FOR710 | REVERSE-ENGINEERING MALWARE: ADVANCED CODE ANALYSIS

710.3

Automating Malware Analysis

GIAC

CERTIFICATIONS

MNS

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

Technet24

© 2022 Anuj Soni. All rights reserved to Anuj Soni and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

All reference links are operational in the browser-based delivery of the electronic workbook.

FOR710.3 Reverse-Engineering Malware: Advanced Code Analysis

Automating Malware
NANS DFIR OINAlng
DIGITAL FORENSICS & INCIDENT RESPONSE An a1ys18

© 2022 Anuj Soni | All Rights Reserved | Version H02_05

Section FOR710.3, also known as Section 3 of the FOR710 course, focuses on discussing approaches to
automating malware analysis.

FOR?710.3 materials are created and maintained by Anuj Soni. To learn about Anuj's background and
expertise, please see https://www.sans.org/instructors/anuj-soni. You can visit his blog at
https://malwology.com/ and follow him on Twitter at https://twitter.com/asoni.

© 2022 Anuj Soni 1

Technet24

Course Roadmap

* FOR710.1: Code
Deobfuscation and Execution

* FOR710.2: Encryption in
Malware

* FOR710.3: Automating
Malware Analysis

* FOR710.4: Correlating
Malware and Building Rules

SECTION 3

* Python for Malware Analysis

* Lab 3.1:Automating Config Extraction with
Python

* Malware Analysis with DBl Frameworks

* Lab 3.2:Automate Payload Extraction with
Frida
* Automating Analysis with Ghidra
* Lab 3.3:Scripting with Ghidra

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

This page intentionally left blank.

© 2022 Anuj Soni

Python for Malware
Analysis

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 3

This page intentionally left blank.

© 2022 Anuj Soni 3

Technet24

Python for Malware Analysis: Module Objectives

* Develop comfort with Python for malware analysis.
* Gain experience using the pefile Python module for parsing PE files.

* Apply our knowledge of the PE file format to programmatically analyze a
Windows executable.

* Understand how Python can help automate the results of our prior static
code analysis and debugging efforts.

* Create a malware configuration extractor.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 5

This slide describes the objectives of this module.

© 2022 Anuj Soni 5

Consider These Caveats to Calibrate Your Expectations

* This module focuses on introducing Python programming for RE; it does
not provide an in-depth introduction to the language in general.

* Consider attending the SANS course titled SEC573: Automating
Information Security with Python (sans.org/sec573).

* When writing scripts for malware analysis, your goal is functioning code
that produces the expected output—do not worry about code quality.

« If the script you create is of value in future analysis efforts, you will have
plenty of opportunity to iteratively improve your code.

* Consider the Pareto principle: time spent optimizing the code will
require most of your time if you focus on a 100% solution.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

It’s worth emphasizing that the purpose of this module is to introduce Python for malware analysis, and
not to introduce all aspects of the Python programming language. For a thorough discussion of the Python
programming language, consider attending the six-section SANS course titled SEC573: Automating
Information Security with Python.

Also, scripts created during malware analysis are typically written under time constraints, and scripts
created for one malware variant or family may or may not be applicable to future malware. As a result, the
goal is simply to write a script that “works” by producing the intended output. Do not focus on code
quality and performance, at least initially. If the script you create has value in the future, there will be
opportunity to iteratively improve.

Remember the Pareto principle when writing malware analysis scripts (i.e., the 80/20 rule): 80% of the
benefit will come from 20% of the work. The remaining 20% may require an unrealistic amount of time,
and in most cases is unnecessary. Applying this to writing scripts, the point is that you can produce
functional, helpful scripts in a relatively short period of time. However, if you obsess over code quality,
performance, and robustness, you will spend most of your time on these details. Write a script that gets the
job done and worry about adding polish to your script later.

6 © 2022 Anuj Soni

6

Technet24

Python Background

* Python is an interpreted language, which means a .py script is executed
by a helper program (i.e., an interpreter).

* To run a Python program on Windows, use py.exe or python.exe:
*python myscript.py
*py myscript.py

¢ The Python interpreter:
 Compiles the source code into platform-independent bytecode.

* Runs the bytecode in the Python Virtual Machine (PVM), which converts
bytecode into machine-executable code.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Python is an interpreted language, which means a helper program called an interpreter is required to run
the source code.

Within our Windows VMs, you can run a Python program using the python.exe or py.exe executables. It is
not necessary to include “.exe” on the command line. We will use “python” or “python.exe” for clarity and

consistency.

The interpreter first converts the source code to byte code, and this byte code is provided to the Python
Virtual Machine (PVM) for execution. The PVM converts bytecode to machine code and runs it.

© 2022 Anuj Soni 7

Python 3 Is Installed in Your Windows VMs

* The Python installer is available at python.org.

* Several additional modules are installed in your VMs, including pefile,
pycryptodome, and frida-tools.

« Packages were installed using pip, the package manager for Python:

*pip3 install <package name>

* Search for other available packages at https://pypi.org/.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

We are using Python 3 during this class. If you have prior exposure to Python, you have probably used
Python 2 at some point. Python 2 sunset on January 1, 2020. We will not discuss the differences between
Python 2 and Python 3 in class but view this resource for a brief summary about the differences:
https://for710.com/python2v3.

Python 3 is already installed within your Windows VMs. If you need to install Python on another
Windows system, the recommended approach is to download an installer from https://www.python.org/.
During the install, it is important to add Python to your PATH variable so you can execute the interpreter
from anywhere within a terminal.

Several additional Python modules were installed within your Windows VMs, including pefile,
pycryptodome, and frida-tools. All modules will be discussed later in this section. These modules were
installed using pip, a package manager for Python. To learn more about pip, see https://for710.com/pip.
Using pip3 instead of pip in the install command ensures the specified program is installed into the Python
3 environment. This is an important detail if you have both Python 2 and Python 3 installed on your
system.

To explore other available Python packages, browse to https://pypi.org/.

8 © 2022 Anuj Soni

* Using pip3 ensures the package will be installed into a Python 3 environment.

Technet24

Microsoft’s Visual Studio (VS) Code

* Visual Studio Code is a free and open-source Integrated Development
Environment (IDE) that accommodates many programming languages.

* Several VS extensions are installed, including:
* Python
» Code Runner

* Vim emulation (disabled)

» PyCharm is another popular IDE, specifically for Python.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 9

There are multiple code editors to choose from. We will use Microsoft’s Visual Studio Code, which is free
and open source. VS Code is available for macOS, Windows, and Linux. Another popular alternative is
PyCharm, an IDE exclusively for Python programing.

VS Code has many extensions available through the Visual Studio Code Marketplace. The VS Code install

within your VMs has several modules already installed, including Python, Code Runner, and Vim
emulation (disabled by default).

© 2022 Anuj Soni 9

C >

Create and Execute Your First Python Script

File Edit Selection View Go Run 1|

New File Ctrl+N
New Window Ctrl+Shift+N

first_script.py X

Users > REM > pytt

q . Run Code Ctrl+Alt+N
print|(“Hell

Go to Definition F12

TERMINAL EBUG E Go to Declaration

PS C:\Users\REM\python_scripts> python
Hello malware!
PS C:\Users\REM\python_scripts> I

Save the file (Ctrl+S) after each

modification before running the code.

10

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 10

To get started with Visual Studio Code, first launch the program from your Dynamic VM’s desktop.
Then, create a new file by browsing to File > New File.

Then, go to File > Save. Within C:\Users\REM, create a folder named “python_scripts” (right-click > New
> Folder). Save your file with the file name first_script.py.

Let’s complete our first Python script. Type the text print ("Hello malware!").

Then, go to File > Save or use the keyboard shortcut Ctrl+S. A common mistake is to run the code without
saving, which will run the code last saved to the file.

To run the code, you can click on the Play symbol on the top-right of the window. Alternatively, you can
execute the code via the context menu with a right-click > Run Code. Within the context menu, notice the
keyboard shortcut Ctrl + Alt + N (on a Mac this translates to Ctrl + Option + N). This shortcut is provided
by the third-party Code Runner extension installed in VS Code. We will use shortcuts often in this class to
save time and clicks.

© 2022 Anuj Soni

Technet24

Python Basics

* We use variables to store data:

» Use descriptive variable names (case-sensitive).

* Add an underscore (“_") between words.
* Strings are within double or single quotes—we will use double quotes.
* print () : built-in function to output content (default stdout).

* Use # for a single-line comment and place multi-line comments between

triple quotes (““"). #My first Python script
textl = “Hello”
text2 = “ malware!”

print (textl + text2)

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 11

The next few slides introduce some basic concepts in Python programming.
We will use variables to store data temporarily. The code snipped at the bottom-right of this slide shows
two examples of variable assignments. When specifying a variable name, choose terms that are concise

and descriptive. If the variable name includes two words, separate those words using an underscore.

In Python, strings are enclosed in quotes. You can use single or double quotes. In this class, we will only
use double quotes for consistency.

The built-in print () function prints content. We will use print () to output content to the terminal.
When using print () , we can use the add (“+”) operator to concatenate strings.

When writing comments, use the pound symbol (“#”) for single-line comments and enclose multiple lines
between triple quotes.

© 2022 Anuj Soni 11

Three Basic Data Types Are Strings, Numbers, and Booleans

#My first Python script

#String example
output text = “Hello malware!”
print (output text)

#Number and integer example
num = 1

#Number and float example
num float = 1.1

#Boolean example
is dll = True

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Three basic types in Python you should be familiar with are strings, numbers, and Booleans. We already
have a good understanding of what a string is.

The numbers category can be broken down into integers and floats. Floats are numbers with decimal
places included.

Booleans are True or False (they must begin with a capital letter).

12 © 2022 Anuj Soni

12

Technet24

A String Is an Object, and Objects Have Methods (i.e., Functions)

* Use a dot (“.”) after an object to view available methods.

* VS Code provides helpful background about a function’s purpose, its
parameters, and return value.

C: > Users > REM > python_scripts > first_script.py > .. textl.find(l)

(__sub: str, _ start: SupportsIndex | None = ..
__end: SupportsIndex | None = ...) -> int

textl = "Hello" ”
text2 = " malware!"
print(textl + text2) S.find(subl, start[, end]]) -> int
textl I Return the lowest index in S where substring sub is found,
@ capitalize such that sub is contained within S[start:end]. Optional arguments
D casefold start and end are interpreted as in slice notation.
¥ center
Return -1 on failure.
¥ count

encode

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 14

A string is an object, and Python provides certain functions that are specific to strings. Functions specific
to a certain type of object are called “methods.” You can call a method by typing the object followed by a
dot (“.””). VS Code will automatically provide a list of available methods to choose from.

For more additional detail on a method, choose one and type “(”. VS Code will pop up a box with details
on the method, its parameters, and return value.

14 © 2022 Anuj Soni

Mathematical, Bitwise, Comparison, and Logical Operations

16

Mathematical Operators Comparison Operators Bitwise Operators

Operator Description Operator Description Operator Description
+ Add == Equal & AND

- Subtract [Not equal | OR

/ Division < Less than * XOR

@ Multiplication > Greater than ~ NOT

B Exponent <= Less than or equal to << Left shift

% Modulus >= Greater than or equal to >> Right shift

Logical Operators

Operator Description

and True if both statements true
or True if at least one statement true
not Reverse the result

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

This slide lists Python operators that you are likely to encounter and use. This is not a comprehensive list
of all operators. See https://for710.com/pyoperators for more information.

Note that when using the bitwise shift operators, any gaps created by shifting bits are replaced with zero
bits (i.e., bits do not wrap around from one side to the other).

© 2022 Anuj Soni

16

Technet24

Use Mathematical Comparison and Logical Operators with “if”’

Statements to Evaluate a Condition

C: > Users > REM > python_scripts > first_script.py >

* Parentheses are only

fikaleh used in an if-statement to

S force an order of

ms Lm0 operations.

e the end of the if-
statement.

. Indentation creates

print(" ha text match!")

blocks of code (i.e., no

TERMINAL

PS C:\Users\REM\python_scripts> python {})'
The sum is 6

The result is within range!

We have a text match!

PS C:\Users\REM\python_scripts> D

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 17

The code on this slide shows an example of how operators are used in Python. The first example involves
numbers while the second example involves strings.

This slide also uses an if-statement in Python, which allows us to assess a condition. When using an if-
statement in Python, there is no need for parenthesis unless you want to force an order of operations. Also,
there are no curly braces to delineate code blocks as is common in other programming languages. Instead,
indentation is used. If the assessed condition is true, the indented code block below the if-statement is
executed.

© 2022 Anuj Soni 17

A List Is a Flexible Data Type That Includes Multiple Values

[

* Lists are mutable, so values can be
modified, added, and removed.

¢ Use bracket notation to access
items.

* Use the colon (“:”) slicing operator
to access part of a list.

* Use the in operator:

» With for to iterate through a list.
« With if to check if an item is in the list.

SA.N.S FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 18

Lists are commonly used to store multiple values. For more information on lists and available methods, see
https://for710.com/python-lists.

We can iterate over a list to assess its multiple values. The code on this slide demonstrates the use of a
for loop to iterate over a list. In the example, “day” is considered a loop variable.

To check if a list contains a certain value, we can use an if-statement and the “in” keyword:

To access a subset of values within a list, we can use the colon (“:”) slicing operator. The general format
for list slicing is:

+ sample list[start:stop] # includes first element through stop-1

* sample list[start:] # includes first element through the entire array

+ sample list[:stop] # includes first element through stop-

18 © 2022 Anuj Soni

Technet24

Specify Command Line Inputs and Outputs with argparse

parser =

parser.add_argum

e.", required=True))

args = parser.parse_args()

with open(args.output,
f.write("Hello mal

ROBLEMS OUTPU TERMINAL

PS C:\Users\REM\python_scripts> python first_script.py

usage: first_script.py [-h] -o OUTPUT

first_script.py: error: the following arguments are required: -o/--output
PS C:\Users\REM\python_scripts> python first_script.py

usage: first_script.py [-h] -o OUTPUT

My script.

optional arguments:
-h, --help

show this help message and exit

-0 OUTPUT, --output OUTPUT

Output file.

PS C:\Users\REM\python_scripts> python first_script.py outfile.txt
PS C:\Users\REM\python_scripts> cat outfile.txt

Hello malware!

PS C:\Users\REM\python_scripts> I

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 19

The argparse module allows us to specify command line arguments for a script. The argparse functionality
is not built-in, so the module must be imported. The example on this slide demonstrates how to specify
command line arguments.

When using the argparse module, we first create an ArgumentParser object:
parser = argparse.ArgumentParser (description="My script.”).

We populate the ArgumentParser object with information about relevant arguments using the

add_argument () method.

Calling parse_args () provides access to the supplied command-line arguments. For example, the
code on this slide adds an argument called “output”. The script then includes the statement:

args = parser.parse_args ()

After parse_args () isexecuted, we can access the “output” command-line argument as an attribute

of args viaargs.output.

The code on this slide uses the command-line argument to write text to the specified file. The with
keyword is often used for file access because it ensures the file is properly closed without explicitly

including code to do so.

For more information on argparse, see https://for710.com/argparse. For more information on reading and
writing files in Python, see https://for710.com/pythonfiles.

© 2022 Anuj Soni 19

Creating a Configuration Extractor for file.exe

* In Section 2, we analyzed file.exe and determined that the function at

Recipe Bma
RC4 o1

Passphrase

59 4E 73 38 51 44 36 51 .. HEXT

Input format Output format
Hex Latin1

JSON Beautify o n

Indent stri
ndentting D Sort Object Keys

length: 78945 1
I e I B

Lines:

Input
SE 8E A2 05 BC 82 3D 65 F9 F5 C5 A8 A9 90 20 10 B7 69 EC 2E 09 01 65 2F B9 62
82 E4 2B A9 6F 2B 44 35 CC A5 97 8C 51 8F 79 B5 A3 19 9C C8 A7 08 C7 02 63 F6

time: 9ms.
length: 27843 [—
Output g B0 @

{
"pk": "/SVNLPYVd@4yhjQWFntNHZObsHYz2DzRIF+HjkQuTmE=",

004059fc implements RC4 and decrypts configuration data.

