept known as the protocol field
in the IPv4 header that held the value of the header type that followed the IPv4 header. The common protocol
values in IPv4 for 1 for ICMP, 6 for TCP, and 17 for UDP. The TCP and UDP values have not changed. The
protocol/next header value for ICMPv6 is 58.

There have been some accommodations for the. IPv6 jumbogram — a packet that is larger than 65535 bytes.
There are retrofits to the established protocols to designate the presence of a jumbogram. IPv6 TCP indicates
that a jumbogram follows with a TCP option Maximum Segment Size (MSS) value of 65535. Jumbograms
should be used only when the link MTU is able to support them.

UDP makes use of the length value in the UDP header to signal that the packet is a jumbogram. The UDP
header length reflects the size of the UDP header (standard 8 bytes) plus the size UDP payload follows. The
minimum value is 8 since a UDP header is required. A value of 0 in the UDP length field means that the
packet is a jumbogram.
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IPv6 and Common Protocols (2)

i

e Substantial ICMPv6 changes:
-~ New NH value = 58, IPv4 protocol value = 1
-~ ICMPv6 types changed:

» Unreachable = type 1 (IPv4 = 3)

(R Lk

* Echo request = type 128 (IPv4 = 8)
* Echo reply = type 129 (IPv4 = 0)

» Neighbor Solicitation = type 135: request link layer address (like ARP
request)

e Neighbor Advertisement = type 136: response (like ARP reply)

- Jatrusion Detection In-Depth

IPv6 significantly extends the use of ICMP, also known as ICMPv6. ICMPV6 is identified in the NH field in
the IPv6 header with a value of 58. Remember, IPv4 identified ICMP with a protocol field in the IP header
with a value of 1.

All functions available in ICMP version 4 are still available in ICMPv6, but new "types" have been added in
the reserved range of values from 42-255 to facilitate the new functions of IPv6:

128: Echo Request

129: Echo Reply

133: Router Solicitation (for auto configuration)

134: Router Advertisement (for auto configuration)

135: Neighbor Solicitation (used to be done via ARP)
136: Neighbor Advertisement (used to be done via ARP)

Types 1-127 represent ICMPV6 error messages and should not be blocked. Types 128-255 are informational
messages and may be considered for blocking.
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ICMPv6Neighbor Discovery Protocol
(NDP) (1)

¢ Host-to-host

Address resolution

Next-hop discovery

Neighbor Unreachability Detection (NUD)

i

Duplicate Address Detection (DAD)

IPv6 uses ICMPv6 Neighbor Discovery Protocol (NDP) to perform many of the same functions done in IPv4
using Address Resolution Protocol (ARP) and ICMP router discovery and redirect. However NDP treats these
functions, as well as others, as an integral part of discovery and not as an afterthought like IPv4. NDP is not
really a protocol, per se, but is a set of functions to perform some routine network tasks.

Address resolution to associate an IP and its related MAC address in IPv6 involves two different ICMPv6
exchanges — a Neighbor Solicitation - NS - (ICMPv6 type 135) sent to all hosts multicast address and a
Neighbor Advertisement - NA - (type 136) from the target host to return its link layer address. This is very
similar in concept to ARP, but is performed using ICMPv6.

Next Hop determination is performed by comparing the prefix information received from the local router with
the destination address. If they differ, the next hop is selected from a manually configured list of local routers
or via the host-router Neighbor Discovery. If they do not differ, the destination host resides on the same local
network. The gathered next hop data is cached for efficiency.

Neighbor Unreachability Detection provides the capability of determining if a neighbor is no longer reachable.
When possible this is done using upper layer protocol confirmation to a host(s) — such as a TCP
acknowledgement by the host. If this is not available, a unicast neighbor solicitation is sent to neighbors to
check its neighbor cache for a recent entry reflecting communication with the target host.

Duplication Address Detection (DAD) assures that two devices do not assign the same IP address. This is
performed when a new host joins the network and sends a neighbor solicitation for its IP address. If it receives
a Neighbor Advertisement from another host, it knows that the IP address is already in use.

If you'd like more details on NDP, look at RFC 2461 "Neighbor Discovery".
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Neighbor Discovery Protocol (2)

e b R N BB 7 STh T T v

e Host-to-router

— Router discovery

Prefix discovery

Parameter discovery

Address autoconfiguration

Redirect

Intrusion Detection In-Depth

IPv4 relies on manual configuration or DHCP to find the address of the default gateway. IPv6 uses a Router
Solicitation - RS - (type 133) and Router Advertisement - RA - (type 134) much like the Neighbor
Solicitation/Advertisement NDP protocol. When a host first becomes part of a link, a multicast Router
Solicitation is sent to the routers. Any listening router replies with a Router Advertisement sent to all hosts.
This message contains the MAC address of the router, and one or more prefixes/subnets that represent the local
network that do not need to be routed (Prefix Discovery), and the MTU of the link to the router along with an
initial hop count value (same as IPv4 TTL) for the host to use (Parameter Discovery).

Address Autoconfiguration provides something known as "stateless" address configuration. It is called
stateless because it requires no other information or interaction with any other node on the network. This may
be a temporary address assigned if "stateful" configuration is later assigned by a DHCPv6 request. In between
the stateless and stateful assignments, the host will use DAD to make sure there are no duplicates in the
network, and make a Router Solicitation to elicit information about its network.

Address Autoconfiguration generates a link-local address. The first 10 bits of the address are "1111 1110 10",
followed by 54 zeros and the lower 64 bits derived from the MAC address using EUI-64 formatting.

The NDP Redirect function is similar to the IPv4 redirect where a router informs a host of a better route. We'll
discuss the concept of router redirect when we cover ICMP.
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Neighbor Solicitation

Prqtocol "Source port : Destination port _ Info

b Frame 1 (86 bytes on wire, 86 bytes captured)
b Ethernet T1, Src: DigitalE 60:0a:04 (a3:00:04:00:02:04), Dst: IPvémcast ffia7:9a:d5 (33:33:ff:a7:92:d5)
b Internet Protocol Version 6 i

L 1 v6

Code: ¢
Checksum: 615689 [correct]
Target: fe80::784b:4d2c:14a7:9ad5 (fe80::784b:4d2c:14a7:9ad)
< TCMPy6 Option {Source link-layer address)
Type: Seurce ink-tayer address (11
{ength: 8
Lmk tayer address: aa:00:04:00:02:04

g
_.snlandadv pcap

Suppose IPv6 host fe80::224:8cff:fe2b:d 64e needs to ping fe80::784b:4d2c:14a7: 9ad5 (note: the IP addresses
that appear on the packet list pane are truncated by Wireshark) and has no entry in its neighbor cache where it
stores IPv6 address and link address pairings. It must send a Neighbor Solicitation (NS) using an ICMPv6
message with type 135 to discover the destination host's MAC address. The destination address, in this
particular case, is ff02::1:ffa7:9ad5. This requires a bit of explaining.

If you recall, the "ff02::1" address represents the multicast address to all hosts. A multicast address of
"£702::1:£f" is the solicited-node multicast address. It is used specifically for NDP. This prefix consumes the
first 104 bits of the IPv6 address. The final 24 bits reflect the last 24 bits of the target host — in this case
"ff37:9ad5". This scheme ensures that the NS is sent to all hosts on the local network.

The source of the NS contains its MAC address as you see in the ICMPv6 source link layer option. There are
many ICMPv6 options that can be associated with NDP. We'll see some additional ones in the router
advertisement ICMPv6 message.

