

Learn Wireshark

Confidently navigate the Wireshark interface and solve
real-world networking problems

Lisa Bock

BIRMINGHAM - MUMBAI

Learn Wireshark
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rahul Nair
Content Development Editor: Drashti Panchal
Senior Editor: Rahul Dsouza
Technical Editor: Dinesh Pawar
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Joshua Misquitta

First published: August 2019

Production reference: 1220819

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-450-6

www.packtpub.com

http://www.packtpub.com

I dedicate this book to my husband, Michael Bock, who encouraged me, believed in me, and told
me long ago that I should be a teacher. Writing my first book was one of the most significant
challenges I have had to face in my life. Thank you for supporting me through the years, for

your advice, sense of humor, and kindness while helping me succeed.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Lisa Bock is an associate professor in the IT department at Pennsylvania College of
Technology, in Williamsport, PA. Some of the courses she has taught since 2003 include
networking, security, biometrics, protocol vulnerabilities using Wireshark, CCNA security,
and unified communications. In addition to this, she is a LinkedIn learning instructor and
has published over 30 courses, mainly in cybersecurity and networking. She holds an MS
from UMUC along with numerous other certifications. She has had training in forensics,
biometrics, networking, steganography, and network security. She is involved with various
volunteer activities, has evaluated professional journals, and is an award-winning,
nationally known speaker.

I would like to thank my friends Denise Leete, Missy Miller, and Pat Coulter who have
been a part of my fabric for many years and have been supportive in so many personal
ways. You each deserve all the kindness and patience the world has to give, as you so freely
give it from yourselves. And also, to my colleagues Jeffrey Weaver and Edward
Henninger. Thank you both for sharing your gift of time to mentor and guide me
throughout my journey.

About the reviewer
Dario Lombardo is a computer engineer. He graduated in 2001 from Politecnico di Torino,
Italy. Dario specializes in computer networks and security. His main interests include
network protocol security and Linux OS. He has contributed to numerous open source
projects, such as tcpdump, libpcap, and the Linux kernel, just to name a few. Moreover, he
has co-authored several scientific papers published in many scientific conferences. He also
has a PMP certification from the PMI institute. He started working on the Wireshark project
in 2013 and became a core developer in 2016. His areas of expertise are the development of
external capture sources (extcaps), support for Elasticsearch, and continuous integration.

I'd like to thank my wife, Valentina, for always supporting me, my kids, Pietro and Sara,
because they remind me everyday that we need to strive for the best. A special
acknowledgment goes to Peter Wu, a fellow core developer: he's the youngest and most
talented developer I've ever met. Finally, thanks to Gerald and all the Wireshark
developers for the fun I have had while working on this project.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Traffic Capture Overview
Chapter 1: Appreciating Traffic Analysis 7

Reviewing packet analysis 8
Exploring early packet sniffers 8
Evaluating devices that use packet analysis 10
Capturing network traffic 11

Recognizing who benefits from using packet analysis 12
Assisting developers 12
Helping network administrators monitor the network 13

Expert system and intelligent scrollbar 14
Subsetting traffic, comment, save, and export 15

Educating students on protocols 16
Alerting security analysts of threats 17
Arming hackers with information 18

Outlining passive attacks 19
Understanding active attacks 19

Poisoning the cache 19
Identifying where to use packet analysis 21

Analyzing traffic on a LAN 22
Sniffing traffic on a host 23
Using packet analysis in the real world 23

Outlining when to use packet analysis 24
Troubleshooting latency issues 24
Testing IoT devices 25
Monitoring for threats 26
Baselining the network 27

Getting to know Wireshark 28
Summary 30
Questions 30

Chapter 2: Using Wireshark NG 32
Discovering the beginnings of today's Wireshark 33

Developing Ethereal 34
Examining the Wireshark interface 35

Introducing Wireshark next generation 36
Enhancements 37
Authors 39

Understanding the phases of packet analysis 41

Table of Contents

[ii]

Gathering network traffic 42
Capturing in promiscuous mode 42
Using a capture engine 43

Decoding the raw bits 43
Enhanced Packet Analyzer (EPAN) 44

Displaying the captured data 46
Analyzing the packet capture 48

Using command-line tools 49
Exploring tshark 49

Summary 52
Questions 52

Chapter 3: Installing Wireshark on a PC or macOS 54
Discovering support for different OS 54

Using Wireshark on Windows 55
Running Wireshark on Unix 55
Installing Wireshark on macOS 55
Deploying Wireshark on Linux 56

Downloading premade virtual images 57
Working with Wireshark on other systems 57

Comparing different capture engines 58
Understanding libpcap 58
Examining WinPcap 58
Reviewing AirPCap 59
Grasping Npcap 59

Understanding Npcap features 59
Performing a standard Windows installation 62

Beginning the installation 62
Choosing components 63
Creating shortcuts and selecting an install location 65
Capturing packets and completing the installation 66

Reviewing the resources available at Wireshark.org 69
Evaluating different download options 71

Summary 73
Questions 74

Chapter 4: Exploring the Wireshark Interface 75
Understanding the Wireshark welcome screen 76

Opening files 77
Capturing traffic 78
Learning about Wireshark 79

Exploring the File menu 79
Opening a file, close, and save 80
Exporting packets, bytes, and objects 81
Printing packets and closing Wireshark 84

Discovering the Edit menu 85

Table of Contents

[iii]

Copying items and finding packets 86
Marking or ignoring packets 87
Setting a time reference 88
Personalizing your work area 89

Exploring the View menu 91
Enhancing the interface 92
Adjusting time formats and name resolution 93
Modifying the display 96
Refreshing the view 98

Summary 99
Questions 100

Section 2: Getting Started with Wireshark
Chapter 5: Tapping into the Data Stream 103

Reviewing the network architecture 104
Comparing different types of networks 104

Discovering the PAN 104
Checking out LANs 105
Exploring CANs 105
Navigating WANs 106

Exploring various types of media 106
Exploring copper 107
Using fiber optic 108
Discovering wireless 109

Learning various capture methods 110
Providing input 111
Directing output 112
Selecting options 114

Tapping into the stream 115
Comparing conversations and endpoints 116

Realizing the importance of baselining 120
Planning the baseline 120
Capturing traffic 120
Analyzing the captured traffic 122
Saving the baselines 123

Summary 124
Questions 124

Chapter 6: Personalizing the Interface 126
Personalizing the layout and general appearance 127

Changing the layout 127
Altering the appearance 129

Creating a tailored configuration profile 131
Adjusting columns, font, and colors 134

Adding, editing, and deleting columns 134

Table of Contents

[iv]

Demonstrating how to use field occurrence 137
Refining the font and colors 140

Adding comments 142
Attaching comments to files 143
Entering packet comments 143
Viewing and saving comments 144

Modifying complex expressions 144
Creating expressions 145
Crafting buttons 146

Summary 148
Questions 149

Chapter 7: Using Display and Capture Filters 150
Filtering network traffic 151

Comparing display and capture filters 151
Comprehending display filters 154

Using bookmarks 155
Editing display filters 158

Creating capture filters 159
Saving to bookmarks 161
Modifying capture filters 162

Understanding the expression builder 166
Building an expression 167

Discovering shortcuts and handy filters 169
Embracing filter shortcuts 169
Applying useful filters 173

Summary 174
Questions 175

Chapter 8: Outlining the OSI Model 176
Comprehending the OSI model 176
Discovering the purpose, protocols, and PDUs 177

Evaluating the application layer 179
Exploring protocols and the PDU 180

Understanding the presentation layer 181
Describing the protocols and the PDU 182

Learning about the session layer 182
Recognizing protocols and the PDU 184

Appreciating the transport layer 184
Differentiating protocols and the PDU 185

TCP 185
UDP 186

Providing port addressing 187
Explaining the network layer 187

Distinguishing the protocols and the PDU 188
IP 188
ARP 188

Table of Contents

[v]

ICMP 189
Supplying an IP address for the packet 189

Examining the data link layer 190
Investigating protocols and the PDU 191
Describing the data link layer address 191

Traveling over the physical layer 191
Exemplifying protocols and the PDU 192

Exploring the encapsulation process 193
Viewing the data 193
Identifying the segment 193
Identifying the packet 194
Forming the frame 194

Demonstrating frame formation in Wireshark 195
Examining the network bindings 196

Summary 197
Questions 198

Section 3: The Internet Suite TCP/IP
Chapter 9: Decoding TCP and UDP 200

Reviewing the purpose of the transport layer 201
Describing TCP 202

Exploring a single TCP frame 203
Examining the eleven-field TCP header 205

Navigating the TCP header fields 205
Exploring TCP ports 206
Sequencing and acknowledging data 208
Following the flags 212
Dissecting the window size 213
Additional header values 216

Understanding UDP 218
A single UDP frame 219

Discovering the four-field UDP header 221
Analyzing the UDP header fields 221

Summary 222
Questions 223

Chapter 10: Managing TCP Connections 224
Dissecting the three-way handshake 225

Isolating a single stream 226
Marking the TCP handshake 228

Identifying the handshake packets 230
Sending the SYN packet 230
Returning the SYN-ACK packet 233
Finalizing with an ACK packet 234

Learning TCP options 235
Grasping the EOL 236

Table of Contents

[vi]

Using NOP 236
Defining the MSS 237
Scaling the window size 238
Permitting SACK 239
Using timestamps 241

Understanding TCP protocol preferences 242
Modifying TCP preferences 244

Tearing down a connection 246
Summary 248
Questions 249

Chapter 11: Analyzing IPv4 and IPv6 250
Understanding the purpose of the IP 251
Outlining IPv4 251

Dissecting the IPv4 header 252
Discovering the version and the length 253
Breaking down the type of service 254

Ensuring QoS 254
Sending an ECN 255

Fragmenting the data 257
Viewing TTL, protocol, and checksum 258
Learning IPv4 addressing 259

Comparing IPv4 classes and addresses 260
Reviewing special and private IP addressing 260

Modifying options for IPv4 261
Exploring IPv6 261

Navigating the IPv6 header fields 262
Identifying the version, traffic class, and flow label 262
Evaluating the length, next header, and hop limit 263
Examining IPv6 addresses and address types 264
Comparing IPv6 address types 264

Editing protocol preferences 265
Reviewing IPv4 preferences 265
Adjusting preferences for IPv6 267

Discovering tunneling protocols 269
Summary 271
Questions 271

Chapter 12: Discovering ICMP 273
Understanding the purpose of ICMP 274

Understanding the ICMP header 275
Investigating the data payload 276

Dissecting ICMPv4 and ICMPv6 278
Reviewing ICMPv4 278
Outlining ICMPv6 279

Sending ICMP messages 281
Reporting errors 281

Table of Contents

[vii]

Issuing queries 283
Providing information using ICMPv6 284

Evaluating type and code values 286
Reviewing ICMP type and code values 286
Defining ICMPv6 type and code values 287

Configuring firewall rules 288
Sending malicious ping sweeps 288
Allowing only necessary types 290

Summary 290
Questions 291

Chapter 13: Understanding ARP 293
Understanding the role and purpose of ARP 293

Resolving MAC addresses 294
Investigating an ARP cache 296
Replacing ARP with NDP in IPv6 298

Exploring ARP headers and fields 299
Identifying a standard ARP request/reply 299
Breaking down the ARP header fields 301

Examining different types of ARP 302
Reversing ARP 302
Evaluating InARP 303
Issuing a gratuitous ARP 304
Working on behalf of ARP 305

Analyzing ARP attacks 306
Comparing ARP attacks and tools 306

Discovering ARP spoofing 306
Reviewing the ARP storm 307
Understanding ARP attack tools 309

Defending against ARP attacks 309
Summary 310
Questions 310

Section 4: Working with Packet Captures
Chapter 14: Troubleshooting Latency Issues 313

Analyzing latency issues 313
Grasping latency, throughput, and packet loss 314

Computing latency 315
Measuring throughput 317
Experiencing packet loss 318

Learning the importance of time values 318
Understanding the coloring rules 318
Exploring the Intelligent Scrollbar 321

Common transmission errors 322
Seeing duplicate acknowledgments 322

Table of Contents

[viii]

Observing keep-alive segments 324
Issuing retransmissions 326

Discovering the expert system 326
Viewing the column headers 328
Assessing the severity 329
Organizing the information 330

Sorting the data 330
Searching for values 331

Summary 334
Questions 334

Chapter 15: Subsetting, Saving, and Exporting Captures 336
Discovering ways to subset traffic 337

Dissecting the capture by IP address 338
Narrowing down by conversations 340
Minimizing by port number 341
Breaking down by protocol 343
Subsetting by stream 343

Understanding options to save a file 345
Using Save as 346

Recognizing ways to export components 349
Selecting specified packets 349
Exporting various objects 352

Identifying why and how to add comments 355
Providing file and packet comments 355
Saving and viewing comments 358

Summary 360
Questions 360

Chapter 16: Using CloudShark for Packet Analysis 362
Diving into an overview of CS 363

Finding CS 363
Sharing captures in CS 364

Modifying the preferences 365
Uploading captures 367

Outlining the various filters and graphs 371
Displaying data using filters 371
Viewing data using graphs 372

Evaluating the different analysis tools 374
Following the stream and view conversations 374
Viewing packet lengths and VoIP activity 377
Exploring wireless, protocols, and possible threats 378

Discovering where to find sample captures 379
Downloading captures 379

Summary 381

Table of Contents

[ix]

Questions 381

Assessment 383

Other Books You May Enjoy 388

Index 391

Preface
This book provides a solid overview of basic protocol analysis using Wireshark. This book
will show you how to navigate the Wireshark interface so that you can confidently examine
common protocols such as Transmission Control Protocol (TCP), Internet Protocol (IP),
and Internet Control Message Protocol (ICMP). We'll begin by outlining the benefits of
traffic analysis. We'll then walk through the evolution of Wireshark, and step through the
phases of packet analysis. We'll review some of the command-line tools and outline how to
download and install Wireshark on either a PC or Mac.

Then, we'll gain a better understanding of what happens when you tap into a data stream.
You'll learn how to personalize the Wireshark interface, and then we'll compare display
and capture filters and summarize the Open Systems Interconnection (OSI) model and
data encapsulation. We'll then take a closer look at some of the protocols that move data in
the TCP/IP suite, and dissect the TCP handshake and teardown process. We'll conclude
with advanced ways to work with packet captures, including how to troubleshoot network
latency issues; how to subset, save, and export; and how to use and share captures with
colleagues using CloudShark.

Who this book is for
This book is for network administrators, security analysts, students, teachers, and anyone
interested in learning about packet analysis using Wireshark. Basic knowledge of network
fundamentals, devices, and protocols, along with understanding of different topologies,
will be beneficial.

What this book covers
Chapter 1, Appreciating Traffic Analysis, describes the countless places and reasons to
conduct packet analysis. In addition to this, we'll cover the many benefits of using
Wireshark, an open source software that includes many rich features.

Chapter 2, Using Wireshark NG, starts with an overview of the beginnings of today's
Wireshark. We'll examine the interface and review the phases of packet analysis. Finally,
we'll cover the built-in tools, with a closer look at tshark (or terminal-based Wireshark), a
lightweight alternative to Wireshark.

Preface

[2]

Chapter 3, Installing Wireshark on a PC or macOS, illustrates how Wireshark provides
support for different operating systems (OSes). We'll compare the different capture
engines, walk through a standard Windows installation, and then review the resources
available at https:/ / www. wireshark. org/ .

Chapter 4, Exploring the Wireshark Interface, provides a deeper dive into some of the
common elements of Wireshark to improve your workflow. We'll investigate the welcome
screen and common menu choices, such as File, Edit, and View, so that you can easily
navigate the interface during an analysis.

Chapter 5, Tapping into the Data Stream, starts with a comparison of the different network
architectures and then moves onto the various capture options. You'll discover the
conversations and endpoints you'll see when tapping into the stream, and then learn about
the importance of baselining network traffic.

Chapter 6, Personalizing the Interface, helps you to realize all the ways you can customize
the many aspects of the interface. You'll learn how to personalize the layout and general
appearance, create a tailored configuration profile, adjust the columns, font, and color, and
create buttons.

Chapter 7, Using Display and Capture Filters, helps to make examining a packet capture less
overwhelming. We'll take a look at how to narrow your scope by filtering network traffic.
We'll compare and contrast display and capture filters. We'll conclude with a good look at
the expression builder, and discover the shortcuts used to build filters.

Chapter 8, Outlining the OSI Model, provides an overview of the OSI model, a seven-layer
framework that outlines how the OS prepares data for transport on the network. We'll
review the purpose, protocols, and Protocol Data Units (PDUs) of each layer, explore the
encapsulation process, and demonstrate the frame formation in Wireshark.

Chapter 9, Decoding TCP and UDP, is a deep dive into two of the key protocols in the
transport layer: the Transmission Control Protocol (TCP) and the User Datagram Protocol
(UDP). We'll review the purpose of the transport layer and then evaluate the header and
field values of both TCP and UDP

Chapter 10, Managing TCP Connections, begins by examining the three-way handshake.
We'll discover the TCP options, get a better understanding of the TCP protocol preferences,
and then conclude with an overview of the TCP teardown process.

Chapter 11, Analyzing IPv4 and IPv6, provides a solid understanding of the purpose of the
Internet Protocol (IP). We'll outline IPv4 and the header fields and then explore IPv6 along
with the streamlined header. We'll take a look at the protocol preferences, and see how IPv4
and IPv6 can coexist by using tunneling protocols.

https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/

Preface

[3]

Chapter 12, Discovering ICMP, details the purpose of the Internet Control Message
Protocol (ICMP). We'll dissect ICMP and ICMPv6 and compare query and error messages.
We'll look at the ICMP type and code values. We'll cover how ICMP can be used in
malicious ways and outline the importance of configuring firewall rules.

Chapter 13, Understanding ARP, takes a closer look at the Address Resolution
Protocol (ARP), which is a significant protocol in delivering data. We'll outline the role and
purpose of ARP, explore the header and fields, describe the different types of ARP, and
take a brief look at ARP attacks.

Chapter 14, Troubleshooting Latency Issues, outlines how even a beginner can diagnose
network problems. We'll explore the coloring rules and the Intelligent Scrollbar, and then
conclude with an overview of the expert system, which subdivides the alerts into categories
and guides you through a more targeted evaluation.

Chapter 15, Subsetting, Saving, and Exporting Captures, helps you to discover the many
different ways in which to break down a packet capture into smaller files for analysis. We'll
cover the different options when saving a file; discover ways to export components, such as
objects, session keys, and packet bytes; and then outline why and how to add comments.

Chapter 16, Using CloudShark for Packet Analysis, covers CloudShark, which is an online
application that is similar to Wireshark. You'll learn how to filter traffic and generate
graphs. We'll then review how you can share captures with colleagues, and show you
where you can find sample captures so that you can continue improving your skills.

To get the most out of this book
With Wireshark, you can capture data live from a network interface or open and examine
pre-captured packets. Once you start working with a packet capture, you will want to make
sense of the file and what the packets are telling you.

This book will teach you how to conduct a detailed search, follow the data stream, and
identify endpoints so that you can troubleshoot latency issues and actively recognize
network attacks.

To prepare for working with Wireshark, download and install the latest version on your
system. Detailed instructions are listed in Chapter 3, Installing Wireshark on a PC or macOS,
on how to install on a Windows OS.

To get the most out of each chapter, when there is a reference to a packet capture,
download the files so that you can follow along with the lessons.

Preface

[4]

In addition to this, practice your skills on your own and, in particular, review the common
protocols in the TCP/IP suite so that you can deepen your knowledge and become more
proficient in packet analysis.

Download the example code files
All Wireshark capture files are referenced within the book. We will download the capture
files from the many online repositories so that you can follow along with the lessons.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789134506_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "To write to a file, use -w, then the filename and path."

Any command-line input or output is written as follows:

C:\Program Files\Wireshark>tshark -i "ethernet 2" -w Test-Tshark.pcap -a
duration:10

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Once, you're on CloudShark, select the Export | Download File drop-down menu."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Traffic Capture

Overview
This section will enable you to understand the benefits of traffic analysis, learn about the
evolution of Wireshark, step through the phases of packet analysis, review Wireshark CLI
tools, outline how to download and install Wireshark on either PC or macOS, and explore
the Wireshark interface.

This section is comprised of the following chapters:

Chapter 1, Appreciating Traffic Analysis
Chapter 2, Using Wireshark NG
Chapter 3, Installing Wireshark on PC or macOS
Chapter 4, Exploring the Wireshark Interface

1
Appreciating Traffic Analysis

Today's networks are complex, and if there are issues, then, on many occasions, the only
way you can solve the problem is if you can see the problem. Packet sniffers such as
Wireshark have been around for that very reason for many years. In addition to manually
conducting packet analysis using Wireshark, today's devices incorporate the ability to pull
data from the network and examine the contents to determine whether the data should be
allowed on the network.

This chapter will help you recognize the many benefits of using Wireshark for packet
analysis. You'll learn about Wireshark and its history as an exceptional open source
software product that includes many rich features. You'll see how everyone can benefit
from using packet analysis, including network administrators, students, and security
analysts. You'll be able to identify the many places to conduct packet analysis, including on
a LAN, on a host, or in the real world. Finally, you will gain a better understanding of the
many ways in which Wireshark can provide a key role in troubleshooting, testing,
baselining, and monitoring for threats.

This chapter will address all of this by covering the following:

Reviewing packet analysis
Recognizing who benefits from using packet analysis
Identifying where to use packet analysis
Outlining when to use packet analysis
Getting to know Wireshark

Appreciating Traffic Analysis Chapter 1

[8]

Reviewing packet analysis
Packet analysis is the process of examining packets to understand the characteristics and
structure of the traffic flow.

When monitoring the network for analysis, we capture traffic using
specialized software. Once the data is captured and we save the file, the
software stores the capture, in a file that is commonly called a packet
capture or PCAP file.

The analyst can complete packet analysis by either studying one packet at a time or as a
complete capture. Packet analysis can be done during a live capture or by using a
previously captured packet.

Network administrators use packet analysis to gain information about current network
conditions. Security analysts use packet analysis to determine whether there is anything
unusual or suspicious about the traffic when carrying out a forensic investigation. Students
use packet analysis as a learning tool, to better understand the protocols. In addition,
packet analysis is also used by hackers to sniff network traffic in order to gain valuable
information about the network while conducting footprinting and reconnaissance.

We use packet analysis in many places, including on a LAN, on a host, or in the real world.
We also use packet analysis when troubleshooting latency issues, testing Internet of
Things (IoT) devices, and as a tool to baseline the network.

Today, packet analysis using Wireshark is a valuable skill. However, analyzing packets has
been around in the networking world for many years. As early as the 1990s, there were
various tools that enabled analysts to carry out packet analysis on the network to
troubleshoot errors and to monitor server and network behavior. In the next section, we'll
examine some of the early tools used to monitor network activity.

Exploring early packet sniffers
Packet analysis has been around in some form for over 20 years as a diagnostic tool, to
observe data and other information traveling across the network. Packet analysis is also
referred to as sniffing. The term refers to early packet sniffers, which sniffed or captured
traffic as it traveled across the network. In the 1990s, Novell, a software company,
developed the Novell LANalyzer, which had a graphical UI and a dashboard feature, as
shown in the following diagram:

Appreciating Traffic Analysis Chapter 1

[9]

LANalyzer interface

At the same time, Microsoft introduced its network monitor. Over the last 20 years, there
have been many other packet analyzers and tools to sniff traffic that include the following:

Tool Description
Cain and Abel Can gather passwords and can record VoIP conversations
NarusInsight Formerly Carnivore, can monitor all internet traffic
dSniff Passively monitors a network for interesting traffic
Ettercap Eavesdrops to capture passwords, emails, and files
Tcpdump Protocol analyzer that runs from the command line

Security Onion Open source tool that combines packet capture with an Intrusion
Detection System (IDS)

Wireshark Packet sniffer used to analyze network traffic

Most packet analyzers have similar features. They capture the data, decode the raw bits in
the headers to field values according to the appropriate Request for Comment (RFC) or
other specifications, and present the data in a meaningful fashion.

Appreciating Traffic Analysis Chapter 1

[10]

The packet analysis tools range from very simple text-based analysis, such as terminal
based Wireshark (tshark), as shown in the screenshot below, or tools that have a rich
graphical UI with advanced AI-based expert systems that guide the analyst through a more
targeted evaluation:

Sample output from Tshark

In the next section, we'll take a look at the various devices in use today that use packet
analysis.

Evaluating devices that use packet analysis
Packet analysis and packet sniffing are used by many devices on the network, including
routers, switches, and firewall appliances. As data flows across the network, it passes
through various network devices, which interpret the packet's raw bits and examine the
field values in each packet to decide on what action should be taken.

A router captures the traffic and examines the IP header to determine where to send the
traffic, as a part of the routing process. An IDS will capture the traffic and examine the
contents and alert the network administrator if there is any unusual or suspicious behavior.

A firewall monitors all traffic and will drop any packets that are not in line with the Access
Control List (ACL). For example, when data passes through a firewall, the device examines
the traffic and determines whether to allow or deny the packets according to the ACL. For
example, this ACL has the following entries:

Allow outbound SYN packets. The destination port is 80.
Allow inbound SYN-ACK packets. The source port is 80.

As shown in the following diagram firewall with an ACL, in order to decide whether to
allow or deny a packet, the firewall must evaluate the packet header and check to see what
TCP flags are set and what port numbers are in use. If the packet does not meet the ACL
entry, then the firewall will drop the packet:

Appreciating Traffic Analysis Chapter 1

[11]

Firewall with an ACL

It's important to note that a packet sniffer sniffs traffic but doesn't modify the contents in
any way. It simply gathers the traffic for analysis as it travels across the network.

As we can see, packet sniffing and analysis have been influential for many years as
elements of managing networks. The first step in analysis is capturing traffic, which we will
explore in the next section.

Capturing network traffic
On today's networks, a Network Interface Card (NIC) will only monitor traffic that is
addressed to that host. We can, however, put the card into a state called promiscuous
mode. Promiscuous mode is when the network adapter gathers not only traffic that is
destined to that host, but all the traffic that is on the network, and is commonly used to
monitor network activity. Therefore, to capture all network traffic, the NIC must be in
promiscuous mode.

On a Windows machine, you can check to see whether the interface card is in promiscuous
mode by running the following command in PowerShell:

Windows PowerShell
Copyright (C) 2014 Microsoft Corporation. All rights reserved.
PS C:\Users\Admin> Get-NetAdapter | Format-List -Property PromiscuousMode
PromiscuousMode : False

Appreciating Traffic Analysis Chapter 1

[12]

We use packet analysis to understand the characteristics of the traffic flow. Although you
can conduct packet analysis during a live capture, it's common to capture traffic and save it
for further analysis. Common steps to capture packets for analysis are as follows:

Install Wireshark and the appropriate packet capture engine. 1.
Launch Wireshark and select the appropriate capture options.2.
Start the capture and run until you capture 1,000 – 2,000 packets.3.
Stop the capture and save the trace file in the appropriate format.4.
Analyze the capture by studying one packet at a time, or as a complete capture.5.

In some cases, you may need to send a packet capture to the corporate or security analyst
for further analysis.

Wireshark allows us to capture, display, and filter data live from a single or multiple
network interface(s). In addition you can examine pre-captured packets, search with
granular details, and follow the data stream. As a result, packet analysis is advantageous as
it helps to understand the nature of the network. The following section outlines the many
different individuals who can benefit from using Wireshark for packet analysis.

Recognizing who benefits from using packet
analysis
Everyone can benefit from using packet analysis, including developers, network
administrators, students, and security analysts. Let's look at each and explore the benefits
that can be reaped through packet analysis. We'll start with developers, who can see how
their program responds to requests on the network in real time.

Assisting developers
Application performance issues can affect the bottom line, especially in a mission-critical
situation. Developers diligently strive to produce elegant and efficient software. Prior to
releasing an application, developers run functional and regression tests, along with
stressing the server to ensure an optimized application.

Appreciating Traffic Analysis Chapter 1

[13]

Developers typically test applications in a perfect environment, with high bandwidth and
low latency. However, once the application moves from the local (or test) environment to
the production network, clients may complain about the slow response times. The
programmers carefully check the application, however, are unable to find anything
unusual.

The developer must determine the reasons for the slow response times. Once further testing
determines that it is not the application that is causing the issue, a packet analysis tool such
as Wireshark can assist the developer in determining the root cause of the delayed response
times.

By using Wireshark, the developer can uncover common problems in transmissions, such
as round-trip time and signs of congestion within an organization, which can occur in a
network and impact response time.

Developers will understand that simply optimizing an application is not enough, and all
development life cycles should include seeing what is happening on the network, as issues
can affect overall performance.

In addition to developers, network administrators commonly use Wireshark to
troubleshoot the network, as we will see next.

Helping network administrators monitor the
network
Network administrators use packet analysis to gain information about current network
conditions. Wireshark can help identify errors and/or problems on the network that might
require device tuning and/or replacement to improve overall performance.

A powerful feature in Wireshark is the ability to quickly see issues in the capture. The
network administrator can use both the expert system and the intelligent scrollbar, which
color codes potential problems and helps with analysis, as we'll see in the next section.

Appreciating Traffic Analysis Chapter 1

[14]

Expert system and intelligent scrollbar
Wireshark allows us to visualize issues while performing an analysis. The expert system
categorizes various traffic conditions. It has a color code for each level that allows for easy
identification of general workflow and possible critical events:

Chat color: Gray provides information about typical workflows, such as a TCP
window update or connection finish
Note color: Cyan indicates items of interest, such as duplicate acknowledgments
and TCP keep-alive segments
Warn color: Yellow indicates a warning, such as a TCP zero window or
connection reset
Error color: Red is the highest level as there may be a serious problem, such as a
retransmission or a malformed packet

The visual for the expert system is in the lower left-hand corner, as shown in the following
screenshot:

Expert system and intelligent scrollbar

Appreciating Traffic Analysis Chapter 1

[15]

Wireshark also has an intelligent scrollbar, which also provides a visual to detect issues. In
the preceding screenshot, we see a distinct coloring pattern on the right-hand side based on
the coloring rules set in the application.

With the intelligent scrollbar, the administrator can easily click on a color band to zero in on
a possible problem. Bear in mind that the intelligent scrollbar is only visible if the coloring
rules are active; however, coloring rules are on by default.

Once problems are identified, you can then subset traffic, add comments, save, and export
the packet captures.

Subsetting traffic, comment, save, and export
At times, the network administrator may want to share the packet capture with other
members of the team. Wireshark can subset traffic to break apart large packet captures and
focus on the problem areas.

For example, a large packet capture will most likely have several different types of traffic in
addition to data, such as management traffic and 802.11 control frames. You can easily
apply a filter using the and NOT option to exclude traffic that you don't want to see.

Within the subset, you can include comments. You can find comments either by selecting
the comments icon in the lower left-hand corner that looks like a pad and pencil, or go to
Statistics | Capture file properties and include your comments in the space below marked
comments. If you do add comments, then you must save the file in the PCAPNG format as
not all file formats will support the use of comments.

Once you have created a smaller file and added any (optional) comments, you can export
the specified packets and save in a wide variety of formats. Formats include the default
PCAPNG, along with PCAP, Sun Snoop, DMP, and many others.

In addition to network administrators, students will gain valuable insight into what is
actually happening on the network by using Wireshark to examine headers and field values
of the protocols.

Appreciating Traffic Analysis Chapter 1

[16]

Educating students on protocols
Let's learn about how students can use packet analysis as a learning tool to better
understand protocols. For example, when reviewing the DHCP process, the student might
see the DORA process, as shown in the following diagram. While the diagram displays
each of the four-part transaction, it does not show the details of each part of the four-packet
exchange:

Dora process

In the following screenshot, we can see an actual DHCP transaction. The student can easily
identify each of the four stages of the DORA process: Discover, Offer, Request, and
Acknowledge. In addition, the student can see the specifics of each exchange, including the
transport protocol, the IP and MAC addresses, and the DHCP header flags:

Appreciating Traffic Analysis Chapter 1

[17]

DORA process in Wireshark

By learning the normal behavior and purposes of common protocols, students will be able
to troubleshoot problems that may occur in the future.

As you can see, packet analysis has many benefits for many people. Because of the ability to
really examine what is happening on the network, another key group that uses packet
analysis are security analysts.

Alerting security analysts of threats
Security analysts use packet analysis to determine whether there is anything unusual or
suspicious about the traffic or discover what transpired on the network by completing a
forensic investigation. To effectively discover potential problems, the security analyst must
be an expert at packet analysis.

Appreciating Traffic Analysis Chapter 1

[18]

Wireshark can help the security analyst to better understand specific types of attacks so
they can craft firewall rules. To hone security analysis skills, the analyst can discover and
download many PCAPs on various repositories. The Honeynet project, which is found at
https://www.honeynet. org, is a great place to start. Navigate to the section on challenges,
which offers many examples of forensic exercises to review and learn about many common
threats found on today's networks.

For example, if you go to https:/ /www. honeynet. org/ node/ 906, then you will see a
completed challenge entitled Forensic Challenge 12 – Hiding in Plain Sight. Read the details
on the challenge, which are outlined so you have a better understanding of the challenge.
To strengthen your analysis skills, download the files found at the bottom of the page and
work through the questions. The answers can also be found at the bottom of the page, along
with other files of interest.

Security analysts feel that Wireshark is a valuable tool, as it provides valuable insight into
what is happening on the network. Because of the ability to have so much insight on what
is happening on the network, Wireshark is also used by hackers for reconnaissance to
gather and analyze traffic—many times prior to an attack, or during an active attack, which
we will discuss next.

Arming hackers with information
Hackers use packet analysis to sniff network traffic in order to gain valuable information
about the network as a precursor to an attack. Sometimes called a passive attack, a hacker
can use Wireshark to sniff network traffic with the goal of obtaining sensitive information.
In addition, hackers can use the information gathered to launch an active attack.

As a precursor to an attack, hackers gather information during reconnaissance, which is
also called footprinting. The goal of reconnaissance is to gather as much information about
the target as possible. Let's take a look at a couple of ways in which hackers use Wireshark
as part of a passive attack.

https://www.honeynet.org
https://www.honeynet.org
https://www.honeynet.org
https://www.honeynet.org
https://www.honeynet.org
https://www.honeynet.org
https://www.honeynet.org
https://www.honeynet.org
https://www.honeynet.org
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906
https://www.honeynet.org/node/906

Appreciating Traffic Analysis Chapter 1

[19]

Outlining passive attacks
Using Wireshark, a hacker will try to obtain confidential information, such as usernames
and passwords exchanged, while traveling through the network. Using packet analysis to
sniff network traffic can achieve the following goals:

Footprinting and reconnaissance: As a precursor to an active attack, hackers use
Wireshark to capture unencrypted traffic in order to gather as much information
about the target as possible. In addition, Wireshark can also be used to gather
additional information such as IP and MAC address, open ports and services,
and possible defense methods in place.
Sniffing plain text passwords: Another use of packet sniffing by hackers is
looking for passwords that are sent in plain text. Common protocols that are
susceptible to packet sniffers are the protocols that are in plain text, such as
SNMP, HTTP, FTP, Telnet, and VoIP.

An organization can defend against unauthorized packet sniffing in a couple of ways.
There is anti-sniffer software that can detect sniffers on the network. However, one of the
best ways to prevent data exposure is to use encryption. If someone captures the traffic,
then the encrypted data will appear meaningless.

Next, we'll take a look at how hackers can also use Wireshark by actively sniffing and
monitoring traffic as part of an Address Resolution Protocol (ARP) spoofing attack.

Understanding active attacks
Hackers can launch many different types of attacks on the network, such as Denial of
Service (DoS) attacks, phishing attacks, or Structured Query Language (SQL) injection
attacks. Hackers can also use Wireshark to passively gather information so they can launch
a more effective attack. One example is an ARP spoofing attack.

Poisoning the cache
ARP spoofing, also known as ARP cache poisoning, is used in a man-in-the-middle attack.
In order to understand why this is an effective attack, let's step through the normal use of
ARP on a LAN.

On a LAN, hosts are identified by their MAC or physical addresses. In order to
communicate with the correct host, each device keeps track of all LAN hosts' MAC
addresses in an ARP or MAC address table, also known as an ARP cache table.

Appreciating Traffic Analysis Chapter 1

[20]

Entries in the ARP or MAC address table will time out after a while. Under normal
circumstances, when the device needs to communicate with another device on the network,
it needs the MAC address. The device will first check the ARP cache and, if there is no entry
in the table, the device will send an ARP request broadcast out to all hosts on the network.

The ARP request asks the question, who has (the requested) IP address? Tell me (the
requesting) IP address. The device will then wait for an ARP reply, as shown in the
following screenshot:

ARP broadcast on a network

The ARP reply is a response that holds information on the host's IP address and the
requested MAC address. Once received, the ARP cache is updated to reflect the MAC
address.

In an ARP spoofing attack, an attacker will do the following:

Send an unsolicited, spoofed ARP reply message that contains a spoofed MAC
address for the attacker's machine to all hosts on the LAN.
After the ARP reply is received, all devices on the LAN will update their ARP or
MAC address tables with the incorrect MAC address. This effectively poisons the
cache on the end devices.
Once the ARP tables are poisoned, this will allow an intruder to impersonate
another host to gain access to sensitive information.

Appreciating Traffic Analysis Chapter 1

[21]

In the following graphic, ARP spoof attack, a bogus reply was sent by the attacker, which
poisoned the cache in the devices. All hosts on the network now think that 10.40.10.103
is at 46:89:FF:4C:57, instead of 00:80:68:B4:87, and will go to the attacker with the
spoofed MAC address:.

ARP spoof attack

Once the attacker begins to receive the traffic destined to another host, they will use active
sniffing to gather the misdirected traffic in an attempt to gain sensitive information.

We now see the many individuals who can benefit from using packet analysis. The next
section covers where packet analysis is most effective.

Identifying where to use packet analysis
To conduct an effective packet analysis, the first step is to get a good capture. There are
many places to conduct packet analysis, including on a LAN, on a host, or in the real world.
Let's start with using packet analysis on a LAN.

Appreciating Traffic Analysis Chapter 1

[22]

Analyzing traffic on a LAN
Today's networks are complex, as the following diagram shows. An enterprise network
provides connectivity, data applications, and services to the clients on the network:

LAN

Most LANs are heterogeneous, with various operating systems such as Windows, Linux,
and macOS, along with a mixture of devices, such as softphones, tablets, laptops, and
mobile devices. Depending on business requirements, the network may include wide area
network connectivity along with telephony.

To effectively use packet analysis, placement is key. All traffic is not created equally.
Depending on placement, you may only capture a portion of the total network traffic. If the
packet sniffer is on a host or end device, then it will be able to see the traffic on the
segment's collision domain. If the sniffer is mirroring all traffic on a backbone, then it will
be able to see all the traffic.

Appreciating Traffic Analysis Chapter 1

[23]

In certain instances, you may need to perform packet analysis on an individual host, such
as a PC, to only monitor traffic destined to that host, or on a switch to see the traffic as it
passes through the switchports.

Sniffing traffic on a host
Packet analysis can be done on an individual host. If the protocol analyzer is sniffing traffic
on a switch, then the view of network traffic is limited as each switchport has its own
collision domain. Therefore, on a switch on a specific port, you will only see broadcasts,
multicast, and your own Unicast traffic.

To see all traffic on a switch, the network administrator can use port monitoring or SPAN
(short for Switched Port Analyzer). Another option is to use a full-duplex tap in line with
traffic. The tap makes a copy or mirror of the traffic, which is pulled into the device for
analysis. If this option is used, then you may need a special adapter. In some cases, you
may be able to monitor within the switch, as Wireshark is built into the Cisco Nexus 7000
series and many other devices.

In addition to using packet analysis on a LAN or on a host, packet analysis can be used in
the real world to monitor traffic for threats.

Using packet analysis in the real world
Packet analysis is used in the real world in many forms. One example is the Department of
Homeland Security (DHS) EINSTEIN system, which has an active role in federal
government cybersecurity. The United States government is constantly at risk of many
types of attacks, including DoS attacks, malware, unauthorized access, and active scanning
and probing.

Appreciating Traffic Analysis Chapter 1

[24]

The EINSTEIN system actively monitors the traffic for threats. The two main functions are
as follows:

To observe and report possible cyberthreats
To detect and block attacks from compromising federal agencies

The EINSTEIN system provides the situational awareness necessary to take a proactive
approach against an active attack. The intelligence gathered helps agencies to defend
against ongoing threats.

As illustrated, packet analysis is effective in many locations. The following section provides
guidance on what circumstances packet analysis will reap the most benefits under.

Outlining when to use packet analysis
We use packet analysis to troubleshoot latency issues, test IoT devices monitoring for
threats, and as a tool to baseline the network. Let's start with troubleshooting, which is a
common use of packet analysis.

Troubleshooting latency issues
Wireshark can be a valuable tool for troubleshooting issues on the network. There are many
built-in tools designed to gather and report network statistics. We can analyze network
problems and monitor bandwidth usage per application and process. The information
gathered can help identify choke points and maintain efficient network data transmission.

Protocol analysis enables the network administrator to monitor the traffic on the networks,
unearthing problems that determine where performance can be fine-tuned. For example, if
you suspect latency, then you can obtain a capture in the area where you suspect trouble
and then run a Stevens graph, as shown in the following screenshot:

Appreciating Traffic Analysis Chapter 1

[25]

Stevens graph

In addition to troubleshooting the network, many are discovering how Wireshark can be a
valuable asset in testing IoT devices prior to their implementation in an organization.

Testing IoT devices
The IoT is a ubiquitous transformation of intelligent devices embedded in everyday objects
that connect to the internet, enabling them to send and receive data. The IoT has several
components: people, infrastructure, things, processes, and data. The IoT has become a
billion-dollar industry as consumers, along with industries, are seeing the benefits of the
IoT.

Appreciating Traffic Analysis Chapter 1

[26]

Even with all of the benefits, prior to connecting an IoT device to the network, it's best to
test the device. Using Wireshark can help you see what happens when you plug the device
into the network. The following are some of the questions Wireshark can help determine:

How do the devices communicate once they are active? Do they phone home
without being prompted?
What information do they communicate? Are the username and password sent in
plain text?

The only way you can understand the behavior of these devices is by plugging one in,
capturing the data exchange, and analyzing the packet capture. The information obtained
can provide valuable insights into the vulnerabilities of IoT devices.

Along with troubleshooting and testing, Wireshark can be instrumental in proactive threat
assessment.

Monitoring for threats
Monitoring for threats occurs in one of three ways:

Proactive: Monitoring your systems and preventing threats by using a device
such as an IDS
Reactive: A system has fallen victim to an attack and the incident response team
manages the attack, followed by a forensic exercise
Active: Proactively seeking threats by conducting packet analysis and
monitoring log files

Wireshark can help the security analyst take an active role in monitoring for threats. While
Wireshark does not provide any alerts, it can be used in conjunction with an IDS to
investigate possible malicious network activity.

For example, while using snort (an open source IDS), the sensor produced the following
alert, which may be an indication of malicious activity on the protected network:

DELETED WEB-MISC text/html content-type without HTML – possible malware C&C
(Detection of a non-standard protocol or event) [16460]

Appreciating Traffic Analysis Chapter 1

[27]

This alert indicates that an infected host may be communicating with an external entity and
sending information gathered on the network to a botmaster. The security analyst should
take immediate action by running a capture in different segments of the network to identify
and mitigate the threat.

Industries see the value in using Wireshark for threat monitoring as well. For example, in
Cisco's CCNA Cyber Ops certification prep course, students learn how to observe and
monitor for unusual traffic patterns using Wireshark, as they hone their skills in preparing
to work alongside cybersecurity analysts within a Security Operations Center (SOC).

In order to determine what traffic is unusual, or to properly troubleshoot the network, you
must be able to determine what is normal network activity. This is achieved by conducting
a baseline, as outlined in the following section.

Baselining the network
A network baseline is a set of parameters that define normal activity. The baseline provides
a snapshot of network traffic during a window of time using Wireshark or Tshark.
Characteristics to baseline can include utilization, network protocols, effective throughput
forwarding rates, and network latency. The network team can use the baseline for
forecasting and planning, along with optimization, tuning, and troubleshooting.

The baseline process goes through several stages: plan, capture, save, and analyze. Once the
baseline is complete, the network analyst can review the captured data in order to assess
general performance for end-to-end communications. Baselining the network helps to gain
valuable information on the health of the network, and possibly identify current network
problems. In addition, subsequent baselining exercises can help predict future problems.

Whenever the installation of new equipment is planned, it's best to do a baseline prior to
the change. After implementation, do another capture to identify possible issues in the trace
and to fine-tune the configuration.

As you can see, there are many ways we can use packet analysis to monitor, test, baseline,
and troubleshoot. However, you should also be aware of when you shouldn't use packet
analysis.

Appreciating Traffic Analysis Chapter 1

[28]

As you can see, we can use packet analysis in many ways. However, because of the ability
to obtain sensitive information or as a precursor to an attack, packet analysis should only be
done on a network you own or where you have explicit permission to conduct packet
analysis for security scans or to troubleshoot network connectivity issues. In addition,
consideration should be given to maintaining the privacy of the data collected during
capture and have a proper method to obtain, analyze, and retain the packet captures.

As shown in the chapter, we have now learned about the many reasons to use packet
analysis. Let's summarize by embracing Wireshark, which is one of the most powerful
packet analysis tools available today.

Getting to know Wireshark
In the late 1990s, Gerald Combs needed a tool to analyze network problems. Portable
sniffers were available at the time, but they were costly. Gerald developed Ethereal with the
help of some friends, and this later became Wireshark. It has been around for over 20 years
and continues to evolve and improve over time.

Wireshark's strength is the ability to decode the captured bits into a readable form by using
decoders or dissectors.

Dissectors provide information on how to break down the protocols into
the proper format according to the appropriate RFC, or other
specifications.

Wireshark can decode hundreds of different protocols. New dissectors are periodically
added to the library. In addition, you can decode priority and specialty protocols by
developing your own dissector.

Wireshark is compatible with many other sniffers and has a wide range of file formats for
import and export. Some of the other features include the following:

Merge packet captures.
Provide a detailed analysis of VoIP traffic.
Create basic and advanced I/O graphs.

Appreciating Traffic Analysis Chapter 1

[29]

Wireshark can be installed on most OSes, including Windows, Solaris, Linux, and macOS.
In the following graphic, we can see the simple and streamlined Wireshark welcome screen
on a Windows OS:

The Wireshark interface

After using Wireshark for any length of time, you can see how it can help network
administrators to understand traffic flows, troubleshoot performance problems, or conduct
a network baseline.

Appreciating Traffic Analysis Chapter 1

[30]

Summary
With the variety and amount of data that travels on today's networks, it's easy to see why
packet analysis using Wireshark should be in everyone's skill set. In this chapter, we took a
brief look at how packet analysis began in the 1990s with the use of hardware sniffers. Fast
forwarding to today, we can see that packet analysis is used by nearly every device on the
network to gather traffic, examine the contents, and then decide what action to take.

We learned about how developers, network administrators, students, and security analysts
can all benefit from using packet analysis. We saw the many places where we conduct
packet analysis: on a LAN, on a host, and in the real world. In addition, we have learned
about how packet analysis has a variety of uses on today's networks, including
troubleshooting, testing IoT devices, monitoring threats, and baselining. We have learned
about how Wireshark is an exceptional open source software product that includes many
rich features, has many tools available to easily solve visual problems, and provides one of
the best ways to analyze network traffic.

In the next chapter, we will learn about Wireshark's predecessor, Ethereal, and how it
evolved to become Wireshark. We will then compare and contrast Legacy with Wireshark
Next Generation, and learn about the many improvements to the software. Because
Wireshark can be resource intensive, we will learn about how Tshark can provide a
lightweight alternative to Wireshark. At the end of the chapter, you will embrace the
benefits of Wireshark Next Generation.

Questions
Now it's time to check your knowledge. Select the best response, and then check your
answers, which can be found in the Assessment:

Packet analysis has been around in some form since the _____ as a diagnostic tool1.
to observe data and other information traveling across the network.

1950s1.
1960s2.
1970s3.
1990s4.

Appreciating Traffic Analysis Chapter 1

[31]

Packet analysis is used in the real world in many forms. One is the DHS2.
_____system, which monitors for threats.

CARVER1.
Packet2.
EINSTEIN3.
DESTINY34.

In the expert system, _____ provides information about typical workflows such3.
as TCP window updates or connection finishes.

Note1.
Chat2.
Error3.
Warn4.

A ____ provides a snapshot of network traffic during a window of time using4.
Wireshark or Tshark. Characteristics can include utilization, network protocols,
and effective throughput forwarding rates.

Round Robin1.
DORA process2.
Baseline3.
WinCheck4.

Monitoring for threats occurs in one of three ways. _____ is when a system has5.
fallen victim to an attack and the incident response team manages the attack,
followed by a forensic exercise.

Proactive1.
Reactive2.
Active3.
Redactive4.

2
Using Wireshark NG

In this chapter, we will see how it all began by learning about Ethereal, and how over time
it become Wireshark. During this journey, you'll gain insight into the many enhancements
that improve the overall functionality of Wireshark. In addition, you will appreciate the
work of the many authors that contribute to this project, and who help make Wireshark an
exceptional tool. So that you can navigate the interface and embrace all of the
improvements of Wireshark, we will take a look at the interface so that you can confidently
capture and analyze packets.

In order to better understand the packet analysis process, we'll briefly review each of the
phases; gather, decode, display, and analyze. We will then review the built-in command-
line tools and finish with a closer look at tshark, a lightweight command-line interface
(CLI) application, to use when you need to capture traffic without the resource-intensive
overhead of using Wireshark.

This chapter will address all of this by covering the following topics:

Discovering the beginnings of today's Wireshark
Examining the Wireshark interface
Understanding the phases of packet analysis
Learning Wireshark CLI tools

Using Wireshark NG Chapter 2

[33]

Discovering the beginnings of today's
Wireshark
The term ethereal is defined as meaning delicate, airy, elegant, and exquisite; almost
magical. The definition seems fitting, as Ethereal, and then later Wireshark, almost
magically allows us to understand what is happening on a network.

In the late 1990s, Gerald Combs developed Ethereal as a tool to analyze network problems.
In July 1998, Ethereal version 0.2.0. was released. In the following image, we can see an
email sharing news of the release of Ethereal version 0.3.14 (https:/ /www. wireshark. org/
lists/ethereal-announce/ 199809/ msg00000. html). Even in the beginning, developers
joined the effort and collectively sought to create a solid application:

Email about the release of Ethereal 0.3.14

https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html
https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html

Using Wireshark NG Chapter 2

[34]

Combs invested a great deal of his time and money to keep the project alive. He developed
and shared information about Ethereal during a time when hosting a website was difficult
and expensive, and the internet was so new that nearly every website was under
construction. However, despite the odds, the project continued to grow and expand, as
we’ll see in the next section.

Developing Ethereal
 Early iterations of Ethereal provided basic functionality and could run on Unix, Linux, and
macOS. At that time, Ethereal could not run on Windows, primarily because there was not
a capture engine for Windows at the time. In the early 2000s, Loris Degioanni and Gianluca
Varenni released WinPcap. One of the early Ethereal developers, Gilbert Ramirez, used
WinPcap to grab traffic using Windows. Some time after that, the developers added a
Windows installer.

With the addition of a Windows installer, the Ethereal community responded positively
and grew significantly, as many saw the need to do packet analysis on a Windows machine.
As a result, Ethereal expanded from the academic world, which was predominantly Unix
and Linux, to the rest of the world, where the Windows OS was quickly becoming the
predominant player.

In 2001, a significant early development in Ethereal's history was the ability to follow a
stream. This was a powerful improvement over sniffers, many of which at the time could
not reconstruct a stream.

In 2006, Gerald Combs began working for CACE Technologies, the developers of WinPcap,
and had to leave the name Ethereal and any active development behind due to trademark
issues.

Ethereal had a new name, yet the functionality of Wireshark remained the same. At that
point, the Ethereal project officially became Wireshark. In 2008, the developers released
Wireshark 1.0. After the release of Wireshark 2.0, developers referred to Wireshark 1.0 as
Wireshark Legacy.

