SEC599 | DEFEATING ADVANCED ADVERSARIES - PURPLE TEAM TACTICS & KILL CHAIN DEFENSES

599.3
Exploitation, Persistence,
and Command & Control

m Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses

Exploitation, Persistence,

N and Command & Control

© 2019 ErikVan Buggenhout & Stephen Sims | All Rights Reserved

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims 1

Course Roadmap

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling
Day 1: Introduction & Reconnaissance Patch Management
Day 2: Payload Delivery & Execution Exploit Mitigation Techniques
Exercise: Exploit Mitigation using Compile-Time Controls
Day 3: Exploitation, Persistence and

Exploit Mitigation Techniques — ExploitGuard, EMET & others

Command & Control Exercise: Exploit Mitigation using ExploitGuard

Avoiding installati

Day 4: Lateral Movement e

Typical persistence strategies

Day 5: Action on Objectives, Threat How do adversaries achieve persistence?

Hunting & Incident Response Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control

Day 6: APT Defender Capstone

Detecting Command & Control channels
Exercise: Detecting C&C channels using Suricata, JA3, & RITA

/ j SEC599 |Defe‘akting'Advancé:d Adversaries — Purple Team Tactics & Kill thain Defenses

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims

Why Should | Care about Secure Software Development?

Many organizations have (partially) implemented some sort of
Secure-SDLC:

* Some have chosen Microsoft's SDL

* Others use various SecDevOps models, especially for cloud

* Most implementations have gaps that can offer an opportunity for attackers
and penetration testers

* Failure to map security into all phases of the SDLC leaves holes

Experience with the SDL can offer new opportunities:
* Many professionals do not have experience in this area
* Companies are in need of help

fdv#néed Adveysanes -_Pquple'[eam Tactié_s’ & Kill C'haip;!{;efen;ses 3y

. SEC599| Defeatin

Why Should I Care about Secure Software Development?

The question occasionally comes up about why non-developers concern themselves with Microsoft's Security
Development Lifecycle (SDL) or a Secure-SDLC. The better you understand how organizations write their
code, the easier it is to identify potential areas of weakness. If an organization does a good job performing
peer review and static analysis, but lacks dynamic testing during the validation phase, it should be called out
as a gap. This gap allows us to prioritize our time on the areas with the biggest potential for concern. Most
organizations have implemented some sort of security into their development process; however, many are
severely lacking. Failure to map security into each and every phase of the an SDLC leaves holes, which can
be exploited.

The SDL is still a relatively new concept for most companies, and many are in need of help. Experience in
this area can offer new job opportunities to a professional with the proper skills.

© 2019 Erik Van Buggenhout & Stephen Sims 3

Microsoft Security Development Lifecycle (SDL)

Initiative started sometime in 2002-2003:

« Based on a memo in January 2002 from Bill Gates known as the Trustworthy Computing
(TwC) memo

« Applications to be built with security from the ground up

First version of the MS SDL made public in 2008, Version 3.2

Version 5.2 available as of May 2012:
https://www.microsoft.com/en-us/download/details.aspx?id=29884

Vista was the first OS to go through the SDL, and the SDL has been mandatory
since 2004.

Microsoft Security Development Lifecycle (SDL)

The Microsoft Security Development Lifecycle (SDL) was started sometime in 2002-2003 to ensure that
applications and operating systems are built with security from the ground up. This was during a time when
Microsoft was dealing with major security issues from various pieces of malware, such as the Melissa Virus,
as well as high-profile legal battles around web browser monopoly with Internet Explorer packaging. On
January 15, 2002, Bill Gates sent out a memo known as the Trustworthy Computing (TwC) memo. The memo
described major changes that needed to occur to ensure Microsoft and its customers were protected and that
they could rely on the operating systems. The memo from Bill Gates can be read at
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/.

The first known version of the SDL (Version 3.2) was released to the public in 2008. Version 5.2 was the
latest available version at the time of this writing and is available at https://www.microsoft.com/en-
us/download/details.aspx?id=29884. Some great introductory material and presentations on the SDL are
available at https://www.microsoft.com/en-us/download/details.aspx?id=16420. Microsoft Vista was the first
full operating system to go through the SDL process. Microsoft also used the process to retroactively go
through prior versions of code.

The contents of this module are heavily based on the Microsoft Security Development Lifecycle (SDL) and
STRIDE threat modeling processes, as well as the author's experience with the implementation of Secure-
Software Development Life Cycle (S-SDLC) programs in various organizations. The material written for this
module references and leverages the concepts and ideas behind these models. More information on these
processes can be found at https://www.microsoft.com/en-us/securityengineering/sdl/ and
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20).

4 © 2019 Erik Van Buggenhout & Stephen Sims

Microsoft SDL: Motivation

The SDL is a set of requirements and phases to ensure security is built into software from the start.

Security requirements are grouped into the phases of standard SDLC models.

"The Microsoft SDL is based on three core concepts—education, continuous process improvement, and
accountability."' — Microsoft

Companies such as Adobe and Cisco have made it public that they adhere to Microsoft's SDL process.

Most organizations try to implement some sort of Secure-SDLGC; it is critical moving forward.

Microsoft SDL: Motivation

The Microsoft SDL is a detailed security process that must be adhered to during software development. It
provides a specific group of activities to be performed during each phase of a Software Development Life
Cycle (SDLC) to ensure that security is built into software from the beginning. Microsoft has various core
concepts, some specific to Microsoft's deployment, such as ensuring the use of automated tools for finding
bugs and other issues, tools for compliance tracking, and tools to help program managers evangelize the use of
the SDL throughout various divisions and teams within the organization. Steve Lipner, Director of Security
Compliance at Microsoft, has done quite a few presentations explaining how the SDL is deployed in
Microsoft. Some of it can be applied to many organizations, whereas other practices are specific to Microsoft.
Each organization must cater the process to their development program. During Lipner's presentation at
OWASP's AppSec conference in 2010, he claimed that updates to the SDL are made only once per year and
are mainly focused on the creation of new tools used for automation and fuzzing.

Companies such as Adobe and Cisco Systems have publicly stated that they adopted some or all of the

Microsoft SDL. Regardless of whose process your organization adopts, the use of an overall secure SDLC is
essential in this day and age.

© 2019 Erik Van Buggenhout & Stephen Sims 5

Phases of the MS SDL

"”'Re.quil"er'nent‘s ' -lrﬁple'mentation Verification Release

Establish Security Establish Design Use Approved Dynamic Incident
Requirements Requirements Tools Analysis Response Plan

Care Security Create Quality Analyze Attack Deprecate Unsafe Fuzz Final Security
Training Gates / Bug Bars Surface Functions Testing Review

Security 8 Privacy Threat Static Attack Surface Release
Risk Assessment Modeling Analysis Review Archive

https://www.microsoft.com/en-us/sdl

Each phase of the overall SDLC process has SDL security mappings.

The mappings to each phase are shown in the graphic above, taken
from Microsoft.

Phases of the MS SDL

Each phase of the high-level SDLC processes listed on this slide has associated SDL security mappings. The
diagram in the slide, taken from Microsoft, shows the mappings that are covered in the following slides.
Microsoft changes their graph overview of the various phases periodically, so expect some differences in the
way it looks over time. The SDL practices remain relatively static.

6 © 2019 Erik Van Buggenhout & Stephen Sims

Training Phase

The SDL process states that developers, software testers, and technical
program managers take at least one training per year.

Keeps those involved up-to-date on secure coding Core Security
practices, SDL best practices, tools, new threats and techniques, etc. Jaiting

The various types of threats with each language used should be
covered:

o C/C++ buffer overflows, integer errors, command injection, etc.
o C++ use after free attacks: e.g., dangling pointers
* Web app attacks such as SQL Injection and XSS

Training Phase

According to Microsoft, leveraging the previously documented references, the SDL states that all software
developers, testers, and relevant technical program managers are to attend at least one security training per
year, covering each phase of the overall SDL process and specific threat types and techniques used for
modeling. This requirement helps ensure that each member is up-to-date on his organization's implementation
of the SDL process, new tools, threats, and commonly used techniques. The training should include any
relevant languages used by the developers and it addresses vulnerability classes associated with those
languages. Developers in C and C++ get training on buffer overflows, function pointer overwrites, integer
errors, format string attacks, information leakage, use after free attacks, and many others. Web application
developers receive training that is more focused on attacks, such as SQL injection, cross-site request forgery
(CSRF), cross-site scripting (XSS), and others. Threat modeling and risk assessment techniques are also
included in the training programs.

© 2019 Erik Van Buggenhout & Stephen Sims 7

Requirements Phase

J

\ A
P Requirements 3
Establish requirements, a vulnerability tracking system, and remediation.

Establish Security
Requirements

Create Quality

Identify the impact of various vulnerability classes:
* Set a tolerance bar and stick to it (bug bar)
AN o) Pri
* Prioritize and resolve relevant risks Sy S e

Gates / Bug Bars

Perform risk assessments to determine impact:
* Quantitative and qualitative ratings
e Evaluate regulatory requirements

Requirements Phase

During the requirements phase, there are three main areas to cover. The first area is to establish the security
requirements and to build a security team and the processes assigned to the project. This includes assigning
security staff, creating a tracking system for bugs, creating a remediation process, and establishing the criteria
for any privacy requirements around the data elements involved. Introduction of these items early on will help
ensure a smooth process flow.

The next area is to set a tolerance bar or threshold that must be adhered to in order for the software to go into
production. This typically falls in line with an organizational risk assessment process. During most risk
assessment processes, the primary goal is to document all risk items, map them to policy and regulatory
violations, set the initial risk rating, map in any potential mitigations, and document the likelihood and the
potential impact to the organization. The difference is that with the SDL, you are setting a threshold that
cannot be exceeded. This means that if it is determined during the requirements phase that no medium or high
risks are permitted to go into production, they must be fixed prior to release.

The third area is centered around the identification of software features and functionality and mapping those

functions to areas of concern, such as with consumer privacy, data protection, and regulatory requirements. It
basically serves as a risk assessment on specific areas of the application.

8 © 2019 Erik Van Buggenhout & Stephen Sims

Design Phase

Set security design requirements: b Design
* How to secure application features, cryptographic
communications, specs, etc. Establish Design

Requirements

Analyze Attack
Surface

Identify and analyze the attack surface:
¢ Location of potential threats and vulns based on the design?
* More on this shortly... o

Perform threat modeling:
¢ Allows for additional risk analysis and mapping
* What are the threats, likelihood, etc.?

Design Phase

During the design phase, three main areas are covered. First, design requirements must be established.
Leveraging the requirements phase, software features and functionality must be written to adhere to all privacy
and security requirements. Because we are looking specifically at privacy requirements, secure
communication and storage are major considerations. Cryptographic design must be well thought out for
secure implementation and the types of cryptographic attacks must be well understood. This is a good spot to
add in some peer review.

Next, we want to thoroughly understand and analyze the attack surface. We must look at the design from a
high level all the way down to a low-level and identify all of the potential areas where vulnerabilities may
exist and map threats to those vulnerabilities. We perform this task during the design phase so that we can
make changes prior to any development as a cost-saving measure, and hopefully a time-saving measure. We
will get into more on attack surfaces shortly.

Finally, we flow from analyzing the attack surface into threat modeling. This gets specifically into mapping

the actual attacks to the attack surface. It is OK to get creative with the types of attacks during this phase as the

team should be encouraged to think outside of the box. Threat modeling is also covered shortly.

© 2019 Erik Van Buggenhout & Stephen Sims

Implementation Phase
Identify tools for developers to use:
* Dev-friendly security tools with automation

e Compile-time security options U Ampmoved
Tools

Deprecate Unsafe

Remove unsafe/banned functions: -
Functions

» Remove functions known to introduce vulnerabilities

Ao Stati
e Low-cost method to decrease vulnerabilities Anaal;:is

Use source code scanning tools (such as Fortify or Vericode):
* Identify low-hanging fruit before compiling
* Manual code review of critical application components

Implementation Phase

The implementation phase also has three main areas. The first area is centered around the use of approved
tools. Security researchers and engineers, along with developers, should work together on solutions to help
automate as much of the SDL as possible, without sacrificing security. Not every developer can be expected to
be security experts and to get better support for the SDL; automation is highly desirable. Penetration testers,
security engineers, incident handlers, and developers are all good resources to help identify the types of tools
and exploit mitigation protections that should be used by the compiler. Depending on the target operating
system where the software will be installed, compiler options such as support for address space layout
randomization (ASLR), SafeSEH, stack and heap canaries, data execution prevention (DEP), and others
should be designated as requirements. These types of security options and exploit mitigation controls are
constantly changing and should be followed closely.

The next area is to identify any unsafe functions and add them to a list of banned functions that can be easily
referenced and enforced. If possible, automating the discovery of banned functions during code review should
be implemented. It is also common for operating system developers to remove unsafe functions that could
cause issues if not identified during the development process. Microsoft removed support for certain functions
that allow for the modification of DEP settings on Windows 7. It is important to track these types of changes.

Finally, a code review should be performed prior to compilation. Prior to the creation of automated source
code scanning tools, manual review is required. This is a time-consuming process, and the chance of the
reviewer missing vulnerabilities is quite high. Not all languages are supported for review; however, the bulk of
the primary languages are supported by various tools such as Fortify and Veracode. In this author's experience,
many of these tools are good at catching the low-hanging fruit, but they can have a bit more difficulty
identifying more complex vulnerabilities. There are often a large number of false positives that must be
removed prior to reaching any real areas of concern. When scanning large source code files, there can
sometimes be thousands of possible vulnerabilities identified, with the majority not being a real concern. This
can be frustrating for developers who are trying to ensure their code is secure and it is often better to have a
separate code review team who can help remove some of the burden.

10 © 2019 Erik Van Buggenhout & Stephen Sims

Verification Phase

—3

3

Use dynamic analysis to find memory corruption issues:
e Code coverage to get deep reach
* Focuses heavily on heap management

Verification = g

Bynamic
Analysis
Use fuzzing to find bugs after compiling: T;‘iiz:g
¢ Input malformed data to "good" programs
* Techniques include static, random, (intelligent) mutation

Attack Surface
Review

Review the attack surface identified during the design phase.

Verification Phase

There are three main areas of focus during the verification phase. This phase occurs after the source code has
been compiled into an object file. At this point, regardless of how well you think you know your code, it has
changed. The type and version of the compiler, the compiler and linker options used, exploit mitigation
controls used, and other options used can heavily influence how your code will look on the other side. It is
with this understanding that we must find ways to test all areas of input to the application and get good code
coverage. Dynamic analysis tools and fuzzing tools have a similar role and the terms are often used
synonymously. Dynamic analysis focuses more on identifying runtime errors, dynamic memory corruption,
user privileges and rights, and some other specific areas. This often includes using dynamic tools to input data
into the application and monitor behavior.

Fuzz testing or fuzzing is a useful software testing technique that involves sending malformed data to protocol
implementations based on RFCs and documented standards. Programs are built to function, preferably based
on standards that allow for interoperability with other vendors' products. As we know, programs can be built in
many different languages using a combination of many different functions. If you have 100 developers write
the same application, each one will likely be different at the source level. Fuzzing requires you to think of all
of the ways that a developer could have written a piece of software and test for relative vulnerabilities. It is not
that simple of a process, though, as many vulnerabilities are complex and difficult to predict. Take the
vulnerability class called "use-after-free." This typically involves dynamically allocated objects that are freed
and later referenced by code. An active pointer that is pointing to a freed object is a potential recipe for
disaster. These types of vulnerabilities can be difficult to spot, especially during incremental code changes.
Fuzzing can greatly increase the chances of finding such bugs. There are various types of fuzzing techniques
covered in other courses, including static, randomized, mutation, and intelligent mutation fuzzing with tools
such as the Sulley fuzzing framework by Pedram Amini and Aaron Portnoy.

At this point, we also want to review the attack surface that we analyzed during the design phase to ensure that
nothing was missed. It is fairly common for changes to occur during the actual development of the software.
This allows for an opportunity to ensure all threats and vulnerabilities are captured.

© 2019 Erik Van Buggenhout & Stephen Sims 11

Release Phase

Incident
Response Plan

Have an incident response plan
* No such thing as perfect security even with a solid SDL
* Provide and train contacts to handle incidents

Final Security
Perform a final security review that serves as an overall validation of the i Review

SDL for a given effort. : Release
Archive

Certify and document that the development has adhered to all
requirements.

Release Phase

There are also three main phases during the release phase. The first is to ensure there is an incident response
plan relative to the developed software. No matter how hard we try, there will never be such a thing as perfect
security. If a bug is discovered, especially a critical bug, who are the main points of contact to quickly initiate
a response? The answer to this question is exactly what this step is about. As per Microsoft, this step is also
used to set up points of contact for inherited code. If code used was developed outside the group and questions
arise, contacts should be available to answer questions, especially in lieu of training and documentation.

The second and third security review steps are in place to designate a time to take a holistic view of the SDL
process to date. It works directly with the release archive step. The goal is to ensure that all phases and steps
have been covered and documented. This serves as a crucial role in audits and adherence to regulatory
requirements. It is this phase in which a good checklist and tracking system come in handy. The attack surface
should be validated one final time, as well as threat modeling, risk tolerance as documented during the
requirements phase, risk assessment, and all other steps.

12 © 2019 Erik Van Buggenhout & Stephen Sims

Response Phase

Have an official stance and policy on vulnerability disclosure:
* Allow researchers to disclose discovered vulnerabilities
* Create a patch-management process
* Can optionally include a bug bounty program to incentivize
researchers

Train operational security group in new attack techniques:
* Vulnerability disclosure websites
* Exploit mitigation controls and methods used to bypass them

Response Phase

The final phase is centered around the implementation of an incident response process. As stated before, there
is no such thing as perfect security. No matter how mature and effective your SDL process, there will always
be bugs discovered and other security issues to handle. Every organization should have a vulnerability
disclosure process. There are various philosophies on how disclosure should be handled, such as full
disclosure, responsible disclosure, and limited disclosure (which falls somewhere in between the other two).
There should be a clear-cut process for researchers and others who find a potential bug or vulnerability in your
products; even if that process says that anyone reporting bugs may face legal action. This is likely not the
preferred approach, but it informs those wanting to disclose a concern about your organization's stance on
disclosure.

Once someone submits a finding, this is when your incident response plan goes into action. Who will respond
to the individual or organization disclosing the finding? Who will take action and reach out to developers or
others who should be involved? How will the submission be tracked and how long will it take to officially
respond or patch the finding? How will the patch be distributed to customers if applicable? These are all
processes that should be well documented and actionable.

© 2019 Erik Van Buggenhout & Stephen Sims 13

Selling the Process

The SDL is not easy to implement and does not happen overnight.

C-level management support is critical to success
Must not inhibit the ability for developers to be creative and efficient

The SDL is not a "one size fits all" model:

* No universal technique or gold standard

« 100 developers versus 10,000 developers

+ Requirements for a firewall are much different than requirements for a word
processing application

Implemented properly, the savings with a successful SDL can be

quantifiable and it is repeatable

Selling the Process

A common question is, "How can I sell this whole SDL thing to management and get support?" This is likely
as hard of a task as the actual implementation of the process. In this day and age, we are all inundated with
processes and the introduction of more processes can face resistance from many angles. Always remember
that the ability to factor in monetary savings into the equation will almost always get some level of attention. A
properly implemented SDL should do exactly that—save money. As with any other proposal, pitching the
introduction of the SDL to your development process should be well thought-out and well-presented.
Interviewing various lines of business for their perspective is highly beneficial. If the security operations group
is burdened with incidents stemming from poor code, you want to know that information. If management is
dealing with new regulations and an audit, this can also be useful information. How can you make the
company's job easier and cut costs? This should be a key element when going in to pitch the process for
approval.

Executive-level support for the process is critical to its success. Lacking this support will most likely result in
a poorly implemented SDL or even complete failure and resistance. This should be vocalized during the
proposal. One key concern that this author has learned from developers is that the SDL must not inhibit the
developers from being creative and innovative. It must also not burden them down with too much process.
Development can be a stressful profession with stringent requirements and sensitivity to time. Education and
the ability to automate as much of the process as possible will garner more support from developers and
program managers.

It must also be remembered that the SDL is not a "one-size-fits-all" model. Each organization can adopt the
overall framework but must customize it to their needs. It is also not a process that can be implemented
overnight, or even in a month. It takes experience and ongoing customization. A company that has 100
developers will need a different SDL application than a company with 10,000+ developers. Also, it cannot be
a blanket application to all instances. A division working on the design of new firewall technology may need a
different SDL than that of a word processing application.

14 © 2019 Erik Van Buggenhout & Stephen Sims

This is not to say that the framework is not applicable; it is simply saying that the application of the various
steps during each phase may have to be customized to meet the needs of the organization and the security
requirements.

Again, the biggest selling point is that a properly implemented SDL should result in quantifiable savings. It
should make for an efficient development process, and there should be a noticeable change and decrease in
code fixes. The term return on security investment (ROSI) is often a helpful approach. The general idea is that
by spending time and money doing something to reduce or avoid a potential or existing risk, it will prevent a
future loss that would likely be greater than the cost of mitigating the risk.

© 2019 Erik Van Buggenhout & Stephen Sims

15

Agile Development with the SDL

Often, questions arise about the capability of the SDL to work with
Agile development.

+ Microsoft designed a specific approach available at
https://www.microsoft.com/en-us/securityengineering/sdl/Support for
frameworks such as Scrum

« Specific approach for sprints, bucket practices, and one-time practices

+ Most critical steps are performed during every sprint

« Other steps applied during project initiation or during bucket practices at
set intervals

Agile Development with the SDL

Agile development is a development process that is highly utilized and often difficult to implement. It is often
seen as an inhibitor to creativity by many developers who have not successfully implemented the process and
changed from models such as the waterfall model. Microsoft set up a specific application of the SDL to agile
development methods that can be viewed at https://www.microsoft.com/en-us/securityengineering/sdl/. It
maps specific portions and steps of the standard SDL previously covered to different development phases
using the agile approach. Every agile sprint receives the most critical steps of the SDL based on the biggest
areas of concern. The most important tools are run, threat modeling is performed, and code review is
performed, as well as various other security reviews. A sprint is typically several weeks long and a fast-paced
subset of development for the overall product. Applying all phases of the SDL to every sprint is not actionable.
The other areas of the SDL that are not applied during every sprint can be applied at project initiation, such as
those relative to the requirements and design or during bucket practices that occur at set intervals.

16 © 2019 Erik Van Buggenhout & Stephen Sims

SDL for Agile Model

BUCKET PRACTICES ONE-TIME PRACTICES

hat should be performed in every relesse.
CLICK OM A SDL PHASE OR PRACTICE BELOW TO LEARN MORE

NGRS
3, DESIGN) 4 IMPLEMENTATION 5. VERIFICATION m

1. Perform Dynarmnic 14, Create an Inciddent
Apalysis Responsa Plan

1. Core Security Training! © 2. Establish Security 5. Establish Design’
Requiremeants Requitements

3. Creaie Qualty 6. Perform Attack
Gates/Bug Bars surface Analysis/
Reguction

B

17 Execute Incident

12: Perform Fuzz Testing
i Response Plan

12 Conducy Attack

4. Perform Security and
Surface Review.

Privacy. Risk
Assessments

SDL for Agile Model
As seen on Microsoft's website at https://www.microsoft.com/en-us/securityengineering/sdl/, this diagram is
interactive and can help show which SDL phases apply to One-Time Practices, Bucket Practices, and Sprints.

© 2019 Erik Van Buggenhout & Stephen Sims 17

Threat Modeling

Repeatable process to identify and remove threats.

Often occurs during the design phase of a Software Development Life Cycle (SDLC).

Helps security engineers and developers to think more like attackers.

Many organizations struggle with too much process and documentation, which is non-actionable.

Can be difficult to evangelize to an organization due to cost, time, and lack of experience.

R 3 ; ... but it's much more
Many companies fail to do this or do it poorly! expensive to fix code later!

Threat Modeling

Threat modeling is an extremely valuable resource if implemented properly. Think about the cost associated
with reviewing and fixing production code, or even code that has not been published yet, when a significant
finding is found. Oftentimes, a vulnerability may be left in the code due to the results of a risk assessment
showing that the cost would be greater to fix the bug compared to the impact to the organization if it was
discovered and exploited. Regardless of that assessment and justification, it would clearly be more desirable if
that bug had never been introduced in the first place. This is where threat modeling can help.

Threat modeling is easy to talk about and hard to implement into an actionable process. It used to be that few
developers and security professionals knew exactly what threat modeling was and how it was to be
implemented. With the help of various organizations such as Microsoft, Cigital, and OWASP, threat modeling
has been made more actionable and dynamic. Similar to that of Microsoft's SDL, it is not a process that can
just be implemented with perfect results. It takes time and effort, with much training and practice. Threat
modeling is commonly performed as part of the design phase in the development process. Once the low-level
diagrams are available—showing all of the data flows and processes—it is much easier to look at the attack
surface and point out potential vulnerabilities. The goal is to make an actionable, repeatable process in the
design phase of the Software Development Life Cycle (SDLC) to prevent vulnerabilities from being
introduced into the code or overall architecture.

Many organizations get too focused and overwhelmed with documentation and process. This becomes non-
actionable and slows down the development process. It is better to simplify the threat modeling process and
focus on the biggest areas of concern, rather than try to accomplish too much at once and lose support for the
initiative. It must also not impede the developer's ability to be creative, especially in product-based companies.
This goes for the overall SDL process as well. Similarly to selling the SDL process, it can be difficult for some
organizations to gain support for threat modeling. Demonstrating the process, evangelizing it, showing other
companies who are using the process, and starting small can help. You must remember to map technical risks
into business terms to ensure the request has teeth.

18 © 2019 Erik Van Buggenhout & Stephen Sims

Some Questions to Ask

Must determine:

» Who are the threat agents or actors?
« What is the goal of the agents or actors?

« What is the attack surface such as access to input/output? (e.g., APIs, U,
File I/0, inside users, etc.)

« What are the techniques used to compromise a potential vulnerability?
» Where are the trust boundaries?

e Can risks be mitigated immediately or residually?

« What is the quantitative and qualitative impact on the organization?

Some Questions to Ask

Once you have the design to which you want to apply threat modeling and you ensure it is sufficiently low
level, there are many questions to start asking. There are various publicly available threat models such as
STRIDE from Microsoft, as well as additional risk assessment models such as Microsoft's DREAD, the
Department of Homeland Security's (DHS) Common Vulnerability Scoring System (CVSS), Carnegie
Mellon's OCTAVE, TRIKE by Brenda Larcom and Eleanor Saitta, and many others.

We want to know about the threat agents or actors. These could be inside users with privileged access,
malicious users from home on their computers or over phones, malicious software, jailbroken smartphones,
and countless other threats. We want to understand their potential goals, such as harvesting credit card
numbers, denial of service, and intellectual property theft. What is their attack surface? Perhaps they are able
to communicate with our frontend web servers with no authentication and then have additional opportunities
with authentication. Is authentication assumed once initially authenticated? What else is exposed? DNS
servers, mail servers, etc. Do we have store branches? Is social engineering a possibility? How about more
complex attacks like communications occurring from inside a trust boundary? Get creative. What techniques
are used to exploit the attack surface and potential vulnerabilities identified? According to OWASP, the attack
surfaces include all data that flows in and out of an application, the code that protects these flows, the data
elements involved, and the code that protects those elements. Check out the following cheat sheet for some
tips from OWASP:

https://www.owasp.org/index.php/Attack Surface_Analysis Cheat Sheet

Can these risks be mitigated through existing controls? Is it possible to fix them with code? Sometimes, the
vulnerabilities identified during threat modeling prove challenging to fix and the fixes do not always come
from code changes. You must always assume that communications coming from outside of a trust boundary
could be malicious. What happens if someone breaks out of the security controls enforced by an embedded
device? They can now potentially reverse engineer a mobile application, proxy the communication, and
circumvent security restrictions. As we do with any type of risk assessment, we must determine the
quantitative and qualitative impact to the organization. How bad could it be? How much would it cost? What
is the likelihood?

© 2019 Erik Van Buggenhout & Stephen Sims 19

Microsoft Threat Modeling Tool (1)

& Sample_Threat Model - Threat Modeling Tool 2016
File Edit Yiew Settings - Diagram Repoits Help

—
i Generic Extemal Interactor

i E Generic Data Store

¢ [ch] Generic pats Fiow

=
|
e
Generid Data Flow
Generic Data
Store’

—
Generk Data Fiow, ;
: .
.
|

v @ Generic Trust Line Boundary

e m Generic Trust Border Boundary

[Element Properties o xi
* | Diagram
MName Ml;iaguml

Add New Custom Attribute

Diagram

Severity

Messages - No issues found | Notes - no entries |

Microsoft Threat Modeling Tool (1)

Microsoft released a free tool simply called the Threat Modeling Tool. You can download the Microsoft
Threat Modeling Tool version 2016 at https://www.microsoft.com/en-us/download/details.aspx?id=49168
General information about the tool can be found here: https://www.microsoft.com/en-
us/securityengineering/sdl/resources, Microsoft also released a great card game called the "Elevation of
Privilege Card Game" to practice threat modeling against your designs. It is available at
https://www.microsoft.com/en-us/securityengineering/sdl/resources.

With the Threat Modeling Tool, you can draw your designs and have an automated tool get you started on
asking the right questions. It used to require MS Visio; however, with the new version released in March 2016,
Visio is no longer required. The initial screen, as shown on the slide, is the "Design View." This is where you
actually draw out your designs to the whiteboard and make all of the relevant connections and data flows. One
nice thing is that the "Messages" area on the bottom, which will let you know if you have likely missed a data
flow. The example drawn on the slide is that of a simple network communication. The red hyphenated lines
indicate a trust boundary where increased attention should be placed. From within a trust boundary, data and
flows may be implicitly trusted, as where communications coming into or leaving a trust boundary should be
more aggressively scrutinized.

There are other free tools available on threat modeling, such as Seasponge from the Mozilla Winter of
Security 2014:

https://air.mozilla.org/mozilla-winter-of-security-seasponge-a-tool-for-easy-threat-modeling/

https://github.com/mozilla/seasponge

20 © 2019 Erik Van Buggenhout & Stephen Sims

Microsoft Threat Modeling Tool (2)

Properties 4 x
Web Application
Name Web Application o
Qut Of Scope]
Reason For Out Of Scope
| Configurable Attributes
CodeType [Managed x }:
Sanitizes Input [Yes x v}
Sanitizes Qutput [Ves ']
As Generic Process |
s Running As (Standard User Without Elevation Bl
Isolation Level [AppConuinu v]
L Web Accepts [nput From (Any Remote User or Entity vJ
Application " orUsesan |
Authentication Mechani [Ves :_]
lAmp'Ierrfans or_L‘Jse.s an [Yes ']‘
Implements or Uses a =
C ication Protocol [Y“]
Add New Custom Attribute

Object properties

When clicking on an object, the
properties section is populated
with a series of questions.

Depending on‘how you answer
each one, the threats listed in
the "Analysis View" may change.
It is'a useful feature that was
lacking in the older version of
the tool.

Microsoft Threat Modeling Tool (2)

On this slide is a screen capture of the "Properties" section of the Threat Modeling Tool. When you click on

certain types of objects, this region will be populated with a series of questions. Depending on how you

answer each one, the threats listed in the "Analysis View" may change. It is a useful feature that was lacking in

the older version of the tool.

© 2019 Erik Van Buggenhout & Stephen Sims

21

Microsoft Threat Modeling Tool (3)

‘ ,O Search 30 Threats Displayed, 30 Total

(%) Threat:| Elevation Using Impers| Category:| Elevation Of Privilege || Mitigated ~ High -]

@ Threat:i Potential Data Repudiai Category: [Repudiation !l ,mNot Started S [H'ghg e I

@ Threat:l Potential Data Repudia[Category:t Repudiation }{V Mitigated e EH»gh ; " i

@ Threat:i Potential Process Crash! Category:l Denial Of Service “\legatedﬂ : s
Description: Justification for threat state change:

Web Application crashes, halts, stops or runs slowly; in all Due diligence performed during application
 cases violating an availability metric. development to avoid application crash. Validation
i testing through dynamic analysis and QA to be
performed. DoS testing to be performed through
fuzzing and resource exhaustion testing.

| , |
(%) Threat: | Data Flow HTTP Is Pot(Category: | Denial Of Service || NANot Applicable ~ [High ~

FA N P IO PR P [e L S VR i Lives e !

Threat Information i Notes - no entries [

Microsoft Threat Modeling Tool (3)

This slide shows the "Analysis View" screen. Once you have drafted your design into the design window,
click on "View, Analysis View" from the ribbon bar to see what threats have been identified by the Threat
Modeling Tool. It is designed to get you thinking about potential threats and add some automation for
developers who may not be security experts. That being said, the tool does a great job at asking the initial
questions that should be asked or making simple comments such as, "Web Application crashes, halts, stops or
runs slowly; in all cases violating an availability metric." This is an example of a topic that may not be brought
up without the help of the tool. Not all of them will apply to each flow and they can be removed if appropriate.

As seen on the slide, there is a Threat and Category. Following that are drop-down boxes showing the status of
the risk item and the qualitative rating. On the left of each threat is a drop-down arrow that expands the
description of the threat. In the example shown, you can see that the "Justification for threat state change" area
on the right is populated with user-supplied content.

22 © 2019 Erik Van Buggenhout & Stephen Sims

Microsoft Threat Modeling Tool (4)

Threat Modeling Report threat Model summary:

Created on 8/6/2018 10:50:30 Al Not Started 22
Threat Model Name: WWW Threat Model NotApplcable 1
Needs Investigation 1
Owner: Stephen Sims Mitigation Implemented 6
Reviewer: Bob Dole Total 30
Total Migrated 0

Contributors:

Description: Communication from external customers for access to online
banking accounts using standard browsers and smartphone devices.

Assumptions:

External Dependencies:

cs & Kill Chain Defenses

Microsoft Threat Modeling Tool (4)

When clicking on "Reports" from the ribbon bar, you can select the option to generate a full report of the
threat model. On the slide is a snippet of that report. Note: Pieces of the report were moved around to fit on the
slide. As you can see, the information about the threat model author, description, assumptions, and
dependencies are shown. A summary of the number of threats and the ones still needing to be triaged are also
shown. Below this section in the HTML-generated document are all of the threats listed associated with each
device, trust, store, or data flow shown.

The Threat Modeling Tool is available for download at https://aka.ms/threatmodelingtool.

© 2019 Erik Van Buggenhout & Stephen Sims 23

Identify Potential Threats

Simple Example

Auth Resp

Auth Req

Response
Query
Trust boundary

Medical
Records

Identify Potential Threats
On this slide is a very simple network diagram as created with the older version of the Microsoft Threat

Modeling Tool. This simplified example is a good place to start when practicing threat modeling. Take a few
minutes to identify potential threats. Note the trust boundary marked by the curved, hyphenated line. Trust
boundaries require special attention and often influence what components will be fuzzed. On the next slide are
some of the potential areas of concern that should be addressed prior to implementing the design.

