
THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

FOR710 | REVERSE-ENGINEERING MALWARE: ADVANCED CODE ANALYSIS

710.2

Encryption in Malware

Technet24

�������$QXM�6RQL���$OO�ULJKWV�UHVHUYHG�WR�$QXM�6RQL�DQG�RU�6$16�,QVWLWXWH��

3/($6(�5($'�7+(�7(506�$1'�&21',7,216�2)�7+,6�&2856(:$5(�/,&(16(�$*5((0(17�
��&/$���&$5()8//<�%()25(�86,1*�$1<�2)�7+(�&2856(:$5(�$662&,$7('�:,7+�7+(�6$16�
&2856(��7+,6�,6�$�/(*$/�$1'�(1)25&($%/(�&2175$&7�%(7:((1�<28��7+(�³86(5´��$1'�
6$16�,167,787(�)25�7+(�&2856(:$5(��<28�$*5((�7+$7�7+,6�$*5((0(17�,6�
(1)25&($%/(�/,.(�$1<�:5,77(1�1(*27,$7('�$*5((0(17�6,*1('�%<�<28��

:LWK�WKLV�&/$��6$16�,QVWLWXWH�KHUHE\�JUDQWV�8VHU�D�SHUVRQDO��QRQ�H[FOXVLYH�OLFHQVH�WR�XVH�WKH�&RXUVHZDUH�
VXEMHFW�WR�WKH�WHUPV�RI�WKLV�DJUHHPHQW��&RXUVHZDUH�LQFOXGHV�DOO�SULQWHG�PDWHULDOV��LQFOXGLQJ�FRXUVH�ERRNV�
DQG�ODE�ZRUNERRNV��DV�ZHOO�DV�DQ\�GLJLWDO�RU�RWKHU�PHGLD��YLUWXDO�PDFKLQHV��DQG�RU�GDWD�VHWV�GLVWULEXWHG�E\�
6$16�,QVWLWXWH�WR�8VHU�IRU�XVH�LQ�WKH�6$16�FODVV�DVVRFLDWHG�ZLWK�WKH�&RXUVHZDUH��8VHU�DJUHHV�WKDW�WKH�
&/$�LV�WKH�FRPSOHWH�DQG�H[FOXVLYH�VWDWHPHQW�RI�DJUHHPHQW�EHWZHHQ�6$16�,QVWLWXWH�DQG�\RX�DQG�WKDW�WKLV�
&/$�VXSHUVHGHV�DQ\�RUDO�RU�ZULWWHQ�SURSRVDO��DJUHHPHQW�RU�RWKHU�FRPPXQLFDWLRQ�UHODWLQJ�WR�WKH�VXEMHFW�
PDWWHU�RI�WKLV�&/$����

%<�$&&(37,1*�7+,6�&2856(:$5(��86(5�$*5((6�72�%(�%281'�%<�7+(�7(506�2)�7+,6�&/$��
%<�$&&(37,1*�7+,6�62)7:$5(��86(5�$*5((6�7+$7�$1<�%5($&+�2)�7+(�7(506�2)�7+,6�&/$�
0$<�&$86(�,55(3$5$%/(�+$50�$1'�6,*1,),&$17�,1-85<�72�6$16�,167,787(��$1'�7+$7�
6$16�,167,787(�0$<�(1)25&(�7+(6(�3529,6,216�%<�,1-81&7,21��:,7+287�7+(�
1(&(66,7<�2)�3267,1*�%21'��63(&,),&�3(5)250$1&(��25�27+(5�(48,7$%/(�5(/,()���

,I�8VHU�GRHV�QRW�DJUHH��8VHU�PD\�UHWXUQ�WKH�&RXUVHZDUH�WR�6$16�,QVWLWXWH�IRU�D�IXOO�UHIXQG��LI�DSSOLFDEOH��

8VHU�PD\�QRW�FRS\��UHSURGXFH��UH�SXEOLVK��GLVWULEXWH��GLVSOD\��PRGLI\�RU�FUHDWH�GHULYDWLYH�ZRUNV�EDVHG�XSRQ�
DOO�RU�DQ\�SRUWLRQ�RI�WKH�&RXUVHZDUH��LQ�DQ\�PHGLXP�ZKHWKHU�SULQWHG��HOHFWURQLF�RU�RWKHUZLVH��IRU�DQ\�
SXUSRVH��ZLWKRXW�WKH�H[SUHVV�SULRU�ZULWWHQ�FRQVHQW�RI�6$16�,QVWLWXWH��$GGLWLRQDOO\��8VHU�PD\�QRW�VHOO��UHQW��
OHDVH��WUDGH��RU�RWKHUZLVH�WUDQVIHU�WKH�&RXUVHZDUH�LQ�DQ\�ZD\��VKDSH��RU�IRUP�ZLWKRXW�WKH�H[SUHVV�ZULWWHQ�
FRQVHQW�RI�6$16�,QVWLWXWH��

,I�DQ\�SURYLVLRQ�RI�WKLV�&/$�LV�GHFODUHG�XQHQIRUFHDEOH�LQ�DQ\�MXULVGLFWLRQ��WKHQ�VXFK�SURYLVLRQ�VKDOO�EH�
GHHPHG�WR�EH�VHYHUDEOH�IURP�WKLV�&/$�DQG�VKDOO�QRW�DIIHFW�WKH�UHPDLQGHU�WKHUHRI��$Q�DPHQGPHQW�RU�
DGGHQGXP�WR�WKLV�&/$�PD\�DFFRPSDQ\�WKLV�&RXUVHZDUH��

6$16�DFNQRZOHGJHV�WKDW�DQ\�DQG�DOO�VRIWZDUH�DQG�RU�WRROV��JUDSKLFV��LPDJHV��WDEOHV��FKDUWV�RU�JUDSKV�
SUHVHQWHG�LQ�WKLV�&RXUVHZDUH�DUH�WKH�VROH�SURSHUW\�RI�WKHLU�UHVSHFWLYH�WUDGHPDUN�UHJLVWHUHG�FRS\ULJKW�
RZQHUV��LQFOXGLQJ��

$LU'URS��$LU3RUW��$LU3RUW�7LPH�&DSVXOH��$SSOH��$SSOH�5HPRWH�'HVNWRS��$SSOH�79��$SS�1DS��%DFN�WR�0\�
0DF��%RRW�&DPS��&RFRD��)DFH7LPH��)LOH9DXOW��)LQGHU��)LUH:LUH��)LUH:LUH�ORJR��L&DO��L&KDW��L/LIH��L0DF��
L0HVVDJH��L3DG��L3DG�$LU��L3DG�0LQL��L3KRQH��L3KRWR��L3RG��L3RG�FODVVLF��L3RG�VKXIIOH��L3RG�QDQR��L3RG�
WRXFK��L7XQHV��L7XQHV�ORJR��L:RUN��.H\FKDLQ��.H\QRWH��0DF��0DF�/RJR��0DF%RRN��0DF%RRN�$LU��0DF%RRN�
3UR��0DFLQWRVK��0DF�26��0DF�3UR��1XPEHUV��26�;��3DJHV��3DVVERRN��5HWLQD��6DIDUL��6LUL��6SDFHV��
6SRWOLJKW��7KHUH¶V�DQ�DSS�IRU�WKDW��7LPH�&DSVXOH��7LPH�0DFKLQH��7RXFK�,'��;FRGH��;VHUYH��$SS�6WRUH��DQG�
L&ORXG�DUH�UHJLVWHUHG�WUDGHPDUNV�RI�$SSOH�,QF��

303��DQG�30%2.��DUH�UHJLVWHUHG�WUDGHPDUNV�RI�30,�

62)�(/.��LV�D�UHJLVWHUHG�WUDGHPDUN�RI�/HZHV�7HFKQRORJ\�&RQVXOWLQJ��//&��8VHG�ZLWK�SHUPLVVLRQ�

6,)7��LV�D�UHJLVWHUHG�WUDGHPDUN�RI�+DUELQJHUV��//&��8VHG�ZLWK�SHUPLVVLRQ�

*RYHUQLQJ�/DZ��7KLV�$JUHHPHQW�VKDOO�EH�JRYHUQHG�E\�WKH�ODZV�RI�WKH�6WDWH�RI�0DU\ODQG��86$��

$OO�UHIHUHQFH�OLQNV�DUH�RSHUDWLRQDO�LQ�WKH�EURZVHU�EDVHG�GHOLYHU\�RI�WKH�HOHFWURQLF�ZRUNERRN�

)25���B�B+��B��

FOR710 Reverse-Engineering Malware: Advanced Code AnalysisFOR710.2 Reverse-Engineering Malware: Advanced Code Analysis

© 2022 Anuj Soni | All Rights Reserved | Version H02_05

Encryption in Malware

Section FOR710.2, also known as Section 2 of the FOR710. This section discusses the use of encryption in
malware.

FOR710.2 materials are created and maintained by Anuj Soni. To learn about Anuj's background and
expertise, please see https://www.sans.org/instructors/anuj-soni. You can visit his blog at
https://malwology.com/ and follow him on Twitter at https://twitter.com/asoni.

© 2022 Anuj Soni 1

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 2

• Malware uses encryption to:
• Encrypt files.

• Protect keys.

• Obfuscate configuration data.

• Hide sensitive strings.

• Protect C2 communications.

• Proficient reverse engineers must be prepared to identify the use of
encryption, its purpose, and specific algorithms.

Malware Commonly Uses Encryption to Protect Code and Data

Malware commonly uses encryption to obfuscate code and data. For example, ransomware uses encryption
to prevent access to file content and protect the keys required to decrypt files. Malware also uses
encryption to obfuscate strings, configuration data, and content exchanged via command-and-control.

Proficient reverse engineers must be prepared to identify the use of encryption and its purpose. This
requires an understanding of basic cryptography principals and familiarity with specific crypto algorithms,
which will be discussed in this section.

2 © 2022 Anuj Soni

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

S E C T I O N 2

• Encryption Essentials
• Lab 2.1: Encryption Essentials - Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

3

• FOR710.1: Code
Deobfuscation and Execution

• FOR710.2: Encryption in
Malware

• FOR710.3: Automating
Malware Analysis

• FOR710.4: Correlating
Malware and Building Rules

• Encryption Essentials
• Lab 2.1: Encryption Essentials: Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

© 2022 Anuj Soni 3

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Encryption Essentials

4

4 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 6

• Plaintext is unencrypted data and ciphertext is encrypted data.

• An algorithm takes plaintext as input and performs rounds (i.e.,
iterations) of operations to produce ciphertext.

• A key is combined with an algorithm to scramble plaintext into
ciphertext.

• A nonce:
• A “number used once”, and it is used by algorithms to add variation so that a

message encrypted with the same key does not produce the same ciphertext.

• It is not necessarily random, but it should only be used once.

• An Initialization Vector is like a nonce, but it must be random.

Key Terms for Our Discussion

Before we discuss specific approaches to encryption, we must understand some key terms.

Plaintext refers to unencrypted data. Ciphertext refers to the encrypted plaintext.

The algorithm performs mathematical operations and, with the help of a key, scrambles the original
content into ciphertext. The algorithm should be robust such that an attacker cannot reverse the process
and obtain the plaintext without the key. The algorithm is assumed to be public.

One way to think of rounds is to consider the metaphor of repainting a car. Multiple rounds of operations
are like applying multiple coats of paint to hide the original color. The first coat might not be enough to
hide the original, and with each round it becomes harder and harder to see the original layer.

A key is data (usually random) that is combined with an algorithm to convert plaintext into encrypted
content. The key should be kept secret.

A nonce is a “number used once”. As the name implies, it should not be reused (i.e., it should be unique).
While it does not need to be random, it often is. Its purpose is to add some variation to the encryption
process so that an identical message encrypted with the same algorithm and same key does not produce the
same ciphertext. This prevents a category of attacks known as “replay attacks”, where an attacker could
reuse encryption communications or extract some meaning from it. The nonce does not need to be a secret,
but as mentioned earlier, it cannot be reused.

An Initialization Vector (IV) is a random value that provided as input to an encryption algorithm with the
key. It is used to provide additional randomness to the encryption process, like the goal of a nonce. The IV
must be random, but it does not need to be a secret.

6 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 7

• The key is referred to as a “shared secret”.

• Examples you may counter during malware analysis include:
• AES (Rijndael).

• Salsa20.

• ChaCha20.

• RC4.

• Symmetric encryption algorithms are relatively fast and suitable for
encrypting large volumes of data.

• In ransomware, symmetric encryption algorithms are used to encrypt
files.

Symmetric-Key Encryption Algorithms Use the Same Key to
Encrypt and Decrypt Data

The main disadvantage of symmetric-key
algorithms is the safe distribution of a shared key.

Symmetric encryption is relatively straightforward, but it requires that two communicating parties have the
same key. Sharing this key in a secure manner can be inconvenient and difficult to accomplish. If an
attacker were to intercept the exchange of keys, they would be able to decipher messages between the two
parties.

Asymmetric solutions provide one solution to this problem—we will discuss this topic soon.

© 2022 Anuj Soni 7

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 9

• AES is a 128-bit symmetric block cipher, so 128 bits in = 128 bits out.

• It accommodates key lengths of 128, 192, and 256.

• AES is an SP-network, which means it uses Substitution and
Permutation.
• Substitution: Replaces bytes with other bytes using a lookup table (i.e., S-box).

• Permutation: Rearranges bytes.