This early development—until today—grew quickly as more and more people began to see
the benefits of packet analysis using Wireshark.

If you used Wireshark in the past, you know that the interface was different. The next
section gives an overview of the graphical user interface of the past and the current
interface of today's Wireshark.

Using Wireshark NG Chapter 2

[35]

Examining the Wireshark interface
As shown in the following screenshot, Wireshark Legacy has been around for over 10 years.
In 2015, Wireshark 2.0 was released, which featured a new user interface. This evolution
saw Wireshark moving from the GIMP (short for GNU Image Manipulation Program)
Toolkit, or GTK, to the Qt framework.

Ethereal's graphical user interface was developed using GTK+ (https:/ / www.gtk. org/) or
the GIMP Toolkit. Because of the versatile nature of GTK+, and the ability to work on a
wide variety of platforms, it was a logical choice for developing a user interface for
Ethereal. The following screenshot represents Legacy interface:

Legacy interface

https://www.gtk.org/
https://www.gtk.org/
https://www.gtk.org/
https://www.gtk.org/
https://www.gtk.org/
https://www.gtk.org/
https://www.gtk.org/
https://www.gtk.org/
https://www.gtk.org/
https://www.gtk.org/

Using Wireshark NG Chapter 2

[36]

The original GTK+—or GTK—allowed developers to provide a highly usable and feature-
rich graphical user interface for Wireshark. However, GTK doesn't effectively support all
operating systems, which over time became problematic.

Although Ethereal, and then later, Wireshark, maintained the original appearance for many
years, developers knew it was time to change.

Because of GTK's limitations in providing support for the various platforms, the developers
moved to the Qt framework. Qt is a comprehensive framework, is more Windows friendly,
and performs well on most operating systems.

Introducing Wireshark next generation
In 2015, developers released Wireshark 2.0. The next generation of Wireshark featured a
new user interface, as well as many functional enhancements. The streamlined Qt
framework is shown in the following screenshot:

Wireshark NG

Although the interface looks as if there is not as much going on, there are many
improvements, as we will see in the next section.

Using Wireshark NG Chapter 2

[37]

Enhancements
The Wireshark interface has significant improvements to get you up and running with your
analysis. The interface is intuitive, with shortcuts and methods to make navigation easier.
The following is a list of some of the many ways the interface improves your experience:

Quickly begin capturing traffic by selecting an active sparkline, as shown in the
previous screenshot.
Easily add columns—simply right-click on a value in the packet details area and
select Apply as a Column:

Apply as a column

Intelligent scrollbar coloring—found on the right-hand side of the packet list, as
shown in the following screenshot. When coloring rules are on, you can see
indication of any problems and quickly go to trouble spots, as follows:

Using Wireshark NG Chapter 2

[38]

Wireshark Interface with Enhancements

Enhanced graphs—flow graphs and IO graphs are easier to use.
Coloring rules are easier to create and edit.
Related packets—you can simply click to see related packets (shown in the
preceding screenshot).
Capable of translating to several different languages.

With approximately 1.5 million downloads per month, Wireshark has become a significant
tool. It has proven to be flexible as an open source utility that encourages developers to add
functionality, along with improving the overall appearance.

Using Wireshark NG Chapter 2

[39]

Each new version improves the application, adding things such as fixing a simple visual or
display issue, to more significant problems that can cause an application to crash, such as
dissectors. When you update Wireshark, take the time to read the notes, which will include
information such as the following:

What's new
Bug fixes
New and updated features
New protocol support
Updated protocol support
New and updated capture file support
New and updated capture interfaces support
Getting help
Frequently asked questions

All of the improvements over the years have been possible because of the generosity of the
open source community. The following section will outline how to see who is involved in
creating Wireshark.

Authors
Wireshark is open source and distributed under the GNU (GNU's not Unix) General Public
License (GPL). The success is attributed to the many contributing developers over the
years.

Developers have added dissectors, functionality, and ease of use. As a result, Wireshark has
become one of the most predominant network protocol analyzers in use today.

Many authors have contributed to the success of Wireshark with ongoing development and
maintenance of the application. Many will jump in to add their expertise, and some
contribute when they need a specific protocol dissector.

Using Wireshark NG Chapter 2

[40]

Anyone can be involved, as there is plenty of documentation on how to add a basic
dissector. If you do modify Wireshark to add a dissector or visual enhancement, share your
enhancement with the Wireshark team.

To see a current list of Wireshark authors, go to Help and About Wireshark and select
the Authors tab, as shown in the following screenshot:

List of authors

Next, let's take a look at packet analysis, the process of gathering traffic on the network,
decoding and dissecting the raw bits, and presenting it in a human-readable format for
analysis.

Using Wireshark NG Chapter 2

[41]

Understanding the phases of packet
analysis
Regardless of the software, there are four main phases of packet analysis: gather, decode,
display, and analyze, as shown in the following diagram:

Phases of packet analysis

The first step in packet analysis is to obtain network traffic in some way. The following
steps go through the gather process of packet analysis, which involves capturing the
network traffic. We'll start with the first step, Gather, where we collect the data from the
network.

Using Wireshark NG Chapter 2

[42]

Gathering network traffic
When you launch Wireshark, a welcome screen displays a list of available network
connections on your current device. In most cases, you will have more than one interface.

To begin capturing immediately, you can select an active sparkline, shown as A in the
Wireshark NG screenshot, and begin the capture. Alternatively, you can go to
the Capture menu, and then go to Options. This will open the following window. Once in,
there are a few key areas that will enable you to more effectively capture traffic: capturing
in promiscuous mode, and using a capture engine, which we will discuss in the next
section:

Enabling promiscuous mode

Capturing in promiscuous mode
You can capture on all interfaces, but make sure you check Promiscuous, as shown in the
preceding screenshot, as one of the column headers. This will allow you to see all the traffic
that is coming into the network interface card. You can also check Enable promiscuous
mode on all interfaces, as shown in the lower left-hand corner of the preceding screenshot.
After choosing an interface to listen on, and placing it in promiscuous mode, the interface
gathers up network traffic.

Using Wireshark NG Chapter 2

[43]

Using a capture engine
Part of effectively capturing traffic is the capture engine. A packet capture or pcap engine
provides an Application Programming Interface (API) to capture traffic from the network
before the traffic is processed by the operating system.

As a result, when installing Wireshark, you will see a window appear, prompting you to
install Npcap. A lot of times, people aren't really sure if we should install Npcap. However,
as shown in the following screenshot, Wireshark requires either Npcap or WinPcap to
capture data. If you don't install it, Wireshark won't run as expected. The following
screenshot represents the prompt to install Npcap:

Prompt to install Npcap

Once you have gathered the traffic, the next step is to convert the raw bits and decode them
into the proper protocol.

Decoding the raw bits
Traffic enters a network interface card in binary form one frame at a time. While capturing
data from the network is possible, it will enter the interface as random binary data. The
following diagram represents the illustration of converting bits into a human-readable
format:

Using Wireshark NG Chapter 2

[44]

Converting bits into a human-readable form

While in this phase, Wireshark uses the Enhanced Packet Analyzer (EPAN), which
decodes the bits into human-readable form.

Enhanced Packet Analyzer (EPAN)
Wireshark was called Ethereal before 2006, but the main core is the same. EPAN is the
packet-analyzing engine for Wireshark. EPAN uses decoders or dissectors which provide
information on how to recreate the protocols in the proper format:

Enhanced packet analyzer

Using Wireshark NG Chapter 2

[45]

The EPAN contains four main Application Programming Interfaces (APIs), as shown in the
preceding diagram:

Protocol tree: Detailed analysis of a single packet
Dissectors: Provide information on how to break down the protocols into the
proper format according to the appropriate Request for Comment (RFC) or other
specification
Dissector plugins: Uses dissectors as separate functions
Display filters: Allows you to filter captured data

In most cases, Wireshark is able to correctly identify and decode the protocol. However,
there are times when you will need to help Wireshark decode the protocol. That is achieved
by right-clicking the frame and selecting Decode As…, which will bring up the following
window. Once in the window, you can modify the values to match the appropriate
protocol:

Decode As...

This function is very useful when protocols either don't have a dedicated port or they're
running on a different port than usual. For example, you should use Decode As… when
HTTP is running on port 8080 instead of port 80.

Once the bits have been converted into the proper format, the next step is to display the
results in a human-readable format.

Using Wireshark NG Chapter 2

[46]

Displaying the captured data
In Wireshark, along with many other packet analysis tools, there are many options to
enhance your graphical experience. When you open a packet capture in Wireshark, the
default layout displays three panels, as shown in the following screenshot:

Packet list
Packet details
Packet bytes:

The Wireshark interface with three panels

The appearance of the display can be modified in the preferences by going to Edit, and then
Preferences:

Packet list: This is a list of all the captured packets, where each line represents a
single packet. If there are too many packets to fit in the pane, the user can use the
scroll bar on the right to navigate through the capture.

Using Wireshark NG Chapter 2

[47]

Packet details: This displays the details of a single packet and includes the
protocols and field values. It also displays Wireshark-specific hints. For example,
there is no field value called stream index, but Wireshark lists [Stream index:
0] in a Transmission Control Protocol (TCP) header underneath the source and
destination ports as a way to keep track of all the streams, as shown in the
following screenshot:

Packet details pane

Packet bytes: This is a hexadecimal representation of the single packet, as shown
in the packet details pane. Any data will be displayed on the right-hand side, as
shown in the following screenshot:

Packet bytes

Using Wireshark NG Chapter 2

[48]

The appearance of the display can be modified in the preferences by going to Edit, and then
Preferences:

Preferences—Layout

Once in Preferences, and then Layout, you can change your layout to one of many different
configurations, as shown in the previous screenshot.

After displaying the result, we then move to taking a good look at the captured data and
doing an analysis of what we have captured. The next section provides a summary on the
final stage of packet analysis: analyze.

Analyzing the packet capture
Once you have the capture, you can start analysis in real time or use a pre-captured file.
Use the built-in tools to troubleshoot and examine the traffic:

Filter traffic to display specific types of flows, such as DNS or HTTP traffic.
Search for specific packets, that is, tcp.port = = 443.
Turn on the coloring rules or use the expert system to easily spot problems.
Follow the stream to see the details of a single conversation.
Do a deep packet analysis of individual frames and examine the field values of
the headers.

Wireshark's statistics can range from basic information such as Capture File Properties to
more detailed information such as Conversations, Flow Graphs, and Stream Graphs.

In addition to the tools within Wireshark, you can subset the data to share the smaller file
with coworkers and add comments to the file or in an individual frame.

Using Wireshark NG Chapter 2

[49]

Although the Wireshark GUI is easy to use and understand, the Wireshark interface, with
all its enhancements, coloring rules, and shortcuts, can be resource-intensive. As a result,
it's best to become familiar with some of the command-line tools, which is what the next
section is all about.

Using command-line tools
Wireshark has several command-line tools that complement Wireshark's basic functionality
and will allow you to do several tasks, such as edit, split, and manipulate packet captures.
The following table lists some of the tools available. All the CLI tools are baked into
Wireshark; however, they are also available to use as lightweight tools to work with packet
captures:

Tool Function
dumpcap A program used to capture network traffic
editcap Can edit and subset capture files
capinfos Provides basic statistics on the capture file
mergecap Can merge multiple capture files into one

text2pcap
Converts a hexdump of ASCII (short for American Standard Code for Information
Interchange) packets into a capture file

tshark A lightweight command-line equivalent of Wireshark

As you can see, there are many command-line tools to capture network traffic. Let's take a
look at tshark, which is a great alternative to use when you need to conserve resources.

Exploring tshark
Part of the Ethereal development process included Terminal Ethereal (Tethereal), which
was a CLI tool. Tethereal was later renamed tshark or Terminal Wireshark.

tshark is a lightweight CLI tool. To capture using tshark on a Windows machine, go into
the CLI. If you have multiple interfaces, find which interface is active using ipconfig, then
build a command, as the following code shows. Keep in mind that the commands on a
Windows machine are not case-sensitive:

C:\Program Files\Wireshark>tshark -i "ethernet 2" -w Test-Tshark.pcap -a
duration:10

Using Wireshark NG Chapter 2

[50]

To run the tshark example, follow these steps:

Begin the command with tshark.1.
Identify the interface by using -i, then the interface name.2.
To write to a file, use -w, then the filename and path. Make sure you add the3.
extension.
To set the duration, use -a, which is capture auto stop, and set the duration in4.
seconds.
Press Enter to begin the capture.5.

When complete, locate and open the pcap file in Wireshark. If you don't send the output to
a file, you will see a list of packets captured on the screen:

Output from running tshark

The Wireshark documentation lists a number of switches to use with tshark. The following
table of command-line tools are from the documentation, which can be found at https:/ /
www.wireshark.org/ docs/ wsug_ html_ chunked/ ChCustCommandLine. html.

Many are the same options that you can use while using Wireshark's graphical user
interface, such as adding filters and specific field values. The following table represents the
options in tshark:

Output
-w <outfile|-> Set the output filename (or - for stdout)
-i <interface> Name or idx of interface (def: first non-loopback)

https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html

Using Wireshark NG Chapter 2

[51]

Capture stop conditions
-c <packet count> Stop after n packets (def: infinite)

-a <autostop cond.> ...
• duration:NUM - stop after NUM seconds
• filesize:NUM - stop this file after NUM KB
• files:NUM - stop after NUM files

When Gerald Combs and the original development team first released Ethereal, it had
limited functionality and could decode less than six protocols. The Wireshark developer's
goal today is to ensure functionality on Windows, macOS, and Linux. You can use
Wireshark on any number of computers as necessary. All the source code is available under
the General Public License (GPL) and can be found in the current Wireshark source code
repository. Here is a snap of Wireshark preferences—protocols:

Wireshark Preferences—protocols

Using Wireshark NG Chapter 2

[52]

Wireshark NG is loaded with protocols to dissect, with new protocols added every year. To
see whether a specific protocol is supported, go to Edit, then Preferences—as shown in the
preceding screenshot—and then scroll to see the desired protocol.

Summary
In this chapter, we learned about the evolution of Wireshark and how the current interface
allows you to quickly begin capturing by clicking on a sparkline, easily add columns to the
interface, and use intelligent scrollbar coloring.

You can now appreciate how each new version of Wireshark improves the application. We
learned about how Wireshark developers constantly update the software as many people
contribute to the success of Wireshark. We then explored the phases of packet capture, as it
progresses from gathering the traffic from the network to processing it into a human-
readable format that allows you to conduct an analysis. Finally, we saw how Wireshark can
be resource intensive; therefore, it's important to understand why sometimes, it's better to
use CLI tools such as tshark, a lightweight application for capturing packets.

In the next chapter, we will explore downloading and installing Wireshark on various
OSes, such as Windows, macOS, and Linux. We will take the time to explore the different
capture engines. Once you do decide to download Wireshark, we will evaluate the different
available download options. During installation on a PC or Mac, you'll see the various
options. Finally, we will look at the various resources that are available at https:/ /www.
wireshark.org/.

Questions
Now, it's time to check your knowledge. Select the best response, then check your answers,
which can be found in the Assessment:

When Gerald Combs began working for CACE Technologies, he had to leave the1.
name Ethereal, and any active development behind due to trademark issues. In
May _____, Ethereal officially became Wireshark.

19981.
20012.
20063.
20154.

https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/

Using Wireshark NG Chapter 2

[53]

In July _____, Ethereal version 0.2.0. was initially released. 2.
19981.
20012.
20063.
20154.

A _____ engine provides an API to capture traffic from the network, before the3.
traffic is processed by the operating system.

CACE1.
Pcap2.
Tcap3.
Capinfos4.

_____ provides information on how to break down the protocols into the proper4.
format, according to the appropriate RFC or other specification.

Protocol Tree1.
Dissector Filters2.
Capinfos3.
Dissectors4.

Wireshark has several CLI tools that complement the basic functionality, ____5.
can merges multiple capture files into one.

Tshark1.
Capinfos2.
Mergecap3.
Text2pcap4.

3
Installing Wireshark on a PC or

macOS
To start capturing and analyzing packets, you'll first have to download and install
Wireshark on your computer or laptop. In this chapter, we will discover how easy it is to
install Wireshark on a variety of different OS. We will learn about the importance of a
capture engine, and why it is necessary to capture network traffic.

You will see that when installing Wireshark on a PC, several options are presented. We will
review the different options so that you can confidently navigate the installation and make
the correct selections so that you can begin capturing traffic. Finally, because Wireshark is
open source, with constant enhancements and improvements, you will learn about the
many online resources to see the latest news and updates, download options, and access
help to improve your workflow.

This chapter will address all of this by covering the following:

Discovering support for different OS
Comparing the different capture engines
Performing a standard Windows installation
Reviewing the resources available at Wireshark.org

Discovering support for different OS
Wireshark is an open source packet analysis tool developed as a cross-platform application.
Wireshark now uses the Qt graphical UI library, which is capable of running on a variety of
hardware and software platforms with little or no modification to the underlying code. The
three main OS Wireshark supports are Microsoft Windows, Linux, and macOS.

Of all the OS systems today, Windows has the highest market share. The following section
outlines support for the Windows OS family.

Installing Wireshark on a PC or macOS Chapter 3

[55]

Using Wireshark on Windows
Wireshark will run on most supported Windows systems as it natively interacts with the
Windows API. Currently, Wireshark can be compiled and run on the following: Windows
7, Windows 8, Windows 8.1, and Windows 10. In addition, Wireshark will run on several of
the Windows Server OS, including Windows Server 2008 R2, 2012, 2012 R2, 2016, and 2019.

Running Wireshark or Wireshark Legacy may be possible on older OS, such as Windows
Vista, XP, or Server 2008. However, Wireshark Legacy is no longer supported on those OS
and may not perform as expected. Currently, there are still users who require a solution for
Windows XP, as XP still has a small percentage of the market share worldwide. Users can
obtain a copy of Wireshark for Windows XP at
https://www.wireshark.org/download/win32/all-versions/Wireshark-win32-1.10.14.e

xe.

Now that we have discussed how Wireshark operates in a Windows environment, let's take
our discussion further and explore how Wireshark functions in the Unix platform.

Running Wireshark on Unix
In addition to standard Windows install options, Wireshark can be installed on several
Unix systems. You can also run Wireshark on other Unix systems such as Oracle Solaris,
FreeBSD, and NetBSD. For those and other OS that do not have a standard install, you can
access Wireshark packages for most platforms by going to https:/ /www. wireshark. org/
download.html, and then scrolling to third-party packages where you can see the packages
that are available for many other platforms.

In addition to Unix, the following section outlines how Wireshark provides enhanced
support for macOS.

Installing Wireshark on macOS
On Wireshark.org, you will find an install for macOS (10.12 and later). The install for
macOS is a significant improvement since Wireshark moved from GTK to Qt in that now,
there is a native interface for macOS.

Prior to that, when you downloaded Wireshark on your macOS, you had to use X11, which
is the X Windows system. Version 1.12 was the final release that required the X Windows
system. Now, you can download and install Wireshark on a macOS just like any other OS.
The installer will guide you through the installation in much the same manner as installing
on a Windows machine.

https://www.wireshark.org/download/win32/all-versions/Wireshark-win32-1.10.14.exe
https://www.wireshark.org/download/win32/all-versions/Wireshark-win32-1.10.14.exe
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html

Installing Wireshark on a PC or macOS Chapter 3

[56]

As you can see, this has made Wireshark more user-friendly to the growing population of
macOS users. Because of the widespread use of Linux, the following provides information
on how Wireshark is also easy to install and use on a Linux machine.

Deploying Wireshark on Linux
Wireshark is supported on many Linux platforms, including Ubuntu, Debian, SUSE, and
Red Hat. Installing Wireshark on Linux may be possible, but you may run into errors
during the build and installation phases.

Common problems arise when you don't have the necessary development package on your
system, or when the development package is outdated. Other issues may be that you are
missing libpcap.

Running Wireshark as a root user also causes problems as Linux systems defend
themselves against what is perceived as risky behavior, which can cause harm to the OS. As
a result, Wireshark may not run while in root mode, and further configuration may be
necessary to make this possible.

If you are able to install Wireshark, then you may have an issue with capturing packets and
you may see a permission error:

No interface can be used for capturing in this system with the current
configuration. (Couldn't run /usr/bin/dumpcap in child process: Permission
denied)

If you see this error, then additional permission modifications and advanced configuration
are required to capture traffic. The Wireshark community is very helpful in trying to assist
users with issues, but there are options that are more reasonable, especially for novice
users.

If you need to become familiar with working with Wireshark on a Linux machine, then
there are other options. The following section provides guidance on how to easily
download and begin using a premade Linux VM in order to get a feel of how to use
Wireshark on a Linux OS for training or testing purposes.

Installing Wireshark on a PC or macOS Chapter 3

[57]

Downloading premade virtual images
Premade virtual images are available at https:/ /www. osboxes. org/ where it is easy to
download and run a Linux OS that has Wireshark pre-installed and ready to run. Once on
osboxes.org, you'll find you can choose from one of many OS.

Using the premade images for testing on a production network is not practical, as the VM
doesn't have the same visibility as the host. However, using a VM is beneficial when
learning about how to use Wireshark on a Linux OS in a classroom setting for training or
testing purposes.

As new OS come into the market, it's nice to know that Wireshark evolves to keep up with
the changing demands in today's networked environment. The following section outlines
how versatile Wireshark is when working with a variety of OS.

Working with Wireshark on other systems
Wireshark can be used on network devices and servers to monitor and analyze traffic in
order to understand the traffic flow. Several Cisco devices are Wireshark capable. The
devices provide the network specialist with comprehensive documentation on best
practices while capturing network traffic.

Some guidelines for capturing traffic while in a Cisco networking device include the
following:

Prior to capture, make sure the CPU is not overburdened and that you have at
least 200 MB of free memory.
When possible, limit captures by either size or duration.

In addition to Cisco, IBM provides extensive documentation on how to obtain a Wireshark
trace file. When done, technicians are encouraged to send their trace files to IBM support
for further analysis.

Many other companies have found the value of packet analysis using Wireshark and have
integrated the software within their respective products.

Regardless of what OS Wireshark runs on, the OS will need a way to gather or capture the
raw bits from the network. A capture engine pulls or captures the network traffic so it can
be sent to the OS for dissection and analysis. The next section provides a comparison of the
capture engines available today.

https://www.osboxes.org/
https://www.osboxes.org/
https://www.osboxes.org/
https://www.osboxes.org/
https://www.osboxes.org/
https://www.osboxes.org/
https://www.osboxes.org/
https://www.osboxes.org/
https://www.osboxes.org/
https://www.osboxes.org/

Installing Wireshark on a PC or macOS Chapter 3

[58]

Comparing different capture engines
To effectively capture and analyze traffic, there must be a way to gather the raw traffic from
the network, before being processed by the OS. A packet capture or PCap engine provides
an API to capture traffic. Wireshark uses one of several capture engines, such as libpcap,
WinPCap, AirPCap, and NPCap. Let's begin with libpcap.

Understanding libpcap
Libpcap is a capture engine that was originally developed for Unix-like OS and is
incorporated into TCPDUMP, Snort, and other packet analyzers to grab packets as they
come off the network interface.

Wireshark and TShark work with libpcap and generate PCAPNG files by default.
libpcap and TCPDUMP are developed and maintained at http:/ /www. tcpdump. org/. A
version of libpcap was adapted for Windows and is called WinPcap, as we will discuss
next.

Examining WinPcap
WinPcap is a capture engine that has drivers specific to a Windows OS and can be found at
https://www.winpcap. org/ . WinPcap has been around for many years, and works in a
Windows environment, specifically the Windows NT family.

WinPcap enables packet capture right from a network adapter and presents it to Wireshark
before any processing is done by the OS. WinPcap (or a similar capture engine) must be
installed on a Windows OS in order to capture packets. During the installation process,
Wireshark will look for a copy of WinPcap and prompt the user to install WinPcap if it is
not present.

WinPcap uses the Network Driver Interface Specification (NDIS) version 5.x API and has
not had any recent updates, as evidenced by the changelog found at https:/ /www. winpcap.
org/misc/changelog. htm. As a result, WinPcap may not perform well on certain versions
of Windows 10. To overcome performance issues, users are directed to use NPCap, as it
might perform better.

For many years anyone who needed to analyze 802.11 management or control packets used
AirPCap wireless capture devices, as we'll see in this next section.

http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm
https://www.winpcap.org/misc/changelog.htm

Installing Wireshark on a PC or macOS Chapter 3

[59]

Reviewing AirPCap
For analyzing wireless traffic, Wireshark users could capture traffic using AirPCap. The
adapter was a USB Windows-friendly device that provided 802.11 capture support and
worked well with Wireshark.

AirPCap was compatible with several versions of Windows, from Windows 2000 through
Windows 7, and many reported having successes when using AirPCap after installing the
AirPCap Nx driver, which adds support for Windows 8 and Windows 10. As of
writing this, the parent company, Riverbed, no longer lists AirPCap adapters or sells the
devices.

Over time, OS have changed, along with wireless in general, and 802.11ac is becoming
more commonplace. AirPCap has support for 802.11a/b/g/n, but does not list 802.11ac.

If you do need to capture raw 802.11 traffic, then you could use Linux, macOS, or try
NPcap, a driver that will provide support for raw 802.11 packet capture.

Let's take a look at the newest packet capture engine, Npcap.

Grasping Npcap
When installing Wireshark, users will now see an option to install NPpcp. Npcap comes
from the Nmap project and is the packet sniffing library for Windows. Npcap is based on
WinPcap/LibPcap but has improved features for enhanced ability to capture.

Understanding Npcap features
Npcap provides support for NDIS 6.0, which is a major version enhancement. Having this
support overcomes the limitations of WinPcap and will most likely improve capture on
Windows 7 and later machines.

A standard Wi-Fi card on a Windows machine can only be put into promiscuous mode, not
monitor mode. As a result, you won't see raw 802.11 traffic or the radiotap headers, as they
are wrapped so they look like an Ethernet packet, and are sometimes called fake Ethernet
packets. With Npcap, users can capture raw 802.11 packets when using an unsupported
wireless adapter.

Installing Wireshark on a PC or macOS Chapter 3

[60]

This is easily achieved by selecting the following option during installation of Npcap:

Support raw 802.11 traffic (and monitor mode) for wireless adapters

Npcap will then have two modes:

Managed mode: Captures Ethernet packets only
Monitor mode: Uses wlanhelper.exe, which will allow you to switch into
monitor mode and gather all 802.11 traffic, including data and control, along
with the management packets that have radiotap headers

Radiotap headers can be used when troubleshooting Wi-Fi, as they can provide a lot of
information such as antennae noise and channel frequency. To see an example of a radiotap
header, go to https:/ /www. cloudshark. org/ captures/ ca7828d13464? filter=
frame%20and%20radiotap%20and%20wlan%20and%20wlan_ aggregate.

Once you're on Cloudshark, select Export | Download File from the menu. This is found
on the right-hand side of the screen, as shown here:

Download file from Cloudshark

When the Download window opens, select Download the original file and open it in
Wireshark.

https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate
https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate

Installing Wireshark on a PC or macOS Chapter 3

[61]

Select Frame 1 and expand the radiotap header to see the details, as shown in the following
screenshot:

Radiotap header

Other Npcap features include loopback packet capture, which can be helpful during
troubleshooting, along with support for the libpcap API. Npcap can also ensure enhanced
security in that it can be set to restrict access to admin only on a Windows machine. If this
option is set, then the user will have to authorize using the driver in the Windows User
Account Control (UAC) dialog box.

Installing Wireshark on a PC or macOS Chapter 3

[62]

Npcap is compatible with WinPcap and can run alongside WinPcap, or you can uninstall
WinPcap and use the Npcap driver exclusively. However, Wireshark documentation
suggests using Npcap if you are using Windows 10. Users can compare the features of
WinPcap or Npcap by going to https:/ / nmap. org/ npcap/ vs-winpcap. html.

Now that we have learned about the different capture engines, let's explore the various
options to choose from while installing Wireshark on a Windows OS.

Performing a standard Windows installation
The Windows installation is a straightforward process that presents the user with a series of
prompts, which offer default values that the user may choose to accept or decline. Prior to
installing, make sure you meet any system requirements. In most cases, UAC will dim the
screen and ask for confirmation to run the program.

With each new version, the components, options, and order of installation may change. The
following is a list of dialog boxes you should expect to see when doing a routine setup.
We'll start with the first two you will typically see, the welcome and the license agreement.

Beginning the installation
As you begin the installation, Wireshark displays a series of prompts. The following are
generally the first two screens you will see:

Welcome Screen: The Wireshark installation begins with a Welcome Screen with
a warning to make sure Wireshark is not running before launching the wizard.
The wizard will then guide you through the installation.
License Agreement: The next screen is the License Agreement, which must be
read and agreed upon before moving on to the next step. It might be worthwhile
to read this as it provides a detailed overview of the license agreement,
specifically that Wireshark is distributed under the GNU (not Unix) General
Public License.

The first two prompts are fairly straightforward. This next section provides detailed
information on what components to select during installation.

https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html
https://nmap.org/npcap/vs-winpcap.html

Installing Wireshark on a PC or macOS Chapter 3

[63]

Choosing components
During the installation, you may be given the choice to accept or reject certain
components. Choose Components has a number of choices. The user may accept all choices
or select specific components to install. Keep in mind that these options periodically
change, as shown here:

The Choose Components screen

The following are the options that appear when selecting a component to install:

Wireshark: Select this choice if you want to install Wireshark. While this may be
obvious, the user may only want to install TShark.
TShark: TShark is a lightweight CLI tool that is not as resource intensive as the
full Wireshark GUI.

Installing Wireshark on a PC or macOS Chapter 3

[64]

Plugins & Extensions: These are extra features and protocol dissectors for
Wireshark and TShark:

Dissector Plugins: Plugins with some extended dissections.
Tree Statistics Plugins: Extended statistics.
Meta Analysis and Tracing Engine (MATE): This is experimental;
MATE offers configurable extensions for display filters.
Transum: A newer tool developed by https:/ / community.
tribelab. com/ that computes response time with a number of
different protocols.
Codec Plugins: Provides additional support for codecs.
Simple Network Monitor Protocol (SNMP) MIBs: Provides a
more extensive dissection of the SNMP.

Tools: Provides a list of command tools to select, and includes the following:
editcap: This allows you to adjust timestamps, delete packets, and
convert file formats.
text2pcap: This provides the ability to take an ASCII hexdump and
convert the file to a libpcap-format capture file.
mergecap: This is used when you need to combine two capture
files as it merges two or more capture files into one, either by
appending or by merging by timestamp.
reordercap: Rearranges packets from an input file by sorting the
timestamps and converting them to an output file.
dftest: When you have to debug a display filter (dfilter), dftest will
show the display filter byte code.
capinfos: This provides information such as the number of
packets, duration, and other information about a capture file.
raw shark: This outputs and analyzes raw PCap data when
required for external (third-party) integration or exports.
mmdbresolve: This program will identify and print a packet's
geolocation by using an IPv4 and IPv6 address. You will need to
obtain the latest GeoLite2 at databaseshttps:/ /dev. maxmind. com/
geoip/ geoip2/ geolite2/ .

https://community.tribelab.com/
https://community.tribelab.com/
https://community.tribelab.com/
https://community.tribelab.com/
https://community.tribelab.com/
https://community.tribelab.com/
https://community.tribelab.com/
https://community.tribelab.com/
https://community.tribelab.com/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://dev.maxmind.com/geoip/geoip2/geolite2/

Installing Wireshark on a PC or macOS Chapter 3

[65]

androiddump: When it's necessary to capture from an Android
device, androiddump provides an interface. You'll need to have
the Android Software Development Kit (SDK) along with
permission to access the device.
sshdump: This provides an interface to capture from a remote host
when in a Secure Shell (SSH) connection.
UDPdump: This offers a capture interface that pulls UDP packets
from network devices when debugging applications that run over
UDP.
randpktdump: This is a tool that enables access to the Random
Packet Generator (randpkt) during testing or for educational
purposes.
extcap: This is an external interface that can be used for testing,
fetching and displaying data from a non-traditional remote source,
or conducting Bluetooth sniffing.

User's Guide: This is a copy of the user guide that you can access offline.

As you can see, there are many components included that you can to select within the
Wireshark installation. The next two prompts offer choices on shortcuts, outlining file
extensions, and deciding where to house the install folder.

Creating shortcuts and selecting an install
location
Within the installation, you'll have choices on whether you would like some shortcuts,
along with outlining the available file extensions. In addition, you'll need to decide where
to store the installation folder, as outlined here:

Additional Tasks: This prompt will provide choices on whether to create
shortcuts for in the Wireshark Start Menu, Wireshark Desktop, or
Wireshark Quick Launch icon, as shown here:

Installing Wireshark on a PC or macOS Chapter 3

[66]

 Additional Tasks screen

Choose install location: The user selects the default location or browses to a
user-defined folder. Wireshark will provide information on how much space is
required.

As with most software installations, the user is given some choices. In addition to those
listed earlier, the user will have a few more selections to make on capture engines and USB
capture before completing the installation.

Capturing packets and completing the
installation
Wireshark needs a capture engine to gather network traffic, and will query the system to
see if one is present. Wireshark also offers a USB capture, which is optional.

Installing Wireshark on a PC or macOS Chapter 3

[67]

The following prompts deal with capturing traffic, along with what you should expect to
see when Wireshark completes the installation:

Packet Capture: At this point, Wireshark will check whether Npcap or WinPcap
is installed. The user is presented with a screen that states Wireshark requires
either Npcap or WinPcap to capture live network data, as shown here:

The Packet Capture Screen

If you have Windows 7 or higher, then Npcap is most likely an appropriate
choice. Wireshark presents links for the user to do the following:

Get Npcap if needed
Learn more about Npcap and WinPcap

USB Capture: At times, it is necessary to capture USB traffic. This option checks
to make sure you have the USBPcap currently installed and gives you an option
to install it, which is shown as follows:

Installing Wireshark on a PC or macOS Chapter 3

[68]

The USB capture screen

You may find the need to use a USB capture, for example, for troubleshooting or
monitoring transactions. If you choose not to install the USB capture, then you
can install this at a later date.

Completing Wireshark Setup: Once you have made all of your selections,
Wireshark will present a notification that the process has completed. The screen
will show the output of the files extracted during the installation. At this time,
you can choose to Run Wireshark. In addition, you can also select Show News,
which will bring up the latest Wireshark news and information.

Because of the variety of options available, it may seem overwhelming. There is help. The
next section provides an overview of many of the resources found at the Wireshark home
page.

Installing Wireshark on a PC or macOS Chapter 3

[69]

Reviewing the resources available at
Wireshark.org
When you first visit https:/ /www. wireshark. org/, you are presented with a splash page
that offers download options. In addition, across the top, there are several hyperlinks to
resources such as news, where to find help, and where to go to meet other Wireshark users.

The News section is where you will find the latest on Wireshark improvements,
vulnerabilities, and bug fixes. Once there, you can drill down to specific versions of release
notes and find more information. On the lower part of the page, you will find links to
archived news events for past Wireshark releases, as shown here:

News section at Wireshark.org

https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/

Installing Wireshark on a PC or macOS Chapter 3

[70]

The Get Acquainted menu choice provides a link to the About page, where you will find
general information on Wireshark, including features, authors, awards, and accolades. You
will also find another link to download Wireshark, but you will also find a blog. It's worth
visiting the blog because there are personal insights from developers, including Gerald
Combs, the original developer.

The Get Help menu lists many opportunities to ask questions, various online tools, the
Wireshark Wiki, Bug Tracker, and Mailing Lists that help you keep up to date on
Wireshark. Users are encouraged to post questions to the forum where you can view the
question and registered users can post a response. As shown in the following diagram,
there are several topics to investigate:

Questions in a Wireshark forum

While most of us are Wireshark users, there are hundreds of developers that have worked
hard to improve Wireshark over the years. The Develop menu choice lists various links to
Get involved, Developers guide, Browse the code, and the Latest build.

Everyone needs a sponsor. The Our Sponsor menu choice takes you to Riverbed's home
page, which is an IT company that provides a variety of products and services.

Installing Wireshark on a PC or macOS Chapter 3

[71]

SharkFest is the Wireshark conference, where you can undergo training, gain practical
experience, and network among the Wireshark community and the developers that make
Wireshark possible.

Because most of the time you visit the Wireshark home page to download Wireshark, the
following sections explore options you may find when downloading Wireshark.

Evaluating different download options
Once on the Download page at https:/ / www. wireshark. org/, you will see options for the
type of file you want, along with what release. You can choose from stable, old stable, and
development. The following screenshot shows the choices for downloads under Stable
Release:

Choices for downloads under stable release

In most cases, you will select an option under Stable Release, as this is the most recent
version of Wireshark, which has most of the bugs resolved and functions at an optimal
level. The following lists the available choices:

Windows Installer (64-bit): This provides a standard download for a 64-bit
Windows OS.
Windows Installer (32-bit): This provides a standard download for a 32-bit
Windows OS.

https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/

Installing Wireshark on a PC or macOS Chapter 3

[72]

Wireshark PortableApps (32-bit): This is an option that you can run from a flash
drive for troubleshooting without having to install on a system. However, the
app is limited for use only with Windows 2000, XP, or Vista.
macOS 10.12 and later Intel 64-bit .dmg: This is an option for macOS users. To
install, download, and unpack the Disk Image (DMG) and then run the install.
In some cases, you may have to complete additional configuration options in
Wireshark to resolve any errors.
Source Code: This provides an archive of the source code, where you can study
the various files. If you are serious about development, then you should obtain
and update your code from Wireshark's Git repository. Git will automatically
merge changes into your personal source, so you can keep your source updated.
The following is a screenshot of the Source Code option on the Download page:

Source Code option in the download page

Installing Wireshark on a PC or macOS Chapter 3

[73]

Below the stable release, you will find two other options:

Old Stable: This includes the same options as the stable release, but are older
versions, rather than the latest build. This might be used if your organization has
a strict change management policy that doesn't allow any new software until you
run vulnerability testing. In that case, you can select an Old Stable option.
Development Release: If you would like to test new features, then you can select
one of the choices under the Development section.

It's worth taking the time to explore all the resources on https:/ / www.wireshark. org/ , to
help you learn more about packet analysis and find the latest information on Wireshark.

Summary
One of the first things that must be done in order to conduct packet analysis is to download
and install Wireshark. This chapter went through how Wireshark has support for many
different OS so that you can confidently download and install it on your own system. By
now, you have a better understanding of the different capture engines and how they in
provide a way to gather the traffic from the network before passing the data to the OS.

When you're ready to install Wireshark on a Windows machine, you'll be more confident as
you step through all the prompts, from the Welcome Screen to completing the installation.
So that you are more aware of the many choices for download, we reviewed the various
options for the type of file you want, along with what type of release. And finally, you now
understand that if you do run into trouble, there is help, as evidenced by the many
resources on https:/ /www. wireshark. org/.

Now that you have installed Wireshark, you're ready for the next chapter where we explore
the Wireshark interface. We will take a look at all the elements to help you navigate better
as you begin capturing and analyzing packets. We will then examine the Wireshark
Welcome Screen and go through the various icons and shortcuts. Then, we will explore the
three most commonly used access menu choices: File, Edit, and View, all of which will help
improve your workflow.

https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/

Installing Wireshark on a PC or macOS Chapter 3

[74]

Questions
Now it's time to check your knowledge. Select the best response and then check your
answers, which can be found in the Assessment:

A significant improvement since moving from GTK to Qt is that Wireshark1.
provides a native interface for macOS that doesn't require the use of _____.

MATE1.
X112.
Transum3.
Capinfos4.

_____is a capture engine originally developed for Unix-like OS, and is baked into2.
Snort, TCPDUMP, and other packet analyzers to grab packets as they come off
the network interface.

capinfos1.
Mate2.
libpcap3.
Transum4.

_____ is a lightweight CLI tool that is not as resource intensive.3.
TShark1.
mergecap2.
dftest3.
androiddump4.

This program will identify and print a packet's geolocation by using an IPv4 and4.
IPv6 addresses.

dftest1.
TShark2.
mergecap3.
mmdbresolve4.

This is the newest capture engine option for Wireshark, with many benefits and5.
features to enhance your packet capture:

AirPcap1.
NpCap2.
WinPcap3.
libpcap4.

4
Exploring the Wireshark

Interface
When you launch Wireshark for the first time, you might find it hard to navigate around
the interface until you are familiar with all of the elements required to begin capturing and
analyzing traffic. In this chapter, we will step through the Wireshark interface. You will
come to understand all of the elements of the welcome page, the sparklines, capture filters,
and select interfaces.

Although Wireshark currently has over ten menu choices, in most cases, you'll find that
there are a few that are more commonly accessed. We'll take a look at those so that you are
more confident when moving about the interface. We'll examine the File menu, where you
will not only open a packet capture, but can also save, print, and export the capture. We
will also investigate the Edit menu where you can mark packets, set time references, and
add comments. Finally, we'll take a look at the View menu so you can learn how to
customize the look and feel of the Wireshark interface.

This chapter will address all of this by covering the following:

Understanding the welcome screen
Exploring the File menu options
Discover the Edit menu options
Grasping the View menu options

Exploring the Wireshark Interface Chapter 4

[76]

Understanding the Wireshark welcome
screen
When you first launch Wireshark, you may think that there isn't much on the welcome
screen, as shown here:

The Wireshark welcome screen

While it is a streamlined interface, you will find that there is everything you need to begin
capturing packets and analyzing traffic.

Across the top, you will find the menu choices. If you don't have a capture file loaded, you
will see the menu choices that are all available; however, the icons may be dimmed. The
icons will become active once you have a packet capture open or are actively capturing
packets.

One of the first things you will do while in Wireshark is open a capture. The next section
explains the many options available when opening a packet capture.

Exploring the Wireshark Interface Chapter 4

[77]

Opening files
Below the icons, you will see a banner reading Welcome to Wireshark. Underneath the
banner, you will see the label Open, which will identify any previously opened packet
captures that are available. If you right-click on a file, you will have the following choices:

Show in Folder
Copy file path
Remove

While in Windows, if you select Show in Folder, as shown here, you can select a file and
then drag it onto the Wireshark screen and the file will open:

Right-click and Show in Folder

Once you begin capturing packets, you may have a dozen or so files in the Open file area.
Although the files are shortcuts for ease of access, they may be distracting:

The Clear Menu choice

Exploring the Wireshark Interface Chapter 4

[78]

If you want to remove the files, go to the menu File | Open Recent | Clear Menu, as
shown in the preceding screenshot.

Next, let's take a look at the options for gathering network traffic.

Capturing traffic
If you are getting ready to capture traffic, you'll want to set Wireshark up properly. You can
find the Capture label in the middle of the screen. Once there, you can apply a capture filter
in the space provided. Below the capture filter area, you'll see a list of interfaces, with a
moving symbol next to the active interface(s). The moving symbol is called a sparkline,
which identifies an interface, and the lines represent actively exchanging data.

The capture filter allows you to add a capture filter. If you do use a capture filter, be aware
that it will limit what you capture to only what you have filtered on, and you may miss the
traffic that can help with your analysis.

To the right of the capture filter, you will see a drop-down menu reading All interfaces
shown. If you want to remove any of the classes of interfaces (such as Wired or Virtual),
you can select one from the drop-down menu, as shown in the following screenshot:

Capture options

In the list of interfaces, you will see the various connections. One of the interfaces may be
the USBPcap, which will be available if you installed the USBPcap driver. This is a fairly
new option that may be helpful to use during troubleshooting.

The last thing on the interface you'll find is a few links that can provide more information.

Exploring the Wireshark Interface Chapter 4

[79]

Learning about Wireshark
Across the bottom on the right-hand side, you will see the Learn label, where you will find
links to the User's Guide, Wiki, Questions and Answers, and Mailing Lists. Below the
links, Wireshark also lists what version you are running and whether or not you are
receiving automatic updates.

Once you have either opened a packet capture or run a capture for analysis, you will most
likely use one of the many menu choices. The following covers what is possible in the File
menu.

Exploring the File menu
When working with the Wireshark interface, File is the go-to menu as it has all of the tasks
commonly associated with working with a file, as shown in this screenshot:

The File menu

Exploring the Wireshark Interface Chapter 4

[80]

In this section, we'll walk through the many options found in the File menu. If you would
like to follow along, go to https:/ / www. cloudshark. org/ captures/ 0012f52602a3.
Download the original file, open the packet capture file, HTTP.cap, in Wireshark, and select
frame 36.

There are many options found in the File menu. Let's begin with ways to locate and open a
file, save a capture, and what options are available when you close a file.

Opening a file, close, and save
This first section has many choices for locating and opening files so you can begin your
analysis:

Open will launch a dialog box that will allow you to select any file; it'll go to the
location of that file and allow you to select that file.
Open Recent will list the recently accessed files.
Merge will allow you to merge a file with the capture you have open. When
merging, it's important that the time values are synchronized, as that is what
Wireshark uses to merge the two files.
Import from Hex Dump is convenient when someone has sent you a hex dump
from another device for analysis. The import dialog box will step through
selecting the appropriate choices when importing the file.
Close will close the current capture. Prior to closing, Wireshark will ask you if
you'd like to save the file.
Save allows you to save the current file. This would be useful if you have added
comments or modified the file and want to preserve the changes.
Save As allows you to save the file as something other than the default
extension, .pcapng. Once in the dialog box, you can select from the many
different file formats that Wireshark has available.
File Set offers the ability to work with a set of files. For example, if you're doing a
firewall ruleset and you're going through a whole month of files, you can work
through the list one by one.

 This next File menu section takes a look at the many ways to export parts of a capture.

https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3

Exploring the Wireshark Interface Chapter 4

[81]

Exporting packets, bytes, and objects
Instead of saving an entire file, you may want to save only a portion of the file or even just
the objects found within the file. Within this section, you'll find several export options:

Export Specified Packets: This provides a wide range of options that include
only displayed packets, a range of packets, and marked packets, as shown here:

The Export Specified Packets dialog box

Exploring the Wireshark Interface Chapter 4

[82]

Export Packet Dissections: This offers many choices to export, as shown in the
screenshot, including CVS, plaintext, and JSON:

The Export Packet Dissections menu

Export Packet Bytes: This feature exports the packet bytes into C arrays so you
can import the stream into a C program.
Export PDUs to File: This menu choice offers many selections to export;
however, this feature may not show a usable output and may only work with
specific applications.
Export TLS Session Keys: If there are session keys within the file, select this
option to export the keys that can be used to decrypt the data. Wireshark will
display a popup if there are no TLS (short for Transport Layer Security) keys to
save.
Export Objects: This exports objects found within the file, such as images,
documents, and executables. For frame 36, select Export Objects | HTTP, which
will display a list of objects found, as shown here:

Exploring the Wireshark Interface Chapter 4

[83]

The Export Objects—HTTP dialog box

Within this window, you can select Save, Save All, or even use the Text Filter:

The Export Objects—Save As dialog box

I selected Save and then navigated to a temporary folder, Export. For the filename, I
selected logo.png. I included the extension to ensure the object is saved in the correct
format. When done, navigate to the folder and open the image and you should see the
Packet Life logo.

 If there are other objects within the capture, you can save them in a similar manner.

As you can see, there are many ways to export components in Wireshark. In the lower part
of the File menu, we see options to print and quit, which we'll evaluate next.

Exploring the Wireshark Interface Chapter 4

[84]

Printing packets and closing Wireshark
Within this final section, let's take a look at the last two options, Print and Quit:

Print: While examining packets, Wireshark offers many ways to print different
sections of the capture. You can print all of the packets, selected packets only, or
a range of packets to PDF, which you can then include in a report. Once you
select Print, you will see the following:

The File | Print option

Exploring the Wireshark Interface Chapter 4

[85]

Quit: Once you are done using Wireshark, you'll want to quit the application. If
you select Quit, and you have a new capture, Wireshark will ask you whether
you'd like to save the file.

In addition to the File menu, you will want to work with your capture file. The following
section will cover the Edit menu to help you can discover the many possibilities available
when working with a packet capture.

Discovering the Edit menu
The Edit menu allows you to find and mark packets, set a time reference, copy and provide
detailed information on creating a configuration profile, or modify preferences. The
following is a screenshot of the Edit menu:

The Edit menu

Exploring the Wireshark Interface Chapter 4

[86]

As you can see in the screenshot, there are many options. The following discussion outlines
ways to copy various items and find packets within Wireshark.

Copying items and finding packets
While analyzing packets, you may see an item or value you would like to copy. Wireshark
makes this easy to accomplish as the Copy menu choice has many submenus to further
define copy options. In addition, we'll see how we can locate a specific packet or a string
value within the capture.

Copy allows you to copy various items to the clipboard. For example, in frame 5, expand
the IP header and select the source IP address. Go to Edit | Copy and then expand the
selections, as shown here:

Copy options

Exploring the Wireshark Interface Chapter 4

[87]

The Copy submenu has the following options to select from:

Value: This will copy the 168.1.140 IPv4 address.
As Filter: This will create a filter based on the IPv4 address you selected or any
other value. You can then paste the filter in the display filter area, press Enter,
and Wireshark will run the filter.

Within the Edit menu choice, there are a few groupings of selections. We'll start with the
first grouping, which offers ways to find packets:

Find Packet: This is where you can search for specific packets and even find
string values within a packet capture.
Find Next: If Wireshark finds what you are looking for, Find Next will go to the
next instance.
Find Previous: If Wireshark finds what you are looking for, Find Previous will
go back to the previous packet.

Marking or ignoring packets
While working with packets, you might find and mark packets that are interesting, so you
can return to them at a later date. In addition, you may want to ignore specific packets.

This next grouping of selections offers ways to mark packets:

Mark/Unmark Packet: This allows you to mark a specified packet or packets,
which turns the packet(s) black for easy visual reference.
Mark All Displayed: This will mark all displayed packets, meaning if you used a
display, filter Wireshark will only mark the packets that are displayed.
Unmark All Displayed: If all displayed packets are already marked then this
will unmark all displayed packets.
Next Mark: When packets are marked, this option allows you to move to the next
marked packet.
Previous Mark: When packets are marked, this option allows you to navigate
back to the previous marked packet.

Exploring the Wireshark Interface Chapter 4

[88]

In addition to marking packets to identify items of interest, you may want to ignore specific
packets. The following shows how you can select specific packets to ignore while doing
your analysis:

Ignore/Unignore Packet: This allows you to select a packet and, once selected, it
will be as if the packet never existed, and it won't show up in statistics or a flow
graph; it's simply ignored. Once you select ignore, the packet line will have a
reference reading <Ignored>, as shown here:

Using the Ignore Packet option

Ignore All Displayed: This will ignore all displayed packets, meaning if you
used a display filter, Wireshark will ignore only the displayed packets.
Unignore All Displayed: If the displayed packets are ignored, when selected,
Wireshark will unignore all displayed packets.

While some packets may be ignored as they hold no value in the analysis, you may want to
use some method to determine delays, as we'll see next.

Setting a time reference
In your analysis, you may have a group of packets where you want to see exactly how long
the delay was within those packets. In Wireshark, you can set a time reference on the
packet where you think the trouble began and watch the time values to see gaps in the
transmission. Wireshark provides a variety of ways to set a time reference and then offers
ways to navigate through the time references:

Set/Unset Time Reference: This is a selection that allows you to set/unset a time
reference.
Unset All Time References: This will unset all time references.
Next Time Reference: Once a reference is set, this allows you to navigate to the
next time reference.
Previous Time Reference: Once a reference is set, this allows you to navigate to
the previous time reference.

Exploring the Wireshark Interface Chapter 4

[89]

Time Shift: This is an option you can use when you need to adjust the time
reference. For example, if you are examining two captures that each used a
different file format—that is, one file used NTP (short for Network Time
Protocol) and the other file used PTP (short for Precision Timing Protocol)—you
may want to do a time shift. If you select this option, it will launch a dialog box
where you can set your values, as shown here:

The Time Shift option

The last option shows where you can undo all shifts if you get unexpected results.

Now that we understand how we can reference or shift time in Wireshark, let's take a look
at ways to personalize your work area.

