WWWw.sans.org

SECURITY 503

INTRUSION DETECTION 5 O 3 4

IN-DEpTH

Open Source IDS:
Snort and Bro

. /
..:F I
’ ,
l. -
. -‘
‘
h 1
\
'Y
. \
\n

The right security training for your staff, at the right time, in the right location.

SECURITY 503
INTRUSION DETECTION
N-DEPTH

Open-Source IDS:
Snort and Bro

Copyright © 2015, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

SANS acknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple Inc.

Sec503 4 All 01

Overall Course Roadmap

503.1: Fundamentals of Traffic Analysis: Part I
503.2: Fundamentals of Traffic Analysis: Part 11
503.3: Application Protocols and Traffic Analysis
503.4: Open Source IDS: Snort and Bro «
503.5: Network Traffic Forensics and Monitoring

503.6: IDS Challenge

Iperusion Detcction In-Deph

Now that we've covered the foundation of theory required to understand network traffic at the link, network,
transport, and application layers, lel's get to work on learning about some open source fraffic inspection tools -
Snort and Bro. Snorl characterizes itself as an Intrusion Detection System (IDS) or Intrusion Prevention System
(IPS). There is a tendency to want to cal! Bro an IDS, Yet, it is actually described by its authors as a tool or
framework for network traffic analysis and inspection.

We'll approach both of these tools by examining their operational life cycle. This lifecycle brings you from
planning to refincment of each of the tools, cycling through the iterative processes, such as updating.

Special recognition and thanks to Mike Poor and Marty Roesch for their valuable author contributions.

® 2015 Judy Novak 1

—_—

Open Source IDS:
Snort and Bro

Intrusion Detection In-Depth

This page intentionally left blank.

© 2015 Judy Novak

Day 4 Roadmap

» Traffic Inspection Tools Operational Lifecycle

» We will cover the following phases of the lifecycle first in
theory, then as they pertain to Snort, and finally as they
pertain to Bro:

-~ Planning

Installation

Configuration

Running

Customization

Auditing

Refining

Updating

|

1

Today, we are going te examine Snort and Bro in terms of their operational lifecycle, In other words, this means
understanding what tasks are neccssary, in general, 1o consider and perform when deploying these toels, or for
that matter any other production software. Today starts with some theory about the phases of the operaticnal
lifecyele, including planning, installation, configuration, running, customization, auditing, refinement, and
updating.

Next, we'll apply most of these phases as they relate to Snort and Bro. The more transactional phases such as
installation, configuration, and updating for Snott and Bro are found in the Appendix of Snort Material and
Appendix of Bro Material. The reason for this is because there is a lot of material to cover today and we want to
present (he topics that are more nuanced and more complex. The coverage of these phases will offer you a broad
view of what is entailed for the production operation of each of these amazing open source tools. This is more
than just a step-by-step discussion of install, configure, and run the lools, This approach provides a recipe for a
successful deliberated deployment, not just a haphazard "download and install the code and hope for the best".

We include auditing in the theory section, but do not discuss the specifics of doing so with either Snort or Bro.
Auditing is typically outside the purview of the analyst's duty, yet it is an integral part of the lifecycle.

We could devote a day or mare to teaching about either Snort or Bro individually since they both have so many
capabilities and features, some quite advanced. Unfortunately, we do not have the time to de so. That said, you
should know that what you will learnn from Day 4 material is a basic introduction to each. The intent is to give
vou the knowledge to intelligently run, configure, and customize sach when you return to your office or home.

As discussed, there are individual appendices of additional Snort and Bro material that discuss some of the more
straightforward phases. As well, some more advanced topics such as wriling, testing, and implementing Bro
scripts are in the Appendix of Bro Material.

@ 2015 Judy Novak

We would like to cite the author or vendor of each tool in advance and give credit and gratitude to them for

their contributions.

Snort Marty Roesch, Sourcefire/Cisco
Vern Paxson, Seth Hall, Robin Sommer, Broala, research teams at
Infernational Computer Science Instifute and National Center for

Bro Supercomputing Applications

Broala Commercial Bro

ELSA Martm Holste

PF RING ntop team

Emerging Threats Matt Jonkman

Barnyard2 Andrew Baker, Marty Roesch

Bro heartbleed.bro code Bernhard Amann

Pulled Pork JJ Cumings

© 2015 Judy Novak

Operational Lifecycle

> Configu ratio>

> " “Planring >> Insmlatlun

Updating

Regardless what teol you deploy, whether or not it is for traffic inspection, there {s an operational lifecycle
precess that guides what and when to perform specific tasks. As you are well aware not every manager or boss
cares whether you follow the lilecycle process — most just want the IDS/IPS/whatever installed, running, and
reporting in less than a day's time, and finding each and every hint of evil activity. Oh, that it were so casy!

We'll examine many of these different phases of the operation life cycle — first in theory, and re-examine most
of the phases again using Snort, and finally using Bro. Some considerations are universal among any traffic
inspection taol, such as finding and protecting the most sensitive or valuable assets o1 the network. Other
phases, such as product installation and configuration are dependent on the speeific solution you select.

There is an overabundance of technical detail associated with teaching Snort and Bro. Some of the topics such
as installation, configuration and updating are straightforward; therefore they will be placed in the Appendices -
one related to Snort, another related to Bro. You can use these as reference when you install, configure, or
update the product, Topics that are considered less transactional in nature and require more theory are covered
in the main sections of the course,

® 2015 Judy Novak 5

Planning

e One of the most often skipped steps

» Where are your sensor(s) to be placed?

e What are the network speeds at those places?

e What type of hardware do you need to handle those
speeds?

e \What capacity do you need now and the future?

» What best meets the site's needs — IDS or IPS?

* What type of software should you run?

e Do you need additional software/hardware for managing,
backend processing, data retention, etc?

e Will IDS/IPS be run and monitored in-house or MSSP?

Inttusion Detecton In-Depth

One of the most skipped steps in product installation is the first of planning the deployment. This involves
knowing where you want the deployment(s) on the network(s), meaning that someone is aware of the "crown
jewels". What needs to be protected the most? An answer of "everything" isn't exactly helpful. Does the site
really need to examine all traffic? If so, you better be ready for a very broad configuration that encompasses a
wide range and variety of traffic types. This is the generalist approach — see everything, but most likely at a
high level. And/or are there parts of your site's network that need microscopic scrutiny, such as a part of the
network that stores all customer data. So, the "where" must be answered predicated upon the "what" needs to
be protected. A risk assessment of assets may be very helpful in determining sensor locations.

You must do capacity planning to determine your current needs in terms of number of sensors, management,
and support software and hardware. Don't forget to consider your future needs while you are doing this. Bro
makes future capacity requirements more easily extensible because of its flexible architecture, permitting the
addition of new sensors with very little reconfiguration. However, other IDS/IPS solutions may not be as
forgiving or flexible.

You will need to decide whether an IDS or IPS best meets the site's needs. It is possible to have a combination
of both where the IPS is employed to guard assets of value that should have limited and tightly controlled
access. It is less likely that a properly configured IPS will cause legitimate traffic to be blocked because of false
positives in such an environment. However, a sensor(s) that protects a wide variety of disparate assets may best
be configured as an IDS since the possibility of false positives may increase. Another option is to anticipate the
use of an IPS, yet slowly phase in blocking as you initially configure it to log or alert. Once you become more
familiar with the traffic and can eliminate many of the false positives you can begin to block.

Another planning concern is the hardware and software — perhaps considered individually or together. You may
think that you are at liberty to select the hardware and software that you want to deploy, but layer 8 of the OSI
model — politics - may intervene and stifle your best intentions. As well, even if you are allowed to select a
product of choice and select some open source offering like Snort or Bro, your selection of hardware may be
limited to whatever no one else wants. Obviously this is not ideal as you know and is hardly considered
planning.

® 2015 Judy Novak

Sotne of the planning questions that need to be considered are — what rates of traffic flow must yon examine,
what type of hardware do you anticipate needing - including the NIC(s), bus, number of processors, what data is
to be stored long term and for how long, and other processes associated with the traffic inspection thal require
other hardware, for instance a management or backend platform. This list is not all inclusive, but you can see
good planning requires more than throwing a Snort box on the wire with its default configuration and rules.

You will need to consider what type of hardware to use to capture the traffic, such as a tap or switch, And, if
you have a particularly high volume of traffic, it may be necessary to do some kind of load balancing to
distribute the processing. We’'ll examine hardware concerns in more depth on Day 5.

A very important decision is whether to manage your IDS/IPS solutions in-house or use a Managed Security
Service Provider (MSSP). The biggest advaniage to managing the operation in-heuse is that you control
everything about it; you are not dependent on hiring an MSSP whose competence and diligence are unknown
except, perhaps, by reputation. The biggest disadvantage of managing the opcration in-house is that you need to
train and maintain competent and invested employees wha have the incentive to slay. You will have to plan and
budget for staff required to support the operation for the present and future two to five years away.

@ 2015 Judy Novak 7

e e —

Installation

» Commercial solution may come preinstalled

Install from source or bundle?

e Prerequisite software requirements?

Build-time options

Installation required on multiple hosts?

Intrusion Detection In-Depth

Once you've agreed upon the plans for the deployment the next step is to actually install the acquired product.
Your participation in the process may be minimal or more extensive. Some commercial solutions may come
preinstalled on some proprietary appliance and all you need to do is "plug it in" — put it on the proper place on
the network, turn the hardware on, and start the software.

At the other end of the spectrum, especially in regard to open source software, your effort and involvement in
the installation process is far more demanding. With open source software, you often have the choice of
installing from source, namely configuring, compiling, and placing in system libraries. You may have the
option of installing a precompiled bundle, rpm format, etc. While this is more convenient, you accept the
configuration and build-time options that are set — perhaps not what you want. Consider whether or not you
have experienced and talented analysts who can properly install, configure, and maintain an open source
solution.

You not only have more control over the build and run-time options when you install the software from source,
you also have more visibility into the code. Why would you even care about the ability of having the source
code available for scrutiny? Suppose you select the bundling option for installation. You have no idea how the
precompiled code was created or the code used to create it. This leaves more opportunity for some evil-doer to
plant some malicious code. Sure, this is a paranoid attitude, but it warrants discussion and consideration.

As you are most likely aware, there are attackers acting on their own or in support of nation-states intent on
infiltrating as many sites as possible. Certificate authorities, for example, have come under attack since
compromise and access to the private keys for multiple certified sites allows impersonation of actual sites. This
is far more efficient than trying to attack each site individually. So too is compromising a server that offers
precompiled binaries for code that is used to detect attackers. The attacker need only compromise the site, add
some new code to the existing code, compile it and offer up that malicious code on the server, Perhaps the
malicious code adds a backdoor or tricks the user into believing that the software is running, yet generates bogus
or no output. Imagine how dangerous that might be.

© 2015 Judy Novak

Compiling from source code is not a panacea since the attacker can simply put the malicious code into (he
existing source code. Most of us don't inspect the code to the extent of being able 1o find the attacker's code, yet
there is more transparency if you choose to do so. You have the code al your disposal for examination if, for
instance, you learn of a compromise to the site you used to download your code.

Another consideration when installing from source is the need for prerequisite software. Many open source
projects have some required software that must be installed — for instance, at a minimum, libpcap or its
equivalent to capture packets from the network. Sometimes the process of gathering and installing all the
prerequisite software can be quite frustrating if you don't work from the base and methodically add, in order, the
required software.

Anaother benefit of compiling from source is the capability to supply build-time options. Perhaps you may want
to have the ability to debug a process that is not behaving as you expeeted. Perhaps an option to debug running
code must be ncluded at compile time, Otherwise, vou haveto accept whatever build-time options are included
in the pre-compiled code.

Finally, you may find that you need more than a single tratfic inspection solution. Even if you do not, a single
deployed instance may require additional hardware/software for management and backend processing. In other
words, you may have multiple hosts and products that nced to be installed.

© 2015 Judy Novak

e —————————
Configuration

e Take the default
» Do some rough rudimentary initial configuration

IP address/CIDR block of protected network

Define sniffing interface(s)

Add/remove processing for particular protocols

s Initially, configuration should be overly inclusive

I

Remove rules for protocols/services not run
« Initially, configuration should be overly inclusive
— IPS should be configured to log not block initially

« Initially, configuration should be overly exclusive of rules that block

Intrusion Detection In-Depth

Most operations require that you do a modicum of configuration before you run the tool for the first time. It may
be possible to take the default setup, run it, and see what you get. Chances are there is some rough or
rudimentary configuration that must be performed to refine from a generic one-size-fits-all to a site-specific
design.

Some of the basic tasks of configuration may include defining the sniffing network interface(s) and assigning a
configuration variable specifying the IP addresses or CIDR block of the protected network. It is best that the
tool knows what is considered the protected network versus traffic from anywhere else.

Most products will afford you the opportunity to designate your running protocols or services to minimize the
overhead of including processing for unsupported protocols. Initially, you may not be aware of all the site-
supported protocols, but after running awhile and examining output, you may realize that your solution is
performing unnecessary processing. At first, it is best to be overly inclusive of both processing and rules so that
you do not get false negatives. It is a learning process that may be refined over time to eliminate unnecessary
overhead.

Most traffic inspection products allow you to select sets of rules, signatures, scripts, or some kind of process that
looks for malicious signs in the traffic. As with inclusion of processing of unnecessary protocols, inclusion of
unnecessary rules may create some unwanted overhead and diminish efficiency. Again, you may not be aware
of what rules should be included initially, but over time, you may have a better idea.

If you are running an IPS, make sure that your initial attempts of placing the hardware/software on the network
are non-disruptive. In other words, you do not want to block much, if any, traffic to begin with. Often times, an
IPS is placed into logging mode, making it an inline IDS, initially as a precaution so legitimate traffic is not
blocked. As you become more familiar with your traffic and the way the IPS works, a more liberal set of
blocking rules may be turned on. Eventually, you may turn more rules from logging to blocking behavior.

© 2015 Judy Novak

Most commercial IPS solutions contain far fewer rules that block than the same company's 1D$ solution rules
fhat alert. The IDS solution typically offers a broad set of alerting rules, but may take those same rules for an
IP'S and alert on some and block on those that have very low rates of false positives. Obviously, the last thing
you want 1o do is block legitimate traffic when the IPS is put in place. No doubt, there are skeptics or
demanding users on your networks who are convinced that an IPS is an impediment only. You do not want to
give them any reason to reinforce their errant belief.

A unique configuration can differentiate your site from one that takes the default settings, An attacker who
relics on evasions or methods that depend on default settings has a better chance of being successful when the
configuration is unaltered. For instance, there are default memory allocations or time-out values for Snort that
can be abused to the attacker's advantage.

© 2015 Judy Novak i

P e,

Running

e Take it for a test run
» Make sure you're seeing the traffic you want
* Make sure you're getting output

 When satisfied that proper procedure/commands in place,

put in start-up routines

You are ready to take the tool for a test run at this point. The initial run may be an exercise in ensuring that you
are seeing all the traffic you expect to see. If an option exists to log traffic/packets, or if you can concurrently
run tepdump, it may be beneficial to capture several minutes worth of traffic and examine the IP addresses and
protocols to make sure you are capturing necessary traffic. Look for traffic to known and expected services
such as DNS and HTTP at a minimum.

Next, look at some of the output, whether logs or alerts to make sure that the software is processing the traffic —
not just capturing it. If you are so inclined, you would be wise to run some traffic that you know will cause an
alert or log message to be generated. If you are comfortable enough with the product to write your own simple
rule or seript, send some traffic that causes it to do expected processing.

Once you are satisfied that the software is running well and is not problematic, you need to ensure that it will
automatically start on each reboot.

© 2015 Judy Novak

Customization

« Configuration with a clue

« After initial installation and operation, becomes clearer how
your site is different from generic configuration

Rules/signatures

Parameters or preprocessors/scripts

False positives

Backend processing

» Repeated whenever Uupdate or change in architecture,
placement, etc.

Y ou've run the software for some time and know it is processing the traffic and producing output — now what?
Chances are when you did your initial configuration, you were thoughtfully guessing what you believed needed
to be included and defined. Now that you have a clue (hopefully}, you arc ready to perform customization for
your particular site and needs.

If you are able to examine the default or your configured set of rules or signatures, you may now have a better
awarensss that some are superfluous and can be excluded. For instance, there might be a set of rules for VolP,
but you don’t run any VolIP in your network. Exclude those from the configuration. Also, if you are running an
1PS, vou may be prepared to change from logging to blocking status for those rules that you have determined
rcliably report malicious activity only.

You may have the option, such as in Snort, to supply additional customization parameters like designation of all
your ports and servers associated with HTTP or other protocols. Snort includes preprocessors for many of the
well-known services on the network. However, if you do not run those at your site, you can initially comment
out those preprocesser statements in the configuration file. Bro has Dynamic Protocol Detectors that do a
similar job as Snort preprocessing; you may not need to run all of them. As well, Bro has scripts that perform
processing and detection. Some are default, others deemed "policy” that you can optionally include.

Think of false positives as job security! You know that they are inevitable, but only the savvy analyst knows
how to determine what is causing them and custoinize to eliminate them. After seeing the same alert firc
multiple times on traffic and investigating it — perhaps by comparing what the rulc looks for with the packet(s) 1t
fired on — you can determine what the issue is and change or comment out the effending rule.

You may now be ready to run some kind of backend software once you realize that ASCII or even binary logs
are just not cutting it. Backend processing software that includes a database und GUI can assist you in
visnalizing the traffic or reporting it in a more digestible manner than simple log output.

© 2015 Judy Novak 13

14

And, remember that customization is not a one shot deal. Every time you do some kind of change — whether
that is an update of the product, a change in the rules, a change in site architecture or sensor placement,
customization must be performed again once you become familiar with the new environment.

Bro espouses a philosophy of being "policy neutral”. This means that it decouples alerts with their significance
to any given site. For example, perhaps you are alerted of some kind of DNS activity to a fantasy football
website. For some sites, such as academic ones, this is not an issue. However, if there are strict network
policies about using the Internet for non-work related activity, this may be a big deal. Bro does not come with
"custom" definitions of the danger for a given event; it gives the user an opportunity to assign some kind of
interpretation or significance to it. In essence, this offers you the chance for more extensive customization.

© 2015 Judy Novak

Auditing

» How do you know that your IDS/IPS is doing what you think
it should?

e Audit measures the efficacy of enforcement
» Audit measures the gap between policy and enforcement

» An audit may be mandated by compliance regulations,
although some kind of audit ought to be performed even if
not mandated

» Auditor should not be familiar with IDS/IPS configuration

» Make sure you audit the hardware/software — not the
analyst

The word auditing probably has you screaming "not my job!!!". Ii's a nasty, but necessary part of the lifecycle
process. This may be a mandated process for compliance, performed by someone other than you or co-workers
on the security leam, But, like it or not, you have to be a participant because you are expected to be able to find
alerts or signs of traffic that the auditors send.

How do you know that your IDS/IPS is doing what it is intended to do and is enforcing the enviromment as
expected? And, no - this doesn't mean fulfifling some kind of compliance requiremment. An audit measures how
effective your enforcement is. It is what exposes the gap between the mandated policy and the actual
enforcement of that policy.

Think of it this way, It seems that the postal service to my house is not so great. I'm not sure if it starts at the
local post office branch that is too busy 1o answer calls or when they do, too surly to do anything about mail that
has been delivered to "/dev/mull". Regardless, our mail delivery (more like mis-delivery) person has difficulty
matching the numbers and letters on the envelope with those on the customers' mailboxes. Therc have been far
too many instances of a negative response to "did you get the Ietter/package/material [senl?”. I'm tempted to
start sending mail to myscif — not because I feel lonely and neglected, but as a sporadic audit of the competency
and effectiveness of the local postal service. In this case [play both auditor and inspector since in a sense, [
send the traffic, and validate its return, exposing the gap between the twao acts.

Y ou may think that you've got your site perfectly configured for intrusion detection or prevention, but how do
you really know? You may have performed some tests where the IDS/IPS respended as you expected. But,
you've got the inside track — you know how it should respond.

This is where impattial auditing comes in. The auditor or person who sends the malicious or noteworthy traffic

should not have any knowledge of your configuration other than to know a destination 1P address on the
protected network. Two types of auditing are pussible — one where the security team is forewarned of the audit,

@ 2015 Judy Novak 15

16

or a blind one where the team is totally unaware that they and their IDS/IPS are under scrutiny. Personally, I
believe it better to audit the IDS/IPS and not the analyst so the foreknowledge that an audit will occur at an
approximate time will allow the analyst to be circumspect about the alerts and put the focus on the IDS/IPS
where it belongs and not whether or not he’s awake and alert at the time of a surprise audit.

SANS instructor Mike Poor and his company InGuardians are called upon to perform these types of audits.
Their method is to inform the analyst of the exact time and nature of the malicious traffic they are going to send.
They actually inform the analysts of the scenario of their attack. This may seem counterintuitive, but their intent
is to let the analysts know what will occur and have the analyst(s) tell the story of the attack via the observed
detection. InGuardians philosophy it that there is little chance an analyst will be able to understand and be able
to recreate the traffic or methods of an unknown attack if the analyst cannot tell the story of a known attack.

© 2015 Judy Novak

Refinement

s Fine-tuned customization
» Speed improvements

Performance of hardware

Amount of RAM

}

NIC speed
HDD speed

Bus bandwidth connection of the above

I

Improved packet capture speed using PF_RING

« Efficiencies in rules/scripts
Preventing false positives/negatives

. Inttusic o Dete onIn-D

You are almost finished once you've performed all the previous steps — traffic capture, and site-specific
customization, etc. But it takes practice and experience to understand issues native to your site — those more
complex than customization. Both Snort and Bro have built-in routines that can be run to measure efficicney
and packet drops.

You may discover that processing speed becomes an issue and you are dropping packets, Resolving this issue
may require a comprehensive inspection of ail the component parts of the operation — hardware performance in
terms of CPU speed and number of processors, the amount of RAM, NIC speed capability, Hard Disk Drive
(HDIY speed and performance for rapid data storage, and the bus bandwidth that facilitates communications
among these components.

Another performance improvement may be gained by installing software called PF_RING that accelerates
packel capture, especially where bandwidth rates are greater, by using a data structure called a ring butfer along
with shared memeory. PF_RING also reduces the load on the kernel for every captired packet that results in
improved packet capture efficiency and performance. As we will see both Snort and Bro can use PF_RING.
Snort is able to use PF_RING to emulate a multi-threaded environment by balancing flows, thereby realizing
performarnce improvements. PF_RING allows Bro to do host load balancing of traffic received from multiple
sniffing interfaces.

More information about PE_RING and how to install it can be found at:

http:/fwww.metaflows.com/technology/pf-ring

® 2015 Judy Novak 17

In general, you must be aware of the types of processing performed, rules included, and inefficiencies in rules or
scripts, especially those that are home grown — either by you or your team or perhaps at some open source rule
distribution site. This whole process requires someone knowledgeable not only about the configuration/customization
of the product, but the type of traffic observed, as well as past customizations.

Refinement is a fine-tuned iterative process of taking a site-specific customization and tuning it for optimal
performance. It also includes observing the output over an extended time and honing the rules and scripts to work in
your unique environment. This is different than the more coarse customization of selecting appropriate rules and
scripts. This requires that you tweak the imperfections out for your configuration not only to gain efficiency, but
accuracy as well.

18 © 2015 Judy Novak

Updating

» New releases

+ New rules/scripts

+ New management software
« New backend software

» Perform related previous steps again

— Customize

— Refine

Okay — we're almost done; everything is running efficiently and you are the resident expert and hero(ine) for
protecting your network from evil, And then, an updated software releasc is announced. Perhaps you don't
jump on the upgrade right away, but eventually, eithcr due to end of life expiration dates, inability to use new
features, or just good maintenance practice, you have Lo update your software. Once done, you'll have to
customize and refine again for the new update.

You'll find rule updales are released more frequently than new software upgrades. The two may actually be
synchronized in some way where you need fo upgrade software in order to use the new features or rules.
Regardless, you need to stay current with new threats. Most products have automated ways to update ruies so
the burden is not the update process itself; it is the effect of updating the nies. You should be more mindful of
performance and false positives each time new rules are added.

You'll have to be aware of updates of any kind of deployed support software, perhaps that allows you to manage
the product or examine the output — for example a management console/GUI. There may be some adjustment to
support software updates to ensure that you arc generating the same type of reports and able to do the same type
of manipulation and navigation of output to examine traffic as you've become acenstomed.

Remember that the updating process causes changes — some predictable some not. Therefore, you may have to
tweak current cuslomizations and perform some refinement after observing the effects of the upgrade.

® 2015 Judy Novak 18

20

Introduction

Intrusion Detection In-Depth

This page intentionally left blank.

© 2015 Judy Novak

What Does an IDS/IPS Do?

Packet Decoder

Parse Bagic
Protocols

weansg 123oed
MO[4] Bre(]

_; (N N
4 NS _/ A¥erlts»‘LQ£z?,

Intrusion Detection Ta-Depth

Before we gel into how Snort and Bro work, it is helpful to look at an overview of the job of the IDS/IPS and
how it works at a rudimentary level, Tt must first sniff the traffic from the network. Once the packet is acquired,
it must be analyzed into its compenent layers, such as IP, transport, etc. And, there is usnally some additional
processing performed that prepares the dissected packets for the detection phase. Common processing includes
reassembling any {ragments, reassembling TCP streams, and parsing some protocols — most likely those that are
often used such as HTTP, and DNS to name a few. Really, there is a lot of preprocessing under the hood hefore
detection begins, and for our discussion on this slide we'll assume that part is working, even though some
solutions do it better than others.

These phases that occur before and after detection are important and most function well for the IDS/IPS to do its
job, but most of the focus for us as analysts is the detection part. There is an outpui phase that follows the
detection where detections are somehow processed for viewing or further analysis. Not to diminish any of the
other phases, bur the meat for us is the proficiency of detection and our ability to interface with it.

© 2015 Judy Novak 21

22

i e A A s 5 e o e

The Analyst's Role in Detection

» Best detection offers the analyst
— Visibility into the detection process

— The capability and "language” that permit you to manipulate
detection
= Snort — rules

* Bro - scripting

Intrusion Detecton In-Depth

Your role in detection is very important because it is the most critical phase for an IDS/IPS and ideally you have
some control over it. You are a key component in the success of the IDS/IPS operation. This means that you
need visibility into the detection process. If you can't see or understand what the detection is doing, you have no
idea whether or not you are covered for a particular threat. And, you will not able to determine which alerts are
false positives and eliminate or at least suppress whatever is generating them.

We need the capability to manipulate or control the detection process. This is provided by some "language" that
allows you access to the detection process. The "language" is a very important part. In essence, we need a part
of the detection process "exposed" to us through some means.

In our discussion of Snort and Bro, we will discover that the fundamental "language" that Snort uses is rules,
whereas Bro uses scripts in a language written expressly for it. Snort rules provide us a "language" allowing us
to designate packet characteristics of interest. In essence, Snort exposes a more user-friendly "language" and
does most of the processing of the rules under the hood. On the other hand, Bro exposes the entire "language" to
us. While this permits far more manipulation of the detection process, it is a harder "language” to learn since
you must learn the language itself and figure out how it can accomplish what you want.

© 2015 Judy Novak

Snort Process Flow

- snort.conf

m,t:f: SNORT
;:U — \\‘. \\ PaCkEt Decoder
o) ; ' l‘\
= v 1 Prenrocessors
o) P
e 1 Snort Rules+
oy o . e et '_‘_
2 ¢ User Rules: Alerts/Logs >
—___.E ’//
ol »

. Introsion Detection

This slide shows how Snort processes traffic. The traffic is sniffed from the network interface and passed to
Snort. The packet is decoded and then different preprocessors prepare the traffic to be examined by the rules by
reassembling streams, and parsing the embedded protocols, for instance. Then rules that come with Snort and
any user-supplied rules examine the traffic for noteworthy activity. The packets and alerts associated with this
activity are placed in alert and log files.

A configuration file named "snorl.con™ is included in the Snort install. It tells Snort which preprocessors to
cnable and which rules to include. There may be certain preprocessors that a particular site nceds along with
specific rule sets that are pertinent for the environment. The user tunes "snort.conf" for the site environment.

This is a skeletal view of the process that we will examine in more detail (o cover each of these phases and
Processes,

® 2015 Judy Novak 23

Bro Process Flow

localbte ¢
1 BRO Bro Script A *’
by | | Packet Decoder //' eventl()
EE_ Native Bro Scripts/\ event2() — User L?sz_lft 1}
; notice(log
& o User Signatros Bro Script B
| i
= & L & eventl() —» User Script 2
g E =3 g; L eventx() notice(log)
2 g |
. e z E
I .] 2 |5
Y. N\ o @
v N Yoo = P{OE _f u'cg"'
\\\ /// \\\ //

By

Intrusion Detection In-Depth

This slide shows the way Bro processes traffic. Bro decodes the packet and invokes some native scripts that
analyze and process the packet protocols much the way Snort preprocessors do. While simple signatures can be
written by the user, Bro includes none. The native Bro scripts consist of code and logic and they define events.
Events are a very important part of Bro.

Events are "mostly high level network events that protocol analyzers detect" according to the file names where
they are stored. Don't think of events as alerts or even as something that should not occur, In fact, these are
parts and states of protocols. For instance, there is an event for a DNS query, or one for an HTTP request. Most
encountered events log the packet associated with it — such as the DNS request. However, a user can write a
script to do something after a particular event is triggered. This is optional code. A user script can only be
triggered when a user-selected event occurs. Think of an event as the means that Bro uses to allow further
processing by the user.

Typically a user seript contains some kind of logic examining a particular facet associated with the event. As an
example, it might look for a DNS query for address resolution of "www.evil.com" after you learn that is a
known malicious site. Bro processes the packet and follows the code path (the logical path of execution
followed that is based on the code and the characteristics of the data it is processing), to analyze a DNS packet.
On the way, it encounters Bro-defined milestone events. It may have encountered some logic to discover if this
packet generated a "new_connection" event, but it was not triggered since this is not a new connection. Had it
been a new connection, this particular event would have created an entry in a connection log. If there was user-
defined code that triggered from the event, the code path would be directed to it.

Bro eventually encounters the "dns_query" event as it continues to process the DNS request packet. The
"dns_query" event causes Bro to log the DNS packet data in its DNS log. As well, Bro knows of the existence
of our script that is triggered by the "dns_query" event. The code path invokes our script that was loaded upon
Bro invocation. Our script references the "dns_query" event and contains the post-event processing of matching
the query seen in the traffic with "www.evil.com". Upon matching, the user can perform some kind of action,

© 2015 Judy Novak

defined as raising a notice, say to log the traffic. This allows the user to customize the aclion and log message -

assigning it a notion of risk, importance, danger, ete, specific to the site.

As Bro is processing a packet/strcam, it is alse matching characteristics with those found in its simple
signatures. A signature that [ires creates a log entry in the "signatures.log™ file.

Logged data from events is recorded in miscellanecus files depending on the activity. This could be new
connection event data, something specific to the protecol in the traffic, as well as other miscellaneous Bro-

defined events, or user triggered event processing that records entries in logs. Finally, the notices that are raised
by the user scripts arc entered in "notice.Jog". Bro native scripts can record entries in the "notice.log"; however

these tend to be more informational, not necessarily indicative of important activity.

All the seripts and signatures that are loaded upon startup are found in a file called "localbro®.

© 2015 Judy Novak

25

26

Preview:
What Snort and Bro Have in Common

Open source

Intended to be run on commodity hardware
User-customizable

Means of adding your own code

Produce ASCII output ~ alerts/logs
Rule/signature support

Intrusion Detection In-Depth

It is helpful to have some idea of the similarities and differences of Snort and Bro before we begin. This gives
you some idea of the highlights of each product to be covered. You may not fully understand some of the
concepts until we cover the material more thoroughly.

Both Snort and Bro are open source and both are intended to be run on commodity hardware, Both have many
ways to customize the product for your site's particular needs. And, they both have a means for you to add your
own code. Snort provides ways to hook into existing code so that you can write your own code for additional
processing. Bro has its own scripting language that allows you to customize code from a triggered event.

Both produce voluminous amounts of ASCII output in the form of Snort alerts or Bro logs. Both benefit from
having some kind of third party backend software to display the output in a more readable fashion, ideally with a
means of correlation and graphing capability.

Finally, both have support for what they call rules or signatures. Snort has a very complex rule language, based
mostly on finding content, yet with many more features. Bro has a simple rule language with basic content
search capabilities. Bro relies more on its scripting language for creation of code to find events that require
complex logic.

© 2015 Judy Novak

Preview:
How Snort and Bro Differ

]
R ' Snort Sl e Bre '-
GNU GPL. v. 2 license _r . {OpenBSD license _
1PS implementation support No true IPS implementation
Signature-driven : w0 | Eventedriven _
No native support for easy physmal Notion of Bro cluster makes physical
expansion of IDS/IPS coverage expansion of IDS coverage simpier
Primarily provides 1ntru5|on,!anomalous | Provides a framework for network.
activity analysis o . lanalysis
Support for creating soph|st|cated rules Support for basic sighatures, support for
more sophisticated detection via
scripting
When a rule fires, priority assugnec% to _:_ Policy neutral, triggers on events with no
activity, one-size-fits all policy ...~ |-assigned notion of good or bad

Snort comes with a GNU General Public License version 2 that places some limitations on what you can do with the
code. Bro operales under the much more liberal OpenBSD license, permitting the cede fo be nused in any way. Snort
has support for inline IPS implementation, though Bre does not.

Snort triggers mostly based on signatures while Bro is event-driven. What this means is that Snort alerts generated
from rules usually denote that therc is somcthing anomalous, noteworthy, or malicious happening. Bro's event-
driven model defines events that can be recorded and acted upon, These do not necessarily imply that something
malicious has occurred. For Instance, Bro has an event for every new session connection to record in its connection
log. The user can customize code for post-event activity and what, if any, action should follow.

Snort dees not natively provide a means of constructing a network of Snort boxes with communications amony all of
the Snort hosts. Tf a site requircs more coverage, it must udd another implementation of Snort in the appropriate spot
on the network. Bro has a notion of a cluster that involves the concept of many sensors/workers deployed and under
the control of a management host. 1f additional sensor coverage is required, a new sensor/worker is added either on
the same or new hardware, A simple configuration change is made to the manager to define the existence of the new
host, making it an easy extension to the current Bro network.

The main purpose of Snort is to discover intrusions or anomalous activity directed to a host(s). Bro is able to do this
as well, yet it records evenis and network connections to augment the visibility of the network as a whole, thereby
enabling network traffic analysis. Herein lies the term "traffic analysis framework” — Bro is not just an DS,

© 2015 Judy Novak 27

28

As mentioned in the previous slide, both Snort and Bro have rule/signature support. Both are capable of finding
payload content. Snort has a sophisticated rule language, where Bro's is basic. Yet Bro offers the user a
powerful scripting language that can do complex processing.

Finally, Bro touts itself as being "policy neutral", This means that the detection of some activity is decoupled
from the interpretation of the importance or danger of the activity. It is up to the user to not only assign some
judgment about the nature of the traffic, but also to define what to do upon detection. Snort, on the other hand
assigns a message and priority value that interprets the triggered activity in a universal manner.

© 2015 Judy Novak

Snort has been a favorite, and widely uscd, intrusion detection/prevention system. Its primary focus is fo inform
vou of anomalous conditions, or ones for which there are Snort signatures, or Snort preprocessor code for
different protocols and protocel violations.

While Bro has actually been around longer than Snort, Snort has been more universally deployed and welcomed
into networks everywhere. One of the reasons for this is because it is more user-friendly than Bro. Beth can
have a steep learning curve depending on your knowledge of protocols and how advanced you want the
detection to be. But, generally Snort is easier to leam for the average user.

& 2015 Judy Novak 29

Planning

Tntrusion Detection In-Depth

This page intentionally left blank.

30 © 2015 Judy Novak

Snort/IDS Deployment Scenarios

.
Fogus IDS Deployment : am N,
1 [wmsewe B9
Focused rule set Frewal N g oW
. = . Lof
Focused variables . _\:j.:‘w o
. Focused alert potential . Urabrella g
censar
Umbreifla IDS Deployment - o
Wide rule coverage ‘ Workarallon . iorastation };
Wide variables VA -
. M Sois Warkatation Woerkstation N
Heavy alerting . : S -
oo s Worksatan, Whorkstatinn /»“
R S s
o :..__ﬂ.«w,,f

Détection Tn-Depth

When deploying any IDS/IPS, consider the two philosophies above. First, when deploying a focused sensor on
a controiled network link, you can tailor your deployment to cover the most critical assets, There is a focus IDS
at the top that is deployed to protect the site's DNS, mail, and web servers.

The rules on a focus sensor should e targeted to the traffic you expect to see on your network, For instance, if
there ate no FTP servers, you can comment cut any rules or preprocessors associated with FTP. It is wisest to
comment out instead of deleting the configuration lines that include FTP rules and preprocessors, after all
someday you may deploy FTP servers. 1f you use any kind of software to track changes, document your
alterations so that if you do deploy FIP servers, you or someone else will be aware that the current
configuration does not cover FTP. As a matter of policy, tracking all changes is most beneficial, especially
when the only employee who knows anything about Snort leaves the company.

The configuration variables specify those related to the 1P addresses and charactcristics associated with the
focus network. If the configuration and rules you select are tailored properly, you should have less chance of
false positives, especially on a single-purpese protected network.

Conversely, when deploying a sensor monitoring your primary operational network, in other words a link that
monitors traffic where you can expect everything and anything, a wider approach is called for. On this
“umbrella” IDS, expect heavy alerting with a higher degree of false positives. It is more difficult to be precise
on such a varied network, Rules and preprocessor selection arc general and broad in scope since the intent is to
cover a wide and heterogeneous range of activity. Typically, the default Snort configuration with minor
modifications is used on an umbrella sensor.

These deployment philosophies can be used for any menitoring [DS; they not unique to Snort.

© 2015 Judy Novak 31

Focus Sensor Configuration:Variables,
Preprocessors and Rules

Variables
ipvar HOME NET 10.10.10.0/24
ipvar EXTERNAL NET ! SHOME NET
ipvar DNS_SERVERS 10.10,10.53
ipvar SMTP_SERVERS 10.10.10.25
ipvar HTTP SERVERS 10.10.10.80

Preprocessors

preprocessor http_inspect_server: server default \
profile all ports { 80 8080 } oversize dir length 500

preprocessor frag3 global: max frags 65536

preprocessor frag3d engine: policy linux

preprocessor stream5_global: track tcp yes, track udp yes

preprocessor stream3_tcp: policy linux

Rules

include $RULE PATH/local.rules
include SRULE PATH/bad-traffic.rules
include SRULE PATH/exploit.rules

Intrusion Detection In-Depth

We will cover the Snort configuration file later for designation of variables, preprocessors, and rules. We
introduce it here just to make you aware that these are the types of alterations that you will need to address when
configuring the focus IDS/IPS. Specific IP addresses and ports should be designated for variables and
preprocessors. When these variables are referenced in rules, Snort knows exact IP addresses and ports to
examine. As you can imagine, this adds efficiency to the processing since Snort examines packets with these IP
addresses and ports only, ignoring all others.

Here is a default set of preprocessors with changes to http_inspect for HTTP decoding to include traffic on ports
80 and 8080 since that is what our focused network runs. As well we've set both the frag3 engine for
fragmentation reassembly policy and stream5_tep stream reassembly policy for Linux because it is the only
operating system found on our focused network. Other preprocessors such as the fip_telnet would be
commented out since we don't expect FTP or telnet traffic on this particular network.

As far as rules are concerned, we have our own custom rules in "local.rules", we use Snort's "bad-traffic.rules",
and "exploit.rules". This is just a subset of the rules included in the configuration file since we would be wise to
include any rules associated with DNS, SMTP, and HTTP for the servers on our focused network.

© 2015 Judy Novak

Deployment: Passive Vs. Inline

Switch

1Ps

Inline

Snort can be deployed as a passive sniffing sensor that alerts and logs noteworthy traffic. This is the default
mode. Another option is inline where traffic actually traverses two interfaces of the Snort box. This method
allows traffic to be blocked, optionally.

You or your Computer Security Officer (CSO), if you have one, will have to detcrmine the mode of operation.
Passive mode is less likely to perturh the network flow of traffic, but the downside is that you leam after-the-fact
that a noteworthy event has oceurred. Inline provides better protection, but at a cost of potentially blocking
good traffic for rules that are poorly or not precisely written. Always use caution when adding new rules to the
inline configuration where prudence recommends placing the rules in logging mode before actually determining
that they are candidates for blocking.

If you have several different sensors on your network, yon may consider a mix of passive and infine where the
passive ones are deployed in an umbrella mode to warn of potentially harmful traffic, but not perturb it in any
way. As you deploy focus sensors for the assets on your network that typically cover the more sensitive
functions and data, consider placing those in inline mode. The focused coverage allows you to be stingy about
the rules you employ in the first place, and of those, the ones that you consider to b stable enough to actually
block traffic.

© 2015 Judy Novak 33

34

Installation/
Configuration

See Appendix of Snort Material for
Installation/Configuration material

Intrusion Detecton In-Depth

This page intentionally left blank.

© 2015 Judy Novak

This page mtentionally left blank.

© 2015 Judy Novak

35

36

Modes of Operation

» Snort has three general operational modes
— Sniffer
— Packet logger
— NIDS

¢ Runtime mode is determined by command line
switches

Intrusion Detection In-Depth

There are three basic modes of operation in Snort - sniffer, packet logger, and NIDS (Network Intrusion
Detection System). Each one of these modes is well suited for a particular traffic analysis task. When running
Snort, the operational mode is determined by the set of command line switches.

Sniffer mode is rarely used since it is akin to tepdump in that it sniffs packets and prints them to the screen. It
might be used for quick debugging purposes to make sure you are seeing the traffic you believe you are
capturing.

© 2015 Judy Novak

—_—mnmm—--—mm
Sniffer Mode

o Sniff and dump packets to screen
¢ Runtime command line switches:

-d: dump packet payloads
-X: dumps entire packet in hex
-e: display link layer data

o Example:

snort -de

Intrusion Detection In-Depth

Sniffer mode reads every packet off the network and dumps it in a decoded human-readable form to stdout
(usually the screen on most systems). To enable sniffer mode, use the -d command line switch. This will cause
Snort to display the packet, including headers and payload, to the screen.

There are two other options which are used less frequently. The -X option displays the packet in hex; and the -e
option displays the link-layer. Combining all the switches together will give a very detailed, and overwhelming,
display of the network traffic.

This is mostly useful in controlled environments or when you are testing to see if you are receiving the traffic
you expected. Such an occasion might be after installation of new network sniffing hardware like a tap or
switch. In a production network it’s not going to be particularly useful unless you filter what Snort is looking
for using Berkeley Packet Filters on the command line. They can be used in the same manner as tepdump to
filter specific traffic.

® 2015 Judy Novak 37

38

Snort Packet Dumps

What does all that stuff mean?

