FOR710 | REVERSE-ENGINEERING MALWARE: ADVANCED CODE ANALYSIS

710.1

Code Deobfuscation and Execution

GIAC

CERTIFICATIONS

MNS

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

© 2022 Anuj Soni. All rights reserved to Anuj Soni and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

All reference links are operational in the browser-based delivery of the electronic workbook.

FOR710.1 Reverse-Engineering Malware: Advanced Code Analysis

Code Deobfuscation
SANS DFIR ;
DIITAL FORENSICS & INCIDENT RESPONSE and Executlo N

© 2022 Anuj Soni | All Rights Reserved | Version H02_05

Section FOR710.1, also known as Section 1 of the FOR710 course, focuses on understanding code
deobfuscation and execution in-depth.

FOR?710.1 materials are created and maintained by Anuj Soni. To learn about Anuj's background and
expertise, please see https://www.sans.org/instructors/anuj-soni. You can visit his blog at
https://malwology.com/ and follow him on Twitter at https://twitter.com/asoni.

© 2022 Anuj Soni

DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

f) SANSForensics (@) dfir.to/DFIRCast

@SANSForensics (@) dfir.to/LinkedIn

This page intentionally left blank.

OPERATING SYSTEM
& DEVICE IN-DEPTH

FOR308
Digital Forensics
Essentials

FOR498

Battlefield Forensics &
Data Acquisition

GBFA

FOR500

Windows Forensic
Analysis

GCFE

FOR518

Mac and iOS Forensic
Analysis & Incident
Response

FOR585

Smartphone Forensic
Analysis In-Depth
GASF

© 2022 Anuj Soni

INCIDENT RESPONSE
& THREAT HUNTING

FOR508

Advanced Incident Response,
Threat Hunting & Digital Forensics
GCFA

FOR509
Enterprise Cloud Forensics & Incident Response

FOR572

Advanced Network Forensics: Threat
Hunting, Analysis & Incident Response
GNFA

FORS578
Cyber Threat Intelligence
CTI

FOR608
Enterprise-Class Incident Response & Threat Hunting

FOR610
REM: Malware Analysis Tools & Techniques
GREM

FOR710
Reverse-Engineering Malware: Advanced Code Analysis

SEC504
Hacker Tools, Techniques & Incident Handling
GCIH

FOR710 Assumes Prior Experience with Malware Analysis

* Due to the advanced nature of this course, the content assumes that you
have prior experience performing malware analysis on Windows.

* As discussed in the course description, this class continues where
FORG610 leaves off, helping students take their RE skills to the next level.

* Labs assume you are comfortable with the following topics:
- Examining static properties of a file
* Performing behavioral analysis and debugging of malicious PE files
* Reading common x86 and x64 assembly instructions during code analysis
* Identifying key assembly logic structures with a disassembler

* Following program control flow to understand decision points in disassembly

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

This advanced malware analysis course assumes the participant has some prior experience analyzing
malware. It is intended to enhance the student’s beginner and intermediate level malware reverse
engineering skills.

Although there are no formal prerequisites for this class, the content assumes that the student has
knowledge and skills equivalent to those discussed in the SANS FOR610 "Reverse-Engineering Malware:
Malware Analysis Tools and Techniques" course. Specifically, the student should have some experience
performing static file properties analysis, behavioral analysis, dynamic code analysis (i.e., using a
debugger), and static code analysis (i.e., analyzing disassembled executable content).

© 2022 Anuj Soni 3

Course Roadmap

* FOR710.1: Code
Deobfuscation and Execution

* FOR710.2: Encryption in
Malware

* FOR710.3: Automating
Malware Analysis

* FOR710.4: Correlating
Malware and Building Rules

This page intentionally left blank.

SECTION |

* Analyzing Code Deobfuscation
e Lab I.I: Investigating Code Deobfuscation
Using Steganographic Techniques
* Identifying Program Execution

* Lab |.2: Analyzing Malicious Program
Execution
* Understanding Shellcode Execution
* Lab |.3: Analyzing Shellcode Execution

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

© 2022 Anuj Soni

Analyzing Code
Deobfuscation

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 5

This module discusses how to analyze code deobfuscation in the context of a sophisticated malware
sample.

© 2022 Anuj Soni 5

Malware May Deobfuscate Additional Code During Execution

* The initial code (i.e., loader) may unravel additional stages of execution.

* The decoded content may include shellcode and/or PE files embedded in
a file on disk or data downloaded from the Internet.

» Advanced-level malware analysts must be prepared to analyze the details
of deobfuscation algorithms.

* The result of this in-depth analysis helps the analyst understand the
sophistication of the adversary, assess the uniqueness of the sample,
generate reliable signatures (i.e., YARA rules), and build tools to
automate deobfuscation.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 6

It is common to encounter malware that deobfuscates additional code during execution. These additional
layers of code, which may include a combination of shellcode and Windows executables, help evade
detection and hinder analysis. The encoded content might reside within the original file, another file on
disk, or the registry. Alternatively, the next-stage executable content may need to be downloaded from the
Internet and then deobfuscated in memory. The initial malicious code is often referred to as the “loader”
since it loads additional code and data.

While a deep understanding of a deobfuscation algorithm is not necessary in all cases, it is required if the
analyst is responsible for a comprehensive and deep dive into the malware specimen. Understanding the
specific methodology used to obfuscate and deobfuscate content can inform an assessment of the threat
actor’s sophistication, help build a reliable YARA signature, and provide the information necessary to
automate deobfuscation.

6 © 2022 Anuj Soni

Analyzing Code Deobfuscation: Module Objectives

* Understand code used to deobfuscate executable content.

* Be able to communicate the details of how code is obfuscated.

* Recognize key Windows APIs used to allocate memory.

» Differentiate user-defined code from library code.

» Dump deobfuscated executable content to disk.

 Explain how multiple files work together to execute malicious code.

* Develop comfort with non-binary formats during malware analysis.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 7

This page intentionally left blank.

© 2022 Anuj Soni 7

This Malicious Loader Example Downloads and Decodes a DLL

' FUN_1000a830

* FUN_1000a830 deobfuscates the DLL.

1000a834 MoV dword ptr [EBP + counter], 0x0
.
° I OR b f d h b f h k 1000a83b JMP LAB_1000a846
t XORs a byte of data with a byte of the key.
> LAB_1000a83d
1000a83d MoV EAX, dword ptr [EEP + counter]
N7 0002840 ADD EAX, 0x1
* DIV divides EDX:EAX by th d : :
1vides : y the operand. 10008643 Wov dword pte (557 + counter], EAx
b LAB_1000a846
3 s 10002846 MOV ECX, dword ptr [EBP + counter]
. h d
EAX contains the quotient (not used). e v per (e
r1-| 1000a84c oNC LAB_1000a872
|
. . . . i 1000a84e MOV EAX, dword ptr [EEP + counter]
* EDX contains the remainder which isused to | | o o oo o
. | 1000a853 DIV dword ptr [EBP + key_sizel
lterate over key byl es. | 10002856 MOV EAX, dword ptr [EBP + addr_xor_key]
: 1000a859 MOVSX ECX, byte ptr [EAX + EDX*0x1]
10009c22 MOV ECX, dword ptr [EBP + local 28] ; Number of bytes . 1000a85d MOV EDX, dword ptr [EBP + addr_encoded]
- . ! 10002860 ADD EDX, dword ptr [EBP + counter]
10009¢c25 PUSH ECX ; Address of encoded content | 10002863 MOVSX EAX, byte ptr [EDX]
10009c26 PUSH 0x25 ; Key size | 10002866 XOR EAX, ECX
i
10009c28 PUSH s_FuHZu4rQgn3eqLZ6FB48Deybj49xEU... ; XOR key ! 10002868 MoV ECX, dword ptr [EBP + addr_encoded]
- i 1000a86b ADD ECX, dword ptr [EBP + counter]
10009c2d CALL FUN_1000a830 ; Deobfuscates DLL | 1000a86e MOV byte ptr [ECX], AL
I
|| 1000a870 oM LAB_1000a83d
i
e LAB_1000a872
1000a872 MoV ESP, EBP
10009c4b CMP ECX, 0x5a4d ; Check for "Mz" bytes 1000a874 poP EBR
1000a875 RET 0x10

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 8

Let’s explore how some malicious loaders deobfuscate the next stage of execution. The code on this slide
is an excerpt of malware with SHA-256 hash
5¢4¢c9f2ed16908522a9124¢3¢911945fb24ce95ba209¢24f6e97b116205898e3. This program downloads,
deobfuscates, and executes a DLL in memory.

The code excerpt on the left shows a call to FUN_1000a830. This function deobfuscates downloaded
content and produces a DLL in memory. The function takes four arguments which include a pointer to an
XOR key, the key size, the address of the encoded content, and the number of bytes to deobfuscate. If
you’re wondering sow we determined what each argument represents, don’t worry — we’ll get to that. For
now, we just want to gain exposure to the operations that perform deobfuscation.

The screenshot on the right shows instructions within FUN_1000a830. The loop deobfuscates the DLL,
and it includes various instructions that support this goal. Variables and arguments are renamed for clarity.
Each byte of encoded data is XORed with a byte of the hardcoded key. When the loop reaches the last byte
in the XOR key, it resets to the first byte of the key. The DIV instruction supports this “cyclic iteration”.
The DIV instruction divides EDX:EAX by the specified operand. The result is stored in EAX, and the
remainder is stored in EDX. A colon bet between two registers indicates the values within the registers are
concatenated. For example, if EDX contains 0x44332211 and EAX contains Oxffeeddcc, EDX:EAX is
0x44332211ffeeddcc.

For more details on this malware, see https://for710.com/mbloader.

8 © 2022 Anuj Soni

Decompiler Output for FUN_1000a830 Clarifies Deobfuscation

* The modulo operator (%) results in the remainder of dividing operands.
* It helps iterate over the XOR key without exceeding the max index value.
» Example Key: ABCD

(o) —_
*0%4=0
void FUN_1000a830(int addr_xor_key,uint key_ size,int addr_encoded,uint num_bytes)
0) —_
*1%4=1 |
o, _ uint counter;
*2%4=2
o for (counter = 0; counter < nu.m_bytes; counter = counter + 1) {
° 3 /0 4 = 3 * (addr_encoded + counter) = *(addr_encoded + counter) * *(addr_xor_key + counter % key_size);
}
o, — .
° 4 /0 4 — O return;
}

*5%4=1

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 9

This slide shows Ghidra’s Decompile (i.e., pseudocode) output for the function discussed on the previous
slide. While it’s important to understand the assembly code representation, reading the pseudocode is
certainly easier. Again, variables and arguments are renamed for clarity.

Observe the for loop that XORs a byte of encoded data with a byte of the hardcoded key. In the previous
slide, we saw a DIV instruction, but here we see a modulo (%) operator; these operations are related. The
modulo operator produces the remainder when dividing one operand by another. For example, in the
expression 10 mod 2, 10 /2 = 5 with no remainder. In this expression, 2 is the modulus and the result is
zero. In the expression 10 mod 3, 10/3 = 3 with a remainder of 1. In this second expression, 3 is the
modulus and 1 is the resulting remainder. The modulo operator allows a value to increase and then reset
once it hits a certain limit defined by the modulus. Using the example key “ABCD” on this slide,
performing a modulo operation against the key length (4) ensures that as a counter (first operand)
increases, the result never exceeds the max index value for the key (3).

© 2022 Anuj Soni 9

A Different Loader Deobfuscates Content on Disk

* This loader decodes a file (mpc . tmp) on disk.

* The pseudocode reveals a similar decoding process, but the disassembly

. .
is more complicated. Tooootbes wov R, -o7oarasiiEredract
180001bcf NOP
do {
*addr_data = *addr_data ~ xor_key[counter % Oxe4d]; > LAB_180001bdo0
num_bytes = num bytes - 1; 180001bd0 MOV RAX, R9
counter = counter + 1; 180001bd3 INC R11
addr_data = addr_data + 1; 180001bd6é MUL RCX
} while (num_bytes != 0); 180001bd9 MOV RAX, RCX
180001bdc INC RCX
°] y 180001bdf SHR RDX, O0x7
Compilers may use magic number | | eower o o o
o o e . .
division to optimize performance. 18000bea SUB RAX, RDX
180001bed MOVZX EAX, byte ptr [RBP + RAX*0x1l + 0x750]
180001bf5 XOR byte ptr [R11 + -0x1], AL
180001bf9 DEC R8
—| 180001bfc JNZ LAB_180001bdo

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Let’s look at a different malware loader with SHA-256 hash
850fad00f55153be1338382cdbc68a28292028e1213f72ea7d2f1c632c¢4719b7. Instead of downloading the
next-stage executable content from a server, this program interacts with another file (mpc.tmp) on disk.
The deobfuscation pseudocode is shown on the left side of this slide. The algorithm is similar to the
previous example and involves XORing the encoded content with a defined key. Using XOR for simple
deobfuscation is quite common in malware.

However, you might be surprised to see the corresponding disassembly on the right side of this slide.
Instead of a DIV instruction commonly associated with a modulus operation, we have MUL (multiply),
IMUL (signed multiply), and SHR (shift right) operations, among others. Also, observe the large, signed
value at 180001bc5 which is moved into R9 and then used within the loop. This is not the result of clever
programming or an obfuscation technique. Instead, it is an artifact of a compiler optimization that uses
magic number division. Performing division is generally more costly (from a performance perspective)
than performing multiplication. As a result, the compiler in this case decided to use a combination of other
mathematical instructions and the observed signed value to execute the code faster. The result is the same
as using a DIV instruction and the pseudocode helps confirm this. We will not spend time digging into the
mathematics of these instructions, but it is important to be aware of this optimization.

For additional discussion regarding magic number division, see https://for710.com/magicdiv.

For more information on this malware, see https://for710.com/bronze.

10 © 2022 Anuj Soni

10

Deobfuscation Can Include Decryption

FUN_180001000 (Local_118) ;
1Var7 = DAT_18000c£d8;

* A variant of the malware just et - o

uvar4 = 0;

discussed decrypts contents of a file |« © < «

pbvar5 = pbvar2;

On diSk (Vm . C fg)o dom{/ars = uvar8 + 1 & 0x800000ff;

if (uvarg8 < 0) {

* The code includes XOR but is more | @ = twee - r oeesesmon =3

1lvaré = uvars8;

complicated than earlier examples. | wan - icn uspvae.

uvar4 = uvar4 + bvarl & 0x800000ff;
if (uvar4 < 0) {

o This iS an RC4 implementation used uvard4 = (uvard - 1 | OxEEEEEE00) + 1;

}

to decrypt a Cobalt Strike beacon. loosl_11601vars] = Local itofuvare];

local_118[uVar4] = bVarl;
. . uvar3 = local_llﬂ[lVaI‘G] + bvarl & 0x800000ff;
» We'll discuss encryption and the e s,
details of RC4 in Section 2. dvart = st + 1)

*pbVar5 = local_118[uvar3] * (pbVar5 + 1)[(param_1 - pbVar2) + -1];
pbvar5 = pbvar5 + 1;
} while (1lvar7 != 0);

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 11

This slide covers a variant of the malicious loader discussed on the previous slide. This sample’s SHA-256
hash is 7acc90887bafd261352f4e¢52e6a73252de2196a6e1a91dde77e3be7dda371836. The loader decrypts
the contents of a file named vm.cfg to reveal a Cobalt Strike beacon in memory. The code on this slide
implements the RC4 algorithm instead of the simple XOR approach discussed earlier. RC4 does include an
XOR operation, but it is just one component of the algorithm. We will discuss encryption and the specifics
of RC4 in detail in Section 2. This initial exposure is just to reinforce the spectrum of decoding routines
you will encounter when analyzing malicious loaders.

© 2022 Anuj Soni 11

Loaders May Use Steganographic Techniques to Reveal Code

* Steganography is the art of hiding a message or file within another file.
* The technique is often referred to as “hiding in plain sight.”

» Malware authors use steganography techniques to hide code/data and
introduce additional stages of execution to hinder detection and analysis.

» Approaches range from simply appending data to the end of a file to
interweaving data throughout the entire file.

* The publicly available Invoke-PSImage embeds
a PowerShell script within the pixels of a PNG
image file.

FORT710 | Reverse-Engineering Malware: Advanced Code Analysis 12

Malicious loaders may rely on steganographic techniques to deobfuscate the next stage of execution.
Steganography is an approach to hiding code, a file, or some other data within another file, ideally without
raising suspicion—this is why steganography is often referred to as “hiding in plain sight.” For
comparison, while the goal of encryption is to protect confidentiality of some data, the goal of
steganography is to hide the fact that there is any interesting data at all.

Attackers have hidden code and data within graphics file formats for years. Some have used publicly
available tools to facilitate this data hiding, while others employ custom techniques. Image file formats are
the most common vehicle for hiding data since the visual image may distract the viewer from any
embedded hidden data. For an example of malware that hides executable content within a bitmap image,
see https://for710.com/blackberry-windealer.

While custom code may be used to employ steganography, public tools can assist. For example, the
publicly available Invoke-PSImage script hides a PowerShell script within the pixels of a PNG image file.

Let’s cover an example of malware that use steganography to evade detection and analysis.

12 © 2022 Anuj Soni

A Simple Steganographic Approach Involves Appending Content

* Opening this file in an image viewer shows a JPG icon identical to the
one in this target file’s icon: PG

data.pn
* Closer analysis requires an understaprgding of the file structure, including

the file signature, header, and trailer.

. . . Cffset(h) 00 01 02 03 04 05 06 07 Decoded text
* A PNG file begins with: | 55555000
* The image file is comprised of “chunks” that describe the file’s content.

* The first chunk type is ITHDR, and the final chunk type is TEND.
 Each chunk ends with a 4-byte CRC.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 13

One common, straightforward approach to hiding content in a file is simply to append data to the file. In
most cases, this does not impact typical usage of the file, though it may bloat the file size.

In our first example, we will discuss a file named data.png. You can find this file at
Malware\Sectionl\data png.zip within the course VMs. The file was reportedly delivered to potential
victims via email (https://for710.com/trustwave-lokibot). A review of its header shows that the first few
bytes match those you would expect to see in a legitimate Portable Network Graphics (PNG) file. Oddly,
the preview of the file in its icon refers to a JPG graphic, another common graphics file format. This may
be an attacker’s attempt to confuse the analyst, but it may also cause more scrutiny.

The use of steganography forces an analyst to investigate additional file types and structures not typically
encountered during binary analysis. In this case, digging deeper requires that we understand the basic
structure of a PNG file.

A PNG file begins with the 8-byte hexadecimal header: 89 50 4E 47 0D 0A 1A OA. This file type is
predominantly compromised of chunks that, in aggregate, describe the image. The first type of chunk is
“IHDR”, and the last type of chunk is “IEND”. For more information about the PNG header and trailer
specification, see the following:

https://for710.com/wikipng

https://for710.com/w3png

© 2022 Anuj Soni 13

Identifying the EOF Marker May Help Extract the Target Data

» Appending data to a file may not impact normal usage of the file.

* This file has content after the final chunk, which may be a PKZip file.
0000A610 00 . [[END®B '

0000RE18 S0 4B 03 04 14 00 00 [JPK.....

» Unzipping data.png with 7.zip reveals an executable: \

property value
sha236 CODDCF7DOCDO26CDEACS586515B4D0591 C1CARIEESCODICDO0B198173ESES4FD3
first-bytes-text N
file-size 13877248 (bytes)
signature Microsoft Visual Basic v3.0
RFQ description pirfORm LTd
-5600005870.exe e executable

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 14

As mentioned earlier, when steganography is used wisely, it does not impact normal usage of the target
file. With the correct PNG extension, data.png opens up in an image viewer without issue. However, if we
identify the file IEND chunk, we will see additional data appended to the file beginning with the characters
“PK.” These two characters are often associated with the ZIP file format.

To unzip the embedded file, we could try using 7-Zip. Oddly, if we rename the file to a .zip extension and
try 7-Zip, it encounters an error. However, if we simply remove the extension and right-click and choose
7-Zip > Extract Here, it unzips without issue. This results in an extracted executable named RFQ -
5600005870.exe. Opening this file in PeStudio confirms it is a Windows executable.

This is a simpler case of steganography, where the hidden file is simply appended to the original file.
For another example of malware that employs steganography, read about the corelump loader:

https://for710.com/corelump. This malware downloads a JPEG image that contains an encrypted
executable after the JPEG end of file marker.

14 © 2022 Anuj Soni

A More Sophisticated Approach Involves Manipulating Bit Values

* Replacing individual bits of an image file with the bits of a hidden file or
message is usually unnoticeable to the human eye.

* A common approach involves modifying the least significant bit (LSB) of
bytes within an image.

Original image Altered image

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

A more sophisticated approach to hiding data within a file involves manipulating bits to interweave the
embedded content. This far more nuanced than appending content to a file and significantly harder to
detect.

As an example, the 24-bit bitmap image files (BMP) on this slide appear identical, but there is an
important difference. The image on the right has a secret message embedded within it. This message is
stored within the least significant bits of individual pixel color values (Red, Green, and Blue). Changes
made to the original image to store the hidden content are not perceivable to the human eye.

The altered image was created using the LSBSteg.py python script available at
https://github.com/RobinDavid/LSB-Steganography. Specifically, the following command line embeds a

secret image in image.bmp to product out.bmp:

python LSBSteg.py encode -i image.bmp -o out.bmp -f secret.txt

© 2022 Anuj Soni 15

15

(] (]]

A Byte Comparison Shows Many One-Bit Differences

] C:\Users\REM\Desktop\image.bmp <=l BERE [=|[@][=
Cffsetc (h) 00 Decoded text Cffsec(h) 00 01 02 03 04 05 06 07 Decoded text ()
02278C58 4.23.;9. 02278C58 32 00 padEcE 4.28.[.8.
02278Ce0 piN HEe o o 02278Ce0 2 2 00 1A 2¢ HiFs ooic
eierb-{od BI04 19 12 05 15 14 0OC 12 e ey {od S BN04 18 14 04 14 14 0OC 12
eyt H/IOD OF 16 0% 1F 24 05 39NN 5.9 eyi-lor/IIOC OE 16 08 1E 24 04 3EEAMEaS 5.8
02278C78 17 [7.KF.E? 02278CT78 36 00 44 46 00 44 3E 6. JF.D>
Q02278CE80 EE 60."#... eyl VI =E 30 00 26 22 00 16 60 .&8™. .
Qg2278Ces [l giPe o B [ileearbc{ac BN O0 14 22 12 18 3E 2R O A
02278C90 g =.GA.G eearb{es-liBN4 = 3D 06 46 40 07 46 3 H=.F@.F7
02278C98] 30 L:.0(.% ieearg-{ed- a0 C 41 32 01 30 2 02 L:.0(.%
Q02278CR0 ki 01 1.o#..%%, eyi{lor OB 1 00 23 1E 00 2A 24 O 1. #..%5
02278CAS8 30 .+.40.63 eyl R F 20 01 34 30 01 36 33 *.40.63
02278CBO 29 =200 (. 02278CBO 01 33 30 00 29 29 00 1E| i)
02278CBE8 peyimmily 04 15 12 OF. [teeari-{ei:to - 1 OO0 16 16 04 14 12 09 L
Q2278CC0 prEmE] 12 0A 16 10| 02278CCO T 12 09 16 12 OB 16 11|
02278CCs [i=EmEa 15 05 09 12| 02278CCs 0C 08 15 ¢ 5 |
02278CD0 Pl 09 11 06 O 02278CD0 10 ¢ 08 izl [
02278CDE8 k] 06 0C 13 06/ 02278CDs8 08 06 0D 12 OG-
Q02278CEQ pliEmik] 16 02 1E 1F | eyl 1 12 02 14 16 02 1E 1F| e
02278CES 00 B =i +#.3%. 4 02278CES (2 4".3%.4
Q02278CFO Qo0 - - 02278CFO ¥..!'..5

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 16

To better understand the impact of embedding content within the original image, we can perform a byte
level comparison using a hex editor (HxD is used on this slide). From the menu bar, we browse to Analysis
> Data comparison > Compare, and choose the original and modified files.

Looking through the output shows, among many differences, the chunk of bytes on this slide. A visual
comparison shows that, in many cases, there is a one-bit difference between byte values. For example, the
first value highlighted in image.bmp is 0x2F and the byte at that same position in out.bmp is 0x2E. The
same holds true for the second value—it is 0x39 in image.bmp and 0x38 in out.bmp.

16 © 2022 Anuj Soni

Extracting Least Significant Bits (LSBs) Reveals Hidden Data

] C\Users\REM\Desktop\out.bmp

Offset(h) 00 01 02 03 04 05 06 07 Decoded text

02278C90 3D 06 46
Q02278C98
Q02278CR0
02278CAEB
Hex 46 3F oC 41 3A o1 30 28

Binary 01000110 | 00111111 00001100 | 01000001 | 00111010 00000001 | 00110000 | 00101000

LSB 0 1 0 1 0 1 0 0

01010100 = 0x54 =T

“This 1s a secret.”