24 © 2019 Erik Van Buggenhout & Stephen Sims

Identify Threats — Some Possibilities

JS, AJAX, <R
HTML,
8 HTTPS, HTTP sl

Response

Query

- SECS99 | D,efeaﬁﬁzAd‘?iﬁc.ed ;Aéve@ar;es ﬁiEﬁr'pleTth

ill Chaiﬁ »I?éfens_qs«' :

Identify Threats — Some Possibilities

On this slide are some potential threats and vulnerability spots that must be addressed. Some examples of
attack categories are Denial of Service (DoS), spoofing, tampering, information disclosure, elevation of
privilege, repudiation, and many others. Not all apply to each threat or vulnerability, and we can rule them out
as they are addressed. The outside user could be on a personal computer, a smartphone, a kiosk in a store
branch, and other possibilities. This is where it is important to think like an attacker. What about the scenario
in which your company creates a smartphone application that should be protected by the controls included
with an iPhone. Let us say that the attacker jailbreaks the iPhone and is able to circumvent all controls, install
his own software, reverse engineer, and learn more about your smartphone application, proxy connection
requests, etc. Does this change the typical attack surface? It sure does!

Again, it is easy to start with high-level designs when it comes to threat modeling, but the real power comes in
when you get into low-level application designs and data flows. It is at the design stage during the SDLC that
you can help prevent bugs or design flaws from being introduced by threat modeling. The more this process
can be automated, the more likely it is to be adopted. We cannot expect that all of our developers will become
security experts overnight, and if this can be rolled into the development process as seamlessly as possible, our
chances of success increase.

Are there any missing trust boundaries that stick out? You may have noticed one should be placed between the
Web Ul and the "Medical Records" data store, as well as possibly between the Web UI and the Authentication.

© 2019 Erik Van Buggenhout & Stephen Sims 25

STRIDE

» Threat Category: Example
« Spoofing Identity

Vulnerability Point

« Tampering with Data S
1]

» Repudiation

3 . Attack

Information Disclosure SOL Injection
e Denial of Service
. . . Scenario

. Elevatlon of Prlvﬂege Attacker could steal medical

records from the database

Solution
Input Validation

What about the impact, likelihood, etc.?

STRIDE

The Microsoft Threat Modeling Tool is based on the STRIDE threat model. As previously mentioned, there
are quite a few threat models made publicly available by various organizations. The Microsoft STRIDE threat
model is available at https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20).
STRIDE is an acronym that stands for "Spoofing Identity, Tampering with Data, Repudiation, Information
Disclosure, Denial of Service, and Elevation of Privilege." Each of these is a category of threats that should be
well known to all of us by this point in our careers. Under each of these threat categories are various attacks,
which the Threat Modeling Tool details. The model would have you identify a potential vulnerability point
within a design, such as data coming from a user into a web application. Threats to that vulnerability and the
attacks associated with them are then identified, such as cross-site scripting (XSS), parameter tampering, SQL
injection, etc. Under each of the potential attack types, you would then document some scenarios that could
occur. Finally, some mitigations for each vulnerability can be identified.

What about the impact of an event, the likelihood, and other risk assessment modeling?

26 © 2019 Erik Van Buggenhout & Stephen Sims

DREAD

Dread stands for:
 Damage
Reproducibility
Exploitability
Affected Users
Discoverability

Each identified threat is given a value from 1 to 10 for each of the
five areas.

Divide each threat by 5 to prioritize.

DREAD

DREAD is a multidimensional risk calculation model for prioritizing threats. Microsoft documentation on
DREAD can be found at https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648644(v=pandp.10).
The five areas applied to each threat include Damage, Reproducibility, Exploitability, Affected Users, and
Discoverability. Damage can be compared to the impact a successful attack would have on the organization. A
compromised database containing a million patient records in the worst-case scenario would be a grave impact
and as such, we assign it a 10. The reproducibility pertains to the likelihood that the attack is successful and
reproducible. Once an SQL injection attack is identified, it is typically easy to reproduce with success. We
gave this one a 9. The exploitability pertains to the difficulty in pulling off the attack successfully. Is it a well-
known attack with lots of tools and help, or is it obscure and difficult? We gave this one an 8. Affected users
pertain again to the impact. In our scenario, a million patients are affected and as such we give this one a 10.
Finally, we have discoverability that pertains to the likelihood that someone will find out about the
vulnerability. In our example, we've assigned this one a 10, as SQL injection vulnerabilities are often easy to
spot. Each organization would apply its own ratings to this threat. When we add up each of the five areas, we
get 47. We divide this number by 5, representing the 5 areas in DREAD, and we come to our overall rating of
9.4, which can be considered high. We would likely want to address this threat with priority.

© 2019 Erik Van Buggenhout & Stephen Sims 27

Vulnerability Assessments
It is vastly important to assess the state of your organization's security
@ on a frequent basis. This can be performed by regular vulnerability

assessments. These days, a myriad of options exists:

Vulnerability scanning and penetration testing

Bug bounties
* Source code reviews
In-depth fuzzing of third-party applications

A hybrid approach of various methods will offer best results and ROI

Vulnerability Assessments

It is vastly important to assess the state of your organization's security on a frequent basis. This can be
performed by regular vulnerability assessments. Due to the state of the current cyber security landscape,
vulnerability assessments have become the norm and the vast majority of organizations are combining
different techniques to understand their cyber risk exposure. Some of the more popular ones out there include:

¢ Vulnerability scanning and penetration testing

* Bug bounties

* Source code reviews

e In-depth fuzzing of third-party applications (not common)

So, what approach is best? In reality, there is no silver bullet... A hybrid approach of various methods will
offer best results and ROI. "Bug Bounties" are currently on the rise and an increasingly large number of
organizations are rewarding security researchers with bounties for submitted bugs. Does that mean mandated
penetration testing or source reviews are on the downfall? No, they are still highly useful in a structured SDLC
approach, where testing is performed continuously throughout the SDLC, after which bug bounty hunting can
take place once the system is in production.

Again, there is no silver bullet; there's just a lot of options to choose from. ©

28 © 2019 Erik Van Buggenhout & Stephen Sims

Bug Bounties

When researchers are unsure if their vulnerability disclosure to your
organization will be taken positively, they may opt to keep it to
themselves, or sell it to a third party:

+ Some vulnerabilities can be worth a lot of money
« Remote browser or document-based exploits can go for >$10K USD
+ Remote Windows Kernel bugs can go for >$100K USD
« Remote Apple I0S "jailbreak” exploits can go for >$1M USD

Offering a bounty can make researchers feel comfortable going to

your organization:

« They don't have to worry about legal action as long as they stay within the
rules of your bounty program

« Payment can scale depending on the seriousness of the vulnerability

SECS9_9 | Defeaﬁﬁg Advanced Adversaries — Purj'piéj'eam Tactics & Kill Chain I?éfensés' B 1’,;“[,

Bug Bounties

The more welcome vendors make those interested in disclosing a vulnerability feel, the more likely they won't
sell it to a third party, release it publicly, or keep it to themselves. If they have to be concerned about potential
legal action, many will simply avoid the risk. Some vulnerabilities can be worth a lot of money. This author
has sold browser-based exploits affecting Internet Explorer for $10K - $20K USD to ethical buyers. Ethical
buyers are those who disclose the vulnerability to the affected vendor and do not release details publicly, such
as iDefense from Verisign and Tipping Point's Zero Day Initiative (ZDI). Windows remote code execution
Kernel bugs can go for over $100K USD. Zerodium paid $1M USD to a group who disclosed an iOS remote
jailbreak exploit. See here for details: https://www.zerodium.com/ios9.html. Some of the buyers are not as
transparent in terms of what they do with a disclosed vulnerability. Some have a customer list that may be seen
as questionable by some.

See also: https://www.macrumors.com/2016/09/30/zerodium-triples-ios-10-bug-bounty-to-1-5-million/

Offering a bug bounty program can help to make researchers interested in disclosing a bug more comfortable
and more likely to disclose it to the affected vendor. As long as they follow the rules in the bounty program
they should have no reason to fear legal action. The payment should scale based on the severity of the
vulnerability. If the bounty is too low, then it is more likely for the disclosure to get taken elsewhere.

© 2019 Erik Van Buggenhout & Stephen Sims 29

Bug Bounty — Additional References

Some additional resources concerning bug bounty programs include:

United Airlines — Will pay up to 1 million award miles for disclosures
https://www.united.com/ual/en/us/fly/contact/bugbounty.html

« Google — Will pay various amounts depending on the severity of the bug
https://www.google.com/about/appsecurity/reward-program/

« Microsoft — Will pay up to $250K USD for exploitable bugs and exploit
mitigation bypass techniques
https://www.microsoft.com/en-us/msrc/bounty?rte=1

» CanSecWest Pwn20Own — Annual conference and challenge in Vancouver,

Canada, offering high-priced bounties
https://www.cansecwest.com/

Bug Bounty — Additional References

There are a large number of vendors who offer different types of bug bounty programs. A few examples are
listed on this slide, with some offering bounties such as airline award miles and others offering cash bounties
in excess of $100K USD.

 United Airlines — Will pay up to 1 million award miles for disclosures
https://www.united.com/ual/en/us/fly/contact/bugbounty.html

+ Google — Will pay various amounts depending on the severity of the bug
https://www.google.com/about/appsecurity/reward-program/

« Microsoft — Will pay up to $250K USD for exploitable bugs and exploit mitigation bypass techniques
https://www.microsoft.com/en-us/msrc/bounty?rtc=1

« CanSecWest Pwn20wn — Annual conference and challenge in Vancouver, Canada, offering high-

priced bounties
https://www.cansecwest.com/

30 © 2019 Erik Van Buggenhout & Stephen Sims

Source Code Reviews

Manual Code Review

o This is the process of performing a manual peer review against source code,
typically reserved for the most critical parts of an application such as the
acceptance of user input.

 The most time-consuming option, but thorough with the right expertise.

Static Analysis and Automated Code Review

e This is an application or machine-driven process of source code inspection
looking for code issues such as potential vulnerabilities and inefficiencies.

* Success is dependent on what the product understands about the language.
Dynamic Analysis

« This is applied against the compiled version of the program during runtime,
commonly looking for memory corruption bugs and testing behavior.

| SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses

31

Source Code Reviews

There are various types of code reviews that can be performed. Manual code review is often seen as the most
thorough but is time-consuming and typically reserved for the most critical parts of an application. This
requires someone with the expertise to go line by line through code written by the development team. The
quickest option is the use of static analysis tools. Tools such as the Fortify Static Code Analyzer from HP can
take an entire project and quickly scan it for easy-to-spot vulnerabilities, banned functions, and programmatic
inefficiencies. The good thing about static analysis tools is the speed at which they can review the code base.
One issue is that they often produce a lot of false positives and miss complex bugs. The more they are taught
about the supported languages being scanned, the better they can find problems. The term static analysis is
also used when disassembling a compiled program for review with a tool such as the Interactive Disassembler
(IDA). Dynamic analysis is typically performed during the validation phase of the SDLC once the code has
been compiled. Various runtime tools are available such as Microsoft's AppVerifier for unmanaged code.
(Unmanaged code refers to low-level languages such as C, C++, and assembly. Managed code refers to
languages such as Java, C#, and Ruby.) These tools look for program issues typically related to problems such
as heap corruption that are difficult to locate with static analysis. An example of a dynamic analysis tool for
managed code is FxCop from Microsoft.

For more information on AppVerifier and FxCop check out the following links:

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2008/ms220948(v=vs.90)
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/bb429476(v=vs.80)

© 2019 Erik Van Buggenhout & Stephen Sims 31

Most Common Static Analysis Tools

There are a ton of tools for static analysis, some supporting multiple
languages and others specific to a language, such as Java.

Two of the most popular commerecial solutions are:
« HP Fortify — Supports more languages than any other tool
+ Veracode — Popular and effective tool supporting many languages

Two of the most popular open-source or free tools are:
« CodeSearchDiggity — Searches open-source projects for vulnerabilities
« VisualCodeGrepper — Actively maintained code scanning tool

Note: Both support multiple languages

SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses

Most Common Static Analysis Tools

If you use Google to search for "static analysis tools", you will get countless results. There are many lists put
together by practitioners stating what they claim to be the best free and commercial solutions available. Some
of these tools are specific to one or two languages, while others offer support for dozens of languages. There
are both commercial tools and open-source or free tools. Two of the most popular commercial solutions in use
today are:

HP's Fortify Static Code Analyzer — HP acquired Fortify Software in 2010, which included the Static Code
Analyzer. The tool supports more languages than any other solution available at the time of this writing.
Languages include C, C++, Python, Ruby, Visual Basic, Java, PHP, and many others. More information at
https://www8.hp.com/us/en/solutions/business-solutions/printingsolutions/overview.html

Veracode Static Analysis — The most common languages are supported, such as Java, C, C++, Objective-C,
NET, and others. More information at https://www.veracode.com/products/binary-static-analysis-sast

There are also a large number of open-source or free tools available for use. Two of the most popular:

CodeSearchDiggity — A tool included as part of the SearchDiggity project maintained by Bishop Fox that
allows you to search through open-source code for vulnerabilities and other related issues. More information at
https://resources.bishopfox.com/resources/tools/google-hacking-diggity/

VisualCodeGrepper — An actively maintained open-source code scanning tool supporting multiple languages
including Visual Basic, PHP, C++, Java, and a couple others. More information at
https://sourceforge.net/projects/visualcodegrepp/

32 © 2019 Erik Van Buggenhout & Stephen Sims

In-Depth Fuzzing of Third-Party Applications

Fuzz testing (fuzzing) is the process of attempting to induce
program failure by injecting random or mutated data as input to
applications, drivers, and anything else that accepts input.

Applications are typically designed to be well-behaved and are
based on RFCs or other documentation-based standards.

Various techniques can be applied. They include:
e Static

« Randomized

e Mutation

* Intelligent Mutation

Code coverage is often used for measurement.

SEC599 | Defeating Advanced Adversaries — Purple Team Tadc5[& Kﬁl‘Chain,Defenses A

In-Depth Fuzzing of Third-Party Applications

Fuzz testing, also known as fuzzing, is the process of introducing random or malformed input to well-behaved
network and file parsing applications, drivers, and anything else that accepts input. Googling for the definition
of fuzzing will yield many different results. You have to imagine that the majority of applications are written
based on a standard, such as those defined in a Request For Comment (RFC) document. Take the Session
Initiation Protocol (SIP) defined under RFC 3261. SIP handles Voice Over Internet Protocol (VOIP) signaling,
such as call setup and tear down. Many vendors, such as Cisco Systems and Avaya, use such protocols. The
protocol is standardized so that one vendor's product is compatible with another vendor's product. These RFCs
tell you the rules, but do not tell you how to write the code. There are countless ways to write the code using
many different languages. When writing a fuzzer, you are attempting to test for various bug classes under
many different conditions. You must think of, or have a tool do it for you, all of the ways a developer could
have made a mistake and test to see if it exists. As you can imagine, this is a time-consuming process.

There are various fuzzing techniques that can be applied. Some of the most common testing techniques
include static, randomized, mutation, and intelligent mutation:

« Static — Manually develop test cases that check for a specific condition, such as the existence of a buffer
overflow vulnerability in a field of an IPv6 header. Even for this one check, in this one field, you would
want to test for multiple sizes for the input as you do not know how large of a buffer was created by the
developer or what function they chose to use to copy data into memory. This is a time-consuming
technique that requires a lot of familiarity with the protocol or file format being tested.

+ Randomized — This is a technique that requires little knowledge about the protocol or file format being
tested. Fields are selected, and then random data is inserted into the field in an infinite loop until stopped.

« Mutation — This is a technique that requires little knowledge about the protocol or file format being tested.

Fields are selected, and then mutated data is inserted to test for conditions associated with various bug
classes.

© 2019 Erik Van Buggenhout & Stephen Sims 33

« Intelligent Mutation — This technique requires deep familiarity with the protocol or file format being tested.
Test cases are written to reach specific points in an application, and then selected fields are chosen for the
introduction of mutated data. This is the most comprehensive technique if properly used. Tools can be used
to measure the amount of code reached to ensure coverage is maximized.

34 © 2019 Erik Van Buggenhout & Stephen Sims

Fuzzing Example: Trivial File Transfer Protocol (TFTP)

TEFTP defined in RFC 1350:

« "TFTP is a simple protocol to transfer files, and therefore was named the Trivial File
Transfer Protocol or TFTP. It has been implemented on top of the Internet User Datagram
protocol (UDP or Datagram) so it may be used to move files between machines on different
networks implementing UDP." (Sollins, K.)

This protocol will serve as our example when going through the various fuzzing
types to help add context.

« We will use the following fields taken from the RFC which indicate the request type,
filename, and mode:

| SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses s

Fuzzing Example: Trivial File Transfer Protocol (TFTP)

The TFTP protocol is defined in RFC 1350. As stated in the RFC, "TFTP is a simple protocol to transfer files,
and therefore was named the Trivial File Transfer Protocol or TFTP. It has been implemented on top of the
Internet User Datagram protocol (UDP or Datagram) so it may be used to move files between machines on
different networks implementing UDP." (Sollins, K.) This protocol was selected due to its simplicity. We will
use it as an example for the various fuzzing techniques described shortly.

The image on the slide, taken from the RFC, shows the fields required when making a TFTP request. You
would typically have a TFTP client that sends a request to a TFTP server. This request is most commonly a
read or a write request. A read request means you would like to get something from the server and a write
request means that you would like to put something onto the server. The 2-byte field for "Opcode" expects a
"x00\x01" for a read request and a "\x00\x02" for a write request. After this 2-byte field is the "Filename"
field, which expects a string. In other words, it wants you to include the name of the file to read or write. A
question that must be asked is, "How does the server know when it's reached the end of the filename?" The
next field is a 1-byte null or 0. When the server reads in the name of the file, it knows it's reached the end
when it hits the null byte. The next field is the "Mode" field which is also to be a string. Options include
"netascii," "binary," and "mail." Being that this field is also a string, it terminates with a null byte.

Citations and References:

Sollins, K. "The TFTP Protocol (Revision 2)." RFC 1350 The TFTP Protocol (Revision 2).
https:/tools.ietf.org/html/rfc1350 (accessed February 1, 2017).

© 2019 Erik Van Buggenhout & Stephen Sims 35

Static fuzzing requires that test cases be developed

« Each test case checks a specific part of the input or file format for a specific
bug class

» e.g. One test case checks one field for a buffer overflow and another checks
for command injection
This requires a lot of time researching the protocol or file format to
come up with countless tests.

Since the Filename and Mode fields expect a string, we can try to
overflow them one at a time:

* Request 1: "\x00\x01<1,000 A's>\x00netascii\x00"

* Request 2: "\x00\x01filename\x00<1,000 A's>\x00"

Defeating Advanced \jersa}iés - PurpleTamTacucs &Kill Chg!;rg Deféﬁes o

Static Fuzzing

Static fuzzing requires the tester to spend a lot of time understanding the protocol to be fuzzed. Any
documentation available, such as an RFC, would be inspected closely in order to begin creating test cases.
Each test case would test for one condition. You have to remember that many languages can be used to write
something such as a TFTP client or server. Each language comes with its own set of potential problems when
poorly coded. Since we just saw that the Filename and Mode fields require a string and keep reading until
reaching a null byte; either one could be a field that could be one we'd want to check for the presence of a
buffer overflow. On the slide, we have two examples:

Request 1: "\x00\x01<1,000 A’s>\x00netascii\x00"
Request 2: "\x00\x01filename\x00<1,000 A’s>\x00"

Request 1 checks the Filename field to see if a string of 1,000 A's causes an overflow. Request 2 does the
same, but for the Mode field. Just because a server doesn't crash with 1,000 A's doesn't mean you would move
onto testing for another bug class. It might crash at 500 A's, but not 1,000, or any number of bytes below,
between, or above. It all depends on how the code was written and any number of idiosyncrasies. Each
program is different and is why we would need to come up with a large number of test cases that use good
samples to test for as many conditions as possible. This can result in thousands of test cases.

36 © 2019 Erik Van Buggenhout & Stephen Sims

Randomized Fuzzing

Randomized fuzzing is good from the perspective of not needing

advanced knowledge of the protocol or file format being fuzzed.

« The tester simply selects a desired field to fuzz and the fuzzing application
randomizes the input infinitely at that location

« Proper monitoring of the fuzzing session becomes critical using this
technique

» If you crash the application but don't have monitoring, you may never hit
that condition again

2 bytes string 1 byte string i byte

| Opcode | Filename | o | Mode i o |

Randomly insert data

i SEC599 | Defeatmg Advanced AdVersaﬁés: —.qupie Tmrﬁ Tactic

o

Randomized Fuzzing

Randomized fuzzing requires no upfront knowledge about the protocol or file format being fuzzed. Typically,
a sample file or network packet data is acquired. This may be a valid PNG or JPG file, a captured SSH stream,
or any number of options. A field is then selected to be fuzzed. The fuzzer then replays the network stream or
produces a large number of files if fuzzing a file format, randomizing the data in the selected field. This would
run infinitely until stopped. As you can see, it is a simple concept that requires good monitoring to catch the
crash. Take the example of fuzzing an SSH server. The fuzzer will continuously connect to the server, sending
random data in the selected field. If this causes a crash and the server dies, how do you know what random
data was sent to cause the crash? Since it is random, if you start it over, you may never hit that test case again.
It is, therefore, critical to record the data being sent to the server so that when it crashes, the most recent
samples sent are available.

© 2019 Erik Van Buggenhout & Stephen Sims 37

Mutation Fuzzing

Mutation fuzzing also requires little knowledge of the protocol or

file format being fuzzed.

+ Instead of the data being random in the selected field, the data is mutated
based on various bug classes

o Tt is finite in that there are only so many mutations to go through in each bug
class being checked

» Once exhausted, the fuzzing session ends

2 bytes string i byte string 1 byte

| Opcode | Filename | o] Mode | [D |

Mutate data

Mutation Fuzzing

As with randomized fuzzing, mutation fuzzing requires little to no upfront knowledge about the protocol or
file format being fuzzed. Where it differs is that instead of random data being inserted, mutations are
generated based on various bug classes such as buffer overflows, command injection, and others. It is finite
since there are only so many mutations created per each bug class. This means that if you caused a crash, but
missed the mutation that caused it, you could restart the fuzzer and likely hit the same condition.

38 © 2019 Erik Van Buggenhout & Stephen Sims

Intelligent Mutation Fuzzing

Intelligent mutation fuzzing can do all that of randomized and
mutation fuzzing but adds "intelligence."

» Often referred to as "protocol grammar," this fuzzing technique requires that
the author scripts how the application communicates or handles files

» Take the PDF file format as an example, which is quite complex
« This fuzzing technique would require that you define the PDF file format in a
script, and then choose which fields should receive mutation fuzzing
Regular mutation fuzzing typically starts with a sample data set and
the field to fuzz, which will receive the mutations.

With intelligent mutation fuzzing, we script the file format upfront,
giving us much more power and control.

© SEC599| DefeatingAdvanced Adversaries — Purple Team Tactics & Kill Chain Defenses

39

Intelligent Mutation Fuzzing

Intelligent mutation fuzzing goes above and beyond the limitations of randomized and mutation fuzzers. It
requires a lot of upfront time spent to understand the protocol or file format being fuzzed, similar to that of
static fuzzing. With randomized and mutation-based fuzzing, a sample data set is typically used as a starting
point. For example, if we wanted to fuzz the PDF file format, we would start with a legitimate PDF document
and select fields to mutate or randomize. With intelligent mutation fuzzing, we do not start with a sample data
set. Instead, the file format or network protocol grammar is scripted into a source file. Some of the fields are
left as static so they are not fuzzed, and others are selected for fuzzing. If an HTTP server must always receive
a request type such as PUT, GET, POST, and HEAD, then we always want to lead with those values and don't
want to fuzz them. Then, we can script out the rest of the interaction with the HTTP server, choosing desired
fields for mutation. This allows us to get better code coverage.

© 2019 Erik Van Buggenhout & Stephen Sims

39

Code Coverage

Code coverage is a way to measure how much executable code
within an application is reached and how many times.

It is the best way to ensure all areas of an application are tested.
There are two main types of code coverage:

Source Code Best option The code is compiled with special options allowing for
Assisted Source code the tracking of each line reached and is mapped back to
Measurement available the line number in the source code.
el Alternative The instruction pointer of the processor is tracked to
S Source code NOT record what virtual memory addresses are reached and a
available report is provided.

Code Coverage

Imagine if you were a law enforcement officer tasked with searching a large building for a suspect. It would
likely be expected that you search each and every room. If you skip % of the rooms as many are locked, then
your coverage isn't very good. Now think of a large application such as Microsoft Word. There are many
features and a lot of executable code. How do you know what lines of code you have reached, and which ones
were not reached? You need a code coverage tool. The low-hanging fruit that is easy to reach in an application
has likely been repeatedly tested and less likely to have a bug. The code that is harder to reach is more likely

to have a bug.

There are two main forms of code coverage testing, source code assisted measurement and block
measurement. Source code assisted measurement requires that you have the source code of the application
being fuzzed, which is not always available. It also requires that you compile the source code with special
debugging options to support the technique. There are various examples of source code assisted fuzzers and
code coverage tools, such as the American Fuzzy Lop (AFL) by Michal Zalewski (Icamtuf) at Google. Source
code line numbers are mapped to the compiled virtual addresses and then recorded at runtime during a fuzzing
session. Tools such as the AFL also generate test cases (mutations) and automate the process. Block
measurement can be used when source code is not available. A block is a grouping of code within a function
that typically ends with a conditional branch, return, or other instruction. Imagine the statement, "If the value
being checked is 0 go right and if not 0 go left." This branch would lead to another block of code within the
function. In block measurement, each block's virtual memory address is recorded for later analysis.

40 © 2019 Erik Van Buggenhout & Stephen Sims

Course Roadmap

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling
Day 1: Introduction & Reconnaissance } Patch Management
Day 2: Payload Delivery & Execution Exploit Mitigation Techniques
Exercise: Exploit Mitigation using Compile-Time Controls
Day 3: Exploitation, Persistence and

Exploit Mitigation Techniques — ExploitGuard, EMET & others
Command & Control Exercise: Exploit Mitigation using ExploitGuard
Day 4: Lateral Movement Avoiding installation
Typical persistence strategies
Day 5: Action on Objectives, Threat How do adversaries achieve persistence?
Hunting & Incident Response Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control
Day 6: APT Defender Capstone Detecting Command & Control channels

Exercise: Detecting C&C channels using Suricata, JA3, & RITA

SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses

4

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims

41

OS Market Share

somommrmnenl} L NN o
Windows 7 still dominant. o
" o S i
XP still at 5.23%
e Automated Teller Machines (ATMs)
° Embedded systems S— ' e F——
201803 2018-04 201803 2018-06 201807
B Windows 10:Share B Wincows 7:Share |1 Windows 8.1: Share B Windows XP: Share
Windows 10 quickly gaining traction. Windows 7 42.95%
Windows 10 32.98%
windows 8.1 5.59%
Mac OS and Linux still a small number in Windows XP_ 5.23%
S L Taken on August 6, 2018 from https://netmarketshare.com

OS Market Share

The image on this slide gives you an idea as to the state of OS market share, clearly showing Microsoft
Windows as the dominant OS. At the time this was pulled in August 2018, Windows 7 was still the leader,
with Windows 10 in second place. There are limitations in Windows 7 from a security perspective that cannot
be fixed. An example is Control Flow Guard (CFG), a built-in security control we will discuss later this day.
This was backported to Windows 8.1, but not Windows 7. There are also many improvements in the Kernel on
Windows 10 that do not exist in Windows 7. It is critical to keep these older OSes up to date. MacOS is shown
at the NetMarketShare site; however, it is low enough to not display on the graph.

42 © 2019 Erik Van Buggenhout & Stephen Sims

Desktop Browser Market Share

| Chrome clearly the dominant browser. o G < ivo
IE has lost market share over the past
several years. .~ S NS R
L L Oy 3
2018-04 201805 201806 201807
B Cnrome:Share W Edge:Share 7 Firefox: Share Bl Internet Explorer 11: Share
Edge has not gained much traction.
Chrome £61.64%
Firefox 11.02%
Internet Explorer 11 9.28%
Firefox holding steady in second place. S 2%
Taken on August 6, 2018 from https://netmarketshare.com

Desktop Browser Market Share

On this slide is the desktop browser market share as of August 2018. Note that these numbers change, so it is a
good idea to use the provided link to see the updated percentages. For a very long time, Internet Explorer was
the dominant browser; however, Chrome has taken a large lead over the past couple of years. Microsoft Edge
has struggled to gain traction. Browsers have been the source of many compromises over the years and as
such, security has been greatly improved. Bug classes such as Use After Free (UAF) were one of the primary
vectors in end-user compromises, but security improvements such as MemGC have greatly mitigated the
technique.

© 2019 Erik Van Buggenhout & Stephen Sims 43

Application and OS Patching

Maintaining a handle on the patching of a large number of systems and
applications is complex.

The more users with administrative access to their workstations, the more
likely there are going to be unique applications installed.

« Many of which are likely not approved

+ Some companies grant all users administrative access to their computers

Some vendors make patching easy, such as Microsoft, while others have no
process at all.

Solutions like application whitelisting can be performed but is hard when
scaling in medium to large organizations.

Application and OS Patching

As we just saw, it is no secret that the majority of companies use Microsoft Windows as their OS for employee
workstations and laptops. Fortunately, Microsoft has a mature process for patch management with the well-
known Patch Tuesday. Other OS vendors are not so clear as to when patches will be released, such as Apple.
Some vendors, such as Oracle, have scheduled updates, but less frequently than Microsoft. Oracle releases
updates each quarter. The mobile market makes things more complex, especially with some Android devices
that are incapable of even being updated. Regardless, most organizations have a good handle on the patching
of operating systems.

A different issue is around the patch management of installed applications. Some very large organizations,
which will not be named, give administrative access to all employees. The reasoning for taking this approach
is up to each company and their policies. A strong application whitelisting policy and enforcement can help
mitigate the installation of unauthorized applications; however, whitelisting is difficult to manage. At
organizations that do not grant all users administrative access, it is fairly typical for many users to be given
approval to have this level of access. Take a network engineer, as an example, who is able to justify the need
for administrative access to perform job-related tasks. The justification may be valid; however, it often results
in the installation of third party applications that are not on the organization's approved list.

44 © 2019 Erik Van Buggenhout & Stephen Sims

Identifying Unauthorized Applications

Commercial products such as Ivanti (formerly Shavlik) can help to maintain
third-party application patches.

+ Alarge, but limited number of applications are supported

* Applications are tested prior to the release of patches

» What about apps not supported?

Simple scripting can be used to pull applications installed in locations such as
"Program Files."

+ Unauthorized applications discovered can be handled

 Does not consider stand-alone applications

Applications that are allowed must be managed centrally.

&Kill Chain Defenses

 SEC599 | Defeating Advanced Adversaries

Identifying Unauthorized Applications

At one organization this author worked at, we wrote a script to pull the name and version of all applications
installed on every system where the user had administrative access. The result was a staggering 1,100+
applications. Some of these were the same application but different versions. When Googling for the words
"<application name> vulnerability" there were countless hits. The point of this example is to demonstrate the
complexity of trying to manage patches for that many applications not on the approved list. This also did not
include stand-alone applications, but instead only applications installed in "Program Files" on Windows

systems.

There are various commercial products available to aid in managing patches to third-party applications, such
as Ivanti (formerly Shavlik). These solutions typically focus on the most common applications such as Flash,
browsers, document readers, Oracle, etc.... Part of the service offered by these solutions includes the testing of
the patches to ensure applications are not negatively affected. You would need a process for applications that

are not supported.

More information:
https://www.ivanti.com/solutions/needs/manage-my-os-and-third-party-application-patches

© 2019 Erik Van Buggenhout & Stephen Sims 45

Microsoft Patch Tuesday

Microsoft releases patches on the
second Tuesday of each month, for
now...

Effort to help simplify the patching
process: Random patch releases caused
many users to miss patches.

Rew o)

 Exploit
Wednesday

o % & % 3 8. & 58 ¢ %.3% 5 & »
SN

Patch delay of max. 30 days has security
concerns: Emergency patches are -~ e — o -
released out-of-cycle. — ~—

2 Exploit Wednesdays
Many eXPIOItS released in the days Analysis of a Russian hacker forum's traffic has shown evidence for exploit
foll owing a patch (="EXP|0it Wednesdays. While generic forum posts remain approximately constant

i throughout the week, there is'a strong increase in traffic related to generic and
WedHESda)’S) Windows CVEs onVVednesdays.

Microsoft Patch Tuesday

In October 2003, Microsoft started "Patch Tuesday." This came after complaints from users and administrators who
stated it was difficult to keep up with patching their systems when it was unknown as to when patches would be
released. The patches were released by Microsoft as they were approved. Users and administrators had to be
constantly ready to handle the release of new patches. It is now well known that the second Tuesday of each month,
Microsoft will release patches, both security-related and functionality or maintenance-related. The idea was that it
would simplify the patching process. Advanced alerts are sent out from Microsoft to inform and prepare users of the
nature of each patch. Most organizations have adapted to "Patch Tuesday" and have a process in place to test patches,
followed by deployment to their systems. There are many services available to assist with deployment, from
automatic updates on each Microsoft OS to Windows Server Update Service (WSUS) helping with large-scale patch
management and deployment. Third-party applications are also available.

There are concerns around the waiting period in between patch releases from Microsoft. It is no secret that many
exploit developers wait for patches to be released so that they can compare the patched version of a function or
library to that of the unpatched version. Tools such as IDA Pro and BinDiff can quickly locate changes to the code.
An experienced reverse engineer can locate the vulnerability within the unpatched code and write programs to reach
the location within the affected program. This results in the release of cutting-edge exploits, which often prove
lucrative to an attacker because many organizations do not quickly patch their systems. Exploits are sometimes
released the following day after a patch is deployed by Microsoft, which caused the term "Exploit Wednesdays" to
get adopted in the IT landscape. There is also the issue around attackers intentionally waiting until the day after patch
Tuesday to release new unknown known exploits, knowing that it will likely not be patched for up to 30 more days.
Microsoft does occasionally release out-of-band patches for critical updates; however, systems are often left
unpatched for weeks. Workarounds are often provided, but this is only a temporary fix and is not always practical.
Patch diffing is not only used by the bad guys. Those working for organizations often reverse engineer patches to
determine the effect to the organization of patch application or to determine the impact of the vulnerability. Intrusion
Detection System (IDS) signatures can also be developed from a thorough understanding of a vulnerability, as well as
developing modules for vulnerability scanning and penetration testing frameworks.

Exploit Wednesday source: Recorded Future: https://www.recordedfuture.com/hacker-forum-traffic/

46 © 2019 Erik Van Buggenhout & Stephen Sims

Windows as a Service (Waa$)

Windows has always had various versions (Professional, Home, Enterprise,
Ultimate) service packs, monthly updates, etc.