Personalizing your work area
While working with a capture, you can record your changes by using comments. In
addition, you can fine-tune the interface by creating a tailored configuration profile and/or
modify individual settings using the Preferences menu:

Packet Comments: This allows you to include comments on a single packet.
Delete all Packet Comments: This removes all comments.

Exploring the Wireshark Interface Chapter 4

[90]

Configuration Profile: This allows you to create a customized profile, specific to
your workflow. This is a powerful feature, as you can create several profiles, so
they can be used for specific applications or clients.
Preferences: This brings up the Preferences dialog box where you can alter the
appearance and elements that influence the functionality of Wireshark. Here, you
can adjust the font and color or even the layout, as shown in the following
screenshot:

Wireshark Preferences

Although the Edit menu is widely used, let's take a look at the View menu, so you can see
the many ways to modify the look and feel of your capture during analysis.

Exploring the Wireshark Interface Chapter 4

[91]

Exploring the View menu
The View menu is where you can alter the appearance of the captured packets, and it
includes ways to colorize packets, expand the subtrees, or show a packet in a separate
window:

The View menu

Exploring the Wireshark Interface Chapter 4

[92]

Let's start with ways to adjust the toolbars and panels and how to go into full-screen mode.
If you would like to follow along, use the HTTP.cap file.

Enhancing the interface
In Wireshark, there are several ways to alter and enhance the interface, such as how we
view the toolbars and which panels we would like to be visible. We'll start at the top with
the toolbars.

The toolbar section represents a grouping where similar items are combined in many
menus. Once in this section, you will see a list of the three available toolbars that are
currently available, as shown here:

The View menu—toolbars

 If you see a checkmark as shown in the preceding screenshot, that indicates the toolbar is
visible. The toolbars are explained as follows:

Main Toolbar: This holds all of the commonly accessed icons:

Main Toolbar

Exploring the Wireshark Interface Chapter 4

[93]

Filter Toolbar: This is where you will find the display filter.
Status Bar: This is found at the bottom of the Wireshark screen. The Status Bar
tells how many packets are captured and how many are displayed, what profile
is applied, and the name of the file.
Full Screen: This is used when we want Wireshark to go full screen, which will
fill the current window.

Once you get used to the toolbars, you will see they provide a handy way to help you to
navigate the interface. Now, let's take a look at the next grouping, which is the panel view,
so you can modify what is visible on the screen. A checkmark indicates the panel is visible.
If you do not want a panel to be visible, uncheck the panel and it will be hidden from view:

Packet List: This is a list of all of the captured packets, where each line represents
a single packet.
Packet Details: This displays the details of a single packet.
Packet Bytes: This is a hexadecimal representation of a single packet.

The next section outlines the options for display the time in Wireshark, along with how to
provide name resolution.

Adjusting time formats and name resolution
The Time Display Format and Name Resolution menu choices both have several options
within the submenus. We'll start with the Time Display Format, which provides several
ways to view the time values in Wireshark.

Once you expand the Time Display Format menu choice, you will see several options with
how you want your time displayed, which include the following:

Date and Time of Day
Year, Day of Year, and Time of Day
Time of Day
Seconds Since 1970-01-01

Exploring the Wireshark Interface Chapter 4

[94]

When doing an analysis, you will most likely use a format that helps you to visualize gaps
in transmission. In that case, the following are used:

Seconds Since Beginning of Capture: This will show you how many seconds
have passed since the capture was started.
Seconds Since Previously Captured Packet: This will show how many seconds
have passed since the previously captured packet.
Seconds Since Previously Displayed Packet: This is used when you apply a
display filter, as it will show how many seconds have passed since the previously
displayed packet, which will more accurately show gaps in time.

Time precision is also a consideration. When selecting a format, you have a choice in how
many decimal places are displayed, as shown here:

Automatic (from Capture File)
Seconds
Tenths of a second
Hundredths of a second
Milliseconds
Microseconds
Nanoseconds

Most of the time, it is best to use Automatic, which is the default, and that will be the best
precision the operating system can provide.

The whole concept of time is important in packet analysis. Now, you understand how you
can easily modify the way time is represented. Name Resolution is another menu choice
that has several selections. The following will outline the options available to resolve names
and the rationale behind why you would select each one.

Under the Name Resolution menu, you can resolve physical, network, and transport
addresses. In most cases, Wireshark can resolve physical and transport addresses without
any problems as they both come from a file found in the local Wireshark folder.

Exploring the Wireshark Interface Chapter 4

[95]

To resolve physical addresses, Wireshark looks at the first six digits of a MAC address,
which is the Organizational Unique Identifier (OUI), and this comes from
the manuf.txt file, as shown here:

The manuf file listing NIC card vendors

To Resolve the Transport Address (or port number), Wireshark consults the services file,
which is a text file that holds a list of services and the associated port number. The list uses
the IANA port-numbers file for consistency.

For example, the service smtp uses port 25. When Wireshark identifies that port 25 is in
use, it will display smtp as the service, as long as you have requested name resolution.

Exploring the Wireshark Interface Chapter 4

[96]

The following is a screenshot of the services.txt file, which is found in the Wireshark
folder:

The services file listing ports and associated services

The Resolve Network Addresses will resolve a hostname to an IP address. Normally, this
option is not checked because, if it is, Wireshark will contact the DNS server(s) to do the
resolution and cause a lot of additional traffic.

If necessary, it is possible to change either the manuf or services files. In addition, you
can also select Edit Resolved Names, which will bring up a Name Resolution Preferences
toolbar where you can edit or add a name.

When working with a capture, there are ways to enhance your view, as we shall see in the
next section.

Modifying the display
To see the details of your capture, there are a few enhancements that include the ability to
zoom in, expand the subtrees, and colorize the conversation:

Zoom: This allows you to zoom in, zoom out, or return to normal size.
Subtrees: Within a packet capture, Wireshark will collapse the details of a
protocol header. When you expand the subtree, you can see the details of the
protocol. With the subtrees, you can do the following:

Expand subtrees
Collapse subtrees
Expand all
Collapse all

Exploring the Wireshark Interface Chapter 4

[97]

As shown in the following screenshot, the expanded UDP subtree provides a
detailed view of all of the field values in the UDP header:

A UDP header with expanded subtree

Colorize Packet List: This is a shortcut to turn on or off the coloring rules. This
shortcut is also available on the main toolbar (under the Telephony menu).
Coloring Rules: This opens a dialog box where you can modify the coloring
rules or create a new coloring rule.
Colorize Conversation: This will colorize a conversation between two endpoints.
You will have a choice as to what you would like to colorize—that is, Ethernet,
IPv4, or UDP—along with providing a choice of colors from which you can
select, as shown in the following screenshot:

Colorize conversation

Exploring the Wireshark Interface Chapter 4

[98]

The last grouping of menu choices provides ways to refresh the view to reload, resize, show
the packet in a new window, or view the internals.

Refreshing the view
Wireshark doesn't limit the way you can view the data in the interface. In fact, in this last
section, we'll see the many options to view the captured packets:

Resize Layout: This option, when selected will resize the visible panels so they
have a uniform appearance.
Resize Columns: Much like you can resize the columns in Excel to autofit to their
contents, Resize Columns will adjust the columns, so the contents fit. When
using IPv4, the columns may adjust nicely, but using IPv6 takes up much more
space and may not give you an optimal view.

If you are a developer, the next section outlines what is available behind the scenes to
allow Wireshark to dissect and display the various protocols:

Internals: The Internals menu choice provides advanced options that include the
following:

Conversation Hash Tables: This shows the address and port
combinations that identify each conversation, as shown here:

Conversation Hash Tables information

Select a single packet and then click Conversation Hash Tables to
bring up the information.

Exploring the Wireshark Interface Chapter 4

[99]

Dissector Tables: This provides tables of relationships among
subdissectors, as shown in the following example:

Dissector Table subset showing HTTP

Supported Protocols: This will bring up an extensive list of all
currently supported protocols and the protocol fields, along with
the suggested filter and a brief description.

Show Packet in New window: At times, you may want a single packet in its own
window as a popup. This option may be ideal for training or to show a single
packet, but doesn't offer any functionality—meaning, you can't right-click or use
any shortcuts while in that window.
Reload: This option will reload the capture, which will freshen the capture file.
This can be helpful if you have marked packets and manipulated the file
already, and you want a fresh start with the file.

Summary
In this chapter, we explored all of the elements of the Wireshark welcome page, to give you
a better understanding of what is available, even before opening a packet capture. We then
took a closer look at commonly accessed menu choices to make navigating around
Wireshark easier. First, we evaluated the File menu that has all of the tasks commonly
associated with working with a file.

Next, we studied the Edit menu, which allows you to find and mark packets, set a time
reference, or modify preferences. We concluded with the View menu, where you can alter
the appearance of the captured packets including how to colorize them, zoom in, or show a
packet in a separate window.

Exploring the Wireshark Interface Chapter 4

[100]

In the next chapter, we will learn where and how to tap into a data stream. To help you
understand how what you see will be dependent on the type of network you are accessing,
we will review the different network architectures. Then, when you are ready to capture,
we will discover the various capture options, which include display options, using multiple
files and name resolution, and understanding conversations and endpoints.

Questions
Now, it's time to check your knowledge. Select the best response, then check the answers
found in the Assessment:

Once you begin capturing packets, you may have a dozen or so files in the Open1.
file area. If you want to remove the files, go to the File menu and then
choose Open Recent and then the _____ menu.

Clear1.
Purge2.
Delete3.
Freshen4.

Seconds Since _____ is used when you apply a display filter, as it will show how2.
many seconds have passed since the previously displayed packet, which will
more accurately show gaps in time.

Recently Created Epoch1.
Previously Captured Packet2.
Beginning of Capture3.
Previously Displayed Packet4.

___ is a shortcut to turn on or off the coloring rules. The shortcut is also available3.
on the main toolbar (under the Telephony menu).

Colorize Conversation1.
Coloring Rules2.
Stop Color Filters3.
Colorize Packet List4.

Exploring the Wireshark Interface Chapter 4

[101]

The _____ menu choice in Wireshark allows you to control the look of the4.
displayed packets including the ability to zoom in, colorize packets, and show a
packet in a separate window.

File1.
Edit2.
View3.
Go4.

When working with a packet capture, the _____ menu choice edit allows you to5.
find and mark packets, set a time reference, copy and provide detailed
information for creating a configuration profile, or modify your preferences.

File1.
Edit2.
View3.
Go4.

2
Section 2: Getting Started with

Wireshark
This section will enable you to tap into the data stream, personalize the Wireshark interface,
compare display and capture filters, and review the OSI model and data encapsulation.

This section is comprised of the following chapters:

Chapter 5, Tapping into the Data Stream
Chapter 6, Personalizing the Interface
Chapter 7, Using Display and Capture Filters
Chapter 8, Outlining the OSI Model

5
Tapping into the Data Stream

 When you need to draw liquid from a container, you use a tap. When you tap into the data
stream, you capture the data from the network. Once you capture network traffic, you can
analyze the packets to understand the traffic flow. In this chapter, we'll review the network
architectures and various types of media that may be found on today's networks to help
you to get a better understanding of the complex nature of today's networked environment.

So that you can confidently begin capturing traffic, we'll look at the various options
including capture, input, and output. We'll then review what happens when you tap into a
network, so you can identify what types of traffic you'll see. We'll also compare and
contrast conversations and endpoints, so you understand the difference between the two.
Finally, so you can better identify abnormal network behavior, this chapter ends with a
discussion on why it's important to baseline network traffic.

This chapter will address all of this by covering the following topics:

Reviewing the network architecture
Learning various capture options
Tapping into the stream
Realizing the importance of baselining

Tapping into the Data Stream Chapter 5

[104]

Reviewing the network architecture
We live in an exciting, yet challenging period in history. Today, our internet-based
ecosystem demands that business networks are available nearly 100 percent of the time.
Enterprise networks must be able to adjust to changing traffic demands and maintain
constant response times. In addition, they have to be agile enough to respond to
unexpected security incidents.

In today's networked environments, administrators face numerous challenges to keep the
network up and operational. Effective packet analysis begins by understanding the
network architecture. In order to determine where to tap in to identify trouble spots, it's
important to recognize the way that different media and devices influence network traffic.
And to that end, we will begin our discussion by learning the various types of networks.

Comparing different types of networks
Today's networked environments are complex and can include mobile phones, cloud
computing, virtualization, social media, and the Internet of Things (IoT). The network
specialist deals with many different types of networks, which include Personal Area
Networks (PANs), Local Area Networks (LANs), Campus Area Networks (CANs), and
Wide Area Networks (WANs). All of these different types of networks will influence how
data is transmitted and will possibly be the cause of system failures and bottlenecks.

To begin, we will review the smallest network, a PAN, which you may encounter in your
analysis.

Discovering the PAN
A PAN is a network that shares data between devices that are close, normally within a
range of 30 feet. Devices can connect to the internet or other networks. Because devices in a
PAN generally communicate using low-powered wireless technology, we also use the term
Wireless Personal Area Network (WPAN).

A WPAN is a short-range network that connects personal devices to exchange information
using the IEEE 802.15 standard and includes technologies such as Bluetooth, ZigBee, and
Ultra-Wide Band.

Conducting packet analysis on a PAN may be done to troubleshoot or test IoT devices that
connect to the internet, enabling them to send and receive data. Using Wireshark, you can
study protocols such as Message Queuing Telemetry Transport (MQTT), a lightweight
messaging protocol used for machine-to-machine communication.

Tapping into the Data Stream Chapter 5

[105]

One of the most common types of networks, where you will capture traffic is a LAN. The
following provides an overview of the characteristics of a LAN.

Checking out LANs
A local area network is a private network in a localized area that an organization or
individual owns, controls, and manages. A LAN is generally within a restricted geographic
area such as a corporate office, manufacturing plant, or healthcare facility and shares
resources. The LAN provides high-speed bandwidth using Ethernet technology on a fixed
frequency, connecting network devices and enabling the ability to communicate and
exchange data on a common channel:

An example of a networked environment

Within the LAN, the network might have a data center, which is a large group of servers
that provide storage, processing, and distribution of critical company data for network
clients. The data center is the heart of any enterprise network and is located in a central
location, generally in a secure computer or server room.

In today's large, multifaceted companies, there may be a larger network than a LAN that
requires remote locations to serve all of the clients. The following section takes a look at the
concept of a CAN.

Tapping into the Data Stream Chapter 5

[106]

Exploring CANs
A CAN is a large private local area network in a common entity such as a college, hospital,
corporate campus, or military base that has two or more interconnected LANs.

The CAN has a main campus where the central elements of a network reside, such as the
data center and telephony, and provides connectivity, data, applications, and services to
clients. Away from the main campus, there are remote locations.

Because the CAN, at times, is spread across a larger geographic area such as a city, remote
locations communicate over a WAN using an internet connection. Let's now discover the
qualities of a WAN.

Navigating WANs
A WAN is a geographically-dispersed collection of LANs that span a large distance. The
internet is the largest WAN, spanning the globe, and is a network of globally connected
networks that bring people, processes, data, and things together.

A WAN is different than a LAN in several ways. In most cases, no one entity owns a WAN;
rather, WANs exist with shared or distributed ownership and management. WANs use
common technology such as Multiprotocol Label Switching (MPLS), which is a data
transport method for high-performance telecommunications networks. WANs carry the
signal using the Plain Old Telephone System (POTS), fiber optic cables, wireless
transmissions, and satellites.

As you can see, there are many different types of networks, from very small PANs to large
WANs. In the next section, let's explore each of the different types of media used to carry
the signals.

Exploring various types of media
Devices on the network share access to a common network medium, which provides a
channel for network traffic. Media can be either of the following:

Bounded signals, which are controlled or confined to a specific path by traveling
over copper or fiber optic cable
Unbounded signals, which travel using a wireless radio wave

Tapping into the Data Stream Chapter 5

[107]

The following is a diagram that represents various types of network media:

Various types of network media

For enterprise networks, multiple types of media make up the networking environment
and include copper ad fiber optic cable, and wireless transmissions. Each media type will
influence the data flow.

Let's begin by reviewing copper, which is subdivided into two categories, coaxial and
twisted pair.

Exploring copper
Copper is the most commonly used media type in today's networks for data
communications. The two types of media that use copper are coaxial and twisted pair.

Coaxial, also called coax, was originally used to transmit data on a LAN. Coax consists of a
single copper wire encased by a layer of insulation and then by a grounded shield of
braided wire. Coax is able to support high bandwidth but is no longer used by LANs to
transmit data. However, you will still see coax, as it is used by cable television companies to
transmit signals to clients in homes and businesses. Although rare, it is possible to
troubleshoot differences in traffic transmitted between the cable modem and router, as
Wireshark has a DOCSIS (short for Data Over Cable Service Interface Specification)
dissector for that purpose.

Tapping into the Data Stream Chapter 5

[108]

Today, LANs use twisted pair cable, which consists of twisted pairs of copper wire that use
pulses of electricity to carry a signal. The twists provide a shielding effect that minimizes
crosstalk. Twisted pair cabling has eight wires with four pairs of twists and comes in two
forms:

Unshielded Twisted Pair (UTP): This is the most commonly used wire.
Shielded Twisted Pair (STP): This is used when protection from
Electromagnetic Interference (EMI) is necessary.

Twisted pair cabling is so popular because it is reasonably priced, easy to install, and in
most cases, provides high bandwidth for carrying both data and multimedia traffic.

In addition to copper, many companies employ fiber within their organization to provide a
high-speed, high-bandwidth option over copper. The following section outlines the
characteristics of fiber, which is subdivided into two categories, multimode and single
mode.

Using fiber optic
Fiber optic cable uses pulses of light to carry network traffic over longer distances. Fiber has
high throughput that is naturally resistant to EMI. The signals are sent via laser or Light-
Emitting Diode (LED) using a core of glass or plastic. Many times, fiber is used as the
backbone on a LAN and comes in two forms:

Multimode (MMF): This uses multiple light signals, has a higher bandwidth
than UTP, and is used to carry backbone traffic in a LAN. MMF can use either
glass or plastic, using either LED or laser signals, over a distance to up to 2 km.
Single mode (SMF): This uses a single light signal. Single mode fiber has a
higher bandwidth than MMF and can carry a signal for many miles. SMF must
use a laser to produce a bright, coherent light.

Fiber optic has many benefits, but it is more expensive than twisted pair and requires
special equipment to manage. As a result, LANs use fiber primarily for backbone traffic
and use twisted pair for work areas.

Tapping into the Data Stream Chapter 5

[109]

Today, it is common to see wireless network communication, which uses radio waves to
transmit signals. The following section outlines the various ways you may work with
analyzing a wireless connection.

Discovering wireless
Wireless networks use unbound media, which allows users to roam freely while still being
connected to the network. Over time, wireless networks have improved in speed and
bandwidth, and as a result, you will most likely capture wireless traffic during a
troubleshooting exercise.

Wireless can provide connectivity for a LAN using Wi-Fi, or for a PAN using Bluetooth.
Here, we will compare the two:

Wi-Fi provides networking on a LAN using the IEEE 802.11 standards. The
802.11 family has several standards; however, 802.11a, 802.11b/g/n and 802.11ac
are currently the most widely used standards.
Bluetooth provides networking on a PAN over short distances from fixed and
mobile devices, which allows devices to communicate with each other to transfer
files, control IoT devices, and provide hands-free calling in your car.

As you can see, there are many variables that you may deal with while capturing and
analyzing traffic using Wireshark. The type of network and the media will influence how
you capture traffic and what you might see once it has been captured. In most cases,
however, packet capture using Wireshark is done on a LAN.

In the next section, we will explore how to properly set up a capture and examine each of
the capture option tabs: input, output, and options.

Tapping into the Data Stream Chapter 5

[110]

Learning various capture methods
When capturing traffic with Wireshark, most of us are familiar with the main interface, as
shown in the following screenshot, where we would go to the lower part of the screen to
see what interfaces are active by viewing the sparklines. The following screenshot shows
the main Wireshark interface:

Wireshark interface

Once here, you can select an active interface and begin capturing traffic. In addition, you
can put in a capture filter and begin capturing traffic. However, there are a few other
capture options that allow you to do advanced configuration before capturing:

Go to the Capture drop-down menu and then into Options.1.
Select the Capture Interfaces icon.2.

Tapping into the Data Stream Chapter 5

[111]

Whatever you choose will open the advanced options dialog box. Across the top, you will
see three tabs, Input, Output, and Options, as shown in the following screenshot:

Capture options

To that end, let's start with how to set up a capture by selecting an input interface.

Providing input
In the Capture Interfaces dialog box, the Input tab will show a list of available interfaces on
your device. Across the top, you will see various column headers that include Interfaces,
Traffic, Link-layer Header, and Capture Filter. In the lower-left corner, there is a checkbox
called Enable promiscuous mode on all interfaces. If you uncheck the box, it will take off
promiscuous mode on all interfaces. In that case, you can then select the interface you want
to be in promiscuous mode by checking the box to the right of the interface. At the bottom,
you can create a capture filter for the selected interface.

Tapping into the Data Stream Chapter 5

[112]

On the lower-right, you can select Manage Interfaces..., which will allow you to hide
interfaces you do not want to be visible on the Input tab. For example, we can see five
unchecked USBPcap interfaces here:

Capture options—Input tab

Once you have selected what you would like for input, you may want to save your file in a
specific way. The next section outlines the output tab.

Directing output
The Output tab directs where and how you want to save your file. Within this tab there are
several choices. The first choice is to Capture to a permanent file. In most cases, this box is
left blank. When you begin capturing traffic, Wireshark will save the capture to a
temporary file until you save it as something else. The Output format defaults at saving the
file as pcapng (PCAP next generation); however, you can force Wireshark to save the file as
a pcap. Most of the time, pcapng is the best choice as it allows you to add comments. The
following screenshot shows the Output tab of the Capture Interfaces dialog:

Tapping into the Data Stream Chapter 5

[113]

Capture options—manage interfaces

The next selection allows you to use a ring buffer to monitor traffic. Although you may be
tempted to launch Wireshark and let it run while monitoring traffic for a long period of
time, that isn't the best option. This is mainly because Wireshark will consume all of your
memory if you leave a capture running, as Wireshark holds the capture in a temporary file
until you stop the capture and save to a permanent file.

A ring buffer is handy if you want to run a capture to watch for a specific protocol or
signature on your network. To use a ring buffer, you create multiple files and set a
parameter to create a file automatically after either a specific file size is reached, such as
after 1 megabyte, or after a period of time has passed, such as 10 seconds.

If you do want to create multiple files, you must specify a filename and location for the file
if you want to use multiple files; otherwise, you will throw an error, as shown here:

Error message in the capture options

Tapping into the Data Stream Chapter 5

[114]

At the bottom, select Use a ring buffer and enter how many files you want to overwrite.

In addition to providing ways to select input and output options, Wireshark provides some
custom options that you can modify. Let's take a look.

Selecting options
The Display Options are generally set to Update list of packets in real-time and
Automatically scroll during live capture, as shown in the following screenshot:

 Options tab

The Name Resolution choices include the following:

Resolve MAC Addresses
Resolve network names
Resolve transport names

Tapping into the Data Stream Chapter 5

[115]

It's okay to resolve MAC addresses and transport names, as these are changed into human-
readable format using static text files found in the local Wireshark folder. The files include
the following:

manuf.txt is a list of Ethernet vendor codes and well-known MAC addresses.
services.txt holds a local copy of the IANA port numbers file.

However, if you select Resolve network names, this will contact the DNS server multiple
times while resolving the IP addresses and will most likely impact system performance and
cause additional traffic on the network.

The last selection on the Options tab is Stop capture automatically after… whatever option
you select. There are four choices:

Packets
Files
Size of file
After a specified time period

This last option can be used when baselining and you can specify to stop capturing after
1,000 packets and then start your capture; Wireshark will capture 1,000 packets and then
automatically stop the capture.

After you understand the network architecture and the topology and have selected your
capture options, you're ready to tap into the network. This next section will review the
different types of packets you will see, along with how to look at the conversations and
endpoints that are gathered while capturing traffic.

Tapping into the stream
While tapping into a LAN with the NIC in promiscuous mode, the adapter captures the
traffic and sends the packets up through the Enhanced Packet Analyzer (EPAN) for
dissection and decoding, and then on to the Wireshark interface.

Tapping into the Data Stream Chapter 5

[116]

You'll then see the packets filling the screen. If you are on an end device and
communicating with another host, you will most likely see three types of packets, namely,
broadcast, multicast, and unicast:

Broadcast: Packets are sent from one to everyone on a network—that is, ARP
broadcast.
Multicast: Packets are sent from one to many—that is, routing protocol EIGRP
(short for Enhanced Interior Gateway Routing Protocol) multicasts.
Unicast: This sends packets from one to one—that is, from your computer to a
web server.

In a normal conversation with another host, once you have a connection, the operating
system creates a socket, which consists of an IP address and a port. During a capture,
Wireshark will keep track of all of the connections or streams, which you can examine.

This next section explains how you can take a look at the conversations and endpoints in a
capture.

Comparing conversations and endpoints
Whenever you are actively connecting with other hosts on the network, the OS keeps track
of all the connections. To see all of your active connections on a Windows machine, open a
command line and run netstat with the parameters -an , as shown in the following
screenshot:

The netstat command showing TCP connections

Tapping into the Data Stream Chapter 5

[117]

In Wireshark, a conversation consists of two endpoints that are in a connection together. An
endpoint is one side of the conversation. To view all of the conversations in a capture, go to
Statistics and then Conversations. Once the window opens, there are tabs along the top
that allow you to view a specific type of conversation. In the following screenshot, you can
see the five tabs, Ethernet, IPv4, IPv6, TCP, and UDP:

Conversations

Each tab provides details of the type of conversation you selected. For example, the
Ethernet tab shows Ethernet conversations listing the MAC addresses of the endpoints.
Each row represents one conversation. Wireshark has advanced options within this
window. We can select any of the conversations by right-clicking and selecting any of the
following options:

Apply as a filter: This will select the highlighted conversation and run the filter.
Prepare as a filter: This will select the highlighted conversation and prepare the
filter; to run the filter you must press Enter.
Find: This will select the highlighted conversation and place the variables in the
search toolbar.
Colorize: This will select the highlighted conversation and allow you to create a
custom coloring rule.

Tapping into the Data Stream Chapter 5

[118]

The following screenshot shows the search toolbar that is launched when you select Find:

The Find packets toolbar

All of these options allow you to further refine your selection. Right-click and select one of
several options that include A to B, B to A, A to Any, among others.

At the bottom of the window, there are additional choices with which you can refine and
customize your view:

Name resolution: Wireshark will resolve the physical, network, and transport
addresses for the specific conversation type. For example, if the TCP tab is
selected, the transport address will be resolved.
Limit to display filter: This will show only conversations included in the current
display filter.
Absolute start time: This will change the start time column to the absolute start
time, which is in the Time of Day display format. If you uncheck this, the time
will revert to the relative start time, which is in the Seconds since Beginning of
Capture time display format.
Copy: This will copy the list to the clipboard in either CSV or YAML (short for
Yet Another Markup Language) format. You can then paste it into a notepad file
or a spreadsheet.
Follow Stream: This allows you to see the details of a single conversation. You
must first select either a TCP or UDP conversation.
Graph: This will launch and display a TCP Stream graph on the selected TCP
conversation, as shown here:

Tapping into the Data Stream Chapter 5

[119]

TCP stream graph

As you become more experienced with using Wireshark, you will be able to navigate
around the interface with ease. Until then, experiment with some of the menu choices and
options.

In order to more effectively troubleshoot a network, it is important to have a packet capture
to compare possible changes. One way to achieve this is by creating a baseline, which we
will cover in this next section.

Tapping into the Data Stream Chapter 5

[120]

Realizing the importance of baselining
Every network is like a snowflake in that no two are alike. Each network has its own
signature that includes characteristics such as utilization, network protocols, and latency
issues.

A baseline is a packet capture on a subnetwork that is obtained using Wireshark or tshark
during normal working conditions. If the network is experiencing problems, the network
administrator can then use the baseline to identify any changes. Once you learn what
normal network behavior is, you can better identify abnormal network behavior.

In addition to troubleshooting, a network baseline can be used for optimizing, forecasting,
planning, and tuning the network. The baseline process goes through several stages: plan,
capture, analyze, and save.

We will begin with planning, which provides steps for the best way to go through the
process.

Planning the baseline
To plan the baseline, create a network map and list all of the subnetworks including all
VoIP VLANs. You should have a strategy on how you are going to go about the process,
including the time of day, whether you are going to capture wireless or wired traffic, and
details about the location and what applications may be in use on a particular subnetwork.

Once planning is complete, we can then move on to the next step, which is where we
actually capture network traffic.

Capturing traffic
When it's time to capture the traffic, limit the packet capture to 1,000-2,000 packets so that
you have a consistent capture size for the baselines. The process of capturing should be
documented; for example, where and what time of day it was and what equipment you
used during capture.

Tapping into the Data Stream Chapter 5

[121]

The key is to be as consistent as possible with your captures, so you compare apples to
apples. If you select Statistics and then Capture File Properties, you can add a comment to
provide additional information about the capture, as shown in the following screenshot:

The Capture File Properties window

After you complete the capture phase, we then move to the analyze phase, where we take a
look a closer look at the capture.

Tapping into the Data Stream Chapter 5

[122]

Analyzing the captured traffic
You'll want to review the packet capture to see whether anything stands out as unusual or
suspicious, including what protocols are being used and what ports are in use. Within
Wireshark, there are various statistics you can run, such as going to Statistics and then
Protocol Hierarchy to spot-check what protocols appear on the subnetwork, as shown here:

The Protocol Hierarchy Statistics window

In addition, you can go to Statistics and then Conversations to identify what ports are in
use. After all of the captures are complete, we move to the final phase where we save the
captures for later comparison.

Tapping into the Data Stream Chapter 5

[123]

Saving the baselines
Once you have completed the capture, analyzed the capture, and made any appropriate
comments, it's time to preserve the baseline. Whether you work on your own or within a
team, you should have a standard format and procedure to document the findings.

The format for saving the information can be a sharable spreadsheet, so the whole team can
update and record their findings. Suggested guidelines for documentation include the
following:

List where the capture was taken, include the name of the building and/or the
subnetwork.
List the name of the technician who performed the capture. If someone has
questions about the capture, they can contact the individual.
List the date and time of the capture.
Outline or summarize the overall findings, such as normal traffic flow with no
unusual or unauthorized protocols in use.
List the name of the file and location of the baseline.

Although much of the information in the preceding list can be recorded within the capture
as well in the form of comments, it's best to document the information to preserve the
information.

When naming the capture files, have your team agree on a standard format. This is so you
can easily search through the captures later. One format or standard might be to use the
building name and room or even the subnetwork IP address. For example, you might use
this format: building-room-subnet (or BLD-RM-SN). Then, if you have a capture from the
aviation building - room 78 - subnetwork 192.168.10.112, you can save the file as
AV-78-10.112.pcap.

Save the information on a sharable spreadsheet, so the whole team can update and record
the findings.

Tapping into the Data Stream Chapter 5

[124]

Summary
By now, you understand the many different types of networks that can influence how data
travels. In addition to the various network types, we saw how we must also contend with
the media that transmits the data. So that you can effectively capture traffic, we took a
closer look at various capture options that include display options, using multiple files, and
name resolution.

We then moved into a discussion on the different types of traffic you will see when tapping
into a switched network. We then took a look at conversations and endpoints within the
Statistics menu so you could understand the difference between the two. We also looked at
the many options within the Conversations window. We summarized the importance of
baselining the network and suggested some steps on how to conduct the baseline.

In the next chapter, we will discover the many ways to personalize the Wireshark interface.
You will learn ways to adjust the appearance and basic layout. I'll show you ways to add,
modify, and personalize the configuration profiles. Then, we will evaluate how to add
comments to a single packet or an entire capture. Finally, we'll take a look at creating a
complex filter expression and a button for your toolbar to simplify your analysis.

Questions
Now, it's time to check your knowledge. Select the best response, then check your
answers with those found in the Assessment:

 A _____ is a private network in a localized area that an organization or1.
individual owns, controls, and manages.

LAN1.
WAN2.
CAN3.
PAN4.

When using Name Resolution, it is okay to select Resolve MAC Addresses and2.
Resolve transport names as these come from static text files. _____ is a list of
Ethernet vendor codes and well-known MAC addresses.

vendor.txt1.
services.txt2.
manuf.txt3.
network.txt4.

Tapping into the Data Stream Chapter 5

[125]

In the capture options, the ___ tab allows you to specify where and how you3.
want to save your file.

Input1.
Output2.
Options3.
Baseline4.

In fiber optic cable, ___ carries a single light beam that can carry a signal for4.
many miles and must use a laser.

Mutimode1.
Coaxial2.
STP3.
Single mode4.

In the output tab of the capture options, the Output format defaults at saving the5.
file as ___; however, you can force Wireshark to save the file as .pcap.

.pcapng1.
dmp.gz2.
cap.gz3.
.txt4.

6
Personalizing the Interface

Everyone likes to arrange their desks in their own way. Working with Wireshark is no
different, as you can personalize the settings to suit your needs. In this chapter, we'll dive
into the Wireshark interface and look at ways to enhance the appearance and layout, as
well as create custom configuration profiles. You'll gain a better appreciation of how you
can design the interface to meet your specifications and evaluate ways to manipulate
columns, change the font, and fine-tune the color choices.

So that you get a better understanding of how to document capture information in
Wireshark, we'll go through tips on how to add comments to a single packet or to the entire
capture. Finally, we will look at how to build and modify a complex filter expression so that
you can feel more comfortable with display filters during packet analysis. We'll finish by
learning about how to create a filter button on the toolbar as a shortcut for commonly used
filters in Wireshark.

This chapter will address all of this by covering the following topics:

Personalizing the layout and general appearance
Creating a tailored configuration profile
Adjusting columns, font, and color
Adding comments
Modifying complex expressions

Personalizing the Interface Chapter 6

[127]

Personalizing the layout and general
appearance
Although Wireshark is functional in the default mode, it's easy to modify the appearance
and layout to optimize your workflow. In addition to personalizing the layout and general
appearance, you can change the language, as well as customize the number of icons, recent
filters, and folders, and what you want to appear in the status bar. Let's start with ways to
modify the layout.

Changing the layout
When working with Wireshark, it's easy to modify the standard layout of the three stacked
panels, which are as follows:

Packet List
Packet Details
Packet Bytes

In addition to the default setting, where the three panes are stacked one above the other,
you can also rearrange them in one of five other layouts, as shown in the following
screenshot:

Personalizing the Interface Chapter 6

[128]

Wireshark Preferences dialog box—Layout

Once the dialog box is open, you have choices where you can make and modify your
selections, as follows:

Packet List settings: The Show packet separator option will insert a fine white
line in between each frame in the packet list.
Status Bar settings: The status bar is found at the bottom of the Wireshark
interface, and can include Show selected packet number and Show file load
time. If the latter is checked, then you will see the load time in the lower right-
hand corner of the interface, as shown in the following screenshot:

Status bar

Next, let's evaluate the best way to customize your appearance.

Personalizing the Interface Chapter 6

[129]

Altering the appearance
In Wireshark, you can customize the general appearance to perform the following:

Identify the default location to open files
List how many display filters to show
Define how you want the main toolbar to appear

To make changes to the appearance, go to Edit and then Preferences, which will bring up
the dialog box shown in the following screenshot:

Wireshark Preferences dialog box—Appearance

In order to see the choices, select the Appearance menu choice. Once the dialog box is open,
you have choices where you can make and modify your selections, as follows:

Remember main window size and placement: If selected, this will retain the
window size and placement after you shut down Wireshark. For example, if the
main window was the one-quarter size and positioned in the top left-hand
quarter of your screen before shutting down, then when you re-open the
window, it will appear in the same location and size.

Personalizing the Interface Chapter 6

[130]

Open files in: Wireshark allows you to point to a location to open files. The
default is The most recently used folder; however, if you have a standard
preference for packet captures, then you might want to choose This folder, and
then select Browse... to select the appropriate folder.
Show up to: When working with files in Wireshark, this is where you would
indicate how many recent files to keep visible when you go to File, and then
Open Recent. In addition, you can also select how many filter entries to display.
In the screenshot captioned as Wireshark Preferences dialog box—Appearance, I have
selected 10 filter entries and 10 recent files to display.
Confirm unsaved capture files: If this is checked, then before closing the
application or opening another file, Wireshark will ask you if you want to save
the captured packets, as shown here:

Prompt before closing

Main toolbar style: The main toolbar is across the top, underneath the menu
choices. You can alter the appearance to display as Icons only, as shown in the
following screenshot:

Main toolbar—Icons only

Personalizing the Interface Chapter 6

[131]

You can also alter the appearance to display Icons only, Text only, or even
Icons and text, as shown here:

Main toolbar—Icons and text

Language: When installing Wireshark, the wizard prompts you to select a
language. In the Preferences panel, Use system setting is the default. However,
the developers have added a powerful feature: the ability to select from a variety
of languages, including Chinese, English, French, German, Italian, Japanese,
and Polish.

Now that we have set up our workspace, we can examine ways to generate a custom
configuration profile, which is a unique set of preferences and configurations.

Creating a tailored configuration profile
A configuration profile is a set of preferences and configurations. Once you launch
Wireshark, at the lower right-hand corner of the interface, you will see Profile: Default, as
shown in the graphic status bar, which is found at the end of the Changing the layout section.

In Wireshark, users can create their own custom configuration profiles, which can include
personalized preferences, coloring rules, font styles, or even disabled protocols.

To create a custom profile, go to Edit and then Configuration Profiles. One the dialog box
is open, you will see that Wireshark has three standard configurations: Default, Bluetooth,
and Classic, as shown in italics in the following screenshot:

Personalizing the Interface Chapter 6

[132]

Configuration Profiles dialog box

It's easy to create a new profile: simply select the + sign and assign the profile a name. For
example, I created a profile named Malware, as shown in the preceding screenshot. Once
you add the profile, close the dialog box, and then you can modify the profile.

You can make several changes to suit your needs, such as the following:

Modify the layout by going to View and then unchecking Packet Bytes.
Go to Edit and then to Preferences, and make changes such as changes to font
color and size, or even disable or change some of the protocols.

Wireshark will save any changes in the custom profile.

In my Malware profile, I wanted to modify the settings so I could hunt for an Ettercap
signature. Ettercap is a tool that is used to launch man-in-the-middle attacks on a LAN. I
want to be able to quickly identify the Ettercap signature e77e, which translates to ette
(short for Ettercap) in Leetspeak. You can check by visiting https:/ /www. dcode. fr/ leet-
speak-1337. This signature identifies Ettercap as it searches for other poisoners on a LAN.

https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337
https://www.dcode.fr/leet-speak-1337

Personalizing the Interface Chapter 6

[133]

To customize my profile, I adjusted the columns, removed the lower panel Packet Bytes,
and added an Ette button (discussed in the Modifying complex expressions section), as shown
at the top right-hand side of the following screenshot:

Profile: Malware

Using my Malware profile I can easily check for Ettercap poisoners by hitting my button,
which will apply and run an icmp.ident == 0xe77e display filter and show all the
packets with that signature, if any are present in the capture.

If you want to return back to the default profile, then right-click on the lower right-hand
corner and select the profile you want to use, as shown in the following screenshot:

Personalizing the Interface Chapter 6

[134]

Modify Profile

This next section illustrates how you can add or remove columns, and also adjust font and
color to suit your needs.

Adjusting columns, font, and colors
While working with a packet capture, most users are comfortable with the default values
used in the interface. However, you can adjust font styles and size to personalize the look
and feel of the interface. In addition, you can also modify the colors Wireshark uses for the
various packet identifiers and display filters.

Once you are on the interface, you will see the columns and column headers that are along
the top of the interface. While you are working in the interface, you might not ever
manipulate the columns. However, you can add, delete, align, and customize the column at
any time.

Wireshark makes it easy to add and modify columns, as we'll see in the next section.

Adding, editing, and deleting columns
In Wireshark, you can do more than simply expand or shrink the column headers while in
the interface. This section explains some ways to improve the way you visualize columns.

Personalizing the Interface Chapter 6

[135]

To customize your columns, go to Edit, then Preferences, and then Columns, as shown in
the following screenshot:

Wireshark Preferences dialog box—Columns

Once selected, you will see a list of columns. Some are present by default, and some are
columns you may have added. You can select the checkbox to make the column visible or
deselect the checkbox to hide the column. In addition, you can add or remove columns.

Along the top of the dialog box, you will see the following selections:

Displayed: When checked, this column will be displayed on the interface.
Title: This is the name of the column header. Wireshark will automatically create
a name if you right-click and add a column. However, you can change the title
name to personalize the column header.

Personalizing the Interface Chapter 6

[136]

Type: This lists the type of value that is in the column. Within the drop-down
menu, there are many pre-loaded column types, as shown in the following
screenshot, where I have dropped down the type selection for the Info column
header:

Columns—type selections

Fields: This identifies the field where the column value originated from. In the
preceding screenshot, there is a column header called Packet Comments
(pkt_comment). That is because that column header was generated by right-
clicking on a packet comment and selecting Apply a Column. Wireshark
identifies that column header as the pkt_comment field value.

Personalizing the Interface Chapter 6

[137]

Field Occurrence: This only used on a custom column definition. In the Wireshark
Preferences dialog box—Columns screenshot, you can see there are values of 1 and 2
in the Field Occurrence column. When selected, the column headers will appear
in this order:

IP Main ICMP will appear first.
IP Nested ICMP will appear second.

To add a column, select the plus sign. Identify the name by typing in an appropriate label
where it says New Column, and then identify the type by using the drop-down menu and
selecting a type. You can also remove columns by selecting the column you don't want and
hitting the minus sign.

In addition, once in the interface, you can align the columns by right-clicking and selecting
the way you want your columns to align: either left, center, or right as shown here:

Aligning columns

Most other column headers are fairly straightforward in how they are used. However, one
you may not be familiar with or use very often is Field Occurrence. Therefore, let's walk
through how and why you would use a Field occurrence column header.

Demonstrating how to use field occurrence
When an ICMP error message is sent, the ICMP packet also includes the IP header and the
first 8 bytes (64 bits) of the original datagram that caused the error.

We can use a field occurrence so that we can see the ID field of the first IP header along
with the ID field of the nested IP header, so we can see whether the two are the same or
different.

Personalizing the Interface Chapter 6

[138]

To compare the two, complete these steps to modify the column headers:

Go to any frame that has an ICMP packet that has an error. For example, use1.
the icmp.type == 3 display filter to see all ICMP destination unreachable
packets.
Drop down the main IP header and select the Identification field; right-click and2.
then select Apply as Column. This will add the Identification column header.
Next, go into Column Preferences and then modify the settings for the newly3.
created column header.

Displayed: Checked
Title: IP Main ICMP
Type: Custom (unchanged)
Fields: ip.id (unchanged)
Field Occurrence: 1

Drop down the nested IP header and select the Identification field; right-click4.
and then select Apply as Column. This will add the Identification column
header.
I selected the ID field in the nested ICMP packet, right-clicked, and then selected5.
Apply as Column.
Then, go into Column Preferences and modify the settings for the newly created6.
column header.

Displayed: Checked
Title: IP Main ICMP
Type: Custom (unchanged)
Fields: ip.id (unchanged)
Field Occurrence: 2

Personalizing the Interface Chapter 6

[139]

The result is shown in the following screenshot, where, right after the Protocol column
header, you will see IP Main ICMP followed by IP Nested ICMP:

Field occurrence

Now, you can see how versatile Wireshark is in modifying columns to adjust your view.
Next, let's take a look at an overlooked feature in Wireshark, which is the ability to adjust
the font and change the default colors.

Personalizing the Interface Chapter 6

[140]

Refining the font and colors
In the main window, you may feel the text is too small, as the classic profile uses Consolas
10 as the font and size. It's easy to change the font and colors, make the text bold or italic,
and change the font size and style.

Go to Edit, then to Preferences, and select Font and Colors, as shown in the screenshot
here:

Wireshark Preferences dialog box—Font and Colors

Personalizing the Interface Chapter 6

[141]

Along the top, if you select Main window font then it will display a dialog box that will
allow you to make changes to the font, as shown here:

Main window font

Below the Main window font, you'll see defaults for the way Wireshark colorizes the text
and background for active and inactive items along with marked and ignored packets.
After that, you will see the defaults for the client and server text when you right-click on a
packet and select Follow the Stream, as shown here:

Personalizing the Interface Chapter 6

[142]

Follow the Stream

The colors help identify whether the client or the server is talking. The default value for the
client text, when you follow the stream, is red, but this value can be changed.

The last three samples listed refer to the display filters. The syntax checker within
Wireshark checks the filter once you enter something in Display Filter. By default, a valid
filter turns green, an invalid filter turns red, and a warning filter turns yellow. As with all
the other choices, you can change this as well.

In Wireshark, we can indicate information on a particular packet or capture file in the form
of comments, as we'll see in the next section.

Adding comments
While conducting packet analysis, there may be issues that you will want to highlight and
identify, so you can reference them at a later date. You might need to make a note on a
single packet or an entire capture for future reference.

All of this is possible in Wireshark, as you can write a note in the capture outlining the key
issues that were found, so that you or your coworkers can reference the comments at a later
date. While commenting is optional, it is always good practice.

Let's start with adding file comments.

Personalizing the Interface Chapter 6

[143]

Attaching comments to files
Adding a comment to a packet capture is a very handy tool. When adding a comment, you
can view it later to refresh your memory on key issues related to that packet capture. For
example, you may have identified possible illegal or malicious activity such as
cryptocurrency mining, and you can list the details right in the capture file.

There are a few ways to add a comment to the file. I have listed them here:

Go to the status bar and select the icon that looks like a pencil and paper, which
is found to the immediate right of the expert system icon, as shown on the left-
hand side of the Status bar screenshot.
Go to Statistics and then Capture File Properties. You can add comments in the
lower pane of the dialog box. Once done, you should select Save Comment.

Adding a comment to the file can help remind you or your team of what was significant
about the capture. However, it's also possible to add a comment to a single packet, as
discussed in the next section.

Entering packet comments
To add a comment to a single packet, go to Edit and then Packet Comment. A dialog box
will be displayed, where you can enter your comment. Once entered, Wireshark will
append a note with bright green coloring at the top of the frame, as shown in the following
screenshot:

Packet comments in the Packet Details panel

Once you have added comments to either the entire capture or a single packet, you'll want
to save them, and then at some point, go back in and reference the notes. The following
section reviews how we can take a look at the comments and how to preserve our remarks.

Personalizing the Interface Chapter 6

[144]

Viewing and saving comments
Comments can be a powerful tool, as you can use them in many ways to preserve what you
felt was significant in the capture. Even after several years have passed, I still find the
comments valuable as they help me to remember my train of thought when I captured the
packet. However, in order for the comments to be of value, you must save them. Let's
discuss how we save our comments.

Once you have created a comment, you will see an asterisk by the title across the top of the
Wireshark interface, as shown here:

Asterisk indicating that there are file comments

Once you have created a comment, you will see an asterisk by the title across the top of the
Wireshark interface.

The asterisk will remain until you save the file. To preserve the comments, the file must be
saved in the PCAP next generation (.pcapng) format.

If you or your team has taken the time to make a comment, then it's well worth your time to
read them. You can view the comments in one of several ways:

Use the pkt_comment display filter to see all packets that have comments.
Open the Expert System.
Go to the lower right-hand side to the drop-down menu named Show and select
Comment from the list. This will display any comments that are in the capture.
Go to Statistics then Capture File Properties, and view the comments in the
lower pane.

Hopefully, by now, you can appreciate the many ways in which you can personalize your
work area. Most of the time while working with packet captures, there is a need to refine
our view by filtering traffic. We can use display filters along with complex expressions. In
the next section, let's explore how we can do this, and if you find you're using the same
expression repeatedly, then Wireshark can easily create a button that you can place on your
toolbar for easy reference.

Personalizing the Interface Chapter 6

[145]

Modifying complex expressions
A display filter allows you to show only specific traffic. However, there are times you may
need to use the expression builder so that you can create a more complex filter. For
example, you may need to construct a filter that compares a specific protocol field against a
value using logical operators. If you use the expression often, then you can create and
attach a button to the toolbar. Let's first take a look at how to create an expression.

Creating expressions
In addition to display filters, which allow you to filter only the traffic you want to see,
Wireshark has the ability to create a more complex expression. On the right-hand side of
the display filter is the Expression... link. Click the link to launch the expression builder.

Once open, you will see a list of field names, as shown in the following screenshot:

Display Filter Expression

Personalizing the Interface Chapter 6

[146]

From there, you can select a protocol and, in some cases, drill down for a specific field
name. In some cases when in a protocol, you can select from several field values. On the
right, you can use a logical operator and, also, a value. For example, if you want to filter all
traffic where the TCP SYN flag is present, then the expression builder will create the
tcp.flags.syn display filter. Once you are confident with your selections, close the
expression builder and press Enter, and then Wireshark will run the filter.

If you have created a complex filter that you find you will need to run often, then you can
create a handy toolbar button. This next section explains how you can easily craft a custom
filter button.

Crafting buttons
Once you create an expression and it is visible in the display filter, you can effortlessly
create a button. In the right-hand corner, right after the Expression... link, hit the plus sign,
and Wireshark will display a drop-down dialog box, as shown in the following screenshot:

Filter buttons

Once the dialog box is open, you can enter an appropriate label and add a comment for the
filter button. Wireshark will automatically enter the display filter for the button to run
when clicked. When done, select OK and the new button will appear on the toolbar.

Personalizing the Interface Chapter 6

[147]

After working with Wireshark and adding buttons, you may want to remove some to clean
up the toolbar. The following list shows the steps to edit filter buttons:

Go to Edit and then Preferences, where you will see Filter Buttons, as shown in1.
the following screenshot:

Wireshark Preferences dialog box—Filter Buttons

When selected, you will see whatever buttons are currently on your toolbar.

To add a filter button, select the plus sign in the lower left-hand corner. Add2.
what you would like as a Button Label. This (Button Label) is not case sensitive.
Next, add Filter Expression, which must adhere to the expression and display3.
filter rules.

If you want to remove any filter buttons, highlight the button you want to remove and
select the minus sign in the lower left-hand corner.

Personalizing the Interface Chapter 6

[148]

Summary
By now, you can see how easy it is to make minor changes in Wireshark to fit your
workflow. In this chapter, we examined the many ways to customize the Wireshark
interface. We covered how to modify choices such as recent filters and folders, along with
personalizing the layout and general appearance. We learned about how easy it is to create
personalized configuration profiles to include preferences, coloring rules, and font styles.

Furthermore, we discovered how to adjust columns and column headers, and how to add
or remove columns. We learned about how to fine-tune the font to make packets easier to
read. We also reviewed how we can change the default colors for the various identifiers,
such as the text color for marked packets and the default colors for the client and server
when you right-click on a packet and select Follow the Stream.

We illustrated the ability to add comments to a single packet or to the entire capture, as
well as how to communicate issues to team members observed in either a single packet or
the entire capture. We then learned about how to create a complex filter expression, and
then create a filter button on the toolbar for commonly used filters in Wireshark to manage
the workflow. Finally, we saw how to create a filter button to help manage our workflow.

In the next chapter, we will take a closer look at using display and capture filters, as well as
learn about some tricks and specific rules for using display filters. We will then learn about
using capture filters, including using default capture filters and how you can build your
own. Finally, we will learn about how to use shortcuts to create filters and review some
commonly used filters.

Personalizing the Interface Chapter 6

[149]

Questions
Now, it's time to check your knowledge. Select the best response, and then check your
answers, which can be found in the Assessment:

Normally, when you open Wireshark, the configuration profile will be the _____1.
profile.

Marquee1.
Bluetooth2.
Classic3.
Default4.

You can set Wireshark to open files from a specific location. Go to ____, then2.
Preferences, and then select the file location under ____.

Tools and Folder1.
Edit and Appearance2.
View and Appearance3.
View and Folder4.

The default value for the client text for Follow the Stream is _____, but this value3.
can be changed.

Black1.
Blue2.
Red3.
Cyan4.