* The encrypted data resided in a
section with an unusual name.

20

“pid": "33,

“sub": "331",

"dbg": false,

“fast': true, sTbz 0000CE00 0001E000 0000C800 00018600 00000000 00000000

ninet true,

s reloc 0000054C 00028000 00000600 00027E00 00000000 00000000
R a e P E
Offset | 0 1 2 3 4 & 6 7 8 9 A B C D E F | Ascii

oooooooo

51 44
oooooolo
oooooozo
0ooooo3n
00000040
0oooooso
00000060

EE 5C D7

51 78 57 62 77 51 63
4D 4B 4D 62 41 54 44
00 SE 8E A2 05 BC 82
10 B7 69 EC ¢E 09 01
2B 44 35 CC A5 97 8C

A7 08 C7 02 63 F6 EC 87

4D 01 7F 54 82 7C 25

ypel 1ESD ¢
41 &xHo

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Now that we understand some Python basics, let’s focus on automating a task. Our goal is to extract the
encrypted, embedded configuration from file.exe, an executable we discussed in Section 2. As a reminder,
this malware sample has SHA-256 hash
6b212864731¢c131bd095¢2537cal4e10338d3ebf997dda59465¢5f1ce73d418b. You can find file.exe and
other executables referred to during this walk-through within Malware\Section3\file_and more.zip.

When we performed some initial static file analysis of file.exe, we observed a section with an unusual
name that contained unreadable data. This led us to perform some additional debugging, and eventually we
arrived at the conclusion that this content was RC4 decrypted to reveal configuration data.

How could we automate this decryption outside of a debugger? Could we create a python script to run
against this and similar executables to extract the configuration content?

© 2022 Anuj Soni

¥THs8QDeQ=xWbwQctD
418k 4dgMKHbATD4k
RS N P

20

Technet24

Document the Script’s Requirements before Writing Any Code

Our script must:

Accept a target file and output file on the command line.

Parse a PE file.

Find the section that contains the obfuscated configuration data.
Extract data from that section.

Parse the section data and identify the RC4 key, encrypted data, and any
related information based on our understanding of how the data is structured.

RC4-decrypt the encrypted configuration data.
The target file must

Write the decrypted configuration to a file. be unpacked.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

This slide lists the requirements for the Python script we want to write.

Note that we are creating a static config extractor intended to be run against a target file on disk. This
means the encrypted content is embedded somewhere in the file, and we can extract it for processing. If
the encrypted data were only available in memory after an initial executable unpacked itself, we would
need to unpack that executable first.

© 2022 Anuj Soni 21

Explore pefile Usage with a Legitimate Program, notepad.exe

PS C:\Users\REM\python_scripts> python

Python 3.9.7 (tags/v3.9.7:1016ef3, Aug 30 2021, 20:19:38) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright"”, "credits" or "license" for more information.

>>> import pefile

>>> help(pefile)

class PE(builtins.object)
| PE(name=None, data=None, fast_load=None, max_symbol_exports=8192, max_repeated_symbol=120)

A Portable Executable representation.

This class provides access to most of the information in a PE file.

to process and an optional argument ‘fast_load' (False by default)
which controls whether to load all the directories information,

|
]
|
|
l
| It expects to be supplied the name of the file to load or PE data
|
l
| which can be quite time consuming.

|

l

pe = pefile.PE('module.dll")

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 23

Since we are exploring a new PE file parsing capability, it’s a good idea to use a legitimate program to
learn more about the Python module. Malicious programs often have an unusual characteristics and these
anomalies may confuse our initial attempts to understand pefile’s capabilities.

Within the terminal screen in the lower part of VS Code, type python to launch the interactive shell. Then,
load the pefile module with the command import pefile. In Python, the “import” statement finds
the specified module and provides access to the module’s functionality.

Let’s explore this module by viewing its help information. Type help (pefile), as shown on this slide.
In addition to an overview of the module, we see a description of classes contained within the module.
Scrolling down (hit the spacebar) provides information about each class. For now, we will only focus on
the PE class. The description tells us that this class will give us access to the structure of a PE file, which is
precisely what we need for our Windows file analysis. The output also explains how to create an instance
of the PE class and read in a file.

© 2022 Anuj Soni 23

Technet24

The dir() Command Provides a Glimpse of Methods

>>> dir(pefile.PE)
['_ IMAGE_BASE_RELOCATION ENTRY_format__', ' _IMAGE BASE_RELOCATION format__', ' IMAGE BOUND_FORWARDER REF _format

= 2 N - e o e o . 7 = " 4 S NS Y ¥ 9 of o

CL L _LAq NN s el TN, A SX L b e B N N Gh TS TN S M L0 .as
, ' le ', " 1t ', '__module__', ne__ ', ' _new__', ' parse__', ' reduce__', '__reduce_ex__', ' _repr__"',

' '

__setattr__", '__sizeof ',

'

__str__", __subclgsshook_

' ' ' '

_unpack_data__ ', '__weakref__', "adjust_FileAlignment

, 'adjust_SectionAlignment', 'close’, 'dump_dict', 'du o', 'dword_align', 'full_load', 'generate_checksum’,

‘get_bytes_from data', 'get_data', 'get data_from dword', 'get_data_from_qword', 'get_data_from_word', 'get_ dword_
at_rva', 'get_dword_from data‘', ‘get_dword_from_offset', 'get_imphash', 'get_import_table', 'get_memory_mapped_ima
ge', 'get_offset_from_rva', 'get_overlay', 'get_overlay_data_start_offset', 'get_physical by rva', ‘get_gword_at_r

va', 'get_gword_from_data', 'get_gword_from_offset', 'get_resources_strings', 'get rich_header_hash', 'get rva_fro
m_offset', 'get_section_by offset', 'g g i i ', 'get string
_u_at_rva', ‘get_warnings', 'get_wor(>>> help(pefile.PE.is exe)
", 'is_driver', 'is_exe', 'merge mod Help on function is_exe in module pefile:
ebug_directory', 'parse_delay_import
parse_directory_tls', 'parse_exceptig
orts', 'parse_relocations', 'parse_rg
arse_resources_directory', 'parse_ri(This will return true only if the file has the IMAGE_FILE_EXECUTABLE_IMAGE flag
cate_image‘, 'set_bytes_at_offset’, set and the IMAGE_FILE_DLL not set and the file does not appear to be a driver
ffset', 'set_gword_at_rva', _'set_worg either.

write']

' ' ' ' '

get section by rva get string at rva from data

is_exe(self)
Check whether the file is a standard executable.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

We can return to the help menu to read more about the methods and attributes of the PE class.
Alternatively, we can view a summary of this information by typing dir (pefile.PE) . An excerpt of
this output is shown on this slide.

The dir() command output is a bit cluttered, but a quick scan of the text hints at the module’s capabilities.
For example, we see references to get impash, get overlay, and is_exe. If we want more information
about a specific method, we can use the help () function.

By the way, functions that begin and end with double underscores are considered “magic methods”. They
are basically reserved and can be safely ignored for now.

24 © 2022 Anuj Soni

24

Pefile: Load a Program

» Within a Python interactive shell, type these commands to get started:

>>> import pefile

>>> target = pefile.PE("C:\\Windows\\notepad.exe™")
>>> target.get_imphash()
'670212bd5fae78855c331eddeffdd4eb’

>>> target.is_exe()

True

* When an executable is loaded, we can begin calling methods to learn
about the target program and explore its structure.

* It’s helpful to have an interactive shell open while writing a script to test
code and review any available documentation.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 25

This slide demonstrates how to use the pefile module to load an executable and begin using available
methods.

© 2022 Anuj Soni 25

Technet24

Extract Information about Imported DLLs and Functions

help (pefile.PE) output describes how to access the various
directories entries, including one associated with the program’s imports.

Directory entries will be available as attributes (if they exist): >>> for item in target.DIRECTORY_ENTRY_IMPORT:
(no other entries are processed at this point) e print(item.dl1l)

'KERNEL32.d11"

'GDI32.d11°

'USER32.d11"
‘api-ms-win-crt-string-11-1-0.d11"
‘api-ms-win-crt-runtime-11-1-0.d11°
‘api-ms-win-crt-private-11-1-0.d11°
‘api-ms-win-core-com-11-1-0.d11"
‘api-ms-win-core-shlwapi-legacy-11-1-0.d11"
‘api-ms-win-shcore-obsolete-11-1-0.d11"
‘api-ms-win-shcore-path-11-1-0.d11°
‘api-ms-win-shcore-scaling-11-1-1.d11°"
'api-ms-win-core-rtlsupport-11-1-0.d11°’
‘api-ms-win-core-errorhandling-11-1-0.d11"
‘api-ms-win-core-processthreads-11-1-0.d11"
N5 Ao -rogtsstaphd A 12000 0 !

DIRECTORY_ENTRY_IMPORT (list of ImportDescData instances)
DIRECTORY_ENTRY_EXPORT (ExportDirData instance)
DIRECTORY_ENTRY_RESOURCE (ResourceDirData instance)
DIRECTORY_ENTRY_DEBUG (list of DebugData instances)
2 OR NTRY RASERFIQ i of RaseRelocationData J
>>> help(pefile.ImportDescData
p1] Help on class ImportDescData in module pefile:

class ImportDescData(DataContainer)
| ImportDescData(**args)

Holds import descriptor information.

J OO OO OCOOCCGOCOoOCOCOCOCOCOoCCOCO -

imports: list of imported symbols (ImportData instances)
struct: IMAGE_IMPORT_DESCRIPTOR structure

AN.S FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 26

|
|
|
| dil: name of the imported DLL
[
|

Although the pefile module includes several function to quickly extract information like an import table
hash, obtaining other information may require a bit more work.

For example, let’s discuss how to extract an executable’s imported DLLs and functions. This is useful data
we often consult when performing static file analysis.

The screenshots on this slide show how we can navigate pefile documentation and perform testing to get
access to the list of imported DLLs. In this case, we learn that the imports are accessible via the
DIRECTORY_ENTRY_ IMPORT attribute, which is a list of ImportDescData instances. Reviewing
documentation on the ImportDescData class reveals that the “dll” attribute contains the name of the
imported DLL.

The code on the right iterates over the DIRECTORY ENTRY IMPORT list and prints out the ”dIl”
attribute for each ImportDescData object. The output is a list of imported DLLs.

26 © 2022 Anuj Soni

Iterate over ImportData Instances to Print DLLs and Functions

>>> help(pefile.ImportDescData)
Help on class ImportDescData in module pefile:

class ImportDescData(DataContainer)

| ImportDescData(**args) >>> for item in target.DIRECTORY_ENTRY_IMPORT:

print(item.dl1l)

Holds import descriptor information. for function in item.imports:

dll: name of the imported DLL o .
imports: list of imported symbols (ImportData instances) b*KERNEL32.d11

struct: IMAGE_IMPORT DESCRIPTOR structure b’GetProcAddress’
b'CreateMutexExW®

>>> help(pefile.ImportData) b*AcquireSRWLockShared"*
Help on class ImportData in module pefile: b'DeleteCriticalSection’

b'GetCurrentProcessId"’
class ImportData(DataContainer) b'GetProcessHeap'

| ImportData(**args) b'GetModuleHandleW"

|

| . .

| 600 print(function.name)
|

|

|

|

| Holds imported symbol's information.

| ordinal: Ordinal of the symbol

| name: Name of the symbol

| bound: If the symbol is bound, this cont
| the address.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 27

We can supplement the output on the previous slide by adding the names of functions imported by each
DLL. To obtain this additional detail, observe that each ImportDescData object contains an attribute
“imports” that is a list of ImportData instances. Documentation on ImportData shows a “name”
attribute that specifies the function name.

The code on the right makes use of this detail to iterate over the list of function names to print each one to
the terminal.

With a brief introduction to pefile behind us, let’s return to building our configuration extractor.

© 2022 Anuj Soni 27

Technet24

VS Code: Include a Text Editor, Terminal, and Python Shell

extract_config.py X

ers > REM > py ots > extract_config.py

PROBLEMS ~ OUTPUT TERMINAL
PS C:\Users\REM\python_scripts> D PS C:\Users\REM\python_scripts> python
on win32
Type "help"”, "copyright”, “"credits" or "license" for more information.

>>> import pefile
>>>

This organization allows us to both run our script and interactively explore
pefile as needed to parse our target file.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Let’s get started with building our config extractor. We will also take some time to get more familiar with
the pefile Python module. Within VS Code, create a new file and call it extract config.py. We will also
use two terminal windows below the script file. On the left, we have our terminal prompt where we can
view the output of running our script. This will help us check for errors and assess if our script produces
the expected output. On the right, launch a Python interactive shell. Rather than diving straight into
creating a script, the interactive shell is a great way to learn about available modules and perform quick
testing.

Within the interactive shell, load pefile with the command import pefile. As a reminder, pefile is not
included with a default Python install. It was installed within your Windows VMs with the command
pip3 install pefile.

28 © 2022 Anuj Soni

Python 3.9.7 (tags/v3.9.7:1016ef3, Aug 30 2021, 20:19:38) [MSC v.1929 64 bit (AMD64)]

28

Our Script Will Import Several Python Modules

* We need to import several libraries:

import pefile
import argparse
from Crypto.Cipher import ARC4

* The pycryptodome module implements many cryptographic algorithms
including RC4, Salsa20, ChaCha20, and various ECC curves.

cipher = ARC4.new (key)
decrypted data = cipher.decrypt (data)
print (decrypted data)

* Our script must extract the key and data.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Our script needs to import several Python modules to perform its work, including pefile, argparse, and
pycryptodome.

As a reminder, the “import” statement in Python finds the specified module and provides access to the
module’s functionality. The “import” statement allows access to all functions within a specified module. If
you only need access to a subset of functions within a module, consider the “from” statement. As shown
on this slide, our script will include the statement:

from Crypto.Cipher import ARC4

This statement imports functions from ARC4.py located in the Crypto (i.e., pycryptodome) package under
the Cipher subdirectory. A “package” is a collection of related modules. You can find ARC4.py within
your VM at C:\Users\REM\AppData\Local\Programs\Python\Python39\Lib\site-
packages\Crypto\Cipher\ARC4.py.

© 2022 Anuj Soni

29

29

Technet24

Next, We Specify Arguments and Load the Target Program

» Arguments will specify the target executable and an optional output file
for the extracted config:

parser = argparse.ArgumentParser (description="Config extractor")

parser.add argument ("-f","--file", help="File for config
extraction.", required=True)
parser.add argument ("-o","--output", help="Output file for

config.", required=False)
args = parser.parse_args ()

* Then, we can load the specified target program.
target = pefile.PE(args.file)

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Next, we will use argparse to specify our command line arguments. As a reminder, we want to include
arguments to specify the input file (i.e., the target binary) and an output file. We can make the output file
option by including required=False when we call parser.add_argument () .

30 © 2022 Anuj Soni

30

The Sections Attribute Is a List of IMAGE_SECTION HEADER
Structures That Contain the “Name”’ Attribute

PS C:\Users\REM\python_scripts> python .\extract_config.py
C:\Users\REM\Desktop\file_and_more\file.exe

[IMAGE SECTION HEADER]

0x1C8 (2 Name: .text

0x1D0 Ox8 Misc: 0xA2D4 PROBLEMS OUTPU TERMINAL DEBUG CONSOLE

0x1D0o 0x8 Misc_PhysicalAddress: OxA2D4

for section in target.sections:
print(section.Name)

0x1Do @x8 Misc_VirtualSize: OxA2D4 PS C:\Users\REM\python_scripts> python .\extract_config.py

ox1D4 OxC VirtualAddress: 0x1000 C:\Users\REM\Desktop\file and_more\file.exe
ox1D8 0x10 SizeOfRawData: 0xA400 ' text\x00\x00\x00"

0x1DC 0x14 PointerToRawData: 0x400 ' .rdata\x00\x00"

OX1E@ 0x18 PointerToRelocations: ox0 ' .data\x00\x00\x00"

Ox1E4 0x1C PointerToLinenumbers: () ' .s7bz\x00\x00\x00"

Ox1E8 0x20 NumberOfRelocations: ox0 ' .reloc\x00\x00"

Ox1EA 0x22 NumberOfLinenumbers: ()

Ox1EC @x24 Characteristics: 0Xx60000020 for section in target.sections:

[IMAGE_SECTION_HEADER] section_str = section.Name.decode().rstrip("\x00")
Ox1F0 Ox0 Name: .rdata print(section_str)

TERMINAL DEBUG CONSOLE

* The initial outputs show byte strings. .