• AES uses a key scheduling algorithm, which expands one key into sub-
keys (“round keys”) that are applied to individual rounds of operations.

AES Specifies a Symmetric-Key Algorithm and Block Cipher
Commonly Used in Ransomware to Encrypt Files

The AES substitution box (S-box) is public, so we can use it to identify AES code
embedded in malware.

The Advanced Encryption Standard (AES) is an encryption specification established by the U.S. National
Institute of Standards and Technology (NIST). It specifies the use of the Rijndael block cipher.

AES uses a symmetric-key algorithm to encrypt blocks 128 bits and it can use three key lengths: 128, 192,
and 256 bits. Note that the 128-bit key length is sufficient for most applications, but the other key lengths
are provided for added security. Note that regardless of the key length, the block size is 128 bits—this
means 128 bits of plaintext input results in 128 bits of ciphertext output.

AES is a SP-Network, which means the block cipher involves both substitution and permutation.
Substitution refers to replacing bytes of plaintext with other bytes (based on a lookup table) as one
approach to obfuscate the original bytes. Permutation refers to the process of rearranging, shuffling, or
mixing up bytes as an additional scrambling technique.

When considering substitution, an S-box (substitution-box) takes some bits as inputs and performs
substitutions to output some other bits. The S-box determines the rules for replacing bytes, and it
essentially consults a lookup table. Note that the number of bits input may not match the number of bits
output. You can see the public S-box page on Wikipedia at https://for710.com/aessbox.

AES uses a key scheduling algorithm. A key scheduling algorithm takes a single input key and produces
sub-keys (called “round keys”) that are applied to the individual rounds of operations. The process of
generating multiple sub-keys from a single initial key is called “key expansion”.

© 2022 Anuj Soni 9

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 10

AES Maps 128 Bits of Input Data to a 4-Byte by 4-Byte Grid and
Performs Rounds of Operations

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

Grid bytes

Substitute values

Shift rows

Mix columns

Round key
XOR

1 round

b = byte

10

When operating on 128 bits of data, AES maps the bytes to a 4-byte by 4-byte grid and then performs
various operations against the values in the grid.

AES takes a 128-bit block of data and feeds it through multiple rounds of operations, where each round
consists of substituting bytes (using an S-box) and permutations including shifting rows and mixing
columns. Importantly, each round includes XORing each byte of data with a byte of the round key (as a
derived from the encryption key).

Depending upon the size of the key, different rounds of operations may be applied. For a 128-bit key, AES
uses 10 rounds. For a 192-bit key, AES uses 12 rounds. Finally, for a 256-bit key, AES uses 14 rounds.

For an excellent YouTube video explaining AES, see https://for710.com/ytaes.

Reference:
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-
development#nist-reports-aes

10 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 12

Cipher Block Chaining (CBC) Associates One Block and the
Next and Uses an Initialization Vector (IV)

Encryption
Algorithm

Plaintext

Ciphertext

IV

Encryption
Algorithm

Plaintext

Ciphertext

KeyKey Encryption
Algorithm

Plaintext

Ciphertext

Key

Cipher Block Chaining (CBC) interconnects each encrypted block with the next. As shown on the slide,
the ciphertext from block one is XORed with the plaintext for block two before the second block is
encrypted. Since the first block does not have a block before it, a random Initialization Vector (IV) is used.

The relationship between each block with other blocks and the initialization vector adds additional security
when compared to ECB. For example, two plaintext blocks encrypted with the same key algorithm will
produce different ciphertext blocks. However, there are drawbacks to this mode of operation. The
interconnectedness between blocks means that if an attacker modifies one block, future blocks will be
corrupted, and decryption will not be successful. From a performance perspective there are drawbacks as
well. For example, decrypting a block of ciphertext requires decrypting all prior blocks of data.

CBC mode is an improvement on ECB, but its weaknesses are considered significant.

12 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 14

• ChaCha was published only a year after Salsa as an improvement.

• Both algorithms consist of ARX operations (ADD, Rotate, and XOR).

• Inputs to each algorithm include a 256-bit key, a 64-bit nonce, and a 64-
bit counter or block number.

• Like AES CTR mode, the inputs are provided to the algorithm, and the
output is XORed with the plaintext.

• Malware may use a different number of rounds. For example, if only 12
rounds are used within Salsa, the algorithm is referred to as Salsa12.

Salsa20 and Chacha20 Are Symmetric Stream Ciphers That
Perform 20 Rounds of Operations to Encrypt Data

ChaCha20 is a symmetric stream cipher created by Daniel J. Bernstein and published in 2008. It is based
on the Salsa20 algorithm that he published in 2007. ChaCha20 is considered an improvement upon Salsa20
that adds “diffusion”, which means it makes it harder for the attacker to correlate ciphertext with the
corresponding plaintext. ChaCha20 is generally faster than AES.

ChaCha20 and Salsa20 algorithms both consist of ARX (ADD, Rotate, and XOR instructions) operations.

As inputs, the algorithms take a 256-bit key, a 64-bit nonce, and a 64-bit counter (this is similar to the key
inputs to AES in CTR mode). This produces a 512-bit key stream that is XORed with the plaintext.

14 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 15

ChaCha and Salsa Provide a 4 X 4 Matrix of 32-Bit Values to the
Algorithm; This Is Known as the “Initial State”

Algorithm

Key + Nonce + Counter

Ciphertext

Plaintext

Initial
State

The 4 x 4 matrix consists of a Key + Nonce + Counter. Each square within the 4 x 4 matrix is 32 bits in
size.

The algorithm performs various operations to jumble the initial state and provide a suitable stream of bits
to XOR with the plaintext.

© 2022 Anuj Soni 15

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 16

ChaCha and Salsa Differ in Their Initial States

"expa" Key Key Key

Key "nd 3" Nonce Nonce

Counter Counter "2-by" Key

Key Key Key "te k"

ChaCha Initial State

"expa" "nd 3" "2-by" "te k"

Key Key Key Key

Key Key Key Key

Counter Counter
/Nonce Nonce Nonce

Salsa Initial State

The difference in initial states provides one approach to identifying the use of ChaCha
vs. Salsa when performing code analysis.

In addition to the key, nonce, and counter, notice that both matrixes include the ASCII text “expand 32-
byte k”. This is a constant, also referred to as a “nothing-up-my-sleeve” number. It is used to provide
additional variation to the output of the algorithm. From a malware analyst’s perspective, we can use this
value and its location in the matrix to identify which algorithm is used for encryption. When analyzing
ransomware that uses ChaCha or Salsa for encryption, the primary encryption function will require an
argument that points to one of these initial states.

A 32-byte key is most common, but if a 16-byte key is used the constant is “expand 16-byte k”.

Note that the original ChaCha algorithm had a 64-bit counter and a 64-bit nonce in the initial state, but
RFC 7539 modified the counter size to 32 bits (https://for710.com/rfc7539). As a result, initial state
counters you observe may be 32 bits or 64 bits in size.

For additional detail, see the official publication introducing ChaCha20: https://for710.com/chacha. The
official spec for Salsa20 is at https://for710.com/salsaspec. Also see this YouTube video on ChaCha20:
https://for710.com/ytchacha.

16 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 18

• Also referred to as public-key cryptography, this approach includes two
keys: a public key that is shared, and a private key that is kept secret.

• Data encrypted with the public key can only be decrypted with the
corresponding private key.

• Example applications: RSA, Diffie-Hellman, and Elliptic-curve crypto.

• Relative to symmetric encryption, asymmetric encryption is slow and
best suited for encrypting small amount of data.

• In ransomware, asymmetric encryption algorithms are often used to
protect symmetric keys on the target machine.

Asymmetric Algorithms Use Public/Private Key Pairs

With asymmetric encryption, a public/private key pair is created where both keys are mathematically
related to one another. The result is that data encrypted with one key can only be decrypted with the other,
different key (and vice versa). As the name implies, the “public” key can be made public. For example,
you can include it in your email signature or place links to it on social media. The “private” key should not
be shared with anyone.

Asymmetric encryption is commonly used to protect messages between two parties. It is also used to
support digital signatures, where the creator of a message signs the message so other parties can verify the
message came from the sender and has not been tampered with.

One popular (and old) example of asymmetric encryption is the RSA (Rivest–Shamir–Adleman)
algorithm. This algorithm was first published in the 1970s, and it is commonly used in ransomware today.
In the simplest approach, the attacker embeds their public RSA key in the malware, and it is used to
encrypt the symmetric keys for each encrypted file. If the target organization pays up, the attacker would
provide a decryptor that includes their private RSA key, allowing each per-file symmetric key to be
decrypted.

Another popular example of asymmetric encryption is the Diffie-Hellman key exchange protocol. This
protocol uses public-key cryptography to help two parties generate a shared key for symmetric encryption.
In doing so, it takes advantage of the security of public-key cryptography (i.e., there is no need to
exchange a shared key) and the speed of symmetric cryptography.

Finally, elliptic curve cryptography (ECC) is an alternative to RSA, and it uses the math of elliptic curves
to public/private key pairs.

Compared to symmetric encryption, asymmetric encryption is very slow. As a result, it is not a good
choice for file encryption, but it is an excellent choice for encrypting keys (as discussed in the RSA
example earlier in the notes for this slide).

18 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 19

• RSA’s security is based on the difficulty of factoring the multiplication of
two large prime numbers.

• Since RSA is typically used via the Microsoft CryptoAPI, a detailed
understanding of the mathematics is generally not required.

• Ransomware typically uses RSA to secure the per-file symmetric keys
used for file encryption.

• Currently, RSA key lengths of 2048 bits or greater are considered secure.

RSA (Rivest–Shamir–Adleman) Is an Asymmetric Algorithm
Used to Generate a Public/Private Key Pair

RSA was published in 1977, so it is one of the oldest asymmetric algorithms used today. RSA is used to
create a public/private key pair, where data encrypted using one key can be decrypted with the other key.
Its security is based on the idea that it is trivial to multiple two large prime numbers but very difficult to
factor the product. For example, we can easily multiple 13 x 47 to equal 611 but determining the factors of
611 is more challenging.

RSA involves mathematics that is beyond the scope of this course. Also, since malware typically uses RSA
via the Microsoft CryptoAPI, a deeper understanding of the underlying math is not usually necessary.
However, for an example of malware that contains RSA code without external dependencies, see this
Mandiant blog post on BLACKMATTER ransomware: https://for710.com/blackmatter.

We will often encounter RSA during ransomware analysis because, as mentioned earlier, asymmetric
algorithms are often used to protect symmetric keys.

Secure key lengths for RSA are currently 2048 or 4096 bits.

© 2022 Anuj Soni 19

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 20

• ECC uses the mathematics of elliptic curves to generate a key pair. And
achieves the same level of security as RSA with smaller key sizes.

• Elliptic-curve Diffie-Hellman (ECDH) uses elliptic curve cryptography to
establish a shared secret key.

• Ransomware uses ECDH with the Curve25519 curve to generate a shared
secret as one step in the key and file encryption process.

• Recent examples include DeathRansom, Sodinokibi, and Suncrypt.

Elliptic Curve Cryptography (ECC) Is an Alternative to RSA for
Public/Private Key Generation

Elliptic curve cryptography (ECC) uses the mathematics of elliptic curves to generate a public/private key
pair. It is an alternative to using RSA, and ECC can achieve the same level of security with a smaller key
size.

Elliptic-curve Diffie-Hellman (ECDH) is a key agreement protocol that allows two parties to establish a
shared secret key without exchanging the secret key. Each party has a public/private key pair such that
combining one party’s public key with the other party’s private generates the shared secret key.
Curve25519 is a specific curve created by D. J. Bernstein, and it is designed for use with Diffie-Hellman.
See https://for710.com/ecdh for more information.

In ransomware, Curve25519 and ECC in general provides one approach for the attacker to generate the
symmetric key used to encrypt files without exchanging sensitive information across the network. For
example, the DeathRansom ransomware uses the Curve25519 elliptic curve to generate a shared key, and
the SHA-256 hash of this key is used to Salsa20 encrypt an RSA public/private key pair. For more
information on this malware, see https://for710.com/deathransom. The REvil ransomware also uses
Curve25519 to generate a shared secret which is hashed and used as a Salsa20 key for file encryption (see
https://for710.com/sodinokibi). The Suncrypt ransomware also uses ECC (see
https://for710.com/suncrypt).

20 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 21

Curve25519 Generates a Shared Secret Using a Combination of
One User’s Public Key and Another User’s Private Key

User A User B

Generate 32-byte Private Key

Generate 32-byte Public Key

Generate 32-byte Shared Secret

PrivateA = 32 random bytes PrivateB = 32 random bytes

PublicA = Curve (PrivateA) PublicB = Curve (PrivateB)

SharedAB= Curve (PrivateA, PublicB) SharedAB = Curve (PrivateB, PublicA)

Hash Shared Secret for
additional security

Key = HashFunction (SharedAB) Key = HashFunction (SharedAB)

As described on this slide, users should begin by generating 32 random bytes to serve as the secret key. To
create the corresponding public key, the private key is provided as an input. Finally, one party’s public key
and the other party’s private key is provided as input to a function that produces a 32-byte shared secret.
This shared secret is typically hashed for additional security and perhaps to produce a longer key length,
depending upon the encryption algorithm.

As discussed on the previous slide, the final key can be used as a symmetric key known by both parties
(e.g., victim and attacker) without the need to publicly exchange the key.