Timestamp IP Address:Port
04/20-18:00:41.082504 | 192,.166.1.5:4340 ~> 192.168.1,3:23

ime To Live | Type Of Service . 1P ID Header Length | Datagram Length | Frag BitlJ

TOS : 0x0 | ID: 9409 IpLen:20 Dgmlen:154 DF

!‘CP Aok | TCP Window Size | TCP Header Length
Ack: Ox0 Win: TD7B TepLen: 32

TCP Flags TCP Sequence
el bhd] Seq: OxG6FF363B

TCP Options
TCF Options (3) => NOP NOP TS: 1860909 193728

Intrusion Detection In-Depth

The displayed packets are broken out by layer into ASCII representation of the data contained within. The first
line of the packet dump contains the critical data for determining when the packet arrived, where it came from
and where it was going. The timestamp represents the date and time that the packet was seen (according to the
system clock on the sensing host) down to the millisecond. The remainder of the first line, through the last field
of the second line, are many of the other fields and values found in the IP header. The final line contains fields
and values for the transport layer — TCP in this example.

© 2015 Judy Novak

Packet Logger Mode

e Tell Snort to output packets to a log file

e Command line options:
-K ascii -1 <logdir>: Dump packets in ASCII into <logdir>
-1: Log packets in tcpdump binary format (default format)

e Examples:
snort -1 /usr/var/log #Logs in binary
snort -K ascii -1 /var/log/snort #Logs in ASCII

e Binary logs can be read back through Snort:

snort -dr /var/log/snort/snort.log

Intrusion Detecton In-Depth

In packet logger mode, Snort records all packets that it sees to a file or set of files and directories. The packet
logger mode is enabled with the —1 switch on the command line. This switch will log packets in libpcap binary
format which is the default mode.

When started with the combination of the "-K ascii" in conjunction with the —I switch, Snort starts logging
packets into individual subdirectories named for the source IP address in the packet. Then a subdirectory is
created under each of those directories named by protocol and port numbers for TCP and UDP or a name
describing an ICMP packet such as "ICMP_ECHO_REQUEST". All packets with matching characteristics are
logged in that file.

For instance say there is a source 1P of 192.168.11.42. Any other packet that shares that same source IP is
logged in a subdirectory. Suppose there is a TCP session with a source port of 53257 and a destination port of
80. If you look in the directory designated for logging, you will find a subdirectory with the name of
"192.168.11.42". It will have a subdirectory named "TCP:53257:80" where all packets associated with that
session will be logged.

When Snort logs in binary mode the traffic is written as it came off the wire to the log file. No conversion or
translation is required, so it is much faster than any other logging mode available in Snort.

Be aware that no matter what mode you select, the log directory must exist; Snort will not create a new log
directory for you just because you include it with the —I switch.

There is another advantage of logging in binary and that is portability. The binary logs created by Snort (or by
tepdump or any other program that supports the libpcap binary format) can be run back through Snort using the
-r switch or any other libpcap based tool.

© 2015 Judy Novak 39

Logging to Directories
__(-K ascii)

= One file created per protocol/port pair

« What happens if someone does a full port scan?

Log Directory (/var/log/snort)
Directory name:

10.1.1.234

Files:

[~ TCP: 22123-23
— UDP: 30432-53

65536 TCP ports + 65536 UDP ports = 131072
files created, possibly in a single directory!

Directory name:
1.2.9.4

Files:

[TCP:1029-80
— UDP: 1056-111

Inttusion Detecdon In-Depth

Here’s an example of how Snort’s "-K ascii" logging mechanism works. Snort, by default, logs to
"/var/log/snort" unless otherwise specified with the -l name command line switch, identifying a log directory
that must already exist. When packets come in, a subdirectory in the log directory is created for the relevant
source [P address if it doesn't already exists. Then files containing the packet dumps are created within that
directory based on the protocol and ports.

The format for Unix host log file names is PROTOCOL :sourceport-destport. Take a look at the directory
1.2.9.4"; it has a file named "TCP:1029-80" representing a given TCP session and for TCP and "UDP:1056:111"
representing a UDP exchange.

There is one really big drawback to using ASCII mode if you’re going to be using Snort in an uncontrolled
environment. [t’s relatively easy to have a DoS attack against the file system of your sensor when a very large
number of files must be created to store the logged records.

For example, take the case of a full portscan attempting to connect to every port, each attempt logged. Soon you
would have over 130,000 log files created in the logging directory. In cases where you’re going to be using
Snort in an uncontrolled environment for long periods of time, it’s best to use the default binary logging mode.

40 © 2015 Judy Novak

NIDS Mode

» This is where it gets interesting!

Tune configuration file with preprocessors, settings, and
rules and start Snort

Snort at its most complex

— Variety of options for packet analysis and logging

Most often deployed in NIDS mode

Basic run consists of merely specifying a configuration file

~c <configuration filex>

snort -c snort.conf

cton In-Depth’

Now we get to the interesting part of Snort. When Snort is in NIDS mode, it is leaded with a configuration file
containing runtime directives, preprocessors, and rules, ete. When running in this mode, it is capable of
analyzing network traffic in real time for conditions that will generate alerts and log the offending packets.

Most Snort deployments use the NIDS mode since this is where malicious traffic can be detected and/or
blocked, Activating Snort in NIDS maode is a simple matter of specifying the -¢ switch on the command line
with the name of the configuration file, as you know is "etc/snort.conf" found in the install directory.

As covered before, the -Te option allows you to test your Snort configuration, looking for syntax issues or
problems in the configuration file and rules, then quitting whether or not if finds errors. Usc the following
command:

snort —Te snort.conf

The Snort process will die and report any errors (syntax or otherwise) that are found in your configuration or
rules files. Muke sure 1o run this after you make configuration or rules file changes, before reloading or
restarting Snort.

@ 2015 Judy Novak 41

Logging and Alerts

o Default logging/alert directory: /var/log/snort
Specify an alternate with -1 directoryname

e Default alert mode: Full
-A <mode> fast, full, none, console, unsock, cmg
-s to alert to syslog

e Default logging mode: libpcap format

-K ascii (ASCII log format)
-N or -K (no logging, alerts still generated)
or
config nolog (snort.conf)

Intrusion Detection In-Depth

NIDS mode can generate log entries and/or alerts from rules that fire. An alert contains information regarding
an offending packet or stream that caused a rule to fire. This includes some detail about the rule such as an
accompanying description message, and a Snort ID — to name a few, along with details about the packet itself.
The default mode is to capture full details about the alert in a file named "alert" created in the log directory.

Let's look at the various alert types. Fast mode prints an abbreviated message containing the IP addresses and
port, timestamp, and alert message for the event on a single line. Full mode prints the alert message plus the full
packet headers. Alerts can be turned off altogether using the none keyword, although logging still happens
normally. Console mode prints alerts to the console and is useful mainly for debugging. The unsock option
forwards alerts to a Unix socket for another listening program to process.

The cmg Chris Green vanity named alert mode also writes to the console, but gives more detail about the packet.
Chris was a primary developer on Snort for many years, and he liked his alerts with packet data. This mode is
great for lab/research work, however, be warned that this may become obsolete in the future.

Alert messages can be sent to syslog as well with the —s switch. The default syslog facility and level are
LOG_AUTHPRIV and LOG_ALERT respectively.

As with running Snort in logging mode, running in NIDS mode provides two primary logging modes available
from the command line. The default is libcap style binary logs, but you can use the "-K ascii" option for ASCII
logging. The -N or "-K none" command line switches disable logging, yet still generate alerts.

If you prefer, this same option is available in "snort.conf" as "config nolog". Speaking of "snort.conf" for use in
setting log configuration, you can use it set the directory using "config logdir:<dir>", yet it has no capability to
alter default alert settings.

© 2015 Judy Novak

Alert Modes Types and Output

Fuli

[**] [1:1149:2] WEB-MISC count.cgi actoess [**]

[ClasEification: Alttempred Information Leak] [Prioritv: 2]

01/ /23-00:50:40,355272 106.1.1.2:1971 -» 10.1.1.4:80

TCE TTL: 64 TOS:0x0 ID:257%1 IpLen:20 Dgmiens 163 DF

®=dpbed+ Sagr OxDTALVIBE Ack: Ox8YZ35ESY. Win: 0x447¢ ‘Feplen: 20
(#pef = http://www. securityfocus. com/bid/128)

[Xref => http: ffcve mitre.ocrg/col-bin/ovename.cri?name~CVE- 1%99 -0021)

Fast

Bl/22-16:16:41 0427377 [*¥1 {1:81871]7THFY - Possible Squid Scan [**]
iClassiFicatisnt Atcempted Information Leak] [Priacity: 2] {ZCP}
10.1.1,75:37728 -3)) -
10.26.15.218:3128 {entire alert appsars on a single line)

Syslog

Sep 28 05:59:18 cerberus snort: [1:990:1} WEB-IT5 _wii Inf access
:[Classificétion: Attempted Tnformaticon Leakl {Prierity: 3]:
CITCPY 19.152.9.230:14609 -» 10.1%6, 107, 166180

This slide illustrates the three primary text-based alerting modes supported. The full mode is the default mode
of placing information in the alert file named “alert™ about the offending packet’s headcr date. The message
associated with the rule is output along with the Snort 1D (SID} — a unigue numerical designation for the rule.

The fast mode gives a more abbreviated view of the notcworthy packet, condensed to a single line ostensibly for
the purpose of being processed by some other tool. The syslog mode also gives an abbreviated message, but it is
stored in the default syslog file for the given Snort sensor.

The “numbers and dots™ notation preceding the alert message ([X:Y:7]) is the Snort unique event identifier.
This seties of metadata was developed to make Snort’s oufput easier to process wilh automated tools without
depending on the Snort alert message hecause the metadata is a fixed format whereas the message is not. The
first number signifies the “Generator ID”, the part of Snort that generated the alert. The second number is the
Snort [D, the 1D number of the actual rule that generated the event notitication. 'The third namber is the revision
number, the version nwmber of the rule that fired.

@ 2015 Judy Novak 43

44

—— e
NIDS Mode Usage Examples

Log to a directory in ASCII:

snort -c snort.conf -1 /var/log/snort -K ascii

Log in binary mode to a directory with fast alerts:

snort —c snorxt.conf -1 /var/log/snort -A fast

Turn off logging but leave syslog alerting on:

snort —-c snort.conf -N -s

Intrusion Detecdon In-Depth

Above are some examples of real world command line configurations for Snort.

The first example reads the "snort.conf" configuration file from the current directory and logs the output in
ASCII to the directory "/var/log/snort". The /var/log/snort file is the default and unnecessary in the above
configurations, but included to be more explicit.

The second example again reads the configuration file from the current directory's "snort.conf" file and records
abbreviated alerts in the "alert" file found in "/var/log/snort". It also logs the output in binary mode in that same
directory. The final option again reads from the configuration file "snort.conf" in the current directory, turns off
conventional logging, but sends abbreviated messages to the syslog facility.

© 2015 Judy Novak

Interlude: Plug-ins

» Plug-ins are modular pieces of code written for Snort that
allow programmers to extend the functionality of the
program

- Snort can be repurposed to da virtually any kind of traffic analysis
task with plug-ins

+ Three kinds of plug-ins:

- Preprocessor: Packets are examined/manipulated before being
handed fo the detection engine

- Detection: Perform single, simple tests on a single aspect/field of the
packet

— Qutput: Report results from the other plug-ins

- Intrusion Det cnon In-Depth

While this and the following slide seem to be misplaced in the "Running” section, they have no natural place in
our category of sections. However, you need to understand the concept of Snort plug-ins because they will he
mentioned. In Snort, plug-ins are code modules that allow Snort to redefine or enhance some aspeet of its run-
time functionality or detection capabilities. Using the plug-in system allows Snort’s basc functionality to be
reconfigured in many interesting ways. Snort currently offers three different types of plug-ins: preprocessors,
detection, and output,

Preprocessors take the decoded packets from the Snort packet decoder and can examine or manipulate them
before they are handed to the detection engine. All of the preprocessors are called once per packet. This is the
place where fanctions like portscan detection, 1P defragmentation, or TCP stream asscmbly take place.

Detection plug-ins are used in the rules to examine a particular field of the decoded packet for certain values or
patterns, They are potentially run many times per packet and therefore need to minimize their impact on the
CPU as much as possible,

Output plug-ins define the way Snort presents its data, Snort generates alerts and packet logs with output
formats that can be redefined easily via output plug-ins.

® 2015 Judy Novak 45

46

Interlude: Snort Plug-in Interfaces

|

>

s

| e

Sniffing

weang axoed

<

“
,

-
Vg

o
s

SNORT
Packet Decoder o
o
Preprocessor 5 |
(Plug-ins) ;._’2
Detection Engine | £ L
(Plug-ins) \.\1/ |
Output Stage T Z—"!_"' """""""'"___""'!\\
rts/L >
(Plug-ins) SHE08

Intrusion Detection In-Depth

This slide shows the way packets travel through Snort and are processed by the three types of plug-ins. The
packets are captured from the network interface. There is a high level packet decoder that identifies the various

layers found in the packet.

The packet is then passed to preprocessor plug-ins for further processing — say for instance, reassembly of a
TCP session using the stream5 preprocessor. Then, it is sent to the detection engine where it is processed

against the Snort rules that contain detection plug-ins.

Detection plug-ins are somewhat less visible than the other modules in Snort because they are specified as a part
of rules instead of appearing in the configuration file. There is currently a large set of detection plug-ins

available in rules that we will soon discuss.

Finally, alerts are sent to the output plug-in for display or storage.

© 2015 Judy Novak

This page intentionally left blank.

}ntiuszonDetecuon]n-Depth

© 2015 Judy Novak

47

Detection Scenario

e Suppose you captured some traffic from a compromised
host and wanted to refine an existing Snort rule to detect
any subsequent attacks

* Compromised host starts a netcat listener on TCP port
30333 with access to the command line (cmd.exe) of
Windows 7 host, following Snort alert generated

08/17-15:53:44.,597054 [#*] [1:18756:4] INDICATOR-
COMPROMISE Microsoft cmd.exe banner Windows 7/Server
2008R2 [**] [Classification: Successful Administrator
Privilege Gain] [Priority: 1] {TCP)
192.168.11.24:30333 -> 184.168.221.63:48938

Intrusion Detecdon In-Depth

Here is a scenario that we'll use to present an existing Snort rule, parse its components for an understanding of
the purpose of the rule, and refine it in some ways for our specific scenario and introduce important features not
present in the existing Snort rule. Let's say that you are responsible for monitoring a college campus network
where you have Snort installed and you are able to save full capture packets for a reasonable amount of time for
retrospective analysis.

A college campus network may not have the same firewall restrictions as a corporate network just because the
students', researchers', and other needs are so diverse. This particular network allows inbound traffic, such as a
SYN on a listening port of a network host. Now, suppose a student's Windows 7 operating system laptop has
been compromised via a phishing attack, administrator access has been attained, and a netcat listener is installed
on port 30333 to provide subsequent access to that host. The netcat listener provides access to the command
line (known as cmd.exe) upon connection.

You discovered the compromise via an existing Snort rule. However, you want to refine it to be more efficient
or to be more specific to the traffic you witnessed. The alert is shown above.

© 2015 Judy Novak

Current Snort Rule for Windows 7

alert tcp $HOME NET !121:23 -> SEXTERNAL NET any \

(msg: "INDICATOR-COMPROMISE Microsoft cmd.exe banner \
Windows 7/Server 2008R2"; \

flow:established; \

content:"Microsoft Windows"; depth:18; \

content:"Copyright |28|c|29| 2009"; distance:0; \

content:"Microsoft Corporation'"; distance:0; \

metadata:policy balanced-ips drop, \

policy connectivity-ips drop,policy security-ips drop; \

reference:nessus,11633; \

classtype:successful-admin; \

51d:18756; rev:4;)

Inttusion Detection In-Depth

This is the rule that was associated with the alert that you received from the compromise. It looks somewhat
daunting in its entirety, but it actually is more easily understood if we parse its components individually. We'l
step through that process in the next set of slides.

As a preview and summary — this rule looks for any traffic originating from your internal network that you
defined previously as "HOME NET" from any ports other than those between 21-23 inclusive, to any host not
in your network to any port. An alert generates the output defined by the msg keyword's argument of
“INDICATOR-COMPROMISE Microsoft cmd.exe banner Windows 7/Server 2008R2". The backward slashes
denote that the rule continues on the next line. You must use the backward slash when using multiple lines in a
rule otherwise Snort won't understand the syntax and it will generate an error.

Next, we look for all the conditions that must be present for the rule to fire. These include finding an established
session — one where there has been a successful three-way handshake. We have several different content
searches that are found in specific offsets in the payload. Finally, there are various metadata identifiers — some
appear in the alert to give it more context.

The metadata keyword itself identifies the action to take when the rule is included in a particular inline policy.
Rules are placed in particular policies when created, however the user can modify the policy where the rules are
placed. The "balanced" policy names a category that is intended as generic, and good for most sites especially
those that do not want to do much customization . The "connectivity" policy is streamlined with rules that are
almost certainly associated with malicious activity — few or no false positives exist. The "security" policy
includes a broad set of rules that are likely to produce many false positives unless specifically customized by the
IDS/IPS administrator for the protected site. Rules in this policy need to be refined and customized to reduce
false positives. This particular rule says to drop the packets associated with the session where this activity is
detected in inline/IPS mode, regardless of the policy applied to the rule. An alert will be created in IDS mode.

© 2015 Judy Novak 49

Before We Begin:
Run the Rule By Snort

ipvar HOME WET any
ipvar EXTERNARL _NET any

preprocessor streami_global: max tep €192, track tep yes, track udp no,\
track_iemp no max_active responses 2 min_response seconds 5

preprocessor streamd top: poliey windows, detect anomalies, require 3whs 180

alert tcp SHOME NET !21:23 -> SEXTERMAL NET any \

(msg: "INDICATOR-COMEROMISE Microsoft cmd.exe banner Windows 7/Server \
2008R2"; flow:established; content:"Microsoft Windows"; depth:18;
content:"Copyright [28|c¢|23]| 2008"; distance:0; content:"Microsoft \
Corporation”; distance:0; sid:18756; rew:d;)

snort -A console -K none -q -r cmdexe.pcap -c cmdexe.rule

. 09/17-15:53:44,597054 [**] [1:18756:4) INDICATOR-COMPROMISE Microsoft
cmd.exe banner Windows 7/Server 2008RZ [**] [Priority: 0] {TCP}
192.168.11,24:30333 ~> 1B4.168.221.63:408938

cmdexe.rule

Intrusion Detection In-Depth R ek peap

It's early in the process of learning about rules to show the rule we'll use as the foundation for understanding all
the parts and options. The reason for showing the rule is to introduce you to how to run Snort and receive
output. There are demo pcaps and rule configuration files supplied to allow you to run Snort as shown on the
slides.

The top panel of the slide is the contents of the configuration file used in the run. This particular configuration
file combines some of the variables and preprocessors normally found in "snort.conf" in live or production
mode. We are executing Snort in a readback mode where we have already captured traffic and now want to
analyze it using Snort. The rule that will be demonstrated has a unique Snort Identifier (SID) of 18756. It has
been modified to remove some of the "metadata" because inclusion of those options requires additional files to
be supplied to run Snort. We want to keep this as clean and simple as possible.

This rule has the variables (HOME_NET and $EXTERNAL_NET so we need to assign those values; "any" is
selected to make this a generic run. Also, the use of the flow:established option requires the use of streams5
preprocessor settings that reassemble individual packets into a stream or session. We use some of those stream5
settings found in the "snort.conf" that comes with Snort,

Snort is run with several command line switches "-A console" puts the output on the screen "-K none" doesn't
log the alert, and "-q" puts Snort into quiet mode so we don't have to deal with copious start-up messages. We
read our peap in using the "-r" and finally we include the configuration file/rule named "cmdexe.rule" with the
"-¢" switch.

The output contains a date and time, as well as the SID and revision numbers, the message from the rule and the
source and destination IP's and ports associated with the traffic that caused the alert to fire.

© 2015 Judy Novak

The reference keyword identifies where more information can be found, the classtype is an assessment of the
type of activity, the sid the unique Snort identificr number, and the rev as the revision number of the times that
the rule has been altered.

Day 4 demonstration peaps are found in /home/sans/demo-peaps/Day4-demos on the VM.

© 2015 Judy Novak 51

<4

52

Wireshark "Follow the Stream" of
Compromised Session

Stream Content

|Microsoft Windows [[Versi i
|Copyright (c) 28@9 Microsoft Corporation IAII rights reserved.

5 éc:\Users\j udy\Desktop\netcat\netcat>dir
tdir

.| Volume in drive C has no label.

i | Volume Serial Number is 3205-961E

il
i
H
&

i Directory of C:\Users\judy\Desktop\netcat\netcat
| ©5/11/2013 12:07 PM <DIR> ;
1 @5/11/2613 12:07 PM <DIR> '

| 11/28/1997 ©1:48 PM 12,639 doexec.c

| 07/69/1996 ©3:01 PM 7,283 generic.h

| 11/06/1996 ©9:40 PM 22,784 getopt.c

| 11/03/1994 06:07 PM 4,765 getopt.h
92/06/1998 02:50 PM 61,786 hobbit.txt

| 11/28/1997 01:36 PM 544 makefile

| 01/03/1998 01:37 PM 59,392 nc.exe

Intrusion Detection In-Depth cmdexe.pcap

Here is some of the traffic collected from the compromised session as reconstructed by Wireshark's "Follow the
Stream" processing.

The first two lines of output show what is displayed when the cmd.exe or command process is started by
Windows. If you recall the netcat listener on the compromised host presented command line access when a
connection was made. The signature looks for the content of "Microsoft Windows" along with the copyright
and date and the second iteration of "Microsoft Windows". We'll look at the depth and distance keywords in
the rule that position the search for more accuracy and efficiency in upcoming slides.

To see the above output run;

wireshark cmdexe.pcap (select Analyze-> Follow TCP Stream)

© 2015 Judy Novak

Snort Rules

« Snort rules have a simple format that allows great flexibility
in single packet analysis

~ Frequentiy, this is enough to pick up many attacks
- Multi-packet events/attacks are generally detected with
preprocessors

— Snort's stream5 and frag3 preprocessors allow stateful rule-based

analysis to occur

At the heart of Snort's detection capabilities and cuslomizations are the Snort rules. The Snort rules syntax was
developed to be simplc to read, write, and understand. As Snort has matured, you may find that the rules are not
50 casy to read, write, or understand any more. Regardless, simple or complex rules offer the writer highly
flexible and customizable options, One of the most valuahle benefits of open source Snort and rules is that you
can write your own, The rules are available for you inspect and alter, allowing you to tweak existing ones or
¢reate your own.

The fact that you are able to see the rules is a giant benefit. Some commercial IDS/IPS offerings keep the rules
hidden so you cannot see what causes alerts to happen. This preciudes your ability to determine false positives
if you do not have a clue what the rule does. All you need to do to associate a Snort rule with an alert is
sxamine the SID in the output then search the rules directory for the rule with that same S1D.

For more stateful attack detection (for example, portscan detection} the preprocessor system is used instead.
And, if there is a particular [unctionality that you'd like, but you cannot write a conventional Snort rule or there
is no exisling preprocessor, Snort has AP['s to enable you to write your own rule or preprocessor. The stream5
and frag3 preprocessors, for instance, add the capability for the Snort detection engine (and rules system) to
apply to multiple reassembled packets, as well as provide a variety of protocol anomaly detection options.

© 2015 Judy Novak 53

54

What Are Rules?

» What is the difference between signatures and rules?

Mike Poor definition:
A signature is a construct to find specific patterns in traffic,

A rule is the grammatical instantiation of a particular signature.

¢ Rules define what Snort should watch for

e They define who and what constitutes an attack or
interesting activity

¢ They inspect packet headers, payload or both for
designated values

Intrusion Detecdon In-Depth

Mike Poor, instructor extraordinaire and IDS/IPS guru, makes a distinction between the terms signatures and
rules. He defines a signature as a construct that defines what patterns to examine in traffic, He characterizes a
rule as the instantiation of a particular signature. If you have a given signature, you can create a rule in any
"language" that supports it — rules in Snort, scripts in Bro, etc.

By defining rules, you tell Snort what traffic is to be considered suspicious, overtly hostile, noteworthy, etc.
Rules define everything from the "who" is involved (source and destination TP addresses) to "what" is
considered hostile (a particular string in a given protocol, for example).

Rules can be written to be very specific, looking for particular payload content and packet attributes, or they can
be very general, specifying only a single IP or port. This allows you great flexibility and the capability to fine
tune individual rules to aid in minimizing false positives, or to focus on certain traffic attributes.

© 2015 Judy Novak

Basic Rule Anatomy

Each rule has two parts:
- Rule header

— Rule options

Specific syntax for each part

Rule header is required, rule options are not

.

Rules may be entered in the rules file on multiple lines using

the ™\" continuation character

' . Introsion Dctccuon Ill-I}{,pt’ﬁ

An individual rule is broken into two general parts. The first part, the rule header, defines "who" must be
involved in order for the traffic to be considered by the rule options. The second part {the rule options} defines
the "what" must be involved, This includes packet header information or the contents of the payload.

Generally speaking, both scetions are used for most rules. It is possible to create rules with only a rule header so
that the some action can be taken for the provided hosts and ports. This is usually the case where pass action
rules are used Lo ignore traffic between given hosts and ports.

Rules can be written on multiple lines in the associated rules file using the "\"continuation character at the end of
arule line.

© 2015 Judy Novak 55

56

—_—me

Rule Header

alext tcp $HOME NET !21:23 -> $SEXTERNAL NET any

» Defines who is involved:
- Action
— Protocol
— Source and destination IPs
— Source and destination ports
- Direction of traffic

Inrrusion Detection In-Depth

The rule header is the first part of each rule used to define the network protocol and the "who" must be involved.
Each of the individual fields have many options (with specific syntax) that can be used to assign single values,
ranges, or groups of values. Each field will be discussed in upcoming slides, covering possible values and the
proper syntax for each.

Snort’s detection engine breaks the comparison of a packet into two parts, corresponding to the parts of a rule.
The first comparison is the rule header against the packet. If the packet does not fit the profile of one of the rule
headers in a rule set, the detection engine moves on to the next packet. If the packet does fit the profile of the
rule header, then the detection engine continues on to test the rule options. As such, more specific rule headers
optimize performance early in the inspection process by eliminating all traffic that does not apply. This means
that the more resource intense process of pattern matching is never performed.

© 2015 Judy Novak

Rule Header:
Action — Tell Snort What to Do

Action Field

alert: alert and log packet when triggered

log: log only when triggered

activate: activates another rule

dynamic: dynamically enabled by activate rule
pass: ignore this traffic

drop: block and log the packet

reject; block, log, and send either TCP reset or ICMP unreachable (UDP)
sdrop: block, but do not log

inline

The default order is:
activate->dynamic->pass->drop->sdrop->reject->alert->log

Intrusion Detection In-Depth

The first field in the rule header is the action field that instructs Snort what to do if the rule is triggered. The alert value
instructs Snort to create an entry in the “alert” file of the log directory and to log the packet as well. The "alert" file is a
single file that contains all the rule detections. The information written to this file in the default alert mode consists
only of the packet header information and any metadata fields and values that you add to the rule that generate output
such as the SID, priority, and message. The "log" value instructs Snort to log the packet only; it will not be recorded in
the "alert" file.

The options "activate" and "dynamic" are used for coupled rules and rule types. An activated rule is one that triggers a
dynamic one when the activate conditions match the traffic. The "pass" action causes Snort to ignore the packet and do
no further processing of it. This is an appropriate action option when you have a vulnerability scanner in your network
and wish to ignore traffic from it. Although that makes it an ideal attack target since a successful attack will cause the
IDS to be blind to traffic originating from it. A different set of actions is available for inline mode. The "drop" blocks
and logs the traffic, and the "sdrop" drops without logging. The "reject" mode blocks, logs, and attempts to terminate
the TCP or UDP session associated with the blocked packet(s).

So you see you have a choice to refine the action for a particular rule. In other words, the rule action can override the
generic configured mode for alerting and logging. For instance, you may choose to log a given rule but generate no
alerts even though the command line designates logging and alerting.

Much like defining firewall rules, when working with Snort rules, correct rule ordering for accurate evaluation is very
important. By default, rules are processed as follows - activate->dynamic->pass->drop->sdrop->reject->alert->log.
There are command line options to supply to Snort that alter the default order. They are "--alert-before-pass” to have
alerts ordered before pass rules, "--treat-drop-as-alert" to alter the behavior of drop, sdrop, and reject action to alert
rather than drop, and "--treat-drop-as-ignore" that ignores rules with drop, sdrop, and reject when not in inline mode.
This occurs when an inline configuration is used to run in passive mode — such as in testing. There is a "snort.conf"
option "config order:" that permits you to alter the order too. Values supplied to it represent the order you desire.

© 2015 Judy Novak 57

Rule Header: Protocol,
Traffic Direction and IP Address

Direction

Protocol

alert tcp SHOME NET [21:23 -> SEXTERNAL NET any
FE b b et

| Source IP | Destination 1P

Protocol field: tells Snort what type of network traffic
the rule applies to valid values include:

tcp, udp, icmp, ip

Source IP value: where packet(s) is coming from
Destination IP: where packet(s) is going
Traffic direction options:

-> defines source to destination

<> direction doesn't matter (bi-directional)

Intrusion Detection In-Depth

]

The protocol field in the rule header tells Snort what type of network traffic is applicable. Snort currently
supports four different types of network traffic: IP, TCP, UDP and ICMP. Additional protocols may be added
in the future.

There is a rule options keyword "ip_proto" that expands the types of protocols that may be examined. This
examination is performed later in the assessment of packet contents. The limitation on the protocol values in the
rule header is due to early optimizations made that group rules by the more common protocols, Packets with
protocols other than TCP, UDP, or ICMP will fall into the general IP group. The ip_proto value is evaluated
later when the rule options are examined.

The source IP address specifies where the traffic is coming from and the destination IP address specifies where
the traffic is going to. It is possible to define the IP as something as general as a subnet, or as limited as an
individual IP address. It is also possible to set multiple addresses or subnets as the source, when needed, using a
special syntax called an IP List.

The traffic direction field allows you to indicate packet direction. Two options are available, allowing you to
denote a specific direction of flow, or indicate that direction doesn’t matter. The label "source IP" and
"destination IP" are not used to denote client and server — simply the sender and receiver. This same direction
option is used both for sender -> receiver or receiver -> sender.

© 2015 Judy Novak

P e e e)

Rule Header:
IP Address Formats/Variables

Host: 192.168.5.5

Address/Netmask: 192.168.5.0/24

List of IPs: [192.168.5.1,172.16.0.0/16]
Any IP address: any

Protected IPv4 network: ipvar HOME NET 192.168.0.0/16

Protected IPv6 network: ipvar HOME_IPV6 fe80:6£8:900:0:0:0:0:0/48
Negation: !

Unprotected IPv4 network:ipvar EXTERNAL NET !S$HOME NET

Unprotected IPv6 network: ipvar EXTERNAL IPV6 !$HOME_IPV6

[ntrusion Detection In-Depth

This slide shows the supported formats to assign the IP address including a single IP address, a subnet address
with a network mask, a list of IP addresses/subnets, the keyword "any" to represent any IP address, and negation
using "!". A very specific format is required to define a list of IP addresses —a comma separated list of IP
addresses enclosed in brackets. Do not leave any spaces when using this format. Snort associates the reserved
variable names "HOME_NET" and "EXTERNAL_NET" with the protected network IPv4 addresses and any
IPv4 address except the protected network. The respective variable names are “HOME_IPV6” and
“EXTERNAL IPV6” for IPv6 networks.

The "ipvar" keyword means that the variable content contains IP address(es), for instance "HOME_NET". A
"§" prefaces a variable name to later reference a defined variable. This is true for any variable type —not just

ipvar variables. You see that the variable "EXTERNAL_NET" is defined to be not the SHOME_NET", where
the "$" refers to the value in the predefined variable "HOME_NET".

© 2015 Judy Novak 59

80

Rule Header:
Port

alert tcp $HOME NET !21:23 -> SEXTERNAL NET any

Source Port | Destination Port

e Source port value defines originating port

Destination port value defines receiving port

Specified as a number or range

Or as a list using portvar

Intrusion Derecdon In-Depth

The source and destination port field reference the sending and receiving ports respectively. Ports can be
denoted as a single port, range of ports, list of ports, or the keyword ‘any’ that represents all possible ports.

Another point that needs to be made is in reference to the ICMP protocol. As you know, the ICMP protocol
does not use ports like TCP and UDP. Since the rule syntax requires ports to be designated for both the source
and destination, they must still be included for rules that apply to the ICMP protocol. Snort will ignore the value
entered for the ports for ICMP rules, but it is traditional to specify the keyword "any".

© 2015 Judy Novak

Port Formats

R MR
static port: 21
all ports: any
range: 33000:34000
negation: 180
less than or equal; 11023
greater than or equal: 1024:
list of ports: portvar MISC [555,80:8%,240]

~ Intrusion Detetdon In-

This slide shows some of the many ways you can define the port value(s). You can assign a specific port or port
ranges. It’s even possible to use negation (but not with the "any” parameter} to assign all ports except the one or
range specified.

When using ranges, the port numbers are inclusive. For instance, the range "33000:34000" in the example
covers from 33,000 to 34,000 inclusive.

There is a portvar keyword to create a variable name that contains a port number(s). We use portvar 1o assign a
variable named "MISC" a list of ports. This list can include one or more combinations of any of the above port
designation options. As with the ipvar list syntax, make sure that there are no spaces in the list,

© 2015 Judy Novak 61

Defining the Ports in Our Rule

alert tcp $HOME‘.__NET 121:23 -> $EXTERNAL_NET any
Not ports 21-23 Any port
inclusive

alert tcp $HOME NET 30333 ~-> $EXTERNAL NET any

Port 30333 only

portvar CMD_EXE [:21,23:]
alert tcp $HOME NET $CMD EXE -> $EXTERNAL NET any

Any port <= 21
and >=23

Intrusion Detecton In-Depth

Examining the Snort rule that triggered the alert, we find that the source ports are specified as not ports 21-23
inclusive. That is because these are the ports that legitimately receive a command shell when a connection is
made. Port 21 is ftp command mode, port 22 is secure shell (ssh), and port 23 is telnet. While ftp may be found
offered on a Windows server, clear text telnet is pretty much obsolete or it should be in favor of the encrypted
secure ssh. It seems foolish to include port 22 ssh since its intended encrypted payload precludes inspection of
the clear text content. Our destination port is "any" because in this particular scenario, it represents the client's
ephemeral port that, as you know, is typically above 1023, although any value can be assigned to it by someone
creating their own TCP traffic, avoiding the use of the TCP/IP stack to open a port above 1023.

Suppose we wanted to limit our alerts to traffic with a source port of 30333 as we did in the second rule. Perhaps
you discovered multiple compromises and all of them used port 30333. This is certainly more efficient for Snort
to find, however it may result in a false negative if so restricted.

Finally, let's define the original rule using a different syntax that avoids the use of negative logic of the first rule.
We define a portvar named CMD_EXE that includes those ports less than or equal to 21 and another that
includes ports that are greater than or equal to 23. We omit port 22 this time because that is ssh and inspection
of it is wasteful assuming it is encrypted. This could potentially lead to a false negative if someone were to run
a rogue clear text session over port 22, but we'll take our chances for an improvement of efficiency. We use the
variable §CMD_EXE in our rule to now identify the source ports.

© 2015 Judy Novak

Rule Options

Windows 7/Server 2008R2"; \
flow:established; \
content:"Microsoft Windows"; depth:18; \
content:"Copyright |2B|c¢|29] 2009"; distance:0; \
content:"Microsoft Corporation”; distance:0; \
metadata:policy balanced-ips drop, \
policy connectivity-ips drop,policy security-ips drop;\
reference:nessus, 11633; \
classtype:successful-admin; \
sid:18756; rev:4;)

¢ Defines what is involved
+ What packet attributes must be inspected

« Includes metadata to be placed in output alert for more context

lntrusion Detection In-Depth

The rule options portion represents the remainder of a rule. The rule options define the "what" portion of a rule
— what attributes of a packet must be inspected and the values they must contain for the rule to fire. This portion
of a rule is applied only if the packet meets the specifications of the rule header parameters first. If a packet has
met both the requirements of the rule header and the rule options, the rule action is triggered.

Rule options can contain metadata as we'll discuss. These options provide more data and context on the alert
output such as references to learn about the attack as well as a an assessment of the type of attack it is. These
metadata options are not used for matching payload.

© 2015 Judy Novak 63

Rule Options Syntax

Option Option Option

= e == Trsn - .
F ~- o ey N,

(msg: “Comprom%se";*fl'c;w'f established;T sid: 18756;)

Keyword Argument Colon Semicolon after each option
separator

* Rule options made up of one or more options consisting of:
— Parentheses: must be enclosed between left and right parentheses
- Keyword: reserved value to identify option

Colon: separator between keyword and argument

Argument: value of keyword

Semicolon: separates individual options and must close options list

Intrusion Detection In-Depth

The rule options section between the left and right parentheses uses reserved keywords and possibly associated
arguments. Just about every keyword requires an argument value, however there are a few that do not, such as
sameip that looks for the same source and destination IPs in the rule header. The keyword and argument are
separated by a colon and individual options are separated by a semicolon.

Each keyword/argument pair comprises an option. Make sure that you close the set of specified options with a
semicolon too; one of the most common mistakes is to omit this, causing an error,

Think of all the specifications in a rule, both the header and options sections, as a long "and" statement where all
conditions must be met for the rule to trigger. Unfortunately, there is no way to specify "or" options conditions
in a single rule. For instance, if you wanted a rule to fire if the content had either "foo" or "bar", you would
have to write two separate rules.

If you think about it some options in the rules header allow for an "or" condition by the use of lists of either IP
addresses or port numbers. Yet, this concept does not carry over to the rules options section.

© 2015 Judy Novak

Rule Options Types

» Rule options are driven by detection plug-ins

» Welll discuss some of the most common
- General
— Non-Payload
- Pavload

The rulc options in Snort represent the available detection plug-ins. In fact, there are so many rule option
keywords available that for the purposes of timeliness we will cover only a small subset of the most common
options. The rule opticns in Snort can be broken down into several groups. We'll cover some general, non-
payload, and payload options types only.

The general options provide informalion about the rule that may be seen in the output to better describe
attributes associated with the rule, and included in the alert, like the message, Snort 1D, references, priority, and
classification to name a few, These can be thought of as metadata options — data about data,

There are non-payload options that generally examine fields in the packet headers, They may also examine flow
direction and associated flows. Next there are options hat indicate what to examine in the packet payload
content, valucs or conditions (hat identify noteworthy traffic. By far, payload options outnumber all other
categories — well, because that is really the purpose of the rules — to inspect the payload content for something of
interest.

® 2015 Judy Movak 65

General (Metadata) Options

msg: descriptive message that appears in alert
msg: “WEB-MISC ftp.pl access”;
sid: Snort ID that is a unique numeric value assign to every rule
sid: 1107;
gid: Generator ID that indicates what part of Snort generated the alert
gid: 1;
rev: revision number
rev: 5;
reference: attach an external reference
reference: bugtraq,1471;
classtype: classification of class of attack
classtype: web-application-activity;
priority: severity
priority: 3; # value of 1 is highest, 4 is lowest
metadata: includes more data about the rule
metadata:policy balanced-ips drop

Intrusion Detection In-Depth

General options are used to attach information to a rule and associated alert. This information or metadata is not
used in the actual detection; its purpose is to help the analyst by providing some descriptive data along with the
alert.

The msg option allows you to attach a pertinent descriptive message to an alert. Obviously, this assists in
providing a relevant description when you examine the alerts. You can assign any description that you choose;
just remember that if you are sharing Snort duties with a co-worker, make sure that this description is universally
coherent - something that everyone can make sense of, not just you.

The sid is the Snort ID to easily identify a unique Snort rule. All of the rules must have a sid and they all must be
unique. The range is:

<100 Reserved for use by the Snort team
100-999,999 Assigned by the Snort team for signatures in wide distribution
>=1,000,000 Local site defined rules

The gid is the generator ID that informs you what part of Snort generated the alert. By default, a gid value is 1,
unless otherwise assigned. This means that the source of the alert is the rules subsystem. All of the gid's can be
found in the "snort/etc" subdirectory, in a file named "gen-msg.map". Usually, the gid value is not reassigned.

The rev or revision ID is used to track the revision count of a rule.

66 © 2015 Judy Novak

Metadata in Our Rule

i A]

msg: " INDICATOR-COMPROMISE Microsoft cmd.exe banner \
Windows 7/Server 2008R27; \ '

flow:established; A\

content:"Microscft Windows"; depth:18;

content:*Copyright [281c|29} 2009"; distance:0; \

content:"Microsoft Corporation"; distance:0; \

metadata:pelicy balanced-ips drop, \

‘policy connectivity-ips drop,policy sectrity-ips drop;\
reference:nessus,11633; \ S

classtype:successful-admin; \
sid:18756; rev:d;)

;____:_;ﬁuh-Iii§1)c:?t=ig_"

The rule that fired has several metadata arguments and keywords, The msg value appears in the alert output as a
terse description, including a likeness to the assoelated rules file name — "INDICTATOR-COMPROMISE",
followed by an explanation of the type of activity discovered. As well, there is the metadata keyword that
specifies that if the rale is included in any of the policies of "balanced-ips", "connectivity-ips", and "security-
ips" signifying that an 1P'S should apply the drop action on any tralfic applicable to the rule.

There is a reference associated with 4 nessus rule identifier, a classification type that identifies the traffic is
reflective of successfinl administrator access, a Snort 1D of 18756, and a revision number of 4.

© 2015 Judy Novak 67

68

—_—
Non-Payload flow

+ Examines direction and state of traffic flow

e Most common state option:
established: Stateful inspection has marked session as

established

» Direction options:
to_server = from_client
to_client = from_server

» Configuration file stream5 preprocessor defines parameters for
reassembly
— stream5_global global settings for TCP, UDP, ICMP

~ stream5_tcp TCP specific settings including the port numbers of
traffic that will be reassembled

Intrusion Detection In-Depth

Let's look at the flow option in more depth since it is important and often used. Rules can be written to take
advantage of the stateful inspection reassembly capabilities available in Snort with the use of the stream5
preprocessor. The flow option requires the inclusion of the stream5 preprocessor in the configuration file.
There are some general types of options that are available for the flow keyword; we'll cover only state options
and direction options.

The state options apply to established or unestablished/stateless TCP or UDP sessions. Established means after
the three-way handshake for TCP or as a series of packets using the same source and destination IPs and ports
for UDP. These are sessions that have gone through Snort's stream$ processor that are reassembled as a stream.
There is a "stateless" flow keyword that applies to individual packets, however no current active rules use it.

The direction options allow the user to designate the source or destination from a client/server perspective.
There are four available values, although only two are unique. The to_server/from_client are the same, as are
the to_client/from_server options to give the user choices to define the traffic flow as they perceive it. This
makes inspection more efficient when a single side only of the conversation is examined.

