
THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

FOR710 | REVERSE-ENGINEERING MALWARE: ADVANCED CODE ANALYSIS

710.3

Automating Malware Analysis

Technet24

�������$QXM�6RQL���$OO�ULJKWV�UHVHUYHG�WR�$QXM�6RQL�DQG�RU�6$16�,QVWLWXWH��

3/($6(�5($'�7+(�7(506�$1'�&21',7,216�2)�7+,6�&2856(:$5(�/,&(16(�$*5((0(17�
��&/$���&$5()8//<�%()25(�86,1*�$1<�2)�7+(�&2856(:$5(�$662&,$7('�:,7+�7+(�6$16�
&2856(��7+,6�,6�$�/(*$/�$1'�(1)25&($%/(�&2175$&7�%(7:((1�<28��7+(�³86(5´��$1'�
6$16�,167,787(�)25�7+(�&2856(:$5(��<28�$*5((�7+$7�7+,6�$*5((0(17�,6�
(1)25&($%/(�/,.(�$1<�:5,77(1�1(*27,$7('�$*5((0(17�6,*1('�%<�<28��

:LWK�WKLV�&/$��6$16�,QVWLWXWH�KHUHE\�JUDQWV�8VHU�D�SHUVRQDO��QRQ�H[FOXVLYH�OLFHQVH�WR�XVH�WKH�&RXUVHZDUH�
VXEMHFW�WR�WKH�WHUPV�RI�WKLV�DJUHHPHQW��&RXUVHZDUH�LQFOXGHV�DOO�SULQWHG�PDWHULDOV��LQFOXGLQJ�FRXUVH�ERRNV�
DQG�ODE�ZRUNERRNV��DV�ZHOO�DV�DQ\�GLJLWDO�RU�RWKHU�PHGLD��YLUWXDO�PDFKLQHV��DQG�RU�GDWD�VHWV�GLVWULEXWHG�E\�
6$16�,QVWLWXWH�WR�8VHU�IRU�XVH�LQ�WKH�6$16�FODVV�DVVRFLDWHG�ZLWK�WKH�&RXUVHZDUH��8VHU�DJUHHV�WKDW�WKH�
&/$�LV�WKH�FRPSOHWH�DQG�H[FOXVLYH�VWDWHPHQW�RI�DJUHHPHQW�EHWZHHQ�6$16�,QVWLWXWH�DQG�\RX�DQG�WKDW�WKLV�
&/$�VXSHUVHGHV�DQ\�RUDO�RU�ZULWWHQ�SURSRVDO��DJUHHPHQW�RU�RWKHU�FRPPXQLFDWLRQ�UHODWLQJ�WR�WKH�VXEMHFW�
PDWWHU�RI�WKLV�&/$����

%<�$&&(37,1*�7+,6�&2856(:$5(��86(5�$*5((6�72�%(�%281'�%<�7+(�7(506�2)�7+,6�&/$��
%<�$&&(37,1*�7+,6�62)7:$5(��86(5�$*5((6�7+$7�$1<�%5($&+�2)�7+(�7(506�2)�7+,6�&/$�
0$<�&$86(�,55(3$5$%/(�+$50�$1'�6,*1,),&$17�,1-85<�72�6$16�,167,787(��$1'�7+$7�
6$16�,167,787(�0$<�(1)25&(�7+(6(�3529,6,216�%<�,1-81&7,21��:,7+287�7+(�
1(&(66,7<�2)�3267,1*�%21'��63(&,),&�3(5)250$1&(��25�27+(5�(48,7$%/(�5(/,()���

,I�8VHU�GRHV�QRW�DJUHH��8VHU�PD\�UHWXUQ�WKH�&RXUVHZDUH�WR�6$16�,QVWLWXWH�IRU�D�IXOO�UHIXQG��LI�DSSOLFDEOH��

8VHU�PD\�QRW�FRS\��UHSURGXFH��UH�SXEOLVK��GLVWULEXWH��GLVSOD\��PRGLI\�RU�FUHDWH�GHULYDWLYH�ZRUNV�EDVHG�XSRQ�
DOO�RU�DQ\�SRUWLRQ�RI�WKH�&RXUVHZDUH��LQ�DQ\�PHGLXP�ZKHWKHU�SULQWHG��HOHFWURQLF�RU�RWKHUZLVH��IRU�DQ\�
SXUSRVH��ZLWKRXW�WKH�H[SUHVV�SULRU�ZULWWHQ�FRQVHQW�RI�6$16�,QVWLWXWH��$GGLWLRQDOO\��8VHU�PD\�QRW�VHOO��UHQW��
OHDVH��WUDGH��RU�RWKHUZLVH�WUDQVIHU�WKH�&RXUVHZDUH�LQ�DQ\�ZD\��VKDSH��RU�IRUP�ZLWKRXW�WKH�H[SUHVV�ZULWWHQ�
FRQVHQW�RI�6$16�,QVWLWXWH��

,I�DQ\�SURYLVLRQ�RI�WKLV�&/$�LV�GHFODUHG�XQHQIRUFHDEOH�LQ�DQ\�MXULVGLFWLRQ��WKHQ�VXFK�SURYLVLRQ�VKDOO�EH�
GHHPHG�WR�EH�VHYHUDEOH�IURP�WKLV�&/$�DQG�VKDOO�QRW�DIIHFW�WKH�UHPDLQGHU�WKHUHRI��$Q�DPHQGPHQW�RU�
DGGHQGXP�WR�WKLV�&/$�PD\�DFFRPSDQ\�WKLV�&RXUVHZDUH��

6$16�DFNQRZOHGJHV�WKDW�DQ\�DQG�DOO�VRIWZDUH�DQG�RU�WRROV��JUDSKLFV��LPDJHV��WDEOHV��FKDUWV�RU�JUDSKV�
SUHVHQWHG�LQ�WKLV�&RXUVHZDUH�DUH�WKH�VROH�SURSHUW\�RI�WKHLU�UHVSHFWLYH�WUDGHPDUN�UHJLVWHUHG�FRS\ULJKW�
RZQHUV��LQFOXGLQJ��

$LU'URS��$LU3RUW��$LU3RUW�7LPH�&DSVXOH��$SSOH��$SSOH�5HPRWH�'HVNWRS��$SSOH�79��$SS�1DS��%DFN�WR�0\�
0DF��%RRW�&DPS��&RFRD��)DFH7LPH��)LOH9DXOW��)LQGHU��)LUH:LUH��)LUH:LUH�ORJR��L&DO��L&KDW��L/LIH��L0DF��
L0HVVDJH��L3DG��L3DG�$LU��L3DG�0LQL��L3KRQH��L3KRWR��L3RG��L3RG�FODVVLF��L3RG�VKXIIOH��L3RG�QDQR��L3RG�
WRXFK��L7XQHV��L7XQHV�ORJR��L:RUN��.H\FKDLQ��.H\QRWH��0DF��0DF�/RJR��0DF%RRN��0DF%RRN�$LU��0DF%RRN�
3UR��0DFLQWRVK��0DF�26��0DF�3UR��1XPEHUV��26�;��3DJHV��3DVVERRN��5HWLQD��6DIDUL��6LUL��6SDFHV��
6SRWOLJKW��7KHUH¶V�DQ�DSS�IRU�WKDW��7LPH�&DSVXOH��7LPH�0DFKLQH��7RXFK�,'��;FRGH��;VHUYH��$SS�6WRUH��DQG�
L&ORXG�DUH�UHJLVWHUHG�WUDGHPDUNV�RI�$SSOH�,QF��

303��DQG�30%2.��DUH�UHJLVWHUHG�WUDGHPDUNV�RI�30,�

62)�(/.��LV�D�UHJLVWHUHG�WUDGHPDUN�RI�/HZHV�7HFKQRORJ\�&RQVXOWLQJ��//&��8VHG�ZLWK�SHUPLVVLRQ�

6,)7��LV�D�UHJLVWHUHG�WUDGHPDUN�RI�+DUELQJHUV��//&��8VHG�ZLWK�SHUPLVVLRQ�

*RYHUQLQJ�/DZ��7KLV�$JUHHPHQW�VKDOO�EH�JRYHUQHG�E\�WKH�ODZV�RI�WKH�6WDWH�RI�0DU\ODQG��86$��

$OO�UHIHUHQFH�OLQNV�DUH�RSHUDWLRQDO�LQ�WKH�EURZVHU�EDVHG�GHOLYHU\�RI�WKH�HOHFWURQLF�ZRUNERRN�

)25���B�B+��B��

FOR710 Advanced Malware Reverse-EngineeringFOR710.3 Reverse-Engineering Malware: Advanced Code Analysis

© 2022 Anuj Soni | All Rights Reserved | Version H02_05

Automating Malware
Analysis

Section FOR710.3, also known as Section 3 of the FOR710 course, focuses on discussing approaches to
automating malware analysis.

FOR710.3 materials are created and maintained by Anuj Soni. To learn about Anuj's background and
expertise, please see https://www.sans.org/instructors/anuj-soni. You can visit his blog at
https://malwology.com/ and follow him on Twitter at https://twitter.com/asoni.

© 2022 Anuj Soni 1

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

2

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

2 © 2022 Anuj Soni

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Python for Malware
Analysis

3

© 2022 Anuj Soni 3

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 5

• Develop comfort with Python for malware analysis.

• Gain experience using the pefile Python module for parsing PE files.

• Apply our knowledge of the PE file format to programmatically analyze a
Windows executable.

• Understand how Python can help automate the results of our prior static
code analysis and debugging efforts.

• Create a malware configuration extractor.

Python for Malware Analysis: Module Objectives

This slide describes the objectives of this module.

© 2022 Anuj Soni 5

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 6

• This module focuses on introducing Python programming for RE; it does
not provide an in-depth introduction to the language in general.