As stated on the previous slide, see https://for710.com/ecdh for more detail on the key generation process.

© 2022 Anuj Soni 21

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 22

• The CryptoAPI is often used to perform encryption using the AES and/or
RSA algorithms.

• The CryptoAPI may be used to encrypt file contents, but this task is often
performed by additional code in the executable.

• Malware authors often resolve these APIs at runtime to hinder detection
and avoid including these functions in the IAT (e.g., API hashing).

• The CryptoAPI is deprecated but is still used in ransomware.

The Microsoft CryptoAPI Includes Functions for Encryption

Microsoft’s CryptoAPI provides well-documented and effective function for performing encryption.
Within ransomware, the MS CryptoAPI is often used to perform AES and RSA encryption. To avoid
detection, malware authors often obfuscate references to these APIs, so they are not easily detected using
basic static file analysis.

When consulting documentation for any CryptoAPI function, you will see a notice that the API is
deprecated. Nonetheless, ransomware developers continue to use and take advantage of this powerful API.

In the upcoming slides, we will discuss specific functions within the CryptoAPI that are commonly used in
ransomware.

22 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 23

• CryptAcquireContext connects an application with a Cryptographic
Service Provider (CSP), which is a module that contains the desired
encryption and/or decryption functionality for an algorithm

• CryptAcquireContext has five arguments:
1. *phProv: Address where the returned CSP handle will be located.

2. szContainer: Pointer to a key container name (typically NULL) and only
used if the relevant keys are persistent on the system.

3. szProvider: Pointer to the name of the CSP, including the algorithm(s).

4. dwProvType: Symbolic constant that specifies the provider type.

5. dwFlags: Specifies an optional value.

Malware That Performs Encryption via the MS CryptoAPI
Typically Calls CryptAcquireContext First

CryptAcquireContext is the first API called when the Microsoft CryptoAPI is used for encryption. It
returns a handle to a Cryptographic Service Provider (CSP). A CSP is a software module (i.e., a DLL) that
provides the desired encryption functionality for a supported algorithm. The handle returned by
CryptAcquireContext is used in future calls to CryptoAPI functions to perform encryption and/or
decryption.

Arguments of CryptAcquireContext include:

1. *phProv: This is a pointer to the CSP handle, which is returned by this function call.
2. szContainer: This is a pointer to the key container name, which is only relevant for keys that must

persist on the system. In ransomware, keys do not generally persist, so this value is usually NULL.
You can read more about this parameter at https://for710.com/cryptcontext.

3. szProvider: This is a pointer to the name of cryptographic service provider (CSP). This string will
provide insight into the encryption algorithm(s) used. It typically references one of the strings listed
here: https://for710.com/cspnames. If this argument is NULL, the default CSP is used. On recent
versions of Windows, the default provider uses RSA.

4. dwProvType: This parameter is a symbolic constant, so during code analysis we will see this
specified as a numerical value. Predefined provider types are listed in Microsoft documentation
(https://for710.com/provtype), and the mapping of some numerical values to constants is listed here:
https://for710.com/provtypevalues.

5. dwFlags: This is a symbolic constant that specifies optional information. In ransomware, this value
is often CRYPT_VERIFYCONTEXT (0xF0000000), which indicates private keys will not persist on
the system. As described in MS documentation, when this argument is CRYPT_VERIFYCONTEXT,
szContainer must be null.

For MS documentation on CryptAcquireContext, see https://for710.com/cryptcontext.

For more information on CSP, Wikipedia provides a good writeup: https://for710.com/csp.

© 2022 Anuj Soni 23

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 24

CryptImportKey has six arguments:
1. hProv: Handle to the key returned by CryptAcquireContext.

2. *pbData: Pointer to a BLOBHEADER structure for a key.

3. dwDataLen: Length of the key BLOB, in bytes.

4. hPubKey: Handle to a key that decrypts key BLOB (NULL if not encrypted).

5. dwFlags: If the key to import is a public key, this is NULL.

6. *phKey: Pointer to a handle to the imported key (upon return).

CryptImportKey Is Often Used to Import an Embedded Key

CryptImportKey imports a key from a key BLOB. In ransomware, this BLOB is typically embedded
in the executable and is often a public key.

Relevant arguments of CryptImportKey include:

1. hProv: A handle to the key returned by an earlier call to CryptAcquireContext.
2. *pbData: Pointer to the PUBLICKEYSTRUC BLOB that contains a header and the desired key. In

case you have not heard this term before, a BLOB is a generic structure that includes a header
followed by the relevant data.

3. dwDataLen: Length of the key BLOB, in bytes. Note that this includes zero-byte padding, and this
does not represent the size of the key.

4. hPubKey: A handle to the key that decrypts the BLOB referenced by pbData. If the BLOB is for a
public key, this argument is NULL since it is not encrypted.

5. dwFlags: This flag is only relevant if importing a private key BLOB. When importing a public key
BLOB, this argument is NULL.

6. *phKey: A pointer to handle to the imported key (after the function returns).

For more information on this API, see https://for710.com/cryptmport.

24 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 25

• bType specifies the BLOB type and includes:

• PLAINTEXTKEYBLOB: 0x8 (symmetric key)

• PRIVATEKEYBLOB: 0x7

• PUBLICKEYBLOB: 0x6

• ALG_ID indicates the algorithm associated with the key BLOB, such as:

• CALG_RSA_KEYX (0x0000a400)

• CALG_AES_128 (0x0000660e)

The BLOBHEADER (A.K.A. PUBLICKEYSTRUC) Structure
Specifies the Key Type and Algorithm

On the previous slide, we learned that CryptImportKey’s second argument points to a
BLOBHEADER structure (also known as a PUBLICKEYSTRUC structure). This structure has four
members, and two members are important to our analysis. The first member, bType, specifies the type
of key BLOB that follows the header. In the example on this slide, observe the highlighted bytes beginning
with a 0x6, which indicates a public key blob.

The fourth member of the BLOBHEADER structure specifies the algorithm associated with the key. This
occurs at offset 0x4 from the beginning of the BLOBHEADER structure, and in the example on the slide we
see the value 0x0000A400 (little endian). This value correlates with the constant CALG_RSA_KEYX,
indicating the key is associated with the RSA public key exchange algorithm. If we view MS
documentation on the RSAPUBKEY structure, we can gather more information about the RSA public key,
including its size. See https://for710.com/rsapubkey.

For more information on the BLOBHEADER structure, see https://for710.com/blobheader.

For a comprehensive list of algorithm IDs, see https://for710.com/algid.

© 2022 Anuj Soni 25

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 27

• This API takes three arguments:
1. hProv: Handle to a CSP returned by an earlier call to CryptAcquireContext.

2. dwLen: The number of bytes of random data to generate.

3. pbBuffer: Address of the buffer where random bytes will be placed.

• The number of bytes requested can provide insight into the encryption
algorithm, mode of encryption, and purpose of the data.

CryptGenRandom Is Often Used to Generate Random Bytes for
a Key, Nonce, or Initialization Vector (IV)

• Other APIs used for byte generation include GetTickCount,
QueryPerformanceCounter, and RtlGenRandom
(SystemFunction036), rand, and srand.

The CryptGenRandom API generates a specified number of random bytes. Ransomware often uses this
API to generate a random key, nonce, or initialization vector (IV).

Arguments passed to CryptGenRandom include:
1. hProv: Handle to a CSP returned by an earlier call to CryptAcquireContext.
2. dwLen: How many bytes of random data to return.
3. pbBuffer: Address of buffer where random bytes will be returned.

Observe the specified length (dwLen) for the size of the key, nonce, or IV generated. This number may
provide valuable insight into the algorithm used and purpose of the bytes generated. Ransomware may call
API several times in close proximity to one another to generate the key and nonce/IV, if required by the
encryption mode. Ransomware may also call this API numerous times to generate per-file symmetric keys.

For more detail on this API, see https://for710.com/cryptgenrandom.

Other APIs may be used as inputs to generate random data. For example, TeslaCrypt used
QueryPerformanceCounter as one input to generate random content (https://for710.com/teslacrypt).
In another example, the MountLocker ransomware used GetTickCount to generate a session key
(https://for710.com/mountlocker). Also, the SunCrypt ransomware uses RtlGenRandom (exported as
SystemFunction036 in advapi32.dll). Additional APIs used by ransomware include rand, srand, and
rand_s (which calls RtlGenRandom). Note that not all of these APIs are cryptographically secure.
For example, APIs like GetTickCount are not recommended for random number generation. You can
review the documentation for these and APIs using the links below:

https://for710.com/gettickcount
https://for710.com/queryperformancecounter
https://for710.com/rtlgenrandom
https://for710.com/rand
https://for710.com/srand
https://for710.com/rands

© 2022 Anuj Soni 27

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 28

1. hProv: Handle to a CSP returned by an earlier call to
CryptAcquireContext.

2. Algid: Identifies the specific symmetric key algorithm or requests a
key pair.
• CALG_AES_256: 0x00006610 (generate AES 256-bit key).

• AT_KEYEXCHANGE: 0x00000001 (generate RSA public/private key pair).

• CALG_RSA_KEYX: 0x0000a400 (generate RSA public/private key pair).

3. dwFlags: Specifies the key type.

4. *phKey: Location of handle to the generated key.

CryptGenKeyTakes Four Arguments and Generates a
Symmetric Key or Public/Private Key Pair

CryptGenKey may be used in ransomware to generate a symmetric key or a public/private key pair.
This API takes four arguments:

1. hProv: Handle to a CSP returned by an earlier call to CryptAcquireContext.
2. Algid: If CryptGenKey is used to generate a symmetric key, then this argument specifies the

encryption algorithm. See https://for710.com/algid for possible symbolic constants and their
numerical representations. Alternatively, if CryptGenKey is used to create a public/private key
pair, this argument will specify AT_KEYEXCHANGE (0x00000001), which defaults to
CALG_RSA_KEYX (0x0000a400) for Microsoft Cryptographic Providers. In this latter case, an RSA
key pair is generated.

3. dwFlags: This 32-bit value specifies the type of key generated. The upper 16 bits specifies the size
of the key. For example, if the 32-bit value is 0x08000001, the upper 16 bits are 0x0800, which
indicates a key size of 2048. The lower 16 bits typically refers to a sub-id that depends upon the type
of algorithm. In the case of RSA, if the lower 16 bits are 0x0001, this indicates
ALG_SID_RSA_PKCS and refers to generating a public/private key pair.

4. *phKey: Address where the function will place the handle to the generated key.

A comprehensive list of symbolic constants related to the CryptoAPI is located in Microsoft’s
wincrypt.h header file. This file is provided in your Windows VM and can be downloaded as part of
Visual Studio.

For more information about CryptGenKey, see the Microsoft documentation at
https://for710.com/cryptgenkey.

28 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 29

• When CryptGenKey is used to generate a symmetric key, the default
encryption mode is cipher block chaining (CBC).

• CryptSetKeyParam accepts four arguments, but we will focus on the first
three:
1. hKey: A handle to a symmetric or asymmetric key.

2. dwParam: Specifies the value to update (e.g., IV, cipher operation).

3. *pbData: Pointer to a buffer that contains the value to set.

CryptSetKeyParam May Be Called to Alter Aspects of a Key’s
Operation, Including the Encryption Mode

When CryptGenKey is used to generate a symmetric key, the default encryption mode is cipher block
chaining (CBC) with an initialization vector (IV) of zero. However, this mode can be updated with a
subsequent call to CryptSetKeyParam (https://for710.com/cryptsetkeyparam). This API can modify
various aspects of the key’s operation, and the options vary depending upon the key (i.e., symmetric vs.
asymmetric key).

© 2022 Anuj Soni 29

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 30

CryptExportKey takes six arguments:
1. hKey: Handle to the key for export.

2. hExpKey: Specifies a key to encrypt a private key; unused for a public key.

3. dwBlobType: Type of key to export: PUBLICKEYBLOB (0x6) is common.

4. dwFlags: Typically, NULL.

5. *pbData: Pointer to the buffer that receives
exported key BLOB data.

6. *pdwDataLen: Size of the buffer pointed to byte
*pbData.

CryptExportKey Exports a Key Generated by CryptGenKey

If CryptGenKey is used to generate a key, CryptExportKey is often called soon thereafter to access
the key. This is because CryptGenKey provides a handle to the key, but not the key itself.

For example, WannaCry uses CryptGenKey to create an RSA public/private key pair and then calls
CryptExportKey to export the public key and write it to disk. In another example, Ryuk ransomware
uses CryptGenKey to create a per-file symmetric AES key and calls CryptExportKey to append it to
each file after an additional layer of encryption.

CryptExportKey takes six arguments:

1. hKey: A handle to the key. This handle is located at the address specified by the *phKey argument
passed to CryptGenKey.

2. hExpKey: If a private key is exported, this argument is a handle to a key to encrypt the private key. If
a public key is exported (most common), this argument is unused because the exported key is not
encrypted.

3. dwBlobType: Indicates the type of key exported. Options for this argument are shown on the right-
hand side of this slide in the top-most image. This screenshot is an excerpt of Microsoft’s wincrypt.h
header file, which contains a comprehensive list of symbolic constants related to the CryptoAPI. This
file is provided in your Windows VM and can be downloaded as part of Visual Studio.
PUBLICKEYBLOB (0x6) is most common.

4. dwFlags: This is typically NULL, though some options are listed in the Microsoft documentation
(see link below).