The flow option is a very important one associated with TCP and UDP traffic. As mentioned previously, Snort
processes traffic in terms of packets. But, as you know a TCP session is comprised of many different packets
containing TCP segments. Content in TCP sessions is found in a segment after the TCP session has been
established. UDP rules generally use flow to indicate the direction - not the state.

As mentioned, the stream5 preprocessor is responsible for reassembling individual related packets into a stream.
There are two parts to the stream5 preprocessor — one is the stream5_global global parameters that pertain to
UDP and ICMP packet reassembly. The second part is the stream5_tcp preprocessor that defines TCP settings

© 2015 Judy Novak

including the very important, and often averlooked, values of TCP ports to reassemble. Snort tries to be more
efficient by reassembling traffic to ports defined in stream5_tcp. There is an option to define client, server, or
both ports where traffic is examined only if it destined to a listed client port, a listed server port, or both client
and server (raffic to the listed port. It is important to understand that Snort does not automatically reassemble
traffic to all ports, This means that TCP sessions over unusual ports will not be reassembled unless designated
in stream3_tep ports listing,

© 2015 Judy Novak 89

70

“

Non-Payload flow Rules

alert tcp $HOME NET !21:23 -> $EXTERNAL NET any
flow:established; \

content:"Microsoft Windows"; depth:18; \
content:"Copyright |28|c|[29| 2009"; distance:0; \
content:"Microsoft Corporation"; distance:0; \

[Payload in an established session, flow either to or from client/serverJ

alert tcp $HOME NET !21:23 -> $EXTERNAL NET any
flow:established, from server; |\
content:"Microsoft Windows"; depth:18; \
content:"Copyright [28[|c|29| 2009"; distance:0; \
content:"Microsoft Corporation"; distance:0; \

Payload in an established session, flow from server/to client

Intrusion Detection In-Depth

Here are two different examples of flow. The first uses the "established" keyword alone as found in the original
Snortrule. This means that the payload is inspected in either direction — going to or coming from the
client/server.

Why does this signature examine traffic in both directions when logically we think of the attack scenario as a
compromised server on the protected network where the attacking client connects remotely to obtain a shell?
There is also the option of an attacker establishing a reverse shell that is set up on a compromised host on the
protected network to connect outbound to the attacker's host "shoveling" the shell to the attacker's host. That is
when you would see the artifacts of a compromised "client" on your network accessing the shell on the attacker's
"server". A reverse shell is typically used when inbound access to the compromised host is blocked.

Suppose we were just interested in protecting the scenario where no reverse shell connection would be possible;
we could make the rule more efficient by restricting the flow to the direction from the server to the client. In
this configuration, we would qualify the flow as from_server or to_client.

Just a reminder - the backslash character "\" is used to indicate that the rule continues on the next line.

Note: The 2.9.6 Snort User's Manual description of flow erroneously indicates that flow is used with TCP onl y.
At one time this was true; however it currently is used with UDP as well. The distributed set of rules contains
ones with UDP and flow. The best place for the most current documentation is in the "snort/doc" directory
README files. These are written by the Snort developers and are very thorough and usually current.

The User's Manual is a translated version of README file descriptions provided by the developer. At times the
changes do not may their way to the User's Manual or do not make their way accurately.

© 2015 Judy Novak

Payload Options content

» Examine the packet payload:
— Content can consist of straight text, hex data, or a mix of both

— Hex data is surrounded by vertical pipes: 190 90[”
» Content matching may also be done by exception with a *”

character
« Optional content modifiers are available

» Multiple content options (with modifiers) may be defined

etecnon fnﬂD épth

The third rule category is payload that has many options that examine a specific aspect of the packet payload,
We'll cover some of the more commonly used ones.

'The content keyword is the most common option that is used to examine the payload for character strings or hyte
values. Content inspection is both extremely powerful and computationally expensive, if not used properly. Care
must be taken when writing rules using eantent options to be as precise as possible in terms of content value and

the location of the content in the payload.

The payload can he examined for text data or hexadecimal data. When nceded, hexadecimal and character
strings can be combined into the same centent option.

It is also possible to use the negation operator with the content option by adding the *!” character in front of the
pattern, the option will match when the payload does not contain the pattern. It is best to use the negation
content operator int conjunction with other content keyword value pairs that search for the existence of some
other known content.

There arc multiple modifiers available for use with the content option. These modifiers are useful for improved
tuning and optimization of content matches. You can define multiple content options (with modifiers) in a single
rule. Think of these as "and" conditions for content, We will cover a subset of these,

© 2015 Judy Novak 71

72

—
Payload content Rules

Plain text l

content: "Microsoft Windows";

[Mixed plain text and hex]

content: "Copyright |28|c|29]| 2009";

Multiple content checks

content:"Microsoft Windows"; depth:18; \
content: "Copyright [28|c 2008"; distance:0; \

content:"Migrosoft Corporation"; distance:0; \

Content with exception matchings

content:"Microsoft Windows"; depth:18; \
content:"Copyright |28|c|29|"; distance:0; \
content: 1"2010"; distance: 0%

content:"Microsoft Corporation"; distance:0; \

+

Here are some sample rules that use the content option. The first sample rule has a simple content match,
looking for the content of "Microsoft Windows",

cmdexe.rule exception.rule
cmidexe.pcap

Inttusion Z_)c_t_tcction In-Depth

The second example rule has mixed hex and text data to represent "Copyright (c)" in the content argument field.
The parentheses are represented in hex because they have another purpose in Snort syntax to enclose the rule
options. Note that the hex data is enclosed in “|” (better known as the “pipe” character), to indicate to the parser
that this is hex data. When checking byte code in hex, Snort ignores white space used in the rule content.
Mixed hex and plaintext data is considered sequentially, the pattern matcher in Snort doesn’t break the data up
into separate matches.

The third example rule shows a situation where three content matches are being performed. These pattern
matches are performed separately from each other and may occur anywhere in the packet. The order in which
the content is placed in the rule doesn't necessarily correspond to the order in which they are found in the
payload.

The final sample rule shows the exception matching feature looking for content that does not contain the string
"2010". This negative or exception content match should not be overused since it is computationally expensive.
Snort has search optimizations it employs for finding content in the payload. It is not possible to use these
optimizations when an exception match is used without other non-exception content matches. If at all possible it
should have another search restricting criteria such as existing content — like one or more content searches.
Otherwise, the pattern matcher must inspect payload in every packet that matches the associated rule header
values.

To run the rules seen above, execute the following:

snort -A console -K none -q -r cmdexe.pcap -c cmdexe.rule (pertains to the first three rules)
snort -A console -K none -q -r emdexe.peap -¢ exception.rule (pertains to the last fourth rule only)

© 2015 Judy Novak

Payload content Modifier offset

« Defines offset from the beginning of the payload to start content
matching

» Default offset is zero (first byte of packet payload)

» Limits the amount of data that must be searched per packet; improves
performance

content : "Microsoft . Wlndows", dapth 18, .\

Original modifier

content: "Microsoft Wind-':w.;s"_'; offset:0; depth:l8 \

Explicit modifier

f:ﬁgﬁp:-l_h-'})éjath | |

Let's cxamine some content modifier keywords. A content modifier keyword and value must come directly
after the associated content.

The offset option defines the point in the packet payload to begin searching for a content match. Note that the
content matcher begins counting at the zero offsct from the beginning of the payload as the default. Therefore,
it was not necessary to cxplicitly indicate an offset. However, you can supply it as shown in the second rule if
you want 1o be more obvious about it.

The ofiset option is extremely useful for localizing particular expected content in a packet as well as speeding
up the pattern matcher by reducing the amount of data to be searched in a particular packet.

The offset value ranges from -65535 to 65535, You may be wondering when you would ever use a negative
offset. Actually, nonc of the current rules uses a negative offset so while the option is provided, it does not
appear to be very useful at this time.

© 2015 Judy Novak 73

Payload content Modifier depth

» Limits the depth from the initial offset of a content search

¢ If no offset is specified, the depth is set from the beginning of the
packet payload

» Once again, limits amount of data that must be searched per packet,
improves performance

content:"Microsoft Windows"; depth:18; \

Intrusion Detection In-Depth

The depth option limits the number of bytes from the starting offset pointer that will be searched. If no offset is
specified, the depth distance is from the 0 byte offset of the beginning of the payload. Using offset and depth in
concert allows rules to be written to examine very specific areas of the packet for precise values, speeding up
the overall performance by reducing the amount of data to be searched.

The depth keyword represents a byte count. Unlike offset, it must have a positive value of 1-65535 since it must
identify the number of bytes to search. For instance let's say that we have a payload of "ABCDE...P" in our
content. Now, suppose we want to make sure that "CD" appears exactly as it falls in this string. We would
specify the following: content: "CD"'; offset:2, depth:2. The offset counting starts at 0 and the "CD" requires
2 bytes.

Our rule defines that the content of "Microsoft Windows" must be found wholly within the first 18 bytes as an
offset of 0 is implied. There may some confusion about when the counting starts at 0 or 1. Offset starts
counting at 0; depth starts counting a 1 since you are counting actual existing bytes, not a placement pointer for
the beginning of the count.

© 2015 Judy Novak

Payload content Modifiers distance
and within

= "distance" limits the relative offset from previous content match

« "within" limits the relative depth from previous content match

« Once again, limits amount of data that must be searched per packet,
improves performance

content: "Microsoft Windows™ ; depth:18; A\
content:"Copyright [281¢]29] 2009"; distance:0; \

r Original modifier

content: "Microsoft Windows"; depth:18; 3\
content:"Copyright }[281ci29] 2009"; within:50; O

More restrictive modifier]

cndexesrule withinrule
cmdexe.peap

Intusion Detection Tn-Depth

The content modifiers distance and within behave the same as offset and depth; except, instead of relative to
the beginning of the payload, they are relative to the location of an assumed previous conlent match, The first
rule specifies that the copyright content search mus! begin immediately after the content of "Microsoft
Windows" and ends either when it is found or when the remaining payload is search if not found. There is no
restriction how far to search into the payload - usually since it is variable or unknown.

We can put a restriction on the mumber of bytes examined if, for instance, we know that the copyright content
was wholly contained within 50 bytes of the end of the string "Microsofl Windows”, We use within to
accomplish this; this has an implied distance value of 0.

+ To run the rules seen above, execute the following:

snort -A console -K none -g -r emdexc.peap -c cmdexe.rule (perfains (o the first rule)

snort -A console - nene -q -t cmdexe.peap -¢ within.rule (pertains to the second rule}

€ 2015 Judy Movak

Payload content Modifier fast_pattern

 Snort gains efficiency using pattern matching algorithm
- Default pattern matching uses longest content value to match
— May not always be what you want or most efficient

e fast_pattern is a content keyword modifier that offers

other matching options/conditions

Intrusion Detecdon In-Depth

An exhaustive function in terms of time and necessary processing is examining a reassembled stream payload or
a single packet payload to find the desired content. Snort uses a default pattern matching algorithm to make this
process as streamlined as possible. The expected behavior of the pattern matcher is to take the first, longest,
non-negative (doesn't contain the "!" before content value) content value and use it in the pattern matching
phase.

One reason to use the fast_pattern content modifier is when the longest content match for a given protocol is
found in many, or all packets associated with the protocol. The example given in the Snort User's Manual is a
string of "INVITE sip|3A|" is frequently found in all Session Initiation Protocol (SIP) traffic. Suppose you write
a SIP rule that includes that content as well as another content string that has fewer bytes. It is more efficient for
the pattern matcher to search for the other shorter string first because it is more unique. Otherwise, the pattern
matcher examines every SIP packet to find the second string. Less processing is performed when the smaller
string is sought and when found, the packet is then searched for "INVITE sip|3A|".

© 2015 Judy Novak

ifier

fast_pattern Rule

s Use fast_pattern modified content for more efficient pattern
matching

content: "metcat"; fast pattern; \
content:"Microsoft Windows"™; depth:18; 3
content:"Copyright [28!c|29] 2009"; distance:0; \
content:"Microseft Ccrporation'; distance:0r \

snort -A console =K none —-q -r crndexe.peap -¢ fast-pattern.rule

fast-paitérn.rule

cmdexe, pap

Assume that we wanted to alter this rule so an alert is triggered when the content of "netcat” is found in the
associated traffic. As you can imagine the existence of "netcat" in the payload is likely more unique than the v
content found in the existing rule so that should make it a more efficient rule since it optimizes the pattern
matcher as fewer packets/streams will be scrutinized. However, we need to use the qualifier of fast_pattern

otherwise the longest content of "Microsofi Corporation” will be selected as the first content to be used by the

pattern matcher.

*+~ To run the rule seen above, execnte the following:

snort -A console -K none -q -r cndexe.peap -c fast-pattern.rule

® 2015 Judy Novak 77

Payload pcre

e Adds the power of Perl Compatible Regular Expressions to
Snort rules language

» Below rule content check looks for the anchor and pcre
content of "Copyright (c)" along with a more generic pcre
match for the representation of the year
flow:established; content:"Microsoft Windows"; depth:18;

content:"Copyright [28|c|28| "; pecre:"/Copyright \ (e\) 2\d\d\d/":
content:"Microsoft Corporation®; distance:0; sid:54322;)

snort -A console -g -K none -r cmdexe.pcap -C pcre.rule

pcre.rule
cmdexe.pcap

Intrusion Detection In-Depth

Regular expressions are extremely powerful, and very flexible. Traditionally they have been rather slow for use
in IDS/IPS, but with some optimizations, pere was ported into Snort without significantly affecting performance.
One optimization that you can supply is when using pere, if at all possible, anchor the pere expression with a
content option keyword containing a value with the largest string or bytes of non-changeable content searched by
the pere expression. The pattern matcher cannot be applied to pere content because it does not understand
regular expression syntax.

For instance, in the above rule, you see that there is an anchor content containing "Copyright [28|c|29/"
(Copyright (c)) before the pere expression. This is the fixed part of the string that does not change. This allows
the pattern matcher to efficiently find the content and then the less efficient processing will examine the specifics
of the pere content containing that same string.

The original rule contains an exact content of "2009" to identify the year associated with Windows 7/Server
2008R2. Yet, this is restrictive and there were several similar Snort rules for different operating system versions
of Microsoft. We can make this rule more generic to cover existing and future versions of operating systems
without creating a new rule each time a new operating system is released with a year other than 2009. First, we
express the non-changing part of the content "Copyright(c)". Next we repeat this same content in pere
expression language that requires us to use an escape backslash character for the parenthesis denoting the
copyright symbol. That's because parentheses have a particular meaning in regular expressions — not the text
context we need.

Next we use regular expression syntax to give us flexibility with the year associated with the banner message.
We begin the year with the value of "2" followed by a series of 3 digits "/d". This is an easy fix if you are
familiar with regular expressions, although learning regular expression syntax can take some time.

78 ©® 2015 Judy Novak

Regular expressions are quite complex and a thorough discussion of them is cut of the scope of this class. For
tutorials on regular expressions, check the book: Mastering Regular Expressions, published by O'Reilly, as well
as the following websites:

httpr/iwww.zvan.org/comp/r/tut-Regexp.himl
http:/fwww.php.net/pere

“{r" To run the rules seen on the slide, execute the following:

snort -A console -K none -g -1 eimdexe.peap -c pere.rule

© 2015 Judy Novak 78

Payload isdataat

==
e Examine payload for existence of data at an
offset/relative byte number
alert tcp SEXTERNAL NET any -> SHOME NET 143 \
(msg:"PROTOCOL-IMAP DIGEST-MD5 authentication method buffer
overflow"; flow:established,to_server; content:"AUTHENTICATE \
DIGEST-MDS"; nocase; content:"|0A|"; within:2; \
isdataat:256,relative; content:!" |00 QA|"; within:256;35id:123456;)

snort -A conscole -K none -g -c local-imap.rule -r imap.pcap
02/06-21:17:40.512285 [**] [1:123456:0] PROTOCOL-IMAP DIGEST-MD5
authentication method buffer overflow [**] [Priority: 0]
{TCP} 10.0.2.101:55032 -> 10.0.1.102:143

local-imap.rule
imap.pcap

Intrusion Detecdon In-Depth

The isdataat payload option is another useful feature to detect the existence of data a fixed or relative offset,
One of the most common uses for this option is for buffer overflow detection. Take a look at the above rule. It
has two initial content matches followed by isdataat:256,relative. This examines the payload 256 bytes
following the match of the second content search or 0x0a. If this data exists and no carriage return/line feed,
also known as CRLF, (0x0d 0a) is found, it indicates that more data is present than expected.

The IMAP protocol needs user input of an authentication string comprised of a username and digest to identify
the user. IMAP is a line-oriented protocol where the CRLF signifies the end of input. Therefore if no end of
input is detected within 256 bytes after the user input, a buffer overflow is likely,

There is another common payload option nocase in this rule that make the search case insensitive.

-+ To run the rule seen above, execute the following:

80

snort -A console -K none -q -r imap.pcap -c local-imap.rule

© 2015 Judy Novak

What Now?

¢ Give up, panic, or debug

« Three possible reasons:
- The rule is wrong
— Snort is not properly configured
— The traffic/pcap you are using has an issue
e Most common reason is the rule is wrong
— Debug it option by option
— Test the header option{s) only

— Remove each rule option, one by one, to see if the alert
fires

Intrusion __I):‘.-zt’t‘.‘iitidfif[l’l—béijth B

You or someone else has just written a new rule, tested it against a pcap you have that you believe is
representative of the issue for which you wrote the rmile. And, sadly, you get no alert. Your instinct is to
immediately blame the oversight on a bad rule or maybe a bad rule writer. Most of the time, this is where the
problem lies.

However, don't discount some other explanations — a configuration file that does not handle the type of traffic
you are using or even a peap that is corrupted in some way. You may not have the required preprocessor loaded
in your "snort.conf", for instance the "frag3" preprocessor handles fragmentation, [If your pcap has fragmented
packets, Snort will never assemble the fragments so the payload content you seek may not be found. Also, if
your $HOME_NET and SEXTERNAL_NET variables are not properly set, you will receive no alert. A final
check is to make sure that the file location of the new rule is included in the Snort configuration file.

As far as a corrupted peap, make sure that there are no checksum errors. By default, Snort drops packets with
any incorrect checksum, Afler all, that is what the destination host does. Snott can be easily evaded if it does
not behave in (he same manner as the receiving host. Or, it is possible that the snaplen — the default number of
bytes captured for each packet — is insufficient and the entire packet was not captured.

Rule debugging is a methodical iterative process. First, delste all the rule options except for the msg and sid,
leaving only the header part of the rule. It's possible that something is wrong in the header and is easily
corrected. The rule oplions are next in the debugging precess, Deletc them all {except sid and msg) and add
them back one by one until the alert no longer triggers. Investigate thal option - maybe the value supplied to the
keyword is incorrect — a bad offset ar distance value so tweak those until the rule fires. Or maybe the content is
both upper and lower case, however you haven't qualified it with nocase.

You'll get to do some debugging now if you begin the Snort exercise that is referenced on the next slide.

® 2015 Judy Novak 81

What's Wrong with This snort.conf?

Workbook
Exercise: "What's Wrong with this snort.conf?"
Introduction: Page 3-D

Questions: Approach #1 - Page 5-D
Approach #2 - Page 11-D
Extra Credit- Page 15-D

Answers: Page 16-D

e R e e

This page intentionally left blank.

82 © 2015 Judy Novak

- Intrusion Detecdon In-Depth

This page mtentionally lefi blank.

© 2015 Judy Novak

83

False Negatives and Positives

False Negative False Positive

* Snort misses an attack/event | [e Rules go off for non-events

2 ECesible reasons * Possible reasons:
— Packet loss :
— No rule written to handle == t?g:g;y written rules (too
the attack
— Badly written rule — Unnecessary rules
— Attack obfuscation

- Overloaded configuration
— Critical path failure

Inttusion Detection In-Depth

False negatives and positives are the bane of network intrusion analysts, False negatives happen when Snort or
any other IDS/IPS misses an event that should have been detected/alerted/logged. There are several general
causes of false negatives. One of them is packet loss. Packet loss can be related to hardware or software — or a
combination of both. Hardware issues can be caused by network interface cards that cannot keep up with the
traffic, an overloaded hardware bus that transports the traffic, insufficient memory and/or processor(s) speed,
and inefficient and/or slow speed of writing to disk, or a combination of one or more of these.

Rules or the lack thereof can be the source of false negatives. You cannot detect a zero-day exploit that has no
rules. Another rule problem is poorly written rules — perhaps for a specific exploit. Obfuscation is another
concern. You could look at encryption as being a type of obfuscation especially if the protocol or well-known
protocol is running on a port that usually does not support it. There are other obfuscations such as encodings —
base64, unicode, etc.

The configuration of Snort, such as preprocessors selected and values for those preprocessors, may cause Snort
to slow down and potentially drop packets. For instance, by default the http_inspect preprocessor looks at the
first 300 bytes only of the server's response. If you change that to be the maximum packet size of 65535, you
lower your risk of a false negative through a failure of inspecting enough of the packet, but you run the risk of
slowing Snort down, perhaps to the point where a false negative occurs because Snort is not able to keep up with
the packets ingested. As you can see this is a fine balancing act. Performance monitoring is discussed in the
Appendix and may be able to help you assess the source of performance problems.

The critical path is the longest execution cycle required to decode, detect and report on the traffic. If this critical
path is too slow or is accessed too frequently, packets may be lost because the sensor can’t keep up. As much as
possible, restrict the sensor to sniffing and analyzing — nothing else like post-processing of alerts.

@ 2015 Judy Novak

False positives occur when 2 meaningless event triggers a rule. What is considered meaningless is unique to
each site. A false positive alert can occur if a rule is too broad and erroneously fires on something that is not

noteworthy. Another reason is that the rule may be well written, yet net apply 1o the given site or environment.

For instance, suppose there is a stateless rule that pertains to telnet traffic, yet you do not run telnet. An alert
that is triggered is essentially meaningless to the analyst because it does not represent a threat in the

environment.

© 2015 Judy Novak

85

86

Interlude: Writing New Rules

» A new exploit makes its debut; no Snort rules are publicly
available yet

» Write a rule to catch the vulnerability in use

o We'll demonstrate a buffer overflow exploit analysis and
convert the findings into a Snort rule

» A false negative may arise if you write a rule for a given

exploit and not the actual vulnerability

Let's combine rule writing with our examination of false negatives. The next several slides demonstrate the
methodology for writing and testing a rule associated with a zero-day attack where no Snort rules were publicly
available when this vulnerability was discovered.

Keep in mind that it is imperative that you write rules for a given vulnerability and not an exploit. If you write a
rule for a particular exploit, it is very possible that there may be a false negative if a different version of the
exploit is released. You will see what we mean as we study a vulnerability and first generate a rule for the
exploit before we refine it to relate to the vulnerability instead.

We'll follow how a rule is written for a particular IMAP buffer overflow vulnerability.

® 2015 Judy Novak

Buffer Overflows

» May allow privilege level of exploited process

« Buffer overflows may allow superuser/root access to a
machine
» OQverflows can be leveraged to wreak havoc on both internal

and externa! networks

« Example: IMAP AUTH attack

Tnrtusion Detection In-Depth

Before getting into writing a new rule, it’s important to understand how the vulnerability works that you're
trying to detect. In the case of buffer overflows, an attacker is usually able to leverage the access gained into
root {or superuser} access, Buffer overflows are the scourge of many network server applications, allowing
attackers who can exploit them possible widespread access to the other servers and workstations in a network. A
successful buffer overflow exploit against a network service that runs with root privileges grants the attacker
those sume privileges.

So how do buffer overflows work? Generally speaking, poor and misinformed pregramiming is the leading
cause of buffer overflow problems today. A buffer overflow works because a programmer fails to properly
check or limit how much data is put into a data buffer within a program. These overflows are usually localized
to a specific piece of functionality, such as the through the IMAP AUTHENTICATE command in the case of
our example.

© 2015 Judy Novak 87

88

Interlude:
First Describe the Vulnerability

» Inadequate boundary checking within the IMAP server
allows attackers to write arbitrary data to the target system
and have the target execute the data

e Only effects the AUTHENTICATE IMAP command

¢ Gives root access to attackers

Intrusion Detection In-Depth

Suppose we learn about a new vulnerability in some IMAP server code. It involves a buffer overflow that when
successful, allows the attacker to execute her own code on the target. We've learned that this attack applies to
the IMAP AUTHENTICATE command. Most IMAP servers at the time of this given issue ran as root,
therefore giving a successful attacker root access.

© 2015 Judy Novak

Interlude:
Buffer Overflow Stack Theory
OxNNNN i
» Programs call their subroutines, :
allocating memory space for function Var 3
variables on the stack Var 2 -
 The return pointer (RP) contains the Ao g
address of the calling function g
o Allocated variable space is filled back to i)
front other ptrs
0x0000
Program Memory
(stack)

Tntrusion Detecton In-Depth

This is a general overview of how buffer overflows work, and may not be 100% correct for a given computer
architecture. It does reflect the means that a buffer overflow attack employs to achieve their desired effect.

Buffer overflows work by taking advantage of the way that many modern operating systems work. When a

program allocates space for variables in a function, it does so on a structure known as the stack that resides in

memory. At the bottom of the stack for a given program’s routines is a piece of memory that contains the data
for the address where execution of the calling program is to continue when this function call is finished. This
piece of memory is known as the return pointer.

The critical point in understanding buffer overflows is that when user data is stored in these allocated
variables, the program fills the allocated space “backwards", starting at top end of the buffer and going
towards the beginning of that space. Due to the arrangement of variables on the stack, data that overflows the

program buffer can end up overwriting the stack’s return pointer.

With control of the return pointer the attack code can direct the execution that follows. Ordinarily, the return
pointer would point to the calling routine and continue execution at the next statement. But, now, the attacker
can point to a location in memory that contains executable code.

For an excellent article on buffer overflows read “Smashing the Stack for Fun and Profit” by alephl:

http://insecure.org/stf/smashstack.html

© 2015 Judy Novak 89

80

Interlude: Buffer Overflow Return
Pointer Manipulation

e User data is written into the allocated oxnnnN
buffer

« If the data size is not checked, return ver >
pointer can be overwritten by user o N
data) i Machine code: %
e Attacker exploit places machine code o el R
in the buffer and overwrites the return [T ®
A return p
pDIntei' other pirs
» When function returns, attacker’s code ;
is executed 0x0000
Program Memory
(stack)

Introsion Detection In-Depth

The logical location in memory to send the return pointer is somewhere that executes the attacker's code. The
attacker's code is placed in memory/stack as part of the buffer overflow content that overwrote the stack and the
return pointer. The exact location in memory of the attacker's code is often difficult to discern because it is not
always predictable. A segmentation fault and crash of the service or process can occur if the attacker's return
pointer directs the program execution to a place in memory with a non-executable instruction. This may garner
some undesirable attention so the attacker needs to try to avoid this.

A successful buffer overflow and redirection of the return pointer to the attacker's code is potentially dangerous
when the attack pertains to an open and listening public port on the host. This means that anyone with access to
that vulnerable service and in possession of an effective exploit can potentially gain full control of the target
system, possibly using it as entry into the internal network.

Prior to 2004, buffer overflows in server software is the primary means of attack. The trend of attacking client
software became more prevalent around 2004.

© 2015 Judy Novak

Interlude:
Buffer Overflow Code Example

Susceptible to buffer overflow Fixed
~#include <stdio.h> $include <stdio.h>
int main() int main ()
{ {
char fool[256]; char fool[256];

strcpy (foo, gets(NULL)); strncpy (foo, gets (NULL),255);

printf ("&$s\n", foo); printf ("%s\n", foo);

Here’s a nice little code snippet on the left that illustrates how this problem can happen. We have a piece of
code that allocates a 256-byte buffer for user input, then does an unbounded copy of an unbounded amount of
data into that buffer. Since the user can input any data she pleases into this buffer, she can essentially take
control of the computer if this program is made available to her as a network program with root privileges.

On the right is the same code without the buffer overflow condition included because the string copy (strncpy)
limits the size of the copied input to 255 bytes. The strncpy command adds a null terminafor character to end of
a character array which is why 255 bytes — not 256 bytes — are copied. Note how easy it is to write code that
can’t be overflowed, Writing secure code is a matter of diligence and good training in proper coding
techniques.

© 2015 Judy Novak 91

Interlude:

Generating Packets

e Step One: Get a copy of the exploit

 Step Two: Set up a target host and an attacking host

* Step Three: Set up Snort in packet logger mode snort -1 <logdir>
= Step Four: Run the exploit under controlled conditions

e Step Five: Analyze and develop signature

E] < Data (attack)stream > =g
g
pee : e =

1!

H

Attacker T Target
=

=

Snort sensor

Intrusion Detection In-Depth

Now that you are familiar with the theory of a buffer overflow, let's try to write a rule for the IMAP
vulnerability. Generating Snort signatures to discover an attack that uses a particular exploit is a fairly
straightforward process. The first step is to get a copy of the exploit, if possible. Metasploit is a good place to
get exploits; it is found at:

http://www.metasploit.com

Once you have a copy of the exploit, you need to set up a vulnerable target host on an isolated test network as
the attack target. Once configured, run Snort in packet logger mode (snort -1 <logdir>). The packet collection
can be done with tepdump and written to a peap, if you prefer. After Snort is up and running, execute the exploit
code against the target and collect the packets.

Make sure that you perform these activities under controlled conditions, such as in a segregated and monitored
lab —not on the production network. When the exploit has completed, you can examine the packets that were
collected to try to develop a signature or you can search for a description of the vulnerability and try to compare
that with your packet capture and proceed from there.

© 2015 Judy Novak

Interlude: Analyzing Attack Traffic

' 03/05-23:44:12.796225 10.1.1.4:3552 -> 10.1.1.3:143
TCP TTL:64 TOS:0x0 ID:19364 IpLen:20 Dgmlen:1118 DF
*%*kAP*** Seq: Ox2BOE465A Ack: Ox66E6CTF3 Win: 0x4470 Tcplen: 20
2A 20 41 55 54 48 45 4E 54 49 43 41 54 45 20 7B * AUTHENTICATE {
31 30 35 33 7D OD OA 90 90 90 90 90 S0 90 90 90 1053}...........
90 80 90 90 90 90 90 90 90 90 90 90 90 90 90 90c.ecarnrenn
90| 90 90 90 90 90 90 90 90 S0 90 80 90 80 90 90 ..{..........0n.
90| 50 90 90 90 90 90 90 90 90 50 90 90 90 80 90
90| 90 90 90 90 90 90 90 S0 80 90 90 90 90 90 90
90| 90 90 90 90 90 90 90 %0 90 90 S0 90 80 90 %0 .. J.....cccumnnn
90| 90 90 90 90 90 90 90 90 90 90 S0 90 90 90 850 ..J......cevuernn
90| 90 90 90 90 90 90 90 90 90 90 SO 90 90 90 90cvevrrnnn
90| 90 90 90 50 90 90 90 90 90 90 S0 90 80 90 90 ..{.....cvennenn
90| 80 80 920 90 90 90 90 90 90 90 80 90 90 90 90 ..{........x.0-n
90| 80 90 90 90 90 90 S0 S0 90 80 90 90 90 90 850 ..{...........n-
90| 90 90 90 90 90 90 90 90 90 90 S0 90 90 90 80 ..{.....cnvonunn
90| 90 90 90 90 EB 38 S5E BO 46 01 50 BD 46 02 50 ../...8".F.P.F.P

0B B9 46 08 31 CO 88 46 07 89 46 OC BO OB 89 F3 ..F.1..F..F.....
8D 4E 08 8D 56 OC CD B0 31 DB 89 D8 40 CD 80 EB .N..V...l...8...
¢3 FF FF FF 2F 62 69 6E 2F 73 68 9F F2 FF BF 9F/bin/sh.....

Intrusion Detection In-Depth

Here we see the actual exploit packet captured by the Snort logger. A couple of points are worth mentioning
about the output captured. First, notice all the 0x90 bytes found in the output. The 0x90 is an Intel x86
architecture NOP — or no operation directive. As the name implies no operation is performed with this code.
The reason that you see so many NOP’s is because the ultimate goal for the attacker is to be able to place a
value in the return pointer that represents the location in the stack where her executable code resides.

Because computing the exact memory location where the executable code resides may not be precisely known
ahead of time, if the return pointer accidentally points to a memory location where there is no executable
instruction, the program will terminate. Obviously, that is not something that is desirable for the attacker
because not only does the attack fail, but the attacker may draw attention to his/her actions. The series of NOP’s
is often referred to as a NOP sled because it allows the attacker to be less precise in redirecting the pointer. If
the pointer falls somewhere in the NOP sled that precedes the exploit code, the series of following NOP’s are
executable and will eventually lead to the real exploit code.

Another thing that you see above is the "/bin/sh" after the NOP’s. This is where the attacker gets a Unix shell
and has control over the target host with the privilege level of the vulnerable process.

© 2015 Judy Novak 93

94

Interlude:

Exploit Characteristics

e Protocol: TCP

Length: 1118 bytes

e Port number: IMAP, port 143

Flow: In an established session destined for the server

Content: "TAUTHENTICATE", NOP sled, exploit string
(/bin/sh), assembler code

Intrusion Detection In-Depth

There are a number of attributes in the captured packet that can be used to develop a rule to detect such attacks.
First the protocol is TCP. Next the packet length is rather large at 1118 bytes. The destination port number is
143, in an established session with the server.

In the payload itself, we saw the content “AUTHENTICATE”, the NOP sled, machine code, the /bin/sh, and the
assembler code to perform whatever activity the attacker/exploit intends.

® 2015 Judy Novak

Interlude:
First Attempt at Writing the Rule

e Combine the characteristics to form the rule
e How could this rule be evaded resulting in a false negative?

Rule header

alert tcp any any -> S$SHOME NET 143

TAAP port

Rule option

(msg: “IMAP Overflow!”; flow:established, to_server; \
content: “AUTHENTICATE”; content: “/bin/sh”; \
content: “|9090 9090 9090 90%0|"; sid: 50000000;)

Yweop

Intrusion Detecton In-Depth

Once the attributes of an attack have been characterized, they can be translated into a rule as above. Thisrule
will be very good at detecting this specific exploit in use, but may not detect variations of it. An attacker may
change some aspect of the exploit that will cause the rule to be evaded.

Look at the options we have used in this rule. The content is found in an established session destined for the
server. We look for some very specific string matches that may or may not be in every variation of exploit.
Suppose that the attack code used a different shell than "sh" — for instance the "/bin/bash" shell instead. This

would evade our rule. Also, there are many more assembler operations than the NOP 0x90 that can be used as a

"do nothing" instruction that is executable. As an example, an attacker could use the an instruction that
represents an operation to subtract 0 from a given value. This is an executable operation that essentially does

nothing; it does not change the value of the variable, yet at the same time accomplishes the equivalent of a "no

operation".

© 2015 Judy Novak

g5

86

Interlude:
Refined Me

alert tcp $EXTERNAL NET any —> SHOME NET 143 \

(msg:"IMAP auth literal overflow attempt";)\

flow:established, to _server; content:" AUTH"; nocase; content:";";\
byte test:4,>,256,0,string,dec,relative; \

Teference:cve, CVE-1999-0005; classtype:misc-attack; sid:1930:)\
reviii)

15:57:10.363945 IP (tos Ox0, ttl 3, id 56436, offset 0, flags [DF],
length: 1500) 172.16.10.151.1117 > 172.16.10.200.143: . [tcp sum ok]
1:1461(1460) ack 1 win 5840

0x0000 4500 05dc dcT4 4000 0306 2828 acld Da97 By tBari e i
0x0010 acl0 Oac8 045d 008f 21d1 9561 cOdec SkeD S 0T e L
0x0020 5010 16d0 35e5 0000 2aZ0 4155 5448 454e PF,..5...% AUTHEN
0x0030 5449 4341 5445 207b 3230 3438 7d0d 0a90 TICATE. {2048}...

0x0040 9080 9030 90909690 D090 8090 903D903L L naivi e v ae i
0x0050 9020 9090 9090 9090 9090 9090 9090 9080 L.iiiiieeasiiians

Intrusion Detection In-Depth

Let's be more accurate about the exact rule and base it on the vulnerability — not the exploit. A second revision
of the rule improves our first attempt. We see that the content has been changed to be "AUTH" — case
insensitive. Perhaps there were some IMAP servers that accepted "AUTH" as a substitute for
"AUTHENTICATE". The rule looks for another content of "{" that IMAP uses to denote the number of bytes
that follow "AUTHENTICATE". The revision omits the "/bin/sh" so it does not search for specific command
shell and it omits NOP codes because the rule is trivially evaded when supplied.

Another option has been added — the byte_test. We will not have a chance to cover byte_test, however you
can surmise from the name that it tests one or more bytes for a particular value. This particular byte_test
examines four bytes at relative byte 0 afier the previous com greater than 256, ©he value
found in this position is a decimal representation of a string. We find an ASCII value of 2048 in that field,

Mn 256, so the rule should alert. These characteristics have been determined to be
representative of the IMAP vulnerability so even if there is a different version of the exploit, these same traits
must be present for the exploit to succeed.

Usually you will not undertake writing a rule for a new exploit. However, if you find yourself in a situation
where you learn of a new widely used exploit and have no rule, this demonstration can be used to help you
approach the process.

© 2015 Judy Novak

False Negatives Solutions

+ Packet loss
— Faster more powerful hardware
- Refing the critical path to minimize processing not connected to
sniffing/fanalyzing
~ Remove bicated preprocessors, tune the settings on refevant ones
— Remove rules with no applicable network traffic
+ Analysis fallures
Place sensors in appropriate focations
Write rutes for a given vulnerability
Include all relevant rules
Enable all necessary preprocesscrs
Update rules frequently

i

False ncgatives have several causes. The first category is related to packet loss issues, Packet loss can occur
because of slow or underpowered hardware anywhere from the NIC to post-analysis of writing to disk. How can
this type of packet loss be avoided? Generally speaking, the answer is to sither spend a lot of money or a lot of
thought. Putting Snort on faster hardware and with more memary will have positive effects on performance. 1f
you need a less expensive solution to decrease packet loss, consider using BPF to focus on high value traffic
only. The use of BPF is supported on the command line via the —f switch specifying the location of a file with
the filters or the "snort.conf" configuration directive "config bpf_file",

Other packet loss issues are a result of overburdening Snort where packets got bottlenecked and dropped. These
are issues like a critical path overload, for instance using several output plug-ins; pare those down so that Snort
is predominantly sniffing and analyzing. As we've talked about and will discuss in more detail, delete bloated
unnecessary preprocessors that have no relevant traffic, Another preprocessor related problem is using relevant
preprocessors but tuning the settings poorly, say for instance by increasing the maximum concurrent sessions
that stream5 can process without inereasing the memory allocated for TCP processing. It is important to
consider the implications of changing a sctting because it may have unexpected consequences.

Remove hloated rulcs, ones with no applicable traffic in the network. You may have multiple sources of packet
loss to include any of (he ones just discussed, meaning you might have to find and address multiple issues.

The second category of false negatives is some lype of analysis failure. A rather obvious one that may not be
considered is that you need a sensor in the right place to sniff the traffic you want to analyze. Some sites tend to
place the sensors closer to egress aggregation points. That can leave traffic between internal assets uncovered.
So, if you need to see traffic from desktop to desktop, you have to place the sensors ¢loser to the first hop
aggregation points.

We just examined the consequences of poorly wrilten rules; rules should be accurate and cover a vulnerability —
not a given exploit. Both rules and preprocessors may be culprits again in false negatives, but in a different
way. The take away is that Snort is not self-aware; it is the job of the analyst 1o discover the issues.

© 2015 Judy Novak g7

98

If you fail to include rules that are applicable for your traffic, you cannot be alerted of noteworthy events
associated with missing rules. Once again it is necessary to know the type of traffic that flows across your
network. Similarly, you need to include and configure all preprocessors required; otherwise, the related traffic
may never be examined and prepared to send to the detection engine.

Finally, you're not going to find malicious traffic associated with newer exploits, if you don't have up to date
rules. So, make sure you update your rules frequently for the most current coverage.

© 2015 Judy Novak

False Positive Solutions

- —
« Better vulnerability analysis

— Tighter rule definition reduces false positives
« Turn off noisy rules that are not particularly informative

- Just because someone took the time to write a Snort rule and ;
|
managed to get it into the distribution set does not mean you have g

to run it!

+ Use a SIEM to filter alerts

There are a couple ways to deal with rules that generate a lot of false positives. You have to get a better
understanding of the vulnerabilily and rewrite the rule accordingly.

Rules that are just plain noisy and not very informative, ICMP unreachable messages for example, can be turned
off altogether. Remember, just because it’s in a default Snort rules file docs not mean that you are required to
ron it.

Another solution, although potentially very expensive, is to acquire a Security Information and Event

Management (STEM) tool. These often have methods to filter alerts so that you can examine selected traffic,

say [or instance DMZ web servers, or high priority alerts easily. This permits you to scrutinize the most :
meaningful alerts to you or your organization, while filtering out others that may be false positives. This does {
not get rid of the accretion of false positive alerts, it just eliminates them frem your scope.

Sure false positives arc not as potentially harmlful as false negatives unless they overwhelm the analyst to the
point where she misses the true alerts. But, they are definitely annoying so the less, the better.

® 2015 Judy Novak g9

L=~
Slow Fast
Logging ASCII, full Binary, syslog
Preprocessors Unnecessary or improperly Protocols found in the
tuned network, tuned settings,
especially:
frag3: necessary?
stream5 : ports
http inspect: client/server
flow_depth, ports
Rules Unnecessary, inefficient or Pratocols found in the
improperly written network, optimized and
precisely written
Sniffing Slow NIC Faster hardware and PF_RING
for more efficient capture
General ; Slow hardware, insufficient More powerful hardware or
s memory, processing speed filter for high priority traffic

Intrusion Detection In-Depth

In our discussions, we've highlighted some of the reasons for false positives and negatives. Some of these same
items apply to performance improvement. We have recommended the use of default binary logging or efficient

syslog logging.

As you know you should use preprocessors that examine traffic found in your network and they should be tuned
properly. First disable or comment out frag3 if there is no fragmentation in your network to avoid searching
every packet for signs of fragmentation, o

One of the most important preprocessors to tune is the stream5 configuration for stream5_tep since most
network traffic is TCP. Stream5 assigns many ports for client and server TCP traffic that is to be reassembled.
This means that the streams are tracked and packet payload is combined, consuming resources. Look at these
settings and compare the port values with ports used on your network. You can run perfinon, discussed in the
Appendix, to generate statistics about ports in use. Remember, removing ports from the stream5 lists means that
the individual packets are still examined, but not reassembled.

Perfmon can assist you in tuning stream5 parameters memcap and max_tcp settings. These values may not
appear in the preprocessor settings in "snort.conf" if the defaults are used. Too many concurrent TCP sessions
defined in max_tcp, but not enough memory defined in memeap can cause performance issues.