Microsoft desires to have all systems in the same known state.
+ This allows them to perform QA testing on systems in the same state as the customers
receiving updates
 Monthly cumulative updates supersede the prior month's update and include all features
and fixes
* Feature updates are deployed multiple times per year
» Quality updates, including security patches, are sent in monthly cumulative packages

Windows 10, Windows 10 Mobile, and Windows 10 IOT Mobile all fall under
WaaS.

: a0 /

Windows as a Service (WaaS)

Prior to the release of Windows 10 Beta, Microsoft started to release bits of information about the idea of
Windows as a Service (Waa$S). Little information was initially available, and many websites tried to define
what it could mean. Even today, it is still complicated to digest with the introduction of servicing branches and
various deferral options. Microsoft desires for all systems to be in the same state. This makes their life easier
as the systems out in production around the world look more like the ones in their testing labs. Knowing the
state and build of all systems out there should result in fewer compatibility problems. Each month, a
cumulative update is made available that supersedes the prior month's update. These cumulative patches
include all updates for OS version. There are two types of updates: Feature and quality. They wish to do away
with things like "Service Pack 2" and "Revision 3" and standardize on not more than two supported builds.
The quality updates include security patches. Picking and choosing which updates to apply results in systems
that are in many different states. Cumulative roll-ups help to ensure a system has all necessary patches to
remain secure and support newer features.

Although cumulative updates are now pushed out for all systems, ever since October 2016, Windows 10,
Windows 10 Mobile, and Windows 10 IOT Mobile are the only ones falling under the official Waa$S practice.

Reference:
Halfin, Dani. "Overview of Windows as a service." TN Overview of Windows as a service.
https://docs.microsoft.com/en-us/windows/deployment/update/waas-overview (accessed January 29, 2017).

More Information:
https://docs.microsoft.com/en-us/windows/deployment/update/index

© 2019 Erik Van Buggenhout & Stephen Sims

47

WaaS Servicing Branches

Three servicing branches are available to allow organizations to
choose when devices are updated:

Current

Branch Feature updates are immediately available to systems set not to defer updates.
(CB) Good for developers and other groups to test for compatibility issues.

Updates deferred for about four months while vetted by business partners and
FEEIEEE customers. After this period, the CB build is assumed.

((el:1:)) Quality updates can only be deferred for 30 days using Windows Update for Business,
but up to 12 months with WSUS.

Long-Term T J
ni et Updates deferred for an average of 2-3 years for specialized devices, such as cash

(5 5:)) machines, medical, and automotive.

WaasS Servicing Branches

Three servicing branches are available from Microsoft to help with patch distribution. It actually gets quite
complex when evaluating the various update server options such as Windows Update for Business, Windows
Server Update Services (WSUS), and the System Center Configuration Manager. The references provided
below and associated links at those locations are very useful in trying to understand how your Windows 10
organization can architect the right solution. The three branches are:

Current Branch (CB) — This branch makes features available as soon as they become available so that groups
such as developers and QA can begin ensuring there are no compatibility problems, or those looking to take
advantage of the new features can get started as soon as possible.

Current Branch for Business (CBB) — This branch is designed for wide-scale deployment to an enterprise. All
of the features and such made available in the CB are moved to the CBB after a few month's vetting process
involving customers and business partners. Quality updates can be deferred by different amounts depending on
the Group Policy Option (GPO) settings pushed out and the patch distribution server option being used. This is
likely going to continue to change and evolve as feedback is received by Microsoft.

Long-Term Servicing Branch (LTSB) — This branch is designed for specialized devices such as ATM/cash
machines, medical devices, automotive devices and others. These are devices that have a specific focus or role
and do not utilize the features made available by Microsoft.

References:

Halfin, Dani. "Overview of Windows as a service." TN Overview of Windows as a service.
https://docs.microsoft.com/en-us/windows/deployment/update/waas-overview (accessed January 29, 2017).
Halfin, Dani. "Managing updates using Windows Update for Business." TN Managing updates using Windows
Update for Business. https:/docs.microsoft.com/en-us/windows/deployment/update/waas-manage-updates-
wufb (accessed January 29, 2017).

48 © 2019 Erik Van Buggenhout & Stephen Sims

Patch Distribution

— Windows Update Automatic updates, available in the control panel

| l5 sk fob and achvch Automatic updates have expanded functionality

2008/2012
Windows Server Update Enterprise patch management solution with control over
Service (WSUS) patch distribution

Windows Update for
— Business (WUB) for
Windows 10

Patch Distribution

Third-Party Patch
Management Solutions

. \ SEC599 | Def eaﬁh‘gAdvancédtfxq;lefsafies — Purple Team Tactics & Kill Cham Défensﬂés; 4y

Patch Distribution

This slide serves as a simple high-level overview of the Microsoft patch distribution process. Many
organizations do not permit end users to connect to Microsoft to obtain patches. Instead, a centralized
enterprise patch management process controls patch distribution. The reasoning behind such a solution ranges
from system consistency to security to application stability. The ability for each user to connect at any time to
the Microsoft update site and install desired patches renders the system builds to be highly inconsistent. Some
patches have even been known to introduce new vulnerabilities. Other patches have been known to cause
applications to break or behave differently than when the patch was not installed. All these issues make it
desirable to control the distribution and installation of patches on end user systems and servers.

Automatic updates have been installed by default on Windows systems since Windows ME, XP, and Windows
2000 Server. Automatic updates can be used to check for updates, check for updates and download them, and
check for updates, download, and install them. Enterprise patch management often takes advantage of
Windows Server Update Service (WSUS) servers to communicate directly with Microsoft update servers.
Updates can be scheduled and sent directly to the WSUS servers over HTTP or HTTPS. Administrators then
have the ability to first test the patches prior to deployment. Automatic updates on each end user system can be
configured to communicate only with the enterprise WSUS servers. Administrators can select which patches
they want pushed out and when. They also have the ability to set whether a patch can be deferred by the user
and how soon a reboot is required if applicable. Windows Update for Business (WUB) is available starting
with Windows 10. Update deferral is more limited, and Microsoft sees it as more of a constant stream of
updates that should be installed as soon as possible. Check out SANS SEC505 "Securing Windows and
PowerShell Automation" for more information on securely architecting Windows domains and a building a
patch management process.

Third-party patch management solutions such as PatchLink and Lumension are available, often offering
additional services and support for different operating systems.

© 2019 Erik Van Buggenhout & Stephen Sims 49

Reverse Engineering Updates

It is important to know that good guys, bad guys, and those in-
between often reverse engineer security updates.

Exploitation frameworks such as Metasploit, Core Impact, SAINT Exploit,
and Immunity Canvas want to be able to offer their customers exploits that
are not available by their competitors

Attackers want to quickly discover the patched vulnerability and attempt to
develop a working exploit before most organizations patch

The above is often referred to as a "1-day exploit" since there is a race
condition between the time a patch is released, and the time systems are
patched

Reversing patches is an acquired skill and is not limited to
Microsoft updates.

Reverse Engineering Updates

If you think about a security update, it should quickly become obvious that people might be interested in the
contents of that update as it contains sensitive information to those with the right skillset. This is something
that is performed by good guys, bad guys, and those in-between. Think about it from the perspective ofa
vendor who maintains an exploitation framework as a product, such as Immunity Canvas, Core Impact,
Metasploit, or SAINT Exploit. Most disclosures are done privately and not found in the wild. This means that
the vendor has been given the technical details and not the public. The vendor then creates a patch and
distributes it to their customers. If you have someone with the expertise to take the patch and reverse engineer
it to find the fix, that information can be used to potentially write a working exploit. Now your product has
exploits available to privately disclosed vulnerabilities that are not possessed by your competitors.

If Microsoft releases patches on the second Tuesday of the month, and then someone reverse engineers the
patches and quickly gets an exploit working, that exploit would be valuable to penetration testers, attackers,
and security vendors. This is often referred to as a 1-day exploit since those performing the reversing are
attempting to quickly locate the fix and get a working exploit built before organizations patch. The more time
that goes by the less valuable the exploit as more systems are patched.

50

© 2019 Erik Van Buggenhout & Stephen Sims

Obtaining Patches for Analysis

https://docs.microsoft.com/en-us/security-updates/

Microsoft Security Bulletin MS17-004 - Important

Security Update for Local Security Authority Subsystem Service
(3216771)

Published: January 10, 2017

Knowledge base number

Microsoft Knowledge Base is a repository of over 200,000
Version: 1.0 articles made available to the public by Microsoft Corporation.
It contains information on many. problems encountered by
users of Microsoft products. Each patch or article bears an 1D
ber and articles are often referred to by their Knowledge 2
ol ' 4 i & On this page

Executive Summary FEEGORE
A denial of service vulnerability exists in the way the Local Security Authority Subsystem Executive Summary e
Service (LSASS) handles authentication requests. An attacker who successfully exploited the Affacted Software and
vulnerability could cause a denial of service on the target system's LSASS service, which Vulnerability Severity Ratings

triggers an automatic reboot of the system.
Vulnerability Information

This security update is rated Important for Microsoft Windows Vista, Windows Server 2008,
Wwindows 7, and Windows Server 2008 R2 (and Server Core). For more information, see the
Affected Software and Vulnerability Severity Ratings section.

Security Update Deployment

Acknowledgments

Obtaining Patches for Analysis

Microsoft TechNet provides us with the ability to directly acquire patches. Available at
https://docs.microsoft.com/en-us/security-updates/, we can search for a specific update and download the
appropriate patch for a given operating system. Patches are released in a couple of different formats,
depending on the OS level. The cumulative updates that started in October 2016 have made the process of
identifying the individual patches more difficult. They used to be in a stand-alone format and easy to extract.

Microsoft Knowledge Base is a repository of over 200,000 articles made available to the public by Microsoft

Corporation. It contains information on many problems encountered by users of Microsoft products. Each
patch or article bears an ID number and articles are often referred to by their Knowledge Base (KB) ID.

© 2019 Erik Van Buggenhout & Stephen Sims 51

Types of Patches

Patches for XP and Windows 2000, and 2003 server had .exe
extensions and still do for extended embedded XP support.
* For example, WindowsXP-KB979559-x86-ENU.exe

Patches for Vista, 7, 8, 10, and Server 2008/2012/2016 have
.msu extensions.
* For example, Windows6.0-KB979559-x86.msu

Extraction methods differ slightly, as to the contents of each
package.
« Why mention XP? XP Embedded was supported until April 2019!

Types of Patches

Most patches distributed by Microsoft have a .msu extension; however, legacy patches had a .exe extension.
Patches for Windows XP, 2000 Server, and Server 2003 had the .exe extension, while Windows Server
2008/2012/2016, Windows Vista, and Windows 7/8/10 have the .msu extension. For example, a patch for a
Windows XP system would look like:

WindowsXP-KB979559-x86-ENU.exe
The same patch on Server 2008 would look like:
Windows6.0-KB979559-x86.msu

You may be wondering why it's worth mentioning XP. Good question. Patches for XP embedded were still
available until April 9, 2019. There are people out there who acquire the embedded version patches, use a
registry hack, so that they can stay on XP. See this website as an example:
https://www.ghacks.net/2014/05/24/get-security-updates-windows-xp-april-2019/

From the perspective of reverse engineering patches, XP is also still of interest. Many vulnerabilities affect
many or all versions of Windows. You would have to imagine that the code on XP is likely less complex than
Windows 10 and therefore, reversing the same vulnerability on XP could save time.

Contents within the patch files differ depending on the OS, as do the tools to extract them manually. The .exe

patch files tend to be much simpler to get to the wanted files, whereas the .msu patch files may require
additional examination, especially with cumulative updates.

52 © 2019 Erik Van Buggenhout & Stephen Sims

Extraction Tool for .exe Patches

The extract tool:
<pkg_name> /extract:<dest>

c:\derp\MS13-017>WindowsXP-KB2799494-x86-ENU.exe /extract:c:\derp\MS13-017
c:\derp\MS13-017>dir
Volume in drive C has no label.

Extraction Complete @

Volume Serial Number is CEF2-482A GDR vs. QFE
Directory of c:\derp\MS13-017 GDR = General ,ig‘ Extraction Complete
Distribution Release A
01/31/2017 12:47 PM <DIR> SP3GDR e
FE = Quick F

01/31/2017 12:47 PM <DIR> SP3QFE Q;gi,z:'r?ng - Fox
07/05/2010 05:15 AM 17,272 spmsg.dll ; :
07/05/2010 05:15 AM 231,288 spuninst.exe
01/31/2017 12:47 PM <DIR> update
04/05/2013 10:55 AM 2,275,352 WindowsXP-KB2799494-x86-ENU.exe

3 File(s) 2,523,912 bytes

5 Dir(s) 161,896,198,144 bytes free

Extraction Tool for .exe Patches
The extract tool can be used via the command line to extract patches with the .exe extension. Simply type in
the name of the patch file containing the .exe extension, followed by /extract:<dest>. For example:

C:\derp/MS13-017> WindowsXP-KB2799494-x86-ENU.exe /extract:c:\derp\MS13-017

If successful, you get the pop-up box on the screen stating that extraction was successfully completed. Proceed
to review the contents of the package.

You may have noticed that there are two folders: One with GDR in the title and the other with QFE. GDR
stands for General Distribution Release and QFE stands for Quick Fix Engineering.

© 2019 Erik Van Buggenhout & Stephen Sims 53

Package Contents

The SP3*** files are the directories containing the patches.
« The kernel was patched with this update "ntoskrnl.exe".

c:\derp\MS13-017>cd SP3GDR

QFE c:\derp\MS13-017\SP3GDR>dir GDR
Volume in drive C has no label.
The QFE branch is Volume Serial Number is CEF2-482A The GDR branch of updates are used when
cumulative hotfixes issued by Microsoftissues one of the following types of
Microsoft Product Support Directory of c:\derp\MS13-017\SP3GDR updates: Security updates, critical updates,

updates, update rollups, drivers and feature
packs. This branch does not include the
updates from the QFE branch.

Services to address specific
customer issues. These updates
do not get the same quality of

testing as the GDR branch

01/31/2017 12:47 PM <DIR>
01/31/2017 12:47 PM <DIR> 5
01/06/2013 0©5:19 PM 2,148,864 ntkrnlmp.exe

01/07/2013 06:07 AM 2,069,760 ntkrnlpa.exe

01/06/2013 04:37 PM 2,027,520 ntkrpamp.exe

01/06/2013 05:16 PM 2,193,024 ntoskrnl.exe
4 File(s) 8,439,168 bytes

2 Dir(s) 161,896,284,160 bytes free

Package Contents

The package contents of this update are shown in the screenshot. As you saw on the last slide, there are two
directories listed for XP SP3 called SP3GDR and SP3QFE. The contents of the directory SP3GDR contains
multiple files, such as "ntoskrnl.exe." This is actually the name of the Windows Kernel and therefore the
Kernel was patched in this fix. Command switches were used to limit the output to fit the image onto the slide.

"The GDR branch of updates are used when Microsoft issues one of the following types of updates: Security
updates, critical updates, updates, update rollups, drivers, and feature packs. This branch does not include the
updates from the QFE branch.

The QFE branch is cumulative hotfixes issued by Microsoft Product Support Services to address specific
customer issues. These updates do not get the same quality of testing as the GDR branch."

Citation:

Jphillips59. "QFE vs. GDR." QFE vs. GDR Microsoft (Windows) Support — Neowin Forums.
https://www.neowin.net/forum/topic/332694-qfe-vs-gdr/ (accessed January 31, 2017).

54 © 2019 Erik Van Buggenhout & Stephen Sims

Extraction Tool for .msu Patches

expand -F:* <.msu file> <dest> Update file

c:\derp\MS16-106\Patched>expand -F:* Windows6.1-KB3185911-x86.msu .
Microsoft (R) File Expansion Utility Version 6.1.7600.16385
Copyright (c) Microsoft Corporation. All rights reserved.

Adding .\WSUSSCAN.cab to Extraction Queue

Adding .\Windows6.1-KB3185911-x86.cab to Extraction Queue

Adding .\Windows6.1-KB3185911-x86-pkgProperties.txt to Extraction Queue
Adding .\Windows6.1-KB3185911-x86.xml to Extraction Queue

Expanding Files ..

Expanding Files Complete ...
4 files total.

Defeating Advanced

Extraction Tool for .msu Patches

For Windows Vista, 7, 8, 10 and Server 2008/2012/2016, the expanded tool can unpack packages with the
.msu extension. As shown on the slide, the file Windows6.1-KB3185911-x86.msu is expanded with the
following command:

expand —F:* Windows6.1-KB3185911-x86.msu .

Four files are unpacked and can be seen.

© 2019 Erik Van Buggenhout & Stephen Sims 55

Cabinet File Contents

We are interested in .cab files

c:\derp\MS16-106\Patched>expand -F:* Windows6.1-KB3185911-x86.cab .
#0utput truncated for space..

c:\derp\MS16-106\Patched>dir /s /b /o:n /ad
c:\derp\MS16-106\Patched\x86_microsoft-windows-user32_31bf3856ad364e35_6.1.7601.
23528 none_cfc274bde4coef6f
c:\derp\Ms16-106\Patched\x86_microsoft-windows-win32k_31bf3856ad364e35_6.1.7601.
23528 none_bb7d823711eb39fd

We can see that one directory contains a patch to
user32.dll and the other win32lcsys

Cabinet File Contents

As seen on the prior slide, several files were extracted from the .msu file. We must now use the same method
to extract the .cab file. A lot of output is displayed on the screen when extracting the .cab file and as such, it
was truncated from the output on the slide for spacing purposes. A customized "dir" command is then issued to
limit output to directories only. You can see there are two folders, one containing a reference to the name
"user32" and the other "win32k."

56 © 2019 Erik Van Buggenhout & Stephen Sims

The Patched File

Examining folder contents

c:\derp\MS16-106\Patched>cd x86_microsoft-windows-user32_31bf3856ad364e35_6.1.76
01.23528 none_cfc274bde4cOef6f

c:\derp\MS16-106\Patched\x86_microsoft-windows-user32_31bf3856ad364e35_6.1.7601.
23528_none_cfc274bde4coefof>dir

Volume in drive C has no label.

Volume Serial Number is CEF2-482A

Directory of c:\derp\MS16-106\Patched\x86_microsoft-windg
4e35_6.1.7601.23528_none_cfc274bde4coef6f

01/31/2817 12:57 PM <DIR>
01/31/2017 12:57 PM <DIR> AT
08/15/2016 ©06:48 PM 811,520 user32.dll
1 File(s) 811,520 bytes
2 Dir(s) 161,884,778,496 bytes free

Patched file

VWe navigated to the folder containing the "user32"
patch and listed the contents. As you can see, there is

only one file in that folder, which'is "user32.dI[* This
would be the file that you would want to compare
against a prior update to identify changes of interest.

The Patched File

We have now simply navigated to the folder containing the "user32" patch and listed the contents. As you can
see, there is only one file in that folder, which is "user32.dll." This would be the file that you would want to

compare against a prior update to identify changes of interest. More on this shortly.

© 2019 Erik Van Buggenhout & Stephen Sims

57

Extracting Cumulative Updates

As mentioned previously, patches are now cumulative and contain all updates
for the OS version.

« This makes for very large update files that contain hundreds of files

» Mapping an extracted file to the right Knowledge Base (KB) number is difficult

Greg Linares (@Laughing_Mantis) wrote some PowerShell scripts to help
with this problem.
« The concept is quite simple: Using the modified data on the updates to identify files that
have changed within the last 30 days
o They are then placed into unique directories and cleanup is performed
* You still need to determine which file correlates to which advisory, but the process is much
easier

Extracting Cumulative Updates

As previously mentioned, the cumulative updates are very large and contain all patches for the OS version.
When extracting them, there are hundreds to thousands of files. This makes it very challenging to sort through
them to find the desired file and map it correctly to the Knowledge Base (KB) number. Greg Linares, known
as @Laughing_Mantis on Twitter, created a couple of PowerShell scripts to help with this issue (you can find
an example here: https:/pastebin.com/0mYXJGCS). The idea is quite simple, extract everything, delete all the
junk we do not care about, and sort the files over 30 days old into an "old" directory. This allows you to focus
on the files that have data modified within the past 30 days. You still need to map the files to the correct KB
number, but now you are only looking at 10 or so folders as opposed to a very large amount.

58 © 2019 Erik Van Buggenhout & Stephen Sims

Obtaining a Cumulative Update for Windows |0

The following screenshot shows the cumulative update file for July
2018:

Search results for "2018-07"

Updates: 1 - 25 of 222 {page 1 of 9}

Tite Products Classfcation | Lost Updiated | Version | Size |
ebuses Sy (KE4346877) Windows 10 Windons 10 LTSS Updistes 773012018 wa 1313248 ‘Downicad
Syztene (KBAZ46577) Wiindows 10¥iincows 10 LTS3 Updstes /3012018 wa s5e3 M2 Downipa

The cumulative updates result in
some very large files.

Obtaining a Cumulative Update for Windows 10

This slide simply shows a screenshot of the July 2018 cumulative update for Windows 10. As you can see, the
x86 file is 688MB and the x64 file is over 1GB. Changes in the way Microsoft is managing incremental
updates to reduce the file size may allow for this to be smaller for patching:
https://www.theverge.com/2016/11/3/13511012/microsoft-windows- 10-unified-update-platform-features

© 2019 Erik Van Buggenhout & Stephen Sims 59

PatchExtract

Now that we have the update downloaded, let's extract it with
PatchExtract125 from Greg Linares.

c:\Patches\MS18-JAN\x86>Powershell -ExecutionPolicy Bypass -File c:\Patches\Patc
hExtract125.psl -Patch windows10.0-kb5420790-
x86_04'Fa'F73b5'F'F'F6796b73c2'F'F'F1442561676'F834a9.msu -Path c:\Patches\MS18-JAN

The above command looks quite long, but much of that is due to the long .msu filename

This command took ~10 minutes to complete on the 500MB file.
Some observations:

o It extracted every folder and file from the cumulative update and resulted in
an enormous number of folders ‘

« The modified dates on some patched files dated all the way back to 2015,
indicating that this file contained all patches for this version of Windows

PatchExtract
With the update downloaded, let's extract it with the PatchExtract tool from Greg Linares.

C:\Patches\MS 18-JAN\x86>Powershell -ExecutionPolicy Bypass -File c:\Patches\Patc
hExtractl125.psl -Patch windows10.0-kb5420790-
x86_04faf73b5fff6796b73c2fff1442561676fe34a9.msu -Path c:\Patches\MS18-JAN

The command is rather long due to the .msu filename; however, we're simply telling it what script to execute
"PatchExtract125.ps1," then the name of the .msu file with the "-Patch" switch, and then the path where to put
the extracted files with "-Path."

Depending on the size of the .msu file (S00MB in this case), it can take quite a while to extract all of the files.
It took ~10 minutes for this file. The result is excluded from the slide as it is quite a lot of output, as well as
over a thousand files and folders. When looking at a couple of sample files the dates were all the way back
into 2015, showing that the .msu file contains all patches for this version of Windows.

PatchExtract can be found at: https://pastebin.com/u/Laughing_Mantis

60 © 2019 Erik Van Buggenhout & Stephen Sims

PatchClean

We will now clean up the enormous output and list only the files
changed within the past 30 days (i.e., those associated with this
month's update).

c:\Patches\MS18-JAN\x86>Powershell -ExecutionPolicy Bypass -File c:\Patches\Patc
hClean.psl -Path c:\Patches\MS18-JAN\x86\

#Lots of output that has been truncated for space..

Low Priority Folders: 1010 Thanks, PatchClean!
Low Priority Files: 3380 High Priority

As you can see, PatchClean has identified 16 folders whose
contents have changed within the last 30 days. This saves us

a TON of time!

PatchClean

With all of the files and folders from the cumulative update extracted, we want to know which ones are
associated with this month's update. The PatchClean script will go through and put every folder that contains a
folder with a "Date Modified" time of >30 days into a folder called "Old." It will leave only folders with files
in them that have a "Date Modified" time within the last 30 days. We run PatchExtract with:

c:\Patches\MS 18-JAN\x86>Powershell -ExecutionPolicy Bypass -File c:\Patches\PatchClean.ps1 -Path
c:\Patches\MS18-JAN\x86\

The result, as shown on the slide, is 16 high priority folders. That is much less than the >1,000 folders and
>3,800 files extracted from the cumulative update.

PatchClean is also available at: https://pastebin.com/u/Laughing_Mantis

© 2019 Erik Van Buggenhout & Stephen Sims 61

Patch Extraction Results

istrator, Command Prompt ||) e AR i e e R R A ; T=Nn]
Volume in drive C has no label.
Volume Serial Number is 6681-3E06

| Directory of c:\Patches\MS18-JAN\x86

/1072018 ©5:38 PM <DIR> 5

/10,2018 ©5:38 PH <DIRY L.

/10,2018 0©4:47 PM <DIR> b..ironment-dvd-ef isys_10.0, 18240. 17236
/10,20 g 95:01 PM <DIR> b..re-bootmanager-pcat_10.0. 18240. 17236
/10,20 85:01 PM <DIR> b. .re—memor(diagnost ic_10.0.10240. 17236
/10,2018 ©5:01 PM <DIR> b..vironment-os-loader_10.0. 10240. 17236
/710/2018 ©4:49 PM <DIR> adi32_10.0.10240.17236
1/710/2018 ©4:48 PM <DIR> i..ia-mergedcomponents_10.0. 18240, 17236
/1072018 ©5:01 PM <DIR> ie—htmlrenderina__ll.@.10240. 17236
l710/2018 ©4:48 PM {DIR> ntprint.inf _10.0,10240.17236

/10,2818 @5:01 PM <DIR> ntprint4, inf_10.0. 10240, 17184

/10,20 g 05:01 PM <DIR> L

/710/201 05:38 PM 283 Powershell

/1072018 04:48 PM <DIR> proms@03. inf __10.0. 10240, 17236

/10/2018 ©5:01 PM <DIR> prams©94, inf_10. 0. 10240, 17236

Ve 6/2013 04:47 PM <DIR> s..-spp-plugin-windows_10.0. 10240. 17236
/10,201 94:48 PM <DIR> s..y-spp~plugin~common_10.0. 10240. 17236
/10,2018 ©5:01 PM <DIR> scripting-jscript9_11.0.10240. 17236
/10,2018 ©4:48 PM <DIR> winge-sml-schema 19.0. 10240. 17236
/1072018 ©5:01_PM {DIR> xusb22, inf_10.0,.10240. 17146 2

1 File(s) 283 bytes "
19 Dir(s) 45,534,920,704 bytes free

Patch Extraction Results
This slide simply shows the results in the remaining folders. These should be easily mappable to security
advisories on the Microsoft website. Let's try to do one on the next slide.

62 © 2019 Erik Van Buggenhout & Stephen Sims

Mapping a Patched File to the Security Advisory

MS17-001 says: | Microsoft Security Bulletin MS17-001 - Important

Security Update for Microsoft Edge (3214288)

Publishad: January 10, 2017

c:\Patches\MS17-JAN\x86>cd ie-htmlrendering_11.0.10240.17236

c:\Patches\MS17-JAN\x86\ie-htmlrendering_11.0.10240.17236>dir
Volume in drive C has no label.
Volume Serial Number is 6681-3E@6

Directory of c:\Patches\MS17-JAN\x86\ie-htmlrendering_11.60.106240.17236

01/10/2017 ©5:01 PM <DIR> . Mapping a folder to an advisory
01/10/2017 05:01 PM <DIR> ol
12/21/2016 12:00 AM 18,796,032 edgehtml.dll One of the folders, after we ran PatchClean, is

1 File(s) 18,796,032 bytes "edgehtml.dIl." It seems that we were able to
2 Dir(s) 45,532,430,336 bytes free correlate the patch to the Microsoft Edge advisory
and would be able to'continue analyzing.

Mapping a Patched File to the Security Advisory

When looking at MS17-001 we see that the security bulletin applies to the Microsoft Edge browser. One of the
folders, after we ran PatchClean, is "edgehtml.dIl." It seems that we were easily able to correlate the patch to
the advisory and would be able to continue analyzing.

© 2019 Erik Van Buggenhout & Stephen Sims 63

Patch Diffing

Security patches are often made to applications, DLLs, driver files,
and shared objects.

When a new version is released, it can be difficult to locate what
changes were made:

» Some are new features or general application changes

» Some are security fixes

« Some changes are intentional to thwart reversing
Some vendors make it clear as to the reasoning for the update to
the binary.

Binary diffing tools can help you locate the changes.

Patch Diffing

As we are all aware, new versions of applications come out all the time, as do patches to existing DLLs,
drivers, and shared objects. Some of these changes are simply new features rolled out or fixes to performance
problems. Other changes are vulnerability patches that are certainly of interest. If someone can take the
unpatched version of a binary and diff it against the patched version, the code changes may become visible,
shining a light on an otherwise unknown vulnerability. Those systems that are properly patched would be safe,
leaving anyone who has not patched their system exposed to a potential 1-day exploit. Some vendors make it
clear as to the reasoning behind an update, whereas others attempt to hide their intentions. Either way, binary
diffing tools can often help us locate code changes that could potentially reveal the patched vulnerability. This
is a lucrative practice because many organizations do not patch their systems quickly.

64 © 2019 Erik Van Buggenhout & Stephen Sims

Binary Diffing Tools

The following is a list of well-known binary diffing tools:

« https://www.zynamics.com/bindiff.html
Zynamics/Google's BinDiff: Free as of March 18, 2016!

» https://www.coresecurity.com/corelabs-research/open-source-

tools/turbodiff
Core Security's turbodiff: Free

e http://www.darungrim.org/
DarunGrim 4 by Jeongwook Oh: Free

« https://code.google.com/archive/p/patchdiff2/
patchdiff2 by Nicolas Pouvesle: Free

« https://github.com/joxeankoret/diaphora
Diaphora by Joxean Koret

le Tearn Tactics & Kill Chain Defen

Binary Diffing Tools
There a few well-known binary diffing tools, most of them free; although many have specific dependencies on
versions of IDA.

« BinDiff: Created by Zynamics, acquired by Google in 2011 — https://www.zynamics.com/bindiff.html

« Turbodiff: Created by Core Security — https://www.coresecurity.com/corelabs-research/open-source-
tools/turbodiff

« DarunGrim 4: Written by Jeongwook Oh — http://www.darungrim.org/

« Patchdiff2: Written by Nicolas Pouvesle — https://code.google.com/archive/p/patchdiff2/

+ Diaphora: Written by Joxean Koret — https://github.com/joxeankoret/diaphora

© 2019 Erik Van Buggenhout & Stephen Sims 65

Example of BinDiff Results

&2 _LoadAnikon®20 vs _'gowpng{og- 2zynamics BinDiff

View Mode Graphs Selection Search Window Help

[;f.f L

@20vs_L Anilcon@20 %

i

s
¥

=

‘3 LoauAmIcoé_‘ 4

(] TTDBAFE =] =
{1 T7TD64FF[™
- .4 7706500
L1 7706501
- L1 7706502) |
L4 7706503 4
- L] T7TD6504
- L 77D6505

3

- L 77065085 | ||

e

S —
§5 Results.]

Bl T,

L 1%]

)

. LoadAnlIcoL

- L) 7T7DB4F!

- 7IDB4FE
.l 7T7DB4FE,
.J T7D64FF

~ .1 7708502(%]

Example of BinDiff Results
What you see on this slide is the visual diff of two versions of the same file. On the right, would be the patched
version and on the left, is the version from the last time it was patched. When comparing these two versions
together, the only changes should be related to the most recent security fix. Some DLLs and other binaries
might have over 20,000 functions. Using these diffing tools, we can greatly reduce the number of files we
would have to look at when trying to identify modified code in relation to a vulnerability.

66

© 2019 Erik Van Buggenhout & Stephen Sims

Example of a Patched Vulnerability

000000018003B2A0 ?BuildUserAgentStringMobileHelpex@@Y. UACOMPA! ADW4USERJ

Unpatched (1000(?001800.?89:\1 ror :ffu, n’id. 3 Il
00000001800 2EDRL lea B8 zex, bE esriLibPilaRame

Tihe dwFlags argument to 0000000180038DR8 xor
0060006160038DAD | call

LoadLibraryExW() in the 6000000 18003E023
unpatched version is set to 0 £09900838003R088

oadLibracyEan

000000018003B2A0 ?BuildUserigentStringMobileHelperdl YAPEADWA UACOMPATMODER §PEADWAUSERAGENT TYPER
GU000001I8003BCRY ROY edx, edx !

000000018003BCE3 les BE rex, b cs: LibEileName; / Patched
DOGO0D0LB003BCEA mov rd, 0x800

000000018003BCCO call B8 es: i dmp LoadLibrax YEXW In the patched version, it is set to 0x800.
0000000 IBN0ARCCE test B8 ‘rax, BB ra This is a common fix when dealing with
GO000001BOO3BCCY j2 BE lec 180038 DLL side-loading vulnerabilities

Example of a Patched Vulnerability

When running a Visual Diff and analyzing the changes, the block shown on this slide shows the issue. The
dwFlags argument to LoadLibraryExW() in the unpatched version is set to 0, while in the patched version, it is
set to 0x800. This is a common fix when dealing with DLL side-loading vulnerabilities. A dwFlags argument
of 0 results in the potential loading of DLLs from outside of safe locations. A dwFlags option of 0x800 states
that DLLs may only be loaded from the "%SystemRoot%\Windows\System32" folder.

© 2019 Erik Van Buggenhout & Stephen Sims 67

Uninstalling a Patch

Sometimes, when testing patches, diffing, testing exploits, etc., you

need to uninstall an update.

« Simply go to Control Panel, "View Installed Updates," and double-click on

the one to uninstall:

&9 Installed Updates

Control Panel Home

Uninstall 2 program

& Tum Windows features on or
off

This is an example from a
Windows [0base build with

minimal updates, hence the
low number listed.

A [P « Programs and Featu.. > Installed Updates

= u]

v & Sa—sm} Instalied Updutes

Uninstall an update

To uninstall an update, select it from the list and then click Uninstall or
Change.
Organize ~ = -
Name Program
VHCTOSOft Windlows (3] -msrrrom e
[Update for Microsoft Windows (KB3124200)
[Security Update for Microsoft Windows (KB3119147) Microsoft Windows
(7 Update for Microsoft Windows (KB3116276) Microsoft Windows
< e

Currently installed updates
3 updates installed

Microsoft Windows

Vit

v
>

Uninstalling a Patch

Sometimes, a patch was already applied to a system you want to test, or you may want to uninstall an update
for any number of reasons. The process is simple because Windows archives the old versions of patched DLLs
and other files. Simply go to your control panel and type "View Installed Updates" into the search field. A box
with the installed updates will appear as shown on the slide. When you find the update you want to uninstall,
double-click it, and you will be asked if you are sure you want to uninstall this update. This is an example
from a base build with minimal updates, hence the low number listed.