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 17

If we begin extracting the least significant bits (LSBs) of these values in out.bmp, eventually we reach the
the bytes highlighted on this slide. The table shows the byte under review, its binary form, and the least
significant bit. Aggregating these individual bits to form a single byte reveals the ASCII character “T”.

If we continue extracting LSBs in this manner to form bytes, we eventually create the text “This is a
secret.”

© 2022 Anuj Soni 17

Extracting the LSB Typically Involves Bitwise Operations (2)

00401216 PUSH EDI ; Address of storage buffer (content read from file placed here)
00401217 CALL fread

00401245 Mov EAX, Oxle ; Places decimal 30 into EAX
0040124a MoV dword ptr [EBP + local 34], EDI ; Places pointer to file data into local_34
LAB_00401258 XREF[1]: 004012bb (3)
i 00401258 MoV ECX, dword ptr [£BP + JOGEMNGA] ; Places pointer to data into ECX
: 0040125b TEST byte ptr [ECX], O0x1 ; Evaluates LSB of one byte of data
r’:’ 0040125e JZ LAB_0040126d ; If LSB is zero, jumps to next evaluation
: } 00401260 LEA ECX, [EAX + 0x1] ; If LSB is 1, places bit position into ECX (starting with 31)
. 00401263 Mov EBX, 0x1 ; Places 1 in EBX
: : 00401268 SHL EBX, CL ; Shifts left based on bit position
: : 0040126a OR dword ptr [EBP + local_30], EBX ; Incorporates bit into existing decoded value
[RRaS LAB_0040126d XREF[1]: 0040125e (3)
i 0040126d MoV ECX, dword ptr [E5P + [OCHINGA]
: 00401270 TEST byte ptr [ECX + ESI*0x1], Ox1 ; Evaluates another byte (debugging shows it skips one in between)
rT- 00401274 Jz LAB_00401282
0l 00401276 MoV EBX, 0x1
i 0040127b MoV ECX, EAX
i 0040127d SHL EBX, CL
} : 0040127f OR dword ptr [EBP + local 30], EBX
L LAB_00401282 XREF[1]: 00401274 (3)

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 19

This slide shows code responsible for extracting LSBs from file data. See the end of line comments for
additional detail.

© 2022 Anuj Soni 19

Course Roadmap

« FOR710.1: Code * Analyzing Code Deobfuscation
Deobfuscation and Execution * Lab I.1: Investigating Code
. Deobfuscation Using Steganographic
* FOR710.2: Encryption in Techniques
Malware * Identifying Program Execution
* FOR710.3: Automating * Lab 1.2: Analyzing Malicious Program
Malware Analysis Execution
« FOR710.4: Correlating * Understanding Shellcode Execution
Malware and Building Rules * Lab |.3: Analyzing Shellcode Execution

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 20

This page intentionally left blank.

20 © 2022 Anuj Soni

Lab I.1: Background Topics: Windows Memory Allocation (1)

* Deobfuscation may involve allocating memory for the decoded content.

» The Windows memory manager provides services to allocate memory, share
it between processes, assign permissions, and map files into memory.

* Virtual API:
 Functions: VirtualAlloc, VirtualProtect, VirtualFree
* Lowest level Microsoft API for memory allocation
* Allocates a minimize size of 64K from free memory
* Heap API:
* Functions: HeapCreate, GetProcessHeap, HeapAlloc, HeapFree

» Ideal for smaller allocations; for larger allocations, VirtualAlloc is called

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Before malware decodes the next layer of execution, it may have to allocate memory for the decoded
content. The Windows memory manager provides services to allocate memory, share it between processes,
assign permissions, and map a file into memory. We will discuss four approaches to allocating memory.

Virtual API: This Windows API includes the functions VirtualAlloc, VirtualProtect, and VirtualFree,
among others. It is the lowest level API for memory allocation in the Windows API. It allocates a
minimum of 64K. This makes it inefficient for smaller memory allocations.

Heap API: This Windows API includes the functions HeapCreate, GetProcessHeap, HeapAlloc, and
HeapFree, among others. It is used to allocate smaller sections of memory (less than a page). From a
reverse engineering perspective, setting breakpoints on these APIs can be problematic because they are
simply called too frequently. Each process has a default heap it can use for allocations, and additional
heaps can be created. The Heap APl uses VirtualAlloc internally to allocate larger chunks of

memory.

You may also encounter LocalAlloc and GlobalAlloc APIs during your analysis. In recent versions
of Windows, these serve as wrapper functions for HeapAlloc and have more overhead. More
information on the differences between these similar APIs is available at the links below. From the
malware author’s perspective, these APIs simply provide more options for memory allocation.

For additional documentation on Windows memory management, see the following resources:
https://for710.com/memory-allocation

https://for710.com/memory-management-functions

For additional detail, also see the “Memory Management” chapter in the venerable Windows Internals,
Part 1.

© 2022 Anuj Soni 21

Lab |.1: Background Topics: Windows Memory Allocation (2)

- malloc:
* Function to perform dynamic memory allocation
* Part of the standard C library, though it can also be used in C++
* On Windows, it calls HeapAlloc
° new operator:
* It’s an operator (not a function) used in C++ programs only
« It invokes the function operator new

» On Windows, it calls HeapAlloc

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Malloc: malloc is a standard C library function for allocating memory. On Windows systems, it will call
HeapAlloc. When developers use malloc to allocate memory, they should use free to deallocate
memory.

New operator: This operator (not function) is available in C++, and it invokes the function “operator
new”. Similar to malloc, it will call HeapAlloc on Windows systems. When developers use new to
allocate memory, they should use delete to free memory. See https:/for710.com/new for more

information.

Both malloc and new allocate memory on the heap.

22 © 2022 Anuj Soni

Lab I.1: Background Topics: Win API vs. C/C++ Libraries (1)

* When performing code analysis, Windows API calls are sometimes buried
deep within function calls; other times, they are closer to the entry point.

« This is one difference between a program developed using the Windows API
directly vs. a program that uses standard C/C++ libraries.

* Programs compiled with C/C++ libraries can be more challenging to follow.
* A program developed using the Windows API will only run on Windows.

« A program using the standard C/C++ libraries can be compiled for multiple
OS’s; but when compiled for Windows, it will call Windows APIs.

We may have to work our way through layers of standard library code to arrive at
the user code, where the malicious content of interest usually resides.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 23

While we will not spend much time on the development of malware, we need to be familiar with some
development concepts to improve our understanding of the corresponding disassembly.

Malware is often developed using C or C++. When building a program for the Windows operating system,
a developer may choose, among other options, to use the C/C++ runtime libraries or use the Windows API
(WinAPI) directly.

Writing code using C/C++ libraries means the program can be compiled for multiple operating systems
(i.e., it is cross platform). C/C++ runtime libraries are implemented on top of the operating system, so they
will use the underlying APIs of the operating system. This means that a program using C/C++ runtime
libraries that is compiled for Windows will call the Windows API functions—but they will be referenced
under multiple layers of library calls.

Alternatively, when a developer uses the WinAPI directly, the code can only be compiled for the Windows
operating system. A benefit of this approach is that Windows API functions often expose more
functionality than the standard C/C++ library functions.

From a code analysis perspective, programs that use C/C++ libraries can be a bit more challenging to
analyze due to the numerous layers of functions calls. Usually, our goal is to analyze code written by the
malicious developer, not standard library code. This means we may need to work our way through the
various layers of library code to locate code written by the developer.

© 2022 Anuj Soni 23

Lab I.1: Background Topics: Win API vs. C/C++ Libraries (2)

C++ Code Using WinAPI Function Call Tree

h>

#include

Outgoing Calls
f Outgoing References - entry
- &) § FID_conflict:_wmainCRTStartup

#include

oid main() 2@ § thunk_FUN_00406ch0
) —- &) § FUN_00406ch0

HANDLE hFile; [w

~ DataBuffer[] = "I just wrote this!";
DWORD dwBytesToWrite (DWORD)strlen(DataBuffer);
DWORD dwBytesWritten 0;
BOOL bErrorFlag = FALSE;
hFile = CreateFile("c t_winapi.txt", GENERIC_WRITE . .

, CREATE_NEW, FTLE_ATTRIBUTE_NORMAL, ; Function call trees provide
bErrorFlag = WriteFile(hFile, DataBuffer, dwBytesToWrite, Valuable context for funCtlon Ca"S.

&dwBytesWritten, L);

CloseHandle(hFile);

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 24

When comparing a program that uses the Windows API directly vs. a program that uses C/C++ libraries,
the flow of execution looks different.

On the left of this slide, we see code that uses the Windows API (via windows.h). It is a simple program
that writes text to a file. It includes the Windows API functions CreateFile, WriteFile, and

CloseHandle. The code on the left is derived from the example here: https://docs.microsoft.com/en-
us/windows/win32/learnwin32/your-first-windows-program.

We’ll focus on WriteFile to illustrate a point.

On the right, we have the calls that occur along the path between the entry point and a call to
WriteFile. Notice the path is short, and there are only a few functions in between.

24 © 2022 Anuj Soni

Lab I.1: Background Topics: Win API vs. C/C++ Libraries (3)

C++ Code Using fstream Class Function Call Tree

#include <iostream> Outgoing Calls
.) ~ 5 f Outgoing References - entry
#include <fstream —-@&) § FID_conflict: wmainCRTStartup
using std; - @) § thunk_FUN_0040f040
-- &) § FUN_0040f040
—-@&) § thunk_FUN_00413e60

c main() Z-@&) § FUN_00413e60
—-@&) F close
- @& F close
—-@&) § thunk_FUN_00412690
ofstream ExampleFile("output.txt"); =@ § FUN_00412690
—S_'] § _fwrite
- &) § _furite
=] @] § operator()<class_<lambda_4ac01c32aa5b53846f05d0620572872e>
ExampleFile << "I just wrote this!"; - &) § operator()
- &) § _ fwrite_nolock
-~ &) § _ fwrite_nolock
=} § _ acrt_stdio_flush_nolock
ExampleFile.close(); -- &) § __acrt_stdio_flush_nolock
-} @_’] § _ write
- &) F _ write
- @& § _ write_nolock
—-@&) ¥ _ write_nolock
[] § WriteFile

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Now, let’s look at a program that does the same thing as the program on the previous slide (i.e., it writes
the same text to a text file), but this program uses the C++ fstream class for operating on files. There is no
explicit mention of WriteFile in the code because this program uses C/C++ functions rather than the
Windows API. However, when compiled for windows, it does call WriteFile to write a file to disk. The
function call tree on this slide shows a reference to WriteFile under multiple layers of function calls.

While this function call tree is more complicated, Ghidra assists us by automatically recognizing many
C/C++ library functions (more on this shortly).

© 2022 Anuj Soni 25

Lab I.1: Background Topics: Win API vs. C/C++ Libraries (4)

C++ Code Using C-style file I/O Function Call Tree

#include <cstdio>

(Outgoing Calls
§ Outgoing References - entry
--&) § FID_conflict: wmainCRTStartup

main() ~-@&) § thunk_FUN_00406ee0
--@&) ¥ FUN_00406ee0
FILE *pFile; = Q) § _furite
S a - - &) F _fwrite
buffer[] = "I just wrote this!"; = @ § operator()<class_<lambda_4ac01c32aa5h53846f05d0620572872e>,class_<lambda
—-@&) § operator()
pFile = fopen("output.txt","wb"); =4 f@?”w”t&—m'mkl .
. . = __fwrite_nolocl
fwrite(buffer,siz (buffer),1,pFile); &) F __acrt_stdio_flush_nolock
fclose(pFile); ©=-@4) § __ acrt_stdio_flush_nolock
&) F _ write
P, . = @) F _write
neturn 0; -+@&) § _ write_nolock
- &) § _ write_nolock
=} @] § write_double_translated_ansi_nolock
“[_] ¥ WriteFile
SA.N.S FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 26

The source code on this slide writes to a text file, like the prior two slides. However, this program uses C-
style functionality, making use of fopen, fwrite, and fclose. The result is the same—when compiled for
Windows, WriteFile is called under many layers of function calls.

As malware analysts, our goal is to analyze code written by the developer, not standard library code. When
analyzing a program that uses C/C++ libraries, we may need to work our way through more layers of
standard library code to arrive at the code written by the attacker. As we tackle our first lab, we will learn
how to navigate this situation in Ghidra.

26 © 2022 Anuj Soni

Lab I.1: Background Topics: EXE Entry Point Terminology

« EntryPoint: The start of executable content specified in the
AddressOfEntryPoint field in the optional header.

* WinMain:

* The user-defined entry point for a graphical Windows application.

« If built with Visual Studio, WinMainCRTStartup will call this function.
* main:

* The user-defined entry point for a C++ console application.

« If built with Visual Studio, mainCRTStartup will call this function.

* Code between the EntryPoint and WinMain/main is likely generated by the
compiler.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

During in-depth reverse engineering efforts, it is often beneficial to perform code analysis from the entry point. This
provides insight into both code functionality and the order in which it occurs during execution. However, our efforts
should focus on user-defined functionality and not compiler generated code. The following slides clarify entry point
terminology and approaches to identifying code written by the malware author.

When an EXE is launched, certain initialization activities occur. The entry point (specified in the
AddressOfEntryPoint field in the optional header of an EXE) directs the system to the code that performs these setup
activities.

WinMain is the user-defined entry point for GUI applications while main is the user-defined entry point for console
applications. PeStudio can help you determine if a program is a GUI or console application. Note that a GUI
application is not required to have graphical elements, but it can.

If an EXE is built using Visual Studio, the Visual C++ run-time library (VCRuntime) provides an entry point called
WinMainCRTStartup or mainCRTStartup for GUI or console applications, respectively. In this case, the code at the
entry point will call one of these startup functions, and the startup function will call WinMain or main.

You may also encounter wWinMain or wmain—these are similar to WinMain and main, but for Unicode command
line arguments.

A different user-defined entry point can be specified using the /ENTRY linker option
(https://for710.com/entryoption).

From a malware analyst's perspective, there is no functional difference between ‘'Winmain' and ‘'main’—both
signal the beginning of the developer's code. However, you will encounter both terms while performing and reading
about malware analysis, so it's helpful to know why programs refer to one entry point name versus another.

A key take away is that the code between the EntryPoint and Winmain or main is likely generated by the compiler,
and therefore it can often be ignored. As a malware analyst, you want to focus your attention on code written by the

malware author.

28 © 2022 Anuj Soni

28

For more information on entry points, see:
https://for710.com/winmain-ep
https://for710.com/winmain
https://for710.com/entrypoint

© 2022 Anuj Soni

29

* Review function calls after the entry point.
* The FID analyzer identifies many library functions.
* Inspect functions after the command line is retrieved.

* FUN_004140do may be WinMain.

entry
004014de CALL ____security init cookie
004014e3 JMP LAB 00401361

LAB 00401361

00401361 PUSH 0x58
00401363 PUSH DAT 0041a670
00401368 CALL __SEH_prolog4

Lab I.1: Background Topics: Identifying WinMain (2)

Outgoing Calls

f Outgoing References - entry
@) § __SEH_prolog4
=[] ¥ GetStartupInfow

+- &) § __heap_init

+- @) § _fast_error_exit
&) F __mtinit

&) § __RTC_Initialize
&) F _ioinit

- @) ¥ GetCommandLinew

ﬂ@ § __ crtGetEnvironmentStringsW
&) F _ wsetargy

-@&) § _ wsetenvp

&) F _cinit

@) § __amsg_exit

~@&) F _ wwincmdin

|t

- @) F _exit

@) F _cexit

~@&) § _ SEH_epilog4

+- @) § __ security_init_cookie

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 31

To discuss approaches for locating WinMain, we will use the Windows executable with SHA-256 hash
OBF8F22C889018E03C85EA73BBACBFO0C3EB714D918F5B4C34F6876969788B1A. You can find this

executable at Malware\Sectionl\gui_example.zip within the course VM.

First, browse to the entry point via the Symbol Tree or Functions window. At 401fde, we first see a CALL
to an FID-identified library function _ security init_cookie. While a detailed discussion of this function is
out of scope of this course, it is worth noting that this is a C Runtime (CRT) function and names beginning
with a single or double underscore generally represent reserved functions. You can read more about this

function here: https://for710.com/securitycookie.

At 4014e3, we see a JMP instruction. Following the JMP takes us to 401361 and we see additional calls to
library functions. We can use the function call tree for an overview of all functions called from the entry

point.

When identifying WinMain candidates, focus on functions that are not identified as library functions. In
this case, there is only one—FUN 004140d0. However, we can look for additional evidence to support the
theory that this function is WinMain. For example, the previous slide discussed that WinMain requires the
command line as the third argument. Looking above FUN_004140d0 in the function call tree (pictured on
the right) we can see multiple functions that could contribute to retrieving the command line, including
GetCommandLineW and _wwincmdln. Keep in mind that there are multiple functions that can retrieve

command line information—these are just examples.

© 2022 Anuj Soni

31

Technet24

Lab I.1: Background Topics: Identifying WinMain (3)

|outgoing Calls

- :
* The first argument passed to FUN_004140d0 points the |[®57

. .] F GetCursorPos
file in memory. v
. J § GetProfileStringW
* FUN_004140do references few reserved functions. "D e
\J § SetConsoleCursorInfo
[_] ¥ DisconnectNamedPipe

» This function is WinMain, though confirming this may -9 cetoarne
require additional code analysis and debugging. 3§ ceraranesman
= f | (e
LAB 00401466 xe] | 2L
- (] ¥ GlobalAlloc
00401466 PUSH ECX &) § FUN_00413b60
[§ LoadLibraryw
0040 14 67 PUSH EAX ' j; ::s:ercezﬁtironmentstringsA
00401468 PUSH ESI B coormmmmaaricTine
00401469 PUSH IMAGE_DOS_HEADER_ 00400000 (s B 1 oo
+[_] F LoadLibraryw
0040146e CALL FUN_004140d0 o grefavteNf-,;’EedxpeA
00401473 MoV dword ptr [EBP + Stack[-0x24]+0x4], EAX j :j; e

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 32

As a reminder, Microsoft documentation explains that WinMain’s first argument points to the executable
in memory. At 401469, the PUSH instruction passes the address of the DOS header. This observation
supports our hypothesis that FUN 00414040 is WinMain.

Also, FUN 004140d0 references only one reserved function (i.e., functions beginning with a single or

double underscore) and many Windows API functions. This is typical of user-defined code, so this
observation supports our theory as well.

32 © 2022 Anuj Soni

Lab |.1: Background Topics: Identifying WinMain (4)

If Ghidra does not recognize WinMain arguments, we can apply the
appropriate function signature from the Data Type Manager.

undefined4 _stdcall FU'N_004140d0 (void)
undefined4 EAX:4 <RETURN>
undefinedl Stack[-0x80... local 80c
undefinedl stacﬂ
undefined4 Stac &= | - . _ .
undefined4 StacK int _ stdcall WinMain (HINSTANCE hInstance, HINSTA..
undefined4 StacK j:_aDaba Types int EAX:4 <RETURN>
e Stack T--?00?f8f%2c889018503:85ea73bbacbf00c3et HINSTANCE Stack[0x4] : 4 hInstance
J; x:::z::zi | HINSTANCE Stack[0x8] :4 hPrevInstance
[zl windows_vs12_32 LPSTR Stack[0xc] :4 1pCmdLine
2-[F7 winbase.h int Stack[0x10]... nShowCmd
(= Ib functions WinMain * Stack[-0x80... local_80c
undefinedl Stack[-0xc0...local_cOc
[wwinMain undefined4d Stack[-0xc2... local_c20
i windows_vs12_64 undefined4 Stack[-0xc2... local_c28
< > undefined4 Stack[-0xc3...local c38
Fiter: |winmain %] 2| | undefineds Stack[-0xc4... local_c40

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

When you browse to FUN_004140d0 within Ghidra, you may notice it displays no arguments. Ghidra did
not correctly identify the arguments passed to this function. We have high confidence this function is
WinMain, so we can apply the function signature from the Data Type Manager. Search for “winmain” and
choose the option shown on this slide (this program is 32-bit, so we choose an option from a 32-bit data
type archive). Then, drag-and-drop the selection to the function name (above the list of arguments and/or
variables).

© 2022 Anuj Soni 33

Technet24

Lab I.1: Background Topics: Identifying Main (1)

We can identify the main function for console applications using a process
that is similar to the one used to locate WinMain:

* Review functions after the entry point.
* Pay close attention to functions after the command line is retrieved.

* Inspect the code to determine if it is likely library code or user generated.

* argc contains the number of
main(int argc, char xargv[], char xenvp[1) arguments.

* argv is an array of command line
arguments.

* envp is an array of environment
variables.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

We can apply a similar process to identify the main function for C++ console applications. Specifically,
we can begin at the entry point and look for unidentified functions executed after command line arguments
are retrieved.

For this brief discussion we will use the Windows executable with SHA-256 hash
A37A290863FE29B9812E819E4C5B047C44E7ATD7C40E33DA6F5662E1957862AB. You can find this
executable at Malware\Section1\console example.zip within the course VM.

Standard arguments for a Microsoft Visual Studio-compiled main function include an integer that

represents the number of arguments, an array of command line arguments, and an array of environment
variables. More information about the main function is available at https://for710.com/main.

34 © 2022 Anuj Soni

Lab |.1: Background Topics: Identifying Main (2)

. Outgoing Calls
Reviewing functions after the command line is §Outgoing References - FUN_004ee80
retrieved reveals multiple candidates for review. G FUN 0045800
- &) § FUN_00467270
entry @) § FUN_0044f020
- &) § FUN_0045de70
0044£f0e0 PUSH EBP]@j § fast error exit
0044£f0el MoV EBP, ESP &) F _ mtinit
. L. . - &) § FUN_004483f0
0044f0e3 CALL security init_cookie &) F FUN_00466640
0044f0e8 CALL FUN_0044ee80 E@'] § FUN_00458e60
#~[_] § GetCommandLineA h
0044£0ed PoOP EBE E@] ¥ crtGetEnvironmentStringsA
0044f0ee RET -8 F
+- &) § __setenvp
#- @) § __amsg_exit
FUN_0044ee80 &) § i
0044ee80 PUSH EBP '+ @)] FUN_0040c070
+- &) F{| FUN_0044ee10
0044ee81 MOV EBP ’ ESP j..@ f FUN_0044ea50

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 35

At the entry point, we see one call to a non-library function FUN_0044ee80. Jumping to that location and
viewing the function call tree reveals many functions with the generic “FUN” label. These are all main
function candidates. However, since both WinMain and main require the command line arguments as a
parameter, we will focus on the functions affer the reference to Get CommandLineA. This leaves four

functions:

1. FUN_00466c00
2. FUN_0040c070
3. FUN_0044eel0
4. FUN_0044ea50

© 2022 Anuj Soni 35

Technet24

Lab |.1: Background Topics: Identifying Main (3)
=
« FUN_00466¢00 contains largely reserved functions. gjjjlj){ g:;f;\’;‘::;‘x'"d°w
o &) § FUN_00412c20
5 @) § FUN_00410540
-8 § __iniembctable +-@&) § FUN_0044b360
E@j ¥ __ report_rangecheckfailure e] F Sleep
[¥ GetModuleFileNameA ¢ &) § FUN_0040c390
------ &) § FUN_00466bf0 (] § CopyFileA
T &) § _parse_cmdiine +-&) § FUN_00406680
+-@&) § __malloc_dbg +-@) § FUN_00446230
] . @) § FUN_004070c0
FUN_0040c070, however, contains Windows API @) § FUN_004105f0
references and numerous non-library functions. 5 g ; T e
F &) § operator_delete
+-&) § FUN_004104e0
&) § FUN_0040c6a0
@) § FUN_004076c0

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 36

Looking at the function call tree of the first function reveals calls to many reserved functions. This is likely
not user-defined code.

The call tree for FUN_0040c070 shows no reserved functions and multiple Windows API references. This
is worthy of additional investigation.

36 © 2022 Anuj Soni

Lab I.1: Background Topics: DLL Entry Point Terminology

* DIIEntryPoint:

« The address specified in the AddressOfEntryPoint § Outgaing References - DIIEntryPaint
field in the optional header. -) § __security_inik_cookie
=- &) §F __DIMainCRTStartup
« It is called when the DLL is loaded and unloaded. &) § __SEH_prolog4
fdwReason specifies the reason for the call: &%) § FUN_10003c0d
DLL_PROCESS_ATTACH, DLL_PROCESS_DETACH, &) § __SEH_epilog4

DLL_THREAD_ATTACH, DLL_THREAD DETACH

* DIIMainCRTStartup: VCRuntime entry

3 3 BOOL WINAPI D1 in(
point that calls DIIMain. HINSTANCE hinstDLL,

» DIIMain: Optional user or library supplied [k
entry point with the same prototype as

DIlEntryPoint.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

When a DLL is loaded or unloaded, certain initialization and cleanup activities may occur. The entry point
of'a DLL directs the system to the code that performs these setup and teardown activities. An entry point
function is optional for DLLs and not explicitly exported.