There are some http_inspect_server settings for the http_inspect preprocessor parameters that should be
examined and tuned. HTTP accounts for a high percentage of traffic on most networks so any efficiency that
can be gained, should be addressed. There are parameters for client flow_depth and server_flow depth. The
default value for each is 0, meaning that the entire payload is examined. The default value used to be 300 bytes

100 © 2015 Judy Novak

since it was believed that most of the malicious activity would be discovered before that byte count in both
client and server HTTP payload. 1t is possible that this condition is no longer true as attackers develop new
methods such as embedded javascript that may be found deeper in the packet/strcam. 1t’s a hard call {0 make
whethier or not to alter these values, however if you have severe general performance degradation and a high
percentage of HTTP traffic, this might be worth attempting to tune.

Another parameter associated with the hitp_inspect_server that can be tuned is the list of ports used to transport
HTTP. Snort is able to perform protocol decode initially based on weil-known ports and not the payload itself.
Examine this long port list and tune it for your network by climinating those ports that den't apply and adding
any that do apply.

You know that you need to be careful with the rules that you include as well as exclude. We'll discuss how to
make rules more efficient on the next slide.

Being able to keep up with the throughput on the network is essential since that is where the entire process
starts. You'll need a NIC card that is ablc to sniff at the required speeds and you may consider installing
PF_RING for more efficient caplure.

Finally, hardware can be a limitation in general — from the bus speed, employing multi-bus architccture — i
separate ones for fransferring traffic from the interface code to memory and memory to disk, to the amount of
memory, processor speed and even writing to disk. Obviously, this is fixed with better hardware. And, if your
budget does not permit this, consider BPF use to focus on high priority traffic only.

@ 20115 Judy Novak 101

Write Rules That Benefit from
Rule Set Optimization

Grouping 1: Grouping 2: —
ot
contentA

TCP/25
/[to-server
isdataat contentB
to-client m

Long/FP
contentl

Long/FP
content?
[contentq || sid:100 |

No contént to-server sid:30,

to-client

i T T T ———

TCP/445 Long/FP

Inefficient

Long/FP

ontent

Intrusion Detection In-Depth

Before you can write efficient rules, you have to understand how Snort optimizes the rule set after Snort is started.
There can be many rules in a rule set and matching each packet against every rule would be extremely inefficient.
To optimize the process, the rules are grouped first by protocol and destination port. For instance, in our example,
all rules with TCP port 25 are grouped, then TCP 445, and then TCP with any destination port and so on for every
rule with a different protocol and port combination.

So this means as a packet arrives, Snort quickly determines which set of rules is applicable to the packet by protocol
and port as a first match. If there are rules with protocol/any", all packets/streams with that protocol must be
further examined by rules in the "any" path. This is extremely inefficient. If all rules have assigned destination port
values, any packet that does not match those values is not evaluated. So, it is dropped early from analysis. This is
why "any" destination port assignments are expensive.

Next, the rules are grouped according to a fast-pattern match designation or the longest content, The pattern
matcher is optimized to evaluate a packet that has fallen into the given a protocol/port path and quickly examine it
for any of the long or fast _pattern content found in this grouping of rules. If there a rule has no content match to
include pere rules with no anchor, and negative content, any packet with that protocol/port pairing must be
evaluated. Again, this is inefficient because this is another earlier analysis spot to eliminate packets quickly.

Finally, rules within the same protocol/port/long content are grouped by shared matching options, such as flow to
server or flow to client, etc. Eventually, Snort groups rules with all matching characteristics, Now, a packet that
has fallen into the port/protocol/content path can be compared to the rule option values or conditions that must exist.
Early mismatches (bail conditions) such as flow direction, or number of bytes present in payload, eliminate packets
more quickly. If the packet/stream has all the necessary attributes, Snort knows which rule(s) to apply to it.

So you see the importance of having a destination port, content, and early bail conditions, on a rule when possible.

102 © 2015 Judy Novak

Writing Good Rules

» Avoid the use of any for the destination port

« Use longest content match, or most unigue shorter content

match via fast_pattern
s Use "fast_pattern” keyword, if appropriate

+ Avoid rules with no content match, negative content match,

or pcre with no content match anchor

» Place "bail" conditions early in the rule

flow, flowhits, ilsdatast

cdon Tn-Depth

To sum up the previous slide. Whenever possible supply a destination port since this is the earliest efficiency
that can be realized. The "any" destination port requires every packet with a given protocol to be examined.

Whenever possible, take advantage of Snort's fast pattern matching algorithm by supplying the rule with the
longest possible content value that you expect to find. This doesn't necessarily need to apply to an
exploit/vulnerability or malicious part of the packet or stream; it just must be found in the packet or stream. The
fast pattern matcher sclects the first, Jongest, non-negative content from each rule. If a rule that you write has
more than one content, yet has some unique shorter content that is sought, use the fast_pattern keyword modifier
Lo inform the pattern matcher to use it instead. Use a content anchor with pere rules 1o get the benefits from the
pattern matcher. And, avoid complex pere expressions since they can be computationally expensive.

Snort processes rule options in the same order that you supply them. So, use stream state options such as flow,
flowbits, and isdataat immediately so that the rule engine can bail early and not waste CPU cycles on packets
that don't match. The flowbits option permits rules to track state where one rule defines a condition that must be
found before a second flowbits rule friggers predicated upon a given seiting in the associated flowbits rule. The
isdataat option examines if data exists at a particular byte placement, ofien used to discover buffer overflows.

You see how rules that have no destination port, or no content or negative content create a "bucket” of rules
causing all packets that have arrived at that bucket path to be analyzed. It's analogous to the programming
staternent like a "switch” or "case" that lists all possible values for a given variable and typically has a catch-all
defanlt statement in the event that none of the values matches. The packet may eventually end up in the catch-
all category requiring it to go through wasteful checks.

© 2015 Judy Novak 103

See Appendix of Snort Material for Updating material

Intrusion Detecton In-Depth

This page intentionally left blank.

104 © 2015 Judy Novak

Writing a Snort Rule for a CVS Exploit

e

Exercise: "Writing a Snort Rule for a CVS Exploit”
Introduction: - Page 25-D
Queétions: - Page 26-D

Answers: o Page 31-D

___Jourosion Detection In-Depth

This page intentionally left blank.

© 2015 Judy Novak

105

Snort Good Reading

e Snort User’'s Manual
USAGE File
Various README files

e Man page

Snort-users, snort-sigs, snort-devel, and Emerging-sigs
mailing lists

Intrusion Detection In-Depth

As we've mentioned, there is a variety of documentation that you should take a look at to familiarize yourself
with the system. A good comprehensive reference guide is the Snort User's Manual found at
http://manual.snort.org.

Look in the "snort/doc" directory; there are several files that are useful, including README.* files that describe
different protocols and preprocessors, a USAGE file for Snort and the Snort manual in PDF format, The
README .* files are written by the developers. This has the benefit of being a direct source for the information
as opposed to translated by someone into the manual. It has the disadvantage of sometimes being less coherent.

Additionally, for people who have questions and want the quickest and most accurate answer, sign up for the
Snort-users mailing list at https://www.snort.org/community.

There are a few other lists available, Snort Sigs (Snort rules), and Snort Developers (Snort development). Check
out the “mailing lists” page at https://www.snort.org/community for more information.

Also, look at Emerging Threats for additional mailing lists: http:/lists.emergingthreats.net/mailman/listinfo/.

106 ©® 2015 Judy Novak

o1y Detecttcm[ﬂ—DEpﬂ‘; .

Perhaps you've heard of Bro or perhaps not. Though it has been around since the mid 1990's, in the past it has
been deployed predominantly at academic institutions, As such it may have gotten an undeserved reputation.
When a very savvy friend was asked why not give Bro a test drive, she lamented that it would be too hard to learn
because it was from an academic environment. That's truc; it was and it 1s still developed with academic support.

Yet, anyone can use Bro. It used to be much more difficult to install, but that is no longer true today. And, n
fact, there is an open source distribution Security Onion that {s available with both Snort and Bro as well as many
other network traffic-centric tools. Much like any software, there are levels of expertise that allow you to
custornize it to use more complex features. As with Snort, you can install it and do basic configurations to
identify the protected network and use the default features. Afler a while, you may find that you want to alter the
way it performs, requiring a deeper understanding, The depth of the knowledge required is commensuratc with
the difficulty of the customization you want to support.

Bro is considered to be "extensible”, an industry buzz word that means that it can easily accommodate
custotnization and expansion. There are stub entry points in Bro called events where the user can place
customized code. In other words, the software anticipates (he desire for customization and makes provisions to
interface with the user's code. Qptional use of these features does require seme advanced knowledge, but many
novice users may not wish to employ these.

® 2015 Judy Novak 107

What Is Bro?

« Open source software originally written by Vern Paxson

» Intended to run on commodity hardware

* Bro cluster configuration supports growth in network coverage
* Network traffic analysis framework

* Generates log files of network activity

¢ Event-driven

» Default functionality to assist with analysis and detection

* Customizable for site-specific analysis using scripting language

= Supports rudimentary signature creation

Inttusion Detection In-Depth

Bro is open source software originally written by Vern Paxson at Lawrence Berkeley Labs. Today, Bro is supported
by several different developers at the International Computer Science Institute in Berkeley and the National Center
for Supercomputing Applications in Urbana-Champaign, Illinois. Bro even has a commercial incarnation known as
Broala. Bro is deployed in just about every industry, but seems to have the most ardent following at academic sites.

Bro has been associated with academia since its inception and as such supports the concept of open source free
software on affordable commodity hardware. Bro can be configured to run on a single host for smaller networks or
in a cluster for larger networks. The cluster configuration facilitates expanding network coverage — perhaps when
network traffic or speed increases — with the addition of more hosts that sniff traffic. This doesn't require an
upgrade or port to more powerful hardware, it simply relies on adding more Bro "workers" to the existing Bro
infrastructure.

Bro is fundamentally different than a signature-based IDS/IPS. It provides traffic analysis on every connection and
records notable details of each in various tab separated logs for post processing. Other IDS/IPS solutions focus and
report on detection of anomalous or malicious traffic. Bro is capable of doing this, but this is not its exclusive
purpose. It also logs what it defines as events and records summarized data about each connection. Events can be
normal or anomalous network events, perhaps something as simple as a new network connection. These events are
pre-defined in the software and can be customized by the user to do some post-event processing that includes
creating some kind of notification or action of noteworthy activity. On Day 5 you’ll learn about the concept of alert
versus data-driven sensors. Bro falls in the category of data-driven since it collects the data, but it is up to the
analyst/software to determine its significance.

Bro has its own complex and full-featured scripting language that permits site customization for Jjust about any
detection and analysis. This, of course, requires someone to be proficient in using the language. The scripting
language is extremely powerful and has functionality equivalent to many other high level languages like Python, for
instance. However, the Bro scripting language's purpose is to facilitate parsing and analysis of network traffic.
Other languages like C or Python support analysis of network traffic by importing libraries for this purpose. Bro,
first and foremost analyzes traffic and has support for other processing secondarily. Bro does support rudimentary
signature creation, yet relies more on its scripting language for more advanced analysis.

108 © 2015 Judy Novak

Bro Architecture

A Action performed/Output written

Polic_y _Spript Interpreter: : @ -
i A e ...E‘.}ent —
Event Enéi.né: B .
4% Fittered paclets

" libpcap/PF Ring . -

A Packets |

Network

ection In-Depth

Bro's architecture relies on libpeap al its base to sniff and filter packets much like Snort. PF_RING can be
wrapped around libpeap when there are multiple Bro sniffing processes on a single host, permitting the traffic to
be directed to individual cores on multi-core architecture hosts. Think of it as host load balancing.

The event engine takes the traffic reassembled as streams and generates network events for several hundred
milestone or noteworthy states. These are normal states such as a TCP connection established, or an obscrved
HTTP request. These pertain to different network layers, application protocols, along with various stages and
associated data of processing those protocals.

The event engine first examines traffic using a protoco! analyzer that is associated with a well-known port.
However, it also has a process known as Dynamic Protocol Detection (DPD) that interprets the traffic not based
on the port, but on the content of the payload. If someone were to try to tunnel ITTP traffic over an unusual
port, Bro would still be able (o interpret it as HTTP using the DPD,

The policy script interpreter uses Bro's scripting language to interpret Bro's defined events. The events provide
entry for user-written scripts to add logic to the event, deseribe the event, and possibly create actions such as
generating notices, sending e-mail, or recording the event in text files. For instance, say you would like to be
notified of a known attacker IP address connecting to your web server. There is a Bro event for cach
conmection. This is the evenl you would use to inveke your customized script — check the connection for both
the IP addresses of the attacker and the web server, as well as the TCP destination pert of 80 or 443,

You can "raise a notice” to cause a message of your choice to be wrillen to a file called "notice.log".
Alternatively, you could "raise a noticc” with an action of e-mailing a chosen recipient(s). 'The term "raise a
notice" means creating some kind of notice for the event to signal that the analyst should examine the activity.
Tt is similar to a Snort alert,

© 2015 Judy Novak 108

Planning

Intrusion Detection In-Depth

This page intentionally left blank.

110 © 2015 Judy Novak

Bro Processes/Nodes

Proxy Manager

Worker Worker Worker Worker

Bro Cluster

Inttusion Detection In-Depth

Bro has three different functional nodes — the worker, the manager, and the proxy. Together these three nodes
form what is known as a Bro cluster. Bro even has its own communications protocol to transmit Bro traffic
between nodes.

The worker, as the name suggests, is the workhorse that sniffs the traffic, reassembles it into streams, and
performs protocol analysis on the streams. The worker is commonly known as a sensor for most other IDS/IPS
solutions. The deployment form that the worker takes can be varied. A given worker can be an individual
separate host, or a process on the same host as other workers sharing one or more cores on that host. A worker
can share the same host as the other two nodes — the manager and the proxy. This is a standalone
implementation. The number and placement of the workers depends on the traffic volume and the type of
hardware available for traffic collection. Since the worker sniffs and processes traffic, it needs to be deployed
with fast and abundant memory, and CPU speed that is more likely found on several multi-core hosts.

The manager is the central log and notice collector, creating a single log for all the traffic collected by the
workers. These log messages can be processed into actions such as e-mail. Communications between the
manager and workers are initiated by the workers.

The proxy is responsible for making it appear as if all the workers are operating in a single unified environment
instead of as different hosts or different processes on different cores on the same host. It synchronizes the state
of Bro by sharing information about active hosts and services on the network as well. There may be multiple
proxies in a Bro implementation if one is insufficient. The proxy and manager may be run on the same physical
host if the number of implemented workers and associated activity are manageable.

A logical distinction is made between standalone mode where all nodes are on the same host or cluster mode
where at least one node is a remote host. However, standalone mode is actually a cluster just on the same host,

© 2015 Judy Novak 111

Bro Cluster on One Physical Host:
Standalone Mode

Proxy Manager

Worker Worker Worker Worker

Intrusion Detecton In-Depth

Bro is very flexible in its configuration options, facilitating capacity planning and scaling. The simplest, though
least flexible option, is to put a Bro cluster on one physical host more commonly known as a standalone
implementation. There is a single proxy, a single manager, and one or more workers that are manifested as
distinct processes on the host.

The workers process the traffic collected from one or more network interfaces. The use of the open source
software PF_RING on the host balances the sniffed traffic so that it is split among the workers. Traffic that
belongs to the same stream is sent to the same worker. In other words, a TCP session is not split among
workers. And, Bro for the most part is stream oriented, not packet oriented like Snort. One exception to this is
the per packet processing performed when signatures are used.

Standalone mode makes managing the Bro cluster easier and probably cheaper than having multiple physical
hosts, although a problem arises when the traffic and processing exceed the capacity of the host. One solution in
this case is to buy a more powerful host and reinstall and customize Bro on it. Another solution is to filter the
traffic captured and analyzed using BPF so that only high value traffic is processed. A final solution is to create
a distributed cluster with one or more nodes on different hosts as you'll see on the next slide,

112 © 2015 Judy Novak

_ ple —
Cluster on Multiple Hosts

Proxy Manager

One physical host or
twi separate hosts

4 “I
g rore, 16 care, B cora,

’ u B enrs, h
Lé workers o 8 workers ,,'/ 4 workers \‘.‘\ 4 workers \~‘
Host1 [w] [w]tost2 [wiwlwlw] Hests —[] [Host®™ [
]

£ 16 core,

mm 8 warkerg Wi w| W‘ w m_m

s | g1

g D o o
- Network Front End Hardware. -
fion In=Deptit

Bro is able to easily manage growth when it is run in a dynamic enterprise environment. The standalone Bro
implementation requires new hardware and reinstallation and customization of Bro when capacity is exceeded.
Rurmning workers on different hosts permits the addition of more hardware and a simple reconfiguration on the
manager to identify the new worker(s} that were added to accommadate the increase in traffic volume or speed.

The slide shows a Bro cluster consisting of the prexy and manager residing on one physical host and four other
physical hosts running worker nodes. Each physical host may be multi-core, able to run multiple worker nodes.
The number of worker nodes per host is limited by the number of cores on the host. A rule of thumb, although
very dependent on the nature of the traffic examined, is that the number of worker nodes should be between one
half to three fourths the number of cores. For instance, Host T has 8 corc processors and 4 workers. Hosts 3 and
4 are identical and Host 2 has 16 core processors and is running 8 workers. You see that the number of workers
never exceeds 50% of the number of cores.

This configuration necessilates the inclusion of some kind of front end hardware that acts as a load balancer to
split the network traffic among the physical hosts. The hosts stilt eroploy PF_RING to act as a single host based
balancer to distribute traffic among the workers residing on the host.

When you plan your Bro installation requiremcnts, it is best to overallocate the number of physical hosts, host
memory, and processor speed for the workers. It is very difficult to make recommendations of the precise
number or amount of resources you will need because that is dependent on many different factors including the
traffic protocols that require analysis, the speed of the link, the configuration of the individual packets — smaller
packets are mmore plentiful and require more resources for reassembly, and where the workers are placed in the
network. Some approximate metrics are given on the following slide.

@ 2015 Judy Novak 113

Rough Metrics

e Metrics per core
- Each core can support ~.5 - .75 workers per
¢ For instance - 12 cores should have maximum 6-8 workers

= Each Bro node (manager, proxy, worker) starts a child process, too

many processes overwhelm the processor
— Each core can sniff ~ 80 megabits per second

— Each core requires ~ 2-4 gigabytes of memory

Intrusion Detectdon In-Depth

Seth Hall, one of Bro's primary developers, is reluctant to give metrics — understandably since some users take
the figures as the absolute unwavering truth. As you will learn on Day 5, a sensor’s capability to handle packets
is based on far more than the product deployed. Other factors include the hardware platform, the NIC card, as
well as the mixture of traffic flow, to name a few. Maximum throughput rates tend to be greater for simple
shorter packets such as DNS versus HTTP packets. If the mixture of traffic is high on DNS and low on HTTP,
you may get very different numbers than a site that has the reverse situation.

The measurements cited are per CPU core for Bro 2.3.x code — subject to change with new Bro releases. Each
core can support about .5 - .75 workers. This means that if you have 12 cores, you can support approximately 6-
8 workers. Each Bro node forks off a child process that consumes and potentially overwhelms resources if there
are not enough cores per node. The child process is responsible for the communications between nodes. This
has the role on the worker node of separating the communication processes from sniffing the traffic, which
should be the worker's main job.

Each core requires roughly 2-4 gigabytes of memory. Each core can sniff approximately 200 megabits per
second. Seth also recommends a minimum of 8 cores to get the benefits of a cluster that has more than a
handful of workers.

114 © 2015 Judy Novak

Installation/Configuration

See Appendix of Bro Material for
Installation/Configuration material

. Intrusion Détecrion In-Depth -

This page intentionally left blank.

© 2015 Judy Novak 115

Running

Intrusion Detecton In-Depth

This page intentionally left blank.

116 © 2015 Judy Novak

Broctl

« BroControl shell to start, stop, update, check on status,
output of configuration of running Bro

Can be run in interactive mode

Can be run on command line

s Broctl reads PREFIX/etc/node.cfg file to run in assigned
mode:

- Standalone: manager, proxy, and worker{s) all on one host

— Cluster: manager or proxy or worker(s) on different host(s)

- Tarrision Detectio

We've mentioned BroControl, invoked via the "broetl “command, that is used to start, stop, install, update, check
on the status, run the affiliated cromn, and more. It is possible to run "broctl" in an interactive mode or on the

command line,

BroCentrol is run in a shell type of envirenment when used interactively. Commands are entered by the user
such as "status” command below. This shows a cluster configuration.

broct!

[BroConirol] = status

Nane Type
manager manager
proxy-1 proxy
worker-1 worker

Host Status Pid Peers

Started

192.168.43,1 rumning 20832 1 30 Aug 05:23:00
192.168.43.1 running 20868 1 30 Aug05:23:02
192.168.43.19 running 23893 2 30 Aug 05:43:03

BroControl can be run from the command line and supplied an argument, such as the status command:

"broct] status”

This mode is more likely if you have some kind of antomated invocation of the process ltike we saw with the

cron entry.

© 2015 Judy Novak

117

Bro node.cfg Configuration for
Standalone Mod

[bro]
type=standalone

host=localhost
interface=ethl

Intrusion Detecton In-Depth

The above default configuration, found in "PREFIX/etc/node.cfg" causes Bro to run in standalone mode. You
need only assign the proper interface name used for sniffing on the Bro host,

118 © 2015 Judy Novak

Starting Bro in Standalone Mode

bro@hostname: sudo broctt

Welcome to BroControl 1.1

Type "help" for help.

BroControl] » install

removing ofd policies in fusrflocalfbrolspooiﬁnstaIled scripte-do-not-touch/site ... done.
removing old policies in fusrflocal/brofspool/installed-scripts-do-not- touch!auto ~done
creating policy directories ... done.

installing site policies ... done.

generating standalone-layout.bro .., done.

generating local-networks.bro ... done.

generating broctl-config.bro ... done.

updating nodes ... done.

[BroCantral} > stark

starting bro ...

{BroConitrol] > status

Mame Type Host Status = Pid Peers Started

hro standalone Iocathost running 23335 0 30 Aug 05:40:43

Inttllsi()f} 3dectlon In-l)ep{h _ .

Let's fire up Bro in standalone mode. The "broct]” command must be run with elevated privileges so we use

sudo to invoke the command as root. You will see a welcome message and the guidance for help. The “mstall
BroConirol command must be run to load Bro's policies either when first starting it up or any time a change is

made to some configuration, script, or signature.

Once this is successful, you need to "start” Bro; a "status™ command logically cnough displays the status. We

see Bro is running in standalone mode and has no peers (remote nodes).

@ 2015 Judy Novak

119

Bro node.cfg Configuration for
Cluster Mode

e]
PREFIX/etc/node.cfg
Example clustered configuration. If you use this, remove the [bro] node above.
[manager]

type=manager
host=182.168.43.1
#

[proxy-1]
type=proxy
host=192.168.43.1
#

[worker-1]
type=worker
host=192.168.43.131
interface=ethl

Intrusion Detecton In-Depth

Alternatively, Bro can be run in cluster mode. When configured so in the "PREFIX/etc/node.cfg" file, the
default configuration statements to run in standalone mode must be commented out:

#[bro]
#type=standalone
#host=localhost
finterface=eth0

Next, you must uncomment out the statements to define the manager, at least one proxy, and at least one worker.
You can supply any name for any of these nodes in the [node] name — such as [myworkerbee] as long as you
assign the proper type (manager, proxy, or worker) for the node. The manager and the proxy do not have
sniffing interfaces, only the worker(s) does and must have the interface defined. The proxy, like the worker(s)
can reside on a remote host too, although in the example the manager and proxy reside on the host with IP
address 192.168.43.1 while the worker resides on the host with IP address 192.168.43.131,

120 © 2015 Judy Novak

Starting Bro in Cluster Mode

(BroControl] > install

generating cluster-layout.bro ... done.

generating local-networks.bro ... done.

generating broctl-config.bro ... done.

updating nodes ... dane.

[BroControl] > start

starting manager

starting proxy-1

starting worker-1 ...

[BroCentral] > status) o
Name Type "Host ° Status Pid Peers Started

manager manager 192.168.43.1 running 20832 1 30 Aug 05:23:00
proxy-1 proxy - 192.168.43.1 running 20868 1 30 Aug 05:23:02

worker-1 worker 192.168.43.131 running 23893 2 30 Aug 05:43:03
Intrusion Detection In-Depth

Starting Bro in cluster mode is different because we invoke "broct]” as user "bro". Remember that

communication is required among all nodes via SSH. We've configured a "hro™ user to communicate over SSH

using SSH keys, requiring no password or passphrase entry.

Like standalone mods, use the "install" and "start" BroControl commands. The "install" conunand not only
loads all the scripts and cenfiguration files for the manager, it also copies over the requisite Bro software and

support files to the remote nodes(s). This time you see all the different cluster nodes starting. The BroControl
"status" command shows the status of each of the nodes. The "peers" designation defines the number of remote

peers — for both the manager and proxy-1 on the same host, this represents the one worker peer. The worker
node has two peers since both the manager and proxy, though residing on the same host, are considered two

individual nodcs.

© 2015 Judy Novak

121

Bro Output

e Several logs are generated by Bro as default output

e Tab delimited columns of values that can be fed into Bro
"cutting" or post-processing of your choice

» Each log reflects different activity depending on the traffic
observed and frameworks employed

» Correlation of traffic from same session/stream is possible
with the shared UID field

e Default location PREFIX/logs

Intrusion Detection In-Depth

Logs are the default output for Bro reporting. Values are tab delimited into associated field columns. The logs
generated depend upon the activity that is observed as well as customization that you might use such as the Notice
framework or signatures, for instance that we will examine in the next section, Any output from a particular
connection is assigned a common Unique ID (UID) that is logged in every file where this connection activity
appears. This makes it easier to correlate activity for a given connection by searching for that UID in all of the logs.

Bro places all of its log files/directories in "PREFIX/logs". There is a directory named yyyy-mm-dd (with the
appropriate year, month and day values) that houses all the log files per day. By default, Bro rotates logs on a daily
basis, although this value is configurable in "PREFIX/ete/broctl.cfg". The current day's activity is found in
"PREFIX/logs/current" although it is really stored in "PREFIX/spool/bro" in standalone mode. There is a symbolic
link from "PREFIX/logs/current" that points to "PREFIX/spool/bro".

Bro generates new log files every hour, assigning each a file name that reflects the type of log followed by a time
range indicating when log recording began and stopped. Normally, this is the beginning and end of the hour.
Though, if you happen to stop and then restart Bro, two different sets of logs are created. The first one reflects the
set of current logs that are saved with a timestamp range of when Bro was started, usually the beginning of the hour,
and an end time stamp of when Bro was stopped. A new set of logs is created with a name that will later contain a
time range of the Bro restart time and the time reflecting when the the hour was up or when Bro was stopped before
the hour was up. Bro compresses each of these hourly files at the end of the day.

122 © 2015 Judy Novak

Sample of the
Types of Logs Generated
T N

Log Name = . . i Purpose
connldog . Initial IP/protocot connections
cann-summary.log Statistics/summarizes activity
known_hosts.log. . @ . New hosts seen in past hour
known_services.log New services seen In past hour
dpdlog - Dynamic protocol detection
weird.log . Anomalous activity
loaded_scriptédog ¢ - ‘| Scripts foaded Upon start/restart ©
reporterlog Severity of issues with Bro
software Iog R ' :Detenmnes versmn numbers of already"__

SRR - | detected protocols ' -
Various protocois {hitp, dns, ssl, smtp,etc.} | Logs with relevant activity pertalmng to

a given protocol

ntrusion Detection In-Depth

Logs are numerous; and you should become familiar with the type of content some have along with the potential
for use in host or network forensics. We'll discuss many of these in more detail in upcoming slides. The
“PREFIX” reference in a file name refers to the install directory.

The "conn.log" creates an cntry for the initial connection of TCP and UDP traffic and summarizes some
characteristics such as the number of packets and byies generated by either side of the connection,

The "conn-summary.log" provides a very useful summary of connection activity for the duration of time that
the log spans, usually an hour.

The "known_hosts.leg" records every complete TCP handshake, and keeps track of [P addresses in use on a
network each day.

The "known_services.log" records an IP and port which responded to a SYN, and protocols detected in the
session are also logged per day.

The "dpd.Jug" records protocols discovered on nen-standard perts by using Bro's Dynamic Protocol
Detecter{D}PD) that works by using "heuristic methods". See "PREFIX/share/bro/hase/frameworks/dpd/dpd.sig"
for all the protocols available for detection,

The "weird.Jog" is a catch-all log for anomalous behavior. This might be something like an evasion attempt of
Bro, malformed connections or traffic that is not protocol compliant.

The "loaded_scripts.log” lists the Bro scripts that were loaded upon start/restart from the supported
subditectories of "PREFIX/share/bro" — "base”, "policy™, and "site".

The "softwareJog" attempts to determine software versions of already identified protocols.

The "reporter.log" reports on Bro status errors. There are several ratings "informational” that as the name
implies is for information, "message” that signals a potential problem, "warning” that indicates a non-fatal, but
definite problem where Bro doesn't terminate, and "error” that is a fatal error that terminates Bro.

There are various protocol-specific logs for protocols that Bro detects, such as "http.log”, "dns.log", ete.

® 2015 Judy Navak 123

Customization

Intrusion Detecnon In-Depth

This page intentionally left blank.

124

© 2015 Judy Novak

e i e s e o Pt et = s e |

Customizing Bro: Policy Neutral to
Site Specific

« One of the ultimate goals when developing Bro was to make
it policy neutral
o Several means of allowing customization to site-specific
policy:
- Scripts: post-event processing allows you to develop code in Bro's
robust scripting language

~ Signatures: allows you to create rudimentary rules to find
noteworthy activity

— Notice capability: post-event processing allows you to associate a
notion of importance to events and perform some kind of action

Inttusion Detection In-Depth

A primary philosophy that the developers of Bro felt was fundamental is what they deem site neutral policy.
This permits a site to customize evaluation of any given event to determine its significance and what action to
take as a result of that evaluation. Snort, on the other hand, has a one-size-Tits-all philosophy of ascribing a
priority to each rule/alert, thereby assigning a universal value reflecting the potential harm of the detected

activity. This notion of priority may be very different depending on acceptable activity per site.

There are three basic ways to customize Bro's detection and post-detection activity. The first way is by using
the Bro scripting language. One description of this language by one of Bro's developers, Robin Sommer, in his
presentation "The Open Source Bro IDS Overview and Recent Developments" found at
http://www.icir.org/robin/slides/Bro-CACR-Indianapolis.pdf is "A Python for network traffic analysis". It
permits the user to develop basic or very advanced post-processing after one of Bro's events is triggered. The
Bro scripting language was developed expressly for the purpose of analyzing network traffic as opposed to some
more general language like Python that needs to retrofit libraries or routines to facilitate network traffic analysis.
This language enables a given site to create code for what is considered noteworthy traffic on that particular
network. This is the primary method Bro uses to expose the detection process to the user.

The second way to customize policy and detection is via signatures. Bro signatures are very basic methods of
identifying and recording or reporting on some pertinent characteristics about the traffic, mostly based on
content, and modifiable by such characteristics as traffic IP addresses and ports. You can specify the location of
the content — say in the entire payload — or some more protocol-specific location like the HTTP header. Regular
expressions are supported to describe the content that is sought.

The final way to customize Bro for your site is the Notice Framework to "raise a notice", somewhat like a Snort
alert. As you know, the policy neutral philosophy of Bro means that Bro does not assign a judgment of good or
bad to events or activity detected. Essentially, it detaches the discovery of activity with an assignment of
importance. Therefore, each site can assign what it considers to be a judgment of the nature of the activity.

© 2015 Judy Novak 125

For instance, suppose that some outbound IRC traffic is discovered on a particular network. If thisis a
university environment, chances are that this is perfectly acceptable and considered unimportant. Yet, if that
same activity is observed on some kind of government network, it may be considered a policy violation that
requires immediate action. The follow-up post-detection activity can be customized by each site.

There is extensive and sophisticated support for the policy neutral philosophy. In fact, at times it may appear to
be overkill for your needs and may require you to understand more than you care to know. The Notice
Framework plays a big part in implementing this philosophy as you will see in some upcoming slides. Just
understand that while you may think it is esoteric and unnecessarily complex, the ultimate reason is to make Bro
more customizable for every site that deploys it. It is not necessary to use all facets of the Notice Framework, if
you use it at all.

Bro was largely developed at academic institutes where the assumption is that most future Bro users are fairly
savvy about coding. Therefore, some of the concepts, constructs, and implementations may seem arcane. But,
if you can push through the initial learning curve fog, Bro has amazing potential. Also, it is always possible to
use default configurations or make some basic changes without ever having to know about scripting, signatures,
or notices.

126 © 2015 Judy Novak

How Would We Find cmd.exe Traffic?

+ Using Bro's scripting would be complex and require
a lot of skill
— No supplied event to trigger script
— No script
» Using Bro's signatures would be much easier,
relying on:
—~ Assignment of appropriate IP addresses
~ Assignment of ports and TCP protocol
— Use of a regular expression to find the malicious payload

- Tntrusion Detection In-Depth

Imagine that you wanted Bro to find the cmd.exe traffic that we examined in the section on Snort. There are
really two options available to us; the first is to use Bro's scripting language; the sccond is 10 use Bro's signature
framework. A script would allow the scrutiny of the text to be as precise as you want given all the features of
the langnage. There must be both an event trigger to causc the script {o fire and an existing script that performs
the search that we want, making it a simple and manageable process for a Bro novice. Unfortunately, none
exists so we need to rely on Bro's signature capabilities.

We cannot be as precise as we'd like with a signature, yet we can define appropriate [P addresses, ports,
protocols (TCP, UDP, ICMP, [Pv6, and ICMPv6), and payload to find. Our best bet is to use Bro's support of
regular expressions to find the content in the payload. We'll examine how to build a signature in the upcoming
slides.

@ 2015 Judy Novak 127

Customization Option:

Bro Signatures

e Simple rules to define:
— Conditions to match
— Action to perform upon match
e Different types of conditions:
— Header: Examine specific header fields/values
— Content: Look for particular payload
e Two different types of action:

- Events
 Trigger a Bro script
- Enable protocol analyzer

e Learn more:
http://www.bro.org/sphinx-git/frameworks/signatures.html

Intrusion Detection In-Depth

As you know, Bro supports the notion of signatures. Snort signatures provide much more functionality than Bro
signatures because Snort signatures are considered to be the primary way that noteworthy activity may be found.
Since Bro has a scripting language that is capable of performing many of the more advanced features of Snort
signatures, its signature support is lightweight in comparison. So do not expect the same level of functionality in
Bro signatures.

Bro signatures define conditions to match in network traffic and the action to be performed upon match. Bro
defines several types of conditions that can be used in signatures; we'll look at the two most commonly used. The
first is known as a "header" condition that is capable of examining source and destination IP addresses, a list of
IPs, either designated as a single IP address or in CIDR format. As well, it can match on source and destination
ports or a port list. And finally, it can match on three protocols TCP, UDP, and ICMP.

A second type is a "content" signature that can include any of the fields available in the header signature, in
addition, match on content. The content can be anywhere in the payload or in some defined fields as we will see.

There are two possible actions upon signature match. The first is to raise a signature event in the
"signatures.logs" and "notice.log" file containing pertinent data about the packet/stream that caused the si gnature
to match. You will see that we can actually trigger a Bro script to be invoked from a signature.

Another action, the "enable" action tells Bro to use a specific dynamic protocol detector. Typically, traffic is
analyzed as the protocol associated with a well-known port. Port 80 is analyzed by Bro's HTTP protocol detector,
as port 25 is analyzed using Bro's SMTP protocol detector. Bro has the capability to identify that the traffic is not
protocol compliant. The appropriate protocol analyzer is applied if Bro can match the analyzed protocol in use
with one it is able to understand. Say for instance that someone was using DNS TCP port 53 as an HTTP tunnel.
It is possible for Bro to understand that the traffic is HTTP and parse it accordingly. An "enable" action identifies
the protocol parser for Bro to use, otherwise Bro attempts to figure it out, but may not do so correctly.

128 © 2015 Judy Novak

In our example we thought someone was running intermittent HTTP traffic on 2 port not normally associated
with HTTP - DNS TCP port 533. You could creae a signature that examined traffic on TCP port 53 and had
content pormally associated with HTTP — say "GET" or "Uscr-Agent:" Lo confirm your suspicions by enabling
your signature with an action of "enable http".

A more comprehensive description of signatures can be found in the Bro signature documentation found at:

htep:/iveww bro.org/sphinx-git/frameworks/signatures.html.

© 2015 Judy Novak 129

T e ——

Header Signature

<header field><comparison operation><value list>

* Header field
Source/destination IP address (single, list, CIDR notation)
Source/destination port (single, list)
1P protocol: TCP, UDP, ICMP
Supports the use of BPF-like designation for these fields
header <proto>[<offset>:<size>] [& <integer>]
e Comparison operator
e o g e b e

¢ Value list

- Single or multiple values

|

Intrusion Detection In-Depth

We'll examine two different types of Bro signatures "header" and "content". When using the header type of
signature, you can match three header fields: IP addresses, ports, and three IP protocols limited to TCP, UDP,
and ICMP. Source and destination IP addresses can be expressed as a single IP address, a list of IP addresses, or
in CIDR notation. Source and destination ports allow a designation of a single port or list of ports. Finally you
can examine traffic for any of the three IP protocols available.

Bro supports the use of BPF-like syntax to select a subset of bytes in the header fields by identifying the offset
into the appropriate protocol and the number of bytes to examine — like tepdump — either 1, 2, or 4. As well, you
can perform bit masking if you need to.

The comparison fields are relatively straightforward — equal, not equal, less than, less than or equal, greater
than, or greater than or equal.

And finally a comparison value must be supplied — either a single or multiple values.

130 © 2015 Judy Novak

Simple Header Signature

" signature proto-part{
ip-proto == {cp
sre-port == 30333
event "Protocol/Port Test"
b

inovak@judy: ~fbro-tun/protoport$ bro -r cmdexe.peap -s proto-port.sig

Qutput placed in signatures.log

- probo-port.sig
cmdaxe.pcap

Intrusion Detection In-Depth -

This is a simple header signature assigned a name "proto-port™ in the signature definition. 1t simply looks for the
IP protocol of TCP and a source port of 30333 as we saw in our cmd.exe traffic, The signature [ormat is shown
above where the word "signature” identifies this as a signature, followed by the signature name in this example
"oroto-port”. Then the actual signature is placed in between left and right braces. The "event” parameter of a
signature defines the message associated with the signature, much like the Snort "msg”.

Whenever you execute Bro in readback or command line mode — as opposed fo live mode — be aware that Bro
creates log files from the oulput that are placed in your current working directory. It is best to create a new
dircetory or use an existing one to contain the log files to isolate them from files used for other purposes.

We can perform a simple run to test the signature by invoking Bro to read cmdexe.peap using the “-r” parameter
followed by the peap name, with the "-s" command line switch specifying the file name containing the signature —
in this case 2 file we named "proto-port.sig”.

Once again many logs are created, but for our purposes, we want to look at the "signatures.Jog" that is created when
a signature is riggered, The following slide has the centents of that file.

© 2015 Judy Novak 131

e —

Contents of signatures.log

#fields ts uid src_addr src_port dst_addr
#types time string addr port addr
1410983624.505015 CgbFvZ0i2aG63NSo7 192.168.11.24 30333 184.168.221.63

#fields dst_port note sig_id
#types port enum string
48938 Signatures::Sensitive_Signature ~ proto-port

#fields event_msg sub_msg sig_count host_count
#types string string count count
192.168.11.24: Protocol/Port Test (empty) - -

Intrusion Detecton In-Depth

The signatures logs is displayed in an altered format for easier reading. There is too much output to fit on a
single line, consequently there is a lot of confusing wrapping. Normal output has the field names, associated
variable types, and values on consecutive single wrapped lines, For coherence, related fields, types, and values
are shown together.

Much like the other log files the "signatures.log" file has a timestamp for the activity, source and destination
addresses and ports. The field "sig_id" is the name of the matching signature, the "event_msg" is a descriptive
message of the signature matching event, and finally the "sub_msg" is defined as "extracted payload data or
extra message" — there was no such message for our signature as you see it says (empty).

It is interesting that the "signatures.log" and the signature parameter names themselves have different field
names for the same fields found in many of the other logs. For instance "src_addr" represents the source IP
address in the "signatures.log", but is known as "id_orig.h" in the others. One of the reasons that this particular
field is mentioned, as previously stated, Bro documentation makes a point of calling the source of the traffic the
"originator" and the destination the "recipient”, perhaps for clarity to the developers. Yet, here is the
"signatures.log" that uses the more common identification of source and destination,

132 ©® 2015 Judy Novak

Header Signature With CIDR IP List
and Lis

- signature source-ip{

" ip-proto == fcp
sre-ip == 192,168.0.0/16, 10.0.0.0/8
sic-port=30333 '
event "Source IP Test"

}

j_noifak@judy:~fbm-runfsour_ce_~ip$_bro - cmdexe.peap -§ source-ip.sig -

-.jr.l.ovak@judy:~!br0-run{sourcé-ip$ cat signatures.log | bro-cut -4 src_addr src_port
- dst_addr dst_port evenf_msg - . : : L

{92.168.1123 30333 192.168.11.24 48938 192.168.11.24: Source IP Test -

source-ip.sig

Ln.'trusi_cg_n_ Dgt_e_tﬁon Iﬁﬂ)e}_ﬁt’h ' emdore peap

This signature is somewhat more sophisticated using a list (more than one value) of possible destination [P
addresses denoted in CIDR format. The source 1P address can be anything with a 192.168.x.x or 10.x.x.x value,
You can also specify port lists in much the same way using comimas as delimiters. Ifall of the signature
conditions are met, an event message "Scurce 1P Test" should be found in the "signatures.log” file.

We haven't used the "bro-cut” command before. It is a way to extract values from a log without listing all the
headers that include field names and types. You can dump all the fields by doing a Unix "cat" and piping the
output to "bro-cut”. The -d option formats the output in a humanly readable form. You can alsc output specific
fields only by supplying the names to the "bro-cut” command. This means you have to know the field namcs;
they can be found at the top of the "signatures.Jog" file as we saw on the previous slide.

We run Bro reading the "emdexe.peap”, using the —s switch to inform Bro that the signature file name "source-
ip.sig" contains a signature. The resulting "signatures.log" file is similar Lo the one we just inspected except the
event message contains this signature's event "Source IP Test”,

@ 2015 Judy Novak 133

Header and Content Signature
Seeking Simple Payload Match

ip-proto == tcp

src-ip = 192.168.0.0/16

src-port == 30333

payload /Microsoft Windows/

event "Microsoft Windows found in payload”

;

jnovak@judy:~/bro-run/simple-content$ bro -r cmdexe.pcap -s simple-content.sig

sig_id event_msg
simple-content 192,168.11.24: Microsoft Windows found in payload

simple-content.sig
cmdexe.pcap

Intrusion Detection In-Depth

Like Snort, Bro has the capability to look for some content in the payload by using a "content" signature. You
can supply the name of supported different parts of the payload that can restrict the search fields. There isa
generic "payload" designator that examines up to 1K bytes of payload, the limit imposed by Bro for
performance efficiency. This can be altered if so desired using the dpd_buffer size value to redefine it as we
will later see.

