
https://technet24.ir

Contents

1. Practical Hardware Pentesting Second Edition Learn attack and defense
techniques for embedded systems in IoT and other devices

2. Feedback
3. Prerequisites the basics you will need
4. Approach to buying test equipment
5. The component pantry
6. Sample labs
7. Summary
8. Questions
9. Feedback

10. Technical requirements
11. Introduction to the boards
12. Why C and not Arduino
13. The toolchain
14. Introduction to C
15. Summary
16. Questions
17. Further reading
18. Feedback
19. Technical requirements
20. Understanding I2C
21. Understanding SPI
22. Understanding UART
23. Understanding D1W
24. Summary
25. Questions
26. Feedback
27. Technical requirements
28. Finding the data
29. Extracting the data
30. Understanding unknown storage structures
31. Mounting filesystems
32. Repacking
33. Summary

https://technet24.ir

34. Questions
35. Further reading

https://technet24.ir

Practical Hardware Pentesting,
Second Edition: Learn attack and
defense techniques for embedded
systems in IoT and other devices
Welcome to Packt Early Access . We’re giving you an exclusive preview of
this book before it goes on sale. It can take many months to write a book, but
our authors have cutting-edge information to share with you today. Early
Access gives you an insight into the latest developments by making chapter
drafts available. The chapters may be a little rough around the edges right
now, but our authors will update them over time.

You can dip in and out of this book or follow along from start to finish; Early
Access is designed to be flexible. We hope you enjoy getting to know more
about the process of writing a Packt book.

1. Chapter 1: Setting Up Your Pentesting Lab and Ensuring Lab Safety
2. Chapter 2: Our Main Attack Platform
3. Chapter 3: Sniffing and Attacking the Most Common Protocols
4. Chapter 4: Extracting and Manipulating Onboard Storage
5. Chapter 5: Attacking Wi-Fi, Bluetooth, and BLE
6. Chapter 6: Software-Defined Radio Attacks
7. Chapter 7: Accessing the Debug Interfaces
8. Chapter 8: Static Reverse Engineering and Analysis
9. Chapter 9: Dynamic Reverse Engineering

10. Chapter 10: Scoring and Reporting Your Vulnerabilities
11. Chapter 11: Understanding Your Target
12. Chapter 12: Identifying the Components of Your Target
13. Chapter 13: Approaching and Planning the Test
14. Chapter 14: Wrapping It Up – Mitigations and Good Practices

https://technet24.ir

Feedback
We are constantly looking at improving our content, so what could be better
than listening to what you as a reader have to say? Your feedback is
important to us and we will do our best to incorporate it. Could you take two
mins to fill out the feedback form for this book and let us know what your
thoughts are about it? Here's the link:
https://packt.link/HardwarePentesting2E .

Thank you in advance.

Embedded systems, in the broadest definition of the term, are all around us in
our everyday lives (examples being our phones, our routers, our watches, our
microwaves, and more). They all have a small computer inside them and take
care of very critical aspects of our lives, and also collect and protect data that
is very critical to us. Sadly, the embedded system industry is lagging behind
the usual computing industry in terms of security. In the last 10 years, we
have seen examples of how this lack of security in these kinds of systems can
lead to very tangible impacts on the real world (for example, the Mirai botnet;
a slew of viruses targeting the industrial world’s embedded systems across a
large number of vendors (stuxnet, darkenergy, industroyer,
pipedream/incontroller, etc.) ; a wave of attacks against routers; some
countries stealing other countries' drones by spoofing the Global Positioning
System (GPS); and so on). This is why it is very important to train more
and more people on how to find problems in these kinds of systems, not only
because the problems are already here but also because there will be more
and more such systems, and their ever-growing number will manage more
and more crucial aspects of our lives (think about autonomous vehicles;
drone delivery; robots to assist the elderly; and so on).

Helping you start with assessing the security of these kinds of systems is the
first goal of this book. The second goal of this book is that you have fun
while you learn because testing these kinds of systems is going to be
interesting, and I take great pleasure in making the learning process enjoyable
for you. You may ask yourself: How is it going to be fun for me? For me, it is

https://technet24.ir

because you are messing with the most trusted part of the system: the
hardware. Not only you are messing with the most fundamental elements of
the system, but you also are in direct contact with it; you will be soldering,
drilling, scrapping, and touching the system to pop a shell! You will not only
code to compromise your target system, but (hopefully rarely) the blood,
sweat, and tears will not be figurative!

In this chapter, you will learn how to set up your lab, from a simple, low
investment suitable for learning at home up to a professional testing
environment. This chapter will get you up to speed on how to invest your
money efficiently to achieve results and, most importantly, how not to kill
yourself on the job.

The following topics will be covered in this chapter:

The basic things you will need to get started
The different types of (common) tools available for your labs, what to
get, and at which point
The approach to acquiring test equipment, and the difference between a
company and a home lab
Basic items you will want in a lab, what they are, what are their uses,
and the approach to setting up a lab
Examples of ramping up your lab: basic, medium, and professional labs

https://technet24.ir

Prerequisites – the basics you will
need
Before going into the things you will need to buy, let's have a look at the
basics you will need to go through our joint exploration of an unknown
system (a Furby), and start working on your own systems.

Languages

To be able to script activities and interact automatically with most systems,
you will need to be familiar with at least one high-level programming or
scripting language (I will use Python for the examples in this book, but any
other scripting language such as Perl, Bash, PowerShell, and more will also
work) and one low-level programming language to write your own firmware
and customize the examples. I will also use C (on the attack platform) since it
is the most popular programming language for embedded systems, but any
language that has a compiler for your target system will work.

Hardware-related skills

You will need to learn actual, manual skills that are not purely knowledge-
based; the main obstacles people fear when starting hardware hacking are
soldering and understanding of basic electronics concepts. For both of these
skills, you can approach them in a knowledge-based way: learn about Ohm's
law; the physics of semiconductors; what is an eutectic mixture and
temperature; and all of the theoretical background. To be honest, I would not
recommend approaching these skills like that.

Of course, you may need the knowledge down the road, but don't start with
this. Solder things; make light-emitting diodes (LEDs) blink; learn how to
use transistors as switches. In short: do things, accept failure, and learn from
it; burning a transistor will cost you a few cents but you will not repeat your
error; burning your fingers will hurt but this will heal in a few days (there are

https://technet24.ir

safety instructions in the book—read them very carefully). You have far
more chances to lose your motivation by learning a lot of laws and formulas
while never using them than by having a problem, finding the correct
formula, and solving your problem with it!

System configuration

Having a nice desktop computer will really improve your experience in the
lab. Even if, in today's world, people tend to use laptops more and more, this
can prove to be a challenge when you are attacking hardware. A laptop will
not block you from attacking hardware, but a desktop will definitely make
your life a lot easier.

A laptop's main challenge will be the very limited physical interfaces
available on it (still, you can work with it).

You don't need a powerful computer to start with (I use a 7-year-old i7:
nothing fancy), but really pay attention to the interfaces. It is very common
for me to use 5-6 Universal Serial Bus (USB) ports when I am attacking
hardware; for example, when operating on any embedded system, I typically
have the following things attached to my computer (not even counting my
convenience peripherals such as keyboard, mouse, headset, having a dual-
screen setup, and so on):

USB:
- A bus pirate
- An OpenBench logic analyzer
- One or two USB to Universal Asynchronous
Receiver/Transmitter (UART) bridges
- A microcontroller unit (MCU) board
- A function generator
- My programmable power supply

Ethernet:
- My internet connection
- My oscilloscope

Good luck doing that with a laptop without using an external USB hub,

https://technet24.ir

especially when these hubs can interfere with the functionality of some
peripherals (for example, the USB-UART bridges I use tend to become
unstable if used over a USB hub—using a good-quality powered USB hub
can help).

One of the main contention points is the operating system. I use Linux, but
using a Windows-based machine (especially if you use the Windows
Subsystem for Linux (WSL) for anything but access hardware peripherals)
will not really limit you in the end. (I will base the examples in this book on
Linux. If you don't want to install a machine with Linux, just run a virtual
machine (VM) but be aware that some of the most popular and free
virtualization software do not really support USB passthrough very well.)

Setting up a general lab

The setup of the lab itself is very important and will be quite determinant in
terms of your ease of use and comfort in the lab. You will spend a lot of
hours thinking and hacking in there, thus the room and its furniture will be
quite important to your comfort. You will need to consider the following
factors:

Your chair : Invest in a good wheeled desk chair with easily movable
arm support and good back and lumbar support. The race car seat-
looking chairs targeted at gamers can be a good type to look into, but
really pay attention to the armrests and the system that allows you to
move them out of the way and set them to the desired height easily.
More often than not, they will annoy you when using your soldering
iron, but you will want them to support your arms when typing, for
example.
Your work table : Three factors are critical—the height of the table (so
you don't kill your back when operating close to a printed circuit
board (PCB), for example) and its surface. For the surface, I like clear
colors (to be able to easily see a component that slipped, for example)
with a slightly textured surface (so the components don't skid too far too
easily). Also, the larger your work surface, the better it is to spread the
inevitable clutter.
Shelving : You will want to have shelving on top of your work table in

https://technet24.ir

order to be able to have your instruments on top of your work area
without them eating up the space available. I like to have the shelving
approximately 50 cm higher than the surface of my work table in order
to be able to easily manipulate the interface of the instruments and put
back probes without having to stand up from my chair nor having to kill
my neck when I look at waveforms or a specific knob or button.
Light : Good and powerful lighting of your work area is crucial; not
only you will be manipulating a variety of very small things
(components, cables, connectors, and others), but it becomes even more
important when operating under magnification (for example, for
soldering). Pay attention to the intensity of your light but also its color
temperature (more blue or more yellow, I prefer a balances 5000K
daylight-like temperature), keeping in light that the bluer it is the higher
the risks of it disturbing your sleep cycle.
Anti-static measures : An anti-static mat is really practical to protect
sensitive devices against electrostatic discharge. They come with a
bracelet that ensures any electrostatic charge you may have built up is
dissipated. It is also important to avoid flooring that will make you build
up such charges (such as carpets).
Soldering mat: Cheap silicon soldering mats can be bought for cheap
on online stores. Get one, they avoid part slipping away easily and
usually have integrated small sorting bins that are really usefull.

Safety

There are inherent risks linked with opening and interacting with live
systems. Please read these carefully—safety first!

Please follow these safety tips at all times:

1. If there is a risk of electric shock, never ever do your tests alone and be
sure to brief the person who is with you on how to quickly kill the power
and react. Have emergency services' number preeminently displayed; a
fire extinguisher that can be used on live electricity; first aid training;
and so on.

2. Whenever your fingers or instruments go near a system, ensure it is
either disconnected from the mains (that is, wall plug electricity—

https://technet24.ir

110/220V (where V stands for volts)) or that you are physically isolated
from the mains part of the board (for example, use silicon mats to isolate
the dangerous part of the power section).

3. If a system is mains-powered, always, always use an insulation
transformer.

4. Wear adequate clothing, remove jewelry and, if you are sporting long
hair, always tie this up (which will prevent it from getting in the way).

5. If the system sports any kind of battery, insulate the battery rails
appropriately (with electrically insulating sticky tape, for example).
Some battery types are dangerous and can catch fire or explode if
shorted. I really advise you to have a look at videos of shorted lithium-
polymer batteries: you don't want this kind of catastrophic failure
happening in your home, lab, or office.

6. You will work with sharp and hot tools and objects, so having a first aid
kit available is always a good idea.

7. There is a debate about what is dangerous: voltage or current. Actually:
energy kills, so both voltage and current can be dangerous. For example,
you may have already survived a > 10 kilovolt (kV) electric shock
from electrostatic discharge (the sparks you can feel when removing a
pullover, for example), but 2,000 A at 1 V will char you to death, and
people regularly get killed by mains power. The gist is, whether amps or
voltage are present, treat it as dangerous.

8. Soldering equipment is very hot and will set things on fire if you are not
cautious; always have a smoke detector in your lab, along with a fire
extinguisher. Use the holder your soldering iron comes with (or buy
one); they are usually shrouded to avoid contact with random objects.

Safety is of the utmost importance—there is no need for all the fancy test
equipment we will now go through if there is no one left to operate it.

https://technet24.ir

Approach to buying test equipment
These are my personal opinions and views. Especially regarding
measurement equipment and tools, you will find a lot of heated argument
about the different brands, models, and tools. Engineers tend to be reasonable
but they are human beings, and there will be fanboys. You will find on
different forums people with their opinions and the deeply rooted belief that
what is working best for them is the best for anyone. The golden rule is the
following:

Get information upfront
Make up your mind
Be reasonable
Get what works best for you

Home lab versus company lab

Some very important distinctions have to be made between your own
personal laboratory equipment and what you use in a company laboratory.
Not only will the money for the home lab come from your own pocket, but
some options (such as renting) may not be realistic for a home lab.
Additionally, a company lab is subject to the safety rules of a work
environment. You should meet with your company's occupational safety
manager in order to comply with the adequate regulations regarding the
storage of hazardous or corrosive chemicals, ventilation/air extraction,
handling of possible fire hazards, and so on (as a side note, this is a very
practical and reasonable way to get out of this noisy open space we all love to
hate).

Hacked equipment and Chinese copies

In a home lab, one of the best reminders of why you are doing the assessment
is the fact that some instrument companies are suspected by the community
of actually producing hackable instruments in order to boost their sales. And

https://technet24.ir

their instruments get hacked. This is a reminder that there is a very real
community (and not a fabled hacker hidden in their parents' cellar) that is
going after electronic devices in order to get the most out of them, unlocking
features that are normally paid for, and potentially costing money to the
company that produces the instruments. From a hobbyist point of view, it
may be not really legal, but it is a common practice for hobbyists to
maximize their investment by modifying or hacking existing instruments.

Since legality and repeatability are key in a company laboratory, I would
advise against hacking instruments in this context. If the current laboratory
setup of your company is not enabling a test to take place, your company
should have a budget to buy (or rent) the adequate instruments or be able to
offset the cost to a client.

The same goes for Chinese copies of programmers and logic analyzers—you
may not care about it in a private setting, but in a professional setting the
lower quality can actually turn back to bite you. The gist is, as long as you
are doing this as a hobby, the decision to hack your instruments is on you, but
if you are doing this professionally, buy the real thing and get reimbursed, or
bill your client.

Approaching instrument selection

Measurement instruments are like cars; it's all a question of balance

The Italian sports car type—the luxury thing that will be able to do
everything (short of cooking for you), which costs an insane amount of
money and actually very few people can get the most out of. It may not
be worth it in an assessment context unless you have a really specific
need. If it is the case, it may be smarter to just rent the instrument.
Brands that I classify in this category: Teledyne-LeCroy, Rohde &
Schwartz, and high-end Keysight (formerly Agilent).
The good-quality German car that is doing everything quite well. It may
be a good investment if you are actually doing this a lot and need a
reliable, solid instrument that will get you far for a long time. Brands
that I classify in this category: mid-range Keysight, Tektronix,
Yokogawa, and very high-end Siglent or Rigol.

https://technet24.ir

Le French car type—it's going to be doing almost the same thing that the
German car does, for a fraction of the price, with a lot less style, and
maybe for a shorter time. Brands that I classify in this category: mid-
range Siglent or Rigol.
The no-frills, cheap Japanese car—it's going to be efficient and cheap,
get you from point A to point B, but you're not going to get a lot out of it
on the speedway. Brands that I classify in this category: low-range
Siglent or Rigol.
The "el cheapo" Chinese car. It is cheap; it's a box with an engine and a
driving wheel, but not much more. Also, don't have a crash in it: its
safety is not so well engineered. Brands that I classify in this category:
OWON.