When working with Wireshark, you can easily create and add a button to4.
automatically run a custom filter when selected. To remove the button, go to
_____, then _____, and select Filter Buttons, where you can remove any buttons
that you no longer need.

Edit and Preferences1.
View and Appearance2.
View and Buttons3.
Tools and Buttons4.

When you want to add a comment to a packet, select the packet, go to ___, and5.
then go to Packet Comments.

Tools1.
Edit2.
View3.
Analyze4.

7
Using Display and Capture

Filters
Whether you have done an analysis in real time while capturing traffic, or you have
analyzed a pre-captured file, you're generally faced with a huge amount of data. How do
you make sense of all this data? Most likely, you will benefit from filtering the traffic to
narrow the scope. To achieve this, we use filters, so that Wireshark only displays the traffic
that you want to see.

This chapter reviews the many ways Wireshark can filter traffic. To help your learning of
the different ways to refine your view, we'll cover when to filter traffic and outline the
difference between display and capture filters. So that you can refine your skills when
filtering traffic, we'll review ways to create more complex filters by using the expression
builder. We'll then go through capture filters and how they use syntax that is different than
display filters. Finally, because filters are so handy, we'll cover some tricks, shortcuts, and
common filters that will help you achieve a more effective analysis.

This chapter will address all of this by covering the following topics:

Filtering network traffic
Comprehending display filters
Creating capture filters
Understanding the expression builder
Discovering shortcuts and handy filters

Using Display and Capture Filters Chapter 7

[151]

Filtering network traffic
While in the course of your daily routine, the network starts to experience a significant
slowdown. You check your Intrusion Detection System (IDS) and anti-malware
protection, and there is no evidence of intrusion. At that point, you grab a quick capture to
determine the source of the slowdown. Wireshark, along with many other packet analysis
tools, has the ability to take a large capture, filter on specific traffic, and refine your view to
help with analysis. Wireshark has several options to filter traffic:

Display filters: Used during an active capture or on a pre-captured packet
Capture filters: Applied prior to capture to only display a certain type of traffic
Expressions: Creates complex filters using logical operators

When filtering traffic, there is a difference between display filters and capture filters. In the
next section, let's explore the difference.

Comparing display and capture filters
When working with packet captures, it appears as if capture and display filters are the
same. However, although the two work in similar ways, capture and display filters each
use their own syntax.

While using Wireshark, there are four main phases of packet analysis, as discussed in
Chapter 2, Using Wireshark NG, which are Gather, Decode, Analyze, and Display, as
shown in the following diagram:

Phases of packet analysis

Using Display and Capture Filters Chapter 7

[152]

While gathering network traffic, the packets pass through the appropriate capture engine,
such as NPcap or WinPcap. Capture filters use the Berkley packet filter syntax, and when
used, Wireshark drops any packets that are not in the filter. You can read more about this in
The BSD Packet Filter: A New Architecture for User-level Packet Capture, which is found at
https://www.tcpdump. org/ papers/ bpf- usenix93. pdf.

Once the packets go through Wireshark's Enhanced Packet ANalyzer (EPAN), it then
passes the dissected traffic through the GUI to be displayed and analyzed. While
displaying packets in the Wireshark interface, you can apply a display filter using the
appropriate syntax, and apply the filter before, during, or after capture.

Within Wireshark, there are two text files that you can modify or copy to share with a
coworker. The filter files include dfilters.txt and cfilters.txt. These hold a list of
filters and are found in the Wireshark folder.

You'll find a list that holds the display filters in dfilters.txt and can open the file in
Notepad, as shown here:

dfilters.txt

https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf
https://www.tcpdump.org/papers/bpf-usenix93.pdf

Using Display and Capture Filters Chapter 7

[153]

The cfilters.txt file holds a list of the capture filters, as shown in the following
screenshot:

cfilters.txt

While it is possible to open and modify either file in Notepad, as shown, it's safer and easier
to use the Wireshark interface to make changes to the filters.

Now that you have seen the main differences, let's take a closer look at the display filters.

Using Display and Capture Filters Chapter 7

[154]

Comprehending display filters
While capturing traffic, or analyzing a pre-captured file, display filters help to narrow the
scope and home in on specific types of traffic. It's not uncommon to have a capture with
2,000 to 3,000 packets and more, along with many different types of traffic.

When you launch Wireshark, you will see the startup screen, as shown in the following
screenshot:

Wireshark startup screen

Across the top, below the icons, you will see the filter toolbar. Within the toolbar is the
text Apply a display filter, where you can easily apply and edit display filters.

Using Display and Capture Filters Chapter 7

[155]

You can create a simple filter on any of the protocols Wireshark supports by using a single
protocol or a logical operator. For example, if you want to see Transmission Control
Protocol (TCP) or Address Resolution Protocol (ARP) traffic, then you would use the tcp
|| arp display filter. While you are building the filter, Wireshark will check the syntax to
see whether the string is valid. The syntax checker works as follows:

A valid display filter will turn the background green and the filter will run.
An invalid or incomplete string will turn the background red and the filter will
not run.
An unknown display filter or string will turn the background yellow and the
filter might run.

While it is common to see a green or red background, in rare cases, you may see a yellow
background, as shown in the following screenshot, which indicates that you may get
unexpected results:

Syntax checker with a yellow background

Working with display filters can be confusing at times, so when you do get a filter that
works and you would like to reuse it, you can save it to a bookmark, as discussed in the
next section.

Using bookmarks
On the right-hand side of the display filter, is a blue toolbar icon called bookmarks, where
Wireshark's built-in filters and any saved filters reside. Other choices when working with
the bookmark include Manage Display Filters and Manage Filter Expressions.

Using Display and Capture Filters Chapter 7

[156]

Below the save and manage selections, you will see a list of filters. Even if you have never
saved a filter, you will see the list, as Wireshark has several pre-loaded filters that you can
use, as shown here:

Display filter bookmark drop-down

After you create a filter, you can save the filter to the bookmark by dropping down the
bookmark icon and selecting Save this filter.

Using Display and Capture Filters Chapter 7

[157]

Once you create your own filter or select one from the drop-down list, you can press Enter
or click the blue arrow on the right-hand side of the display filter to run the filter.

On the far-right side of the display filter is an arrow that, when selected, is a drop-down
menu where you can see previously used filters, also shown in the following screenshot:

Previously used display filters

A display filter can be applied before, during, or after packet capture. When you are ready
to clear the filter, select the X on the right-hand side of the filter, as shown in the screenshot
named Syntax checker with a yellow background.

Wireshark's display filters can easily be modified. The following section illustrates how you
can edit the display filters to customize your workflow.

Using Display and Capture Filters Chapter 7

[158]

Editing display filters
After working with the display filters, you may need to change an IP address, port number,
or make some other change. To edit the display filter, go to the blue bookmark on the left of
the display filter, and then select Manage Display Filters, which will bring up the dialog
box, as shown in the following screenshot:

Display Filters dialog box

Once there, you can select one of the three icons:

A plus icon to add a new display filter
A minus icon to delete a display filter
A copy icon to copy a display filter

Using Display and Capture Filters Chapter 7

[159]

When you select the plus icon and add a display filter, Wireshark will create a space in
which you can enter a display filter name on the left and the actual filter on the right, as
shown here:

Add a display filter

When you select Copy, this will copy and allow you to modify the filter without changing
the original filter.

As we can see, display filters can be very helpful in providing a more targeted view of the
capture. However, when capturing traffic for analysis, there may be times that you only
want to capture a certain type of traffic. In that case, you would use a capture filter, which
we'll discuss in this next section.

Creating capture filters
Understanding how to use display filters is important, as you may get a packet capture file
from a co-worker who has captured all the traffic coming through the interface, in which
case, you would have to make sense of the capture.

Using Display and Capture Filters Chapter 7

[160]

However, when you have control of capturing traffic when working on an enterprise
network, capture filters help target only the traffic you want to see and remove much of the
noise.

There is one thing to keep in mind when using a capture filter; although the capture filters
interface may look like the display filter toolbar, the syntax for the capture filters is
different. Therefore, when creating a capture filter, you need to be careful that you use the
correct syntax.

You can create a capture filter in a couple of ways:

Go to the center of the startup screen and enter the filter in ...using this filter:, as
shown in the following screenshot:

Startup screen capture filter

Go to the Capture menu and then select Options..., as shown here:

Capture menu drop-down

Using Display and Capture Filters Chapter 7

[161]

Although both will give you the ability to create a capture filter, I generally go to the
Capture menu choice and select Options..., as this will allow me to see all the interfaces and
options.

You might have used a capture filter that works well, and you would like to preserve the
filter for future use. Next, let's take a look at how you can save your capture filter to a
bookmark.

Saving to bookmarks
On the right-hand side of the capture filter is a green toolbar icon called bookmarks, where
the built-in capture filters are stored. Any time you create and save a filter, Wireshark will
store the filter in the bookmark.

If you click on the green toolbar icon, then you will see a list of capture filters, as shown in
the following screenshot:

Capture filter bookmark drop-down

Using Display and Capture Filters Chapter 7

[162]

Once there, you can select one of the filters, and Wireshark will populate the capture filter
field.

If you create a filter and want to save it, then drop down the bookmark icon and select Save
this filter, and Wireshark will store the filter in the bookmark.

To clear the capture filter, select the X on the right-hand side of the capture filter.

To see your previously used capture filters, go to the right-hand side of the capture filter
and select the down arrow to display the list.

Similar to modifying the display filters, you can customize the capture filters, as outlined in
the following section.

Modifying capture filters
To edit the capture filters, go to the Capture, menu choice and then select Capture Filters,
which will display a list of prebuilt filters, as shown in the following screenshot:

Capture Filters dialog box

Using Display and Capture Filters Chapter 7

[163]

At the bottom of the dialog box, there are three icons:

A plus icon to add a new capture filter
A minus icon to delete a capture filter
A copy icon to copy a capture filter

Similar to the plus icon used to add a display filter, you can do the same to add a capture
filter. However, you'll need to be careful when crafting a capture filter as it uses different
syntax than a display filter.

For example, if I need a filter to capture File Transfer Protocol (FTP) traffic only, then I
might enter ftp in the capture filter, as I would in the display filter. However, you will see
the syntax checker turn red, as shown here. Although this filter would work as a display
filter, you must write a capture filter that uses the correct syntax:

Invalid capture filter syntax

If you do need to create a new capture filter, try using one of the prebuilt filters as a guide
to properly build your filter. Find a capture filter similar to the one you need, select the
filter, and click the copy icon. Wireshark will copy the filter and place it at the end where
you can edit the filter

Let's go through an example of creating a capture filter for FTP by copying an existing filter:

Go to the Capture menu and select Capture Filters.1.
Select the HTTP TCP port (80) capture filter and then click the copy icon.2.
Wireshark will place the copied filter at the end of the list, as shown in the
following screenshot:

Using Display and Capture Filters Chapter 7

[164]

Copy capture filter

To edit the filter, change the name to FTP and change the filter to tcp port ftp3.
or tcp port 21.
Close the Capture Filters dialog box.4.

To use the newly created filter, follow these steps:

Go to the Capture menu choice, and then select Options....1.
Click the interface that will be used to capture traffic. For example, in the2.
following screenshot, the Microsoft: Wi-Fi interface is selected.

Using Display and Capture Filters Chapter 7

[165]

In the capture filter area, drop down the green bookmark and select the filter you3.
just created. The bookmark will turn yellow, as shown here:

FTP capture filter

Once you click Start to begin your capture, you will only capture FTP traffic.

When you are done using a capture filter, make sure you remove any
trace of the filter by going into the Capture menu and then Options....
Once open, delete the capture filter so that you can capture all traffic
again.

For an extensive list of examples, go to the Wireshark Wiki at https:/ /wiki. wireshark.
org/CaptureFilters.

Capture filters can be useful, however, keep in mind that while using a capture filter, you
might miss important traffic that can help during troubleshooting or malware analysis.

After building a few simple filters, you may need to create a more complex filter or
expression. The following section outlines how to use the expression builder.

https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/CaptureFilters

Using Display and Capture Filters Chapter 7

[166]

Understanding the expression builder
On the right-hand side of the display filter is the Expression button, which, when clicked,
will open a dialog box, as shown in the following screenshot:

Display Filter Expression

On the left-hand side, you will see a list of all of Wireshark's supported protocols.
Wireshark is capable of dissecting hundreds of protocols, with more added all the time, so
the list will be long. In order to find a protocol, you can use the search tool. In the preceding
screenshot, I have entered tcp in the search tool and then expanded the available field
names. To further refine the filter, you can select from the four variables listed on the right-
hand side:

Relation: This is a list of comparison operators to compare a field value against
another value using logical operators:

is present: Indicates the selected field exists in the capture
==: Equal to

Using Display and Capture Filters Chapter 7

[167]

!=: Not equal to
>: Greater than
<: Less than
>=: Greater than or equal to
<=: Less than or equal to

Value: Indicates the appropriate value required. Wireshark populates this with
the appropriate type of value, that is, Boolean or string.
Predefined Values: Wireshark populates this with the appropriate values for a
given field.
Range (offset:length): Allows you to enter a range of integers such as 4-8 or
12-20, if they are an appropriate selection for this field or filter.

Now that you have a good understanding of what the expression builder can do, let's go
through a simple example of building a custom filter.

Building an expression
In this example, I want the filter to show me all the packets that have the Syn flag present.
On the left-hand side of the Display Filter Expression dialog box, I have drilled down and
selected the tcp.flag.syn value. Wireshark will populate the following on the right-hand
side of the dialog box:

Relation: ==
Value: 1
Predefined Values: Set

The Range is grayed out as this is not an appropriate selection for this field value.

Once all the values are selected, Wireshark populates the display filter area along the
bottom with the generated expression. In this case, the filter is tcp.flags.syn == 1, as
shown here:

Using Display and Capture Filters Chapter 7

[168]

TCP SYN flag filter

At that point, we can select either of the following:

Cancel: This will exit the expression builder and will not create a filter.
OK: This will place the filter in the display filter toolbar.

Once the filter is in the display filter toolbar, you can make any necessary modifications,
such as changing tcp.flags.syn == 1 to a modified filter such as tcp.flags.syn ==
0. Once you are satisfied with the filter, you can run the filter by pressing Enter or clicking
the blue arrow on the right-hand side of the display filter.

Using Display and Capture Filters Chapter 7

[169]

As you can see, the expression builder is an easy way to go through the process of building
a complex filter. To find a complete list of built-in field values used in building filters, go to
https://www.wireshark. org/ docs/ dfref/ , where you can select a protocol link and learn
more about the supported field values.

While working with packet capture, Wireshark has many shortcuts that allow you to
quickly create a filter to streamline your workflow. Let's take a look.

Discovering shortcuts and handy filters
Over the years, Wireshark has evolved. Now, more than ever, it's very easy to create a
display filter on the fly while doing analysis by simply right-clicking and choosing to apply
or prepare a filter.

In this section, let's take a look at the many ways in which we can apply a filter, without
going through the complicated exercise of launching the expression builder. In addition,
we'll see some handy filters that you can use to get right down to the issue. We'll start with
an overview of the many shortcuts to use when filtering traffic.

Embracing filter shortcuts
While working with Wireshark in the Packet Details panel, you might want to filter on a
specific IP address or a particular port number. Once you identify the item of interest, you
can right-click to view filter shortcuts and you will see several shortcuts, as shown here:

https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/

Using Display and Capture Filters Chapter 7

[170]

Right-click to view filter shortcuts

Although there are many options when you right-click, in the center are the shortcuts that
deal with filters. The following options are available:

Apply as a Filter: When selected, it will create and run a selected field value.
Prepare a Filter: When selected, it will create and place a selected field value in
the display filter area, giving you a chance to make any modifications or add to
the filter.

Using Display and Capture Filters Chapter 7

[171]

Conversation Filter: When selected, it allows you to follow the conversations
according to protocols, such as Ethernet, IPv4, and TCP, as shown in the
 following screenshot:

Conversation filter selections

Colorize with Filter: This allows you to colorize a specific conversation. As you
can see, you can select from the many available colors, or you can create your
own coloring rule, as shown in the following screenshot:

Using Display and Capture Filters Chapter 7

[172]

 Colorize with filter

When you right-click and select either Apply as a Filter or Prepare a Filter, you will see
additional choices, as shown in the screenshot named Right-click to view filter shortcuts. The
following list shows how you can select simple filters or add logical operators:

Selected: Selects the current field value.
Not Selected: Creates a filter that removes the selected field. For example, if I
right-click on destination port 443 and select Not Selected, then Wireshark will
generate !(tcp.dstport == 443) and place it in the display filter.
...and Selected: Adds a field value to the filter.

Using Display and Capture Filters Chapter 7

[173]

...or Selected: Creates an OR filter.

...and not Selected: Adds a filter that removes the selected field.

...or not Selected: Creates an OR filter with a filter that removes the selected field.

After working with Wireshark for a while, you may learn some new techniques that will
help improve your workflow. Using filters is one of the tools that helps you home in on a
problem. The next section provides some suggestions on useful filters that can help you
when searching for specific types of traffic.

Applying useful filters
Wireshark is a common tool used by developers, network administrators, students, and
security analysts. Network administrators use Wireshark to investigate the many issues
that can surface and cause the network to degrade or spread malware.

For example, some handy display filters include the following:

http.request: This searches the capture file for any HTTP GET or POST
requests.
tcp.port==xxx: Use this filter if you are monitoring TCP traffic by using a
specific port.
tcp.stream eq X: This filter will follow a specific stream, where X is the stream
index.
!(arp or icmp or dns): This filter will eliminate arp, dns, and icmp traffic.
vlan.id ==X: This shows a specific vlan.

Wireshark also provides a handy drag-and-drop feature where you can simply drag a field
from the packet tree and drop it into the display filter.

In addition to display filters, there are times when capture filters are appropriate to collect
specific traffic, such as the following:

port ftp || port ftp-data: This will capture FTP traffic.
ip host x.x.x.x: This will capture traffic from a specific host.
ip multicast: This will capture multicast traffic.

The Wireshark Wiki also lists several capture filters that are used to detect malware. For
example, dst port 135 and tcp port 135 and ip[2:2]==48 will display evidence
of the Blaster Worm.

Using Display and Capture Filters Chapter 7

[174]

There are many ways to filter traffic to only display the traffic you want to see, which helps
remove the unnecessary traffic and improve your analysis skills. Depending on the type of
network you work with on a daily basis, you will most likely build your own arsenal of
filters.

Summary
Wireshark is a powerful tool that allows us to capture and analyze traffic. In this chapter,
we reviewed how to look at traffic more effectively by using the built-in filter functions. We
have compared the differences between display and capture filters. In order to filter traffic,
we learned how to use a display filter and discussed how it can provide a simple filter
showing only a protocol or a combination of field values. We have reviewed how to edit
the display or capture filters, as well as creating your own and storing them for easy
reference in the bookmarks.

In addition to display filters, we covered capture filters that you apply prior to capture, and
the result will display only the traffic that you have captured. To carry out a granular
investigation, we have discussed how to create an expression that includes logical operators
and specific field values. With the many ways to filter traffic, we looked at the shortcuts to
build filters on the fly while conducting analyses, and then evaluated the benefits of having
several useful filters in your arsenal.

In the next chapter, we will take a look at encapsulation in the OSI model, which is an
essential concept to grasp in order to be effective at packet analysis. So that you have a
better understanding of this important concept, we'll review the seven layers, discuss
addressing, the protocol data units, and the protocols in each layer, and the process of
encapsulation as the data is readied for frame formation in order to be sent on the
appropriate media.

Using Display and Capture Filters Chapter 7

[175]

Questions
Now, it's time to check your knowledge. Select the best response, then check your answers
with those provided in the Assessment:

When creating a display filter, if the background is ____, then you have entered a1.
valid filter.

Red1.
Green2.
Yellow3.
Cyan4.

When creating an expression using the expression builder, you can refine the2.
filter by modifying any of the four variables listed on the right-hand side, which
are Relation, _____, Predefined Values, and Range.

Float1.
Integer2.
Value3.
Boolean4.

To create a capture filter to see only DNS requests and responses you would3.
enter _____ in the capture filter.

tcp port 531.
DNS2.
dns3.
udp port 534.

If you need to build a complex filter, then use the _____ Builder.4.
Expression1.
Berkley2.
EPAN3.
Dissector4.

When using either Apply as a Filter or Prepare a Filter, you will see additional5.
choices to create a simple filter or add logical operators. _____ adds a filter that
removes the selected field.

 ...or Selected1.
...and Selected2.
Not Selected3.
...and not Selected4.

8
Outlining the OSI Model

Effective packet analysis begins with a solid understanding of the Open Systems
Interconnection (OSI) model. The OSI model is a seven-layer framework that outlines how
the OS transforms, encapsulates, and prepares data for transport on the network. In this
chapter, we'll cover the seven layers, along with the role and purpose of each layer. So that
you understand the significance of a port, IP, and MAC address, we'll go through
addressing at the transport, network, and data link layer. We'll then take a look at the
Protocol Data Unit (PDU) for each layer.

Once done, you will be more familiar with the terminology, along with having a better
understanding of some of the protocols in each layer. From the HTTP request when
retrieving data from a web page, to the bits as it travels across the network, you'll know
how data transforms and feeds into the next layer to properly format the frame, so the data
can be sent on the appropriate media.

This chapter will cover the following:

Outlining an overview of the OSI model
Discovering the purpose, protocols, and PDUs
Exploring the encapsulation process
Demonstrating frame formation in Wireshark

Comprehending the OSI model
The OSI model is a reference model that outlines the main functions of each layer.
Developing the framework began long ago. We started this journey from the late 1960s to
the mid-1970s, where we saw an expansion in computing, along with advances in
technology in general. In addition, there was the development of computers, from small
personal computers to large supercomputers such as the Cray in 1976, along with video
games such as Pong in 1972.

Outlining the OSI Model Chapter 8

[177]

Concurrent to this development, two international organizations, the International
Organization for Standardization (ISO) and the International Telegraph and Telephone
Consultative Committee (CCITT), began working on a reference model to define and
standardize networking interoperability. Ultimately, in 1983, the two developed the OSI
model.

The OSI model and serves many purposes, such as the following:

Providing a common framework for developers
Narrowing down problems for network administrators
Enabling interoperability among layers and communicating devices
Breaking down each layer to help students better understand the overall process
of data encapsulation.

Developers reference the OSI model to outline how systems communicate with one
another. When troubleshooting, it's common to refer to problems according to the layer
they feel is responsible for the malfunction. Equipment manufacturers rely on the OSI
model to ensure their products will work across all layers.

Networking students use the model to begin their journey into networking. A staple of
every freshman networking class is an introduction to the OSI model. In most cases, the
students have never heard of this, so presenting a complex topic in a simple manner can be
difficult. Although this is their first encounter, it's important to convey this information in
an easy-to-learn manner.

In addition, the model provides a visual description of what is going on in each layer, in
terms of protocols, PDUs, and the purpose of each layer, as outlined in the following
section.

Discovering the purpose, protocols, and
PDUs
The OSI model has seven layers. The next diagram shows several elements of the OSI
model. From the left, we see the following:

The number that identifies the layer
The name of the layer
An appropriate address for the transport, network, and data link layers
The corresponding PDU

Outlining the OSI Model Chapter 8

[178]

The OSI model

The seven layers are, from layer seven to layer one: Application, Presentation, Session,
Transport, Network, Data Link, and Physical.

Before diving into the layers, it is helpful to use a mnemonic device to remember the first
letter of each layer. With the OSI, we have two, as shown in the following diagram:

OSI mnemonics

Outlining the OSI Model Chapter 8

[179]

During encapsulation, the transport, network, and data link layers use appropriate source
and destination addressing:

Transport layer: Uses a port address
Network layer: Uses an IP address
Data link layer: Uses a MAC address

At each layer, the data is in a specific format—called a PDU—that defines what shape the
data is in as it is passed to the layer above or the layer below and includes Data, Segment,
Packet, Frame, and Bits. A mnemonic device to remember the PDU is Do Some People Fear
Binary?

Once you know the names of the layers, the next step is to tackle the role, purpose, and
protocols of each of the layers. When outlining each layer, I commonly start with layer 7, or
the application layer, as this is the layer where we initiate contact with the network, as
discussed next.

Evaluating the application layer
At the top of the OSI model graphic is the application layer, or layer 7. This layer contains
protocols that allow process-to-process communications, and it's where we initiate contact
with the network to perform the following:

Retrieve a web page.
Fetch or send our email.
Upload files to an FTP server.
Request a dynamically assigned IP address.

On the IP network, each application layer protocol follows specific recommendations,
requirements, and options, according to its function. Let's talk about a few application layer
protocols along with the PDU.

Outlining the OSI Model Chapter 8

[180]

Exploring protocols and the PDU
The application layer has hundreds of protocols. Some common protocols were developed
and standardized very early in the 1980s. Some are deprecated and we rarely see them,
such as Telnet and CharGEN. New protocols are developed as needed to keep up with
today's demands, such as Bitcoin and MQTT. The following is a shortlist of application
layer protocols:

Protocol Purpose
Simple Mail Transfer Protocol (SMTP) Transports email
Hypertext Transfer Protocol (HTTP) Ensures delivery (transfer) of web pages the proper format.
File Transfer Protocol (FTP) Transfers files between a client and server across the network

Message Queuing Telemetry Transport
(MQTT)

Used with IoT devices, sensors, and mobile devices
as a lightweight messaging protocol

All protocols have a specific purpose on the network. Today, Wireshark has dissectors for
most, but not all protocols. However, new dissectors are added all the time.

The PDU for the application layer is data. In many cases, the protocols in this layer are
involved in a series of client requests and server responses.

The header structure will vary as each is application specific. In addition, the header for the
client is generally different than the header for the server.

Most protocols will have an associated port, which will be found in the transport layer
header. The following is a summary of the application layer:

Layer Purpose Protocols PDU
Application Initiates contact with the network HTTP, DNS, FTP Data

After the data leaves the application layer, it is then passed to the presentation layer, in
order to properly format the data. Let's explore this next.

Outlining the OSI Model Chapter 8

[181]

Understanding the presentation layer
Layer 6 is the presentation layer and is responsible for proper data formatting, along with
optional compression and encryption. The presentation layer ensures that the data is in the
proper format, either before presenting the data to the application, or before sending it to
the network. For example, if you download a file from the internet with the
.gz extension, then the presentation layer will search for an application to associate it with,
so the OS can open the file correctly. If the application is not installed, then you will see a
message, as shown in the following screenshot:

Dialog box to select an application

If you do not have the application installed, then you can go in and manually select the
application with which you want to open the file, or obtain and install the correct
application.

The presentation layer also provides optional services to compress and decompress data.
Compression removes redundancy and makes data smaller. This function is optional, as
not all data is compressed.

Outlining the OSI Model Chapter 8

[182]

This layer also handles encryption, which is scrambling data by using a key so that it is in
an unreadable form that does not make sense to anyone unless they have the key. Because
encryption is also an optional function, this may not be required.

In the presentation layer, we do see a few protocols, which we'll investigate in the following
section, along with the PDU.

Describing the protocols and the PDU
Protocols in the presentation layer deal with proper data translation and
encoding/decoding, such as External Data Representation (XDR). In addition, because
of of the presentation layers role in encryption, you'll find the following protocols:

Transport Layer Security (TLS)/Secure Socket Layer (SSL): Secures end-to-end
communications such as bank transactions and web page retrieval using
encryption
Secure/Multipart Internet Mail Extensions (S/MIME): Digitally signs and
encrypts email messages

At the presentation layer, the PDU is still data, where we see the data being translated or
converted into the correct format. The following is a summary of the presentation layer:

Layer Purpose Protocols PDU

Presentation Formatting and optional compression and encryption TLS/SSL,
S/MIME Data

In many ways, the presentation layer is an extension of the application layer. The next layer
is the session layer, where we see all key elements of session management.

Learning about the session layer
The session layer, or layer 5, is responsible for setting up, maintaining, and tearing down a
session. Before any data is exchanged after initiating contact with the network, the OS must
establish a session. The OS creates the appropriate socket, which is an IP address, and a
port, so the two endpoints can communicate with one another.

Outlining the OSI Model Chapter 8

[183]

When communicating on the network, you will have multiple concurrent sessions and
connections established. You can see your active connections by going to the command line
and running netstat, as shown in the following screenshot:

Netstat showing active connections

In this screenshot, we only see Transmission Control Protocol (TCP) connections. TCP is a
connection-oriented protocol and both endpoints need to communicate the status of the
data transaction with one another. As a result, you will see a local and foreign address,
along with the state of the transaction.

In addition to setting up a session, this provides other services that include the following:

Authentication: This validates and identifies an entity by requiring a password
or another form of authentication.
Authorization: This allows access to resources if the entity has the appropriate
permissions.
Checkpointing: This monitors the session for errors and ensures that all data has
been received. If there are errors in transmission, the session layer may re-request
any missing data.

After the session has ended, the session layer safely closes the session. Next, let's look at
some key protocols in this layer.

Outlining the OSI Model Chapter 8

[184]

Recognizing protocols and the PDU
There are several protocols that exist in the session layer. Although most protocols may
originate in other layers, these protocols begin in part in the session layer:

Real-Time Transport Control Protocol (RTCP): This works along with RTP to
deliver control information to all participants in a call.
Domain Name System (DNS): This resolves a hostname to an IP address in
order for a session to take place.
Point-to-Point Tunneling Protocol (PPTP): This creates a VPN by using a
generic routing encapsulation tunnel to provide a more secure way to deliver
data than using plain text.
Remote Procedure Call (RPC): This allows a program to run a subroutine on
another host on a shared network.

At the session layer, the PDU is data. The following is a summary of the session layer:

Layer Purpose Protocols PDU

Session Set up, maintain, and tear down a session DNS, RPC Data

The session layer manages all aspects of a session that enable hosts to communicate in a
conversation with one another. At this point, the data then moves to the transport layer,
where it now becomes a segment that has the necessary port addressing in the transport
layer header.

Appreciating the transport layer
The transport layer, or layer 4, is responsible for transporting the data, either using a
connectionless or connection-oriented protocol across the network. The encapsulation
process starts at this layer. The data will have additional headers added as it traverses
down the layers to become a frame, ready to be sent on the network.

The transport protocol selected will depend on the application. Data is transported
primarily using either TCP or User Datagram Protocol (UDP). However, the transport
layer has several other protocols. Let's take a look.

Outlining the OSI Model Chapter 8

[185]

Differentiating protocols and the PDU
The transport layer has several protocols to transport data, including the following:

Protocol Purpose
TCP Connection-oriented protocol that ensures reliable data transfer
UDP Connectionless protocol used when speed, not reliability, is required
Stream Control Transmission
Protocol (SCTP) Reliably transmits data streams that have more than one IP address

Reliable User Datagram
Protocol (RUDP)

Extends UDP by providing TCP-like qualities, such as flow control,
acknowledgments, and re-transmitting lost packets

Although there are other lesser-known transport layer protocols, we will discuss the two
predominant protocols, TCP and UDP, starting with the more widely used protocol, TCP.

TCP
TCP is a connection-oriented protocol that has end-to-end reliability. TCP begins a session
with a three-way handshake and ends the session with an exchange of FIN packets. TCP
has an 11-field header, and sequences and acknowledges data, to ensure that all the data
arrives at the end device.

Once in a connection, TCP progresses through a series of states. For example, in the
screenshot named Netstat showing active connections, you can see the ESTABLISHED and
TIME-WAIT states.

TCP states are as follows:

LISTEN: The system waits for a request from a remote host to connect.
SYN-SENT: After the client sends a request for a connection, the system waits for
a response.
SYN-RECEIVED: After the SYN request has been returned to the client, the
server waits for a final ACK to start the connection.
ESTABLISHED: A normal state where the two endpoints are actively
communicating.
FIN-WAIT-1: The host waits for either an ACK in response to a FIN set to the
remote host, or a FIN from the remote host.

Outlining the OSI Model Chapter 8

[186]

FIN-WAIT-2: The host waits for a FIN request from the remote host.
CLOSE-WAIT: This means the server has received a FIN packet from the client
and is waiting to end the session.
CLOSING: After the FIN packet has been sent, the host begins closing the
connection and waits for a corresponding acknowledgment, in order to fully
close the session.
LAST-ACK: A final acknowledgment after sending the FIN packet is to make
sure the remote host has received the termination request.
TIME-WAIT: After sending a termination request, this state waits to ensure that
the remote host has received the request to end the conversation.
CLOSED: This is not a state at all; it represents a closed connection.

For a connection-oriented session where it is important to get all the parts of the
communication stream, TCP is the transport layer protocol of choice. However, when speed
in data transport is required, UDP is the better choice. UDP is a connectionless protocol
with only four field values, as we can see in this next section.

UDP
UDP is a connectionless and lightweight transport layer protocol that has a four-field
header. UDP doesn't have any handshake or connection process, ordering or reliability
services, and there's no teardown. As a lightweight protocol, it's ideal where speed is an
issue, and is used with time-sensitive applications such as Dynamic Host Configuration
Protocol (DHCP), Routing Information Protocol (RIP), Voice over IP (VoIP), or Trivial
File Transfer Protocol (TFTP).

Whether TCP or UDP is in use, the transport layer is a critical component of ensuring data
transport. During the encapsulation process, the data begins to transform, and the PDU is
now a segment. At this point, the transport layer requires a port number (or address), that
is associated with an application or process that is in use, as discussed in the following
section.

Outlining the OSI Model Chapter 8

[187]

Providing port addressing
At the transport layer, we add a port address, which is used to identify a specific
application or process. Port numbers fall into three main groups:

Well-known ports range between 1 – 1,023 and include protocols such as HTTP,
DNS, and SMTP.
Registered ports range between 1,024 – 49,151 and are assigned and used for
specific services such as gaming applications, OpenVPN, and IPSec.
Dynamic, private, or ephemeral ports are in the range of 49,152 – 65,535 and are
not assigned to any specific application. They are used temporarily during a
session, generally by the client.

When the transport layer header is applied to the data, a source and destination port are
added. The type of port used depends on whether the packet is coming from the client or
the server:

If a client sends a packet, then the source port will be (in most cases) a randomly
assigned dynamic or ephemeral port that is used, so when the server delivers a
packet to the host, it uses that port to deliver the data.
If a server sends a packet, then the source port will be either a well-known or a
registered port.

The transport layer provides inter-host communication between endpoints. The following
outlines a summary of the transport layer:

Layer Purpose Protocols PDU
Transport Transports the data TCP/UDP Segment

After the transport layer, the next layer is the network layer. As we'll see in the next section,
the network layer is all about getting the data to the correct network.

Explaining the network layer
The network layer, or layer 3, has two key roles: addressing and routing data. This layer
provides addressing using a logical IP address. While the transport layer transports the
data, the network layer determines the best logical path to take for packets that travel
through other networks, so they can get to their destination. It does this by communicating
with other devices during the routing process.

Outlining the OSI Model Chapter 8

[188]

In addition to data forwarding, the network layer communicates errors in transmission. In
order to achieve this, the network layer has a few key protocols, as we will see in the
following section.

Distinguishing the protocols and the PDU
The network layer is responsible for addressing and routing. There are three main protocols
in this layer: IP, Address Resolution Protocol (ARP), and Internet Control Message
Protocol (ICMP). Let's start with IP.

IP
IP is a best-effort, connectionless protocol that routes packets from source to destination
using a logical IP address. The original RFC for IP was written in 1981, as seen at https:/ /
tools.ietf.org/html/ rfc791. IP was standardized shortly after that.

Many of the original protocols in the TCP/IP suite have had minor changes, updates, and
modifications over the years. However, IP had to make a major change, which was mainly
due to a lack of address space. As a result, there are two versions of IP: IPv4 and IPv6. The
following outlines a brief comparison of the two:

IPv4 has a 32-bit address space. The use of private IP addresses has extended
IPv4's lifespan on a LAN, but there is a slow migration to IPv6.
IPv6 has a 128-bit address space and enhancements to the protocol in general,
such as simplified network configuration and more efficient routing.

Next, we will look at ARP, which resolves an IP address to a MAC address.

ARP
IP routes traffic through networks to its destination LAN. When a packet arrives on the
LAN, it no longer needs an IP address. It requires a physical or MAC address to go to its
destination. ARP issues a broadcast to resolve an IP address to a MAC address on a local
area network so the frame can be delivered.

ARP is an unusual protocol because it is in between layer three and layer
two of the OSI model. ARP resolves an IP (network layer) address to a
MAC (data link layer) address. However, many consider it to be a layer 3
protocol.

In addition to IP and ARP, we also need ICMP to help report any problems that may have
occurred during data transport, as discussed in the following segment.

https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791

Outlining the OSI Model Chapter 8

[189]

ICMP
ICMP is another critical network protocol that does not exchange or transport data. Its
primary role is error reporting. Because IP is a best-effort, unreliable protocol, ICMP must
be implemented by every IP module, as outlined in the original RFC, which is found at
https://tools.ietf. org/ html/ rfc792. ICMP reports on issues encountered during transit
such as network unreachable and host unreachable. Because there are two IP versions, there
are two versions of ICMP:

IPv4 uses ICMP
IPv6 uses ICMPv6

During the encapsulation process, the PDU at the network layer is a packet. The network
layer is responsible for routing and addressing data. One key element is an IP or logical
address, as described next.

Supplying an IP address for the packet
In this layer, the IP header will hold source and destination addresses in either IPv4 or IPv6
format. Both are referred to as logical addresses and are represented as follows:

An IPv4 address has 32 bits, which Wireshark will display using dotted decimal
notation.
An IPv6 address has 128 bits, which Wireshark will display using hexadecimal
numbers, separated by colons.

In the previous section, we discussed two other protocols: ARP and ICMP. Let's discuss
these two in relation to the need for addressing.

We know that IP uses a header that houses an IP address. However, ARP and ICMP are
both unique, as outlined here:

ARP does not have an IP address because ARP is a service protocol that resolves
IPv4 addresses to MAC addresses.
ICMP is the sister protocol to IP, and reports on matters encountered during
transit, such as network unreachable and host unreachable. ICMP itself does not
need an IP address, as it is encapsulated in an IP header, as shown in the
following screenshot of an ICMP echo request:

https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792

Outlining the OSI Model Chapter 8

[190]

ICMP echo request

By now, you should understand that the network layer allows hosts on separate networks
to communicate with one another by providing logical addressing and path determination.

The following chart outlines a summary of the network layer:

Layer Purpose Protocols PDU
Network Addressing, routing IP, ICMP Packet

Network layer summary

As data is encapsulated and passed down the OSI model, the next step is the data link
layer, where a key role is proper frame formation so the frame can travel on the LAN. Let's
take a look.

Examining the data link layer
The data link layer, or layer 2, is primarily concerned with proper frame formation and
prepares the data before it is sent out on the network. Within the data link layer, there are
several protocols that are responsible for properly formatting the data so that it can
successfully traverse on the destination network. Let's focus on a few key data link layer
protocols next.

Outlining the OSI Model Chapter 8

[191]

Investigating protocols and the PDU
The data link is the final stop as data travels down the OSI model, as this layer adds a frame
header and trailer to ready the frame for the network. Protocols used in this layer include
the following:

Ethernet II is the most widely used Ethernet technology today. It establishes
connections on a LAN using the physical or MAC address.
High-Level Data Link Control (HDLC) uses frames to deliver data from point to
point.

The PDU at this layer is a frame. Each frame requires an address, as outlined next.

Describing the data link layer address
On a LAN, the data link layer uses the MAC address of the destination machine rather than
the IP address. The data link layer has a frame header that contains the source and
destination MAC address, which is also referred to as a physical address. The trailer, or
frame check sequence, holds a value called a Cyclic Redundancy Check (CRC), which is
used for error detection on a network.

The following chart provides a summary of the data link layer:

Layer Purpose Protocols PDU
Data link Frame formation Ethernet, HLDC Frame

Data link layer summary

The data link layer ensures proper frame formation and link access, along with error
detection, while traveling across the network media. Data then travels on the physical layer,
as we will see in the following section.

Traveling over the physical layer
The physical layer, or layer 1, transmits data over media in a stream of bits.

Outlining the OSI Model Chapter 8

[192]

Once data is formatted into a frame, the Network Interface Card (NIC) sends it on to
the network media in a stream of bits. The method of transmission will depend on the
medium.

Network media includes the following:

Copper cable using Unshielded Twisted Pairs (UTP), Shielded Twisted Pairs
(STP), or coaxial; transmits with pulses of electricity
Fiber using a multimode or single-mode cable; transmits with pulses of light
Wireless using 802.11 specifications; transmits over radio waves

Exemplifying protocols and the PDU
In the physical layer, there are several different protocols used to transmit data across the
media:

Digital Subscriber Line (DSL) provides broadband to residences and businesses
using a phone line.
Integrated Services Digital Network (ISDN) transmits voice, video, and data
using the Public Switched Telephone Network (PSTN). ISDN is primarily used
in the broadcasting industry.
IEEE 802.3—the Ethernet physical layer—defines the transmission properties
according to the media type, such as fast Ethernet and GB Ethernet.

The physical layer is where binary transmission takes place across the network media. At
this layer, the PDU is the most basic form, which is bits.

The following chart provides a summary of the physical layer:

Layer Purpose Protocols PDU
Physical Binary transmission DSL, ISDN, 802.3 Bits

Physical layer summary

Prior to traveling across the media, the data must be in the correct format. The next section
explores the encapsulation process, which adds headers and addresses and readies the data
for transport across the media.

Outlining the OSI Model Chapter 8

[193]

Exploring the encapsulation process
Now that we know the layers, let's look at how each of the layers work together during the
encapsulation process to create a frame.

During frame formation, the process begins with data. As the data moves down the layers,
a header is added one by one until the frame is complete. Each frame has the following
components:

Data and appropriate application layer header (if applicable)
Segment header
Packet header
Frame header

We'll start with the data portion of the frame.

Viewing the data
In most cases when frame formation begins and the encapsulation takes place, we start
with the data, as shown here:

The encapsulation process—data

The data might be any of the following:

An HTTP get request
A DNS request to resolve a hostname to an IP address
A DHCP broadcast to request a dynamically assigned IP address

The data then continues its journey to becoming a segment.

Outlining the OSI Model Chapter 8

[194]

Identifying the segment
The next thing that happens is that the data will (in most cases) become a segment that will
use either a TCP or UDP header:

The encapsulation process—segment

The segment holds a source and destination port address, as shown in the preceding
diagram. The next stop in the encapsulation process is to add an IP header in order for it to
become a packet, as discussed next.

Identifying the packet
As data is encapsulated, we now have data, along with a segment that holds either a TCP or
UDP port. The next part of encapsulation is creating a packet by adding the source and
destination IPv4 or IPv6 address in the IP header, as shown here:

The encapsulation process—packet

The last part of the encapsulation process is the addition of the frame header, as shown in
the next section.

Outlining the OSI Model Chapter 8

[195]

Forming the frame
The last stop on the journey of creating a frame is the addition of the header. Within the
frame, we have data, a transport layer header or segment, and a network layer or packet.
And now, we complete the frame by adding the source and destination MAC address, as
shown here:

The encapsulation process—frame

With a frame, not only do we also have a header, but we also have a trailer, which is called
the frame check sequence. The frame check sequence holds a value called a cyclic
redundancy check, which is used for error detection on the network that is checked while
traveling along on its journey.

The next section covers how the frame formation looks when Wireshark captures the traffic
and presents it to the user.

Demonstrating frame formation in Wireshark
Once you understand encapsulation and frame formation, this will help you to to learn
about how Wireshark represents frame formation, as shown in the following screenshot:

Frame formation in Wireshark

Not all frames contain data, but this one does, so it is a good example of a fully
encapsulated frame.

Outlining the OSI Model Chapter 8

[196]

When looking at a single frame, you will see, at the top in the Frame 4371 line, the metadata
about that single frame. After the frame metadata is the following:

Frame: The frame header shows Ethernet II, and after that are the source and
destination MAC addresses.
Packet: The IP header represents the network layer that holds the source and
destination IP addresses.
Segment: The TCP header represents the transport layer, which holds the source
and destination port addresses.
Data: The HTTP header represents the application layer. In this case, it is a web
request.

This is an example of how Wireshark displays the encapsulation process and how it relates
to the OSI model.

Now that you have learned about the encapsulation process and frame formation in
Wireshark, let's take a look at the NIC and see the OSI model in action on your own system.

Examining the network bindings
Within your own laptop or desktop, you can easily see the OSI model in action. If you
check your network connections and then select the properties of your network interface
card, as shown in the following screenshot, you can see how the layer in the OSI model are
represented:

Network bindings

Outlining the OSI Model Chapter 8

[197]

The following represents the various layers and how they are represented in Ethernet
Properties:

Data link and physical layers are represented in the NIC.
Application, presentation, and session layers are represented in Client for
Microsoft Networks, along with File and print sharing for Microsoft Networks.
Network layers are shown as Internet Protocol (TCP/IP).

Summary
In this chapter, we took a closer look at an important concept, the OSI model and the
encapsulation process. The OSI model is essential and serves many purposes that include
providing a common framework for developers and a method to help students understand
what process occurs at each layer. Understanding each of the layers, the protocol data unit,
and the addressing will help you to better understand the process in Wireshark.

By now, you should have a better understanding of the role, purpose, and protocols, along
with the PDU of each layer. We explored the encapsulation process along with taking a
look at frame formation as it is seen in Wireshark. To help you learn about how your
system uses the OSI model, we looked at how the model is represented in the network
bindings.

In the next chapter, we'll take a closer look at decoding two main transport layers: TCP and
UDP. We'll review TCP, and then examine the 11-field header format in Wireshark. We'll
cover the three-way handshake that is used to start a session along with the four-way FIN
exchange to end a session. Then, we'll go through an overview of UDP and examine the
four-field header.

Outlining the OSI Model Chapter 8

[198]

Questions
Now it's time to check your knowledge. Select the best responses, and then check your
answers with those in the Assessment:

The _____ layer, or layer 5, is responsible for setting up, maintaining, and tearing1.
down a session.

Transport1.
Application2.
Session3.
Presentation4.

The _____ layer, or layer 4, is responsible for transporting the data, either using a2.
connectionless or connection-oriented protocol.

Transport1.
Application2.
Session3.
Presentation4.

The _____ layer, or layer 6, is responsible for proper data formatting along with3.
optional compression and encryption.

Transport1.
Application2.
Session3.
Presentation4.

TCP port 334 is in the range of the _____ ports.4.
Ephemeral1.
Well-known2.
Registered3.
Secure4.

The PDU at the transport layer is _____.5.
Data1.
Frame2.
Packet3.
Segment4.

3
Section 3: The Internet Suite

TCP/IP
The internet suite examines protocols that move data – TCP, UDP, IP, ICMP, and ARP –
and takes a close look at the handshake and teardown processes.

This section is comprised of the following chapters:

Chapter 9, Decoding TCP and UDP
Chapter 10, Managing TCP Connections
Chapter 11, Analyzing IPv4 and IPv6
Chapter 12, Discovering ICMP
Chapter 13, Understanding ARP

9
Decoding TCP and UDP

Since its standardization in 1983, the Transmission Control Protocol/Internet Protocol
(TCP/IP) suite has defined how data is addressed, packetized, transmitted, and
routed. Over the years, modifications have been made to the TCP/IP suite to provide more
efficiency in today's changing network. This chapter will focus on the TCP portion of the
Suite, that is, the transport layer or layer 4 of the Open System Interconnection (OSI)
model. Layer 4 has several protocols to transport data; however, we will focus on the most
widely used transport layer protocols, TCP and UDP.

In this chapter, we will review the role and purpose of the Transport Layer. So that you
have a better understanding of this connection-oriented protocol, we will take a closer look
at TCP. We'll examine the header format and field values in detail, such as sequence
number, offset, and window size, and review the TCP flags. In addition, we'll review UDP,
along with the common uses for this lightweight, connectionless protocol and examine the
streamlined four-field header.

The following topics will address all of this:

Reviewing the purpose of the transport layer
Describing the TCP
Examining the eleven-field TCP header
Understanding the UDP
Discovering the four-field UDP header

Decoding TCP and UDP Chapter 9

[201]

Reviewing the purpose of the transport layer
The transport layer of the OSI model is responsible for providing end-to-end data transport,
by either using a connectionless or connection-oriented protocol across an IP network. The
transport protocol that's selected will depend on the application. There are several
protocols in this layer, including the following:

Reliable data protocol: Used to transfer data in a connection-oriented manner
Stream control transmission protocol: Provides the reliable transmission of data
streams that have more than one IP address

Although there are other, less well-known transport layer protocols, the two predominant
protocols are TCP or UDP, as shown in the following diagram:

The OSI model—transport layer

UDP is connectionless and is used when data transport needs to be fast. UDP has a
lightweight four-field header. Unlike TCP, UDP currently does not have any header
options. However, because of the changing nature of the internet, there has been an active
discussion on possibly including options for UDP, as evidenced in a draft called Transport
Options for UDP, which can be found at https:/ /tools. ietf. org/ html/ draft- ietf-
tsvwg-udp-options- 05.

https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05

Decoding TCP and UDP Chapter 9

[202]

TCP is a connection-oriented protocol. The eleven-field TCP header tells the story of how
impressive this protocol is in its ability to ensure complete delivery of data while
monitoring for congestion and providing flow control.

Describing TCP
TCP is a connection-oriented protocol that has end-to-end reliability. Connection-oriented
means that both endpoints must setup a connection before any data is transferred. To begin
a session, TCP starts with a (three-way) handshake.

In many cases, there are TCP header options that outline and further define the parameters
of the conversation.

The TCP options are in the first two packets of the three-way handshake and are as follows:

Window scaling: A value that expands the actual Window size by providing a
multiplier that more accurately reflects the true Window size
Selective Acknowledgements or SACK: When these are enabled, the receiver
will notify the sender if there are any missing packets

Once you have a connection, your operating system creates a socket, which is an IP address
and a port. To see all your active TCP connections on a Window machine, open a
command-line prompt and run netstat -anp tcp, as shown in the following screenshot:

Netstat showing TCP connection status

During the conversation, TCP monitors the communication and acknowledges all the data
that's received to ensure complete delivery of the data. Every time TCP receives data, the
receiving host sends an acknowledgment (ACK) packet back to the sender, notifying the
sender of what data was received. That is why, in the image, you will see a local IP address
and port, along with a sender (or foreign) IP address and port.

Once the conversation is over, TCP ends the session with an exchange of FIN packets.

Decoding TCP and UDP Chapter 9

[203]

This powerful protocol also has methods to assist in flow control and congestion control:

Flow control is an end-to-end control method using window size, so the sender
doesn't overwhelm the host
Congestion control prevents a node from sending too much data and
overwhelming the network

There are two state variables involved in congestion control:

Congestion Window (Cwnd): The sender-side limit that defines the amount of
data a host can send before receiving an acknowledgement
Receiver Window (Rwnd): The receiver-side limit defines the amount of data a
host can receive

The two variables work together in a TCP connection to regulate the flow of data, minimize
congestion, and improve network performance.

It's hard to believe, but there is a great deal of detail in one single frame. Depending on the
protocol and the purpose, there are many components, such as the various headers, field
values within the headers, along with optional data. In the next section, we'll look at all the
information that's found in a single TCP frame.

Exploring a single TCP frame
For a deep dive into the TCP header, go to https:/ / www.cloudshark. org/captures/
0012f52602a3. Download and open the packet capture file, HTTP.cap, in Wireshark.

To follow along, select frame five (5) and focus on the packet details pane, as shown in the
following screenshot:

The packet details pane for frame 5

https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3
https://www.cloudshark.org/captures/0012f52602a3

Decoding TCP and UDP Chapter 9

[204]

Starting from the top, Wireshark lists the contents of this single frame. Each header has a
summary, followed by the details of the header. You can expand the header by clicking on
the arrow (or caret, >) on the right-hand side to see the details. In frame 5, we can see the
following:

Frame 5: Frame is not a protocol. Frame is a list of values generated by Wireshark
that describes information about a single frame. Expand the frame by clicking on
the arrow on the right-hand side to see the details, as shown in the
following screenshot:

 Frame metadata on a single frame—TCP

Ethernet II: The (true) frame header follows the metadata summary and
provides information about the source and destination MAC address, as shown
in the following screenshot:

Frame header

Decoding TCP and UDP Chapter 9

[205]

Internet Protocol Version 4: The IP header summary includes the source and
destination IP address, followed by the IPv4 field values.
Transmission Control Protocol: The TCP header lists the summary, including
source and destination ports, sequence and acknowledgement numbers, and
length (len), followed by the TCP field values

Now that we have covered the details that are found in a single frame, let's examine the
TCP header and each of the field values.