PS C:\Users\REM\python_scripts> python .\extract_config.py

° We Convert tO UTF_8 With decode() . texi :\Users\REM\Desktop\file_and_more\file.exe

and remove null bytes with rstrip(). [Run the script from the command
7L line to specify arguments.

.reloc

SAN.S FORY710 | Reverse-Engineering Malware: Advanced Code Analysis 32

To execute the script on the previous slide and pass arguments, you will need to run it from the command
line within the terminal window. The output lists IMAGE SECTION_ HEADER structures. Each structure
includes, among other attributes, the “Name” of the section. Let’s update our script to print out these
names (see top-right screenshot).

The new output prints out the section names as expected, but the format requires explanation. Each section
is preceded by “b” because the data is a “binary string”. If you printed the type for these values using the
built-in type() function, the output describes the values as <class 'bytes’>. To convert this data to
a string type, we can apply the decode () function. When using decode () , you can specify the
appropriate encoding. UTF-8 is the default, so we do not need to specify the encoding in this case. An
alternative to using the decode () function is to convert the type with the code

str(section.Name, 'utf-8'). However, decode () is more common when operating on byte
data. For more information on the decode () method, see https://for710.com/decode.

Because the byte data includes null bytes, it is necessary to remove those values. We can accomplish this
with the string rstrip () method (see https://for710.com/rstrip).

32 © 2022 Anuj Soni

Technet24

Compare Similar Executables to Identify the Section of Interest

» Brief static analysis indicates all files have a section with an unusual
section name, but the name varies.

* In our script, we could check for section names that are non-standard.

ENCE] c:\users\rem\desktop\file_and_more\file.exe property value value value value value
il indicators (33) * name text rdata data s7bz reloc
’1 N . md5 AFB8170E2FD.. CEE02166B388E5.. 8E933246B6D8.. 42BDA57785CD.. 8E13393D944..
=55 c\users\rem\desktop\file_and_more\propsys.e: ~ property value value value value value
-l indicators (27) * name text rdata data xI7f reloc
}] md5 546A09CEB867.. 5BESCE9ATFD70.. 7EF6B1D7AEQ3.. C980ED955344A.. 37ECA68CD79..
ERCE c:\users\rem\desktop\file_and_more\smphost.exe property value value value value value
-l indicators (27) * name text rdata data fg reloc
-1 md5 77E6C3808FF2.. 4D3434703AF49E.. 50F2E5B47CAC.. 66A29D2FD42660.. BAGDADABEO..

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 33

Our script must identify the appropriate section within the target PE file to extract the encrypted
configuration data. We know the encrypted content is in the section named ".s7bz”. One approach is to
iterate over the sections within the target file (i.e., file.exe) until we find a section named “.s7bz”.
However, this section name may change across similar samples, and if the name changes, our script will
not work.

The best-case scenario is that our script successfully extracts the configuration data from file.exe and
similar files (we will discuss how to find similar files more in the next section). Therefore, when deciding
how to identify the anomalous section, it is helpful to collect several similar malware samples. This slide
shows section data for file.exe and two samples that have similar functionality when compared to file.exe.
All three examples have a single anomalous section, but the section name varies. Within our script,
perhaps we could iterate over sections and identify the one with an uncommon section name. Let’s try this
approach.

© 2022 Anuj Soni 33

Create a List of “Good’’ Sections to Compare Against

* To identify the anomalous section, we define a list that includes multiple
string values.

» If a section name is not in the list, identify it for further processing.

 Our updated script correctly identifies the single unusual section.
good = [".text", ".rdata", ".data", ".reloc"]

for section target.sections:
section_str = section.Name.decode().rstrip("\x00")
if section_str good:
print(section_str)

TERMINAL

PS C:\Users\REM\python_scripts> python .\extract_config.py
C:\Users\REM\Desktop\file_and_more\file.exe
.s7bz

MM

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 34

In the code on this slide, we first define a list of standard Windows executable section names. Then, when
we iterate over the list of sections, we check each section name against our list. If a section name is not in
the list, it must be the anomalous section that contains the encrypted configuration data.

34 © 2022 Anuj Soni

Technet24

Clarify Where the RC4 Key and Encrypted Data are Located

If we browse to the section name .s7bz within Ghidra, we find several
labeled locations including one that corresponds to the encrypted config.

Recipe BB E npu Lt e + 0O 8 =
e o n 3D 65 F9 F5 C5 A8 A9 90 20 10 B7 69 EC 2E 09 01 65 2F B9 62
82 E4 2B A9 6F 2B 44 35 CC A5 97 8C 51 8F 79 B5 A3 19 9C (8 A7 08 C7 02 63 F6
594 73 38 51 44 36 51.. HEX" Output ength: 2755 @ 0 0 0
lines: 143
Input format Output format { byte * Stdcall FUN 00201273
Hex Latin1 "pk": "/SVNLPYVd04yhj QWFNNHZObSHY 22D ZRIF+HjkQuTE=", byte x4 RETURNS
Headers D FUN_00401a73
text DAT_0041e028 XREF[3] : FUN_00401a73:00401a7a(*), W
rdata FUN_00401a73:00401a7£ (*),
data FUN_00401a73:00401ab0 (*) 091 4
H 0041028 22 5En | ~ 1 |— 00401227 Jz LAB_00401ac2
.reloc 0041e029 22 8Eh 00401aa9 PUSH ESI
0041le02a ?? A2h 0040laaa PUSH dword ptr [DAT 0041e024]
0041e02b 22 05h FUN_00401a73 calls 00401ab0 PUSH EDI=>DAT_0041e028
0041e02¢c 22 BCh the RC4 function 00401abl PUSH 0x20
0041e02d 22 82h 00401ab3 PUSH DAT_0041e000
00401ab8 CALL cipher_rc4

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 35

Before proceeding with our script, we must understand the structure of the anomalous PE section and
where the encrypted data resides. Within Ghidra, when we jump to the PE section of interest, we find
several labeled locations. One labeled location corresponds to the encrypted data. There are three more
labeled locations, which we will discuss shortly.

© 2022 Anuj Soni 35

Encrypted Data Size

The HW breakpoint is hit within the RC4 decryption function.

Paused

Hardware

(dword, i/write) at file. (

& cru _rLlog 1 Notes ® Breakpoints ¥ Memory Map [} Call S{ | [} Call Stack CPU __+ Log I Notes # Breakp|
=] *|[004059FC $ [push ebp sub_4059FC 5
00403960 |[. | fov ebp.esp Thread ID Address | To ! From ! size
a0k, S, Gty 0019FF24 | 00401ABD =~~~ - —
140 5A(ush ebx
00405A06 Sush esi ggigprgg 994236§§ Follow Address
00405A07 xor esi,esi FF A24A
00405A09 push edi 0019FFEQ | 77A24A47 & FollowTo
00405A0A mov eax,esi
>e || 00405A0C ov byte ptr H I 104 =
S [bcotoane U7 L (X7 BF SHEECEseli Bru [Blog [fiNotes [CallStack @ Breakpoints M
e | 00405A14 cmp eax, 100 call <file.<n
o [00405A19 jb file.405A0C 0040 1ABD 2d0 €5p; 14
® (| 00405418 mov edi,esi 00401ACO || . | mov eax,esi EAX 0439F4A0
e | 0040510 xor edx, edx . . 00401AC2 || > | pop esi EBX 00231000
o | 00405A1F mov bl,byte ptr ss:[lebp+edi-1 0040143 || | bop edi Eox 000066CC
o [00405426 mov eax,edi oodoraca L | mm E5X 0439P401
® || 00405A28 movzx ecx,bl 00401AC54 1§ b <
e || 00405428 div dword ptr ss:|[[ebp+c] i AC pus S P
o [| 00405A2€ mov eax,dword ptr ss:[ebp+8] 00401AC6 || . mo; GHDpEHY Default (stdcall)
o || 00405431 movzx eax,byte ptr ds:[edx+ea 00401AC8 sub esp,28 .
ET— EdREEES] 00401ACB push ebx 1: [esp] 0041E000 f
olle : = 00401ACC call <file.¢ | 2: [esp+4] 00000020
00401AD1 mov ebx,eax 31 eSP+2% gggégggg
H esp+t
§% Dump 1 &% Dump 2 % Dump 3 4% Dump 4 4% Dump 5) Wat (040180 XQr_eax-eax =
Address | Hex ASCII : .
0041c000 59 4E 73 38|51 44 36 S1[7857 62 77]5T 63 74 44| ynssaoeay | ointer to RC4 key: 0x41E000
0041E010| 34 74 38 68|34 64 71 40|46 4D 62 41| 54 44 34 68| 4t8kddauky RC4 key length: 0x20 (32 bytes)
0041E020| OE BO 27 66/CC 66 00 00|SE 8E A2 05|BC 82 3D 65| .°'fIf..A| poj h .
0041E030 F9 ¥ C5 AB| A9 90 20 10|57 69 £C 22|05 01 65 2| foA'6, ..{ LoImter to ciphertext: Ox41E028

Ciphertext length: 0x66CC (26,316 bytes)

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Associate Two Other Labeled Locations with the RC4 Key and

0041e000
0041e001
0041e002
0041e003
0041e004
0041e005
0041e006
0041e007
0041e008
0041009
0041e00a
0041e00b
0041e00c
0041e00d
0041e00e
0041e00£
0041e010
0041e011
0041e012

34 Ah A Ak A A

??
??
??
??
??
??
?2?
??
??
??
??
??
??
??
??
??
??
??

2?

DAT_0041e000

59h
4Eh
73h
38h
51h
44h
36h
51h
78h
57h
62h
77h
51h
63h
74h
44h
34h
74h
38h 8

b U000 £ 0 T X 0O o000 on 2

0041024

undefi... 000066CCh

DAT_0041e024

Based on our analysis in Section 2 (see the slide in Section 2 titled “The HW Breakpoint Is Hit within the
RC4 Decryption Function”), we can associate two of the remaining three labeled locations with the RC4
key and the encrypted data size.

36

© 2022 Anuj Soni

36

Technet24

Rename Labels for Clarity, Leaving One Unknown Label

rc4_key DAT_0041e020 FUN_00401a73

0041e020 ?? OEh 00401a73 PUSH EDI
0041e000 ?? 59h Y 0041e021 ?? BOh 00401a74 PUSH dword ptr [encrypted size]
0041e001 ?? 4Eh N 0041e022 ?? 27h ' 00401a7a MoV EDI, encrypted_data
0041e002 ?? 73h s 0041e023 ?? 66h £ 00401a7f PUSH EDI=>encrypted_data
0041e003 22 38h 8 00401a80 PUSH 0x0
0041e004 ?? 51h Q encrypted_size 00401a82 CALL FUN_00405846
0041e005 ?? 44nh D
0041e006 k&4 36h 6 00401a87 ADD ESP, Oxc
0041e007 ?2? 51h Q 0041e024 undefi... 000066CCh 00401a8a CMP EAX, dword ptr [DAT_0041e020]
0041e008 ?? 78h X 00401a90 JZ LAB_00401a96
0041e009 ?? 57h W encrypted_data 00401a92 XOR EAX, EAX
0041e00a ?? 62h b 00401a94 POP EDI
0041e00b ?? 77h W 00401a95 RET
0041e00c ?? 51h Q 0041e028 ?? 5Eh ~
0041e00d ?? 63h c 0041e029 k&2 8Eh
0041e00e 2? 74h t 0041e02a ?? A2h
0041e00£f ?? 44h D 0041e02b ?? 05h
eoae010 Tz a4 4] \0odieze 77 ECh Some code analysis is necessary to
0041e011 ?? 74h t

] I understand the remaining labeled data.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 37

Within the PE section of interest, there is one remaining labeled data location. To investigate, let’s review
the code that references this location.

At 401a8a, the data is compared to the contents of EAX. If the value in EAX is not equal to the 32-bit
value at 41e020, the function returns. We know EAX often stores the return value of a function, and we
see a function call shortly before this function: at 401a82, FUN 00405846 is executed. Interestingly,
arguments passed to FUN_ 00405846 include the encrypted data size and a pointer to the encrypted data.
Let’s jump to FUN_00405846 for a closer look.

© 2022 Anuj Soni 37

A Hexadecimal Value within FUN_00405846 Suggests CRC32

00405846
00405847
00405849
0040584c
0040584f
00405851

FUN_00405846

PUSH EBP

MoV EBP, ESP

MoV ECX, dword ptr [EBP + param 1]
MoV EDX, dword ptr [EBP + param_ 3]
NOT ECX

TEST EDX, EDX

0xedb88320 X

(=

Q Al Q Maps [Videos ¢ Shopping @ News i More

https://github.com » Michaelangel007 > crc32 @

Michaelangel007/crc32: CRC32 Demystified - GitHub

The reverse polynomial, 0OxEDB88320 , where the bits are reversed. The CRC algorith comes in
two forms: Normal initialization checks the top bit and shifts left, ...

38

00405868 AND EAX, 0x1
0040586b NoOT EAX https://Ixp32.github.io > docs » a-simple-example-crc32...
0040586d INC EAX . . .
00405860 AND ax, Oxedbss3zo A simple example: CRC32 calculation — The L?(PtIhSZ7 8I;:ocessor
. — ength:
00405873 XOR ECX, EAX Recipe S] Input e q + 0O 2]
00405875 SuB EDI, Ox1
00405878 JINZ LAB_00405864 ol H Q n S5e 8e a2 05 bc 82 3d 65 f9 f5 c5 a8 a9 90 20 10 b7
0040587a TEST EDX, EDX rom Hex 2e 09 @1 65 2f b9 62 82 ed 2b a9 6f 2b 44 35 cc a5
0040587c JINZ LAB_0040585a Delimiter 51 8f 79 b5 a3 19 9c c8 a7 @8 c7 02 63 f6 ec 87 56
Space cd 28 92 eb 5c d7 4d 01 7f 5a 82 7c 25 63 01 3f 8f
DAT_00412020 67 cd 3b 6d 90 38 69 55 ca 53 cb 11 f4 ce f1 11 3a
0041020 22 0Eh time: 24ms
0041e021 22 BOh CRC-32 Checksum O n Output 1;:5:2 i | rD ®
0041e022 2?2 27h ' :
0041e023 2?2 66h £ » 6627booe

69 ec
97 8c
60 bc
fe b5
9¢c c3

ra
L4

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Within FUN_00405846 we see code that is not immediately identifiable. It includes XOR, SUB, and AND
instructions, which may indicate the function implements an algorithm. Within the function, also observe
the value 0xedb88320. Online research of this hexadecimal value reveals it is associated with the CRC32
algorithm. Considering the arguments passed to the function, FUN_ 00405846 likely performs an integrity
check of the encrypted data before proceeding with decryption. Using CyberChef, we can confirm the
four-byte value located at 41€020 is the CRC32 checksum of the encrypted data.