5. *pbData: The pointer to the buffer that receives the exported key BLOB data.
6. *pdwDataLen: The size of the buffer pointed to byte *pbData.

For additional detail on this API, see https://for710.com/cryptexportkey.

30 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 31

CryptEncrypt Encrypts with the Key from CryptImportKey and
the Algorithm Specified by CryptAcquireContextA

CryptEncrypt takes seven arguments, and we will focus on four:

• hKey (1): Handle to a key typically imported by CryptImportKey

• *pbData (5): Pointer to the data to encrypt (overwritten with ciphertext)

• *pdwDataLen (6): Pointer to size of data to encrypt

• dwBufLen (7): Size of buffer for encrypted data

The encrypted content may be larger than the plaintext data.

CryptEncrypt, as the name indicates, actually encrypts data. All arguments are shown on this slide, but
only four are relevant to our discussion:

• hKey (1st argument): The handle to a key typically imported via CryptImportKey.
• *pbData (5th argument): The pointer to data to encrypt. This will be overwritten as a result of the

encryption process. If this argument is NULL, the function places the size of the encrypted content at
the address pointed to by pdwDataLen (the next argument). This allows the program to determine
the necessary size for the buffer where encrypted data will reside. In this case, you will see
CryptEncrypt called again with the appropriate buffer length specified.

• *pdwDataLen (6th argument): The pointer to size of data to encrypt.
• dwBufLen (7th argument): The size of buffer where encrypted data will reside.

The encrypted data may be larger in size than the unencrypted data, so it is not unusual for dwBufLen to
be larger than the size *pdwDataLen points to.

To review the Microsoft documentation on CryptEncrypt, see https://for710.com/cryptencrypt.

© 2022 Anuj Soni 31

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

S E C T I O N 2

• Encryption Essentials
• Lab 2.1: Encryption Essentials - Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

32

• Encryption Essentials
• Lab 2.1: Encryption Essentials: Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

This page intentionally left blank.

32 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Lab 2.1

33

Encryption Essentials: Quiz

Please begin Lab 2.1 now.

© 2022 Anuj Soni 33

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 34

9Understand basic cryptography terminology.

9Learn about cryptography modes of operation.

9Differentiate symmetric and asymmetric cryptography.

9Identify key differences between common crypto algorithms.

9Recognize Microsoft APIs commonly used for encryption and
decryption.

Encryption Essentials: Module Objectives, Revisited

In this module, we covered some cryptography basics. This slide reinforces the key topics we covered.

34 © 2022 Anuj Soni

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

File Encryption and
Key Protection

36

36 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 37

• Understand common combinations of symmetric and asymmetric key
algorithms used in ransomware.

• Gain a deeper understanding of common encryption algorithms.

• Learn how to identify ciphers (i.e., encryption/decryption algorithms)
used in ransomware samples.

• Determine the purpose of an identified cipher (e.g., file encryption or key
protection).

• Recognize Windows APIs that facilitate key generation and encryption.

• Note: This is not a cryptography course, and we only need to understand
cryptography algorithms enough to identify their use.

File Encryption and Key Protection: Module Objectives

It is worth emphasizing that this is not a cryptography class, so key concepts may seem overly simplified if
you have a background in encryption algorithms. As a malware analyst, our goal is to identify the use and
purpose of cryptography algorithms so we can include that detail in technical reports. Therefore,
we only need to understand cryptography algorithms enough to identify their use.

© 2022 Anuj Soni 37

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 38

• WannaCry:
• Symmetric: Encrypts each file with AES.

• Asymmetric:
• Contains embedded RSA public key (attacker holds private key).

• Generates RSA key pair and writes private key to disk (encrypted with embedded RSA public key).

• Encrypts per-file AES key with generated RSA public key.

• Ryuk
• Symmetric: Encrypts each file with AES.

• Asymmetric:
• Contains embedded RSA public key (attacker holds private key).

• Contains 2nd victim-specific RSA public key and private key encrypted with 1st RSA public key.

• Encrypts per-file AES key with the second embedded RSA public key.

Ransomware Families Vary by Symmetric/Asymmetric Key
Generation and Encryption Algorithms (1)

This slide and the next one describe differences in how various ransomware families generate symmetric
and asymmetric keys and how those keys are used for encryption.

For example, WannaCry generates an infections-specific RSA public/private key pair when run on a target
machine. In addition, the malware contained an embedded public RSA key that was used to encrypt the
infection-specific private key. This private key could only be decrypted with the attacker’s private key
upon payment. For additional detail on WannaCry analysis, see https://for710.com/wannacry.

For additional detail on how the Ryuk ransomware performs file encryption, see https://for710.com/ryuk1
and https://for710.com/ryuk2.

The main difference between WannaCry and Ryuk relates to key generation—WannaCry creates a
public/private key pair upon execution, while Ryuk includes a victim-specific public/private key pair
embedded in the executable.

38 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 40

• Accessing a file: CreateFile

• Reading contents of the original file: ReadFile

• Writing encrypted contents and key information: WriteFile

• Reading/writing to the beginning or end of a file: SetFilePointer,
SetFilePointerEx, WriteFile

• Close access to a file: CloseFile

• Update file extension: MoveFile

When Identifying the Primary File Encryption Function, Look In
between Other APIs Responsible for File Interactions

This page intentionally left blank.

40 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 41

• CreateFile provides file access to read plaintext data and write ciphertext

• If successful, it returns a handle to the target file
• Consider the first two of its seven arguments:
1. lpFileName: Pointer to a string that specifies the file name

2. dwDesiredAccess:

• GENERIC_READ (0x80000000)

• GENERIC_WRITE (0x40000000)

• GENERIC_READ | GENERIC_WRITE (0xC0000000)

When Analyzing Encryption in Ransomware, Consider APIs Like
CreateFile

We covered the most important CryptoAPI functions, but there are other APIs to consider when
performing code analysis of ransomware.

Since our goal is to understand how a ransomware sample performs file encryption, we want to observe
file-related API calls. Among the first file-related API calls we will encounter during ransomware analysis
is CreateFile. It provides read/write access to a target file, which is necessary to encrypt its data for
file encryption.

Although this API has seven arguments, we will focus only on the first two: lpFileName is a pointer to
the target file, and dwDesiredAccess specifies the desired access. Ransomware may require read and
write access to a file if it overwrites the original file with the encrypted content, and this is specified with
the hex value 0xC0000000.

For more information on CreateFile, see https://for710.com/createfile.

© 2022 Anuj Soni 41

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 42

• When a file is opened/read from/written to, the file pointer is updated.

• SetFilePointerEx updates the file pointer via:
• liDistanceToMove: A positive value moves the file pointer forward, and a

negative value moves the pointer backward.

• dwMoveMethod: FILE_BEGIN (0x0), FILE_CURRENT (0x1), FILE_END: (0x2).

• Ransomware commonly calls this API to read the original contents of a
file (to be encrypted) or to write data to the end of the file (e.g., key info).

SetFilePointerEx Updates the File Pointer to Read or Write
Content at a Specific Location within a File

• SetFilePointerEx is best suited for larger
files (vs. SetFilePointer).

SetFilePointerEx and SetFilePointer are Windows APIs that update the location of a file
pointer.

When a file is first opened, the file pointer points to the beginning of the file (zero). Whenever the file is
read from or written to, the file pointer increments by the number of bytes specified. SetFilePointer
and SetFilePointerEx can be used to update this file pointer with the liDistanceToMove and
dwMoveMethod arguments. If the liDistanceToMove argument is positive, this moves the file
pointer forward. If liDistanceToMove is negative, this moves the file pointer backward. If
liDistanceToMove is zero, look at the fourth argument (dwMoveMethod) for more information on
what this API accomplishes. The dwMoveMethod argument is often used to move the file pointer to the
beginning (0x0) or end (0x2) of the file. A value of 0x1 usually indicates you must review the second
argument (liDistanceToMove) for information on how the pointer is updated. As suggested by the
above explanation, you must evaluate both the liDistanceToMove and dwMoveMethod arguments
to determine the impact of executing this API. For more information on the file pointer, see
https://for710.com/filepointer.

In ransomware, SetFilePointerEx is often used to jump to the beginning (to read the unencrypted
data) or end of the file (to write data including the encrypted session key).

When comparing SetFilePointerEx with SetFilePointer, the former is the best choice for
handling larger files. To read more about the SetFilePointerEx API, see
https://for710.com/setfilepointerex.

For a calculator to convert signed hex values to negative decimal values, see https://for710.com/hextodec.

42 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 43

• Ransomware must first read in a file’s contents to encrypt its data
• Consider the first three of its seven arguments:
• hFile: Handle to a file returned by CreateFile

• lpBuffer: Pointer to the buffer that stores the file contents

• nNumberOfBytesToRead: Number of bytes to be read

ReadFile Reads Data from the Location of the File Pointer

In ransomware, the Microsoft ReadFile API is typically used to read file contents for encryption. As
shown on this slide, the first three arguments are most important to consider:

• hFile: Specifies the handle to a target file. This handle can be tracked to monitor interactions with a
particular file.

• lpBuffer: This is the address where content read in will be stored. During debugging, we can dump
this address to the dump window for further review and confirmation that file contents were read in.

• nNumberOfBytesToRead: As is clear from the argument’s name, this value specifies the number of
bytes to read.

© 2022 Anuj Soni 43

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 45

• CryptAcquireContext: Acquire a handle to a Cryptographic Service Provider (CSP)

• CryptImportKey: Imports embedded public key
• CryptGenRandom: Generates per-file key
• CryptEncrypt: Encrypts per-file key with embedded public key
• CreateFile (read/write): Accesses file
• SetFilePointerEx: Update file pointer to the end of the file
• WriteFile: Write the encrypted key to the end of the file
• SetFilePointerEx: Update file pointer to the beginning of the file
• ReadFile: Read contents of unencrypted file
• <Encrypt contents of the file>
• WriteFile: Write the encrypted contents to the file

A Series of APIs We May Encounter in Malware

This page intentionally left blank.

© 2022 Anuj Soni 45

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 46

• Locate Microsoft APIs:
• CryptoAPI functions responsible for importing, generating, and using keys

• APIs responsible for interacting with files for reading unencrypted data and
writing encrypted content

• Identify encryption constants and numerical values associated with
encryption algorithms:
• FindCrypt plugin for Ghidra

• FindCrypt extension for Ghidra

• Mathematical operations associated with an algorithm (e.g., ROL/ROR)

Approaches to Identify Encryption Functions and the Algorithm

When performing code analysis of ransomware that performs encryption, we want to identify the
encryption algorithms used and the main function that actually performs file encryption. To accomplish
this task, we will employ several strategies:

• Locate references to many of the CryptoAPIs we just discussed (if they are present).
• Identify API references that read/write content from/to files. As part of the file encryption process,

unencrypted data will be read, encrypted, and then written to a new file or over existing data. Between
function calls to reading and writing data we will often find the primary function that performs
encryption. Investigating this function will give us further insight into the encryption approach used.

• Identify constants associated with crypto algorithms. For example, we can look for the “expand 32–
byte k” constant associated with Salsa or ChaCha. We can also look for numerical value associated
with the algorithm—for example, the AES S-box is public, and we can search for values within that
matrix. We will rely upon the FindCrypt plugin and FindCrypt extension (created by two
separate authors) to expedite this search. The extension is more recently updated, but there are cases
where the plugin finds constants that the extension does not. As a result, we will use both the plugin
and extension to search for crypto related information.

• Finally, we can use our basic understanding of the mathematical operations associated with an
algorithm to identify its presence in malware with fairly high confidence.

For the GitHub page on the FindCrypt plugin, see https://for710.com/fcplugin.

For the GitHub page on the FindCrypt extension, see https://for710.com/fcext.

46 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 47

• CryptoAPI functions may not be listed in the IAT, but we can set the
breakpoint on library code

• Key APIs to consider include:
• CryptAcquireContextA/CryptAcquireContextW

• CryptImportKey

• CryptGenRandom

• CryptGenKey

• CryptExportKey

• CryptEncrypt

To Debug Encryption in Malware, Set CryptoAPI Breakpoints

Advapi32.dll, which exports these APIs, must be
loaded to set these breakpoints.

If we suspect a malware sample uses encryption, one approach is to load the target program within a
debugger and set breakpoints for CryptoAPI functions. If the APIs are encountered during execution,
this serves as a starting point for our code analysis.

Consider setting breakpoints on the following APIs:

• CryptAcquireContextA/CryptAcquireContextW
• CryptImportKey
• CryptGenRandom
• CryptGenKey
• CryptExportKey
• CryptEncrypt

We discussed these APIs in detail in earlier slides.

Note that if you attempt to set these breakpoints in x64dbg when you first load the program in a debugger,
you may receive a message indicating the breakpoints are invalid. This is because the advapi.dll, which
exports these APIs, may not have been loaded yet. In this case, you may need to wait until after the DLL is
loaded (assuming it gets loaded at some point). One approach is to set breakpoints on LoadLibraryA,
LoadLibraryW, LoadLibraryExA, and LoadLibraryExW and observe when advapi32.dll is
loaded. Once this DLL is loaded, attempt to set the breakpoints discussed above.