The D11EntryPoint is the address specified by the AddressOfEntryPoint field in the optional
header. It takes an argument fdwReason that specifies whether the function is called due to loading or
unloading. An entry-point function is optional for DLLs.

DlIMain is a similar concept to the DL1Entrypoint (they have the same prototype), but it is defined by
the user. If DlIMain exists, it is called from the D11EntryPoint. The fdwReason argument is passed
through to D1IMain, and it is usually D1IMain that acts on the reason. If a DLL is built using Visual Studio,
the Visual C++ run-time library (VCRunt ime) provides an entry point called D11MainCRTStartup to
help set up the runtime environment. In this case, D11EntryPoint will call D11MainCRTStartup,
which will in turn call D11Main. The graphic on this slide demonstrates this function call tree. Note that
both D11EntryPoint and D11Main were renamed to those names for clarity—Ghidra does not
automatically rename these functions. The malware sample used for the screenshot has SHA-256 hash
4279ec7296a2{1976962de421c621791248c6916¢27eec42952945a4adaf995.

For more information on DIIMain see:
https://for710.com/dllmain
https://for710.com/run-time-library-behavior
https://for710.com/dll-ep
https://for710.com/entrypoint

© 2022 Anuj Soni 39

39

Technet24

Lab I.1: Background Topics: Ghidra’s Decompiler Output (1)

» It associates the disassembly with a high-level C representation.

* We will learn to use the decompiler output to support and expedite our
code analysis; it does not supersede analysis of the disassembly.

* Click and drag to highlight code and compare disassembly with C
representation, and vice versa.

14000bd2a Jz LAB 14000bdd1l 82 if (nNumberOfBytesToWrite == 0) break;

14000bd30 MOV par;m_l, qword ptr [REP + local 68] 83 BVar4 = WriteFile(local_68,local_50,nNumberOfBytesToWrite,b &local_ 70, (LPOVERLAPPED) 0x0) ;
14000bd34 LEA param 4=>local 70, [REP + -0x38] 84 if (Bvar4 == 0) {

14000bd38 AND qword ptr [RSP + local 98], 0x0 85 |LAB_14000bdcS:

14000bd3e LEA param 2=>local_50, [RBP + -0x18] 86 Dvar5 = GetLastError();

14000bd42 MOV param 3, EAX 87 *param 1 = DVar5;

14000bd45 CALL qword ptr [->KERNEL32.DLL::WriteFile]|| 88 break;

14000bd4b XOR param 1, param 1 89 ¥

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 40

During the upcoming lab, we will make use of Ghidra’s decompiler output to accelerate our analysis.
However, this output is considered supplemental and not our sole source (pun intended) of information to
understand the program at a code level.

Ghidra attempts to keep the disassembly and decompiler output in sync, meaning that each view should
update appropriately when the cursor is placed at a new location. To make the relationship between one
view and the other even clearer, analysts can click and drag to highlight code in one view, and the
corresponding code in the other view should highlight. The screenshot on this slide shows an example of
this highlighting feature.

40 © 2022 Anuj Soni

Lab |.1: Background Topics: Ghidra’s Decompiler Output (2)

» Within your Ghidra configuration, printing of type casts is initially
disabled to allow for a cleaner reading experience.

* We will enable this option later to improve our understanding of the
code.
if ((*(byte *) ((longlong)ivar5 + (longlong) DstBuf) & 1) != 0) ({
uvar7 = uvar7 | 1 << (uvVarg8 & O0Ox1f);

Type casts enabled

if ((*(ivar5 + DstBuf) & 1) != 0) {
uvar7 = uvar7 | 1 << (uvarg8 & O0x1f);

Type casts disabled

The asterisk (*) indicates a dereferenced pointer.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

By default, Ghidra shows type casting information in the decompiler view. This refers to additional
information about the type of data referenced. For example, (int) refers to an integer and (byte *) refers to
a byte of data located at an address specified by a pointer. Type casting provides helpful detail but also
adds clutter to the decompiler output, so it was disabled for this class. However, depending upon your
prior experience and comfort level, you may find it helpful to enable. To change this configuration setting,
browse to Edit > Tool Options, Decompiler > Display, and check/uncheck “Disable printing of type casts”.

© 2022 Anuj Soni

41

41

Technet24

Lab I.1: Background Topics: Ghidra’s Decompiler Output (3)

* Ghidra includes comment types: EOL, Pre, Post, Plate, and Repeatable.

« Comments can be displayed in both the Listing and Decompile windows,
and the specific comment types shown are configurable.

» We will use the default approach—EOL comments in the disassembly
window, and Pre comments in the C code.

» EOL comments inserted in the disassembly only appear there, but Pre
comments in the decompiler output also appear in the Listing view.

35 local 38 = DAT 140024090 ~ austack200;
14000123f LEA EDX, [RDI + 0x23] - -

L 36 File = FUN 140006£34 (&DAT 140026500,L"rb") ;
This is a comment. - . - -
37 if (File '= 0x0) {
140001242 CALL fread - L
38 /* This is a comment. */
39 fread (local 60,0x24,1, File);

140001247 cCMP word ptr [RSP + local 4c], DI

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 42

Writing comments during code analysis is a great way to document your work and share information with
others. As you proceed through the upcoming labs, you should comment code frequently. To make a
comment in the Decompile window, press the semicolon key and type your comment in the “Pre
Comment” window (the default comment type for the Decompiler output). Then, hit **OK**. The
comment will appear immediately above the line you described in both the Decompiler and Listing (i.e.,
disassembler) view.

Note that EOL comments inserted in the Listing view will not appear in the Decompile view. However,
Pre comments inserted in the decompiler output will appear in both the Decompile and Listing views.

You can view further config options for comments under Edit > Tool Options > Listing Fields (each

comment type has a section) and Edit > Tool Options > Decompiler > Display (each comment type has
options to display or not).

42 © 2022 Anuj Soni

Answer a Question and View the Solution for Immediate

Feedback

* Students are encouraged to view the solution after answering a question.

* This provides immediate feedback and helps adjust your analysis approach
as needed for upcoming questions.

¢ Click “Jump to solution” if viewing the workbook within the browser
(recommended); otherwise, browse past all questions to see the solutions.

10.| @ uUnder what conditions is the BTS instruction at 1400012ef d? ‘

10.} v Under what conditions is the BTS instruction at 1400012ef executed?

Jump to solution h Answer:

Explanation:

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 43

The upcoming lab has many questions. To ensure you optimize time dedicated to the lab, you are
encouraged to check your answer to a question soon after considering your response. This will help correct
your analysis approach as needed and reinforce key concepts as you proceed through the lab.

If you are viewing questions in a browser (recommended), simply click on “Jump to solution” after each

question to arrive at the detailed answer. If you are using the PDF or hard copy, you can find all solutions
in the “Lab Solutions” section, which is located after all questions for this lab.

© 2022 Anuj Soni 43

Technet24

Lab Checkpoints Measure Progress and Maintain Momentum

* Longer labs like the one coming up have checkpoints in the workbook:
(o) Important

You've reached Checkpoint #1 in this exercise. In a live class, the instructor will use
checkpoints to gauge progress with this exercise.

* Checkpoints help the instructor understand how students are
progressing with a lab.

* The instructor will periodically discuss the steps leading up to a
checkpoint and answer any questions.

« If you are confident with your progress, feel free to continue working
through the lab while the instructor reviews the material.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 44

When working through a long lab in the workbook, students will encounter checkpoints. In a live class, the
instructor will use checkpoints to determine how students are progressing with a lab. The instructor will
also periodically explain the steps leading up to a checkpoint to emphasize key concepts and ensure
students are maintaining some momentum as they work through questions. If you’re comfortable with your
progress and answers, feel free to continue working as the instructor reviews the material.

44 © 2022 Anuj Soni

SANS DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

Lab 1.1

Investigating Code Deobfuscation Using Steganographic Techniques

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 45

Please begin Lab 1.1 now.

© 2022 Anuj Soni 45

Technet24

Analyzing Code Deobfuscation: Module Objectives, Revisited

v'Understand code used to deobfuscate executable content.

v'Be able to communicate the details of how code is obfuscated.
v'Recognize key Windows APIs used to allocate memory.
v'Differentiate user-defined code from library code.

v'Dump deobfuscated executable content to disk.

v'Explain how multiple files work together to execute malicious code.

v'Develop comfort with non-binary formats during malware analysis.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

In this module, we analyzed malware that deobfuscates additional code during execution. Specifically, we
reviewed a sample that employed steganography techniques to decode executable content from a
traditionally benign file format. Advanced-level malware reverse engineers must be prepared to
communicate the details of code deobfuscation, and Lab 1.1 provided an opportunity to perform this work.
As part of this analysis effort, we explored the use of various Windows APIs and C functions responsible
for memory allocation and learned how to differentiate user-defined code from library code within Ghidra.

Understanding #ow data is obfuscated can be tedious and time consuming, but it helps better characterize
the attacker, build signatures, and develop tools to automate deobfuscation.

46 © 2022 Anuj Soni

46

Identifying Program
Execution

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 48

In the last module, we discussed an approach to code deobfuscation. This module discusses the next
logical step in running malware—executing the deobfuscated code.

48 © 2022 Anuj Soni

Technet24

Malware That Debofuscates Code Then Executes the Content

* When a program is executed from disk, the Windows loader parses the
Portable Executable (PE) file and prepares to launch it.

* If malware plans to run an in-memory EXE, it must perform the heavy-
lifting to load the next stage content—this is “reflective” loading.

* During analysis of malware that deobfuscates and launches a program,
we will encounter code that contributes to execution.

* We need to understand the structure of a Portable Executable (PE) file
and the steps involved in loading and running a program.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 49

In the last lab, we analyzed steg techniques used to deobfuscate a hidden, embedded executable. After a
program is deobfuscated, the next logical step is code execution.

Typically, when a program is executed on Windows, the Windows “loader” manages the process of
loading the executable into memory, resolving its dependencies, and performing other activities to prepare
for execution. However, when malware decodes and executes a next stage binary in memory only (i.e., the
executable content does not reside on disk), the Windows loader is not involved, and the initial malware
code must prepare for execution. This is necessary when the malware decodes an EXE or DLL from
within the primary executable (the scenario we evaluated in Lab 1.1), or when the initial code downloads
the next stage from a server for execution in memory. The malicious code must include its own loader, and
this is referred to as “reflective” loading. During code analysis, you will encounter code that prepares for
and performs execution, and you must be able to identify its role in that process.

Before we can identify code that assists with malicious program execution, we need to better understand
the normal steps involved in launching an executable from disk. This includes details of the Portable
Executable file format and the various header fields that describe the organization and contents of the
executable.

Note that this module is focused on analyzing the execution of an in-memory EXE, not shellcode. We will
cover shellcode execution in the next module.

© 2022 Anuj Soni 49

Analyzing Program Execution: Module Objectives

* Understand the key components of a Windows Executable header.

* Identify the structures and fields associated with a program’s imports.
* Identify the structures and fields associated with a program’s exports.
» Understand the steps necessary to prepare a program for execution.

* Recognize code that maps an executable into memory.

 Determine the code execution entry point for a second-stage binary.

Code that supports program execution is not inherently malicious, but we
must recognize it so we can comfortably examine the rest of the program.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

This slide describes the objectives of this module.

It is important to remember that program execution activities are not intrinsically malicious, just as a
function’s prologue and epilogue code are not malicious. However, in both cases, we must learn to
recognize this code so we can safely and comfortably shift our attention to other aspects of the program.
Once you learn to identify code that supports program execution, you will not need to perform in-depth
analyses each time you encounter this code.

50 © 2022 Anuj Soni

Technet24

PE File Headers Describe a Program’s Structure and Content

. . "N H dumped_dIlbin ‘
° The MS_DOS header beglns Wlth “MZ”. = @ Member Offset Size Value
. E g'?:;"":d—dl'bi" emagic |00000000 | Word sadp |
* Most fields in the DOS header are not @ N Hoodor Py P S [
. |Z File Header
relevant to newer operating systems. T{agpﬁunal Header = 00000004 |Word __|0003
. L - i nDﬁ;sz;]nes [x] e_crlc 00000006 Word 0000
* Thee 1fanew field specifies the [E3500t brecoy oo Botow Yo __joom
- — U:llmpon Directory e_minalloc o
offset of the PE header (“Nt Headers” | oo maaloc | 0000 | Word__|FrF
1 — () Relocation Directory ess 0000000E Word 0000
1mn CFF) — g?i?s&mw esp 00000010 |Word |00BS
* The PE header begins with the '
signature 4-byte signature “PE\0\0”. e

* The PE header consists of the PE - B e
signature, COFF file header, and e e i . e _
. |=] Dos Header
optional header. Tj?f“a"?ﬁ:ﬁ;a

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Just as a surgeon should understand the human body and its parts to excel in surgery, a malware reverse
engineer should understand the structure and components of a binary to be proficient in malware analysis.
Within the Windows operating system, we are referring to the Portable Executable (PE) format.

We begin our travels through the PE file format at the start of a Windows executable. In this slide, we load
the dumped DLL from our first lab into CFF Explorer. You can find this file in the Malware directory
within Section1\dumped_dll.zip. On the left side, we see headers that comprise the first bytes of a
Windows executable. These headers describe the rest of the file, including the executable content,
resources, and imports.

Let’s start with the MS-DOS header (also called the MS-DOS Stub), which displays “This program cannot
be run in DOS mode” when the executable is run in MS-DOS. At the beginning of this header (see top-
right of the figure on this slide) is the e _magic field, and it contains the well-known “MZ” characters
represented by the hexadecimal value 0x4D5A (shown as 0x5A4D above because the value is interpreted
as little-endian). Most fields in this header are not relevant to newer operating systems, but the final
field e lfanew (see below) is significant because it contains the offset of the PE header, shown in

CFF Explorer as Nt Headers.

Clicking on Nt Headers on the left takes us to file offset 0x120, which matches the value of the

e lfanew field. The value translates to the string “PE\0\0”, which appears at the beginning of the PE
header (similar to the “MZ” characters, shown as 0x00004550 because the value is interpreted as little-
endian). The PE header consists of the PE signature, COFF file header, and optional header.

For more detail on Microsoft’s PE Format, see:
https://for710.com/pe-format
https://for710.com/pe-tour
https://for710.com/winnt

© 2022 Anuj Soni 51

The COFF File Header Includes Key Details about the Binary

* The file header is a structure of type IMAGE_ FILE_HEADER.

H @ " dumped_dibin |
-
. Member Offset Size Value ‘ Meaning
File: dumped_dllbin Machine 00000124 Word |e6d AMDS4 (K3)
- (3 Dos Header
WORD Machine; (2 M Headers NumberOfSections | 00000126 Word (0006
WORD NumberOfSections; [File Header N
DWORD TimeDateStamp; 3 Optonal Header TimeDateStamp 00000128 Dword |5BOCSCT1
DWORD PointerToSymbolTable; (2 Data Directories [x] PointerToSymbolTable | 0000012C Dword 00000000
DWORD NumberOfSymbols; [Z] Section Headers
WORD SizeOfOptionalHeader;) Export Directory & NumberOfSymbols 00000130 Dword 00000000
WORD Characteristics; I Import Directory SizeOfOptionalHeader | 00000134 Word 00F0
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER; (D Resource Directory Characteristics 00000136 Word |2022 Click here
[Exception Directory

Characteristics - X

* The Characteristics member specifies, for example, if
the binary is executable and if it is a DLL.

File is executable

File is a DLL

System File

Relocation info stripped from file

Line numbers stripped from file

Local symbols stripped from file

Agressively trim working set

App can handle >2gb address space

Bytes of machine word are reversed {low)

32 bit word machine

Debugging info stripped from file in .DBG file

If Image is on removable media, copy and run from the swar|
If Image is on Net, copy and run from the swap file
File should only be run on a UP machine

Bytes of machine word are reversed (high)

* Malware may check these fields to determine the
number of sections, file type, and other
characteristics in preparation for execution.

N N

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 52

Next on our path is the COFF File Header, displayed simply as File Header in CFF Explorer. This header
is of type IMAGE FILE HEADER (for more detail on this structure, see
https://for710.com/imagefileheader). This header includes information such as the target machine type
(e.g., x64), the number of sections, the compile timestamp (seconds since January 1, 1970, UTC), and file
characteristics (e.g., is the executable a DLL or EXE?).

Malware often checks these fields after unpacking or decoding executable content to determine the
architecture and executable type of the next stage of execution.

Visit https://for710.com/fileheader for more information on the COFF File Header.

52 © 2022 Anuj Soni

Technet24

» Each data directory is structure of
type IMAGE__DATA_DIRECTORY.

_IMAGE_DATA_DIRECTORY {
VirtualAddress;

Size;

DWORD

DWORD
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

* The VirtualAddress field specifies
the RVA of the table.

* During code analysis, we may

that check the directory size.

* A zero-directory size indicates no
corresponding information.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Data Directories Point to Various Tables, Including Imports

5§

" dumped_dll.bin

encounter SUB and CMP operations

E [= File: dumped_dil bin

Member

Size

Value

Section

t—), Hex Editor

[3 Dos Hoader Export Directory RVA 000001A8 | Dword
(=) Nt Headers Export Directory Size 000001AC | Dword
(2 File Header .
Import Directory RVA 00000180 | Dword
(2] Optional Header e i o) or
[Data Directories [x] Import Directory Size 000001B4 | Dword
[@ Secton Headers b Resource Directory RVA 00000188 | Dword
— |2 Export Directory
— (2 Import Directory Resource Directory Size 000001BC Dword
[2 Resource Directory Exception Directory RVA 000001C0 | Dword
— D Directory
|— (& Relocation Directory Exception Directory Size 000001C4 | Dword
[— 2 Debug Directory Security Directory RVA 000001C8 | Dword
— E2TLS Directory
|— 2, Address Converter Security Directory Size 000001CC | Dword
— ‘1, Dependency Walker Dword

Relocation Directory RVA

Bt WreWory Oze

Import Address Table Directory RVA

Dword

Import Address Table Directory Size

Dword

00DA6870
00000044
00DAG8B4
00000064
00081000
000059E8
00DAC000
00004998

.rdata

.rdata

rsrc

.pdata

.reloc

.rdata

At the end of the Optional Header is Data Directories, which points to tables that contain supporting

information, including imported and exported functions. Each data directory entry is a structure of type

IMAGE DATA DIRECTORY. This structure has two fields:

* VirtualAddress: The Relative Virtual Address (RVA) of the specified table. It is “virtual” because this
is an address after the executable is loaded into memory. It is relative to the ImageBase, so adding the
RVA to the Imagebase provides the Virtual Address (VA) in memory of the specified table.

* Size: The size, in bytes, of the table.

During code analysis of content that loads additional executable content, we’ll often encounter SUB and

CMP instructions that evaluate the size a particular directory. For example, the loading code may evaluate
if the Import Directory has a nonzero size to determine if it needs to load dependencies. The loading code
may also check the size of the Export Directory to determine if the next-stage executable has any exports.

For more information on data directories, see:
https://for710.com/data-directories
https://for710.com/imagedatadirectory

54

© 2022 Anuj Soni

The Section Table Provides Details on Each Upcoming Section

Each section header is a structure of type IMAGE_SECTION_HEADER.

" dumped_dil.bin ‘

I ON_t {
BYTE Name [IMAGE_SIZEOF_SHORT_NAME] ; Name | Virtual Size | Virtual Address | Raw Size | Raw Address | Reloc Address| Linenumbers | Relocations... | Linenum... | Characteristics|

{
DWORD PhysicalAddress; 00000228 | 00000230 | 00000234 00000238 | 0000023C | 00000240 | 0DDDD244 | 0DOD0248 | DDODD24A | 00ODD24C
: :"_‘URD VirtualSize; Byte[8] |Dword Dword Dword | Dword Dword Dword Word Word Dword
isc;
DWORD VirtualAddress; text 0DDSI7BO 0001000 00039800 00000400 00DDOOOO 0DDDDOOD 000D 0000 60000020
DWORD SizeOfRawData;
T T ey rdata | 0DOTCCGE | 0DDSBOOD 0001CEDD |00089C00 00000000 | 0DDODOOD | 0000 0000 40000040
DWORD PointerToRelocations; .data | ODDD3CE4 | DDDABDDD 000D1200 | DDOAGAOD | 0DODODDD 00000000 | 00DO 0000 CO00D040
DWORD PointerToLinenumbers;
WORD NumberOfRelocations; pdata 00004998 | ODDACO00 00004A00 |000AS200 |00DDOO0O | 0DDODOOD | 0000 0000 40000040
E’ﬁggn 222:22;&12::2““ ssrcODDOSOES | 0DOB100D 0000SA00 00DACCOD |0DDOD000 | 0D00OODO | 0000 0000 40000040
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER; reloc | DDODDAEC | 0DDB7000 00000COD |000B2600 | 0DDOOOOO | 0DDOOOOD | 0000 0000 42000040

09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17 Decoded text

Offset (h) 00 01 02 03 04 05 06 07 O
0 00 0O

00000210
00000228
00000240

000002B8
000002D0

000002ES8

FOR710 | Reverse-Engineeri alware: Advanced Code Analysis 55

The number of entries in the section table is specified in the NumberOfSections field in the file header.
The section table is comprised of section headers, and each header is a structure of type
IMAGE SECTION_ HEADER.

Each section header provides important information about the name, location (both on disk and in
memory), and characteristics of each section. Key sections include “.text” for executable code, “.rdata” for
read-only data, and “.rsrc” for resources like icons (and potentially additional executable content).

Within the section headers, there are several important fields to note:

» Virtual Size: References to virtual sizes and addresses refer to values after the executable is loaded into
memory. The virtual size refers to the size of a section’s content when it is loaded into memory.

» Virtual Address: The RVA of the section in memory. This value is added to the image base to identify
the VA of the section in memory.

* Raw Size: References to raw sizes and addresses refer to values relevant to the image file on disk. This
raw size refers to the size of a section on disk, including any padding necessary to meet file alignment
requirements.

Note that while the raw size includes padding to meet file alignment requirements, a section’s virtual size
does not include any padding. This means the raw and virtual sizes of a section may be different even
when the content (not including padding) is identical. Also, if the virtual size for a section is larger than the
raw size, the section will be padded with additional zeroes so it can accommodate the virtual size.

For more information on the section table, see:

https://for710.com/section-table
https://for710.com/imagesectionheader

© 2022 Anuj Soni 55

Technet24

To Locate Imports, Begin with the Import Directory RVA

E]'_' @ dumped_dil bin | . ‘
N Add the RVA tO the image base F“e: pr—gre— Member Offset Size Value lSectlon

3 Dos Header Export Directory RVA 000001A8 | Dword |0DDAGB70 | .rdata
to C&lCLllate the VA Of the (=] Nt Headers Export Directory Size | 000D01AC | Dword | 00000044
import directory table.

=] File Header
[Z] Optional Header
Data Directories [x] Import Directory Size 000001B4 | Dword |0D0D0DB4
|Z) Section Headers [x]
|22 Evnnt Directons

Import Directory RVA 000001B0 | Dword JOD0AG3B4 I .rdata

Resource Directory RVA | 000001B8 | Dword |000B1000 .rsrc

dhkhkhkhkhkhkhhkhkhhkhkhhkhhhkhhkhkhhhkhbhkhhhhhhhih
*
* The table has structures of type T T e
IMAGE_IMPORT_ DESCRIPTOR - DWORD_1800a68b4
. daw AGE68h
for each imported DLL. — -
1800a68bc ddw Oh
1800a68c0 ddw A6F6Ch
1800a68c4 ddw 8B550h

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 57

With a basic understanding of the PE file format and header information, we can navigate a PE file to
locate important content like the import table.

First, we return to the data directories within the optional header to identify the RVA of the import
directory. In the case of our dumped DLL, it is 000A68B4. Let’s go to this location within the DLL.
However, looking at this offset within the file on disk will not be helpful since, as mentioned earlier, the
RVA is an address in memory. We will need to use Ghidra since it loads our executable into memory like
how the Windows loader would in preparation for execution.

Ghidra loads the dumped DLL at the preferred image base, 180000000. Adding this value to the import

directory RVA equals 1800A68B4. We can jump to this location to arrive at the beginning of the import
directory table, which contains all the references we need to understand the program’s imports. There is
one IMAGE IMPORT DESCRIPTOR structure for each imported DLL.

For more information on the import directory table, see:

https://for710.com/import-directory-table
https://for710.com/pe-tourimports

© 2022 Anuj Soni 57

Each IMAGE_IMPORT_DESCRIPTOR Has Five Fields

1. Import Lookup Table RVA: The table includes the name or ordinal
for each imported function within the DLL.

2. Time Stamp: This field is usually zero.
3. Forwarder Chain: This field is usually zero.
4. DLL Name RVA: This is a string that specifies the imported DLL.
5. Imported Address Table (IAT) RVA:
¢ The IAT initially mirrors the Import Lookup Table.