And just as with a car, you can find very interesting second-hand deals! Don't
underestimate second-hand instruments—a lot of renting companies sell their
used equipment second-hand, and you can score pretty sweet deals like that.
(My first oscilloscope was a second-hand 100 MHz-bandwidth Phillips,
which I scored on eBay and used for 3 years without a problem.)

What to buy, what it does, and when to buy it

Here is a table of the main types of different instruments, what they are used
for, and how much they are needed (0 being the highest priority):

Instrument Description Priority

Digital

multimeter

(DMM)

A DMM is a
fundamental tool that
allows you to measure
voltage, resistance, and
current intensity and also
to check for continuity.
Advanced models allow
you to measure other
values such as
frequency, inductance,
and capacitance.

0

https://technet24.ir

Soldering iron

Just as with the DMM, a
soldering iron is one of
the pieces of equipment
you will use the most.
Directly go for a
temperature-controlled
one. This will allow you
to make your own
circuits, remove and
exchange components,
and more.

0

Bus pirate

This is a very useful
multi-tool to interact
with in-circuit buses-
more on it in the in-
circuit communication
chapter:

Chapter 6 , Sniffing and
Attacking the Most
Common Protocols .

0

Logic analyzer

A logic analyzer reads
digital protocols and
allows you to decode
them in software later.
This is extremely useful
for spying on inter-chip
communication,
developing and
debugging your custom
tools, and more.

1

An MCU platform you
will get to know well
and will learn to use
efficiently. This will be

https://technet24.ir

MCU

platform

very useful to send fake
messages on buses,
impersonate a chip, and
pretty much interact
programmatically with
the target system's
electric signals. We will
go for a cheap and
flexible one (the blue
pill) later in the book.

1

JTAG

adapter

JTAG (named after the
Joint Test Action Group)
is historically an
interface to test the
soldering of chips. It has
been extended to offer
chip-specific
programming and debug
interfaces and functions.

1

Oscilloscope

An oscilloscope allows
you to measure voltage
in function of time and
trace the curve of this
voltage. Current models
can do additional
measurements
(frequency
measurement, frequency
spectrum, and more),
trace voltages in function
of another, decode
digital protocols, and so
on.

2

A hot air station is an
advanced version of a
soldering iron. It is very
practical to work with

https://technet24.ir

Hot air station
surface-mounted
components since it will
allow you to heat all
leads and underlying
pads of a component at
once.

2

Lab power supply

Lab power supply comes
in two main flavors:
variable ones (where you
can set a fixed output
voltage and a maximum
current limit manually)
and programmable ones
(where you can set the
voltage and current limit
programmatically). The
first kind is all you need
to start and do most of
your work. The
programmable ones are
more advanced and,
should you need one,
you'll be knowledgeable
enough to know it. I
personally only have a
manual one and have
never needed a
programmable one.

0 (var)

/

3(prog)

FPGA

platform

A field-programmable
gate array (FPGA) is a
programmable logic
platform that allows you
to do really fast and high
throughput operations.
This piece of equipment
is among the more 4

https://technet24.ir

advanced that you
should look into when
you have become more
familiar with procedural
programming or if you
have a specific need to
do something really fast.

DMM

The DMM is your principal tool—you will be using it all the time. I really
mean all

DMM basics

Your DMM will come with a manual. Read it. Even if you have used a
multimeter before, you have to know the basic characteristics of the tool you
will be using.

If you have never used a multimeter, it should come with at least these
functions:

Voltage measure : This will measure the voltage difference between the
two test leads. If your DMM doesn't have an auto-range function (like
most entry-level meters), you will have to set the measuring range and
set it to direct or alternating voltage.
Current measure : This will measure the current (the amount of
electricity) passing through the leads. Again, pay attention to the range.
Most of the time, you will have to change the connector one of the leads
is plugged into (from V to A; sometimes there is even a mA connector
for lower ranges).
Resistance measure : This will measure the resistance between leads by
creating a known voltage between the leads and measuring the current
that the resistance lets go through. Again, pay attention to the range. The
resistance is inferred by using Ohm's law:

Voltage (in volts: V) = Resistance (in Ohms: Ω) x Current (in amperes: A).

https://technet24.ir

Continuity test : When the test leads are connected with a negligible
resistance, the multimeter will beep. A fast continuity test will really
make your life easier and a slow response continuity beep is a very
common downside of very cheap DMMs.

TIP

Never use the continuity measurement or resistance measurement
modes on a live circuit—not only can the reading be false but you
can also damage your DMM!

Getting your workhorse

You will be able to find a curated list of DMMs with their characteristics and
comparison on the EEVblog forum. (I also warmly encourage you to watch
the videos from EEVblog—Dave Jones' style isn't for everybody, but I
personally like it a lot and his videos are always very educative.)

The list can be found here:
https://www.eevblog.com/forum/testgear/multimeter-spreadsheet/ .

I really don't recommend going for a very cheap Chinese DMM, nor can I
point you toward an exact model since it may not be valid in a few months.

The elements to pay attention to when selecting a DMM (in order of priority)
are the following:

The DMM really should be of a safety rating compatible with what you
are measuring (at least CAT III, as you will be measuring main voltages
at some point) and the probes should be really sharp. In a worst-case
scenario, you can always buy replacement probes.
Bandwidth, precision (the number of displayed digits), and the count
numbers should be as high as your budget allows.
The speed of the continuity test (try to find review videos)—you want it
to be as fast as possible.
The available ranges—you really want as wide a range of measurement
as possible, both of alternating current (AC) and direct current (
DC) (it should range from millivolts to at least 1,000 volts; from a few

https://technet24.ir

ohms to a few dozens of megaohms; and from a few microamps to 10 or
20 amps for current).
The input impedance (that is, the capability of the meter to read the
voltage from a circuit without disturbing the circuit)—you want at the
very least 10 megaohms (the higher the better).
A serviceable fuse that you can replace easily.
Good back-lighting to help with screen visibility when you are working
late.
The battery lifetime is also a common default that plagues the cheap
chinese DMMs, having to stop your test to run to the closest shop to buy
batteries can be annoying.

Soldering tools

Get a good temperature-controlled soldering iron with widely available
replacement tips. Again, it is desirable to have a good workhorse and a lower-
quality secondary iron (you will very rapidly be confronted with the necessity
to rework surface mount parts; it is often tricky with a single iron and very
often results in damaged PCB pads). The temperature control is very
important since you will be confronted with leaded and unleaded solder,
which have a different melting temperature; different-sized components with
their own thermal mass (that is, how much heat does the component source
from your iron before getting hot); and so on (get both irons with temperature
control; the secondary doesn't need to be as precise as the main one). Some
additional supplies are also extremely useful, as listed here:

Liquid and tacky flux : This allows the melted solder to flow much
more easily on the leads and pads. You will be constantly removing and
re-soldering parts from PCBs, and flux will be helping you
tremendously, especially for su rface-mounted device (SMD) parts. I
am partial to Kingbo RMA-218 for tacky flux.
Soldering wick : This is an invaluable tool to remove excess solder and
clean PCB pads before soldering back a part. I was always kind of
disappointed with solder wick… until the day I met chemtronic’s
solderwick. The best one around, end of story.
Fluxed, leaded solder : Get two different thicknesses, one in the 0.5
mm range and the other one as thin as you can get for SMD rework. You

https://technet24.ir

will find leaded solder a lot easier to work with as it melts at lower
temperatures, flows better, is much easier to wick out, and allows you to
drown unleaded solder on multi-leaded chips to remove them. Since
unleaded solder has a lower melting temperature, it is tricky to keep
multiple leads in a nice melted blob of solder on all leads to remove it.
Alloying the unleaded solder with additional leaded solder will help you
a lot with this.
A third hand : Yes—this tool's name sounds strange but it is a common
tool. It is a heavy-based tool with two (or more) springy pincers that will
hold components in place while you are soldering. To get how it is
helpful, just imagine yourself soldering, with a soldering iron in one
hand and the solder wire in the other. How would you hold parts or
wires in place? These are really small, very light things that can move
under the smallest shock and tend to do this at the worst moment
possible.
Tips : When you select your iron, try to find one for which the tips are
reasonably cheap for different shapes; you will find the default conical
tip that most irons come with to be actually impractical compared to a
truncated cone.
Tweezers : A soldering iron will get too hot for your grubby little
fingers very fast. Having a nice set of cheap tweezers with different tip
shapes will be very helpful to hold and manipulate small components.
Side cutters : Flush side cutters are very useful to cut component leads
very close to the PCB.
A PCB holder : This will allow you to hold firmly a PCB (and orient it
easily) while you work on it.

Logic analyzer

Here, there are two distinct ways, either open source software-based (sigrok)
or proprietary ones (there are plenty, but Saleae is well known as being easy
to use). Saleae hardware is, in my opinion, a little bit expensive for the punch
they pack but it is balanced by very good software. It is possible to find
Chinese copies of some of their (either older or smaller) models, but I would
refer to the excerpt on knock-offs at the beginning of the chapter. Sigrok is
compatible with a very wide list of hardware (you can find it here:
https://sigrok.org/wiki/Supported_hardware). I personally use both: an

https://technet24.ir

OpenBench Logic Sniffer (by dangerous prototypes) with sigrok at home,
and Saleae at work.

Here is what to look for in a logic analyzer:

Sample speed : This is the speed at which the analyzer samples the
signal and determines the maximum speed of signal you can read
accurately. The Nyquist criterion tells us that to read a signal accurately,
you have to sample it at least at twice the speed of the signal.
The number of inputs : The higher the better, but you can cover a very
large percentage of buses with the basic 8-channel analyzers.
The input protection : You may plug a probe on the wrong thing; you
may accidentally burn a test system when fiddling with wires; your
soldering iron may be badly grounded; and more
The input impedance : Similar to the DMMs—at the very least, 10
megaohms.

Bus pirate

Easy—there is only one. There is a debate about which version to use (v4 can
be buggy sometimes and is not always working with flashrom, so go for v3).
The bus pirate is a tool that will allow you to interact and play with the most
common protocols used to talk with chips.

MCU platform

The MCU platform will be the most controversial piece on the forums and on
the internet in general.

I strongly recommend getting familiar with a vendor platform in the
Advanced RISC Machine (ARM) family because of these factors:

1. The ARM architecture will be a very common target.
2. It is widely supported in term of compilers and debuggers with open

source toolchains (GCC, OpenOCD, GDB, and so on).
3. Development boards are very cheap, plentiful, easy to find, and quite

complete (if you read this after the COVID-chip-mageddon that is).

https://technet24.ir

4. You can find screaming fast platforms for quite a cheap price.
5. Packages with a large number of very fast I/O are very common.
6. The necessary passive components to support the MCU can be quite

low.

I am very partial to the STM32 family from STMicroelectronics. It may have
its quirks, but the development boards are incredibly cheap. Some quite
capable MCUs can be found mounted on cheap Chinese boards, in the 4 USD
range (delivered) on popular websites (eBay, AliExpress, amazon and so on)
offering a ton of I/Os and quite decent hardware peripheral. A few bucks
more will get you an official board, which includes a programmer (that can
be used to program the cheap ones quite easily). This is my personal opinion
and mainly comes from the fact that these cheap development boards were
among the first ones I had access to and, hence, I learned to use the quirks
and features of the family quite well.

Plenty of other vendors (Texas Instruments, Cypress, NXP, and so on) offer
quite comparable boards in the same price range. My main advice would be:
choose a vendor and a family, get well acquainted to it, and stick with it. The
chances are that you'll be able to select the family member with the speed and
peripheral set that will fit your needs best when you have a specific
requirement set.

JTAG adapter

JTAG, to start with, is an interface that was designed to test the soldering of
integrated circuits. It was designed as a shift register that was able to activate
all the leads of a CPU in order to be able to test the electrical connections.
The basic design of JTAG was conceived to allow for the daisy-chaining of
chips in order to have a single chain that could be leveraged to test a board. It
was later enriched with CPU-specific features (that are not well standardized)
in order to allow for in-circuit debugging and programming. It can be very
useful for your own developments or to get access to the internal states of a
chip if it is not disabled in production.

JTAG is based on a (minimum) four-wire bus (data in, data out, test, and
clock). This bus is piloting a state machine in each target chip. (JTAG will be

https://technet24.ir

covered in more depth in Chapter 10 , Accessing the Debug Interfaces .)

Oscilloscope

An oscilloscope will be a very useful tool for exploring signals and probing
different lines. Basically, an oscilloscope will allow you to visualize a voltage
in function of time. To get a good grip on the basic operation of an
oscilloscope, please refer to Tektronix's guide XYZs of Oscilloscopes and read
your oscilloscope manual from front to back.

Selecting your oscilloscope is almost easy—the baseline is that you want to
get the most bandwidth and the most memory size for your budget. The
question of whether to select a two-channel or a four-channel oscilloscope is
very common. As usual, it boils down to a tradeoff. If you can get a four-
channel with a bandwidth of 100 MHz or more within your budget, get it. A
four-channel oscilloscope is very useful if you are exploring systems where
more analog electronics are used and where you want to correlate an event's
occurrence relative to another event.

Before taking your decision, it is really important that you watch test videos
and, if possible, teardowns to compare the usability of your different
candidates and the possibilities of repairing them in the case of problems. Do
not underestimate repairability, I broke the screen of a 500 USD scope and I
was really happy to be able to fix it with a 30 USD Chinese screen.

The bandwidth

The bandwidth of an oscilloscope is actually not equal to the maximal speed
you will be able to measure. It is what is called a -3 decibel (dB) bandwidth.
A -3 dB bandwidth is the frequency at which the instrument will measure a
signal at half of its actual power.

This means that a 100 MHz-bandwidth oscilloscope will measure a 100
MHz, 1 V peak-to-peak p sine wave as a 0.7 V peak-to-peak signal!

To accurately read a sine wave (that is, at its actual voltage level), you will
need at least three times the bandwidth of the signal.

https://technet24.ir

Bandwidth is the characteristic of an oscilloscope with the most impact on
the buying price. Take what the maximal and usual frequencies that you need
to measure will be and make your decision accordingly (a 50MHz
oscilloscope is good enough for a start but be prepared for it not to be
sufficient after a few years. I still use my 100MHz oscilloscope in most cases
(and I am not sweating bullets if I have to take it with me on a plane)).

Regarding the number of channels, it is very simple: the more channels you
have, the better it is. Take into account in your decision that, most of the
time, you will need one or two channels; measuring three and more signals is
not something you will need every day, but you will be happy to have it when
you need it.

The probes

There are two main types of probes: active and passive. To make it simple,
you can only use passive probes under 350MHz (for higher speed, you will
need active probes). Passive probes are quite cheap and come with a manual
switch between different "damping ratios" that can be taken into account in
the oscilloscope's interface. The probes are really important, same as the
DMMs; you will want very sharp probes with a wire grabber. Good-quality
probes are quite common with oscilloscopes. Don't forget to compensate your
probes—the procedure should be described in your scope's manual.