There are other protocol-specific fields to search such as the "http-request-header". It searches for the content in
the HTTP request header only. There is also "http" to search the entire HTTP payload, "http-request-body" for
searches in the HTTP request body portion, "http-reply-header" for the reply HTTP header, and "http-reply-
body" for the body of the HTTP reply. Finally, you can use "ftp", and "finger"; "finger" is a legacy protocol that
is not commonly used today, probably a vestige from Bro's early days.

This signature file "simple-content.sig" simply looks for the existence of "Microsoft Windows" in the payload.
The content is contained within the two forward slashes much like the syntax for regular expressions. The
content can be expressed as a regular expression as we’ll see.

134 © 2015 Judy Novak

Microsoft Windows [Ver5|on 6.1, ?601]
Copyright (<) 2009 Microsoft Corporation. A[rlghts reserved.

How toExpress Slgnature Payload
Using a Regular Expre55|on

Original text

distance:0; content; "Microsoft Corporation™; distance:0

content :"Microsoft Windows”; depth:18; content:"Copyright |28|c|28] 2009";

Snort rule

Wildeard

followed hy "Microsoft

Beginning of Hne
Windows"

]

Like Snort, Bro supports the use of regular expressions when searching payload content. Let's make our
signature more accurate by trying to duplicate, somewhat, the Snort rule criteria using a regular expression.

At the top you see the actual text of displayced terminal output when you stari cind.exe. The Snort rule is more

Wildeard

Microsoft Windows * Copyright (c) 2009 * Microsoft Corporatlon

Followed by
"Copyright [c}

Intrusion Detécti

Z2008" :

Followed by

"Microsoft
Corporation”

cion In-Depth

precise than we'll make the Bro signature using simpler terms in our regular expression. We want ta search for

"Microsoft Windows" found at the beginning of the payload, fellowed by an unspecified number of
bytes/content before searching for "Copyright (c) 2009", followed by an unspecificd number of byles/content

before searching for "Microsoft Corporation”.

© 2015 Judy Novak

135

Signature with Regular Expression
Payload Match

signature cmd-exe {
ip-proto == tcp
src-ip = 192.168.0.0/16
src-port == 30333
payload /*Microsoft Windows.*Copyright \(c\) 2009.*Microsoft Corporation/
event "Windows 7 cmd.exe remote execution”

— —
Wildcard Wildcard

Microsoft Windows * Copyright (c) 2009 * Microsoft Corporation

4 .
Beginning of line Followed by Followed by
followed by "Microsoft "Copyright (c) "Microsoft
Windows" | 2009") Corporation”

Intrusion Detecgon In-Depth

Here is our regular expression supplied as the signature payload. In this context the "»" sign means that the
content is found at the beginning. We follow that with the text "Microsoft Windows" and then a wildcard
designation of ".*" to account for the unknown or unpredictable content. Next we supply the "Copyright (c)
2009" string.

While we used hex to express the parentheses in Snort, we need the escape character backslash before the
parentheses to designate that we are looking for the string value. Otherwise there is confusion with the syntax
because regular expressions use parentheses to group parts of it together. We finish the regular expression with
another wildcard and the content of "Microsoft Corporation".

The Snort rule language has the capability to easily add efficiency be restricting the depth of part of the content.
It is possible to make this rule more efficient using some additional features of regular expression syntax,
however that is beyond the scope of focus.

136 © 2015 Judy Novak

Header Sinaure
Seeking Payload Match

signature cmd-exe {
ip-proto == tcp
sre-port == 30333 .
payload /4 Microsoft Windows. *Copyright \(cy) 2009.*Microsoft Corporation/
event "Windows 7 cmd.exe remote execution™ '

¥

jnovak@ijudy:~/bro-runfcmdexe$ bro -r cmdexe.pcap -s cmdexe.sig
cat signatures.log | bro-cut sig_id event_msg

sig_id evenf_msg
cmd-exe 192.168.11.24: Windows 7 cmd.exe remote execution

codene.sig

n Detecdon InsDepth. - Snderepess

We place the signature in a file named "cmdexe.sig” and run it through Bre. The contents in "signatures.log"
reflect that it worked as cxpected.

© 2015.Judy Novak 137

T —
Procedure for Loading Your

Signatures for Live Traffic Capture

* Place your signature file in PREFIX/share/bro/site directory or
subdirectory you create

» Edit PREFIX/share/bro/site/local.bro
- Add a @load-sigs line with the name of your signature file name

* Tell Bro to reload in broctl:

[BroControl] > install
[BroControl] > restart

* Generate some traffic to trigger the signature

* Go to directory PREFIX/logs/current -> PREFIX/spool/bro
cat signatures.file | bro-cut

Intrusion Detectdon In-Depth

The examples shown using signatures were invoked while reading traffic from a peap file. The signature file
was identified with the command line -s switch. What if you wanted to load these same or different signatures
when running Bro via "broctl" to read live traffic? The procedure to load your custom signatures is very similar
to loading your custom scripts.

First, place all of your signatures in either "PREFIX/share/bro/site" or a subdirectory beneath it that you create
to keep your personal signatures.

Next edit "PREFIX/share/bro/site/local.bro" to add the name of your signature file. The "@load-sigs" is used to
specify your signature file name. You have to inform Bro to reload its startup files by invoking "install" and
"restart" in broctl.

Now, generate traffic to trigger the signature and look for output of success in the file "signatures.log" in the
"current" log directory by examining it with bro-cut. As you can see the "current" log directory has a symbolic
link with the spool directory.

138 © 2015 Judy Novak

Bro Scripting

» Full-featured language with many of the same capabilities as higher
level languages such as C, Python, etc.

« Offers network-related representations of traffic — hosts, ports,
protocols (HTTP, SMTP, etc.), protocol fields/states — http_request,
new_connection

= Permits you to write your own code or customize existing code for site-
specific purposes

» Functionality like Snort capability to write preprocessor

« Complete understanding of this complex language is beyond the scope
of the class, we'li just touch on the basics

» Default scripts found in PREFIX/share/hro/base/
» Optional policy scripts found in PREFIX/share/bro/policy
» Site-specific scripts should be placed in PREFIX/share/bro/site

_Intrusion Detéction In-Depth

One of the most useful and advanced features of Bro is its own scripting language that was predicated upon
interprelation of network traffic rather than using a library or retrofit as done by a more generic language like C.
This means that you are likely to find far more functionality and native support for network protocols that you
would like to process.

The language offers the analyst a platform to customize code. There are many default scripts that are included in
Bro for different protocols and diffcrent processing, You may find that what is included is complete enough for
your purposes. However, you may either want to embellish what currently exists or add complelely new
functionality for site-specific processing. Bro scripting requires knowledge of programuming constructs and may
have a steep learning curve depending on your familiarity and comfort with programming.

We will cover some rudimentary concepts associated with scripting and creale some simple seripts. But, this is by
10 means comprehensive, An entire day, if not more, could be devoted to teaching the Bro scripting language.
You may not be interested in learning Bro scripting because of its complexity or because you don't require this
degree of customization. Many users never learn to write customized code for Snort, yet are able to masterfully
use Snort. Tt is useful to know the scripting language is available and the material that follows will assist you in
creating and executing basic scripts.

I'he Bro documentation available, especially on scripting, is scattered and makes assumptions that you are aware of
the environment in which seripts are mn. It does not take you step by step demenstrating how to start and how to
proceed as the following material intends to do.

The scripts that come with Bro are installed in "PREFIX/share/bro/hasc” with a file extension of ".bro." These
scripts are not intended to be changed; if the user wants to make customizations, those scripts should be placed in
the directory "PREFIX/share/bro/site”. The directory "PREFIX/share/bro/policy" contains scripts that arc
considered to be less universally required and may be more computationally involved; thercforc the user must elect
to load them. It should be mentioned that the site-specific scripts need to be identified to Bro; this is done in the
configuration file "PREFIX/share/brossiteslocal.bro”. We'll learn how to do this later.

© 2015 Judy Novak 139

Bro Event Processing Flow

Start Bro > Load Scripts
¥

Execute any loaded script that

_—
[eventbrﬂ_lnitﬁ] references event bro_init()

e
P [event i Execute any loaded script
Packet 1 =1 new_connection that references event
- | (c:connection) new_connection()
5
) =] i
-y = p_l— Execute any loaded script
= e event that references event
% 3 dns_request dns_request()
g g \JARUETS)
w
=] E 0T Execute any loaded script
LE Packet 2 that references event
dns_response
i dns_response()

Intrusion Detection In-Depth

The notion of a Bro event is very powerful since it presents an opportunity for customization by adding your own
scripts. If you decide that you'd like some custom processing, you need to understand that a Bro event is your
vehicle for identifying the trigger condition to execute your code. Let's scrutinize the process in more depth.

Upon starting, Bro examines the "$PREFIX/share/bro/site/local.bro" file for entries that begin with "@load
filename". The "@load" is equivalent to a Snort configuration file or C programming language "include"
statement in that it references specific files, in this case Bro scripts, that should be loaded. The file names can be
those included with Bro or those that you create. These files/scripts reference a particular Bro event found in
"PREFIX/share/bro/base/bif/event,bif.bro", "PREFIX/share/bro/base/bif/plugins/Bro*bif.bro" or
"PREFIX/share/bro/base/protocols/protocolname/main.bro" along with the code that is to be executed upon Bro's
processing of that event.

For instance, in our example, Bro is started and one of the events that Bro encounters in its processing is the
"bro_init" event. The event processes any loaded script(s) that references the "bro_init" event. If for example,
you wanted Bro to write a message that Bro started, perhaps with a date and time, you would supply a script that
references "event bro_init" that accomplishes this. You would place the location of that script in the "local.bro"
file using "@load filename" and it would be loaded after installed and restarted. Now, after Bro starts and
determines that the conditions are met for "bro_init" event, your script is triggered and executed.

Each packet sniffed thereafter may cause Bro to follow a different code path perhaps based on the protacol.
Suppose packet 1 is a DNS request and packet 2 is a DNS response. Bro will decode the packets and determine
that they contain the DNS protocol. Say this is a new never-before seen connection. If there is native Bro code or
a script that you added to be processed upon seeing a new connection, it will be processed when the event
"new_connection" condition is encountered. Eventually, Bro will follow the code path for processing DNS. All
events that are associated with DNS can trigger an associated, perhaps user written, script to be executed.

140 © 2015 Judy Novak

What is the takeaway here? First, 2 Bro defined event is the entry point for adding custom code. Second, not all
Bro-defined events will be processed for every packet. An event is triggered when event-specific conditions
exist, like a new connection is detected or when a particular protocol is encountered. Bro-defined DNS event
conditions are met enly when DNS is detected and other specifications are met — like a DNS request or
response.

© 2015 Judy Novak 141

Trigger Script Execution After a
Signature Match

Start Bro Load Scripts and Signatures

[
L

Bro defined event signature _match(passed parameters)

8 | ""‘\
m | Sniffing
T mmm—— i | Packetn ’_;

. Signature
match

J

User defined script that references event signature_match()

Weang 19y8 g

Execute this script code after signatures match

Suissadorg oig

Intrusion Detection In-Depth

Indeed, the notion of events and associated scripts can be arcane so let's try to give the discussion some gentler
context. We are going to execute a Bro script that we write that will be triggered when a specific signature finds
a match. As mentioned, Bro loads some default scripts and signatures upon being invoked. One of these scripts
is defined as an event named "signature_match()" that is automatically triggered when a signature match occurs,
By default, there is no accompanying user-defined script that is triggered by this match or event. Bro has its
own scripts to perform signature matching processing such as logging data to the "signatures.log" file.

But, suppose you wanted additional processing to occur when a particular signature found a match in packet n
above. We would have to write our own code for the script that began with the line "event
signature_match(passed parameters)" where "passed parameters" are the names and variable types passed; we'll
look at those in an upcoming slide. Bro would execute our code after any signature match. Therefore, we have
to examine the unique signature identification string (the name we assigned to our signature) that is passed to
our code before performing some signature-specific activity.

142 © 2015 Judy Novak

Let's Examine the Format
of Our Script

I{ey word Selected : Passed
"avent” event name parameters

“event signature_match(state: sugnature state ‘msg: strmg,
data: strmg) '

Corde begins here

i . . . R X iEst atch
- if (statessig_id == "cmd-exe") [sigﬁiﬁff e,) ased]
: . { : . : to specify the code bock

line character %"

print "Process cmd.exe scrlpt code"' Cade followed by end of]

}

} Code ends here

Intrusion Detection In-Depth

Let's look at the code and format of our script to process upon signature match, As yon are aware, you need to
identify an existing Bro event that will cause your script to trigger — in this case "signature_match". This is the
event that occurs affer a signature matches. 1t causes Bro to look for any code it knows about that refercnces the
"signature_match" event to be cxccuted.

This is accomplished by supplying the keyword "event" followed by the actual name of the event you selceted to
trigger your script. Any arguments thal are 1o be passed to your script are enclosed between the parentheses.
The “signaturc_match™ event has three defined passed parameters named "statc”, "msg", and "data" that are Bro

H o

variable types of "signature_state", "string", and “string" respectively.

Bro uses the left and right brace characters to isclate a block of code — in this example, the beginning and end of
the code associated with the event processing. Other examples of related code are those executed after
conditional and loop statements. 1'he "print" statcment format is much like those used in other languages. The
semi-colon is used to identify the cnd of a line of code.

We check fot the unique signature identification, the name we gave to our signature, of "omd-exe" before we
execute the code. We want this particular code o apply only to that particular signature since this event is
called whenever any signatures matches. How did we know the variable name "statc$sig_id" to use to identify
the signature identification field? We'll discuss this on the next slide.

Obviously, there arc many more features and capabilities to the language than described here. Documentation
for Bro scripting can be found at:

htto://www.bro.org/sphinx-git/seripting/index. html#writing-hro-scripts

Another option for learning syntax and seripting is to examine the scripts that come with Bro.

@ 2015 Judy Novak 143

144

e A A e~ ————————]

State Data Structure

print fmt("Structure of parameter state ===> => %s ", state);

Entire state
data structure

state$sig id

4 L 2

iStructure of paraneter state ====> [sig_{d=cnd-exe, coniz[td={orig_h=134.163.221{63, orig_p=48938/tcp,

[tep], orig=[size=0, state=d4, num_pkts=2, nun_bytes i flow_label=0), resp=[size=141, state=4, nun
el=6] _tine=1410983624, 564544, duration=0.09251, Service={"1*]}, addlzg®at=0, history=Shad, uid=
allzed>Fpd=cuninitialized>, conn=cuninitializeds, extract_origsF, extract Ksp=F, dhep=cuninitialized
itializeds, dns_state=cuninitialized>, ftp=cuninitializeds, ftp_data_reuse=F, ssl=<uninitializeds, http
itialized>, irczeuninitialized>, modbus=<uninitialized>, smtp=cuninitialized>, sntp statescuninitialize
initialized>, syslog=<uninitialized>], 1s_orig=F, payload_size141]

Intrusion Detection In-Depth

It turns out the variable named “state” is a nested data structure in Bro's parlance. A nested data structure allows
embedded data substructures. Let's dump the variable "state" using a formatted print statement. This new print
statement replaces the one used in the script in the previous slide to be executed upon signature match.

Bro denotes each data structure with a name followed by "=", followed by all the variables in that structure
enclosed in "[" to begin and "]" to end. For instance, you see the “conn", "orig", and "resp" data sub structures
(highlighted with arrows under the name) all contained within the "state" signature data structure. In order to
identify a given variable, you must begin at the base structure, in this case, "state" and identify any other nested
structures. The "sid_id" field is denoted as "state$sig_id"; the "$" serves to dereference or delimit each of the
nested data structures as well as any variable in the final nested data structure.

As you will see, the variables and data structures names associated with a given protocol are often a mystery
unless you look at Bro's associated event file,

Another option is to print the containing data structure, like "state", as we did to reveal the names of the data
structures and variables.

© 2015 Judy Novak

Run Our Script

event signature_match(state: signature_state, msg: string, data: string)

{ .
if {state$sig id == "cmd-exe")
{ o
print "Process cmd.exe script code”;
} B
1

jnovak@judy:~/bre-run/sig-events bro -r cmdexe.pcap -s cmdexe.sig sig-event.bro
Process cmd.exe script code

jnovak@judy;~/bro-run/sig-event$ s *.log

connfog notice.log signatures.log

" pmdexesig sig-event.bro
cmdexe.peap

. Intrusion Detection Ta-Depth

We discussed the practicality of creation and execution of Bro in a separate directory when running signatures in
readback maode. The same advice applies to running scripts as you see in the hottom panel of the slide that the
environment uses the bro-run/sig-event directory for this purpose.

We run Bro using the “cmdexe.pcap” as usual, include the signature “cmdexe.sig” as we did betore, but also
make Bro aware of our new seript named “sig-event.bro”. As you see the message "Process.cmd.exe script
code" appears, showing that the script was triggered by the signature event match. Some of the logs that were
produced are the same as those generated when running a signature with no script.

This is a demonstration of how to trigger a script from a matching signature, The code executed is not
especially productive since teaching the intracacies of Bro's scripling language is not the intent.

© 2015 Judy Novak 145

Simple Script Without
Signature Framework

» More often than not, scripts are not triggered from a
signature match

 While not especially useful, let's create an example script
that prints "Bro started" upon Bro invocation

e This will familiarize you with the methodology

Inttusion Detecdon In-Depth

Scripts that users write are typically associated with a triggering event other than the signature match. It was
easier to start your understanding of scripts using the signature as a trigger. Now let's examine how you would
trigger a script you write from a non-signature event.

Let's start with a simple example. The only thing our amazing script will do is print "Bro started” upon starting
Bro. Remember that any script that you write needs to be associated with a Bro event. As will be discussed on
the next slide, there are several hundred events and we just need to find the appropriate one.

146 © 2015 Judy Novak

What Are the Names
of :che Available Events?

s Events define trigger conditions and entry point for your customized scripts
e Found in:

= PREFIX/share/bro/base/bif/event.bif.bro

= PREFIX/share/bro/base/bif/plugins/Bro*bif.bro

» PREFIX/share/bro/base/protocols/ protocolname/main.bro

bro_init: connection_SYN_packet;
mobile_ipv6_message: teredo_packet:
tcp_contents: protocol_violation:
udp_request: icmp_error_message:
login_failure: ftp_request:

smtp_data: mime_content_hash:
netbios_session_message: dns_AAAA_reply:
dhcp_offer: http_all_headers:
ssh_client_version: ssl_client_hello:

Sampling of some native events
Intrusion Detection In-Depth

As you have learned, Bro comes with a full complement of scripts to perform analysis of traffic and process events.
We mentioned previously that Bro is described as being "event-driven". The Bro developers defined event
conditions and coded those events that they considered noteworthy and potential desired entry points for user-written
custom scripts. This does not necessarily mean that an event is malicious; it is just an occurrence that the developers
believe may be worth recording or assessing perhaps for further scrutiny or in conjunction with other activity or
events.

Some of the many Bro events are listed above just to give you an idea of the volume and variety. The event names
and definitions are found in the file "PREFIX/share/bro/base/bif/event.bif.bro" when not associated with a specific
protocol. Protocol-specific event names and definitions are found in
"PREFIX/share/bro/base/bif/plugins/Bro*bif.bro" directories where "*" is typically a protocol name or in a file
"PREFIX/share/bro/base/protocols/protocolname/main.bro" where protocolname is one of the protocols like "ssl" or
"hitp", etc. Looking at the slide list you can see some of the protocols Bro analyzes — [Pv4, IPvé6, TCP, UDP, SMTP,
NETBIOS, DHCP, SSH, teredo, ICMP, FTP, DNS, HTTP, and SSL. As you can see by the names of the events,
they represent the state of Bro, protocol states, as well as different aspects of the protocol.

Many of the events allow you to identify a given protocol, extract parts of that protocol, and perform some kind of
processing on values in the protocol. For instance, "ssh_client_version" allows you to examine the SSH version
number, perhaps compare the version number found, and say it is an obsolete version — perform some kind of
activity that generates output, This can be e-mail that details the pertinent parts of the packet — perhaps the IP
address of the client — to inform of the out-of-date version.

You must first find an event that triggers on an appropriate condition when you create a script and identify this event
in your script. When the event conditions are met your script will be executed. Suppose you want to do some kind
of processing if a particular IP address is seen. One option is to use the "new_connection" event and create a script
that matches the IP field value from the connection, passed to it by the triggered event with your designated 1P
address, and then does some post-processing to inform you of the activity upon matching conditions.

©® 2015 Judy Novak 147

Step 1: Need to Look for Event Name
Associated with Bro Startup

more PREFIX!share'/ bro/ basé) bif/ event.liif.bro

##! The events that the C/C++ core of Bro can generate. This is mostly
#3#! consisting of high-level network events that protocol analyzers detect,
##! but there are also several general-utility events generated by internal
##! Bro frameworks.

(snip)
Generated at Bro initialization time. The event engine generates this

event just before normal input processing begins. It can be used to execute
one-time initialization code at startup. At the time a handler runs, Bro will
ave executed any global initializations and statements.

I global bro_init: event();

Intrusicn Detectdon In-Depth

The file that contains generic (not protocol-specific) Bro events is found in
"PREFIX/share/bro/base/biffevent.bif.bro". You can peruse it from top to bottom to find an event that has a
name that may be a good candidate for what you want to do. Each event is preceded by a description of what it
does to assist you in your search.

If you want a list of all events available without going through the file line by line, execute the following:
grep "event" event.bif.bro | grep —v "#"

This searches the event file for the word "event", excluding any line with a comment in it. We don't want to see
comments that talk about an event, just the event name itself. You can easily search through this list for an
event that has a name similar to what you might want to do. If you find something that seems a likely match,
you can read the associated description.

We've found an event called "bro_init" with a description of "one-time initialization code at startup”. This
seems to reflect exactly what we want to do — execute something after Bro begins.

148 © 2015 Judy Novak

Run the Script

avent bro_init()

{
print ("Started bro"); -

}

root@user:/tmp/broscripts# bro —r cmdexe.pcap broinit.bro
Started bro

" Broinit.bro

Intrusion Derecdon In-Depth mdexe.peap

Let's say we call our script "broinit.bro". Scripts supplied in Bro end with the extension of ".bro", however this
isn't required. The script simply has the event name "bro_init" found in the file "event.bif.bro” that will cause
the script to be invoked if the code path encounters it. As mentioned, scripts can have parameters passed to
them, denoted between the parentheses following the event name. The "bro _init" event has no parameters, We
place a Bro print statement that says "Started bro" as our single line of code.

Next we run Bro using with the name of the Bro script to run reading in cmdexe.peap, although we don't need a
peap for this particular script, we include it to represent a more conventional sifuation. As you see, we get the
output of "Started Bro".

@ 2015 Judy Novak 149

Inform About a New Connection

user@'ﬁser:)t'mp,‘broscfi"ﬁfsﬁ-h‘lore broif.bro

event new_connection(c: connection)

{
if (cidorig_h == 192.168.11.62 && cidresp_p == 80/tcp)
print fmt("New Connection => orig: %s %s resp: %s %s",
c$idgorig_h, c$id$orig_p, c$id$resp_h, cid$resp_p);
3

user@user:/tmp/broscripts# bro -r http.pcap broif.bro

New Connection => orig: 192.168.11.62 19086/tcp resp: 173.194.73.106 80/tcp

broif.bro

Intrusion Detection In-Depth ey

Now that you have a general idea how to run a script and understand the output that it generates, let's write a
script that is more practical and has a bit of logic involved. According to the comments in "event.bif.bro", the
"new_connection" event is described as follows "Generated for every new connection. This event is raised with
the first packet of a previously unknown connection".

We will defer a discussion of the script code and the unique variable names for the next couple slides.

When we find a new connection with the source IP address of 192.168.11.62 and a destination port of TCP 80,
we use a formatted print statement much like ones used in C and other programming languages where the first
part describes the text output and the output format of the associated variables. The"%s" denotes string output
for the source 1P/port and destination IP/port of the variables that follow in the second part of the formatted print
statement. When the script is run using "http.pcap" as input, we see the output of the script on the bottom of the
slide.

It should be mentioned that Bro documentation is clear that it uses the terms originator and responder to
reference the source and destination. They avoid the use of source and destination so that is why you see the
variable names with "orig" and "resp" in them. We'll still use the terms of source and destination since we've
become accustomed to doing so.

150 © 2015 Judy Novak

Connection Data Structure

print fmt{"New Connection => %s ", c};

id vavishles
chidbarig h,
chidSorig p,
chidfresp_h,
chiddresp_p

id data
soructure

| ;
mp id=[orig_h=192.168.11,62, orig_p=49931/tcp, resp h=173.194.75.99, resp_p=88/tcp], r
orig=[size=0, state=8, num_pkts=8, num_bytes_ip=8, flow_label=8}, resp=[siresd, st
ate=8, num_pkts=g, num_bytes ip=8, Tlow label=8], start_time=1349511963.359584, dur |
ation=6.0, service={*1*1}, addl=, hot=8, history=, uld=CHciSe3¥ZzDoIlIlub, tunnel=<
uninttialized>, dpd=cuninitialized», conn=<uninitialized>, extract_orig=F, extract |
resp=F, dhep=eupinitialized>, dnp3=<uninitialized>, dnsscuninitialized», dns_states :
cuninitializeds, Ftps<uninitialized>, fip_data_reuse=F, ssl=cuninitialized>, http=< i
uninitisiized>, http_states<uninitiallzed>, irc=euninitiatizeds, modbus=euninitiall i
zed», smtp=cuninitializeds, smtp_state=cuninitlalized>, sorks=<uninitializeds, ssh=

<uninitiaiized>, syslog=<uninitialized-]) i

You will be exposed to the concept of a Bro connection when examining output and writing your own scripts so
it is necessary to understand the connection data structure. The script on the previous slide generates a
formalted prini of a new connection known in Bro as the variable "c". Bro dumps the "¢" data structure 4s seen
in the slide.

A conmection is a nested data structure much like we saw in the event signature_match script parameter "state”.
In order to identify a given variable, you must begin at the base structure "¢" and identify any other nested
structures. We see that the "id" data structure contains the variables to identify the source and destination IP
addresses and ports. For instance "cidorig_h" identifies the source IP address. As you will recall, the gy
serves to dereference or delimit each of the nesled data structures as well as any variable in the final nested data
structure.

© 2015 Judy Novak 151

e

Let's Examine the Script

Selected Arguments
event name Variable: Type

event new_connection(c: connection)

{ Connection data Conditional “it"
structure names statement

if (cidorig_h == 192.168.11.62 && cidresp_p == 80/tcp)
print fmt("New Connection => orig: %s %s resp: %s %s",
cidorig_h, cidorig_p, cidresp_h, csidsresp_p);

Formatted print
statement

Intrusion Detection In-Depth

The "new_connection" event passes connection data in an argument named "c" with a Bro type of connection.
This is detailed where the event is defined in "event.bif.bro". The above script checks the connection to see if
the source [P address "c$idSorig_h" is 192.168.11.62 and the destination port "cidresp p" is TCP 80. First,
how did we know the names of the variables that Bro associates with source IP address and destination port
address? There is a file in "PREFIX/share/bro/base/init-bare.bro" that contains the names of all of the Bro's
variables associated with any connection.

You'll notice the format of each variable used in this script begins with "cid". The "c" represents the
connection data passed to the function; the "id" represents Bro's unique identification, UID, for this particular
connection, The "¢" connection is the base data structure, followed by an "id" data structure that is followed by
all the relevant fields. The fields for identifying any new connection are the source IP is known as "orig_h", the
source port as "orig_p", the destination IP address as "resp_h" and the destination port as "resp_p.

When we find a new connection with the source IP address of 192,168.11.62 and a destination port of TCP 80,
we use a formatted print statement to display the output.

152 © 2015 Judy Novak

Put a New Script Into Production to
Sniff Live T[afﬁc

» Place your script file in PREFIX/share/bro/site directory or
subdirectory you create
« Copy your script to this directory

« Edit local.bro to load your new script
s Add a @lead line with the name of the script to load

+ Restart Bro loading new script
[BroControl] > install
[BroControl} > restart

» (o to directory PREFIX/logs/current
« Examine file loaded_scripts.log to see If the script you loaded is there

» Generate some traffic to cause the script to fire
» Examine notice.jog in PREFIX/logs/current -> PREFIX/spaol/bro

~ Intrusion Detecdon In-Depth

Let's say we've got a proof of concept that our script works by invoking it from the command line in readback
mode. What if you wanted to place this script into production to use as Bro is examining live network traffic?
There are several tasks you must perform to let Bro know of the existence of a new script.

First, Bro expects any site-specific scripts to reside in "PREFIX/sharc/brof/site”. Place your scripts there or
create a subdirectory there to keep your personal scripts together.

As you know, the file "PREFIX/share/hro/sitc/local.bro™ is the entry point into Bro's guide of what site-specific
scripts exist. You must identify the file name of your seript. You need to add a line with the format of "@load
filename" of the script you want to oad.

Next, you need to inform the running Bro process to install the new script and restart to include the new seript.
This is done in "broct]" using the "install” and "restart” commands.

There are two ways to discover whether or nol your script was loaded. The first is a command in "broctl”,
"scripts™ that lists all loaded scripts. This can produce a lot of ontput that scrolls by rapidly. The other way is to
20 to the current log directory "PREFIX/logs/current” and exaimine the "loaded_scripts.log”.

New test the script by generating some traffic to make it trigger. Finally, if the script raises a notice, examine
the "notice.log" for the Notice generated by the new script. This resides in "PREFIX/logs/current” that has a
symbolic link to "PREFIX/spool/bro™.

@ 2015 Judy Navak 153

Customization Option:
Bro Notice Framework

 Permits your customized script to notify of activity and
determine what to do with it

» Raises a notice informing user of activity along with
description and traffic characteristics
» Notice policy describes actions that can be taken once

notice raised

e Very sophisticated support, some beyond the scope of the

class

Intrusion Detection In-Depth

Another feature of the policy neutral philosophy of Bro is the capability to customize notices for your site's
needs. Bro deliberately does not use the word "alert" as found in Snort rules since the connotation is that
something is amiss. The notice framework is what permits you to assign meaning and an assessment of
importance to any activity. Additionally, it permits you to take one of several actions post detection.

"Raising a notice" is the term that Bro uses when you create a notice. There is extensive support for raising
notices; however, we will be covering the more rudimentary aspects, We will learn to raise a notice and
customize it by supplying it a name of our choosing and defining the output from the notice.

While it may seem like the coverage we provide of the notice framework is complete, we are actually doing a
basic introduction. There is more documentation on the notice framework found at:

http://www.bro.org/sphinx-git/frameworks/notice.html

As with seripts and signatures, the best way to understand how they work is to experiment on your own. The
information supplied in these sections is intended to give you the foundation to do that.

154 © 2015 Judy Novak

Example Notice

-
{ An existing or
created $note value

NOTICE({{$note=Weird:: Activity,

3 $msg message

$msg="My NOTICE message"]); [vourinformative]

user@host:/tmp/broscripts: bro broinit-notice.bro

cat notice.log | bro-cut note msg actions

note msg actions
Weird::Activity My NOTICE message Notice::ACTION_LOG

broinit-

notice.bra

Why do you even need to use something called a Notice Policy? Our other scripts ercated some informational
output to the screen. While this is helpful in a debug or special run situation, it is not especially useful in
production mode. Bro allows you to raise a notice that placces all your output into "notice.log", making it more
convenient to locate and further process the notices, if desired.

1t is probably best to start with a simpler example since that will most effectively clarify what is known as the
Notice Policy. As usual, we need to anchor off of a known Bro event since a notice is called from a Bro script.
We are going to use "bro_init" again only because the event is always executed upon invocation of Bro
regardless of the content of the tralfic. The notice and message that will be generated from our script do not
pertain to any tralfic so no pcap is supplied. Again, this is used as an cxample just to start off simply, let you
see how it works, and demonstrate the constructs involved.

Inside our seript that gets executed when the "bro_init" event occurs, we define our Notice Policy using
"NOTICE([variable=value, efc.])". It has many diffcrent parumeters it can accept - see
http:/fwww.bro.org/sphinx-git/frameworks/notice. html#raising—notices

for a complete discussion. Minimally, you are required to assign a value to the variable "note”, and it is most
informative to assign a value to "msg", much as you would do in a Snort rule, to create some output that reflects
the nature of the activity. After all, that is pretty much the reason to use the Notice Policy in the first placc. If
this netice pertajined to actual traffic, you could include traffic characteristics such as sourcc and destination IP's
and ports that will appear in an entry in "notice.log" where notices are placed by defaull.

We assign a value of "Weird:: Activity” to the variable "note" and a vatue of "My NOTICE message” to the
"msg" variable. The "msg" variable is straightforward; you assign it a value that you think best describes the
activity that raises the notice.

© 2015 Judy Novak 155

The "note" variable is a required field in the Notice Policy definition to represent an existing or user-defined
notice type. Suffice it to say that “Weird::Activity” is a default “note” value. The “note” variable value and
concept are not so easy to describe. If you would like to delve deeper into this, reference the raising notices
website link on the previous page. As well, there is a slide in the Bro Appendix with the title of “Bro-Defined
Notice note Variable Value”, We run Bro to trigger the event to raise the notice.

The "notice.log" has many different fields, although many are blank in this example, so we display the pertinent
ones using bro-cut. We see that the note value in the log is "Weird::Activity" that represents a combination of
the module and notice description that caused the notice to be raised. This will be shown in more detail on the
next slide. As well, we see the message we created and the associated action "Notice:: ACTION _LOG" with this
notice, indicating that it should be recorded in "notice.log".

156 © 2015 Judy Novak

Notice Policy Action

————
« Apply an action to a notice
~ NOTICE::ACTION_LOG - default if unspecified, log the notice

— NOTICE::ACTION_EMAIL — log and e-mail
-~ NOTICE::ACTION_ALARM - log separately and e-mail contents on an

hourly basis

A Notice Policy can have an action other than the default of logging to "notice.log". The above list represents
the main Notice Policy actions available to perform when a notice is raised. There are others, but these are the
most often used.

As you have seen, the default action is to place the notice in Bro's "notice log" if no action is explicitly assigned.
There is alse an action of logging and e-mailing the notice. This assumes that you've configured e-mail
recipients in "PREF1X/cte/broctl.efg” and you need to have sendmail or some kind of mail package installed to
support SMTP. A final option is to e-mail and log, but on an hourly basis as opposed to when the notice is
raised.

We wont't demonstrate how to assign a Notice Policy action since it is rather involved. 'T'ake a look at the Bro
documentation http://www.bro.org/sphinx-git/frameworks/notice. html#raising—notices for the exact details.

® 2015 Judy Novak 157

Customization: Real-World
Analysis Using Bro

Intrusion Detecon In-Depth

Bro is very versatile and at times difficult to grasp when examined purely in theory. Therefore, this section is
intended to assist you understand how Bro can be used to examine some real-world traffic.

158 © 2015 Judy Novak

Example 1: Basic Processing

jnovak@judy: /tmp/test-bro-basic$ bro -r samplel.pcap
conn.fog dns.log http.log packet_fiiter.log weird.log
jnovak@judy: ftmp/test-bro-basic$ bro -r samplel.pcap -f 'udp port 53°

conn.log dns.log

© gamplel.peap

Now that you have some background on the theory of how Bro works, let's begin with samplel.pcap to see how
you might analyze the traffic using Bro. We begin simply by running Bro to read samplel.pcap. Note that we
are running this in the directory /tmp/test-bro-basic that is our working directory. Log files are created in this
directory so make sure that when you run Bro in readback mode like this to isolate it with its own directory.
Otherwise your log files will get mixed in with whatever files are in your currently working directory.

Bro generates separate log output based on the nature and the protocols observed in the traffic. A connection
log named “conn.log" is always created if conncctions are observed. A packet filter.Jog is always generated; it
contains the BPF statement used to filter fraffic. By default this is, 'ip or not ip’, but this can be aitered as we
will examine next. The "dns.log" contains records about DNS transactions, and as you would expect, the
"http.leg" contains records about HTTP traffic.

Most traffic logs have a field known as "uid" that represents a unique 1D for every diffcrent commection observed
by Bro. Bro may generate records in various logs for any given connection depending on the protocols found in
that particular connection. Each record in every log associated with thal connection maintains that same "uid",
therefore it is a good way to examine all the logs for records affiliated with that connection.

The "weird.log" has records of what Bro considers abnormal activity. For instance, this particular "weird.log"
has records about a bad TCP checksum and also ones for "data_before_established". The latter may not be
accurate. When this pcap is examined in Wireshark for the first session assigned "data_before_established”, it
is a properly cstablished session with data sent and received.

You can run Bro with any BPF statemenl using the "-f” command line switch in this case we elect to view UDP
port 53 traffic — typically DNS. The output logs now reflect that.

Thanks and attribution to lsmacl Valetizuela for supplying samplel.peap (along with several others) on his blog
hitp:/ihlog.opensecurilyresearch.com/2014/03/identitying-malware-traffic-with-bro.html.

© 2015 Judy Novak 159

Examine conn.log

Jnovak@judy: /tmp/test-bro-basic$ cat conn.log | bro-cut -d ts uld id.orig_h td.orig_p id.resp_h id.resp_p prot

| more

2014-83-07T67:35:57-6500 CASIYFNIXerRxL1n5 172.16.86,10 49387 172.16.88.135 86 tep
2014-83-07767:35:59-0560 Cd6qZSFHqLOhKryah 172.16.88,18 45388 172.16.88.135 B0 tep
2014-83-67T67:35:59-8560 CASEVBITYbU2347Cf1 172.16.88,10 49388 172.16.88.135 80 tep
2014-83-07767:36:01-0560 CYBVrmRuBAAFd1ie 172.16.88.10 49389 172.16.88.135 B8O tep
2014-83-87767:35:57-8500 CLUHtE3y7zx1YSpd 172.16.88.18 49387 172.16.88.135 88 tep
2614-03-07707:36:02-0500 CvGhiK10TuZIXKeIB? 172.16.80.10 49388 172.16.88.135 &80 tcp
2014-63-67T67:36:64-8500 C3xefMiemqFnk2Z4hve 172.16.88.16 49391 172.16.88.135 80 tep
2014-03-67767:36:00-0500 CyfnXwdYbYOwvudlca 172.16.88.10 49388 172.16.88.135 8B tcp
2814-03-0677687:36:04.0580 CimGw225cvqUMILoes 172.16,88.16 49391 172.16,88.135 B8P tep
2014-03-07T07:36:06-0560 CKTp3ul5ctDARxLaka 172.16.88,10 49383 172.16.88.135 80 tcp
2014-63-07707:36:02-0500 CDIcnK2FwkwVatIgs7 172.16.88. 16 49389 172.16.88.135 8O tep
2014-63-07T07:36:67-0500 C3Falq2LOMSWLARILF 172,16.88.10 49393 171.16.88.135 80 tep
2014-83-07707:35:59-0560 CtBGIydeT2nYtVLLA 172.16,88.16 57268 172.16.8B.135 53 udp

Inttusion Detecdon In-Depth

Each log has different field names and associated values. Some logs share many of the same values like source
and destination IP's and ports. If you were to display a log file using a command like "cat" or "more" the contents
would be displayed on the screen, however it would be difficult to read because there are many fields and values
and most lines wrap because of the length of a given record.

The logs are TAB delimited, making them more readable when using the bro-cut command. Much like the Unix
"cut" command, the output is displayed in columns. How do you know what the field names are to feed to the
bro-cut command to display specific columns? They are listed on the top of each log —not a very user friendly
approach. You have to use a display command like "cat" or "head " to expose the field names first and then run
bro-cut to display the associated values using those field names.

The "-d" command line option displays the time in readable format, The time, uid, source and destination IP's
and ports, and the protocol are displayed. The connection uid is a randomized string that always begins with "C",

160 © 2015 Judy Novak

Examine dns.log

snovak@judy: jtep/test-bro-bastcs cat dns.log |

172.16.68.18 57268 172,16.86,135 53
172.15.88.18 68736 172.16.88.135 53
172.16.88.38 56844 172.16.86.135 53
172.16,80.18 52578 172.16.88,135 53
172,16.88.16 53812 172,16.88.135 53
172,16.88.18 64374 172,16.88.135 53
172.96,88.18 57625 172,16.88.1358 353
172.16.88,10 60343 172.16.88.13% 53
172.46,88.16 49741 172,16.80.135 53
472, 16.88.19 53408 172.16.86.133 53
172:16.88.10 62762 . 172.16.BB.135 53
172.16,89.4¢ 60577 172.16.B8.135 53 .

n59e31iwiscthitdcashweyLubyotiggsoxly. info
kvmdomynrdseleslynre21hafun2eaqThyn2ekq.org
hti56h3dernzhsdizn3Bmicyg23bsbsEirgsibie. net
351557 32nyernygx jsbak27pyewcygzolips. con
mydvhadvli544 35aycadnroyhS4drrgevpzoz. re
1ubglzeltbvovoubssirazhxagmwhrkaj4s. com
gqe2inuf 32evatdvasd18326k27pylrbtosgy.net
kyoqpxg53nufd20430qo21t48at 7d48031k67116h4d . ory
tereds. {pv6.mierosoft.con o
nxhyosgd3adTexhum19g23fs2frozabyayks?fs, info
dsmugygraudsepzjachwpgazdrgdeyiaafiz.blz

axgaL4gingL28h3ake7funyluosicset j16g7¢x. ry

_ Intrysion D

ction In-Depth

® 2015 Judy Novak

Now, we'll examine the "dns.log" file — specitically the source and destination 1P addresses and ports and the
particular DNS query names, This can provide somc insight into where the sender wishes to go, Asyou can
see, these are some very strange DNS query names. Except for the teredo query, all appear to be long
randomized strings followed by some Top Level Doman (TLD).

161

et —
Strange DNS Name Queries

Intrusion Detection In-D epth

Extracting only the name queries with bro-cut and sorting all the unique ones, we see that the queries are similar
in that the are a randomized string with a length of 32-48 characters long.

The Gameover ZeuS variant known as Murofet/Licat uses something known as a Domain Generation Algorithm
(DGA) to make takedown attempts harder. This enables the command and control server to be decentralized.
The domain names generated by Gameover ZeuS produced a random string of letters and numbers of between
32-48 characters in length. Additionally, the TLD's of ru, com, biz, info, org, and net were used exclusively.

As you see, the discovery of the Gameover ZeuS botnet was fairly easy with some rudimentary Bro processing.