At load time, it is overwritten with the addresses of external functions

Load DLL (DLL Name) - Find Function Addresses (via IAT/ILT Entries) > Overwrite IAT Entries

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 58

Each IMAGE IMPORT DESCRIPTOR entry consists of the following elements, described below.

Import Lookup Table RVA: The relative virtual address of the Import Lookup Table (ILT), which includes a name or
ordinal for each imported function within the DLL. This table is also referred to as the Import Name Table (INT).

Time Stamp: This value is usually zero. If this value is nonzero, it means the DLL is bound. When an executable is
bound, the binary on disk has the in-memory addresses of imported DLLs. In other words, functions do not need to be
resolved during the loading process. You are unlikely to encounter this scenario during malware analysis, so we will not
discuss binding in detail. For more information, browse to https://for710.com/inside-windows-part2 and view the section
titled “Binding.”

Forwarder Chain: A DLL may send references to its functions to another DLL. However, like the Time Stamp field
above, this value is generally zero and does not warrant further discussion. For more information, see
https://for710.com/pe-tourimports.

DLL Name RVA: The RVA of the string that specifies the imported DLL.

Import Address Table (IAT) RVA: The relative virtual address of the Import Address Table. The Import Address Table
is populated by the loader when the executable and its imported DLLs are mapped into memory, and it is a table of

pointers to the imported functions. Each entry in the table is called a “thunk” and the table is referred to as a “thunk table”.

Keeping this terminology in mind, an external function can be called because each IMAGE IMPORT_ DESCRIPTOR
structure is processed as follows:

1. Load the specified DLL into memory.

2. Process each entry in the IAT table (which mirrors the Import Lookup Table) to find the address of a desired function
in the loaded external DLL.

3. Overwrite each IAT entry with the address of an external function.

Once these steps are completed for all imported DLLs and functions, the program can call external functions by
referencing addresses in the IAT.

58 © 2022 Anuj Soni

Technet24

Help Ghidra Interpret the Three RVAs Properly

khkkhkhkhkhkhkhhkhkhkhhkhhhhkhhkhhkhhkhhkhhkhhhhhdhkx

* IMAGE_IMPORT DESCRIPTOR

khkkhkhkhkhkhkhkhkhkhkhhkhhkhhkhhkhhhhkhhkhhkhhhkhhdhkx

DWORD_1800a68b4
1800a68b4 ddw
1800a68b8 ddw
1800a68bc ddw
1800a68c0 ddw
1800a68c4 ddw

Right-click on the first RVA and

Then, type ImageBaseOffset32
and hit Enter.

choose the data type.
AGE68h
Oh Bookmark... Ctrl+D
Oh
Copy Ctrl+C
A6F6Ch Choose Data Type.. T
8B550h Copy Special...
Create Array... Open Bracket
Paste Ctrl+V
Data > TerminatedCString
@ Data Type Chooser Dialog X
éImageBaseOffseBZ

B ImageBaseOffset32 - BuiltinTypes/ImageBas... [EPEIREINEE N6l
Y ImageBaseOffset32 - dumped._ dll.bin/Image... |-ength: 4

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 59

The three RVA fields within the IMAGE_IMPORT DESCRIPTOR are not recognized as 4-byte RVAs by
default. To help Ghidra interpret these bytes correct, right-click the first RVA value and go to Data >

Choose Data Type...

Then, type ImageBaseOf fset32 and hit Enter on the keyboard (you could also choose one of the
options that appear while typing, as shown on this slide).

After choosing the data type and hitting Enter (or clicking OK), you will notice the data does not look any
different. See the next slide for the final step.

© 2022 Anuj Soni

59

Select the “Last Used” Data Type for All Three RVAs

For all three RVAs, right-click and choose Data > Last Used:
ImageBaseOffset32.

1800a68b4
1800a68b8
1800a68bc
1800a68c0O
1800a68c4

ibo32
ddw
ddw
ibo32
ibo32

hhkhkhkhkhkkhkhkhkhhhhhhkhkhhhhhhhbhhhhhhhhhhhhhhhhhkhhhhhhdhi

* IMAGE IMPORT DESCRIPTOR *

hhkhkkkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhhhkhhkhhhkhhkhhhkhhkhhhhhhhhi

DAT_1800a68b4 XREF[1]: 1800001bO0 (*)
Import Lookup Table RVA # QWORD_1800a6e68
Oh
Oh

DLL Name RVA s s_WS2_32.d11l_1800a6f6c
Import Address Table RVA # PTR_WSAGetLastError_ 18008b550

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Oddly, Ghidra does not immediately represent bytes differently when you choose
ImageBaseOf fset32 for the first time. However, if you now right-click on each RVA and choose
Data > Last Used: ImageBaseOf fset32, the field will be shown correctly with the data type “ibo32.”

The slide shows the appropriate data types and highlights the RVA fields in the
IMAGE_IMPORT DESCRIPTOR structure.

The DLL Name RVA clearly points to a string that specifies the imported DLL. The
IMAGE IMPORT DESCRIPTOR structure on this slide refers to ws2 32.dll.

The other two RV As are less straightforward and require additional explanation. We will discuss these two
RVAs in the upcoming slides.

60

© 2022 Anuj Soni

Technet24

There Is One Import Lookup Table (ILT) Per Imported DLL

* The Import Lookup Table (ILT) has a value for each imported function.
« If the MSB is set, the value refers to a function imported by ordinal.
» If the MSB is not set, the value is an RVA to the Hint/Name Table.

6F 00 00 00 00 00 00 80 QWORD_1800a6e68 —
1800a6e68 dg 800000000000006Fh
70 00 00 00 00 00 00 80
1800a6e70 dg 8000000000000070h
73 00 00 00 00 00 00 80 Ordinal
1800a6e78 dgq 8000000000000073h
12 00 00 00 00 00 00 80
1800a6e80 dg 8000000000000012h L
SE 6F OA 00 00 00 00 00
1800a6e88 dq AGF5Eh I Hint/Name Table RVA

 The ILT includes 32 or 64-bit values based on the file’s architecture.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 61

The first RVA within the IMAGE_IMPORT DESCRIPTOR structure points to the Import Lookup Table
(ILT). This table is an array of 32 or 64-bit values (depending upon the executable’s target architecture)
that are a structure of type IMAGE_THUNK_DATA, where each value corresponds to an imported function
from the DLL specified by the DLL Name RVA. Since the decoded DLL we’ve been discussing is 64-bit,
values in this binary’s import lookup table are 64-bit.

If the highest bit of a value is set (i.e., it is 1), the value corresponds to a function imported by ordinal. In
this case, the least significant bits indicate the ordinal number. The ordinal value is used to locate the
exported function in the relevant DLL.

If the highest bit is not set (i.e., it is zero), the least significant bits are the RVA to an entry in Hint/Name
table, which provides additional detail on the function imported by name.

Double-clicking on the Import Lookup RV A shown on the previous slide brought us to content on this
slide. The image shows the first five entries of the import lookup table for functions imported from

ws2 32.dll. The first four entries have their highest bit set, which means these values refer to functions
imported by ordinal. The ordinal values are represented by the least significant bits. For example, the first
ordinal value is 6F, or decimal 111. The fifth value shown on the slide does not have its highest bit set, so
it is an RVA to an entry in the Hint/Name table (discussed on the next slide). We can change this value to
data of type ImageBaseOffset32 or ImageBaseOffset64 depending upon the executable’s architecture.
Since the dumped DLL used in these slides is 64-bit, we would convert the RVA to data of type
ImageBaseOffset64. This allows us to easily double-click the value to jump to the appropriate virtual
address.

For additional detail on the import lookup table, see https://for710.com/import-lookup-table.

© 2022 Anuj Soni 61

There Is One Hint/Name Table for All Imported Functions

* The Hint/Name table helps locate functions imported by name.
* The table includes structures of type IMAGE_IMPORT_BY_NAME.

hhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhhkhkhhkhhkhkhkhkhhhkhhkhhkhkhhkhhhkhhkhhik
* Each entry has three components: * IMAGE_IMPORT_BY_NAME -
hhkkhkhkhkhkhkhkhkhhhhhkhhhhhhkhhhhhhhhhkhhhhhkhkhhhhhhkhhhhhi
1. Hint: Index into imported DLL 3h 00
1800a6£52 dw 3Ah
2. Name: Function name 57 53 41 49 6F 63 74 6C 00
. . 1800a6£54 ds "HSAIoctl"
. . 00
3. Padding: 1 or 0 bytes Le00acssa o von
hhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhhkhkhkhkhhhhkhkhkhkhhhhhkhkhkhkhhkhkhkhkhhhhkx
* IMAGE IMPORT BY NAME *
dhkhkhkhkhhkhkhkhkhhhhkhkhhkhhhhhkdhhhhhkhkhhhhhhkhkhhkhhhhhhhhhk
4A 00 WORD_lSOOaGfSe
1800a6f5e dw 4Ah
57 53 41 52 65 63 76 46 72 6F 6D 00
1800a6£60 ds "WSARecvFrom"

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 62

One Hint/Name table covers all imported functions for the file. Each entry in the table has three
components:

1. Hint: This is an index into the imported DLL, and it is used to help locate the required function’s
ordinal. Specifically, this value is an index into the export name pointer table, which we will discuss
later.

2. Name: The name of the imported function, null terminated. This is used to find the imported function
within a DLL when using the Hint does not suffice.

3. Padding: You may see additional zero values to ensure each entry is on an even boundary.

When imports are resolved, an attempt is made to locate the function based on the specified Hint. If this
effort is unsuccessful, the import is found by name.

The highlighted address on this slide matches the Hint/Name Table RV A in the previous slide. This

excerpt of the Hint/Name table shows two entries. Notice that the first has one byte of padding, while the
second does not.

62 © 2022 Anuj Soni

Technet24

On Disk, the IAT and Import Lookup Table Match

Import Address Table Import Lookup Table
dumped_diIl.bin dumped_diIl_bin ‘
VA 000000018008B00D VA 00000001800A6918
RVA 0008B00D RVA 000A6918
File Offset 00089C00 File Offset 000A5518
B e e s = BB ™, E
Of fset Offset 01 2 3 4 5 & 7 88 9 A B C D E F
00089coo 00045510 | 00 00 00 00 00] 04 00 00 00 OO 00
00089cio 00045520 | (K3 i}
0o0sscao 000A5530
00089Cc3n 00045540
00089C40 00045550
00089Cs0 000AS560
00089Ce0 00045570
00089c?o 00045580
00089Ca0 000455390
00089csn O00ASS5AD
00089CAD 000ASSED
00089CED 000AS5CO
00089CCo 000AS5D0
00089CDo 000ASSED
00089CED O000ASSFO
00089CEFD 000AS600
00089D00 00045610
00089010 00045620

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 63

On disk, the import address table and the import lookup table have the same structure and content.

On the left is the import address table shown using the address converter feature within CFF Explorer.
This feature allows the user to provide the VA, RVA, or File Offset, and it translates that address to the
other two addresses and shows the corresponding content in the hex dump output. According to the Data
Directories section of the PE file, Import Address Table Directory RVA is 8B000, so that value was typed
into the RVA field.

On the right, we have the the first import lookup table. To determine the starting address of the first import
lookup table, you can locate the ws2 32.dll Import Lookup Table within Ghidra (this is the same one we
reviewed earlier) and scroll up to find the first ILT. You will find it begins at 180026918 within Ghidra, so
this value was typed into the VA field.

As you can see from the excerpts of both the import address and import lookup tables, the content is
identical.

The import lookup table is found in most executables, but it is not required for a program to load properly.
It is only required if the executable is bound, a rare case that we will not discuss in detail. For more
information on binding, browse to https://for710.com/inside-windows-part2 and view the section titled
“Binding.”

© 2022 Anuj Soni 63

In Memory, the IAT Is Overwritten with Imported Function VAs

Import Address Table Import Lookup Table
[erafo oo oo oo o
* POINTER to EXTERNAL FUNCTION & 180026918 dq A7876h

B T Y
64 78 OA 00 00 00 00 00

BOOL __ fastcall CryptAcquireContextA (HCRYPTPROV * phProv, LPCSTR sz
1800a6920 dg A7864h
4E 78 OA 00 00 00 00 00

W 1800a6928 dq A784Eh

192 CryptAcquireContextA <<not bound>> 36 78 0A 00 00 00 00 00

PTR_CryptAcquireContextA 18008b000 XREF[3] : 180000208 (*) , 1800a6930 dq A7836h
FUN_18003£810 1E 78 OA 00 00 00 00 00
18008b000 76 78 0a 00 00 00 00 00 addr ADVAPI32.DLL: : CryptAcquireContextA

WYDumpl @WDump3 @UDump2 @WDump4 WyDump5 @& watch1 o
S Ex A debugger confirms that external
000000018008B000 (60 71 24 L |[FC 7F 00 00 (50 7A 24 F1

0000000180085010 |90 76 24 F1Fc 7F 00 00 |a0 F9 23 F1] function addresses are written to the IAT.
000000018008B020 [DO 79 24 |l [FC 7F 00 00|50 6B 24 F1

00007FFCF1247160 [jmp qword ptr ds:[/FFCF12DAI10 J[CryptAcquirecContextA| [Address Size Info
00007FFCF1247167 I:nt3 00007FFCF1230000| 000000000000 advapi32.d11
00007FFCF1247168 |int3 00007FFCF1231000/ 000000000006 " .text"

00007FFCF1299000| 000000000003 ".rdata"
00007FFCF12D0000/ 000000000000 ".data"

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 64

When an executable is loaded into memory and processed in preparation for execution, the IAT content is
overwritten with the virtual addresses of the functions that are imported. These virtual addresses are
referenced when the corresponding imported function is called (an example of this is shown on the next
slide).

As shown on the previous slide, the VA of the import address table is 18008b000. If we jump to this
address within Ghidra for the decoded DLL (see image on top-left), we find that Ghidra now recognizes
this location as a pointer to an external function. Although the bytes shown in Ghidra seem identical to
those shown in the Import Lookup Table (see top-right image), this is actually not the case for a running
process. If we load the DLL into a debugger and jump to 18008b000, we observe the virtual address of
CryptAcquireContextA (little-endian). The screenshots on the bottom of this slide confirm that the pointer
at 18008b000 is the address of CryptAcquireContextA located within advapi32.dil.

64 © 2022 Anuj Soni

Technet24

To Locate Exports, Begin with the Export Directory RVA

* Add the RVA and image base to calculate the Export Directory Table VA.

L;"_‘ @ " dumped_dllbin |

Member | Offset | Size Value Section

File: dumped_dll bin -
2 Dos Header Export Directory RVA |000001A8 | Dword JO0DAG870 § .rdata
=] Nt Headers Export Directory Size | 00D001AC | Dword 00000044

=] File Header
[Z] Optional Header
[Z] Data Directories [x] Import Directory Size | 000001B4 | Dword 00000064

* The export directory table is a structure of type
IMAGE_EXPORT_DIRECTORY, and it references four other tables.

IMAGE DIRECTORY ENTRY EXPORT_1800a6870

Import Directory RVA | 000001B0 | Dword | 0DDAGSB4 .rdata

1800a6870 IMAGE DIRECTORY_ ENTRY EXPORT
ddw Oh Characteristics
1800a6874 ddw FFFFFFFFh TimeDateStamp
1800a6878 dw Oh MajorVersion

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

We can navigate a PE file to locate exported functionality, similar to the process we followed for imported
functions.

First, we return to the data directories within the optional header to identify the RVA of the Export
Directory. In the case of our dumped DLL, it is 000A6870. Let’s go to this location within the DLL using
Ghidra. Ghidra loads the dumped DLL at the preferred image base, 180000000. Adding this value to the
Import Directory RVA equals 1800A6870. We can jump to this location to arrive at the beginning of the
export directory table, which is a structure of type IMAGE EXPORT DIRECTORY. The bottom image on

this slide shows an excerpt of the Export Directory Table.
The export directory table contains pointers to several other tables. The code responsible for loading a

program uses these tables to help locate functions exported by name or ordinal. We’ll discuss this table in
more detail in the upcoming slides.

66 © 2022 Anuj Soni

66

The Export Directory Table Includes RVAs to Three Tables

D
. * Export Function Pointers Export Address Table *
Export Directory Table v
e e e e ok ok ok ok ok ok ok ok ok ok ok ok o o e Rk Rk
180026870 ddw Oh Characteristics 1800a6898 ddw
180026874 ddw FFFFFFFFh TimeDateSt S s e ok ok ok ok ok ok ok ok ok ok ok ek kR A A A A A kK
. : * E t N Point i *
180026878 dw Oh MajorVersion xXpor ame Pointers Name Pointer Table
S s e e e e ok ok ok ok ok ok ok ok ok ok ok ok ek R A A R A A R Ak
1800a687a dw Oh MinorVersion 1800a689¢ ddw
1800a687c ddw A68A2h Name e e e s e e o ok e o ok e ok ke ok ok ke o ok ok e ok ok ok ko ok ok e ok ok e ok ok e ok ok ok ek ek ok
1800a6880 ddw 1h Base * Export Ordinal Values Export Ordinal Table *
180026884 ddw 1h NumberOfFunctions Sk ek ko ko ok ok ok ok ok ok ok ok ok ek R R A A A A ARk k
1800a68a0 dw Oh
1800&6888 ddw 1h N“n‘berOfNames dhkkkhkhkhkhhhhkhkhkhkhkhkhkhhhhhhhhkhkhkhkhhhhhhhhkhkhkhhhhhhhhhd
1800a688c ddw A6898h AddressOfFunctions * Export Library Name *
1800a6890 ddw A689Ch AddressOfNames ek ek ek ke ke ke ke ke ke ke ko ke ke ko ke ko ke ko ko ke k ok
180026894 ddw A68AOh AddressOfNameOrdinals || 1800a68a2 ds "xmrig.dl1"
Export Name Table s_start 1800aé8ac
|1800a68ac|ds "Start"

Ordinal 1
Start

FSOO7£630IPUSH RBX
Export Directory Table > Name Pointer Table = Export Name Table = Export Ordinal Table = Export Address Table

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 67

The export directory table contains the following fields:

* Characteristics: This is a reserved value and is always zero.

* TimeDateStamp: This specifies when the export was created. In our example, this appears to be
inaccurate since the value has all bits set.

* MajorVersion/MinorVerision: This is linker version information and often contains zero values even in
legitimate DLLs.

* Name: RVA of DLL name. This is specified by the developer, and it may be different from the file
name.

* Ordinal Base: This is the first ordinal number for exports in the DLL. This value is typically 1, and it is
subtracted from a function’s ordinal number to calculate the index into the export address table
(discussed below). For example, the address of an exported function with ordinal number 1 is located at
index 1 -1 = 0 (zero) within the export address table.

* NumberOfFunctions: This represents the number of exported functions.

* NumberOfNames: This represents the number of functions exported by name.

* AddressOfFunctions: RVA of the export address table, which contains RVAs of the exported functions.
Ordinals (minus the ordinal base mentioned above) are used as an index into this table.

* AddressOfNames: RVA of the name pointer table, which contains RV As into the export name table.
The export name table contains the strings that other executables can use to import functions. Note that
this table is not directly referenced by the export directory table.

* AddressOfNameOrdinals: RVA of the export ordinal table, which contains an array of indexes into the
export address table. The values begin at zero. The export ordinal table and export name table work
together; the export ordinal table provides the corresponding ordinal for a function exported by name.
Items in each table are associated because they have the same index in their respective tables.

Though not shown on this slide, all RVA should manually be converted to data of type ImageBaseOffset32
as previously discussed. Then, the analyst can double-click on each RVA to jump to the specified address.

© 2022 Anuj Soni 67

Technet24

68

To locate a function imported by name, the Windows loader (or code responsible for loading an
executable) first identifies the export directory table based on the Export Directory RVA in the Data
Directories. Then, it will consult the name pointer table to locate the export name table. The name table is
searched to find the appropriate function name. Once located, it will read the corresponding ordinal value
(using the same index number) from the export ordinal table. The ordinal value is used as an index into the
export address table to identify the address of the exported function. Based on this flow of events, it may
be clear that importing by ordinal is slightly faster than importing by name. In fact, importing and
exporting by function name exists only has a convenience for developers.

To export functions by ordinal, only the export directory table and export address table are required. The
other three tables allow functions to be exported by name.

For additional information, see:
https://for710.com/export-data

© 2022 Anuj Soni

When a Process Is Spawned, the Loader Prepares for Execution

Key activities include (not necessarily in this order):
+ Confirm the file is a Windows executable
* Resolve critical APIs
* Map the executable into memory
* Load imported DLLs
* Resolve imported functions
 Apply relocations, if necessary
» Update section permissions, if necessary
+ Identify the entry point (EP) for execution
+ Execute code beginning at the EP

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

We discussed the details of a Windows executable header, including where information on imported and
exported functions are stored. Now, we will put that knowledge into the context of program execution.

Executing a process is no simple task. Numerous initialization activities must take place to prepare an
executable for actual execution. The operating system (i.c., the Windows loader) generally takes care of
these tasks automatically when an executable is launched from disk. However, if an executable is
unpacked or decoded in memory, it cannot rely on the OS to manage its startup automatically. Instead, the
loading program must manually perform the work to prepare the second stage content for execution.

Key activities to load a program include confirming it is a Windows executable, loading the relevant file
components into memory, resolving dependencies, identify the entry point for execution, and beginning
execution. The upcoming slides discuss each step, in detail.

This slide lists the common steps involves in preparing a program for execution. Note that none of these
activities are inherently malicious. Our goal is to identify code that is performing these initialization
activities as quickly as possible during code analysis and move on. Also, the steps listed on this slide do
not necessarily occur in this order.

© 2022 Anuj Soni 69

Technet24

The Loader Confirms the Binary Is aValid Windows Executable

* The loading code evaluates key
fields in the file’s header.

¢ Common checks include “MZ”,
“PE”, and the architecture.

* The evaluated bytes appear
reversed because they are read
as little-endian data.

* This is an example of code
within a a Cobalt Strike loader.

10008a77
10008a7a
10008a80
10008a82
10008a85
10008a88
10008a8b
10008a8f
10008a91
10008a98
10008a%a
10008a9d
10008aa0
10008aa3
10008aa6
10008aac
10008aae

EDX, word ptr [ECX]

EDX, Ox5a4d h

LAB 10008ab0

EAX, dword ptr
ECX, dword ptr
dword ptr [EBP
dword ptr [EBP
LAB 10008ab0

dword ptr [EBP
LAB 10008ab0

EDX, dword ptr
EDX, dword ptr
dword ptr [EBP
EAX, dword ptr

[EBP + local c]
[EAX + 0x3c]
+ local 8], ECX

+ local_8], 0x40

+ local 8], 0x400

[EBP + local_ 8]
[EBP + local c]
+ local 8], EDX
[EBP + local_ 8]

dword ptr [EAX], 0x4550 (e

LAB 10008ab0
LAB 10008abb

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

The code responsible for loading the next stage executable will often check if the binary is a valid
Windows executable. Simple checks include looking for the well-known “MZ” characters represented by
the hexadecimal value 0x4D5A. Other may checks may include looking for the “PE” signature (0x5045) in

the header and checking the architecture (i.e., 32-bit or 64-bit).

This slide shows a couple checks performed by malicious code that executes a decoded DLL. Specifically,
this code is associated with executing a Cobalt Strike beacon (the loader has SHA-256 hash

27b788aeb2¢79b807d586bbac3f5f30a7el 1c6855f1a7685cf45¢cea9d24891c¢5).

The two checks on this slide evaluate if the underlying binary begins with the “MZ” characters and if the

“PE” signature is present.

70 © 2022 Anuj Soni

70

The Loader Maps the Windows Executable into Memory

PE File On Disk PE File In Memory

* When a program is launched from per e
. o, . . . DOS der —> DOS Header
disk, it is mapped (i.e., loaded) into ot = i "
. . Header —_— Header
memory prior to execution.

—> Section Headers

1

« The loader parses the executable’s [
e

headers, allocates memory, and loads —
the content from disk. —

.data section

L— .rdata section

» The memory mapped file is similar,
but not identical, to the file on disk.

.reloc section

Unmapped Data
.data section

* A malicious loader maps an in-
memory executable before execution.

.reloc section ‘L

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

When a legitimate executable is run from disk, the executable must be loaded into memory to be executed.
The process of reviewing the PE headers and loading the necessary components of the binary file is
referred to as “mapping” the executable into memory. The layout of the executable in memory is similar,
but not identical, to the file on disk.

The image on this slide is based on the figure located in the Microsoft article at https://for710.com/pe-
detail. It shows that most individual components of a PE file are loaded into memory, but the space
between them change.

During malware analysis, we will often encounter in-memory executables that must be run. Although these

executables are already in memory, they are still mapped to a different location in memory prior to
execution.