Display

Most modern oscilloscopes come with additional display functions, such as
Fast Fourier Transform (FFT), which allows you to see the signal in the
frequency domain instead of the usual time domain); XY display (which
allows you to see the signal on a channel in function of another channel); and
X/Sin(X) (read Chris Rehorn's excellent paper Sin(x)/x Interpolation: An
Important Aspect of Proper Oscilloscope Measurements and about the
Nyquist-Shannon Signal sampling theorem).

Interfaces

https://technet24.ir

It is very common to find network (Ethernet) remote commands and display;
Video Graphics Array (VGA) output; USB storage of measured
waveforms. This can be very useful to display waveforms on your computer
or extract the samples from a measurement for later processing.

References

Just as with DMM, a list is maintained on the EEVblog forum:
https://www.eevblog.com/forum/testgear/digital-oscilloscope-comparison-
chart/

Hot air gun

A hot air gun shoots hot air at a controllable temperature and flow rate. This
is very practical to solder or unsolder surface-mounted components. Some
accessories and consumables are inseparable companions to an hot air gun:
solder paste (to tin your pads, this can be deposed pad by pad with a
toothpick) and Kapton tape (this is a type of heat-resistant sticky tape that can
be used to protect components next to the one you are soldering or
desoldering). I would recommend using leaded solder paste but this can be
tricky to get in Europe or the US. The use of a hot air gun requires practice to
be efficient and I would recommend watching technique videos and train on
junk/broken boards before going at it on an important PCB.

Here are the things that you have to look for in pretty much all of the hot air
stations you will find:

Regulated temperature
Regulated airflow
Replaceable air gun head (to be able to have thin or wide flows; it can
also be interesting to replace the head with a square one for bigger
quad-flat packages (QFPs) or quad-flat no-leads packages (QFNs
).

FPGA platform

FPGAs are really practical for fast logic processing. Their main downside is

https://technet24.ir

that most of them require a proprietary programming and synthesis (the
FPGA lingo for compilation). At the time of writing of this book, only the
Lattice iCE40 had an open source development tool chain available (and
support for the Xilinx 7 series is supposed to be coming up soon). Most of the
proprietary environments are quite expensive if you want to cover most of the
chips of the vendor, but some development kits come with a development
environment limited to the chip that is on the board. I personally use an
Artix-7 Arty board that I was trained on by Toothless Consulting's Dmitry
Nedospasov, and I am very happy with it.

Vendor

A few vendors share most of the FPGA market: Xilinx; Intel (who acquired
Altera); Lattice; and Microsemi (who acquired Actel). As for MCUs, most of
them are almost equivalent (short of their development environments);
depending on the time you are buying, just take the best development board
you can find and stick to the vendor.

Language

A very common question is the language to develop with, being Verilog or
VHDL. Verilog tends to be more common in the US, while VHDL is more
common in Europe. The most important part is that both languages are
equivalent; you can achieve exactly the same results and it is more a matter of
taste. From my point of view, I tend to find VHDL is a bit more descriptive
but as a downside, it requires more boilerplate code. I personally prefer
Verilog since it is terser and easier to find examples for.

Lab power supply

Your lab power supply will allow you to power up your circuits and your
target system. Some very practical features you really want on your supply
are listed here:

Current limitation : This will allow you to prevent things from burning
when you are messing with the circuitry. I usually measure the current

https://technet24.ir

consumption of the circuit in a normal context (over an hour, for
example) and set the current limit 5-10% higher than the measured
consumption.
Current measurement : This will allow you to detect some more
power-consuming behaviors in the target system, such as
radiofrequency (RF) emission.
Multiple (at least two) variable outputs : This will allow you to run
some part of your target system at a voltage less than what they are
intended to run at, or at a current limited to less than what they need,
potentially triggering some interesting errors.
The ability to chain outputs in case you need some higher voltage than
usual.

Programmable power supplies aren't needed to start, but they can come in
handy later when you need to program some behavior in function of time or
other behaviors on your target system. They are usually more expensive than
the simple ones but can come in handy.

Small tools and equipment

You will need a lot of different small tools in your lab. I personally use
multiple mugs and boxes to keep them ready near my work area. Some
examples are listed here:

Tweezers : There are different point shapes and quality. You will have a
very frequent use for sharp pointy ones for very small SMD components
(0201, for example) and rounded, slightly larger ones for more common
packages (0805, for example). The lowest-quality ones tend to bend
quite easily, and I find that investing in medium-quality tweezers can be
advantageous. You can find these for quite cheap on bidding or e-
commerce sites such as eBay, Taobao, Aliexpress, Amazon, etc.
Scalpels : I tend to use n°4 medical scalpel handles with detachable
blades. They replace very advantageously the usual X-ACTO knives
(even if the blades are a little less sturdy) since the blades are very cheap
in packs of 100 and are available in a lot of different shapes.

I keep a stock of the following blades:

https://technet24.ir

- n°26 : for general cutting work and scrapping traces

- n°23 : for cutting work that needs some force and cutting plastic

- n°19 : for scrapping traces

Screwdrivers : You will need a set of long- and thin-precision
screwdrivers with multiple heads (at least flat, pozidriv, torx, and hex) in
multiple sizes. The best approach here is to buy a set of screwdrivers
with multiple heads and sizes. I would also advise that, when you have
to buy a set of security bits, you buy one with the following: security
hex, security torx, tri-wings, tri-groove, pig noses, and clutch A and G.

Some vendor-specific and even customer-specific screw/screwdriver couples
exist, but this can usually be defeated with a bi-component epoxy compound
or, in extreme cases, with a bit of aluminum casting or computer numerical
control (CNC) machining.

Clamps : The type of clamps you will be most interested in are called
Kelly forceps. This type is used to keep things together with a bit of
force, like holding boards together while soldering or holding wires in
place while glue is curing.
Pliers : You will very often use cutting pliers and long-necked ones to
cut leads, remove connectors, and for a variety of different tasks. Again,
buying decent-quality pliers will ensure they can survive small amounts
of abuse that is very common in regular usage. I would advise investing
in a good-quality wire stripper plier (of the simplest, flat kind that looks
like a pair of pliers with multiple teeth sizes for the different wire sizes).
I find that self-stripping tools tend to rip and break the cables that
usually come with embedded systems far too easily.
Breadboard : A breadboard is a tool where you can plug multiple wires
and through-hole components temporarily. This is very useful to make
small temporary circuits to power components and to have some glue
logic, level shifting, modulation, and so on. You can easily start with
cheap breadboards from bidding and e-commerce sites but they degrade
quite quickly. Better quality brands such as 3M degrade less quickly, are
a bit expensive, but hold better value over time.

https://technet24.ir

Breadboarded circuits tend to be very fragile due to the way the components
are mounted. Due to stray capacitance, I would not advise using breadboards
with frequencies over 5 MHz. The indispensable companions to the
breadboard are jumper wires (a length of wire with male or female connectors
crimped at the end). Just find cheap lots of male-male, female-female, and
female-male on bidding or e-commerce sites and buy some. I consider these
consumables since I regularly cut them for ease of connection to a
breadboard.

Perfboard/Stripboard : These plates of PCB have either copper dots or
strips you can cut and solder together in order to create circuits. They
are more solid than breadboards and behave a bit better at higher
frequencies.
Magnification : As a first step, I recommend buying a few magnifying
glasses that you can mount on your third hand (if it doesn't come with
one already). At a later stage, and especially if you are working with
very small components (0201 SMD or a lot of very fine-pitch MCUs, for
example), a stereo microscope is very useful to see what you are actually
soldering and keep a sense of depth to position your iron accurately.

Renting versus buying

It is quite common for companies to rent their test equipment long-term. It
may or may not be interesting depending on your volume of use for a certain
type of equipment. For example, you may need a specialized piece of
equipment (such as a high-end software-defined radio (SDR); a vector
network analyzer; a very very fast oscilloscope) for a specific engagement
but you will very rarely use it in your normal work; then, it may be very
practical and economically right to rent the piece instead of buying it. In a
professional context, my approach for it is the following:

If it is less than 2,000€, just buy it—renting will not be worth the hassle
If I know I will not use it again in the next 6 months or if it is over
10,000€, rent it.
The scope in the middle is then just a matter of calculation, as follows:

- (daily rent cost) x (number of days foreseen in the following year) < 50%

Technet24

https://technet24.ir
https://technet24.ir

price: rent it.

- else, buy it.

Additionally, renting a piece of equipment before buying it will allow you to
evaluate its interface and its performance across the spectrum of your
different usages. Now that we have seen the different instruments we need to
interact with components, let's have a look at those.

https://technet24.ir

The component pantry
You will need a component pantry—by that, I mean that you will need at
least an assortment of common resistors, capacitors, transistors, and voltage
regulators always at hand. More often than not, you will find yourself in need
of a jellybean component and will actually gain a lot of time by just having it
available.

The pantry itself

Buy some of those drawer cabinets commonly sold to people that are making
jewelry or doing any other hobby involving a lot of small pieces. Buy enough
of them so that you can sort easily the (quite large) number of parts you will
end up storing. Start by buying two to three of them; that will cover you for a
few years. They are not really expensive and are really worth it.

I would advise labeling the drawers as quickly as possible and finding an
organization system that suits you. For example, I have a column for through-
hole resistors; another for surface mount; some drawers for capacitors; some
for coils; and a column dedicated to silicon (diodes, transistors, voltage
regulators, electrically erasable programmable read-only memory (
EEPROM) , and others)

I also have a lot of custom shelves made out of cheap medium-density
fiberboard (MDF) planks and brackets just screwed in the wall. There, I
keep labeled boxes with development kits, instruments, a lot of electronic
waste for cannibalization, instruments I rarely use, and others.

The stock

To start, I would advise keeping the following in stock:

A collection of common resistors (buy some cheap E12 resistor kit on
eBay) in through-hole (THT) and surface mount (SMT— a lot in 0805

Technet24

https://technet24.ir
https://technet24.ir

and a few in 0402).
A (small) collection of chemical and ceramic capacitor in common
values (a few in the picofarad range: 0.1µ, 10µ, 47µ mainly, and a few
big ones for power decoupling). For the packages, same thing as the
resistors: a mix of through-hole and surface mount.
A few power (1N4004) and signal (1N4118) diodes. A few Zener diodes
for common voltage levels won't hurt (5, 3.3, 2.5, 1.8, 1.2). Zener diodes
are designed to let current flow at a given voltage level, allowing you to
protect circuitry against voltage spikes or to use them as a crude voltage
conversion.
At least a dozen fixed voltage regulators for the common voltages (5,
3.3, 2.5, 1.8, 1.2) and a few beefy adjustable ones (LM317 in a TO-220
package is very, very useful).
Some standard transistors (both Field Effect Transistors (FETs) and
Bipolar Junction Transistors (BJT), again in a mix).
A few salvaged power supplies that can provide you with 24, 12, and 5
V (the powerful USB chargers that come with modern phones will give
out a nice stable 5 V with decent amperage, are plentiful). Power
supplies are very common e-waste and you can usually score a dozen for
a small bill in any flea market

To keep my stock filled and enrich it, my strategy is to always order 10-15%
more than I need in projects, just to cover the usage and not to have to follow
individual component use (1 minute of your time is worth more money that
the few fractions of cent a resistor costs).

Now, you should really play around with the components in your stock, learn
about them, and make a few classical circuits to learn how they work and
what they are actually doing, since keeping things you don't know how to use
just for the sake of hoarding wouldn't make much sense, would it?

Now that we have looked at our instruments and components, let's have a
look at a possible evolution path for your lab.

Buying components : There are plenty of electronics sellers, based in the
eastern or western hemisphere (DigiKey, Mouser, LCSC, Element14,etc.).
Basically the only difference is whether they have what you want or not.
Most of them offer free delivery over ~50USD/€. I always use this free

https://technet24.ir

delivery thing to get my 15% additionnal quantity to keep my pantry filled. I
don’t charge my clients for this small signal diode or three 10KOhm resistors
I used from my pantry and they usually don’t care if I use the free shipping to
keep it that way.

Technet24

https://technet24.ir
https://technet24.ir

Sample labs
In this section, we will be looking at different states of a home laboratory
(from beginner to pro) that you could take inspiration from. When a piece of
equipment is not described at a given level, it means that the piece is kept
from the level before. Some pieces of equipment are not necessary before a
given level of maturity (for example, the pro level doesn't have a new hot air
station because it is kept from the amateur level).

Beginner

At this stage, the goal is to kickstart the activity as cheaply as possible,
acquire knowledge, and check that you like it without burning too much
money. Have a look at the following table:

MCU

platform

A Chinese Arduino copy-start with
Arduino and move later to a raw C
context with avr-gcc and avrdude

Breadboard Cheap Chinese from a bidding site

Oscilloscope Any cheap secondhand 50 MHz
bandwidth from a bidding site

Logic analyzer
A cheap bidding site Cypress FX2
repurposed board with homemade
clamping diode input protection

Bus pirate The one and only

Soldering station

Cheap bidding site temperature-
controlled iron-the TS100 is very
popular but you need an external
supply

Function generator A cheap Direct Digital Synthesis
(DDS) device from eBay

https://technet24.ir

Power supply

Repurposed phone chargers or
Advanced Technology eXtended (
ATX) power supply breakout (this is
a small board that you can plug a
computer power supply to)

DMM El cheapo 10$ multimeter (do not
work on mains voltage with this)

Price: <500€.

Amateur

At this point, you like the activity but you are starting to be limited by your
equipment. You have circumvented some limitation by doing hacks, you
have rolled out your own code to drive peripherals for common protocols on
your current MCU and bit-banged some, but your platform is starting to
become slow, your scope is not fast enough or lacking digital trigger, and
more. Here are some pieces of equipment you can buy to solve these
problems:

MCU

platform

A fast STM32F4 (such as the
Discovery), in pure C with arm-gee
and link

Breadboard A wide 3M with multiple rows

Oscilloscope

A low-level oscilloscope with at least
100 MHz of bandwidth, potentially a
hackable one for better bandwidth or
decoding of digital protocols

Logic analyzer An open bench logic analyzer

Soldering station and hot air gun A Chinese brand (Bekka, Yihua,
OneHungLow, and so on

Power supply
A dual variable output with a fixed
SV power supply. It is really easy to
find one on a bidding site for a quite

Technet24

https://technet24.ir
https://technet24.ir

reasonable budget.

DMM
A reasonably priced DMM from a
reputable brand (in the 100€ range)
will do the job nicely.

Good helping hands

The Chinese "octopus" style help
hands are easy to find on bidding
sites. They will allow you to hold
probes easily, even if you have

a four-channel oscilloscope. They
have an articulation system that looks
like the feet of a gorillapod.

JTAG

programmer

Any development boards based on an
FTDI FT2232H will do the job nicely
(it is compatible with OpenOCD). It
won't give you crazy fast speed, but
this is not something you really need
at this point.