To view the output, enter at the command line:

wireshark ip6-neighbor-solandadv.pcap
This is the first record.
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Neighbor Advertisement

: Source Destination Protocol  Source port - Destimationpot  Info |
fe80::224:8cff: fe2b:d 1162::1:Ffa7:9ad5  ICHPvE e . Meighbor solicitatia

Echo_request
i EENO TEPLY

4d2c;14a7: TCHPVG

16801122 e2b: : :
4:8cTf: fezb:d 1CHPYVG

; i8ctf: €80+ : 784
..e8a: :784b:4d2c 1 14a7: fesa::.

b Frame 2 (86 bytes on wire, 86 bytes captured)
b Ethernet II, Src: IntelCor 43:9f:3e (689:21:6b:43:9f:3e), Dst: DigitalE 00:6a:04 (aa:00:04:60:02:04)
b Internet Protocol Version 6

v 1

it

]

Checksum: 8xc1f6 [correct]
b Flags: 6x60008000

Target: feB0::784b:4d2¢:14a7:9ad5 (feg::784b:4d2¢:14a7:9ads)
v ICHRvG Option {Target Uink-layer address)
Type: Target link-layer address (2)
Length: 8
Link-laver address: 06:21:6b:43:9f:3¢

+ . Intusion Detection In-Depth ;';?;:Zf;'\f;;p

If the target host is listening, it returns a Neighbor Advertisement message using ICMPv6 type 136. Also,
for some added efficiency, all neighbors that see the NS message cache the source IP and MAC address
pairing for the sender of the advertisement and maintain it in their neighbor cache for a limited time. The
MAC address is returned in another ICMPv6 option — the target link layer address.

The two hosts can now communicate; in this case with an ICMPv6 echo request and reply.
+ To view the output, enter at the command line:

wireshark ip6-neighbor-solandadv.pcap

This is the second record.

178 © 2015 Judy Novak



Router Solicitation

No.. Time Source Destination

b Frame 1 (70 bytes on wire, 70 bytes captured)

b Ethernet II, Src: AppleCom 94:bl:6e (80:10:63:94:b1:6e), Dst: IPvémcast 98:60:80:62 (33:33:00:00:00:02)
b Internet Protocol Version 6

< Internet Control Message Protoco

Checksum: 6x51b2 [correct)

v ICHPv6 Option {Source link-layer address)
Type: Source link-layer address (1)
Length: 8
Link-layer address: 08:1b:63:94:b1:8¢

Let's examine another exchange when a host joins a network. When host fe80::21b:631f:fe94:b10e is first
connected to the network or newly rebooted, it must know its first hop router(s). It finds them by issuing a
Router Solicitation message, ICMPv6 type 133, to the multicast address of ff02::2 that represents the "all
routers" address. Once again you see the ICMPv6 option source link layer address with the sender's MAC
address.

To view the output, enter at the command line:

wireshark ip6-router-solandadv.pcap
This is the first record.
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Router Advertisement

= = T e g 5 z ' 5 @ 3 iR 5 TR

Time Source .. . . Destination Protacol Sourceport Destport iofo
6.08000 e8I 21b:63FF: ¥162::2° T Raeve T i Router Salicitation from 60:1b:63:94:b1:6e
6.081476 fe80::21b:90ff:i ffo2::1 S (0, LTI i ‘Router Advertisement from 00:1b:98:2d:Be:43

¥ Erane 3; 118 bytes on wire (944 bits), 118 bytes captured (944 bits)
> Ethernet II, Src: Cisco 2d:0e:43 (86:1h:96:2d:@e:43), Dst: IPvGmcast 0A:00:86:01 (33:33:00:60:08:01)
» Internet Protocol Version 6, Src: fe88::21b:90ff:Te2d:ed3 (Te8o::21b:98ff 1 fedd:edd), Ost: 162::1 (ffO2::1)

Checksum; 0x1b13 [correct]
Cur hop limit: 64
¥ Flags: 0x00
Router lifetime (s): 18508
Reachable time (ms): @
Retrans timer {ms); @
> ICHPYE Option (Source link-layer address : 60:1b:90:2d:0e:43)
* ICHMPY6 Option (MTU : 1508}
¥ ICHPY6 Option (Prefix information : 3ffe:BGce:22¢:190:;/64)
Type: Prefix information (3}
Length: 4 (32 bytes)
Prefix Length: 64
* Flag: exce
Valid Lifetime: 2592000
Preferred Lifetime: 604880

Reserved
Prefix: 3ffe:86¢0:22¢:196:: (3ffe:80¢0:22¢:1962:)
. : e — — 7 mrmrrEn blx'ipﬁ-router~
<<>> . Intrusion Detection In-Depth solandadv.pap

The router with IP address of fe80::21b:90ff:fe2d:e43 responds with a Router Advertisement, ICMPV6 type
134, to destination address of ff02::1, the multicast address of all hosts. This is sent as a multicast, not unicast
message so that any listening hosts may learn this same information if they do not already know it.

The router responds with some information in addition to its address. The "Cur hop limit" of 64 informs hosts
that that is the hop limit value to place in the IPv6 header. If you recall, this is equivalent to the IPv4 Time to
Live value that is used to designate the maximum hops/routers that a packet can traverse before being expired.

The router lifetime is the number of seconds that the information in this advertisement should be kept. This
particular router information is active for 1800 seconds, after which the host(s) must make another Router
Solicitation. The time information that follows informs the receiving hosts how long to consider a neighbor
reachable and the time, in milliseconds, that a host needs to wait before attempting to retransmit NS messages.

There are two other ICMPv6 NDP options, the MTU and Prefix options. The MTU specifies the maximum
size a packet on the network must be to avoid fragmentation. The prefix option designates the prefix to be
used in the IPv6 global/routable address when stateless address autoconfiguration is used. If you recall there
are several different IPv6 type addresses for a given interface. The link-local ones begin with fe80:: and are
used for local/mon-routable traffic. The prefix is applied to the global/routable IPv6 address for the interface.
In this case the prefix is the 64 high-order bits of 3ffe:80c0.22¢:190::/64.

+ To view the output, enter at the command line:

wireshark ip6-router-solandadv.pcap

This is the second record.
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Neighbor Discovery Attacks

« Neighbor Solicitation: Spoof NA with wrong link address
e D0S: Respond to NS with non-existent link address

« Neighbor Unreachable Detection: Spoof response to NS with
address not reachable

« Duplicate Address Detection: Spoof NS response with
address already taken

 Router Solicitation: Spoof router advertisement to indicate

attacker's IP address is the next hop router

Much like the issues with IPv4 ARP, and ICMPv4 router messages, the presence of an attacker on an IPv6
network can disrupt and redirect legitimate traffic. This is easily done using NDP messages since there isno
inherent security assuring that the message is not spoofed by a malicious node.

An incorrect TPv6 host address/link layer pairing can be performed in one of two ways. The first and more
obvious way is for the malicious host to respond to a Neighbor Solicitation (NS) request, spoofing a bogus
address in the returned Neighbor Advertisement (NA). This was known as ARP poisoning in IPv4. A second
way is to send an incorrect [Pv6 host address/link layer pairing in the NS request itself since neighbors seeing
this will place the pairing in their neighbor cache. This is similar to the use of a spoofed gratuitous ARP in
IPv4. Another attack, a DoS, can be performed when the NS request receives a spoofed NA response
indicating that the target host is at a non-existent link address, denying communication with the target host.

An analogous attack is the use of the Neighbor Unreachable Detection to return a spoofed NA response that
the target host is unreachable. If you recall, a new node joining a network sends a NS message to determine if
other hosts have a duplicate address. A DoS can be attempted if the malicious host can spoof a response
indicating that the address is already in use via the Duplicate Address Detection. If the originating host
attempted to generate one or more new addresses, the malicious host could respond again with DAD,
effectively denying the host an address and the ability to communicate on the network.