162 © 2015 Judy Novak

Example 2: Attack
Using Bro

judy@ijudy: /tmp/test-bro-heartbleed$ bro -t ssiheartbleed.pcap
conn.log files.log notice.log packet_filterlog ssllog x509.log

cat natice.log | bro-cut id.orig_h id.orig_p id.resp_h id.resp_p note msg
162.168.11.1 54848 192.168.11.128 443
Heartbleed::SSL_Heartbeat_Attack An TLS heartbleed attack
was detected! Record length 3, payload length 16384
192,168,111 54848 192.168.11.128 443
Heartbleed::SS1._Heartbeat_Attack_Success An TLS heartbieed
attack detected before was probably exploited. Transmltted
payload length in first packet: 16384

_ It_ltr_usic}n' Dictection 'Iﬁi]f)epfh' ssiheartileed.peap

Let's explore how Bro can be customized via its scripting capabilities to detect the heartbleed TL3/SSL attack. If
you recall from Day 3, the heartbleed attack sends a malformed heartbeat message in the client "hello" causing
the server to return a heartbeat reply with data from a memory leak that can expose the server's private key,
session tokens, as well as other data such as usernames and passwords.

A Bro developer named Bemhard Amann created a script to detect the heartbleed atfack. This runs on versions of
Bro 2.2 and tater. Once run, it generates several log files, the onc of interest to us is the "notice log". This file
stores raised notices generated by a Bro script that uscs the "NOTICE" facility to generate a message. If you
recall, these can be informational messages that the seript developer creates and stores, but more likely, they are
indications of activity that is noteworthy in some way.

We use the bro-cut command to list fields and associated values of intercst. Remember that the unique field
names referenced in the bro-cut cornmand are found at the top of every log. The fields "note” and "msg" found
specilically in the notice log show that a heartbleed attack was detected and that was probably successful.

We'll pursue what the script was looking for, what jt found, and how it generated a messape for "notice.log”,

The peap used for this example was downloaded from a blog maintained by Didier Stevens, a well-known and
very well respected researcher in the field:

hittp://blog.didierstevens.com/2014/04/09/heartbleed-packet-capture/

Thanks and attribution to Didier Stevens for supplying this pcap.

© 2015 Judy Novak 163

Under the Hood of a Script

e ——

Excerpts from script heartbeat.bro
event ssl_heartbeat(c: connection, is_orig: bool, length: count, heartbeat_type:
count, payload_length: count, payload: string)

checks to see if there is a heartbeat request type 1, examines length for threshold
value
checks to see if there is a heartbeat reply message type after determination of non-
..... standard heartheat request
NOTICE([$note=SSL_Heartbeat_Attack,
$msg=fmt("An TLS heartbleed attack was detected!
Record length %d, payload length %d", length, payload_length),

NOTICE([$note=SSL_Heartbeat_Attack_Success,
$msg=fmt("An TLS heartbleed attack detected before
was probably exploited. Transmitted payload length in first packet:
%d", payload_length)

Intrusion Detection In-Depth

We do not intend to make you a expert Bro scripter from this course, however, knowing the underlying structure
of the heartbleed scripts will assist you in understanding them as well as helping you write your own should you
choose.

How does Bro processing get to that event in the first place? The heartbleed packet requires Bro SSL processing
once Bro determines that TCP port 443 is used. Then there are different scripts associated with SSL processing,
in this case one called "heartbleed.bro", that may get executed. If an SSL heartbeat message is present in the
SSL exchange, the event named "ssl_heartbeat" will examine the heartbeat to first determine if a heartbeat
message of type 1 representing a heartbeat request is present. It continues heartbeat heartbleed processing to
examine the heartbeat request payload length for greater than some threshold value and raises the first notice if
found. Next, it examines the traffic for a heartbeat reply. This pcap has a heartbeat reply causing the second
notice to be raised.

164 © 2015 Judy Novak

Example 3: Using Bro to Extract
Files from pcap Payload

bro -r php-malware.pcap extract.bro .

conn.log dhep.log dns.og extract_files fileslog http.log packet_filter.log
reporter.log : .

more extract.bro' '
event file_new(f: fa_fila)

{ . .
Files: add_analyzer{f, Files::ANALYZER_EXTRACT),

by

cat files.log | bro-cut -d fuid ix_hosts rx_hosts conn_uids source mime_type
extracted | head -1
FXx5552t8h0zFGNv3a 69.147.83.199 192.168.40.10
CGo2fX3tTEL5IBAue7 HTTP text/htmi extract-HTTP-
FXx5s552t8h0zFGNv3a

php-
malware.p&ap

Tntrusion Detection In-D:_':pth

Suppose you have a pcap where you know, suspect, or would like to know if there were any files transterred and be
able to examine those files. It is possible to extract files in Bro versions 2.2 and later.

By default, Bro will not do this unless you supply it a script to do so. We will supply the script name, "extract.bro”
when we use Bro in readback mode, however, if you wanted to do the same for Bro in production mode sniffing ofl
the interface, this script or something like it could be loaded into the list of bro start-up seripts. The script above is
named "extract bro" that iriggers off an event known as "file_new" to extract the file to a subdirectory called
"extract_files" where each filename in the dircctory contains a uniquely generated file id ({uid) beginning with the
fetter "F". The file name begins with the word "extract", followed by the protocol in which it was found (HT'IP in
this case), followed by the fuid.

A log named "files.log" is generated that contains data associated with the file such as the fuid, the scnder and
receiver, the connection id (uid) associated with the session in which the activity occurred, the MIME type that
indicates the type of data found in the file, and the file name associated with the file in the "extract_files"
subdirectory.

Looking at the output of the first line of "files.log", you see the fuid "FXx5sS2t8h0zFGNv3a", the sending IP of
69.147.83.199, the receiving host of 192,168.40.10, the conncction id (uid) of "CGo2fX3t TEL3IB Aue?", the source
protocol of HTTP, « MIME type of "text/html" and the associated file name in subdirectory "cxtract_files".

The peap used for this example was downloaded from a link from Barracuda Labs:

https://barracndalabs.com/2013/10¢php-net-compromise

Barracuda Labs performs research and some security tools. Gratitude and attribution to them for supplying the
peap.

© 2015 Judy Novak 165

Examine HTTP Traffic Log

P host uri _resp mime types _

192,168.48.18
695e6iccaz7bebi
192.168.40.18 ;
application/x-dosexec

| 144.76.192.182
144.76.192,162

192.168,40.16 1052
ication/x-dosexec

192,168.40.10 144,
lapplication/x-dosexed

44.76.192.102 /25204e644e9cdas18824293¢Tadedb7a1

Instusion Detection In-Depth

Now we look at "http.log" since the files generated were associated with HTTP. Specifically, we'll examine the
source and destination IP's and ports, the hostname found in the HTTP request header, the requested URL, and
the MIME type of the returned file. The records displayed above are ones of most interest to us.

Of note are the hostname in the first three records — something that looks like some randomly generated name
"zivvgmyrwy.3razbave.info". Then take a look at some of the URL names that begin with a "?" followed by a
series of random numbers and characters, all of the same len gth. And, most distressing is that the server
returned a file that was determined to be a DOS Windows executable. Obviously, this needs to be investigated.

166 © 2015 Judy Novak

Which HTTP Connections Returned
Executable Files?

cat http. log | bl 'ut'_ . ong h im rlg g

144,76, 132.1&2 sa _]
cqrqgvswmcmaj' . __FxJHnZiﬁcQHBuqui: B
— 144,76,452,402 88 144.76.192,162 19 5b931fhcbzeaaa
j EchlueSU?jk?qﬁe&hl - Fok§yJiczuauRakpde: :
= : B8 144.76,192.162 f?asszzbbsiecaﬁaaafsebd
- Fi2eCyattDBgBFbS8Y
. 444i76,192.102 {?bzsbsﬁfalezzadsse

- 144,76, 192, 152786
& _CNUthﬁiilngZcz?a .

chqqtq;mjn_rszmh "

applicationfx-dogéxec

~ Intrusion Detection In-Depth

Continuing with our search, let's extract all the HTTP scssions where an executable files was returned. We
extract many of the same fields using bro-cut as we did in the previous slide, but now our interest is with the
associated connection uid, and the file identification fuid. We want to see sessions only with a "dosexec" as part
of the MIME type and usc the grep command to filter those out for us.

© 2015 Judy Novak 167

Let's examine the first session from the previous slide where an executable was downloaded. We again use the
grep command to find the uid associated with that session "CQP4gv3w7pedc" and see the "conn.log", "files.log"
and "http.log" entries. We already knew about these; we didn't find any other activity associated with other

What Activity Was Associated with a
Given Connection uid?

Ln.rep' CQPAgvanTpedc *
conn. 1 2476682.246961

Wipedcadlsj
Homh by

Intrusion Detection In-Depth

protocols. Now, we can examine the nature of the file downloaded.

168

© 2015 Judy Novak

Examine the Extracted File Using xxd

R
xxd extract-HTTP-Fd7scMcGCaVzeyuac
P00ibD0: 0DOO HODO DOGL 0PDO GO0 006G 6800 4d5a f‘.....i.mz
0oo1b16: 9806 0300 DG 04B0 BBOG THFf 608 D8Oi7%
5091b20: G600 00O POOG 5060 GO 96588 0000 0000@....... ..
ieee1b36: 8BEG 000 00GG SGBG G000 £909 6980 00BOvveeevanns .
lape1b4c: 9866 SOD0 0000 OO0 GO0 eBOS GOOO Oelf Cenarenana

gaee1bse: bage 80ba 09cd 21b8 B1ldc cd21 3468 6973 [.,....1..L.1This
‘9881b66: 2870 726f 6772 616d 2063 616e 6esT 74206 | program cannot
0061b76: 6265 207Z 7568 2069 6e20 444f 5320 6d6F [be run in DOS mo
00a1b86: 6465 2eGd 0d0s 2400 06DO DGGS ©OG8 3dab |de....S.......=K
0081b96: 4631 792a be62 792a besz 792a bes2 62b7 .1y*.by*.by*.bb.
20g1bat: 2062 682a be62 62b7 1462 3328 bes2 62b7 bh*.bb..b3*.bb,
oee1bbo: 1562 5923 bes2z 7052 2d62 6828 be6? 7323 .bY*.bpR-bh*.by*
Be01bco: bf62 282a besz 62b7 1162 7828 be6z 62b7 .b *.bb..bx*.bb.
£001bde: z562. 7822 bes2 62b7 2462 782a bef2z 62b7 %bx*.bh.Sbhx*.bb.
cO01bed: 2362 7822 be62 5269 6368 7923 be62 9608 #bx>.bRichy*.b..
BO01bfO: GODO DEGO GORO 5045 6000 4cbl 0400 d5ba L
8001COB: 6552 0085 G800 0000 0006 e(0D 0361 0bOL eR..... .. r.ur--
Copicl16: 6300 G8d6 460 BAB2 6800 HODB 0600 581b iess.00-X,

- Intrusion Detection Tn-Depth

The linux xxd command can be used to display the hex content of a file and interpret any ASCII characters,
much like tepdump -X mode can do. What we see from the xxd output of one of the extracted executable files
are indeed indications that an execulable was downloaded,

The "MZ" is a magic number designation at the beginning of an executable that indicates that the file is an MS-
DOS executable file format along with the "PE" that indicates it is a Windows Porlable Execntable. Thisis a
standard MS-DOS header of a Win32 Portable Executable file. A 32-bit Windows PE file that is run in a 16-bit
DOS environment generates an error message "This program cannot be run in DOS mode”.

Wwe'll stop our discussion here, but the extracted file could be serutinized more carefully and possibly reverse
engincered by someone familiar with the process. Bro was able to quickly expose this valuable insight using
some rudimentary cormumands,

This traffic in the pcap is associated with an incident when php.net was hacked and downloading matware to
unsuspecting visitors. Php.net is a site that distributes downloads for PHP.

© 2015 Judy Novak 169

Refining

Intrusion Detection In-Depth

This page intentionally left blank.

170 © 2015 Judy Novak

Bro-Specific Performance Factors

» Use of clusters for distributed packet capture and
processing

» Number and types of scripts loaded

» Number and types of signatures loaded

» Value of dpd_buffer_size for signature inspection depth

cion Ta-Depilh

As we discussed at length, Bro clusters offer the capability to do paraliel processing by distributing the load
among Bro workers to collect and process traftic, using the proxy to provide communications among the other
Bro components, and the manager to orchestrate the whole operation. The cluster configuration is flexible,
permitting the easy addition of new workers for performance improvements.

Bro comes with many default scripts that are loaded upon start of Bro. Bro optionally allows you o run site-
specific as well as policy scripts. Policy scripts such as profiling can consume resources and should be used for
short durations for the purpose of debugging. Obviously, the more optional seripts loaded, the more processing
Bro must perform.

As well, the number and typcs of user-written signatures may have an effect on performance. As we leamned,
Bro uses regular expressions te find content for signatures. Bro can perform a generic search of all or part of the
payload, depending on the dpd_buffer size that designates how deep into the payload to search. Or Bro can
perforim content searches that are more constrained such as in HTTP headers where content may be found more
rapidly. We discussed that dpd_buffer_size has a default value of 1024 bytes for more efficient processing.
However, that may not be suitable if you believe that the content sought is deeper into the payload. Naturally,
increasing this size requires Bro to do more inspection.

©® 2015 Judy Novak 171

Examine Bro's Resource Consumption

Load PREFIX/policy/misc/stats.bro — lightweight

Load PREFIX/policy/misc/profiling.bro — debugging only

Load PREFIX/policy/misc/capture-loss.bro — reports in
notice.log

Execute "capstats" in broctl

Intrusion Detection In-Depth

There are several methods to inspect Bro's resource consumption. The first three methods require you to load a
Bro script. The first method is to use the script "PREFIX/share/bro/policy/misc/stats.bro". The script has the
following description of its function:

"Log memory/packet/lag statistics. Differs from profiling.bro in that this is lighter-weight (much less
information, and less load to generate). "

The /ust/local "PREFIX/policy/misc/profiling.bro" script supplies very detailed feedback, including memory
allocated, number of connections, TCP states, number and activity of current threads, to mention a few. This
script should be loaded for debugging purposes only because of processing and storage overhead.

Another optional script "PREFIX/share/bro/policy/misc/capture-loss.bro" can be used to capture packet loss.
Logged records appear in the file "notice.log".

Finally, there is a "capstats" command available in the "broctl" interface that can monitor a network interface
for a given interval of time and report statistics of traffic and dropped packets.

There are parallels loading policy scripts and enabling Snort's preprocessors or special configuration directives
to do performance monitoring. Both have most performance monitoring capabilities turned off since they
perform computations that consume resources,

More details on these processes can be found in the Appendix slides associated with Bro "Refining".

172 © 2015 Judy Novak

See Appendix of Bro Material for Updating material

- Intrusion Detection

This page intentionally left blank.

© 2015 Judy Novak 173

Postscript: Snort and Bro Results
from Analyzing the Same Traffic

Intrusion Detection In-Depth

This page intentionally left blank.

174 © 2015 Judy Novak

Activity Using Snort and Bro

P Probe for 1istening port 445

Deliver buffer overfiow & open backdoor

Connect to backdoor port 18957

FTP request to download malware

Malware download

We examined a pcap with some malicious activity by using Wireshark on Day 3. Let's see how you might
examine this same activity using Bro.

Let's summarize the activity that eccurred to remind you what transpired. First, the automated attack software
probed the victim host on port 445. The software then attempted and successfully exploited a vulnerability in
certain Active Directory service functions of the Local Security Authority Subsystem Servies (LSASS) in
Microsoft Windows.

A backdoor was opened on port 1957 of the victim, The victim connected to the attacker’s FTP scrver to
download soms malware. Finally, the malware was downloaded to permanently infect the host and instruct if to
perform malicious activity.

First, we'll show the Snort alerts from the traffic. Then we'll see how Bro might analyze the same traffic.

@ 2015 Judy Novak 175

176

Snort Alerts from Same Traffic

Snort alerts:

snort -r attack-trace.pcap -q -& conscle -K none -c
/etc/snort/snort.conf

04/19-23:28:29.447746 [**] [1:2466:7] NETBIOS SMB-DS IPCS unicode
share access [**] ([Classification: Generic Protocol Command
Decode] [Priority: 3] (TCP)} 98.114.205.102:1828 ->
192,150.11.111:445

04/19-23:28:30.172468 [**] [1:2514:7] NETBIOS SMB-DS DCERPC LSASS
DsRolerUpgradeDownlevelServer exploit attempt [*%*]
[Classification: Attempted Bdministrator Privilege Gain]
[Priority: 1] {TCP) 9B.114.205.102:1828 -> 192.150.11.111:445
04/19-23:28:30.178588 [**] [1:648:7] SHELLCODE xB6 NOOP [**]
[Classification: Executable Code was Detected] [Priority: 1] ({TCE}
98,114.205.102:1828 -> 192.150.11.111:445

Intrusion Detecton In-Depth

We saw this same slide in Day 3 with the alerts that Snort generated when fed that same traffic. It finds shell
code NOP characters (0x90) as well as finding the signs of the LSASS vulnerability. We can conclude that
Snort did a good job of finding the malicious traffic,

Now, let's see how Bro handles this same traffic.

© 2015 Judy Novak

A Couple of Things to Keep in Mind
When Performing Bro Log Correlation

A connection log entry should appear for all initial
TCP/UDP connection activity

» Many logs share common fields that can be used in
correlation
— Source IP/port
- Destination IP/port
— Timestamp

» A shared UID record among the logs means that
the reported activity occurred in a single session

- . Intrusion Detection In-Depth

Before exploring how Bro analyzes this same traffic, it is helpful to know what is available in the generated logs
that can be used for correlation. The "conn.log" contains a record for each TCP or UDP connection. The TCT
connection is recorded even if the three-way handshake is not completed. This log also contains the number of
packets and bytes per conversation side. You will see when we cover SiLK, an open source network flow
program, on Day 5 it teo records similar data.

Bro's capability to correlate among captured logs can be assisted by using the command bro-cut to cut the fab
delimited fields by field name. Knowing other Unix commands such as "sort", and "uniq" (discussed on Day 6)
can greatly enhance your ability to correlate the output. Any log that contains tratfic records has a timestamp
an¢ data about source and destination IPs and ports. There are informational logs such as the
"notice_policy.log" and "packet filter.log" that reflect the configuration of Bro at the time of run that do not
contain traffic entries.

The UID is a shared generated value reflected in log entries for a particular session. You may see records with
the same UID in the "conn.log", a protocol log, and perhaps "notice.log” or any other log for that stream. Keep
in mind that traffic of interest may have several different associated sessions so it may not be possible to
discaver all the activity from a given attacker by using a single UID.

© 2015 Judy Novak 177

FTP File Retrieval Notice

more mynotices

#redef dpd_buffer_size = 10000 &redef;

#uncomment above statement for Bro to search 10000 bytes into packet/stream in
signature

module FTP;

event ftp_request(c: connection, command: string, arg: string)
{
if (command == "RETR")
NOTICE([$note=Weird::Activity, $msg="Found FTP retrieve file command",
$conn=c]);

Intrusion Detection In-Depth mynotices

First, let's prepare a script and signature. The seript is not necessarily for the LSASS exploit, however the
signature is.

Let's say that we have an existing script that raises a notice any time that FTP file retrieval occurs. The file
named "mynotices" contains the code to raise a notice. It sets up a module that we call "FTP". We’llusea
default note type of “Weird::Activity” and write out the message of “Found FTP retrieve command” and the
connection values to the “notice.log”.

There is a Bro event named "ftp_request" that we use to invoke that code. Conveniently enough, it has a field
known as "command" that examines the FTP command. This is exactly what we want. FTP translates a file
"get" request into the "RETR" command. When this is detected we write the “notice.log” output.

We’ll revisit the commented lines on the top of the script in a couple of slides.

178 © 2015 Judy Novak

Isass Sighature

- more attack.sig

signature lsass-from-44% {
ip-proto == tcp

src-port == 445
payload /.*lsass*/
event "Isass activity"

3

signature Isass-to-445 {
ip-proto == tep
dst-port == 445
payload /.*sass*/
event "lsass activity"

b

. Iatrusion Detecdon IﬁiDE‘.Pth.

Further suppose we have been concerned that there are published exploits for the latcst LSASS vulnerability.

We know that LSASS is associated with TCP port 445 known as microsofi-ds. However, we don't know if the

attack will be from or to port 445 and there is no way to designate both in a single signature so we write two

signatures to cover both server and client traffic.

The signatures are found in file named "attack.sig" that generates an event message in the "signatures.log” file

whenever the siring "lsass” is found anywhere in the payload. A message of "Isass activily" describes the

activity.

This is not a good signature since the string "Isass” is commonly found in port 443 traffic: meaning there would

be a Iot of false positives. This signature was created merely for demonstration purposes.

© 2015 Judy Novak

179

e ——

Run Bro Using attack-trace.pcap

T e
user@ﬁbéf: /tmp/broscri ptg; """" bm-s attack.sig -r attack-trace.pca;ﬂ """"""""""
mynotices
Is *log

conn.log ftp.log notice.log notice_policy.log packet_filter.log weird.log

NO SIGNALUres.|og? ==« === = rrrrmrmemeneneneiaain, e......

L - . APIPEALSESS. o fovvennnan | 99

"By default Bro stops matching on a connection after seeing 1K of payload"
redef dpd_buffer_size = 10000;

attack.sig

attack-trace.pcap
munntirac

Now, let's fire up Bro for a test run before we load our script and signature. We run Bro on the command line
using the attack-trace.pcap specifying the location of the signature and script file. We take a quick look at the
logs generated from the run and find that there is a "notice.log", but there is no "signatures.log". Although not
shown, the "notice.log" contains our notice with a message of "Found FTP file retrieve command", Yet, if we
look at Wireshark's reassembled output from one of the sessions, we do indeed see the string "lsass".

Further scrutiny of Bro's behavior default reveals that Bro examines the first 1024 bytes of the reassembled
stream only as indicated at https://www.bro.org/sphinx-git/frameworks/signatures.html. This is apparently for
performance efficiency, however it is important to be aware of this when creating signatures. In order to change
this default behavior, we need to redefine a value in the variable named "dpd_buffer size" in the script. We
select a value of 10,000 just to make sure that the signature fires this time. This redefinition was found as the
first commented statement in the script file "mynotices" file. Although not shown above, when Bro is rerun a
second time the statement is uncommented and a "signatures.log" is created with our message of “Isass activity".

+ Logs that are examined in the next set of slides are generated from running the Bro command on the slide.
These logs are not supplied in your demo files.

180 © 2015 Judy Novak

Let's Examine Our Event Output

L
cat notice.log | bro-cut -d ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto note
msg S : _ _ |
2009-04-19723:28:30-0400 hD4RIDVCIRI 68.114.205.102 1828
192,150.11.111 445 tcp Signatures::Sensitive_Signature
192.150.11,.111; lsass activity
2009-04-19T23:28:34-0400 ZfUIGvkzste 192,150.11.111 36296
98.114.205,102 8884 tcp Weird: Activity ~ Found FTP
retrieve file command

Intrusion Detection In-Depth

We use bro-cut to look at some selected "notice.log” data. We see that both the signature to find LSASS activity
and the seript to raise a notice upon seeing FTP file retrieval worked. These enfries serve to inform us of
nateworthy activity much like a Snort alert might do.

If you run Bro in production sniffing mode, this is onc of the first log files to examine since it contains notices
that have been raised that reflect notable activity, Entries in this log may have associated activity in other logs
that may help assess what has transpired.

© 2015 Judy Novak 181

conn.log and ftp.log

e —— =r==up
Lhm-;u . uui[djdlgdg“pjd;;égp_h_mesp =
2009-04-19723:28:28-0400 P6CAK1Xrzei 98.114.205.102 1821

192.150.11.111 445

2009-04-19723:28:30-0400 2MmnxQ9dP2 98.114.205.102 1924
192,150.11.111 1957

2009-04-19T723:28:28-0400 hD4RIDVCIRI 98.114.205.102 1828
192.150.11,111 445
2009-04-19723:28:33-0400 ZfUIGvkzs6e 192.150.11.111 36296

98.114.205.102 8884
2009-04-19723:28:34-0400 y05ArTaWpL7 98.114.205.102 2152
192.150.11.111 1080

cat ftp.log | bro-cut -d ts uid id.orig_h id.orig_p id.resp_h id.resp_p command arg
reply_msg
2009-04-19723:28:34-0400 ZfUIGvkzs6e 192.150.11.111 36296
98.114.205.102 8884 RETR ftp://98.114.205.102/./ssms.exe
Opening BINARY mode data connection

Intrusion Detection In-Depth

The "conn.log" and "fip.log" were also generated. The "conn.log" is generated by default when any new
connection is observed. The "fip.log" was created because FTP is a protocol that Bro understands and tracks and
was found in the traffic. We discover that we didn't even have to write a notice for the RETR command since
the FTP decoder logs it by default. However, our script raised a notice that placed an entry in the "notice.log"
(not shown) that is more likely to garner attention than the "ftp.log" output shown at the bottom. We see a
download of the file "ssms.exe" in the "ftp.log".

The "conn.log" is comparable to Wireshark's Statistics for TCP Conversations. This is often where we start
when examining some kind of activity in Wireshark. The "conn.log" provides a good overview of
connections/conversations,

We see the entries created in "conn.log" from the traffic. Look at the next slide for more specific information on
the connections.

182 © 2015 Judy Novak

Explanation of Some conn.log Fields

cat cann. log | bro-cut |d orzg_ id. Ol'lg,__p idd resp_h id, resp_p orig_ip hytes orlg_pkts
resp_ip_bytes resp_pkis conn_state history

58.114.205.102 1821 192.150.11.111 445 168 4 128
3 SF ShAraf

58.114.205.102 1924 192.150.11.111 1957 381 6 250
] SF ShAdDaFf

98.114.205.102 1878 192.150.11.111 445 4777 14 1590
17 RSTO ShADadR

192.150.11.111 36296 98,114.205.102 884 763 14 B5G
12 SF ShAdDCFaRf

9B.114.205.162 2152 192.150.11,111 1080 165083 | 159 4488
112 SF ShADaFf

SF - Normal establishment and tefmination, Note that this is the same syrabol
as for state 51. You can teli the two apart because for 51 there will not be any byte
counts in the summary, while for SF there will be. ...

RSTC - Connection established, originator aborted (sent a RSTJ._

Detection In-Depth

Continuing with the discussion of the fields displayed from the "conn.}og", let's evaluate a few more that give
some context about the connection, much like Wireshark does. You also can display data on source and
destination bytes and packets to get a general idea of the size of the acfivity in the connection. Also, there are
two fields conn_state and history that can assist you in understanding the TCF session state and session history.

Unfortunately these are not documented so the best place to look for the explanation of the fields is in the script
source code:

"PREFIX/share/bro/buse/protoceols/conn/main bro”

The conn state column has two particular values for this set of connections - "SH" and "RSTQ". These are only
two of the many states possible. The "SI™ reflects normal session establishment and terminatien. The "RETO"
indicates that the originating host sent a RESET to abort the connection,

Like the Wireshark conversation summation, we see an anomaly in the final entry in "conn.iog". There were
165088 bytes sent by 98.114,205.102. That was what stood out in Wireshark that caused turther investigation
when we examined this same traffic on Day 3.

The history values are explained on the next slide.

® 2015 Judy Novak 183

Explanation of conn.log history
Column Value

ShAdDaFf history

98.114.205.102.1924 > 192.150.11.111.1957: Flags [S], length 0
192.150.11.111.1957 > 98.114.205.102.1924: Flags [S.]ack, length 0
98.114,205.102.1924 > 192.150.11.111.1957: Flags [.], ack, length 0
192.150.11.111.1957 > 98,114.205.102.1924: Flags [P.],ack, length 1
98.114.205,102.1924 > 192.150.11.111.1957: Flags [P.],ack, length 123
192.150.11.111.1957 > 98.114.205,102.1924: Flags [.], ack, length 0
98.114.205.102.1924 > 192.150.11.111.1957: Flags [P.],ack, length 10
192.150.11.111.1957 > 98.114.205.102.1924: Flags [.],ack, length 0
192.150.11,111.1957 > 98.114.205.102.1924: Flags [P.],ack, length 1
98.114.205.102.1924 > 192.150.11.111.1957: Flags [F.],ack, length 0 F
192.150,11.111.1957 > 98.114.205.102.1924: Flags [F.],ack, length 0 f
98.114.205.102.1924 > 192.150.11.111.1957: Flags [.],ack, length 0

o Uo » ow

Intrusion Detection In-Depth

Probably the best way to explain the history values seen in this "conn.log" for a selected session is to view the
tepdump output for that same session. Output field values pertinent for this discussion are displayed from
tepdump. Look at the second connection found in "conn.log" with a history value of 'ShAdDaFf. Any letter that
is upper case represents the originator of the session and any letter that is lower case represents the recipient.
For this discussion, 98.114.205.102 (bolded) is the originator and 192.150.11.111 (underlined) is the recipient
for packets that have a history value. You see that any packet from 98.114.205.102 has a history value in upper
case while traffic from 192.150.11.111 is represented in lower case.

Consult "PREFIX/share/bro/base/protocols/conn/main.bro" for full explanations of all possible values. The "S"
indicates the originator sent a SYN; the "h" indicates that the recipient responded to establish a session. The "A"
represents an acknowledgement by the originator, the "d" data sent by the recipient, "D" data sent by the
originator, "a" an acknowledgement by the recipient, and the "F" and "f" - a FIN by the originator and recipient
respectively. It appears that there is a single entry for each history state though there may be multiple instances
of each in a session. There is a single entry for data sent and acknowledged although there are multiple packets

representing that state.

This is a little esoteric at first, but it does convey the history of the connection very concisely. Using this in
conjunction with the conn_state value for the connection, you get an abbreviated representation of the progress
of the state throughout the session.

184 © 2015 Judy Novak

Search for Large Byte Transfer
Using UID

“conn.iog: 1240198113.457215 ZfUlGvkzsée 192.150.11.111 36296
98.114.205.102 8884 tp fip 11.13659177 214 SF
i 2 ShAdDCFaRf 14 763 12 850

(empty)

fip.log:1240198114.384010 ZUIGvkzsbe 152,150.11.111 36296
98.114.205.102 8884 1 <hidden> RETR
ftp://98.114.205.102/ /ssms.exe - - 0 150

Opening BINARY mode data connection - -

potice.log: 1240198114.384010 ZiUIGvkzs6e 192.150.11.131 36296
98.114.205.102 8884 tcp FTP::FTP_RETR Found FTP
retrieve file command - 192,150,11.111 38.114.205.102
8884 - bro Notice: |ACTION_LOG 63600.000000 F

|
|

JInrrusion o .

Let's cxamine the session with the large data transfer by its UID "Z{UIGvkuzs6e". We use the Unix grep
command to find all occurrences in any file that ends with "Jog”. We see activity in the "conn.log" and
"fip.log" as previously shown, along with the "notice.log™.

© 2015 Judy Novak 185

Revisit conn.log

-
2009-04-19T23:28:28-0400 P6CAK1Xrzei 98.114.205.102 1821 @
192.150.11,111 445 ShAFaf 1684 128 3
2009-04-19T23:28:30-0400 2MmnxQ9dP2 98.114.205.102 1924 @
192,150.11.111 1957 ShAdDaFf 38162506
2009-04-19T23:28:28-0400 hD4RIDVCIRI 98.114.205.102 1828 @
192.150.11.111 445 ShADadR 4777 24 1590 17
2009-04-19T23:28:33-0400 ZfUIGvkzs6e 192.150.11,111 36296
98.114.205.102 8884 ShAdDCFaRf 763 14 850 12
2009-04-19723:28:34-0400 y0SArTaWpL7 98.114.205.102 2152
192.150.11.111 1080 ShADaFf 165088 159 4488 112
2009-04-19T23:28:30-0400 hD4RIiDVCIRI 98.114.205.102 1828

192.150.11.111 445 tcp Signatures::Sensitive_Signature
192.150.11.111: Isass activity

2009-04-19T23:28:34-0400 ZfUIGvkzs6e 192.150.11.111 36296 @
58.114.205.102 8884 tcp FTP::FTP_RETR Found FTP
retrieve file command

Intrusion Detection In-Depth

We cannot get the level of detail from Bro as we do from Wireshark about the exact nature of the activity. But,
remember that Wireshark requires full packet capture that may not be available or available for long. Bro, less
detail available yet, it efficiently employs a compressed format for storage of logs that may allow you to retain

them longer. You'll see when we cover SiLK that Bro is a compromise between the bulk of full packet capture
and space saving SiLK flow that omits many of the relevant details.

Let's go through the "conn.log" to see if we can get a sense of what transpired. (1) At 23:28:28 we see that
98.114.205.102 connects to port 445 of 192.150.11.111. No data was exchanged using the history value since
there isno "D" or "d" and the byte and packet count account for bytes in the IP and TCP headers only. (2) Next,
98.114.205.102 connects to 192.150.11.111 on port 1957. You can observe that some data is exchanged, but
not much as reflected in 381 bytes by 98.114.205.102 and 250 by 192.150.11.111. What is interesting is that
the protected network/honeypot host is now listening on port 1957.

(3) Again, 98.114.205.102 connects to port 445 of 192.150.11.111, but this time more data is exchanged and we
see on the bottom of the slide that there is an entry in "signatures.log" that triggered from the Isass activity. (4)
192.150.11.111 connects to port 8884 of 98.114.205.102 and the event notice fires on FTP file retrieval. (5)
Finally, 98.114.205.102 connects to port 1080 of 192.150.11.111 where 98.114.205.102 sends 165088 bytes of
data.

We would have a hard time summarizing what transpired with the same granularity provided by full packet
capture. Yet, we get a sense of the activity especially if the "notice.log" contains what we consider significant
activity to investigate as a starting point.

186 © 2015 Judy Novak

Snort Plus Bro

Snort alerts plus Bro's connection history

Snort alerts in isolation

— No context about what transpired before or after alert

Bro records abbreviated data about all connections

- Supplied event scripts don't detect malicious traffic

— Ne default signatures supplied
Together they tell a better story

We will discuss on Day 35 the concept of an alert-driven sensor versus a data-driven sensor. In a nutshell, Snort
in NIDS mode represents an alert-driven sensor that generates alerts of notable traffic. Bro represents a data-
driven sensor that can be configured to generate signature output or notices of interesting or malicious traffic.
Yet it captures additional network forensic data by recording each connection, Additional analysis must be
performed to discover or alert on interesting traffic.

Snort can fnd malicious traffic, yet does not give much context to a given alert. You know something
happened; you have an artifact of the traffic characteristics, but you do not know what happened before or after.
Sometimes an isolated alert gives you cverything you need to know, Snort alerted on the LSASS malware, but
did not have a signature to alert on the subsequent FTP download.

Bro was able to detect traffic for the signatures and events that were available or created, but there was really no
indication that these were important events. We could have raised a notice that would have assigned a priority
to customize our script, but not our signature. The events included with Bro do not necessarily highlight
malicious tratfic. As we saw, events like Bro initialization and close are informational triggers for 4 user script.

Yet, Bro had an outline about the connection history before and after the Snort alert traffic. In a sense, ittells a
story. Combining Snort that identifies alerts in isolation, and Bro that collects a history of connections can give
you a more complete story.

We concluded earlier in the course that using both tepdump and Wireshark together enhances analysis
capabilities. Similarly, using Snort and Bro together enhances detecticn and tracking capabilities.

@ 20156 Judy Novak 187

Introduction to Bro

Workbook
Exercise: "Introduction to Bro"
Introduction: Page 35-D

Questions: Approach #1 - Page 36-D
Approach #2 - Page 40-D
Extra Credit - Page 44-D

Answers: Page 46-D

Intrusion Detection In-Depth

This page intentionally left blank.,

188 © 2015 Judy Novak

Bro Good Reading

¢ Online Bro documentation
— hittp://bro.orgf/documentation

» The bro "doc" directory

s+ NEWS file

* Man page

e Mailing list:
http://maiiman.icsi.berkeley.edu/mailman/listinfo/bro

siop Detection In-Depth

Online documentation can be found at the links mentioned above. There are some files in the "doc" directory
that may be helpful as well as a "NEWS" file in the install directory telling of new features. There are man
pages available and a mailing list.

@ 2015 Judy Novak 189

Review: Open Source IDS:

Snort and Bro

» Operational lifecycle provides framework for product
deployment
* Detection should be the most visible and configurable phase
of processing for the analyst
- Must present a "language" to analyst to manipulate detection
« Snort's language is its rules
» Bro's language is its scripting
e Snort is alert/signature-driven with little known context of
traffic

* Bro is event-driven with built-in traffic context via
connection logs

e Bro has a policy neutral philosophy

Inttusion Detection In-Depth

First the operational lifecycle was examined to provide the foundation for the tasks necessary to run production
software. We carried these steps forward to apply them to deploying Snort and/or Bro. Detection should be the
most visible and configurable phase of processing for an analyst, requiring a "language" to offer the user to
manipulate the detection process. Snort has a rules language while Bro has its own scripting language.

You sampled the use of two different open source IDS solutions — Snort and Bro. They both provide methods
for traffic analysis, though in different ways. Snort is primarily rules-based as the means of detecting important
activity via alerts that give details about the packet/stream when a rule triggers. Most of the time this is the only
traffic recorded therefore a notion of context — what happened before and after the alert - is generally unknown
using Snort alone.

As you've seen Bro takes a different approach to traffic analysis. It uses built-in events as entry points for the
user to write scripts for the associated activity. Events themselves do not necessarily reflect malicious activity.
The scripting language has the same processing capabilities as other high level languages, yet is unique in that it
was created with the intent of performing traffic analysis. This makes referencing and analyzing different layers
of protocols and their associated fields much more natural rather than using some retrofitted libraries to do so.
And, Bro is able to give context to its analysis in the form of a connection log. It is described as a framework
for network analysis, intending to provide more than just isolated notifications of activity.

Bro strives to be policy neutral. It encourages the user to assign a notion of importance to notifications. This
permits a site to customize the assessment of activity in accordance with its standards.

Both Snort and Bro are remarkable open source tools that supply excellent intelligence of network activity,
especially when customized properly. They both have strengths that can help you determine which is more
suitable for your network. If resources permit, deploying them both provides you with alert-driven and event-
driven data relating a more complete story.

190 © 2015 Judy Novak

~ Intrusion Detection In-Depth

This page intentionally left blank.

® 2015 Judy Novak 191

Installation

Intrusion Detectdon In-Depth

This page intentionally left blank.

192 © 2015 Judy Novak

Getting Started with Snort

» Main web site for Snort is at http://www.snort.org

» Downloading Snort

Source tarball for *nix

Linux .rpm format

Win32 self-extracting executables

{

Solaris/FreeBSD/OpenBSD packages and other versions available for
download but from other sites

e

To get up and ronning quickly with Snort, start by downloading the software from www snort.org. There arc a
variety of binary packages available, including Linux rpm format, and Windows executables with integrated
installers.

If possible, the recommendation is to install from source code since that assures that you have the most current
version and that you can compile optional features if you so desire. Also, it is best to download libpeap from
tepdumnp.org and install it from source as well if not atready installed.

® 2015 Judy Novak 193

Preparing to Install
Snort - *nix

= May have to install libpcap first

- If you're running tcpdump, you already have it

— Otherwise, get it from http://www.tcpdump.org

* Snort versions 2.9+ must install Data Acquisition(DAQ)
library

— Requires libdnet to be installed:

— Download daq from:
https://www.snort.org/downloads

Intrusion Detection In-Depth

The Data Acquisition Library (DAQ) essentially detaches Snort from the software that acquires the packets.
This permits the use of any acquisition software, although libpcap is the most common and default for DAQ.

Libpcap is a system-independent portable framework for sniffing network traffic. So you may need to get it and
install it if it isn’t already installed and you decide to stick with the default library. Most operating systems
come with libpcap already installed. You will also need gce to compile both libpeap and Snort.

DAQ requires libdnet that facilitates low-level networking operations to be installed. The most current version

can be found at:

http://code.google.com/p/libdnet/downloads/detail ’Tname=libdnet-1.12 tgz&can=28&q=

Once the prerequisite software is in place, get and install the DAQ from:

https://www.snort.org/downloads

194 © 2015 Judy Novak

Snort - *nix

Create a directory to store Snort files

—~ Recommendation is that it not have the Snort version number in it
like /usrfiocal/etc/snort

Grab the Snort tarball from www.snort.org

Unpack the tarball as normal:

tar -zxvf snort-Z.#.#.%.tar.gz

Many build-time options available

Build phase

./configure; make; sudo make install

~ Inrrusion Detection In-Depth

First create a directory 1o store all files associated with Snort. The recommendation is for the directory name to
be version neutral, something like "Aust/local/ete/snort”. The reason for this is that it makes use of the automaled
rules updating program Pulled Pork simpler. Otherwise, you might end up with a lop directery with a Snort
version number that doesn't match the version number of the code and rules of its subdirectories. [t might be
easiest to create a directory of "usr/ocal/ele”, place the version download in there and rename it to “snort”.

Here is how.

Fetch the download file from the Snort site http://www.snort.org and place it in your new dirsctory
"fusrflocal/ete”. There is a gzip’ed tarball named something similar to "snort-2.# # #.tar.gz". The “##.#"
should be replaced by the latest version of Snort 2, Next, execute “tar —zxvf snort-2.#f.# #.tar.gz”. Tt will create a
"snort-2.#.##" directory and load all the contents into it. Rename that directory to "snort" to get a more generic
name for fulure upgrades, At this point, change directeries to the snort ditectory,

You might discover that you need to change the default configuration if you wish to enable some of Snort's
features such as debugging and performance prefiling or monitoring. All build-time options are available by
running the “/configure —help™ option. As well, there is a file named INSTALL in the doc directory that
describes build-time options.

Onee you've decided on the build-time options prepare the installation by running “/configure” with sclected
build-time options. Next compile the code with the “make” command. And, finally, install Snort in system
directories with “sudo make install”. 1f all gocs well, Snort is {ully instailed and ready to run.

© 2015 Judy Novak 195

_—

Snort Rule Distribution

e Snort rules are downloaded separately

¢ Different rule sets to consider:

Subscription: Paid service offering VRT rules

Registered: VRT rules, 30 days late

Community: Rules written by community

|

Emerging Threats: Commercial and open source rules

Intrusion Detection In-Depth

One important point to remember is that Snort rules are distributed separately from Snort code. There are several
ways to stay current on rules after you download your initial set of rules. A set of rules known as the Vulnerability
Research Team (VRT) certified subscription rules is written by Sourcefire/Cisco employees after learning of
threats, creating applicable rules, testing those rules for effectiveness and efficiency, and finally releasing them.
These are high quality rules from researchers who do this type of work for a living. These are available to paid
subscribers upon release. The registered rule set is the same as the subscription rule set, available at no cost to
users who sign up for the rule set, but 30 days after the subscription users receive those rules. You'll need to sign
up for a Snort account at http://www.snort.org/users/sign_up to access these rules.

Another option is the community rule set that requires no subscription, is free, and available to anyone at the time
of release. These rules are released on a daily basis under the auspices of Sourcefire/Cisco at the same site offering
the subscription and registered rules. Users can submit rules and get credit for their submissions to this rule set. In
addition, VRT examines these rules to make sure that they conform to VRT rule conventions and do not contain
any obvious egregious flaws such as those that will be a big burden on processing. However, the accuracy of these
rules is not validated. This community rule set must be downloaded separately from the licensed rule set.