© 2022 Anuj Soni

38

Technet24

Use the Slice Operator for Data Extraction

Addresses

0041e000
0041e010
0041e020
0041e030
0041e040

Hex

59 4e 73 38 51
34 74 38 6b 34

51 78
4d 4b

51 63 74 44
54 44 34 6b

Oe b0 27 66jicc

00|5e

bc 82 3d 65

£f9 f5 c5 a8 a9

10 b7

09 01 65 2f

b9 62 82 e4 2b

2b 44

97 8c 51 8f

* datalstart:stop]l #start through stop-1
* datalstart:] #start through end of array
e Datal:stop] #beginning through stop-1

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 39

RC4 Key (32 bytes)
Encrypted Data CRC32 Checksum (4 bytes)
Encrypted Data Size (4 bytes, little endian)
Encrypted Data (variable)
for section target.sections:
section_str = section.Name.decode().rstrip("\x0e0")
if section_str t good:

section_data = section.get_data()

key = section_data[@:32]
print("Key: " + key.hex())

data_size = section_data[36:40]
data_size_int int.from_bytes(data_size, "little")
print|(" d da e: " + str(data_size_int)})

data = section_data[40:40+data_size_int]

TERMINAL

PS C:\Users\REM\python_scripts> python .\extract_config.p
y C:\Users\REM\Desktop\file_and_more\file.exe

Key: 594e73385144365178576277516374443474386b3464714d4b4d
62415444346b

Encrypted data size: 26316

Based on our recent static code analysis, we can now accurately identify the structure of the PE section
where the encrypted configuration resides. This section also contains the RC4 key, a CRC32 checksum of
the encrypted data, and the size of the encrypted data.

In our Python script, we can use the slice operator to extract these individual components as shown in the
code snippet. Another approach to parsing binary data is to use the Python struct library. While we will not
use this approach in class, you can read more about this library here: https://for710.com/pystruct.

The code on this slide also demonstrates the use of the get _data () method. When run against a
section, this method returns the data contained within the section. This is the data we slice as needed to
specify the key, data size, and encrypted data.

This slide also uses the integer method from_bytes(). This function returns the integer represented by an
array of bytes (for more information, see https://for710.com/frombytes).

© 2022 Anuj Soni 39

* import ARC4

decrypted_str = decrypted_data.decode().rstrip("\x00")
config _data = json.loads(decrypted_str)
with open(args.output, "w") 8

f.write(] dumps(config_data, indent=4))

Use the Python json Module for Beautification

=] config.txt E3 ‘
1t
2 "pk": "/SVNLPYVA04yhjQWFntNHZObsHYz2DzRIF+HjkQuTmE="",
3 "pid": "33",
4 "sub": "331",
5 "dbg": false,
6 "fast": true,
7 "wipe": true,
8 "wht": {
9 "fld": [
10 "boot",

"msocache",
"programdata”,
"$windows.~ws",

"tor browser",
"program files (x86)",
"$recycle.bin",
"google",
"$windows.~bt",
"intel",

"windows",
"windows.old",
"mozilla",

"system volume information”,
"perflogs",
"application data",
"appdata",

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

As mentioned on the previous slide, the configuration is in JSON format. We can use the Python json
module to beautify the output and add indentation as shown on the right side of this slide.

The json.load () method converts the decrypted content to a Python object. The json . dump ()
method generates a JSON formatted string with the specified indentation.

To view the complete config extractor script, see the file section3 .1 extract config.py inthe

Malware\Section3 folder in your Windows VMs.

To learn more about the Python json module, see https://for710.com/python-json.

© 2022 Anuj Soni

41

41

Technet24

Course Roadmap

« FOR710.1: Code * Python for Malware Analysis
Deobfuscation and Execution * Lab 3.1:Automating Config Extraction
with Python

* FOR710.2: Encryption in

* Malware Analysis with DBl Frameworks

Malware) * Lab 3.2:Automate Payload Extraction with
* FOR710.3: Automating Frida

Malware Analysis * Automating Analysis with Ghidra
- FOR710.4: Correlating * Lab 3.3:Scripting with Ghidra

Malware and Building Rules

SA.N.S FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 42

This page intentionally left blank.

42 © 2022 Anuj Soni

L] L]
L] L]
Lab 3.1: Background Topics: pefile.PE.dump_info()
>>> help(pefile.PE.dump_info))
Help on function dump_info in module pefile: 243 [IMAGE_RESOURCE DIRECTORY]
244 0xF800 0x0 Characteristics: 0x0
. . . . 245 0xF804 0x4 TimeDateStamp: 0x0 [Thu Jan
dump_info(self, dump=None, encoding=‘ascii') 246 0xF808 0x8 MajorVersio 0x4
Dump all the PE header information into human readable string. 247 OxEBOA OxA MinorVersion: 0x0
= 248 0xF80C 0xC NumberOfNamedEntries: 0x0
>>> with open(”OUtpUt .tXt”, w .) as f: ;1‘ OXEZ?E[OXSBg)](E (7'NumberOfIdEntrJes: 0x1
f.write(target.dump_info()) 251 [IMAGE_RESOURCE_DIRECTORY_ENTRY]
252 O0xF810 0x0 Name: 0x539
Houtputixt B 253 0xF814 0x4 OffsetToData: 0x80000018
254 [IMAGE_RESOURCE_DIRECTORY]
1 ——-———--—-DOS HEADER--———————~— _ _
2 DOS_HEADER 25 0xF818 0x0 ~ Characteristics: 0x0
2 0xF81C 0x4 TimeDateStamp: 0x0 [Thu
3 [IMAGE_DOS_HEADER] 257 0xF820 0x8 MajorVersion: 0x4
4 0x0 0x0 e magic: 0x5A4D 2 0xF822 0xA MinorVersion: 0x0
> 0x2 0x2 e _cblp: 0x90 259 0xF824 0xC NumberOfNamedEntries: 0x0
6 Ox4 0x4 e cp: 0x3 260 0xF826 0XE NumberOfIdEntries: 0x1
! 0x6 0x6 efcrlc; 0x0 :VL I[?mégxggggl]JR(‘E DIRECTORY_ENTRY]
o 0x8 e _cparhdr: Ox4 263 0xF828 0x0 Name: 0x7269
2N 0xA 0xA e _minalloc: 0x0 264 0xF82C 0x4 OffsetToData: 0x80000030
10 0xC 0xC e maxalloc: OXFFFF 265 [IMAGE_RESOURCE_DIRECTORY]
11 OxE OXE e ss: 0x0 26 0xF830 0x0 Characteristics: 0x0
12 0x10 0x10 e sp: 0xB8 2 0xF834 0x4 TimeDateStamp: 0x0
13 0x12 0x12 e csum: 0x0 268 0xF838 0x8 MajorVersion: 0x4
14 0x14 0x14 e ip: 0x0 269 0xF83A 0xA MinorVersion: 0x0
- ey 0216 e os: 0x0 270 0xF83C 0xC NumberOfNamedEntries: 0x0
o * e.cs: * 271 0xF83E 0XE NumberOfIdEntries: o0x1
16 0x18 0x18 e_lfarlc: 0x40 Pilp \--- LANG [0,0] [LANG_NEUTRAL, SUBLANG_NEUTRAL]
17 0x1A 0x1A e_ovno: 0x0 273 [IMAGE_RESOURCE_DIRECTORY_ ENTRY]
18 0x1C 0x1C e res: 274 0xF840 0x0 ~ Name: 0x0
19 0x24 0x24 e oemid: 0x0 2 0xF844 0x4 OffsetToData: 0x48
20 0x26 0x26 e oeminfo: 0x0 2 [IMAGE_RESOURCE_DATA_ENTRY]
21 0x28 0%28 e res2: 2 0xF848 0x0 ~ OffsetToData: 0x12058
o500 053C 1t i 0xD) 278 0xF84C 0x4 Size: 0x149F
AN QW x 279 0xF850 0x8 CodePage: 0x0

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

The next few slides provide additional background that is helpful for Lab 3.1.

The walk-through in this module discussed malware that embeds an encrypted configuration in a section.
If the encrypted configuration is stored as a resource, however, accessing this data programmatically is a
bit more complicated due to the structure of the resource section.

We can use the pefile dump_info () method to learn more about the structure of the resource
section. This method prints all PE header information. This volume of data is best reviewed in a text

editor, so the commands on this slide write the output to a file.

Our goal is to access the IMAGE RESOURCE DATA_ ENTRY structure, which contains an offset to the
resource data in winbio.exe.

© 2022 Anuj Soni 43

Technet24

Lab 3.1: Background Topics: Access Resources with pefile (1)

>>> help(pefile.ResourceDirEntryData)

Directory entries will be available as attributes (if they exist): X X)
Help on class ResourceDirEntryData in module pefile:

(no other entries are processed at this point)

DIRECTORY_ENTRY_IMPORT (list of ImportDescData instances) class ResourceDirEntryData(DataContainer)
DIRECTORY_ENTRY_EXPORT (ExportDirData instance) | ResourceDirEntryData(**args)
DIRECTORY_ENTRY_RESOURCE (ResourceDirData instance)
DIRECTORY_ENTRY_DEBUG (list of DebugData instances)
DIRECTORY_ENTRY_BASERELOC (list of BaseRelocationData instances)
DIRECTORY_ENTRY_TLS

DIRECTORY_ENTRY_BOUND_IMPORT (list of BoundImportData instances)

Holds resource directory entry data.

|
[
|
| struct: IMAGE_RESOURCE_DIRECTORY_ENTRY structure
| name: If the resource is identified by name this
| attribute will contain the name string. None
| otherwise. If identified by id, the id is
>>> help(pefile.ResourceDirData) | available at 'struct.Id’
Help on class ResourceDirData in module pefile: | id: the id, also in struct.Id
| directory: If this entry has a lower level directory
| this attribute will point to the
| ResourceDirData instance representing it.
| If this entry has no further lower directories
| and points to the actual resource data, this
| attribute will reference the corresponding
| ResourceDataFntrvData instance.
|
|

class ResourceDirData(DataContainer)
| ResourceDirData(**args)

Holds resource directory information.

struct: IMAGE_RESOURCE_DIRECTORY structure
entries: list of entries (ResourceDirEntryData instances)

|
|
|
|
| (Either of the 'directory’ or 'data’ attribute will exist,
but not both.)

FOR?710 | Reverse-Engineeri g ed Code Analysis 44

Similar to the approach we used to access a program’s IAT, our journey to access resource data begins
with a directory entry. On the top-left of this slide, the screenshot shows an excerpt of output from
help(pefile.PE). This explains that resources are accessible through the

DIRECTORY_ENTRY_ RESOURCE attribute. This attribute is an instance of a ResourceDirData

object.

If we query help () tounderstand the ResourceDirData class, we find it includes an attribute
named “entries” that is a list of ResourceDirEntryData instances.

If we query help () tounderstand the ResourceDirEntryData class, we see it includes four
attributes. The data attribute points to the actual resource data, but only if there are no lower directories. If
there are subdirectories, those are accessible via the directory attribute, which points to additional
ResourceDirData objects. This means we must traverse any subdirectories before accessing the

resource data. As highlighted on this slide, only one of the directory or data attributes may exist.

When we finally reach the resource data, it will be an instance of the ResourceDataEntryData class.

44 © 2022 Anuj Soni

Lab 3.1: Background Topics: Access Resources with pefile (2)

class ResourceDataEntryData(DataContainer) 243 [IMAGE RESOURCE DIRECTORY]

| ResourceDataEntryData(**args) 244 0XF800 0x0 ~ Characteristics: 0x0
0xF804 0x4 TimeDateStamp: 0x0 [Thu Jan
0xF808 0x8 MajorVersion: 0x4
0xF80A 0xA MinorVersion: 0x0
0xF80C 0xC NumberOfNamedEntries: 0x0
0xF80E O0xE NumberOfIdEntries: 0x1
Id: [0x539] (-)
[IMAGE_RESOURCE_DIRECTORY ENTRY]
0xF810 0x0 Name: 0x539
3 0xF814 0x4 OffsetToData: 0x80000018
4 [IMAGE_RESOURCE_DIRECTORY]
0xF818 0x0 ~ Characteristics: 0x0
0XF81C 0x4 TimeDateStamp: 0x0 [Thu
0xF820 0x8 MajorVersion: 0x4
3 0xF822 0xA MinorVersion: 0x0
SR help(pefl}e. PEAgetidat?)) 0xXF824 0xC NumberOfNamedEntries: 0x0
Help on function get_data in module pefile: 260 0XF826 OXE NumberOfIdEntries: 0x1
[Id: [0x7A69]
262 [IMAGE_RESOURCE_DIRECTORY_ENTRY]
get_data(self, rva=0, length=None) 263 0xF828 0x0 ~ Name: 0x7R69
. . . 4 0xF82C 0x4 OffsetToData: 0x80000030
Get data regardless of the section where it lies on. [IMAGE_RESOURCE DIRECTORY]
0xF830 0x0 Characteristics: 0x0
0xF834 0x4 TimeDateStamp: 0x0
0xF838 0x8 MajorVersion: 0x4
0xF83A 0xA MinorVersion: 0x0
0xF83C 0xC NumberOfNamedEntries: 0x0
0xF83E 0xE NumberOfIdEntries: 0x1
\--- LANG [0,0] [LANG NEUTRAL, SUBLANG NEUTRAL
3 [IMAGE_RESOURCE_DIRECTORY ENTRY]
4 0XF840 0x0 ~ Name: 0x0
Bl L : R i
[IMAGE_RESOURCE_DATA_ENTRY
0xF848 0x0 ~ OffsetToData: 0%12058
0xF84C 0x4 Size: 0x149F
0xF850 0x8 CodePage: 0x0
0xF854 0xC Reserved: 0x0

Holds resource data entry information.

struct: IMAGE_RESOURCE_DATA_ENTRY structure
lang: Primary language ID
sublang: Sublanguage ID

VNN NNNR R NN RN RN

Given a RVA and the size of the chunk to retrieve, this method
will find the section where the data lies and return the data.

NN NN RNNR RN RN

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Continuing our analysis from the previous slide, we can query help () for more information on the
ResourceDataEntryData class. There, we observe a “struct” attribute. This attribute contains the
IMAGE RESOURCE DATA ENTRY structure we saw in our earlier dump_info () output
(highlighted on the slide). This structure contains Of f set ToData and Size fields. Passing these values
to get _data () will return the resource data we desire.

© 2022 Anuj Soni 45

Technet24

SANS DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

Lab 3.1

Automating Config Extraction with Python

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 46

Please begin Lab 3.1 now.

46 © 2022 Anuj Soni

Course Roadmap

« FOR710.1: Code * Python for Malware Analysis
Deobfuscation and Execution * Lab 3.1:Automating Config Extraction with
Python

* FOR710.2: Encryption in * Malware Analysis with DBI Frameworks

Malware) * Lab 3.2:Automate Payload Extraction with
* FOR710.3: Automating Frida

Malware Analysis * Automating Analysis with Ghidra
- FOR710.4: Correlating * Lab 3.3:Scripting with Ghidra

Malware and Building Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 48

This page intentionally left blank.

48 © 2022 Anuj Soni

Technet24

Malware Analysis with
DBI Frameworks

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 49

This module discusses how to use Dynamic Binary Instrumentation (DBI) frameworks to help automate
malware analysis.

© 2022 Anuj Soni 49

Malware Analysis with DBl Frameworks: Module Objectives

* Gain familiarity with the concept of DBI frameworks.
* Understand how DBI-based tools can help automate reverse engineering.
* Use a DBI-based tool to monitor API calls.

* Use a DBI framework’s Python bindings to script a common malware
analysis workflow.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 50

This slide describes the objectives of this module.

50 © 2022 Anuj Soni

Technet24

DBI Frameworks: Run a Program and Interact with Its Internals

* This includes hooking functions, observing API calls, assessing function
inputs/outputs, and modifying instructions and data during execution.

» DBI-based tools are often used to assess proprietary programs, evaluate
performance, and discover vulnerabilities.

 DBI frameworks are available for both desktop and mobile OSs and most
include well documented APIs to facilitate tool development.

©r ISM Fai0A

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Malware reverse engineers perform dynamic code analysis to inspect a program during execution. This
typically involves using a debugger to monitor a suspect process. A complementary approach is to
interrogate a running process using Dynamic Binary Instrumentation (DBI) frameworks. While a debugger
allows you to attach to a process, DBI techniques allow you to inject and execute code within a process to
examine its internals.