68

© 2019 Erik Van Buggenhout & Stephen Sims

Course Roadmap

Protecting applications from exploitation
Software Development Lifecycle (SDL) & Threat Modeling
Day 1: Introduction & Reconnaissance Patch Management
} Exploit Mitigation Techniques
Exercise: Exploit Mitigation using Compile-Time Controls

Day 2: Payload Delivery & Execution

Day 3: Exploitation, Persistence and

Exploit Mitigation Techniques — ExploitGuard, EMET & others
Command & Control Exercise: Exploit Mitigation using ExploitGuard

Avoiding installati

Day 4: Lateral Movement b it
Typical persistence strategies

Day 5: Action on Objectives, Threat How do adversaries achieve persistence?

Hunting & Incident Response Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control
Day 6: APT Defender Capstone

Detecting Command & Control channels
Exercise: Detecting C&C channels using Suricata, JA3, & RITA

SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses

69

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims

69

Exploit Mitigation Controls

Exploit Mitigation Controls

First, let's briefly discuss the role of exploit mitigations. We are all aware of the concept of "Defense in
Depth." The idea is that any one control may fail, so we want as many as possible without impacting
application or system performance too significantly. If we only utilize a single control such as Data Execution
Prevention (DEP) and an attacker figures out a way to disable it, then there is nothing left protecting the
application or system from compromise. By layering on various controls, it can stop or at least greatly increase
the difficulty to achieve exploitation.

The basic Venn diagram on the slide shows two categories of exploit mitigation: "OS Controls" and "Compile-
Time Controls." OS controls include protections such as Address Space Layout Randomization (ASLR), DEP,
Structured Exception Handling Overwrite Protection (SEHOP), and Control Flow Guard (CFG). The operation
system must support these controls, and sometimes even the hardware. Each OS is different, but they are
typically designed to be controls that cannot be turned off by an application. They are system enforced.
Compile-time controls are exactly how they sound; they are controls that are added during compile time.
These often insert code or metadata into the program. Examples include stack and heap canaries, MemGC,
SafeSEH, and Dynamic Base. We will discuss a sample of the most prominent controls in this module. As we
increase the number of controls and move into the merged areas of the circles, our protection should increase.

70 © 2019 Erik Van Buggenhout & Stephen Sims

High-Level Timeline — Notable Client Mitigations

2001

200
Windows XP i Windows XP SP2

{ Windows Vista i

| Windows8 | Windows 10

¥ —1 Null Ptr Deref
Guard Pages
CFG

High-Level Timeline — Notable Client Mitigations

This slide shows a high-level timeline of exploit mitigations added or made available over the years. This is
not comprehensive by any means, and we will address many of them in this module.

© 2019 Erik Van Buggenhout & Stephen Sims 71

What Are These Mitigations Targeting?

Common exploitation techniques include:
 Buffer Overflows
» Heap Overflows
 Integer Overflows
 Null Pointer Dereferencing
« ToC/ToU Race Conditions such as Double-Fetch
» Use After Free

They are attempting to block a successful attack, or at least make
the life of an attacker more difficult.

To have some context, let's look at how something like a buffer
overflow works and then discuss the mitigations.

What Are These Mitigations Targeting?

There are many different bug classes, each varying in difficulty in relation to discovery, exploitability,
reliability, etc.... Some common bug classes related to low-level languages such as C and C++ include buffer
overflows, heap overflows, integer overflows, null pointer dereferencing, race conditions, and use after free.
The exploit mitigations that we are discussing focus their efforts on preventing the exploitability of these
vulnerabilities. The majority of operating systems and large applications are written in C and C-++, as well as
assembly, and Objective-C. The main benefits of using low-level languages is their ability to directly access
memory, processor registers, and other low-level functionality. This access also allows for costly mistakes.
Let's take a look at a basic buffer overflow that will provide context when discussing the mitigations.

72 © 2019 Erik Van Buggenhout & Stephen Sims

Normal Stack Memory Allocation (1)

In Code \ In Memory |

ﬁ.

int overflow(char* inputl){
char buff[16];

strcpy (buff, inputl);
return 6;

}

void main(int argc, char* argv[])

Growth

overflow(argv[1]); Stack

Normal Stack Memory Allocation (1)
On the left of this slide is the C source code:

int overflow(char* inputl){ // This is a function called overflow() which contains a
buffer overflow
char buff[16]; // Allocating a 16-byte buffer called buff
strepy(buff, inputl); // The vulnerable strcpy() function copying user-supplied
data to the buffer
return 0; // Returning a status of 0 if all is find
#
void main(int arge, char* argv[]) // This is the main() function with which all C programs begin.
overflow(argv[1]); // The main() function calls the vulnerable overflow()
function, passing stdin

/

On the right is the stack of the process once the program is compiled and run. The stack is a region in memory
that stores data associated with function calls. Each function called gets its own allocation of memory on the
stack called a stack frame. The stack grows from high memory towards low memory. If function A() calls
function B(), then function B()'s stack frame will be built on top of function A()'s. As the code in a function
finishes, control is passed back to the calling function via the return pointer. In the image on the right, you can
see that main()'s stack frame is at the "bottom of the stack", on top of which stack frames for other functions
(e.g. overflow) are built.

© 2019 Erik Van Buggenhout & Stephen Sims 73

Normal Stack Memory Allocation (2)

In Code r In Memory J
int overflow(char* inputl){
char buff[16];

strcpy(buff, inputl);
return 9;

}

void main(int argc, char* argv[])

Growth

overflow(argv[1]); Stack

./vuln_prog “python -c ‘print "A" * 12°°

Normal Stack Memory Allocation (2)

On this slide, you can see that the attacker is using Python to send 12 A's as input into the program. This input
goes into the program via standard-in (stdin). "Argv" is the argument vector. At argv[0] is the name of the
program and argv[1] would be the first argument passed by the attacker, which is the 12 A's. If a second
argument was passed, it would be reachable at argv[2]. Again, it is simply the argument vector. In the main()
function, the overflow() function is called and passed argv[1] as an argument. The overflow function takes a
pointer "char* input1" to the argument and names it inputl. The 16-byte buffer is then allocated, and then
strepy() is called, copying the 12 A's into the 16-byte buffer. The problem with strepy() is that it does not
provide any bounds checking. In other words, there is no size argument to limit the amount of data copied into
the allocated buffer. So, if the attacker passed in 100 A's, strcpy() would happily copy all of it into the buffer,
overwriting important items such as the return pointer back to the main() function.

74 © 2019 Erik Van Buggenhout & Stephen Sims

Stack Overflow (1)

InCode r In Memory I

int overflow(char* inputl){
char buff[16];
strcpy(buff, inputl);

return 0;
} ’

void main(int argc, char* argv[])

{
overflow(argv[1]);
}

./vuln_prog “python -c ‘print "A" * 32°°

Stack

Segmentation Fault
RP = 0x41414141

Stack Overflow (1)

On this slide, the attacker has sent in 32 A's instead of only 12. As you can see, strcpy() happily wrote past the
16-byte buffer allocation, overwriting the return pointer back to main() among other things. When the process
went to return control to main, it returned to "AAAA." The letter "A" in hex-ASCII is "0x41." The "0x" on the
front of the number indicates that it is a hexadecimal value or Base-16. So "AAAA" maps to "0x41414141"
which is why we are seeing that show up in the segmentation fault at the bottom. The attacker now knows they
can gain control of the program. At this point, they would use a debugger or disassembler to determine the
exact number of bytes before reaching the return pointer.

© 2019 Erik Van Buggenhout & Stephen Sims 75

Stack Overflow (2)

1. Using a debugger, the attacker gets the | _InMemory |
static memory address of the buffer.

2. They place their shellcode into the buffer
and overwrite the return pointer with the

address of the buffer.
Segmentation Fault
RP = Address of Shellcode

3. When the process goes to return control

to main(), control is instead passed to the Stack
attacker's shellcode.

Stack Overflow (2)

Onice the attacker determines the exact number of bytes to get to the return pointer, as well as the address of
the buffer, they can insert their shellcode into the buffer first, and then overwrite the return pointer back to
main() with the address of their shellcode. The exploit mitigations will focus on things like randomizing the
addressing in memory, preventing execution in writable regions, place guards into memory, and many other
approaches.

76 © 2019 Erik Van Buggenhout & Stephen Sims

Let's Go Over Some Mitigations

Keep the buffer overflow example we just walked through in your
head as we cover some mitigations

Think of how each of these controls would stop the attacker from
successfully gaining control of the process:

o The attacker relied on being able to overrun the buffer and overwrite the
return pointer
« => How could we protect that pointer?
« Also, the attacker normally places shellcode into memory somewhere, which
serves as the payload
 => How could we prevent the location or execution of that payload?

| SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses 77

Let's Go Over Some Mitigations

Now, let's keep the buffer overflow example we just discussed in our mind as we cover some mitigating
controls. Try to think how each of the introduced controls could possibly stop the attacker from successfully
gaining control of the process (and thus being able to execute malicious code).

There are two interesting things to note:

1. The attacker relied on being able to overrun the buffer and overwrite the return pointer. How could we
protect that pointer?

2. Furthermore, the attacker usually attempts to place shellcode into memory somewhere, which will
serve as a payload that is to be executed. How could we prevent the location or execution of that
payload?

The author recognizes this is not the easiest topic of the day, but if we want to protect against advanced
adversaries, it's vital we understand how modern exploit mitigation strategies work. As always, should you
have questions or would look some additional guidance on this subject, please don't hesitate to contact your
instructor or TA. Let's have a look!

© 2019 Erik Van Buggenhout & Stephen Sims 77

Address Space Layout Randomization (ASLR)

Take away predictability by randomizing regions
of memory each time a process is started.

On some OSes, this includes libraries, while
others do this separately as a compiler option.

objects.

Increasing the entropy increases the difficulty of
exploitation.

I Attackers like to rely on the static locations of

Address Space Layout Randomization (ASLR)

Imagine if each time you went to retrieve the salt and pepper from your kitchen that it was in a different
location. Even though the last time you used it, you put it in a specific location for retrieval later, the next time
you went to use it, the location changed again. This would likely cause frustration. The concept is not so
different from ASLR. Attackers like for things to be static in memory no matter on what system the vulnerable
application is running. This allows for them to use static addressing in their exploits. If an attacker gains
control of a process and attempts to execute their payload, but the location has changed, it will likely crash and
fail.

On some operating systems, the libraries are randomized as part of the overall system setting for ASLR. Many
Linux variants include a file called "randomize va_space" which stores a value of 0, 1, or 2. If the value
stored is a 0, then ASLR is off, including libraries. If the value is a | or a 2, then ASLR is on. On the Windows
08, ASLR cannot be turned off for the system; however, there is a compile-time control known as
"DynamicBase" which determines if a Dynamic Link Library (DLL) is to be randomized once loaded into a
process.

Take the earlier example of the salt and pepper. If your kitchen is rather small, and you know that the salt and
pepper must be stored somewhere in the kitchen, then the chances of you guessing the right spot are pretty
good in a short number of tries. At least when comparing it to an example where your kitchen is the size of a
sports stadium. If this were true, the chances of successfully guessing the right location of the salt and pepper
is greatly lessened.

78 © 2019 Erik Van Buggenhout & Stephen Sims

Data Execution Prevention (DEP)

When an application is executed, a process is created.

Within this process, there are many segments created, such as:
« Stack Segment — Procedure stack used during function calls
« Heap Segment — Writable region in memory used for dynamic allocations
* Code Segment — Executable region in memory used to hold program code
« Data Segment — Readable region in memory used to hold initialized data

You wouldn't want an attacker modifying your code, so the code
segment is executable, but not writable.

You wouldn't want an attacker executing their payload (shellcode)
in writable memory regions, so the data segment is non-executable.

© SEC599 | Defeating Advanced Adversaries ~ Purple Team Tactics & Kill Chain Defenses 79

Data Execution Prevention (DEP)

DEP is a mature OS control that is quite simple to explain. Executable code resides in its own segment in a
process called the code segment. You certainly wouldn't want anyone to be able to modify the code in your
program. When thinking about the three basic permissions, read/write/execute, then it is easy to see why the
code segment should be executable but not writable. When dealing with writable segments of memory within a
process such as the stack and heap, it is clear that they need to be writable. Now, since those regions are
writable, we have concerns around an attacker inserting their own malicious code into these areas and
somehow causing code execution to occur. We can mitigate this concern by marking this memory region as
writable, but not executable.

DEP must be supported by the processor. In RAM, when an allocation occurs, a unit of measurement known
as a page is used. On most OSes, a page of memory is 4KB for alignment purposes. They are allocated by the
processor. As pages of memory are allocated, a special bit is set, known as the eXecute Disable (XD) or No
eXecute (NX) bit, depending on the hardware architecture. Regardless, they are identical as to their role. The
bit simply determines if the page is writable or executable, as the idea behind the control is that you cannot be
both.

© 2019 Erik Van Buggenhout & Stephen Sims 79

SafeSEH (1)

To understand the Safe Structured Exception Handling (SafeSEH)
control we must first cover exception handling.

Exception handling code is used to handle an expected or
unexpected event and, hopefully, prevent a process from crashing.

e e.g. try;

<Ask the user to enter a number..>
except ValueError:

<User entered a non-integer, catch and give them
another try..>

This Python example is a handler included by the developer to catch and handle an expected
exception, such as a user entering an ASCII character where the program is expecting an integer. The

code would catch the exception and prevent the programifrom crashing.

SafeSEH (1)

To explain the Windows Safe Structured Exception Handling (SafeSEH) compile-time exploit mitigation
control, we must first cover basic exception handling and Windows SEH in general. An exception is
something that occurs within a process, such as an anomaly, or an intentional attempt to cause a program fault,
that potentially affects the stability of the process. If we have exception handling code within the program,
then the exception that has occurred can potentially be handled, preventing the process from crashing. Some
exceptions can be anticipated, while others are unexpected. Look at the following Python-like example:

try:
<Ask the user to enter a number...>
except ValueError:
<User entered a non-integer, catch and give them another try...>

The "try" and "except" syntax is used to create a handler in Python. We are basically saying that we wish to try
the following code, but if an exception occurs, we wish to have it handled. We are asking the user of the script
to enter in an integer value. If the user enters anything other than an integer value, Python will throw a
"ValueError" exception, which can be anticipated. When this type of exception is experienced, our code would
catch it and pass control back to the "try" block again. Handlers are supported by almost all programming
languages.

80 © 2019 Erik Van Buggenhout & Stephen Sims

SafeSEH (2)

Exception R 2 s

Windows Structured Exception Handling (SEH)
Can you handle? @
No
SEH Handler | glalelebelelalaly i Can you handle?
No
Yes@ m ------- ==i Can you handle?
'CHRE StHiHandler 3 EECEEEEES handle?
Handled es@ m | oL o nle
SEH Handler 4

Handled Call Final Handler:

Yes@
Handled

L

Terminate
Process

SafeSEH (2)

The windows SEH mechanism is used to handle various types of faults that cannot be handled or are not
handled by developer code. An example of an exception that would cause control to shift the SEH mechanism
is when the processor attempts to read from or write to a memory address that is not mapped into the process.
Processes only take up the physical memory and virtual addressing that is required to run the program. If they
run out of memory, more can be requested. If something causes a process to attempt to read or write to an
address that is not mapped from virtual memory to physical RAM, then an exception occurs. Control would
move to the SEH chain. It is called a chain because, as you can see on the slide, if one exception handler
cannot handle the exception, control is passed down the chain until it is handled, or it reaches the end. If the
end is reached and none of the handlers were able to handle the exception, then the program is terminated. The
handler code resides in various DLLs such as ntdll.dll. The pointers to or addresses of the handlers are stored
on the procedure stack for the thread.

© 2019 Erik Van Buggenhout & Stephen Sims 81

SafeSEH (3)

SafeSEH is an optional compile-time control that builds a table of
all valid handlers in a DLL; the table stores the addresses of each
valid handler.

SafeSEH is aimed at stopping buffer overflows where an attacker
attempts to overrun a buffer, overwriting the address of a handler

to hijack control. 8
v Buffer
(5]
T
f
1
o SEH
.

SafeSEH (3)

SafeSEH is a compile-time control that builds a table of all valid handlers inside of a DLL. Each handler has a
starting memory address within a module. This is the address stored in the SafeSEH table. A common attack
technique is for attackers to overwrite the location in memory where the address of a handler is stored. In case
you are curious, the SEH chain resides on the stack for each thread within a process. An attacker would
overwrite the handler address in memory with the address of their choosing. There are common techniques
used by attackers to gain control of a process via SEH overwrites. If an attacker overwrites one of these SEH
addresses and the address written by the attacker points into a SafeSEH-protected DLL, they would be caught,
and the process terminated. It is not seen as a very effective control as all modules (DLL's) loaded into the
process must participate in the control. A single module that does not participate in the control will render this
exploit mitigation worthless.

82 © 2019 Erik Van Buggenhout & Stephen Sims

Before calling the first handler, walk the list
to ensure the final handler is reached.

Structured Exception Handling Overwrite

Protection (SEHOP). —

SE Handler Handler
Code

Verifies that the SEH chain for a given thread is

intact before passing control to handler code. m

| SE Handler Handler

Inserts a special symbolic record at the end of Code
the SEH chain known as the

"FinalExceptionHandler" inside of ntdll.dIl. m

Before passing control to a handler, the list is Final sl

Code
Th y location of the final recordis isolated

walked via nSEH pointers to ensure the
symbolic record is reached.

SEHOP

The Structured Exception Handler Overwrite Protection (SEHOP) control was added into Server 2008 and
Vista; however, it is disabled by default on almost all versions of Windows. This is due to the potential lack of
application support for the protection, although it can be enabled typically through the use of Microsoft's
Enhanced Mitigation Experience Toolkit (EMET) or Exploit Guard. Normally, if you follow the nSEH
pointers down the stack, you will reach the end of the list. If a handler has been overwritten, it is likely that
walking the pointers will no longer reach the end of the list.

As described by Matt Miller (Skape) at Microsoft, the SEHOP control works by inserting a special symbolic
record at the end of the SEH chain. Prior to handing control off to a called handler, the list is walked to ensure
that the symbolic record is reachable.

References:

Miller, Matt (2009-02-2). Preventing the Exploitation of Structured Exception Handler (SEH) Overwrites with
SEHOP. Retrieved January 11,2017, from technet.Microsoft.com Website https://msrc-
blog.microsoft.com/2009/02/02/preventing-the-exploitation-of-structured-exception-handler-seh-overwrites-
with-sehop/

© 2019 Erik Van Buggenhout & Stephen Sims 83

Control Flow Guard (CFG)

CFG is a relatively new OS control, supported only on Windows 10
and backported into Windows 8.1 Update 3.

For it to be effective, all loaded modules within a process must be
compiled to use the control.

It is aimed at mitigating an attack technique known as Return
Oriented Programming (ROP).

A bitmap is created at compile time that represents the entry point
into functions within a DLL.

« If an attacker attempts to redirect control during an indirect call to a location
outside of a valid function's entry point, an exception is thrown

| SEC599| Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defen

Control Flow Guard (CFG)

CFG is a newer control that requires support by the OS and also that each module (DLL) be compiled with the
control as it requires code insertion. It is supported on Windows 10 and was backported into Windows 8.1
Update 3 and is also supported in Server 2016. Again, aside from the OS support requirement, CFG is only
effective if all loaded modules (DLLs) are compiled to support the control. The control is aimed at mitigating a
common attack technique known as Return Oriented Programming (ROP).

CFG works by creating a bitmap of all valid function entry points from within a DLL at compile time. When
an indirect call to a function occurs within a module protected by CFG, the bitmap is checked to ensure that
the address is that of a valid function entry point. If it is not, an exception is thrown. To understand indirection,
we can use a simple analogy. If you decide to have pizza for dinner, you could go to the store, buy the
ingredients, and make it yourself, or, you could order from a pizza delivery restaurant. If you make the pizza
yourself, you can feel safe that the pizza has not been contaminated in any way as you are the preparer. If you
order the pizza from a restaurant and have it delivered, there may be various points of concern. First, you did
not witness the making of the pizza, and second, the pizza may have gone through an adventure during
delivery to which you are not privy. We do not need to go into the details. This would-be indirection is heavily
based on trust. CFG attempts to help secure this trust.

For more on CFG, visit: https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

84 © 2019 Erik Van Buggenhout & Stephen Sims

More on ROP and CFG

ROP is a technique where attackers string together the addresses of
useful code sequences called gadgets.

« Each gadget achieves part of an overall goal such as setting up the
environment to call a function to change memory permissions

« ROP is one of the de facto techniques used on modern OSes to change
permissions in memory
« Alot of effort has been made to mitigate the technique, such as CFG

CFG limits the addresses that can be used as a gadget due to the
bitmap that holds all valid function entry points, thus impacting the
usefulness of ROP.

dvanced Ad)}ersai'iéé ‘f-‘,‘PurpIeTeam Tactlcs& KIIICham Defé:nskesk

85

More on ROP and CFG

As stated previously, ROP is a technique often used by attackers to achieve a goal. Often, the goal of ROP is
to change the permissions in memory where attacker code resides. We previously discussed DEP and how it
marks writable regions of memory as non-executable. By using ROP, one could set up the arguments to a
function call such as VirtualProtect() that allows you to change the permissions in memory. ROP works by
identifying useful short sequences of code within executable modules and stringing them together to
accomplish their goal. These code sequences are referred to as gadgets. We string the gadgets together, which
formulates our ROP chain. As mentioned, once an attacker gains control of a process, they may wish to
change memory permissions, so they can have their shellcode executed. To do this, a system call must be
made to a function like VirtualProtect() or VirtualAlloc(). Control of the process is passed to the gadgets,
which returns to each successive gadget, each performing a piece of the overall goal to set up the arguments to
the desired function call. CFG limits the number of useful gadgets by only allowing indirect calls to go to
addresses indicated in the CFG bitmap.

© 2019 Erik Van Buggenhout & Stephen Sims

85

Stack Canaries / Security Cookies

When a function is called, a return pointer is pushed
onto the stack frame for that function.

« The return pointer is used to return control to the caller once
the called function is finished

« Overwriting this pointer due to the use of an unsafe function
such as strepy() can result in control hijacking

A canary is a special value placed above the return

pointer for protection.

« In order to overwrite the return pointer, the canary must also |
be overwritten :

o If the value is unknown to the attacker, then it won't match
when it is checked prior to returning control to the caller

Stack Canaries / Security Cookies

Stack canaries, also called security cookies in the world of Microsoft, are a compile-time control that inserts
code into functions deemed as needing protection. During a normal function call, an address known as the
return pointer is pushed into memory onto something known as the procedure stack. Each function call gets its
own stack frame on the procedure stack. A stack frame is nothing more than a small amount of memory to
store items such as arguments, buffer space, and variables such as the return pointer. Once the function is
finished, its stack frame is torn down. The return pointer is used to return control to a specific point in the
program just after the occurrence of the function call. Since it is stored in writable memory, it is prone to being
overwritten. If overwritten, control of the process can be hijacked by an attacker.

The canary serves as a guard that is pushed onto the stack frame above the return pointer. In order for an
attacker to reach the return pointer during an overwrite attempt, they must also overwrite the canary. Most
canaries are random and thus an attacker would not know what value to write to that position during an
overflow. Prior to returning control to the calling function, the canary is checked to ensure it has not been
damaged. If the canary check fails, then an exception is thrown, and the process terminated.

86 © 2019 Erik Van Buggenhout & Stephen Sims

Control Flow Integrity (CFl)

Intel released a paper in June 2016 describing new controls to be added:
» Shadow Stacks
» Indirect Branch Tracking

The idea of shadow stacks has been around for well over a decade, such as
"Stack Shield" released in 2000: http://www.angelfire.com/sk/stackshield/

Shadow stacks allow only the CALL instruction to push a copy of the return
pointer to protected memory.

The return address from the primary stack is checked against the address
stored on the shadow stack.

Indirect branch tracking performs edge validation.

SEC599 | QefeaﬁingAd;énéed Adversaries -s,Purk'P:l;zkf:i'eam Tactics & Kill Ch@ihﬁbefgnsgib a7

Control Flow Integrity (CFI)

In June 2016, Intel released some press releases and a detailed PDF on Control Flow Enforcement (CET), their
new upcoming control to prevent code reuse attacks and Return Oriented Programming (ROP) techniques.
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

The primary controls introduced in this paper are Shadow Stacks and Indirect Branch Tracking. Each of these
ideas has been proposed in various forms for well over 10 years. An example is "Stack Shield" released back
in 2000. http://www.angelfire.com/sk/stackshield If properly integrated into the processor architecture, each
control could have a moderate impact on code reuse techniques. The grsecurity team released a short posting
as to their opinion on how Intel's implementation plan of these controls is lacking.

https:/forums.grsecurity .net/viewtopic.php?f=7&t=4490#P9

Shadow stacks work by marking certain pages of memory as protected, allowing only the CALL instruction
the ability to write a copy of the return addresses used in the call chain. The return pointer on the actual stack
is tested against the copy stored on the shadow stack. If there is a mismatch, an exception is thrown.

Indirect branch tracking takes advantage of the new instruction "ENDBR32" for 32-bit or "ENDBR64" for 64-

bit. This instruction is inserted after each valid call instruction. If this is not the next instruction, an exception
is thrown. The instruction has the same effect as a NOP and simply is used for validation.

© 2019 Erik Van Buggenhout & Stephen Sims 87

Exploit Mitigation

Description

Stack Canaries

Protects stack variables from buffer overflows by pushing a unique value onto the stack during
function prolog that is checked during epilog, prior ta returning control to the caller

High - For all functions which receive a canary/cookie

Heap Caokies

Protects chunk metadata and application data from overflows if a chunk Involved in the overflow
is allocated or deleted from a free list and the canary/cookie checked

Low - Entropy only 248 and chunks are not often checked

Compiler control aimed at preventing SEH overwrites on the stack by building a table of valid

making predictibility difficult

SafesS! Med - if all modul based
afesen handlers within each module Reizirallmiddtiis rensse
i H i 1K

<EHOP A @ore effective control than SafeSEH preventing SEH overwrites on the stack by walking the nseh High - SEHOP not turned on by default

pointers on the stack to ensure a symbolic record is reached

i iti - Idii bit i Ll

&6 An effecflve contfo to help rnmga‘te ROF" based pa_/lo?ds by building a bitmap of all valid function High - If all loaded modules (DLL's) compiled with CFG

entry points within a module that is verfied during indirect calls

f s izi i f ants,

Asift An effective control if all modules are rebased, randomizing the location of memory segments, High- If all loaded modules (DLLS) are rebased

MS Isolated Heaps

A Microsoft browser mitigation aimed at mitigating Use After Free exploits by isolating critical
browser objects

Med - Allocation ta isolated heaps still possible

A Microsoft browser mitigation aimed at mitigating Use After Free exploits by deferring the

MemGC High - Validation of object references greatly mitigates UAF
freeing of memory and checking object references gh - Vall e @eally migatesu
An effecti ti i ions by
DEP e N ective aimedatp g code oy in w'ntable memary reglons by Med - Easily bypassed if attacker can utilize ROP
marking pages of memory as exclusively either or writable
Mi { i itigatil After Fi Joits by I i
vtguard A Microsoft browser mitigation aimed at mitigating Use After Free exploits by inserting a canary Med - if the class Involved In an attack s protected
into virtual function tables
An effecti ta itigati b f th link
Safe Unlink o effective protection against heap metadataattacks mitigating the shuse of the unlink and High - Completely mitigates chunk FLINK/BLINK overwrites
frontlink macros
A I 1 f - h i , -bit ch
LFH P P and g of the front-end heap on Windows, offering 32-bit chunk High - Chunk encoding serves as a 2432 canary/cookie
encoding
A tecti iti] b d he first T
Null Pt Deref m:::r;tlon to mitigate null pointer e attacks by g! g the first few pages o High - Mitigates this bug class

Guard Paj

Pages of memo

set with a lock to prevent access by overflows, throwing an exception

Med - If overflow happens to access guard page

Exploit Mitigation Quick Reference

We have not covered all of the exploit mitigations shown on this slide, but this can serve as a quick reference
to see what each control does from a high level and get an idea as to their effectiveness. The effectiveness is
subjective and based on the experience and experiences of each exploit writer. These are the ratings as given
by this author.

88 © 2019 Erik Van Buggenhout & Stephen Sims

Course Roadmap

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling

Day 1: Introduction & Reconnaissance Patch Management
Day 2: Payload Delivery & Execution Exploit Mitigation Techniques

. . > Exercise: Exploit Mitigation using Compile-Time Controls
Day 3: loitation, Persistence and Exploit Mitigation Techniques — ExploitGuard, EMET & others
Command & Control Exercise: Exploit Mitigation using ExploitGuard

Avoiding installation
Day 4: Lateral Movement o 2
Typical persistence strategies

Day 5: Action on Objectives, Threat How do adversaries achieve persistence?

Hunting & Incident Response Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control

Day 6: APT Defender Capstone

Detecting Command & Control channels
Exercise: Detecting C&C channels using Suricata, JA3, & RITA

. SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses

89

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims

89

Exercise: Exploit Mitigation Using Compile-Time Controls

Please refer to the workbook for further instructions on the exercise!

This page intentionally left blank.

90 © 2019 Erik Van Buggenhout & Stephen Sims

Course Roadmap

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling
Day 1: Introduction & Reconnaissance Patch Management

Day 2: Payload Delivery & Execution Exploit Mitigation Techniques

Exercise: Exploit Mitigation using Compile-Time Controls

Day 3: Exploitation, Persistence and > Exploit Mitigation Techniques — ExploitGuard, EMET & others

Command & Control Exercise: Exploit Mitigation using ExploitGuard

Avoiding installati

Day 4: Lateral Movement Vi e fieh
Typical persistence strategies

Day 5: Action on Objectives, Threat How do adversaries achieve persistence?

Hunting & Incident Response Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control

Day 6: APT Defender Capstone

Detecting Command & Control channels
Exercise: Detecting C&C channels using Suricata, JA3, & RITA

/ SEC599 | Defeating Advanced Adversaries — PurpleT;mm Tactics & Kill Chain Defenses

21

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims

91

Exploit Mitigation Techniques — Exploit Guard, EMET, and Others

Exploit Guard is a Microsoft utility aimed at providing a series of modern
exploit mitigations to prevent the successful exploitation of vulnerabilities:
 Microsoft announced the end of life for EMET as of July 31, 2018
+ Many in the security community are very disappointed at this decision
« Microsoft listened to their customers and decided to include the majority of controls
under EMET to Windows Defender Exploit Guard
Exploit Guard is the Windows 10 replacement for EMET:
* It adopted many of the controls that were in EMET and more
« Most mitigations are not on by default
» It will not be backported to Windows 8 or 7

Applications must be tested to ensure they are not negatively impacted or
broken by any of these controls.

o

Exploit Mitigation Techniques — Exploit Guard, EMET, and Others

Microsoft's EMET utility was released back in 2009 around the same time as Windows 7. It offered numerous
exploit mitigations aimed at providing defense-in-depth to applications and prevent the successful exploitation
of vulnerabilities. EMET version 5.52 was the latest release from Microsoft prior to its end of life. All recent
EMET releases focused on resolving disclosed bypass techniques. Sadly, Microsoft announced in 2016, that
support and development of the product will end on July 31, 2018. Initially, Microsoft meant to discontinue
support in January 2017, but due to feedback from customers, they agreed to push back the date. The exact
reasoning for the discontinuation of EMET by Microsoft is unclear, though it likely has to do with a low
adoption rate over the years and a focus on Windows 10 security and beyond. EMET had a low adoption rate
within organizations, which may have partially led to Microsoft's decision to discontinue support.

Microsoft's recommendation is to migrate to Windows 10 for improved security. It is very unlikely that
support will become available for Windows 8 or 7. Exploit Guard started with the Fall Creators Update of
Windows 10 in October 2017. Many of the mitigations or protections from EMET have been worked into
Exploit Guard, as well as some new ones. The majority of these mitigations are not on by default. Each
application must be tested to ensure there is no negative impact associated with any of the protections. This
also includes performance issues. Some of the newer protections are quite aggressive and are likely to prevent
some applications from even starting.

92 © 2019 Erik Van Buggenhout & Stephen Sims

Application Testing

Microsoft tests the various exploit mitigations against their
applications to ensure they are not broken:

- They may also opt to disable certain protections at a per-application level if
one is causing trouble

» Tt is not possible to test under all conditions

Organizations must test internal and third-party applications
under Exploit Guard enforcement to ensure stability.

The controls may also cause a performance hit:
» This is typical of any exploit mitigation

— Purple Team Tactics & Kill Chain Defer

jersaries

93

Application Testing

Another point of frustration is around application testing. It requires someone to go through all applications
being considered for Exploit Guard's various protections by your organization and check to see if any of them
cause an issue. It is difficult to say at what point you have done enough testing to deem an application safe to
use with Exploit Guard. Then, if an update is released to resolve a bypass, technique testing would again be
required to ensure the new version doesn't pose any new issues. It is simply not possible to test all scenarios
under which an application may run. This is very much similar to how quality assurance (QA) testing occurs
during software development. Applications like Microsoft Word, Excel, PowerPoint, Internet Explorer, Edge,
Adobe Flash, Java, and several others are tested by Microsoft for compatibility. If you think about the main
applications that fall victim to exploitation at an organization, that list alone should be quite effective.

There are also concerns about a system performance hit due to the additional controls. The protections

certainly result in extra code execution to perform enforcement. This can slow down an application; however,
on a modern workstation, it shouldn't be too big of an issue.

© 2019 Erik Van Buggenhout & Stephen Sims

93

How Does Exploit Guard Work?

The module PayloadRestrictions.dll is loaded into all processes
designated for protection by Exploit Guard.

Many of the controls simply "hook" application flow at specific
points:
« An example of hooking is when a table of pointers to various functions is

overwritten with pointers to different code
» This is commonly used by malware, endpoint protection suites, and anti-exploitation
products
+ Typically, the originally intended function is reached after going through a series of
checks

Exception Terminate

CALL VirtualAlloc() = [Hzlertel e dilelatelaHall]
ntdlldll SYSENTER

How Does Exploit Guard Work?

A big question is likely, "How do the protections under Exploit Guard work?" Some of the controls are
system-level controls such as DEP, where Exploit Guard can control the settings as opposed to going through
the system control panel. The more specific per application controls that are native to Exploit Guard often
work by hooking. This is very similar, if not identical, to how many endpoint protection and antivirus products
work, as well as malware. Imagine an application wanting to call a function that is deemed critical. Microsoft
classifies various functions as critical, such as those with the ability to change permissions in memory, allocate
new memory, and many others. When the application goes through the normal channel of calling a critical
function, the address of that function has been overwritten with an address inside of PayloadRestrictions.dll.
This allows Exploit Guard to perform any checks, and if all looks good, control is passed to the desired critical
function. We will look at specific examples of controls coming up soon.