The community rule set is reminiscent of the early days of Snort when user-contributed rules were common and
encouraged. This stopped when Sourcefire began the subscription/licensed versions of the rule set. They
understood that the rules had to be of the highest quality to be offered to the paying subscribers. User-contributed
rules were, at times, inaccurate and inefficient. But, it appears after a multi-year hiatus the concept of user-
contributed rules is back.

In the years after Snort went to the subscription-based releases, the active user community felt alienated. An
outside group, started as bleedingsnort.org, now Emerging Threats was formed to be an alternate public repository
for community rules. They now too have a commercial and open source offering of rules.

196 ©® 2015 Judy Novak

Currently, snort.org manages the rule distribution from repositories. It should be noted that it's not good
practice to Jet your rule sets get stale, The VRT rulc scts have end of Tife policies where older versions will no
longer be available or supported.

© 2015 Judy Novak 197

Installing Rules

» Download rule sets

» Uncompress the rule set in the parent Snort directory:

Jusr/local/etc/snort# tar -zxve snortrules-snapshot-####.tar.gz

Intrusion Detection In-Depth

Download Snort rule sets from the current website. The repository has changed locations many times recently
and may change again due to the Cisco acquisition. So rather than give out misinformation, it is probably best to
do an Internet search for "snort rules" until the Cisco purchase settles and websites converge or remain the same.

Move these rule sets into the parent Snort directory and uncompress the package. For instance, suppose you
decided to house Snort's files in "/usr/local/etc/snort" — the same directory as your code and configuration files.

/usr/local/etc/snort# tar —-zxvf snortrules-snapshot-####.tar.gz

This will uncompress the Snort rules file into a created directory called "rules" for conventional rules and
another called "so_rules" for shared object rules that we will soon discuss. You are now ready to reference them
in your "snort.conf" configuration file.

198 © 2015 Judy Novak

Shared Object Rules

» Precompiled binary rules
~ Detect exploits with binary code

— Obfuscate the source code for the rule
« In order to provide coverage for zero day exploits that Sourcefire/Cisco
learns

+ Done ta protect confidential IP

.. Intrusion])

Snort has been using shared object riles since the 2.6 version to detect a multitude of attacks. These
precompiled binary rules provide protection, say for instance against a zero day attack, without overtly
publishing the details of these vulnerabilitics, There are also times when Sourcefire/Cisco has a contract with a
research company or vendor, such as Microsoft, to learn of new vulnerabilities. An agreement permits
Sourcefire/Cisco to write a detection rule for a vulnerability, but not expose the details of the 3/ party’s
intellectual property.

A good example of when shared object rules arc used is when a zero-day attack exists with no known palch, A
regular rule might give enough insight about the attack that other skilled individuals might be able to determine
the nature of the vilnerahility and perhaps write more or better exploits.

® 2015 Judy Nevak 199

S.0. Rules and What They
Mean to You....

» Additional installation steps:

- Create a system directory to house dynamic rules/shared object
modules

mkdir /usr/local/lib/snort dynamicrules

- Copy the appropriate precompiled modules for your
OS/architecture/Snort version to the system directory

cp mysnortdir/so_rules/precompiled/
Ubuntu-10-4/1386/2.%.#.4* .50

Jusr/local/lib/snort_dynamicrules/
 Snort currently ships with precompiled rules for:
- Various Linux distros
— BSD’s

Intrusion Detection In-Depth

As previously mentioned, one of the first things to do after you have compiled and installed Snort is to go get the
rules tarball and uncompress it in your Snort install directory. This will create a "rules" parent directory with
regular rules subdirectories as well as a parent "so_rules" directory with the shared object rules and associated
executable for each rule.

If you take a look around at the "so_rules" directory you'll see several files that end in *rules containing the
actual shared object rules. We will learn more about conventional rules and their syntax and keywords in an
upcoming section. If you look at a shared object rule, it looks different than a regular rule. Specifically, it has a
metadata tag of "engine shared" and a "soid" — a shared object number identifier. These rules call code from the
shared object library directory that you'll create. By default, Snort expects to find the shared object rules code in
the system directory "/usr/local/lib/snort_dynamicrules"; make sure it exists or configure the "snort.conf" file to
designate a different location should you decide to create and use a different one.

The subdirectory named "precompiled" under the "so_rules" directory contains the actual binary code for the SO
rules. Navigating to that directory, you will discover the list of supported operating systems precompiled
modules. There may be several subdirectories beneath each with the system architecture and Snort version. For
instance, say you'd like to use the precompiled shared object rules for Ubuntu-10.4. Change directories to
"Ubuntu-10-4" and you'll find support for 32 and 64-bit architectures. Let's say we're using a 32-bit machine so
we select "1386" and find support for various Snort versions. We're using version 2.###. If you look in this
directory, you'll find various modules ending in ".s0". Make sure that this version number is the same as the
Snort release number you just installed, otherwise you'll end up with an error and Snort will not run, If you don't
find precompiled rules for your OS, it is possible others may work.

The final step is to copy all these modules to the system directory where the Snort configuration file expects to
find them. We use the default of "/ust/local/lib/snort_dynamicrules"”.

200 © 2015 Judy Novak

Configuration

Intusion Detection Tn-Depth

This page inlentionally left blank,

© 2015 Judy Novak 201

—_—

Configuring Snort As an IDS

Possible snort.conf configuration changes:
1. Set the network variables

2. Configure the decoders

3. Configure the base detection engine

4. Configure dynamic loaded libraries

5. Configure preprocessors

6. Configure output plug-ins

7. Customize your rule set

8. Customize preprocessor and decoder rule set
9. Customize shared object rule set

Inttusion Detection In-Depth

This section will cover in-depth configuration of Snort and the "snort.conf" file for use as a network IDS or IPS.
The configuration file is the main mechanism to define and modify many options available in Snort.

Examine the "snort.conf" file. It lists nine tasks to perform to customize Snort for your network. Tt is possible
to use the default configuration for all the steps; you don't need to perform any configuration to get Snort to run
if it is properly installed. However, you may end up with a configuration that is not suited to the needs of your
site. The "snort.conf" file is fairly liberal about its configuration, meaning that it might include preprocessors
and rules that you do not need. This can lead to more meaningless alerts.

So, itis a good idea to peruse "snort.conf", read the comments, and make some changes for your network. This
can be an iterative refined process of making minor initial changes, such as defining the protected network IP
addresses, running Snort, and tuning the configuration as you become more familiar with Snort and your
network traffic.

Another good practice is to record any changes you make in "snort.conf". Perhaps you have some software that
facilitates it. At a minimum record the changes in some file or better yet, make comments in the "snort.conf"
file itself. Make sure you maintain and copy any comments you make to upgraded versions of Snort with a new
"snort.conf". Before you begin making any changes, it might be helpful to copy the "snort.conf" file to a
renamed one in the same directory in case something goes horribly wrong.

202 © 2015 Judy Novak

Step 1: Set the Network Variables (1)

Format:

var <variable name> <value>
portvar <variable name> <[portg]l>
ipvar <variable name> <{IPs]>

To reference, place '$' in front of variable name
ipvar HOME_NET 192.168.5.0/24

alert tcp any any -> S$HOME NET 6666 (msg: "IRC
contection”; sid: 1131111 ;)

If variable is not defined, but called from a rule, Snort
will die at run fime

hsion Deecion To-Dept:

The use of variables allows you to make simple changes that affect an entire rule set, for instance. Let's take the
example of defining a HOME_NET valuc. The HOME_NET variable is a special one that identifies the
protected network(s). It is assigned a default value of "any” in "snort.conf", meaning (hat any and all networks
are considered protected. This value is supplied as the default so that Snort can run with no user alterations to
this or any other value. Later, hopefully, when a user hecomes more familiar with Snort, more appropriate
values can be set.

A variable is defined in "snort.conf" by using the variable name followed by its value(s). For instance, suppose
you wanted to assign the variable SSH_PORTS the values of 22 and 2222. This is accomplished with "portvar
SSH_PORTS [22, 2222]". When a variable {s referenced, it requires a dollar sign in front of it as JHOME NET
shown in the slide.

The variables "portvar" and "ipvar” have special meaning and reference port numbers and IP addresses
respectively. Other variables that arc defined ave prefaced with the keyword "var". You must define the
location of the tules in "snort.con™ such as "var RULE_PATI! ,./rules” indicating that the rules are located in a
directory named "rules” above the location of “snort.conf™.

You must have a variable definition prior to any variable being referenced in a configuration or rule filc. If you
don't, the Snort process will die at run time.

© 2015 Judy Novak 203

——
Step 1: Set the Network Variables (2)

“
Set protected network value to 10.1.1.0/24

Specify at the command line with the -S option:

snort -5 HOME NET=10.1.1.0/24

Specify in snort.conf

ipvar HOME NET 10.1.1.0/24
ipvar HOME NET [10.1.1.0/24,192.168.0.0/16]
ipvar EXTERNAL NET !$HOMEWNET

Intrusion Detection In-Depth

You define a variable in "snort.conf" (usually at the top of the file) and the variable value will be substituted
wherever referenced in the configuration file and any included rule files. A second option is to assign variable
values on the command line. This avoids hard-coding the value so it is more flexible, but you have to remember to
always assign a value if this is the option you chose, whereas "snort.conf" needs to be configured a single time.

If you assign both a command line value and a configuration/rule set value to the same vari able, the variable
defined on the command line value is used. The command line option of setting variable values is mostly used for
testing or debugging purposes.

If you were to use the command line option of assigning HOME NET a value, you would use the format of "-S
HOME_NET=10.1.1.0/24" where the variable and value are separated by the equal sign with no intervening
spaces. This is not the recommended place to configure the value, however it makes more sense to employ if you
are doing some kind of testing and don't want to alter "snort.conf".

Setting HOME_NET in "snort.conf" is accomplished by placing the following entry in "snort.conf" "ipvar
HOME_NET 10.1.1.0/24" where ipvar is a reserved word that represents one or more IP addresses. A comma
separates values when defining multiple values and right and left brackets surround the values. There are variables
other than HOME_NET in the "snort.conf" file that have ipvar settings, such as DN S_SERVERS and
SMTP_SERVERS.

Another important ipvar variable setting is EXTERNAL NET. It represents any network that is not the
HOME_NET — in other words, any network that is not protected. It is typically set in "snort.conf" with a value of
"ipvar EXTERNAL _NET !$HOME_NET". The "!" or bang indicates "not" so EXTERNAL NET is any value
that is not in the HOME_NET setting to designate all other networks other than your protected one(s).

204 © 2015 Judy Novak

Step 2: Configure the Decoders

« Decoders parse packets to discover underlying layers and
protocols

» Also looks for some anomalies in the protocols
» See doc/README.(decoder name), i.e. README.stream5

— Describes what a decoder is

- How to configure a decoder
— Lists all decoders that can be used
» Examples:
config enable_decode_oversized_alerts
config disable_tcpopt_alerts

Intrysion pg'tétt'io.n I.ﬁ—DEpth

Decoders parse packets as they are ingested and break them apart by their underlying protocols such as IP, TCP,
etc. and analyze them. They examine the packet according to protocol specifications to determine if there are
any anomalies discovered. They can potentially alert on these anomalies, if so configured.

The best place to learn more about decoders is to look at the “doc” subdirectory in your “snort” directory. [t
describes in more detail what a decoder is, how to configure a decoder, lists all the decoders available, and gives
Snort 1D numbers for each of the decoder options. Speaking of the “doc” directory — take a look at all the
README filcs found in it. They are an excellent source of information that may not be found elsewhere.

Some decoders come enabled by default and can be disabled in "snort.conf”. Conversely, some come disabled
and may be enabled. You may alsc find decoders that are commented out that either enable or disable a particular
decoder if uncommented. Take for example enabling alerting for packets that contain length ficlds that are
greater than the actual number of bytes that follow -- like an [P datagram that doesn't contain the nuinber of bytes
indicated in the [P header datagram length. This decoder comes enahled with "config

cnable_decode oversized alerts”. Ancmalies with TCP options are enabled by default and can be disabled with
"config disable_tcpopt_alerts”.

This is where to indicate that you want Snort to run as an [PS. Inline mode can be specified with the directive
"config dag_mode: inline”. A DAQ "type" must also be configured; options for inline mode include "afpacket”,
"nfg", "ipfw", and "dump". See the Snort User’s Manual for a more comprehensive description of these types.

[l

© 2015 Judy Novak 208

Steps 3 and 4: Configure Base Detection
Engine and Dynamic Load Libraries

» Customize configuration values found in snort.conf
under "Step 3" for post packet and preprocessor
inspection

config profile rules: print 10, sort avg ticks

e Indicate directory locations associated with dynamic
processing for shared object rules in "Step 4"
~ Code for SO preprocessing
— Code for SO engine
— Code for SO rules

dynamicpreprocessor directory \
/usr/local/lib/snort_dynamicpreprocessor/

Tntrusion Detection In-Depth

We've combined steps 3 and 4 in this slide since they require minimal configuration. The base detection engine
configurations apply to processing after passing through packet and preprocessor phases, but before the rules
detection phase. These decoders define some parameter values for rule detection such as the search algorithm to
be used in parsing payload and performance monitoring behavior when enabled. The configuration options for
the base detection engine are listed in "snort.conf" following the comment "Step #3". The comment says that
information can be found in README.decode, however the values listed in "snort.conf" are not found there, but
can be found in other README files in the same directory. Grep for a particular configuration option name in
the snort "doc" subdirectory to find the specific README file.

The sample base detection engine "config profile_rules: print 10, sort avg_ticks" enables rule performance
monitoring, printing the top 10 rules based on the highest average time. This will display the top 10 worst
performing standard Snort rules. This is helpful when you have performance problems and would like to see one
or more rules that might be responsible for the problem,

There are three directories associated with the shared object rules under "Step #4". The first contains files for
preprocessing associated with SO rules in general, the second is the actual SO engine code files, and the third
contains code for each of the individual SO rules.

For instance on a Linux install, the default directories created when you install Snort are:
{usr/local/lib/snort_dynamicpreprocessor

fusr/local/lib/snort_dynamicengine

/usr/local/lib/snort_dynamicrules

The first two directories are populated when you install Snort. The rules related directory is populated with the
appropriate *.so files that you copied during the rules installation process.

206 © 2015 Judy Novak

Step 5: Configure Preprocessors

« Preprocessors allow Snort to analyze and manipulate
packets in many ways

Traffic normalization, IP fragmentation reassernbly, TCP stream

reassembly, etc.

Preprocessors execute in the order that they're referenced in the file

|

This meahs protocol level preprocessors should be specified before

application level ones

Preprocessor argument formats are unigue to each one; read the
comments in the snort.conf file for the appropriate syntax

strusion Detection In-Depth -

Preprocessors allow Snort to examine and manipulate network traftic data in many ways. Preprocessors that
ship with Snort can do a variety of tasks such as [P defragmentation, portscan detection, oi web traffic
normalization. These preprocessors are different than the dynamic preprocessors that apply only to shared
object rules and code.

Preprocessors arc run in the same order that they appear in the configuration file, so that means that they
should be Tun in order of the network layer at which they operate. For instance, if an IP fragment shows up, it
should be handed to the defragmenter before it is handed to the TCP stream reassembler, because the packet
could potentially be defragmented into a TCP packet that necds to be examined by the stream reassembler.
Snort hands fully decoded packets off to the preprocessor system before forwarding them to the detection
engine.

There are cormments in "snort.conf" that give you an idea of the function of a given preprocessor and its
configuration options. The "do¢/README" files contain some additional valuable information on particular
preprocessors,

© 2015 Judy Navak 207

T e e ———

Preprocessor Configuration Example

Format:

preprocessor <name>:<arguments>

preprocessor streamb_global: max_tecp 8192, track tcp
yes, track udp yes, track icmp no

stream5 tracks 8192 concurrent TCP sessions, tracks TCP and UDP,
but not ICMP

Intrusion Detection In-Depth

Let's examine how to configure a particular preprocessor. Preprocessors are compiled into Snort at build-time
and are inactive in the code until turned on at run time with a preprocessor directive in the "snort.conf" file.
These directives activate and configure the preprocessors with run-time arguments unique to each individual
preprocessor.

Preprocessor configuration is pretty basic. The preprocessor directive instructs the configuration system in
Snort to search its available list of preprocessors for the name that follows the directive. If that name is found,
the preprocessor’s initialization function is called and handed the argument list that follows the colon. At this
point the preprocessor is configured and is added to the preprocessor execution list inside Snort.

The stream5_global preprocessor establishes the parameters associated with stream reassembly for all traffic.
These parameters and values define a maximum of 8192 concurrent sessions, and statefully track TCP and
UDP, but not ICMP.

When a particular preprocessor is compiled into Snort but not activated there is no CPU overhead at run-time
for leaving this preprocessor deactivated; it can be considered to be dead code.

208 © 2015 Judy Novak

Step 6: Configure Output Plug-ins

» Specifies alert and logging plug-ins to be used
» Several may be specified

» Options found in snort.conf:
— alert_unified2
- log_unified2
— unified
— syslog

puiput alert unified2: filename snort.alerts, limit 258

output log _unified?: filename snort.logs, limit 256

Creates 2 binary data spools on the drive
Rotates them when they hit 256 megabytes

Intrusion Detectlon In-Depth

Snort used to try to process the output it generated, say for instance, by writing it a database. This further
burdened a Snort sensor with an additional job of dealing with output issues as well, Eventually, the output
process was separated from Snort's primary functions of sniffing data, parsing it, and alerting on it. The output
plug-ins direct Snort what to do with alerts and log data.

A process known as "unified2" writes alerts, packets, and optional data to disk in binary format. Binary format
takes up less spacc than ASCIL. The unified2 process creates a standard format for the output file. You may be
wondering what vou do with this unique unified? formatted file. There are programs such as Bamyard2 that
ingest and parse the data to prepare it for further processing, such as storing it in a database. Unified? includes
three different operation types: alert logging, packet logging, or both, The alert unified2 output plug-in writes
alerts to the unified? file defined in the configuralion., The log unified2 captures the entire packet associated with
an alert and writcs it to the unified? file, And, unified2 alone performs logging both packets and alerts.

In out example, we configure the output of our alerts and logs to unified?2 format. We name the files and rotate the
logs every 256 MB, Each unified? file has a name that includes a timestamp reflecting the time when logging
began.

® 2015 Judy Novak 209

210

Step 7: Customize Your Rule Set (1)

» Select rules for protocols supported on the network
e Create you own rules in local.rules

* Use include statements in snort.conf

Intrusion Detection In-Depth

The "snort.conf" file uses the word “include” to indicate which of the many rule set files to include. Some of the
include statements are commented out to give you the option of including them only if you determine you need
them. You need to examine the rule files that are included as well as those commented out. The file name
indicates the category of rules found in the given file. Examine these selections in context of the type of traffic
that you run on your network. For instance, there is a “web-iis.rules” file for Microsoft’s Internet Information
Services (1IS) web server that includes, as you would expect, all the rules associated with IIS. If you run IIS,
make sure they are included - otherwise make sure they are commented out.

As well, if you would like to write your own rules, the “local.rules” file is considered the best location for them.
When rules are updated using software such as PulledPork, the local.rules file is left untouched. If instead you
add a rule that you wrote to one of the Snort rule files, you run the risk of it disappearing with the next
automated rules update.

© 2015 Judy Novak

Step 7: Customize Your Rule Set (2)

o A

+ RULE_PATH is a variable set in configuration file that
indicates where rules are found, default value:

var .RU]f__E_PATH. . frules

Absolute paths must be specified if the files aren't in the
same directory as the referencing file

"include™ can be placed in any configuration/rule file

N
N
Q0
Q
=
o
o
o
T
S
=)
=
v

include <filename>
Examples: _
include $RULE PATH/web-cgi.rules
: i_ncludé_ Jetefsnort /customi zed/rpc.rules

-

' Intrusion Détection In-Depth

The "snort.conf” file sets a default rules directory called “RULE_PATH” with a relative value of “../rules™
This is relative to the configuration file — in this case wherever the "snort.conf” file is located, by default in
Snort's "ete” subdirectory. If the rules directory cannot be defined in relative terms, or you prefer, supply an
absolute name as the path directory.

The reserved word "include” simply loads the file at the point where the include is declared. 1f you've
programmed in C, this should be a familiar concept of including the contents of the specified filc at the
location where it is referenced in the current file. Includes are usually used in the "snort.conf file only to
include rules files or local configuration file, but they may be used in any Snort configuration or rules file.

The format of the include is very straightforward. In the first example the default relative path found in
SRULE_PATH is used in the include for “web-cgirules”. In (he second example, an absolute path is used to
identify the location of the “rpec.rules”.

© 2015 Judy Novak 211

Step 8: Customize Preprocessor,

Decoder, and Sensitive Data Rules

* Another set of rules associated with preprocessors,
decoders

* Located in preproc_rules subdirectory in snort directory
— preprocessor.rules
— decoder.rules
— sensitive-data.rules

» Detection before passed to rules engine to alert of
noteworthy or anomalous packets

e Default rules directory location defined

var PREPROC_RULE PATH ../preproc rules

Intrusion Detection In-Depth

There is yet another rule set; it is located in the "snort" subdirectory called "preproc_rule" used for detection
associated with preprocessors and decoders. This inspection and detection occur before the traditional rules
processing from the main detection engine.

You will find three rules files in this directory — "decoder.rules", "preprocessor.rules", and "sensitive-
data.rules”. The "decoder.rules" file has rules that examine anomalies in protocols that the packet decoder
parses, such as TCP, UDP and ICMP. The "preprocessor.rules" detect anomalies in any of the protocols that the
preprocessor examines such as frag3 or stream5. Finally, the "sensitive-data.rules" file contains a handful of
rules that try to recognize patterns that might indicate the presence of social security or credit card numbers as
examples. This seems to be an attempt to deal with the problem of exfiltration of sensitive data.

The "preprocessor.rules” file is included in "snort.conf", but the "decoder.rules" and "sensitive-data.rules” are
commented out. You can either include all rules or you have the option of commenting out individual rules that
you do not need or find annoying in the rule files themselves.

Much like the shared object rules, you will see a very different type of rule than for standard detection rules if
you go to the "preproc_rules" directory and look at any of the rules files. Each one has a Snort ID and some
metadata fields associated with it, yet you see no conventional rule header that defines the protocol, source and
destination IPs/ports to be found in a packet. That is because these rules do not relate to a particular source or
destination; they examine non-conformity to a given protocol that is parsed and examined by both the
preprocessor and decoder operations or sensitive data that can be found in any packet.

Unlike the standard rules, the user cannot add rules to "preprocessor.rules", "decoder.rules”, or "sensitive-
data.rules". The only customization that can be done is to change the rule action from alert to any of the other
available action options that are discussed when we cover conventional Snort rules, As with standard rul es, the
"snort.conf" contains a variable “PREPROC_RULE_PATH?” that defines the directory housing the preprocessor
rules. This variable is referenced in the include statements in "snort.conf" for these three types of rules.

212 © 2015 Judy Novak

Step 9: Customize Your Shared
Object Rules

» Dynamic library rutes where detection of given

activity is obfuscated

+ These are located in so_rules, with associated

code in Snort dynamic libraries
» Not included by default

» Default SO rules directory name defined

var S0 RULE PATH ../so_rules

~ Intrusion Detecton Iil‘DEpth

After our fong configuration journey; we've reached the last step in the "snort.conf” configuration tasks. Can

you believe il — another type of rule configuration. Let's recap - so far we've had standard rule configuration,

preprocessor and decode rules via the use of includes and now the shared object rules, We covered the theory
and installation of these rules when we discussed installing rules.

The SO rules reside in the so_rules subdirectory of the snort directory. These rules have most of the expected
fields associated with standard rules, yet the detection methods (search for content, etc.) are not present. You
can thirk of these rules as pointing to the actual detection code in one of Snort's dynamic libraries.

The includes with the SO rule directory names are commented out by default in "snort.conf™ so you will have to
lock at the names and types of SO rules that exist and compare the protocol inspection performed with the
protecols on your network to determine which to use.

As with standard rules, the "snort.conf" contains a variable “SO_RULE_PATH?” that defines the location of the
SO rules directory. This variable is referenced in the includc statements in “snort.conf" for the SO rules.

© 2015 Judy Novak 213

—_—_—m—

Reload a Snort Configuration File

* Not necessary to restart Snort when changes made to
snort.conf

¢ Must be configured with -~enable-reload at build-
time
$ kill -SIGHUP <snort pid>

 There are several non-reloadable configuration options,
see Snort User's Manual for the list

Intrusion Detection In-Depth

Itis possible that you may want to make immediate changes to a running instance of Snort once you alter your
standard Snort rule set. Or perhaps you add or delete a preprocessor and want the change to take effect
immediately. You used to have to restart Snort to accomplish this with the negative consequences of missing
traffic while Snort restarted. Now, you have the option to reload the Snort configuration file and its included
rules as Snort is running,

Snort is able to handle this by having a different thread for processing the configuration file from the main Snort
processing. When the SIGHUP signal is used to kill the current Snort process ID, the main Snort thread will swap
in the new configuration without interruption of performing its duties of sniffing and processing packets. You
must build Snort to do this at configure time by including the command line option of --enable-reload.

There are several configuration options that are not candidates for reloading. These include configuration options
such as modifying shared object rules as well as some "config" options in "snort.conf" along with some options
for preprocessors. Check the Snort User's Manual since there are several cases and conditions listed.

One caveat offered is to make sure you check your new confi guration file with "snort -¢ snort.conf -T", where the
"T" checks "snort.conf" file for errors. Otherwise, errors in the new configuration file will cause Snort to die.

214 © 2015 Judy Novak

ion In-Depth

This page intentionally Jeft blank.

® 2015 Judy Novak 215

e —

Updating Snort

e Snort "engine" (code) and rules are on different update
cycles, rules more frequently than code

» Important to stay current and keep the two in sync

* Snort update process similar to install process
— Examine new functionality
— Examine new snort.conf
— Transfer your local.rules
— Make a copy of the old version customizations before installing new
one
* Use change and configuration management to note changes
made

Intrusien Detection 1 n-Depth

You need to update Snort code periodically when new versions and rules are released. Rules are updated quite
frequently whereas there may be several months between updated Snort releases. The hitp://blog.snort.org site
announces new Snort code and rule releases. As with most software, it is probably best to give the latest code
release some time to settle before immediately installing it as there may be issues. You can be an early user if
you are familiar with Snort and are prepared for a glitch here and there, and would like to pioneer the way for
others.

Snort releases eventually expire or reach the end of life after several years and are no longer supported. You
are on your own if you experience problems. Some new Snort releases include new rule functionality available
only if you update the Snort code. If you are running an older release of code you will not be able to take
advantage of the new rule functionality. Worse yet, is that you update a set of rules with the new functionality
that breaks Snort because it cannot deal with the new rule syntax. So, it is important to stay current with both
the code and rules.

Upgrading to a new release is very similar to initial installation of Snort. Read the file "RELEASE.NOTES" in
the install directory to learn of the changes in the new release and any potential configuration changes that you
must make. There may be new options in the "snort.conf" file so it is important to use the new "snort.conf" and
change it with the customizations (variables settings, preprocessor selections, and rule inclusions, to name a
few) you made to the previous version "snort.conf" file,

You may elect to install the new version in an entirely new directory or overwrite an existing one. If you do the
latter, make sure you create a backup of the existing directory to keep your customizations and have the ability
to revert to the previous version in case something goes wrong with the upgrade. You will need to transfer any
other customizations like your "local.rules" file to the new version. As with other system changes of any type,
make sure that you record your changes via change and configuration management tools. This documents the
changes for others and can be referenced in case of issues.

216 © 2015 Judy Novak

Updating Rules

+ Snort-issued rules have an End of Life policy
¢ Qptions for updating:
— Manual

— PulledPork

— Qinkmaster (available but not well maintained)

Snort rules eventually have an end of life policy where old rule options may not be supported. It is essential that
you update your rules before that happens. It is best to stay current if at all possible. You can manually install
the new rutes that you download from https://www.snort.org/downloads/#rule-downloads, Download the new
rule set and install it as described in the Installation discussion on Snort rules.

Another option is PulledPork; a perl program that can update the rules for you; we'll discuss that more on the
next slicde.

An older rules updating program is known as Oinkmaster available at http:/oinkmaster.sourceforge.net. It is
not being actively maintained so use it at your own risk.

If resources permit, it is prudent to have a test sensor that can be used to test the updated rules hefore pushing
them out to the production sensor(s). This staging sensor can be used to run the new rules to discover any
possible errors in rules, such as missing rule dependencies or Snort version and rule version mismatches. This,
however, does not validate the efficacy of the new rules. Make sure that you transfer your local custornized
rules to the new rules if you use an updating package that does not.

© 2015 Judy Novak 217

T e —

Pulled Pork

—— S e
» Perl script and configuration file that updates rules
- http://code.google.com/p/pulledpork/
* Must be a registered Snort user
- https://www.snort.org/users/sign_in
¢ Need oinkcode for automated rules load
— https://www.snort.org/login
* Configure etc/pulledpork.conf
= May need to load some Perl libraries

» Look at README file for features, capabilities, and command
syntax

Intrusion Detection In-Depth

Pulled Pork is a program that updates the latest set of rules for you. Download it from
http://code.google.com/p/pulledpork/. It comes as a tarball so you will need to uncompress and untar it. It uses
Perl so it is not necessary to compile it.

You will need to edit the "etc/pulledpork.conf" file, at a minimum with an oinkcode. This is a unique identification
that you get when you register as a Snort user. This is free and just requires you to supply a valid e-mail address,
create a username and password, and accept the VRT License Agreement that you can read during the process.

You can select which rules you want to update in the Pulled Pork configuration file. There is an option to
download the most current rules snapshot available to you. This will download the standard rules along with the
correct version of shared object rules. You can opt to download other rule sets such as the community, [P
blacklisting, and Emerging Threat rules. There are a lot of embedded comments to help you configure the file and
properly run it,

As a word of warning, a Perl SSL module is required to connect to www.snort.org via HTTPS during the update
process. This module can be installed with the command:

perl -MCPAN -e 'install Crypt::Ssleay'

The "README?" file is a good source of information about the capabilities, features and command syntax. Before
you run Pulled Pork you will have to change the "pulledpork.pl" Per] file permissions to be executable. Finally run
it from the install directory, supplying it with the configuration file location:

Jpulledpork.pl -c ete/pulledpork.conf

218 © 2015 Judy Novak

Additional
Refingi_nent

~Iatrusion Detection In-Depth

This page intentionally left blank.

© 2015 Judy Novak 218

Snort Performance Monitoring
and Profiling

e Dump packet and general statistics

e Four configuration options to collect statistics about

performance

t

Performance monitoring — perfmonitor preprocessor

Packet Performance Monitoring (PPM)

Rule profiling

Preprocessor profiling

Intrusion Detection In-Depth

There are five ways to generate statistics from monitoring Snort's performance. Many of these different options
report on the same statistics, some in different ways. You may find that the documentation about some of the
methods is not particularly thorough.

The first monitoring option is to print some general statistics about Snort's operation. The second way is to use
perfmon or perfmonitor— short for performance monitoring that generates a more comprehensive set of statistics.
Packet Performance Monitoring (PPM) examines packet and rule latency. Finally, there are options to generate
statistics about preprocessors and rules.

Regardless of the solution that you use, you will find it easier if you focus on one issue at a time, or even a
single configuration variable setting at a time. There is much complexity involved in performance and
remediation of issues. The suggestion is to first run one of the more comprehensive monitoring tools such as
dumping the statistics or the preprocessor perfimonitor to try to get an idea which component of Snort, such as
rules or preprocessors, seems to be having problems. The other performance monitoring methods may help you
with more detailed statistics about a discovered problem.

One recommendation is to capture a pcap of representative traffic on your network for a substantial amount of
time, perhaps 30 minutes to an hour. If you feel that you are having issues at some time of day or day of week
in particular, this would be a good sampling opportunity. Many of the statistics that are generated do not apply
to real-time so you can use a copy of the production snort.conf, modify it to include the use of performance
management preprocessors or configuration directives, and read the captured pecap back into Snort. This permits
you to run the performance monitors without direct impact on the production Snort. And, it allows you to tweak
suspected issues, rerun the same traffic against the same performance monitor and look for improvements.
Running against the same traffic iteratively has the advantage of making your testing environment repeatable.
You can apply any improvements in the configuration to the production environment.

220 © 2015 Judy Novak

Packet Statistics

- O
Send Snort a SIGUSR1
Run:
$ kill -1 {to list your available signals)
1) SIGHUP 2) SIGINT .. 10} SIGUSRI

kill -s 10 procIp {send signal #10 to Snort’s process 1D)

Packet I/0 Totals:

Received: B85
analyzed: 85 (100.000%)
Dropped: 0 (0.000%)
Filtered: 0 0.000%)
Outstanding: 0 (- 0.000%)
Injec_ted: 0-)

_ Intrasion f)eﬁ:cnon In-D epﬁft .'

One way to penerate some packet and other statistics is to send a SIGUSR1 signal to Snort to dump some
statistics. The actual signal number associated with SIGUSR1 may not be the same for 4ll operating systems. If
you execute the "kill 1" command, the available signals will be listed. The signal number 10 is associated with
the SIGUSRI signal on this particular system, and is sent to the Snort's process ID.

Here is a sample of the statistics generated. This particular set of statistics shows an idle home network for a
short perfod of time. As you can see 85 packets were received and analyzed; of those nonc was dropped,
filtered, injected and all were processed (none outstanding) where the packets counted by hardware matched the
number actually analyzed.

Note in the above output, no packets were dropped. Mosl sites tolerate up to 1% packet loss; although your
environment may be diffcrent.

Other statistics are generated too that are not displayed, These include the percentage of packets by protocol,
action (alerts, logged, passed) statistics, fragment3 and stream3 statistics, as well as some preprocessor segsion
counts.

Unlike the other performance monitoring options, this one does not require you to make any "snort.conf”
changes, avoiding a rcload or restart as well.

© 2015 Judy Novak 221

Perfmonitor Preprocessor

e Many different options to log statistics
- Specify elapsed time/packet count for each logging event
- Specify output file for logging data or logging to console
— Print copious statistics to console or comma-delimited file

- Record flow IP statistic, calculate pattern matching statistics,
stream performance, per port protocol distribution, max
performance for processor speed, etc.

e Example:

preprocessor perfmonitor: time 300 pcktent 10000 console

Intrusion Detection In-Depth

The perfmonitor preprocessor logs copious statistics about Snort's performance ... These can be logged to the
console or to a file. The console option is the more readable one, however it is less useful for monitoring on a
long-term basis. Logging to a file creates a comma-separated list of fields and values that can then be read and
processed by some third-party software. The Snort User's Manual discusses this preprocessor and all the many
values and parameters associated with it in the section titled "Decoder and Preprocessor".

The above example will generate general real-time statistics for a defined metric, either time or packet count,
whichever is reached first, 300 seconds or 10000 packets. The computations are performed for each 300
seconds elapsed or 10000 packets counted, repeated for these conditions, until is Snort is stopped. These values
were altered to 30 and 10 respectively to generate statistics in an environment that is not a production network.
An excerpt of the console output is seen on the next slide.

222 © 2015 Judy Novak

Pkts '-n_;ap:
% Dre;iaped
Blocked

IPkts- Filtered UDP:_

Mblts/sec: ©.114 (i

Mbits/Sec: 8.688 {mpls). .
Mbits/Sec: 8.008 (ip fragmented)
Mbits/Sec: 8.889. (ip reassembled)
Mbits/Sec: ~ 0.€80 (tcp rebuili)
Hb"ts}Sec, : B 083 (app layer)
Bytesf?kt- 441 (w'Lre)

Bytes/Pkt: @ (mpls).

Sample Perfmon Output

ntrusion Détection Inéli_)epﬁ1

Here is a small sample of the types of statistics reported by perfmon. As you can see, it generates some of the
same statistics as interrupting Snort with the SIGUSRI signal. Perfinon statistics are very detailed, and as you

might expect, create some overhead with the many values it must compute, track, and store for each metric

interval.

It is best to run this when Snort is under your control se that you can stop it after you collect what you need.

Otherwise, ironically perfinon itself becomes the performance problem.

Another option is to read a peap of collecied traffic into Snort with the perfimon preprocessor enabled in
snort.conf. This has the advantage of nol disrpting the production Snort, but has the disadvantage of

incomplete results because all statistics, such as dropped packets, cannet be computed.

@ 2015 Judy Nevak

223

—_—

Packet Performance Monitoring (PPM)

“
Used to measure latency in packets or rules

snort.conf set-up Output
Per Packet latency configuration Packet Performance Summary:
config ppm: max-pkt-time 250, \ max packet time : 50 usecs
fastpath-expensive-packets, \ packet event 2l
pkt-log avg pkt time : 0.633 usecs

Rule Performance Summary:
max rule time : 50 usecs
rule events Hi. !
avg nc-rule time : 0.2675 usecs

Per Rule latency configuration
config ppm: max-rule-time 200, \
suspend-expensive-rules, \
suspend-timeout 20, \

rule-leog alert

Intrusion Detecton In-Depth

The PPM preprocessor measures latency in either/both packets and rules. The "snort.conf” set-up is displayed
on the left and the results on the right.

The first PPM configuration enables packet latency logging via the "pkt-log" parameter; it measures packet
latency using a 250 micro-second thresholding, and stops inspection of a packet if the 250 micro-second limit is
reached denoted by the "fastpath-expensive-packets" option. If "fastpath-expensive-packets" is not used, a
counter with the number of packets that should be fast-pathed is incremented by 1.

The second PPM configuration enables rules latency logging with the "rule-log" option; it measures rule latency
using a 200 micro-second thresholding, and stops inspection of a rule if the 200-micro-second limit is reached
denoted by the "suspend-expensive-rules" option. If "suspend-expensive-rules" is not used, a counter with the
number of rules that should be fast-pathed is incremented by 1.

The output generated details the maximum time, number of events, and average times for packet or rule
performance.

The PPM rule and processor profiling require build-time configure options in order to work.

The --enable-sourcefire option can be used to enable PPM, rule, and preprocessor monitoring. The --enable-
ppm enables PPM only, and the --enable-perfprofiling enables rule and performance profiling only.

224 © 2015 Judy Novak

Rule Profiling: Rule Performance

config profile_rules:
print [all{ numl,)\
sort {sort'_optionh S
[filename <filename> [append]]

num = all or number of rules to print

<sort_option> matches nomatches avg_ticks avg_ticks_per_match
avg_ticks_per_nomatch total_ticks

<filename> output file

[append] add to existing file instead of writing over

Tntrusion Detection In-Depth

Snort profiling processes — rule and preprocessor - measure the duration of each process used for detection. If
the system has other CPU intensive processes, the calculated statistics may not accurately reflect the actual time.

The "snort.conf" config option profile rules generates statistics about rule performance. You can output
statistics for all rules or a subset based on some supplied sort_option criteria. Examples and partial explanations
of the rules profiling can be found in the User's Manual or in the "doc/README PerfProfiling". The
documentation is the same as the README file. Unfortunately, as you'll see if you examine either, the
explanations are not thoraugh, especially for the sort options.

© 2015 Judy Novak 225

Sample Rule Profile Statistics
(Worst 5)

config profile_rules: print 5, sort avg_ticks, filename rulestats

Num SID GID Rev Checks Matches Alerts HMicrosecs Avg Avg Avg Disabled
Check Match Nonmatch
1 19211 112 1% 1 (] 22 22.5 22.5 0.8 (]
2 524 11 2 0 0 24 12.2 0.0 12.2 0
3owm4e o1 5 2 0 0 8 4,1 6.0 4.8 0
4 0465 1 13 2 1 0 1 3.6 6.7 0.6 0
5 28466 1 13 2 1 0 6 32 6.2 8.3 0

root@judy:~/snort-2.9.5.3/rules# grep 19211 *
file-identify.rules:alert tcp $HOME_NET any -> $EXTERNAL NET
$HTTP PORTS\

(msg:"FILE-IDENTIFY ZIP archive file download request"; \
flow:to_server,established; content:".zip"; fast pattern:only; \
http uri;pcre:"/\x2ezip([\?\x5c\x2f] [$) /smiUl"; \
flowbits:set, file.zip; flowbits:noalert; metadata:service http;)\
classtype:misc-activity;sid:19211; rev:12;)

Intrusion Detection In-Depth

Let's run the rule profile program to dump the 5 worst rules. To do so the line "config profile rules: print 5, sort
avg_ticks, file name rulestats" is placed in the "snort.conf" file. When Snort is started, it will place the results,
in the default file "/var/log/snort". We place it in a file name of "rulestats" that will be created with a timestamp
following the name. Here is a description of some of the statistics:

Microseconds = total time used to evaluate rule against traffic
Checks = number of times rule was evaluated after applying pattern matching

Matches = number of times all rule options matched (will fire most times, except for conditions like thresholding
rules) high for rules that have no options

Avg Check = the average number of microseconds it takes to evaluate each packet against the rule
Avg Match = the average number of microseconds to evaluate each packet that has all options match a rule

Avg Nonmatch = the average number of microseconds to evaluate each packet when the rule doesn't match

The rule with SID 19211 is discovered to have the worse performance in terms of the average check and
average match. The rule is displayed to show you how complicated it is. The bad performance is most likely
associated with the complex pere expression.

The number of checks can be minimized by creating early bail conditions; the average statistics can be
optimized using the recommendations for writing efficient rules.

226 © 2015 Judy Novak

Preprocessor Profiling:
Preprocessor Performance

config profile preprocs:
print [alll num), \
sort <sort option>, \

[filename <filename> [append]]

num = all or number of preprocessors to print
<sort_option> checks avg_ticks totai_ticks
<filename> output file

[append] add to existing file instead of writing over

- Intgusion Detection In-Depth

Preprocessor profiling divides various phases of detection to include packet decoding, preprocessing and
normalization, detection based on the pattern matcher and rule option, and logging, Performance jmproves
when less time is spent processing each packet, The statistics evaluate the duration of each stage compared to
the other stages.

The "snort.conf" config option profile_preprocs generates statistics ahout preprocessor performance. You can
output statistics for all preprocessors or a subset based on some supplied sort_option criterta, Examples and
partial explanations of the preprocessor profiling can be found in the User's Manual or in
“doc/README.PerfProfiling”. The documentation is the same as the README file. Unfortunately, as you'll
see if you examine eithcr, the explanations are not thorough, especially for the sort options.