72 © 2022 Anuj Soni

Technet24

The Mapped Executable Differs from the Unmapped One

» The ImageBase field is updated with the mapped EXE’s base address.
* The .text section may change if base relocations apply.

* The .rdata section, which typically includes import information, may be
updated if imports are bound.

* The .data section may be updated based on global variables.
* Content in other sections (.pdata, .rsrc, .reloc) typically is identical.
* Content not described in section headers (i.e., overlays) is not mapped.

* FileAlignment field is usually 0x200 (512), while SectionAlignment is
0x1000 (4096)—this results in different spacing between sections.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 73

When comparing a PE file in memory vs. the one on disk, several differences are clear.

First, the ImageBase field is updated to reflect the actual base address of the mapped executable vs. the
preferred address specified in the unmapped executable’s ImageBase field.

The .text section in the mapped executable may differ if some addresses were updated with relocation
information contains in the .reloc section. Base relocations describe locations in the code that must be
updated if the executable is not loaded at the preferred base address (i.e., the address specified by the

ImageBase in the optional header).

The .rdata section typically includes information about imported functions from external DLLs. This
section on disk typically matches the section in memory, unless imports are bound. When an executable is
bound, the binary on disk has the in-memory addresses of imported DLLs. In other words, functions do not
need to be resolved during the loading process. For more information, browse to https://for710.com/inside-
windows-part2 and view the section titled “Binding.”

The .data section is updated based on static variables and global variables.
When Windows loads an executable into memory to prepare for execution, it consults the PE header. If the
PE header doesn’t describe certain data, it simply won’t be loaded into memory. For example, overlay

content (i.e., data after the end of file) is not loaded into memory.

An earlier slide explained the FileAlignment and SectionAlignment fields within the
optional header—the difference in these values will result in additional space between sections in memory.

© 2022 Anuj Soni 73

The MEM_RESERVE | MEM COMMIT allocation type performs both operations. Although we can
specify both a reserve and commit in one CALL, note that the operations occur separately in the
background. When using this allocation type, the memory is reserved and committed on a range rounded
to a multiple of allocation granularity (64K).

Memory can be committed without explicitly reserving a region if the 1pAddress argument is NULL.
On the other hand, if an address range is specified, committing without reserving first will fail. Also,
committing the same memory region multiple times has no adverse impact, so a developer does not need
to check if memory is already committed before committing.

VirtualFree (https://for710.com/virtualfree) is used to decommit and/or release a memory region.

© 2022 Anuj Soni

75

Technet24

VirtualAlloc and VirtualProtect Accommodate Mapped Content

* An initial CALL to VirtualAlloc typically allocates space for the entire
mapped executable.

* For example:
VirtualAlloc (NULL, 0x14000, 0x3000, PAGE READWRITE)

* Only one CALL to VirtualAlloc is necessary, but some loaders have
additional CALLSs to VirtualAlloc for each section.

» Malware may not need to allocate additional memory if it overwrites the
current program in memory; VirtualProtect is used to allow write access.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

An initial CALL to VirtualAlloc typically allocates space for the entire mapped executable. If this
first call only reserves a memory region (i.e., it does not commit as well), additional CALLs to
VirtualAlloc may be necessary.

For example, an Emotet malware loader with SHA-256 hash
18235AC8C4482D9COCA96BEI1ED18CBC601FA793F03D1820D8FFE492D6FF42EC uses the
following VirtualAlloc arguments to reserve and commit memory for a large region that will
accommodate the entire mapped executable:

VirtualAlloc(NULL, 0x14000, 0x3000, PAGE_READWRITE)

You can find this executable at Malware\Section1\hD53056.zip within the course VMs.

With this approach, only one CALL to VirtualAlloc is necessary. However, even if the initial
VirtualAlloc function calls reserves and commits, some loaders will execute additional
VirtualAlloc function calls for each section of the Windows executable. In this case, the additional
function calls typically only include a MEM_COMMIT allocation type (Hint: we might see this in the
upcoming lab).

It is also possible that the loader requires no additional memory for the mapped executable. For example,
some malware overwrites the current executable in memory rather than allocate a new region. In this case,
the loader code is often contained in second-stage shellcode located elsewhere in memory. This shellcode
uses VirtualProtect to ensure the memory region is writeable, and then it overwrites the existing
executable.

See an IcedID downloader with SHA-256 hash
F28FDB464E38B3974EBFF5SFE21B24B54B064C6A7076BDB733B6ESDS5AE119BFB for an example
of this approach.

76 © 2022 Anuj Soni

Next, Header and Section Content Are Written

* A simple loop can move bytes from an unmapped to mapped section:

EI P 00100196 mov al,byte ptr ds:[esi]| Es|: Pointer to unmapped executable

@ 001D0198 mov byte ptr ds:[edx],al . Pni :
el 001D019A L e EDX: Pointer to memory region for mapped executable

@/ 00100198 inc esi Both registers increment by 1 per iteration

@/ 001D019C sub ebp,1
@/ 001D019F | rjne 1D0196

* Alternatively, the REP (Repeat String Operation) prefix can be combined
with the MOVSB instruction to copy bytes

* Example: rep movsb

* REP performs the specified operation the number of times specified in ECX, or
until a specified ZF condition is no longer met

* MOVSB moves a single byte from the address in ESI to the address in EDI

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 77

After memory is allocated for the mapped executable, header, and section content is written to the memory
region. Note that some malware loaders do not copy the DOS Header or the PE header—this header
information must be processed by the loader, but it is not necessary to execute the mapped executable.
Omitting the DOS and/or PE header from the mapped executable also means the “MZ” and “PE”
signatures are not present—analysts often look for these visual cues to identify a Windows executable.

Multiple approaches can be used to copy header and section content to memory region set aside for the
mapped executable. For example, the first image on this slide shows a loop that uses the MOV instruction
to transfer bytes from the unmapped executable to the mapped executable. This loop executes for each
section. This code resides in an Emotet loader with SHA-256 hash
18235AC8C4482D9COCA96BEI1ED18CBC601FA793F03D1820D8FFE492D6FF42EC.

Another approach you may encounter uses the REP (Repeat String Operation) instruction prefix. When
placed in front of an instruction, it performs multiple operations repeatedly. Specifically, it repeats a string
instruction based on the number contained in ECX or until a specified zero flag (ZF) is no longer met. REP
is often paired with the MOVSB instruction (move byte) to copy content from an unmapped section to the
address allocated for the mapped section. We will discuss an example on the next slide.

For more information on the REP prefix, see https://for710.com/rep.
For more information on MOVS, see https://for710.com/movs.

© 2022 Anuj Soni 77

Technet24

Memmove Can Copy Section Data for the Mapped Executable

* The C function memmove is commonly used to copy
data from one location in memory to another.

* Ghidra’s FID feature may identify this function
within a malicious loader:

‘ CALL memmove |

» Alternatively, memmove may be imported by MSVCRT.DLL:

‘CALI.. dword ptr [—>MSVCRT.DLL::memmove]|

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 79

The C function memmove is commonly used to move data from one location in memory to another.
As shown on the slide, the key arguments are:

* dest: Address of destination where data should be copied to.

* src: Address of source data.

* count: Number of bytes to copy.

The code for memmove may be identified by Ghidra’s Function ID feature. Alternatively, it may be
imported from MSVCRT.DLL.

For more information on memmove, see https://for710.com/memmove.

© 2022 Anuj Soni 79

The Loader Loads Required DLLs and Resolves APIs

» With access to LoadLibrary and GetProcAddress, the loader loads DLLs
and resolves the required functions. s O oo

if (hModule == 0x0), {

* These APIs are often referenced in a Sl
. . hModule = LoadLibraryA (lpModuleName) ;
loop to iterate over DLLs and functions. paei400z0c7c = pan_id00zoces | _pa 140020654,
* In this excerpt from a malware loader:)
* LoadLibraryA is called if the DLL is not !!.‘ (‘pwl!m‘!!;x‘o)‘{ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ '
already loaded in memory. 000700
if ((pEFvar2 & 0x8000000000000000) == 0) {
« If the library loads as expected, _pAT_14002008¢ = Ox5a;

lpProcName = pFvVar2 + 2 + param 2;

GetProcAddress resolves functions.)

else {

. 5 . lpProcName = pFVar2 & OXfffffffffffffff;
* Both APIs are in the loader’s import table.)

pFVar2 = GetProcAddress (hModule, lpProcName) ;

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Next, the loader will load any DLLs and resolve APIs for the next-stage executable. At this stage, the
loader has already resolved a LoadLibrary variant and GetProcAddress, so it just needs to call
these APIs to load DLLs and resolve APIs in those DLLS. If a DLL is already in memory, it is simply
mapped into the address space of the current process. Note that the LoadLibrary API will also
recursively load DLLs as needed (i.e., if a loaded DLL depends on other DLLs, it will load those too).

The code excerpt on this slide is from a malware loader with SHA-256 hash
EDSFBEFD61A72EC9F8ASEBD7FA7BCD632EC55F04BDD4A4E24686EDCCBO0268EOQS. This loader
imports LoadLibraryA and GetProcAddress, so the Windows Loader resolve these APIs. When it
comes time to resolve the next-stage executable’s dependencies, the loader simply calls these APIs as
shown. The loader checks if the DLL is already loaded via a call to GetModuleHandleA. If it is not
loaded, a call to LoadLibraryA is executed. After the necessary libraries are loaded, a while loop will
call GetProcAddress to resolve each API in the specified DLL.

80 © 2022 Anuj Soni

Technet24

The Loader Processes the Base Relocation Table

» The Base Relocation Table contains locations that need to be fixed up if
the executable is not loaded at its preferred address.

28 54 09 80 01 00 00 00 PTR DAT 1800957a0
1800957a0 addr DAT_ 180095428

» With ASLR enabled by default on recent Windows OS’s, fixups need to be
applied unless the executable’s header is modified to opt out of ALSR.

* This Base Relocation Table is found via the Data Directories, and code
responsible for loading an executable will check the RVA and Size fields:

Relocation Directory RVA 000001D0 | Dword |0DOB7000 | .reloc
Relocation Directory Size 000001D4 | Dword | ODDDOAEC

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 81

The Base Relocation Table is used to fix up addresses in memory if an executable is not loaded at its
preferred image base address. Since ASLR is enabled system-wide by default in all recent versions of
Windows, executables are usually not loaded at their preferred base address (unless a change is made to a
file’s PE header to opt out of ASLR). Therefore, processing an executable’s base relocation table is an
import step to ensure code and data are executed and referenced properly.

For example, the image on this slide references an address stored at 1800957a0. The address stored at this
location is 180095428 (little endian), and it assumes the executable is loaded at its preferred address
180000000. If it is loaded at this address, no additional work is necessary. However, if the executable is
not located at 180000000, the content at 1800957a0 needs to be updated based on the detail between the
executable’s preferred base address and its actual base address.

Relocation information is processed by the loader that prepares for execution. Once the specified addresses
are fixed up, the relocation information is no longer needed.

Discussing the relocation table in greater detail is out of scope for this course. For more information on the
base relocation table, see:

https://for710.com/reloc

https://for710.com/inside-windows-part2 (see section “Base Relocations”)

© 2022 Anuj Soni 81

82

The Loader Updates Section Permissions of the Mapped

Executable

* One malware loader includes the following sequence of CALLs:

°*VirtualAlloc (0, 0x14000, 0x3000, PAGE READWRITE) -2 0x1E0000

* PE sections copied to allocated region

* VirtualProtect (0x1E1000, <size>, PAGE EXECUTE READ, <addresss>)
* VirtualProtect (0x1ED00O, <size>, PAGE READONLY, <address>)

* VirtualProtect (0x1EE000, <size>, PAGE READWRITE, <address>)

* VirtualProtect (0x1F2000, <size>, PAGE READONLY, <address>)

* VirtualProtect (0x1F3000, <size>, PAGE READONLY, <address>)

« Another loader calls VirtualAlloc once with no references to VirtualProtect:

*VirtualAlloc (0, 0x2B000, 0x1000, PAGE EXECUTE READWRITE)

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

As we discussed earlier, an initial call to VirtualAlloc is often used to allocate memory for the entire
mapped executable. Depending upon the memory protection applied during this initial call,
VirtualProtect may be called later to modify permissions on sections in the mapped executable.

For example, an Emotet loader makes the sequence of CALLs listed first on this slide. An initial CALL to
VirtualAlloc allocates memory for the entire mapped executable with the PAGE_ READWRITE
protection attribute. Then, section content is copied into that location (the details of that step are not
important here). After the section content is copied, multiple VirtualProtect calls modify the
protection attributes of each section (for simplicity and readability, all arguments passed to
VirtualProtect are not shown). For example, we see one section is modified to be executable; this is
likely the .text section for the unpacked executable. The SHA-256 of this executable is
18235AC8C4482D9COCA96BEI1ED18CBC601FA793F03D1820D8FFE492D6FF42EC.

Alternatively, if the initial CALL to VirtualAlloc marks the entire region as read/write/executable, it
may be unnecessary to call VirtualProtect. For example, another malware loader makes an initial
CALL to VirtualAlloc with no CALLs to VirtualProtect. This example is shown at the bottom
of the slide, and it corresponds to an executable with SHA-256 hash
EDSFBEFD61A72EC9F8ASEBD7FA7BCD632ECS55F04BDD4A4E24686EDCCBO0268E0S.

© 2022 Anuj Soni

Technet24

For a DLL, the Loader Often Executes an Exported Function (1)

00402145 PUSH s_TaskStart 0040f4es8 ; Pointer to string "TaskStart"
0040214a PUSH EAX ; Pointer to VA of PE signature in mapped DLL
0040214b CALL FUN_00402924
FUN_00402924
00402924 PUSH EBP
00402925 MoV EBP, ESP
00402927 PUSH ECX
00402928 MoV EAX, dword ptr [EBP + param 1] ; Pointer to VA of PE signature placed into EAX
00402932 MoV EAX, dword ptr [EAX] ; Places VA of PE signature in mapped DLL into EAX
00402934 ADD EAX, 0x78 ; 0x78 + VA of PE header = VA of Export
; Directory RVA field.

00402940 MoV ESI, dword ptr [EAX] ; Places Export Directory RVA into ESI
00402942 MoV EAX, dword ptr [ESI + ECX*0xl + 0x18] ; Places sum of Export Dir RVA, mapped image

; base and 0x18 into EAX (VA of NumberOfNames)
00402946 ADD ESI, ECX ; Adds image base (ECX) and Export Dir RVA

; (ESI), placing the Export Dir VA into ESI

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 84

If the next-stage executable is a DLL, the loader will usually execute an exported function. One approach
to accomplishing this task is to identify the function by name. The loader will follow the process we
previously discussed for identifying an export function by name.

This slide and the two that follow include code excerpts from a malicious loader that executes a DLL’s
exported function by name. The details comments describe what key instructions accomplish to arrive at
the appropriate export function address.

The loader referenced in these slides is associated with WannaCry and has SHA-256 hash
EC3FD41B2298954946999DCB3145CBDC927A5CA9A150A8C57741 DASFE3198CDA. The DLL it
loads has SHA-256 hash

1BE0OB96D502C268CB40DA97A16952D89674A9329CB60BAC81A96E01CF7356830. Both these files
can be found in the Malware\Section] directory within the course VM (see tasksche.zip and kbdlv.zip).

84 © 2022 Anuj Soni

For a DLL, the Loader Often Executes an Exported Function (2)
0040296b MoV EDI, dword ptr [ESI + 0x20] ; Places Name Pointer Table RVA into EDI
0040296e MoV EBX, dword ptr [ESI + 0x24] ; Places Export Ordinal Table RVA into EBX
00402971 ADD EDI, ECX ; Adds image base (ECX) to place Name Pointer

; Table VA into EDI
00402973 ADD EBX, ECX ; Adds image base (ECX) to place Export

; Ordinal Table VA into EBX
00402981 MoV EAX, dword ptr [EDI] ; Places Name Pointer Table entry into EAX.
00402983 ADD EAX, ECX ; Adds image base (ECX) to place VA of Name

; Table entry into EAX (address of a string)
00402985 PUSH EAX ; Pushes VA of string in Export Name Table
00402986 PUSH dword ptr [EBP + param 2] ; Pushes pointer to string passed as argument
00402989 CALL dword ptr [->MSVCRT.DLL::_stricmp] ; Compares argument with a string in the

; Export Name Table
00402993 JZ LAB 004029p4 ; If match, jump

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 85

This page intentionally left blank.

© 2022 Anuj Soni

85

Technet24

For a DLL, the Loader Often Executes an Exported Function (3)

004029b4 MOVZX EAX, word ptr [EBX] ; Dereference offset in Export Ordinal Table
; (increments as it looks for matching name).
; In this case, zero.

004029bf MoV EDX, dword ptr [ESI + 0xlc] ; Adding Export Dir VA (ESI) and Oxlc =
; AddressOfFunctions field VA; Export Address
; Table RVA placed into EDX

004029¢c2 LEA EAX, [EDX + EAX*0x4] ; Oordinal value (EAX) x size of RVA (4 bytes)
; is added to Export Address Table RVA (EDX)
; and placed into EAX

004029c¢5 MOV EAX, dword ptr [EAX + ECX*0xl1l] ; RVA of Export Address Table entry is added
; to image base and dereferenced, placing RVA
; of exported function into EAX

004029c8 ADD EAX, ECX ; Image base (RCX) is added to export function
; RVA and export function VA is placed in EAX

004029b3 RET ; Function returns‘

00402158 CALL EAX ; Call export function

MM

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 86

This page intentionally left blank.

86

© 2022 Anuj Soni

Course Roadmap

« FOR710.1: Code * Analyzing Code Deobfuscation

Deobfuscation and Execution * Lab I.I: Investigating Code Deobfuscation

L Using Steganographic Techniques
* FOR710.2: Encryption in

* Identifying Program Execution

Malware * Lab 1.2: Analyzing Malicious Program
* FOR710.3: Automating Execution

Malware Analysis * Understanding Shellcode Execution
- FOR710.4: Correlating * Lab |.3: Analyzing Shellcode Execution

Malware and Building Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 87

This page intentionally left blank.

© 2022 Anuj Soni 87

Technet24

Lab |.2: Background Topics: Define a New Structure

* The disassembled main() function includes three variables with no
reference to a structure.

main main|
00407190 PUSH EBP
00407191 MoV EBP, ESP

! @Structure Editor - Book (structure_ex.exe) [CodeBrowser(2)
00407193 SUB ESP, Oxc
00407196 MOV dword ptr [EBP + local_10], .rdata Edit Help
00407194 Mov dword ptr [EBP + local_c], 200 Estructure Editor - Book (structure_ex.exe)
004071a4 MOVSS XMMO, dword ptr [real@4lcfeb85] T

— = "

004071ac MOVSS dword ptr [EBP + local 8], XMMO sl sk il caiiiee e

0 4 CHAR * CHAR * title

. . 4 4 int int ages
« We can define the structure using Ghidra’s Data |Cesr—

Type Manager. [@oameveme v]
P + . B | | Search:
- New > | Category
g:_ﬁ_’Data Types 9 Byte Offset: 11 10 9
& i BuiltinTypes . Enum... RS
- Function Definition...
#-§ ntddk_32) R <
+-# ntddk_64 Commit Datatypes To > | gyryctyre...
ER Name:‘Book

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 89

If we build a 32-bit Windows executable from the source code on the previous slide and disassemble it, we
observe the code shown on the top left of this slide. Within the main function we observe three 4-byte
variables that are assigned values. By the way, the XMMO operand refers to an XMM register. XMM

registers are used to perform calculations on values, though in this case XMMO just contains the floating
point number associated with the book cost.

Ghidra does not have any context about the user-defined Book structure, but we can explicitly define the
structure using the Data Type Manager. First, right-click on the program name (called “structure ex.exe”
in this case) and browse to New > Structure. In the resulting Structure Editor, define the three structure
members by clicking on each DataType field and typing the data types as shown. We can also add the
structure member names under the Name column. When you close the Structure Editor, you will be

prompted to save the structure (alternatively, click the the floppy disk icon on the top right of the window,
not shown on this slide).

© 2022 Anuj Soni 89

int _ cdecl main(int _Argc, char *

Stack[-0x8]... local_8
Stack[-0xc]... local_c
Stack[-0x10...logal 10

Lab 1.2: Background Topics: Apply a Defined Structure

@ Local Variable Conflict X

Local Variable local_10 size change resulted in
) Variable storage conflict between Stack[-0x10]:12 and: Stack[-0x8]:4, Stack[-Oxc]:4

Delete conflicting Local Variable(s)

_main Edit Function...
main .

Function >| Array...
EBP
EBP, ESP Function Variables >| Auto Create Structure
ESP, Oxc Set Data Type >| Choose Data Type...
dword ptr [EBP + Iocal_I0], .rdata

dword ptr [EBP + local_c], 200

XMMO, dword ptr [__ real@4lcfeb85]

dword ptr [EBP + local_ 8], XMMO

undefined4
undefined4
undefined4
00407190 PUSH
00407191 MoV
00407193 SUB
00407196 MoV
0040719d MoV
004071a4 MOVSS
004071ac MOVSS
@ Data Type Chooser Dialog
Boa]

g Book - structure_ex.exe/Book Q

Book

00407190
00407191
00407193
00407196
00407194
004071a4
004071ac

PUSH
MoV
SUB
MoV
MoV
MOVsSS
MOVsSS

int _cdecl main(int _Argc, char * * _Ar

Stack[-0x10... 1ocal_10

_main

main

EBP

EBP, ESP
ESP, Oxc

dword ptr [EBP + local 10.title], .rdata
dword ptr [EBP + local_ 10.pages], 200
XMMO, dword ptr [__real@4lcfeb85]

dword ptr [EBP + local 10.cost], XMMO

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

After defining the structure, we can apply it to the values within the main function. Right-click on the first
variable in the data structure (in this case, the book title is placed into local 10) and browse to Set Data
Type > Choose Data Type. Then, search for the recently defined Book structure and click OK. When a
prompt appears, agree to delete any existing variables as it applies the structure to data referenced in the
function. Comparing the resulting code (see bottom right) with the original code (see top left), there is only
one variable now with references to each structure member.

90

© 2022 Anuj Soni

90

Technet24

Lab 1.2: Background Topics: Auto Create a Structure (1)

pivar3 = HeapAlloc (hHeap,dwFlags,dwBytes) ; pivar3 = HeapAlloc (hHeap,dwFlags,dwBytes) ;
if (pivar3 != 0x0) { if (pivar3 != 0x0) {

pivar3[1] = lpAddress; pivar3[l1l]l = lpAddre

pivar3[5] = *(pivar7 + 0x16) >> Oxd & 1; pivar: Edit Function Signature

pivar3[7] = FUN_0040lca0;

pivar3[8] = FUN_0040lccO;

pivar3[9] = FUN_00401lce0; pivar

pivar3[10] = FUN_00401cf0; inarj Auto Create Structure Shift+Open Bracket

pivar3[0xb]
pivar3[0xc] 0;
pivar3[Oxe] local_30.dwPageSize;
ivar4 = FUN_00401740 (pivar7[0x15]) ;
if (ivar4 !'= 0) {
local_8 = VirtualAlloc(lpAddress,pivar7[0x15],0x1000,4);
FUN_00403910 (local_8,param_1,pivar7[0x15]);

ivar4 = param_1[0xf];

FUN_00401d10;

pivar3 = HeapAlloc (hHeap,dwFlags,dwBytes) ;

if (pivar3 != 0x0) {
pivar3->field_0x4 = lpAddress;
pivar3->field_0x14 *(pivar7 + 0x16) >> 0xd & 1;
pivar3->field Oxlc FUN_00401ca0;
pivar3->field 0x20 FUN_00401ccO;
pivar3->field_0x24 FUN_00401ce0;
pivar3->field 0x28 FUN_00401cf0;
pivar3->field 0x2c FUN_004014d10;
pivar3->field 0x30 0;

We can apply a structure to the above pivar3->field 0x38 = local_30.dwPageSize;

ivar3 = FUN_00401740(pivar7[0x15]) ;

array to better underStand hOW ifl;i‘a’:ﬁz ;=V:l‘t\{1alAlloc(lpAddress,inar7 [0x15],0x1000,4) ;
individual members are used.

*pivar3 = local_8 + ivar4;

FUN_00403910 (local_8,param_1,pivar7[0x15]) ;
ivar3 = param 1[0xf];
pivar3->field 0x0 = local_8 + ivar3;

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Ghidra has the ability to automatically create structures. Let’s explore this feature when reviewing code
from the malware sampled with SHA-256
B2A8F6976EFF160CEED3673C0979E37BC87EED270088 1E9DFEA274C8D62D692B. You can find
this sample at Malware\Section1\fileReader.zip.

Within the function FUN_00401d20, there is code that assigns values to an array named piVar3 in the
decompiler output (see image on left). Additional analysis reveals this array is used to store data of various
types, and the array is passed to functions that operate on its values. It is helpful to define this array as a
structure, and Ghidra’s ability to automatically create a structure can help.