94 © 2019 Erik Van Buggenhout & Stephen Sims

Exploit Guard's Graphical Interface

Windows Defender Security Center - [mj X

Exploit protection
il See the Exploit protection settings for your system and programs. You
On the right is a screenshot of the main | o, cancustomize thesettings youwant.

Exploit Guard interface

R System settings _Program settings

£ Control flow guard (CFG)
By the arrow toward the top, you can Ensures controf flow integrity for indirect calis.
see an option for System settings and T °]
i
Program settings =
stk
Data Execution Prevention (DEP)
Prevents code from being run from data-only memery pages.
There are some default settings for Use default (On) ~

Control Flow Guard and others shown

Export settings

Exploit Guard's Graphical Interface

On this slide is a screenshot of the primary Exploit Guard interface. The easiest way to get here on a Windows
10 system with Exploit Guard installed is to click on the Start button, and type in "Exploit Protection." The
two main items to point out are the System settings menu and the Program settings menu, as marked by the
black arrow. On the image shown, we are looking at a piece of the System settings, showing Control Flow
Guard (CFG) and Data Execution Prevention (DEP). As you can see, it also scrolls down further to show
additional system options, which allow you to apply controls as a global setting. We will cover the various
controls shortly.

© 2019 Erik Van Buggenhout & Stephen Sims 95

Exploit Guard's Program Settings (1)

Windows Defender Security Center - a X

Exploit protection

o See the Exploit protection settings for your system and programs. You

This image shows the default menu for o can customize the settings you want.

Program settings
8 3 R System settings Program settings -

[

=) + Add program to customize
Programs can be added and removed = spiwowsd.exe &
o) 0 system overndes
spoolsv.ex
B s

0 system overrides

svchost.exe
2 system ovarrides

Each is fully customizable as to which
controls to use SystemSettings.exe B

1 system overrida

Expaort settings

Exploit Guard's Program Settings (1)
On this slide is a screenshot of the Program settings window. You can see the scrollable list of applications.
Each allows you to set the specific controls for each program.

96 © 2019 Erik Van Buggenhout & Stephen Sims

Exploit Guard's Program Settings (2)

Program settings: edge.exe

Arbitrary code guard (ACG)

prevents non-image backed executable code, and code page medification.

In this example, we've selected edge.exe
to configure

A long scrollable list of controls can be
seen

Each allows you to override system
settings, turn the control on or off, and
even put into "audit only" mode

[Override system settings

@) oif

Block low integrity images
Prevents loading of images marked with low-integnity.

D Qverride system settings
®_) off

] Audit oniy

Block remote images
Prevents loadina of images from remote devices.

Apply : Cancel

97

. SE 599[Defgati g Advanced Adversaries - PyrgléTgarﬁ,Tacﬁ&g &Kill Chain Dieffeqsves’» B

Exploit Guard's Program Settings (2)

This slide shows an example of the settings at the per-program level. We have selected edge.html as the
program to configure. A long scrollable list can be seen with each control available. Exploit Guard allows you
to configure the controls at a very granular level in the event certain controls have compatibility issues with a
program. There is even the option to put a control into "audit only" mode so that you can see if a control would
have caused an issue, or simply to use exploit guard as a detection tool as opposed to prevention.

© 2019 Erik Van Buggenhout & Stephen Sims 97

Exploit Guard Mitigations

As a defender, it is important to understand how each of these exploit
mitigations work:
« This allows you to make decisions on which controls should be enabled
« A better understanding as to how each control may negatively impact an
application
To better understand each control, you may need to perform some
additional research related to exploit development:

« Many of these mitigations are very similar to how other anti-exploitation products
work

« They are also likely to be turned on by default as the landscape evolves
We will not cover controls already addressed (SEHOP, DEP, etc.).

Check the status with PowerShell using: Get-ProcessMitigation-System

Exploit Guard Mitigations

As a defender, the phrase "Offense must inform the defense" often comes up, but what does that really mean?
It is certainly subjective as to how it is to occur. From this author's perspective, to become proficient in a
technical area, you must put in the time and do the work. You cannot wait for penetration testers, exploit
developers, and malware experts to continuously provide information, and even if they could, do you have the
prerequisite knowledge to understand what is being said? Take application debugging and reverse engineering
as an example. Tools such as the Interactive Disassembler (IDA) and WinDbg are commonly used. They are
unintuitive tools each requiring countless hours and practice. An exploit mitigation may be related to a very
niche way in how low-level instructions are executed by the processor. Failure to have this prerequisite
knowledge can limit your understanding as to the effectiveness. This paragraph is by no means an effort to
discourage you. If anything, it should serve as a motivator to say that everyone who is an expert in areas such
as malware reversing, and exploit development paid their dues. There are few corners available to cut.

The hope is that since Exploit Guard is integrated into Windows 10, that more companies will opt to use the
tool. Many of the commercial anti-exploitation products out there also utilize the same types of controls. As
more and more systems move to Windows 10, and as Windows 10 further evolves, it is highly likely that the
controls once only available only in EMET will be turned on by default. We will not cover controls that we
already covered, such as DEP and SEHOP.

98 © 2019 Erik Van Buggenhout & Stephen Sims

Heap Spray Protection — No Longer Available - EMET Only

© Heap Spray Protection T o

Effective platforms: 32bit () 6%bit ()

The Heap Spray Protection (HeapSpray) mitigation pre-alocates areas of memory that are commonly used by attackers to allocate malicous code.

Addresses: {0x0&040a04;Oxoaﬁaoaﬁa;oxobf}bqﬁcvb;0x0c0cﬁc0c;OxQdCdOdOd;0x0&0e0e09;0x04040~‘«04;0x05050505;0xﬂ6060606;0x07070707:0x08080303:0x0903090‘9;0x201;

Heap spraying is a technique commonly used against browsers and other
applications to aid in exploitation:

« With controls like ASLR, an attacker may not know if their shellcode is sitting at a specific
address

« By making repeated large allocations in memory containing shellcode, eventually, the
desired memory address should be reached

The protection works by pre-allocating areas of memory at addresses attackers

rely on during a spray:

« The problem is that there may be addresses that aren't on the list

High-Entropy ASLR renders this control unnecessary.

";c:s &Kill Chain Defenses

 SEC599| Defeating Advanced Adversaries — Purple Team Tact

Heap Spray Protection — No Longer Available - EMET Only

Heap spraying is a technique first made public by the researcher Berend-Jan Wever, who goes by the handle
"Skylined" as part of his "Internet Exploiter" exploit associated with CVE-2004-1050. The original exploit can
be found at https://www.exploit-db.com/exploits/612/. Very little information about how the technique worked
was released originally; however, Skylined recently released an article on heap spraying at
https://blog.skylined.nl/20161118001.html.

On this slide is a screenshot from EMET. There are a couple of ways that heap spraying can aid during an
exploit. One benefit is to help deal with ASLR and the difficulty in knowing if your shellcode will be at a
predictable address. Imagine if you were in a small room. You can stand anywhere in the room, but you still
only take up the same amount of space. Now, imagine if someone filled % of the room with boxes, pushing
you over to the remaining ¥, limiting the space available for you to stand. Now, imagine that it is not you
standing there, rather, it is shellcode. If we fill up memory by repeatedly making large allocations that contain
our shellcode, we will eventually fill up so much memory that we will have extended the region of memory
down to a predictable address. Heap spraying also helps attackers during Use After Free (UAF) exploitation.

The protection works by pre-allocating the commonly used address that attackers rely on during a heap spray.
On the slide, you can see an example of some of these addresses, such as 0x0b0bOb0b and 0x0c0cOcOc. The
main issue with the protection is that there are many predictable addresses that can be used, so tracking all of
them can be difficult to effectively manage. This control is no longer supported on the latest versions of 64-bit
Windows 10 as the control High-Entropy ASLR (HEASLR) renders the control unnecessary due to the
enormous amount of entropy with each run of a process.

© 2019 Erik Van Buggenhout & Stephen Sims

99

. . Export address filtering (EAF)
Export Address Table Fllterlng (EAF & EAF+) Detects dangerous exported functions being resolved by malicious code.

—— [override system settings
@ Export Address Table Access Filtering
Effective platforms: 32bit () 84-bit () @
The Export Address table access Filtering (EAF) mitigation regulates access to the Export Address Table (EAT) bag| [:[v
- — [/
@ Export Address Table Access Filtering Plus
Effective platforms: 32:bit () 64-bit ()

The Export Address table access Filtering Plus (EAF +) mitigation blocks read attempts to export and import table addresses orignating from modules commonly usad to probe
memary during the exploitation of memory corruption vulnerabilies.

r modules that are commonly abused by

Modules: {mshmﬂ‘dll;ﬂash‘.occ;)sci:at‘.&!‘i;;ﬁéagild!;vgx.du o) o - - , ;;

Shellcode often iterates through the Export Address Table (EAT) of
kernel32.dll and ntdll.dll:
» This is to locate the address of required functions such as LoadLibrary*()

« EAF blocks access to the EAT of these DLLs by recording the "AddressOfFunctions" field
and filtering access using hardware breakpoints

+ EAF+ improves EAF by specifying modules that are not permitted to access the EAT, often
related to memory corruption bugs such as Use After Free

Team Tactics & Kill Chain Defenses 100

Export Address Table Filtering (EAF & EAF+)

The majority of shellcode for Windows relies on walking through the Export Address Table (EAT) of a DLL
in order to resolve the location of its functions. A DLL is a library of functions available for use to
applications. An application needs to know where inside the DLL a desired function is located. To make this
easy, DLLs include an EAT. There is a field called "AddressOfFunctions" which is simply a pointer to an
array of pointers, each pointing to the relative virtual address offset of the functions available for use by an
application. EAF works by recording the "AddressOfFunctions” field and creating an exception handler.
Hardware breakpoints are used when attempting to access the EAT of kernel32.dll and ntdll.dll. The exception
handler created by EMET filters access via the hardware breakpoints, breaking access attempts by shellcode.
Breakpoints are used by debuggers to pause execution when hitting a specific memory address or under a
certain condition. Hardware breakpoints utilize debug registers built into the processor.

EAF+ improves the EAF protection by allowing you to specify modules commonly involved in memory
corruption bugs such as Use After Free (UAF) and denying them from reading or writing to export and import
address tables of modules such as ntdll.dll, kernel32.dll, and kernelbase.dll. Included by default, as shown
above, is mshtml.dll, flash modules, and Visual Basic modules.

This control is a bit more unnecessary on 64-bit Windows 10 running Exploit Guard, as other controls, to be
discussed, compensate. On the slide you can see the EMET version of the control on the left, with the Exploit
Guard version on the top right. With the Exploit Guard version of EAF, the address of a CALL to a critical
Windows function must come from within the program's code segment itself, and not from other locations
such as the heap.

100 © 2019 Erik Van Buggenhout & Stephen Sims

Import Address Filtering (IAF)

Import address filtering (IAF)
Detects dangerous imported functions being resolved by malicious code.

The IAT (Import Address Table) is writable and used [Override system settings
during dynamically linked function calls off

If an attacker can overwrite an entry, they can get their code
called instead of the intended function

With IAF, all functions listed in a DLL's IAT must exist
within the image's load address range

Import Address Filtering (IAF)

The Import Address Table (IAT) is similar to that of the Global Offset Table (GOT) on Linux. They store the
resolved addresses of dynamically linked functions. A term known as "lazy linking" is often used to describe
the way in which dynamically linked functions are resolved. It means that a function that is not statically
linked into the program may not be resolved until it is needed. Regardless, these tables are writable. Since
these tables are used to call functions in an indirect manner, an attacker could overwrite an entry, gaining code
execution. Import Address Filtering (IAF) first checks functions being called to ensure that their addresses
listed in the IAT reside within the memory allocated during the loading of the relevant module.

© 2019 Erik Van Buggenhout & Stephen Sims 101

Mandatory Address Space Layout Randomization (MASLR)

Force randomization for images (Mandatory ASLR)
Force relocation of images not compiled with /OYNAMICBASE

During compile time, there is an option called
/DYNAMICBASE

[[] override system settings

oft

[7] 5o not allow stripped images

It sets an indicator in the header of the module to let the
loader know whether the module should be rebased

Mandatory ASLR forces the rebasing of modules even when
they were compiled not to be rebased by pre-allocating the
desired base address

‘Defenses

Mandatory Address Space Layout Randomization (MASLR)

When compiling a DLL with Visual Studio, there is an option called/DYNAMICBASE. Remember, DLLs
and modules are the same thing, so the words are used interchangeably. When compiled with this option, the
header of the DLL is set with an indicator that it is to be rebased when loaded into a process. ASLR, as
controlled by the OS, randomizes segments such as the stack and the heap, but DLLs are randomized
separately and at a per-DLL level. It is often that an exploit mitigation control can be bypassed due to a single
module not participating in a control. Mandatory ASLR (MASLR), also known as ForceASLR, mitigates this
issue by forcing the rebasing of all loaded DLLs, regardless of the compiler option set. In theory, this should
not cause an issue with an application; however, if there are static addresses used by the application, then a
crash could occur. The issue of non-rebased modules is typically with the use of third-party applications that
bring along custom modules to which the application is dependent.

102 © 2019 Erik Van Buggenhout & Stephen Sims

Bottom-Up Address Space Layout Randomization (BASLR)

Works alongside of MASLR:

 Select a random number from 28

« Block all 64kb allocations starting at the requested compiler base address up
until the randomly selected number
Randomize memory allocations (Bottom-up ASLR)

. Repeat thiS eaCh time the process iS restal'ted Randomize locations for virtual memory allocations.
[[] override system settings

On

[] pon't use high entropy

Requested DLL TR 4
Base

Bottom-Up Address Space Layout Randomization (BASLR)

Mandatory ASLR blocks the requested compiler base address. It may be easy to determine where the rebase
will occur in a repeatable manner as the next available base address is selected. BASLR improves the
randomization by selecting a random number between [0, 256] and blocks that number of 64kb allocations
from the compiler base address up until that point. This number will change with each process invocation,
improving security.

© 2019 Erik Van Buggenhout & Stephen Sims 103

Block Remote Images / Load Library Protection

Block remote images
Prevents loading of images from remote devices.

When attackers use the Return Oriented Programming

(ROP) technique, they desire non-rebased modules [] Override system setiings

& _) off
{:I Audit only

This prevents having to deal with ASLR. One technique an
attacker might use is to attempt to have modules loaded from
UNC file paths (e.g. \\evilsite\bad.dll as shown above)

By using the Load Library Protection, the ability to load
modules from UNC file paths is prohibited

Block Remote Images / Load Library Protection

Exploit Guard has multiple controls focused specifically on mitigating Return Oriented Programming (ROP).
Block Remote Images, also known as Load Library Protection, is one of these controls. The easiest way for an
attacker to create an ROP chain to use in an attack is to have non-rebased modules inside the process from
which they can use static addressing. An attacker can attempt to have the application load DLLs from across
the network via a UNC file path. This can be leveraged to load modules, which contain code desired by the
attacker. The Block Remote Images / Load Library Protection from Exploit Guard blocks modules from being
loaded via UNC file paths.

104 © 2019 Erik Van Buggenhout & Stephen Sims

Validate Heap Integrity

Validate heap integrity
Memory corruption bllgS on the heap can be difficult to Terminates a process when haap corruption is detactad.
detect [override system settings

2 On

The Validate Heap Integrity control performs behaviors
similar to that already implemented by the Low
Fragmentation Heap (LFH), such as:

« Randomizing the allocations from FreeLists
 Encoding chunk metadata in the headers

It also utilizes guard pages that should not be accessed

. SEC599| Defeating Advanced A oam Tactics & Kill Chain Defenses 105

Validate Heap Integrity

In userland, the heap has a frontend allocator and a backend allocator. The frontend allocator used to be the
Lookaside Lists. Starting with Windows Vista, the Lookaside Lists were no longer available to use, leaving us
with the Low Fragmentation Heap (LFH). By design, the frontend allocators are used to service allocation
requests where the size is often used. Take a browser as an example. As common HTML elements, such as a
CButton or Span, are allocated, their size is always the same. If a threshold is met, LFH is triggered for that
heap and services those allocations. This is used to improve performance. The LFH has controls in place to
help increase the security of the heap. Well-known examples include randomizing allocations out of a
FreeList, as well as encoding the first 32-bits of the chunk header, which serves as a security cookie or canary.
The Validate Heap Integrity control carries on these types of protections to backend allocations as well. It also
places guard pages onto the heap. Guard pages should never be accessed, or an exception is raised. If an
attacker performs an overflow attempt that touches a guard page or attempts an arbitrary write to a guard page
address, they will be caught.

© 2019 Erik Van Buggenhout & Stephen Sims 105

Arbitrary Code Guard (ACG)

Formerly called MemProt on EMET

During a buffer overflow, an attacker will often place their shellcode
into or just past the overflowed buffer with the hopes of execution:

« With DEP typically enabled, an attacker will often utilize ROP to call
VirtualProtect() or VirtualAlloc() to change permissions on the stack

« ACG checks the destination address passed to a critical function to ensure it's not
on the stack

+ JIT code must be factored in, such as C#.NET

Arbitrary code guard (ACG)

° Applications may I'equire maj or Changes Prevents non-image backed executable code, and code page modification.
[[] Override system settings

Arbitrary Code Guard (ACG)

Since the dawn of exploitation, it has been common for an attacker to overflow a buffer on the stack, put their
shellcode into or past the overflowed buffer, and return control to this location to execute their payload. It is
fairly standard for DEP to be enabled on modern OSes. Attackers typically use Return Oriented Programming
(ROP) to call a function such as VirtualAlloc() or VirtualProtect() to change the permissions on the stack or
other locations where their shellcode is located; otherwise, an exception would be thrown when trying to
execute code in a write-only region. Formerly called MemProt from EMET, ACG works by evaluating the
address passed to VirtualProtect(), VirtualAlloc(), or other similar functions to ensure that the execute
permission is not being set on an existing or new allocation.

106 © 2019 Erik Van Buggenhout & Stephen Sims

Validate API Invocation

Validate API invocation (CallerCheck)
Ensures thal sensitive APIs are invoked by legitimate callers,

The intended way for functions to be called is via the "Call"

instruction [override system settings

This instruction first pushes the return pointer onto the
stack, so control can be passed back to the caller upon
completion of the called function, and then redirects control
to the called function

When attackers use ROP, they utilize the "Ret" instruction to
jump to critical functions such as VirtualAlloc() and
VirtualProtect()

The Validate API Invocation (formerly the Caller Check on
EMET) control works by disallowing these critical functions
to be reached via a "Ret" instruction

‘;Purp!éTe;‘arr‘qﬂgﬁcs &MKi!»l»_Cha‘i’ Defenses /

Validate API Invocation

In many processor architectures, there is a "Call" instruction. This is the intended way for functions to be
called (e.g. call memcpy). It performs two operations. First, the address of the instruction after the "Call"
instruction is pushed onto the stack, serving as the return pointer. This return pointer is used when the called
function is finished, allowing for control to be returned to the calling function. The second thing the "Call"
instruction does is it redirects control to the actual called function. When attackers utilize ROP as part of their
exploit, they often rely on the "Ret" instruction to return to the start of critical functions such as
VirtualProtect() or VirtualAlloc(). The Validate API Invocation control works by disallowing critical functions
from being reached via a "Ret" instruction. This control was known as the Caller Check on EMET.

© 2019 Erik Van Buggenhout & Stephen Sims 107

Simulate Execution (SimExec)

Simulate execution (SimExec)
'I‘ypically, When returning from a fllnction, it Wl].]. be some Ensures that calls to sensitive functions retumn to legitimate callers,
time before reaching another "Ret" instruction L] Override system settings
&) on
[:] Audit oniy

Simulate Execution works by simulating the instructions
after the return pointer address to look for the presence of a
Ret

A number of instructions are simulated to look for ROP
characteristics. EMET used 15 instructions by default

Simulate Execution (SimExec)

The Simulate Execution (or “SimExec”) control is like the opposite of the Caller Check. The Call Check
makes sure that we are reaching critical functions via a valid "Call" instruction. SimExec works by simulating
a predetermined number of instructions (15 was the default on EMET) that exist, starting with the address to
which the return pointer is pointing. It is looking for the existence of instructions commonly used with ROP,
most often a "Ret" instruction. When returning from a function call such as VirtualProtect() it is typically a
while before you would hit another "Ret" instruction; however, this is not always the case and has been known
to cause issues with applications.

108 © 2019 Erik Van Buggenhout & Stephen Sims

Validate Stack Integrity / Stack Pivot Protection - XCHG RAX, RSP

Validate stack integrity (StackPivot)
Ensures that the stack has not been redirected for sensitive functions.

[J override system settings

] Audit onty

During memory corruption exploits such as Use After Free (UAF), itis
common to steal the stack pointer away from the stack and point it to
attacker-controlled memory such as the heap.
« This is due to three special instructions unique to the stack pointer:

« RET — Redirect execution to the address pointed to by the stack pointer

« PUSH — Push the desired value onto the stack at the address held in the stack pointer

« POP - Pop the value pointed to by the stack pointer into the designated register

Stack Pivot protection works by ensuring that the stack pointer points to the
stack by checking the TIB (Thread Information Block) for stack limits.

 SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses 109

Validate Stack Integrity / Stack Pivot Protection - XCHG RAX, RSP

During memory corruption exploits such as Use After Free (UAF), a common technique is to steal the stack
pointer away from pointing to the stack region. This is typically accomplished by using an instruction like
"XCHG RAX, RSP". This would cause the EAX register to now point to the stack and the ESP register to
point to a region such as the heap. This would be useful if the attacker controls memory on the heap and
wishes to leverage unique and powerful instructions like "POP," "PUSH," and "RET" in relation to ROP.
Registers are hardcoded variables integrated into the processor cores. They are used for arithmetic operations,
storing addresses to memory locations, and many other purposes. Examples of registers include EAX, RIP,
CR3, EFLAGS, ESP, R11, etc. The stack pointer is a register (ESP on 32-bit and RSP on 64-bit) that is
designed to point to the top of the stack while under the context of a given thread. Those three special
instructions are very useful to attackers.

RET — Redirect execution to the address pointed to by the stack pointer
PUSH — Push the desired value onto the stack at the address held in the stack pointer
POP — Pop the value pointed to by the stack pointer into the designated register

The Stack Pivot protection works by checking the stack addressing limits from within the TIB (Thread
Information Block) to ensure that the stack pointer is pointing to a stack location.

© 2019 Erik Van Buggenhout & Stephen Sims 109

Code Integrity Guard, Formerly Attack Surface Reduction (ASR)

ASR on EMET: We can block potentially dangerous modules, such as
VB Scripting, as it can aid an attacker during an exploit

© Attack Surface Reduction o
Effective platforms: 32-bit € 3 64-bit ()

The Attack Surface Reduction (ASR) mitigation prevents defined modules from being loaded in the address
space of the protected process.

Code integrity guard

Modules: | npipi=.dll;jp2iexp.dll;vax.di;msxmi4*,dl;wshom.ocx;serrun.diy
(e e, il vge.di; i vehom ok s Only aliow the leading of images to those signed by Microsoft.

Internet Zone Exceptions: fLoca! intranet; Trusted sites

[[] ovenride system settings

ding of images signed by Micrescft Store

With Code Integrity Guard, you can permit only Microsoft-signed
images to load, or extend to images signed by the Microsoft store

Code Integrity Guard, formerly Attack Surface Reduction (ASR)

There are quite a few modules that have been involved in many exploits over the years due to the functionality
they provide. A couple of examples include vgx.dll (Vector Markup Language support), vbscript.dil (Visual
Basic Scripting support), and jp2iexp.dll (Java plug-in). Attack Surface Reduction (ASR) allows you to
specify any DLL you wish to never be loaded into a process. With Exploit Guard, we have Code Integrity
Guard which replaces ASR. This allows you to limit the loading of modules to those signed by Microsoft. You
can also extend it to images signed by the Microsoft store. It also ensures modules are not being loaded from
untrusted locations, such as "Downloads."

110 © 2019 Erik Van Buggenhout & Stephen Sims

Block Untrusted Fonts

Block untrusted fonts

Requires that Graphical Device Interface (GDI) fonts Prevents ioading any GDI-based fonts not installed in the system Fonts directory.
. . cerrid i

be only loaded from the Windows Fonts directory [Override system setings

&) Off

[[] Auditonly

Much of the code related to the rendering and processing of
fonts is done in Kernel mode

The infamous Duqu APT campaign is an example where a
malicious font was used to compromise systems

Block Untrusted Fonts

Font protection is a rather simple mitigation to explain. If a process such as MS Word is running and a
document indicates the desire for a font to be loaded outside of % WINDIR%/Fonts, it is not permitted. As
with most mitigations, support can be turned on or off at a per-process level. As noted on the slide, the
infamous Duqu APT, which targeted the Iranian nuclear program, utilized a 0-day font bug allowing for
Kernel-level code execution.

Reference:
hitps:/docs.microsoft.com/en-us/windows/security/threat-protection/block-untrusted-fonts-in-enterprise

© 2019 Erik Van Buggenhout & Stephen Sims 111

Validate Handle Usage

Validate handle usage
Raises an exception on any invalid handle references.

The Validate Handle Usage control checks handle references

: [[] override system settings
to ensure they are valid

@&) o

An example of using a handle is when a new process is
created and needs to inherit the handle to a file descriptor or
socket

If an attacker can modify the address of a handle, they may
be able to run arbitrary code

Validate Handle Usage

Handles are used as a way to pass resources within a process, between processes, and other scenarios. A
handle may be of various types, such as file descriptors, sockets. STDIN/STDOUT, process IDs, and various
others. Handles can be inherited or duplicated. If an attacker can modify the address of a handle and cause the
handle to get inherited, they may be able to run arbitrary code. The "Validate Handle Usage" control checks to
make sure that references to handles are valid. This can be performed by building a table of valid handles upon
creation and ensuring that any references are listed in the table.

112 © 2019 Erik Van Buggenhout & Stephen Sims

Disable Extension Points Disable extension points

Disables various extensibility mechanisms that altow DLL injection into all processes,
such as window hooks.

[override system settings
@) of
This control disables some ways in which applications can or
could be extended or hooked over the years

A big example is with the AppInit_DLLs registry key where
any DLLs listed would be loaded into each process upon
invocation

There is no "Audit Mode" with this control

. SEC599| Defeating Advanced Adversa

; Purple Team Tactics & Kill Chain Defenses

3

Disable Extension Points

An infamous attack technique used over the years is DLL injection. This is where we force a process to load a
potentially malicious DLL containing an attacker's or malware's desired functionality. There are various ways
in which the injection can be performed, such as that with hooking where you monitor a process for specific
events. When one occurs, an action can be taken prior to passing it further onward down a hook chain. An
example of an action that can be performed is the loading of a DLL. Another common example is the use of
the Applnit DLLs registry key. DLLs listed at this location are loaded into each process upon invocation. The
"Disable Extension Points" mitigation blocks these techniques. As noted, there is no "Audit Mode" available
with this control.

You can get more information on the Applnit DLLs registry key from the following link:
https://support.microsoft.com/en-us/help/197571/working-with-the-appinit-dlls-registry-value

© 2019 Erik Van Buggenhout & Stephen Sims 113

Disable Win32k System Calls

Disable Win32k system calls

The Win32k System Call Table is full of functionality that i S S
runs under the context of System e

off
[7] Audit oniy

Most applications do not need this ability... There are over
1,000 functions available, some of which previously being
involved in vulnerabilities

This control greatly reduces the attack surface by blocking
access to the Win3 2k System Call Table, but still allowing for
NT-based system calls

Disable Win32k System Calls

This control prevents a process from being able to access the Win32k system call table. This is a large attack
surface that has been known to have vulnerabilities from information disclosure to remote code execution.
Most programs use the regular NT path of getting into the System context for privileged operations. The NT
method typically involves using the SYSENTER instruction from within an NTDLL function. Without the
"Disable Win32k System Calls" control applications can also utilize the Win32k system call table, which has
over 1,000 functions that run from within the context of System. If a process does not need this capability, the
control can be turned on, greatly reducing the attack surface.

114 © 2019 Erik Van Buggenhout & Stephen Sims

Do Not Allow Child Processes

Do not allow child processes
Prevents programs frem creating child processes.

A common goal of exploitation is to create a new process

it . . E] Override system settings
once the victim process is compromised

@ o
[:] Audit only

Often, even Proof of Concept code spawns the Windows
Calc.exe program to prove success

This mitigation blocks the ability for a process to call the
CreateProcess function

Do Not Allow Child Processes

The idea behind this control is simple. Block the ability for a process to spawn a child process using the
CreateProcess function. It is not uncommon for an exploit to spawn a child process during exploitation to
fulfill some goal. By preventing this capability, an attacker's options are more restricted, especially if you
combine it with other controls that mitigate an attacker's ability to load modules into the compromised process.

© 2019 Erik Van Buggenhout & Stephen Sims 115

Validate Image Dependency

Developers often utilize third-party DLLs, which include Validate image dependency integrity
. . 2 . 2! . Enforces code signing for Windows image dependency loading.
functionality not available in native Windows DLLs l

[[J override system settings

Validate Image Dependency requires that any DLL loaded by a
process be signed by Microsoft

This can prevent

DLL side-loading

The control works well for Microsoft programs, but may not be attacks!
usable by third-party application developers

Validate Image Dependency

DLLs are image files that contain functionality available to developers. Microsoft makes available to
developers a large number of DLLs, and would prefer if only those DLLs are used. There are certainly cases
where a third-party application developer may require functionality unavailable in any Microsoft DLL, or
perhaps they need the behavior to differ. The "Validate Image Dependency" control mandates that all DLLs
loaded into a protected process be digitally signed by Microsoft. If the DLL is not signed, it cannot be loaded
into the process. This may not be suitable for all third-party applications and should be thoroughly tested. The
positive thing about this control is that it can prevent DLL side-loading bugs from being exploitable. If a
process goes to load a module that it cannot locate on the filesystem, an attacker could potentially trick a user
into putting a malicious version of that DLL into one of the load locations. They typically would create a
custom malicious DLL to perform some malicious actions. If the DLL is not signed by Microsoft, and the
controls are on, the bug would not be exploitable.

116 © 2019 Erik Van Buggenhout & Stephen Sims

Block Low Integrity Images

Block low integrity images
MiCI'OSOft'S Mandatory Integrity C()ntrol (MIC) iS a way to Prevents loading of images marked with low-integrity.
rate the trustworthiness of a process [override system settings
Off
[] Audit only

This Block Low Integrity Images control blocks the ability for
processes running as Low or Untrusted from being able to
load downloaded files into the process

|24 Process Explorer ~ Sysil s www.sysinternals.com [DERP\ster
File Options View Process Find Users Help ; :
dlAlesBER e A) e | s | TR
Process CPU Private Btes | Woking Set PID Description Company Name integrty
¢ OneDrive exe <001 24,008K 60.316K 3172 Microsoft OneDrive Microzoft Corporation Medum
BTTray.exe 7.808K 12644 K 6228 Bluetooth Tray Applicati B G i Medam
ONENOTEMEXE 2480K 1876 K| 7300 Send to OneNote Tool Mcrosoft Carporation Medium
&1 @ chrome exs 0.08 246,352 K 329444 K 3708 Goagle Chrome Google Inc. Medim
@ chrome.exe <001 3.700K 7.856K 6684 Google Chrome Google Inc. Medum
€ chrome exe 3300K 8192K = 6108 Google Chrome Google Inc, Medim
& chrome exe <0.01 209524 K 226244 K. 4344 Gaogie Chrome Goagle Inc, Low
@ chrome exe 476K 447996 K Untrusted
<om Untrusted

Block Low Integrity Images

Microsoft introduced Mandatory Integrity Control (MIC) with Windows Vista. It allows for an integrity level
to be assigned to a process in order to increase the security around access control. Internet Explorer 7, which
came with Vista as the default browser, could run in "Protected Mode" which utilized MIC. The browser
would run with a low integrity level, preventing it from being able to make changes at a higher integrity level.
As you can see from the screenshot of Process Explorer on the slide, to the right is the integrity column. Some
processes are running as Medium, and others as Low or Untrusted. Google Chrome is running its browser
windows as Untrusted, the lowest and most secure level. What the "Block Low Integrity Images" controls does
is to prevent files that may have been downloaded by a process running with low integrity from being loaded
into that process, further improving security.

For more information on Microsoft's Mandatory Integrity Control (MIC) see the following MSDN article:
https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/bb625963(v=msdn.10)

© 2019 Erik Van Buggenhout & Stephen Sims 117

Core Isolation and Memory Integrity

Virtualization-based security feature that works like
Credential Guard

Core isolation

Security features available on your device that use virtualization-based
security.

i | 7 Memory integrity
Cntlcal pI‘OCCSSGS are run in an ISOIated area Of Prevents attacks from inserting malicicus code into high-security
memory processes.

@ off

Learn more

With Memory Integrity, drivers are also put into the
isolated memory, which may cause issues

Core Isolation and Memory Integrity

The Windows 10 Spring 2018 Creators Update brought us new controls called "Core Isolation" and "Memory
Integrity." Core Isolation takes advantage of virtualization technology with Hyper-V, similar to how
Credential Guard protects the LSASS process. Critical OS processes are placed into the protected area of
memory, preventing tampering from being possible via traditional techniques. Memory Integrity adds on
additional security by placing device drivers into this same protected region of memory. This is disabled by
default as the control could negatively impact processes and prevent them from working properly.

Reference:
https://www.howtogeek.com/357757/what-are-core-isolation-and-memory-integrity-in-windows-10/

118 © 2019 Erik Van Buggenhout & Stephen Sims

Efforts to Defeat EMET and Exploit Guard

As with any security control, there has been a lot of research on
ways to bypass, disable, or otherwise defeat these controls

Overall, EMET had a low adoption rate, and the same can be
expected for Exploit Guard for some time

Some public exploits have been seen checking to see if EMET is
running on the system, and if it silently fails to avoid detection

Example
An example of this'is from a FireEye report in 2014 from "Operation Showman* where the browser
exploit first checks for EMET.
(https://www.fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-

compromises-us-veterans-of-foreign-wars-website.html)

Efforts to Defeat EMET and Exploit Guard

Every time a new security feature or device is introduced into the wild, researchers, attackers, and others look
for ways to defeat its controls. This is actually a good thing from a security perspective as too much trust has
been given to vendors of security products, such as antivirus software. EMET had a relatively low adoption
rate over the years due to numerous reasons. This is likely part of the reasoning for Microsoft's discontinuation
of EMET in 2018. Many of the users and organizations using EMET are from interesting lines of work,
including government, defense, critical infrastructure and others. This would also add to the draw of finding
ways around the tool.