© 2022 Anuj Soni 47

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 48

• bType:0x6 – PUBLICKEYBLOB

• ALG_ID: 0x0000a400 – CALG_RSA_KEYX

• Bitlen: 0x00000800 – 2048 bits

This Example Imports an Embedded 2048-Bit RSA Public Key

The screenshots on this slide show analysis of a ransomware sample named 1582.exe with SHA-256 hash
c97c050b4fe6446a4d92f2fd36f5214c459e539fc5e5339f6a38044fc111861b. While not included in this
course as an official lab, you can find it in the Malware directory within the Section 2 folder. If we found
this suspicious binary on a machine that suffered a ransomware attack, we may want to investigate its
encryption capabilities. As discussed on the previous slide, one approach is to configure breakpoints for
common CryptoAPI functions. If we added breakpoints for all APIs on the previous slide and began
debugging the program, we would arrive at the locations shown on this slide.

Note that this ransomware launches an individual thread to encrypt each file. If you decide to debug this
program in your own environment outside of class, be sure to modify the default breakpoint configuration
in the following way: browse to Options > Preferences and check “Thread Entry”. This will increase the
likelihood that you will arrive at the beginning of a thread responsible for encryption. Without making this
change, CryptoAPI breakpoints may not be triggered.

The first breakpoint we encounter is CryptAcquireContextW. The third argument passed to this
function tells us the CSP (Microsoft Enhanced RSA and AES Cryptographic Provider), and the fourth
argument (0x18) indicates the provider type is PROV_RSA_AES (https://for710.com/provrsaaes). This
indicates the target program supports RSA for public key operations and AES for data encryption.
However, this provider type is viewed as general purpose and does support additional encryption
algorithms like RC2 and RC4.

Next, CryptImportKey is called to import a key. The second argument points to the BLOBHEADER
structure, and if we dump this address to the dump window (as shown on the slide), we see an “RSA”
string that is likely associated with an RSA key. As discussed earlier in this section, the BLOBHEADER
specifies the type and algorithm. In this case, we observe values that correspond with a public RSA key.

If we view MS documentation on the RSAPUBKEY structure, we can also conclude this is a 2048 bit key.
For more information on the RSAPUBKEY structure, see https://for710.com/rsapubkey.

48 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 49

• Algid: 0x00006610 – CALG_AES_256 (generate 256-bit AES key)

• dwFlags: CRYPT_EXPORTABLE

For Each File, This Malware Generates an AES Key to Encrypt
File Contents

If we continue debugging this program, we will encounter the CryptGenKey. As a reminder, this API
can generate a symmetric key or public/private key pair. The second argument specifies the algorithm, and
in this case the hexadecimal value corresponds with a 256-bit AES key. The third argument (dwFlags)
specifies additional information about the type of key generated, and if we consult wincrypt.h, we
can conclude it indicates that the key can be exported. This is common for session keys.

To understand what AES encryption mode is used, we could set a breakpoint on CryptSetKeyParam.
However, we would find that this API is not called. This means the default encryption mode (CBC) is
used.

If the program continues executing, we will soon encounter a call to CryptEncrypt. This uses the key
generated by CryptGenKey to encrypt data located at the address specified by the fifth argument
(pbData). This is where a file’s previously read in content resides.

Next, a WriteFile writes the recently encrypted contents to disk. In the screenshots, observe that the
fifth argument passed to CryptEncrypt matches the second argument passed to WriteFile. This
makes sense, because the program encrypts the file contents in place (i.e., it overwrites the plaintext with
ciphertext) and then writes the new content to the file.

© 2022 Anuj Soni 49

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 50

The Malware Exports the Per-File AES Key, Encrypts It with the
Public RSA Key, and Appends This Content to the Encrypted File

• hKey: The key to export (matches handle referenced by CryptEncrypt)

• hExpKey: The key to encrypt the exported key (RSA public key)

• dwBlobType: 0x1 - SIMPLEBLOB

• dwFlags: Typically, NULL

• *pbData: Address of exported key

Next, CryptExportKey exports the per-file AES key and encrypts it with the embedded RSA public
key. Observe that the hKey argument passed to CryptExportKey matches the first argument passed to
CryptEncrypt on the previous slide—this supports the conclusion that the AES key is exported.

The second argument passed to CryptExportKey specifies a key to use to encrypt the exported key.
While not shown on this slide, this handle to a key matches the hKey returned from the earlier call to
CryptImportKey.

The third argument passed to CryptExportKey specifies the type of key exported. The value 0x1
corresponds with SIMPLEBLOB, which refers to a session key.

The fifth argument passed to CryptExportKey specifies the address of the buffer that receives the
exported content (we will come back to this in a moment).

Finally, WriteFile writes the exported and encrypted per-file AES key to the encrypted file. The
second argument passed to WriteFile specifies the address of the buffer that contains data to be
written. Observe that this address matches the fifth argument passed to CryptExportKey, which
specifies the address of the exported key.

Note that the WriteFile calls listed on this slide and the previous one are only an excerpt of data
written to encrypted files. Additional writes are not included because our focus is on the use of CryptoAPI
for file encryption and key protection, and not all details of this ransomware sample. For example, the
Ryuk ransomware will also write a file marker (in this case “RYUKTM”) to each encrypted file as an
indication that it has been encrypted.

The FindCrypt extension and plugin, which we will discuss shortly, does not report any findings for
this sample because this target program solely relies upon the CryptoAPI.

50 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 51

• Recall that AES encrypts 128-bit blocks using a series of substitutions
and permutations.

• A common optimization for AES uses “T-tables” to combine the
substitution, shifting, and mixing operations.

• T-table values are public, and we can search for them to identify a
statically linked AES implementation.
• The four tables used for encryption are referred to as Te0, Te1, Te2, and Te3.

• The four tables used for decryption are referred to as Td0, Td1, Td2, and Td3.

Ransomware May Include a Statically Linked Implementation of
AES as an Alternative to Using the MS CryptoAPI

In the last example, we discussed a ransomware sample that uses the Microsoft CryptoAPI to generate
AES keys. As an alternative, some ransomware embeds (i.e., statically links) code to generate AES keys
and perform encryption. In this case, setting breakpoints on CryptoAPI calls will not be sufficient to
identify AES encryption.

As a reminder, AES encrypts 128-bit blocks using a series of substitution, shifting and mixing operations.
An optimization described in the initial Rijndael proposal uses tables (referred to as “T-tables”) to
combine the substitution, shifting and mixing operations. For more detail, see Section 5.2 in the Rijndael
proposal (https://for710.com/aesprop).

The T-tables are public and included in most implementations of AES. The four tables used for encryption
are referred to as Te0, Te1, Te2, and Te3. The four tables used for decryption are referred to as Td0, Td1,
Td2, and Td3. The screenshot on this slide shows an example of one T-table Te0 included in openssl’s
implementation of AES (https://for710.com/opensslaes).

© 2022 Anuj Soni 51

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 52

The FindCrypt Extension Identifies Statically Linked AES
Implementations

• The FindCrypt extension is run via Ghidra’s auto-
analysis options:

• Identified constants are labeled and prefixed with
the text “CRYPT_”:

This slide shows an example of a ransomware sample that includes an AES implementation for key
generation and file encryption. The file is called kbdlv.dll and it has SHA-256 hash
1be0b96d502c268cb40da97a16952d89674a9329cb60bac81a96e01cf7356830. It is located in
Malware\Section2\kbdlv.zip. This ransomware is a WannaCry sample.

First, we will run the FindCrypt extension to identify any crypto constants. This extension is already
installed in your VM, and it is available as an analysis option in Ghidra. After the extension runs, you can
view its findings in the Symbol Tree window under Labels. Any identified crypto constants begin with the
prefix “CRYPT_”. In this case, we observe multiple references to labels beginning with
CRYPT_Rijndael, indicating values associated with that cipher were located. If we jump to the label
CRYPT_Rijndael_Te0, we observe the same values shown in the openssl source code on the previous
slide.

If you jump to each Te* (i.e., encryption) table, you will observe multiple references to each array of
values. However, there are no references to Td* (i.e., decryption) tables in the code. This is likely
because the program only includes encryption and not decryption capabilities.

Notice that four of the five references to CRYPT_Rijndael_Te0 are located in the same function,
FUN_10006280. This is likely the primary function that performs AES encryption. While we will not
explore this sample further in class, you could debug this DLL and set a breakpoint on the function located
at 10006280 to investigate additional details about its file encryption capabilities.

52 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 54

The Older FindCrypt Plugin Identifies the Same Constants

In addition to the FindCrypt extension, the older FindCrypt plugin is also installed in your VM.
While the extension is based on this older plugin and should include all its detection capabilities, there are
cases where the older plugin finds additional constants. For this reason, we will always run both the
extension and plugin.

To run the plugin, open the Script Manager, find FindCrypt.java, and double-click on it to run the script.

When running the FindCrypt plugin against the example ransomware, we find identical results to those
shown on the previous slide.

54 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 55

Confirm the Presence of a Salsa/ChaCha Constant and Observe
Three References to the Value

If there are no references to the constant(s), try
searching for ROL and ROR operations.

Next, we want to confirm if the Salsa or ChaCha algorithm is actually used for file encryption. If we click
on the label CRYPT_ChaChaInitStates_expanded16k and attempt to identify references, we find
there are none. However, if we click on the label CRYPT_ChaChaInitStates_expanded32k, we
identify three references to that label. This indicates 32-byte (and not 16-byte) encryption keys are likely
used in this sample. If Ghidra does not identify any references to the constants, try searching for ROL and
ROR operations to identify potential encryption functions. To perform this search, browse to Search >
Program Text from the menu bar and ensure the field “Instructions Mnemonics” is checked.

It’s worth noting that for greater clarity on the identified constants, you may need to reinterpret the way
bytes are presented. For example, if we jump to 00412d40 where FindCrypt applied the label
CRYPT_ChaChaInitStates_expanded32k, we see an array of bytes instead of the “expand 32-
byte k” we may expect to find. To view the appropriate string, right-click and choose Clear Code Bytes
(alternatively, type C on the keyboard). Then, select and drag the mouse over the relevant bytes (so they
are highlighted in green), right-click again, and browse to Data > string within the context menu. After
these steps are completed, you should see the string “expand 32-byte k” at address 00412d40.

While this may seem obvious, if the crypto constant appears as a string in the malware, you may encounter
it earlier in your analysis when reviewing strings output.

© 2022 Anuj Soni 55

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 57

FUN_004034f0 Contains Many ARX (ADD, Rotate, XOR)
Instructions and Its Shift Operations Match the Salsa Algorithm

b ^= (a+d) <<< 7;
c ^= (b+a) <<< 9;
d ^= (c+b) <<< 13;
a ^= (d+c) <<< 18;

Salsa20 Quarter-Round

a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;

ChaCha20 Quarter-Round

When considering a 32-bit value, ROR 0xe (decimal 14) = ROL 0x12 (decimal 18).

Looking at function FUN_004034f0, it consists of many ADD, ROL/ROR, and XOR operations. You may
recall in our introduction to algorithms that Salsa/ChaCha contained many ARX operations. In addition, if
we review the shift operations (i.e., ROR and ROL), we see they match the Salsa quarter-round
mathematics. This is strong evidence that this function performs Salsa encryption. However, is it Salsa20?
Recall that the numerical value references the number of “rounds” performed.

Note that when the most significant bit is rotated left, it will be shifted to the least significant bit. Similarly,
when the least significant bit is rotated right, it will be shifted to the most significant bit. For example, the
final shift left in the Salsa quarter-round rotates bits in a 32-bit value 18 positions to the left. This
produces the same result as shifting all bits 14 positions to the right.

© 2022 Anuj Soni 57

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 59

To Confirm the Salsa Algorithm, Debug the Program and View
the Initial State Passed to FUN_004034f0

"expa" Key Key Key

Key "nd 3" Nonce Nonce

Counter Counter "2-by" Key

Key Key Key "te k"

Salsa Initial State

In addition to identify Salsa20 based on the shift operations and the number of rounds, we can view the
initial state. Since FUN_004034f0 is the function that performs Salsa20 encryption, it is likely passed the
initial state as an argument. Note on the previous slide that FUN_004034f0 uses the fastcall calling
convention. This means the first two arguments are passed via ECX and EDX, with the remaining
arguments pushed onto the stack.

Within your DynamicVM, load system32.exe into x32dbg and set a breakpoint on 4034f0. Then, run the
program and you should hit the breakpoint shortly. Continue running the program for now—we’ll come
back to this first breakpoint hit later. When you encounter the second breakpoint hit, begin examining the
arguments. Right-click on the value within ECX and dump it to the dump window. Immediately, you will
notice some familiar characters. Comparing this to the generic Salsa Initial State (see bottom-right of the
slide), we can identify components of the 4 x 4 matrix, including the constant. These similarities further
confirm that FUN_004034f0 performs Salsa20 encryption.

Recall that the instructions above asked you to skip the first breakpoint hit. If you restart the program and
return to that hit, you will notice the “key” is a readable string. This ransomware actually uses Salsa20 for
multiple purposes, and one is to decrypt an embedded public key. The first breakpoint hit is used to
decrypt this embedded public key, and the decryption key pays respect to D. J. Bernstein and his twitter
handle (@hashbreaker). Students are encouraged to investigate that first breakpoint hit outside of class.

© 2022 Anuj Soni 59

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 60

Static Code Analysis Confirms Salsa is Used for File Encryption

To assess if Salsa20 is used for file encryption, we will review the file interaction APIs we identified
earlier and use our knowledge of Windows APIs to better understand the code surrounding the call to
FUN_004034f0.