Finally, when a host joining a network makes a Router Solicitation to discover its router(s), a spoofed Router
Advertisement could indicate that the attacker's host is the router, thereby routing all traffic through it, creating
a man-in-the-middle attack.

These are just a few of the many NDP attacks that can be performed. If you are interested in reading about
others and proposed fixes, see RFC3756 "IPv6 NDP Trust Models and Threats".
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Secure Neighbor Discovery (SEND)

[ e s TR P N TGN g RS S T S A

NDP not secure

Optional feature - SEND= NDP + crypto using:

Cryptographically Generated Addresses (CGA)

!

RSA signature option

— Timestamp and nonce options to prevent replay

Certification paths and trust anchors for routers

[Intrusion Detection In-Depth

As you have just learned, NDP is not secure from attackers inside a network. In order to secure NDP
messages, the source of the message must be associated with the actual sender — not spoofed. This can be done
using an optional feature known as SEcure Neighbor Discovery (SEND). SEND assures the integrity of the
message to prevent against manipulation. SEND employs a timestamp to preclude replay attacks and a nonce
to match an advertisement with a solicitation. The NDP message has different options fields that follow the
NDP data to carry all optional data associated with SEND options.

The first step in the process of securing NDP is for each node to have a Cryptographically Generated
Addresses (CGA) public-private key pair before claiming an address. The CGA validates the sender is
authentic. The public key and associated data are placed in the CGA option of the NDP message.

Optionally, messages can be signed with the public key using a hash of the IPv6 and ICMPv6 headers, and the
NDP message, and all NDP options that precede the signature option. A signed message protects against
manipulation in transit. This information is placed in the RSA option.

The timestamp option places a timestamp value in an advertisement to make sure it is not replayed later. A
nonce is a one-time randomly generated value by the sender and placed in the nonce option of a solicitation
message. A valid associated advertisement will have the same nonce.

There are additional optional protections to ensure that routers are trusted. Each node is configured with one
or more trust anchors that are used to authorize routers. Trust anchors can be defined locally or globally and
are akin to certificate authorities. When a given node receives a message from a router, it has to establish what
is known as a "certification path" to the trust anchor for the router. The trust anchor authorizes the router.

More information on SEND can be found in RFC 3971 "SEcure Neighbor Discovery".
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SEND Issues

 Generation, storing private/public key pairs on all CGA

devices
e All OS's do not support (MS, Apple)
e Burden on end nodes to provision

 Support required for entire local domain

e Transition is difficult

There are many issues that may keep SEND from being a viable implemented protection mechanism. Any
node has to be able to generate and permanently store its own private and public key. How this is done and
secured is different from device to device — routers, and different operating systems. Further, SEND requires
support for these new NDP options from all nodes on a network to make it secure. This means routers as well
as host operating systems. Currently, neither Microsoft nor Apple provides SEND functionality.

All end hosts and routers have computational burdens of verifying the sender's address and possibly the entire
NDP message if the RSA signature option is used. The use of timestamps means that hosts have to be
provisioned with synchronized times, most likely using Network Time Protocol (NTP). SEND requires
support from the entire local domain to completely assure that NDP messages are valid. As is apparent, the
transition to SEND may be painful or non-existent due to all the work required and breadth of functionality
that needs to be supported.
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As you have just learned, the first way to assign an address is via Stateless Address Autoconfiguration to
generate a link-local address. The first 10 bits of the address are "1111 1110 10", followed by 54 zeros and the

What About DHCPv6?

o

e IPv6 link-local addresses can be assigned by:
— Stateless autoconfiguration
» Computation involving static part + EUI-64
— Stateful autoconfiguration
¢ Using DHCPv6
e Method determined by RA prefix information
- Managed address configuration bit set ~ use DHCPv6

— Otherwise use stateless autoconfiguration

lower 64-bits derived from the MAC address using EUI-64 formatting.

Another option, in addition to or in lieu of Stateless Address Autoconfiguration, is Stateful Address
Autoconfiguration using DHCPv6. How does a given node know whether to use DHCPv6 or not? If you
remember, when a node joins a local network, it issues a Router Solicitation. The Router Advertisement
returns information about the local router(s) and contains a bit known as the managed address configuration
bit. DHCPvV6 is used if this bit is set. Obviously, the router must be configured so that this bit is properly set

in the Router Advertisement message.

184
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Dissecting an IPv6 Packet: ICMPv6

R s s

No..: Time Source Destination Protocol Source port  Destination port

i Info

b Frame 3 (118 bytes on wire, 118 bytes captur
b Ethernet II, Src
R

80008 ... ... ool ovel waeo = Traffic class: 0x00000600
. 008D GOOC BOGD 6000 GO0 = Flowlabel: OxDOGROGOD

Hewt beader: ICHPYD {Dx3a)

Hop limit: 64

source: feB2::234:8cff:ferbidbae {fe80::224:8cff fe2b:dide}

bestination: feBa::784b:4d2¢:14a7:92d5 (fed0::783b:4d2¢:1457:9ad5}
v Internet Cantrol Message Protocol vb

Type: 128 lEcho request)

t @x10a7 [eorrect]

Sequence; Oxoenl
= Data {56 hytes)
Data: 13F32C50DEE251@0UB030A0BOCODCEDF1611121314151617. ,,
[tength: 56]

OigitalE 60:65:64 (a3:60:64:06:0a:04), Dst: IntelCor 43:9f:3e (B8:21:6b:43:9f:3e)

) 21 Gb 43 9f 3¢ 52 00 04 00 08 04 86 dd

18 a7 94 1f 66 61

B 13 £3
03 89 03 Ob Br Gd @e OF 10 11

2

0040 2 e
eas0 12 13 14 15 16 17 18 39 1a 1b Ic 1d le 1f 20 2]
0060 22 23 24 25 26 27 28 25 2a 2b 2c 2d 2e 2 30 31
8070 32 33 34 35 36 37 234567 i
Teitrnsio D SR InD : h o ip6-neighbor-
e ntrusion Letecton In- €pt solandadv.pcap

Let's take a look at the format of an IPv6 packet. ICMPV6 is a good protocol to examine since ICMP has

changed from IPv4. This is an ICMPv6 echo request to show you how IPv6 looks in hex. The IPv6

header is visible at the bottom in the bytes pane highlighted in blue. The ICMPv6 header follows with
underlined bytes. The remaining portion is data. The IPv6 header is a fixed 40 bytes. So there is no need

to give the header length as required in IPv4. Any additional IPv6 header fields/data are placed in

something known as an extension header that we'll soon discuss.

The next header field in the IPv6 header is the equivalent of the IPv4 header protocol. ICMPv6 has a new
protocol/next header value of 0x3a or 58. The ICMPv6 header has a different type for an echo request —

0x80 or 128 versus a type of 8 for IPv4.

To view the output, enter at the command line:
wireshark ip6-neighbor-solandadv.pcap

This is the third record.
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Extension Headers

¢ Permits multiple headers to follow the IP header
e Reduces some of the functionality previously placed in IPv4
header
— IP options
- Fragmentation

¢ Extension headers chained together after IP header and

before payload

While TPv4 allowed some encapsulation of protocols such as Authentication Header and Encapsulating
Security Protocol after the IP header, IPv6 has expanded on the notion of providing one or more extension
headers after the IP header. This removes some of the fields and functionality once found in the IPv4 header
and simplifies the IPv6 header. Theoretically, the use and size of IPv6 extension headers is limited only by the
maximum size of the IP datagram.