Well-known DBI frameworks include DynamoRIO, Intel’s Pin, and Frida. These frameworks are often
used to assess proprietary programs and evaluate program performance, but they can also be applied to
accelerate malware analysis. They allow analysts to hook functions to observe API calls, assess their
inputs and outputs, and even modify instructions and data during execution. DBI frameworks target both
desktop and mobile operating systems (i.e., Windows, macOS, GNU/Linux, iOS, Android™, and QNX)
and provide well-documented APIs to facilitate tool development.

© 2022 Anuj Soni 51

DBI Framework Capabilities Complement the RE Process

» Malware reverse engineers debug programs to inspect code and data
during execution.

» DBI frameworks can help automate the debugging process.

» With DBI-based tools, we can monitor APIs of interest and automatically
extract argument and return values.

* We can use DBI framework capabilities to automate common RE tasks
including deobfuscating code, dumping payloads, and decrypting data.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 52

DBI frameworks are versatile, and one application is to automate common malware analysis tasks.
Reverse engineers often find themselves monitoring functions, observing their inputs and outputs, and
taking further action based on what is discovered. DBI-based tools can play a key role in automating these
tasks, including deobufscating code, dumping payloads, and decrypting data.

52 © 2022 Anuj Soni

Technet24

Frida Background

» While there are several options to choose from, we will pursue the Frida
DBI framework to automate our reverse engineering efforts.

* Frida is a free and open-source DBI framework we can use to rapidly
automate malware analysis workflows.

* Frida injects JavaScript into a running program to monitor and/or
modify function arguments and return values.

* Frida includes helpful command line tools to get started immediately, but
the framework’s power is best experienced using its Python bindings.

* The framework is available in your VM, but in another environment you
would install Frida with the command: pip3 install frida-tools.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 53

This module demonstrates how to use Frida to automate reverse engineering workflows. We will discuss
Frida’s key features and explain the core components of a Frida Python script. With this knowledge,
analysts can rapidly build custom tools to perform binary analysis.

Frida is a free and open-source software created by Ole André V. Ravnés. It allows analysts to inject
JavaScript into programs to observe, intercept, and modify the inputs and outputs of function calls during
execution. It works on a variety of desktop and mobile operating systems. Frida provides command line
tools for those who want immediate access to its benefits, but the framework’s functionality and flexibility
are best experienced using the available Python bindings.

Frida requires a Python 3 install on a Windows, macOS, or GNU/Linux operating system. To install Frida,
run the following command from an internet-connected machine: pip3 install frida-tools.

Python 3 and Frida are already installed within your VMs.

© 2022 Anuj Soni 53

54

Frida-Trace Provides Benefits of the Frida Framework with

Minimal Coding

» With frida-trace, you can quickly intercept APIs of interest.

» Use this command line format:

e frida-trace -f <target> -i <module Name>!<functions(s) >

* Example: frida-trace -f run.exe -i KERNEL32.DLL!CreateFile*

- £: Target file to execute

-i: Function(s) to intercept

*: Wildcard to monitor multiple APIs, but this may include too many

Including the module name is optional but recommended.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Frida-trace is one of several command-line tools in the Frida framework that has clear benefits for
malware analysis. Malware analysts often spend time tracing API calls; this tool helps automate tracing by
allowing analysts to display and process the inputs and outputs of a specified function. Frida is not an
emulator framework, which means it executes the target program. For this reason, frida-trace should be
used in an isolated environment when performing malware analysis.

To spawn a process and begin tracing function calls, use the following command line format: frida-trace -f
<program name> -i <XMODULE NAME>!<Function(s) to monitor>.

To view the help output, use the “-h” command line flag. You can also visit https://for710.com/fridatrace
for more information.

There are numerous APIs worth tracing for malware analysis. For example, consider this command:
frida-trace -f run.exe -i KERNEL32.DLL!CreateFile*

This command line will launch run.exe and monitor calls to any API that begins with “CreateFile” in
kernel32.dll. Key details about this command line to note are:

The -f flag specifies the target file to spawn.

Use -1 flag specifies the function to monitor.

Including the module name is optional but yields more concise and targeted output. The module name
must be typed in all capital letters.

The asterisk (*) is a wildcard, and this is helpful to monitor both the wide character and ANSI versions
of Windows APIs (e.g., CreateFileW and CreateFileA) or groups of APIs (e.g., all APIs that begin with
“Crypto”). However, it is generally best to be as specific as possible to avoid an overwhelming amount
of information from too many API calls.

© 2022 Anuj Soni

Technet24

Example: Use frida-trace to Assess Libraries Loaded at Runtime

No. Time Source Protocol Length Info

— 77 3.284498 192.168.151.2 66 51542 > 80 [SYN] Seq= | =B c\usersirem\desktop\bacon.exe A | fibrary (2)
78 3.284731 46.173.214.182 192.168.151.2 TCP 66 80 » 51542 [SYN, ACK] S -l indicators (30) * kernel22.dil P8
79 3.284766 192.168.151.2 46.173.214.102 TCP 54 51542 » 88 [ACK] Seg=1 | i. » msvert.dll
80 3.284872 192.168.151.2 46.173.214.102 HTTP 484 GET /cm HTTP/1.1 .. dos-header (64 bytes)

B8 dos-stub (64 bytes)

»»»»» > file-header (compiler-stamp)

When crafting frida-trace commands, specify " cptional-header (GU)
APIs of interest to reduce noise. B directories (4)

... [sections (virtualized)
----- g iorics)

PS C:\Users\REM\Desktop> frida-trace bacon.exe KERNEL32.DLL!LoadLibraryA KERNEL32.LoadLibraryw
Instrumenting...

LoadLibraryA: Loaded handler at "C:\\Users\\REM\\Desktop__handlers__\\KERNEL32.DLL\\LoadLibraryA.js"
Started tracing 1 function. Press Ctrl+C to stop.

1847 ms
1047 ms
1647 ms
1847 ms

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 55

Let’s use frida-trace to take a closer look at a malware sample. The screenshots on this slide show analysis
of a sample named bacon.exe with SHA-256 hash
866b2c7dc08682cc174c58bf5cfc6cad4af7696b28b8191e7{f003d97639934c. You can find this file in the
Malware\Section3 folder within your VMs.

Brief behavioral analysis of bacon.exe indicates an HTTP request. However, looking at the imports, we
see only two imported DLL with functions that have no obvious capability to communicate across a
network. For example, we might expect to see ws2_32.dll or wininet.dll in the list of imported DLLs, two
modules that provide networking functionality. This likely indicates additional libraries are loaded at
runtime with APIs resolved during execution. We can use frida-trace to quickly evaluate if
LoadLibrary variants (i.e., LoadLibraryW or LoadLibrarya) are called to load additional DLLs.
We could monitor a larger group of LoadLibrary API variants using “LoadLibrary*”, but this
results in too much noise. Some trial and error is involved in writing targeted commands, but in general, it
is best to be as specific as possible when choosing APIs of interest.

The command line from this screen is run from the PowerShell command prompt, but you can use the
traditional command prompt as well.

According to the frida-trace output, LoadLibraryA is called by the program. This is a good starting

point, but we need more detailed output. What DLL do these calls load? To answer this question, we need
to modify the “handler” referenced in the Frida output.

© 2022 Anuj Soni 55

Modify LoadLibraryA.js to Print Out the Loaded Library

HMODULE Load%ibraryA(onEnter (log, args, state) {
LPCSTR 1lpLibFileName log('LoadLibraryA(): ' + args[0].readAnsiString());
); },

lpLibFileName

The name of the module. This can be either a library module (a .dll file) or an executable

PS C:\Users\REM\Desktop> frida-trace bacon.exe KERNEL32.DLL!LoadLibraryA KERNEL32.LoadLibraryw
Instrumenting...

LoadLibraryA: Loaded handler at "C:\\Users\\REM\\Desktop__handlers__\\KERNEL32.DLL\\LoadLibraryA.js"
Started tracing 1 function. Press Ctrl+C to stop.

1047 ms
1847 ms
1047 ms
1847 ms

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

The Microsoft documentation for LoadLibraryA explains that the first argument points to the file or
device to be created or opened. We can direct Frida to output this argument by modifying onEnter as
shown on this slide. The readAnsiString () method reads a null-terminated ANSI string from the
pointer passed as the first argument. Other methods to read strings from a pointer include

readCString (), readuUtf8String(), and readUtflé6String() . It’s worth nothing that
readAnsiString (), which isused in this example, only works within the context of the Windows
operating system. Again, browse to https://for710.com/fridanativeptr for more detail on available methods.

If we re-run the earlier frida-trace command line, the output now shows which DLLs are loaded during
execution. Among the four DLLs are wininet.dll and ws2_32.dll, two modules that contain networking
functionality. You will have an opportunity to use a similar command when monitoring calls to
GetProcAddress in the upcoming lab.

© 2022 Anuj Soni 57

Technet24

Example: Monitor Crypto-Related API Calls in Ransomware

PS C:\Users\REM\Desktop> frida-trace proc.exe Crypt*

Instrumenting...

CryptDestroyHash: Auto-generated handler at "C:\\Users\\REM\\Desktop__handlers__\\ADVAPI32.d1ll\\CryptDestroyHash.js"
CryptDestroyKey: Auto-generated handler at "C:\\Users\\REM\\Desktop__handlers__\\ADVAPI32.dl1l\\CryptDestroyKey.js"
CryptGetKeyParam: Auto-generated handler at "C:\\Users\\REM\\Desktop__handlers__\\ADVAPI32.dll\\CryptGetKeyParam.js"
CryptDecrypt: Auto-generated handler at "C:\\Users\\REM\\Desktop__handlers__\\ADVAPI32.dll\\CryptDecrypt.js"

r'W LWe e W PEOWLAYT Y MULH W aAve e NET e h A v WA A
CryptSetProviderA: Auto-generated handler at "C:\\Users\\REM\\Desktop__handlers__\\ADVAPI32.d1l1\\CryptSetProviderA.js"
Started tracing 39 functions. Press Ctrl+C to stop.

n

1516 ms
1532 ms
1532 ms
1532 ms
1532 ms
1532 ms
1532 ms

— decorate (-d) adds the module name to the
onEnter log statement.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 58

This slide demonstrates the use of frida-trace with a different malware sample. In the screenshots on this
slide, we analyzed a ransomware sample named proc.exe with SHA-256 hash
d0f212d9f64ed0590919966ba837beb1de95f38d88476406b18490cd4322f21¢. You can find this file in the
Malware\Section3 folder within your VMs.

As we discussed in Section 2, ransomware may use the Microsoft CryptoAPI to perform encryption and
decryption. With the command on this slide, we can quickly assess if this sample uses the CryptoAPI. In
this case, we used the “- -decorate” flag, which adds the name of the API module to the log output. A
review of the output confirms this malware uses the CryptoAPI, and the call to CryptDecrypt might pique
our interest. What content is decrypted?

58 © 2022 Anuj Soni

Example: Modify a CryptDecrypt Handler to View Decrypted
Content (1)

* Auto-generated by Frida. Please modify to match the signature of CryptDecrypt.
* This stub is currently auto-generated from manpages when available.
*

* For full API reference, see: https://frida.re/docs/javascript-api/

y BOOL Cr crypt (

. HCRYPTKEY hKey,
Called synchronously when about to call CryptDecrypt. HCRYPTHASH hHaSh,
Sparan (fanction) 103 . Call this Punction with o sEring oo be precenced o the user. BOOL Final,

@param {array} args - Function arguments represented as an array of NativePointer objects. DWORD dWFlaqS,
For example use args[0].readUtf8String() if the first argument is a pointer to a C string encoded as UTF-8|
It is also possible to modify arguments by assigning a NativePointer object to an element of this array. BYTE *prata,
@param {objec tate - Object allowing you to keep state across function calls.

only one Javas pt function will execute at a time, so do not worry about race-conditions. DWORD *powuataLen
However, do not use this to store function arguments across onEnter/onLeave, but instead
use "this" which is an object for keeping state local to an invocation.

*/

onEnter(log, args, state) {
log('CryptDecrypt()');
this.decData = args[4];

* Called synchronously when about to return from CryptDecrypt.
* See onEnter for details.
* @this {object} - Object allowing you to access state stored in onEnter. .
* @param {function} 1 Call this function with a string to be presented to the user. Use thls to reference
* @param {NativePointer} retval - Return value represented as a NativePointer object.
* @param {object} state - Object allowing you to keep state across function calls.
A/ arguments from onLeave.
onLeave (log, retval, state) {
log('D ed data: ' + this.decData.readAnsiString());

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

We can modify the CryptDecrypt handler file to print the decrypted content. The fifth argument
passed to CryptDecrypt specifies the location in memory of the decrypted data. To access this
argument from onLeave, we use “this” in both onEnter and onLeave when referring to the
decData (i.e., pointer to decoded data) variable.

© 2022 Anuj Soni 59

Technet24

Example: Modify a CryptDecrypt Handler to View Decrypted

Content (2)

EN Windows PowerShell X + v

PS C:\Users\REM\Desktop> frida-trace proc.exe CryptDecrypt

Eomntml
1 344 ms CryptDecrypt()
2 344 ms Decrypted data: BnMu&B'

Kernel32.dll;Wow64DisableWo| 19 COMMUNICATION METHOD:
dvapi32.dll;CreateProcessWi| 20
344 ms Decrypted data: Dea| 21 To decrypt your computer, you need to download the TOR browser at

w

a ransom! https://www.torproject.org/download/
4 22
5 Decryption service is paid | 23 1Install it and visit our website for further action
6 http://paymend5oxzpnouz.onion/
7 Also from your servers file| 24
to our cloud storage 25 359 ms Decrypted data:

ntdll.dll;NtQueryObject;NtQuerySystemInformation;RtlGetVersion;Kernel32.d1ll
;GetFinalPathNameByHandleW; QueryFullProcessImageNameW;

359 ms Decrypted data: sc delete vmickvpexchange

sc delete vmicguestinterface

sc delete vmicshutdown

sc delete wvmicheartbeat

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 60

After modifying the CryptDecrypt handler, we can run frida-trace to review decrypted content. Note
the use of the “-0” command line flag to create a log file. The decrypted content includes references to
DLLs, APIs, ransom note text, and commands.

Keep in mind that, in the case of ransomware, generating an output file might be problematic if the text
file is immediately encrypted.

60 © 2022 Anuj Soni

Frida-Python

+ A Python script will give us more control over execution and make it
easier to troubleshoot issues.

* We can intercept multiple APIs and store arguments and variables across
function calls to automate analysis.
* Our script will:
* Accept a target executable on the command line.
+ Execute the program and attach to the spawned process.
* Include JavaScript, which includes functions to intercept and onEnter/onLeave code.
* Inject the JavaScript into the target process.

+ Wait to receive any messages from the target process.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Frida-trace is a great way to initially benefit from the framework. However, writing our own script using
Frida’s Python bindings provides more control and flexibility over API monitoring. In the next part of this
module, we will discuss how to harness Frida-Python to automate more complex aspects of our reverse
engineering workflow. The goal is to create a script that will perform the following items:

Accept a target executable on the command line.

Execute the program.

Attach to the spawned process.

Specify JavaScript code to inject into the target process. This will hook VirtualAlloc and
VirtualProtect and include code to send messages from within the target process to the Python
process.

Inject the JavaScript code into the target process.

Resume the process.

Wait to receive any messages from the target process.