Examining the eleven-field TCP header
TCP has an eleven-field header that holds the values that keep track of the conversation, as
shown in the following diagram:

The TCP header

TCP uses the field values to monitor communication. TCP will indicate that the end device
has successfully received all of the data. If there is trouble during the data transport, TCP
will alert other hosts of any missing segments.

Next, we'll take a look at each of the header fields so that you have a better understanding
of how TCP is able to provide reliable communication between hosts.

Navigating the TCP header fields
Starting at the top of the TCP header, we can see the Transmission Control Protocol,
followed by a summary of what the header represents, as shown in the following
screenshot:

Decoding TCP and UDP Chapter 9

[206]

TCP header

Below the summary is the TCP header fields. Whenever there is additional information,
you will see an arrow on the right-hand side of the field, which you can expand to see the
details.

When looking at the TCP header contents, any information in brackets is generated by
Wireshark to help you better understand the details of the header, such as [SEQ/ACK
analysis] and [Timestamps], as shown near the bottom of the preceding screenshot.

Let's step through the header fields, starting with the ports.

Exploring TCP ports
In Wireshark, you can resolve physical, network, and transport addresses. The packet
capture, HTTP.cap, uses transport layer name resolution so that whenever a well-known or
registered port is used, Wireshark will identify the application associated with the port
number.

Decoding TCP and UDP Chapter 9

[207]

The following lists the port numbers, along with the generated information Wireshark
provides, such as Stream Index and Segment Length:

Source port 16-bit: This is the port on the sender side. In frame 5, the sender is
most likely a web server, as the value is Source Port: http (80).
Destination port 16-bit: This is the port on the receiver (client) side that tells the
sender, When you deliver the data, use this port. In this case, the value is
Destination Port: 57678 (57678), which is not associated with any application; it
is an ephemeral or temporarily assigned port that is used in this connection. As a
result, you will not see a protocol listed before the port number.
Stream index: This value is shown in brackets, as Wireshark calculates this to
keep track of the streams. A stream is a communication between two endpoints.
In frame 5, we can see [Stream index: 0], which means this is the first stream in
this capture. This value is a useful tool when doing an analysis, as you can easily
right-click on a frame and select Follow | [TCP, UDP, SSL, HTTP] stream, as
shown in the following screenshot:

Following the stream

Decoding TCP and UDP Chapter 9

[208]

TCP segment length: In the transport layer, the PDU is a segment. The segment
length is the value of the TCP payload, which is the data that follows the TCP
header, and any options. This value is in brackets, as it is calculated by
Wireshark. In frame 5, we can see [TCP Segment Length: 0]. This means there is
no data following the header, which would make sense, as frame 5 is an
acknowledgment of the data received in frame 4.

Next, we'll take a look at the fields that keep track of the data that's sent and received
during data transmission.

Sequencing and acknowledging data
Because TCP is a connection-oriented protocol, the operating system keeps track of every
byte (or octet) of data. Each byte is sequenced and, once received, is acknowledged. The
following are the fields that help provide a snapshot of the data that's exchanged during a
TCP connection:

Sequence number 32-bit: The three-way handshake starts the sequencing. The
Synchronization (SYN) packets found in the first two packets of the three-way
handshake are responsible for synchronizing the sequence numbers that are used
during the connection.
For example, as shown in the following screenshot, a client sends a SYN packet
to the server with a sequence number of 100.
The server responds by sending a Synchronization Acknowledgement (SYN,
ACK) with a sequence number of 300 and an ACK of 101. The client sends a
final ACK with a sequence number of 301 and an ACK of 101:

The three-way handshake

Decoding TCP and UDP Chapter 9

[209]

After the handshake, the data flow begins. In frame 5, we can see Sequence
number: 1 (relative sequence number). Relative sequence numbers are generated
by Wireshark, mainly because the actual sequence number is very large. The
relative sequence number is easy to understand and represents a value in relation
to this conversation.

Without using a relative sequence number, the absolute sequence number is Sequence
number: 3344080265, as shown in the following screenshot:

 Absolute sequence numbers

If you would like to use relative rather than actual sequence numbers, right-click
on anywhere in the TCP header, select Protocol Preferences, and then select
Relative Sequence Numbers, as shown in the following screenshot:

Decoding TCP and UDP Chapter 9

[210]

 Protocol preferences—relative sequence numbers

Decoding TCP and UDP Chapter 9

[211]

This will adjust the sequence numbers to a more understandable value. To see the
use of relative sequence numbers, refer to the figure TCP header, where you will
see Sequence number 1.

Next sequence number: The value is in brackets as it is calculated. Wireshark
adds the current sequence number to the TCP segment length to get the next
sequence number.
Acknowledgment number 32-bit: During data transfer, the operating system
keeps track of all bytes and reordering by using the sequence numbers. Every
time the TCP receives data, the receiving host acknowledges that the data was
received and that they are ready to accept more, starting with the next expected
byte.
The process occurs concurrent to the server sending data. As a result, it is called
an expectational acknowledgment. As shown in the following diagram, the client
sends an ACK to the server stating that they have received 524 bytes of data and
they are ready for more, starting with 525:

Acknowledging the data

Offset: The line right after the Acknowledgement number is 1000. This line is
the data offset field, which indicates the length of the TCP header. After the TCP
header, the data begins. In this case, the offset value is 32 bytes. The following
diagram shows how this value is calculated:

Offset value calculation

Decoding TCP and UDP Chapter 9

[212]

The size of a fixed TCP header field is 20 bytes. However, many times in today's
networks, the TCP header has additional options, so the value is not always
consistent.

While keeping track of the data exchange, another important element in the TCP header is
the use of flags, as discussed in the next section.

Following the flags
TCP flags are used to indicate a particular state during a conversation. Some are commonly
seen, such as ACK, FIN, and SYN; however, some are rarely seen in practical applications.
TCP has eight (8) control flags, as shown here:

Control
flag Bits Function

Reserved 3 The Reserved flag is for future use and should be set to zero.
Nonce 1 Nonce is experimental—possibly use with ECN.

CWR 1 Congestion Window Reduced when set indicates that the sender is responding to
indications of network congestion with congestion avoidance.

ECE 1

The Explicit Congestion Notification Echo Explicit Congestion Notification (ECN) will
notify the endpoints of any network congestion to avoid dropping packets. Both
endpoints must be ECN capable in order for ECN to work. If this flag is set, this means
the endpoint is ECN capable.

URG 1 Urgent indicates a packet that should have priority. Rarely seen.

ACK 1
Acknowledgment acknowledges that the data was received and that the client is ready
to accept more. All packets after the initial SYN packet sent by the client should have
this flag set.

PSH 1 Normally, a buffer will hold data until it has a decent-sized packet to send. Push informs
TCP that data should be sent immediately and not wait until the buffer is full.

RST 1
When set, the sender and receiver will abort the TCP connection. A Reset can happen for
a number of reasons; many times, it is used to close an abnormal or malicious
connection.

SYN 1 Synchronization synchronizes the sequence numbers. Only the first two packets of the
handshake will have this flag set.

FIN 1 Finish means the communication has ended and there is no more data—close the
connection.

Decoding TCP and UDP Chapter 9

[213]

The TCP flags, when set, will tell the story of the TCP connection. Wireshark will reflect this
state in the Info column of the packet list pane:

 TCP flags

TCP is widely used, and the flags are important to control each session. However, TCP
flags can be used in a malicious way to launch an attack or evade detection. As a result, the
security analyst should make sure devices are tuned to monitor for non-standard and
inappropriate use of TCP flags.

As we can see, the TCP flags provide an indication of what is happening during a
conversation. It's important to keep the data moving. As we'll see in the following section.,
the window size is used to notify the sender about just how much data that a host can
receive at any given time.

Dissecting the window size
TCP is a full-duplex communication protocol, in which the sender and receiver
communicate with each other. Flow control is an end-to-end control method where a host
transmits a window size, with every acknowledgement indicating how many bytes it can
accept so that the sender does not transmit too much data and overwhelm the host. The
following steps through values provide an indication of how much data the client can
receive, which can change at any time during a conversation:

Decoding TCP and UDP Chapter 9

[214]

Window size 16-bit: During an active connection, the server sends data to the
client. The client responds with an ACK and the window size value, which will
indicate how much data they can accept. In the case of frame 5, we can see
Window size value: 108.

If the client cannot process all the data, the client will send an ACK
with a lower Window size value.
Once the client advertises a smaller window size, the server
throttles back the data transfer.
When the client recovers and is able to accept more data, the client
sends an ACK with a window update that reflects the new value.
The server then can continue to send data.

A related term is called sliding window, as the value will slide back and
forth as the end point adjusts the amount of traffic it can accept.

Calculated Window size: In brackets, we can see [Calculated Window Size
6912]. This value is larger than the actual Window size because this stream uses a
scaling factor, which changes the value of the Window Size. Let's talk about why
this value is different:

The original TCP request for comment (RFC) 793 was written in
1981. At that time, buffer space was smaller, and the 16-bit
Window size value field would accommodate the actual Window
size that was available during the 1980s.
If all 16 bits are used, this would mean the window size is equal to
216, or 65,536 bytes. As time passed, hardware improved, and the
buffer space expanded beyond that limit. Over time, options were
used to expand the Window size value in the TCP header.
In the early 1990's, RFCs were written to address the larger buffer
sizes, and a window scaling option provides a way to address the
actual window size.
As a result, Wireshark calculates the Window size by multiplying
the scaling factor of 64 by the listed window size field value 108,
which gives us a calculated window size of 6,912.

Decoding TCP and UDP Chapter 9

[215]

Next, let's take a look at how the scaling factor is determined.

Window size scaling factor: The [Window Size scaling factor: 64] is
calculated by Wireshark. This reflects the scaling factor from the TCP options
exchanged during the three-way handshake. As shown in the following
screenshot, we can see that the TCP options sent by the server lists the last option
as the Window scale is 6 (multiply by 64):

 TCP options

Wireshark will determine the calculated window size by multiplying the scaling factor
by the window size field value.

If the capture began after the three-way handshake, Wireshark has no way of knowing
what the scaling factor is and will display [Window Size scaling factor: -1
(unknown)]. You may also see [Window size scaling factor: -2 (no window
scaling used)]. In that case, Wireshark will display the actual window size.

If you know the scaling factor, you can modify the value by right-clicking anywhere in
the TCP header, selecting Protocol Preferences | Scaling factor to use when not
available from capture, and then selecting the appropriate value, as shown in the
following screenshot:

Decoding TCP and UDP Chapter 9

[216]

Protocol preferences

In addition to the field values that monitor the communication, there are some other field
values and options in the TCP header. Let's take a look.

Additional header values
The last part of the header lists additional values and options. The following are the field
values and information that helps keep a TCP connection on track:

Checksum and Status: During data transmission, errors may occur. A checksum
is a calculated value of the data portion of the packet that is periodically
recalculated during transmission to ensure data integrity. The checksum is used
for error detection, not correction. If the checksum is not accurate during
recalculation, the packet is dropped.

In frame 5, we can see the value of the checksum as Checksum: 0x82e4
[unverified]. When doing a packet capture, the captured packet is presented to
Wireshark before the hardware or network driver calculates the checksum. It may
be incorrectly calculated, which will result in an error.

Decoding TCP and UDP Chapter 9

[217]

To avoid a checksum error, you can disable checksum validation by right-clicking
anywhere in the TCP header, selecting Protocol Preferences, and
unchecking Validate the TCP checksum if possible.

Urgent pointer: The TCP flags, which include the urgent (URG) flag, indicate the
packet that should have priority. If the URG flag is set, the receiving host will
need to examine the frame to obtain relevant data. This is rarely used. A more
commonly used flag is push (PSH), as it informs the TCP that data should be
sent up the stack immediately.
Options: Before any TCP conversation, there is a three-way handshake. During
the handshake, TCP has several options. The options will be listed during the
SYN packet exchange. In frame 5, the options include timestamps and no-
operation, as shown in the following screenshot:

 TCP header options

These options and others will be covered in detail in Chapter 10, Managing TCP
Connections.

Additional Packet Details: At the bottom of the TCP header, there are two other
calculations: [SEQ/ACK analysis] and [Timestamps], as shown in the
following screenshot:

Additional Packet Details

Decoding TCP and UDP Chapter 9

[218]

[SEQ/ACK analysis] is a calculated field that includes information such as
what frame was acknowledged and the Round-Trip Time (RTT), which is used
in function such as the time-sequence graphs found under Statistics | TCP
Stream Graphs. The [Timestamps] calculation indicates the elapsed time and is
used to provide details about the capture found in Statistics | Capture File
Properties.

As you can see, there is a lot going on with TCP, which provides reliable data transport. In
the next section, we will take a look at the User Datagram Protocol (UDP), a transport
protocol to use when speed—not reliability—is required for data transport.

Understanding UDP
UDP is a lightweight, connectionless, TCP used for data transfer. UDP does not have a
handshake or connection process, nor does it have a teardown.

To see all your active UDP connections on a Windows machine, open a command line and
run netstat -anp udp, as shown in the following screenshot:

Netstat command showing UDP connection status

UDP doesn't have any ordering or reliability services; it simply delivers the data. Because of
this, there isn't a need for a sender (or foreign) IP address and port. As a result, as shown in
the following diagram, you will see only a local IP address and port for UDP:

The UDP header

Decoding TCP and UDP Chapter 9

[219]

Because of UDP's streamlined nature, it is an appropriate protocol for time-sensitive
applications such as Dynamic Host Configuration Protocol (DHCP), Domain Name
System (DNS), Trivial File Transfer Protocol (TFTP), Voice over IP (VoIP), and other
protocols that require speed. Let's take a look at how a single UDP frame works.

A single UDP frame
Unlike TCP, UDP is a lightweight protocol with a very simple header. UDP has only four
fields and no options.

To examine UDP and for a deep dive into the UDP header, go to https:/ /www. cloudshark.
org/captures/0320b9b57d35 and download the DNS Question & Answer.pcapng file.
Go to frame one (1) so you can follow along. Once selected, you will see the following
details:

Frame one (1), as shown in the packet details pane

Starting from the top, Wireshark lists the contents of this single frame. Expand the frame
metadata by clicking on the arrow (or caret, >) on the right-hand side to see the details, as
shown in the following screenshot:

https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35
https://www.cloudshark.org/captures/0320b9b57d35

Decoding TCP and UDP Chapter 9

[220]

 Frame metadata on a single frame—UDP

In frame 1, we can see the following:

Frame 1: Frame is not a protocol. Frame is a list of values generated by Wireshark
that describes information about a single frame.
Ethernet II: The frame header follows the metadata and provides information
about the source and destination MAC address. It is the same as the information
found in the section A single TCP frame.
Internet Protocol Version 4: Provides the details of the IP protocol used and
includes the source and destination IP address. It is the same as the information
found in the section A single TCP frame.
User Datagram Protocol: Provides the details of the UDP header as shown in the
figure The UDP header. When looking at the UDP header contents, any
information in brackets is generated by Wireshark to help you better understand
the details of the header, such as Checksum Status and Stream index.

Now that we have taken a look at the information that's found a single UDP frame, let's
examine the UDP header and each of the field values.

Decoding TCP and UDP Chapter 9

[221]

Discovering the four-field UDP header
UDP has a four-field header that holds the values that keep track of the conversation, as
shown in the following diagram:

 The UDP header

UDP is always eight bytes long as it does not have any header options. UDP is
connectionless; if there is trouble during the data transport, it's up to a higher-level protocol
to communicate any issues or request any missing data. Now, let's take a look at each of the
four UDP headers.

Analyzing the UDP header fields
Starting at the top of the UDP header, we can see User Datagram Protocol, followed by a
summary of what the header represents. Below the header and summary are the UDP
header fields. Unlike TCP, UDP has a simple header, with no additional communication
details listed, such as Timestamps or SEQ/ACK analysis:

The UDP header

Starting at the top of the UDP header, we can see the UDP, followed by a summary of what
the header represents with information on the source and destination ports:

Source Port 16-bit: The source port field is the port on the receiver's side, and
this field. In this case, the sender is a DNS client, as the source port in frame 1 is
Source Port: 54585, which is not associated with any application; it is an
ephemeral or temporarily assigned port that is used in this connection.

Decoding TCP and UDP Chapter 9

[222]

Destination Port 16-bit: The destination port field is the port on the sender's side,
and this field is 16bit. In this case, the port in frame 1 is Destination Port: domain
(53). Port 53 is associated with DNS, and is the port on the DNS server accepting
resolution requests to resolve a domain name.
Length 16-bit: In a UDP packet, the length represents the number of bytes in the
UDP header and any data that follows. In frame 1, we can see Length: 36, which
is equal to the UDP header (8 bytes) and the DNS header (28 bytes).
Checksum 16-bit: The UDP checksum is a calculated value of the data portion of
the packet that is periodically recalculated during transmission to ensure data
integrity. The UDP checksum is optional in IPv4; however, it is required in IPv6.
The checksum is required in IPv6 primarily because IPv6 does not have a
checksum, and the value in the UDP header is used to ensure data integrity.

Summary
Anyone working on a network should have a solid understanding of the protocols that
traverse the network. Although there are hundreds of protocols, this chapter focused on the
functions of the transport layer of the OSI model, specifically the two predominant
protocols, TCP and UDP.

We evaluated TCP, a connection-oriented protocol. You now understand that, in order to
achieve reliability, TCP sequences and acknowledges every octet. We saw that, in addition
to transporting data, TCP monitors the transmission and provides not only flow control,
but congestion control as well. So that you grasped how TCP is so effective in providing
reliable data transport, we took a closer look at the header, along with the eight control
flags.

Along with TCP, we looked at the other transport layer protocol, UDP, which ensures fast
transportation of time-sensitive data and protocols such as DHCP and DNS. We discovered
the four-field UDP header, which provides enough information to deliver data with no
additional overhead.

Now that you have a solid understanding of TCP, the next step is to gain a better
understanding of how TCP establishes and tears down a connection in more detail. In the
next chapter, we will step through the process of starting a TCP conversation and examine
the TCP three-way handshake and resultant socket creation. We will look at the packet
exchange and have a closer look at the TCP options. Finally, we'll study how TCP ends data
transmission by exchanging FIN packets.

Decoding TCP and UDP Chapter 9

[223]

Questions
Now, it's time to check your knowledge. Select the best response, then check your answers,
which can be found in the Assessment:

A _____ is defined as an IP address and a port.1.
Window1.
Socket2.
Checksum3.
Sequence4.

ACK 725 means I have received _____ bytes of data and I am ready for more,2.
starting with _____.

700 and 8001.
724 and 7252.
725 and 7263.
725 and 7254.

The _____ flag informs TCP that data should be sent immediately.3.
RST1.
SYN2.
ACK3.
PSH4.

If the offset value is 0101, the TCP header length = ___.4.
321.
82.
203.
644.

In a normal connection, ___ will use UDP.5.
HTTP1.
SMTP2.
DHCP3.
FTP4.

10
Managing TCP Connections

One of the most important, yet least understood, TCP concepts, is the three-way
handshake. A TCP handshake initiates the connection and sets up the parameters. No data
is exchanged until this process is complete. Similar to the handshake is the teardown, when
the two endpoints exchange a series of Finish (FIN) packets, that indicates the session is
complete.

In this chapter we'll take a more detailed look at the handshake and resultant socket
creation. So that you can home in on a single TCP stream, we'll take a large capture, subset,
mark and filter the packets, so we can examine the TCP handshake. As you traverse the
chapter, you'll have a greater understanding of the TCP options exchanged during the
handshake. You'll learn what they mean and why they are required to have a conversation
on today's networks. In addition, you'll see how you can easily modify protocol
preferences, such as analyze TCP sequence numbers with a simple right click. Finally, we
will examine the TCP teardown process and see how the FIN flag indicates the end of data
transmission.

This chapter will address all of this by covering the following:

Dissecting the three-way handshake
Discovering TCP options
Understanding TCP protocol preferences
Identifying a TCP teardown

Managing TCP Connections Chapter 10

[225]

Dissecting the three-way handshake
In computing, a handshake is an exchange of information between devices that sets up the
parameters of the conversation. Each side sends what is available and the two endpoints
agree on the terms before any data is exchanged. The topic of the three-way handshake is
outlined in detail in the original TCP RFC 793 found at https:/ /tools. ietf. org/ html/
rfc793. The TCP handshake is as follows:

The TCP three-way handshake

In most cases, the client initiates the conversation with a synchronization (SYN) packet, the
server responds with a synchronization acknowledgment (SYN-ACK), and the client then
completes the handshake with an acknowledgment (ACK). After the handshake is
complete, the data exchange will follow.

For a closer look at the three-way handshake, go to http:/ /tcpreplay. appneta. com/ wiki/
captures.html#bigflows- pcap. Once there, download bigflows.cap so you can follow
along. Bigflows is a large capture that has many protocols and conversations. Bigflows has
791,615 packets, as shown in the lower right-hand corner of the following screenshot:

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap

Managing TCP Connections Chapter 10

[226]

 BigFlows

Although you could technically work with the entire capture, in the next section, we will
isolate a single stream and then create a smaller, more manageable file.

Isolating a single stream
When capturing traffic, Wireshark keeps track of all the streams. In a file the size of
BigFlows.pcap, there will be many TCP and UDP streams. Although we can filter on any
of the streams, for now, let's use TCP stream 312, as this includes the handshake, options,
data, and then the FIN exchange to end the session.

Managing TCP Connections Chapter 10

[227]

To show only stream 312, go to the display filter and enter tcp. stream eq 312, and
then press Enter. Because this is such a large file, it will take Wireshark several seconds to
run the filter. Once you are done, you will see an example of a complete TCP stream, as
shown here:

tcp.stream eq 312

Now that we have a single isolated stream, we'll want to subset the capture and save it as a
smaller file. To subset only TCP stream 312, go to File | Export Specified Packets.

This will open a dialog box that offers various ways to export specified packets, as shown
in the graphic:

Managing TCP Connections Chapter 10

[228]

Select All packets and Displayed

Near the bottom of the dialog box, you will see a header, Packet Range, where you will
make your selections. If you have filtered the capture, Wireshark will assume that you
would like to export only the displayed packets, and the radio button for Displayed will be
active.

Select All Packets and Displayed, as shown in the screenshot, and then save as
Flow312.pcapng.

Close Bigflows.pcap and clear the display filter, and then open the newly created file. In
the next section, let's zero in on the handshake and examine each of the packets exchanged.

Managing TCP Connections Chapter 10

[229]

Marking the TCP handshake
One of the ways you can isolate a series of packets within Wireshark is by marking them.
When we mark the packets, Wireshark will modify the packet to have a black background
with white text. Once we mark them, we'll filter according to the marked packets to focus in
on the handshake.

In the file, we'll identify the handshake by marking the packets. We know that to begin a
session, TCP starts with a handshake that uses three packets as follows:

The client sends a SYN packet to the server.
The server responds by sending a SYN ACK packet.
The client sends a final ACK packet.

Once the handshake is complete, the data flow begins.

Wireshark will identify the three-way handshake and the exchange of packets by showing
the transaction details in the info column, (if you have this column header active). In the
capture Flow312.pcapng, packets 1, 2, and 3 represents handshake.

Once the handshake is identified, we'll mark each of the three packets. To mark the packets,
select each of the packets and right-click the sub menu choice Mark/Unmark Packet as
shown in the graphic:

Mark/Unmark Packet

Managing TCP Connections Chapter 10

[230]

Once you have marked the packet, the background will turn black and the text will be
white, as shown here:

Results of marking a packet

After that, we'll want to view only the marked packets by entering frame.marked==1 in
the display filter and pressing Enter. Clear the marks by going to Edit | Unmark all
Displayed so that we can begin to dissect the handshake.

Now that we have singled out the three-way handshake. let's take a look at each of the
three packets.

Identifying the handshake packets
In this section, we'll take a look at each of the packets, examine the flags, along with the
sequence and acknowledgement numbers. Let's start with the SYN packet.

Sending the SYN packet
In the first packet, the client will initiate the connection by sending a Synchronization
(SYN) packet to the server and then wait for a response.

Managing TCP Connections Chapter 10

[231]

To see all the field values as shown, go to frame 1, and expand the TCP Header as shown:

Flows312.pcapng—frame 1

In frame 1, you'll see the source and destination ports along with other field values in the
header. This includes the sequence and acknowledgment numbers, as follows:

Sequence number: 0 (relative sequence number)

Acknowledgment number: 0

If we expand the flags, we see that the Syn flag is set as shown in the following screenshot.
Keep in mind that the Syn flag will only be used to synchronize the sequence numbers
during the first two packets of the handshake:

 TCP Syn flag set

Managing TCP Connections Chapter 10

[232]

Although all three packets of a handshake are important, the first two packets set up the
parameters of the conversation. Select frame 1 and view the TCP header in the Packet
Details pane. Then, select the TCP header, and we see Transmission Control Protocol
(tcp), 40 bytes in the status bar along the bottom, as shown in the following screenshot:

TCP header—40 bytes

While a normal TCP header is 20 bytes, this header is 40 bytes. The header size is larger
because it contains options that are added to the header. In most cases, you will see a larger
header size in the first two packets of the three-way handshake. You may also see a larger
header size in subsequent frames as well if the TCP header contains options.

In addition, within the field values, we see that Wireshark has identified this conversation
as [Stream: 0]. On the client side, the operating system will create a local socket with an
IP address and a port number combination of 172.16.133.132: 50405 once the
handshake completes. After the handshake, the data flow begins.

Now that we have seen the first packet of the three-way handshake, let's examine the
second packet, the SYN-ACK.

Managing TCP Connections Chapter 10

[233]

Returning the SYN-ACK packet
Once the server agrees to take part in the connection, the server will return a SYN-ACK and
wait for a final ACK to start the connection.

In frame 2, you will see the field values, which are similar, although the acknowledgment
number has changed. The sequence and acknowledgment numbers in frame 2 are as
follows:

Sequence number: 0 (relative sequence number)

Acknowledgment number: 1

In addition, the TCP flags are now set to SYN-ACK, as shown in the following screenshot:

TCP SYN-ACK flags set

Before any data is exchanged, the handshake must complete with the acknowledgment
packet, as discussed next.

Managing TCP Connections Chapter 10

[234]

Finalizing with an ACK packet
Frame 3 is the final packet in the three-way handshake. At this point, the sequence and
acknowledgment numbers are as follows:

Sequence number: 1 (relative sequence number)

Acknowledgment number: 1

To see the details, go to frame 3 and then to the TCP header, and then expand the TCP
flags, which are now set at ACK, as shown in the following screenshot:

TCP ACK flag set

In addition, we also see Transmission Control Protocol (tcp), 32 Bytes, in the status bar
along the bottom, as shown in the preceding screenshot. Again, this is because this
connection has TCP options, which adds to the length of the TCP header.

In many cases, there are TCP header options that outline and further define the parameters
of the conversation. In the next segment, we'll look at TCP options in general and then
focus on the options of this TCP conversation.

Managing TCP Connections Chapter 10

[235]

Learning TCP options
While TCP is already an amazing protocol, it also permits various options that can be
added to the TCP header to extend the functionality. The complete list, last updated
January 2019, can be found at https:/ /www.iana. org/ assignments/ tcp-parameters/ tcp-
parameters.txt.

Not all options are used. Some of the options are experimental, some are used for specific
reasons and do not have an associated RFC, and some have been developed and used
without proper IANA assignment. The seven most common options are listed in the
following table:

Kind Length Meaning Reference
0 1 End of Option List (EOL) [RFC793]

1 1 No-Operation (NOP) [RFC793]

2 4 Maximum segment size (MSS) [RFC793]

3 3 Window scale [RFC7323]

4 2 Selective acknowledgment (SACK) permitted [RFC2018]

5 N SACK [RFC2018]

8 10 Timestamps [RFC7323]

TCP options

The first three, EOL, NOP, and MSS, are from the original TCP RFC 793. The others were
developed over time. Any options will follow the TCP header and are in multiples of 8-bit,
or 1 byte. The entire header must be a multiple of 32-bit, or four bytes, for memory
alignment. Therefore, in some cases, padding is required to ensure that the header is a
multiple of four bytes. The entire TCP header can be up to 40 bytes.

To see the TCP options for Flow312.pcap, select the options header in frame 1, where
additional conversation parameters are listed, as shown here:

Flows312 frame 1 options

https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt

Managing TCP Connections Chapter 10

[236]

So that you have a better understanding of each of the seven common options, let's take a
look at each of them, starting with End of Option List.

Grasping the EOL
EOL is a single byte used at the end of the options. To see an example, open
the Flow312.pcap packet capture, put tcp.option_kind == 0 in the display filter, and
press Enter. Wireshark will display frame 2. Expand the TCP header options, which will
show the EOL at the end of the list:

Flows312 frame 2 options list

Another TCP option is NOP, which isn't an option at all, but a placeholder, as we'll see
next.

Using NOP
NOP is essentially a placeholder to separate different options. How and where NOP is used
is dependent on the operating system. For example, as shown in the preceding screenshot,
we can see that two NOPs are placed between the Window scale and Timestamps options.

In addition to using NOP to separate the various options, NOP is used to ensure that the
options header is a multiple of 32-bit, or four bytes, for memory alignment. As a result, if
there is an option with three bytes, such as a window scale, a single one-byte NOP will be
added so that the option's length totals four bytes.

Next, we'll look at an option that helps outline the acceptable receive segment size, which is
significant in many ways.

Managing TCP Connections Chapter 10

[237]

Defining the MSS
MSS is an option that defines the maximum receive segment size. This value is important
for several reasons:

 MSS and MTU

During a conversation between endpoints, TCP monitors the connection to ensure that the
optimal data is sent, so as not to waste bandwidth. In addition, TCP keeps track of the
following:

Window size (WS), for flow control, so as not to overwhelm the receiving host.
Network, for evidence of congestion by using the congestion window (CWND).
When necessary, the server will throttle the data transfer.
Maximum transfer unit (MTU), so the host sends only the amount of data that
the network can handle so as to prevent the need to fragment the datagram.

On the network, the sending host monitors several values, including the WS, CWND, and
the MTU, as it can only send the smallest of the three values.

For example, a host needs to send 1,800 bytes of data. The network limits are as follows:

CWND: 900 bytes
MTU: 1,500 bytes
WS: 1,800 bytes

According to the values listed, TCP must send the smallest value, which is CWND, 900
bytes.

The MSS is not always included in the options header. If this option is not used, the server
can send a segment of any size, while keeping in line with the network limits.

As we can see, the MSS provides essential information to ensure optimal data flow. Let's
now review another common option, WS.

Managing TCP Connections Chapter 10

[238]

Scaling the window size
TCP is a full-duplex communication protocol, in which the sender and receiver
communicate with each other. Flow control is an end-to-end control method where a host
transmits a window size with every acknowledgment, indicating how many bytes it can
accept, so the sender does not transmit too much data and overwhelm the host.

Window scale (WS) is an option that allows the window size to be expanded, according to
a scaling factor that is obtained from the TCP options exchanged during the three-way
handshake. The WS value is used to increase the maximum window size that is allowed.
Although optional, this provides information to the server of a more accurate Window Size
value.

Let's outline why this is an important option. In the TCP header, the Windows field value is
16-bit, which permits a maximum size of 65,535 bytes. The original RFC for TCP was
written in 1981. In the early 1980s, buffer sizes were small, so this value made sense.
However, as time passed, it became evident that a larger value would be required, and the
Window scale option provided a way to truly represent that value.

When using the Window scale option, the total value can be up to 230. This value as a metric
is beneficial when data travels, especially on high-bandwidth WAN links, because a larger
WS will improve performance. Intermediary devices can be tuned to accept larger WS; for
example, when configuring a Cisco router that supports Window scaling, you can adjust
this value up to 1,073,741,823 bytes.

To illustrate this, the following diagram shows a connection where the client advertises a
WS of 35,000 bytes. The server begins to send the packets to the client in line with the WS:

Server sending data in line with a smaller WS

Managing TCP Connections Chapter 10

[239]

While in the connection, if the WS starts to drop, the server will need to throttle back the
data so as not to overwhelm the client. However, if the client uses scaling and now
advertises a WS of 70,000 bytes, the server can send twice as many packets and utilize the
available bandwidth for a more efficient data transfer:

A larger WS allows the server to send more data

Networks can be unstable, and data transfer does not always go in an orderly fashion. This
next option provides an overview of how a client can selectively acknowledge the data it
has received, so the server only has to retransmit the missing bytes.

Permitting SACK
Over time, there have been improvements to the TCP/IP protocols. One such improvement
is Selective Acknowledgment (SACK). In the case of SACK, the client will notify the server
only if there are any missing packets, with the goal of keeping the data flowing. Let's
discuss how this option improves data flow.

TCP is a connection-oriented protocol. During transmission, all data is sequenced and
acknowledged to ensure complete transfer of all data required for that session.

After the server sends data to the client, the client will acknowledge that the data was
received and is ready to accept more by sending an ACK to the server with the next
expected byte.

To ensure complete data transfer, the server monitors the acknowledgments. However,
sometimes, there is a gap in transmission.

For example, the server has received ACK 1-100 and then ACK 151-200. In this case, there is
a perceived gap of ACK 101-150, and the server believes the client is missing bytes 101-150.

The gap may be for the following reasons:

Some of the data did not arrive.
The ACK did not reach the server.

Managing TCP Connections Chapter 10

[240]

The server has no idea why there is a gap in transmission and will resend all the data that it
believes is missing. It may be because the client did not receive the data. However, the gap
may be because the client received the data, but the server did not receive the
acknowledgment. This can lead to unnecessary retransmission of data.

By using SACK, the client selectively acknowledges what data it has received, so the server
only has to resend the missing data. While using SACK, there are two options that are sent
in the first two packets of the three-way handshake, as shown here:

The SACK-permitted option indicates that SACK can be used after establishing a
connection.
The SACK option permits selective acknowledgment of data.

The TCP SACK option uses two 16-bit fields, so the client can indicate the bytes it has
received.

For example, in the Bigflows.pcap capture, in frame 4006, the client used the TCP option
SACK 10852-11096 option. Therefore, the server only needs to send the data from sequence
number 10852 to 11096:

 TCP SACK option in Bigflows.pcap

As you can see, SACK can prevent unnecessary retransmissions and keeps the data
flowing. Another TCP option is timestamp, which monitors the transmission and keeps
track of the round-trip time during the data exchange.

Managing TCP Connections Chapter 10

[241]

Using timestamps
TCP relies on time as part of the functions of flow control and reliable data transfer. Data
travels through LANs and over WANs. Every network is different, and TCP needs to
understand the degree of latency on each network in order to set appropriate ACK timeout
values.

Using the timestamp options, TCP can monitor the round-trip times because the sending
host may need to retransmit a packet if it does not receive an acknowledgment in a timely
manner.

In the Flow312.pcap capture in frame 2, open the options to view the timestamp option, as
shown in the following screenshot:

 TCP timestamp option

Within this option, there are the following:

Kind: (one byte) 8. The Kind field indicates the type of option, in this case 8,
which is the timestamp option.
Length: (one byte) 10. This indicates the length of this options header; in this
case, it is 10 bytes.
Timestamp value (TSval): (four bytes) 1707407197, which is the timestamp
clock on the sender's side.
Timestamp echo reply (TSecr): (four bytes) 131517608, which is the echo reply
sent by the remote host.

TCP uses the timestamp value to monitor the round-trip time in various segments in the
path. The timestamp option must be set during the handshake, but you will see the options
reporting during the conversation.

As we can see, TCP can set various options during the handshake that further define the
parameters of the conversation.

While working with Wireshark, there may be a preference in the way the protocol responds
or is configured. We can modify may of the protocol preferences, as we'll see next.

Managing TCP Connections Chapter 10

[242]

Understanding TCP protocol preferences
In Wireshark, there are several protocols that we can modify so that Wireshark can display
the data more in line with the way the protocol should be used, according to our
preferences.

In some cases, a protocol won't have any protocol preferences. For example, when selecting
IGMP, Wireshark states Internet Group Management Protocol has no preferences, as
shown in the following screenshot. However, there are preferences for many protocols,
including TCP:

Protocol preferences—IGMP

Managing TCP Connections Chapter 10

[243]

To modify TCP preferences, go to frame 1 and select the TCP header. Right-click and select
Protocol Preferences, as shown in the following screenshot:

 Protocol preferences—TCP

Above Protocol Preferences, there is another option, Open Transmission Control Protocol
preferences..., which will open the Wireshark preferences:

Managing TCP Connections Chapter 10

[244]

TCP preferences

Once the Preferences dialog box is open, you can select and modify some of the TCP
preferences.

Modifying TCP preferences
When in the preferences dialog box for TCP, you will see a list that outlines your choices, as
follows:

Show TCP summary in protocol tree: When selected, this option will show a
summary of what has transpired in that packet.
Validate the TCP checksum if possible: TCP has a checksum that is used for
error detection. In most cases, this option is not selected, as the checksum will
offload to the NIC and the value will be invalid and indicate an error.

Managing TCP Connections Chapter 10

[245]

Allow subdissector to reassemble TCP streams: When selected, this will allow
an upper-layer protocol to reassemble the TCP stream.
Analyze TCP sequence numbers: This option is helpful with analysis as
Wireshark will monitor the sequence numbers that help identify trouble, such as
TCP retransmission, TCP duplicate acknowledgments, and TCP zero window.
Relative sequence numbers: When used, this feature helps make the sequence
numbers easier to read and compare. The relative sequence numbers start with 0
for the first packet in each stream and then increment from that point.
Scaling factor to use not available from capture: Window scale is used to
increase the maximum WS that is allowed. There are times that the scaling factor
is not known, for example, when the capture started mid-stream and the
handshake was not captured. This option allows you to enter a scaling factor, if
known.
Track number of bytes in flight: To see the bytes in flight, in Flow312, use
the tcp.analysis.bytes_in_flight display filter, which will result in two
frames. Select frame 5 and expand the SEQ/ACK analysis to see the bytes in
flight, as shown here:

 TCP bytes in flight

Calculate conversation timestamps: This option will monitor time values and
can help to find delays during TCP conversations.
Try heuristic sub-dissectors first: This option helps Wireshark attempt to
identify what type of application is used by using the port number to properly
dissect the packet. By selecting Try heuristic sub-dissectors first, Wireshark will
dissect the packet according to the behavior exhibited, and what Wireshark
believes is the appropriate protocol.
Ignore TCP timestamps in summary: Wireshark obtains the timestamp from the
operating system kernel. Use this option if you feel the timestamp may not be
accurate.

Managing TCP Connections Chapter 10

[246]

DO not call subdissectors for error packets: Wireshark does its best to properly
dissect each protocol according to the RFC. In some cases, the dissector may have
incorrectly identified an error. Therefore, in some cases, it's best to check this
option so that Wireshark does not continue to incorrectly dissect the packet and
throw more errors.
TCP experimental options with a magic number: In some cases, the capture
may include a conversation where the TCP option is experimental, possibly used
for testing. Because the option is experimental and not a standard, Wireshark
needs to use a magic number to identify the option, so it can be properly
dissected.
Display process information via IPFIX: IP flow information export is a format
used to analyze network traffic. When selected, Wireshark will display the
process information that can be used to analyze and troubleshoot IPFIX flows.
TCP UDP port: Use this option if you want to change the protocol's behavior. For
example, the simple service discovery protocol uses UDP port 1900. If you
modify this and enter TCP UDP port 1900, Wireshark will recognize and identify
UDP port 1900 as TCP.

For any of the options that change the default values, use caution! What
you enter may stick and may not allow you to undo the option without a
reinstall.

Doing analysis will involve investigating all aspects of a protocol's behavior. Now, you can
see how you can personalize your preferences when working with Wireshark. This final
section provides an overview of TCP teardown, which properly closes the connection
between two endpoints.

Tearing down a connection
When a TCP connection is complete, TCP tears down the connection by exchanging a series
of FIN packets, closing the port and refusing any more requests to communicate. Let's walk
through the entire process.

Managing TCP Connections Chapter 10

[247]

When two hosts are communicating, a TCP conversation goes through several stages:

TCP starts with a (three-way) handshake to set up the session. In many cases,
there are additional header options that outline and further define the
parameters of the conversation.
During the conversation, TCP monitors the communication and acknowledges
all data received to ensure complete delivery of the data.
Once the conversation is over, TCP ends the session with an exchange of FIN
packets between the two endpoints, which indicates that the session is complete.

Let's now take a look at how session teardown is represented in Wireshark.

In the Flows312.pcapng capture, packets 6, 7, 8, and 9 represent the session teardown, as
shown here:

 The four-packet FIN exchange

To close the session, TCP uses a FIN flag, as shown in the following screenshot, which
indicates that there is no more data:

 The TCP FIN flag set

Managing TCP Connections Chapter 10

[248]

To completely close a connection, TCP progresses from an established state to FIN-WAIT-1,
FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT, and then CLOSED, as
stated in RFC 793.

TCP will wait until both sides have said their final goodbyes and have sent a FIN packet,
and then the operating system will close the socket. Any future attempts at communicating
will be refused.

Summary
An important concept in establishing a connection-oriented session is to outline the
parameters of the conversation before any data is exchanged. In this chapter, we studied
how TCP begins a conversation by using a three-way handshake and took a closer look at
each step of the handshake. We saw how, once the handshake is complete, the operating
system creates a socket so that data exchange can take place.

In addition, we reviewed the TCP options that are exchanged during the three-way
handshake, such as SACK, MSS, and timestamps. This chapter also explained the TCP
protocol preferences and outlined how you can modify protocol preferences in Wireshark.
Then, we saw how TCP ends a session by exchanging FIN packets that signal each host to
close the session.

IP is the other dominant protocol in the TCP/IP suite. In the next chapter, we will take a
closer look at IPv4 and IPv6. So that you have a better understanding of this network layer
protocol, we'll begin with a thorough overview of IPv4 and examine the header format
along with each of the field values. We will then take a look at IPv6 along with the
corresponding header format and the field values. Because IPv4 is a completely different
format to IPv6, we will address how the two can coexist by using various tunneling
protocols when in a dual-stack environment.

Managing TCP Connections Chapter 10

[249]

Questions
Now it's time to check your knowledge. Select the best response, and then check your
answers, which can be found in the Assessment:

To filter only on packets that you have marked in Wireshark, use _____ in the1.
display filter.

marked:all1.
frame =black2.
frame.marked==13.
marked: on4.

____ is used to increase the maximum WS that is allowed.2.
NOP1.
Window scale2.
Timestamp3.
SACK4.

When using _____, the receiver will notify the sender if there are any missing3.
packets.

NOP1.
Window scale2.
Timestamp3.
SACK4.

TCP ends the session by exchanging packets indicating that each side should4.
close their respective socket. TCP uses the _____ flag to indicate that this is the
end of a conversation.

END1.
SYN2.
FIN3.
URG4.

If, in the TCP header, the sequence number is 1 and the next sequence number is5.
937, the packet has _____ bytes of data.

321.
3802.
9363.
33,3044.

11
Analyzing IPv4 and IPv6

Anyone who works in networking will, at some point, work with the Internet Protocol (IP),
as it is responsible for delivering data over a network. For that reason, it's important to have
a solid understanding of the IP. In this chapter, we'll take a closer look at the IP, which is
responsible for two key roles: addressing and routing data.

To strengthen your analytical skills, we'll start with a thorough overview of IPv4 and IPv6
and examine the header format of each protocol. You'll begin to understand how the field
values in each of the versions compare and contrast, along with the significance of each of
the fields. Since addressing is an important concept, we'll examine the use of special and
private IPv4 addressing. In addition, we'll compare the different address types used in
IPv6.

So that you can learn how to customize IPv4 and IPv6 in Wireshark, we'll evaluate the
protocol preferences. Finally, because IPv4 is a completely different format to IPv6, we'll
investigate how the two can coexist by using various tunneling protocols when in a dual
stack environment.

This chapter will address all of this by covering the following:

Understanding the purpose of the IP
Outlining IPv4
Exploring IPv6
Editing protocol preferences
Discovering tunneling protocols

Analyzing IPv4 and IPv6 Chapter 11

[251]

Understanding the purpose of the IP
The IP has two key roles: addressing using a logical IP address, and routing traffic. While
the transport layer transports the data, the network layer communicates with other devices
to determine the best logical path for the packets, if they have to pass through other
networks to reach their destination.

One of the main protocols in the network layer is the IP, which provides a best-effort,
connectionless service, as outlined here:

Best-effort means that there is no guarantee the data will be delivered. It's
similar to mailing a letter using general delivery. Although some mail is lost,
most of the time, it reaches its final destination.
Connectionless means that the IP does not retain any state information; that
process is left to the higher-level protocols.

Although IP can't guarantee delivery, it can prioritize traffic, so that the data can be
delivered faster. Because of the unpredictable nature of the internet, IP can be prioritized so
that time-sensitive data such as VoIP and streaming media is delivered at a higher
precedence than email or web pages. The priority is marked in a field value in IPv4 using
the differentiated services (DiffServ) field, or in IPv6 using the traffic class field.

Wireshark provides exceptional support for IP. In this chapter, we compare IPv4 with IPv6,
as both protocols are currently in use. To examine the headers in detail, we will use
the bigFlows.pcap packet capture found at http:/ /tcpreplay. appneta. com/ wiki/
captures.html#bigflows- pcap. Download the file and open in Wireshark.

Let's begin with an evaluation of IPv4.

Outlining IPv4
In 1981, RFC 791 outlined the specifications for IPv4, which had two principal tasks:
addressing and fragmentation, as defined in section 1.4, operation, at https:/ / tools. ietf.
org/html/rfc791#section- 1. 4.

As stated, one of the original roles of IPv4 was fragmentation, which breaks packets apart.
At the time, this was necessary because, in the early 1980s, most of the networks had
limited bandwidth and were unable to transmit large packets.

http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4
https://tools.ietf.org/html/rfc791#section-1.4

Analyzing IPv4 and IPv6 Chapter 11

[252]

Over time, efforts have been made to upgrade and replace the antiquated data pathways,
and much of the internet has been replaced by high-speed, fiber optic cables. As a result, on
today's networks, fragmentation is rarely used.

As time has passed, we can see that IPv4 is still influential in addressing, along with the
role of routing, in order to get data to its final destination.

IPv4 was standardized in 1983, and uses a 32-bit address space. Scientists identified at an
early stage the need for a larger address space. IPv6 has a 128-bit address space and
provides enhancements to the protocol in general, such as simplified network configuration
and more efficient routing. There is a slow migration to IPv6, mainly because the use of
private IP addressing on a LAN has extended IPv4's lifespan.

As a result, IPv4 is still widely used. So that you have the skills required to face everyday
network-related issues when dealing with IPv4, in this next section, we will examine the
header and the field values so that you can be confident when looking at a packet capture
that you can quickly drill down to the issue.

Dissecting the IPv4 header
The IPv4 header has several fields, as shown in the following diagram:

 IPv4 header

Some of the fields are rarely used, such as those that deal with fragmentation. Others
provide information that can help with troubleshooting, such as the address fields when
resolving network conflicts.

Analyzing IPv4 and IPv6 Chapter 11

[253]

To examine an IPv4 header, open bigFlows.pcap, and go to frame 1, as shown here:

 bigFlows frame 1—IPv4 header

The following section will list each field, and how many bits or bytes are used in each field,
along with information on what each field represents. We'll start with the version and
length fields.

Discovering the version and the length
The first two fields in an IPv4 header are as follows:

Version 4-bit: This field value indicates the version of IP that is in use. Many
devices support both IPv4 and IPv6. Therefore, it's important to obtain the
version, so the device knows how to treat the traffic. In frame 1, we see Version:
4.
Header length 4-bit: The header length is in multiples of four bytes, and is equal
to the base header and any options. Although the length can vary (due to
options), the minimum value must be five, which equals a header length of 20
bytes. In frame 1, the value shows Header Length: 20 bytes (5).

After these two fields, we see a field called DiffServ. Although the IPv4 header is shown in
the Type of Service graphic lists, Wireshark will decode an IPv4 Type of Service (TOS) field
as a DiffServ field, which is covered in the next section.

Analyzing IPv4 and IPv6 Chapter 11

[254]

Breaking down the type of service
The internet can be unpredictable, and this can affect time-sensitive data such as VoIP and
streaming media. In IPv4, the TOS field can be used to prioritize traffic so that it is
delivered at a higher precedence than email or web pages.

Wireshark presents the TOS field as DiffServ, which is similar to TOS in offering
prioritization, but with subtle differences and improvements to handle the real-time
protocols in use today:

DiffServ 8-bit: This field is separated into two functions: Quality of Service
(QoS) and Explicit Congestion Notification (ECN).

In frame 1, we can see the Differentiated Services Field: 0X00 (DSCP: CSO, ECN: Not-
ECT). Let's step through what this represents. We'll start with the first 6-bit of the DiffServ
field, which is used to represent the QoS requested when traveling through a network.

Ensuring QoS
QoS provides options to prioritize traffic. Most, but not all, devices support QoS. When the
priority is requested, the field value will indicate this by using one of the following class
selector (CS) values:

DSCP Binary Decimal Application Uses

CS0 000 000 0 DEFAULT

CS1 001 000 8 Scavenger YouTube, gaming, P2P

CS2 010 000 16 OAM SNMP, SSH, Syslog

CS3 011 000 24 Signaling SCCP, SIP, H.323

CS4 100 000 32 Real-time Telepresence

CS5 101 000 40 Broadcast video Cisco IPVS

CS6 110 000 48 Network control EIGRP, OSPF, HSRP, IKE

CS7 111 000 56

Differentiated services field values

Analyzing IPv4 and IPv6 Chapter 11

[255]

The first column shows the Differentiated Services Code Point (DSCP), which lists
the CS. As shown in frame 1, this field value summary shows DSCP: CS0 or Class Selector
0. CS0 is the default or best-effort setting, in that there is no priority assigned to this packet.
Traffic with this setting is delivered normally.

To see an example of a CS that is higher than the best-effort, go to bigFlows.pcap and
enter the display filter, ip.dsfield.dscp > 0. Select frame 4, where you will see the CS
value listed, as shown here:

 CS 1

Class Selector 1 (8) is used in scavenger applications such as YouTube, gaming, and
P2P, as this traffic would benefit from having a (slightly) higher priority when traveling
over the internet.

The last two bits of the DiffServ field are used to identify ECN, which helps to manage
congestion on the network.

Sending an ECN
You may not have been aware of the ECN and its significance; however, this can have an
impact in how devices communicate congestion on the network. Let's take a look at how
these two bits can improve data flow.

In the original RFC 791, the last two bits of the DiffServ field are Reserved for Future
Use, as shown in the following screenshot:

 Service bit assignments

In 2001, RFC 3168 (https:/ / tools. ietf. org/html/ rfc3168) found a use for the last two
bits. RFC 3168 outlined ECN, which provides a congestion notification on the network.
Let's see how ECN improves over the classic method of managing network congestion.

https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc3168

Analyzing IPv4 and IPv6 Chapter 11

[256]

Typically, when TCP experiences congestion, the hosts respond to dropped packets by
going into congestion control, which results in the following:

The client sends duplicate acknowledgments, indicating that there are missing
packets.
The server uses fast retransmission, which resends lost packets.

ECN is an improvement over this behavior by providing a congestion notification. This
ultimately prevents the additional traffic that occurs when there are duplicate
acknowledgments and fast retransmissions.

ECN uses both the TCP and IP header, as outlined here:

The IP header uses the two bits at the end of the differentiated services field to
indicate ECN-Capable Transport (ECT) and Congestion Experienced (CE).
The TCP header uses two flags: CWR and ECE.