Price: <2,000€

Pro

At this point you are doing it regularly, so you will pretty much know what
you will need. Have a look at the following table:

Oscilloscope

A good oscilloscope with a 350-500
MHz bandwidth from a major vendor
{Rohde & Schwarz, Keysight,
Tektronix, LeCroy, and so on) will be
a serious investment. At this point,
you will know what you need but will
still need to research a lot since these
instruments cost quite a bit of money.

https://technet24.ir

Power supply
Choose a nice, programmable power
supply from a mid-tier vendor with at
least two variable outputs, such as the
Rigol DP832.

Function generator
An entry-level function generator
such as one from the Rigol DG900
series will cover your needs.

Logic analyzer
Saleae Logic Pro 16 is a very good
logic analyzer with very practical
software.

DMM

A mid-range DMM from Fluke {the
DMM117, for example) will be good
enough for what you will have to do.
If you need something with more
performance, have a look at bench
multimeters.

JTAG

programmer

A SEGGER J-Link will give you very
nice speeds.

FPGA

platform

Arty A7,57, or Z7, depending on your
needs of having an onboard ARM
CPU

Price: ~8,000€

Technet24

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we have seen the different tools that you will use and the
different elements you will need to pay attention to when creating your
laboratory.

A usually underestimated aspect of the lab is comfort—you will really spend
a lot of time in there, so a good chair and a lot of natural light are quite
important. I hope you will find all of these tips useful in the long run and that
they will avoid you having to learn the hard way (like I did

In the next chapter, you will learn how to approach a target system and
harvest information about it.

https://technet24.ir

Questions
1. Why would you want two DMMs?
2. What is a 3 dB bandwidth?
3. Above which frequency will a breadboard parasitic capacitance interfere

with the signals?
4. Who produces the bus pirate?
5. What is an oscilloscope?
6. What is the gist of the Nyquist-Shannon signal sampling theorem?
7. What is the main difference between active and passive oscilloscope

probes?

Technet24

https://technet24.ir
https://technet24.ir

Feedback
We are constantly looking at improving our content, so what could be better
than listening to what you as a reader have to say? Your feedback is
important to us and we will do our best to incorporate it. Could you take two
mins to fill out the feedback form for this book and let us know what your
thoughts are about it? Here's the link:
https://packt.link/HardwarePentesting2E .

Thank you in advance.

We cannot interact physically with the systems (humans are not very well
equipped to see and produce precise and fast electrical signals, are they?) and
we may not want to risk our main computer platform by connecting it directly
to a device under test (DUT). We will need a specialized tool for this.

In this chapter, we will look at the main tool we will use to actively attack our
targets. Both possible boards the code will work on (the bluepill or the
blackpill boards) we are going to use are very cheap, accessible, and can be
programmed with an entirely open source toolchain. We will review what
they are exactly, their hardware, their variants, and how to program them
(with a little introduction to C) before actually using it to attack protocols and
chips in the next chapters.

In this chapter, we will cover the following topics:

Introduction to the boards
Why C and not Arduino?
The toolchain
Introduction to C

https://technet24.ir

Technical requirements
In order to be able to program and use the boards, it is essential to have the
following:

A board (I'd advise you to buy a few, as they are always useful.
Search for bluepill stm32f103 or blackpill stm32f411) on any
bidding or cheap site (ebay, taobao, aliexpress)
A breadboard
An STLINK USB stick: This looks like a USB stick with pins on the
side opposite to the USB connector.
A few wires for connections.

For the examples, you will require the following:

Protocol: I2C: Chip: A PDIP 24LC I2C EEPROM
Protocol: SPI: Chip: An MX25L8008 flash on a DIP breakout
Protocol: UART: Any USB-to-serial adapter (the cheap ones based on
CP2102 will do the job perfectly and they are useful tools too. Ordering
more than one is a great idea; you need at least two)
Protocol: Dallas 1-Wire: Chip: A DS18B20 (a temperature sensor)

You may want to also buy or find components that are using the same
protocol but that are slightly different, so as to train yourself in adapting the
examples.

In terms of the compilation of programs and flashing, install the following
(for a Debian-based system):

gcc-arm-none-eabi

libnewlib-arm-none-eabi

binutils-arm-none-eabi

gdb-multiarch

openocd

make

Technet24

https://technet24.ir
https://technet24.ir

texane st-link (https://github.com/texane/stlink)

NOTE

Please be aware that the version that your distribution sports may
not be sufficiently new. If this is the case, it could have a problem
with the cheaper clones (in that case, install from source by
following the instructions here:
https://github.com/texane/stlink/blob/master/doc/compiling.md).

You can refer to the code used in this chapter at the following link:

https://github.com/PacktPublishing/Practical-Hardware-Pentesting

Check out the following link to see the Code in Action video:

https://bit.ly/307nM2u

https://technet24.ir

Introduction to the boards
A board to do what? What are the boards? What can they do? How much
does it cost? Why this one? Where is the documentation? Yes, you surely
have plenty of questions! You will sometimes need a reminder while testing
or doing the exercises, so I will also point to the chip's documentation. These
questions are exactly what we are going to be talking about in the following
sub-headings.

A board to do what?

Well, we will need to interface the board with the circuit we will want to
attack. Since a general-usage PC doesn't really have a readily accessible
interface board to connect with the most common protocols, we will use a
bluepill or a blackpill to do so.

What are they?

The bluepill is a very cheap board and the blackpill is slightly more
expensive but more capable. Both are very capable of being used to follow
the exemples in this book (exemples have been tested with both).

For general usage the only major difference is the presence of a CAN
interface and an additional analog-to-digital converter (ADC) on the bluepill
the are lacking on the blackpill but in exchange the blackpill is about 20%
faster.

The bluepill

The bluepill is a colloquial name for many different boards that have the
following characteristics:

Are cheaply available on bidding or Chinese goods sites such as eBay,

Technet24

https://technet24.ir
https://technet24.ir

Taobao, and AliExpress (in the €1.5 range before the chipmageddon
caused by Covid19 but in the 3€ range at the time of writing this book)
Host an STM32F103C8T6 (or drop-in replacement parts from Chinese
chip manufacturers) and its basic power circuity
Break out most of the interesting pins in a format that can be plugged
into a breadboard

The STM32F103C8T6 is a quite capable (32 bits, 72 MHz) microcontroller
produced by STMicroelectronics that comes with a wide range of typical
general-use peripherals:

Two 12-bit ADCs
Two I2Cs
Two SPIs
Three USARTs
A USB peripheral
A CAN
GPIOs

We can now use these to interface with our target systems. Also, in quite
practical terms, it is possible to program it directly in C (which we will use in
the book) or use the Arduino IDE and API to program.

IMPORTANT NOTE

Some vendors are selling boards that have a clone of the
STM32F103C8T6 on it. These should be fine, but the programming
software may complain about it.

The blackpill

The blackpill is a colloquial name for many different boards that have the
following characteristics:

Are cheaply available on bidding or Chinese goods sites such as eBay,
Taobao, and AliExpress (in the €3 range before the chipmageddon
caused by Covid19 but in the 5€ range for the stm32f401 version and 6€

https://technet24.ir

range for the stm32f411 version at the time of writing this book)
Host an STM32F401 or STM32F411 and its basic power circuity
Break out most of the interesting pins in a format that can be plugged
into a breadboard

The STM32F411 and STM32F401 are quite capable 32 bit, fast(F411 : 100
MHz, F401 : 84 MHz) microcontrollers produced by STMicroelectronics that
comes with a wide range of typical general-use peripherals:

One 12-bit ADC
Three I2Cs
Five (F411) or four (F401) SPIs
Three USARTs
A USB peripheral
GPIOs

And… a major difference between the two chips is that the F4 family comes
with a hardware implementation for floating point arithmetics. This means
that a small subunit in the microcontroller (the floating point unit or FPU)
knows how to do operations like 1.2 + 2.1 = 3.3. In the bluepill the CPU does
not have this sub-unit and can’t do that in hardware. This means that, if your
code does this kind of operations on the F103, this have to be done in
software (by emulating the FPU if you want to look at it like that), making
floating point operations really, really slow in comparison to the F4.

The compiler (we will explain what this is later) prevents you from mixing
different pieces of software compiled for chips with and without FPU.

This impacts some compilation options but don’t worry about that, the
makefiles in the book’s repository take care of that for you.

CAVEAT

If you have both bluepills and blackpills, you can’t just change the flags in
the makefiles managing the target board, you also need to clean the library.
The makefile come with a target called

Technet24

https://technet24.ir
https://technet24.ir

Why C and not Arduino?
The C programming language has a reputation for being hard to use and
complex. Trust me, it is not. This reputation comes from the fact it doesn't
come with a lot of the convenience functions of more modern languages. The
simplicity that comes with this language makes it shine when the resources
are constrained and when the execution needs to be really efficient, like on a
microcontroller!

While I am quite sure that most of the examples in the book could be written
using the Arduino IDE and API, it would do the following:

Hide too much of the compilation chain and the programming process
from you
Prevent you from actually understanding the capabilities of the chip
Make it difficult for you to actually know what is happening on the chip
(since it uses some of the chip capabilities to provide you with
convenience functions)
Actually consume quite a bit of storage space to provide you with these
convenience functions

All of this (unless you actually have a degree in electrical engineering or
experience in programming embedded systems) would hinder your ability to
understand your actual targets! It would do so because you will understand
some fundamental concepts about the way in which microcontrollers work
and are used on your targets!

Aside from that, you definitely should buy an Arduino and play around with
it, but I will not focus on that here. You can even use the STM32duino
libraries on this platform!

The documentation

The datasheet has a scope that is restricted to the model itself. Like most of
the chip manufacturers, their chips are named in a nomenclature that allows

https://technet24.ir

us to decipher the capabilities of the chip that is soldered on the board. For
example, let's look at the nomenclature for the chip on the bluepill : the
STM32F103C8T6:

STM32: The family; a line of 32-bit cortex M-based MCUs.
F1: This is a general-purpose, medium-density chip (F0s are even
cheaper, L0s are energy-efficient chips, F3s are used for digital signal
processing, and so on).
F103: This is a 73 MHz chip with a CAN and USB.
C: This is the pin count (48 for C).
8: This tells us that the chip has 64 KB of Flash and 20 KB of RAM.
T: This is the package (the dimensions of the plastic capsule that
encloses the silicon). T is LQFP (low-profile quad flat package).
6: This chip is designed to work in a "normal" range of temperature and
not be exposed to too much heat or humidity, and so on.

In STMicro vocabulary, the document that will provide you with the detailed
information of the family is a "reference manual." It will give you the
addresses of the different memory-projected registers. It also explains the
way in which the peripherals are programmed and all the things that are
shared across the family members, irrespective of how much memory they
have, how many leads are available on this package or that package, and so
on.

Execice : Do the same thing for the chip that is on the typical implementation
of the F411 version of the blackpill : STMF411CEU6. What is the package ?
What the is onboard SRAM quantity ?

Board Chip Datasheet Referece manual

Bluepill F103 https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
.

https://www.st.com/resource/en/reference_manual/rm0008-
stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-
and-stm32f107xx-advanced-armbased-32bit-mcus-
stmicroelectronics.pdf

Blackpill F401 https://www.st.com/resource/en/datasheet/stm32f401ce.pdf
https://www.st.com/resource/en/reference_manual/rm0368-
stm32f401xbc-and-stm32f401xde-advanced-armbased-
32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0368-

Technet24

https://technet24.ir
https://technet24.ir

Blackpill F411 https://www.st.com/resource/en/datasheet/stm32f411ce.pdf
.

stm32f401xbc-and-stm32f401xde-advanced-armbased-
32bit-mcus-stmicroelectronics.pdf

Reading the documentation

In the reference manual, you will find a description of all the peripherals that
are on the chip. While reading the documentation for a peripheral, you should
expect to always find the same following sequence:

Functional description of the peripheral :
How the peripheral type behaves in general
What the available functionalities of the peripheral type are
How to initialize and configure the peripheral type
How to use the internal peripheral behavior (what the interrupts are,
how they play out together, which bit is flipped by which events,
and so on)

Configuration of the registers for the peripheral : A description of all
the registers (their addresses and all of their bits) that manage the
peripherals, and for each instance of the same peripheral type
A register map : A brief overview of all the registers described in the
configuration

Memory-projected registers

Like most (if not all) programming languages, the main thing C does is make
the CPU core move values from memory locations to other memory
locations. In order to react to the programming, the chip has special memory
regions where memory locations are actually special storage units ("the
registers," as opposed to generic storage locations) that react to the stored
value by altering the chip behavior. At some of these special addresses (that
is, some registers), it is the behavior of the chip itself (such as its clock and
turning peripherals on and off) that is set, and for others, it is the behavior of
peripherals around the CPU that is altered. This concept is called memory-
projected register and is the basis of the operation of MCUs and CPUs. Let's
now dive into how this is translated in a binary that defines the MCU's
behavior.

https://technet24.ir

The toolchain
We will use a set of tools to transform a high-level language (yes, I wrote
that, C is a high-level language) into the binary code that the chip
understands and is laid out in a file that it can execute. To make it short, it's
called compilation (compilation is actually one step of it, but it is a quite
easy shorthand). We will push this file to the chip and have it run our code. In
order to do that, we will have to use a set of tools and I will describe these in
the following sections.

The compilation process

Under the generic compilation concept, the way it is understood by most
people, we turn the code into something that can be executed by a computer.
From the push of a button or a sternly typed command line, we see a file
appear that we can run (a .exe file, a .elf file, or other formats). In reality,
this is (of course) a little bit more complicated.

The compilation in itself

The goal of the compilation process is to turn a human-readable language (C,
C++, assembly opcodes, Java, and so on) into a sequence of instructions that
the decoding unit in the CPU can understand.

For the bluepill, we will use the GNU Compiler Collection (GCC) and,
more specifically, a flavor (gcc-am-none-eabi) that is geared toward our
architecture (arm) without any specific operating system (none-eabi).

In order to be able to understand the process, we will perform this operation
on our local machine since it is easier to see the result than on the bluepill,
and the process is essentially the same.

First, let's compile a simple hello world code:

Here, gcc -c means compile only. When we try to execute hello.o , the

Technet24

https://technet24.ir
https://technet24.ir

error tells us that this is not a binary file that our computer knows how to
execute. This is because we need to put it in a format it understands.

If you need to include header files (header files described by the functions
provided by a library or another .o file), use -I to provide the path to the
header directory and use the #include directive in the source file.

The linking

The linking turns object files into an understandable format for the operating
system. In our example, the printf() function is provided by an external
library (the description of what the library provides comes from the #include
<stdio.h> line), but the operating system has no clue as to which library just
by looking at the object file. This is the linker's job (we will use gcc to call
the linker) to link it (and put the relevant information) into a file format that
the operating system will understand:

This process (since it is not very clear in our very small example) is very
important as soon as a project is divided into multiple source files. Each will
become a .o object file and will be linked together as something that is
usable.

Driving the compilation

Of course, a project can do the following:

Encompass dozens of files.
Need to be compiled in a debug version.
Search for the location of libraries.

That is why there are tools to drive the compilation process. The simplest and
most ubiquitous one is Make. Make is driven by a description file called a
Makefile .