© 2022 Anuj Soni 61

61

Technet24

A Practical Application of Frida’s Python Bindings

== c:\users\rem\desktop\bacon.exe name (57)

-l indicators (31) * DeleteCriticalSection

----- »1 o ’ E— 413imp qword ptr ds:[<&virtualProtect>
EnterCriticalSection ?

dos-header (64 bytes) nitializeCriticalSection 8888;FFF7BSZBC77 1 ntg

.. dos-stub (64 bytes) FFF7B52BC78 nt

LeaveCriticalSection

.y GettartupinioA

> file-header (compiler-stamp) zetitakr‘;:u Infon Iie"au]t (x64 2333600000140000
b . _ etTickCount T rcx

y ZPt'ona! he:der (Guh QueryPerformanceCounter | || 23 rdx_000000000003FAQC Bl Follow 140000 in Disassembler PAGE_EXECUTE_READ
2 directories (4) RtVirtualUrnin 3: r8 [0000000000000020] & Follow 140000 in Dump 0x20

* sections (virtualized) — 4: r9 OU00U0O0UVU6AEDS
-~ libraries (2) * VirtualAlloc

$ybumpl @yDump2 WWDump3 @Y Dump4 @ Dump5 &) Watch1 Ix=l Locals & Struct
Address Hex ASCII

0000000000140000 [4D 5A 41 52|55 48 89 E5[48 81 EC 2000 00 00 48|MZARUH.aH.i ...H
0000000000140010 |8D 1D EA FF [FF FF 48 89 |DF 48 81 C3|F4 63 01 00|..&yyyH.RH.AbC. .
0000000000140020 |FF D3 41 B8 [FO B5 A2 56|68 04 00 00|00 5A 48 89|yOA Ou¢vh....ZH.
0000000000140030 |F9 FF DO 00 |00 00 00 00|00 00 00 00 |F8 00 00 0O|UYD......... o...
0000000000140040 |OE 1F BA OE [00 B4 09 CD|21 B8 01 4C|cD 21 54 68|..°.. .I! .LI!Th
0000000000140050 |69 73 20 70|72 6F 67 72|61 6D 20 63 |61 6E 6E 6F|is program canno
0000000000140060 |74 20 62 65|20 72 75 6E|20 69 6E 20 |44 4F 53 20|t be run in DOS
0000000000140070 | 6D 6F 64 65 [2E OD OD OA |24 00 00 00|00 00 00 OOmode....$.......

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 62

Let’s return to bacon.exe and continue our analysis of this file. This analysis will demonstrate an
opportunity to automate a common reverse engineering workflow using Frida’s Python bindings.

Among bacon.exe’s imports is VirtualProtect, and this API interests us malware analysis because it
is used to change the permissions (e.g., read, write, execute) of a memory region. If a region in memory is
updated to be executable, it might include code that was unpacked, decoded, and/or decrypted at runtime.
For a similar reason, VirtualAlloc is a good API to investigate. You will have an opportunity to trace
that API in the upcoming lab.

A common next step is to transition to a debugger to assess what content is present in memory when
VirtualProtect is called. To this end, we load bacon.exe into x64dbg and set a breakpoint on
VirtualProtect. Then, we run the program, and each time we encounter a call to
VirtualProtect, we view its arguments. The first of four arguments passed to VirtualProtect
specifies the starting address of the memory region whose permissions will change. The third parameter
specifies the new permission to be applied (Microsoft refers to this as the “memory protection constant”,
listed here: https://for710.com/memory-protection-constants).

The first time we encounter VirtualProtect, observe the protection constant of 0x20, which includes
executable permissions. If we dump the starting address to the dump window, we see a region beginning
with “MZ” and the string “This program cannot be run in DOS mode”, two indications that this content
might be a Windows executable.

62 © 2022 Anuj Soni

Dump the Memory Region to Confirm aWindows Executable

WJDumpl @YDump2 @YDump3 @WDump4 W ®# Memory Map [CPU | log [Notes [
Address Hex Address Size | In
0000000000140000 [4D 5A 41 52 (55 48 89| |0000000000140000/ 0000NNNNNNNANONN |
0000000000140010 | 8D [l Binary 00000000001Cc0000/ 000 ﬁ Follow in Disassembler
0000000000140020 |FF [copy 00000000001C5000| 000 il Follow in Dump
) e L
0000000000140050 | 69 & Follow in Memory Map

>>>>> L= exports (ReflectiveLoader)
vvvvv 9 exceptions (680)

—

----- ﬁ relocations (726)
e ou

property
md5

entropy
imphash
signature
entry-point
file-version
description
file-type
cpu

value

29DA1E86F69F7982C7D0427E09DSEFES
7BOCAE9208CACF29DDA06BA235CE0997B9B6A6BI
0728408094 227080 CZ8/°2001 31

48 89 5C 24 08 48 89 74 24 10 57 48 83 EC 20 49 8B F8 8B DA 48 8B F1 83 FA 01 75 05 E8 CF 6C 00 00

dynamic-link-library
64-bit

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 63

To confirm the memory region contains a Windows executable, we follow it in the memory map and dump
it to disk. Finally, we can load the dumped binary into PeStudio, which confirms this file is a 64-bit DLL.

© 2022 Anuj Soni 63

Technet24

Automate the Recent Analysis with a Frida-Python Script

Our script should automate our debugging workflow:
» Monitor calls to the VirtualProtect API.

+ Evaluate if the memory region specified by the first argument contains a
Windows executable (e.g., “MZ”).

* Dump the data if there is a match.

* Optional: Check if the protection constant includes executable permissions.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

This slide lists the activities we want our Frida script to automate.

64 © 2022 Anuj Soni

66

Key Components to a Frida-Python Script (2)

Next, the code below specifies the JavaScript code to be injected:

script = session.create script ("""

Module.load ('KERNEL32.DLL') ;

var vpFunctionAddress = Module.getExportByName ("KERNEL32.DLL",
"VirtualProtect") ;

Interceptor.attach (vpFunctionAddress,

{
onEnter: function (args) ({
console.log ("\\nFunction called") ;
1
onLeave: function (retval) ({
console.log ("\\nFunction returned") ;
!
1) g

nn u)

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

After the target process is launched, we must specify the JavaScript to be injected into the target process.
In Python, we execute session.create script () and provide the JavaScript code.

The JavaScript includes several key functions:

* Module.load() : Loads the specified module.

* Module.getExportByName () : Returnsthe address of the specified API, which is necessary to
intercept calls.

* Interceptor.attach (): Intercepts calls to the specified address (returned from

Module .getExportByName) and specifies the previously discussed onEnter and onLeave
functions.

* Console.log (): Logsmessages to the console during execution.

© 2022 Anuj Soni

Technet24

Key Components to a Frida-Python Script (3)

Finally, the script injects the JavaScript into the target process, resumes
the process, and prepares to read any log messages:

script.load()

frida.resume (pid)
sys.stdin.read ()
session.detach ()

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 67

Lastly, the script loads the injected code into the target process, resumes the process, and receives any
logged messages.

© 2022 Anuj Soni 67

Build upon the Basic Script to Dump a Windows Executable (1)

First, we add JavaScript try...catch statements to detect any errors.

try {
Module.load ('KERNEL32.DLL') ;
} catch (err) {
console.log(err) ;
}
try {
var vpExportAddress = Module.getExportByName ("KERNEL32.d1ll", "VirtualProtect") ;
} catch (err) {

}

console.log(err) ;

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

To generate a custom script that dumps a Windows executable referenced by VirtualProtect, we
must customize the basic script template we just discussed. The code discussed in the upcoming slides is
available in your Malware\Section3 folder in the file named section3.2_dump_mz_vp.py.

First, let’s add some error detection in case a module does not load properly, or a function is not
intercepted as expected. We can use JavaScript try...catch statements for this as shown on the slide above.
This is not absolutely necessary, and it does add some bloat to the code, but it helps troubleshoot issues
and can save a lot of time.

68 © 2022 Anuj Soni

68

Technet24

Build upon the Basic Script to Dump a Windows Executable (2)

 Then, we capture relevant VirtualProtect arguments and log them.

* In addition, we print a hexdump of the memory region referenced.

var vpAddress = args[0];
var vpSize = args[1l].toInt32();
var vpProtect = argsl[2];

console.log ("\\nVirtualProtect called!") ;

console.log("\\tAddress: " + vpAddress) ;
console.log ("\\tSize: " + vpSize) ;
console.log("\\tNew Protection: " + vpProtect)

console.log ("\\n" + hexdump (vpAddress)) ;

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

When performing manual debugging of bacon.exe, we paused at each call to VirtualProtect and
reviewed its arguments. Specifically, we dumped the starting address to a dump window and checked the
new permissions applied. In our Frida script, we need to access and print out this information using the

code shown. We also access the size of the region, which will be useful when it comes time to dump data
to disk.

Note our use of the function toInt32 () , which converts the second argument (i.e., the size of the

region) to an integer. We also take advantage of the hexdump () JavaScript function to print both
hexadecimal and ASCII output located at the specified memory region.

© 2022 Anuj Soni 69

Build upon the Basic Script to Dump a Windows Executable (3)

Finally, check if the first two bytes are “MZ”; and dump the contents if a
match is found.

if (vpAddress.readAnsiString(2) == "M2") {

var someBinData = vpAddress.readByteArray (vpSize) ;

var filename = vpAddress + " mz.bin";
var file = new File(filename, "wb") ;
file.write (someBinData) ;

file.flush() ;

file.close() ;

console.log ("\\nDumped file: " + filename) ;

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

This code uses the Frida function readAnsiString () to read the first two bytes of the memory region
and check if they match “MZ”. If so, it uses the function readByteArray () to read the memory
contents and dump the file to disk. Note that the argument passed to readByteArray () uses the size
of the region to read in the appropriate number of bytes.

70 © 2022 Anuj Soni

Technet24

Script Output

E¥ Windows PowerShell X + v

PS C:\Users\REM\Desktop> python dump_mz_vp. bacon.

VirtualProtect called! ThIS Scr'ipt COUId be m0d|ﬁed to

Address: ©x3310000

e search for and dump shellcode.

New Protection:

O ID B3 I 5N G T 9 A B C D E F 0123456789ABCDEF
03310000 4d 5a 41 52 55 48 89 e5 81 ec 20 00 00 00 48 MZARUH..H.. ...
03310010 8d 1d ea ff ff ff 48 89 48 81 c3 fu4 63 01 00
03310020 ff d3 41 b8 fO b5 a2 56 04 00 00 00 5a 48 89
03310030 f9 ff do 60 00 60 00 00 00 60 00 f8 00 60 00
03310040 Oe 1f ba Ge 00 b4 09 b8 01 dc cd 21 54 68 .
03310050 69 73 20 70 72 6f 67 2 I e T N e N B TN N Y A LV, M LTS
03310060 74 20 62 65 20 72 75 property value
g;;igg;g gi gg Z: :g ig gg gg md5 799B47D9451E59DDAABE2FDOF7A17522
03310090 ae ed d2 01 50 0a 00 shal A2C9C53BAFBD5AIE7DSES59E632639E5F8B5202E
03310020 39 cc cf 01 el OGa 00 ha256 SBECEDABOSE72
033100b0 39 cc cd 01 c2 0a 00 vVv'wv
033100cO c8 0a 01 01 14 Ga 00
033100d0 ae e4 ca 01 c9 Ga 00
033100e0 52 69 63 68 c8 Ga 00

B27D0E 1£F83E666A041Q0E6248838768 B
VVVVY VVVVVVYY

033100€0 00 00 00 00 00 00 00 % file-type dynamic-linlclibrary
: : = 64-bit
Dumped file: ©x3310000_mz.bin irv] Py
subsystem GUI
g_l' compiler-stamp OXSDESF1AD (Thu Dec 05 12:01:49 2019)
-U debugger-stamp

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 71

Running the script produces the output shown above. Loading the dumped content into PeStudio confirms
it is a 64-bit DLL. Comparing this recently dumped executable with the file we dumped using a debugger
reveals that the executable produced via Friday-Python does not have an overlay. This is because our
script uses the size passed to VirtualProtect to determine how many bytes to read and dump. The result is
that our Frida-Python script is more precise in its approach to dumping deobfuscated content.

To view the complete script, see the file section3.2 dump mz vp.py inthe Malware\Section3
folder in your Windows VMs.

This example script could also be modified to search for and dump shellcode. Instead of searching for
“MZ” at the beginning of a memory region, the script could search for common shellcode bytes. We

discussed common shellcode bytes in Section 1 of this course.

To view a Frida script that detects and dumps shellcode, see this blog post written by Anuj Soni:
https://for710.com/bbfrida.

© 2022 Anuj Soni 71

During Malware Analysis, We Monitor Memory Regions to

Identify Interesting Content

=85 c:\users\rem\desktop\bacon.exe name (57) mﬂ—). jmp gword ptr ds:[<&virtualAlloc>]
il indicators (31) * @/ 00007FFF7B528507 int3

DeleteCriticalSection Debug Tracing Plugins
EnterCriticalSection =» Run

m

dos-header (64 bytes)

— InitializeCriticalSection
[dos-stub (64 bytes)

LeaveCriticalSection

GetStartupinfoA

> file-header (compiler-stamp)] RAX 0000000000140000 .

> optional-header (GUI) GetTickCount RBX 0000000000A3008(B8 Modify value “ Bxecute tll retum
.24 directories (4) QueryPerformanceCounter || RCX 00007FFF7C1ADO7 g4 Follow in Dump

N RtlVirtualUnwind
""" . S_ecm?ns (virtualized) - YYbumpl @YDump2 @WDump3 @ Dump4 @Dump5 &) watch 1
-2] libraries (2) * VirtualAlloc ad
..... S8 imports (57) * VirtualProtect Address Hex

I/0000000000140000 [00 00 00 00 [00 00 00 00|00 00 00 00
0000000000140010 |00 00 00 00|00 00 00 00 /00 00 00 00

Wybumpl @Dump2 @WDump3 @4 Dump4 @UDump5 @ Watch1 Ix=llocals 4 Struct

Address Hex ASCII
0000000000140000 [4D 5A 41 52|55 48 89 E5 |48 81 EC 20|00 00 00 48|MZARUH.aH.1 ...H
0000000000140010 (8D 1D EA FF |[FF FF 48 89 |DF 48 81 C3|F4 63 01 00|..éyyyH.RH.AGC. .
0000000000140020 |FF D3 41 B8 |[FO B5 A2 56 |68 04 00 00|00 5A 48 89|yOA Ou¢vh....ZH.
0000000000140030 ([F9 FF DO 00 {00 00 00 00|00 00 00 00 |F8 00 00 OO|UYD......... o...
0000000000140040 |OE 1F BA OE (00 B4 09 ¢D |21 B8 01 4c|cDb 21 54 68|..°.. .1I! .LI!Th
0000000000140050 |69 73 20 70|72 6F 67 72|61 6D 20 63|61 6E 6E 6F|is program canno

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

In the last example, we identified a Windows executable when looking at analyzing calls to
VirtualProtect. Sometimes, a more productive approach is to monitor multiple regions allocated via
VirtualAlloc. For example, when we performed some initial static file analysis of bacon.exe, we
noted it imported VirtualAlloc in addition to VirtualProtect. If we reviewed calls to
VirtualAlloc within a debugger, we could dump each region allocated to a dump window and observe if
any interesting data appears at that location. Eventually, we would identify the same Windows executable.

Using VirtualAlloc as a pivot into the code instead of VirtualProtect is sometimes necessary.
The challenge with this approach, however, is that it requires us to track multiple regions in memory and
repeatedly evaluate if any execute content was placed in one of the allocated regions. Let’s explore this
approach.

72 © 2022 Anuj Soni

Technet24

One Approach to Tracking Multiple Allocated Regions

Module.load ('KERNEL32.DLL') ;
var vaExportAddress = Module.getExportByName ("KERNEL32.d11l", "VirtualAlloc");

var memRegions = [];

Interceptor.attach (vaExportAddress,

{

onEnter: function (args) {
this.vaSize = args[1l].toInt32();

for(var i = 0; 1 < memRegions.length; i++)
var firstBytes = memRegions[i] .memBase.readAnsiString(2) ;
if (firstBytes == "MZ")

//Generate hexdump
//Dump content to disk

B
onLeave: function (retval) ({

memRegions.push({memBase:ptr(retval), memsize:this.vasize});
}

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 73

To track multiple allocated regions, we could create an array of memory regions to monitor. We could add
to this array when a new region is allocated and check previously allocated regions for evidence of code or
data. This automates the common malware analysis workflow of monitoring multiple regions in memory
during execution.

To track multiple sections, we could use the approach described on this screen. For brevity, previous
discussed code is referred to in comments but not included. Try...catch statements are also excluded.