© 2015 Judy Novak 227

Sample Preprocessor Profile Statistics

(Worst 5)

config profile_preprocs: print 5, sort total_ticks

Preprocessor Profile Statistics (worst Sf
Num Preprocessor Layer Checks Exits Microsecs Avg Pct Pct
Check of Caller of Total
==m N e——

1 55 [} a3 B3 935 11.27 33.85 33.85
1 s5tep 1 77 77 633 a.22 67.70 22,37
1 s5TcpState 2 74 74 415 5.61 65.54 14.66
1 s5TepData 3 58 50 26 ©.53 6.37 0.93
i s5TcpPktInsert 4 4 4 10 2.58 38.57 0.36
s5TcpPaF 3 4 18 4.65 4.48 0.66
3 s5TcpFlush 3 1 1 12 12.18 2.93 8.43
1 sS5TcpProcessRebuilt 4 1 1 95 96.96 796.35 3.43
2 s5TepBuildPacket 4 1 1] 6.72 5.95 .03
2 s5TcphewSess 2 4 4 33 8.42 5.32 1.19
2 s5udp i 6 6 52 B.82 5.66 1.87
Z decode (o] 172 172 534 i1 1B8.98 18.96
3 eventg] 345 345 188 .55 6.65 6.65
4 per fman L] 98 S0 186 2.e7 6.58 6.58
5 detect @ 16 16 179 11.20 6.33 6.33
1 mpse 1 27 27 109 4.06 61.23 3.88
2 rule eval 1 1 1 8 B8.13 4.54 .29
5 rule tree eval 2 2 2 T 3.72 91,38 0.26
1 uricontent 3 1 1 <3 9.83 11.11 0.63
2 flow 3 1 1] 6.25 3.30 8.81
2 rtn eval 2 1 1 1 1.79 21.97 0.66
total total] 172 172 2838 16.46 8.08 8.06

Intrusion Derection In-Depth

This is a confusing set of statistics if you are not familiar with preprocessor layers. A layer 0 preprocessor is one
that calls other subordinate ones, known as layer 1, that can call more subordinate ones and so forth. The layer
column designates the depth that that preprocessor is in these nested calls. For instance preprocessor s5 has
many subordinate preprocessors ranging from a depth of 0 through 4 until the next layer 0 preprocessor decode
is called. The next layer O preprocessor has no subordinate preprocessors nor do the three preprocessors that
follow it with layer 0 processors only.

The Num column is rank of this particular processor in order from worst (1) to less worse(5). You might think
that the indentation steps in this column are misaligned text, but each indentation space represents a similar
layer. For instance, the worst ranked layer 0 preprocessor is s5. It has a subordinate layer 1 preprocessor known
as s5tep that is also ranked worst, a layer 2 preprocessor s5TcpState is also among the worst. The first 5 entries
representing s5 and some of its subordinate preprocessors rank the worst in the terms of total time
(microseconds).

According to the white paper on performance tuning, there are some statistics that are especially revealing. A
high number of checks means that a preprocessor may be needlessly checking ports. The recommended solution
is to configure Snort to ignore traffic that it cannot inspect such as encrypted traffic. A high average check
suggests that a preprocessor may have been removed but the associated ports were not removed from the ones
that are reassembled by stream5. Here is a description of some of the documented fields:

Number (rank) indented for each layer.

Layer — specific number of preprocessors all subtasks of preprocessor

Checks - number of times preprocessor looked a packet for matching ports and application layers
Exits — number of exits, should always match checks

Percent of caller — what percentage of time subcomponent uses for within

Percent of total - approximate amount of CPU time that component uses

228 © 2015 Judy Novak

Appendix of Bro Material

This page intentionally left blank.

© 2015 Judy Novak 229

Installation

Intrusion Detecton In-Depth

This page intentionally left blank.

230 © 2015 Judy Novak

Installation Details

- T)
« Available in pre-built binaries in .rpm and .deb formats for Linux, .dmg
for MacOS

http:/ fwww. bro.org/downioad/index.html
* Dependendies see:

http://www.bra.org/sphinx-git/install/install. html#required-dependencies
« Our reference for the install directory will be fusrflocal/bro
« Available in source code; requires installation via:

Jfconfigure; make; sudo make install

« Bro needs to be installed on manager only, in both standalone and
cluster mode

G on 11_1?Depﬂi_ :

Bro downloads can be found at http://www bro.org/download/index html. Check for dependencies at
http:/Awww.bro,org/sphinx-git/install/install. html#required-dependencies. Bro will install its soltware ina
default directory. For the purposes of this course, we'll use and reference the directory "/usr/local/bro” as that
directory because that is the location on the VM. Other operating systems may have different default
directories, but since we'll show some examples of Bro cotunands in a Bro environment, you will see
"PREFTX" to represcnt the install direclory.

Bro is available in binary format - rpm, .deb, or .dmg depending on the operating systemn. Tt can be installed
from source as well, however be aware that there are several dependencies. The recommendation is to look at
the link above for the necessary prerequisite software.

Instailation of the Bro software is performed on the manager only for both standalone and clhister modes. We
will see in the configuration section that you need only install it on the manager and Bro takes care of inslalling
it on the remote hosts that you designate as proxy or worker(s). That is very convenient and well-conceived for
expansion and flexibiliry.

2015 Judy Novak 231

Configuration

Intrusion Detection In-Depth

This page intentionally left blank.

232 © 2015 Judy Novak

Configuration Tasks

= Configure Bro to start at system boot
o Create a cron entry to perform routine housekeeping tasks
+ Make sure Bro is in your $PATH
» Identify e-mail recipients of Bro's messages
« Change default Bro file locations in "brocti.cfg" if desired
 Identify protected network address{s)
» Identify sniffing interface(s)
» Configure Bro to run standalone or as a ciuster
~ Cluster mode requires SSH public key access to worker(s)/proxy(s)
= Load up all your custom Bro scripts

Great; you've got Bro installed — now what? Well, as with any traffic inspection sottware you must configure it
for your site's needs. Intcraction with Bro in sniffing mode (versus reading a peap) is performed by the "broctl”
process that receives options via the command line or an interactive interface.

First, the Bro installation does not configure your system to start Bro upon system boot. You must add an entry
in the appropriate location of the startup tasks to start Bro. For instance, this may be in "/etc/rc.local” on some
systems, Add the entry "PREFIX/bin/broctl start”, where PREFIX on the VM is “/usr/local/bro”.

Next, Bro has some routine housekeeping tasks it must perform, including checking whether or net Bro is
running and starting it if it is not, via the "broctl" command referenced in a cron entry. The lollowing entry or
something like it should be added to your crontab list. The entry shown here will execute every five minutes:

0-59/5 * * # * PREFIX/bin/broctl cron

Make sure that the default Bro bin directory is In your $PATH so that you do not have to explicitly supply the
absolute path each time you execute a Bro command. The exact means to perform this will be dependent upon
the operaling system and shell you are using.

Most of the configuration changes files are Jocated in the "ctc" subdirectory of Bro, much like Snort. The
"broctl.cfg” file defines default directories used by Bro. This is also where recipients of Bro's e-mail-generated
messages are assigned. The "nctworks.clg" file assigns the IP addresses, with the option of expressing them in
CIDR notation, of the protected network. The "node.cfg" defines the sniffing interface for a slandalone
implementation or TP addresses of the manager, proxy, and workers along with their interfaces when
establishing a Bro cluster.

© 2015 Judy Novak 233

234

The final task is to inform Bro of the location of any customized Bro scripts and signatures that you have
created. The "PREFIX/share/bro/site" directory is where customized scripts are stored. The "local.bro" file
contains "@load" and "@load-sigs" statements of the location of your site's locally written scripts and
signatures, much like the "include" statement used in Snort or C. There are additional files — "local-
manager.bro", "local-proxy.bro", and "local-worker.bro" that load appropriate policy scripts for each of those
nodes.

The subdirectory "PREFIX/share/bro/policy" contains scripts that the Bro developers consider computationally
expensive or optional in nature. If you want to use specific policy scripts, you need to identify those in
"local.bro" as well.

That's it for now to get you going. If you ever change any of these configuration values or add new scripts or
signatures, you must inform Bro. We will see in the Running section next that this can be done in the "broct]"
interactive interface by executing the commands "install" and "restart". After running Bro, you should get a
better feel for how it works and you may want to change your configuration or add new scripts and signatures to
extend coverage.

© 2015 Judy Novak

Special Configuration for Bro Cluster

o O o s]
« Cluster configuration more complicated than standalone
» Create a "bro" user

Need to configure any remote nodes to run SSH server

Need to create bro user SSH public key on manager and copy it to

remote node(s)

Must be able to write to fusr/local/bro (install directory) on all nodes

1

Must have the privilege/capability to sniff on the worker nodes

§

Must have the same power/privileges as root/superuser

~ Tnrrusion D?Fﬁtﬁdﬂ-:lﬁ—l}épth

In standalone mode, Bro can be run as root. And, in fact, it is much simpler to run as roof since creating a "bro"
user requires some additional, and not necessarily simple, configuration changes. In cluster mode, Lhe
recommendation is to create a "bro” user for all the nodes, The Bro manager must be able to comniunicate with
any remote node via $SH, meaning that some kind of SS11 server software must be running on each of the
remotc proxy or worker nodes. One reason that the user "bro" is created is it is dangerous practice to allow
remole root login via SSH. Most SSI1 servers arc configured to deny access to the remote root user.

And, Bro requires that the communication between the manager and remote nodes be transparent such that there
is no prompt for a password or passphrase, using SSH keys. The manager must generate a private and public
SSH key using the "ssh-keygen" command. The public key must be copied 1o the remote node's file
"/home/bro/.ssh/authorized key", assuming that "/home/bro" is the directory created for user "bro".

The "bro" user must have write access to the "fusi/local/bro” or whatever your instal! directory is named and all
subdirectories on all nodes to allow creation of files associated with software and logs. You can accomplish this
by changing the owncr of the directory and all contained files to "bro". The user "bro” must be able to snift from
the network interface on any of the worker nodes. You will find that the "bro" user needs to have root or
supcruser powers and privileges.

All configurations are created on the manager and are copied along with required software to any remole cluster
node. There is no additional configuration required on the cluster node itself, You designate the remote nodes
in the "PREFIX/etc/mode.cfg” [ile on the manager and Bro takes care of the rest wilh the "broctl install”.

© 2015 Judy Novak 235

Customization

Intrusion Detectdon In-Depth

This page intentionally left blank,

236 ©® 2015 Judy Novak

Environment

Output logs written to working directory

: rﬁkdir ,‘tmp/broscriﬁfs
ed ftmp/broscripts -

Step 2: Create a2 new working directory
more broinit.bro ' o '

. event_bro_init{) S1ep 3: Create our Bro Script

{
" print {"Started bro");
3

Started bro

Step 4: Run Bro Using Script

broinit.bro
http.pcap

Intrusion Detection In-Depth

The next step you must do is either use an existing directory or creatc an entirely new one that will contain any
log files that Bro generates since it places all its log filcs in the current working directory. It i probably a good
idea to create a new directory just for this purpose. You need write privileges in this directory. We first create
and navigate to a directory we name "/tmp/broscripts".

Let's say we call our script "broinit.bro”. Seripts supplied in Bro end with the extension of ".bro", however this
isn't required. The script simply has the event name "bro_init” found in the file "event.bif.bro” that will cause
the seript to be invoked if the code path encounters it. Many scripts can have parameters passed to them, placed
between the parentheses following the event name. The "bre_init" event has no parameters available to be
passed. We'll talk about the format of Bro scripts on the next slide.

Next we run Bro using with the name of the Bro script to run reading in "http.pcap"”, although we don't need a
peap for this particular script, we include it to represent a more conveniional situation. As you see, we get the
ouiput of "Started Bro",

All demonstration files for Day 4 are found in directory /home/sans/demo-peaps/Tay4-demos on the VM. Use
the commands found on the slides 1o run the scripts,

© 2015 Judy Novak 237

———
Header Signature with

BPF IP Designation

tepdump -+ http.pcap 'ip[19] & 62 == 62" -nt ¢ 1

IP 173.194.73.106.80 > 192,168.11.62.19086: Flags [S.], seq 939142132, ack 11
etc.

signature sig3 {
header ip[19] & 62 == 62
event "sig3 Test"
b
user@host:/tmpy/broscripts: bro -r http.pcap -s sig3
cat signatures.log | bro-cut src_addr src_port dst_addr dst_port
note sig_id event_msg
173.194.73.106 80 192.168.11.62 19086 Signatures::Sensitive_Signature
sig3 173.194.73.106: sig3 Test

5ig3
http.pcap

Intrusion Detection In-Depth

Bro has support for finding offsets in its signature "language". The syntax is similar to tepdump BPF. It is able
to match values at offsets from the beginning of IP, TCP, UDP, or ICMP. Like BPF, the fields size can span a
single or multiple bytes with of size of 1, 2, or 4. And, there is support for bit masking too.

One difference between the tcpdump/libpeap and Bro BPF support is that Bro can specify a list of values that
can be matched. For instance, a valid filter is:

header ip[19:1]== 62, 63

This signature examines the value in the last octet ip[19] of the destination IP address to discover if it is either
62 or 63.

The signature in the slide looks for a value of 62 using a decimal bit mask of 62 in the 19 byte offset of the IP
header. You do not need to employ a mask in this situation; it was included to offer a simple example to
demonstrate Bro's bit mask support.

You cannot specify a list of values when using a bit mask; you must match a single value,

238 © 2015 Judy Novak

note Variable Value

?REFIX{share{bro;’basefframeworks/hotice# more weird.bro

: module Weird; | first value in Snote: I nate = Weirds:Acthvity I
) module name :

“export {

##T'Gener[r. unusual but notice-worthy weird activity.
redef enum Notice::Type += {
Activity,

v
L

Secopd value in $notes
nokice type

Let's return to the required "note” variable and value; in our example the value is "Welrd::Activity". As we
discussed, this represents a notice type — either one that Bro has defined or one that you define. This particular
notice type is one that Bro has defined in the code found in "PREF 1X/share/bro/base/frameworks/notice/weird bro".
We see an excerpt of code from "weird.bro" in the slide.

Whenever designating a value for the variable "note”, the format is "module namec:notice lype". The value "Weird"
is taken from the module name found in "weird.bro" — as defined in the first line "module Weird". We will defer the
explanation of where the value "Activity" is defined. The comment in the "weird.bro" script indicates that a notice
type with the name of "Activity" is for "generic unusual but nolice-worthy weird activity". Qur assignment of a type
of "Weird:: Activity" is really not especially appropriate for raising a notice for the "bro_init" evenl. However, if you
were to look, nane of the other available Bro notice types applies to starting Bro either. Bro doesn't care if it is
pertinent; it's your choicc and you can use any available Bro notice typcs or wrile your own as we are about to do.

Let's revisit the value of "Activity" as the second part of the notice type. Do you see the code "redef enum

Notice:: Type += { Activity,};"? This is Bro's way of redcfining an available notice type. In essence it is adding
"Aclivity" as new notice type. If you've ever used Python, the “+=" is a way to add something to an existing value,
In this case a new value is added to the enumerable variable "Notice:: I'ype". Bro supports different variable types
such as integer, string, etc. The "enum" type permits you to define a set of rclated values; in our usage we can define
new "Notice::Type" values, If all of this does not make sense, don't worry. The examples that follow aim to clarify
this concept.

You cannot assign any arbitrary value to the "note” variable in your NOTICE; it must be an existing Bro
Naotice: Type or one you define. A list of cxisting note values can be found at:

http://bro.org/sphinx/bro-noticeindex. html

& 2015 Judy Novak 239

As suggested, you may not find a Notice::Type that is relevant for the activity so you can write one of your own,
You do not have to use a Notice:: Type that fits the activity. Bro doesn't care; although it makes more sense to
select an appropriate one or create a Notice::Type of your own that is pertinent to the activity. This helps
someone understand the entry in "notice.log". We won't explore this topic since few students will ever write
their own notice types. If you are interested in learning more or seeing how this is done, the second Extra Credit
question in the Bro exercise takes you through this process.

240 © 2015 Judy Novak

Redefining Your Own Notice:: Type

module name

module TEST; | Firstvalue in Snoce™

#1dentify a new b;pé
redef enum Notice::Type += {

ABC Second value in Snote:
h potice type
event bro_init()
{ .

1 .

NOTICE([$note=TEST::ABC, $msg="My TEST"]);

note msg
TEST::ABC My TEST

Intra

Creating your own Notice:: Type essentially means redefining the Notice:: Type global types available to you.
The Bro redef statement accomplishes this by adding to (he existing Notice:: Type values. We define our

Notice:: Type to have a value of "ABC".

In our event seript customization we assign the $note variable the value of our ncwly created module "TEST"
with our newly created Notice:: Type name of "ABC". Applying this to the "bro_init" event is nensensical,

user@host:/tmp/broscripts: bro test-ABC.bro
cat notice.log | /bro-cut note msg actions

actions
Notice:: ACTION_LOG

n Detection In-Depth test-ABCHe

however, since the Notice is a difficult coneept and implementation 1o grasp, it has been simplified by a lack of

involved logic. You can always cxperiment and create a more applicable Notice for some actual event.

Assume that this script is in "test-ABC.bro”. We invoke Bro using this script; no peap is necessary sincc the
event chosen is (he start of Bro. Some fields of the "notice.log" content are shown at the bottorn of the slide,

including $note and $imsg values we assigned.

© 2015 Judy Novak

241

Trying to learn Bro on your own is difficult and often frustrating. So, let's methodically go through the steps to
demonstrate the creation of a new script. This particular script is going to search traffic for a DNS name query

Let's go through the Process of

Building a Custom Script

e let's build a script to:
— Search for a DNS query name of isc.sans.edu
— Create our own Notice with a user-generated name

e Steps involved:
- Find an appropriate event to trigger our script
— Figure out the name of the variable that Bro uses to reference a DNS
query
— Code and run a basic test to make sure we can trigger our script and
output some or all of the DNS query

-~ Add our own Notice

Intrusion Detection In-Depth

of isc.sans.edu and create a notice about this particular activity.

As you've learned, there are several steps involved in creating your own script and raising your own notice.
Since this is all relatively new, we'll progress through this by creating several interim scripts, checking that we
receive the desired results, then adding more complexity as we go until we reach our goal of adding our own

notice when there is a DNS query for isc.sans.edu.

242

© 2015 Judy Novak

Event to Trlgger Scrlpt

'Entn,' in PREFIX,’sharefbrofbase}protocois;‘dns S ' !_

event dns_request: event(c: connechon, msg: dns_msg, query strlng, qtype '
count, gelass: count}

_more dns-request.bro

event dns_request{c: connection, msg; dns_msg, query: string, gtype: count, gelass:
.. count) ' .

¢

print fmt (“DNS record=> %s", c$dns);

user@host JStmp/broscripts: bro -r isc. pcap dns-request.bro

DNS record==> [ts=1350904357.794179, uid=AIXwOp3brgl, id=[orig_h=192.168.11.62,
orig_p=53091/udp, resp_h=66.35.45.7, resp_p=53fudp], proto=udp, trans_jd=55740,
query=isc.sans.edu, qclass=1, qclass_name=C_INTERNET, gtype=1, qtype_names=A,
rcode=<uninitizlized>, rcode_name= <uninitialized >, AA=F, TC=F, RD=T, RA=F, Z=0,
answers=<uninitialized>, TTLs=<uninitialized>, ready=F,
total_answers=<uninitialized>, total_replies=<uninitialized>]

dos-request.bro

Intrusion Detecton In-Depth i

DNS is protocol-specific so we look at "PREFIX/share/bro/base/protocols/dns/main.bro” for DNS events. If
you examine it, you find a likely event candidate named "dns_request" along with the parameters that are passed
1o it when triggered.

Our first script references the "dns_request event", passing afl required parameters. We simply want to print a
DNS record. The connection is known as "¢" as passed to the event and DNS is known as "dns" in Bro. How
do you know that "dns” is used to identify the DNS nested data structure of a connection? 1t was discavered by
looking at "PREF1X/share/bro/basefprotocols/dns/main.bro".

The results of running the seript placed in file "dns-request.bro” are shown in the bottom panel. The input file
isc.peap contains a DNS request to find the 1P address associated with isc.scans.edu. All the variable names and
associated values found in the record are displayed. We see a variable named "query" that appears to bc the
field we need.

® 2015 Judy Novak 243

244

e e e e S W e s e

Add Some Logic

_more dns-if.bro

event dns_request(c: connection, msg: dns_msg, query: string, gtype:
count, gclass: count)

{
if (cdnsquery == "isc.sans.edu")
print fmt ("Found DNS query for isc.sans.edu %s",
cdnsquery);

¥
user@host:/tmp/broscripts: bro -r isc.pcap dns-if.bro

Found DNS query for isc.sans.edu isc.sans.edu

dns-if.bro
isc.pcap

Intrusion Detection In-Depth

Let's make sure we have the field we want by adding the logic of printing a statement when the query contains
isc.sans.edu. The variable "cdnsquery" is used to identify the connection and dereference the DNS portion and
then the query field. When we run our script, we do indeed find that we have correctly identified the DNS
query field. So, we're set to move on.

© 2015 Judy Novak

Create a Module and Custom
Notice:: Type

more dns-testmod.bro

module DNSTEST;

redef enum Notice::Type += {
SANS_DNS

ke
event dns_request{c: connection, msg: dns_msg, query: siring, gtype: count,
gclass: count) :

{
if (cdnsquery == "isc.sans.edu”)
print fmt (“Found DNS query for isc.sans.edu %s",
- cjdns$query); : '
} .

user@host: tmp/broscripts: bro -r isc.pcap dns-testmod.bro
Found DNS query for isc.sans.edu isc.sans.edu _ -
Intrusion Detection In-Depth

- dns-testmod.bro
isc.pcap

Next, we create a module named DNSTEST in file that we name "dns-testrod.bre" that contains code for the
our customized Notice:: Type that we call "SANS_DNS" by redefining the current values available as

Notice:: Type. We are not going to raise a notice to invoke this just yet; we are just preparing to raise the notice
in the event “dns_request".

By adding code incrementally, especially as a novice Bro script coder, we can discover whether or not we have
introduced any crrors in redefining the Notice:: Type and take care of them before moving on, This run is
successlul because the script it called prints out the message of "Found DNS query for isc.sans.edu”.

© 2015 Judy Novak 245

e

Raise the Notice

module DNSTEST;
redef enum Notice::Type += {
SANS_DNS
bet
event dns_request(c: connection, msg: dns_msg, query: string, gtype: count, qclass: count)
{
if (cdnsquery == "isc.sans.edu")
NOTICE([$note=DNSTEST::SANS_DNS,
$msg="Found suspicious DNS query isc.sans.edu", $conn=c]);

}

user@host:/tmpj/broscripts:bro -r isc.pcap dns-isc.bro

Part of notice.log
192.168.11.62 53091 66.35.45.7 53 udp
DNSTEST::SANS_DNS Found suspicious DNS query isc.sans.edu 1

dns-isc.bro

Intrusion Detection In-Depth i

Finally, we are ready to raise the notice by placing the NOTICE statement in the code that gets executed when
the "dns_request" event is triggered. We store the code in a file named "dns-isc.bro", The first parameter
assigned is the note value that is our newly created type of "DNSTEST::SANS_DNS". Remember that this
name is a combination of the containing module name and our new notice type of "SANS_DNS". We assign an
appropriate message of "Found suspicious DNS query isc.sans.edu” as this is really the entire purpose of raising
the notice.

We also opt to place additional information in the notice for details about the connection that triggered the event.
The $conn variable is one of several that can be defined in the NOTICE assignment. This represents the
connection known as "c" as passed to the event.

A "notice.log" is created as expected. Some pertinent output is displayed from it such as the source and
destination IP addresses and ports, the protocol of UDP, the notice type associated with the log entry, and our
custom message.

You can create more complex logic in the script with conditions that must exist before the notice is raised. This
was just meant to be a fairly simple example of how to approach raising notices and all the preceding processes
that must occur before doing so.

2486 © 2015 Judy Novak

Check if New Script Loaded, Then
Cause It to Trigger

W
root@judy: cd PREFIX/logs/current .
root@judy: /usrflocaifbrofiogs/current #

grep "dns-isc.bro” joaded_scripts.lég .
r-1'I?.EFI)(;share,!I:n-o,(sute;f mybro/dns-nsc bro :

root@jjudy:fusrf Iocah’bro,fr Iagsfcurrent # tail -f notlce.]og

user:~§ nslookup isc.sans.edu

notice.log entry

192.168.11.42 59745 4.2.2.1 53 udp

DNSTEST::SANS_DNS Found suspicious DNS quety isc.sans.edu
192.168.11,424.2.2.1 53 Notice: ACTION_LOG

Intrusion Detection Inﬁ}e‘pih

How would you test this in production mode? Let's pick up at the point after you loaded your new script. Go to
the directory "PREF1X/logs/current”. See if your script was loaded by issuing a grep command for the name of
your script — in this case "dns-isc.bro” in the "loaded_scripts.log”.

It's there so we're ready 1o test the script, Specifically, we are intcrested in the current directory "natice.log” so
we closcly walch the new activity generated to make surc our script generates a notice using the command:

tail -f notice.log

Next, we issue a lookup for isc.sans.cdu to try Lo trigger our new DNS seript. "And as you see, an entry is logged
to "notice.log" that reflects our script output.

We're finished examining scripts, signatures, and notices that can be valuable tools for you to use in your
nctwork lraffic analysis.

© 2015 Judy Novak 247

Inform About a New HTTP
Request/Reply

event http_request(c: connection, method: string, original_URI: string,
unescaped_URI: string, version: string) &priority=>5

{
print fmt ("HTTP request ==> sender: %s %s receiver; %s %s HTTP
method: %s HTTP URI: %s", cidorig_h, cidorig_p, c$idéresp_h,
cidresp_p, c$http$method, c$http$uri);
}
event http_reply(c: connection, version: string, code: count, reason: string)
e !

print fmt ("HTTP response ==> sender: %s %s receiver: %s %s HTTP
code: %d HTTP reason: %s", cidresp_h, cidresp_p, cidorig_h,
cidorig_p, c$httpgstatus_code, c$httpéstatus_msg);

bro-http-regresp.bro

Inttusion Detection | n-Depth

Next, we cover how Bro is able to parse and analyze several different application layers for use in scripting,
including HTTP, as shown in the slide. The two different events above "http_request" and "http_reply"
represent, as you would expect, an HTTP request and reply. You can see that there are several arguments and
their respective variable types (connection, string, count) passed by the associated event. The HTTP request
passes the connection, the HTTP method, the normalized URI, the pre-normalized URI, and the HTTP version.
The HTTP response passes the connection, the version, the HTTP response code and reason.

Our script is triggered by an "http_request" event to perform a formatted print to dump some information — the
sender and receiver IP/port pairs, the HTTP method and the HTTP URI as passed to the function. The script
also supports the "http_reply" event where our code uses a formatted print of the sender and receiver IP/port
pairs, along with the HTTP server's returned status code and status message.

Events can be assigned a priority attribute value ranging from -10 through 10 where higher value code is
executed first. The default priority value is 0, yet the "http_request" is assigned a value of 5. The priority value
is used if you have multiple scripts associated with an event so that they can be executed in an order based on
the priority value.

The next slide discusses how we discovered the event name, its arguments, and the available variables for the
HTTP protocol.

248 © 2015 Judy Novak

The ” | and
HTTP Variables

Event name and arguments found in $PREFIX /share/bro/hase/protocols/http/main.bro

event http_reply(c:-éonnection, version: string, code: count, reason: string)
{ .
print fmt ("HTTP => %s", c$http);
?

HTTP ==> [t5=1349511963.426526, wid=CLub3C3cLXNpodiPxs, {d={orig h=192,168,11.62, orig p=49931
tep, resp he173.154.75.99, resp_p=88/tep], trans_depthst, method=GET, host=www.google.com,
uri=f, referrerscuninitializeds, user_agent=Hozilla/s.o (x11; Linux 1686; rvi15.0)
Gecko/20160101 Firefox/15.0.1, request_body len=0, response_body len<B, status codes302,
status_nsg=Found, iafo_code=cuninitialized>, info_msg=cuninitializeds,

*

- Intrusion Detecnon In—’f.)epth

Each of the protocols supported by Bro, in this case HTTP, has a corresponding directory in
"PREFIX/share/bro/base/protocols” — in this example subdirectory "hitp”. Yoeu will find a file named

*main.bro" in each of the protocol subdirectories that defines the events available to you along with the names of
the passed arguments, and thc variable names and descriptions of the available fields for that protocol. Let's
isolate the "hitp_reply event”" found in "PREFIX/share/bro/base/protocols/http/main,bro” to examine the
variables used in our script.

Once again, you may ask how we knew argument variable names and those same fields when referenced in the
script. The argument variables are thosc found in the “main.bro” file that has the “http_reply” event.
Unfortunately, the argument names may not match the names used to reference a given field in the script itself.
For instance, the "hilp_reply"” event passes an argument called "reason", however this is known as

"$status _msg" in the script reference above.

To reveal the variable names to reference for a given protocol, print out the protocol data structure, in this
instance "http". Remember that the protocol/data structure is always nested in a given connection "¢" so
"c$http" lists all the HTTP variable (ields and values for the current connection. This is a cumbersome way to

discover the variables, vet it seems like the most informative.

© 2015 Judy Novak 249

“
D e e e = e —

Refining

h

Intrusion Detection In-Depth

This page intentionally left blank.,

250 © 2015 Judy Novak

Output from Script

root@user:/tmp/broscripts# bro -r hittp.pcap bro-http-regresp.bro

HTTP request ==> sender: 192.168.11.62 19086/tcp receiver: 173,194.73.106
80/tcp HTTP method: GET HTTP URI: /

HTTP response ==> sender: 173,194.73.106 80/tcp receiver: 192.168.11.62
19086/tcp HTTP code: 200 HTTP reason: OK

bro-http-reqresp.bro

 Tatrusion Detcetion In-Depth batipeen

When the script is Tun reading in the file "http.pcap”, we see the desired print output. Both the HTTP request
and response include the IP/port pairs of the sender and receiver. The request HTTP method is GET and the
HTTP URI is "/". The response returns an HTTP response code of 200 and a reason of OK meaning that the

URIL was found.

© 2015 Judy Novak

251

252

stats.bro

Sample output from PREFIX/logs/current/stats.log

#fields ts peer mem pkts_proc events_proc
events_queued lag pkts_recv pkts_dropped pkts_link

1377685997.949261 bro 18 0 141 . 8 0.000289
0 0 0

1377686057.949077 bro 18 261 239 235 0.000066
26155 0 261

1377686117.949087 bro 18 83 146 146 0.000069
83 0 83

Intrusion Detection In-Depth

When the "stats.bro" script is loaded in the "local.bro” file, a new log named "stats.log" is created to contain the
output. The output on the slide is from a home network where stats.bro was run for a couple of minutes to
generate some sample log data.

Some of the more useful fields are the amount of memory currently in use, the number of processed packets,
number of events — both processed and queued since the last stats interval (a default value of one minute). As
well, there are the number of packets received and packets dropped and the number of packets on the link that
should be the total of the received and dropped packets.

For more details about each of the fields, see the file "PREFIX/share/bro/policy/misc/stats.bro".

© 2015 Judy Novak

profiling.bro

Sample output from PREFIX/ Iogs/current/prof iog

0.00000) --—----=mmmmmmmmmme s

0.000000 Memory: total=17980K fotal_adj=0K malioced: 17850K

- 0,600000 Run-time: user+sys=0.0 user=0.0 sys=0,0 real=0.0

0.000000 Conns: total=0 current=0/0 ext=0 mem=0K avg=0.0 table=0K connvals=0K
0.080000 Conns: tep=0/0 udp=0/0 icmp=0/0

'0.000000 TCP-States: Inact. Syn. SA Part. Est. Fin, Rst.

"0.00000¢ Connections expired due to inactivity: 0 :

10.000000 Total reassembler data: 0K '

0.000000 Timers: current=2% max=29 mem=2K lag=0. 005

~0.000000 DNS_Mgr: requests=0 succesful= Ofaﬂed 0 pending=0 cached_hosts=0
cached_addrs=0

BT P ————
0.00G000 Threads: current=4

0.000060 packet_filter/Log: :WRITER_ASCII in=1 out=0 pending=0/0 (#queue rfwein=1/1 -
out=0/0)

Intrusion Detecdon In-Depth

Loading the "profiling.bro” script immediately places the output in the file "prof.log” in the "current” log
directary. It generates copious amounts of cutput with detailed statistics. The above is an abbreviated and
edited listing of some of the statistics including memory, connecions, threads, ete. 1f you are interested in more
detail about what is generated, run the script for several minutes and examine the "prof.log".

Unlike the "stats.bro" script, "profiling.bro" has no commuments in it to help understand the output.

@ 2015 Judy Novak 253

e e o Y

capture-loss.bro

e T L e e e
cat capture_loss.log | bro-cut -d ts ts_delta peer gaps acks
percent_lost

2013-10-27T13:03:42-0400 900.000000 bro 0

23 0.000%
2013-10-27T13:18:42-0400 900.000017 bro 1
34 2.941%

2013-10-27T13:33:42-0400 900.000004 bro 28
151 18.543%

2013-10-27T13:48:42-0400 900.000048 bro 1
21 4.762% '

Intrusion Detecrion In-Depth

Here are a few entries that were captured at six minute intervals in the "capture_loss.log" after loading
"PREFIX/share/bro/policy/misc/capture-loss.bro" file. Packet loss is determined by the "number of 'gap events'
(ACKs for a sequence number that's above a gap)".

In other words it appears to be examining TCP traffic only. It looks for acknowledgement numbers that are
greater than the expected ones, determined by the last sequence number sent. Therefore, if there is a gap in the
acknowledgement value, Bro assumes that packets have been lost since it does not see them sent with the
sequence numbers that both Bro and TCP expect.

It appears that this network suffers from some significant packet loss during the third interval where Bro found
151 acknowledgements with values higher than expected, computed to be over 18% of the traffic observed.
This seems somewhat suspect since this was captured on a home network that appeared to be working fine
judging by responses to sent traffic. This means that Bro believes there were 151 gap acknowledgements,
representing 18% of all acknowledgements from the total number of packets - about 750 sent in a duration of 6
minutes. This appears to be a problem with Bro's computations since it seems very unlikely that so many
packets were dropped in such an idle environment.

For more details, see the file "PREFIX/share/bro/policy/misc/capture-loss.bro".

254 © 2015 Judy Novak

Execute capstats for NIC Activity

» Capstats is a tool/command executed from broctl to collect
statistics of the activity on a network interface

[BroControl] > capstats -i nve0 -I 1

1186620936.890567 pkts=12747 kpps=12.6 kbytes=10807 mbps=87.5
nicmpkt5m12822 nic_drops=0 u=960 t=11705 i=58 0=24 nonip=0

Intrusion Detection Ta-Depth

If you are concerned that there may be performance issues from the network interface card, the capstats
command in "broet]" can assist in showing the number of packets received, the rate, and any dropped packets.
The capstats corrmand and output data were copied from the documentation to show you how it should work.

However, in trying the same commmnand, using the same format, but using the interface of "eth0", reflecting the
sniffing interface on the host where it was run, an error was received about an "unknown interface”. The format
of the capstats command follows:

capstats {Options] - interface
-1} --interface <interface> Listen on mterface

-dj --dag

-fi —-filter <filter>

-1l --interval <secs>
-1| --syslog

-n| --number <count>
-N| --select

-p| --payload <n=>

- ~-quiet <count
-5
-s| --snaplen <size>

--gize <size>

-v| --version
-w| --write <filename>

Use native DAG API

BPF filter

Stats logging interval

Use syslog rather than print to stderr

Stop after outputting <number> intervals

Use select() for live peap (for testing only)

Verifies that packets' payloads consist entirely of bytes of the given valuc.
Suppress output, exit code indicates >= count packets received.
Verify packets to have given <size>

Use pcap snaplen <size>

Print version and exit

Write packets to filc

© 2015 Judy Novak 255

Updating

Intrusion Detection In-Depth

This page intentionally left blank.

256 © 2015 Judy Novak

Updating Bro

Software updates only

PREFIX/share/bro/site scripts won't be overwritten

No interim script updates

No signatures since they are created by user only

Bro updates are for the soflware only when a new version is released. There are 1o regular interimn script
updates as yet. And, signatures are user-created so none come with Bro. You only have to ensure that whatever
scripts and signatures you do create are placed in the directory suppiied for your site located in
"PREFIX/share/bro/site”. When you upgrade, these files will stay intact. Otherwise they will be overwritten
and disappcar if placed in any of Bro's other directories.

© 2015 Judy Novak 257

Upgrade Options

[2= oz
¢ Reuse same install prefix, "site" and "etc" directories won't
be overwritten
» Use a new install prefix, copy site/etc files, broctl.cfg needs
to change the SpoolDir and Logdir entries
— Reuvisit initial configuration tasks
» Configure Bro to start at system boot

» Create a cron entry to perform routine housekeeping tasks

= Make sure Bro is in your $PATH

Intrusion Detection In-Depth

Bro upgrades can either use the existing Bro files for the updated software or a new base directory. The
advantage of using the existing directories is that your customized files in the "site" and "etc" directories will
remain untouched.

However, if you prefer to be cautious, especially when operating in production mode, it may be wise to keep the
operational Bro files untouched in case you need to revert back to the previous version. You can create a new
Bro base directory to install the upgraded software. Examine the files in the Bro "PREFIX/etc" directory to
make configuration changes for the updated software. Also, copy any customized site-specific files from the
older version "site" directory to the new version "site" directory.

Finally, revisit the configuration tasks performed upon initial installation if you've upgraded with the new base
directory option. These include making sure that Bro starts at system boot with its altered location, changing the
cron entry with the new directory location, and making sure that the new Bro location is in your $PATH.

Another option is to copy your current production files in the PREFIX directory to some other location as a
backup in case the Bro upgrade to PREFIX directory creates issues. If the new version works, your customized
files will still be in place. If the upgrade fails, you can simply rename the backup directory to the original name.

258 © 2015 Judy Novak

ABOUT

SANS is the most trusted and by far the largest source for information
security training and certification in the world. It also develops,
maintains, and makes available at no cost the largest collection of
research documents about various aspects of information security,
and it operates the Internet's early warning system - the Internet
Storm Center. The SANS (SysAdmin, Audit, Network, Security) Institute
was established in 1989 as a cooperative research and education
organization. Its programs now reach more than 165,000 security
professionals around the world. A range of individuals from auditors
and network administrators to chief information security officers are
sharing the lessons they learn and are jointly finding solutions to

S ANS

practitioners in varied global organizations from corporations to
universities working together to help the entire information security
community. SANS provides intensive, immersion training designed
to help you and your staff master the practical steps necessary for
defending systems and networks against the most dangerous threats -
the ones being actively exploited. This training is full of important and
immediately useful techniques that you can put to work as soon as you
return to your office. Courses were developed through a consensus
process involving hundreds of administrators, security managers, and
information security professionals, and they address both security
fundamentals and awareness and the in-depth technical aspects of the

the challenges they face. At the heart of SANS are the many security

IN-DEPTH EDUCATION AND CERTIFICATION

During the past year, more than 17,000 security, networking, and system
administration professionals attended multi-day, in-depth training by
the world's top security practitioners and teachers. Next year, SANS
programs will educate thousands more security professionals in the US
and internationally.

SANS Technology Institute (STI) is the premier skills-based
cybersecurity graduate school offering master's degree in information
security. Our programs are hands-on and intensive, equipping students
to be leaders in strengthening enterprise and global information
security. Our students learn enterprise security strategies and
techniques, and engage in real-world applied research, led by the top
scholar-practitioners in the information security profession. Learn more
about ST| at www.sans.edu.

Global Information Assurance Certification (GIAC)

GIAC offer more than 25 specialized certifications in the areas of incident
handling, forensics, leadership, security, penetration and audit. GIAC is
ISO/ANSI/IEC 17024 accredited. The GIAC certification process validates
the specific skills of security professionals with standards established
on the highest benchmarks in the industry. Over 49,000 candidates
have obtained GIAC certifications with hundreds more in the process.
Find out more at www.giac.org.

SANS BREAKS THE NEWS

SANS NewsBites is a semi-weekly, high-level executive summary of
the most important news articles that have been published on com-
puter security during the last week. Each news item is very briefly sum-
marized and includes a reference on the web for detailed information,
if possible. www.sans.org/newsletters/newsbites

@RISK: The Consensus Security Alert is a weekly report sum-
marizing the vulnerabilities that matter most and steps for protection.
www.sans.org/newsletters/risk

Ouch! is the first consensus monthly security awareness report for
end users. It shows what to look for and how to avoid phishing and
other scams plus viruses and other malware using the latest attacks as
examples. www.sans.org/newsletters/ouch

The Internet Storm Center (ISC) was created in 2001 following

the successful detection, analysis, and widespread warning of the LiOn

worm. Today, the ISC provides a free analysis and warning service to

thousands of Internet users and organizations and is actively working

with Internet Service Providers to fight back against the most malicious
§ attackers. http://isc.sans.org

most crucial areas of IT security. www.sans.org

TRAINING WITHOUT TRAVEL ALTERNATIVES

Nothing beats the experience of attending a live SANS training event
with incomparable instructors and guest speakers, vendor solutions
expos, and myriad networking opportunities. Sometimes though,
travel costs and a week away from the office are just not feasible. When
limited time and/or budget keeps you or your co-workers grounded,
you can still get great SANS training close to home.

SANS OnSite Your Schedule! Lower Cost!

With SANS OnSite program you can bring a unique combination of high-
quality and world-recognized instructors to train your professionals at
your location and realize significant savings.

Six reasons to consider SANS OnSite:

1. Enjoy the same great certified SANS instructors and unparalleled courseware
2. Flexible scheduling — conduct the training when it is convenient for you

3. Focus on internal security issues during class and find solutions

4. Keep staff close to home

5. Realize significant savings on travel expenses

6. Enable dispersed workforce to interact with one another in one place

DoD or DoD contractors working to meet the stringent requirements
of DoD-Directive 85707 SANS OnSite is the best way to help you
achieve your training and certification objectives. www.sans.org/onsite

SANS OnDemand Online Training & Assessments — Anytime, Anywhere
When you want access to SANS' high-quality training ‘anytime, anywhere;
choose our advanced online delivery method! OnDemand is designed to
provide a very convenient, comprehensive, and highly effective means
for information security professionals to receive the same intensive,
immersion training that SANS is famous for, Students will receive:

« Up to four months of access to online training + Hard copy of course books
+ Integrated lectures by SANS top-rated instructors
» Access to our SANS Virtual Mentor

» Assessments to reinforce your knowledge throughout the course

www.sans.org/ondemand

+ Progress reports
« Labs and hands-on exercises

SANS vLive Live Virtual Training - Top SANS Instructors

SANS vLive allows you to attend SANS courses from the convenience of |

your home or office! Simply log in at the scheduled times and join your
instructor and classmates in an interactive virtual classroom. Classes
typically meet two evenings a week for five or six weeks. No other SANS
training format gives you as much time with our top instructors.
www.sans.org/vlive

SANS Simulcast Live SANS Instruction in Multiple Locations!

Log in to a virtual classroom to see, hear, and participate in a class as it
is being presented LIVE at a SANS event! Event Simulcasts are available
for many classes offered at major SANS events. We can also offer
private Custom Simulcasts - perfect for organizations that need to train
distributed workforces with limited travel budgets. www.sans.org/simulcast

For group programs, please contact us at groupsales@sans.org

©0000060000F0

e