Anatomy of a Makefile

https://technet24.ir

A Makefile can be complex (if you look at a big file for a complex project)
but is composed of very simple elements:

Variables : These are usually used to store things that you can use later.
It is very common to put the name of the compiler, options, and path in
variables. The affectation is done with the VARIABLENAME= value outside
of targets and the evaluation with $(VARIABLENAME) .
Targets : The things make must do in order to achieve the goal (the goal
in question is usually a file). Targets can be described with dependencies
in order to take care of the tasks required by the current target (again,
usually a file). The file's dependencies follow a : after a target name.
make looks at the change date of the files listed in the dependencies and
only launches the tasks for the dependency files that are more recent
than the target.

Let's have a look at a very simple Makefile to compile our hello world
example:

Let's discuss a few terms from this Makefile:

CC : A variable that contains the name of the compiler executable
hello : Our main target, which requires hello.o in order to be started
hello.o : A requirement target for hello

IMPORTANT NOTE

In Makefiles, before a list of tasks (such as the $(CC) directive (the
tasks for the target)), there must be a tabulation (\t) and not just a
space. If the make command tells you a separator is missing, this
means that your editor transformed the tab into multiple spaces, and
this will not work.

To illustrate the dependencies system, let's try a number of things:

Let's understand this code:

First, we see that everything is up to date (1) .
If we remove the executable file (the hello file), make will rebuild just

Technet24

https://technet24.ir
https://technet24.ir

that (2) .
If we make the source file more recent than the outputs produced (3) ,
make rebuilds everything.

Make is very powerful and allows much more than this simple example. I
strongly encourage you to read some Makefiles to get used to its possibilities
and, of course, read the documentation on Make's website:
https://www.gnu.org/software/make/

Now we can build code, let's see how we can push it to the chip.

Flashing the chip

The easiest and most versatile software for STM32 chips on Linux is an open
source implementation of ST's programming protocol. This software is
available in the most modern distribution in a packaged format as the
stlink-tools package.

INFORMATION BOX

For more information on the stlink-tools package, you can refer
to the following link: https://github.com/texane/stlink .

It comes with different tools:

st-flash : The basic tool to read from and write to the embedded Flash
of an STM32.
st-info : This tool gives you information regarding the connected chip.

Now, enough with the examples, let's do the real thing.

Putting it into practice for your board

In order to make our first program for our chips, we will need to do the
following:

1. First, we will need to write a simple C program that will initialize the

https://technet24.ir

chip and blink the onboard LED.
2. In the second step, we will use a linker script that will tell our compiler

how to arrange the executable format in a way that is understood by our
STM32.

3. Finally, we will flash it to the chip.

Using libopencm3

Before we start coding, we will need a corpus of information that will help us
with providing all of the addresses of the different registers and constants that
will help set them up without constantly doing (usually quite error-prone)
bitwise arithmetic with raw values. Additionally, the opencm3 library comes
with convenience functions to set up and use peripherals that we will use later
on.

Here is how to get the library:

At this point, the library is ready to be used.

The code

The chip needs to be initialized for the following purposes:

To tell the chip which clock source to use (its internal oscillator or a
more precise external crystal)
To know what to do with the clock source in order to clock itself (via an
internal component called a PLL, it can multiply or divide the clock
source to feed the different clock signals it needs)
To determine what peripherals to initialize in order to use the general-
purpose input/output to which the LED is attached
To toggle the pin that commands the LED wait a bit, toggle the pin that
commands the LED

The entire code and Makefile can be found in the book's Git repository in
code /ch2/blink_noop (do not forget to clone it and its submodules with --
recursive).

Technet24

https://technet24.ir
https://technet24.ir

Try to read the Makefile and understand what it does, as well as what the
different targets do:

Connect your STLINK stick to the bluepill and flash the code to it (with
make flash). Connect the GND on the STLINK to the GND on the
bluepill, 3V3 to 3V3, SWD to SWD, and SWCLK to SWCLK).
Try to change the value in the second while loop to make it blink
slower.
Try to change the value in the second while loop to make it blink faster.
Search the libopencm3 documentation to see how you could replace the
rcc_clock_setup_pll function.
Read the function code and the reference manual to understand how it
works (in the RCC chapter of the reference manual).
Make the MCU run at 48 MHz from the HSI through the PLL (there is
an already made set of pll parameters in libopencm3 for that) and see
how it influences the blinking speed.
Download ST STM32Cube software, start a new project with the correct
chip for your board, and then go to the clock management tab and look
at how the different peripheral buses are clocked.

Now that we've seen how code is transformed into a binary that can be
transferred to the chip, let's look a bit more into the code and how it works.

https://technet24.ir

Introduction to C
C will be your bread and butter for developing your attacks. Yes, there are
easier, more modern, less cumbersome languages, but the following is true:

The abstraction level prevents you from understanding what is
happening on the hardware.
Most of your reversing targets will be C-based.

So, pony up, and learn the language that makes the hardware run!

This is really intended as a crash course that will just allow you to understand
the code that comes with this book. There are plenty of resources on C on the
internet if you want to dig deeper (and trust me, you will want to).

Operators

C comes with most of the operators you are expecting:

Technet24

https://technet24.ir
https://technet24.ir

You may already be familiar with the majority of the statements:

https://technet24.ir

The comments can come in two forms:

Numeral bases as literals are also very straightforward:

Types

Variables have a type. This is so that the compiler knows what kind of
operation to apply to the variable.

The main types in C are as follows:

int : an integer value, usually 4 bytes

Technet24

https://technet24.ir
https://technet24.ir

short : a short integer, usually 2 bytes
char : enough to hold a character, usually a byte
float : a representation of a real (floating point) value, usually 4 bytes.
Attention, the precision is limited !

That's it. There are no evolved types such as strings, lists, and hash maps out
of the box. This is a very concise language where you have to create the
evolved types you may need from the basic types. But don't underestimate C.
The chances are that it is still the language that created the code managing the
hardware in most of the devices you own. The majority of the kernels, the
low-level libraries, are written in C because it is extremely efficient, both for
size and for pure code performance.

The dreaded pointer

Pointers are making people afraid of C, and this is somewhat ridiculous.
Pointers, just by themselves, are making people afraid of this language.
Generations of students have been frustrated by the dreaded and mystical
beast called "segmentation fault" (the error that usually comes from flawed
pointer operations).

It is true that people are scared of pointers, and I cannot fathom why. They
are easy.

A variable is held at a memory location. The pointer is the address of this
location. Done

The notation for pointers is * (a pointer is a type and it points to a value with
a type so that the compiler can perform a size calculation). The notation of
"get address of" is & , while, within an expression, * is used as a dereference
(that is, "this thing that is at the address I am applying the * to"):

In C, pointers are the way in which arrays are managed, either with dynamic
allocation (almost never used in MCUs), or statically with the [] shorthand
syntax:

Since the array is so easy to use, it is also used to hold strings:

https://technet24.ir

Like I said before, this is just a crash course, but for now, you are able to
code for the bluepill, push code onto it, and start having fun!

Preprocessor directives

Preprocessor directives are directives that a special piece of code in the
compiler (the preprocessor) understands. They begin with # and are used by
the preprocessor to do text replacement or file inclusion.

The most frequently used directives are the following:

Technet24

https://technet24.ir
https://technet24.ir

Multiple other directives exist including #undef , #else , and more besides.

Functions

Declaring a function in C is very easy:

Then, the function_name variable simply holds a pointer to the assembly
code that implements the function. One consequence of this is that it is
possible to use function pointers as variables that hold a reference to a
function that you can change and call dynamically.

Explore more and look into the blink_systick folder. This is also making
the led blink but by using and external peripheral (called systick). Follow
the exploration instruction in the code and look how you can overclock your
chip (and why you shouldn’t).

Explore even further and look into the blink_timer folder. This is also

https://technet24.ir

making the led blink but by using and external peripheral (called a timer).
First understand how this timer allows us to get this nice dimming effect (this
is called pulse width modulation or PWM). Rea the timers documentation in
the reference manual and try to play with it… Ain’t this neat ?

Technet24

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we have programmed our main attack platform for the first
time and then installed and compiled the library that will help us interact with
its peripheral. We also had a brief introduction to the language we are going
to use to program it – C.

In the next chapter, we will go through the most common protocols used in
embedded systems, and learn how to find them, sniff them, and then attack
them with our bluepills.

https://technet24.ir

Questions
1. What is the GPIOC_ODR register that I XOR in the blinking example?

Can you achieve the same effect by using other registers?
2. Is it possible to have the MCU run at 72 MHz for the HSI? Why or

how? What is to be expected then?
3. What are the premade frequency assignment functions available in

libopencm3?
4. XOR each character of the string Z9kvzrj8 with 0x19 in a C program.

What does this mean?
5. What is the address of the GPIOC_ODR register? How can we find that

easily?

Technet24

https://technet24.ir
https://technet24.ir

Further reading
Read more about the C language:

The seminal C book: The C Programming Language , by Brian
Kernighan and Dennis Ritchie; ISBN 978-0131103627
21st Century C , by Ben Klemens; ISBN 978-1449327149, because just
because the language is 40 years old, doesn't mean you have to write it
like it was 40 years ago

Read more about GNU Make:

Managing Projects with GNU Make , by Robert Mecklenburg, Andy
Oram, and Steve Talbott; ISBN 978-0596006105

https://technet24.ir

Feedback
We are constantly looking at improving our content, so what could be better
than listening to what you as a reader have to say? Your feedback is
important to us and we will do our best to incorporate it. Could you take two
mins to fill out the feedback form for this book and let us know what your
thoughts are about it? Here's the link:
https://packt.link/HardwarePentesting2E .

Thank you in advance.

Now that we've seen how to program the chip, let's apply it to an application
and use it to actually start attacking systems. We will do that by looking into
a number of standard protocols that are used to communicate between chips
and the outside world. They usually define only the physical layer for chip-
to-chip communication and (almost) never go into higher levels of
abstractions. In this chapter, we will learn how to operate, sniff, and attack
I2C, SPI, UART, and Dallas 1-Wire (D1W).

In this chapter, we will cover the following topics:

Understanding I2C
Understanding, sniffing, and attacking SPI
Understanding, sniffing, and attacking UART
Understanding, sniffing, and attacking D1W

Technet24

https://technet24.ir
https://technet24.ir

Technical requirements
In this chapter, we will look into, sniff, inject, and man-in-the-middle the
most common hardware protocols. There are a small number of things that
you can get for yourself if you want to replicate the practical demonstrations.
(These are not absolutely necessary but there is both a theoretical and a
practical know-how aspect to what is covered in this chapter. I warmly
recommend that you actually replicate the exercises.)

Hardware

In order to be able to follow along, get yourself the following:

A breadboard
Two blue or black pills (that are covered in the previous chapter)
An STLink to program them (sometimes the UART bootloaders are not
wired correctly)
Jumper wires
Any logic analyzer (we will use an open bench analyzer)

The following peripherals are required:

I2C : A PDIP 24LC I2C EEPROM
SPI : An MX25L8008 flash on a DIP breakout
UART : Any USB-to-serial adapter (The cheap ones based on CP2102
will do the job perfectly, as they are useful tools. Ordering more than
one is a great idea.)
D1W : A DS18B20 (a temperature sensor)

The software needed for Linux is as follows:

arm-gcc-eabi-none

stlink

sigrok

Fritzing (to see the breadboard implementation of the components)

https://technet24.ir

In this chapter, there are a few schemas that show how to connect
components to a breadboard. Since the book is printed in grayscale, it may
not always be very easy to differentiate the wires. If it is not clear enough for
you, please download Fritzing, a software that can show (in color) the
breadboard schematic files that are in the GitHub repository:
https://github.com/PacktPublishing/Practical-Hardware-
Pentesting/tree/main/bluepill/ch6 .

The Fritzing schematic show the location for the blue pills. If you use
blackpills, just reuse the same pin numbers but be aware that

The GitHub repository also contains all of the example code.

Let's start with I2C.

Check out the following link to see the Code in Action video:

https://bit.ly/3q2TkRK

Technet24

https://technet24.ir
https://technet24.ir

Understanding I2C
I2C (pronounced as I-two-see , or I-square-see), short for Inter-Integrated
Circuit , is a protocol that was invented by Phillips in the early 80s to be
used in televisions. Due to its easy topology and low part count, it is now
widely adopted.

Mode of operation

I2C connects chips with two wires: one is data (bidirectional) and the other is
clock (of course, with a shared ground). On the bus, one chip acts as the
master and the others as slaves (but they can exchange this role if this
functionality is foreseen).

Physical layer

A very important feature on the I2C bus is that both lines (classically called
Serial Data (SDA) for the data line and Serial Clock (SCL) for the clock
line) are pulled up. This means they both have a resistor to the logical
positive rail (also called VCC or VDD) in order to guarantee that the bus is
high when no chip is pulling it to ground level (low). The bus normally uses a
bus topology, but at low speeds, it is possible to use a star topology. Both the
bus master and slaves can (and will) clock the bus.

The bus classically looks like this:

Figure 6.1 – General I2C architecture

https://technet24.ir

Speed is very important regarding the physical layer (and will have an impact
when you want to impersonate a chip, for example).

I2C comes in multiple speed grades, as shown in the following table:

The speed mainly has an impact on the values of the pullup resistor for the
following reasons:

Everything on a board (traces, components, and more) has parasitic
values (that is, the values that come from the environment, the package
itself, and a plethora of other factors).
The traces of the bus have a parasitic capacitance (but also their own
resistance, inductance, and more); it is possible that the traces and the
pullup resistor act as resistance that is charging a capacitor.

While the impact of this is very limited at slower speeds, it can be measurable
and even disturbing at higher frequencies (this is the reason behind not using
a breadboard at fast speed in Chapter 1 , Setting Up Your Pentesting Lab and
Ensuring Lab Safety).

INFORMATION BOX

The rule of thumb is, the higher the speed, the lower the resistance
(lower resistance implies more current, which implies faster
response – this is a rule of thumb; the capacitance of the circuit has
an impact but you can't change it).

To calculate the needed resistance, the following formula can be
applied. This is a simplified version; there is a formula that takes
the parasitic capacitance of the traces into account, but it is hard to

Technet24

https://technet24.ir
https://technet24.ir

measure. Typical capacitance is taken into account in the Imin
values indicated in the following formula:

Here is a table of resistance for common logic-level values (in reality, select
the closest smallest standard value in the resistors you have available):

IMPORTANT NOTE

Not every MCU can sink this much current easily! If you don't pay
attention, you can easily burn your pin (or your MCU). Some
additional transistors can solve this problem. Selecting a value too
low for the pullup resistor will lower the state change time but can
also change the minimal voltage and make it not close enough to
GND. This can prevent the system from working.

Logic levels and voltage translation

This logic translation is mainly used for I2C but can also be applied to other
protocols.

I2C doesn't really force a specific value for the logic levels, and both the
slaves and the master can pull the SDA low. However, it is then necessary to

https://technet24.ir

use a bidirectional voltage-level translation that is able to cope with this.
Dedicated chips exist but they tend to be expensive. Thankfully, an engineer
for Philips has provided us with a clever trick to do this using just two
MOSFETs. The arrangement is shown in the following diagram:

Figure 6.2 – Bidirectional voltage translation

The original author (Herman Schutte) suggests using BSS138 MOSFETs for
5 V<>3.3 V translation. This MOSFET typically drives with a gate voltage of
1.3 V (refer to the datasheet). So, you will need to find replacements if your
logic levels are lower (than 1.8 V to be on the safe side). You may need to
find a MOSFET with a lower gate threshold. Some vendors offer BSS138
with a very low minimal gate threshold. You may need to buy a few dozen,
find the ones that are more on the lower end of the spectrum, and select those
specific ones in the lot for your voltage translation. I found BSS138 with a
Vgs as low as 700 mV in a lot from Diode Incorporated.