This code declares an array memRegions that tracks allocated memory regions. Whenever
VirtualAlloc returns, it pushes (i.e., adds) to the array. Each element has two properties: the starting
address of the region allocated (memBase) and the size of the region allocated (memSize). We use

ptr () to convert the return value to a pointer because it is an address. We also refer to the size via “this”
because the size is referenced as an argument when the function is first called, and not when it returns.

With this code, anytime VirtualAlloc is called, previously allocated regions will be evaluated to
determine if they begin with the bytes “MZ”. If those bytes are found, the regions are dumped as described

earlier in this module.

You’ll have an opportunity to implement this approach in the upcoming lab.

© 2022 Anuj Soni

73

Course Roadmap

* FOR710.1: Code
Deobfuscation and Execution

* FOR710.2: Encryption in
Malware

* FOR710.3: Automating
Malware Analysis

* FOR710.4: Correlating
Malware and Building Rules

SECTION 3

* Python for Malware Analysis
* Lab 3.1:Automating Config Extraction with
Python
* Malware Analysis with DBl Frameworks
* Lab 3.2: Automating Payload Extraction
with Frida
* Automating Analysis with Ghidra
* Lab 3.3:Scripting with Ghidra

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

This page intentionally left blank.

© 2022 Anuj Soni

75

Technet24

SANS DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

Lab 3.2

Automating Payload Extraction with Frida

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 76

Please begin Lab 3.2 now.

76 © 2022 Anuj Soni

Course Roadmap

« FOR710.1: Code * Python for Malware Analysis
Deobfuscation and Execution * Lab 3.1:Automating Config Extraction with
Python

* FOR710.2: Encryption in

* Malware Analysis with DBl Frameworks

Malware) * Lab 3.2:Automate Payload Extraction with
* FOR710.3: Automating Frida

Malware Analysis * Automating Analysis with Ghidra
« FOR710.4: Correlating * Lab 3.3:Scripting with Ghidra

Malware and Building Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 78

This page intentionally left blank.

78 © 2022 Anuj Soni

Technet24

Automating Analysis
with Ghidra

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 79

This page intentionally left blank.

© 2022 Anuj Soni 79

Scripting with Ghidra: Module Objectives

 Explore how to automate code analysis workflows within Ghidra.
* Use Ghidra’s built-in Python interpreter to explore provided APIs.
* Understand best practices for developing Ghidra Python scripts.

» Write a Ghidra Python script to automate analysis.

* Our focus is on script development and not the use of third-party scripts.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 80

This slide describes the objectives of this module.

80 © 2022 Anuj Soni

Technet24

Extend Ghidra’s Functionality with Plugins, Analyzers,

Extensions, and Scripts

* This course focuses on developing scripts for rapid prototyping.
* Scripts can access disassembly and decompiler output.

* Ghidra supports scripting using both Java and Python—we will continue
our focus on Python.

* Python is possible via Jython, which provides complete access to
Ghidra’s Java API.

* Jython only implements Python 2.7, but we can still accomplish our
automation goals despite this shortcoming.

29 Jython

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 81

Ghidra can be extended by developing plugins, analyzers, extensions (also referred to as “modules™), and
scripts. This module will focus on script development which is relatively lightweight and quick compared
to other options mentioned.

Ghidra supports script development using both Java and Python. Due to our focus on Python during the
last two modules and the general popularity of the language, it makes sense to build on our existing Python
knowledge and use Ghidra’s Python scripting capabilities. Python support is provided via Jython, a Java
implementation of Python. Jython implements Python 2.7, and there are no public plans for Python 3
support. As a result, any Python development within Ghidra must be supported by Python 2.

Ghidra has hundreds of built-in scripts available to use and review. Although most built-in scripts are

written in Java, the API is very similar to that provided via Python. Reading and understanding these
scripts is an excellent starting point to understand how to write your own scripts within Ghidra.

© 2022 Anuj Soni 81

Ghidra Includes Hundreds of Functional Built-In Scripts

Window | Help VEYEBGLO0BO RS @

q/ Bookmarks Ctrl+B
Display Script Manager

Bundle Manager

t Manager - 257 scripts 09 e x= [J%:=d|X
Scripts A || In Tool |Status |Name E| Description | Key ’Category | Modified
4 @ Analysis | AddCommentToProgra... Examples 09/28/2021 A
: % ARM O AddCommentToProgra... Adds a comment to a pr... Examples-... 09/28/2021
Relocation Table /;.ssembly O AddMapping.java 09/28/2021
inary] " i
° Script Manager 5 o+ O AddR‘eferencesInSwmch... W!th cursor c_':n switch's "... ARM 09/28/2021
. [5) Cleanup | AddSingleReferencelnS... With a user-inputed base... ARM 09/28/2021
5l Symbol References D) CodeAnalyei O AppleSingleDoubleScrip... Given a raw binary Appl... Binary 09/28/2021
In Tool |Status |Name [, | Description % BE oo Q] h/X
XorMemoryScript.java XOR's the memory of the current program. while (alter.hasNext() && !'monitor.isCancelled()) (
_/) Assign Key Binding Address addr = alter.next();
monitor.setMessage (addr.toString());
Filt x Delete byte xorValue = xorValues[xorIndex];
liter: | xor byte b = memory.getByte (addr) ;
S Editwith Eclipse b = (byte) (b ~ xorvalue);
= Edit with basic editor memory. setByte (addr, b) ;
xorIndex += 1;
‘ Ghidra API Help xorIndex = xorIndex % valueLength;
}

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 82

To access Ghidra’s Script Manager, you can browse to Window > Script Manager. Alternatively, you can
click the green “Play” button located within the toolbar at the top of the Code Browser. The Script
Manager contains hundreds of built-in scripts that are ready to use and learn from as we develop our own
scripts. These scripts serve as excellent starting points for writing your own scripts. Most provided scripts
are written in Java, but as mentioned earlier, Ghidra’s scripting APIs are the same regardless of which
language you use for script development.

To search for a script, use the Filter field at the bottom of the Script Manager .For example, if we filter by
“xor” as shown on this slide, we arrive at a script that performs the XOR operation against each byte in a
specified memory location. To view or edit the script, right-click on it and choose ”Edit with basic editor”.
Do not worry if the code in the excerpt on this slide is unclear. We will cover key methods and attributes
later in this module.

If you want to try running the scripts and Python commands discussed in the upcoming slides, you will
need to load an executable for analysis. For this discussion, we will use system32.exe from Section 2
located at Malware\Section2\system32.zip in your VMs.

82 © 2022 Anuj Soni

Technet24

Launch the Python InterpreterVia Window > Python

* The Python terminal defaults to an instance of the GhidraScript, which
extends the Flat Program API.

|l'PVth°”'1”‘5fPretef OVERVIEW PACKAGE TREE DEPRECATED

Python Interpreter for Ghidra
Based on Jython version 2.7.2 (v2.7.2:925a3cc3b49d, Mar
[OpenJDK 64-Bit Server VM (Oracle Corporation)]

Contents | ALL cLAsSES
Ghidra API Hel
CRATNTEP] [SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAI

Press 'Fl' for usage instructions User Agreement
>>> help()
Searching API for ghidra.app.script.GhidraScript... About Ghidra Package ghidra.app.script

FHEFEFHEREF R R R R R R R R R R
class GhidraScript
extends ghidra.program.flatapi.FlatProgramAPI

Class GhidraScript

java.lang.Object
ghidra.program.flatapi.FlatProgramAPI

° Help 1s available in the API documentation. ghidra.app.script.GhidraScript

* Also use tab completion in the interpreter, help (),dir (), and type ()

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 84

The best way to start learning about Python scripting within Ghidra is to dive straight in. To test command
and explore various methods, we can use the built-in Python interpreter. You can access the interpreter by
browsing to Window > Python from the menu bar.

When typing commands in the Python interpreter, you are operating within an instance of the
GhidraScript class. This class extends the Flat Program api, which means the GhidraScript

instance has all the methods and properties of the Flat Program API we discussed earlier.

In addition to accessing API documentation using the Firefox shortcuts discussed on the previous slide,
you can also browse to Help > Ghidra API help from the menu bar of the Python interpreter.

To learn more about the Ghidra API, use the built-in API help. In addition, take advantage of the Python
help(),dir (), and type () functions.

84 © 2022 Anuj Soni

Flat Program API dir() Output

>>> dir()
['MAX REFERENCES_TO', '_builtins_ ', ' doc_ ', '_name ', '_package ', 'addEntryPoint', 'addInstructionxref',
- et ; i

u - g~ y Y P ol O, u

N ’ N PO
'getAnalysisOptionDescriptions', 'getBookmarks', 'getByte', 'getBytes', 'getCategory', 'getCodeUnitFormat',
'getCurrentAnalysisOptionsAndvalues', 'getCurrentProgram', 'getDataAfter', 'getDataAt', 'getDataBefore',
'getDataContaining', 'getDataTypes', 'getDefaultLanguage', 'getDemangled', 'getDouble', 'getEOLComment',
'getEOLCommentAsRendered', 'getEquate', 'getEquates', 'getFirstData', 'getFirstFunction', 'getFirstInstruction',
'getFloat', 'getFragment', 'getFunction', 'getFunctionAfter', 'getFunctionAt', 'getFunctionBefore',
'getFunctionContaining', 'getGhidravVersion', 'getGlobalFunctions', 'getInstructionAfter', 'getInstructionaAt®',
'getInstructionBefore', 'getInstructionContaining', 'getInt', 'getLanguage', 'getLastData', 'getLastFunction',
'getLastInstruction', 'getLong', 'getMemoryBlock', 'getMemoryBlocks', 'getMonitor', 'getNamespace', 'getPlateComment',
'getPlateCommentAsRendered', 'getPostComment', 'getPostCommentAsRendered', 'getPreComment', 'getPreCommentAsRendered',
'getProgramFile', 'getProjectRootFolder', 'getReference', 'getReferencesFrom', 'getReferencesTo', 'getRepeatableComment',

'getRepeatableCommentAsRendered', 'getScriptAnalysisMode', 'getScriptArgs', 'getScriptName', 'getShort', 'getSourceFile',
D a " -4 I U 2o 2 .

K11 g D s o

A 2o 1 Sy W

'setCurrentSelection', 'setDouble', 'setEOLComment', 'setFloat', 'setInt', 'setLong', 'setPlateComment', 'setPostComment',

'setPotentialPropertiesFileLocations', 'setPreComment', 'setPropertiesFile', 'setPropertiesFileLocation',
'setReferencePrimary', 'setRepeatableComment', 'setScriptArgs', 'setServerCredentials', 'setShort', 'setSourceFile',
'setToolStatusMessage', 'show', 'sourceFile', 'start', 'state', 'toAddr', 'toHexString', 'toString', 'writer']

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 85

Because the built-in Python interpreter defaults to an instance of the GhidraScript class, you can
view its attributes and methods by typing the dir () command. This slide shows an excerpt of available
attributes and methods.

© 2022 Anuj Soni 85

Technet24

Access the Program API with the currentProgram Object

>>> help (currentProgram)

aySpace', 'addSynchronizedDomainObject',

Searching API for ghidra.program.database.ProgramDB.. .
FHEEF R R AR R R R R R R R

class ProgramDB

extends ghidra.framework.data.DomainObjectAdapterDB fessFactory', 'getAddressMap', 'getAddressSetPropertyMap',

getBookmarkManager ', getChanges', 'getClass', 'getCodeManager', 'getCompiler',
'getCompilerSpec', 'getConsumerList', 'getContentHandler', 'getCreationDate', 'getCurrentTransaction', 'getDBHandle',
'getDataTypeManager', 'getDefaultPointerSize', 'getDescription', 'getDomainFile', 'getEquateTable', 'getExecutableFormat',

'getExecutableMD5', 'getExecutablePath', 'getExecutableSHA256', 'getExternalManager', 'getFunctionManager',
'getGlobalNamespace', 'getImageBase', 'getIntRangeMap', 'getLanguage', 'getLanguageID', 'getListing', 'getLock',

'getMaxAddress', 'getMemory', 'getMetadata', 'getMinAddress', 'getModificationNumber', 'getName', 'getNamespaceManager',
'getOptions', 'getOptionsNames', 'getProgramContext', 'getProgramUserData', 'getRedoName', 'getReferenceManager',
'getRegister', 'getRegisters', 'getRelocationTable', 'getStoredvVersion', 'getSymbolTable', 'getSynchronizedDomainObjects',

'getTreeManager', 'getUndoName', 'getUndoStackDepth', 'getUniqueProgramID', 'getUsrPropertyManager',

'globalNamespace',

1 g o 1

A

'setExecutableFormat', 'setExecutableMD5', 'setExecutablePath', 'setExecutableSHA256', 'setImageBase', 'setLanguage',
'setName', 'setObjChanged', 'setPropertyChanged', 'setPropertyRangeRemoved', 'setRegisterValuesChanged', 'setTemporary',
'sourceArchiveAdded', 'sourceArchiveChanged', 'startTransaction', 'storedVersion', 'symbolAdded', 'symbolChanged',
'symbolTable', 'synchronizedDomainObjects', 'tagChanged', 'tagCreated', 'temporary', 'toString', 'treeManager', 'undo',
'undoLock', 'undoName', 'undoStackDepth', 'uniqueProgramID', 'unlock', 'usrPropertyManager', 'wait']

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 86

To access the Program API, refer to the current Program object. The current Program object
refers to the target program loaded within Ghidra. Type help (currentProgram) or
dir (currentProgram) to view available methods and attributes.

86 © 2022 Anuj Soni

When Scripting within Ghidra, Consider These Types of Content

« Functions: * Addresses:
 Arguments * Function location
* Return values « Instruction location

* Function references « Data location

* Instructions: » Address references

* Mnemonics .
* Comments: Adding notes
* Operands

To help script an analysis workflow, consider which of the above
components are used and in what order.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 87

When performing an analysis workflow, we commonly work with the content listed on this slide. As we
attempt to automate an analysis workflow, these are the same components we want to reference. The
Ghidra Scripting interface provides access to each of these objects.

© 2022 Anuj Soni 87

Technet24

Ghidra APIs Provide Methods Associated with Functions

* Flat API:

*getFirstFunction () : Returns the first function in the program.

* getFunctionContaining (address) : Get the function containing an
address.

* Program API:
» Identify and iterate through all functions:

fm = currentProgram.getFunctionManager () .getFunctions (True)
for function in fm:

ep _addr = function.getEntryPoint ()

fn body function.getBody ()

fn _name function.getName ()

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Function analysis is critical to performing effective code analysis. This slide lists examples of methods in
both the Flat and Program API that allow us to interact with and learn about functions.

Two helpful functions within the Flat API include:

* getFirstFunction() returns the first function in the program. To clarify, the “first” function is
the function at the lowest virtual address, not the first function that will be executed.

* getFunctionContaining () returns the address of the function containing the address passed to
the function.

While the Flat API provides many key methods, it lacks functions to perform some common reverse
engineering workflows like reviewing function references. For this, we must use the Program API. The
code excerpt at the bottom of this slide demonstrates Program API methods we can use to iterate over
function references. Specifically,

currentProgram.getFunctionManager () .getFunctions (True) returns an “iterator” that
includes functions within the program. An “iterator” is simply an object with multiple values that we can
iterate over.

The for loop in the code excerpt queries each function in the program for key information:

* getEntryPoint () : Returns the address of the first instruction in the function.

* getBody () : Returns the set of addresses that comprise the function. You can call contains ()
against the returned value to determine if a specified address is contained within a function.

* getName () : Returns the name of a function.

For additional detail, search for any of these methods in the API documentation.

88 © 2022 Anuj Soni

Referencing Addresses in a Ghidra Python Script

» Addresses may be passed to a function as an argument or returned from
a function after execution.

* toAddr () : converts offset (long, int, or string) to an Address object.
* This code iterates through references to an address:

decoding fn = toAddr (0x54a3do0)
fn refs = getReferencesTo (decoding fn)

for ref in fn refs:
from addr = ref.getFromAddress ()

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

During code analysis, we interact with addresses often. Addresses specify where an instruction, function,
or data are located in memory. Addresses are also passed to functions as arguments, and they may be
return values. For this reason, it is important we understand how to interact with addresses in a Ghidra
Python script.