The chaining of IPv6 extension headers is accomplished by using a field called the “next header” that contains
the value of the protocol that follows the current one. This is analogous to the [Pv4 protocol field that
contained the value of the protocol following the header.

Perhaps you are wondering about some kind of required order for extension headers if you are using multiple
extension headers. RFC 2460 offers guidance that there are certain extension options, such as hop-by-hop,
destination, routing and fragment headers that should be in a specified order and before any of the other
extension headers. Take a look at the RFC if you are interested in the details.
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Chained Extension Headers

NH=0x2c NH=0x3a

Fragment  1CMPv6 Payload
IPv6 Header Hesdar Header

This is a simple depiction of the use of chained extension headers. As mentioned before, the fragmentation
fields in IPv4 — fragment offset, fragment 1D, and the more fragments flag have been removed from the IP
header and placed in a fragment extension header. The IPv6 header in this slide has a next header field and it
contains the value 0x2¢ (decimal 44) indicating that the fragment header follows.

The first field in every extension header is the next header and it contains the value of the header following it.
If no extension header follows, it contains a value of 59 or “no next header.” In our example, the fragment
header next header has a value of 0x3a (decimal 58), indicating that the ICMPv6 header follows it. From here,
things look more like IPv4 where the ICMP header contains the ICMP type and code of the payload that
follows.
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IPv6 Fragmentation Theory

« When used, employs fragmentation extension header
o Overlapping fragments not permitted, must be silently
dropped

- Some extension headers are fragmentable others are not

— Unfragmentable — extension headers that must be processed by
every node

— Fragmentable — extension headers processed by receiver only

The use of fragmentation is discouraged in IPv6. However, when it is used, the fragment fields — offset,
unique identification number, and whether or not more fragments follow — are placed in something known as a
fragmentation extension header. This will be covered in more detail in the next set of slides, but it is basically
a header expressly for fragmentation that is placed somewhere after the IPv6 header and before any protocol
headers or payload.

Overlapping fragments — ones that profess to be located at overlapping offsets — are silently dropped by the
receiving or reassembling host. Overlapping fragments are most likely an evasion technique and have no
known benevolent purpose.

Fragmentation of an IPv4 packet begins after the IP header — in other words the IP header cannot be
fragmented. The notion is expanded in IPv6 to include not only the IPv6 header but any extension header,
such as hop-by-hop or routing, that must be processed by the sender, intermediate devices, and the receiver.
All extension headers that are processed by the receiving host only may be fragmented.

RFC 2460 “Internet Protocol, Version 6(IPv6) Specification”
RFC 5722 “Handling of Overlapping IPv6 Fragments”
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IPv6 Fragmentation

T

 IPv6 attempts to minimize use of fragmentation

— Minimum supported MTU 1280
e Originating host only fragments traffic

— Supported using an IPv6 fragmentation extension header
» More efficient for routers

- Don't need to fragment traffic

— Send ICMP error message with MTU too big

Path MTU discovery performed to avoid this

. Intrusion Detection In-Depth

Fragmentation introduces a lot of inefficiencies. In IPv6 this isn't as burdensome since routers no longer
fragment packets — the sending host only fragments packets. Still, it is best avoided and IPv6 attempts to
do just that.

IPv6 supports fragmentation if absolutely necessary but discourages its use in a couple of ways. The first
is that the minimum MTU of an IPv6 link is 1280 bytes, large enough for most packets. Next, there is a
the Path MTU discovery where a host attempts to send a packet. If the packet is too large for a given link,
an [CMPv6 "Packet Too Big" message is returned with the MTU size of the intermediate link. The
sending host should reduce the packet size so that it can be wholly contained in the returned MTU size.
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Fragment Extension Header Example

£e80::212:3F¢F1fe38:adc8 > £eB0r:20c:29ff:fe72:25b8: frag (0]16)
ICMP6, echo request, seqg 0, length 16 :
‘ e ‘/’i\) : . ' : : . Next Header = 0x2¢c

OxOOOO:\Z/GOOO 0000 0018 2c03 ~ £e80 0000 0000 (44) = IPV6 Fragment

0%0010: 0212 3fff fe38 adc8 feBD 0000 0000 00QD
i : ; - : : - Next Header = 0x3a
+0x0020: 020c 20ff fe72 25b8>"<3a00 0001 0000 00 (58)=ICMPv6
0x0030: <8000 0218 0000  0000> 4142 4344 4546 4748

(') <1pv6 header (40 bytes)>
@ <Fragment Extension header(8 bytes)>
(3 <ICMPv6 Echo Request header (8 bytes)>

Let’s look at a 0-offset fragment in hexadecimal. Each different header in the dump has been delimited with
the less than “<* and greater than “>” symbols. The first header is the IPv6 header containing a next header of
0x2c. This means that a fragment extension header follows it.

The fragment extension header is 8 bytes long. If we examine the fragment extension header in more detail,
we see that the first byte contains the next header value of 0x3a (ICMPv6 follows). The second byte (0x00) is
areserved field. The next 13 bits are for the fragment offset value, followed by 2 reserved bits, followed by
one bit for the more fragment flag (0x1) and the last 4 bytes are the fragment id (0x0000 00ff). Thisisn’t
much different from the fields used IPv4 fragment handling. The only difference is that the fragment ID is
now 4 bytes where it used to be the 2-byte IP identification field.

The final header is the ICMPv6 header. It has a type of 0x80 that says that it is an ICMPv6 echo request. The
last part of the packet is the ICMPv6 echo request payload.
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Fragment Extension Header Format

3a00 0001 0000 OOff

3a 00 00 01
B e R e it e e S e e et e N Ets Mot S A R e S
] Next Header | Reserved | Fragment Offset |Res M|

e e e et S e (o KT B W S R
| Identification |
e e e e e S e T KT Rt IS Y N et

00 00 00 ff

- Intrusion Detection In-Depth

Asnoted, in the previous slide, the IPv6 extension header is not much different than the fields associated with
fragmentation in the IPv4 header. There is a “next header” field in the fragmentation extension header that
indicates what type of header or protocol follows. And, the fragmentation identification that used to be a 16-
bit IP identification is a 32-bit value.

The way fragments are reassembled does not change. All fragments with similar source and destination IP
addresses, the same protocol, and fragment identification numbers are considered part of the same fragment
train. The offset and whether or not the more fragments flag is set provide the fragment’s position in the
fragment train and indicate whether or not more fragments follow.

You can read more about the fragmentation extension header and other extension headers in RFC 2460.
RFC 2460 “Internet Protocol, Version 6(IPv6) Specification.”
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thdump Output of
IPv6 Fragmentation

~IP6 (next—header Fragment (44) payload length 1448)
fe80::250:56ff:fec0:8 > feBO0::5: frag (Ox963e9d00 0;1440)
ICMPG,kecho request, length 1440, seq 0

;IPG (next%header Fragment (44) payload length‘ 1448) :
£e80::250:56ff:fec0:8 > feB0::5: frag(0x963e9d00 1440(1440)

FragmentID] [Offset ]

What's
missing?

The tcpdump capture of a fragmented ICMPv6 echo request is shown above. There are two related IPv6
fragments.

Let's examine tepdump's translation of the first one. Verbose mode causes tcpdump to indicate that there is an
extension header — namely a fragment extension header with a next header value of 44. This value is placed in
the next header of the IPv6 header. The fragment ID is a 32-bit value of 0x963e9d00. We see that this is the
first fragment since the offset is 0 and the payload length is 1440. The value of the MF flag is missing from
the tepdump output, preventing us from knowing whether or not there is a last fragment. We'll examine the
fragment extension header in Wireshark in the next slide where we'll see that there is still the MF flag.