The physical format of the bits

The bits are transferred by encoding them in the way SDA and SCL behave
relative to one another.

Technet24

https://technet24.ir
https://technet24.ir

The bits are transmitted as shown:

Figure 6.3 – I2C sampling

The sampling is typically done around the middle of the active clock cycle
(that is, SCL is high, as shown in the preceding figure) or on an SCL raising
edge. The sampling reads the state of SDA to get a 0 or 1 from the signal.

A few special conditions that are not following the normal bit encoding or
behavior rules are used to support additional signaling between the devices:

Start condition : To start communication on the bus, the bus master
pulls SDA low while SCL is kept high:

Figure 6.4 – I2C start condition

Stop condition : To stop communication on the bus, the bus master
pulls SDA high while SCL is kept high:

https://technet24.ir

Figure 6.5 – I2C stop condition

Restart condition : This is similar to the start condition. During a
transaction, SDA goes low while SCL is kept high:

Figure 6.6 – I2C restart condition

Pause : The slave keeps SCL low, preventing the master from clocking
SCL (the master detects it and pauses the transmission) and frees up
SCL for the master when it is done:

Figure 6.7 – I2C pause

Technet24

https://technet24.ir
https://technet24.ir

We have covered the physical layer, so let's have a look at the logical layer
now.

Logical layer

I2C supports an addressing system over 7 bits (or 10 bits with an extension
but this is not supported by all devices). This means that the theoretical
maximum number of devices is 126 (the zero address is supposed to be a
broadcast, but this is not actually implemented in all chips).

Every device has a 7-bit address and the last bit of the byte is used to indicate
whether this is a read or write request:

https://technet24.ir

This is a complete description of an I2C transaction between a master and
slave. Now that we know this, let's sniff a communication and see how the
protocol is used in the communication.

Technet24

https://technet24.ir
https://technet24.ir

Sniffing I2C

There are at least two ways to sniff I2C: the generic way (with any logic
analyzer) or by using the Bus Pirate.

The target circuit we use as an example is any micro-controller (a blue pill for
us) connected to an I2C chip (PCF8574P for me).

INFORMATION BOX

Since it will probably be the first time you interact with your USB
devices, don't forget to set up udev rules (for Linux) in order to be
able to interact with them without needing superuser privileges.

Look into your system log (dmesg for Linux) after plugging in the device
and note down the vendorid and product ID values. For example, this is
what dmesg says for my logic sniffer:

Create a file for udev (usually in /etc/udev/rules.d/) with a line like this:

Reload the rules with the following (as root / sudo):

Now that we have seen how the protocol is behaving, let's have a look at how
we can read it.

Using a generic logic analyzer

While we're using the logic analyzer for the first time for I2C, it is of course
also usable for the other protocols.

We will use an open bench logic analyzer and sigrok (the open bench logic
analyzer is open source hardware and sigrok is open source software).

We will need to connect the following.

The blue pill, the EEPROM, the two pullup resistors, and the serial adapter
need to be connected like so:

https://technet24.ir

Figure 6.8 – I2C usage connection

Open the Fritzing schematic (https://github.com/PacktPublishing/Practical-
Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_Schematics) to identify
the components.

To connect the analyzer to the circuit, do the following:

1. Connect the ground together.
2. Connect pin 0 of the analyzer to the SCL line.
3. Connect pin 1 of the analyzer to the SDA line.
4. Connect the analyzer to USB.
5. Launch PulseView (sigrok 's GUI) and connect it to the logic analyzer.

6. Click on the Connect device button and set up the analyzer as shown:

Technet24

https://technet24.ir
https://technet24.ir

Figure 6.9 – Connecting the logic analyzer

7. Select the logic analyzer pins you used from the menu with this icon:

. Click on the sniffing button until you see a waveform that looks like
this:

https://technet24.ir

Figure 6.10 – Adding a decoder

8. Add a decoder (I2C) by clicking on the yellow-and-green button on the
top bar.

9. Click on the I2C decoder to select which line is SCL and which is SDA
(in my sniff, I used pins 6 and 7: 7 as SCL and 6 as SDA).

Now we can see on the decoder line what the values that transited on the I2C
bus are!

Now you can sniff I2C with a logic analyzer.

Using the Bus Pirate

This is also applicable to other protocols.

The Bus Pirate offers multiple easy ways to interact with I2C but has the
downside of coming without a GUI. It is available as a serial device on your
computer and you can interact with it on the command line. It can sniff I2C
up to 100 KHz.

All the commands related to I2C are documented here:
http://dangerousprototypes.com/docs/Bus_Pirate_I2C (the commands for the
other protocols have their own pages).

The Bus Pirate can sniff (relatively) low-speed I2C and render the traffic in
the same syntax it would use to emit the I2C traffic. You will then be able to
replay the traffic really easily. Just connect the Bus Pirate pins to the previous
breadboard.

Let's give this a try:

Technet24

https://technet24.ir
https://technet24.ir

1. Connect to the command-line interface of the Bus Pirate (screen or
minicom, whichever is your favorite serial client; for me, it is screen).
Don't forget the udev rules; you can even give a cool persistent name
such as /dev/buspirate with the SYMLINK directive. I'll let you
search how to use udev directives by yourself; maybe there will be
questions on this at the end of the chapter!:

$screen /dev/ttyUSB0 115200

1. Put it in I2C mode in the terminal (4) and launch the snif macro (2).
2. Power the circuit.

You should see something like this:

[0xa0+0x00+0x01+[0xa1+0xXX-0xff]

0xXX is dependent on the content of your EEPROM. If it has never been
written to, it will be a random value.

Let's look into the datasheet for the EEPROM and make sense of this traffic:

[: The start condition

0xa0 : But the device address was 0x50 in the sigrok sniff! Remember
how the address is on 7 bits and uses the eighth bit of the byte to
indicate read or write? 0x50 << 1 = Oxa0 = is the write address of the
peripheral at 0x50 .

INFORMATION BOX

We need to be familiar with the following.

The C notation for bit-wise and Boolean operators (as these
operations are extensively used in embedded systems) is really
important. Please refer to the GNU C manual:
https://www.gnu.org/software/gnu-c-manual/gnu-c-
manual.html#Bitwise-Logical-Operators.

Memory representation of various types (that is, how an

https://technet24.ir

integer, a float, or a long long is represented in memory and
what this representation entails in term of limitations) is also
very important to know; you don't really need to know the
details intimately but knowing they exist and how to find out
how they work will sometimes open interesting doors for you.

+ : The address is ACKed by the EEPROM.
0x00 : First bit of the address
+ is ACKed.
0x01 : Second bit of the address
+ is ACKed.
[: We restart.
0xa1 : 0xa0 | 1 = 0xa1 – the last bit is 1, so we want to read.
0xXX : We read a byte that we NACK (since it is the last byte we want).
And the state machine of the MCU just clocks in a byte anyway
(because that is how it works) and stops.

Injecting I2C

Injecting I2C can be really tricky for two reasons:

Not all masters on an I2C bus are able to follow the multi-master
arbitration protocol. In order to be able to inject I2C on a live bus, if the
multi-master is not supported, we will need to get crafty (either by
studying the period at which the master is transmitting and leverage
pauses or by actually doing a man in the middle).
Remember how I2C is an open collector bus with pullup resistors? This
means that you have to pull down the bus (actually do a bus stretching
like you were a slave) and use its pullups. Sometimes, this makes the
bus masters that don't support the multi-master functionality behave
really weirdly and sometimes crash (that can also be interesting but, in
my experience, not very useful).

Otherwise, injecting I2C is just a matter of connecting another master on the
bus without a pullup resistor (it is using the existing ones) and avoiding
collisions.

Technet24

https://technet24.ir
https://technet24.ir

Exercise

1. Connect one blue pill and flash the code for the I2C sniffing example.
2. Do the same for the second blue pill without dedicated pullup resistors

(there shouldn't be any collision unless you are really, really, really
unlucky).

3. What do you see on both serial outputs?
4. What do you conclude?

I2C man in the middle

By using a micro-controller with two I2C peripherals (such as the blue pills),
we can put ourselves physically in between the master and slaves, acting as a
slave to the master and as a master to the slaves. For this, we just have to
know the expected address of the slave.

Here is how to put the components on a breadboard:

Figure 6.11 – I2C man-in-the-middle connection

We will alter the traffic to have the master read p-e-n-t-e-s-t every 100
bytes.

The code is in this chapter's folder in the cloned directory. Compare it to the
reading code, play with the interrupts, and try to understand it.

https://technet24.ir

Understanding SPI
SPI , or serial-to-parallel interface , is a (usually minimum) three-wire bus.
One acts as the clock (CLK), one as Master Out Slave In (MOSI), and one
as Master In Slave Out (MISO). If multiple slaves are present in the bus,
there is also an additional wire per slave called CS or SS (Chip Select or
Slave Select , usually active low).

Here is how multiple slaves are connected:

Figure 6.12 – SPI general architecture

SPI only manages how the bits are transferred on the line; there is no logical
layer in the protocol (like I2C has).

On systems where the speed of transfer is important, SPI can come in the
QSPI flavor (queued SPI / quad SPI) where there are four data lines. You
should note that some chips support both modes and can switch between
them with internal commands (that is, commands in the data that are
transported by SPI, not commands determined by the SPI protocol itself).

Now that we have seen how the chips are connected, let's see how it works.

Mode of operation

First things first, SPI has a frequency. This frequency is determined by the

Technet24

https://technet24.ir
https://technet24.ir

master (which is pulsing the clock) and must fall within the max frequency
that the currently selected peripheral (with a CS wire) supports.

The second thing to take into account with SPI is two parameters called
CPOL and CPHA. These parameters manage the clock polarity and clock
phase:

Clock Polarity (CPOL) governs the fact that the clock wire is
considered active high or low.
Clock Phase (CPHA) governs the timing at which the data will be
sampled on the adequate wire in respect to the clock cycles.

This creates four "modes" (CPOL and CPHA names are inherited from PIC
MCUs but this became a de facto standard).

SPI mode 0

In this mode, the clock is active high. Data is sampled on the leading edge of
the clock cycle and changed on the trailing edge:

Figure 6.13 – SPI mode 0 timing

SPI mode 1

In this mode, the clock is active high. Data is sampled on the trailing edge of
the clock cycle and changed on the leading edge of the following clock cycle:

https://technet24.ir

Figure 6.14 – SPI mode 1 timing

SPI mode 2

In this mode, the clock is active low. Data is sampled on the leading edge of
the clock cycle and changed on the trailing edge:

Figure 6.15 – SPI mode 2 timing

SPI mode 3

In this mode, the clock is active low. Data is sampled on the trailing edge of
the clock cycle and changed on the leading edge of the following clock cycle:

Technet24

https://technet24.ir
https://technet24.ir

Figure 6.16 – SPI mode 3 timing

Now that we know what SPI is supposed to look like, let's have a look at it.

Sniffing SPI

Like we did for I2C, we will now sniff SPI.

The sniffing protocols are largely the same for all of them: put the circuit
using the protocol in place, connect your logic analyzer to the appropriate
pins, and launch PulseView. Refer to the Sniffing I2C section if you have
forgotten.

Build up the circuit as shown here:

Figure 6.17 – SPI usage connection

https://technet24.ir

This is basically the same deal as for I2C: just connect the ground together,
then connect pin 0 to CLK, pin 1 to MISO, pin 2 to MOSI, and pin 3 to CS.

Launch PulseView and add an SPI decoder.

The code for the blue pill is here:
https://github.com/PacktPublishing/Practical-Hardware-
Pentesting/tree/main/bluepill/ch6/spi_client .

We will follow the same pattern and now inject data on an SPI bus.

Injecting SPI

To inject SPI, just add your master to the bus, the MOSI to the MOSI line,
the MISO to the MISO line, CS to CS, and CLK to CLK, and listen to the
CLK line to establish a pattern and avoid collisions.

If multiple peripherals are present, you will also have to manage the CS line.

SPI – man in the middle

Put yourself between the master and the slaves; act as a slave to the master
and as a master to the slave. An (easily worked around) problem is that most
of the hardware peripherals included in the MCUs need an external CS/SS.
Just connect to the ground so that the peripheral believes it is always selected
if the MCU you use needs it.

IMPORTANT NOTE

Depending on the speed of the communication between the original
master and the original slave (and the speeds supported by the
original slave), it is not always possible to man-in-the-middle SPI
with a micro-controller. Especially with SPI EEPROMs, the
communication is not transactional (that is, the MCU finishes
asking its questions and then the EEPROM answers). For some
EEPROMs, the EEPROM starts to send back data while the MCU
is still sending commands. If you have to face this kind of situation,

Technet24

https://technet24.ir
https://technet24.ir

look into SPI Spy (https://github.com/osresearch/spispy), an
FPGA-based tool that can solve this.

Here is the connection schema in the Fritzing folder. Open the Fritzing
document here to better see the components and connection points as shown
in the following figure:

Figure 6.18 – SPI man-in-the-middle connection

The code is here: https://github.com/PacktPublishing/Practical-Hardware-
Pentesting/tree/main/bluepill/ch6/spi_mitm .

Now we are going to look into UART (serial link).

https://technet24.ir

Understanding UART
UART (otherwise known as RS232 or serial) is a time-based protocol. The
data travels on two wires.

From the MCU point of view, they are named as follows:

RX (Receive): The wire on which data comes from the peripheral
TX (Transmit): The wire on which data goes to the peripheral

The flow control can come in two main flavors:

With hardware flow control : Two additional control wires control the
flow of the data. This hardware flow control itself can come in two
flavors: either with control from the master, CTS (Clear To Send), or
from the slave, DTR (Data Terminal Ready).
Without hardware flow control : UART without hardware flow
control only takes care of "transporting the bits." There is no logic layer
to it.

Error detection is also possible in the form of a parity bit added at the end of
the transmission.

It can connect multiple devices but is not taking care of the addressing (the
payload will have to take care of this). It also serves as a base of multiple
"flavors" of communication (IrDA, smartcard communication, and more).

Here are the different signals:

Technet24

https://technet24.ir
https://technet24.ir

Now that we have seen the different signals, let's see how they are used to
send data.

Mode of operation

In the UART schema, idle lines are high, and the signal is sent by pulling it
low.

This is assured by a pullup resistor that is normally taken care of on the TX
line (meaning the MCU takes care of the pullup resistor on its TX and the
peripheral on its own TX (which is the MCU's RX)). But why is it important,
you ask? In the end, there is a pullup on each line. True, but these resistors
can be internal to both the MCU and the peripheral and as we will need to put
ourselves on these lines, we will need to pay attention that we don't disturb
this mechanism too much.

The first parameter to know is called the baud rate, which is the number of
bits sent by second. This is a critical parameter since the protocol is time-
based. This determines the time of the transmission for one bit.