To automatically create a structure, right-click on the array in the decompiler output and choose Auto
Create Structure. The result is shown in the image on the bottom right of this slide.

© 2022 Anuj Soni 91

Lab 1.2: Background Topics: Rename a Structure Member

* The structure’s first member is the address of the mapped PE header.

* We can rename this field using the context menu.

Rename addr_mapped_pe_header: |clele/MiyEl ool Mol T]

ivar3 = param_1[0xf]; ivar3 = param_1[0xf];
pivar3->field 0x0 = local 8 + ivVar3: pivar3->addr_mapped_pe header = local_8 + ivar3;
*(local_8 + ivarid Edit Function Signature| *(local_El + ivar3 + 0x34) = lpAddress;
ivar3 = FUN_0040] ivar3 = FUN_00401760 (param_1,param_2,pivar7);
if (ivar3 != 0) Rename Field if (ivar3 !'= 0) {
ivar3 = *(inarB->addr_mapped_pe_header + 0x34) - local_c[Oxd];
@Rename Structure Field X if (ivar3 == 0) {

Cancel

inar3—>field_0x18 =1;
}
else {
bvarl = FUN_00401a80(iVar3);

* Notice piVar3 is passed to
FUN_00401900.

inar3—>field_0x18 = CONCAT31(extraout_var,bVarl);
}
ivar3 = FUN_00401b20() ;
if (((ivar3 t=_0) L&

(bvarl i FU'N_00401900 (inarB)I CONCAT31 (extraout_var_OO ,bvaril)

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 93

If we continue code analysis of this sample to understand the purpose of each member within the defined
structure, we discover that the first element contains the address of a mapped PE header. This information
is relevant in the context of a malware loader preparing to execute next stage content.

We can rename the first structure member to document our analysis. As shown on this slide, right-click on
the relevant member and choose to Rename Field. The result, shown on the right, shows that our renamed
member is clearly referenced multiple times in the code.

Later in the code, FUN 00401900 is called and the structure is passed as an argument. Let’s investigate.

© 2022 Anuj Soni 93

Technet24

Lab 1.2: Background Topics: Apply an Auto Created Structure

* When we arrive at FUN_ 00401900, we can “retype” the argument to
apply our structure.

The resulting code now references the structure’s members.

bool ___cdecl FUN_00401900(int *param_ 1 bool __cdecl FUN_00401900 (astruct param 1)

{ @ Data Type Chooser Dialog {
int ivarl;

‘astruct

- ivar3 = *param_ 1.addr_mapped pe header;
local_20 = *(*(ivar3 + 0x14) + 0x20 + ivar3);

i = * :
ivar3 param _1; ivarl = *(ivar3 + 0x14) + 0x18 + ivar3;

= % (% = o o
local 20 (Edit Function Signature uvar4 = ~(*(param_1.addr_mapped pe_header + 0x38) - 1U) & local 20;
ivarl = *(ivar3 = = = =
uvar4 = ~(param Rename Variable

local_lB = * (iV:

Retype Variable
if (local_18 == typ

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 94

On the previous slide, we noticed that the defined structure is passed as an argument to FUN_00401900.
When we analyze that function, we can retype the argument to add more context to this code. To retype a
variable, right-click on the variable and choose Retype Variable. Then, type the name of the structure (in
this case, astruct) and choose the resulting option. The function’s code now properly references the
structure’s individual members. In this case, we see multiple references to the member we renamed on the
previous slide. We will stop our analysis of this sample here, but you will have an opportunity to explore
similar code in the upcoming exercise.

94 © 2022 Anuj Soni

Lab 1.2: Background Topics: Identifying Code vs. Data in Ghidra

» Within Ghidra, DAT refers to generic data.

+ Evaluating the context of the reference might provide some direction.

» If the data is passed as an argument to a function, we could jump to the
function to better understand how the argument is used.

* We could debug the code to observe what occurs during execution.

« Alternatively, type “D” to disassemble the content and assess if it is code.

DAT 140001b00

140001b00 ?? 48h H LAB 140001b00 XREF]
140001b01 22 FFh # -

140001b02 ?? 25h % 140001b00 JMP qword ptr [->KERNEL32.DLL::FreeLibrary]
140001b03 ?? 5%

140001b04 ?? 25h

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 95

Sometimes, Ghidra does not accurately identify code or data. Ghidra uses the DAT _label to refer to
generic data. This content might be a string, code, or something else.

The best way to determine if the generic data is something meaningful is to evaluate its context. You can
assess how the data is used via static code analysis or a debugger.

One quick way to evaluate if the data is actually code is to type “D” on the keyboard to disassemble the
relevant bytes. Does the new representation look like legitimate code?

At the bottom of this slide is an example where generic data is converted to code. This is a helpful tip for
the upcoming lab.

© 2022 Anuj Soni 95

Technet24

SANS DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

Lab 1.2

Analyzing Malicious Program Execution

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 96

Please begin Lab 1.2 now.

96 © 2022 Anuj Soni

Analyzing Program Execution: Module Objectives, Revisited

v'Understand the key components of a Windows Executable header.
v'Identify the structures and fields associated with a program’s imports.
v'Identify the structures and fields associated with a program’s exports.
v'Understand the steps necessary to prepare a program for execution.
v'Recognize code that maps an executable into memory.

v'Determine the code execution entry point for a second-stage binary.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 97

This page intentionally left blank.

© 2022 Anuj Soni 97

Technet24

Course Roadmap

« FOR710.1: Code * Analyzing Code Deobfuscation

Deobfuscation and Execution * Lab I.I: Investigating Code Deobfuscation

L Using Steganographic Techniques
* FOR710.2: Encryption in

* Identifying Program Execution

Malware e Lab 1.2: Analyzing Malicious Program
* FOR710.3: Automating Execution

Malware Analysis * Understanding Shellcode Execution
« FOR710.4: Correlating * Lab [.3: Analyzing Shellcode Execution

Malware and Building Rules

SA.N.S FORT710 | Reverse-Engineering Malware: Advanced Code Analysis 98

This page intentionally left blank.

98 © 2022 Anuj Soni

Understanding
Shellcode Execution

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 99

This page intentionally left blank.

© 2022 Anuj Soni 99

Technet24

Shellcode Is Often Executed as One Component of Multi-Stage

Malware

» Recall that shellcode is self-contained executable code.

* Shellcode is common because it is easy to obfuscate, harder to identify,
and more challenging to analyze vs. a traditional Windows EXE.

* Offensive security tools, including Metasploit and Cobalt Strike, use
shellcode to accomplish their goals.

* Like the loader code we analyzed in the last module, shellcode must load
libraries and resolve function addresses to accomplish its goals.

» We will not use emulators or behavioral techniques, which were covered
in FOR610; we will focus more on static and dynamic code analysis.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

As a reminder, shellcode is self-contained executable code. It is comprised of opcodes that execute
independently, without the typical structure of a Windows executable. For example, shellcode does not
include a header, sections, or an import address table. Shellcode is Position Independent Code (PIC)
because it does not depend on hardcoded addresses or assume it is loaded at a certain location in memory.

Shellcode is common in malware because it is easy to obfuscate and harder to identify and analyze when
compared to a traditional Windows executable. Also, it is simple to spot the “MZ” ASCII characters or
4DS5A hexadecimal values associated with the beginning of a Windows executable, but identifying
shellcode is not as straightforward.

Shellcode may be used to perform an exploit, serve as the exploit payload, or execute as one component of
multi-stage malware. Various red team tools, including Metasploit and Cobalt Strike, use shellcode to
accomplish their goals. Shellcode execution can have severe impact in relatively few instructions.

Although shellcode presents many benefits to the attacker, it also presents challenges. Because there is no
import address table, for example, shellcode must perform the heavy lifting associated with resolving API
addresses.

We need to be prepared to extract and analyze shellcode at a code level. We’ll combine debugging and
static code analysis to understand the details of how shellcode operates when it is used as one component
of multi-stage execution.

Note that we will not explore the use of shellcode emulators, behavioral analysis, or shellcode-to-EXE

converters for our analysis. These techniques are discussed in FOR610, and we want to focus on code
analysis.

100 © 2022 Anuj Soni

100

To ldentify Shellcode, Look for Common Opcodes

* FC: This translates to the instruction CLD (clear direction flag)
» EB: This is the opcode for a relative jump instruction.
» E8: This is the opcode for a CALL instruction.

* 55 8B EC: This translates to the instructions push ebp and mov ebp,esp,
commonly seen at the beginning of a function (i.e., the function
prologue) in x86.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 102

Common byte sequences we encounter when identifying shellcode include the following:

* FC: This translates to the instructions CLD (clear direction flag). It is often followed by the E8 (CALL)
opcode. These bytes are typical for shellcode used by Cobalt Strike and Metasploit.

» EB: This is an opcode for a relative jump instruction.

» E8: This is an opcode for a CALL instruction.

* 55 8B EC: This translates to the instructions push ebp and mov ebp,esp, commonly seen at the
beginning of a function (i.e., the function prologue) in x86. This sequence of bytes is specific to 32-bit
code, while the others apply to both 32-bit and 64-bit code.

Look for these byte values at the beginning of newly allocated memory regions.

Note that this is not an exhaustive list of shellcode opcodes.

102 © 2022 Anuj Soni

Technet24

L]
Example: VirtualAlloc Allocates Memory for Shellcode
©[00401668 call ebp Calls VirtualAlloc ~ i
@—):‘ mov edx,dword ptr ss:[esp+10] i Hide FPU
{0040166E mov edi,eax EAX 001D000O0]
o 00401670 mov eax,dword ptr ss:[esp+14] EBX 3
° 00401674 pusE edx ECX
00401675 push eax EDX ! " i " i
| 00401676 push edi R @Jbumpl g4Dump2 @4 Dump3 E4Dump4 BWC
€ 00401677 call <emotet_18235ac8c4482d9c| Copies bytes ESP Address |Hex
@ 0040167C add esp,C EST 001D0000|E8 00 00 00[00 58 89 C3|05 3A Of
0040167F mov ecx,2B5 EDI 001Dp0010|EB 00 00 68|01 00 00 00|68 05 OC
00401684 lea eax,dword ptr ss:[[esp+18] 001D0020|77 62 30 50|E8 04 00 00|00 83 c¢
|
@/ 00401688 call <emotet_18235ac8c4482d9c 001D0030| 83 64 24 18|00 B9 4C 77|26 07 5:
100401680 | |mov ebp,8 EIP D e :
- 00401692 cmp] ptr ds:[eax+18],ebp 001D0040|E8 22 04 00|00 B9 49 F7|02 78 8¢
_______ .\'m c ¢ EFLAGS 0P000j [001D0050|04 00 00 B9 |58 A4 53 E5|89 44 2
(00401695 jb emotet_18235ac8c4482d9c0cal 3
(00401697 mov eax,dword ptr ds:[eax+4] Default (stdcall) 001D0060/ 00 B9 10 E1|8A €3 8B E8|E8 FA O:
©[0040169A | ~|jmp emotet_18235ac8c4482d9c0c 1: [esp+4] Jooog L 001D0070/5¢C 94 89 44|24 2C E8 EC|03 00 OC
«E”*? 0040169C | > [add eax,4 2: [esp+8] 0019
[0040169F | > |mov ecx,dword ptr ss:|lesp+10] 3: [esp+c] 0000
®(004016A3 push ecx 4: [esp+10] 000
®(004016A4 mov_ebx, eax 5: [esp+14] 041
004016A6 call <emotet_18235ac8c4482d9c| Deobfuscates code .
[oiCicaz i co0.2 - Once shellcode is
ebp=<kernel32.virtualAlloc 76506870 g] g
e > ¢ ’ identified, we can dump it
.text:00401668 emotet_18235ac8c4482d9c0ca96b9919d18cbc601fa793f03c‘ to diSk.
@4y Dump 1 @4 Dump 2 ¥4 Dump 3 ¥4 Dump 4 @4 Dump 5 @ Watch 1 [x=] Locals ;ﬁ‘ Struct
dress [Hex ASCII
00100000 % YA N Y a N AV a NN AV a W aYa W a Va W aVa NN aVa W aYa W a Va Wl aVa N e Va W aYa Wl a YaWlaYa¥
TOIDO0I0 00 00 00 00/00 00 00 00[00 00 00 00[00 00 00 00|

103

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

We will begin walking through an example to discuss key aspects of shellcode execution. The code on this
slide is from a 32-bit Emotet loader with SHA-256 hash
18235AC8C4482D9COCA96BEIIED18CBC601FA793F03D1820DSFFE492D6FF42EC. You can find
this executable at Malware\Section1\hD53056.zip within the course VMs.

As described on this slide, this loader calls VirtualAlloc to allocate memory. In this case, the allocated
memory region begins at address 1D0000. The function call at 401677 copies bytes to the allocate region,
and the function call at 4016A6 deobfuscates that content to produce shellcode. A screenshot of the
resulting shellcode is shown on the right of this slide. Observe the first byte ES, which translates to a
CALL instruction. As discussed, on the previous slide, this is a common first byte in shellcode.

To dump the shellcode to disk, right-click on the first byte in the dump window and browse to Follow in
Memory Map. Then, choose the highlighted memory region and select Dump Memory to File.

© 2022 Anuj Soni 103

Load the Shellcode into Ghidra and Choose a Language

@ Language X
I Select Language and Compiler Specification
Processor [=, I Variant] Size | Endian | Compiler
x86 Protected Mode 16 little default
@lmpon /C:/Users/REM/Desktop/sc_dump.bin X x86 Real Mode 16 little default
x86 System Management Mode 32 little default
Format:' | Raw Bina x86 default 32 little Borland C++
) i x86 default 32 little Delphi
Language: ‘ x86 default 32 little clang
e s | . x86 default 32 little fe[e
Strstien er ‘ LR . x86 default 3 32 little Visual Studio
Program Name: ‘sc_dump.bin Xx86 default 64 little clang
x86 default 64 little gce
Options... x86 default 64 little Visual Studio
Please select a language. Filter: |x86 ® Q
oK Cancel ~ Description
Intel/AMD 32-bit x86 ‘
Show Only Recommended Language/Compiler Specs
o OK Cancel

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

After dumping the shellcode to disk, load it into Ghidra for additional analysis. In the screenshot on this
slide, the shellcode was dumped to a file called sc_dump.bin. Then, this file was drag-and-dropped into a
Ghidra project. When the Import window opens, Ghidra instructs the user to select a language. As a
reminder, shellcode does not include any header or other supporting information, so Ghidra needs to be
told what type of code is contained within the file.

In the example of a 32-bit Emotet loader, the shellcode is also 32-bit. To select the appropriate option, first
click on the dot-dot-dot (...) button. Then, from the large list of languages, filter by “x86”. Next, choose
the option that specifies a size of 32 and Visual Studio as the compiler—this option works for most 32-bit
shellcode. Finally, click OK.

104 © 2022 Anuj Soni

Technet24

Manually Disassemble the Code Once the File Is Loaded

@Analyze X .
* Do not auto analyze the file at first.
@ sc_dump.bin has not been analyzed. Would you like to analyze it now? « ”
0 * Use the context menu or type “D” to
Yes manually disassemble.

00000000 22 E8h . .

sooo000r 70 oon Bookmark.. w0 | © Addresses are just raw offsets since the
00000002 22 00h

00000003 72 oon ClearCodeBytes € file is not a typical Windows executable.
00000004 20 00h Clear With Options

00000005 22 58h x Clear Flow and Repair ° Flnally, autO analyze the flle.

00000006 22 89h

Copy Ctrl+C

00000007 22 c3n) Slters B = 0L () Analysis Graph Navigation Search
00000008 22 05h Copy Special... 00000000 CALL Las_ooooooos .
00000009 22 3ah : Peso Ctrl+V Auto Analyze ‘sc_dump.bin.. A
0000000a 22 05h - LAB_00000005 Analyze All Open...

0000000b 22 00h Comments 00000005 POP EAX

0000000c 22 00h 00000006 MoV EBX, EAX One Shot >
00000004 20 81h Data 00000008 ADD EAX, 0x53a R

0000000d ADD EBX, DAT_0000eb3a nalyze Stac
0000000e * csr Q Diezesemibiz 2 00000013 PUSH ox1

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 105

After double-clicking on the file in the Ghidra project, the Analyze popup will ask if the file should be
auto-analyzed. Choose nof to analyze the file—we will delay this step until after the code is displayed

properly.

Next, we will need to manually disassemble the code. To do so, simply click on the first byte and click
“D” on the keyboard. Alternatively, right-click and choose Disassemble from the context menu.

Once the code is disassembled, recognizable assembly instructions will be visible. Note that addresses in
the first column are simply offsets beginning at zero. Since the file is not a traditional Windows

executable, it does not specify an image base or section sizes.

Finally, browse to Analyze > Auto Analyze from the menu bar.

© 2022 Anuj Soni 105

The Shellcode Calls a Function Repeatedly with Different
Arguments

00000040 CALL FUN_00000467

00000045 MOV ECX, 0x7802f749

0000004a MOV dword ptr [ESP + local_ 3c], EAX

0000004e CALL FUN_00000467

00000053 MOV ECX, Oxe553a458

00000058 MOV dword ptr [ESP + local_ 38], EAX

0000005¢c CALL FUN_00000467

222222:: 32: 2:’; g::”aeno This may be evidence of API hashing

00000068 CALL T to obfuscate function names.

0000006d MOV ECX, 0x945cblaf

00000072 MOV dword ptr [ESP + local 2c], EAX

00000076 CALL FUN_00000467

0000007b MOV ECX, 0x959e0033

00000080 MOV dword ptr [ESP + local 28], EAX

00000084 CALL FUN_00000467

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 106

The shellcode includes multiple CALLs to the same function, but with different hexadecimal values passed
as arguments. In the screenshot on this slide, we see different hexadecimal values passed to ECX before
function FUN 00000467 is called. This observation may indicate the use of API hashing to obfuscate
function names. We will discuss API hashing in more detail on the next slide.

106 © 2022 Anuj Soni

Technet24

Shellcode Commonly Uses APl Hashing to Resolve Functions

* Remember that shellcode needs to manually resolve APIs.

* To avoid alerting strings in the code, shellcode may resolve APIs based
on a hash that includes a hashed DLL name and a hashed function name.

* ROR-13 is a popular algorithm and seen in Metasploit and Cobalt Strike
code; CRC32, DJB2, FNV-1a, or a custom algorithm may also be used.

* Shellcode often resolves LoadLibrary and GetProcAddress first, so it can
use these APIs to load other modules and resolve additional functions.

While this module focuses on shellcode, APl hashing may appear in
Windows executables too.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 107

Recall that shellcode does not include an import address table, so it must manually load libraires and
resolve function addresses to accomplish its goals. Rather than the actual strings associated with Windows
APIs in the shellcode, malware developers often obfuscate the code’s dependencies using API hashes. An
API hash is based on performing a mathematical operation against a combination of a DLL name and
function name. Based on a provided API hash, shellcode can locate the necessary DLL and resolve the
required function address. Shellcode commonly resolves LoadLibrary and Get ProcAddress first,
so it can use these APIs to load other modules and resolve additional function addresses.

API hashing could involve any chosen algorithm, but certain algorithms are common in malicious
shellcode. For example, the ROR-13 algorithm is popular in shellcode associated with Metasploit and
Cobalt Strike. This algorithm moves each bit in a value 13 bits to the right.

The GuLoader uses DJB2 algorithm for API hashing (see https://for710.com/guloader).

A PlugX variant and the Matanbuchus loader both use the FNV-1a hash algorithm to resolve APIs. For
more information on these examples, see https://for710.com/plugxhash and

https://for710.com/matanbuchus.

Note that although this module focuses on shellcode, malicious Windows executables may include API
hashing as well. For example, some variants of the VMZeus malware family use CRC32.

© 2022 Anuj Soni 107

Shellcode Compares a Hard-Coded APl Hash with a Calculated

API Hash to Locate the Required Module and Function

* Shellcode commonly passes a hardcoded hash to a function to resolve
APIs.

* Then, the function:
» Iterates over all modules loaded by the process.
* For each module, the module name (i.e., kernel32.dll) is hashed.
* For each exported function in the module, the function name is hashed.

* The combined hash (i.e., the addition of module name hash + function name
hash) is compared against the hash passed to the function.

« If there is a match, the code resolves the address of the function so it can be
called; if there is no match, go to the next loaded module and repeat.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 108

This slide provides an overview of how an API hash is used to resolve a function address. We will discuss
the code that performs these steps shortly.

108 © 2022 Anuj Soni

Technet24

Shellcode Frequently Accesses the PEB to Resolve APlIs

* The Process Environment Block (PEB) is a data structure in memory
that contains information about the running process, including;:

* Loaded modules

 If the process is being debugged

* Process parameters (e.g., current directory or command line)
* Shellcode accesses the PEB to:

1. Enumerate DLLs loaded in memory

2. Access each DLL’s exported functions

3. Resolve Windows API addresses

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 109

Since shellcode does not include an import address table, it must manually resolve Windows API
addresses. To accomplish this goal, it accesses the Process Environment Block (PEB). The PEB is a data
structure in memory that contains information about the current process. Most importantly, it includes a
list of modules loaded by the current process. By traversing this list and locating important loaded modules
like kernel32.dll, shellcode can acquire the address of Windows APIs like LoadLibrary and
GetProcAddress. With this information, the code can perform the tasks necessary to accomplish its

goals.

You can read more about the PEB at https://for710.com/peb.

© 2022 Anuj Soni 109

The Shellcode We Loaded into Ghidra References FS:[0x30]

00000040 CALL FUN_00000467 FUN_00000467

00000045 MoV ECX, 0x7802£749

0000004a MOV dword ptr [ESP + local 3c], EAX 00000467 SUB ESP, 0x10

0000004e CALL FUN_00000467 0000046a MOV EAX, FS:[0x30] |

00000053 MOV ECX, 0xe553a458 00000470 PUSH EBX

00000058 MoV dword ptr [ESP + local 38], EAX 00000471 PUSH EBP

0000005¢ CALL FUN_00000467 00000472 PUSH ESI

00000061 MOV ECX, 0xc38aell0 00000473 |Mov EAX, dword ptr [EAX + Oxcll
00000066 MoV EBP, EAX 00000476 PUSH EDI

00000068 CALL FUN_00000467 00000477 MoV dword ptr [ESP + local 8], ECX
0000006d Mov ECX, Ox945cblaf 0000047b MoV ESI, dword ptr [EAX + Oxc]
00000072 MoV dword ptr [ESP + local_ 2c], EAX 0000047e JMP LAB 0000050d

00000076 CALL FUN_00000467 =

0000007b MOV ECX, 0x959e0033

00000080 MoV dword ptr [ESP + local 28], EAX

00000084 CALL FUN_00000467

* The first MOV instruction places the PEB address into EAX.
* The next MOV references offset 0xC within the PEB—why?

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 111

As a reminder, we started analyzing shellcode from a 32-bit Emotet loader. The screenshot on the left
mirrors one from an earlier slide. Recall that hexadecimal values passed to a function in shellcode may
represent API hashes used to obfuscate DLL and function names.

If we jump to FUN 00000467, we immediately observe a reference to FS:[0x30]. As discussed on the
previous slide, this retrieves the address of the PEB in 32-bit code. This observation suggests
FUN_00000467 will access the PEB and supports our theory that this function is used to resolve Windows
APIs.

The MOV instruction at address 0000046a places the address of the PEB into EAX.

At 00000473, the MOV instruction accesses an offset within the PEB. What resides at that location? We
can use WinDbg to investigate this further.

© 2022 Anuj Soni 111

Technet24

WinDbg Provides Insight into Process Structures in Memory

» WinDbg is a Microsoft debugger often used to analyze kernel-mode,
user-mode code, and crash dumps.

* WinDbg is a powerful debugger but has a steep learning curve and is not
considered user-friendly.

* WinDbg Preview provides an updated, more modern debugging
experience with a refreshed interface; it also has a dark theme.

» We will only use WinDbg to debug the user-mode loader and review
process structures in memory, including the PEB.

For simplicity, we may refer to WinDbg Preview as WinDbg in upcoming slides.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 112

WinDbg is a powerful debugger that can be used to analyze kernel-mode code, user-mode programs, and
crash dumps. Historically, it has had a steep learning curve and is considered to provide an unfriendly user
experience by most analysts. However, in 2017 Microsoft released WinDbg Preview (also referred to as
WinDbgX). This new version provides a more modern GUI and, in general, a more pleasant user
experience. For example, WinDbg Preview includes a ribbon for easy access to a variety of views and
windows. Users of Visual Studio will find it approximates that interface. Oh, and it includes a dark theme
©. WinDbg Preview is available through the Microsoft Store.

For those who used the older WinDbg, all prior commands and extensions are still relevant. At the time of
this writing, both WinDbg and WinDbg Preview are supported by Microsoft.