FireEye released a report in 2014 showing a browser exploit that first checked the victim to see if they had
EMET running. If so, it silently fails to avoid detection. This was clearly an effort to keep the exploit unknown
for as long as possible. You can check out the details here:

https://www fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-compromises-us-
veterans-of-foreign-wars-website.html

© 2019 Erik Van Buggenhout & Stephen Sims 119

Interesting FireEye EMET Bypass Disclosure

FireEye discovered a function within emet.dll that completely
removes all EMET hooks:

« Simply call DLLMain() in emet.dll with the right arguments:
DLLMain(EMET.dIl base address, 0, 0)

e The base address can be found with GetModuleHandleW() which is not
considered a critical function

e The first 0 argument is the flag to unload EMET.dII, 1 is to load

« The article is a must read: https://www.fireeye.com/blog/threat-
research/2016/02/using_emet_to_disabl.html

Interesting FireEye EMET Bypass Disclosure

FireEye also released an interesting article on a bypass they discovered. To summarize, once you gain control
of the process, you need to deal with EMET prior to attempting the disabling of DEP and execution of your
shellcode. Much of the research has been quite complex in relation to methods to bypass EMET; however, this
technique simply requires that you locate the base address of emet.dll and replay the DLLMain() function with
an argument of 0 to unload all hooks. Pretty amazing.

Reference:
Alsaheel, Abdulellah. Pande, Raghav. "Using EMET to Disable EMET." FireEye Using EMET to Disable
EMET. https://www.fireeye.com/blog/threat-research/2016/02/using_emet_to_disabl.html (accessed February

1,2017).

120 © 2019 Erik Van Buggenhout & Stephen Sims

EMET Bypass — Additional Resources 4

Some additional resources that can prove to be useful for bypassing EMET
include:

* https://duo.com/assets/pdf/wow-64-and-so-can-you.pdf
by Darren Kemp & Mikhail Davidov

« https://www.blackhat.com/docs/us-16/materials/us-16-Alsaheel-Using-EMET-To-Disable-
EMET-wp.pdf

» https://www.offensive-security.com/vulndev/disarming-and-bypassing-emet-5-1/
by Offensive Security

+ http://oxdabbadoo.com/wp-content/uploads/2013/11/emet_4_1_uncovered.pdf
by Dabbadoo

]

EMET Bypass — Additional Resources
Some additional resources that can prove to be useful for bypassing EMET include:

https://duo.com/assets/pdf/wow-64-and-so-can-you.pdf
by Darren Kemp & Mikhail Davidov

https://www.blackhat.com/docs/us- 1 6/materials/us-16-Alsaheel-Using-EM ET-To-Disable-EMET-wp.pdf
by FireEye

https://www.offensive-security.com/vulndev/disarming-and-bypassing-emet-5-1/
by Offensive Security

http://0xdabbad00.com/wp-content/uploads/2013/11/emet_4_1_uncovered.pdf
by Dabbadoo

© 2019 Erik Van Buggenhout & Stephen Sims 121

l Malwarebytes

Malwarebytes is a commercial anti-malware product for
Windows, Mac OS, and Android devices:

« A free version is offered with limited functionality, as well as a trial version

Protections are offered against malware, exploitation techniques,
and ransomware.

For the purpose of this module, we are looking at the anti-exploit
portion of the product:
o Similar to Microsoft's EMET and an alternative as EMET is EOL since 20138.

« Focuses on the most commonly exploited applications such as IE, Chrome,
Office, Flash, etc.

Malwarebytes

Malwarebytes Anti-Exploit (MBAE) is a commercial alternative to Microsoft's Enhanced Mitigation
Experience Toolkit (EMET), which as stated previously, is end of life as of mid-2018. Organizations might
still run Windows 7, which justifies the case to consider alternative products. Malwarebytes has been around
for over 10 years initially offering only anti-malware type features, such as the removal of Spyware and
Adware, as well as identifying common infections through scanning. As the product evolved, real-time
scanning was incorporated, as well as anti-exploitation functionality like EMET and Ransomware protection.
A free version is available once the 14-day trial expires offering anti-malware and anti-spyware protection, as
well as rootkit detection, as stated on their website at https://www.malwarebytes.com/mwb-download/.

For the purposes of this module, our attention is focused on the anti-exploitation functionality. To try and
simplify configuration and focus on the most common targets involved in exploitation, MBAE focuses on
browsers, Flash, MS Office Suite, PDF readers, and media players.

References:

Malwarebytes. "Malwarebytes Endpoint Security." MBAEBGuide.pdf
https://www.malwarebytes.com/pdf/guidess/MBAEBGuide.pdf (January 26, 2017).

Malwarebytes copyrighted image taken from https://plus.google.com/+Malwarebytes

122 © 2019 Erik Van Buggenhout & Stephen Sims

Malwarebytes Anti-Exploit (MBAE)

MBAE GUI (») Malwarebytes Anti-Exploit Premium (Trial) (i
Appiication Herdering | Advanced Memory Protection | Appication Behavior Protection | Java Protection
Under the advanced settings
Browsers Chrome PDF MS Office Media Other
menu for MBAE, you can see e il
the different categories of o A
i DEP Enforcement] @ & & 3 [
Bl , etteapSpraying Enforcemert g BB iR R
Apphcatlon Hardenmg Dynamic Anti-HeapSpraying Enforcement ¥ j‘r]]]
Advanced Memory. BottomUp ASLR Enforcement Fl Fl £l @ F Fl
Protection Disakle Internet Explorer YB Scripting 7]] 1 1 & |
Application Behavior Detection of S00-Expiok Tngerptintiog stlemts &
Protection
Java Protection
Many of the protections are
similar to EMET with some [Restoredetauts | | Aoy |
additional ones, too... R

Malwarebytes Anti-Exploit (MBAE)

When looking at the trial version of MBAE, you can go to the "Advanced settings" menu from the control
panel to bring up the image on the slide. The tabs at the top include "Application Hardening," "Advanced
Memory Protection," Application Behavior Protection," and "Java Protection." Many of the controls should
look familiar as they are similar to Exploit Guard and EMET, including "DEP Enforcement," "Anti-
HeapSpraying Enforcement," "BottomUp ASLR Enforcement" and many others, some not offered by EMET.
The techniques behind the controls are very similar, if not identical to Exploit Guard and EMET. MBAE and
Exploit Guard or EMET should not be running on the same system as both will inject a DLL into the
applications chosen for protection when started and attempt to apply the same types of hooks. This will likely
end badly.

MBAE has additional controls over Exploit Guard and EMET focusing on Macro abuse of WMI and Visual
Basic for Applications (VBA), as well as Java protections focused on common payloads such as Meterpreter.

Check out the following reference for more information:
https://www.malwarebytes.com/pdf/guidessMBAEBGuide.pdf

© 2019 Erik Van Buggenhout & Stephen Sims 123

Looking at MBAE with Immunity Debugger

The image below is a screenshot of Immunity Debugger attached to
Internet Explorer:

: TCixProgran FilesJavasjre6<bin\MSUCRZL-dil
il C:\Progran Files\Java\jreb6\bin\ssv.dll
68980080 | BPB64000 | 689DIALS | mbae 9% 3 C:\Progran Files\Malwarebytes Anti-Exploit\mbae.d1l

Malwarebytes Anti-Exploit LB

Process injection

Malwarebytes Anti-Exploit has

Dlocked 81 explolattempt The arrow on the right is pointing to the mbae.dll module

that was injected into the process. This is the exact behavior

Aophcaton: Internet Explorer (30d add-ces) i 5

Pottntars: . i ek Sy s | of EMET with the emet.dll module.

::"‘"""""%’ skt tock Pt atiobocied Bl If both emet.dll and mbae.dll were in the process at the same
ol N | . ¥ o 5

SR : | time, they would likely be fighting for the same control. VWhen

trying to run IE with both running, IE failed to start.©

HMabwarebytes T

ANTI-EXPLOIT [Lgoe]

Looking at MBAE with Immunity Debugger

On this slide is a screenshot from an Immunity Debugger session attached to Internet Explorer. MBAE is
installed on the system and you can see that the module mbae.dll is injected into the process as indicated by
the arrow. This behavior is identical to Exploit Guard and EMET. If both PayloadRestrictions.dll or emet.dll
and mbae.dIl were loaded into this process at the same time, the would likely be fighting for the same control.
As a test to see what would happen, this author ran EMET, protecting Internet Explorer, and also MBAE. The
process failed to start after several attempts with no alerts from EMET or MBAE and no logs shown in
Windows Event Viewer.

Furthermore, the alert box shows what appeared after running a browser exploit on a system protected by
MBAE that uses the stack pivoting technique covered earlier.

124 © 2019 Erik Van Buggenhout & Stephen Sims

Bromium vSentry

A commerecial security-oriented micro-virtualization solution
providing isolation of user-initiated tasks.

Virtual machines are hardware isolated and utilize Intel's
Virtualization Technology (VT).

Only the resources Any attempt to access a

machine.

required for a task to run resource outside of the VM
are placed into the virtual is caught and passed to the

Microvisor for inspection.

Bromium vSentry

A couple of commercial security solutions offer micro-virtualization where portions of the operating system or
processes are contained within their own virtual machine, preventing wide-scale system access. Bromium is a
vendor offering a product called vSentry which isolates user-initiated tasks using Intel's Virtualization
Technology (VT). Each task is provided with only the resources necessary to properly run. When a task
attempts to interact with another task or anywhere outside of its own VM, hardware interruptions occur, and
the request is passed to the Microvisor for inspection and application of a set of mandatory access controls.

References:

Bromium Secure Platform | https://www.bromium.com/our-tech/bromium-secure-platform/
Bromium copyrighted image taken from: https://www.bromium.com/

© 2019 Erik Van Buggenhout & Stephen Sims 125

Polyverse is a lesser known vendor offering unique security
solutions.

Binary scrambling is used to make unique versions of an

application:

« In theory, if a vulnerability exists, each time the binary is scrambled, it would
prevent exploitation as the conditions have changed

A feature described as "self-healing" is provided, reverting the

protected application back to a good state every few seconds.

Additional features allow certain types of data stores to be split into
thousands of encrypted containers. o
:*OLY VERSE

Polyverse

Another contender in the space of vendors such as Bromium is Polyverse. There is not too much publicly
available information about the internal technology of their product; however, unique features include the
concept of binary scrambling and "self-healing." You may be familiar with the idea of polymorphic malware.
This is malware that attempts to evade detection by constantly changing so that signatures go unmatched.
Binary scrambling takes advantage in a similar fashion in that the binary is changed from its original state. If
you are familiar with assembly code, you know that there are many ways for instructions to achieve the
desired result.

Let's say we want the x64 RAX processor register to hold a value of 0x40. In assembly, we have several ways
to accomplish this goal. The following is a simple example:

e.g. 1
XOr rax, rax # Zero out the RAX register
mov al, 0x40 # Move 0x40 into the lower byte of the RAX register (al stand for

accumulator low)

eg. 2
mov rax, 0xffffffcO # Move OxffffffcO into the RAX register
neg rax # Compute the two's complement of the value stored in the RAX register,

resulting in 0x40

Another feature offered by Polyverse is what they describe as "self-healing." This is simply the application
reverting back to a known good state every few minutes. Additional advanced features offer the splitting of a
data store such as a database into thousands of encrypted containers. This is all definitely a technology to keep
an eye on.

References:
Polyverse copyrighted image taken from https://polyverse.io/

126 © 2019 Erik Van Buggenhout & Stephen Sims

Course Roadmap

Day 1: Introduction & Reconnaissance
Day 2: Payload Delivery & Execution

Day 3: Exploitation, Persistence and

Command & Control
Day 4: Lateral Movement

Day 5: Action on Objectives, Threat
Hunting & Incident Response

Day 6: APT Defender Capstone

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling
Patch Management
Exploit Mitigation Techniques
Exercise: Exploit Mitigation using Compile-Time Controls
Exploit Mitigation Techniques — ExploitGuard, EMET & others
> Exercise: Exploit Mitigation using ExploitGuard
Avoiding installation
Typical persistence strategies
How do adversaries achieve persistence?
Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control
Detecting Command & Control channels
Exercise: Detecting C&C channels using Suricata, JA3, & RITA

SEC599 | Defeating Advanced Adver;aﬁes — Purple Team Tactics & Kill Chain Defenses

127

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims

127

Exercise: Exploit Mitigation Using ExploitGuard

Please refer to the workbook for further instructions on the exercise!

This page intentionally left blank.

128 © 2019 Erik Van Buggenhout & Stephen Sims

Course Roadmap

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling
Day 1: Introduction & Reconnaissance Patch Management
Day 2: Payload Delivery & Execution Exploit Mitigation Techniques
Exercise: Exploit Mitigation using Compile-Time Controls
Day 3: Exploitation, Persistence and

Exploit Mitigation Techniques — ExploitGuard, EMET & others

Command & Control Exercise: Exploit Mitigation using ExploitGuard

Avoiding installati

Day 4: Lateral Movement A AL e o

Typical persistence strategies

Day 5: Action on Objectives, Threat How do adversaries achieve persistence?

Hunting & Incident Response Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control

Day 6: APT Defender Capstone

Detecting Command & Control channels
Exercise: Detecting C&C channels using Suricata, JA3, & RITA

SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses 129

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims 129

Persistence?

Upon successful exploitation, adversaries typically want to persist their access on the
target environment (e.g. to survive reboots, user logoff, ...) There's two main categories

of persistence strategies:
User space

e "Hiding in plain sight"
* Do not always require administrative access to system
o Examples: Web shells, scheduled tasks, user profile, ...

Both user space
& kernel space
persistence

used by APTs!
e Has additional capabilities to hide itself from investigations

» Require administrative access to system
« Examples: Device drivers, Loadable kernel modules, ...

Persistence?

Upon successful exploitation, adversaries typically want to persist their access on the target environment (e.g.
to survive reboots, user logoff, ...). Depending on the privileges available to the adversary, they could choose
to hide in two main parts of the victim system:

* User space: User space is the memory area where application software (and a limited number of
drivers) execute. All "user" interactions typically occur in user space.

+ Kernel space: Kernel space is strictly reserved for running a privileged operating system kernel, kernel
extensions, and most device drivers. Code used for persistence in kernel-mode is typically referred to
as a "rootkit", as it interacts with low-level parts of the OS and can thus hide itself better from

investigations.

Advanced adversaries have been known to use both locations for persistence. You might think they would
always prefer kernel-mode persistence; however, this is not true: The very presence of an unknown item in
kernel space (e.g. a "rootkit") provides a signal something is suspicious... They might thus prefer to
compromise the user environment and thus, limit themselves to "hiding in plain sight". Adding a scheduled
task, setting a "Run" registry key, adapting the user profile, ...

130 © 2019 Erik Van Buggenhout & Stephen Sims

What Persistence Strategy Is Used?

Next to the "user space" vs. "kernel space" question, there are other
items that will determine the type of persistence strategy used:

What is the function of the target system?
Is it available from the internet?

* Does the adversary have administrative privileges to the system?

! Successful persistence does not always require administrative privileges !

aries — Purple Team Tactics & Kill Chain Defenses L

What Persistence Strategy Is Used?
We already discussed the "user space” vs. "kernel space” question in the previous slide. There are, however, a
number of other questions that will determine what type of persistence strategy is opted for by the adversary:

e What is the function of the target environment?
If it's a workstation, we can assume that reboots and user logons will occur frequently and thus a
persistence strategy related to the user profile could be a viable option.

s it available from the internet?
If it is, the adversary could opt to place a backdoor in an existing service (e.g. web shell) and use that
to directly reconnect to the system.

» Does the adversary have administrative privileges to the system?
If administrative privileges are available, the adversary could opt to attempt installing a rootkit that
operates in kernel-mode.

Even if administrative privileges are helpful to the adversary, persistence can be achieved without having them
as well!

© 2019 Erik Van Buggenhout & Stephen Sims 131

Course Roadmap

Command & Control

« Day 4: Lateral Movement

Day 3: Exploitation, Persistence and

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling

Day 1: Introduction & Reconnaissance Patch Management

Day 2: Payload Delivery & Execution Exploit Mitigation Techniques

Exercise: Exploit Mitigation using Compile-Time Controls
Exploit Mitigation Techniques — ExploitGuard, EMET & others
Exercise: Exploit Mitigation using ExploitGuard

Avoiding installation

Typical persistence strategies

Day 5: Action on Objectives, Threat How do adversaries achieve persistence?

Hunting & Incident Response

Day 6: APT Defender Capstone

Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control

Detecting Command & Control channels

Exercise: Detecting C&C channels using Suricata, JA3, & RITA

SEC599 | Defeating Advanced Adversaries ~ Purple Team Tactics & Kill Chain Defenses

silhpies

This page intentionally left blank.

132

© 2019 Erik Van Buggenhout & Stephen Sims

Persistence Strategies

Some typical persistence strategies include:

Task schedulers (Task Scheduler,
At,Cron ...)

Web shells (web servers accessible
from the internet)

Auto-start services (requires
elevated privileges)

Registry manipulation (run keys,
logon scripts ...)

HE

DLL search order hijacking \""/ | WMI event subscriptions

Bootkits infecting the Master Boot
Record

User startup folders

Persistence Strategies
A number of common persistence strategies are listed below. These will be explained in more detail in the
following slides.

Web shells: Only useful for internet-accessible systems. Often used as an initial entry point in an
environment.

Task schedulers: All major operating systems have task schedulers available (Task Scheduler, At,
Cron, ...). A highly popular means of persistence.

Registry manipulation: A number of registry keys are used during the startup / user logon process.
These can be abused by adversaries to add malicious code to be executed upon start-up / logon.
Auto-start services: Many systems use a number of services that will automatically launch at startup
(often even with elevated privileges). Adversaries could add additional services that appear to have
normal names or functions (will require administrative privileges);

DLL search order hijacking: Highly interesting technique abusing the way Windows prioritizes the
loading of DLLs;

WMI event subscriptions can be used to persist payloads on Windows-based systems;

User startup folders: Much like registry manipulation, adversaries could implement shortcuts / scripts
in a user's startup folder, which is executed upon logon;

Bootkits are used to affect the system upon startup. Malicious code that infects the Master Boot
Record (MBR) will run even before the Operating System is launched.

We will analyze all of these techniques in the upcoming section! Please note that this overview covers some of
the most popular methods, but it's certainly not exhaustive... Check out MITRE's ATT&CK framework for
additional techniques!

© 2019 Erik Van Buggenhout & Stephen Sims 133

\@ Web Shells - Introduction

For systems with internet connectivity, web shells are a highly popular
means of ensuring persistence (provided a web server is running)

What? A web script that allows an adversary to run commands on the targeted web server. It
: serves as a gateway into the network.

An adversary is able to upload the web script to the file server, through legitimate
upload functionality or a vulnerability. Afterwards, the web shell file is served back to
the adversary.

Deep Panda uses web shells on publicly accessible web servers to access victim
€IS networks. Another example is China Chopper, an advanced web shell that supports
different server-side scripting languages.

fa gAgiyéncédAdvgfsériie‘ﬁll;‘PurpleT’ n Tactics & Kill Chain

Web Shells — Introduction

A web script allows an adversary to run commands on the targeted web server. It can serve as a gateway into
the network. Web shells can provide a simple interface that allows to run single commands or they can consist
of an advanced GUI with multiple types of functionality, such as direct file access, database connections, or
network reconnaissance to explore the internal network.

For an adversary to be able to abuse a web shell on a web server, the web shell first has to be uploaded. This
could either be done through a legitimate upload function provided by the web server or might be possible due
to a vulnerability present in the web application or web server software. Once the adversary has been able to
upload the web shell, it has to be served back. If the file is accessible, but not interpreted as web script, and
thus shown back as simple text, the adversary will not be able to execute commands. The web server has to
interpret the web shell's script and serve that back to the adversary.

Some famous examples are web shells used by the Deep Panda threat group, who used them as primary access
back into victim organizations in the defense, legal, telecommunication and financial industries. This was an
interesting approach as web shells were mostly only seen as a first stage into obtaining a foothold in the target
network, after which they would be abandoned as soon as a second stage malware was communicating back to
the adversaries. The usage of web shells gave Deep Panda some advantages, such as the absence of C&C
beacon traffic, a low detection rate by AV products, and the ease to switch source IP addresses, making it
difficult for the defenders to block known C&Cs. More information on Deep Panda web shells can be found
here: https://www.crowdstrike.com/blog/mo-shells-mo-problems-deep-panda-web-shells/

An advanced example of a web shell is the China Chopper shell, which supports server payloads for many
different kinds of server-side scripting languages and contains functionality to access files, connect to a
database, and open a virtual command prompt. An analysis of China Chopper can be found here:
https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-
i.html.

134 © 2019 Erik Van Buggenhout & Stephen Sims

Web Shells — Some Notable Examples

[Uname: Tiniix pe 320118 -generic #161-Ubunta SMP Fri Dec 2 153631 UTC 2016 x86_64 (exploit-db.com] [Hindowsa1251 k)|

{user: 33 (www-data) Group: 33 {www-data) “Serle: The WSO web shell offers a broad
Php: 5.3.10-1ubuntu3.25 Safe mode: 01} | phpinfo | Datetime: 2017-03-14 06:0537 127001 3 0 . .

{Hdd: 12525 GB Free: 115.35 GB (92%) Client 19 range of functlonallty, mcludlng a

iCwd: fvariwwwiscreenshoty! drwxr-xr-x [home] 127001 > .
g Ch graphical file browser.

Web shells often try to stay under the radar. The
example below is disguised as a 404 page error but
contains a hidden password field that leads to the
actual shellt

Not Found

Ther rereguressitiesed VUYL was not found o

Aprererhes Serrveerr et 127.02.00.7 Port 30

Web Shells — Some Notable Examples

A number of shells offer the creation of a botnet in as little as a click, launching standalone processes that either
connect to a command and control server or listen for commands over an insecure TCP connection. Some allow
performing port scans to find potentially exploitable services. Others enable fraudsters to schedule denial of
service attacks. There are shells dedicated to sending bulk spam emails, testing stolen credentials against popular
websites (such as PayPal or Amazon), cracking passwords, and automatically defacing websites. With such a
wide array of powerful features, it is unsurprising how popular web shells are with cyber criminals.

A popular and feature-rich web shell is WSO. WSO offers, among others file management, such as browsing
directory contents in a GUI, but also both bind shell and back connect options. Selecting one of these options will
launch a standalone process that will connect to or listen for a connection from a remote command and control
server—an easy method for the creation of a botnet.

Web shells will often try to stay under the radar to avoid detection by server admins or other hackers. A
particularly common ploy is that of fake error pages, used by some variants of the C99 web shell. These shells
attempt to recreate the default Apache error pages, usually 404 Not Found or 403 Forbidden. When viewed in a
web browser, these fake pages can easily be mistaken for legitimate error messages. However, when compared
side-by-side, discrepancies can be found by looking for incorrect or omitted version numbers, hostnames, URLSs,
and HTML titles. These fake error pages also contain hidden password fields, which provide access to the web
shell: Some variants simply set the background and border colors to match the page background, while others add
JavaScript that reveals the password form when the port number is clicked.

Another notable method for avoiding detection is prefixing the web shell scripts with small excerpts of image file
headers—most commonly those from the GIF89a specification. When processed by the PHP interpreter, these
bytes are ignored and passed through to the web browser, displaying the text "GIF89a". Automated tools such as
the open-source utility file use these magic bytes as a fingerprint to identify the file type, mistaking the malicious
PHP script for an image. Reference: https:/news.netcraft.com/archives/2017/05/18/web-shells-the-criminals-
control-panel.html

© 2019 Erik Van Buggenhout & Stephen Sims 135

\% Web Shells — Prevent and Detect

So... We know what web shells look like and how they are used. Now how
do you prevent / detect them?

° Restrict file upload possibilities

* Review web applications running on web server (SDLC, penetration testing, ...)
* Patch public web servers and CMS systems regularly

e Limit the web server's account privileges

Prevention

* Process monitoring (e.g. web server process running cmd.exe or /bin/bash)

* Web root integrity and file monitoring (detect unauthorized changes)

» Traffic analysis and log review (e.g. OS commands being sent in requests to the
web server)

Detection

Web Shells — Prevent and Detect
It is easier to prevent web shells from being abused as a persistence mechanism in your server or network than to
detect them.

If your web application has a file upload function, it should have some restrictions. First of all, it's possible to limit
the types of files that can be uploaded (based file header for example). It could be wise to disallow users to upload
web scripts of various types. In case all kinds of files are allowed to be uploaded, it's possible to restrict how users
access these files. Avoid having the web server interpret uploaded scripts, for example, by changing the filenames
for all uploaded files or by only allowing users to download them.

In case file upload is not allowed, measures should be taken to avoid unforeseen file upload. Make sure
adversaries cannot abuse known vulnerabilities that could allow remote code execution or file inclusion by
regularly patching your externally reachable web servers.

In case adversaries do succeed in uploading and abusing a web shell, it is still possible to limit the possible
damage they can do. Audit account and group permissions of the web server's account and make sure it does not
have local root privileges or access to unnecessary files and folders. If the web server is part of an Active
Directory, make sure accounts that are used to manage it do not overlap with permissions for the internal network.

In case all prevention measures failed, the web shell might still be detected. However, they can be difficult to
detect, since they do not initiate connections. The portion of the shell that resides on the web server might also be
small and innocent looking. Process monitoring could be used to detect suspicious actions such as command
execution or file access outside the web directory. Often, an adversary will try to go for the /etc/passwd file. File
monitoring could be used to detect web shell code being injected into other web application files. In case files are
changed that do not match updates to the web content, this might be an indication of unauthorized changes by an
adversary. Additionally, log authentication attempts to the server to avoid potential brute forcing and monitor
network traffic for suspicious activity to and from the web server and the internal network.

136 © 2019 Erik Van Buggenhout & Stephen Sims

2N\
@ Task Schedulers — Overview

For a variety of systems (e.g. workstations, servers, ...) the task
scheduler can be a highly effective persistence mechanism:

Utilities such as "at" and "schtasks" (Windows) and cron (Linux) can be used to
schedule programs or scripts to be executed at a date and time or at startup.

What?

An adversary may use task scheduling to execute programs at system startup or on a
scheduled basis for persistence, but also for lateral movement, or privilege escalation.

Too many to name... Shamoon — copies an executable to the target using Windows
5€1plE9] Admin Shares and schedules an unnamed task to run it. Remsec — schedules the
execution of one of its modules by creating a new scheduler task.

Task Schedulers — Overview

Utilities such as "at" and "schtasks", along with the Windows Task Scheduler, can be used to schedule
programs or scripts to be executed at a date and time or at startup. The account used to create the task must be
in the Administrators group on the local system. A task can also be scheduled on a remote system, provided
the proper authentication is met to use RPC and file and printer sharing is turned on.

An adversary may use task scheduling to execute programs at system startup or on a scheduled basis for
persistence, but also for lateral movement, or privilege escalation to SYSTEM, or running a process under the
context of a specified account.

A famous case that makes use of scheduled tasks is Shamoon. It copies an executable payload to the target
using Windows Admin Shares and schedules an unnamed task to run the malware. Remsec — schedules the
execution of one of its modules by creating a new scheduler task. https://www.fireeye.com/blog/threat-
research/2016/11/fireeye respondsto.html

Another well-known example is Remsec, a modular backdoor aimed at espionage, which was used by Strider,
a.k.a. ProjectSauron. The execution of one of its modules was scheduled using a new scheduler task. An
analysis by Kaspersky can be found here: https:/securelist.com/files/2016/07/The-ProjectSauron-

APT Technical Analysis_KL.pdf.

© 2019 Erik Van Buggenhout & Stephen Sims 137

N
@ Task Schedulers — Some Notable Examples

Name: Microsoft Boost Kernel Opt';m:lviiéticn

T8 s setmm]

m CAWINDOWSSTatks\t b Location: “Windows

s e Petya / Author: Microsoft Corporation co.
B Iﬁwﬂﬂt}fﬂ?ﬁ\wmmwwﬂ ! NotPetya used SRty T e S S TR
: st i the "at" task
I S e - schedulerin
' June 2017 to
shut down
machines

Source: www.clearskysec.com

Static

The RAT (Remote AccessTool) used by
the CopyKittens attack group runs itself
every 20 minutes using the Task
Scheduler. Interestingly; this renders the
victim machine unstable, as several
instances of the RAT would be running at
the same time...

before starting
the encryption
process

- B Ruiokyife el
7 Enebled (schurdied sk rims at spechien tma) 1.

Source: www.acronis.com

Task Schedulers — Some Notable Examples
So, let's have a look at some notable examples of persistence through task schedulers. Due to the simplicity of

this attack, it's one of the most popular persistence strategies. Some examples include:

* The Metasploit Meterpreter has a built-in "automated persistence" method that will rely on a scheduled

task being added;
* Petya/NotPetya used the "at" task scheduler in June 2017 to shut down machines before starting the

encryption process;
« The RAT (Remote Access Tool) used by the CopyKittens attack group runs itself every 20 minutes
using the Task Scheduler. Interestingly, this renders the victim machine unstable, as several instances

of the RAT would be running at the same time...

From a forensic perspective, scheduled tasks (both using the Task Scheduler and "at") do leave some artifacts
we can use for further analysis and investigation.

138 © 2019 Erik Van Buggenhout & Stephen Sims

N\
@ Task Schedulers - Prevent and Detect

So... We know what scheduled tasks look like and how they are used. Now
how do you prevent / detect them?

* Restrict local admin privileges (these are typically required to schedule system-
wide tasks)

* Restrict execution possibilities (script execution restrictions, application
whitelisting / control,...)

Prevention

* Configure event logging to record task-scheduler related activity (MS Windows:
Microsoft-Windows-TaskScheduler/Operational, event IDs 106, 140, 141)

* Periodic collection of scheduled tasks or cronjobs across the entire fleet and
outlier detection (Sysinternals Autoruns, OSQuery,...)

Detection

Task Schedulers — Prevent and Detect
So... We know what scheduled tasks look like and how they are used. Now how do you prevent / detect them?

It's a good idea to restrict local admin privileges to ensure only administrative users can create scheduled task
on a system. This is typically the case on Windows systems. Furthermore, some of the controls that were
previously discuss for "execution prevention" can be useful:

+ PowerShell Constrained Language Mode to prevent PowerShell-based execution in Scheduled Tasks;
 Application whitelisting or control to prevent unknown application / executables from running.

In order to detect suspicious tasks that are being scheduled, configure event logging to record task-scheduler
related activity. For Windows, you can review "Microsoft-Windows-TaskScheduler/Operational” and look for
the following event IDs:

* 106 - Scheduled task registered
* 140 - Scheduled task updated
e 141 - Scheduled task removed

Finally, periodic collection of scheduled tasks or cronjobs across the entire IT environment can be performed

using tools such as Sysinternals Autoruns, OSQuery,... The results of these tools can then be used to perform
analysis, outlier detection,...

© 2019 Erik Van Buggenhout & Stephen Sims 139

Registry Manipulation - Overview

A variety of registry keys can be used to run scripts whenever a user authenticates:
» HKCU\Environment\UserlnitMprLogonScript ("Logon scripts”)
+ HKCU\Software\Microsoft\Windows\CurrentVersion\Run\ ("Run key")

Adversaries can use these configuration locations to execute malware and maintain
persistence through system reboots. The registry entries can be manipulated to look as
if they are associated with legitimate programs.

Together with Scheduled Tasks, this is one of the most popular persistence strategies
SETPpIESE out there for Windows-based environments. Examples include Lazarus Group
(RomeoAlfa malware), APT30 (FLASHFLOOD malware), APT28 (JHUHUGIT), ...

Registry Manipulation — Overview

Adding an entry to the "Run keys" in the Registry or startup folder will cause the program referenced to be
executed when a user logs in. The program will be executed under the context of the user and will have the
account's associated permissions level. Some examples include:

 Login scripts under HKCU\Environment\UserInitMprLogonScript
e "Run" registry keys under a variety of possible locations, including
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\

Adversaries can use these configuration locations to execute malware and maintain persistence through system
reboots. The Registry entries can be manipulated to look as if they are associated with legitimate programs.

Lazarus Group made use of RomeoAlfa malware, which has persistence by saving itself in the Start menu folder.

FLASHFLOOD — Malware developed by APT30 that can exfiltrate data across air-gaps. It creates an entry in the
Run key. The following reference contains a section on the FLASHFLOOD malware:
https://www2.fireeye.com/rs/fireye/images/rpt-apt30.pdf.

JHUHUGIT is a piece of malware used by APT28. It registers a Windows shell script under the Registry key
HKCU\Environment\UserInitMprLogonScript to establish persistence. A good analysis of the APT28 group,
including the use of Logon scripts is located here: https://www.welivesecurity.com/wp-
content/uploads/2016/10/eset-sednit-part1.pdf.

140 © 2019 Erik Van Buggenhout & Stephen Sims

L 4

=.‘ Registry Manipulation — Some Notable Examples

Adversary emulation tools such as Metasploit and Empire have built-in
modules to obtain persistence using the registry. Example modules include:

* Empire: "persistence/userland/registry" and "persistence/userland/schtask"
* Metasploit: "exploit/windows/local/registry_persistence" and

" L) 3 L " =
exploit/windows/local/persistence P e
SEmn < weTn peist Awten
) Rurnes. o Abe Seady Smetinater RES 52 T Poyan Fies e Rendey 3.0Re|
© L) mwowex e I i e
i (3 servercont | a8 danaca e Procen REGST i Progran Fasghie eyt Toun|
&L et - e REGSI | COMDOOWShysensIividomesimers]
L Swedts |
17 Do View - o X%

The COBALT group have used, amongst others, registry §y,;m:.m:m.mm..gm<-r,.@z.ﬁm ;
run keys via which they launch a PowerShell'shell |
command to download and run Cobalt Strike

Registry Manipulation — Some Notable Examples
There are quite a few samples that have used the registry to host (part of) their persistence mechanism.

Adversary emulation tools such as Metasploit and Empire have a wide variety of different built-in modules to
obtain persistence. Several of them leverage the registry. Some examples include:

* For Empire, "persistence/userland/registry" and "persistence/userland/schtask". While the "schtask"
might surprise you, it's actually an interesting way of storing the actual payload in the registry, while
using a Scheduled Task to extract and run the actual payload from the registry.

* For Metasploit, "exploit/windows/local/registry persistence" and "exploit/windows/local/persistence"
offer very similar features as Empire described above.

This very popular persistence mechanism is used by a great variety of groups. An example is the COBALT
group, they have been observed using registry run keys to establish persistence. In this specific example, the
registry run key executed a PowerShell shell via which they downloaded and ran Cobalt Strike.

References:

http://www.powershellempire.com/?page id=221
http://www.powershellempire.com/?page_id=223
https://www.rapid7.com/db/modules/exploit/windows/local/registry persistence

© 2019 Erik Van Buggenhout & Stephen Sims 141

n
=-‘ Registry Manipulation — Prevent and Detect

So... We know what registry abuses look like and how they are used. Now
how do you prevent / detect them?

« Restrict execution possibilities (script execution restrictions, application

Prevention whitelisting / control,...)

* Periodic collection of registry run keys across the entire fleet and do analysis /
outlier detection (Sysinternals Autoruns, OSQuery,...)