The second fragment differs only in that the offset is 1440. As noted, tcpdump does not give us an indication
of whether or not the MF flag is set.

To view the output, enter in the command line:

tcpdump -r fragments-ipv6.pcap -nvt
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Wireshark Output"of
_IPv6 Fragmentation

Destination ~ protocol Sourceport  Destinationpot info

AR

No.. Time

m

b Frame 1 (1562 bytes on wire, 1562 bytes captured)
b Ethernet II, Src: Vmware c0:00:08 (68:50:56:c0:00:08), Dst: Broadcast (Ff:ff:ff:ff:ff:ff)
b 8110 .... = Version: 6
. 0088 0008 ..., hs Lad veed e = Traffic class: ©x00000080
............ 6080 0000 0060 Q008 0060 = Flowlabel: 0x08000000
Payload lenath: 1448
| text header: IPvi fragment ( 44 }

ok

Hop Limit: 64 Chained
Source: feBB::250:5671: fech:8 ({eBO::256:56 header:
—— Lestinarion; fepd:i5 (feoris) . . 1eaders

I < Fragmentation Header
Nest header: ICMPVE ( 58 )

I I 5eL: (OXQQ()J)
] ............... 1 = Hore Fragment; Yds -— MF

Identification: 0x963e9doe |
Data (144 hytes) -

<<>> ~ Intrusion Detection In-Depth - e

This is the first fragment in Wireshark. It presents a more comprehensive and coherent view of the format of
the fragment. The IPv6 next header is the fragment header. The fragment header has a next header of
ICMPv6. Let's look at the fragment header. It retains the 13-bit field format for the offset. The MF flag still
exists regardless of tcpdump's failure to place it in the output. And the fragment ID has gone from 2 bytes in

IPv4 to 4 bytes in IPv6.

+ To view the output, enter in the command line:

wireshark fragments-ipv6.pcap
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‘Ch‘a‘i'ned Extension Headers
Fragment 1

2, 15682 bytes captured)

£:08:08 (00:50:56:¢6:009:08
s i i 5 z

= Traffic class: OX0066Q66C
feve caee aewas @e00 LOGO O6AD 6000 GOCO = Flowlabel: ©X60000600
Payload length: 1448
Next header: IPv6 hop-by-hop optien (0x00)
Hop limit: 64
Source: TeBO::250:561f:Fecd:8 (fe80::250:561f:fec0:8)
Destination: feBB::5 {fe88::5)
<{ Hop-by-Hop Optiocn |

Next heager: i1Pvo fragment ( 44

Length: © (8 bytes)

Padi: 6 bytes

- [Fragmentation Headeﬂ

Next header: IPvG d .
©0GE 0060 ©60 ©. .. IDv6 -2 Unfragmentable
............... 1} _Hop-by-Hop ->

Fragmentation -> (1% of 2 fragments)
Destination Option ->
ICMPv6 Header ->
ICMP Data (Echo Request + 1%t part of payload)

Identification: @x5
Re embled IBvg i
D (12113 000 Pva
tength: €@ (8 bytes}
Padi: & bytes
b Data {1424 bytes)

~

‘extheaders.pcap

Let's examine the notion of the unfragmentable versus fragmentable extension headers using Wireshark to
convey the pertinent concepts of IPv6 and extension headers.

The first extension header in use here is the hop-by-hop option that must be processed by all nodes including
the sender, receiver, and all those in between. One of the goals of IPv6 is to improve the efficiency of routing
packets. If an extension header such as the hop-by-hop option needs to be examined by all routing devices, it
stands to reason that it should be unfragmented since reassembly of fragments is time-consuming and
inefficient.

Other options that need to be processed by the destination node only can be fragmented. In this example, as
the name suggests, the destination option extension header is used by the receiver only. Since the receiver
must reassemble the fragments anyway, this extension header can be fragmented.

The Wireshark output display shows the first of three fragments that comprise an ICMPv6 echo request. The
first layer is the IPv6 header that, like the IPv4 header is unfragmentable; it has a next header value for the
hop-by-hop extension header — again not fragmentable — and necessarily must precede the fragment extension
header. It has a next header value of the fragment extension header. The fragment extension header follows
and has a next header value of the destination option extension header. The first fragment itself contains the
destination option extension header, the ICMPv6 echo request header and the first part of the ICMPv6 payload.

To see the output, enter in the command line:
wireshark chained-extheaders.pcap

This is the first record.
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Chaihed Extension Headers
Fragment 2

ime Source Destination o Protocol * Source part  Destination g

AtE

i

b Frame 2 (1582 bytes on wire, 1562 bytes captured)
b Ethernet II, Src: Vmware cB:00:88 (08:50:56:c0:60:08), Dst: Broadcast [SRERARRARRARAAERRY)

HGTET

<o = Version: 6

R T T = Traffic class: 0x00000006
............ B0 0000 BOOO @000 6006 = Flowlabel: Ox00800006
Paylnad length: 1448

Next header: IPv6 hop-by-hop option {0x60}

Hop limit: 64

Source: fe80::250:567F:fec0:8 (fe80::250:561F: fece:8)

Dgstination: fes@::5 (fe80::5)

op-Dy-Hop Option
—itve fragment

AN R IPv6 ->
Length: © (2 bytes) —
Padl: 6 bytes Hop-by-Hop ->
t Fragmentation Header | . Fragmentation_-> (2nd of 3 fragments)
ext heager: iPvG gestinat ICMPv6 Data (Echo Request + 21 part of payload)

0000 £161 1001 1.., = Offs

i Intrasion Detection In-Depth Sl

Let's look at the second of three fragments. As expected, it contains an identical IPv6 header. Also, it must
contain the same hop-by-hop extension header, since it is unfragmentable and must be duplicated in every
fragment. The IPv6 header has a next header value for this hop-by-hop extension header.

The hop-by-hop extension header contains a next header option for the fragment extension header. ICMPv6
payload follows. If you recall from our study of [Pv4 fragmentation, only the offset 0 fragment has all
protocol headers that follow. All remaining fragments contain an IP header — IPv4 or IPv6 and more payload
data. The destination option is no longer found in this fragment. Since it is fragmentable, it was associated
with the first fragment only as part of the extension header.

Neither the destination option nor the ICMPv6 echo request header is found in the second fragment since they
were wholly contained in the first fragment. Therefore, only payload follows the headers.

<¢> To see the output, enter in the command line:

wireshark chained-extheaders.pcap

This is the second record.
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Fragmentation Exploit: OpenBSD“IPVG
mbufs Kernel Buffer Overflow

« Memory corruption vulnerability in handling of IPv6
packets

What problems can you find with fragments created by this exploit?

. IP6 fe80: 250 56ff:fec0:8 > fe80 15 HBH frag (0]150) ICMP6:
~unknown icmp6 type (48), length 150 3 :

. IP6 feB0::250:56fF:fec0:8 > fe80::5: frag (0|1240) ICMP6
echo request, seq O, length 1240 :

openbsd-
- Ibuff.pcap

An exploit involving overlapping IPv6 fragments that targeted unpatched versions of OpenBSD 4.1 and prior
would cause the OS to crash or allow a compromise via a buffer overflow upon receiving such packets. There
are several issues with these two packets captured from this exploit. Apparently, error handling for this
particular combination of malformed packets was faulty, permitting the denial of service or worse yet, later on,
a buffer overflow.

What issues can you find simply by looking at the tcpdump output?