First notice the call to ReadFile reads 0x10000 bytes (1 MB) of a file into a buffer specified by the
address in the variable local_10. This variable is passed as the second argument to FUN_004034f0, which
we know performs Salsa20 encryption. In other words, the pointer to 1 MB of file contents is passed to the
Salsa20 encryption function. This makes sense if this function indeed encrypts file contents. Also note that
the fourth argument passed to ReadFile is a pointer to a variable that receives how many bytes were
read in. We’ll return to this observation shortly.

Next, observe the reference to SetFilePointerEx. It modifies the file pointer of the same file read
from via ReadFile. Recall that the second argument specifies the distance to move the pointer, and in
this case it is negative. Specifically, it shifts the file pointer backward the same number of bytes read in by
ReadFile.

Finally, observe the WriteFile reference on this slide. Recall that the first argument passed to
WriteFile is a handle to a file, and that handle matches the files referenced by the earlier calls to
ReadFile and SetFilePointerEx. Also recall that the second argument passed to WriteFile
specifies the address of the buffer with contents to write. This argument is highlighted in purple, and you
can see this buffer is also referenced as the third argument passed to the Salsa20 encryption function. This
supports our theory that FUN_004034f0 performs file encryption because the second argument points to
the content read from a file and the third argument points to a buffer that will be written to the same file.
Also, the number of bytes written to the file is the same number of bytes read from the file.

While not shown on this slide, we can also set breakpoints on these function calls and observe the inputs
and outputs described in these notes. Debugging this code confirms it performs file encryption.

60 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 61

Set Breakpoints on APIs Used for Byte Generation to Identify
Where and How the Salsa Key Is Generated

Random bytes produced

Random bytes produced

Corresponding Initial State

Now that we have confirmed this malware indeed uses Salsa20, we may wonder where and how it
generates encryption keys. We could perform static code analysis and begin reviewing nearby calls to
determine if any generate the necessary key and nonce values. However, this can be time consuming. As
an alternative, we can set breakpoints on the following APIs commonly used by ransomware to attempt to
generate random numbers (note the term attempt as some of these APIs are not cryptographically secure).

• CryptGenRandom
• GetTickCount
• QueryPerformanceCounter
• RtlGenRandom/SystemFunction036
• rand
• Srand

Each time we hit a breakpoint for one of the above APIs, we can review the arguments to determine if a
Salsa20 key or nonce is generated based on the length of bytes specified. While debugging this program,
we eventually encounter two calls to CryptGenRandom. Based on the arguments passed, one call
requests random bytes of length 0x20 (32 decimal) and the next call to CryptGentRandom requests
random bytes of length 8. These are the lengths of a Salsa20 key and nonce, respectively. If we continue
debugging and arrive at the function at address 004034f0, we will see the generated values appear in the
initial state matrix (see bytes on bottom-right of this slide). This confirms CryptGenRandom is used to
generate the Salsa20 keys and nonces, and our review of this API’s documentation indicates this is a
cryptographically secure function (i.e., it generates sufficiently random bytes).

You can review Microsoft documentation on CryptGenRandom here:
https://for710.com/cryptgenrandom.

© 2022 Anuj Soni 61

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 63

While Debugging the Encryption Function, Observe a Different
Initial State Compared to the Earlier Example

ChaCha Initial State

"expa" "nd 3" "2-by" "te k"

Key Key Key Key

Key Key Key Key

Counter Nonce Nonce Nonce

Observe that the nonce is zero, which may
negatively impact the security of the algorithm.

Continuing with our brief comparison of Salsa vs. ChaCha, if we debug the encryption function of the
sample from the previous slide, we see a different initial state. This initial state matches the matrix
associated with ChaCha and confirms this samples uses that algorithm for its encryption.

On a side note, observe that the nonce in the displayed initiate state is zero. Recall that the nonce (number
used once) adds additional variation to the algorithm so that the same plaintext with the same key does not
result in the same ciphertext. This may indicate a potential weakness in the encryption, but the details of
investigating this possibility are out of scope of this class.

© 2022 Anuj Soni 63

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 65

• A commonly used implementation of Curve25519 is available at
https://for710.com/curve25519

• We can search for numerical values in the main function to identify
potential use of Curve25519
• 248 (0xF8)

• 127 (0x7F)

• 64 (0x40)

Identifying ECC (Specifically, Curve25519) Requires a More
Manual Approach

Now let’s explore how to identify the use of ECC (specifically Curve25519) in malware. As a reminder,
recall that ECC allows two parties to compute a shared secret key using a combination of one party’s
public key and the other party’s private key. Unfortunately, the FindCrypt extension and script are not
helpful in identifying the use of ECC.

When ransomware uses Curve25519 for encryption, the associated code is typically embedded in the
program. A common implementation of Curve25519 is located at https://for710.com/curve25519. If we
review this code, we will observe that the primary function contains the values 248, 127, and 64 (see
slide). We might be able to use these numerical values to locate Curve25519 in a program.

© 2022 Anuj Soni 65

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 66

Searching for Numerical Values in Curve25519 Code Yields a
Function of Interest

The ransomware sample discussed on this slide has the file name def.exe and SHA-256 hash
5a6a259071facb796bf3e46c3df71f368907397635e6e299a8df3984fae1f6ba. You can find it in your VM
desktop at Malware\Section2\def.zip. This ransomware belongs to the Babuk v3 family.

In this case, running the FindCrypt extension yields no information about crypto constants. However, we
can manually search for 248 (0xF8), 127 (0x7F), and 64 (0x40).

To search for a value, use the file menu to browse to Search > Program Text…

Since we are searching for values that would appear as operands, only check “Instruction Operands” under
“Selected Fields”. First, let’s search for 0xf8 by clicking “Search All”. We observe two results and
clicking on the first one takes us to FUN_00403520. There, we find all three numerical values in the
context of operations that match the source code we discussed earlier.

66 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 68

• Attackers may make poor decisions when deciding what keys to generate
in their environment, hardcode in the malware, and generate on target.

• Custom encryption routines are more likely to contain vulnerabilities.

• Using cryptographically insecure functions to generate random numbers
could make the key and encrypted data more likely to be compromised.

• Incorrect implementation of ciphers (e.g., Babuk v3) may compromise
the attacker’s ability to decrypt files upon payment.

There May Be Weaknesses in the Approach and Implementation
of Encryption in Ransomware

Although rare, some ransomware do contain weaknesses that could be exploited by defenders.

Attackers sometimes employ poor key management when deciding what keys to generate before
deployment, hardcode in malware, and generate on the target machine. For example, if attackers generate
a public/private key pair in their own environment and embed the public key in ransomware across
multiple targets, a compromise of their private key means multiple target organizations can decrypt files.
This is not advantageous from the attacker’s perspective.

Also related to the proper use of keys, when using the Crypto API, Microsoft recommends using the
CryptDestroyKey API to release the key, so it is no longer valid. If a key is generated on the target
machine via the Microsoft Crypto API and this API is not called, there may be a chance for recovery in
memory, but this is rare and unlikely.

The choice in cipher certainly plays an important role in determining the strength of the resulting
encryption. If an attacker uses a custom algorithm instead of a standard cipher (e.g., AES), the
implementation is more likely to contain vulnerabilities. Keep in mind that discovering these
vulnerabilities may require in-depth and tedious code and mathematical analysis.

Another category of weaknesses may arise from the attacker’s choice in random number generation. For
example, we understand that generating random bytes if often necessary for a key or IV. If these values are
not generated randomly, there may be opportunities to predict or brute-force the resulting value and
undermine the encryption. Microsoft lists recommendations for cryptographically secure random number
generators (https://for710.com/cryptorecs) and cautions developers that APIs including rand,
GetTickCount, and GetTickCount64 are not secure as they relate to random number generation.
In other words, it may be possible to predict the numbers these functions generate, and this means the key
and encrypted data could be compromised. For example, the MountLocker ransomware used
GetTickCount to generate key data (https://for710.com/mountlocker). Note that using an insecure
function for random byte generation is less secure, but it does not mean identifying the key or breaking the
encryption is trivial.

68 © 2022 Anuj Soni

Technet24

One more category of potential weaknesses in ransomware relates to the implementation of a cipher. For
example, in the version 3 of the Babuk ransomware’s implementation of Curve25519, the program uses an
unusual value for the basepoint constant when generating a public key. This may result in issues when
decrypting files. For more information, see https://for710.com/babukv3.

For a discussion of weaknesses in ransomware in older variants, see the following resources:
“Encryption glitches in various ransomware families” section in the article located at
https://for710.com/encglitches, and also https://for710.com/encglitches2 and
https://for710.com/cryptofails.

© 2022 Anuj Soni 69

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 70

• The encryption algorithms we discussed may be customized.

• Malware authors may successfully implement custom ciphers, which
means we need additional strategies:
• Search for code that includes mathematical operations (e.g., XOR, shift, rotate,

add).

• Evaluate the context of any function used to generate random bytes.

• FireEye’s FLOSS tool can help identify potential encryption/decryption
functions by evaluating multiple criteria.

• Malware may use non-Microsoft crypto libraries, such as Crypto++.

Challenges When Assessing Ciphers in Malware

While this is probably clear from the material in this module, it is worth emphasizing that analyzing the
use of encryption in malware can be complicated, and there are many ways a skilled attacker could make
our task more challenging. For example, while the algorithms we discuss are common in ransomware,
attackers could customize their implementation. As discussed earlier, customizing encryption may result in
weaknesses in the algorithm, but it can also hinder our analysis if done appropriately. The result may be
that we are unable to easily identify constants or other characteristics of an algorithm. In this case, we may
need to rely on manual approaches.

For example, searching the assembly for mathematical operations like XOR, shift, rotate, and add may
help identify code responsible for encoding and/or encryption. We also discussed looking for APIs
commonly used for generating random bytes—using a reference to one of these APIs as a starting point
may help locate custom functions that use the generated key or IV.

FireEye’s FLOSS tool can help identify functions that perform encryption and encryption. It automatically
evaluates functions and weighs various criteria including the presence of mathematical operations, the
number of function references, and the number of arguments passed to the function and its size. You can
learn more about FLOSS at https://for710.com/floss.

The Microsoft CryptoAPI is well documented, and it is relatively easy to understand how individual APIs
work together to perform key generation, encryption, and decryption. As an alternative, a malware
developer may choose to use another, non-Microsoft crypto library. For example, some ransomware uses
the Crypto++ C++ library. The main website for this library is at https://for710.com/cryptopp and you can
find documentation here: https://for710.com/cryptoppdocs. When used in ransomware, this library is
usually statically linked and complicates analysis. For examples of malware that uses Crypto++, see the
following:

https://for710.com/cryptopp1
https://for710.com/cryptopp2
https://for710.com/cryptopp3

70 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 72

• The 64-bit DLL for this lab exports DllRegisterServer, which is an
indication that the DLL must be run via regsvr32.exe.

• Regsvr32.exe (both 32-bit and 64-bit versions have the same name) is a
command line program used to register certain types of DLLs.

• To debug the DLL using x64dbg, choose regsvr32.exe as the target and
update the command line via File > Change Command Line.

Lab 2.2: Background Topics: Debugging DLLs That Export
DllRegisterServer (1)

In the upcoming lab, you will analyze a DLL that exports DllRegisterServer. This is generally an
indication that the DLL must be launched via the built-in Windows program named regsvr32.exe.

Regsvr32.exe is a command line program used to register certain types of DLLs and ActiveX controls. For
more information on regsvr32.exe, see https://for710.com/regsvr1 and https://for710.com/regsvr2.

As is the case with many built-in programs on Windows, there are 32-bit and 64-bit versions of
regsvr32.exe. Both have the same filename.

To analyze a DLL that exports DllRegisterServer in a debugger, you will need to load regsvr32.exe
into the debugger first. Of course, you will need to choose the appropriate version of this executable
depending upon the architecture of the suspect DLL. For a 64-bit DLL, choose
C:\Windows\System32\regsvr32.exe. For a 32-bit DLL, load C:\Windows\SysWOW64\regsvr32.exe.

Then, within x64dbg, browse to File > Change Command Line and update the command line as shown on
this slide.

72 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 73

• Update the debugger’s settings to break on DLL entry.

• After arriving at the regsvr32.exe entry point, run the program and it
should pause at the DLL entry point.

Lab 2.2: Background Topics: Debugging DLLs That Export
DllRegisterServer (2)

• This approach also works for
debugging DLLs with rundll32.exe.

• Lastly, choose not to break on
exceptions to reduce unnecessary
pauses.

To arrive at the entry point of the DLL, one additional change must be made to the default configuration of
x64dbg. Browse to Options > Preferences and view the Events tab. There, check the option for DLL Entry.
This will ensure the debugger pauses at the DLL’s entry point once the DLL is loaded. This means you
will first pause at the entry point for regsvr32.exe, and then you will need to continue running the program
to pause at the DLL entry point.

Note that this approach also works for debugging DLLs with rundll32.exe, though in that case you also
need to specify a DLL entry point. In fact, you could run the DLL in the upcoming lab with the command
line rundll32.exe boot.dll,DllRegisterServer.

One final configuration update is not specific to DLLs, but it is helpful for the upcoming exercise. Jump to
the Exceptions tab, single-click on the only Exception Filter, and click the radio button Do not break. This
will ensure exceptions are processed as Windows would normally process them without halting the
debugger. Then, click Save.

© 2022 Anuj Soni 73

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 74

• Legitimate applications use multiple threads to execute tasks in parallel.