* Monitor changes to existing registry run keys or creation of keys using Windows

Detection event ID 4657;

s If the registry is being used to store payloads (with subsequent execution
through another mechanism), review the registry for large blobs (which could
indicate stored payloads)

Registry Manipulation — Prevent and Detect
So how can we prevent or detect abuse of the registry as part of persistence mechanisms?

« From a preventive point of view, there's not much that can be done, as normal, standard, users are
allowed to create registry run keys. When additional executables are being referenced, however, there
is an opportunity to prevent launching of these executables by, again, using script execution
restrictions or application whitelisting / control;

* In order to detect registry abuse, there are a few options available:

= Defenders can periodically collect registry run keys across the entire fleet and perform analysis /
outlier detection (Sysinternals Autoruns, OSQuery,...).

= Central collection and monitoring of Windows events related to changes to registry keys using
Windows event ID 4657;

= [fthe registry is being used to store payloads (with subsequent execution through another
mechanism), the registry could be periodically reviewed for large blobs (which could indicate
stored payloads). This is, however, prone to false positives and will require manual analysis.

142 © 2019 Erik Van Buggenhout & Stephen Sims

'n'g Windows Services — Overview

Windows uses services that perform background system functions. A service config,
including the executable's path, is stored in the registry. Services can be added or
manipulated by Administrators using tools such as sc.exe and Reg.

Adversaries may install a new service that can be configured to execute at startup. The
service can be disguised by using the name of another, "seemingly" legitimate program.
Alternatively, the adversary could modify an existing service to execute and persist the
malicious payload.

Carbanak — The bank-targeting threat group has used services to provide persistence
and privilege escalation (services ending in "sys" appeared on the system).

Lazarus Group — Has several malware families that install themselves as services on a
victim machine.

Examples

hain Defenses

143

Windows Services — Overview

When booting, Windows can start programs or applications called services that perform background system
functions. A service's configuration information, including the file path to the service's executable, is stored in
the Windows Registry. Service configurations can be modified using utilities such as sc.exe and Reg.

Adversaries may install a new service that can be configured to execute at startup by using utilities to interact
with services or by directly modifying the Registry. The service can be disguised by using the name of
another, legitimate program. Services may be created with administrator privileges but are executed under
SYSTEM privileges, so an adversary can use a service to escalate privileges from administrator to SYSTEM.
Services can also be executed directly.

Instead of creating a new service, an adversary can also modify an existing service to execute and persist the
malicious payload. The usage of existing services is a type of masquerading that may make detection analysis
more challenging. Modifying existing services could interrupt their functionality or enable services that are
disabled or otherwise not commonly used.

Carbanak is a threat group that mainly targets banks. Their malware makes use of services to provide
persistence and privilege escalation. An analysis on the Carbanak APT can be found here:
https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/bb625963(v=msdn.10).

Lazarus Group is a threat group that was responsible for the attack against Sony Pictures Entertainment.
Several of their malware families install themselves as new services on victim machines. A very detailed
report on Operation Blockbuster, carried out by the Lazarus Group, can be found here:
https://www.operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Report.pdf

© 2019 Erik Van Buggenhout & Stephen Sims

143

¥

o Windows Services — Some Notable Examples

Shamoon 2 creates a legitimate looking service with

| Triggers | Other | Comment | 2 :
service name NtertSrv to execute its payload

General | Secuity | Recovery | Dependencies | Depend |

The Extensible Remote Tab manager service determines the index of cument ~
Tab in the general Tab system, Also provides application p ing intefaces
{APls)that are used by some other applications. If you disable this service, this
computer is prevented from \system32\csrss.exe

~

A e —

Eror Control: | Ignona | Group:

Binary Path: tm\—m LocalSenvi | Browse... |

User Account: LocalSystem

The Cobalt Strike post exploitation

Password: seseswess TE

) framework (frequently abused by
che e gy adversaries) supports the installation of
Bl Deloyed stat services as a persistence mechanism

Source: researchcenter.paloaltonetworks.com

Windows Services — Some Notable Examples
Creating Windows Services is a highly effective persistence mechanism, and as such, frequently used by a
multitude of adversaries.

One such example is observed in the Shamoon 2 attack on an organization in Saudi Arabia. In this attack, the
payload is dropped in the System32 folder on the host after which a service is created to ensure persistence. A
legitimate looking name "NtertSrv" is given to the service to blend in with the other services. An analysis on
Shamoon 2 can be found here: https://unit42.paloaltonetworks.com/unit42-shamoon-2-return-disttrack-wiper/

The Cobalt Strike post-exploitation framework has, among others, the ability to create a new service on the

system in order to ensure persistence. The configuration of these services, including the file path pointing to
the executable launched by the service, is stored in the Windows Registry.

144 © 2019 Erik Van Buggenhout & Stephen Sims

'a'g Windows Services — Prevent and Detect

So... We know what Windows Services look like and how they are used.
Now how do you prevent / detect them?

* Restrict local admin privileges (these are required to create or modify VWindows
Services)

* Restrict execution possibilities (script execution restrictions, application
whitelisting / control,...)

Prevention

* Configure event logging to record creation of new services (event ID 4697)
Detection * Periodic collection of installed services across the entire fleet and outlier
detection (Sysinternals Autoruns, OSQuery,...)

Windows Services — Prevent and Detect
So how can we prevent or detect abuse of the Windows Services as part of persistence mechanisms?

From a prevention perspective, there are two specific items that will prevent the attacker from installing a
Windows service:

» Restriction of local administrator privileges and remediation of privilege escalation vulnerabilities (in
order to create a Windows service, local admin privileges are required)

* Prevent the usage of system utilities or potential malicious software via which an adversary could
install a Windows service. This can be achieved by, for example, script execution restrictions,
application whitelisting, etc.

In order to detect abuse of Windows Services, there are some options available:

 Configure the Windows Event log service to record the creation of new services. When triggered, this
event will get the Event ID 4697.

 Periodically review the Windows Services installed across the entire fleet. Outlier detection or
frequency analysis can help identifying abnormal or newly installed services. The information on
installed services in the entire fleet can be obtained by using tools such as Sysinternals, Autoruns,
OSQuery, etc.

© 2019 Erik Van Buggenhout & Stephen Sims 145

DLL DLL Search Order Hijacking — Overview

Dynamic-link library (or DLL) is Microsoft's implementation of the shared library
concept. If a DLL has to be loaded, Windows will search a number of directories in a
certain order, starting with the directory where the application was called from.

Adversaries can perform DLL preloading by placing a malicious DLL with the same
name as a legitimate DLL in a location that Windows searches first. Adversaries can
also replace an existing DLL or modify a manifest file to cause another DLL to load.

Operation Groundbait — Made use of the Prikormka malware family, which used DLL
search order hijacking for persistence by saving itself as ntshrui.dll to the Windows
directory. Downdelph — A first stage downloader used by APT28 that used DLL search
order hijacking of the Windows executable sysprep.exe to escalate privileges.

Examples

DLL Search Order Hijacking — Overview

Dynamic-link library (or DLL) is Microsoft's implementation of the shared library concept. Windows will
follow a specific search order when a DLL has to be loaded. Adversaries can perform DLL preloading, by
placing a malicious DLL with the same name as a legitimate DLL in a location that Windows searches first.
That way, when Windows encounters the malicious DLL, it will be loaded instead of the legitimate one.
Adversaries can also replace an existing DLL or modify a manifest file to cause another DLL to load. The
malicious DLL can also be configured to load the legitimate DLLs they are meant to replace, which means the
application keeps functioning as it normally would.

Operation Groundbait was mostly observed in Ukraine and used for surveillance. It made use of a malware
family called Prikormka (which roughly translates to groundbait from Russian), which employed DLL search
order hijacking for persistence by saving itself as ntshrui.dll to the Windows directory so it will load before the
legitimate ntshrui.dll saved in the System32 subdirectory. Info on Operation Groundbait can be found here:
https://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf

Another example is Downdelph, a first stage downloader that was (although rarely) used by APT28. It also
made use of DLL search order hijacking, but targeted the Windows executable sysprep.exe, with the goal of
escalating privileges. An analysis can be found here: https://www.welivesecurity.com/wp-
content/uploads/2016/10/eset-sednit-part3.pdf

146 © 2019 Erik Van Buggenhout & Stephen Sims

DLL DLL Search Order Hijacking — Search Order

Before the system searches for a DLL, it checks the following:
« If a DLL with the same module name is already loaded in memory;
o If the DLL is on the list of known DLLs for the version of Windows on which the application
is running.
When the system searches for a DLL, it will use one of the following search orders:

SafeDlISearchMode enabled SafeDlISearchMode disabled

1. The directory from which the application loaded. 1. The directory from which the application loaded.

2. The system directory (GetSystemDirectory) 2. The current directory

3. The 16-bit system directory. 3. The system directory (GetSystemDirectory)

4. The Windows directory. 4. The 16-bit system directory
(GetWindowsDirectory) 5. The Windows directory

5. The current directory. (GetWindowsDirectory)

6. The directories that are listed in the PATH 6. The directories that are listed in the PATH
environment variable. environment variable.

h SEC599|DefeaungAc!vanced Adversaries — Purple Team Tactics & Kill Cﬁain:Defé[ises e

DLL Search Order Hijacking — Search Order
Before the system searches for a DLL, it checks the following:

e [fa DLL with the same module name is already loaded in memory, the system uses the loaded DLL, no matter
which directory it is in. The system does not search for the DLL.

e Ifthe DLL is on the list of known DLLs for the version of Windows on which the application is running, the
system uses its copy of the known DLL (and the known DLL's dependent DLLs, if any). The system does not
search for the DLL. For a list of known DLLs on the current system, see the following registry
key: HKEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs.

The standard DLL search order used by the system depends on whether safe DLL search mode is enabled or disabled.
Safe DLL search mode places the user's current directory later in the search order.

If SafeDIISearchMode is enabled, the search order is as follows:

e The directory from which the application loaded.

 The system directory. Use the GetSystemDirectory function to get the path of this directory.

» The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched.

* The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

e The current directory.

» The directories listed in the PATH environment variable. Note that this does not include the per-application path
specified by the App Paths registry key. The App Paths key is not used when computing the DLL search path.

If SafeDIISearchMode is disabled, the search order is as follows:

» The directory from which the application loaded.

* The current directory.

 The system directory. Use the GetSystemDirectory function to get the path of this directory.

* The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched.

» The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

 The directories listed in the PATH environment variable. Note that this does not include the per-application path
specified by the App Paths registry key. The App Paths key is not used when computing the DLL search path.

© 2019 Erik Van Buggenhout & Stephen Sims 147

DLL DLL Search Order Hijacking - Prevent and Detect

* Certain auditing tools are capable of detecting DLL search order hijacking
opportunities. Use them to correct these.

Prevention e Use a whitelisting tool such as AppLocker, capable of blocking unknown DLLs.

* Ensure the "SafeDLLSearchMode" registry key is enabled.

¢ Disallow loading of remote DLLs

* Monitor filesystems for moving, renaming, replacing, or modifying DLLs.
Detection ¢ Detect DLLs loaded into a process with the same name but an abnormal path.
* Monitor modifications to .manifest redirection files.

DLL Search Order Hijacking — Prevent and Detect
In order to prevent and detect DLL search order hijacking attacks, there are a few controls we can consider:

 Certain auditing tools are capable of detecting DLL search order hijacking opportunities. You can use
these tools to identify potential DLL search order issues and correct them. An example tool is Powerup

(https://github.com/PowerShellMafia/PowerSploit/tree/master/Privesc).
+ Additionally, a whitelisting tool such as AppLocker, capable of blocking unknown DLLs, can be used

as well.

* Finally, in order to reduce the opportunity of DLL search order hijacking vulnerabilities, ensure the
"SafeDLLSearchMode" registry key is enabled.

+ Disallow loading of remote DLLSs, which could take place if an application sets its current directory to
a folder on a share.

In order to detect DLL search order hijacking attacks, the following controls can be considered:

Monitor filesystems for moving, renaming, replacing, or modifying DLLs. Changes in the set of DLLs
that are loaded by a process (compared with past behavior) that do not correlate with known sofiware,
patches, etc., are suspicious.

» Monitor DLLs loaded into a process and detect DLLs that have the same filename but abnormal paths.

» Modifications to or creation of .manifest and .local redirection files that do not correlate with software
updates are suspicious.

148 © 2019 Erik Van Buggenhout & Stephen Sims

WMI WMI Event Subscriptions — Overview

WMI, a core component of Windows since Windows 2000, is an implementation of the
Web-Based Enterprise Management (VWWBEM) standard. Through WMI Event
Subscriptions, you can link an action together with a trigger using WMI
EventConsumers, EventFilters and EventFilterToConsumer bindings.

Adversaries can abuse WMI Event Subscriptions by defining very granular triggers upon
which a piece of code can be executed. Examples of such triggers can be either time-
related triggers or triggers related to events happening on a system such as opening an
explorer window, logging on/off, etc.

Stuxnet abused WMI Event Subscriptions through the usage of a .mof file dropped on a
51598 target system by exploiting the Print Spooler service. SEADADDY malware used by
APT-29 also uses WMI Event Subscriptions to establish persistence on a system.

 SEC599 | Defe 19

WMI Event Subscriptions — Overview

WMI, which stands for Windows Management Instrumentation, is an implementation of the Web-Based Enterprise
Management standard, which is a set of system management technologies that have been developed to unify and facilitate
the management of hosts in an enterprise environment. WMI uses the Common Information Model (CIM), which is an
industry standard to represent systems, applications, networks, devices, and other managed components. WMI has been a
core component of Windows since Windows 2000.

As the name Windows Management Instrumentation implies, this is a set of tools that allows you to manage devices and
applications in a Windows environment. This includes remotely changing system settings, properties, and permissions.

WMI provides a uniform access mechanism to a huge collection of Windows management data and methods, and it is
very easy to access. WMI offers access to this information via script, C++ programming interfaces, .NET classes
(system.management), a command-line tool (WMIC) and others. Remote WMI connections are made through DCOM.
An alternative for DCOM could be to use Windows Remote Management (WinRM), which obtains remote WMI
management data using the WS-Management SOAP-based protocol.

A subscription is the term used for WMI persistence, and it consists of the following three items:

» An Event Consumer: An action to perform upon triggering an event of interest.
* An Event Filter: The event of interest.
A Filter to Consumer Binding: The registration mechanism that binds a filter to a consumer

The possibilities with WMI subscriptions are endless, as an EventFilter can trigger on about everything resulting in
something else being executed by the EventConsumer.

WMI Event Filter

A WML filter consists of a query that is checked against the WMI data on the target machine; the answer is always true or
false. This is, for example, used a lot in group policies (e.g. apply GPO to workstations and not servers). WMI Filter is a
mandatory class entry creation process to activate event consumer class instances. Event filters are triggers or autostart
methods to execute event consumer entries.

© 2019 Erik Van Buggenhout & Stephen Sims 149

WMI Event Consumers

A WMI consumer is a management application or script that interacts with the WMI infrastructure. Such an
application can query data, enumerate data, run provider methods, or subscribe to events by calling either the
COM API for WMI or the Scripting API for WMI.

EventConsumers are able to execute a program or code following the trigger of the WMI EventFilter.

WMI EventFilterToConsumer binding

This class instance associates an EventFilter instance with an EventConsumer instance. It completes the cycle
by relating the class instances with each other. It answers the question, "What Windows event (EventFilter)
will I execute my script program (EventConsumer) with?"

Examples

Stuxnet abused WMI Event Subscriptions through the usage of a .mof file dropped on a target system by
exploiting the Print Spooler service. SEADADDY malware used by APT-29 also uses WMI Event
Subscriptions to establish persistence on a system.

150 © 2019 Erik Van Buggenhout & Stephen Sims

WMI WMI Event Subscriptions — Some Notable Examples

MS10-061
Print spooler service

As the query for the EventFilter shows, it will

trigger somewhere between 200 and 320 after

system startup. The EventConsumer will then

execute the executable mentioned'in'$exepath
with SYSTEM privileges.

- Windows\System32\winsta.exe

- Windows\System32\wbem\mof\sysnullevnt.mof

$filterName ‘FILTERNAME®

$consumeriame ' CONSUMERNAME®

$exePath: *C:\PATH\TO\EXECUTABLE’

$Query-"SELECT * FROM __InstanceModificationEvent WITHIN 60 WHERE Targetinstance
ISA 'Win32_PerfFormattedData_Perf0S_System' AND TargetInstance.SystemUpTime >=
200 AND TargetInstance.SystemUpTime < 320"

$WMIEventFilter Set WmiInstance Class _ EventFilter NameSpace "root\subscription'

Arguments @{Name-$filterName;EventNameSpace "root\cimv2";QueryLanguage “WQL™

;Query $Query} ErrorAction Stop

$wMIEventConsumer Set WmiInstance Class CommandLineEventConsumer Namespace
root\subscription" -Arguments @{Name $consumerName;ExecutablePath

As executed by Stuxnet,a .mof file is
automatically installed as VWWMI

subscription by VWindows when placed in
the Windows\System32\wbem\mof:
directory

$exePath; CommandLineTemplate $exePath}
Source: www.esetnod32.ru Set Wmilnstance Class _ FilterToConsumerBinding Namespace 'root\subscription'’
Arguments @{Filter $WMIEventFilter;Consumer $WMIEventConsumer}

WMI Event Subscriptions — Some Notable Examples
The Stuxnet malware contained 4 zero-day exploits, among one of which was one for the Print Spooler Service.

Hosts with file and printer sharing turned on were vulnerable to this attack. The vulnerability allowed a remote user using
a guest account to write in the %SYSTEMY% directory of the target host. The attack here was performed in two stages:

First the malware copies the dropper and an additional file into Windows\System32\winsta.exe and
Windows\System32\wbem\mof\sysnullevnt.mof (exploiting the MS10-061 vulnerability)
* In the second stage, the dropper is executed.

The interesting part here is the .mof file, a .mof file contains all the information to comprise a WMI subscription. When a
.mof file is dropped in that specific \wbem\mof directory, it is automatically read and installed by the Windows operating
system. In certain specific circumstances, the EventFilter would trigger and execute the winsta.exe executable, which
results in the infection of the system.

The SEADADDY malware uses WMI as a persistence mechanism. The SEADADDY malware is known to be used by
APT-29. It's a WMI backdoor that operates as follows:

* The EventFilter, defined in $Query is set to trigger somewhere between 200 and 320 seconds after system startup.
» The EventConsumer will, when the EventFilter triggers, execute the executable mentioned in $exepath.

© 2019 Erik Van Buggenhout & Stephen Sims 151

WMI WMI Event Subscriptions — Prevent and Detect

e Restrict local admin privileges (these are required to create or modify WMI

Subscriptions)
* Restrict execution possibilities (script execution restrictions, application
whitelisting / control,...)

Prevention

* Monitor command-line executions (wmic.exe via command line or set-
Whilnstance via PowerShell)

* Configure Sysmon to log to report on WMIEventFilter activity,
WNMIEventConsumer activity and WMIEventConsumerToFilter activity

* Periodic collection WMI Subscriptions across the entire fleet using Sysinternals
Autoruns

Detection

WMI Event Subscriptions — Prevent and Detect
So how can we prevent or detect abuse of the WMI Event Subscriptions as part of persistence mechanisms?

From a prevention perspective, there are two specific items that will prevent the attacker from installing a
Windows service:

 Restriction of local administrator privileges and remediate privilege escalation vulnerabilities (in order
to create a WMI Event Subscription, local admin privileges are required).

Prevent the usage of system utilities or potential malicious software via which an adversary could
configure an WMI Event Subscription. This can be achieved by, for example, script execution
restrictions, application whitelisting, etc.

In order to detect WMI Event Subscription creation, the following controls can be considered:

 Configure Windows to log command-line execution in the Windows Event log, "A new process has
been created".

» Enable logging for WMI activity by executing "wevtutil.exe sl Microsoft-Windows-WMI-
Activity/Trace /e:true" (this might flood you with events as WMI is used by lots of legitimate
applications).

» Create a WMI Event Subscription that triggers on the creation of a new WMI Event Subscription.

 Configure Sysmon to log Event ID 19, 20, 21 to report on WMIEventFilter activity,
WMIEventConsumer activity and WMIEventConsumerToFilter activity.

« Use Sysinternals Autoruns to collect all WMI subscriptions across the entire fleet.

152 © 2019 Erik Van Buggenhout & Stephen Sims

A hard drive's boot sectors include the Master Boot Record (MBR) and Volume Boot
Record (VBR). The MBR is the first sector of the hard disk, while the VBR is the first
section of a partition. A boot sector allows the boot process to load a program.

Adversaries may use bootkits to persist on systems at a layer below the operating
system, by modifying the MBR or VBR, which may make it difficult to perform full
remediation.

APT28 — Have used a bootkit, which shares code with some variants of BlackEnergy.
2'eliplES8 Lazarus Group —WhiskeyAlfa-Three malware modifies sector 0 of the MBR to ensure
persistence.

Bootkits — Overview

A boot sector is a region of a hard drive that contains machine code to be loaded into random-access memory
(RAM) by a computer's built-in firmware. The purpose of a boot sector is to allow the boot process of a
computer to load a program (usually, but not necessarily, an operating system) stored on the same storage
device. A hard drive's boot sectors include the Master Boot Record (MBR) and/or Volume Boot Record (VBR):

A Master Boot Record (MBR) is the first sector of a data storage device that has been partitioned. The
MBR sector may contain code to locate the active partition and invoke its Volume Boot Record.

« A Volume Boot Record (VBR) is the first sector of a data storage device that has not been partitioned or
the first sector of an individual partition on a data storage device that has been partitioned. It may
contain code to load an operating system (or other stand-alone program) installed on that device or
within that partition.

Adversaries may use bootkits to persist on systems at a layer below the operating system, by modifying the
MBR or VBR, which may make it difficult to perform full remediation. The MBR is the section of disk that is
first loaded after completing hardware initialization by the BIOS. An adversary who has raw access to the boot
drive may overwrite this area, diverting execution during startup from the normal boot loader to adversary code.
The MBR passes control of the boot process to the VBR. Similar to the case of MBR, an adversary who has raw
access to the boot drive may overwrite the VBR to divert execution during startup to adversary code.

Once again, APT28 comes into play. They have used a bootkit that shares some of its code with variant of the
Black Energy malware. More information here: https://www.welivesecurity.com/wp-
content/uploads/2016/10/eset-sednit-part3.pdf

The Lazarus Group is no stranger to us, either. Their WhiskeyAlfa-Three malware modifies sector 0 of the MBR
to ensure persistence of their malicious programs. Detailed info on this (and other) malware can be found here:
https://operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Destructive-Malware-
Report.pdf

© 2019 Erik Van Buggenhout & Stephen Sims 153

Bootkit MBR

Hooks interruption 13h
Decrypis bootkit code

atphysical address
0x57C00

5 Bootkits - Some Notable Examples

Original MBR

Hooks bootmgr

Boot Manager

Decrypts and executes (boatmigr)
original MBR Hooks function
OSIArchTransferToKernel
inwinload.exe
Boot loader
Bootkit driver ACPLsYs (winload.exe)
o o
O O
Decrypts and injects Decrypts and executes Hooks ACPI.ays

bootkit user-mode
component in
explorer.exe

Bootkit user mode
component

bootkit driver

Downdelph

0

Loads Downdelphin
explorer,exe process

a¥e

Bootkits — Some Notable Examples
APT28 has deployed a bootkit along with Downdelph to ensure its persistence on the victim. The bootkit
shares code with some variants of BlackEnergy. This bootkit employed by APT-28 overwrites the MBR with a
custom version, maintaining an encrypted copy of the original MBR code in the second sector. Full details on
the operation of this bootkit can be found here:

entry point

This flow shows the startup
process of a YWindows 7 machine

infected by the bootkit deployed
by APT-28 along with Downdelph

Source: https://www.welivesecurity.com/wp-
content/uploads/2016/10/eset-sednit-part3.pdf

https://www.welivesecurity.com/wp-content/uploads/2016/10/eset-sednit-part3.pdf

154

© 2019 Erik Van Buggenhout & Stephen Sims

8 Bootkits - Prevent and Detect

* Ensure proper permissions are in place and prevent adversary
access to privileged accounts.

Use Trusted Platform Module technology and a secure boot
process to prevent system integrity from being compromised.

Prevention

Perform integrity checking on the MBR and the VBR (baseline
needed).

Report changes to the MBR and the VBR as they occur for further
analysis.

Detection

Bootkits — Prevent and Detect

Ensure proper permissions are in place to help prevent adversary access to privileged accounts necessary to
perform modifications to the boot sectors. Use Trusted Platform Module (TPM) technology and a secure or
trusted boot process to prevent system integrity from being compromised.

A TPM is a microcontroller that can be used to store platform measurements that help ensure that the platform
remains trustworthy. The primary purpose of a TPM is to ensure the integrity of the platform. In this context,
"integrity" means "behave as intended", and a "platform" is generically any computer platform—not limited to
PCs or a particular operating system: Start the power-on boot process from a trusted condition and extend this
trust until the operating system has fully booted and applications are running. A good summary on TPM is
available here: https://www.trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-
Summary 04292008.pdf

Perform integrity checking on the MBR and the VBR. To do this, take snapshots of the MBR and the VBR and

compare against known good samples (i.e., a baseline). In case changes to the MBR or VBR have taken place,
further analysis should be performed to determine malicious activity.

© 2019 Erik Van Buggenhout & Stephen Sims 155

So, How Do We Prevent Persistence?

Although several different persistence techniques exist, the following
recommendations will go a long way:

« Limit user privileges;

« Remediate vulnerabilities that could allow persistence (e.g. DLL search order
hijacking);

+ Block unneeded utilities or software that could be used to schedule tasks (for
example, with AppLocker or software restriction policies).

Given the large number of techniques available to the adversary, we should not only
focus on prevention, but should also assess how we can detect persistence in our
environment...

So, How Do We Prevent Persistence?

Several different persistence techniques exist, some of which require a specific approach, which we have
highlighted in the techniques above. The following recommendations will, however, go a long way to prevent
persistence from succeeding in your environment:

« Limit user privileges to prevent the installation of bootkits or Windows Services. We will discuss this
in more depth during the Privilege Escalation and Active Directory sections of this course.

o Remediate vulnerabilities that could allow persistence (e.g. DLL search order hijacking).

o Block unneeded utilities or software that could be used to schedule tasks (for example, with
AppLocker or software restriction policies).

As a number of different persistence opportunities exist and it will be difficult to deny an adversary to

persistence once he / she actually obtains access to an environment, we strongly advise taking efforts to detect
persistence as well!

156 © 2019 Erik Van Buggenhout & Stephen Sims

So, How Do We Detect Persistence?

How do I detect persistence in my environment?

« Use host-based agents (IDS, AV, EDR...) to detect and alert upon changes to
typical persistence locations, such as Windows Services, startup scripts,
scheduled tasks...

+ Periodically collect and analyze autorun information from all hosts in your
environment. Dashboard, analyze and spot anomalies! Again, a big data tool such
as ELK can be of help here! Although different tools and scripts exist, a great tool
is "Autoruns"” (part of Microsoft Sysinternals).

 SEC599| Deféatﬁng \dvanced Adversarles ~ Purple Team Tactics & Kill Chain Defenses 157

So, How Do We Detect Persistence?

Although adversaries are continuously changing and adapting the way they penetrate our networks, they only
have a number of options available for persistence. Two main strategies exist to detect persistence strategies in
your environment:

Host-based agents (IDS, AV, EDR, ...) can help you detect and alert upon changes to typical persistence
locations such as Windows Services, startup scripts, scheduled tasks...

Detecting persistence often relies on finding anomalies in your environment. Monitor scheduled task creation
from common utilities using command-line invocation. Legitimate scheduled tasks could be created during
installation of new software or through system administration functions, so beware of false positives. Monitor
process execution from the Windows Task Scheduler, taskeng.exe, and changes to the Windows Task
Scheduler stores (Ysystemroot%\System32\Tasks) for change entries related to scheduled tasks that do not
correlate with known software, patch cycles, etc. Data and events should not be viewed in isolation but as part
of a chain of behavior that could lead to other activities, such as network connections made for C&C, learning
details about the environment through discovery, and lateral movement.

Tools such as Sysinternals Autoruns may also be used to detect system changes that could be attempts at
persistence, including listing currently scheduled tasks. Look for changes to tasks that do not correlate with
known software, patch cycles, etc. Suspicious program execution through scheduled tasks may show up as
outlier processes that have not seen before when compared with historical data.

Monitor processes and command-line arguments for actions that could be taken to create tasks. Remote access
tools with built-in features may interact directly with the Windows API to perform these functions outside of
typical system utilities. Tasks may also be created through Windows system management tools such

as Windows Management Instrumentation (WMI) and PowerShell, so additional logging may need to be
configured to gather the appropriate data.

© 2019 Erik Van Buggenhout & Stephen Sims 157

Detecting Persistence — Autoruns for Windows (1)

=z ~ Sysi wawLsy i ls.com

[file Entey Options Help oo
AR AEHE mel
[%] KnownDLLs £ wilogon & Winsock Providers &y Print Moritors %) LSA Providers 8" Network Providers =3 wmt B Sidebar Gadgets I] Office

D eveyting b logn H Bokrer 2D Intenetbxorer () SchededTasks R Services B Drivers {3 codecs [Bootexeaute [Imoge tijads () Appnt

Different tabs with categories

Autorun Entry Descrption Publisher Image Path Timestamp ViusTotal o3
2 HKLM\SOFTWAREMM Vindows\CumentVersion \Flin ¢ 20/07/2017 759 §
%] (i) VMware User Process Viware Tools Core Service Viware, Inc. c\program fles\wmware\vmware... 17/03/2017 16:20
& HKLM\SOFTWARE\Wowb432Node\Microzoh\Windows \CumentVersion \Run : i : 21707/2017 10:28
& @ sBAMTry SBAMTray Appication GFI Scftware c:\pragram fles (<86 Nogicnow'c.. 28/05/2013 17:39 VirusTotal link
(%] SunlavaUpdateSch... Java Update Scheduler Oracle Corporation ¢ \program fles {«BE)\common fil... 12/07/2017 14:34
2 HKCUSOFTWARE icrosoR\Windowa\Currerit Version\F 12/05/2017931 can be enabled
1 [comsquirel siack sl... ; ; cusers\nvisouserappdataloc, . 13/12/2016 21:53
& GoogleDrveSync Google Diive Google cNprogram fies («B8)\googleNdd... 2/11/201221.03
£ @ OneDiive Microsoft OneDrive Microsoft Corporation cusersnviso-user\appdataVioc. . 7/06/2017 2253
£ (33 OPENVPNGUI * " cprogram flas\openvpn'bintop... 22/03/2017 18:49
3 ChUsers\nviso user\App Data\Roaming\Microsoft\Windows \ Start Menu'\Frogmms'\Startup 20/07/2017 8:14
£ & EvemoteCipperkk Evemote Clipper Evemete Corp., 305 Walnct Stre... ¢users‘nviso-usertappdatatloc... 20/03/2017 20.55 v
: Hides default
Ready, | Windows Entries Hidden.

Windows entries

Detecting Persistence — Autoruns for Windows (1)

Autoruns has "the most comprehensive knowledge of auto-starting locations of any startup monitor." It
attempts to show you a full overview of what programs or scripts are configured to run during system boot or
user login or when built-in Windows applications such as Explorer or Internet Explorer starts. Some of the
example locations it monitors include:

e Run, RunOnce and other Registry keys
* Explorer shell extensions

e Scheduled tasks

* Auto-start services

Autoruns is, by default, configured to hide default, known Windows entries, providing you with an in-depth
view of what is executed once the computer boots.

So what do all of the colors mean?

 Ifan entry is highlighted in pink: No publisher information was found, or if code verification is on,
that the digital signature either doesn't exist or doesn't match, or there is no publisher information.

+ Ifan entry is highlighted in green: When comparing against a previous set of Autoruns data, this entry
wasn't there last time.

 Ifan entry is highlighted in yellow: The startup entry is present, but the image (or file) it refers to
doesn't exist!

In the screenshot above, the "Slack" and "OpenVPN" entries appear to lack publisher information (which can
be seen using the color code and the "Publisher" field)!

158 © 2019 Erik Van Buggenhout & Stephen Sims

Detecting Persistence — Autoruns for Windows (2)

F Autoruns [SYNCTECHLABS\alan.marshafladm] - Sysinternals: wyow.syzintemalz.com - o X

File Entry Options User Help

HABEXE A
12 Applnt % KnownDils B vinogon @ Winsodk Providers %) Print Monitors © 152 Providers £ Network Provaders & v) offce
D Everythng o logon | Biplrer @ IntemetBxplorer () ScheduedTasks &% Senvices B Drivers [[J] Codess [BootExecute] Image Hijadks

Adonn Ertry Description Publisher nage Path Temestamp ViusTotal

2 HKLM\SOFTWARE\Wawb432Node \Microsot \Windows \Cunent Version \Fun 1171872018 708 AM
%} Sundava... Java Update Scheduler Oracle Comporation . \erogram fles (x867common files\fava\java update \usched exe 28218 127PM 179

2§ HKCUASOFT Once /182018 717 4M
[57 WaB Mg... Windows Contacts Microsoft Comaration ¢ \program fles \windows madtwab.exe 5/28/2012333PK 168

2y Task Scheduer
B ¥ \OneDov. Fie not found: C:\Users\alan marshall adm’\App Data \Locah Microsoft \One Drive \One Diive andal...

B 7 \oneDnv. Pl it fourid: C:\Users'alan marshall adm\AppData \Local\MicrosoRt\One Dave \OneDrive Sand...

i HKLM\System\CurentControfSet \Services 121072018 10:17 PM
[[i0flebeat Flebeat: o\ program flesfiebeat Flebeat exe 970 1200A 285
B 130 g rodog: This service ls .. c\program fles (86} vudog\miog exe 7/5/2016 237 PM 1468
B 57 PSEXES.. PSEXESVC: PaBunc .. & ! i 6RU/2016 631 PM 267
[%% mcapd ~ Remote Packet Coplu. Fie nat found; C:\Program Fles &BERWinPcapiipcapd exe d £ C\Program Fies &85/ \WinPeap\...

& HKLM\System \CumentControlSet\Services 12/10/2018 10:17PM 2
B] vest vest: VAST Realtime ... PolyLogyr, LLC e \wendows\syem3Z\dnversivan sys VSR018523AM Unknown
B [vestrw vostow: VAST Reatl.. PolyLogyr, LLC ¢ wndows\system32diversivastow.sy3 520185234 Unknown

3 HKLM\System\CusrentControlSel\Control\Session Manager\KnownDiis 411720181128 PM

£ 57 _wows4 Fie nat found; C:\WINDOWS\SysWOWE4wowB4 &t
B &) _wowsd .. Fle not found: CAWINDOW S SysWOWS4\wowbicpu i
£ ¥ _wowb4 .. Fie nct Found: CAWINDOWS\SyaWOWB4 swombuin it
3 _wowam, . Fle nat found: CAWINDOW S\System32\wowarmiw di
B 77 _wowam.. Fle ot found: C:\WINDOWS\Sys WOW64\wowamtw.df

Optimize Output

In'the screenshot to
the left, we have
optimized the
Autoruns output and
are left with a total of
15 entries. YVe
achieved this by
enabling the VirusTotal
link (hash lookup) and
hiding all entries that
are clean on V!