To see the output, enter in the command line:

wireshark openbsd-ibuff.pcap

Y ou may find that the tcpdump output presents a more succinct view of the packets, permitting you to see the
issues more easily than using Wireshark. For all of Wireshark's merits — brevity is not one.
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Answer

I’

What are problems can you find with fragments created by
this exploit?

IP6 feB80::250:56ff:fec0:8 > feB80::5: HBH frag (0]150) ICMPG,
unknown icmp6 type (48), length 150

IP6 feB0::250:56ff:fec0:8 > fe80::5: frag (0]1240) ICMP6, echo
request, seq 0, length 1240

<<>> ~ Intrusion Detection In-Depth o

There are many "non-standard features" of the packets shown in tepdump. The two hosts involved are source IPv6
address e80::250:56ff:fec0:8 and the destination of fe80::5. The first packet is a fragment. The hop-by-hop
header is the first extension followed by a fragment extension. Recall that the hop-by-hop is an unfragmentable
extension header that should be found in every fragment. So far, all is okay. Next we find that the fragment has
an offset of 0 and a length of 150. And, as we learned earlier, tcpdump does not give any indication whether or not
the MF flag is set, though it is.

Do you see anything wrong with the length of the first fragment? Remember that the length of the fragment
payload (whether data alone or the protocol header in the first fragment and data) should be a multiple of 82 150
is not evenly divisible by 8. This necessarily means that the fragment that follows will either overlap or have a
gap at its starting offset. Another problem is that ICMPv6 follows the fragment header, however there is an
invalid ICMPvV6 type in the ICMPv6 header.

Moving on to the second fragment, we find more issues. The hop-by-hop extension header should follow the IPv6
header on the second fragment since as we learned, it is not fragmentable. However it is not present. The second
fragment has an offset of 0 that overlaps the first fragment. We knew that either an overlap or gap would be
present because the first fragment payload length is not evenly divisible by 8. And, as you learned, according to
guidance, overlapping fragments should be discarded. An ICMPv6 echo request is associated with the second
fragment, however only the first fragment should carry the embedded protocol header. The first had no valid
ICMPv6 message type, yet the second does so they appear to have each other's ICMPv6 header/payload.

There is plenty wrong with these IPv6 packets and unless there is error code to properly handle all of these non-
standard conditions, opportunities for denial of service and exploits present themselves. The pcap available for

you to view for this output does not contain the shell code exploit. This payload caused a denial of service only.

+ To see the output, enter in the command line:
wireshark openbsd-ibuff.pcap
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The IP Layer — IPv6 in Transition
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IPv6 Over IPv4 Tunnels

e 6to4 / IPv6 over IPv4

— Tunnels between IPv6 sites across IPv4 networks

e Teredo

— Tunnels between IPv6 hosts using UDP packets

Intrusion Detection Tn-Depth

IPv6 will have to cooperate with IPv4 for the foreseeable future. As individual networks implement IPv6, they
will have to communicate via tunnels that cross the legacy IPv4 networks. Different technologies have
emerged for this purpose.

6to4, or IPv6 over IPv4, uses a specific IPv4 protocol to tunnel IPv6. A simple IPv4 header is added or
removed by respective gateways. This protocol requires both the sending and receiving networks to implement
such a gateway.

Teredo is a protocol introduced by Microsoft. It allows IPv6-capable hosts to discover IPv6 hosts and to
communicate with them via IPv4 Peer-to-Peer connections. As a UDP protocol, it relies on the encapsulated
protocol for reliability.
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6to4

e Connects IPv6 sites via IPv4 tunnels

e« Uses public IPv4 addresses to construct IPv6 address for
automatic address assignment
e 2002+ IPv4 Address + Site/Interface Address
¢ Example:
10.10.10.10 — 2002:0a0a:0ala: :

o IPv4 Protocol type: 41

Intrusion Detection In-Depth

6to4 can be used to link various IPv6 networks across IPv4 links. In order to route the packets across an IPv4
network, the IPv4 address of a host is used to derive the IPv6 address.

For example, if a host’s IPv4 address is 10.10.10.10, then the IPv6 address of the host would use the prefix
2002:0a0a:0a0a::. A host trying to communicate with 2002:0a0a:0a0a:: will now encapsulate the IPv6 packet
in an IPv4 packet addressed to 10.10.10.10.

In order to route traffic between IPv6 networks, only one IPv4 address is required for each network. Hosts in
each network will use the same prefix (e.g. 2002:0a0a:0a0a).

Note that IP protocol 41 is used by 6to4 as well as by the 6over4 protocol. Both are very similar. However,
6overd requires IPv4 multicast to work, while IPv6 multicast traffic will be transmitted as IPv4 multicast
traffic. Multicast routing is not universally available, making 6over4 a less popular choice. For 6over4, the
address prefix is ""E80::/64" The IPv4 address is appended (e.g. FE80::0a0a:0a0a).

Check out the SANS Internet Storm Center 6/4 or 4/6 address conversion tool at:

http://isc.sans.edu/tools/ipv6.html
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GRE IPv6 Over IPv4

» Generic Route Encapsulation defines tunneling protocol

 Used for different network layering
e Can be used to tunnel IPv6 over IPv4

Intrusion Detection In-Depth

Another type of tunnel that can carry [Pv6 packets over IPv4 is called Generic Routing Encapsulation. As the
name implies, GRE tunnels can be used to transport many different protocols over IP.

The tunnel software performs the encapsulation and de-encapsulation. Once proper network routing is set up,
the IPv6 packets are routed to and from the tunnel and layered or stripped of the IPv4 header depending on the
source and destination of the traffic.
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GRE IPv6 Over IPv4 Sample

£ TR
Header length: 20 bytes
pifferentiated Services Field: 0208 (DSCP 0x06: Default; ECH: 8x08)
Total Length: 72
Ydentification: @xeeel (1)
Flags: 6xee
fragment o¥fset: ©
Time Yo live: 54
Protocol: GRE (6x2f)
Header checksum: Gxez2bd [correct])
Source: 192.168.11.49 {192.168,11.49)
Destination: 192.168.11.89 (192.168.11.80)
Generic Routing Encapsulation {IPV6)
< Internct protocol version 6
I+ 9116 .... = Version: 6
L 8888 BOBR (.. viii eiee vaer erae = Traffic class: oxeeseanes
vese eee. .... DDOD 0OBD 0ODE 0080 006 = Flowlabel: exeaaseson
payload length: &
Hest header: ICHPVE {(Gx3a)
Hop limit: 64
Seurce: Te89::5 {Tesd::5)
Destipation: fesdc:7 (fep0::7
< Internet Control Hessage Protocol v
g e

E4

-

=

The packet above shows an ICMPv6 echo request carried over IPv4. The outer layer is the IPv4 header with
IPv4 addresses of 192.168.11.49 and 192.168.11.80 respectively for source and destination. These are [Pv4
addresses associated with either end of the GRE tunnel. The next header value is 0x2f or decimal 47 that
represents the protocol number associated with GRE. The GRE portion and the entire IPv6 packet follow.
The IPv6 source is fe80::5 and the destination is fe80::7. These are the respective IPv6 addresses of hosts
communicating on either side of the GRE tunnel.

To see the output, enter at the command line:

wireshark gre.pcap

© 2015 Judy Novak
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Teredo tunnels are established automatically, without any user intervention or configuration. Once the host
discovers one Teredo-capable system, it will use it to discover more. Each host will maintain connections to a
number of different Teredo hosts and these hosts will update each other about the state of new hosts.