• Ransomware often uses multi-threading to encrypt files simultaneously
across the local file system and network.

• Reducing the time to complete file encryption means defenders have less
time to interrupt the process.

• Ransomware families that use multi-threading include Sodinokibi,
LockerGoga, and LockBit.

• When debugging malware, tracking activity across multiple threads can
be challenging.

Lab 2.2: Background Topics: Multi-Threaded Malware

The upcoming lab involves multi-threaded malware. Legitimate applications use multiple threads (i.e.,
they are multi-threaded) to execute tasks in parallel.

Some ransomware families use this feature to encrypt multiple files simultaneously. This speeds up the file
encryption process and reduces the time defenders have to stop a successful attack. In some cases, one or
more threads are dedicated to local file encryption while one or more additional threads focus on
encrypting network shares.

Ransomware families including Sodinokibi, LockerGoga, and LockBit all use multiple threads to
accomplish their malicious goals quickly.

When debugging a program with multiple threads, be aware that a single breakpoint might be hit by
multiple threads. For example, when multiple threads in ransomware perform file encryption using the
Microsoft CryptoAPI, each thread calls CryptAcquireContext separately. Using a debugger
to track activity across multiple threads can be confusing for an analyst performing dynamic code analysis.

74 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Lab 2.2

75

Identifying File Encryption and Key Protection in Ransomware

Please begin Lab 2.2 now.

© 2022 Anuj Soni 75

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 76

9Understand common combinations of symmetric and asymmetric key
algorithms used in ransomware.

9Gain a deeper understanding of common encryption algorithms.

9Learn how to identify ciphers (i.e., encryption/decryption algorithms)
used in ransomware samples.

9Determine the purpose of an identified cipher (e.g., file encryption or key
protection).

9Recognize Windows APIs that facilitate encryption.

File Encryption and Key Protection: Module Objectives,
Revisited

This page intentionally left blank.

76 © 2022 Anuj Soni

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

S E C T I O N 2

• Encryption Essentials
• Lab 2.1: Encryption Essentials - Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

77

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Encryption Essentials
• Lab 2.1: Encryption Essentials: Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

© 2022 Anuj Soni 77

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Data Encryption in
Malware

78

78 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 79

• Malware commonly encrypts data including:
• Strings (IOCs, API names).

• Configuration data.

• Network data.

• Next-stage files.

• Since the program must decrypt the content at runtime, the key is
discoverable using code analysis techniques.

• We will focus primarily on RC4, a popular algorithm for encrypting data
in malware.

Malware Often Encrypts Embedded Data to Hinder Analysis

Malware often encrypts data including configuration information, network data, and additional executable
content.

© 2022 Anuj Soni 79

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 81

• RC4 (a.k.a. ARC4 or ARCFOUR) is a fast algorithm that is relatively easy
to implement.

• Weaknesses in RC4 mean most legitimate programs should no longer use
this algorithm, but it is still popular in malware.

• Malware may use the Crypto API or implement RC4 code directly in the
program; we will focus on the latter, more challenging, scenario.

• The algorithm has a variable key length, usually between 40-2048 bits.

RC4 Is a Symmetric Stream Cipher Often Used to Encrypt
Multi-Stage Binaries, Configuration Data, C2 Traffic, and Strings

RC4 is a symmetric cipher often used in malware to encrypt data including strings. Key sizes typically
range from 40-2048 bits. While a key size of less than 40 bits can be used, the maximum key size is 2048
bits.

Multiple vulnerabilities have been discovered in RC4. As a result, few legitimate applications use this
algorithm. For some discussion on the weaknesses in RC4, see https://for710.com/rc4vuln1 and
https://for710.com/rc4vuln2. However, malware still commonly uses RC4 because of its speed and
because it is relatively easy to implement in as little as a few lines of code. From the perspective of a
malware author, the algorithms benefits generally outweigh its weaknesses.

Developers may use the Microsoft CryptoAPI for RC4 encryption or implement the code in their program.
If the CryptoAPI is used, the analyst’s task is more straightforward, and much can be achieved by simply
consulting MS documentation for the relevant APIs. However, since malware often implements RC4
without relying upon library code, it is important to understand the principles of RC4. We will focus on the
second, more challenging, scenario.

It‘s worth noting that in addition to RC4, the RC2, RC5, and RC6 algorithms exist as well. However, RC4
is by far the most popular variation in malware. For a good writeup on the differences between these
algorithms on Stack Exchange, see: https://for710.com/rcdiffs.

© 2022 Anuj Soni 81

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 82

RC4 Uses a KSA and PRGA to Generate a Keystream

Key scheduling
algorithm (KSA)Key

Plaintext Ciphertext
XOR

Pseudo-random
generation

algorithm (PRGA)

The key scheduling algorithm (KSA) initializes a substitution box and uses the key as an input for
randomization. The S-box is then provided as input to the pseudo-random generation algorithm (PRGA),
which performs additional math to output the keystream. Individual bytes from the keystream are then
XORed with the plaintext to produce the ciphertext.

82 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 83

The Key Scheduling Algorithm (KSA) Initializes a 256-Byte
Substitution Box (S-Box) and Mixes in Key Values

for i from 0 to 255
S[i] := i

Endfor

j := 0
for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]

Endfor

Initialize S-box (identity permutation)

Mix up S-box values
based on key

The code on this slide is from Wikipedia (https://for710.com/wikirc4) and it describes the RC4 key
algorithm.

The first for loop initializes a 256-byte array, where each element is one byte. The array is generally
referred to as “S”, and each item is assigned the value that corresponds to its index. For example, S[0] is
assigned the value zero, S[1] is assigned the value one, S[2] is assigned the value two, and so on. This is
known as the identity permutation. The “:=“ operator assigns a value to a variable.

The second for loop mixes up the values in the initialized array based on the key. An identical key will
produce the same mixed-up array of values.

In the second for loop, observe the mod operator. The modulo operator (i.e., mod) produces the remainder
when dividing one operand by another. For example, in the expression 10 mod 2, 10 /2 = 5 with no
remainder. In this expression, 2 is the modulus and the result is zero. In the expression 10 mod 3, 10/3 = 3
with a remainder of 1. In this second expression, 3 is the modulus and 1 is the resulting remainder. The
modulo operator allows a value to increase and then reset once it hits a certain limit defined by the
modulus.

In the context of RC4, each run of the second for loop in the KSA is influenced by a byte in the key, and
the position of this byte increments with each iteration. The first modulo operator ensures that once the
loop reaches the last byte in the key, it resets to the first byte in the key. The second mod operator ensures
that the index value assigned to “j” does not exceed decimal 255, which is the max index value for the S-
box.

© 2022 Anuj Soni 83

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 84

The PRGA Performs S-Box Lookups and Adds/Exchanges Values
to Output 1 Keystream Byte

i := 0
j := 0

while GeneratingOutput:
i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap values of S[i] and S[j]
K := S[(S[i] + S[j]) mod 256]
K ^ data byte

endwhile

Calculate first index

Look up value and perform sum to calculate second index

Swap two values in the S-box
Add two S-box values and lookup a third for a keystream byte

One byte of keystream is XORed with a byte of data for encryption/decryption

Each iteration of the pseudo-random generation algorithm (PRGA) produces one byte of keystream data.
The PRGA swaps two values within the S-box and then uses the sum of those values to look up a third
value within the S-box. This third value serves as one byte of the keystream data that is then XORed with a
byte of data for encryption or decryption.

84 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 85

Because RC4 Does Not Include Constants, Use Other
Approaches to Identify This Algorithm

for i from 0 to 255
S[i] := i

Endfor
j := 0
for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]

Endfor

i := 0
j := 0
while GeneratingOutput:

i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap values of S[i] and S[j]
K := S[(S[i] + S[j]) mod 256]
K ^ data byte

endwhile

KSA

PRGA

Look for:

• S-box initialization.

• 0x100 (decimal 256).

• 0xff (decimal 255).

• XOR.

• S-box passed between two
loops.
(KSA and PRGA code may reside in one
function or in two separate functions.)

Although RC4 does not use crypto constants, there are other approaches to identify RC4 code with high
confidence. Because this algorithm can be implemented in relatively few lines of code, the code generally
resides in the target program and not a separate library.

One approach to identifying RC4 is to look for the S-box initialization. During code analysis, the S-box
will be represented as an array, and we can look for a loop where array values are assigned values 0
through 255.

Next, the KSA and PRGA code on the previous slide contains multiple references to the values 255 and
256 across the loop conditions and modulus values. To locate relevant loops, identify conditions that
evaluate if a counter is less than 256 (0x100) (this is more common than checking if the counter is less
than or equal to 255). We may, however, see a reference to decimal 255 (0xff) when the modulus operator
is used. This is because ANDing a value X with 0xff is equivalent to X mod 256.

To help locate the PRGA loop specifically, we can look for an XOR at the end of the loop.

Lastly, we can confirm that the S-box is passed into the PRGA code.

Note that the KSA and PRGA code may be in two separate functions or together in one function.

For an excellent YouTube video on RC4 that inspired some of the strategies on this slide, see
https://for710.com/ytrc4.

© 2022 Anuj Soni 85

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 86

Search for 0x100 across Instruction Operands and Search for
Code That Resembles S-Box Initialization

An as example, we will search a malware sample for values associated with RC4 and assess the results.
The malware sample has SHA-256 hash
6b212864731c131bd095c2537ca14e10338d3ebf997dda59465c5f1ce73d418b. You can find this file
named file.exe in the Malware\Section2 folder within your Windows VMs. For more information on this
family of ransomware, see https://for710.com/revil1.

After loading the malware sample into Ghidra, we can search for values from the Menu bar by browsing to
Search > Program Text…. There, check “Instruction Operands” only, search for 0x100, and click Search
All.

In the results window, sort by the Preview column and look for CMP instructions that include 0x100 as an
operand.

86 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 87

The Function Located at 4059fc Resembles the KSA and PRGA
Code We Discussed Earlier

for i from 0 to 255
S[i] := i

Endfor
j := 0
for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]

Endfor

i := 0
j := 0
while GeneratingOutput:

i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap values of S[i] and S[j]
K := S[(S[i] + S[j]) mod 256]
K ^ data byte

endwhile

KSA

PRGA
Performing an AND 0xFF has
the same result as mod 256.

As shown on this slide, the code we reviewed when introducing RC4 closely matches the decompiled code
within the function starting at address 004059fc.

Let’s take a closer look at the first do-while loop. uVar2 is initialized to zero before the loop begins, and
each value in the array abStack264 is initialized to a value that corresponds to its index until the counter
reaches 0x100 (256). This is exactly what we see in the initialization code on the left side of this slide.

Moving on to the second loop, the second line of code is most challenging because it includes both a
modulus operator as well as the AND operation. The presence of both these operations means this line
likely refers to the encryption key, since that is the only line of code within the KSA that includes two
modulo operators (as discussed on the previous slide, performing an AND with 0xff achieves the same
result as mod 256). Identifying the key is important, because we eventually want to confirm the presence
of RC4 by testing the algorithm with both the key and sample data.

We can see the third loop is very similar to the PRGA code based on the multiple mod 256 operations and
XOR operation that occurs near the end of the loop. You may wonder why we only see two values ANDed
with 0xff instead of three. In this case, the decompiled output does not reflect the third mod 256 operation.
If you look at the corresponding assembly, you will find the instruction MOVZX, ECX, CL at 00405aab.
This has the same impact as performing an AND with 0xff because only the lower 8 bits of CL are placed
into ECX and the value is zero extended (i.e., the remaining bits are set to zero).

In this case, both the KSA and PRGA code are in one function. In other programs, the KSA and PRGA
code may appear in separate functions.

It is also worth noting that the code on this slide shows do-while loops, but other RC4 implementations
may use for loops instead.

© 2022 Anuj Soni 87

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 88

To Test Decryption, First, Identify the RC4 Key and Its Length

88

for i from 0 to 255
S[i] := i

Endfor
j := 0
for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]

Endfor

KSA
Order of operations

(those at the top occur first):
()

-
* / %

+ -
<< >>

&
^
|

RC4 keyRC4 key length

As suggested on the previous slide, the second line of decompiled code in the second loop of the KSA
likely references the key. We need to understand what this corresponds to in the assembly code so we can
debug the program and extract the key.

In the decompiled code that is highlighted at the bottom-right of this slide, we see a modulo operator and
an AND operation. By now we recognize the AND operation as mod 256. The first mod operation correlates
with the code key[i mod keylength] shown on the top-left of this slide. Specifically, let's review
the decompiled code uVar2 % param_2. Between these two operands, which is the keylength,
and which is i? If we highlight param_2 in the decompiled code with a single click, we see no other
references in the body of this function. If we highlight uVar2, we see multiple references, and this
variable is clearly incremented and checked with each iteration of the loop. Therefore, uVar2 correlates
with i in the KSA code on the top-left of this slide, and param_2 is the modulus or keylength. What
then, does param_1 refer to? Since the entire expression (uVar2 % param_2 + param_1) is
dereferenced, param_1 must contain the starting address for the RC4 key.

When looking at the assembly code, note that param_2 is the operand for the instruction at 405a2b. The
DIV instruction divides EDX:EAX by the specified operand. The result is stored in EAX, and the
remainder is stored in EDX. At 405a31, EDX is added to EAX, so EAX correlates with param_1 in the
decompiled code. As discussed above, param_1 probably contains the address of the RC4 key.