Note the presence of:
yellow entries, a clean-
up might be in order!

Detecting Persistence — Autoruns for Windows (2)

In the screenshot on the slide, we have optimized the Autoruns output and are left with a total of 15 entries.
We achieved this by enabling the VirusTotal link (hash lookup) and hiding all entries that are clean on VT!
We are also hiding all Autoruns locations that have 0 entries. This list is rather manageable and can be further

investigated!

Note the presence of yellow entries, which indicates entries exist, but the image (file) that is referred to is no

longer there. A cleanup might be in order in this case!

© 2019 Erik Van Buggenhout & Stephen Sims

159

Introducing Palantir's "Autoruns to WinEventLog"

Autoruns is a nice tool, but how can we leverage it enterprise-wide?
Palantir Technologies developed an interesting PowerShell script that will:

« Create a directory structure at "C:\Program Files\AutorunsToWinEventLog"

+ Copy over AutorunsToWinEventLog.ps1 to that directory
« Download Autorunsc64.exe from https://live.sysinternals.com
« Set up a scheduled task to run the script daily @ 11 a.m.

« The script converts the Autorun entries to JSON and inserts them into a custom
Windows Event Log

Introducing Palantir's "Autoruns to WinEventLog"
Autoruns is a nice tool, but how can we leverage it enterprise-wide? Palantir Technologies developed an
interesting PowerShell script that will:

+ Create a directory structure at "C:\Program Files\AutorunsToWinEventLog"

+ Copy over AutorunsToWinEventLog.ps] to that directory

+ Download Autorunsc64.exe from https://live.sysinternals.com

* Set up a scheduled task to run the script daily @ 11 a.m.

« The script converts the Autorun entries to JSON and inserts them into a custom Windows Event Log

By using such an approach, the script allows for facilitated centralization and analysis of Autorun entries! You
can find the script here:

https://github.com/palantir/windows-event-forwarding/tree/master/AutorunsToWinEventLog

160 © 2019 Erik Van Buggenhout & Stephen Sims

Detecting Persistence - OSQuery

autoexec L]

Aggragate of executahles that will automatically execute on the target machine. This is an amalgamation of other tables
like services, scheduled_tasks, startup_items and more.

Improve this Description on Github

COLUMN TYPE DESCRIPTION

path TEXT Path to the executable

name TEXT Name of the program

source TEXT Source table of the autoexec item

©SQuery has several tables that can be used to detect persistence: autoexec (VWindows), crontab’ (Linux), services
(Windows), scheduled: tasks (VWindows), startup. items (Mac & Windows),... It also has support for VWMI for Windows-
based systems! Using Kolide Fleet, we could configure periodic collection ofithese tables across our entire environment!

Detecting Persistence — OSQuery
Should you already have OSQuery installed, another option would be to fetch autorun information using
OSQuery! OSQuery has several tables that can be used to detect persistence. This includes:

+ autoexec (Windows), which is an amalgamation of other Windows tables;
* crontab (Linux)

* services (Windows)

» scheduled tasks (Windows)

e startup items (Mac & Windows)

It also has support for WMI for Windows-based systems! Using Kolide Fleet, we could configure periodic

collection of these tables across our entire environment. We could also configure Kolide Fleet to perform
"differential”" queries, thereby only collecting entries that were changed!

© 2019 Erik Van Buggenhout & Stephen Sims 161

Course Roadmap

« Day 1: Introduction & Reconnaissance
» Day 2: Payload Delivery & Execution

- Day 3: Exploitation, Persistence and

Command & Control
« Day 4: Lateral Movement

« Day 5: Action on Objectives, Threat
Hunting & Incident Response

» Day 6: APT Defender Capstone

Protecting applications from exploitation
Software Development Lifecycle (SDL) & Threat Modeling
Patch Management
Exploit Mitigation Techniques
Exercise: Exploit Mitigation using Compile-Time Controls
Expioit Mitigation Techniques — ExploitGuard, EMET & others
Exercise: Exploit Mitigation using ExploitGuard
Avoiding installation
Typical persistence strategies
How do adversaries achieve persistence?
Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control

Detecting Command & Control channels
Exercise: Detecting C&C channels using Suricata, JA3, & RITA

This page intentionally left blank.

162 © 2019 Erik Van Buggenhout & Stephen Sims

Exercise: Catching Persistence Using Autoruns & OSQuery

Please refer to the workbook for further instructions on the exercise!

NSRS

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims 163

Course Roadmap e

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling
« Day 1: Introduction & Reconnaissance Patch Management

« Day 2: Payload Delivery & Execution Exploit Mitigation Techniques
Exercise: Exploit Mitigation using Compile-Time Controls

« Day 3: Exploitation, Persistence and Exploit Mitigation Techniques — ExploitGuard, EMET & others

Command & Control Exercise: Exploit Mitigation using ExploitGuard

Avoiding installati

» Day 4: Lateral Movement kst ol
Typical persistence strategies

« Day 5: Action on Objectives, Threat How do adversaries achieve persistence?

Hunting & Incident Response Exercise: Catching persistence using Autoruns & OSQuery

Foiling Command & Control
» Day 6: APT Defender Capstone

Detecting Command & Control channels
Exercise: Detecting C&C channels using Suricata, JA3, & RITA

This page intentionally left blank.

164 © 2019 Erik Van Buggenhout & Stephen Sims

Introducing Command & Control Channels

Once adversaries have obtained access to a target environment, they want
(to use this access to attain their objectives. This could include
‘ compromising additional hosts, stealing sensitive data... In order to

achieve these objectives, adversaries need a Command & Control channel!

Many different C&C channels exist, each with their own detection /
prevention challenges:

» Dedicated C&C infrastructure Social media services
« Compromised infrastructure * Cloud storage providers

Introducing Command & Control Channels

Once adversaries have obtained access to a target environment, they want to USE this access to attain their
objectives. This could include compromising additional hosts, stealing sensitive data, ... In order to achieve
these objectives, adversaries need a Command & Control channel!

For example, malware can spy on computers by capturing keystrokes, taking screenshots or screen recordings,
recording audio from the built-in microphone, ... If this malware would be implanted on all your corporate
machines and automatically send all captured data to the adversaries, they would be overwhelmed with data
and you would see a spike in outgoing traffic.

What (advanced) adversaries will do in this case is use the implanted malware to locate computers with
interesting data and then activate the spying capabilities of said malware. This requires communication
between the malware and the adversaries: This is done via so-called command & control channels. On one
end, there is the compromised, corporate machine, and on the other end, the server under control of the
adversary: The command & control server (C2).

Many communications channels can be used as C2 channel. Malware authors started to use custom made,
proprietary command & control channels over TCP connections, but later on, this evolved into using existing
channels like DNS and HTTP. The reason is that these custom channels would be more easily detected and
blocked in corporate networks.

© 2019 Erik Van Buggenhout & Stephen Sims 165

Detecting Command & Control Channels

While in the past, exotic or custom protocols were often used, malware authors
now prefer to use C2 channels that "blend into the noise":

« We are referring to the "noise" produced by network
traffic of social media like Twitter, Facebook, Instagram,
even Dropbox, ...

* To be fair, a lot of modern web traffic genuinely looks
malicious ©

» CDN networks are all generating obfuscated, long, HTTP
queries that look strange... This is not helping us!

We will illustrate this issue by zooming in one some of the
most interesting C&C channels used by adversaries!

Detecting Command & Control Channels

To remain undetected when malware uses command & control channels, malware authors have started to
adopt a strategy to "blend into the noise.” By this, we mean that malware authors will use existing channels
with a high degree of interaction: Messages that flow between clients and servers with high frequency.

These types of channels can be found in social media applications. Social media produces messages at a high
frequency, many corporate users use social media, also for business reasons (LinkedIn for example) and most
social media applications have a public aspect. These factors explain why malware authors start to use social

media channels as command & control channels: They can "blend into the noise."

Take, for example, malware that uses Twitter as a communication channel. The client (the malware) will have
the credentials of a Twitter account and use this to read and write messages. These messages will go to the
Twitter servers, like any other Twitter communication. The command & control server has another set of
credentials for a Twitter account. Both accounts follow each other, and can thus communicate with each other,
publicly or privately (via direct messages). If steganography is used to encode a command in a seemingly
innocuous Twitter message, it becomes very hard to uncover these channels.

Twitter is just one example. There are many social media applications that are very popular with your
corporate users, like Facebook, Instagram, Pinterest, Google+, Dropbox, ... All these social media

applications can be used as command & control channel.

In the next slides, we will discuss some famous C&C channels that were used in real attacks!

166 © 2019 Erik Van Buggenhout & Stephen Sims

Famous Command & Control Channels — Domain Fronting (

Domain fronting is an interesting technique, whereby adversaries attempt to hide traffic to
the Command & Control server. The idea is to differentiate between the TLS hostname
used in the HTTPS certificate (SNI) and the host header in the HTTP requests Consider
the below example leveraging a CDN network:

Content Delivery Netwo!

HTTPS
SNI: www.supersafewebsite.com s
HTTP] s HTTP
POST /gate.php | POST /gate.php
Host: www.c2server.com Host: www.c2server.com
Infected Web proxy
workstation w categorization

Famous Command & Control Channels — Domain Fronting (1)

Domain fronting is an interesting technique, whereby adversaries attempt to hide traffic to the Command &
Control server. The idea is to differentiate between the TLS hostname used in the HTTPS certificate (SNI —
Server Name Indication) and the host header in the actual HTTP requests. Consider the below example
leveraging a CDN network:

» A workstation is infected with a malware sample that attempts to set up C&C connectivity over
HTTPS;

* The initial DNS request is for a benign site (e.g. www.supersafewebsite.com);

» The benign site is also used to set up the HTTPS connection ("www.supersafewebsite.com" is used as
the SNI);

* The actual malicious website is only used once the HTTPS connection is set up and is included in the
HTTP host header of the HTTP request;

* The upstream server finally forwards the HTTP request to the malicious website.

This specific technique only works when the malicious and benign website are hosted on the same
infrastructure, which is often the case in cloud network and CDNs. As of April 2018, Google no longer

supports this, claiming it was never an intended / supported feature.

It's interesting to note that this technique is not only being used by adversaries, but also in attempts to bypass
censorship (e.g. in authoritative regimes).

© 2019 Erik Van Buggenhout & Stephen Sims 167

Famous Command & Control Channels - Domain Fronting (2)

So, how can we deal with domain fronting as defenders?

Although not in our control, the CDN networks could prevent domain fronting
by comparing the SNIs and actual host headers. If there is a mismatch, they could
block the request (and thus not deliver it).

CDN

£l
3

SSLI

implement similar controls at our perimeter and thus validate whether the SNI
and host headers match. This could, however, prove to be tricky for services that
enforce HSTS (HTTP Strict Transport Security)

Given the above, we should conclude that web categorization (and even
whitelisting) will not be sufficient to keep persistent adversaries out. Ve should
thus leverage other techniques in order to spot malicious C&C traffic...

I On our own side, we could implement SSL/TLS interception, after which we could

Famous Command & Control Channels — Domain Fronting (2)
So how can we deal with domain fronting as defenders?

« Although not in our control, the CDN networks could prevent domain fronting by comparing the SNIs
and actual host headers. If there is a mismatch, they could block the request (and thus not deliver it).
This is, however, a tricky solution to implement, as it's out of the control of us as defenders;

« On our own side, we could implement SSL/TLS interception, after which we could implement similar
controls at our perimeter and thus validate whether the SNI and host headers match. This could,
however, prove to be tricky for services that enforce HSTS (HTTP Strict Transport Security);

« Given the above, we should conclude that web categorization (and even whitelisting) will not be
sufficient to keep persistent adversaries out. We should thus leverage other techniques in order to spot
malicious C&C traffic...

An excellent article detailing the origins of domain fronting can be found here:

https://www.bamsoftware.com/papers/fronting/

168 © 2019 Erik Van Buggenhout & Stephen Sims

Famous Command & Control Channels - Hammertoss Twitter & Steganography

Hammertoss (ART-29) uses the following
C&C strategy:

Checks a different Twitter handle daily
If handle is found; extract images from
URLs in tweets

The images include hidden data,
inserted in the image using
steganography and an encryption key
The offset (in this case 101)and the
decryption key (in this case doctor) are
included in the tweet

The data (typically commands) are
extracted and executed

Source: https://www2.fireeye.com/rs/848-DID-
242/images/rpt-apt2g-hammertoss.pdf

Famous Command & Control Channels — Hammertoss Twitter & Steganography
Another interesting example of a command & control channel is the use of steganography in Twitter images by
the HAMMERTOS (by APT-29). In short, the following took place:

« Once installed, the HAMMERTOSS backdoor generates and looks for a specific Twitter handle (a
different one every day). A built-in algorithm will generate a daily handle (e.g. 1abBob52b) and will
subsequently check this twitter account.

* Ifthe APT group has not registered the handle, the malware will take no action and wait for the next day.

« The APT group will register the protocol name and post tweets using the account. The tweets have the
following format:

e They include a link to an image

+ The image includes a hidden message (typically a command that is to be executed)

+ The message is hidden in the image using steganography (it is encrypted and placed in the image
using a symmetric encryption key)

* The offset (where the message is hidden) and the encryption key are included in the tweet

« Upon finding an image, the backdoor will download the image, extract the message and execute the
requested command.

An excellent analysis of the HAMMERTOSS backdoor was done by FireEye analysts and can be found here:
https://www2.fireeye.com/rs/848-DID-242/images/rpt-apt29-hammertoss.pdf

© 2019 Erik Van Buggenhout & Stephen Sims 169

Famous Command & Control Channels — DropSmack

DropSmack is an offensive toolkit developed by Jake Williams from Rendition
Infosec. It was presented at Blackhat in 2013 and essentially uses Dropbox as a
C&C channel!

DropSmack leverages standard Dropbox connectivity to set up an
"easy" channel for both command & control and data exfiltration.
Commands are included as text files which are subsequently "sync’ed”
to infected hosts in the internal network.

* As DropSmack uses built-in Dropbox functionality, there really isn't a
lot we can do except to disabling Dropbox synchronization in our

DI’OpbOX internal network.

Famous Command & Control Channels — DropSmack
DropSmack is an offensive toolkit developed by Jake Williams from Rendition Infosec. It was presented at
Blackhat in 2013 and essentially uses Dropbox as a C&C channel!

+ DropSmack leverages standard Dropbox connectivity to set up an "easy" channel for both command &
control and data exfiltration. Commands are included as text files which are subsequently "sync’ed" to
infected hosts in the internal network. It can, of course, also be used in the other direction to "sync"
files out of the network...

+ As DropSmack uses built-in Dropbox functionality, there really isn't a lot we can do except to
disabling Dropbox synchronization in our internal network.

It's important to note that this is not really "a vulnerability" in Dropbox. This type of technique could be used
against the vast majority of cloud-based file sharing services. This opens the discussion whether we should
allow cloud-based file sharing within the enterprise. Given the rise of cloud within enterprises, this will be a
hot discussion topic. ©

170 © 2019 Erik Van Buggenhout & Stephen Sims

How Can We Block C&C Activity?

The following are some key strategies to block Command & Control
communications:

¢ Only allow outbound connectivity for a highly limited number of protocols

« Generally speaking, do not allow endpoints themselves to connect outbound, always put in
place central control points (e.g. internal DNS servers that will forward outbound DNS, web
proxies for HTTP ...)

 Implement network inspection / IPS systems that perform deep packet inspection and detect
protocol anomalies (e.g. the use of protocol tunnels for C&C)

As we've seen, however, adversaries are becoming increasingly creative with setting up Command &
Control channels and they often "hide in plain sight" using normal protocols. Prevention of such
channels can thus be challenging in large corporate environments!

| SEC599 | Defeating Advanced Adversaries — Purple Team Tactics & Kill Chain Defenses 171

How Can We Block C&C Activity?
The following are some key strategies to block Command & Control communications:

¢ Only allow outbound connectivity for a highly limited number of protocols

 Generally speaking, do not allow endpoints themselves to connect outbound; always put in place
central control points (e.g. internal DNS servers that will forward outbound DNS, web proxies for
HTTP ...)

 Implement network inspection / IPS systems that perform deep packet inspection and detect protocol
anomalies (e.g. the use of protocol tunnels for C&C)

 Configure network devices to check that the type of traffic matches the port. For example, we only
allow HTTP on port 80, we block SSH over port 80 but allow it over port 22.

As we've seen, however, adversaries are becoming increasingly creative with setting up Command & Control
channels, and they often "hide in plain sight" using normal protocols. Prevention of such channels can thus be
challenging in large corporate environments! Let's investigate how we can try detecting the use of Command

& Controls!

© 2019 Erik Van Buggenhout & Stephen Sims 171

How Can We Detect C&C Activity?

Next to the "blocking" controls listed on the previous slide, here are some
interesting ideas to detect C&C activity in your environment. You will require logs
and network traffic of your perimeter devices:

» Review end-point systems for applications that are connecting to external systems (this can, for
example, be easily achieved using OSQuery, which we will use later)

+ Look for unknown protocols that are not expected in your environment

+ Look for beaconing behavior
(malware typically checks in with its C&C server on a periodic basis)

» Unusual traffic volumes (could be a sign of data exfiltration)

» Investigate typical C&C protocols
« HTTP: User-Agent, HTTP Referer ...
« DNS: Query length, Query types, Query entropy,
« Find values that are not normal for your environment and alert upon them
(e.g. A User-Agent that only contacts one specific (or a limited number of) domain(s))

How Can We Detect C&C Activity?

Next to the "blocking" controls listed on the previous slide, here are some interesting ideas to detect C&C
activity in your environment. In any case, if we want to start detecting Command & Control activity, we will
need to start performing network monitoring and collecting logs from our perimeter devices. Additionally, it
might be worth reviewing end-points for applications that are connecting to external systems (this can, for
example, be easily achieved using OSQuery, which we will use tomorrow)

Furthermore, look for unknown protocols that are not expected in your environment. This is fairly easy, as
exotic protocols will raise alerts and are easy to spot.

Implement protocol specific gateways (such as outbound web proxies) that can analyze the protocol and
analyze protocol fields and settings. Highly popular protocols used for C&C connectivity include HTTP and
DNS. In HTTP traffic, interesting fields to analyze include, for example, the User-Agent and the "Referer"
request headers. For DNS, we can look at the query length, query types and entropy.

Even advanced adversaries will not always invent new protocols but reuse existing command & control
protocols. By configuring IDS and IPS systems with up-to-date rules that detect various known command &
control channels, we increase our chances to detect known command & control protocols. Properly
configuring proxies and firewalls to only allow known and trusted protocols and websites, we can further
reduce the use of command & control channels.

Anomaly-based network detection systems can help us detect new, unknown command & control channels.
These detection systems come with advanced network protection devices and are sometimes running on
dedicated computers to provide full processing power. Detecting beaconing is one such application. By
restricting the initiation of network connections to devices inside our network, the command & control server
cannot connect directly to the compromised machine. It is the compromised machine that has to initiate the
connection on a regular basis to check if the command & control server has instructions. This is called
beaconing, and by analyzing the frequency of connections, regular beaconing can be detected.

172 © 2019 Erik Van Buggenhout & Stephen Sims

One of the problems we face is that more and more our adversaries will use encrypted command & control
channels (like SSL/TLS), which drastically reduces our opportunities to inspect traffic. TLS interception can
help us here.

© 2019 Erik Van Buggenhout & Stephen Sims 173

How Can We Detect C&C Activity? Freq.Py

Mark Baggett (a SANS Instructor and ISC Handler) wrote a highly useful
python tool called "freq.py” that can be used to perform frequency
analysis to detect suspicious hostnames!

Some malware leverages domain generation algorithms (DGA), which is the
primary target of freq.py:

» In typical English words, there are character pairs that are more frequent than others
« "TH": There is a 40% chance that a T will be followed by an H
+ "QU": There is a 97% chance that a Q will be followed by a U

« Freq.py will analyze DNS logs and "score" all hostnames for "randomness"”. DGA
algorithms will immediately pop up!

PROBLEM: CDN / ad networks will also be highlighted by "freq.py"
PROBLEM 2: Modern malware often uses random words, not random letters

= PurpleTeamTacucs &Kil] Chaln Defens

How Can We Detect C&C Activity? Freq.py

Mark Baggett (a SANS Instructor and ISC Handler) wrote a highly useful python tool called "freq.py" that can
be used to perform frequency analysis to detect suspicious hostnames! Some malware leverages domain
generation algorithms (DGA), an interesting example is the Zeus banking trojan.

Malware families that use DGA are the primary detection target of freq.py... How does it work?

+ Intypical English words, there are character pairs that are more frequent than others:
o "TH": There is a 40% chance that a T will be followed by an H
= "QU": There is a 97% chance that a Q will be followed by a U

+ Freq.py will analyze DNS logs and "score" all hostnames for "randomness". DGA algorithms will
immediately pop up!

The development and usage of freq.py is described in detail in Mark Baggett's SANS ISC post:
https://isc.sans.edu/forums/diary/Detecting+Random+Finding+Algorithmically+chosen+DNS+names+DGA/1
9893/

It's important to note that this approach has the following limitations:

1. First of all, CDN / ad networks will typically use randomly generated (sub-)domain names as well,
which will also be highlighted by "freq.py". This could be solved by whitelisting certain domains from
the list (then again, you might whitelist actual malicious domains)

2. Secondly, modern malware that relies on DGA sometimes uses a new approach: Instead of using
random letter, they use random words to generate domain names. This will defeat freq.py, as it's
looking for uncommon characters pairs, not uncommon combinations of words. ..

174 © 2019 Erik Van Buggenhout & Stephen Sims

How Can We Detect C&C Activity? RITA

RITA (Real Intelligence Threat Analytics) is a project first started by Black
Hills Information Security, which is now being further maintained by
Offensive CounterMeasures. You can find its source code on GitHub!

RITA is an open-source framework for network traffic analysis. It was designed to ingest
Bro / Zeek (network security monitor) logs and has the following interesting analysis
options:

+ Search for signs of beaconing behavior in and out of your network.
» Search for signs of DNS-based covert channels.
« Search for suspicious, long URLs that often indicate malware.

RITA supports a few other 1tems but the above are most relevant for detectmg C&C trafﬁc'

How Can We Detect C&C Activity? RITA

RITA (Real Intelligence Threat Analytics) is a project first started by Black Hills Information Security, which
is now being further maintained by Offensive CounterMeasures. You can find its source code on the following
GitHub page: https://github.com/ocmdev/rita

RITA is an open-source framework for network traffic analysis. It was designed to ingest Bro / Zeek (network
security monitor) logs and has the following interesting analysis options:

* Search for signs of beaconing behavior in and out of your network;
 Search for signs of DNS based covert channels;
 Search for suspicious, long, URL's that are often indicative of malware;

RITA does support other analysis types as well, but the ones listed above are most relevant to detect Command

& Control traffic. Please refer to RITA's GitHub page for additional information, including for example install,
configuration and usage guidelines.

© 2019 Erik Van Buggenhout & Stephen Sims 175

How Can We Detect C&C Activity? JA3

README.md

Introducing JA3

JA3 - A method for profiling SSL/TLS Clients

A3 is a method for creating SSL/TLS client fingerprints that should be easy to produce on any platform and can be easily JA3 was d evel oped by Sa'esfo rce an d attempts
to profile SSL/TLS clients!

share for threat Inteligence.

This repo includes JAJ scripts for Bro/Zeek and Python.

Expmygies JA3 gathers the decimal values of the bytes for
4A3 fgerpiint orthe stapdard Torclient several fields in the Client Hello packet. It then
£7d7050328601902421587h 33466865 concatenates those values together in Ol"del",

using a " to delimit each field and'a *-* to
delimit each value in each field. ©n this result,
an MD5 hash is calculated!

JAZ fingerprint for the Trickbot malware:

6734137431670b3ab429208160129984

JAZ fingerprint for the Emotet malware:

4070284612263¢d61eBBCaG6CLON 10 The goal is to "whitelist" known JA3 profiles
. - and investigate unknown ones, regardless'of
JA3 is being integrated in a number of open-source and the domain / host they are connecting to!

commercial tools, including Suricata and Zeek!
https://github.com/salesforce/ja3

ST

How Can We Detect C&C Activity? JA3

As we discussed previously, trying to detect malicious traffic by using known IOCs (known bads) is a losing
strategy! What if we could, however, detect malicious encrypted traffic by fingerprinting the SSL/TLS client
that is generating it in the first place? This is exactly what JA3 hopes to achieve!

JA3 was developed by Salesforce and attempts to profile SSL/TLS clients! JA3 gathers the decimal values of
the bytes for the following fields in the Client Hello packet; SSL Version, Accepted Ciphers, List of
Extensions, Elliptic Curves, and Elliptic Curve Formats. It then concatenates those values together in order,
using a "," to delimit each field and a "-" to delimit each value in each field.

On this result, an MD5 hash is calculated! The goal is to “whitelist” known JA3 profiles and investigate
unknown ones, regardless of the domain / host they are connecting to!

JA3 is being integrated in a number of open-source and commercial tools, including Suricata & Zeek. It's

hosted and developed at: https://github.com/salesforce/ja3! On the GitHub page, they host a long list of known
JA3 fingerprints, which could theoretically be whitelisted!

176 © 2019 Erik Van Buggenhout & Stephen Sims

How Can We Detect C&C Activity? Let's Have a Look at Flare!

Flare is an analytical framework for network traffic and behavioral analytics
created by Austin Taylor, written in Python, intended to make identifying
malicious behavior in networks as simple as possible...

<) .’. °
. . L] ° ‘ o
Some malware variants contact their C2 server at a -h‘"'..o;
periodic time interval to check if new instructions are a ', e :::
posted, this activity is referred to as beaconing. o cnclytica ramevor 00 g 000 @ *
for network data ® ...) .’ L

Beaconing can happen at a fixed time interval (e.g. every 60 seconds) or have
varying frequencies. Flare's ElasticBeacon component uses your ElasticSearch
node to retrieve all IP addresses and identify periodic activity that could indicate
beaconing behavior.

ced Adversaries ~ Purple Team Tactics &Knll Chain Defenses 177

How Can We Detect C&C Activity? Let's have a look at Flare!

Flare is an analytical framework for network traffic and behavioral analytics created by Austin Taylor, written
in Python, intended to make identifying malicious behavior in networks as simple as possible. You can find
the source code for Flare on the following GitHub page: https:/github.com/austin-taylor/flare.

As we discussed earlier in the C2 chapter, malware often contacts a C2 server to get instructions on what
actions they need to execute. Some malware variants contact these C2 servers at a periodic time interval; this
activity is referred to as beaconing.

Beaconing can occur at fixed time intervals or have varying frequencies:

« Fixed time intervals: Malware reaches out to its C2 server at a fixed time interval (hard interval) such
as every 60 seconds or each hour on the hour;

Varying frequencies: Malware reaches out to its C2 server at varying frequencies; this could be done
by a random timer embedded into the malware or by looking for specific user actions to initiate the
communication (e.g. communicate every time the user unlocks the workstation).

In order for the ElasticBeacon function of Flare to work, it needs to have access to an ElasticSearch that
contains flow data (created by Bro or Suricata). Flare runs on your local machine and can be given access to
your ElasticSearch node using the following command:

ssh -NfL 9200:localhost:9200 elasticsearch-user@10.10.10.80, where 10.10.10.80 is the IP address of your
ElasticSearch node.

In order to test the connection before using Flare, you can execute "curl localhost:9200" which should show
you the ElasticSearch information.

© 2019 Erik Van Buggenhout & Stephen Sims 177

Now that the connection is ready, you can start configuring the .ini file in the configs directory; this file
contains settings to connect to your ElasticSearch and parameters to fine-tune beaconing detection. The items
to configure in the .ini file are explained as follows:

:param min_occur: Minimum number of triads to be considered beaconing

min_percent: Minimum percentage of all connection attempts that must fall within the window to be
considered beaconing

window: Size of window in seconds in which we group connections to determine percentage, using a
large window size can give inaccurate interval times, multiple windows contain all interesting packets,
so the first window to match is the interval

threads: Number of cores to use

period: Number of hours to locate beacons for

min_interval: Minimum interval between events to consider for beaconing behavior

es_host: IP Address of elasticsearch host (default is localhost)

es_timeout: Sets timeout to 480 seconds

kibana_version: 4 or 5 (query will depend on version)

Once all settings in the .ini file have been configured, you can execute Flare from the command line using
following command:

flare_beacon --group —-whois --focus_outbound -c configs/elasticsearch.ini -csv beacons.csv

The options used in this command are explained as follows:

178

--group: Groups the results for better visibility

--whois: Performs whois lookup on IP addresses

--focus_outbound: Filters out multicast, private and broadcast addresses from destination IPs

-c: The .ini config file for Flare to use

--csv: Output results to CSV (HTML is also possible using --html, however, for further analysis, CSV
files are easier to use)

© 2019 Erik Van Buggenhout & Stephen Sims

How Can We Detect C&C Activity? Flare (Cont.)

Next to beaconing detection, Flare also has a few other interesting options:
e Check domains against the Alexa domain list
* Perform WHOIS lookups
* DGA prediction

Flare will provide the following output fields per domain, which will allow you to determine
whether malicious beaconing is happening or not (legitimate programs often show signs of
beaconing as well, for example, Dropbox):

« bytes_toserver: Total sum of bytes sent from source IP address to server

« dest_degree: Number of distinct source IP addresses that communicate to this server

« occurrences: Number of sessions between source IP and server identified as beaconing

« percent: Percent of traffic between source IP and server that is considered to be beaconing
« interval: Intervals between each beacon in seconds

How Can We Detect C&C Activity? Flare (Cont.)

Flare will provide the following output fields per domain, which will allow you to determine whether
malicious beaconing is happening or not (legitimate programs often show signs of beaconing as well, for
example, Dropbox).

* bytes_toserver: Total sum of bytes sent from source IP address to server

+ dest_degree: Number of distinct source IP addresses that communicate to this server

« occurrences: Number of sessions between source IP and server identified as beaconing

« percent: Percent of traffic between source IP and server that is considered to be beaconing
« interval: Intervals between each beacon in seconds

By filtering out known good servers, you can bring down the number of interesting results, which you then
subsequently can look up in your ELK stack for further in-depth analysis.

© 2019 Erik Van Buggenhout & Stephen Sims 179

Course Roadmap e

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling
» Day 1: Introduction & Reconnaissance Patch Management

o Day 2: Payload Delivery & Execution Exploit Mitigation Techniques
£ Exercise: Exploit Mitigation using Compile-Time Controls
« Day 3: Exploitation, Persistence and

Exploit Mitigation Techniques — ExploitGuard, EMET & others
Command & Control Exercise: Exploit Mitigation using ExploitGuard

Avoiding i llati

« Day 4: Lateral Movement el

Typical persistence strategies
« Day 5: Action on Objectives, Threat How do adversaries achieve persistence?

Hunting & Incident Response Exercise: Catching persistence using Autoruns & OSQuery

Foiling Command & Control
« Day 6: APT Defender Capstone

Detecting Command & Control channels
Exercise: Detecting C&C channels using Suricata, JA3, & RITA

This page intentionally left blank.

180 © 2019 Erik Van Buggenhout & Stephen Sims

Exercise - Detecting C&C Channels Using Suricata, JA3, & RITA

Please refer to the workbook for further instructions on the exercise!

This page intentionally left blank.

© 2019 Erik Van Buggenhout & Stephen Sims

181

Course Roadma

Y

Protecting applications from exploitation

Software Development Lifecycle (SDL) & Threat Modeling

Day 1: Introduction & Reconnaissance Patch Management

Day 2: Payload Delivery & Execution

Exploit Mitigation Techniques
Exercise: Exploit Mitigation using Compile-Time Controls

Day 3: loitation, Persistence and Exploit Mitigation Techniques — ExploitGuard, EMET & others

Command & Control

Day 4: Lateral Movement

Exercise: Exploit Mitigation using ExploitGuard
Avoiding installation

Typical persistence strategies

Day 5: Action on Objectives, Threat How do adversaries achieve persistence?

Hunting & Incident Response

Day 6: APT Defender Capstone

Exercise: Catching persistence using Autoruns & OSQuery
Foiling Command & Control

Detecting Command & Control channels

Exercise: Detecting C&C channels using Suricata, JA3, & RITA

SEC599]irDckef\e,atyi’ng‘ Advanced Ad\}ersaries — Purple Team Tactics & Kill Cﬁafn Defenses

182

This page intentionally left blank.

182

© 2019 Erik Van Buggenhout & Stephen Sims

Conclusions for 599.3

That concludes 599.3! Today, we've touched upon the following topics:

+ Securing your own software by implementing security throughout the Software
Development Lifecycle (SDL)

 Securing third-party software by patch management

+ Identifying flaws in software using fuzzing techniques

 Exploiting mitigation techniques in modern Operating Systems

« Understanding typical persistence strategies and how they can be detected

 Preventing and detecting Command & Control channels

In the next section of the course (SEC599.4), we will investigate how to stop
the next phases of the attack, once exploitation succeeds (lateral movement,
privilege escalation...)

 SEC599 | Defeating Advanced Adversaries ~ Purple Team Tactics & Kill Chain Defenses

Conclusions for 599.3
So long, 599.3! Today, we looked into how initial exploitation by adversaries can be prevented and detected.
Among others, we touched upon the following topics:

* Securing your own software by implementing security throughout the Software Development
Lifecycle (SDL)

* Securing third-party software by patch management

* Identifying flaws in software using fuzzing techniques

» Exploiting mitigation techniques in modern Operating Systems

 Understanding typical persistence strategies and how they can be detected

* Preventing and detecting Command & Control channels

In the next section of the course (SEC599.4), we will investigate how to stop the next phases of the attack,
once exploitation succeeds (lateral movement, privilege escalation...)

© 2019 Erik Van Buggenhout & Stephen Sims 183

Course Resources and Contact Information

AUTHOR CONTACT SANS INSTITUTE

Erik Van Buggenhout ® 11200 Rockville Pike
Q evanbuggenhout@nviso.be @ Suite 200

Stephen Sims North Bethesda, MD 20852

ssims@sans.org 301.654.SANS (7267)

SANS EMAIL

CYBER DEFENSE CONTACT GENERAL INQUIRIES: info@sans.org
/g\' Stephen Sims @ REGISTRATION: registration@sans.org
u ssims@sans.org L TUITION: tuition@sans.org

PRESS/PR: press@sans.org

This page intentionally left blank.

184 © 2019 Erik Van Buggenhout & Stephen Sims