As a kernel-mode debugger, WinDbg can be used to analyze kernel-mode malware by configuring the
application to perform remote debugging. This requires two systems or virtual machines.

WinDbg is also helpful in cases where malware employs the Heaven’s Gate technique. This approach
allows malicious code to execute 64-bit code from 32-bit code. However, with the roll out of Control Flow
Guard in Windows 10, this technique is largely mitigated.

For more background information on WinDbg, see:

https://for710.com/windbg1
https://for710.com/windbg?2

112 © 2022 Anuj Soni

The Windows VM Has Additional Symbol Information Included

* WindDbg can automatically download symbols from a Microsoft server
during analysis, but this requires an internet connection.

* To include symbols in an offline instance:
* Provide an initial internet connection.
» Download and install the Windows 10 SDK.
» Install “Debugging Tools for Windows” only.
* Use symchk to download symbols for kernel32.dll and ntdll.dll at a minimum.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

+ symchk "C:\Windows\system32\kernel32.d11" /s
SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

* symchk "C:\Windows\system32\ntdll.dll" /s
SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

* symchk "C:\Windows\system32\KernelBase.dll" /s
SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

* symchk "C:\Windows\SysWOW64\kernel32.d11" /s
SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

+ symchk "C:\Windows\SysWOW64\ntdll.d11" /s
SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

* symchk "C:\Windows\SysWOW64\KernelBase.dll" /s
SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

© 2022 Anuj Soni 113

Technet24

First, Load the 32-Bit Executable into WinDbg Preview

* Launch WinDbg Preview from the desktop shortcut
* From the menu bar, click File
* Then, choose Launch executable and choose hD53056 . exe

0 Home View Breakpoints

{'} Step Out {'} Step Out Back
{*} StepInto {*} Step Into Back

Break Go Go
+ {}* Step Over *{} Step Over Back pg,ck @
Flow Control Reverse Flow Control Sta rt d e b U g g I n g
Disassembly X Start debugging

Address: f* Recent

Save workspace

Open source file /= Launch executable a

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 114

Let’s load the 32-bit Emotet loader into WinDbg to better understand how the shellcode uses the PEB.
Note that this slide describes loading the executable, not the shellcode.

First, launch WinDbg Preview from the 710 VM desktop. Then, click on File in the menu bar and choose
to Launch executable. When the File Open prompt appears, choose the file of interest. After taking these
steps, you will not see any code displayed in WinDbg (assuming you are opening it for the first time). See
the upcoming slide for next steps.

114 © 2022 Anuj Soni

Update the WinDbg Window Layout to View Code

Within the View tab click
Layouts > Disassembly.

Within the Home tab
choose Restart.

Rearrange windows as
desired.

Layout changes are saved
after closing WinDbg.

Home View Breakp... Time Tra... Model Scripting Source Command Memory ~
Step Out {'} Step Out Back O Restart =
b fomor Do [@
) stepinto {] Step Into Back B Stop Debugging
Break Go = o A Settings Source |Assembly| Local Feedback
{)* stepOver *{} Step Over Back p,cx & Detach Help~ Hub
Flow Control Reverse Flow Control End Preferences Help
Disassembly X < Registers X v
Address: | @scopeip Follow current instruction @y Name
ser

7619db8b 836508 and dword ptr |ebp-4], @ = SIMD

76f9db8f cc int 3 @ FloatingPoint

76f9db90 ebo7 jmp ntdll!LdrpDoDebuggerBreak+0x35 (76f9db99)

76f9db92 33ce xor eax, eax

76f9dbo4 40 inc eax L

76f9dbo5 c3 ret

76f9db96 8b65e8 mov esp, dword ptr [ebp-18h]

r;rodhqo CTASFoFofFEFEE mov dword ntr Tahn-41 OFEEEEEEER [7]’7 n 5

< > < >
Breakpoints ~ % X | Command v 2 X

Location Line Type CommandLine: C:\Users\REM\Desktop\He_Malware\Dayl\hDSZ‘
FHERRRKRKRRRE Path validation summapy FEEEEERRRKK KKK

Stack | Breakpoints Response Time (ms) Locatio
Memory v 2 x| OK C:\symb|

Address: | @$scopeip

00000000 76FIDICF
00000000 76FIDIDF
00000000 76FIDIEF
00000000 76FIDIFF
00000000 76FIDAGF

F8 33 C9 51 50 6A 08 8D 45 E8 89 4D FC 50 [.]
CC 50 51 51 51 FF 75 F4 E8 D4 @D FC FF 85
88 95 00 00 00 39 75 EC 74 39 8B 4D E8 8D
3B 45 A4 OF 87 81 00 00 00 89 4D F8 8D 45
C9 51 56 57 8D 45 E8 89 4D FC 50 8D 45 CC

Executable search
ModLoad:
ModLoad:
ModLoad:
ModLoad:
ModLoad:

Symbol search path is: C:\symbols
path is:
00400000 00431000
76efo000 7707d000
76410000 765C0000
761c0000 76397000
6fce0000 6fd7a000

DAZXCFGTYUNI.exe
ntdll.d11

C: \WINDOWS\SysWOW64\KERNE
C: \WINDOWS\SysWOW64\KERNE
C:\WINDOWS\SysWOW64\apphe

00000000 76FIDALF
00000000 76FIDA2F

51 51 FF 75 F4 E8 97 @D FC FF 85 CO 78 5C
E8 75 57 8B 4D DC B3 @1 83 65 E@ 00 E8 FC

ModLoad:
[T

74c40000 74db5000

C: \WINDOWS\SysWOW64\USE RBZ‘
] bJ

00000000 76FIDASF
00000000 76FIDALF

I

FF 8B FO 85 F6 74 43 83 3E 48 72 3E 89 75
6 89 45 £0 8D 45 D8 50 57 8D 45 £ 50 8D |7

mi ‘e:aem

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

After completing the steps on the previous slide, there is no useful content displayed by default. To begin
reviewing code, we must change the window layout within WinDbg.

Click on the View tab and choose Layouts > Disassembly. Then, return to the Home tab and choose
Restart. You should now see some content, including disassembly.

To re-arrange windows within the interface, drag and drop each title bar as desired. The screenshot on this
slide shows a layout that resembles what we see in x64dbg and includes (starting from the top and going

clockwise):

+ Disassembly: Instructions to be executed.

* Registers: The various registers, which can be expanded to view values.

* Command: A command input field, with the output shown directly above it. Initially, this output
describes the DLL loaded based on the import address table of the target executable.

* Memory: An area to view the content at a specified address in memory.

* Breakpoints: A view to track any breakpoints set. To access this window, browse to the View tab and

choose Breakpoints.

You can modify the Window layout based on your preferences. Any changes to the Window layout are
saved globally once WinDbg Preview is closed.

© 2022 Anuj Soni

1

115

15

Technet24

To Enable a Dark Theme, Browse to File > Settings > General

Settings
General pr—
isual appearance
Debugging settings L . . .
Events & exceptons Theme The slides will use the Light theme,
) Light v
Command window 0 o
Source window Lght source window, et but feel free to modify your interface.
Disassembly window Dark
Kernel debugging settings)))
Tool window font (Locals window, stack window, etc.)
Checkers
Segoe Ul v 2 v
Disassembly
Disassembly X 5
Follow current instruction
Address: | @scopeip [Follow current instruction 76£9db8b 8365£C00
76+9db8b 836500 and dword ptr |ebp-4], @ = [76f9dbsf cc
76f9db8f cc int 3 76f9db90 ebo7
76f9db9e ebe7 mp. ntdll!LdrpDoDebuggerBreak+0x35 (76f9db99) 76¥9db92 33cO
76F9db92 33c0 xor eax, eax 76fodboa 40
76f9dbo4 40 inc eax 76f9db95 c3
76£9db95 3 ret 76£9db96 8b65e8 esp, dword ptr [ebp-18h]
769db96 8be5es mov esp, dword ptr [ebp-18h] Sl 76fodboo c7asfcfeffffef dword btr lebn-41. OFFFEFFFEh
76r0dhqq CTASEcFofFEEFE mov Aword ntr [ahn-41 J = <
] >
Breakpoints v £ X ||/command L it . Emamie|
Location Line Type || CommandLine: C:\Users\REM\ focaton Type Microsoft (R) Windows Debi
FkkkRRKRKRKRE Path validat] Copyright (c) Microsoft Cq
Stack | Breakpoints Response)
Naney v 2 X SK bor b oath fs co CommandLine: C:\Users\REM
ymbol search path is: C:
Address: | @$scopeip Executable search path is: opeip Fkkkkkkkkkkkk path validat]
R ModLoad: 00400000 00431000 Response
©0000000° 76FIDICF F8 33 C9 51 50 6A 08 8D 45 ES8 89 4D FC 50 [a] | yyoyi (o4t 274000 00000000 76FIDICF F8 33 C9 51 50 6A 08 8D 45 E8 89 4D FC 50 [al| i

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Including a dark mode is popular in most applications, and WinDbg delivers on this front. As shown on
this slide, feel free to modify your GUI and enable the Dark theme.

116 © 2022 Anuj Soni

WinDbg Command Types

Built-in commands query and control the debugged executable

g: go / continue executing (add u to run until after return)

bp <address>: Set a breakpoint at the specified address

ba <access><size> <address>: Set access (R/W/E) breakpoint at
specified address for number of bytes

bl: List breakpoints

1m: List loaded modules (add £ for full path information)

dt <structure> <address>: Display type information (add -r to
recursively dump subtype fields)
?: Evaluate expression The purpose of these commands will be

r: Print register information clearer when we apply them to our example.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 117

To interact with WinDbg, we need to understand its command types. This slide lists important built-in
commands. These notes contain a few additional notes on certain commands.

The command structure for dt on this slide is in the format we will typically use. However, there are
additional optional parameters. For more information on this command, see https://for610.com/dt.

When using a break on access breakpoint (ba), if the access is e for execute, the size must be one (see
https://for710.com/ba).

If this information seems too abstract right now, don’t worry—the value of these commands will be clearer
when we apply them to an example.

© 2022 Anuj Soni 117

Technet24

* .help: Display list of meta commands
» .restart: Restart debugged executable
* .writemem: Dump memory to disk
 Extension commands (a.k.a. bang commands) from WinDbg extensions
* 1dh <address>: Displays header information for a file at the address

* laddress: Displays memory map. Add an address to get module details

* Use the keyboard up arrow for command history

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

This page intentionally left blank.

118 © 2022 Anuj Soni

Other Command Types Include Meta and Extension Commands

* Meta commands (a.k.a. dot commands) control the debugger

118

WinDbg Initially Pauses in ntdll.dll

Set a breakpoint and run the program to arrive at the entry point
* bp $exentry: Set a breakpoint at the target’s entry point
* g: Run the program

Address: | @$scopeip Follow current instruction Name
User
V0403227 C3 ret E SIMD
00403228 e8ae5d0000 call DAZXCFGTYUNI ! DSAXZCTYHIKIOP+0x7blb (00408 FloatingPoint
0040322d e978feffff jmp DAZXCFGTYUNI !DSAXZCTYHIKIOP+@x1lbea (00403
00403232 8bff mov edi, edi
00403234 55 push ebp
00403235 8bec mov ebp, esp
020403237 R1ec28030000 suh esn. 328h E
KI| | D]
Breakpoints v £ X ||Command
Location Line Type Hit Count Function eip=76f9db8f esp=0
C€s=0023 s5=002b
. 0x403228 Software 1 DAZXCFGTYUNI!DSAXZCTYHJKIOP+ ntd11!LdrpDoDebugg|
76f9db8f cc
Stack | Breakpoints 0:000> bp $exentry
0:000> g
Memory v % X || ModLoad: 75950000
ModLoad: 7570000

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

When we load a program into a debugger, we expect it to pause the target executable at the entry point.
Unfortunately, WinDbg does not do this. Instead, it pauses in ntdll.dll during the loading process. To

arrive at the program’s entry point, we must set a breakpoint and run the executable.

To set a breakpoint at the entry point, we will use a pseudo-register. Type the command: bp $exentry.
Next, run the program with the g command.

After executing these two commands, the debugger should pause at the entry point at address 403228 (as

shown on the slide). In the Breakpoints view, observe the breakpoint that was set. In the Command view,
note a history of the commands run.

120 © 2022 Anuj Soni

Technet24

View Loaded Modules and Use the Base Address to Display

Headers

0:000> !'dh -a 00400000

File Type: EXECUTABLE IMAGE
0:000> 1m FILE HEADER VALUES

Istart end module name 14C machine (i386)
;.ea4eeee§ 00431000 DAZXCFGTYUNI (export symbols) j
73810000 73812000 CRYPTBASE (deferred)

74c40000 74db5000 USER32 (deferred)

74fc0000 7507€000 RPCRT4 (deferred)

755a0000 755c0000 SspiCli (deferred) OPTIONAL HEADER VALUES

755e0000 755f6000 win32u (deferred) 10B magic #

75610000 75632000 GDI32 (deferred) 9.090 linker version

75640000 7579€000 gdi32full (deferred) 11800 size of code

75940000 7594e000 MSASN1 (deferred) 1BAG® size of initialized data
75950000 75975000 IMM32 (deferred)

759€0000 75223000 sechost (deferred) 3222 S;ée o u;lnlzlallz?dtdata
75c50000 75cccP00 msvcp win (deferred) IRESS ©F Gy [pealn
75de@000 7537000 bcryptPrimitives (deferred) 1000 base of code

----- new -----

00400000 image base

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

While not necessary for our current analysis, we can view loaded modules using the 1m command. The
first module listed represents the target executable. Note the module name DAZXCFGTYUNI—this is the
hardcoded internal name of the program. Also note the reference to “exported symbols”, which indicates
that this EXE exports at least one function. This is unusual for an EXE, but we will not explore this
observation in class.

With the base address specified in that output, we can use the ! dh (display header) extension to display
header details for the target executable.

© 2022 Anuj Soni 121

Set a Breakpoint on the VirtualAlloc API to Locate Shellcode (1)

* We could set a breakpoint of the instruction after VirtualAlloc is called:
*bp 0040166A

» Alternatively, we can set a breakpoint on the API code in the format bp
<module>!<API name> and run until the function returns

*bp KERNEL32!VirtualAllocStub OR bp KERNELBASE!VirtualAlloc

Home

* Kernel32.dll forwards VirtualAlloc calls to KernelBase.dll >
e gu OR click Step Out in the WinDbg Preview GUI to return ses co \) %™

& 6" Step Over

* After specifying the module name, you can use tab autocomplete

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 122

Our next step is to arrive at the shellcode within WinDbg. We know VirtualAlloc allocates space for

the shellcode, so there are two approaches to consider:

» Set a breakpoint on the VirtualAlloc API and return from the function call.

» Set a breakpoint on the address of the instruction after VirtualAlloc is called (based on our earlier
analysis).

To set a breakpoint on VirtualAlloc, type the command bp KERNEL32 !VirtualAllocStub or
bp KERNELBASE | VirtualAlloc.

The above commands are appropriate because kernel32.dll actually forwards VirtualAlloc calls to
kernelbase.dll.

When specifying the API name, tab autocomplete is helpful.

To set a breakpoint on the address after VirtualAlloc is called, type the command bp 0040166A.

122 © 2022 Anuj Soni

Technet24

Set a Breakpoint on the VirtualAlloc API to Locate Shellcode (2)

Disassembly X Registers

Address: ‘@$scopeip ‘ Follow current instruction a Ll\]lame Value
ser
00401668 ffd5 call ebp E eax 0x00030000
0040166a 8b542410 mov edx, dword ptr [esp+10h] ss:002b:00198c58=¢ ebx 0x00198¢58
0040166e 8bf8 mov edi, eax D ecx 0x49310000
00401670 8b442414 mov eax, dword ptr [esp+14h] E edx 0x00000000
[« \] esi 0x00000010
Breakpoints v s X ||Command
Location Line Type Hit Count Function 0:000> bp KERNELBASE!VirtualAlloc
V1@ 0x403228 Software 1 DAZXCFGTYUNIIDSAXZCTYHIKIOP- 0:000> g
ModLoad: 76b90000 76d12000 C:\WINDOWS
. 0x762C2EF0 Software 1 KERNELBASE!VirtualAlloc ModLoad: 75940000 7594000 C: \WINDOWS

Breakpoint 1 hit

©ax=00000001 ebx=00198c58 ecx=0000ebd4
eip=762c2ef0@ esp=00198c34 ebp=76506870
Cs=0023 ss5=002b ds=002b es=002b fs
KERNELBASE!VirtualAlloc:

762c2ef@ 8bff mov edi,e
0:000> gu

€ax=00030000 ebx=00198c58 ecx=49310000
eip=0040166a esp=00198c48 ebp=76506870
Cs=0023 ss5=002b ds=002b es=002b fs
DAZXCFGTYUNI !DSAXZCTYHIKIOP+@x1laa:
0040166a 8b542410 mov edx,d
0:000> ? @$retreg

Evaluate expression: 196608 = 00030000

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 123

This screenshot shows the results of running the commands on the previous slide. It includes the “User”
section in the Registers view (expanded), and we can see the return value contained within EAX. This is
the starting address of the allocated region.

We can also view the return address by typing the commands ? @Sretreg or r eax.

© 2022 Anuj Soni 123

Set an Access Breakpoint to Pause at the Start of the Shellcode

Disassembly X ~ Registers X
Address: ‘@$scopeip Follow current instruction 5 lf;lame Value
ser

0002fffe 0000 add byte ptr [eax], al [«] eax 0x00000001
00030000 e800000000 call 00030005 ebx 0x04292948
00030005 58 pop eax ecx 0x00404a3c
00030006 89c3 mov ebx, eax edx 0x04290000
00030008 0532050000 add eax, 53Ah esi 0x00000010
0003000d 81c33aeboooO add ebx, OEB3Ah D edi 0x00030000
00030013 6801000000 push 1 esp 0x00198c44
00030018 6805000000 push 5 e.bp 0x00000008
0003001d 53 push ebx eip 0x00030000
0003001le 6845776230 push 30627745h [~] efl 0x00000206

kil] O cs 0x00000023
Breakpoints v £ X ||Command

Location Line Type Hit Count Function 0:000> ba el @$retreg
V@ ox403228 Software 1 DAZXCFGTYUNIIDSAXZCTYHJKIOP- || @:000> g .
Breakpoint 2 hit
1@ 0x762C2EF0 Software 1 KERNELBASE!VirtualAlloc €ax=00000001 ebx=04292948
V1@ 0x30000 Hardware E: 1 196608 €ip=00030000 esp=00198c44
C€s=0023 ss=002b ds=002b

[D] 00030000 800000000

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

To set an access breakpoint, type the command ba el @Sretreg. This command sets an access
breakpoint on the address stored in the return register (EAX). The “e” in el specifies that the breakpoint
should trigger on execution, and the numerical value specifies the size, in bytes, to monitor for access. As
described in the Microsoft documentation for access breakpoints (https://for710.com/ba), the size must be
1 when the access breakpoint is set to trigger on execution.

Then, type "g" in the command window to continue executing the program and arrive at the breakpoint.

The debugger should pause at the beginning of the shellcode.

124 © 2022 Anuj Soni

Technet24

Recall That the Shellcode Passes Different Hexadecimal Values

to the Same Function

* The function at offset 467 may use a hash to resolve API addresses
* Set a breakpoint with the command bp <function address>

* Type g to arrive in the function the first time it is called

00030045 b949f70278 mov ecx, 7802F749h

0003004a 8944241c mov dword ptr [esp+1Ch], eax
0003004e e814040000 call 00030467

00030053 b958a453e5 mov ecx, OE553A458h

00030058 89442420 mov dword ptr [esp+206h], eax
0003005c 806040000 call 00030467

00030061 b910el8ac3 mov ecx, OC38AEl1eh

00030066 8be8 mov ebp, eax

00030068 812030000 call 00030467

Your virtual addresses may differ from those in the screenshots based on the starting
address of the region allocated, so the slides will refer to offsets of specific instructions.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 125

As a reminder, when we reviewed the shellcode in Ghidra, we observed different hex values passed to the
same function. This is the function that contained a reference to the PEB. To arrive at the beginning of the
function the first time it is called, we can set a breakpoint at the function address with the command bp
<function address>. Note that the specific address to use will vary depending upon the memory
region allocated in your debug session.

Then, type g to resume execution.

© 2022 Anuj Soni 125

The Function Beginning at Offset 467 References FS:[30]

Disassembly X ¥ Registers
Address: | @$scopeip ‘ Follow current instruct Ll\Jlame Value
ser
00030467 83ecl0 sub esp, 16h E eax 0x0003053f
0003046a 642130000000 mov eax, dword ptr fs:[00000030h] ebx 0x0003eb3f
00030470 53 push ebx ecx 0x0726774c
00030471 55 push ebp edx 0x04290000
00030472 56 push esi esi 0x00000000
00030473 8b400C mov eax, dword ptr [eax+0Ch] edi 0x00030000
00030476 57 push edi esp 0x00198bd0
00030477 8942418 mov dword ptr [esp+18h], ecx D ebp 0x00000008
0003047b 8b700c mov esi, dword ptr [eax+0Ch] eip 0x00030467
0003047¢ €98a000000 jmp 0003050d efl 0x00000246
00030483 8b4630 mov eax, dword ptr [esi+36h] cs 0x00000023
00030486 33c9 xor ecx, ecx ds 0x0000002b
00030488 8b5e2c mov ebx, dword ptr [esi+2Ch] d s 0x0000002b
I«] Dl fs 0x00000053
Breakpoints v s X ||Command
Location Line Type Hit Count Function 0:000> bp 30467
V1@ 0x403228 Software 1 DAZXCFGTYUNIIDSAXZCTY 0:000> g
) Breakpoint 3 hit
V1@ ox762C2EF0 Software 1 KERNELBASE!VirtualAlloc [<] | eax=0003053f ebx=0003

We can now view the Process Environment Block (PEB) and investigate
other offsets within this structure.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

This page intentionally left blank.

126 © 2022 Anuj Soni

126

Technet24

Execute the MOV Instruction at 46a and Confirm the Address of

the PEB Matches the Value in EAX

* Click Step Into to execute individual instructions

Home
II ’ {7 Step Out
* Execute the MOV at offset 46a to place fs:[30h] into eax |, . [(iseio]
- WStevaer
.)
* The value in EAX matches the PEB’s address
Disassembly X S Registers X
Address: | @$scopeip Follow current instruct Name Value
User
00030462 642130000000 mov eax, dword ptr fs:[00000030h] |4] SIMD
00030470 53 push ebx] FloatingPo
00030471 55 push ebp
00030472 56 push esi [~]
K1 | D]
Breakpoints v £ X
Location Line Type Hit Count Function 0:000> ? @$peb
M@ 0x762C2EF0 Software 1 "KERNELBASE!VirtualAlloc" SV;é;ate expression: 4104192 = 003ea000
: > r eax
1@ ox30000 Hardware E: 1 196608 eax=003ea000

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 127

To confirm FS:[30] references the PEB, we can compare the contents of the $peb pseudo-register and
the value of EAX after the instruction at offset 46a is executed.

© 2022 Anuj Soni 127

At Offset 47b, the Second Operand Dereferences the

InLoadOrderModuleList Member within the PEB_LDR_DATA

The InLoadOrderModuleList member is the head (i.e., start) of a doubly-
linked list that describes the loaded modules for the process.

Disassembly X < Registers X
Address: | @$scopeip ‘ [¥] Follow curr Name Value
- S . User
0003047b 8b700cC mov esi, dword ptr [eax+0Ch] E| SIMD
0003047¢ €98a000000 jmp 0003050d [] FloatingPo
00030483 8b4630 mov eax, dword ptr [esi+30h]
00030486 33c9 xor ecx, ecx Rd
[« | D]
Breakpoints A2 @l Command v 2
Location Line Type Hit Count Fu| ©:000> dx -rl ((ntdll!_PEB_LDR_DATA *)0@x77007be®)
V1@ 0x762C2EF0 Software 1 “KERNELBASE! ((ntdl1l! PEB LDR DATA *)@x77007be®) : @x77007bed
[+0x000] Length : @x30 [Type: unsigned long]
1@ 0x30000 Hardware E: 1 196608 [+0x004] Initialized : ox1 [Type: unsigned char]
V1@ 0x30467 Software 1 8 20X0 [Type: void *]
Type: _LIST_ENTRY]
[Type: _LIST_ENTRY]
[+6x01c] InInitializationOrderModulelList [Type: _LIST_ENTRY]
[+0x024] EntryInProgress : 0x0 [Type: void *]
[+0x028] ShutdownInProgress : ©x@ [Type: unsigned char]
[+0x02c] ShutdownThreadId : ©x@ [Type: void *]

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 129

On this slide, the content in the command window was generated by clicking the “Ldr” link in the PEB
structure shown on the previous slide.