There is a list of "usual" baud rates and their corresponding symbol times.
The symbol time is very practical to determine the correct baud rate to set on
your devices:

https://technet24.ir

Technet24

https://technet24.ir
https://technet24.ir

TIP

UART operations are very sensitive to the precision of the clock.
Try to always use a crystal oscillator as the clock source since
internal RC oscillators (build with resistors and capacitors) tend to
be less precise and drift more.

UART transmissions always start with a start bit (to signal the line is not idle
and a finish with one or more stop bit). The transmission can be of any
number of bits (but is usually 7 or 8 bits long). The transmission can also
contain a parity bit to allow for error detection (this bit is optional).

A very common way to describe the settings of serial communication is a
string that goes: Baud rate/number of bits – Presence of the parity bit
(Yes/No) – Number of stop bits .

For example, 9600/8-N-1 is a very common configuration (9,600 bps/8 bits –
No parity – 1 stop bit).

Sniffing UART

Sniffing UART with a logic analyzer is very straightforward. Connect the
ground together and your analyzer in the usual way: PIN 0 to the RX and PIN
1 to the TX. Then sniff and add a UART decoder in PulseView. You can also
just connect the ground of a USB-to-serial adapter to the circuit ground and
its RX pin to the direction you want to sniff (do not connect its TX pin as it
could disturb the communication).

Injecting UART

The simplest way is to connect the TX pin of a USB-to-serial adapter to the
line you want to inject traffic in. This does not always work because your TX
pin could pull the line too high for the original sender to transmit.

Here is an example situation:

https://technet24.ir

Figure 6.19 – The problem with UART injection

In a normal situation, the MCU pin pulls the pin to ground with a given
strength (usually it is quite "strong," with very low resistance). This changes
the voltage on the line to be very low (not null, since there is still a little bit
of resistance; the pullup and the resistance act as a voltage divider), low
enough to be under the threshold that the peripheral pin detected as 0/LOW .

When we add our pullup in parallel to the normal pullup, we actually lower
the resulting resistance (resistors in series = sum of resistances. Resistors in
parallel = sum of the inverse). This means that it is possible that we (or the
original MCU) aren't able to pull the line low enough for the MCU to detect a
LOW (this also means that too much current can flow through the MCU's or
your UART adapter's pin, damaging it in the process).

In this case, do the following:

Remove the pullup on your adapter if possible or change the value of
your pullup resistor (to a higher one; the already-present pullup of the
peripheral TX will act as a divider).
If this doesn't work, go in the man-in-the-middle direction.

Technet24

https://technet24.ir
https://technet24.ir

Exercise

Adapt the code of the UART script of the I2C example to inject your UART
traffic instead of showing the I2C traffic (get inspiration from the bit of script
in the next section).

UART – man in the middle

You can use two USB-to-serial adapters on your computer and use a simple
Python program to alter the content of the communication (do not forget to
cut or disconnect the original connections).

For example, the following code adds 1 to every byte received on ttyUSB0
and sends it to ttyUSB1 :

Now we are looking into a protocol that we have to bit-bang since there is no
hardware peripheral for it. D1W is a pretty nifty protocol that is used for
simple applications such as ensuring that a guard did their rounds. With what
I will show you in the next section, you will be able to take a guard job and
stay in your sentry box during cold winter nights

https://technet24.ir

Understanding D1W
D1W is a one-wire bus. It is usually used for simple sensors (temperature or
humidity) and has "buttons" that just show a unique identifier. This is an
interesting bus where the power of the device can also come from the wire
that is used to transmit data. This is usually not supported by hardware
peripherals in MCUs; you need to bit-bang the protocol. Bit-banging a
protocol means that we will implement the protocol manually by using the
GPIOs of the blue pill. 1-Wire is an open-drain bus (like I2C or UART) and
hence needs an external pullup resistor (usually of 5k ohms) to set the voltage
to a known state when the MCU disconnects the pin (also called floating as in
the code).

Mode of operation

The communication on the D1W is time-based and is initialized by sending a
reset pulse that the slave will answer to (the presence pulse).

The reset pulse

The reset pulse is initialized by the master pulling low the data line for at
least 480 µS.

So, the first challenge is to set up the GPIO. For this, we will use and have a
precise enough time source to measure the 480 µS. So, we will need to use a
timer. Please have a look at the client (since the man-in-the-middle code is
event-driven, it is better to start with a more sequential program) code for this
in the GitHub repository here: https://github.com/PacktPublishing/Practical-
Hardware-Pentesting/tree/main/bluepill/ch6/1w_client . The setup code is in
libLHP .

The presence pulse

Now the master listens on the bus for at least 480 µS and each device will

Technet24

https://technet24.ir
https://technet24.ir

pull down the line for 80 to 240 µs as shown in the following figure:

Figure 6.20 – D1W timing diagram

Now that we have seen what the presence pulse is, let's look at the other
operations.

Reading and writing

Basically, all reads and writes are started by the master. To write a 0, the
master pulls down the line for 80 to 120 µs and to write a 1, it pulls down the
line very shortly (1 µS) and lets the resistor pull up the bus.

To read, the master pulls the line low and measures whether the bus goes
high in the next 15 µs. If it does it is a 1 and if it's doesn't it's a 0. All the
timings are described in the MAX31820 datasheet (
https://github.com/PacktPublishing/Practical-Hardware-
Pentesting/tree/main/datasheets) on page 17 :

https://technet24.ir

Figure 6.21 – D1W timing diagram, READ and WRITE

D1W also uses a Cyclic Redundancy Check (CRC) to enable the detection
of errors. Please refer to the D1W documentation to learn how to use it (this
will have an impact on the man in the middle since the CRC has to be
corrected if we change data).

Sniffing D1W

Here is the connection schema: https://github.com/PacktPublishing/Practical-
Hardware-Pentesting/tree/main/bluepill/ch6/fritzing_Schematics . Open the
Fritzing document here to better see the components and connection points as
shown in the following figure:

Technet24

https://technet24.ir
https://technet24.ir

Figure 6.22 – D1W connection

As usual, connect the ground together, connect pin 0 to the data line, and
sniff and add the D1W analyzer.

Injecting D1W

Connect a master to the data line and just act as the master (sending requests
and reading answers).

The communication on the D1W bus is (in the vast majority of cases) very
spaced out. The chances of collision are very low but if you get a CRC error,
just wait for a few ms before retrying).

D1W – man in the middle

Open the Fritzing document to better see the components and connection
points as shown in the following figure:

https://technet24.ir

Figure 6.23 – D1W man in the middle

This is basically the same deal as usual: act as a slave to the master and as a
master to the slave. Here we are modifying the temperature readout and the
CRC.

Technet24

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we have seen the most common of circuit protocols, how to
sniff them, and how to man-in-the-middle them. This will allow you to take
control of most of the slower-speed protocols and will provide you with the
necessary tools and approaches to alter the behavior of a system and find
secrets that are exchanged on the wires.

In the next chapter, we will learn how to identify the access points to these
signals and, if necessary, how to create our own access points.

https://technet24.ir

Questions
1. You are visualizing something and you are pretty sure there is some

UART traffic on your scope. You see the following waveform. What is
the baud rate?

Figure 6.24 – UART oscilloscope signal: what is the baudrate?

2. What is QSPI?
3. What is the usage of the parity byte in UART?
4. Who invented the I2C protocol?
5. How can you use multiple 24LC EEPROMs on the same I2C bus?
6. You have to man in the middle an I2C bus with two different devices

and a master. Sadly, the hardware peripheral on the blue pill can only
have a single address and you can't think of a way to have it alternate
between the addresses (the master apparently talks randomly to the
devices). What would be your approach?

0x41 0x20 0x76 0x65 0x72 0x79 0x20 0x76 0x65 0x72 0x79 0x20 0x73

0x65 0x72 0x69 0x6f 0x75 0x73 0x20 0x6b 0x65 0x79 0x21

0x08 0x00 0x1a 0x0a 0x04 0x1c 0x00 0x14 0x0c 0x1c 0x18 0x52 0x0a

Technet24

https://technet24.ir
https://technet24.ir

0x45 0x1d 0x19 0x0a 0x07 0x12 0x54 0x04 0x17 0x0a 0x00 ?

https://technet24.ir

Feedback
We are constantly looking at improving our content, so what could be better
than listening to what you as a reader have to say? Your feedback is
important to us and we will do our best to incorporate it. Could you take two
mins to fill out the feedback form for this book and let us know what your
thoughts are about it? Here's the link:
https://packt.link/HardwarePentesting2E .

Thank you in advance.

Embedded systems store their data and sometimes their code on media that
can take multiple forms on the board (chips, external storage such as SD
cards, and so on). Getting access to this storage is crucial to be able to
analyze the code and get access to security-relevant elements. In this chapter,
we will go through multiple components that can hold this data, how to
extract data from the component, how to understand how it is stored, and
lastly, how to peruse and change the data (in raw form or with a filesystem).

The following topics will be covered in this chapter:

Finding the data
Extracting the data
Understanding unknown storage structures
Mounting filesystems
Repacking

Technet24

https://technet24.ir
https://technet24.ir

Technical requirements
The software required is as follows:

Binwalk
A Linux machine

The hardware required (to repeat the examples) is as follows:

The Bus Pirate
An I2C or SPI EEPROM (you should already have this from the
previous chapter)

Check out the following link to see the Code in Action video:

https://bit.ly/383OzkJ

https://technet24.ir

Finding the data
Before parsing the data, we have to find it. In addition to classical storage
media (hard drives, Solid State Drive (SSDs), onboard USB storage, and
more), embedded systems use more specific chips and systems to store data,
and some of them are listed as follows:

EEPROMs
EMMC and NAND/NOR Flash
Static RAM, and so on

Let's look at each of them in the following sections.

EEPROMs

EEPROM (Electrically Erasable Programmable Read-Only Memory)
and flash memory are "one-chip" storage solutions that keep the data even
when the power is off. They are available on pretty much every existing
protocol (I2C, (Q)SPI, 1-Wire, and more). Locating these chips is not always
easy (especially if they are unmarked or rebranded) but (as already discussed
in the component identification section in the previous chapter), it is possible
to identify them by elimination or by sniffing the protocol on the board.
Typically, the storage capacity is small, and the storage structure is custom
made for the system (that is, it does not embed a typical, well-known
filesystem like bigger storage mediums).

EMMC and NAND/NOR Flash

EMMC is a physical variant of MMC (MultiMediaCard) in which the chip
is soldered on the board instead of being removable. It is entirely possible to
remove the chip (doing so is called chip-off) and use an adapter to read it as a
classical MMC (with a USB adapter), basically transforming it into a USB
thumb drive.

Technet24

https://technet24.ir
https://technet24.ir

NAND and NOR Flash are also soldered directly on the board but don't really
offer a "standard" protocol to talk to the chip and need a lower-level approach
(such as programming the adequate protocol on a micro-controller) or a
specific adapter/programmer.

These chips come with multiple "standard" footprints (EMMC: BGA221,
BGA162, BHA186, and more; NAND/NOR: BGA137, BGA63, and more)
that all require a different adapter (to accommodate the footprint). These
adapters can be found on auction sites or from Chinese retail sites
(AliExpress, TaoBao, and so on). Single-use adapters are reasonably priced
but require a reflowing phase (that is, resoldering the chip on the adapter, for
which you will very probably need a paste application stencil), which can be
tricky to master and comes with a risk of damaging the chip (it is pretty
common to short pins while manually reflowing a BGA chip).

Reusable ones (with a clamshell adapter) are more expensive but (if you are
doing this often) are worth the price since you will bypass the reflowing step
and the risks that come with it.

Hard drives, SSDs, NVME and other storage
mediums

While less common on simple systems (such as systems running from simple
micro-controllers), it is pretty common to find systems that are running a full-
fledged OS (that is, the same kind that runs on a laptop or desktop computer)
for the simple reason that the system is a computer in the commonly
understood sense of the term.

For example, anything running Linux kernel (such as Android) is a complete
computer and usually comes with high-speed data interfaces (PATA/SATA,
M.2, PCI-E/X, and more). It is then pretty tempting for a system constructor
to leverage the relatively cheap storage price by using commonly available
interfaces, especially given the small form factors currently available. M.2
sticks or 1.8" SSD drives are very small and provide huge capacities
compared to the usual specific embedded solutions.

Some older styles of storage are also found on more legacy/industrial systems

https://technet24.ir

(for example, CompactFlash/Microdrive) that need specific adapters. USB
adapters for these styles of storage are quite commonplace on auction sites.
For these formats, general purpose USB adapters (for compact flash cards,
for M.2 MVME sticks, etc…) are available. They will present the device as a
generic storage decive to your computer.

Technet24

https://technet24.ir
https://technet24.ir

Extracting the data
For cases where we don't have the data already (that is, we did not succeed in
getting updates), we need to extract the data from its storage place to our
computer. Being able to process and modify the data on a computer will
allow us to use higher-level programming languages and tools.

Let's have a look at the most common things we have to extract.

On-chip firmware

Most micro-controllers will embed their programs (that is, their firmware), at
least partially, on on-chip (or on-module) flash or other forms of storage,
such as EEPROM. The worst-case scenario for us is cases where programs
are stored in One-Time Programmable (OTP) memory, such as the MCU
used in furbies or most low-end calculators for example (they can come with
in a mask ROM that is integral to the making of the chip silicon or a real
memory that can be programmed only once) or a lot of very cheap MCUs.

For example, most ARM chips come with on-chip flash. The ESP family of
chips has a flash storage chip on the module from where the chip retrieves its
program. These can usually store long-term variables (across reboots). It is
very important for us to be able to retrieve this data if we want to be able to
reverse-engineer the program behavior.

An essential step in acquiring the firmware is to find an adequate hardware
programmer and the associated software. Most chips will use some form or
variation of the JTAG interface (we will talk in more detail about JTAG in
Chapter 10 , Accessing the Debug Interfaces). In modern chips, it is very
common to find the correct hardware programmer (bundled with the
software) integrated into the development kit for the target chip. This
programmer usually allows us to read back the binary form of the program
that is stored in the onboard flash. Some commercial products implement
protection against reading back this data, but they can sometimes be
bypassed. Bypassing these protections usually requires some more advanced

https://technet24.ir

and specific attacks (such as finding bugs in bootloaders or glitching), but
these attacks are usually complex and fall out of the scope of this
introductory book.

Depending on the complexity of the device, it is also possible that a
bootloader (for example, U-Boot) will be present on the device. If this is the
case and you manage to get access to it (from a debug serial console, for
example), it should be possible to extract the storage via the serial cable; for
example, U-Boot's md or nand commands can help:

https://www.denx.de/wiki/view/DULG/UBootCmdGroupNand
https://www.denx.de/wiki/view/DULG/UBootCmdGroupMemory

Onboard storage – specific interfaces

Unless the device is supported by mainstream tools (such as flashrom), you
will have to implement a specific dumping tool on a micro-controller or use a
tool such as the Bus Pirate to access the content. Flashrom is usually used for
BIOS flash chips but also supports many other flash chips, for example, the
Macronix 25L8008 SPI flash we used in the previous chapter.