In order to traverse firewalls and gateways easily, IPv6 packets are wrapped into UDP packets. While the IPv6
address of the host has to be unique, the IPv4 address does not have to be unique. Hosts with “unroutable” IP

Teredo

Prsameerstisor

e Automatic tunnelling protocol between hosts
» Encapsulates IPv6 packet in a UDP packet

* Can traverse NAT - does not need a public IP
e Teredo uses two different types of packets:

- Data packet: IPv6 packet with data encapsulated in UDP packet

— “Bubble Packet:” IPv6 header without data encapsulated in UDP
packet

— Sent to maintain a NAT mapping with Teredo Server

addresses behind NAT gateways will be able to participate.

Teredo hosts behind gateways will automatically send “Bubble” (keep-alive) packets to keep the connection

across the gateway open.

Details:

http://technet.microsoft.com/en-us/library/bb457042.aspx
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Teredo Addressmg

=

¢ Teredo uses addresses from 2001 /32 range

» The public IPv4 “teredo server” was used to configure this
client (65.54.227.142 - formerly
teredo.ipv6.microsoft.com)

» The “flags” field indicates if the client is using NAT

» The “obscured” external port and address are the UDP
port and IPv4 address used in this tunnel.

’ PREFIX: SERVER ADDR FLAGS Ext Port Ext Addr
2001:0000: 4136 E38E: 8000: 6152 BEBS 28FD

Teredo addresses always start with "2001". The original standard Teredo prefix was 3FFE:831F::/32 and was
used by Windows XP and Windows Server 2003. However, RFC 4380 revised this to 2001::/32.

This is followed by the IPv4 address of the server used to configure this Teredo host. In this case 0x4136:E38E
translates to 65.54.227.142 that resolved to teredo.ipv6.microsoft.com when this particular packet was
captured . This was a public Teredo server that could be used to assist in Teredo configuration of a network
where there was no Teredo server.

The Flags are used to indicate if a host is using NAT or not. The high order bit is set if the host is using NAT.
Since the high-order bit found in 8 is set, it is using NAT. The final fields are the external UDP port and IPv4
address used in this tunnel. The fields contain the UDP port and IPv4 address of the NAT device that is
sending this traffic. However, they are “obscured”. They represent the actual port or IP address after an
exclusive OR operation with OxFFFF. For instance, the NAT device UDP port is 40621. 40621 XOR OxFFFF
=0x6152. Similarly, the 0xBE35 28FD is the NAT device address of 65.202.215.2.

The external port and IP addresses are obscured to keep a NAT device from translating them within the
payload of the packets that they are forwarding.
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Teredo Sample Packet

No..! Time Source Destination Protocol * Source port - Destinatior:

b Frame 1 (103 bytes on wire, 163 bytes captured)
b Ethernet II, Src: Vmware 82:18:be (00:0c:29:82:18:be), Dst: Vmware f5:7b:b2 (00:50:56:15:7
b el g S 10 ; & LR i
« User Datagram Protocol, Src Port: 39562 (39562), Dst Port
Source port: 39562 (39562)
Destination port: teredo (3544)
Length: 69
D Checksum: 0x01df Tcorrectl
b_Teredo IPv6 over UDP tunneling

b Internet Protocol Version 6
= _Internet Control Message Protocol v6
Type: 133 (Router solicitation)

Code; @
Checksum: 0x7d37 [correct]

3 Bt
(ol 3%

" teredo (3544)

&

%LE i Invusion Derecton In-Depth © teredo.pcap

This is a Teredo packet. First, there is an IPv4 layer that has UDP as its protocol. The UDP port of 3544 is
associated with Teredo. Wireshark interprets this as "Teredo IPv6 over UDP tunnelling". The UDP payload
consists of a Teredo Authentication header (not shown) that is an indicator used to protect Router Solicitation,
followed by an IPv6 header that carries an ICMPv6 Router Solicitation.

The Teredo server or relay that receives this is responsible for extracting the IPv6 packet and sending it over
an JPv6-aware network to the destination host. When a response is returned as payload in the UDP datagram,
the Teredo client must interpret the [Pv6 payload.

A Unix implementation of Teredo is available as miredo and can be found at:

http://www.remlab.net/miredo

+ To see the output, enter in the command line;

wireshark teredo.pcap
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Teredo Security Issue

1. Teredo Client sends IPv6 datagram in Teredo Relay
IPv4 UDP payload ‘

2. Firewall permits outbound IPv4 UDP
packet

3. Teredo relay unwraps IPv6 traffic
from UDP payload, forwards over
IPv6 network to IPv6 host

4. IPv6 host sends IPv6 traffic back to
Teredo relay

5. Teredo relay encapsulates IPv6 in
IPv4
UDP payload and returns it over
IPv4 network

Firewall

) Teredo Tunnel

z7§

6. Firewall allows the IPv4 UDP Teredo e
payload back in Client 1Pv6 Host

7. Whole process = Teredo tunnel

Teredo comes installed on many later Windows versions. If the host attempts to make contact with a Teredo
host — one with a 2001:: IPv6 address, Teredo becomes enabled. When this happens, the Teredo client
becomes “qualified” by contacting a Teredo server over UDP port 3544 that gives the client a Teredo IP
address to use to listen on a Teredo network interface. It then communicates with an IPv6 Teredo host using
[Pv4 UDP as the transport protocol and the Teredo client encapsulates an IPv6 packet within the UDP payload.
If there is a stateful firewall at edge of the client’s network, it will see the outbound UDP traffic and permit
inbound return traffic. When a designated Teredo relay host receives the UDP datatgram, it de-encapsulates
the IPv6 payload from the UDP data. It then forwards it over an IPv6 network to the destination. This process
is reversed when the IPv6 host sends traffic back to the Teredo client.

This whole process essentially establishes a tunnel between the Teredo client and IPv6 host. This is fine when
the Teredo client knowingly initiates a connection. However, if there is a malicious web server on the network
that has a link to a Teredo host (2001:: address), the client unwittingly opens up a Teredo tunnel to the host
referenced in the link. If this too is a malicious host, it now has a tunnel directly to the Teredo client bypassing
the firewall. If the Teredo client host is not patched and has some kind of vulnerability, it is now exposed for
the attacker to exploit.
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More Information

P T s U R

e http://www.networksorcery.com
» http://en.wikipedia.org/wiki/IPv6

e http://www.iana.org

~ Intrusion Detection Tn-Depth

This page intentionally left blank.
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IPv6 Tools

Most modern operating systems come with IPv6 support
enabled and listening at some of the same ports used by IPv4
applications (http, ssh)

You may have to add an IPv6 address that is not a link local
address to connect to the network

* nc6—netcat 6

e pingb
e scapy
« ipbtables

This page intentionally left blank.
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The proliferation of IP enabled devices has caused the exhaustion of IPv4 32-bit addresses. One of the reasons
for IPv6 is the expansion of the available IP addresses, accomplished with a 128-bit address. Routing schemes

IPv6 Review

* Necessary to expand number of available IP addresses, yet
benefits for routing efficiency too
e IP header changed

- Standard 40 bytes

~ Fields and functions moved to extension headers
¢ ICMPv6 has many more functions than ICMPv4

¢ Transition from IPv4 to IPv6 can use tunnels in the interim
before IPv6 support standard

Intrusion Detection In-Depth ;

have been simplified as well for more efficiency.

One of the most significant changes with respect to IPv4 is that the IPv6 header is limited to exactly 40 bytes.
Extension headers are used in place of IP options fields and fragmentation has a separate extension header

instead of being included in the standard header.