© 2022 Anuj Soni 129

Technet24

.o L] L] o L]
Each Module List Contains Two Pointers, and the Flink Points to
L] L]
a Member in the First LDR_DATA_TABLE_ENTRY Structure
0:000> dt _PEB 0:000> dt -r1 _LDR_DATA_TABLE_ENTRY
- one per process = = = = one per module
ntdll!_PEB perp ntdll!_ LDR_DATA_TABLE_ENTRY P
+0x000 InheritedAddressSpace : UChar ¥0x000 InLoadOrderLinks - |_LIST_ENTRY
L CEC : +0x000 Flink : Ptr32 _LIST_ENTRY
+0x004 Blink : Ptr32 _LIST ENTRY
) _ d FOX008 InMemoryorderLinks '. __LIST_ENTRY
+0x008 ImageBaseAddress : Ptr32 Void +0x000 Flink : Ptr32 _LIST_ENTRY
+0x00c Ldr [Ptr32 _PEB_LDR_DATA | +0x004 Blink : Ptr32 _LIST_ENTRY
6 5555 g il e TR TR | +0x010 InInitializationOrderLinks : _LIST_ENTRY
5 > =[r 3 .
B R — +6x000 Flink : Ptr32 _LIST_ENTRY
FPEB_LDR_ . +0x004 _B1ink p | pase : Ptr32 _LIST_ENTRY
+0x000 Length : Uint4B ox018 ID11B . Ptr32 Void
+0x004 Initialized : UChar +ox 33E] address * r ol
+0x008 SsHandle . pPtr32 Void +0x01c Entr‘yP01nt : Ptr32 Void
+0x00c InLoadOrderModulelist : _LIST ENTRY +0x020 SizeOfImage : Uint4s
+0x000 Flink Iptra2 L1sT ENTRY } +0x024 FullDl1lName : _UNICODE_STRING
+0x004 Blink : Ptr32 _LIST_ENTRY +0x000 Length : Uint2B
+0x014 InMemoryOrderModuleList : LIST ENTRY +0x002 MaximumLength ¢ Uint2B
+0x000 Flink :|Ptr32 _LIST_ENTRY | +0x004 Buffer mioqule ° Ptr32 Wchar
+0x004 Blink : Ptr32 _LIST_ENTRY +0x02c BaseDllNameI name - —UNICODE_STRING
+0x01c InInitializationOrderModulelList : _LIST_ENTRY +0x000 Length : Uint2B
+0x000 Flink : Ptr32 _LIST_ENTRY +0x002 MaximumLength : Uint2B
+0x004 Blink : Ptr32 _LIST_ENTRY +0x004 Buffer : Ptr32 Wchar
WinDBG provides excellent visibility into Windows data structures.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

The WinDbg screenshots on this slide show generic process structures that are not tied to a target process. The
goal is to explain the relationship between a module list (e.g., InLoadOrderModuleList) and the

LDR_DATA _TABLE ENTRY structure, which contains information about a single module loaded into a
process.

All module list members in the PEB contain the head (i.e., start) of a doubly linked list that tracks loaded
modules:

InLoadOrderModuleList: List of modules in the order in which they were loaded.
InMemoryOrderModuleList: List of modules in the order in which they were placed in memory.
InlnitializationOrderModuleList: List of modules in the order in which they were initialized.

The differences between these lists are irrelevant to our analysis. We must simply understand that each list tracks
loaded modules. Shellcode will typically choose one list to traverse and identify the file names of loaded modules.
These file names are then hashed as one part of an API hashing algorithm.

The example on this slide focuses on the InLoadOrderModuleList member, but the details that follow also apply
to the other two double-linked lists.

InLoadOrderModuleList is a structure of type LIST _ENTRY. In the graphic on the bottom-left, observe that the
LIST ENTRY structure contains two members—a forward pointer to the next LIST ENTRY structure (i.e.,
Flink) and a backward pointer to the previous LIST ENTRY structure (i.e., Blink). As an example, we will
follow the Flink. The Flink points to another LIST ENTRY structure contained within an

LDR DATA TABLE ENTRY structure. The LDR_ DATA TABLE ENTRY structure contains information
about one loaded DLL, and each DLL tracked by InLoadOrderModuleList has an LDR DATA TABLE ENTRY
structure associated with it. Among its many members is the DIIBase, which specifies the base address in memory
of the module. The base address is often used by shellcode as a starting point to find the export directory. Also
worth noting is the BaseDlIName, which specifies the name of the loaded DLL. This member is typically
accessed by shellcode to acquire the address of the Buffer that stores a DLL name. The DLL name is often
combined with a function name to perform API hashing.

130 © 2022 Anuj Soni

As we discussed earlier, the dt command displays information about the specified data type. If you query
information about a specific process’s PEB, the format of the command is dt PEB <PEB address>. If we want
to view generic information about the PEB (i.e., not specific to a process) we simply omit the last parameter. In
fact, we can obtain generic information about many Windows structures using the command format dt
<structure>. On this slide, we use the generic form of this command to query information about the PEB and its
members.

Note that slide describes 32-bit structures, but the same commands will produce the 64-bit structures when a 64-
bit process is loaded into WinDbg Preview. Also, all structures on this slide have additional members not listed.
For a full list of structure members, type the specified commands in WinDbg Preview. You can also retrieve
more information for each structure by searching for the structure name at https://www.aldeid.com/wiki/.

© 2022 Anuj Soni 131

Technet24

At Offset 483, ESI Contains the Address of the InLoadOrderLinks

Member Within an LDR_DA

_TABLE_ENTRY Structure

Disassembly X ¥ Registers X
Address: | @$scopeip Follow current instru: Name Value
User
0003047b 8b700C mov esi, dword ptr |eax+0Ch] E SIMD
0003047¢ €982000000 jmp 0003050d] FloatingPo
00030483 8b4630 mov eax, dword ptr [esi+30h] ds:002|
00030486 33c9 xor ecx, ecx ~
Kl]
Breskpoints > 2 5
Location Line Type Hit Count Fu| ©:000> r esi |
V1@ ox762c26F0 Software 1 KERNELBASELY| | ©51=02603680
0:000> dt -rl _LDR_DATA_TABLE_ENTRY 02603680
@ 0x1D0000 Hardware £ 1 1900544 ntd1l! LDR_DATA TABLE_ENTRY
@ 0x30000 Hardware E: 1 196608 +0x000 InLoadOrderLinks : _LIST_ENTRY [©x2603578 - ©x77007be
@ 030467 Software ; +0x000 Flink : 0x@2603578 _LIST_ENTRY [0x2603a
+0x004 Blink : @x77@@7bec _LIST_ENTRY [0x26036
+0x008 InMemoryOrderLinks : _LIST_ENTRY [©x2603580 - 0x77007
+0x000 Flink : 0x02603580 _LIST_ENTRY [©x2603a
+0x004 Blink : Ox77007bf4 _LIST_ENTRY [0x2603€
Kl] +0x010 InInitializationOrderLinks : _LIST_ENTRY [©x@ - 0x0]
Stack | Breakpoints +0x000 Flink ¢ (null)
+0x004 Blink : (null)
Memory v 2 X +0x018 D11lBase : 0x00400000 Void
e PP +0x01c EntryPoint : 0x00403228 Void
+0x020 SizeOfImage : ©x31000
+0x024 FullDllName : _UNICODE_STRING "C:\Users\REM\Deskt
o o +0x000 Length 1 OXx62
The MOV instruction places the +0x602 Maxinunlength : 0x64
+0x004 Buffer : 0x02602194 "C:\Users\REM\Desktc
B DLLN B ff Q EAX +0x02c BaseDllName : _UNICODE_STRING "hd53@56.exe"
ase ame Buffer (ptr) into . T et e
+0X00, =t gth @ 0x18
+axeei Buffer I 1 0x026021e0 "hd53056.exe"
T

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 132

Executing the MOV instruction at offset 483 places a pointer to the module name into EAX.

Observe that offset 0x30 from the InLoadOrderLinks member is within the BaseDlIName member—

specifically, it brings us to the Buffer component of the BaseDIIName, which specifies the pointer to a
module name.

132 © 2022 Anuj Soni

After Executing the MOV at Offset 483, Confirm EAX Contains

a Pointer to a Module Name Using the Memory View

Disassembly X

d

Address: l@$560peip ‘ Follow current instruction

00030483 8b4630 mov eax, dword ptr [esi+36h] E]
00030486 33c9 xor ecx, ecx
00030488 8b5e2c mov ebx, dword ptr [esi+2Ch] E]
[« | D]
Breakpoints v 2 X
Location Line Type Hit Count Function |ZI
V] @ ox762C2EF0 Software 1 KERNELBASE!VirtualAlloc E

Stack | Breakpoints ‘

Memory

Address: | @$retreg |

00000000 026021EQ 68 00 64 00 35 00 33 00 30 00 35 00 36 00 2E @0 h.d.5.3.0.5.6.
00000000 026021F0 65 00 78 00 65 00 00 00 43 @0 3A @0 5C 00 55 00 e.x.e...C.:.\.U
00000000 02602200 73 00 65 00 72 0@ 73 @@ 5C @0 52 @0 45 00 4D 00 s.e.r.s.\.R.E.M.

]

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Print the contents of EAX with the command 'r eax’. Then, copy and paste the resulting address to the
Address input field in the Memory window and press Enter on the keyboard. Alternatively, you can just
type @Sretreg in the Address input field and press Enter on the keyboard.

The hexdump should show a loaded module name in the ascii representation of the displayed content. The
first time the MOV instruction is executed, EAX will contain a pointer to the target executable.

© 2022 Anuj Soni 133

Technet24

The Loop at Offset 4ad Iterates over Each Character in a

Module Name to Compute a ROR 13 Hash of the Module Name

00000483
00000486
00000488
0000048b
0000048d
00000491
00000494
00000498
0000049c¢
0000049e
000004a0
000004a3
000004a5
000004a7
000004a9

MoV
XOR
MoV
MoV
MoV
Mov
Mov
MoV
TEST
JZ
SHR
XOR
TEST
JZ
MoV

EAX,
ECX,
EBX,
ESI,
dword ptr [ESP
EAX, dword ptr
EBP, dword ptr
dword ptr [ESP
EBP, EBP
LAB_0000050d
EBX, 0x10

EDI, EDI

EBX, EBX

LAB 000004cs8
EBP,

dword ptr
ECX

dword ptr
dword ptr

dword ptr

[EST + 0x30]

[EST + Ox2c]
[ESI]

+ local_c], EAX
[EDX + 0x3c]
[EAX + EDX*0x1 + 0x78]

ntdll1!

0:000> dt -r1 _LDR_DATA_TABLE_ENTRY
_LDR_DATA_TABLE_ENTRY
raeriein 2

+0x02c BaseD11Name
0x000 Length
+0x002 MaximumLength
0x004 Buffer

: _UNICODE_STRING
: Uint2B

: Uint2B

: Ptr32 Wchar

+ local_10], EBP

[ESP + local_c]

EBP contains a pointer to a module name.
EBX contains the length of the module name.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

000004ad
000004b0
000004b3
000004b5
000004b8
000004ba

000004bd
000004bf
000004cO
000004c2

MoV
ROR
CMP
MOVSX

LAB_000004ad
AL, byte ptr [EDI + EBP*0x1]
ECX, Oxd
AL, Ox61
EAX, AL
LAB 000004bd
ECX, -0x20

LAB_000004bd
ECX, EAX
EDI
EDI, EBX
LAB_000004ad

134

WinDbg is great for probing the PEB and related structures, but for strict static code analysis, Ghidra is
our primary interface. Ghidra excels at showing the flow of execution (e.g., visual arrows to identify jumps
and loops) and is optimal for entering comments and renaming functions.

As described on the slide, the loop beginning at offset 4ad generates a ROR13 hash of a module name.

134

© 2022 Anuj Soni

After the MOV Instruction at Offset 494 is Executed, EBP

Contains the VA of the Module’s Export Directory

0000047b MoV ESI, dword ptr [EAX + 0xc] The address of InLoadOrderLinks within
0000047e JMP LAB_0000050d LDR_DATA_TABLE_ENTRY is placed into ESI.
00000504 Mov EDX, dword ptr [ESI + 0x18] | The module’s base address (DlIBase member within
00000510 TEST EDX, EDX LDR_DATA_TABLE_ENTRY) is placed into EDX.
00000512 JNZ LAB_ 00000483

LAB 00000483 XRE

At offset ox3c from the base address is the
e_lfanew field, which specifies the RVA of
the PE header.

00000491 MoV EAX, dword ptr [EDX + 0x3c]
00000494 MOV EBP, dword ptr [EAX + EDX*0x1l + 0x78]

At offset 0x78 from the PE header is the
Export Directory RVA (for 32-bit
executables).

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 135

As described in the text on this slide, the instructions shown obtain access to the address of the module’s

export directory. Recall that as part of the API hashing process, shellcode typically iterates through a
module’s exported functions and hashes each function name.

© 2022 Anuj Soni 135

Technet24

The Instruction at Offset 4e0 Places the Virtual Address (VA) of

an Exported Function Name (i.e., ptr to a string) into EBP

000004c8 MOV =a¥, dword ptr [EDX + EBRP*0xl + IMAGE EXPORT DIRECTORY
000004cc XOR EBX, EBX +0x000 Characteristics
000004ce MOV EDI, dword ptr [EDX + EBP*0x1 + 0x18] +0x004 TimeDateStamp
000004d2 ADD EAX, EDX +0x008 MajorVersion

+0x00a MinorVersion
+0x00c Name
+0x010 Base

000004d4 MOV dword ptr [ESP + local c], EDI
000004d8 TEST EDI, EDI

000004da Jz LAB 00000504 +0x014 NumberOfFunctions
+0x018 NumberOfNames
\B 000004dc XR| +0x01lc AddressOfFunctions

+0x020 AddressOfNames

000004dc MOV EEP, dword ptr [EAX])
+0x024 AddressOfNameOrdinals

000004de XOR EDI, EDI
000004e0 ADD EBP, EDX

Export Directory Table > Name Pointer Table = Export Name Table > Export Ordinal Table > Export Address Table

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 136

At offset 4¢8, EDX contains the VA of a module and EBP contains the RVA of the module’s export
directory—adding these values yields the VA of the export directory. As a reminder, the structure of a 32-
bit export directory is shown on this slide. At offset 0x20 within the export directory is the
AddressOfNames member, which contains the RVA of the name pointer table. The name pointer table

contains RVAs into the export name table, which contains the string names of exported functions.
Therefore, the instruction at offset 4c8 places the Name Pointer Table RVA into EAX.

At offset 4d2, the image base (EDX) is added to the RVA of the name pointer table to place the VA of the
name pointer table into EAX.

At offset 4dc, the first RVA within the name pointer table is placed into EBP. At offset 4¢0, the VA of a
string within the export name table is placed into EBP.

The text on the very bottom of this slide serves as a reminder of the process for resolving a function via the
export directory table.

136 © 2022 Anuj Soni

IMAGE EXPORT DIRECTORY

+0x000
+0x004
+0x008
+0x00a
+0x00c
+0x010
+0x014
+0x018
+0x01c
+0x020
+0x024

Characteristics
TimeDateStamp
MajorVersion
MinorVersion

Name

Base
NumberOfFunctions
NumberOfNames
AddressOfFunctions
AddressOfNames
AddressOfNameOrdinals

00000084
00000089

CALL resolve_api

MoV EBX, EAX

000000eb

If the Calculated APl Hash Matches the Argument, the Address
is Resolved and Placed into EAX
LAB_00000522 XRE
00000522 MoV ESI, dword ptr [ESP + local_10]
00000526 MOV EA¥X, dword ptr [ESI + EDX*0xl +
0000052a LEA EAX, [EAX + EBX*0x2]
0000052d MOVZX ECX, word ptr [EAX + EDX*0x1]
00000531 MOV EA¥X, dword ptr [ESI + EDX*0xl + Oxlc]
00000535 LEA EAX, [EAX + ECX*0x4]
00000538 MOV EAX, dword ptr [EAX + EDX*0x1]
0000053b ADD EAX, EDX
0000053d JMP LAB 0000051a
0000051a POP EDI
0000051b POP ESI
0000051c POP EBP
0000051d POP EBX
0000051e ADD ESP, 0x10
00000521 RET

CALL EBX

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

If the calculated API hash matches the one passed as an argument, then the shellcode resolves the
appropriate function address in preparation for executing the function. While we will not discuss each
remaining instruction in detail, observe that the instruction at offset 526 accesses the
AddressOfNameOrdinals member, located at offset 0x24 within the export directory. Dereferencing
this field provides access to the export ordinal table. As we discussed earlier in Section 1, this is one of the
final steps to acquire a function’s address.

Before the function exits, the code places a resolved function’s address in EAX.

As shown in the code excepts on the bottom-right of this slide, we can rename the function that resolves
APIsto resolve api. When a function address is returned, the shellcode eventually executes the
function as needed.

The text on the very bottom of this slide serves as a reminder of the process for resolving a function via the
export directory table.

138

© 2022 Anuj Soni

Export Directory Table > Name Pointer Table > Export Name Table - Export Ordinal Table > Export Address Table

138

Technet24

Apply Data Types within Ghidra for Easier Reading (1)

00000491 MoV EAX, dword ptr [EDX + 0x3cl 32 puvarl0 = *puvarlO;
00000494 MOV EBP, dword ptr [EAX + EDX*0x1 + 0x78] 33 ivar3 = *(*(ivar5 + 0x3c) + 0x78 + ivard
00000498 MOV dword ptr [ESP + local_10], EBP 34 |} while Edit Function Signature
0000049¢c TEST EBP, EBP 35 |uvarll
0000049e Jz LAB_0000050d 36 |if (*py Rename Variable L
000004a0 SHR EBX, 0x10 37 do { Retype Variable Ctrl+L &
29 21372
¢9 Data Type Chooser X
@ Data Type Chooser Dialog X
: ! Choose the data type you wish to use.
it _&; 2.3 Data Types "
E li] winapi_32 @DataT e Chooser Dialo X
Cancel Q‘ - = winapi_32

_IMAGE_EXPORT_DIRECTORY
_IMAGE_EXPORT_DIRECTORY * o
IMAGE_EXPORT_DIRECTORY
\/

° s

€ dWs_812 84
2.[/ winnt h =
Filter: | IMAGE_EXPORT_DIRECTORY ° ®| {2
o OK |\| Cancel

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 139

With an understanding of the Windows and PE file data structures referenced in this code, we can apply
the relevant data types in the Decompiler output. Apply data types by following the steps on this slide. In
this example, we apply a pointer to the IMAGE EXPORT DIRECTORY structure to a variable in our
decompiler output. Note that if the structure of interest is not an argument or assigned to a variable, we
may not be able to assign the relevant data type.

© 2022 Anuj Soni 139

Apply Data Types within Ghidra for Easier Reading (2)

0000048d MoV dword ptr [ESP + local_cl, EAX 18 | int in FS_OFFSET;
00000491 EAX, dword ptr [EDX + 0x3c] 19 | _IMAGE_EXPORT_DIRECTORY *iVar3;

0MoMd
000004b0 ROR ECX, 0xd 32 puvarl0 = *puvarlO;
000004b3 CMP AL, 0x61 33 ivar3 = *(*(ivar5 + 0x3c) + 0x78 + ivar5);

000004b5 MOVSX EAX, AL 34 } while (ivar3 == 0x0);

000004c4 MOV EBP, dword ptr [ESP + local 10] 4 1 17
- 44 } while (uvarll < *puVarl >> 0x10);
LAB_000004c8 45 }

000004c8 MOV EAX, dword ptr [EDX + EBP*0x1 + 0x20] 46 uvarg8 = 0;

000004cc XOR EBX, EBX a7 uvarll = *(&ivar3->NumberOfNames + ivar5) ;

000004ce MOV EDI, dword ptr [EDX + EBP*0x1 + 0x18] 48 pivaré = *(&ivar3->AddressOfNames + ivar5) + ivar5;

000004d2 ADD EAX, EDX 49 } while (uvarll == 0);
00000522 MOV ESI, dword ptr [ESP + local 10] 60 if (uvarl2 + uvar? param_1) {
00000526 MOV EAX, dword ptr [ESI + EDX*0x1 + 0x24] 61 return *(*(&ivar3->AddressOfFunctions + ivar5) +
0000052a LEA EAX, [EAX + EBX*0x2] 62 * (* (&§iVar3->AddressOfNameOrdinals + ivar5) + uVar8 * 2 + ivar5) * 4 + ivar5) +
0000052d MOVZX ECX, word ptr [EAX + EDX*0x1] 63 ivar5;
00000531 MOV EAX, dword ptr [ESI + EDX*0x1 + Oxlc] 64 }
00000535 LEA EAX, [EAX + ECX*0x4] 65 uvar8 = uvar8 + 1;
00000538 MOV EAX, dword ptr [EAX + EDX*0x1] 66 } while (uvar8 < uvarill);
0000053b ADD EAX, EDX 67 |} while(true);

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 140

After applying the IMAGE _EXPORT DIRECTORY pointer data type, the decompiler output updates to
reflect this structure’s members.

140 © 2022 Anuj Soni

Technet24

00000000

00000005
00000006
00000008
0000000d
00000013
00000018
0000001d
0000001e
00000023
00000024
00000029
0000002¢c

CALL

POP
Mov
ADD
ADD
PUSH
PUSH
PUSH
PUSH
PUSH

LAB_ 00000005 ~ g

LAB_00000005

/* DISPLAY WARNING: Type casts are NOT being printed */

loid UndefinedFunction_ 00000000 (void)

FUN_0000002d (0x53f,0x30627745, &DAT_0000eb3f,5,1) ;
return;

Apply Data Types within Ghidra for Easier Reading (3)

* Functions must be fully defined to rename and retype arguments and
variables.

* A gray Decompiler background indicates a function is not fully defined.

ERX Processor Manual...
EBX,

EAX, Processor Options...
EBX,

ox1 Create Function

0x5 Create Thunk Function
EBX=! —

0x30627745

EAX=>DAT_0000053£
FUN_0000002d
ESP, 0x14

FHRFFFEIIEFFFIRRERFFFIRE R FFFEEEEFHHET A
* FUNCTION
e ok ok ok ok ok ook ok ok ok ok ko ok ok ok ok ok ko ok ok ok ok ko ok
undefined FUN_00000005 ()

undefined AL:1 <RETURN>

FUN_00000005

00000005 POP EAX

00000006 Mov EBX, EAX

00000008 ADD EAX, 0x53a

0000000d ADD EBX, Oxeb3a

00000013 PUSH 0x1

00000018 PUSH 0x5

/* DISPLAY WARNING: Type casts

void FUN_00000005 (void)

{
int unaff_ retaddr;

FUN_0000002d
return;
}

are N
Edit Function Signature
Rename Variable L
Retype Variable Ctrl+L

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

If you encounter a scenario where Ghidra does not give you an option to retype or rename an argument or
variable, it may be because the function in question is not fully defined. Another indication of this is a
grayed out Decompiler background. To define a function, right click at the beginning of the function in the
Listing view and choose Create Function (or type the ”F” key).

© 2022 Anuj Soni

141

141

Course Roadmap

« FOR710.1: Code * Analyzing Code Deobfuscation

Deobfuscation and Execution e Lab I.I: Investigating Code Deobfuscation

L Using Steganographic Techniques
* FOR710.2: Encryption in

* Identifying Program Execution

Malware . * Lab |.2: Analyzing Malicious Program
* FOR710.3: Automating Execution

Malware Analysis * Understanding Shellcode Execution
 FOR710.4: Correlating * Lab 1.3: Analyzing Shellcode Execution

Malware and Building Rules

SA.N.S FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 142

This page intentionally left blank.

142 © 2022 Anuj Soni

Technet24

SANS DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

Lab 1.3

Analyzing Shellcode Execution

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 143

Please begin Lab 1.3 now.

© 2022 Anuj Soni 143

Analyzing Shellcode Execution: Module Objectives, Revisited

v'Identify and extract shellcode during program execution.

v'Understand how shellcode uses hashing algorithms to resolve APIs.
v'Understand the Process Environment Block (PEB) and its components.
v'Gain familiarity with WinDBG for debugging.

v'Use WinDbg to explore the PEB and related data structures.

v'Apply an analysis workflow that involves Ghidra, x32dbg, and WinDbg.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 144

This page intentionally left blank.

144 © 2022 Anuj Soni

Technet24

Course Roadmap

« FOR710.1: Code * Analyzing Code Deobfuscation

Deobfuscation and Execution * Lab 1.1: Investigating Code Deobfuscation
. . Using Steganographic Techniques
* FOR710.2: Encryption in

¢ |dentifying Program Execution

Malware . * Lab 1.2: Analyzing Malicious Program
* FOR710.3: Automating Execution

Malware Analysis * Understanding Shellcode Execution
 FOR710.4: Correlating * Lab 1.3: Analyzing Shellcode Execution

Malware and Building Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 145

This page intentionally left blank.

© 2022 Anuj Soni 145