To convert a value to an address, we use the toAddr() function. This function can take a long (64-bits), int
(32-bits), or a string. Examples of acceptable formats include:

toAddr(0x54a3d0)
toAddr("0x54a3d0")
toAddr("54a3d0")

During malware analysis, we often evaluate references to an address, such as the starting address of a
function. To accomplish this task, first specify the starting address of a function or obtain the address via
the Program API method getEntryPoint () shown on the previous slide. Then, use the Flat API
method getReferencesTo () to return an array of references to the specified address. Finally, use a
for loop to iterate through each reference and call get FromAddress () to acquire the address of the
reference. An example of this code is shown on the slide.

An Address is an instance of the GenericAddress class:

file:///C:/Users/REM/AppData/Local/Ghidra/GhidraAPI javadoc/10.0.4/api/ghidra/program/model/addres
s/GenericAddress.html

© 2022 Anuj Soni 89

Technet24

Accessing Instructions in a Ghidra Script

* The Flat API includes several methods that return an instruction:

getInstructionAfter(Address address) Returns the instruction defined after the specified address or null if no instruction exists.
getInstructionAfter(Instruction instruction) Returns the instruction defined after the specified instruction or null if no instruction exists.
getInstructionAt(Address address) Returns the instruction at the specified address or null if no instruction exists.
getInstructionBefore(Address address) Returns the instruction defined before the specified address or null if no instruction exists.
getInstructionBefore(Instruction instruction) Returns the instruction defined before the specified instruction or null if no instruction exists.

» Using an instruction, we can get the address, mnemonic, or operand(s).

. .
*getAddress () : Return the instruction address. i gmstpnetiont
*getMnemonicString () : Return the mnemonic. /s

° getOpobj ects () : Takes the indeX Of the Eggpgzgi;gzgjzzz\;zr:\;database.codeAInstructionDB')
operand and returns an array with the operand S ——
value (use toString () to convert to a string). 22> tnatz. qeopcbdects 0 ()

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

This slide discusses methods to acquire an instruction and probe the instruction for its address, mnemonic,
or operand(s).

As a reminder, we loaded the file system32.exe into Ghidra for this discussion. This file has the SHA-256
hash eecc969bal7¢924093821a7c¢862da03f8668abe833042b6bd023fbe75fa2¢0e8. You can find it in on
your VM desktop at Malware\Section2\system32.zip.

Acquiring the address and mnemonic is relatively straightforward, as shown in the example on this slide.
Using the method to acquire the operands, however, may be a bit confusing and requires further
explanation. The method that returns an instruction’s operand is getOpObjects (), and the argument
passed to it is the index of the operand (i.e., zero for the first operand, one for the second operand). This
method returns an array with only one value. Therefore, to obtain the first operand of an instruction stored
in the variable “instr”, we type instr.getOpObjects (0) [0] . Note that the returned operand value
is not a string—to convert it to a string, use the toString () method. Using the example on this slide,
we could acquire the string with the command instr.getOpObjects (0) [0] .toString() .

For more information on methods related to instructions, search the API documentation for
“ghidra.program.database.code.InstructionDB”.

90 © 2022 Anuj Soni

Operating on Data at a Specified Address

* getDataAt (Address) : Returns data at a specified address.
* getValue () : Returns the value of the data item.

» Use try and except clauses to fail gracefully if data is not defined.

’ @ Python - Interpreter

>>> data = getDataAt (toAddr("41leal"))
>>> data
unicode u"SOFTWARE\\keys data\\data"

try:
>>> type (data) value = data.getValue ()
<type 'ghidra.program.database.code.DataDB'> except :
>>> value = data.getValue() print ("No defined data at this location")

>>> value
u'SOFTWARE\\keys data\\data'
>>> type(value)

<type 'unicode'>

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 91

When performing manual code analysis, we often encounter pointers to data. For example, an instruction
may have an operand that points to a string. We then double-click on the pointer to view the corresponding
data, which may be a string. How can we programmatically perform this same action?

The Ghidra API provides two helpful methods. First, use the Flat API’s getDataAt () function to
return the data at a specified address. Then, to acquire the data content in a format that is easier to work
with, call getValue () against the previously returned data. In the case that a pointer points to a
Unicode string (as shown in the example on this slide), getValue () will return the data value as a
Unicode string.

Note that if there is no defined data at a specified address, while getDataat () will return successfully,
getValue () will generate an exception. For that reason, it is recommended to use try and except
clauses in Python. If the code in the try clause generates an error, the except clause will be executed,
where you can print a detailed message.

© 2022 Anuj Soni 91

Technet24

Adding Comments and Bookmarks

boolean setEOLComment(Address address, java.lang.String comment) Sets a EOL comment at the specified address

boolean setPlateComment(Address address, java.lang.String comment)

Sets a PLATE comment at the specified address

boolean setPostComment(Address address, java.lang.String comment) Sets a POST comment at the specified address

boolean setPreComment(Address address, java.lang.String comment) Sets a PRE comment at the specified address

Bookmark createBookmark (Address address, java.lang.String category, (Createsa NOTE book mark at the specified address.
java.lang.String note)

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 93

During code analysis, we know it is important to document our findings. One way to log observations is to
insert comments within the Listing view. An analyst could also use Ghidra’s Bookmark feature to add

similar notes. The Flat API methods on this slide allow users to add various types of comments or a
bookmark.

© 2022 Anuj Soni 93

Renaming Functions

* The Program API’s setName() method can rename a specified function:

void setName(java.lang.String name, SourceType source) Setthe name of this function.

* This method’s second argument specifies a symbolic constant:

Enum Constants @ Python - Interpreter

>>> fn = getFirstFunction()

Enum Constant Description >>> fn

FUN_00401000

>>> from ghidra.program.model.symbol import SourceType
>>> fn.setName ("first_ func", SourceType.USER DEFINED)

ANALYSIS The object's source indicator for an auto analysis.

DEFAULT The object's source indicator for a default. 55> fn

- cqe . first func
IMPORTED The object's source indicator for an imported. =
USER_DEFINED The object's source indicator for a user defined.

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 94

In addition to inserting comments, we also rename functions during code analysis to create more
meaningful function names. The Program API’s setName () method can help with this task. The first
argument passed to this method is the new function name, and the second argument is a symbolic constant.
Symbolic constant options are shown on the bottom-left of this slide. To find the documentation within
your VM, copy and paste this location into your browser within one of the Windows VMs:
file:///C:/Program Files
(x86)/Ghidra/docs/GhidraAPI_javadoc/api/ghidra/program/model/symbol/SourceType.html

To reference one of the symbolic constant options, we must import them from

ghidra.program.model.symbol.SourceType. The Python statements on the right side of this slide show a
sequence of statements that renames the first function in the target program.

94 © 2022 Anuj Soni

Technet24

o o L] L] o L]
L]
Script Example: Identifying Functions with ARX Operations
EEE———— [consoe - septng
#70D0 Find functions that perform ARX operations. script.py> Ruaning. ..
#eauthor Anuj Soni Function FUN_004034f0 contains ARX operation (s)
ecategory _FOR710 sori o
S pt.py> Finished!
#@keybinding
femenupath FUN_004034£0
#¢toolbar 004034£0 PUSH EBP
fm = currentProgram.getFunctionManager () .getFunctions (True) 004034£1 MoV EBP, ESP
: . 004034£3 suB ESP, Oxcc
for function in fm: ,
if function.getName()[:3] != "FUN": 004034f9 cMP dword ptr [EEP + param_4], 0x0
continue 004034£d PUSH EBX
004034 PUSH EDI
contains_add = False
- 0 E] D,
contains_nonzero_xor = False
contains_rot = False /\
ep = function.getEntryPoint () :' LAB_004035c0
instr = getInstructionAt (ep) H 004035c0 ADD EAX, EDI
f£n_body = function.getBody () ! 004035c2 MoV EDI, dword ptr [EBP + local 38]
! 004035¢5 ROL EAX, 0x7
while (instr 'f None‘and fnibody.cor‘\taln?(1nstr.gethddre551)i): | 004035c8 XOR dword ptr [EBP + local 10], EAX
cperation = instr.getinemonicstring() | 004035ch MoV EAX, dword ptr [EEP + local 10]
if operation == "ADD": | ’ -
contains_add = True ! 004035ce ADD EAX, dword ptr [EBP + local c]
elif operation == "ROL" or operation == "ROR": i 004035d1 ROL EAX, 0x9
contains_rot = True } 004035d4 XOR dword ptr [EEP + local 14], EAX
elif operation == "XOR": | 00403547 Mov EAX, dword ptr [EBP + local 14]
1 = instr.getOpObjects (0 -
opl = instr.getopobjects (0) ! 004035da ADD EAX, dword ptr [EBP + local 10]
op2 = instr.getOpObjects (1) ! 00403504 ror enx oxa —
if opl != op2: | r Ox
contains_nonzero_xor = True } 004035e0 XOR EDI, EAX
! 0040352 Mov EAX, dword ptr [EEP + local_14]
instr = getInstructionAfter (instr) i 004035e5 ADD EAX, EDI
i
. . i 0040357 MoV dword ptr [EBP + local_38], EDI
if contains_rot and contains_add and contains_nonzero_xor: i =
print ("Function " + function.getName() + " contains ARX operations") ! Q04035¢a ROR EAX, Oxe
N 0; i B o]

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

This slide discusses an example of a complete Ghidra Python script. This purpose of this script is to identify
functions with ARX (i.e., add, rotate, xor) operations. As we discussed in Section 2, functions with ARX
operations may implement an algorithm of interest. When this script is run against system32.exe, it
identifies FUN_00403410, and a closer look at this function’s code confirms it implements the Salsa
symmetric encryption algorithm. In fact, we discussed this same function in Section 2.

To take a closer look at the code on this slide, see the file section3 .3 ghidra arx.py inthe
Malware\Section3 folder in your Windows VMs.

96 © 2022 Anuj Soni

Ghidra’s Headless Mode

* In headless mode, you can batch process multiple files.

* Note that to output content to a log file, you must use println ()
instead of print () in the Python script.

» Use the format:

*"C:\Program Files
(x86) \Ghidra\support\analyzeHeadless.bat"
<project location> <project name> -import <target file> -
postScript <full path script> -log <process log> -
scriptlog <script log> -overwrite

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Ghidra provides a headless mode which allows you to control Ghidra via the command line. This may be
helpful for processing multiple files without opening each within the GUI. For example, if you are
confident in a Python script and its output, you could consider running the script against multiple files
using Ghidra’s headless mode.

To execute a script in headless mode you must launch analyzeHeadless.bat. This .bat file is located at
C:\Program Files (x86)\Ghidra\support\analyzeHeadless.bat

The format of the command line is shown on this slide. Note that the <project location> directory must
already exist.

For additional documentation on this feature, copy and paste these locations into Firefox’s address bar
within the Windows VM:

+ file:///C:/Program Files (x86)/Ghidra/docs/GhidraClass/Intermediate/HeadlessAnalyzer.html
 file:///C:/Program%20Files%20(x86)/Ghidra/support/analyzeHeadlessREADME.html

To execute our ARX script on the previous slide, use the command:
"C:\Program Files (x86)\Ghidra\support\analyzeHeadless.bat" projectdir projectname -import

system32.exe -postScript C:\Users\REM\ghidra_scripts\script.py -log headlesslog.txt -scriptlog
scriptlog.txt -overwrite

© 2022 Anuj Soni

97

97

Technet24

Course Roadmap

« FOR710.1: Code * Python for Malware Analysis
Deobfuscation and Execution * Lab 3.1:Automating Config Extraction with
Python

* FOR710.2: Encryption in

* Malware Analysis with DBl Frameworks

Malware) * Lab 3.2:Automate Payload Extraction with
* FOR710.3: Automating Frida

Malware Analysis * Automating Analysis with Ghidra
- FOR710.4: Correlating * Lab 3.3: Scripting with Ghidra

Malware and Building Rules

SA.N.S FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 98

This page intentionally left blank.

98 © 2022 Anuj Soni

Lab 3.3 Background: Search program.exe for Functions That

Perform XOR Operations

#@author Anuj Soni
#@category _FOR710

section3.3_ghidra_nonzeroXOR.py> Running...

#@keybinding Function FUN 00408130 contains an XOR operation of interest.
#@menupath Function contains an XOR operation of interest.
Function FUN 00410950 contains an XOR operation of interest.
#@toolbar N — N N N
Function FUN_00455d30 contains an XOR operation of interest.
from ghidra.program.model.lang import OperandType Function FUN_0046alb9 contains an XOR operation of interest.
fm = currentProgram.getFunctionManager () .getFunctions (True) section3.3 ghidra nonzeroXOR.py> Finished!
for function in fm: g LAB_00409490
if function.getName()[:3] != "FUN": ! | 00409490 MoV AL, byte ptr [ESI]
. continue } 00409492 LEA ECX=>local_54, [EBP + -0x44]
contalns_n?nzero_xor = Félse : 00409495 XOR AL, 0x8
ép = functlon.getEnFryPolnt() ‘ 00409497 ADD AL, 0x3
instr = getInstructionAt (ep) !
. | 00409499 XOR AL, 0x54
fn_body = function.getBody () !
- | 0040949 MOVZX EAX, AL
1
. . . . | 0040949e PUSH EAX
while (instr != None and fn body.contains(instr.getAddress())): |
. | 0040949f CALL FUN_0040c280
operation = instr.getMnemonicString() | -
. . ESI
if operation == "XOR": | 004094a4 INC
opl = instr.getOpObjects (0) ‘L 004094a5 cmp ESL, EDI
op2 = instr.getOpObjects (1) ~| 004094a7 JNZ LAB 00409490
if opl != op2 and (instr.getOperandType(0) == OperandType.SCALAR or instr.getOperandType (1) == OperandType.SCALAR) :

contains_nonzero xor = True
instr = getInstructionAfter (instr)

if contains_nonzero_xor:

print ("Function " + function.getName() + " contains an XOR operation of interest.")

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis

Earlier in this module, we created a Ghidra Python script to identify functions with add, rotate, and xor
(ARX) operations. We could generalize this script and update it to only search for xor operations given
how frequently this instruction appears in encoding and decoding functions. We might also consider
including a check to ensure one xor operand is a scalar (i.e., a number). This is another common
occurrence in functions that encode or decode data. A script that includes these updates is called
section3.3 ghidra nonzeroXOR.py, and it is included in the Malware\Section3 folder.

If we run this script against program.exe (located in Malware\Section3), it outputs several functions of
interest. This exercise will explore just one of these functions, FUN_00409310. If we double-click on this
function and review its code, we observe the loop shown on this slide, which contains several

mathematical operations, including two XORs.

© 2022 Anuj Soni

99

99

Technet24

SANS DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

Lab 3.3

Scripting with Ghidra

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 102

Please begin Lab 3.3 now.

102 © 2022 Anuj Soni

Scripting with Ghidra: Module Objectives, Revisited

v'Explore how to automate code analysis workflows within Ghidra.
v'Use Ghidra’s built-in Python interpreter to explore provided APIs.
v'Understand best practices for developing Ghidra Python scripts.
v'Write a Ghidra Python script to automate analysis.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 103

This slide describes the objectives of the module we just completed.

© 2022 Anuj Soni 103

Technet24

Course Roadmap

« FOR710.1: Code * Python for Malware Analysis
Deobfuscation and Execution * Lab 3.1:Automating Config Extraction with
Python

* FOR710.2: Encryption in

* Malware Analysis with DBl Frameworks

Malware * Lab 3.2:Automate Payload Extraction with
* FOR710.3: Automating Frida

Malware Analysis * Automating Analysis with Ghidra
« FOR710.4: Correlating * Lab 3.3:Scripting with Ghidra

Malware and Building Rules

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 104

This page intentionally left blank.

104 © 2022 Anuj Soni