When using ECN, the two bits of the DiffServ field identify the code point. In the following
table you'll see the bits, what the combination indicates, and what you might see in
Wireshark as an indicator when displaying the DiffServ field values:

Bits Indication Identifier
00 Non ECN-Capable Transport) Non-ECT
10 ECN Capable Transport) ECT(0)
01 ECN Capable Transport ECT(1)
11 Congestion Encountered CE

As you can see, code points 01 and 10 are basically the same.

In bigFlows.pcap frame 1, if we expand the IPv4 header, we see Explicit Congestion
Notification: Not ECN-Capable Transport (0), which means this connection doesn't
support ECN, as shown here:

Not ECT-Capable

The devices involved in the connection will communicate with one another and when
available, use ECN, which helps notify endpoints on congestion issues.

Analyzing IPv4 and IPv6 Chapter 11

[257]

Although the IP is a connectionless protocol, it provides methods to improve the priority of
traffic, along with ways of notifying devices of congestion issues on the network. The next
group of field values in the IP header deal with using fragmentation.

Fragmenting the data
In RFC 791, the IP was responsible for addressing and fragmentation. We'll discuss
addressing in a later section, but for now, let's outline what fragmentation is and why it
may be necessary.

On the network, various values are monitored:

The Maximum Segment Size (MSS) is the data payload.
The Maximum Transmission Unit (MTU) is the MSS plus the transport layer
headers.

When data is routed on the network, it may encounter a segment with an MTU that is
smaller than the packet size. If allowed, fragmentation can be used, which divides a
datagram into smaller pieces, so that they can be sent on the network with a restrictive
MTU.

The following fields are related to fragmentation: Identifier, Flags, and Fragment offset.
Total length is, in part, related to fragmentation. However, it has other implications as well.

Although, on today's networks, we rarely see fragmentation, it's a good idea to become
familiar with the fields and flags dealing with fragmentation for a couple of reasons:

During troubleshooting, you may need to look at the fields when determining
why data may not be getting through.
During a security assessment, since use of the fragmentation fields could be an
indication of malicious activity.

Let's look at the next four fields in the IP header:

Total length 16-bit: This indicates the value of the header length and any data.
The field value is 16-bit, which means the entire length cannot exceed 216, or
65,535 bytes.

Network devices monitor datagram lengths and may impose size restrictions. In
that case, if the packet is too large, it may have to be fragmented or rerouted in
order to be delivered.

Analyzing IPv4 and IPv6 Chapter 11

[258]

Identification 16-bit: This field is used to identify the datagrams when data is
fragmented. In that case, all fragments will have the same ID.
Flags: In an IP header, there are three flags, as shown in the following screenshot:

 IP flags

Fragment Offset 13-bit: After the three flags in the IP header, there is a Fragment
offset field, which provides information on how to reassemble the fragments
when using fragmentation.

In most cases, the IP header flags will be set at Don't Fragment, because, in today's
networks, fragmentation is not used as most pipelines have generous bandwidth with an
acceptable MTU.

Internet Control Message Protocol (ICMP) acts as a scout for the IP. When ICMP
encounters a network with an MTU that is smaller than the size of the packet, and the Don't
Fragment bit is set, the router will drop that packet. ICMP will then notify the source by
sending a type 3 code 4 ICMP message: Destination Unreachable: Fragmentation
Needed and Don't Fragment was Set.

To successfully send data through a network with restrictive bandwidth without using
fragmentation, the sending host must retransmit the data using a smaller MSS.

The next few fields are more administrative, as they hold values related to the number of
hops, the protocol that follows the IP header, and the checksum, which is used for error
detection.

Viewing TTL, protocol, and checksum
When looking at the IPv4 header, there are a few fields that are not directly related to
routing or addressing packets, but provide a role that may influence other types of
behavior. The following three fields hold a specific value:

Time to live 8-bit: The fathers of the internet realized early on that there must be
a way to stop a packet from continually traveling through the network. This can
happen if there is a misconfiguration and/or the packet is in a routing loop.

Analyzing IPv4 and IPv6 Chapter 11

[259]

During regular operations, this most likely won't happen. However, in case there
is a routing loop, the Time to Live (TTL) field value in an IP header is the number
of routers or hops a packet can take before dropping the packet. Every time the
packet reaches a router, the number decrements by 1. When the TTL value
reaches 0, the packet is dropped and an ICMP type 11 (TTL expired in transit) is
sent to the sender. The TTL field is 8-bit, so the maximum value is 28, or 255 hops.

In frame 1, the TTL field is set at Time to live: 64, which is the default value for
this field. The value varies as it is OS-dependent. To see the TTL values of various
OSes, go to https:/ / subinsb. com/default- device- ttl- values/ .

Protocol 8-bit: The protocol field identifies the higher-layer protocol that follows
the IP header. The field identifies the protocol (which is usually a transport layer
protocol) that is carried in the datagram. In frame 1, we see the value as Protocol:
UDP (17).
Header checksum 16-bit: This field is used to house the checksum value. Similar
to the checksum in the TCP header, this value is used for error detection. In
frame 1, we see the checksum and notification from Wireshark that the checksum
validation is disabled:

Header checksum: 0xee5e [validation disabled]
[Header checksum status: Unverified]

In most cases, it's best to disable validation as the value will be incorrect due to the value
offloading to the NIC card.

One of the more significant elements in the IP header is addressing, as we'll discuss in the
following section.

Learning IPv4 addressing
In this section, we'll examine the last two fields in an IPV4 header. In addition, we'll review
the different classes in IPv4, along with an overview of special and private IP addresses:

Source and destination address 32-bit: Each field houses the source or
destination IPv4 address, which is represented in an easy-to-understand dotted
decimal format.

Within each class, there are special and private IP addresses. Let's take a look at those
concepts.

https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/
https://subinsb.com/default-device-ttl-values/

Analyzing IPv4 and IPv6 Chapter 11

[260]

Comparing IPv4 classes and addresses
When the RFC was written, developers had a concept to subdivide IP into five classes or
formats of addresses. IPv4 addresses are divided into classes A-E, as shown here:

Class Range Use
A 0.0.0.0 to 127.255.255.255 Assignable (to companies)
B 128.0.0.0 to 191.255.255.255 Assignable (to companies)
C 192.0.0.0 to 223.255.255.255 Assignable (to companies)
D 224.0.0.0 to 239.255.255.255 Multicast
E 240.0.0.0 to 255.255.255.255 Experimental

Classes of IPv4 addresses

As outlined, classes A, B, and C are assigned mainly to companies. Class D is for multicast
only, and class E is experimental, and not used.

IPv4 has several ranges of special and private IPv4 addresses, as outlined next.

Reviewing special and private IP addressing
IPv4 has several ranges of special and private IPv4 addresses:

Purpose Range
Class A Private IP 10.0.0.0 - 10.255.255.255
Class B Private IP 172.16.0.0 - 172.31.255.255
Class C Private IP 192.168.0.0 - 192.168.255.255
Loopback Range 127.0.0.0 - 127.255.255.255
APIPA 169.254.0.0 - 169.254.255.255
Broadcast 255.255.255.255

Special and private IPv4 addresses

The table shows a list of the predominant special and private IPv4 addresses. To see a
complete list, visit https:/ /en. wikipedia. org/ wiki/ Reserved_ IP_addresses.

While it is rare, options for IPv4 may be used, as discussed in the following section.

https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.
https://en.wikipedia.org/wiki/Reserved_IP_addresses.

Analyzing IPv4 and IPv6 Chapter 11

[261]

Modifying options for IPv4
With IPv4, it may be necessary to use options to provide source routing information,
timestamps, and others. Several of the IP options have been deprecated and are no longer
used. For a more compete discussion, refer to RFC 6814. A current list can be found at
https://www.iana. org/ assignments/ ip- parameters/ ip-parameters. xhtml#ip-
parameters-1, which was updated on May 3, 2018.

When used, the options field must be a multiple of 32-bit, or 4 bytes. Padding may be
required so that the header is a multiple of 32-bit.

Now that we have reviewed IPv4, let's take a closer look at IPv6.

Exploring IPv6
Early on, scientists realized that IPv4's 32-bit address space would be exhausted. Although
no one had an exact date, plans were made to replace IPv4 with an improved version, IPv6.
In 1998, the IPv6 RFC was published and can be found at https:/ /www. ietf. org/ rfc/
rfc2460.txt.

IPv6 has a number of enhancements, including the following.

Streamlined header: Although the header is larger, due to the expanded address
space, it is more streamlined.
Flow label: In IPv6, there is a flow label. The field value is available for
identifying streams that require specialized treatment, such as real-time traffic.
Support for extensions and options: While IPv4 can add options, IPv6 does so
with more ease. IPv6 provides the ability to add options, such as fragmentation,
which has parameters to fragment the data, and hop by hop, which ensures that
all devices in the path read the option.

The IPv6 header has room for the larger address spaces. However, as shown in the
following diagram, the header is streamlined, in that there are not as many field values:

 IPv6 header

https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt
https://www.ietf.org/rfc/rfc2460.txt

Analyzing IPv4 and IPv6 Chapter 11

[262]

To follow along and examine an IPv6 header, open bigFlows.pcap, and go to frame 347.
The IPv6 header is as shown in the following screenshot:

bigFlows frame 347—IPv6 header

Note that IPv6 addresses are significantly larger as they are 128-bit as opposed to 32-bit for
an IPv4 address. The address is shown using hexadecimal notation, as opposed to dotted
decimal notation, which is used in IPv4.

In the next section, we'll review each field in IPv6 and the number of bits or bytes each field
contains, along with information on what each field represents.

Navigating the IPv6 header fields
As we'll see, the IPv6 header removes unnecessary field values and adds only what is
needed to transport data. Let's step through the field values and learn their significance,
starting with the version, a field to house the TOS, and a label dedicated to holding a value
for a specific flow.

Identifying the version, traffic class, and flow label
The first three fields in an IPv6 header are as follows:

Version 4-bit: This field indicates the IP version that is in use. In frame 347, we
see version 6.

Analyzing IPv4 and IPv6 Chapter 11

[263]

Traffic class 8-bit: When sending data on the internet, some traffic requires
special handling and prioritization. The traffic class field houses two (2) values,
TOS and ECN:

TOS: The first 6-bit of this field is used to communicate what type
of service is requested. TOS uses the same DSCP values as IPv4.
Frame 347 uses the default value, Differentiated Services
Codepoint: Default (0).
ECN: The last 2-bit of this field are used to indicate congestion on
the network in the same way as IPv4. In frame 347, this value is
Explicit Congestion Notification: Not ECN-Capable Transport
(0).

Flow label 20-bit: This is a new field that can be used to identify a specific flow
of information in order to provide sequencing or request special handling by
routers in the path. In frame 347, we can see Flow Label: 0x00000. In RFC
2460, Appendix A: Semantics and Usage of the Flow Label Field, there is an expanded
discussion on the flow label. However, after two decades, the flow label is
considered experimental, and is generally not used.

The next three fields deal with similar values found in an IPv4 header, but have subtle
differences, as shown next.

Evaluating the length, next header, and hop limit
In an IPv6 header, the next three fields provide information on the length of the payload,
the protocol that follows the IP header, and how many hops the packet can take before
going away. The fields are as follows:

Payload length 16-bit: The payload length represents the packet's payload,
which includes higher-layer headers, data, and any extension headers. Similar to
IPv4, the entire length cannot exceed 216, or 65,535 bytes. In some cases, the
payload may exceed 65,535 bytes, which can occur when using extension
headers. If the value of this is greater than 65,535 bytes, the field value is set to
zero (0).
Next header 8-bit: This field identifies the higher-layer protocol that follows the
IP header. This is similar to the protocol field in IPv4 and uses the same values as
IPv4 to identify the higher-layer protocol. However, if there is an extension
header, this field will indicate what extension header follows the IPv6 header. In
2017, IANA updated the list for the next header field. The list can be found at
https:// www. iana. org/ assignments/ protocol- numbers/ protocol- numbers.
xhtml.

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Analyzing IPv4 and IPv6 Chapter 11

[264]

Hop limit 8-bit: In IPv4, the TTL field value in an IP header is the number of
routers or hops a packet can take before dropping the packet. In IPv6, this is the
same concept. However, the field is more reflective of what it does today. This
field uses 8-bit to hold a value not greater than 255. If the hop limit reaches 0, the
packet is discarded.

In frame 347, the field value is Hop Limit: 1, which makes sense as this frame is
DHCPv6 multicast from a host trying to get an IP address.

As with IPv4, the last two fields in an IPv6 header are the address fields, as discussed next.

Examining IPv6 addresses and address types
IPv6 has specific addressing requirements. In this section, we'll examine the last two fields,
along with an overview of IPv6 address types:

Source and destination address 128-bit: The source and destination addresses
are 128-bit fields to accommodate the IPv6 address. Wireshark displays the
address in hexadecimal numbers separated by colons, as opposed to dotted
decimal notation, which is used in IPv4.

With IPv6, there are various address types, as opposed to classes. Let's now take a look at
the different types you may encounter.

Comparing IPv6 address types
IPv6 does not use a broadcast as in IPv4. However, there are several types of addresses, as
listed here:

Global Unicast is like a public IPv4 address. The address is globally recognized
and can be routed on the internet.
Link local is used to communicate with hosts on the same sub-network. This
address always starts with FE80.
Unicast is a single host on a network.
Multicast packets are delivered to all nodes on a network using a single
multicast address.
Anycast is used to send data to multiple locations with the same IP address. The
packets are delivered to the closest (or nearest) destination.

Analyzing IPv4 and IPv6 Chapter 11

[265]

In frame 347, we see the source and destination addresses:

Source: fe80::9186:dbbd:2a45:50c2
Destination: ff02::1:2

When possible, Wireshark will use appropriate shortcut methods, as shown in the
destination address. An IPv6 shortcut removes leading zeros and collapses two or more
blocks that contain consecutive zeros.

For many, but not all, protocols, Wireshark provides a means to modify the way in which
Wireshark presents the data. The following gives us some insight of how to adjust
preferences for both IPv4 and IPv6.

Editing protocol preferences
In Wireshark, you can modify most protocols by doing the following:

Right-clicking while on the header and selecting Protocol Preferences, where
you will see a list of preferences.
Go to Edit | Preferences | Protocols, and then select the appropriate protocol.

Let's start with the protocol preferences for IPv4, as this is currently the most commonly
used protocol on a LAN today.

Reviewing IPv4 preferences
To modify IPv4 preferences, you can use one of the methods listed previously, or you can
right-click while on the header and select Protocol Preferences, and then select the Open
Internet Protocol Version 4 preferences... shortcut, as shown here:

Analyzing IPv4 and IPv6 Chapter 11

[266]

 IPv4 preference shortcut

Once you select the shortcut, a list of preferences will be listed, as shown in the following
screenshot:

 IPv4 preferences

Analyzing IPv4 and IPv6 Chapter 11

[267]

Once there, you can modify the selections as follows:

Decode IPv4 TOS field as DiffServ field: RFC 791 used TOS to classify traffic.
Over time, this field was modified to identify traffic using DiffServ, which allows
for a wider range of classification. In most cases, this should be enabled.
Reassemble fragmented IP datagrams: When necessary, IPv4 packets may be
fragmented. When enabled, this will reassemble fragmented IP datagrams.
Show IPv4 summary in protocol tree: When enabled, this summarizes the
header contents. For a large capture, enabling this may impact performance.
Validate the IPv4 checksum if possible: In most cases, this is not enabled.
Support packet-capture from IP TSO-enabled hardware: TCP Segmentation
Offload (TSO) is a performance-boosting technique used in a virtualized
environment. When used, the packet length may be inaccurate. Enabling this
option will attempt to correct any errors.
Enable IPv4 geolocation: Wireshark uses the IP addresses to identify packet
origin using the GeoIP databases. Select if you want to use this option.
Interpret Reserved flag as Security flag (RFC 3514): On April 1, 2003 (April
Fool's Day), Steven M. Bellovin wrote an RFC that the reserved bit in the IP
header should be used by malicious actors to flag the packet if it contains
malware, so that IDS and firewalls will know it contains malware. If used, the bit
is called the evil bit.
Try heuristic sub-dissectors first: This option helps Wireshark attempt to
identify what type of application is used by using the port number to properly
dissect the packet.
IPv4 UDP port: Use this option if you want to change the protocol behavior to a
specific port, when used on the LAN.

For any of the options that make a change to the default values, caution is advised, as what
you enter may stick and will not allow you to undo the option without a reinstall.

As you can see, there are many ways to customize the preferences for IPv4. Next, let's take
a look at the options for IPv6.

Adjusting preferences for IPv6
You can modify the preferences in IPv6 by going to Edit | Preferences and then selecting
the Open Internet Protocol Version 6 preferences... shortcut. This will open a dialog box as
shown here:

Analyzing IPv4 and IPv6 Chapter 11

[268]

 IPv6 preferences

Once there, you can modify any of the options as described here:

Reassemble fragmented IPv6 datagrams: When enabled, this will reassemble
fragmented IPv6 datagrams.
Show IPv6 summary in protocol tree: When enabled, this summarizes the
header contents.
Enable IPv6 geolocation: Wireshark uses the IP addresses to identify packet
origin using the GeoIP databases. Select if you want to use this option.
Perform strict checking for RPL Source Routing Header (RFC 6554): If enabled,
this will aid in troubleshooting streams using Routing Protocol for Low-
Power and Lossy Networks (RPL).
Try heuristic sub-dissector fist: Wireshark will attempt to identify what type of
application is used by using the port number to properly dissect the packet.
Display IPv6 extension headers under the root protocol tree: IPv6 has several
extension headers, such as the routing header and the fragment header. Enabling
this option will display the headers under the root protocol tree.
Use a single field for IPv6 extension header length: Enabling this will display a
single field for the IPv6 extension header length (if any). If this is not enabled, the
field will appear on two lines as follows:

Length: 0 (8 bytes)
[Length: 8 bytes]

Analyzing IPv4 and IPv6 Chapter 11

[269]

Support packet-capture from IPv6 TSO-enabled hardware: TSO is a
performance-boosting technique used in a virtualized environment. When used,
the packet length may be inaccurate. Enabling this option will attempt to correct
any errors.
IPv6 UDP port: Use this option if you want to change the protocol behavior.

For any of the options that will change the default values, caution is advised, as what you
enter may stick and will not allow you to undo the option without a reinstall.

The migration from IPv4 to IPv6 has been tepid, as many network administrators continue
to use IPv4 on the LAN, mainly because of the flexibility of using private IP addresses. The
following outlines how the two protocols can coexist with one another on the same
network, using various tunneling protocols.

Discovering tunneling protocols
While some organizations have decided to make the switch to a dedicated IPv6 network
setting, many are running a dual stack environment, where hosts use both IPv4 and IPv6
and must communicate with one another.

As evidenced, an IPv4 header is completely different to an IPv6 header. In order to have
traffic pass from an IPv4 network through an IPv6 network, and vice versa, the traffic must
use a tunneling protocol.

A discussion of the various protocols is outlined in RFC 7059, found at https:/ /tools.
ietf.org/html/rfc7059, written in 2013. Some of the tunneling protocols include the
following:

ISATAP (short for Intra-Site Automatic Tunnel Addressing Protocol):
Transmits data to and from hosts that use IPv6 through an IPv4 network
Teredo: Generated in a Windows OS to allow IPv4 hosts to connect to an IPv6
network when network address translation (NAT) is in place
GRE (short for Generic Routing Encapsulation): Creates a point-to-point IPv6
connection within an IPV4 network

https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059
https://tools.ietf.org/html/rfc7059

Analyzing IPv4 and IPv6 Chapter 11

[270]

The following diagram from RFC 7059 shows the proper format for encapsulation of an
IPv6 packet within an IPv4 packet:

Encapsulation of an IPv6

Teredo wraps or encapsulates an IPv4 packet with an IPv6 header so that the packets can
travel over an IPv6 environment. To see an example of Teredo tunneling, go to https:/ /
www.cloudshark.org/ captures/ c0b7d1a1d1ec? filter=
frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo, and open in Wireshark.
Go to frame 29, where we see the IPv4 packet encapsulated in an IPv6 header using UDP as
the transport protocol, as shown here:

IPv4 packet encapsulated in an IPv6 header

Although there are several tunneling protocols, they all do essentially the same thing;
encapsulate one header by using another header, so that data can travel through the
network. Because of this, there is additional overhead in creating the tunnel, as well as
adding the additional headers.

Because of our complex network environment, you will most likely run into tunneling
protocols at some point while troubleshooting your own network.

https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo
https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo

Analyzing IPv4 and IPv6 Chapter 11

[271]

Summary
By now, you should have a solid understanding of the role and purpose of the IP, and its
influence in addressing and routing data. In this chapter, we covered a brief history of IP.
We now know that both versions of IP can do the job of routing and addressing; however,
there are several differences between the IPv4 and IPv6 headers. We then examined and
explained each of the field values of both IPv4 and IPv6. To give you a better
understanding of the two protocols, we compared some of the similarities along with some
of the differences between IPv4 and IPv6.

To help strengthen your knowledge of addressing, we briefly covered the classes of IPv4
addresses, along with reviewing the different types of IPv6 addresses. We then looked at
how you can personalize the settings for IPv4 and IPv6 by modifying the protocol
preferences. Finally, because of the need for both IP versions to coexist on today's networks,
we compared the different types of tunneling protocols in use today.

In the next chapter, we will learn about ICMP, the sister protocol to IP that works in the
network layer of the OSI model. We will evaluate both ICMP, which is used for IPv4, and
ICMPv6, which is used with IPv6. We'll take a deep dive into how ICMP works in both
versions, and you will have a better understanding of the two types of messages: error
reporting and queries. At the end of the chapter, you'll see how ICMP is the scout for IP
and how its use is essential in delivering data.

Questions
Now it's time to check your knowledge. Select the best response, and then check your
answers, which can be found in the Assessment:

Class selector 6 in the DiffServ field is used with _____.1.
Signaling1.
Broadcast video2.
Network control3.
Realtime4.

The IP address 172.18.23.119 is a2.
Class C IPv4 address1.
Class B private IPv4 address2.
Class E IPv4 address3.
Class D private IPv4 address4.

Analyzing IPv4 and IPv6 Chapter 11

[272]

An IPv6 address has _____ bit.3.
321.
482.
643.
1284.

In IPv4, we use a TTL value that indicates the number of hops it can take when4.
traveling through the network. In IPv6, this field value is called _____.

Router pass1.
Class stop2.
TTL3.
Hop count4.

An IPv4 header has _____ flags.5.
11.
22.
33.
44.

12
Discovering ICMP

Everyone is familiar with Internet Protocol (IP), which is responsible for routing and
addressing traffic. However, many people are not familiar with Internet Control Message
Protocol (ICMP), the unsung hero of the network layer. ICMP is a powerful protocol that
helps IP do its job.

In this chapter, we'll learn about ICMP, which is the sister protocol to IP and works in the
network layer of the OSI model. First, we'll go through an overview, so that you have a
general understanding of the main functions of ICMP. We will then evaluate both ICMP
(used with IPv4) and ICMPv6 (used with IPv6) so that you can compare some of the main
differences.

In addition, you'll get a better understanding of the two types of messages: error reporting
and queries. We will look at common type and code values, as well as some basic firewall
guidelines in terms of what types of ICMP messages to allow on your network. At the end
of the chapter, you'll see how ICMP is the scout for IP and plays a major role in delivering
data.

This chapter will address all of this by covering the following:

Understanding the purpose of ICMP
Dissecting ICMPv4 and ICMPv6
Sending ICMP messages
Evaluating type and code values
Configuring firewall rules

Discovering ICMP Chapter 12

[274]

Understanding the purpose of ICMP
Early on, scientists developed protocols that drove internet traffic. In addition, they
identified potential issues that might prevent traffic from reaching its destination,
especially when using IP, as it doesn't guarantee delivery and has no way of
communicating network problems with end devices. ICMP overcomes the deficiencies of IP
by sending query messages and generating error reports on possible issues that may
require attention.

The network layer is responsible for addressing and routing traffic. IP is a best-effort,
unreliable protocol. As a result, ICMP is essential for data delivery and must be
implemented by every IP module. ICMP communicates issues that prevent data delivery.
Common errors include the network or port being unreachable. ICMP can also issue
queries such as an echo request/reply, which is used in the ping network utility.

Because there are two IP versions, there are two versions of ICMP, which have roles that
are specific to their respective IP version:

IPv4 uses ICMPv4
IPv6 uses ICMPv6

An ICMP packet is nested within an IP packet, as shown in the following diagram:

ICMP message within an IP packet

All ICMP messages have a common structure that begins with the type, code, and
checksum, as shown along the top of the following diagram:

ICMP message

Discovering ICMP Chapter 12

[275]

The three fields are consistent in an ICMP header. After the header, you'll find the data
payload, where the contents will depend on the ICMP type and code. Let's start with the
three header fields, as outlined in the next section.

Understanding the ICMP header
To communicate information, the ICMP message must provide information within the
header, as follows:

8-bit type: This field indicates the type, such as type 0—echo reply.
8-bit code: The code field further defines the type field. For example, type
3—destination unreachable, might have a corresponding code 2—protocol
unreachable.
16-bit checksum: This field holds a numeric value used for error detection.

Following the type, code, and checksum are the contents of the ICMP message. The
contents will depend on what was sent, which can either be an error report or a query
message.

To see an example of an echo request/reply, go to CloudShark at https:/ /www. cloudshark.
org/captures/fe65ed807bc3 and open icmp.pcap in Wireshark.

In this example, frame 1 of the echo request/reply shows a type 8, code 0 message. Expand
the ICMP header, as shown in the following screenshot:

ICMP echo request details

https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3

Discovering ICMP Chapter 12

[276]

As shown in the preceding screenshot, the details for this type of ICMP message include
fields for identifiers and sequence numbers, which help to match corresponding echoes and
replies. The entire payload is encapsulated in a frame, as shown in the following diagram:

ICMP message in an Ethernet II frame

Here, we see the various headers, which includes the frame header, the IP header, the
ICMP message, and the data.

ICMP does not have a transport layer header, as it does not exchange or
transport data. Its primary role is to test for reachability and report
transmission errors.

After the Type, Code, and Checksum fields, there is a data portion within the ICMP
message. The following section explains what you might find in the data payload.

Investigating the data payload
In an ICMP datagram, the payload is dependent on the type of message. In a standard
ICMP request/reply, the data payload is meaningless and will have either ASCII characters
or NULL values, depending on the OS. For example, in the Cloudshark icmp.pcap
graphic echo request/reply (shown in the Sending messages section), the data portion is a
string of characters: 6162636465666768696a6b6c6d6e6f707172737475767761.

With normal ICMP behavior, when there is an error, ICMP must return the IP header, plus
the first eight bytes of the original datagram, to the sender. As shown in the following
screenshot, ICMP has returned an ICMP type 3 and code 13, which means a firewall is
blocking the request:

Discovering ICMP Chapter 12

[277]

ICMP type 3 and code 13

The data portion in an ICMP request can be modified. For example, ping monitoring, by
Paessler (https:// www. paessler. com/ ping-monitoring), has a watermark, as shown in the
following screenshot:

Ping request with a watermark

https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring
https://www.paessler.com/ping-monitoring

Discovering ICMP Chapter 12

[278]

In this case, the watermark is not malicious. However, an ICMP packet can be modified to
exfiltrate data by using the Loki tool to execute a covert channel attack. Data is embedded
within an ICMP packet and is sent through the network, which poses a security risk. As a
result, the network administrator should tune devices to enable the inspection of ICMP
data, and send an alert if the payload contains a data pattern, as this may be an indication
of a covert ICMP tunnel.

We can now see that ICMP is an essential network layer protocol that is used alongside
both IPv4 and IPv6 to provide error reporting and informational messages. Let's take a look
at the two versions: ICMPv4 and ICMPv6.

Dissecting ICMPv4 and ICMPv6
Although IPv4 and IPv6 are both responsible for routing and addressing data, the two
protocols have a number of differences. As a result, there are two versions of ICMP.
ICMPv4 is used with IPv4, and ICMPv6 is used with IPv6.

In the next section, we'll explore ICMPv4 alongside ICMPv6 so that you understand some
of the basic roles and functions in reporting network issues.

Let's start with ICMPv4, which is commonly referred to as ICMP.

Reviewing ICMPv4
ICMPv4, or simply ICMP, is used alongside IPv4 to communicate network issues that
prevent data from being delivered. ICMP error and query messages can alert end systems
when there are connectivity issues, and can also obtain diagnostic information from
intermediary systems such as the round-trip time.

As powerful as ICMP is, it cannot make IP a reliable protocol; it only assists in data delivery
by providing error messages and information. There are times when the causes of delays in
data transmission are outside of the messages ICMP can send and report. In that case, it's
up to TCP to notify the host of transmission errors during delivery.

Discovering ICMP Chapter 12

[279]

To see an example of an error, we can use this example on CloudShark. Go to https:/ /www.
cloudshark.org/captures/ 155db9732c91 and then open the file in Wireshark, as shown in
the following screenshot:

ICMP destination unreachable

I have removed the coloring rules to make the graphic more visible, as Wireshark views
this as an error and will show up with black coloring. In this capture, ICMP is reporting an
error. In the lower half of the screenshot, we see the IP datagram with an IPv4 header,
followed by the ICMP header.

Now that we have reviewed some of the basics of ICMP, let's take a look at ICMPv6, which
has many of the same functions, but which also provides additional roles to support IPv6.

Outlining ICMPv6
While IPv4 and IPv6 are similar in terms of their overall functions, IPv6 has many
additional benefits. The benefits include options and extensions, improved multicast
routing, and Stateless Autoconfiguration (SLAAC).

As a result, ICMPv6 was developed for IPv6 and is also an important protocol. Along with
ICMPv4 for IPv4, ICMPv6 is used to communicate updates or error messages. As stated in
RFC 4443, "the base protocol must be fully implemented by every IP version six node."

https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91
https://www.cloudshark.org/captures/155db9732c91

Discovering ICMP Chapter 12

[280]

An ICMPv6 message is like an ICMPv4 message in that the header contains the type, code,
and checksum, followed by the contents, which will depend on the type and the code. In
the following screenshot, frame 524 has an ICMPv6 message:

ICMPv6 router solicitation

 In the frame details, we see the following:

Ethernet II: Frame header
Internet Protocol Version 6: IP header
Internet Control Message Protocol v6: Router solicitation

Although, in many ways, ICMPv4 and ICMPv6 are similar, ICMPv6 has more
responsibilities. IPv6 no longer uses Address Resolution Protocol (ARP) broadcasts or
IGMP. Consequently, ICMPv6 provides additional services to communicate issues on the
network.

Both ICMPv4 and ICMPv6 can provide insight into network activity. The next section
explores the two main functions of ICMP: reporting errors and queries.

Discovering ICMP Chapter 12

[281]

Sending ICMP messages
ICMP messages are grouped into two categories: error reporting and queries. Some
messages are specific to each version; however, a few are common to both versions, as
shown here:

ICMPv6 messages

For both categories, each ICMP packet has a Type, Code, and Checksum field. The payload
for queries is different from error messages, as each has a different purpose, as we'll see in
the following sections.

Let's start with a review of how ICMP reports errors.

Reporting errors
ICMP error messages report on network issues that prevent data from being delivered. The
more commonly sent error messages are grouped into categories that have a specific
purpose, as discussed here:

Destination unreachable is where a router informs the host that the requested
destination address can't be reached.
Time exceeded is sent when the hop limit reaches zero.
Parameter problems can be reported when there is an issue in determining a
field value in the header or extension header.

Discovering ICMP Chapter 12

[282]

As discussed, ICMPv6 has many of the same functions as ICMP, but also provides
additional roles to support IPv6. As a result, when reporting errors, you may see this on an
IPv6 network:

Packet too big is sent when a device cannot send the data, as the packet is larger
than the Maximum Transmission Unit (MTU) of the outgoing link.

In either version, when there is an error, ICMP helps reconstruct the possible reasons why
the data did not get to its final destination. If appropriate, the sending host will adjust the
payload so that the data can be delivered successfully.

When an error message is sent, the message includes the header, as well as the IP header,
and then the first eight bytes (or 64 bits) of the original datagram that caused the error, as
shown in this screenshot:

ICMP redirect message

Within the redirect message, you see an IP header, and then an ICMP message followed by
the first eight bytes (or 64 bits) of the original IP and ICMP header.

Common error messages include destination unreachable and redirection. Errors are
received and acted upon by TCP, IP, or user applications. In some cases, ICMP messages
are ignored. However, some error messages must not be ignored, such as redirect
messages, which will cause an automatic update to the host's routing table.

As we can see, ICMP error messages provide additional information so that the host can see
exactly what happened. However, ICMP can also request and provide information, as
discussed in the following section.

Discovering ICMP Chapter 12

[283]

Issuing queries
An ICMP query has two messages, a request and a reply, that work together and have a
specific purpose: to provide status updates and information.

Two requests and replies that are common to both ICMP and ICMPv6 are as follows:

Echo request/reply: Tests for reachability
Router solicitation/advertisement: Provides a way to solicit and receive router
information that provides the IP addresses of that interface

One example is an echo request/reply, which is used in the ping network utility. To see an
example, go to CloudShark, at https:/ / www. cloudshark. org/ captures/ fe65ed807bc3, and
open the file in Wireshark, as shown in the following screenshot:

ICMP echo request/reply

ICMPv6 needs to provide more specific information to assist IPv6 in delivering data, as
we'll see next.

https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3

Discovering ICMP Chapter 12

[284]

Providing information using ICMPv6
IPv6 no longer uses ARP broadcasts or IGMP. As a result, ICMPv6 provides additional
services to communicate issues on the network, which include the following:

Neighbor solicitation/advertisement: These types are used for the Neighbor
Discovery Protocol (NDP) to provide a method for hosts to share their existence
on the network.
Multicast listener query/report: This is used to exchange group multicast
information to routers and hosts.

To see an example of the many ICMPv6 messages communicating to other devices on the
network, go to CloudShark (https:/ / www. cloudshark. org/ captures/ fe65ed807bc3) and
then download and open the file in Wireshark. Create a flow graph by completing the
following steps:

In the display filter, enter icmpv6 and press Enter to run the filter.
Go to Statistics, and then Flow Graph.
Once open, go to the lower left-hand corner and select the Limit to Display filter.

The results are as shown in the following screenshot, where I have zoomed in to show the
transactions:

ICMPv6 flow graph: zoomed-in

https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3
https://www.cloudshark.org/captures/fe65ed807bc3

Discovering ICMP Chapter 12

[285]

Some of the ICMPv6 reports have additional details. For example, in the following
screenshot, we can see the details provided in a single report:

ICMPv6 multicast listener report

As you can see, ICMPv6 is a powerful protocol. In addition to error and information
messages, ICMPv6 provides additional information on IPv6 router and host configuration.

As discussed, ICMP headers hold a value for Type and Code. Let's take a look at these two
fields in order to help us understand what ICMP is trying to tell us.

Discovering ICMP Chapter 12

[286]

Evaluating type and code values
The original objective of ICMP was to provide updates on network status and other
informational messages. In this section, we'll review the type and code values for ICMP and
ICMPv6. Let's start with ICMP.

Reviewing ICMP type and code values
ICMP has been used for IPv4 for many years. There are many different types of ICMP
messages, some of which should look familiar, such as these:

Type 0: Echo reply
Type 3: Destination unreachable
Type 5: Redirect
Type 8: Echo
Type 9: Router advertisement

Some, but not all, ICMP types have a corresponding set of code values that further define
the ICMP message. For example, type 3 and type 9 both have a set of code values.

Type 3 (destination unreachable) has many code values. Some of these code values are as
follows:

Code 0: Net unreachable
Code 1: Host unreachable
Code 2: Protocol unreachable
Code 3: Port unreachable
Code 4: Fragmentation needed and Don't fragment was Set

Type 9 router advertisement only has two code values:

Code 0: Normal router advertisement
Code 16: Does not route common traffic

In the next section, we'll review the type and code values for ICMPv6.

Discovering ICMP Chapter 12

[287]

Defining ICMPv6 type and code values
Along with ICMP for IPv4, ICMPv6 is used to communicate updates or error messages and
has its own set of types to identify messages. Because ICMPv6 provides additional
information on IPv6 router and host configuration, you'll find specific type values that help
provide this information.

A shortlist of ICMPv6 type values includes the following:

Type 1: Destination unreachable
Type 2: Packet too big
Type 3: Time exceeded
Type 4: Parameter problem
Type 130: Multicast listener query
Type 131: Multicast listener report

In some cases, the type will have a corresponding code value to further define the message.
If the type does not have a corresponding code value, the code value will be set to 0, as
shown in the ICMPv6 multicast listener report screenshot.

Let's look at the following examples.

Type 1 (destination unreachable) has several code values. Some of them are as follows:

Code 0: No route to destination
Code 1: Communication with destination administratively prohibited
Code 2: Beyond the scope of the source address
Code 3: Address unreachable

Type 3 (time exceeded) has two codes, as follows:

Code 0: Hop limit exceeded in transit
Code 1: Fragment reassembly time exceeded

As we have learned, ICMP headers hold a value for Type and Code to convey information
on what is happening on the network. However, some of the ICMP types are no longer
used since, over time, they have been found to be ineffective and are considered
deprecated, such as these examples:

Type 33: IPv6 Where-are-you (deprecated)
Type 34: IPv6 I-am-here (deprecated)
Type 35: Mobile registration request (deprecated)

Discovering ICMP Chapter 12

[288]

At some point, you may need to reference an ICMP type or code value. To
see a summary of the most up-to-date values, visit https:/ /www. iana.
org/:

For ICMP: https:/ / www.iana. org/ assignments/ icmp-
parameters/ icmp- parameters. xhtml

For ICMPv6: https:/ /www. iana. org/ assignments/ icmpv6-
parameters/ icmpv6- parameters. xhtml

Now that you have seen how ICMP works, you should also see that ICMP can provide a
great deal of information on a network and devices. As a result, it's important to
understand that this protocol can be used in malicious ways, and that the firewall rules
should be tuned to prevent malicious activity, as outlined in the next section.

Configuring firewall rules
ICMP supports IP to help ensure data delivery; however, it can also be used in malicious
ways. For example, ICMP can be used to conduct reconnaissance as a precursor to an
attack, or even to help evade firewall rules. In this section, we'll provide an example of how
ICMP can be used to obtain information on the network. Then, we'll evaluate some of the
firewall rules.

First, let's start with an overview of a ping sweep, which is used to see which network hosts
might be awake.

Sending malicious ping sweeps
ICMP can be used as an effective scanning tool as it can determine a great deal of
information about a network. Malicious actors use various techniques to scan a network for
vulnerable hosts. Using ICMP can determine which hosts are alive and responding:

ICMP ping sweep

https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml

Discovering ICMP Chapter 12

[289]

A ping sweep, or ping scan, uses a series of ICMP echo request packets on a local area
network to see what hosts are alive and responding. Once a responding host is identified,
the hacker will send more advanced probes to obtain additional information.

Along with using a series of echo requests/replies, there are several ICMP queries that
malicious actors can use to scout information before launching an attack. For example, in
the following screenshot, an ICMP timestamp request is sent in the hope of getting a reply
to help the software rule out different OSes:

ICMP timestamp request

As you can see, ICMP can be used to obtain information about a network and hosts. As a
result, it's best to be aware of the various types and only allow ICMP packets that are
absolutely necessary, as we'll see in the next section.

Discovering ICMP Chapter 12

[290]

Allowing only necessary types
Because ICMP can affect the operation of important system functions and obtain
configuration information, hackers use ICMP messages while conducting reconnaissance
on a network or in an active attack. As a result, a best practice is to block certain ICMP
messages with an Access Control List (ACL) firewall, especially at border routers.

Diagnostic utilities, such as Ping and Tracert, require ICMP. As a result, a network
administrator must decide what types of ICMP packets should be allowed on a
network. When setting up your firewall, keep in mind the only essential ICMP traffic
destination unreachable, along with the corresponding codes, which are type 3 for ICMP
and type 1 for ICMPv6.

All other ICMP types are optional, depending on whether you would like to allow them on
your network. Depending on your organization, some other types that are allowed may
include the following:

Type 8/0: Echo request/reply
Type 11: Time exceeded

ICMP helps to ensure that data gets delivered; however, it can be used in malicious ways.
Therefore, you need to make sure that firewalls are properly tuned.

Summary
Hopefully, by now, you can see the many aspects of ICMP, which is a significant protocol
in the TCP/IP suite. We looked at the purpose of ICMP: a method to communicate issues
that prevent data delivery. We compared ICMPv4 and ICMPv6, which have similar
functions; however, we identified how ICMPv6 has a bigger role. So that you can use this
protocol while troubleshooting, we looked at ICMP messages that communicate with hosts
to report on transmission errors, along with query messages that attempt to obtain
information from a host.

To better understand the ICMP type and code values, we took a look at how they work in
communicating information. In addition, we saw that there are some ICMP types that you
will rarely see as they are now deprecated and/or not supported. By now, you should see
that ICMP is a powerful protocol that helps to move traffic on a network, but we covered
how ICMP can be used in malicious ways. As a result, you now understand the need to
configure firewall rules that allow or deny specific types of ICMP traffic in order to reduce
the threat of malicious ICMP traffic on the local area network.

Discovering ICMP Chapter 12

[291]

In the next chapter, we will review ARP and begin with an overview of the role and
purpose of ARP. So that you understand how ARP works and what an ARP packet looks
like, we will cover an ARP transaction along with a closer look at ARP headers and fields.
We will see the importance of a different type of ARP, called a Gratuitous ARP. Finally, we
will look at ARP attacks and how to identify and defend against these types of threats.

Questions
Now, it's time to check your knowledge. Select the best response, and then check your
answers with those in Assessment:

ICMP communicates issues that prevent data delivery. Common issues include1.
the network or port being _____.

Stateful1.
Inspected2.
Unreachable3.
ARP enabled4.

Some of the ICMP types are no longer used since, over time, they have been2.
found to be ineffective and are considered _____.

Quenched1.
Unreachable2.
Digital3.
Deprecated4.

In ICMPv6, a _____ message can be sent when there is an issue determining a3.
field value in the IPv6 header or the IPv6 extension header.

Time exceeded1.
Parameter problems2.
Packet too big3.
Source quench4.

Discovering ICMP Chapter 12

[292]

When setting firewall rules, the only essential ICMP traffic is type _____. The4.
others are optional.

31.
12.
83.
24.

ICMP can be used in a malicious way. One way is a ______ scan that uses a series5.
of ICMP echo request packets on a network to see what hosts are alive and
responding.

Payload1.
Ping2.
Port3.
Checksum4.

13
Understanding ARP

We know that on a Local Area Network (LAN), we use a physical address or MAC
address. When a packet is delivered from a website back to you on the LAN, how does the
device find you when the packet only has an Internet Protocol (IP) address as an address?
That is the responsibility of the Address Resolution Protocol (ARP), which resolves an IP
address to a MAC address so that your packet gets delivered.

In this chapter, we'll learn how ARP works and why it is an important protocol in ensuring
the timely delivery of data. We'll then take a closer look at ARP headers and fields in
Wireshark. We'll examine the different types of ARP you may encounter while doing
analysis, including gratuitous, reverse, inverse, and proxy. Finally, so that you are aware
that ARP may be used in a malicious way, we'll discuss ARP attacks and possible ways to
defend against these types of threats.

This chapter will cover the following:

Understanding the role and purpose of ARP
Exploring ARP headers and fields
Examining the different types of ARP
Analyzing ARP attacks along with some defense methods

Understanding the role and purpose of ARP
ARP resolves an IPv4 address to a MAC address on a LAN. ARP is one of the three main
network layer protocols that includes ARP, IPv4, and ICMP, all of which are essential in
delivering data.

Understanding ARP Chapter 13

[294]

In the following diagram, we see that ARP is actually in between layer 3 and layer 2, as
ARP resolves an IP address (network layer) to a MAC address (data link layer). However,
many consider ARP as a layer 3 protocol:

The OSI model: network layer

Now that you can see where ARP resides in the OSI model, let's look at what happens
within a LAN and how ARP does its job.

Resolving MAC addresses
ARP resolves an IP address to a MAC address on a LAN so that the frame can be delivered
to the appropriate host. Now, let's step through why this is important.

When data travels through different networks, packets use a logical address or IP address
along with routing to get data to its final destination. The IP provides addressing and
routing to get data to its final destination. Once the data is at the desired network, the IP
address is no longer needed. The reason is that on a LAN, the data link layer uses the MAC
address of the destination machine, rather than the IP address.

Therefore, to deliver the data to its final destination, a MAC or physical address is needed
to place in the frame header. The device will first check its local cache, and if there is no
entry, the device issues an ARP request (broadcast) and will wait for a reply.

Understanding ARP Chapter 13

[295]

As shown in the following diagram, Host A needs the MAC address for the gateway
(which is the router interface for the LAN). Host A issues an ARP broadcast that asks who
has the IP address 10.40.10.101, tells 10.40.10.109, and waits for a reply. The gateway
then sends an ARP reply that lets the host know that 10.40.10.101 is at MAC
address BB:20:62:C4:57:23.

ARP broadcast on a network

To see an example of an ARP request and reply so that you can follow along, go to https:/
/crnetpackets.files. wordpress. com/ 2015/ 08/ arptrace. zip, download the file, extract
it, and open it in Wireshark, as shown here:

ARP request/reply

https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip
https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip

Understanding ARP Chapter 13

[296]

In the ARP trace file, the first two packets are the ARP request/reply:

In frame 1, the device sends an ARP request. The source MAC address is
00:15:5d:0f:49, which is the MAC address of the device requesting the
resolution. The destination MAC address is ff:ff:ff:ff:ff:ff, which is a
broadcast address. As a result, when this ARP broadcast was sent, every host on
the network received the frame. However, only one will respond.

A broadcast message is sent from one host to all devices on a network.

In frame 2, the device identifies itself with an ARP reply. The source MAC
address is d4:be:d9:af:3e:4d, which is the device with the IP address
172.16.2.27, and the destination MAC address is 00:15:5d:0f:49, which is
the MAC address of the device requesting the resolution.

When doing a capture in Wireshark, it is normal to see several ARP broadcasts before
seeing an ARP reply.

We now know that ARP resolves an IP address to a MAC (or physical) address so the
device has a MAC address that can be placed in the frame header in order for the data to be
delivered. So that the device is able to quickly retrieve the MAC address of a device on the
network, it holds the IP address to MAC address pairings in a temporary holding area
called the ARP cache. The next section explains an ARP cache, how it's used, and how long
the table entries remain.

Investigating an ARP cache
Network devices, such as routers, switches, and PCs, hold a form of an ARP cache table,
which is a storage area to store IP to MAC address pairings. To see your own ARP cache on
a Windows machine, open Command Prompt. Then, enter arp -a to see entries in the ARP
table, as shown here:

Understanding ARP Chapter 13

[297]

The arp -a command

As shown, the ARP cache table lists the following:

Internet Address: The IP address
Physical Address: The MAC address
Type: Either static or dynamic

The ARP cache values will time out after a period of time. Once the timeout limit is
reached, the entry will go away. If the OS needs the MAC address and there is no entry in
the ARP table, it will need to issue a new ARP request.

The ARP table timeout values are specific to the system. For example, a
Cisco switch has a default timeout timer of 4 hours.

In a Windows OS, you can determine the timeout value by going to the Command-Line
Interface (CLI) and running the netsh interface ipv4 show interface
NNN command, where NNN is the name of the interface you want to check.

Understanding ARP Chapter 13

[298]

As shown in the screenshot, we see the output of running netsh interface ipv4 show
interface Wi-Fi, which provides information on that interface:

netsh show interface

Within the output you will see Base Reachable Time is 30000 ms or 30 seconds, which
is how long ARP can live in the cache before going away.

That means the ARP cache will out after 30 seconds. After that, if a MAC address is needed
for a specific IP address, the system must send an ARP request out on the network.

We can see how ARP works in an IPv4 network, but what about an IPv6 network? The
following section outlines how the Neighbor Discovery Protocol (NDP) takes the place of
ARP in an IPv6 network.

Replacing ARP with NDP in IPv6
ARP is essential in an IPv4 network, but what happens in an IPv6 network? IPv6 doesn't
use ARP. ARP is replaced with the NDP, which resolves an IP address to a MAC address.

Understanding ARP Chapter 13

[299]

To see an example of the NDP, go to http:/ /packetlife. net/ captures/ protocol/ icmpv6/
and open the file in Wireshark. As shown in the following screenshot, the first packet in the
IPv6_NDP.pcap trace file is a Neighbor Solicitation (NS), followed by a neighbor
advertisement:

Example of the NDP

An NS has the same purpose as an ARP broadcast; however, IPv6 doesn't use broadcasts. It
uses Internet Control Message Protocol Version 6 (ICMPv6) with a solicited-node
multicast address message that is directed to a specific host. As a result, if you are doing an
analysis on a network that only uses IPv6, you may only see a few ARP broadcasts, if any.

As we can now understand, ARP is a common protocol that you will most likely see while
doing analysis, as IPv4 is still widely used. So that you better understand a standard ARP
request and reply, the following section provides an overview of an ARP header and the
field values.

Exploring ARP headers and fields
In a trace file, if you use ARP in the display filter, you will most likely see a series of ARP
requests and replies. Within each ARP header, there are several field values, such as
opcode, sender, and target IP address, which help ensure that the ARP requests/replies are
received. Let's first take a look at a typical ARP transaction.

Identifying a standard ARP request/reply
In the ARPTrace trace file, take a look at the first two packets, which are the ARP
request/reply. Expand each ARP request/reply, and you will see that ARP is wrapped in an
Ethernet frame. However, there are no IP or transport layer headers.

http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/
http://packetlife.net/captures/protocol/icmpv6/

Understanding ARP Chapter 13

[300]

Expand frame 1 to see a standard ARP request that has several field values, which provide
information about the transaction, as shown here:

Frame 1: ARP request

Frame 2 is the ARP reply, where the host at 172.16.2.27 replies with its MAC address,
which is d4:be:d9:af:3e:4f, as shown here:

Frame 2: ARP reply

Once the ARP reply is received, the MAC address is resolved. As shown in both the Frame
1: ARP request and Frame 2: ARP reply screenshots, there are several field values, which we'll
review next.

Understanding ARP Chapter 13

[301]

Breaking down the ARP header fields
Within an ARP header, there are several values that provide information on the ARP
transaction, as outlined in the following list:

Hardware type: This lists the type of connection for the session. In frame 1, the
hardware type is listed as Ethernet (1), which is common in today's networks.
However, there are other types, such as IPsec tunnel (31) and Fiber Channel
(18), as shown in the list found at https:/ /www. iana. org/ assignments/ arp-
parameters/ arp- parameters. xhtml#arp- parameters- 2.
Protocol type: This lists the internetworking protocol in use for the session. In
frame 1, the protocol type is listed as IPv4 0x0800, which is standard on today's
networks.
Hardware size: The number of bytes of a hardware address. Frame 1: ARP request
lists Hardware size: 6. A MAC address is 6 bytes or 48 bits, which is a standard
MAC address length.
Protocol size: This lists the bytes in the IP address. Frame 1 lists Protocol size: 4.
An IPv4 address is 4 bytes or 32 bits, which is the length of an IPv4 address.
Opcode: This lists what operation the sender is executing. Although there are
many, as listed at https:/ / www. iana. org/assignments/ arp- parameters/ arp-
parameters. xhtml#arp- parameters- 1, the opcode is most likely request (1), as
shown in the Frame 1: ARP request screenshot, or reply (2), as shown in the Frame
2: ARP reply screenshot.
Sender MAC address: Frame 1 lists the sender MAC address as
00:15:5d:0f:49:18, which is the MAC address of the host sending the request.
Sender IP address: This is the network address of the sender. Frame 1 lists
172.16.2.3 as the sender's IP address.
Target MAC address: This is the MAC address of the target. In frame 1, which is
an ARP request, the target MAC is listed as all zeros, or 00:00:00:00:00:00.
There is no MAC address listed because the target MAC address is unknown.
Target IP address: This is the network address of the target. Frame 1 lists Target
IP address: 172.16.2.27.