As the transition from IPv4 to IPv6 occurs, there are technologies to enable communications between the two.
These include IP tunnels capable of carrying IPv6 packets over IPv4 packets where one or both gateways
communicate using IPv4 only and endpoints are IPv6 enabled. Teredo provides IPv6 host communication by

tunnelling IPv6 packets over IPv4 UDP.
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IPv6 Exercises

Exercise:

Answers:

This page intentionally left blank.

Ihtrbduction: '

Questions:

. WOrkboo_k

- "IPVSH

ApproaChi#iF -
Approach #2 -

- Extra Credit -

© 2015 Judy Novak

 Page 63-A
~ Page 64-A
Page 66-A
Page 67-A

Page 68-A
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Review of Fundaméntals d'f Traffic
_Analysis: Part 1

R T T e T 3o - e - =

e Network traffic layered

®

Encapsulation/de-encapsulation require knowledge of
layers that follow and lengths involved

ARP used to translate IP to link layer addresses

IP concerned about next hop transit

Fragmentation necessary when packet length exceeds
link MTU

 Intrusion Detection In-Depth

Let's highlight some of the topics covered in Day 1. We examined the concept of layering of network data,
including the processes of encapsulation and de-encapsulation. When decoding traffic, both software and
humans must know how to perform interpretation using fields and values that contain current or following
protocol identification. There also must be some designation of where protocols and fields begin and end.
There may be an implicit unstated fixed length, a supplied variable length, or a computed length.

We examined the role of ARP to manage IPv4 to link layer addresses for local network communication. We
learned that ARP is not secure and can be used to cause denial of service or MITM attacks. IPv6 has similar
support and issues using Neighbor Discovery Protocol.

The next layer up on the TCP/IP model is IP. The function of IPv4 and IPV6 is to route a packet closer in hops
to its ultimate destination. There are notable changes in IPv6, including a fixed length header and extension
headers.

We discovered that fragmentation is employed when a packet is larger than the MTU of a link it needs to
traverse. All fragments have an identifier to associate them with other fragments in the same fragment train,
an offset to designate their place among the others, and finally a MF flag to inform whether or not other
fragments follow.
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ABOUT

SANS is the most trusted and by far the largest source for information
security training and certification in the world. It also develops,
maintains, and makes available at no cost the largest collection of
research documents about various aspects of information security,
and it operates the Internet’s early warning system - the Internet
Storm Center. The SANS (SysAdmin, Audit, Network, Security) Institute
was established in 1989 as a cooperative research and education
organization. Its programs now reach more than 165,000 security
professionals around the world. A range of individuals from auditors
and network administrators to chief information security officers are
sharing the lessons they learn and are jointly finding solutions to

S ANS

practitioners in varied global organizations from corporations to
universities working together to help the entire information security
community. SANS provides intensive, immersion training designed
to help you and your staff master the practical steps necessary for
defending systems and networks against the most dangerous threats -
the ones being actively exploited. This training is full of important and
immediately useful techniques that you can put to work as soon as you
return to your office. Courses were developed through a consensus
process involving hundreds of administrators, security managers, and
information security professionals, and they address both security
fundamentals and awareness and the in-depth technical aspects of the

the challenges they face. At the heart of SANS are the many security

IN-DEPTH EDUCATION AND CERTIFICATION

During the past year, more than 17,000 security, networking, and system
administration professionals attended multi-day, in-depth training by |
the world’s top security practitioners and teachers. Next year, SANS
programs will educate thousands more security professionals in the US
and internationally.

SANS Technology Institute (STI) is the premier skills-based
cybersecurity graduate school offering master’s degree in information
security. Our programs are hands-on and intensive, equipping students
to be leaders in strengthening enterprise and global information
security. Our students learn enterprise security strategies and
techniques, and engage in real-world applied research, led by the top
scholar-practitioners in the information security profession. Learn more
about STI at www.sans.edu.

Global Information Assurance Certification (GIAC)

GIAC offer more than 25 specialized certifications in the areas of incident
handling, forensics, leadership, security, penetration and audit. GIAC is
ISO/ANSI/IEC 17024 accredited. The GIAC certification process validates
the specific skills of security professionals with standards established
on the highest benchmarks in the industry. Over 49,000 candidates
have obtained GIAC certifications with hundreds more in the process.
Find out more at www.giac.org.

SANS BREAKS THE NEWS

SANS NewsBites is a semi-weekly, high-level executive summary of
the most important news articles that have been published on com-
puter security during the last week. Each news item is very briefly sum-
marized and includes a reference on the web for detailed information,
if possible. www.sans.org/newsletters/newsbites

@RISK: The Consensus Security Alert is a weekly report sum-
marizing the vulnerabilities that matter most and steps for protection.
www.sans.org/newsletters/risk

Ouch! is the first consensus monthly security awareness report for
end users. It shows what to look for and how to avoid phishing and
other scams plus viruses and other malware using the latest attacks as
examples. www.sans.org/newsletters/ouch

The Internet Storm Center (ISC) was created in 2001 following
the successful detection, analysis, and widespread warning of the LiOn
worm. Today, the ISC provides a free analysis and warning service to
thousands of Internet users and organizations and is actively working
with Internet Service Providers to fight back against the most malicious
attackers. http://isc.sans.org

most crucial areas of IT security. www.sans.org

TRAINING WITHOUT TRAVEL ALTERNATIVES

Nothing beats the experience of attending a live SANS training event
with incomparable instructors and guest speakers, vendor solutions
expos, and myriad networking opportunities. Sometimes though,
travel costs and a week away from the office are just not feasible. When
limited time and/or budget keeps you or your co-workers grounded,
you can still get great SANS training close to home.

SANS OnSite Your Schedule! Lower Cost!

With SANS OnSite program you can bring a unique combination of high-
quality and world-recognized instructors to train your professionals at
your location and realize significant savings.

Six reasons to consider SANS OnSite:

1. Enjoy the same great certified SANS instructors and unparalleled courseware
2. Flexible scheduling - conduct the training when it is convenient for you

3. Focus on internal security issues during class and find solutions

4. Keep staff dlose to home

5. Realize significant savings on travel expenses

6. Enable dispersed workforce to interact with one another in one place

DoD or DoD contractors working to meet the stringent requirements

of DoD-Directive 85702 SANS OnSite is the best way to help you |

achieve your training and certification objectives. www.sans.org/onsite

SANS OnDemand Online Training & Assessments — Anytime, Anywhere
When you want access to SANS' high-quality training ‘anytime, anywhere;
choose our advanced online delivery method! OnDemand is designed to
provide a very convenient, comprehensive, and highly effective means
for information security professionals to receive the same intensive,
immersion training that SANS is famous for. Students will receive:

+ Up to four months of access to online training + Hard copy of course books

« Integrated lectures by SANS top-rated instructors - Progress reports

+ Access to our SANS Virtual Mentor « Labs and hands-on exercises
+ Assessments to reinforce your knowledge throughout the course
www.sans.org/ondemand

SANS vLive Live Virtual Training - Top SANS Instructors

SANS vLive allows you to attend SANS courses from the convenience of
your home or office! Simply log in at the scheduled times and join your
instructor and classmates in an interactive virtual classroom. Classes
typically meet two evenings a week for five or six weeks. No other SANS
training format gives you as much time with our top instructors.
www.sans.org/vlive

SANS Simulcast Live SANS Instruction in Multiple Locations!

Log in to a virtual classroom to see, hear, and participate in a class as it
is being presented LIVE at a SANS event! Event Simulcasts are available
for many classes offered at major SANS events. We can also offer
private Custom Simulcasts - perfect for organizations that need to train
distributed workforces with limited travel budgets. www.sans.org/simulcast

For group programs, please contact us at groupsales@sans.org
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