Reference:
https://for710.com/orderops

88 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 90

Use x32dbg to set a breakpoint at 4059fc and identify the arguments.

Confirm RC4 by Identifying the Arguments That Point to the
Key and Its Length, and the Ciphertext and Its Length

Argument #1: Pointer to RC4 key
Argument #2: RC4 key length
Argument #3: Pointer to ciphertext
Argument #4: Ciphertext length

We can confirm that this function performs RC4 decryption by using a RC4 key, key length, ciphertext,
and ciphertext length.

To obtain some test values, debug the program using x32dbg. Load file.exe into the debugger, jump to
4059fc (Ctrl +G), and set a breakpoint. Next, run the program until the breakpoint is hit.

Since the function at 004059fc follows the fastcall calling convention, the four arguments we are
interested in (the third, fourth, fifth, and sixth arguments) are all on the stack and labelled on this slide.

We can dump the third and fifth arguments to a dump window to view the data. Copy the data from each
dump window by highlighting the appropriate size of data (specified by the fourth and sixth arguments),
right-clicking, and browsing to Binary > Copy.

90 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 91

• CyberChef confirms the target function performs RC4 decryption.

• The first call to the function at 004059fc decrypts a DLL name.

Use CyberChef to Test RC4 Decryption

Open CyberChef from the desktop and search for the RC4 operation. Double-click on it to add it to the
recipe.

Within the RC4 operation, update the Passphrase pulldown to HEX and change the Input format to Hex.

Then, use the arguments passed to 004059fc to test decryption. First, copy and paste the RC4 key (of the
appropriate length specified by the fourth argument) from x32dbg to the Passphrase field.

Finally, copy and paste the sample ciphertext (of the appropriate length specified by the sixth argument)
into the Input field on the top-right.

The output should be a decrypted string: user32.dll. This confirms the function of interest does in fact
perform RC4 decryption. If we continue debugging the program, we will encounter additional decrypted
strings.

© 2022 Anuj Soni 91

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 93

Set a hardware breakpoint on the section’s virtual address: 41E000.

Set a HW Access Breakpoint at the Beginning of the Section
and Observe When That Content Is Accessed

Within x32dbg, we can set a hardware breakpoint at 41E000. Then, run the program.

© 2022 Anuj Soni 93

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 95

Using CyberChef to Decrypt This Content Reveals Config Data

JSON Beautifier cleans up the
output but requires removing

the last byte of input data.

If we copy and paste the data discussed in the previous slide into CyberChef, we observe what appears to
be configuration data for this malware sample. We can add the JSON Beautifier operation to the recipe for
easier reading. However, we need to delete the last byte of input data (0x06) for the JSON Beautifier to
work properly.

© 2022 Anuj Soni 95

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 96

• The S-box initialization may include additional code which expands the
key to the size of the S-box (i.e., key expansion).
• RC4 code may use d0-while loops or for loops.

• The KSA and PRGA code may not be within the same function.
• The S-box may be a byte array or integer array, which means four values

are assigned with each iteration (see next example).

Variations in the RC4 Implementation

Identity permutation
Key expansion

Only one mod operation

There are several variations you may encounter in the implementation of RC4 when performing code
analysis. First, it’s possible that the S-box initialization code will include more than just the identity
permutation. In the example on this slide from malware with SHA-256 hash
58e923ff158fb5aecd293b7a0e0d305296110b83c6e270786edcc4fea1c8404c, the first loop within the KSA
function that initializes the S-box also expands the key to the size of the S-box (i.e., it repeats the key bytes
in memory for 256 bytes). One important indicator that key expansion code may reside in the initialization
loop is the presence of a mod operator. As a result, the next for loop that is responsible for mixing up the
S-box based on the key does not need to perform a mod operation involving the key length; it simply
references the expanded key.

The last two variations will be covered in an upcoming example.

96 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 97

Searching for the XOR instruction mnemonic is one simple approach to
identifying potential encoding/decoding routines.

Communications with a C2 Server May Be Encrypted or Encoded

Communications with a command and control (C2) server are often encoded or encrypted to prevent
eavesdropping. Using HTTPS is one well-known approach to encrypting traffic between a target and C2
server, but some malware families take a more straightforward approach of manually encoding
communications.

The screenshot on this slide is from a malware sample allegedly used by the HIDDEN COBRA actor
attributed to the North Korean government. The file is named INETSVC.EXE and has SHA-256 hash
d1f3b9372a6be9c02430b6e4526202974179a674ce94fe22028d7212ae6be9e7. You can find this sample in
your Malware\Section2 folder. For more information on this malware and threat actor, see
https://for710.com/hiddencobra.

One simple approach to identifying potential encoding/decoding routines is to search for the XOR
instruction mnemonic. This operation is often used to zero out a register, so we can ignore its use when the
source and destination operand are identical. However, when the two operands are different, this may
indicate encoding or decoding activity. Within Ghidra, use the file menu and browse to Search > Program
Text. Choose the options shown on this slide and search all code for the XOR instruction mnemonic. There
are 285 results, but most are cases where a register is zeroed out. In two results, the XOR operation is
performed against one byte, which is common for encoding and decoding routines. Let’s investigate.

© 2022 Anuj Soni 97

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 99

This Malware Has Multiple Layers of Encoding and Encryption
to Communicate with a C2 Server

Data sent to the C2 server appears base64 encoded, but
perhaps there is an additional layer of encoding or encryption.

Some malware samples apply multiple layers of encoding and encryption within the malicious code to
evade detection and analysis.

This discussion uses a sample named main_install.exe that belongs to the Raccoon family of infostealers.
The sample has SHA-256 hash
15e98815867e8e122a0e75a6af0c0dbacace0fc09ab4023eeae360ca42bb92e9, and you can find it in your
Malware\Section2 folder.

Upon execution, the program attempts to contact an IP address and sends some data via an HTTP POST
request. The “=” padding at the end of the string hints at base64 encoding but decoding this content in
CyberChef does not yield readable data. Perhaps the content is encrypted before it is base64 encoded. This
would make sense as base64 encoding alone offers little protection.

© 2022 Anuj Soni 99

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 100

Searching for 0x100 Helps Us Identify Possible RC4 Decryption

S-box is array of integers

Each iteration of loop
assigns four values

This function only
contains KSA code.

As we did in the previous example, we can search for indicators of RC4 to assess if this program uses the
algorithm. Searching for the 0x100 value returns multiple results. If we sort by “Preview”, the first CMP
instruction takes us to code in function FUN_0041473f that resembles the RC4 KSA function. There are a
few differences, however, when we compare this code to the prior example. First, the S-box is an array of
4-byte integers instead of 1-byte values. This is a variation we may encounter in malware. Also, observe
that each iteration of the loop assigns four values within the S-box.

Note that address of the S-box is passed via the first parameter. Because this function follows the
fastcall calling convention, this value is placed into ECX before the function call (this is important for
the discussion on the next slide).

If we scroll down to view the remaining code in FUN_0041473f, it is clear this function does not contain
the PRGA code. This second component of RC4 encryption must be in a different function called after
FUN_0041473f. Let’s return to the code that calls FUN_0041473f.

100 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 101

Code Analysis Reveals a Function That Accepts the S-Box as an
Argument

RC4 KSA code
Address of S-box

Address of S-box
PRGA function?

• The S-box must be provided to
the PRGA code for encryption.

• FUN_004147c3 appears to take
the S-box as an input.

• We could use a debugger to
confirm the S-box is passed to
FUN_004147c3.

If we review the function that calls FUN_0041473f, we see addition function calls soon after the KSA
code executes. Which of these upcoming functions might contain the PRGA code?

Recall that the PRGA must have access to the S-box to perform encryption or decryption. With this in
mind, we can look for a function that accepts the S-box as an argument. Based on our analysis on the
previous slide, we know the S-box address is passed to FUN_0041473f via ECX. Within the code on this
slide, observe the instruction at 4148da that moves a value from EDI to ECX. If we highlight references to
EDI, we can see the same value is placed into ECX at 4148f9 before the call to FUN_004147c3. Could
this function contain the PRGA code?

© 2022 Anuj Soni 101

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

mod 256

i := 0
j := 0
while GeneratingOutput:

i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap values of S[i] and S[j]
K := S[(S[i] + S[j]) mod 256]
K ^ data byte

endwhile

102

FUN_004147c3 Likely Contains the RC4 PRGA Code

PRGA

mod 256

mod 256

XOR

We do not need to scrutinize each
line of code to assess if the function

likely contains PRGA code.

If we view FUN_004147c3, at first it may seem overwhelming. It definitely has more code than our prior
example of an RC4 PRGA. However, if we review overarching flow of this function, we can identify a do-
while loop. Within the loop, we also observe three mod operations and an XOR near the end of the loop.

Note that the AND operations highlighted on this slide appear different than the previous example.
Specifically, the AND uses a value of 0x800000ff instead of 0xff. If you spent more time with this sample,
you would determine that some of the additional code in this function evaluates if the array index is signed
(i.e., the most significant bit is negative). It is unclear why this check is performed, and the result is that
the AND operation with 0x800000ff is effectively the same as performing an AND operation with 0xff.

Combining these notes with our earlier observation that the S-box is passed to this function, we are likely
looking at PRGA code. Let’s proceed to test this theory.

102 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 104

Several calls to the PRGA function reveal network IOCs.

Allow the Function to Execute Until It Returns to View
Decrypted Content

If we continue running the program and allow the PRGA function to execute until it returns, we observe a
network IOC in the dump window. If we continue running the program and view future addressed of
decoded content using the same approach, we can decrypt additional IOCs of interest as shown on this
slide.

104 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 105

To Confirm RC4, Review the Assembly That References the Key

RC4 keyRC4 key length

for i from 0 to 255
S[i] := i

Endfor
j := 0
for i from 0 to 255

j := (j + S[i] + key[i mod keylength]) mod 256
swap values of S[i] and S[j]

Endfor

KSA

If we want to confirm that the target program performs RC4 decryption, we can perform a test using
CyberChef as we demonstrated in the earlier example. This requires identifying a key and encrypted data.

The key is referenced in the KSA code, so we should return to FUN_0041473f to identify where it is
located. If we review the decompiled code on this slide, we can apply our knowledge of the RC4 KSA to
determine where the key and key length are referenced. In line 32 of the decompiled code on this slide, we
understand that second operand in the mod operation specifies the key length, and the remainder is added
to the RC4 key to arrive at the appropriate offset within the key.

At 414781, the IDIV (signed divide) instruction can be treated as a DIV instruction. It places the
remainder in EDX.

At 414784, if EDX contains a remainder that represents an offset (i.e., index) within the key, ECX must
contain a pointer to the RC4 key.

In the x64dbg output shown on the bottom of this slide, we set a breakpoint on 414784 and run the
program until that address. If we view a dump of the address stored in ECX, we can identify the key
$Z2s`ten\@bE9vzR.

Note that the key appears to be null terminated. While not shown on this slide, we could confirm the key
length by setting a breakpoint on the IDIV instruction and viewing the value of the operand. Debugging
this code indicates the key length is 0x10, or decimal 16. This matches the length of the key mentioned
above.

© 2022 Anuj Soni 105

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 106

Next, We Need Encrypted Data to Test RC4 Decryption

Now that we have an encryption key, we need some encrypted data to test RC4 decryption. Based on our
knowledge of RC4, the encrypted data is referenced in the PRGA during the XOR operation. If set a
breakpoint on the XOR operation and examine the data referenced by the pointer in the source operand,
we see some unreadable null terminated data. Could this be RC4 encrypted contents?

106 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 107

CyberChef Confirms RC4 Decryption

We can now use CyberChef to confirm the presence of RC4 decryption. Inputting the key and encrypted
data from earlier slides reveals the URL we encountered while debugging the decryption function.

© 2022 Anuj Soni 107

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 109

The Encrypted Contents Match the Base64 Decoded Data We
Identified in Network Traffic

The encrypted content matches the base64 decoded data we identified earlier. As a reminder, this content
was sent to a server via an HTTP POST request. This confirms this sample likely uses RC4 encryption to
protect its command and control (C2) traffic.

© 2022 Anuj Soni 109

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

S E C T I O N 2

• Encryption Essentials
• Lab 2.1: Encryption Essentials - Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

110

• Encryption Essentials
• Lab 2.1: Encryption Essentials: Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

This page intentionally left blank.

110 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Lab 2.3

111

Analyzing Data Encryption in Malware

Please begin Lab 2.3 now.

© 2022 Anuj Soni 111

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 112

9Understand common use cases for data encryption in malware.

9Gain familiarity with the critical aspects of RC4, a common symmetric
cipher for encrypting data in malware.

9Learn how to identify the use of RC4 in malware.

9Debug malware to decrypt relevant data.

9Identify the RC4 key and length in malware to decrypt content outside of
the target program.

Data Encryption in Malware: Module Objectives, Revisited

This slide describes the objectives of the module we just completed.

112 © 2022 Anuj Soni

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

S E C T I O N 2

• Encryption Essentials
• Lab 2.1: Encryption Essentials - Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

113

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

S E C T I O N 2

• Encryption Essentials
• Lab 2.1: Encryption Essentials: Quiz

• File Encryption and Key Protection
• Lab 2.2: Identifying File Encryption and Key

Protection in Ransomware
• Data Encryption in Malware
• Lab 2.3: Analyzing Data Encryption in

Malware

© 2022 Anuj Soni 113