Now that we can see the header and fields in a standard ARP header, let's take a look at
some other types of ARP you might encounter during an analysis.

https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1
https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1

Understanding ARP Chapter 13

[302]

Examining different types of ARP
On an IPV4 network, the most common types of ARP messages are request/replies:

A standard ARP request is a broadcast message that is sent out on the network
requesting a resolution of an IP address to a MAC address.
A standard ARP reply is a unicast message that is sent to the requesting host that
provides the address resolution.

However, as we'll see next, there are a few other types of ARP messages. We'll start with
the Reverse Address Resolution Protocol (RARP), which is the reverse of ARP.

Reversing ARP
The opposite of ARP is RARP. With RARP, a client requests its IPv4 address from a
computer network by using its MAC address.

Using an example found at https:/ /wiki. wireshark. org/ SampleCaptures? action=
AttachFiledo=view target= rarp_ request. cap, we can see the host requesting its IP
address, as shown in the following screenshot:

RARP

https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap
https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap

Understanding ARP Chapter 13

[303]

The sender's MAC address is 00:00:a1:12:dd:88. The IP address is unknown, so it is
listed as 0.0.0.0. The opcode is reverse request (3). RARP is an obsolete protocol
that has been replaced by more efficient protocols such as the Dynamic Host
Configuration Protocol (DHCP).

Next, let's look at a lesser-known type of ARP called the Inverse Address Resolution
Protocol (InARP).

Evaluating InARP
InARP is an extension of the ARP protocol. We can see an example of this by going to
CloudShark at https:/ /www. cloudshark. org/ captures/ 87be3b4b6625 and opening it in
Wireshark, as shown here:

InARP

https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625
https://www.cloudshark.org/captures/87be3b4b6625

Understanding ARP Chapter 13

[304]

InARP is used by the frame relay in the same way as a standard ARP in resolving an IP
address. However, InARP does not use broadcasts as it already knows the target hardware
address, which is the Data Link Connection Identifier (DLCI) of the desired station. As
shown in the following diagram, the sending router, 99.0.0.2, attempts to resolve the IP
address of DLCI 3091:

InARP over frame relay

While you may not see an InARP very often, while conducting analysis, you may see a type
of ARP called a gratuitous ARP, as outlined next.

Issuing a gratuitous ARP
On a LAN, it's not uncommon to see a gratuitous ARP, which is an unsolicited ARP used to
prevent duplicate IP addresses on a network, which can cause conflicts. To see an example,
go to https://www. cloudshark. org/ captures/ 54af88021aa8, and then download and
open the file in Wireshark. Or, you can view the details in CloudShark.

In this example, we see a gratuitous ARP where the source and destination IP addresses are
both set to the IP of the sending machine. As shown in the following screenshot, you can
see Sender IP address: 192.168.130.128, which is the same as Target IP address:
192.168.130.128:

Gratuitous ARP

https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8
https://www.cloudshark.org/captures/54af88021aa8

Understanding ARP Chapter 13

[305]

As shown, a gratuitous ARP request is sent as a broadcast; however, no reply is expected.
This type of ARP is a way for a host to share IP and MAC address pairings so that all hosts
on the network can update their ARP tables.

Next, we'll see an example that is not actually an ARP type, but a technique used on the
network called a proxy ARP.

Working on behalf of ARP
A proxy is something that works on behalf of another entity. A proxy ARP is not actually
an ARP type but a technique instead. Here are a few examples:

We can use a proxy when a machine with a public IP address is in a private
network behind a firewall. In this case, a way to resolve the MAC address is by
using a proxy ARP, which conceals the existence of the hidden host behind the
firewall and makes it appear as if it is in front of the firewall. The firewall uses a
proxy ARP to and from the hidden device to maintain the illusion that the
machine is on the public side.
A proxy ARP can be used in a LAN when a host in one subnetwork is separated
by a proxy router. When an ARP broadcast is sent to a host on another
subnetwork, the router responds with its own MAC address and acts as a proxy
to the host on the other subnetwork, as shown here:

Proxy ARP

Understanding ARP Chapter 13

[306]

You can now understand that there are many different types of ARP messages and
techniques that may be used on a LAN. ARP is an essential protocol but can be a vulnerable
target. In the next section, let's take a look at some ARP attacks and some defense methods.

Analyzing ARP attacks
ARP is a widely used protocol that resolves an IP address to a MAC address. In most cases,
ARP works well to ensure devices can find one another. However, the protocol was
standardized many years ago, and there has never been a way to ensure the authenticity of
ARP messages.

As a result, there are a few ARP attacks that can misdirect traffic and interfere with normal
network behavior. In response, we'll also take a look at some of the ways to defend against
these types of attacks.

Comparing ARP attacks and tools
ARP is used on a LAN, which can be a vulnerable target. Some of the attacks and
techniques used to penetrate an ARP framework include spoofing and storming, which can
misdirect traffic or cause problems on the network. Let's start with using ARP in a way that
can trick or deceive hosts on a network.

Discovering ARP spoofing
We know that ARP resolves an IP address to a MAC address on a LAN, so the frame can be
delivered to the appropriate host.

ARP spoofing is also known as an ARP cache poison and is used in man-in-the-middle
attacks. The attacker will spoof its MAC address so instead of traffic going to the actual
host, traffic will go to the host with the spoofed MAC address.

If a malicious actor redirects traffic, they can intercept traffic to obtain sensitive
information, redirect traffic, or prepare for a more advanced attack.

In addition to ARP spoofing, an attacker can launch an ARP storm, as discussed next.

Understanding ARP Chapter 13

[307]

Reviewing the ARP storm
On a LAN, it's normal to see ARP request/reply messages. However, when there is a large
number of ARP requests, as shown in the following screenshot, this is an indication of an
ARP storm, which is a form of Denial of Service (DoS) attack:

ARP storm

Let's step through how an ARP storm works:

In order to efficiently deliver data, a switch uses a Content Addressable Memory
(CAM) table that contains pairings of MAC addresses and their associated
physical switch ports.
An ARP storm floods the CAM table and overwhelms the switch with thousands
of bogus entries.
At that point, the switch simply acts as a hub and sends data out all of the ports,
which can do the following:

Allow sniffing with the possible exposure of sensitive data.
Prevent the network from functioning normally.

Understanding ARP Chapter 13

[308]

As you can see, an ARP storm is possible. In Wireshark, you can monitor for ARP storms.
To modify this, go to the ARP preferences by selecting an ARP header, right-click, and
select Protocol Preferences | Open Address Resolution Protocol Preferences…, which will
display the following screenshot:

ARP/RARP preferences

Once in the Preferences menu, you can modify the following:

Number of requests to detect during period: Enter an appropriate value, for
example, 30 requests
Detection period (in ms): Enter an appropriate value, for example, 100 ms

Although Wireshark can't prevent an ARP storm, it can help you identify a potential attack.

We now know that there are attacks such as spoofing and storming. How are these attacks
launched? The following section outlines some of the tools that are available to launch an
ARP attack on a LAN.

Understanding ARP Chapter 13

[309]

Understanding ARP attack tools
ARP attacks can occur on a LAN, as there are many available tools. Many of the tools are
built into Kali Linux. Kali Linux is a collection of software tools designed to assist the
network administrator with conducting ethical hacking on a network. For a complete list,
go to https://tools. kali. org/ tools- listing. However, Kali Linux can be used in
malicious ways as well. Some of the tools to launch an ARP attack include the following:

Dsniff is a suite of tools that includes arpspoof, which allows a hacker to
advertise a spoofed MAC address as a way to misdirect traffic.
Ettercap is an easy-to-use tool for ARP attacks, along with other tools that make
it possible to intercept network traffic.
Arpoison is a free command-line tool that allows a hacker to custom build an
ARP packet and define the sender and target addresses.

As you can see, there can be several ways to launch an ARP attack, and hackers have many
tools at their disposal. The following section outlines some of the ways we can defend
against ARP attacks.

Defending against ARP attacks
As discussed, ARP can be a vulnerable target. In addition to the attacks listed, there are
others as well. The network administrator should be aware of methods to detect as well as
defend against these types of attacks. Some possible defensive strategies, so you do not fall
victim to an ARP attack, include the following:

Intrusion Detection/Intrusion Prevention Systems (IDS/IPS): Tune devices to
monitor for abnormal ARP activity such as ARP storms, which generally have
specific signatures. The device should send an alert if unsolicited replies are
detected.
Static ARP entries: Hardcode address mappings to prevent spoofing. Although
an option, this isn't the best method as it doesn't scale well with large networks.
Firewalls: Use an access-control list with packet filtering to ensure only
authorized traffic is on the network segment.
Anti-ARP software: This software monitors for spoofing, which can present itself
as two IP addresses having the same MAC address, as well as other methods, to
detect malicious ARP behavior.

https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing
https://tools.kali.org/tools-listing

Understanding ARP Chapter 13

[310]

Secure Neighbor Discovery (SEND): On an IPv6 network, it is possible to use
the SEND protocol. This is an extension of the NDP that provides authentication
by using cryptographic techniques and reduces the ability to successfully launch
an ARP spoofing attack on a LAN.

Summary
By now, you have a better understanding of ARP, how it works, and why it is important for
delivering data. So that you have an appreciation of what takes place during an ARP
request and reply, we stepped through the process, and then reviewed the ARP headers
and field values. Then, we discussed the fact that, in addition to a standard ARP, you may
encounter different types of ARP while doing analysis in Wireshark, such as a gratuitous
ARP or InARP. Finally, so that you are aware that ARP may be used in a malicious way, we
covered some of the attacks, along with a few of the tools used to launch an ARP attack. We
then summarized some of the methods you should employ to defend against this type of
attack.

The next chapter will look at how Wireshark can help identify and troubleshoot network
latency issues. You'll be able to appreciate the importance of time values on a network and
discover several ways to display time. In addition, you'll see the value of coloring rules
within Wireshark and the Intelligent Scrollbar that helps highlight interesting traffic.
Finally, you'll learn how to use the expert system, so that you can zero in on trouble spots
during an analysis.

Questions
Now, it's time to check your knowledge. Select the best response, and then check your
answers with those in Assessment:

On a LAN, the _____ layer uses the MAC address of the destination machine,1.
rather than the IP address.

Network1.
Presentation2.
Data link3.
Transport4.

Understanding ARP Chapter 13

[311]

The opcode lists what operation the sender is executing. Although there are2.
many, the most common opcodes are _____.

10 and 121.
0 and 82.
7 and 83.
1 and 24.

With _____, a client requests its IPv4 address from a computer network by using3.
its MAC address.

InARP1.
RARP2.
Gratuitous ARP3.
Proxy ARP4.

The _____ is an unsolicited ARP used to prevent duplicate IP addresses on a4.
network. No reply is expected.

InARP1.
RARP2.
Gratuitous ARP3.
Proxy ARP4.

An ARP_____ is a large number of ARP requests that creates a DoS attack and5.
prevents the network from functioning normally.

Storm1.
Spoof2.
Gratuitous3.
Inverse4.

4
Section 4: Working with Packet

Captures
This section examines ways to troubleshoot network latency issues, discover how to subset
traffic, save and export captures, and how to use CloudShark.

This section is comprised of the following chapters:

Chapter 14, Troubleshooting Latency Issues
Chapter 15, Subsetting, Saving, and Exporting Captures
Chapter 16, Using CloudShark for Packet Analysis

14
Troubleshooting Latency Issues

On an enterprise network, it's challenging to manage the everyday demands of keeping the
network operational 99.999 percent of the time. The network administrator constantly
monitors for issues that can cause a disruption. This situation can be volatile as one error
can cause the network to go down. Is there a solution that can help us mitigate this
challenge? Fortunately, there is help, as Wireshark has several built-in tools that help you
troubleshoot the network.

In this chapter, we will address network latency and recognize some of the reasons why
packet loss and slow response times occur. You'll gain a better appreciation of the
importance of time values while troubleshooting. Once you complete the chapter, you'll
have gained a better understanding of the coloring rules that help identify issues and are
used in the Intelligent Scrollbar, so you can quickly identify and move to trouble spots in
the capture. Finally, you'll also learn how to navigate the expert system, which subdivides
the alerts into categories and guides the analyst through a more targeted evaluation.

This chapter will address all of this by covering the following:

Analyzing latency issues
Understanding the coloring rules
Exploring the Intelligent Scrollbar
Discovering the expert system

Analyzing latency issues
On today's networks, there are many different types of devices that communicate and
exchange information. Applications and devices include Unified Communication (UC)
systems, intermediary devices, the Internet of Things (IoT), mobile devices, and the many
other types of traffic that are added to the network on a daily basis. As a result, there are
multiple reasons that packet loss and slow response times occur. Once it's determined that
there is an issue, the troubleshooting process begins.

Troubleshooting Latency Issues Chapter 14

[314]

With troubleshooting connectivity issues, there are many approaches. All have the same
goal: identify the trouble spots and narrow the scope to determine the root cause of the
problem. Root causes can include misconfiguration and malware or hardware malfunction.
In the following sections, we will analyze some of the root causes behind network delays
and discuss three main concepts: latency, throughput, and packet loss.

Grasping latency, throughput, and packet loss
When users complain of slow response times, the network administrator can do a quick
packet capture and observe evidence of trouble. We will walk through some examples to
demonstrate how you can identify issues on the network. If you would like to follow along,
go to https://www. cloudshark. org/ captures/ 9a5385b43846, download the client-
fast-retrans.pcap capture, and open it in Wireshark.

Once the capture is open, we can scroll through the capture. Around packets 20-21, we can
see potential problems, as indicated by the black coloring rule seen within the capture:

client-fast-retrans.pcap

https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846
https://www.cloudshark.org/captures/9a5385b43846

Troubleshooting Latency Issues Chapter 14

[315]

As shown, both duplicate acknowledgments and fast retransmission are evident in packets
20-21 and 23-24. Both duplicate acknowledgments and fast retransmissions can occur on a
network. However, when there is an excessive number of them, this is generally an
indication of congestion.

Generally, there are three indicators in measuring performance: latency, packet loss, and
throughput. Let's take a look at each of these and how they can point to evidence of an
unstable and sluggish network, beginning with latency.

Computing latency
Latency is a measurement of how long it takes to transmit a packet from one point to
another. Network latency bogs down the network and can create delays. In addition, it can
cause the loading of web pages to slow down and can also have a negative effect on voice
and video applications as well.

Latency can be measured using Round-Trip Time (RTT), which is how long it takes to
make a complete round trip from A to B, and then from B to A.

RTT can increase and vary during the course of transmission. To see the RTT for a
particular stream in Wireshark, go to the menu and choose Statistics | TCP Stream Graphs
| Round Trip Time, as shown here:

Stream Graphs menu

Once you select Round Trip Time, Wireshark will open the graph. Once in, make sure you
are viewing the correct stream direction, which you can modify by using the Switch
Direction button in the lower right-hand corner.

Troubleshooting Latency Issues Chapter 14

[316]

An optimal RTT remains steady, as shown in the following screenshot. However, you won't
always see a steady RTT:

Steady RTT

To see an example of an RTT slowly increasing, follow these steps:

Open the client-fast-retrans.pcap file in Wireshark.1.
Generate a stream graph by going to TCP Stream Graphs | Round Trip Time.2.
Once selected, Wireshark will open the graph, as shown here:

Troubleshooting Latency Issues Chapter 14

[317]

RTT graph for stream 0

When looking at the graph from client-fast-retrans.pcap, we see that the RTT
between 230.211.187.172:80 and 74.203.22.229:49683 (or stream 0) is increasing
over time. This is most likely due to latency on the network.

Latency refers to how long it takes to transmit a packet and is measured in RTT. When
there is high latency, the sender has difficulty sending data, and as a result, less data is able
to get to the receiver. Next, let's take a look at throughput.

Measuring throughput
Throughput is how much data is sent and received (typically in bits per second) at any
given time. In Wireshark, we can measure this as well as goodput, which is useful
information that is transmitted.

Network media can affect throughput. For example, fiber optics has better throughput than
copper. However, congestion and delays can also affect how much data is getting through.
When there is decreased throughput, packet loss can occur, as discussed next.

Troubleshooting Latency Issues Chapter 14

[318]

Experiencing packet loss
When there is latency, data may not be getting through, which can lead to packet loss.
Losing or dropping packets on a network occurs for a variety of reasons. Packet loss is
determined by the number of packets lost for every 100 packets sent. Endpoints and
applications work to manage transmission delays and network congestion. However, there
are times when excessive packet loss occurs and the network goes into recovery mode. In
Wireshark, we see evidence of packet loss with indicators such as keep-alive, duplicate
acknowledgments, and retransmissions.

Wireshark is capable of identifying many common transmission errors and can calculate
delays in transmission and interruptions in the data flow by using time values. The
following section provides an insight into the significance of time while doing analysis.

Learning the importance of time values
When doing analysis, time values can provide an insight into the delays in transmission. In
Wireshark, there are choices as to how you want your time value displayed, which include
the following:

Seconds Since Beginning of Capture
Seconds Since Previously Captured Packet
Seconds Since Previously Displayed Packet

It's important to use the correct time format. In most cases, it's best to select Seconds Since
Previously Displayed Packet, which will show delays whether or not you used a display
filter.

Network latency and transmission errors occur on the network. Fortunately, Wireshark has
a way to help identify common issues in the form of coloring rules. The following section
outlines Wireshark's coloring rules and how you can use them in your analysis.

Understanding the coloring rules
Built within Wireshark are coloring rules or filters, which identify or highlight specific
traffic. Locate the default coloring rules by going to the menu and choosing View |
Coloring Rules, as shown in the following screenshot:

Troubleshooting Latency Issues Chapter 14

[319]

Default coloring rules

Once you are in the Coloring Rules menu, you can edit, delete, or add your own as needed.
In addition to using the default coloring rules, you can create and share rules. An example
can be found at https:/ /wiki. wireshark. org/ Jay%27s_ Coloring_ Rules.

Each rule is processed until Wireshark finds a match, according to the order shown in the
console. To modify the order of a particular rule, select the rule and then drag it to the
desired position.

A check mark on the left-hand side indicates an active rule. To deactivate, deselect the rule
you do not want Wireshark to consider.

To edit a rule, complete the following:

Select and double-click the coloring rule you want to modify.
You can then edit the name or the filter used, along with the background and
foreground colors.

https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.
https://wiki.wireshark.org/Jay%27s_Coloring_Rules.

Troubleshooting Latency Issues Chapter 14

[320]

Although Wireshark can colorize packets, in some cases, the coloring can be distracting.
You can disable the coloring rules by selecting the icon. The coloring rules icon is generally
underneath the Telephony menu, as shown in the following screenshot. However, the
position can vary in different versions, platforms, or layouts:

The coloring rules icon

Wireshark summarizes the coloring rules that are in use in the frame metadata. In addition
to the information listed pertaining to the time, frame, and protocols, you will see the
coloring rules used. To see an example of the coloring rules summary, follow these steps:

Open the client-fast-retrans.pcap file.1.
Go to frame 20 and expand the frame metadata by clicking the arrow to the right2.
of the label for frame 20.
At the end of the metadata list, you will see the following:3.

Coloring rules in the frame metadata

As you can see, the coloring rules provide guidelines on what traffic to home in on during
analysis. For the coloring rules to work, they must be enabled; however, they are active in
most cases. Next, let's take a look at how Wireshark incorporates the use of the coloring
rules within the Intelligent Scrollbar.

Troubleshooting Latency Issues Chapter 14

[321]

Exploring the Intelligent Scrollbar
In addition to seeing indications of problems within a capture, you can also easily spot
issues using the Intelligent Scrollbar, which is on the right-hand side of the packet list
panel. In the following screenshot, we see indications of network congestion within the
packet list:

bigFlows using coloring rules

The Info column header on the right-hand side lists several indications of trouble that
warrants further investigation. These include the following:

[TCP Out-Of-Order]
[TCP Retransmission]
[TCP Dup ACK 587#1]

In addition to the coloring in the packet list, on the right-hand side, there is a distinct
coloring pattern based on the coloring rules set in the application, which is the Intelligent
Scrollbar. The administrator can click on a color band and go directly to the specified
packet in order to zero in on a possible problem. Once you click on a band, Wireshark will
adjust the packet list to display the area of concern.

Troubleshooting Latency Issues Chapter 14

[322]

We can see how the coloring rules and the Intelligent Scrollbar identify transmission errors
and trouble spots in the capture. In the next section, we will explore common transmission
errors that occur on a network.

Common transmission errors
Long delays in the intermediary devices cause latency, delayed, and/or dropped packets
and other negative effects. When troubleshooting errors in Wireshark, you will see
evidence of transmission errors.

Some common indications include duplicate acknowledgments, keep-alive segments, and
fast retransmissions.

As this information may indicate latency and gaps in the delivery of data, it's important to
understand the meaning of what the packets are trying to tell you. Let's start with an
overview of duplicate acknowledgments.

Seeing duplicate acknowledgments
In a normal TCP conversation, the client acknowledges every byte received by transmitting
an acknowledgment, with the ACK field value set as the next expected byte. When more
than one acknowledgment is sent by the client (with the same ACK field value), this is said
to be a duplicate acknowledgment.

To understand what a duplicate acknowledgment is, let's step through a standard TCP
transaction:

In the course of a normal TCP data transaction, TCP sequences and1.
acknowledges every byte of data.
The client acknowledges the data received by setting the ACK flag in the TCP2.
header, as shown here:

Troubleshooting Latency Issues Chapter 14

[323]

The TCP-ACK flag set

The client places a value of the next expected byte in the Acknowledgment field.3.
When the client sends an ACK 180 (acknowledgment number: 180) flag, the4.
client is saying to the server, So far, I've received 179 bytes of data, and I am ready for
more (bytes), starting with (byte number) 180, as shown in the following diagram:

Normal TCP acknowledgment

The server doesn't wait for confirmation of delivery to send more data. Instead,5.
the data is sent concurrently with the acknowledgments.

With TCP, an ACK is expectational, in that the ACK is sent with the next
expected byte to be sent by the server.

If the client sends another ACK 180 flag, the client is (again) saying to the6.
server: So far, I've received 179 bytes of data and I am ready for more (bytes), starting
with (byte number) 180.

Troubleshooting Latency Issues Chapter 14

[324]

Wireshark recognizes this as the second ACK 180 flag sent by the client and7.
identifies this packet as a duplicate acknowledgment, which means the client did
not receive the next expected byte and is politely asking the server to send the
data.

Take a look at the bigFlows using coloring rules screenshot, as shown in the Exploring the
Intelligent Scrollbar section, and you will see a duplicate acknowledgment in frame 589.
This indicates that the client is patiently re-requesting the missing data. In the Info column
header, you will see [TCP Dup ACK 587#1], which means this is the second (or duplicate)
ACK flag sent after the original ACK sent in frame 587.

In the expert system, duplicate acknowledgments are under the category note, as shown in
the screenshot, Expert information grouped by severity, in the Discovering the expert system
section.

Latency and delays in transmission can be caused by any number of things, such as
processing and queuing delays and general network congestion. As a result, duplicate
acknowledgments may be sent over and over again by the client until it receives the
expected data.

Another indication of transmission errors and congestion are keep-alive packets, which we
will explore next.

Observing keep-alive segments
Network congestion is part of today's landscape. Latency and delayed packets have many
negative effects, such as slow web page retrieval. When communicating with a web server,
the client and server both use Hypertext Transport Protocol (HTTP) to communicate with
each other.

If, during a session, the network becomes sluggish and both sides begin to experience slow
response times, HTTP uses a method called keep-alive that keeps a session alive instead of
dropping the connection and having to go through the expensive negotiation of
reestablishing the connection.

A keep-alive packet doesn't have any data; it has the ACK flag set, and the sequence
number is set to one less than the current sequence number. Keep-alive packets are sent
between the client and the server to keep the session active and to verify that both sides are
still responding.

Troubleshooting Latency Issues Chapter 14

[325]

If you would like to see an example of a keep-alive packet, go to https:/ /www. cloudshark.
org/captures/5618ff446df8. Once the page is open, select Export, which is found on the
right-hand side of the interface, and then select Export a new pcapng with CloudShark
comments and annotations, as shown here:

Export file from CloudShark

Open the cloushark_tcp-keep alive.pcapng file in Wireshark. Once open, select
packet 158, right-click, and then select Follow |TCP Stream. You can also use the
tcp.stream eq 17 display filter. Once you have filtered the traffic, you should see the
following:

HTTP keep-alive packets

https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8
https://www.cloudshark.org/captures/5618ff446df8

Troubleshooting Latency Issues Chapter 14

[326]

I have removed the coloring so you can see the exchange of keep-alive in packets 153 and
158. In this capture, it is most likely that the network is congested and latency is preventing
the exchange of data. As a result, HTTP uses keep-alive packets, which are messages
between both endpoints to keep the session alive.

Therefore, in addition to seeing duplicate acknowledgments when there is network
congestion, you may see also multiple keep-alive packets.

Next, let's take a look at another indication of slow network speeds and congestion: the
presence of retransmissions.

Issuing retransmissions
Retransmissions, fast retransmissions, and spurious retransmissions are all related.
However, each has subtle differences. The following bullets explain them:

Retransmissions or fast retransmissions: In a TCP connection, each side of a
conversation actively monitors the data transaction. When congestion is evident
and the data is not getting through, recovery efforts are triggered when certain
conditions are met. Depending on the algorithm, you will see retransmissions or
fast retransmissions that resend the missing data.
Spurious retransmissions: During the course of the data transaction, the server
may resend data that is not needed. The client has previously acknowledged that
it received the data, but the server has resent the data, most likely because it did
not receive the acknowledgment. This is called spurious retransmission.
Although the data is not needed, this can still be cause for concern, as somehow,
the communication to the server has been interrupted.

When just starting out with learning how to do packet analysis, it can be overwhelming.
While you may not be able to identify all possible issues, Wireshark provides a guide, in the
form of the expert system, which groups common issues together so you can quickly
investigate network delays, which we'll explore next.

Discovering the expert system
While analyzing a packet capture, you may observe a colored circle in the lower left-hand
corner of the interface. That is the expert system, which is a feature built within Wireshark
that helps to alert the network administrator of possible issues once a capture has been
made.

Troubleshooting Latency Issues Chapter 14

[327]

As shown in the bigFlows using coloring rules screenshot (shown in the Exploring the
Intelligent Scrollbar section), the expert system shows a red circle, which indicates an error;
this is the highest expert information level. If you double-click on the circle, it will open a
console, as shown in the following screenshot:

Expert information grouped by severity

Troubleshooting Latency Issues Chapter 14

[328]

This may take a few minutes to load, depending on the size of the capture. In addition,
there may be a lot of information.

The Expert Information console is a GUI that allows you to see details of what Wireshark
identified in the capture, so you can investigate further. The interface is intuitive, with
column headers, selection checkboxes, and drop-down lists so you can customize your
viewing.

Now, let's take a look at each column header in the following section.

Viewing the column headers
Across the top of the Expert Information interface, you will see the following column
headers:

Note: Duplicate acknowledgment

The following bullets outline what each column header indicates:

Severity: Indicates the severity of the error identified. In the preceding
screenshot, the severity is listed as Note.
Summary: Provides a summary of the error and combines all the errors that are
the same under one drop-down summary. For example, in the preceding
screenshot, the summary is Duplicate ACK (#1). Once you expand the line, you
can drill down into the individual packets to see more details on each error
listed.

Troubleshooting Latency Issues Chapter 14

[329]

Group: Within each summary, there are several common groupings, including
these:

Checksum: Invalid checksum
Protocol: A violation of the Request for Comments (RFC) for a
particular protocol
Sequence: Suspicious protocol behavior

Protocol: Lists the main protocol that was in use that caused the alert, such as
TCP, as shown in the preceding screenshot.
Count: Provides a count of the number of references for the particular event
grouping. For example, on the top right-hand side of the Expert information
grouped by severity screenshot, we see there is a count of 36104 Duplicate ACK.

As shown, the column headers highlights detail of what the packet contains. Within the
expert system, Wireshark outlines the level of severity by using color, as we'll see in the
following section.

Assessing the severity
When looking at the Expert Information console, there are five possible categories that
indicate the severity of the issue, as shown here:

Category Color Meaning

Error Red Possible serious issue—the highest warning, such as a malformed
packet, or new fragment overlapping old data.

Warning Yellow This indicates a warning, which means there may be problems that
you will want to investigate further.

Note Cyan

General notes of interest that, many times, are part of a connection,
that is, a TCP keep-alive packet. Notes can also list unusual errors or
a nonstandard use of a protocol such as reusing previous session keys
in a Transport Layer Security (TLS) conversation.

Chat Gray Specifies typical workflow and state change such as a connection
finish or a Windows update.

Comment Green Indicates that there is a comment found in at least one of the packets.

Expert information severity levels

Having a visual of the issues in the packet capture is helpful, but there are even better ways
to present the information. In the next section, we'll learn about ways to sort, search, and
display the data.

Troubleshooting Latency Issues Chapter 14

[330]

Organizing the information
When you open Expert Information, you'll need to make sense of the data. The expert
system interface provides ways to sort and search, along with ways to show only a certain
kind of data.

We'll start with an overview of ways to sort data within the interface.

Sorting the data
After you launch the Expert Information console, all the information may not be sorted. As
you'll find, you can easily sort any of the column headers. I typically sort the results in
order of severity.

To view all the packets for a specific summary, select the caret on the left-hand side of the
summary, as shown in the Note: Duplicate acknowledgment screenshot.

If you have applied a display filter, you can select Limit to Display Filter, which is found in
the lower left-hand corner, to show only your filtered results. This could be handy if you
are troubleshooting a particular conversation and want to only display the filtered
conversation.

You can see an example of this by going to the Expert information search results screenshot, as
shown in the Searching for values section. In the lower left-hand corner, directly above Limit
to Display Filter, you'll see Display filter: "http".

The default view lists all errors, warnings, notes, and chats. However, you may only be
interested in the errors. In that case, you can limit your results by using the drop-down
menu in the lower right-hand corner and selecting or deselecting what you would like to
display, as shown here:

Expert information show categories

Troubleshooting Latency Issues Chapter 14

[331]

In addition, if there are any comments, you can display them as well.

As you can see, you can easily sort data within the expert system. In the next section, we'll
see how searching data helps to improve your ability to focus on specific issues.

Searching for values
When you need to locate a specific value while in the expert system, enter the value in the
search box and press Enter. The following screenshot shows the results for the ssdp search:

Expert information search results

Troubleshooting Latency Issues Chapter 14

[332]

The Expert Information console has an advanced menu function. As shown in the
following screenshot, when you right-click on a value, you can select any of the menu
choices listed:

Expert information menu choices

Similar to the menu choices offered when you right-click on the packet details, you can
select any of the following:

Apply as Filter will select the highlighted conversation and run the filter in the
main interface.
Prepare a Filter will select the highlighted conversation and prepare the filter in
the main interface. To run the filter, you must press Enter.

Troubleshooting Latency Issues Chapter 14

[333]

Find, when selected, will place the variables in the search toolbar in the main
interface, as shown in the screenshot:

Results of the Find menu choice

Colorize will open the coloring rules dialog box and allow you to create a custom
coloring rule.
Look Up will open a browser, do a Google search, and present the results.
Copy will copy the selected line onto the clipboard. For example, if I right-click
on packet 10915 and select Copy, Wireshark will copy the results to the
clipboard. I can then paste the results, as follows:

10915 SSDP: M-SEARCH * HTTP/1.1

Collapse All will collapse the results to a single summary line.
Expand All will expand the results to show all the packets.

The Expert Information console can provide a great deal of insight into possible problems
in a packet capture. Wireshark presents the results in an easy-to-read format in the Expert
Information console, where you can view and analyze any errors, warnings, notes, and
chats.

Troubleshooting Latency Issues Chapter 14

[334]

Summary
Networks need to be available nearly 100 percent of the time. A single device failure,
malware, or misconfiguration can significantly impact network performance. In this
chapter, we reviewed how we measure performance using three main metrics: latency,
throughput, and packet loss. We then looked at a few of the many tools Wireshark provides
us with in order to identify trouble on the network.

We learned how coloring rules can highlight specific types of traffic. In addition, we
discovered how any of the rules can be edited, deleted, or moved up or down in priority.
We also looked at the Intelligent Scrollbar, which provides a visual so that we can easily
spot and further investigate trouble in the capture.

We learned about the importance of time values and how they factor in latency issues. The
expert system helps to alert the network administrator on possible issues once a capture has
been made. The Expert Information console is an easy-to-use GUI that can be used to drill
down on specific issues as it can subset the errors, warnings, notes, and chats.

In the next chapter, we will cover ways to work with large packet captures and break them
into smaller files for analysis. We will look at filtering packets to narrow down the results,
as well as, reasons and ways to add comments to a single packet or an entire capture. We
will then conclude with the many ways and formats that allow us to save and export packet
captures.

Questions
Now it's time to check your knowledge. Select the best response, and then check your
answers, which can be found in the Assessment:

____ is a metric that measures the time it takes to transmit a packet from one1.
point to another and can be measured using RTT.

Latency1.
Packet loss2.
Goodput3.
Throughput4.

Troubleshooting Latency Issues Chapter 14

[335]

____ is the amount of data that is sent and received (typically in bits per second)2.
at any given time.

Latency1.
Packet loss2.
Goodput3.
Throughput4.

The _____ is on the right-hand side of the packet list panel and displays a distinct3.
coloring pattern based on the coloring rules set in the application.

Group metrics1.
Time values2.
Intelligent Scrollbar3.
Goodput meter4.

A_____ is a special type of packet that does not have any data. It only has the4.
ACK flag set, so the client knows to keep the session active during an HTTP
session.

Duplicate acknowledgment1.
Keep-alive2.
Retransmission3.
Fast retransmission4.

In the expert system, a Cyan circle indicates _____, which is general information,5.
unusual errors, or a nonstandard use of a protocol.

An error1.
A warning2.
A note3.
A chat4.

15
Subsetting, Saving, and

Exporting Captures
Not every packet capture is the perfect size or representative of the data you need to
analyze. Whether you captured the traffic yourself or had someone send a capture to you
for analysis, the reality is, some files have to be subdivided down into smaller files for
analysis. In addition, when done, you will most likely need to save the file, or in some
cases, export the files into a specific format.

In this chapter, we'll cover several methods and techniques that we can use to work with
packet captures. So that you can reduce a large file to a more manageable size, we'll look at
filtering the capture to narrow down the results. You'll learn how versatile Wireshark is in
exporting different components of a capture. Finally, you'll see how you can export files,
along with specified packets, packet dissections, and objects. In addition, you'll discover
reasons and ways to add comments to a single packet or an entire capture.

This chapter will address all of this by covering the following:

Discovering ways to subset traffic
Understanding options to save a file
Recognizing ways to export components
Identifying why and how to add comments

Subsetting, Saving, and Exporting Captures Chapter 15

[337]

Discovering ways to subset traffic
Packet analysis is used for a variety of reasons, including troubleshooting, testing,
monitoring, and baselining the network. We can reduce the capture before we begin our
analysis by using a command-line tool such as TShark or Dumpcap, as covered in Chapter
2, Using Wireshark NG, or by using a capture filter, which is covered in Chapter 7, Using
Display and Capture Filters. Once captured, the file can be shared with other members of the
team for further analysis or to point out specific issues.

While capturing traffic, it's optimal to get a capture that is the perfect size and includes only
the troublesome packets. However, that is not always the case. It might not be your
intention to get a large packet capture. Nevertheless, you may find you have to work with
one, for a variety of reasons that include the following:

You may have obtained the capture from a network device with a large amount
of traffic. Tapping into the network, even for a short time, can generate a huge
number of packets. Even if you used a capture filter while obtaining the file, you
may still end up with a large amount of data.
You may have received a file from someone with good intentions, who felt a
large capture would help your analysis. For example, you may have received a
large file from a co-worker that captured traffic off of the server, and they need
your help in analyzing a specific problem.

Whatever method you've used to obtain the capture, you'll need to work with it in
Wireshark. Keep in mind, Wireshark can load a large file, but it can be very resource-
intensive and slow in responding, as Wireshark attempts to dissect all the protocols before
displaying the capture. In addition, when you apply a display filter to a large capture, it
will take a while to filter the traffic. As a result, the best option is to subset the capture and
focus on the problem areas.

When we subset traffic, we break it down into smaller files for analysis. We can see that
there are many ways to break down or subset traffic. Some of the ways include subsetting
by IP address, by port number, by protocol, or even by TCP/UDP stream.

Together, we can examine ways of breaking apart a large file. One such capture that works
exceptionally well is bigFlows.cap. You can download the file, open it in Wireshark, and
follow along by going to http:/ /tcpreplay. appneta. com/ wiki/ captures. html#bigflows-
pcap.

http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap
http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap

Subsetting, Saving, and Exporting Captures Chapter 15

[338]

Once you open bigFlows.cap, you can easily see how cumbersome it is to work with a
large file. As shown in the following screenshot, this capture has 791,615 packets. Even
when entering a simple display filter such as TCP, it will take time for Wireshark to rescan
the capture and present the data. As shown in the lower left-hand corner of the following
screenshot, Wireshark has a status bar that indicates the process:

Rescanning the capture

Depending on the system used to analyze the capture, it may run very slowly, freeze up, or
even shut down Wireshark.

Once you have opened the file, you'll need to plan what data you want to subset. There are
many ways to subset data, and it really depends on what you want to analyze. Let's look at
a few ways to break down a large capture. First, we'll examine using an IP address to
subset traffic.

Dissecting the capture by IP address
One way to break down a large capture is by filtering a specific IPv4 or IPv6 address, and
then use that for your analysis. For example, you know that a specific host is having a
problem, and you want to home in on that IP address to troubleshoot the issue.

Let's review how to narrow your search. In any large capture, you will most likely have
captured many IP addresses. Go to the bottom of the Statistics menu, where you will see
menu choices for both IPv4 Statistics and IPv6 Statistics, as shown in the following
screenshot:

IPv4 and IPv6 statistics

Subsetting, Saving, and Exporting Captures Chapter 15

[339]

The IP statistics have four choices for either IPv4 or IPv6, which include All Addresses,
Destinations and Ports, IP Protocol Types, and Source and Destination Addresses, as
follows:

All Addresses: Provides a sortable list of IP addresses with additional
information such as Count and Burst rate:

Statistics: All Addresses

Destination and Ports: Provides similar information to All Addresses such as
Count and Burst rate. However, this report shows a more advanced list that
breaks down each IP address with additional statistics on TCP and UDP, as
displayed in this screenshot:

Statistics: Destinations and Ports

Subsetting, Saving, and Exporting Captures Chapter 15

[340]

IP Protocol Types: Provides a basic list of transport layer protocols:

Statistics: IP Protocol Types

Source and Destination Addresses: This currently looks like All Addresses, as
shown in the screenshot captioned Statistics: All Addresses, as it may be still in
development.

After you run the report, you can search for an IP address with specific characteristics, and
then run a filter.

While subsetting traffic by IP addresses may be helpful to home in on troublesome hosts,
another way to break down a large capture is by using conversations, which represent two
endpoints that are communicating with each other.

Narrowing down by conversations
A conversation is two endpoints communicating with one another. In a large capture, you
will most likely have many conversations. We can sort within the conversation dialog box
to identify top talkers, which are the two endpoints that are exchanging the most data. We
can also select a conversation between two known endpoints, such as a VoIP client and
server, and create graphs and flow charts to analyze the data.

Once you have selected the appropriate conversation, you'll need to filter the conversation
by going to the Statistics menu and selecting Conversations.

Subsetting, Saving, and Exporting Captures Chapter 15

[341]

After the window opens, you will see tabs along the top that allow you to view a specific
type of conversation, such as Ethernet, IPv4, TCP, and UDP. Select the type of traffic, such
as IPv4, and then apply a filter to narrow the results, so you only see the traffic you want to
use as your subset, as shown in the following screenshot:

Conversations: Filter options

Within one capture, there may be many conversations. Although you may find that
subsetting a large capture by conversations is helpful, you'll find that, sometimes, you will
want to zero in on a specific port and use that as your subset. The following section
illustrates how you can filter by port numbers, so you can work with the resulting smaller
file.

Minimizing by port number
While subsetting by IP address or by conversation may be helpful, sometimes you may
want to study a specific port. You might be looking through the conversation under either
the TCP or UDP tab and identifying suspicious port usage. Or, you may want to further
investigate a specific port used in a multicast stream when checking for bursty traffic.

Subsetting, Saving, and Exporting Captures Chapter 15

[342]

There are many reasons to subset by port numbers. In Wireshark, you can find a list of
UDP/TCP ports in a few areas, which include Conversations, Endpoints, IPv4 or IPv6
Destinations and Ports, and UDP Multicast Streams.

For example, go to Statistics, and then UDP Multicast Streams, as shown in the following
screenshot:

UDP Multicast Streams

Once you run the report, you can isolate the port you want to analyze, apply a filter, and
select only the traffic you want to use as your subset.

Another way to dissect a large capture is by filtering by a specific protocol. Let's take a look.

Subsetting, Saving, and Exporting Captures Chapter 15

[343]

Breaking down by protocol
Wireshark is capable of dissecting over 700 protocols. To see a list of protocols in the
capture, go to Statistics, and then Protocol Hierarchy, which will provide a list of what
protocols appear in the capture. As with many other options, within Protocol Hierarchy,
you can apply a filter and create your subset, as shown in the following screenshot:

Protocol hierarchy—Apply as Filter

In addition, if you know the protocol you want to review, you can use a display filter and
enter a specific protocol and use that as your subset.

One of the common ways of examining traffic is by examining a particular traffic stream. In
the final segment, we will see what elements of a capture we can view by using the follow
the stream feature.

Subsetting by stream
There are times you may want to see only the details of a single traffic stream. An easy way
to do this in Wireshark is to use the follow the stream option.

You must first select either a TCP or UDP conversation, right-click and select Follow, and
then select the appropriate stream, either TCP, UDP, TLS, or HTTP.

Subsetting, Saving, and Exporting Captures Chapter 15

[344]

For our example, in the display filter, enter tcp.stream eq 946. It will take a while to
filter. Once complete, you will see the contents of the communication stream, which is a
web page, as shown in the following screenshot:

Follow the TCP stream 946

Now that we have reduced the file to a more manageable size by using any of the above
methods to subset traffic, the next step is to preserve the file in some way. You can simply
save the file in the default .pcapng format, or in any of the many other formats that have
been added and enhanced over the years.

As you can see, there are many ways to subset a file to a more practical size. After you have
created a smaller file, you will most likely want to save the file to preserve your work. The
following section provides various ways to save a file in Wireshark.

Subsetting, Saving, and Exporting Captures Chapter 15

[345]

Understanding options to save a file
Whenever you run, and then stop a capture, Wireshark will hold the capture in a
temporary file and display the temporary filename in the Status bar, which is found on the
lower left-hand side of the interface. In addition, along the top, you will see the name of the
interface used in the capture and an asterisk, as shown in the following screenshot:

Temporary File in Wireshark

At some point, you will most likely want to save the file in some format. To save the file, go
to the File menu choice, and then click on Save. Once you save the file, the filename will
appear along the top of the Wireshark interface, as shown in the following screenshot:

Subsetting, Saving, and Exporting Captures Chapter 15

[346]

File saved in Wireshark

Once you have gone to File, and then Save, you will find that Wireshark will allow you to
save the capture file in many different formats, as discussed next.

Using Save as
The File menu choice has many common options to work with files such as Open, Import,
Save, Print, and Export. One option is to use Save as when you need to save the file as
something other than the default extension, which is .pcapng.

Subsetting, Saving, and Exporting Captures Chapter 15

[347]

When you are ready to save the file, go to the File menu choice and select Save as, which
will open a dialog box, as shown in the following screenshot:

The Save file as dialog box

Over the years, developers have added many different file formats to Wireshark. As a
result, when you drop down the Save as type, you will see a list of all the supported file
formats, as shown here:

Subsetting, Saving, and Exporting Captures Chapter 15

[348]

Wireshark Save as selections

Here, there are many formats that include Microsoft NetMon (.cap), Novell LANalyzer
(.tr1), Sniffer (Windows: .caz), and K12 text file (.txt). While some of the formats are
legacy and might not ever be used, it's nice to know you have the option of saving the file
in other formats.

One common use of the Save as menu choice is to open a file in one format, and then save
in another format. An example is obtaining a file with a .pcap extension. Although you can
do many things with the .pcap file, the .pcapng format is a better option. PCAPNG files
have several enhancements and are able to dissect and display payloads better. In addition,
in the .pcap format, you cannot save any comments. If you do add any comments, when
you close the file, Wireshark will prompt you to save as .pcapng if you want to preserve
your comments.

Subsetting, Saving, and Exporting Captures Chapter 15

[349]

While saving an entire file is common, you may want to export only a portion of the file.
The next section covers the various ways to export specific packets, along with various
objects found within the capture file, such as images or web pages.

Recognizing ways to export components
We discussed the many ways you can subset a capture to reduce the file to a more practical
size, such as by IP address, by port number, or by a stream. Another option is to export the
subset as specified packets, packet dissections, or even export various options that exist in
the capture.

Let's take a look at the many export options Wireshark offers, starting with specified
packets.

Selecting specified packets
After you have filtered a capture, you may want to export a portion of the capture. With
Wireshark, you can be very specific in what you select to export. Let's step through an
example.

Return to the bigFlows.pcap capture and enter tcp.stream eq 946 in the display filter.
Once you have run the filter, you are ready to preserve this subset. In this case, we will go
to the File menu choice, and then Export Specified Packets. Once open, you will see that
you have several ways to export file components, as shown in the following screenshot:

Subsetting, Saving, and Exporting Captures Chapter 15

[350]

Export Specified Packets

Near the bottom of the dialog box, you will see a header named Packet Range, where you
will make your selections. If you have filtered the capture, Wireshark will assume you
would like to export only the displayed packets, and the radio button for Displayed will be
active. However, if you want all the packets, select Captured.

Subsetting, Saving, and Exporting Captures Chapter 15

[351]

Below that, you will see other choices for the packet range you would like:

All packets: This will export all packets. Wireshark will display how many are
either Captured or Displayed.
Selected packet: This will only export the packet selected. In most cases, you
will have placed your cursor on one of the packets, so Wireshark will assume
you have selected that packet. That is why Wireshark shows one (1) packet in the
Selected packet option.
Marked packets: This allows you to right-click and mark a specified packet or
packets of interest, causing the packet(s) to turn black. This option will
only process marked packets.
First to last marked: If you have marked several packets in your capture,
Wireshark will export all marked packets, from the first to the last.
Range: This will allow you to specify a packet range, such as 233-799, and
only export that range.
Remove Ignored packets: If in a capture, you have ignored certain packets (see
Chapter 4, Exploring the Wireshark Interface, under the Marking or ignoring packets
section) and you select Remove Ignored packets, Wireshark will not include the
ignored packet(s) in the export.

TCP stream 946 is a web page retrieved from a travel site, so we'll name the file Web
Page. In the case of this export, you will need to force the file format to .pcapng, as
Wireshark will default to the original file format, which is .pcap, for bigFlows.pcap. To
export TCP stream 946, follow these steps:

Go to the File menu choice, and then click on Export Specified Packets.1.
Leave the default values as they are, as shown in the Export Specified2.
Packets screenshot.
Select a location in which to save the file.3.
In File name, enter the Web Page filename.4.
Under the drop-down menu for Save as type, select Wireshark – pcapng.5.

Once the export is complete, close bigFlows.pcap, and then open the newly created
file: Web Page.pcapng.

Within the File menu choice, we will also find Export, which has many available options to
export, including specific packets or bytes, TLS session keys, and objects, as outlined next.

Subsetting, Saving, and Exporting Captures Chapter 15

[352]

Exporting various objects
When working with a capture, there may be a variety of objects such as files, images and
applications within the file. Wireshark reassembles the objects, which can be collected and
analyzed, as long as the object is unencrypted.

There are several reasons you may need to collect objects within a capture file. For
example, during an active malware investigation, you may need to see what type of files
are being transferred. Or there may be some concern that an individual may be sending
sensitive information out of the organization. Wireshark makes it easy to export objects, so
that you can take a closer look what type of traffic is being sent across the network.

Some of the possible objects that can be exported include those from the following
protocols:

Digital Imaging and Communications in Medicine (DICOM)
HyperText Transfer Protocol (HTTP)
Internet Message Format (IMF)
Server Message Block (SMB)
Trivial File Transfer Protocol (TFTP)

If you suspect that any of the preceding protocols contains objects, you can export them for
examination by going to the File menu choice, and then Export Objects, as shown in the
following screenshot:

Export Objects

Subsetting, Saving, and Exporting Captures Chapter 15

[353]

For example, open the Web Page.pcapng file. Once open, select Export Objects, and then
HTTP.... Wireshark will locate all objects such as text/plain, applications/javascript images
and text/html. This will take a few seconds, depending on the size of the file. Wireshark
will then present a list, as shown in the following screenshot:

HTTP object list

Subsetting, Saving, and Exporting Captures Chapter 15

[354]

In the dialog box, you can search for text strings. In the lower left-hand corner, you'll see
a Text Filter label. Enter footstesp-to-the-summit.jpg, as shown in the following
screenshot:

Searching footstesp-to-the-summit.jpg

Select Save, and when the dialog box opens, enter the filename and the appropriate
extension. In this case, I used footsteps-to-the-summit.jpg. After you save the object,
locate, open, and view the image, as shown in the following screenshot:

Exported HTTP Object

Subsetting, Saving, and Exporting Captures Chapter 15

[355]

If there are other objects, you can save them as well; alternatively, you can select Save All,
and Wireshark will save all objects found in the file.

As you can see, Wireshark provides many ways to preserve and export components and
objects. But what happens when you're done working with a file?

While doing analysis, you may know why you are working on a particular capture.
However, when you return to the file, you may not remember what caused you to look at
the capture in the first place. In addition, if you share the file with a co-worker, they may
not be able to identify the significance. In either case, it's best to identify key elements and
concerns by adding comments. In order to preserve the reasons why the file was important,
Wireshark provides ways to add comments to a single packet or an entire capture, as
discussed in the following section.

Identifying why and how to add comments
When working with trace files, you might need to make a note on a single packet or to the
entire capture, for future reference.

Wireshark has options when working with comments. You can add file comments to
preserve the details of the single capture or even add comments to a single packet. Let's
start with how to add comments to the entire file.

Providing file and packet comments
Within Wireshark, you can comment on the entire capture to document what you found
within the file. You might preserve this information, either for yourself, or to share with
others when working with a team. Let's walk through an example of adding a comment
using the Web Page.pcapng subset.

To add a comment to the file, you can do one of the following:

Select the comments icon in the lower left-hand corner, which looks like a pad
and pencil.
Go to Statistics | Capture File Properties and include your comments in the
space below the Capture file comments.

Subsetting, Saving, and Exporting Captures Chapter 15

[356]

In my Web Page.pcapng file, I entered the comment, HTTP traffic with interesting
images, and then clicked Save Comments, as shown in the following screenshot:

Capture File Properties-Web Page.pcapng

Subsetting, Saving, and Exporting Captures Chapter 15

[357]

Keep in mind that when adding comments, Wireshark does not highlight spelling errors.
Therefore, if you want the comments in your file to look professional, take the time to do a
spellcheck.

While adding a comment to an entire file is handy, sometimes, you may want to preserve
the details of one, or possibly a few, packets that you want to identify within the file that
you found to be interesting.

Adding a comment to a single packet is similar to adding a comment to the entire file.
However, in this case, while in a single packet, go to the Edit menu choice and select Packet
Comment…, as shown in the following screenshot:

Packet Comment...

Wireshark will open a form where you can add your comment. If you would like to add
more comments later, simply select the same packet and repeat the steps you took to add
the original comment.

In addition, you can delete all packet comments by going to the Edit menu choice and
selecting Delete all Packet Comments, as shown in the Packet Comment... screenshot.

Once you are done with the comments, you'll need to save them so you can view them
later, as discussed next.

Subsetting, Saving, and Exporting Captures Chapter 15

[358]

Saving and viewing comments
Once you are done adding comments, either on the entire file or a single packet, you'll see
that the filename has a little asterisk in front of the name, as shown here:

Filename with an asterisk

The asterisk serves as a reminder that you have modified the capture. When you close the
capture, Wireshark will prompt you to save the modified file. It's important to note that
you must save in .pcapng format when using comments.