The details of the behavior can be found by reading the datasheet. To dump
the content to your computer, you will have to implement this behavior. This
is usually implemented on a micro-controller and the data is transferred over
serial. This transfer is achieved using a USB-to-serial device and a variant of
the script we used to man-in-the-middle UART. The exercise to modify the
script to write to a file instead of writing to the other UART serial bridge is
left to you.

Dedicated chip programmer are also very useful for this purpose (Such as the
very popular TL866 or T56 from Xgecu). They can read and write a wide
variety of devices, from DIP I2C EEPROMs (as seen in the previous chapter)
to very large BGA flash chips (such as the ones used in mobile phones or on
a Raspberry Pi).

Onboard storage – common interfaces

Technet24

https://technet24.ir
https://technet24.ir

If the device uses a standard interface (SATA, MMC, SD card, or others), it
should be recognized (at least as a device) by your computer. It should show
up in your logs (you can display your log with the dmesg command) as being
available as a device (in the /dev directory).

For example, my USB adapter connects and detects an 8 GB micro SD card
as /dev/sdg (this specific adapter is based on a Realtek RTS5169 chip and
supports multiple media, CompactFlash, SD card, memory sticks, and more):

If your media is recognized like this (here, it shows sdg: sdg1 sdg2), the
best tool to image it is dd . dd is a part of coreutils (and is most probably
installed by default on your Linux box).

dd has a peculiar syntax for a Linux command-line utility, without the usual
- or -- as a flag indicator. The options you will want to use are as follows:

if=<path to the input file> : This can be /dev/ device (in the
end, you are using a Unix box, where everything is a file).
of=<path to the outputfile> .
bs=<block size> : This support k , M , and G shorthands; usually 1M
will do.
oflag=<a comma separated list of flags for output> : I
personally like to use the sync flag here, especially when writing to
flash devices, in order to ensure that the data doesn't end up in a kernel
buffer, which makes dd quit while the kernel is actually still writing.
status=progress : (Only available in recent versions of dd .) This will
show you a progress indication (older versions of dd will only print this
when they receive a USR1 signal; use kill -USR1 <dd process id> if
you have an older version).

Take the following example:

To dump an SD card to a file, use the following:

dd if=/dev/sdg1 of=./dump.bin bs=1k status=progress

To put the modified data on an SD card, use the following:

dd if=./dump_modified.bin of=/dev/sdg1 bs=1k oflag=sync

https://technet24.ir

status=progress

Now that we have saved the storage to our machine, let's look into it.

Technet24

https://technet24.ir
https://technet24.ir

Understanding unknown storage
structures
More often than not, light systems (those not embedding a full-fledged OS
such as Linux) will have a pretty well-documented way of storing their
firmware internally (since this storage form is crucial for the target MCU to
function properly, it is well described in the target MCU datasheet). On the
other hand, the way the data is stored by the firmware itself is very much left
to the firmware developer device.

Unknown storage formats

There is no definitive way to reverse engineer the way data is stored, as for
most reverse engineering, it is as much an art as it is a science. The only way
to get a good knack for it is, just like soldering, doing it again and again, but
having spent a fair share of my time reversing a lot of different things, such
as network protocols, storage structures, and more, I can give you some
pointers.

Understanding the way the data is organized for storage depends on multiple
factors. There are some general hints that can help you along the way.

Note the following about the data itself:

Will the data change a lot in terms of content (such as settings or
readings) or is it "mostly static" (such as firmware and executable
code)?
Will the data change a lot in terms of size (such as strings or structure
data with members that are optional) or is it mostly static (such as binary
readings, binary fields, and so on)?
Will the changing data be of variable size or is it well organized? Will it
be of fixed-size chunks?

Consider the following data processing commonalities:

https://technet24.ir

The developers will tend to store similar data together (images next to
images, text together, and so on).
Code reuse. For example, when you look at compression, the same
algorithm will be reused multiple times, and hence block and code
structure will be repeated, and so on.
Storage optimization. For example, data that would be relevant on a per-
file storage basis on a computer wouldn't make sense on a space-
constrained system (why keep image data headers if I am guaranteed by
construction that I will only store 64x64, 24-bit, per-pixel color image
information?).

Consider the following for the storage media:

How is the storage media itself organized?
- Is the chip organized in blocks, pages, or sectors?
- Is it easy to make random, relatively small accesses or does the
MCU have to read "big chunks" of data?

How is the storage media behaving regarding large numbers or write
cycles? (For example, flash only supports a given number of write
cycles before dying. If the chip controller is not implementing wear
leveling (to spread data in order to avoid killing blocks prematurely), the
firmware author may have been tempted to implement a home-made
system for that.)

Consider the following for a classical storage scheme:

FAT : FAT is well known as a filesystem, but this filesystem actually
gets its name from the concept of File Allocation Tables . It is very
common to put a "table of contents" in front of your storage, with the
start address and size of your storage item (possibly with a filename and
other attributes such as timestamps of modification, and so on).
Size and value pairs, the same way it is used in a lot of network
protocols.
Fixed-size "blocks," for example, 100 bytes for preference, then 2 KB
for static strings, then 5 KB for pictures, and so on.

So, understanding the way storage is organized requires some detective work
and does not necessarily involve well-known structures and mechanisms.

Technet24

https://technet24.ir
https://technet24.ir

Well-known storage formats

Sometimes, the storage format is well known (because someone reversed and
documented it before or because it uses well-known mechanisms) and tools
are available to extract it. One of the best known and most extensive in terms
of support of different packing mechanisms is Binwalk (
https://github.com/ReFirmLabs/binwalk).

Binwalk will search the target file for well-known headers and try to extract
them for you (with -e).

Binwalk is Python-based and is a very useful tool to analyze firmware and
storage images (even if the format is not a well-known one, as it contains
tools to help you analyze it). You really should read the documentation (
https://github.com/ReFirmLabs/binwalk/wiki) and train yourself on multiple
firmware images (router updates are really ideal for that).

Binwalk will be able to find the following:

General compression formats (.gz , .lzma , .xz , and so on)
Linux kernels and images
Filesystems (SquashFS, JFFS2, and so on)

Dumping Chips

Let's look have a look into dumping the two most common storage medium
you will find in your assessments. After dismanteling a commerical children
toy (a Furby to be exact), I identified two possible places the data could be
stored : An I2C EEPROM and a SPI flash.

First candidate – An ATMLH306 I2C EEPROM

The first data store we identify is an I2C EEPROM. Let's dump it to a file.
This step can be repeated with the I2C EEPROM you used in the previous
chapter.

Extract it from the Printed Circuit Board (PCB), mount it on a breakout,

https://technet24.ir

and connect it to our Bus Pirate as shown in the following photo:

Figure 7.1 – I2C EEPROM extracted and connected to the Bus
Pirate

Once the Bus Pirate has connected successfully (it will show in the output of
dmesg), we can go on.

Let's verify that our connection works by scanning the I2C bus with the
following actions in the Bus Pirate text menu:

Depending on your version, the Bus Pirate output can be slightly different.
Now we will connect to the Bus Pirate in binary mode using a Python script
and save the EEPROM to a file. You will be able to find the script and the
dumped data on the GitHub repository in the ch7 directory to output the
content to a file (and the output if you can't find a Furby).

Now let's look into this file (The file is available on the book’s github
repository):

Technet24

https://technet24.ir
https://technet24.ir

We are starting by just doing a hex dump to look at the general content (Is
there a lot of data? A lot of 0s? What does it look like?).

This EEPROM is very small, but looking at the content, we can already see
some kind of structure emerge. There is a lot of symmetry between the left
side (the first 8 bytes) and the right side (the next 8 bytes). We don't have a
lot of data to start a static analysis (and certainly not to launch Binwalk on)
but this is promising for the dynamic analysis (that is, changing the EEPROM
content and seeing what happens). We can deduce from the size of the
storage that the sounds and the eye pictures are not stored here (too small).

Let's now look at the second storage chip.

Second candidate – the FR-marked SPI blob

The SPI chips are a little more complicated and contain more data, and we
will approach it in two steps (dump and analysis). By covering I2C and SPI,
you will be ready to face most on-board storage for systems that use bare-
metal MCUs. More complex systems (such as ones that embed a full-fledged
Linux system) will usually use parallel flash chips that require more
advanced soldering skills and equipment to dump (but are largely within your
reach with training).

Dumping it

We know this is an SPI chip (from the markings on the traces that were
leading to it, CLK, MISO and MOSI), so let's remove it from the board and
put it on a breadboard.

SPI flash are usually compatible with a standard called JEDEC. This standard
allows us to identify the exact chip by reading the JEDEC identifier through
standard commands/.

We can get this identifier with this script :

0xC2 : this is a Macronix chip (https://www.jedec.org/standards-
documents/docs/jep-106ab)

https://technet24.ir

let’s have a look at the IDs know by flashrom :
https://github.com/flashrom/flashrom/blob/master/include/flashchips.h

Bingo ! : #define MACRONIX_MX23L3254 0x0516

This is a MX23L3254, a mask ROM (we can’t reprogram it but the
MX25L8008E happens to be a perfect drop is replacement)

We should be able to easily dump it with flashrom. Let’s give it a try.

NB : Flashrom have troubles with Bus Pirate v4, use a Bus Pirate v3.

The original chip is a mask ROM, so we cannot change the content.

The MX25L8008E we used in Chapter 6 , Sniffing and Attacking the Most
Common Protocols , is a perfect, writable drop-in replacement.

Having a well-stocked component stock and keeping a decent amount of
questionable e-waste around will both (and just as often!) create routine "is it
really useful?" discussions with your significant other but may save your hide
during engagements.

Unpacking it

We know from the presentation that Binwalk and strings will not yield
results. But let's try anyway.

Dealing with strings

There are two command-line tools of interest:

Strings well
. Something a lot of people overlook is trying all the different possible
encodings (depending on what you are analyzing, this can be relevant,
especially if you are dealing with Windows executables and DLLs or
non-Latin alphabets; you will find a script in this chapter's folder do
automate this: string_all_enc.sh).

Technet24

https://technet24.ir
https://technet24.ir

iconv converts between different encodings. This is especially useful for
non ascii composite characters, such as é, ñ, and so on.

Dealing with packed data

Binwalk will try to peruse a file for known formats but will also allow us to
have an overview of the entropy in a file (look into
https://en.wikipedia.org/wiki/Entropy_(information_theory)). Entropy is
roughly the measure of how random data looks. Measuring the entropy is a
good way to get an idea of whether the data you are looking at is cyphered or
compressed and the global layout of a file.

Launch this command:

The following figure shows the entropy in the file:

Figure 7.2 – Entropy in a file

We can clearly see four zones:

https://technet24.ir

The header zone, which should contain information about the
organization of the file
A big, very entropic zone
A medium zone with widely varying entropy
An anentropic zone

These are probably the following:

The zone with the offsets
Image or sound data (we remember from the patent that the sound may
be voice-synthesized, taking up much less space than actually digitized
sound)
Image or sound data (well, the other type compared to the previous
section)
Padding (the data is actually full of 0x01 at the end)
Michael's parser works on our data and can extract pictures, great!

We can see that the data Michael found and ours differ:

His data has 2,806 pieces of data and ours has 2,820. Even if it is the same
version of the toy (2012), we may have another firmware version.

I'll leave it as an exercise to you to write a small script to identify the zones
with the two entropies:

The first zone (with the entropy's "plateau") is the sound data.
The second is the images.

When we look at the organization of the storage in the header of the
EEPROM, we see that it is based on the concept of FAT, with the number of
"files," and the offsets to the different files with their size stored in front of
their content. This is a very classical organization scheme.

Technet24

https://technet24.ir
https://technet24.ir

Mounting filesystems
The mount command (you have to be privileged to use it; use sudo) is the
main tool for this.

Modern versions of the command recognize the filesystem automatically. If
the detection is not working but you know the filesystem in use, the -t
option will allow you to force the filesystem format to be used.

To list the filesystems your kernel is currently supporting, look into the
/proc/filesystems file (as a side note, not all modules can be mounted; to
get a list of what it does support, look into the /lib/modules/$(uname -
r)/kernel/fs directory).

Some filesystems used in embedded systems may not be supported in some
usual distribution kernels and so you may need to do the following:

Recompile your kernel with more filesystems.
Compile additional modules for your kernel.
Use userspace filesystem management (such as FUSE).

Since most of the firmware or storage images we get are in the form of a file
instead of a block device, some options are useful for managing this specific
case. They are managed through the -o command-line switch. This switch
uses a comma-separated list to manage multiple options (whether the options
are global or filesystem-specific):

loop : Makes mount use a file as a block device
offset=xxx : Skips xxx bytes in the target block device

https://technet24.ir

Repacking
The repacking process is mainly taking the reverse path we took for packing,
recreating a consistent image with the modifications we want.

I would strongly encourage you to look into the firmware modkit if you need
to repack routers and other xx-WRT-based firmware (
https://code.google.com/archive/p/firmware-mod-kit/).

Since most of the standard filesystems that are mounted from a file with a -o
loop option will be read-only, a common approach is to work on the files on a
normal directory on your computer, create an empty image of the necessary
size, recreate an empty filesystem, and copy the files onto it.

Some systems may not implement the filesystems completely and you may
need to tailor the filesystem creation (or use specific versions) for it to work
with the final target system.

Technet24

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we saw the different media that can be used in embedded
systems and the tools we need to approach them, extract them, understand
their structures, and modify them. Since the ways to store data are very
variable from one system to another, it is not possible to go through every
possible variation but, after reading this chapter, you will know (at least
partially) the possible tools that you can use, how things are generally
organized, and some concepts you could think about when reverse-
engineering storage schemes. These tools are very powerful but, like any
tool, are limited by the skill of the person that uses them. That's why you
should practice and read the documentation of the tools as much as possible.

In the next chapter, we will look into how to modify the stored elements and,
from the changes in the system behavior, better understand the structure of
the stored data.

https://technet24.ir

Questions
1. What tool can you use to take an image of a peripheral that is recognized

by your Linux machine?
2. What is the use of the -o loop command-line switch for mount ?
3. Why are the lists in cat /proc/filesystems and

/lib/modules/xxx/kernel/fs/ different?
4. You found a module marked eUSB on a device you are testing. What is

it? How would you read it?
5. What is the eMMC standard? How would you read it?
6. What is FUSE? What is user space? How can you use it?

Technet24

https://technet24.ir
https://technet24.ir

Further reading
Read the mount , iconv , dd , and Binwalk documentation (use the man
command). Look at the firmware modkit wiki, and check how to recompile a
kernel or modules for your distribution.

https://technet24.ir

	Practical Hardware Pentesting Second Edition Learn attack and defense techniques for embedded systems in IoT and other devices
	Feedback
	Prerequisites the basics you will need
	Approach to buying test equipment
	The component pantry
	Sample labs
	Summary
	Questions
	Feedback
	Technical requirements
	Introduction to the boards
	Why C and not Arduino
	The toolchain
	Introduction to C
	Summary
	Questions
	Further reading
	Feedback
	Technical requirements
	Understanding I2C
	Understanding SPI
	Understanding UART
	Understanding D1W
	Summary
	Questions
	Feedback
	Technical requirements
	Finding the data
	Extracting the data
	Understanding unknown storage structures
	Mounting filesystems
	Repacking
	Summary
	Questions
	Further reading