Subsetting, Saving, and Exporting Captures Chapter 15

[359]

Once you have preserved the comments, there are several ways to view the comments:

To see comments on a file, go to Statistics | Capture File Properties, as shown in
the Capture File Properties-Web Page.pcapng screenshot.
To see comments on packets, go to Expert System and select Show Comments,
which is on the lower right-hand side of Expert Information Console. You will
then see the comments listed, as shown in the following screenshot:

Expert Information—show comments

Now, you can see how easy it is to add comments to an entire capture or a single packet.
Once done, it's important to save the capture in .pcapng format, so you can view the
comments at a later date.

Subsetting, Saving, and Exporting Captures Chapter 15

[360]

Summary
In this chapter, we discovered that you may want to take a large unmanageable file and
turn it into a smaller, more manageable file, so that you can share it with co-workers or
preserve the capture for future reference. You learned about the many ways to subset
traffic, which includes filtering traffic by IP address, conversation, port number, or stream.
We discovered that, after working with a packet capture, there are many options and
formats available in Wireshark to preserve the capture. You now know about the many
ways to export files, objects, session keys, and packet bytes. Finally, in order to preserve the
reasons why the file was important, we discovered how we can add comments to a single
packet or an entire capture.

In the next chapter, you will discover CloudShark and learn how you can view captures in
your browser from anywhere with internet access. We'll cover the benefits of using
CloudShark to share and analyze packet captures with your team. You'll get a good
understanding of the filters, graphs, and analysis tools that CloudShark has. In addition,
we'll take a look at the many online repositories in order to locate sample captures and
enhance our packet analysis skills.

Questions
Now, it's time to check your knowledge. Select the best response, and then check your
answers with those in the Assessment:

A _____ in Wireshark represents two endpoints that are communicating with1.
each other.

Match point1.
Tuple2.
Conversation3.
Filter4.

Wireshark is capable of dissecting over 700 protocols. To see a list of protocols in2.
the capture, go to Statistics, and then _____.

Protocol Hierarchy1.
Conversations2.
IPv4 Statistics3.
Match point4.

Subsetting, Saving, and Exporting Captures Chapter 15

[361]

Currently, when you save a file, the default file format in Wireshark is _____.3.
snoop.gz1.
.pcapng2.
.pcap3.
erf.gz4.

When working with packets, right-click on a specified packet or packets of4.
interest and select _____, which will turn the selected packet(s) black.

Ignore1.
Snoop2.
Spatter3.
Mark4.

When you select _____ objects, Wireshark will locate and include all objects that5.
include applications/javascript images and text/html, and then display a list of
the objects found.

DNS1.
DICOM2.
HTTP3.
SMB4.

16
Using CloudShark for Packet

Analysis
Although Wireshark is a powerful, versatile tool, there are times when you may need to
involve your team in a packet analysis exercise. One site that makes it easy to share your
packet captures with co-workers is CloudShark (CS). While CS does not have as many
features as Wireshark, you can still execute a number of different packet analysis tasks with
it.

In this chapter, we'll discover CS, a browser-based solution that offers several of the same
benefits as Wireshark. You'll learn that, in addition to the basic tasks you can do with
Wireshark, you can create an account and perform more advanced tasks such as uploading
and sharing captures.

So that you can get the full benefit of CS, we'll step through basic packet capture analysis,
such as applying filters to narrow the scope and creating graphs to provide a visual
representation of the data. We'll look at various analysis tools, such as VoIP calls, RTP
streams, and HTTP analysis. Finally, so that you continue to improve your packet analysis
skills, we will take a look at the many online repositories for sample captures.

This chapter will address all of this by covering the following:

Diving into an overview of CS
Sharing captures in CS
Outlining the various filters and graphs
Evaluating the different analysis tools
Discovering where to find sample captures

Using CloudShark for Packet Analysis Chapter 16

[363]

Diving into an overview of CS
Most of us would agree that Wireshark is a great tool for packet analysis, troubleshooting,
and identifying malware and other anomalies on a network. However, Wireshark has some
limitations, in that it must be installed on a PC or macOS, and the user may not have the
skills to zero in on the actual problems. In addition, Wireshark is not designed to be used
concurrently by multiple people, such as in a team.

CS is a browser-based solution that provides a way to upload packet captures and share
them with your co-workers. You can also do an analysis on the fly, or simply use it as a
browser-based solution to learn about packet analysis.

Now that you know about some of the benefits, let's take a look at how you find CS, as
discussed next.

Finding CS
CS is a browser-based solution that you can find at https:/ /cloudshark. io/ . Once on the
website, you will see that there are many industries that use CS.

These industries include the following:

Government
VoIP service providers
Cyber defense
Security
Educational institutions

Once on the site, you will see that CS has several products. Depending on what solution
you need, you'll find CS Personal and Enterprise, along with TraceFrame (DevKit), and a
Wireshark plugin. To see an example of how CS can be a collaboration tool, find the list of
products, as shown in the following screenshot, and select CS Personal:

CS products

https://cloudshark.io/
https://cloudshark.io/
https://cloudshark.io/
https://cloudshark.io/
https://cloudshark.io/
https://cloudshark.io/
https://cloudshark.io/
https://cloudshark.io/

Using CloudShark for Packet Analysis Chapter 16

[364]

From there, you can set up a free trial. You can create a trial account and then CS will
present you with the welcome page, as shown in the following screenshot:

CS welcome page

Once on the welcome page, CS provides a way to upload files from your PC or laptop or
import them from a URL, as shown on the left-hand side of the screenshot of the
CS welcome page.

After you have uploaded the files, they will be listed on the right-hand side of the screen. If
there are several packet captures, you can use a filter search for a specific capture.

Now that you can see how easy it is to find CS, let's take a look at how you can share
captures with your team.

Sharing captures in CS
CS provides a way to securely share your captures and allows packet analysis from a wide
array of devices. Several analysis tools are available via a web interface that is similar to
that of Wireshark. Once you have created an account, CS provides a way to customize the
interface for you and your team.

Once you become familiar with the CS interface, you can go in and adjust many aspects of
your CS account, as we'll see next.

Using CloudShark for Packet Analysis Chapter 16

[365]

Modifying the preferences
In CS, there are several areas that you can customize and fine-tune, such as account
information, managing your uploads, creating collections, and enforcing quotas. To get to
the Preferences menu, go to the top right-hand side of the screen, where there is a drop-
down menu that allows you to set your preferences, as follows:

Account: Here, you can view subscription information. For example, mine is a
Hosted Trial plan. It offers the option to start a subscription when you are ready.
Capture Index Preferences: This is where you can customize your column
headers. As shown in the following screenshot, you can use the default layout,
remove any of the visible fields as shown, or drag additional columns in where
you would like them:

CS Index Preferences

When done with your selections, select Save, and CS will rearrange the columns
according to your preferences.

Using CloudShark for Packet Analysis Chapter 16

[366]

Uploads: CS is designed to be a collaboration tool, so it is assumed you will have
interactivity, and other team members will have access to the files you have
loaded in CS. The Uploads preferences are where you tell CS to what group you
want to assign the files you have uploaded, as shown in the following screenshot:

CS Uploads preferences

Once they are loaded, you can further restrict what the group members can do
with the files, either read-only or read/write. In addition, CS can provide guest
access to your uploaded files.

Decode Window: When viewing a capture file, this is where you can enable
settings to colorize the packet list or show any annotations.
API Tokens: You may have your own tools that you want to interact with CS.
Here is where you can find the application program interface (API) token so that
CS can interact with your software.
Usage Quotas: Packet captures can consume a great deal of storage. This
preference menu choice will list how much storage you have used out of your
allocation (the trial provides 2 GB of storage), along with how many uploads you
have completed out of your allocation (the trial provides a limit of 500 files). If
you are in danger of exceeding the limits, there is a link to upgrade.

Using CloudShark for Packet Analysis Chapter 16

[367]

Collections: To organize your captures, you can create collections that can group
and share a set of captures that will appear on a separate landing page, as shown
in the following screenshot:

CS Capture Collections

The capture collections are similar to a folder, where you can house similar captures
together.

After modifying your preferences, you're ready to upload your captures, to share with your
team, or the world, as discussed next.

Uploading captures
When you're ready to upload and share your captures, go to the left-hand side of the CS
welcome page, to the upload files area. You can either drag them from your file manager
and drop them in the upload files area, or you can click and browse to a file location. Once
a file is uploaded, CloudShark will show a summary of the file, as shown here:

File uploaded

Using CloudShark for Packet Analysis Chapter 16

[368]

When you are ready, click Done to return to the main menu. Once there, you will see your
file along with a menu choice where you can select sharing settings or add to a collection.
Select the Collections button. If you do not have any collections to add the files, you can
create a new collection from the drop-down menu.

When you create a new collection, there is a form where you name your collection. In my
example, I used the name Basic Analysis. After the name, you then can provide a brief
description, as shown in the following screenshot:

New collection

Below the form is where you can set the access privileges to either private or public. In
addition, you can select individual file permissions, as shown in the following screenshot:

Collection Access

When done, select Save to return to the main window, where you can select a file and then
double-click to open it in the analysis window.

Using CloudShark for Packet Analysis Chapter 16

[369]

Once the file is open, you are ready to begin your analysis. The interface looks similar to the
Wireshark interface. You can make some modifications; for example, to give you more
room, you can pull the lower-pane window down so that you can expand the protocol
trees, as shown in this screenshot:

Modified interface

In addition, you can modify the column headers by selecting the Profile drop-down menu
choice and selecting Custom Columns, as shown in the following screenshot:

Using CloudShark for Packet Analysis Chapter 16

[370]

Column header preferences

Now that your capture is open and you have modified and customized the interface, you
are ready for your analysis.

As you can see, CS offers a great solution to share packet captures with your team. In the
next section, we'll evaluate the choices for filtering traffic and visually representing traffic.

Using CloudShark for Packet Analysis Chapter 16

[371]

Outlining the various filters and graphs
Within CS, there are several ways to view your captures. Filters narrow a capture to display
only the traffic you want to see, and graphs provide a visual representation of the data.

One common task is to apply a display filter. CS's easy-to-use interface provides a way to
apply a filter and narrow your scope. Let's undertake a deep dive to learn more in the next
section.

Displaying data using filters
Display filters in CS are very similar to the way Wireshark filters data. Filters can be
applied to identify packets with specific ports, IP addresses, or protocols by entering the
filter in the upper left-hand side of the interface. Similar to Wireshark, the syntax must be
correct, or you will see an error, as shown here:

Syntax error

After you enter the filter, select Apply to run the filter. I entered the http filter, which
narrowed the capture to show only HTTP traffic, as shown here:

Using CloudShark for Packet Analysis Chapter 16

[372]

HTTP traffic

In addition to the standard filters, you can also create a search by string or hex values. For
example, if I am looking for a specific image, I will enter frame contains
"adc_pet_dog_336x280" in the display filter, and it will present the results, if any. In
addition, you can apply a hex filter to search for hex values. For example, to search for a
specific MAC address, you can use frame contains 28:e3:47:8c:02:60.

Filters help to narrow the scope. Now, let's take a look at the various graphs you can
quickly apply while in CS to help represent the data visually.

Viewing data using graphs
Once in your capture, you may want to create a graph, of either all traffic or of the filtered
capture. In the upper right-hand corner, there is a drop-down menu for graphs, shown
here:

Graphs menu

Using CloudShark for Packet Analysis Chapter 16

[373]

After you select the type of graph you would like, CS presents the graph. If you would like
to create a new graph, you can select the button in the lower left-hand corner. In addition,
you can select the Graphs button without using the drop-down menu, and this will open a
window, where you can select Create a New Graph, shown as follows:

Create a New Graph

Selecting Create a New Graph will bring up a window, as shown in the preceding
screenshot, that has more options to personalize and modify the graph.

As shown at the bottom of the preceding screenshot, you can add or modify the following:

Graph Title: Add a title that is reflective of what the graph represents.
Time Interval: Set in milliseconds, seconds, or minimum.
Y-Axis Units: Set by packets, bytes, value, or by packets, bytes, or bits/second.

Using CloudShark for Packet Analysis Chapter 16

[374]

Options: To further customize the chart, you can add additional variables:
Use time of day
Include packet annotations
Stack series of the same type

Display Filters: This is where you would enter a display filter. You can also
select a style for how you want the data to be represented; that is, line, column,
or spline.

Once you have completed the graph, you can export it as either a PNG, JPG, or SVG. In
addition, you can print the completed graph.

In addition to graphs and filters, there are times when you need a more advanced analysis
of data. The next section provides an overview of a variety of tools for quickly analyzing
data.

Evaluating the different analysis tools
In addition to the graphs in CS, there are many other built-in analysis tools. The drop-down
menu for the analysis tools is located in the upper-right-hand part of the screen. Once you
drop the menu down, the various menu choices are displayed. If any are dimmed, that
means the tool is not applicable to the current capture.

From the top of the list, you will find many tools to use in your analysis. Let's begin with
viewing conversations, ladder diagrams, and filtering the stream.

Following the stream and view conversations
Within Wireshark, we have many tools under Statistics that help us make sense of a packet
capture. While CS doesn't have as many features, you'll see that you can do a preliminary
evaluation on the fly with the built-in analysis tools.

The following lists the first selections in the analysis tools menu choice, as follows:

Follow stream, SSL, and HTTP: Similar to the Follow the Stream function in
Wireshark, this provides a way to see the details of a single conversation between
two endpoints.

Using CloudShark for Packet Analysis Chapter 16

[375]

Ladder Diagrams: These are similar to the flow graphs in Wireshark, showing
the endpoints communicating back and forth:

Ladder diagram

Network Endpoints: This will provide a list of endpoints. Similar to Wireshark,
while in the window, you can filter by the type of endpoint you would like to
see; that is, eth, ipv4, ipv6, tcp, or udp, as shown in the following screenshot:

Using CloudShark for Packet Analysis Chapter 16

[376]

Endpoints

GeoIP World Map: At the bottom of the endpoints report, you will see a button
to select GeoIP Map. When selected, it will show where the packets originate, as
shown here:

GeoIP World Map

Protocol Conversations: This will provide a list of conversations, similar to
Wireshark. While in the window, you can filter by the type of conversation you
would like to see: eth, ipv4, ipv6, tcp, or udp.

As you can see, CS is populated with many tools that you can use to analyze data. The next
section shows how we can take a look at the details of a VoIP call, graph packet lengths,
and DNS activity.

Using CloudShark for Packet Analysis Chapter 16

[377]

Viewing packet lengths and VoIP activity
Some of the analysis tools may not make sense when you look at them; however, they do
provide value while troubleshooting. It's worth running a few of the graphs to see the
results.

The next grouping of analysis tools includes the following:

Packet Lengths: This provides an interactive graph of the packet lengths, and
other information such as Average, Min, Max, and Rate:

Packet Lengths

Using CloudShark for Packet Analysis Chapter 16

[378]

DNS Activity: This provides a count of the DNS queries, responses, and
Resource Record (RR) types.
VoIP Calls: This provides a list of any VoIP calls found in the file along with a
sortable summary of the Call, Start Time, Stop Time, Initial Speaker, From, To,
Protocol, and Packets, as shown in the following screenshot:

CloudShark VoIP calls

RTP Streams: This lists the Real-Time Transport Protocol (RTP) streams found
in the file.

As you can see, there are several helpful analysis tools. This last section helps dissect
wireless problems and conducts a quick threat assessment.

Exploring wireless, protocols, and possible
threats
While there are many tools that are similar to those found in Wireshark, this last grouping
contains an analysis tool unique to CS, which is Threat Assessments. This tool will allow
you to run your capture and see whether any suspicious packets are flagged.

This last section covers the following tools:

HTTP Analysis: This lists all of the URLs requested in the capture file, along
with a count of the requests.
Decode Protocol As: If CS doesn't decode the protocol correctly, you can provide
values so that CS can properly decode the protocol.

Using CloudShark for Packet Analysis Chapter 16

[379]

Wireless Networks: This provides a list of any wireless networks found in the
file along with a sortable summary of the following: BSSID, SSID, vendor,
Signal_dBm, channel, and security.
Wireless Keys: This will open a dialog box to add any decryption keys for the
wireless networks in the file.
Threat Assessments: This is a more advanced option that will scan the capture
for potentially malicious traffic within it. If none are found, the report will come
back with the all clear!

Now that you have seen the many ways in which you can analyze data using CS, let's take
a look at where you can get packet captures to strengthen your analysis skills.

Discovering where to find sample captures
While learning about packet analysis, it's important to study a variety of captures until you
are proficient. This may take a while, but it will be well worth the effort. There are many
online repositories for packet captures. Here are a few websites that can give you a variety
of real network traffic:

https:// wiki. wireshark. org/ SampleCaptures

http://tcpreplay. appneta. com/ wiki/ captures. html

https:// www. netresec. com/ ? page=PcapFiles

https:// chrissanders. org/ packet- captures/

This is only a partial list of where you can get samples to hone your skills. Let's now take a
look at a handy way to open a packet capture, right in CS.

Downloading captures
Now that you have seen where to get packet captures, you may want to learn about an
unfamiliar protocol with your team. As shown, there are many places to obtain packet
captures; however, one site I visit often is https:/ /packetlife. net/.

Once on the PacketLife site, navigate to Captures, found at http:/ /packetlife. net/
captures/. On the packet capture page, you can upload a capture or search for captures.
For example, I found snmp-ipv4.pcap, as shown in the following screenshot:

https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
http://tcpreplay.appneta.com/wiki/captures.html
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://chrissanders.org/packet-captures/
https://packetlife.net/
https://packetlife.net/
https://packetlife.net/
https://packetlife.net/
https://packetlife.net/
https://packetlife.net/
https://packetlife.net/
https://packetlife.net/
http://packetlife.net/captures/
http://packetlife.net/captures/
http://packetlife.net/captures/
http://packetlife.net/captures/
http://packetlife.net/captures/
http://packetlife.net/captures/
http://packetlife.net/captures/
http://packetlife.net/captures/
http://packetlife.net/captures/

Using CloudShark for Packet Analysis Chapter 16

[380]

 Packet capture found at PacketLife

Once you have found a packet capture, you can either download it and open it in
Wireshark, or open it directly in CS, as shown here:

Packet capture opened in CS

Once in CS, you can use its variety of built-in tools to study the capture. You can even
download the file and open it in Wireshark, for better visualization or a more advanced
analysis of the data.

As you can see, there are many online repositories for sample captures. Visit them,
download some captures, and continue to improve your packet analysis skills.

Using CloudShark for Packet Analysis Chapter 16

[381]

Summary
In this chapter, we took a look at CS, which allows you to view and analyze packet captures
in a browser. We learned that CS provides several ways of examining captures that are
similar to Wireshark.

We discovered that, in general, there are many resources for packet captures that you can
visit and download a file to study and improve your packet analysis skills. We then took a
look at PacketLife, which has an online repository of capture files for download, or an
option to open them and analyze them in CS.

We saw that, with CS, you can filter a capture to show only a specific type of traffic, as well
as creating a variety of graphs. In addition, CS has a rich variety of analysis tools that
include Follow Stream, network endpoints, a GeoIP world map, packet lengths, DNS
activity, VoIP calls, wireless networks, and threat assessments.

Questions
Now it's time to check your knowledge. Select the best response, and then check your
answers, which can be found in the Assessment:

In Preferences, _____ is where you can customize your column headers. You can1.
use the default layout, remove any of the visible fields as shown, or drag
additional columns to where you would like them.

Account1.
Uploads2.
Decode Window3.
Capture Index4.

In addition to the standard filters, you can also search for a specific image by2.
using a _____ filter.

Decode1.
String2.
Hex3.
Craft4.

Using CloudShark for Packet Analysis Chapter 16

[382]

__ are similar to the flow graphs in Wireshark, which show the endpoints3.
communicating back and forth.

Ladder diagrams1.
Step charts2.
VoIP ladders3.
Time intervals4.

At the bottom of the endpoints report, you will see a button to select ___. When4.
selected, it will visually show where the packets originate.

Step charts1.
Craft2.
Time interval3.
GeoIP Map4.

__ is a more advanced option that will scan the capture for potentially malicious5.
traffic within the capture.

Malicious conversations1.
Malicious endpoints2.
Threat assessments3.
Threat maps4.

Assessment

Chapter 1: Appreciating Traffic Analysis
1990s1.
EINSTEIN2.
Chat3.
Baseline4.
Reactive5.

Chapter 2: Using Wireshark NG
20061.
19982.
pcap3.
Dissectors4.
Mergecap5.

Chapter 3: Installing on a PC or macOS
X111.
libpcap2.
TShark3.
mmdbresolve4.
NpCap5.

Assessment

[384]

Chapter 4: Exploring the Wireshark Interface
Clear1.
Previously Displayed Packet2.
Colorize Packet List3.
View4.
Edit5.

Chapter 5: Tapping into the Data Stream
LAN1.
manuf.txt2.
Output3.
Single mode4.
.pcapng5.

Chapter 6: Personalizing the Interface
Default1.
Edit and Appearance2.
Red3.
Edit and Preferences4.
Edit5.

Chapter 7: Using Display and Capture Filters
Green1.
Value2.
udp port 533.
Expression4.
...and not Selected5.

Assessment

[385]

Chapter 8: Outlining the OSI Model
Session1.
Transport2.
Presentation3.
Well-known4.
Segment5.

Chapter 9: Decoding TCP and UDP
Socket1.
724 and 7252.
PSH3.
20 (0101 =5; 5 x 4 =20)4.
DHCP5.

Chapter 10: Managing TCP Connections
frame.marked==11.
Window scale 2.
SACK3.
FIN4.
9365.

Chapter 11: Analyzing IPv4 and IPv6
Network control1.
Class B private IPv4 address2.
1283.
Hop count4.
35.

Assessment

[386]

Chapter 12: Discovering ICMP
Unreachable1.
Deprecated2.
Parameter problems3.
34.
Ping5.

Chapter 13: Understanding ARP
Data link1.
1 and 22.
RARP3.
Gratuitous ARP4.
Storm5.

Chapter 14: Troubleshooting Latency Issues
Latency1.
Throughput2.
Intelligent Scrollbar3.
Keep-alive4.
A note5.

Chapter 15: Subsetting, Saving, and
Exporting Captures

Conversation1.
Protocol Hierarchy2.
.pcapng3.
Mark4.
HTTP5.

Assessment

[387]

Chapter 16:Using CloudShark for Packet
Analysis

Capture Index1.
String2.
Ladder diagrams3.
GeoIP Map4.
Threat assessments5.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Wireshark 2
Andrew Crouthamel

ISBN: 978-1-78862-652-1

Understand what network and protocol analysis is and how it can help you
Use Wireshark to capture packets in your network
Filter captured traffic to only show what you need
Explore useful statistic displays to make it easier to diagnose issues
Customize Wireshark to your own specifications
Analyze common network and network application protocols

https://www.packtpub.com/networking-and-servers/mastering-wireshark-2

Other Books You May Enjoy

[389]

Network Analysis Using Wireshark 2 Cookbook
Yoram Orzach, Nagendra Kumar Nainar, Et al

ISBN: 978-1-78646-167-4

Configure Wireshark 2 for effective network analysis and troubleshooting
Set up various display and capture filter
Understand networking layers, including IPv4 and IPv6 analysis
Explore performance issues in TCP/IP
Get to know about Wi-Fi testing and how to resolve problems related to wireless
LANs
Get information about network phenomena, events, and errors
Locate faults in detecting security failures and breaches in networks

https://www.packtpub.com/networking-and-servers/network-analysis-using-wireshark-2-cookbook-second-edition

Other Books You May Enjoy

[390]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Access Control List (ACL) 10, 290
acknowledgment (ACK) 225
active attacks
 about 19
 ARP spoofing 19, 20, 21
Address Resolution Protocol (ARP), types
 examining 302
Address Resolution Protocol (ARP)
 about 19, 155, 188, 280
 purpose 293, 294
 replacing, with NDP in IPv6 298, 299
 role 293, 294
AirPCap
 about 59
 reviewing 59
analysis tools
 conversations, viewing 374, 375, 376
 Decode Protocol As 378
 evaluating 374
 HTTP Analysis 378
 packet lengths, viewing 377, 378
 stream, following 374, 375, 376
 Threat Assessments 379
 VoIP activity, viewing 377, 378
 Wireless Keys 379
 Wireless Networks 379
application layer
 evaluating 179
 PDU, exploring 180
 protocols, exploring 180
application program interface (API) 366
ARP attack tools 309
ARP attacks
 analyzing 306
 defending 309

 versus ARP tools 306
ARP cache table 19
ARP cache
 investigating 296, 297, 298
ARP fields
 exploring 299
ARP header fields
 breaking down 301
ARP header
 exploring 299
ARP spoofing
 about 19, 20, 21
 discovering 306
ARP storm
 reviewing 307, 308

B
baselines
 captured traffic, analyzing 122
 need for 120
 planning 120
 saving 123
 traffic, capturing 120, 121
bigFlows.cap
 reference link 337
bookmarks 155
buttons
 crafting 146, 147

C
Campus Area Network (CAN)
 about 104
 exploring 106
capture engines
 comparing 58
capture filters
 about 151

[392]

 bookmarks, saving 161, 162
 creating 159, 160, 161
 modifying 162, 163, 165
 reference link 165
 versus display filters 151, 152, 153
capture methods
 input, providing 111, 112
 learning 110, 111
 options, selecting 114, 115
 output, providing 112, 114
captured data
 displaying 46, 48
 packet bytes 47
 packet details 47
 packet list 46
class selector (CS) 254
CloudShark (CS)
 captures, sharing 364
 captures, uploading 367, 368, 369, 370
 overview 363
 preferences, modifying 365, 366, 367
 searching 363, 364
coloring rules 318, 319, 320
colors
 adjusting 134
 refining 140, 141, 142
column header
 bullets outline 328
columns
 adding 134, 135, 137
 deleting 134, 135, 137
 editing 134, 135, 137
Command-Line Interface (CLI) 32, 297
command-line tools
 tshark, discovering 49, 51, 52
 using 49
comments
 adding 15, 142, 355
 attaching, to files 143
 need for 355
 saving 144, 358, 359
 viewing 144, 358, 359
common transmission errors
 about 322
 duplicate acknowledgments, seeing 322, 323,

324

 keep-alive segments, observing 324, 325, 326
 retransmissions, issuing 326
complex expressions
 buttons, crafting 146, 147
 creating 145, 146
 modifying 145
component
 exporting 349
 objects, exporting 352, 353, 354, 355
 specified packets, selecting 349, 350, 351
Congestion Experienced (CE) 256
congestion window (CWND) 237
connection
 tearing down 246, 247, 248
Content Addressable Memory (CAM) 307
copper
 exploring 107
Cyclic Redundancy Check (CRC) 191

D
Data Link Connection Identifier (DLCI) 304
data link layer address
 describing 191
data link layer
 examining 190
 PDU, investigating 191
 protocols, investigating 191
Data Over Cable Service Interface Specification

(DOCSIS) 107
data
 displaying, with filters 371, 372
 viewing, with graphs 372
Denial of Service (DoS) attacks 19
Department of Homeland Security (DHS) 23
devices
 evaluating, that use packet analysis 10, 11
Differentiated Services (DiffServ) 253
Differentiated Services Code Point (DSCP) 255,

263

Digital Imaging and Communications in Medicine
(DICOM) 352

Digital Subscriber Line (DSL) 192
Discover, Offer, Request, and Acknowledge

(DORA) 16

[393]

Disk Image (DMG) 72
display filters
 about 151
 bookmarks, using 155, 157
 comprehending 154, 155
 editing 158, 159
 versus capture filters 151, 152, 153
Domain Name System (DNS) 184, 219
Dumpcap 337
Dynamic Host Configuration Protocol (DHCP) 186,

219, 303

E
ECN-Capable Transport (ECT) 256
Electromagnetic Interference (EMI) 108
electronic mail (email) 180
eleven field TCP header
 examining 205
encapsulation process
 data, viewing 193
 exploring 193
 frame, forming 195
 packet, identifying 194
 segment, identifying 194
End of Option List (EOL)
 grasping 236
Enhanced Interior Gateway Routing Protocol

(EIGRP) 116
Enhanced Packet Analyzer (EPAN) 44, 115, 152
Enhanced Packet Analyzer (EPAN), APIs
 display filters 45
 dissector plugins 45
 dissectors 45
 protocol tree 45
Ethereal 44
Ethereal version 0.3.14
 reference link 33
Ettercap 132
Expert System
 about 14, 15
 column headers, viewing 328, 329
 data, sorting 330, 331
 discovering 326, 328
 information, organizing 330
 severity, assessing 329

 values, searching 331, 332, 333
Explicit Congestion Notification (ECN)
 about 254, 263
 sending 255, 256
expression builder 166, 167
expressions
 about 151
 building 167, 169
External Data Representation (XDR) 182

F
fake Ethernet packets 59
fiber optic
 using 108
field occurrence
 usage, demonstrating 137, 139
file comments
 providing 355, 357
File Transfer Protocol (FTP) 163, 180
file, options
 save as, using 346, 347, 348
 saving 345, 346
filter shortcuts
 discovering 169
 embracing 169, 170, 171, 172, 173
filters
 outlining 371
 used, for displaying data 371, 372
firewall rules
 configuring 288
font
 adjusting 134
 refining 140, 141, 142
frame formation
 demonstrating, in Wireshark 195, 196

G
general appearance
 altering 129, 130, 131
 personalizing 127
General Public License (GPL) 39, 51, 62
Generic Routing Encapsulation (GRE) 269
GIMP Toolkit
 reference link 35
graphs

[394]

 outlining 371
 used, for viewing data 372, 373, 374
gratuitous ARP
 issuing 304, 305

H
handshake packets
 ACK packet 233
 ACK packet, finalizing with 234
 identifying 230
 SYN packet, sending 230, 232
handy filters
 discovering 169
High-Level Data Link Control (HDLC) 191
Honeynet project
 reference link 18
Hypertext Transfer Protocol (HTTP) 180, 324, 352

I
ICMP code values
 evaluating 286
 reviewing 286
ICMP error messages
 reporting 281, 282
ICMP header 275, 276
ICMP messages
 sending 281
ICMP query
 issuing 283
ICMP types
 allowing 290
 evaluating 286
 reviewing 286
ICMPv4
 dissecting 278
 reviewing 278, 279
ICMPv6 code values
 about 287
 evaluating 286
ICMPv6 types
 about 287
 evaluating 286
ICMPv6
 reference link 288
Integrated Services Digital Network (ISDN) 192

Intelligent Scrollbar
 about 14, 15
 exploring 321
International Organization for Standardization

(ISO) 177
International Telegraph and Telephone

Consultative Committee (CCITT) 177
Internet Control Message Protocol (ICMP)
 about 189, 258, 273
 data payload, investigating 276, 277, 278
 objectives 275
 reference link 288
 versions 274
Internet Control Message Protocol Version 6

(ICMPv6)
 about 299
 dissecting 278
 outlining 279, 280
 used, for proving information 284, 285
Internet Message Format (IMF) 352
Internet of Things (IoT) 8, 104, 313
Internet Protocol (IP) 188, 251, 273
Intra-Site Automatic Tunnel Addressing Protocol

(ISATAP) 269
Intrusion Detection System (IDS) 9, 151, 309
Intrusion Prevention System (IPS) 309
Inverse Address Resolution Protocol (InARP)
 about 303
 evaluating 303, 304
IP Statistics
 addresses 339
 destination and ports 339
 IP protocol types 340
 source and destination addresses 340
IPv4 addresses
 versus IPv4 classes 260
IPv4 addressing
 learning 259
IPv4 classes
 versus IPv4 addresses 260
IPv4 header
 checksum, viewing 258, 259
 data, fragmenting 257, 258
 dissecting 252, 253
 length, discovering 253

[395]

 protocol, viewing 258, 259
 TTL, viewing 258, 259
 Type of Service (TOS) field, breaking down 254
 version, discovering 253
IPv4 preferences
 reviewing 265, 266, 267
IPv4
 options, modifying for 261
 outlining 251, 252
IPv6 address types
 comparing 264, 265
 examining 264
IPv6 addresses
 examining 264
IPv6 header fields
 flow label, identifying 262
 hop limit, evaluating 263, 264
 length, evaluating 263, 264
 navigating 262
 next header, evaluating 263, 264
 traffic class, identifying 262
 version, identifying 262
IPv6
 ARP, replacing with NDP 298, 299
 exploring 261, 262
 preferences, adjusting for 267, 268, 269

L
latency issues
 analyzing 313
latency
 computing 315, 316, 317
 grasping 314, 315
layout
 changing 127, 128
 personalizing 127
libpcap 58
libpcap, and TCPDUMP
 reference link 58
Light-Emitting Diode (LED) 108
Linux
 Wireshark, deploying on 56
Local Area Network (LAN) 104, 105
Loki tool 278

M
MAC addresses
 resolving 294, 295, 296
macOS
 Wireshark, installing on 55
Maximum Segment Size (MSS) 257
Maximum Transmission Unit (MTU) 237, 257, 282
media types
 exploring 106, 107
Message Queuing Telemetry Transport (MQTT)

104, 180
Meta Analysis and Tracing Engine (MATE) 64
MSS
 defining 237
multimode (MMF) 108
Multiprotocol Label Switching (MPLS) 106

N
Neighbor Discovery Protocol (NDP) 284, 298
Neighbor Solicitation (NS) 299
network architecture
 reviewing 104
network bindings
 examining 196, 197
Network Driver Interface Specification (NDIS) 58
Network Interface Card (NIC) 11, 192
network layer, protocols
 Address Resolution Protocol (ARP) 188
 Internet Control Message Protocol (ICMP) 189
 Internet Protocol (IP) 188
network layer
 about 187
 IP address, supplying to packet 189, 190
 protocols, versus PDU 188
Network Time Protocol (NTP) 89
network traffic
 capture engine, using 43
 capturing 11, 12
 filtering 151
 gathering 42
 promiscuous mode, capturing 42
networks
 comparing 104
NOP

[396]

 using 236
Npcap modes
 managed mode 60
 monitor mode 60
Npcap
 about 59
 features 59, 61
 grasping 59

O
objects
 exporting 352, 353, 354, 355
operating systems
 support, discovering for 54
Organizational Unique Identifier (OUI) 95
OSI model, layers
 PDU, discovering 177, 179
 protocols, discovering 177, 179
 purpose, discovering 177, 179
OSI model
 overview, outlining 176, 177

P
packet analysis, use cases
 identifying 21
 IoT devices, testing 25, 26
 latency issues, troubleshooting 24, 25
 monitoring, for threats 26, 27
 network, baselining 27, 28
 outlining 24
 sniffing traffic, on host 23
 traffic on a LAN, analyzing 22
packet analysis
 about 8, 12
 captured data, displaying 46, 48
 developers, assisting 12, 13
 hackers, arming with information 18
 network traffic, capturing 11, 12
 network traffic, gathering 42
 network, monitoring by helping network

administrators 13
 packet capture, analyzing 48
 phases 41
 raw bits, decoding 43, 45
 reviewing 8

 security analysts, alerting on threats 17, 18
 students on protocols, evaluating 16, 17
 using 23, 24
packet captures
 analyzing 48
 downloading 379, 380
 exporting 15
 reference link 379
 saving 15
 searching 379
packet comments
 entering 143
 providing 355, 357
packet loss
 experiencing 318
 grasping 314, 315
packet range
 all packets 351
 first to last marked 351
 ignored packets, removing 351
 marked packets 351
 range 351
 selected packet 351
packet sniffers
 exploring 8, 10
Paessler
 reference link 277
passive attacks
 outlining 19
PCAP file 8
Personal Area Network (PAN)
 about 104
 discovering 104
physical layer
 examining 191
 PDU, exemplifying 192
 protocols, exemplifying 192
ping sweeps
 sending 288, 289
Plain Old Telephone System (POTS) 106
Point-to-Point Tunneling Protocol (PPTP) 184
Precision Timing Protocol (PTP) 89
premade virtual images
 downloading 57
 reference link 57

[397]

presentation layer
 about 181, 182
 PDU, describing 182
 protocols, describing 182
private IPv4 addresses
 reviewing 260
promiscuous 42
Protocol Data Unit (PDU) 176
protocol preferences
 editing 265
proxy ARP 305, 306
Public Switched Telephone Network (PSTN) 192

Q
Quality of Service (QoS)
 about 254
 ensuring 254, 255

R
Random Packet Generator (randpkt) 65
raw bits
 decoding 43, 45
Real-Time Transport Control Protocol (RTCP) 184
Real-Time Transport Protocol (RTP) 378
Reliable User Datagram Protocol (RUDP) 185
Remote Procedure Call (RPC) 184
Request for Comment (RFC) 9, 329
Resource Record (RR) 378
Reverse Address Resolution Protocol (RARP)

302, 303
Round-Trip Time (RTT) 218, 315
Routing Information Protocol (RIP) 186
Routing Protocol for Low-Power and Lossy

Networks (RPL) 268

S
Secure Neighbor Discovery (SEND) 310
Secure Shell (SSH) 65
Secure Socket Layer (SSL) 182
Secure/Multipart Internet Mail Extensions

(S/MIME) 182
Security Operations Center (SOC) 27
Selective Acknowledgment (SACK)
 about 239
 permitting 239, 240

Server Message Block (SMB) 352
session layer
 learning 182, 183
 PDU, recognizing 184
 protocols, recognizing 184
Shielded Twisted Pair (STP) 108, 192
Simple Mail Transfer Protocol (SMTP) 180
Simple Network Monitor Protocol (SNMP) 64
single mode (SMF) 108
single stream
 isolating 226, 227, 228
Sliding Window 214
Software Development Kit (SDK) 65
special IPv4 addresses
 reviewing 260
specified packets
 selecting 349, 350, 351
standard ARP reply
 identifying 299, 300
standard ARP request
 identifying 299, 300
standard Windows installation
 about 62
 completing 66, 68
 components, selecting 63, 64, 65
 install location, selecting 65, 66
 packets, capturing 66, 68
 performing 62
 shortcuts, creating 65, 66
Stateless Autoconfiguration (SLAAC) 279
Stream Control Transmission Protocol (SCTP) 185
stream
 conversations, versus endpoints 116, 118, 119
 tapping into 115
Structured Query Language (SQL) injection attack

19

Switched Port Analyzer (SPAN) 23
synchronization (SYN) packet 225
synchronization acknowledgment (SYN-ACK) 208,

225

T
tailored configuration profile
 creating 131, 132, 133, 134
TCP frame

[398]

 exploring 203, 205
TCP header fields
 data, acknowledging 208, 211, 212
 data, sequencing 208, 211, 212
 flags 212, 213
 header values 216, 218
 navigating 205, 206
 window size, dissecting 213, 216
TCP options
 EOL, grasping 236
 learning 235, 236
 MSS, defining 237
 NOP, using 236
 SACK, permitting 239, 240
 timestamps, using 241
 window scale (WS), scaling 238
 window size, scaling 239
TCP ports
 exploring 206, 208
TCP protocol preferences
 about 242, 243, 244
 modifying 244, 245, 246
TCP Segmentation Offload (TSO) 267
Teredo 269
Terminal Ethereal (Tethereal) 49
three-way handshake
 dissecting 225, 226
 handshake packets, identifying 230
 single stream, isolating 226, 227, 228
 TCP handshake, marking 229, 230
throughput
 grasping 314, 315
 measuring 317
time values
 requisites 318
timestamps
 using 241
traffic
 breaking down, by protocol 343
 capturing 337, 338
 dissecting, by IP address 338, 339, 340
 minimizing, by port number 341, 342
 narrowing down, by conversation 340, 341
 subsetting 15
 subsetting, by stream 343, 344

Transmission Control Protocol (TCP)
 about 155, 185, 186, 202, 203
 states 185
Transport Layer Security (TLS) 82, 182
transport layer, protocols
 Transmission Control Protocol (TCP) 185, 186
 User Datagram Protocol (UDP) 186
transport layer
 appreciating 184
 PDU, differentiating 185
 port addressing, providing 187
 protocols, differentiating 185
Transport Layer
 purpose, reviewing 201, 202
Trivial File Transfer Protocol (TFTP) 186, 219,

352

TShark 350
 about 49, 337
 discovering 51, 52
tunneling protocols
 discovering 269, 270
Type of Service (TOS) 253

U
UDP frame
 about 219, 220
 discovering 221
UDP header fields
 analyzing 221, 222
Unified Communication (UC) 313
Unix
 Wireshark, running on 55
Unshielded Twisted Pair (UTP) 108, 192
useful filters
 applying 173, 174
User Account Control (UAC) 61
User Datagram Protocol (UDP) 184, 186, 218,

219

V
Voice over IP (VoIP) 186, 219

W
Wide Area Network (WAN)
 about 104

 navigating 106
window scale (WS) 238
Window size (WS)
 about 237
 scaling 238
window size
 scaling 239
WinPcap features, versus Npcap features
 reference link 62
WinPcap
 about 58
 discovering 58
 reference link 58
wireless networks
 discovering 109
Wireless Personal Area Network (WPAN) 104
Wireshark interface, Edit menu
 discovering 85, 86
 items, copying 86, 87
 packets, ignoring 87
 packets, marking 87
 packets, searching 86, 87
 time reference, setting 88, 89
 work area, personalizing 89, 90
Wireshark interface, File menu
 bytes, exporting 81, 82, 83
 capture, saving 80
 closing 84, 85
 exploring 79, 80
 file, closing 80
 file, opening 80
 objects, exporting 81, 82, 83
 packets, exporting 81, 82, 83
 packets, printing 84, 85
Wireshark interface, View menu

 display, modifying 96, 97, 98
 exploring 91, 92
 interface, enhancing 92, 93
 name resolution, adjusting 93, 95, 96
 time, adjusting 93, 95, 96
 view, refreshing 98, 99
Wireshark interface
 enhancing 37, 39
 examining 35, 36
 implementing 39, 40
 next generation 36
Wireshark welcome screen
 about 76, 79
 files, opening 77, 78
 traffic, capturing 78
Wireshark, for Windows XP
 reference link 55
Wireshark, from command-line tools
 reference link 50
Wireshark.org
 available resources, reviewing 69, 70, 71
 download options, evaluating 71, 73
 reference link 69
Wireshark
 about 28, 29, 33, 34
 deploying, on Linux 56
 download link 55
 frame formation, demonstrating 195, 196
 installing, on macOS 55
 running, on Unix 55
 using, on Windows 55
 working with, on other systems 57

Y
Yet Another Markup Language (YAML) 118

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Traffic Capture Overview
	Chapter 1: Appreciating Traffic Analysis
	Reviewing packet analysis
	Exploring early packet sniffers
	Evaluating devices that use packet analysis
	Capturing network traffic

	Recognizing who benefits from using packet analysis
	Assisting developers
	Helping network administrators monitor the network
	Expert system and intelligent scrollbar
	Subsetting traffic, comment, save, and export

	Educating students on protocols
	Alerting security analysts of threats
	Arming hackers with information
	Outlining passive attacks
	Understanding active attacks
	Poisoning the cache

	Identifying where to use packet analysis
	Analyzing traffic on a LAN
	Sniffing traffic on a host
	Using packet analysis in the real world

	Outlining when to use packet analysis
	Troubleshooting latency issues
	Testing IoT devices
	Monitoring for threats
	Baselining the network

	Getting to know Wireshark
	Summary
	Questions

	Chapter 2: Using Wireshark NG
	Discovering the beginnings of today's Wireshark
	Developing Ethereal

	Examining the Wireshark interface
	Introducing Wireshark next generation
	Enhancements
	Authors

	Understanding the phases of packet analysis
	Gathering network traffic
	Capturing in promiscuous mode
	Using a capture engine

	Decoding the raw bits
	Enhanced Packet Analyzer (EPAN)

	Displaying the captured data
	Analyzing the packet capture

	Using command-line tools
	Exploring tshark

	Summary
	Questions

	Chapter 3: Installing Wireshark on a PC or macOS
	Discovering support for different OS
	Using Wireshark on Windows
	Running Wireshark on Unix
	Installing Wireshark on macOS
	Deploying Wireshark on Linux
	Downloading premade virtual images

	Working with Wireshark on other systems

	Comparing different capture engines
	Understanding libpcap
	Examining WinPcap
	Reviewing AirPCap
	Grasping Npcap
	Understanding Npcap features

	Performing a standard Windows installation
	Beginning the installation
	Choosing components
	Creating shortcuts and selecting an install location
	Capturing packets and completing the installation

	Reviewing the resources available at Wireshark.org
	Evaluating different download options

	Summary
	Questions

	Chapter 4: Exploring the Wireshark Interface
	Understanding the Wireshark welcome screen
	Opening files
	Capturing traffic
	Learning about Wireshark

	Exploring the File menu
	Opening a file, close, and save
	Exporting packets, bytes, and objects
	Printing packets and closing Wireshark

	Discovering the Edit menu
	Copying items and finding packets
	Marking or ignoring packets
	Setting a time reference
	Personalizing your work area

	Exploring the View menu
	Enhancing the interface
	Adjusting time formats and name resolution
	Modifying the display
	Refreshing the view

	Summary
	Questions

	Section 2: Getting Started with Wireshark
	Chapter 5: Tapping into the Data Stream
	Reviewing the network architecture
	Comparing different types of networks
	Discovering the PAN
	Checking out LANs
	Exploring CANs
	Navigating WANs

	Exploring various types of media
	Exploring copper
	Using fiber optic
	Discovering wireless

	Learning various capture methods
	Providing input
	Directing output
	Selecting options

	Tapping into the stream
	Comparing conversations and endpoints

	Realizing the importance of baselining
	Planning the baseline
	Capturing traffic
	Analyzing the captured traffic
	Saving the baselines

	Summary
	Questions

	Chapter 6: Personalizing the Interface
	Personalizing the layout and general appearance
	Changing the layout
	Altering the appearance

	Creating a tailored configuration profile
	Adjusting columns, font, and colors
	Adding, editing, and deleting columns
	Demonstrating how to use field occurrence

	Refining the font and colors

	Adding comments
	Attaching comments to files
	Entering packet comments
	Viewing and saving comments

	Modifying complex expressions
	Creating expressions
	Crafting buttons

	Summary
	Questions

	Chapter 7: Using Display and Capture Filters
	Filtering network traffic
	Comparing display and capture filters

	Comprehending display filters
	Using bookmarks
	Editing display filters

	Creating capture filters
	Saving to bookmarks
	Modifying capture filters

	Understanding the expression builder
	Building an expression

	Discovering shortcuts and handy filters
	Embracing filter shortcuts
	Applying useful filters

	Summary
	Questions

	Chapter 8: Outlining the OSI Model
	Comprehending the OSI model
	Discovering the purpose, protocols, and PDUs
	Evaluating the application layer
	Exploring protocols and the PDU

	Understanding the presentation layer
	Describing the protocols and the PDU

	Learning about the session layer
	Recognizing protocols and the PDU

	Appreciating the transport layer
	Differentiating protocols and the PDU
	TCP
	UDP

	Providing port addressing

	Explaining the network layer
	Distinguishing the protocols and the PDU
	IP
	ARP
	ICMP

	Supplying an IP address for the packet

	Examining the data link layer
	Investigating protocols and the PDU
	Describing the data link layer address

	Traveling over the physical layer
	Exemplifying protocols and the PDU

	Exploring the encapsulation process
	Viewing the data
	Identifying the segment
	Identifying the packet
	Forming the frame

	Demonstrating frame formation in Wireshark
	Examining the network bindings

	Summary
	Questions

	Section 3: The Internet Suite TCP/IP
	Chapter 9: Decoding TCP and UDP
	Reviewing the purpose of the transport layer
	Describing TCP
	Exploring a single TCP frame

	Examining the eleven-field TCP header
	Navigating the TCP header fields
	Exploring TCP ports
	Sequencing and acknowledging data
	Following the flags
	Dissecting the window size
	Additional header values

	Understanding UDP
	A single UDP frame

	Discovering the four-field UDP header
	Analyzing the UDP header fields

	Summary
	Questions

	Chapter 10: Managing TCP Connections
	Dissecting the three-way handshake
	Isolating a single stream
	Marking the TCP handshake

	Identifying the handshake packets
	Sending the SYN packet
	Returning the SYN-ACK packet
	Finalizing with an ACK packet

	Learning TCP options
	Grasping the EOL
	Using NOP
	Defining the MSS
	Scaling the window size
	Permitting SACK
	Using timestamps

	Understanding TCP protocol preferences
	Modifying TCP preferences

	Tearing down a connection
	Summary
	Questions

	Chapter 11: Analyzing IPv4 and IPv6
	Understanding the purpose of the IP
	Outlining IPv4
	Dissecting the IPv4 header
	Discovering the version and the length
	Breaking down the type of service
	Ensuring QoS
	Sending an ECN

	Fragmenting the data
	Viewing TTL, protocol, and checksum
	Learning IPv4 addressing
	Comparing IPv4 classes and addresses
	Reviewing special and private IP addressing

	Modifying options for IPv4

	Exploring IPv6
	Navigating the IPv6 header fields
	Identifying the version, traffic class, and flow label
	Evaluating the length, next header, and hop limit
	Examining IPv6 addresses and address types
	Comparing IPv6 address types

	Editing protocol preferences
	Reviewing IPv4 preferences
	Adjusting preferences for IPv6

	Discovering tunneling protocols
	Summary
	Questions

	Chapter 12: Discovering ICMP
	Understanding the purpose of ICMP
	Understanding the ICMP header
	Investigating the data payload

	Dissecting ICMPv4 and ICMPv6
	Reviewing ICMPv4
	Outlining ICMPv6

	Sending ICMP messages
	Reporting errors
	Issuing queries
	Providing information using ICMPv6

	Evaluating type and code values
	Reviewing ICMP type and code values
	Defining ICMPv6 type and code values

	Configuring firewall rules
	Sending malicious ping sweeps
	Allowing only necessary types

	Summary
	Questions

	Chapter 13: Understanding ARP
	Understanding the role and purpose of ARP
	Resolving MAC addresses
	Investigating an ARP cache
	Replacing ARP with NDP in IPv6

	Exploring ARP headers and fields
	Identifying a standard ARP request/reply
	Breaking down the ARP header fields

	Examining different types of ARP
	Reversing ARP
	Evaluating InARP
	Issuing a gratuitous ARP
	Working on behalf of ARP

	Analyzing ARP attacks
	Comparing ARP attacks and tools
	Discovering ARP spoofing
	Reviewing the ARP storm
	Understanding ARP attack tools

	Defending against ARP attacks

	Summary
	Questions

	Section 4: Working with Packet Captures
	Chapter 14: Troubleshooting Latency Issues
	Analyzing latency issues
	Grasping latency, throughput, and packet loss
	Computing latency
	Measuring throughput
	Experiencing packet loss

	Learning the importance of time values

	Understanding the coloring rules
	Exploring the Intelligent Scrollbar
	Common transmission errors
	Seeing duplicate acknowledgments
	Observing keep-alive segments
	Issuing retransmissions

	Discovering the expert system
	Viewing the column headers
	Assessing the severity
	Organizing the information
	Sorting the data

	Searching for values

	Summary
	Questions

	Chapter 15: Subsetting, Saving, and Exporting Captures
	Discovering ways to subset traffic
	Dissecting the capture by IP address
	Narrowing down by conversations
	Minimizing by port number
	Breaking down by protocol
	Subsetting by stream

	Understanding options to save a file
	Using Save as

	Recognizing ways to export components
	Selecting specified packets
	Exporting various objects

	Identifying why and how to add comments
	Providing file and packet comments
	Saving and viewing comments

	Summary
	Questions

	Chapter 16: Using CloudShark for Packet Analysis
	Diving into an overview of CS
	Finding CS

	Sharing captures in CS
	Modifying the preferences
	Uploading captures

	Outlining the various filters and graphs
	Displaying data using filters
	Viewing data using graphs

	Evaluating the different analysis tools
	Following the stream and view conversations
	Viewing packet lengths and VoIP activity
	Exploring wireless, protocols, and possible threats

	Discovering where to find sample captures
	Downloading captures

	Summary
	Questions

	Assessment
	Other Books You May Enjoy
	Index