• Consider attending the SANS course titled SEC573: Automating
Information Security with Python (sans.org/sec573).

• When writing scripts for malware analysis, your goal is functioning code
that produces the expected output—do not worry about code quality.

• If the script you create is of value in future analysis efforts, you will have
plenty of opportunity to iteratively improve your code.

• Consider the Pareto principle: time spent optimizing the code will
require most of your time if you focus on a 100% solution.

Consider These Caveats to Calibrate Your Expectations

It’s worth emphasizing that the purpose of this module is to introduce Python for malware analysis, and
not to introduce all aspects of the Python programming language. For a thorough discussion of the Python
programming language, consider attending the six-section SANS course titled SEC573: Automating
Information Security with Python.

Also, scripts created during malware analysis are typically written under time constraints, and scripts
created for one malware variant or family may or may not be applicable to future malware. As a result, the
goal is simply to write a script that “works” by producing the intended output. Do not focus on code
quality and performance, at least initially. If the script you create has value in the future, there will be
opportunity to iteratively improve.

Remember the Pareto principle when writing malware analysis scripts (i.e., the 80/20 rule): 80% of the
benefit will come from 20% of the work. The remaining 20% may require an unrealistic amount of time,
and in most cases is unnecessary. Applying this to writing scripts, the point is that you can produce
functional, helpful scripts in a relatively short period of time. However, if you obsess over code quality,
performance, and robustness, you will spend most of your time on these details. Write a script that gets the
job done and worry about adding polish to your script later.

6 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 7

• Python is an interpreted language, which means a .py script is executed
by a helper program (i.e., an interpreter).
• To run a Python program on Windows, use py.exe or python.exe:
• python myscript.py
• py myscript.py

• The Python interpreter:
• Compiles the source code into platform-independent bytecode.

• Runs the bytecode in the Python Virtual Machine (PVM), which converts
bytecode into machine-executable code.

Python Background

Python is an interpreted language, which means a helper program called an interpreter is required to run
the source code.

Within our Windows VMs, you can run a Python program using the python.exe or py.exe executables. It is
not necessary to include “.exe” on the command line. We will use “python” or “python.exe” for clarity and
consistency.

The interpreter first converts the source code to byte code, and this byte code is provided to the Python
Virtual Machine (PVM) for execution. The PVM converts bytecode to machine code and runs it.

© 2022 Anuj Soni 7

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 8

• The Python installer is available at python.org.

• Several additional modules are installed in your VMs, including pefile,
pycryptodome, and frida-tools.
• Packages were installed using pip, the package manager for Python:
• pip3 install <package_name>
• Using pip3 ensures the package will be installed into a Python 3 environment.

• Search for other available packages at https://pypi.org/.

Python 3 Is Installed in Your Windows VMs

We are using Python 3 during this class. If you have prior exposure to Python, you have probably used
Python 2 at some point. Python 2 sunset on January 1, 2020. We will not discuss the differences between
Python 2 and Python 3 in class but view this resource for a brief summary about the differences:
https://for710.com/python2v3.

Python 3 is already installed within your Windows VMs. If you need to install Python on another
Windows system, the recommended approach is to download an installer from https://www.python.org/.
During the install, it is important to add Python to your PATH variable so you can execute the interpreter
from anywhere within a terminal.

Several additional Python modules were installed within your Windows VMs, including pefile,
pycryptodome, and frida-tools. All modules will be discussed later in this section. These modules were
installed using pip, a package manager for Python. To learn more about pip, see https://for710.com/pip.
Using pip3 instead of pip in the install command ensures the specified program is installed into the Python
3 environment. This is an important detail if you have both Python 2 and Python 3 installed on your
system.

To explore other available Python packages, browse to https://pypi.org/.

8 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 9

• Visual Studio Code is a free and open-source Integrated Development
Environment (IDE) that accommodates many programming languages.

• Several VS extensions are installed, including:
• Python

• Code Runner

• Vim emulation (disabled)

• PyCharm is another popular IDE, specifically for Python.

Microsoft’s Visual Studio (VS) Code

There are multiple code editors to choose from. We will use Microsoft’s Visual Studio Code, which is free
and open source. VS Code is available for macOS, Windows, and Linux. Another popular alternative is
PyCharm, an IDE exclusively for Python programing.

VS Code has many extensions available through the Visual Studio Code Marketplace. The VS Code install
within your VMs has several modules already installed, including Python, Code Runner, and Vim
emulation (disabled by default).

© 2022 Anuj Soni 9

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 10

Create and Execute Your First Python Script

Save the file (Ctrl+S) after each
modification before running the code.

To get started with Visual Studio Code, first launch the program from your Dynamic VM’s desktop.

Then, create a new file by browsing to File > New File.

Then, go to File > Save. Within C:\Users\REM, create a folder named “python_scripts” (right-click > New
> Folder). Save your file with the file name first_script.py.

Let’s complete our first Python script. Type the text print("Hello malware!").

Then, go to File > Save or use the keyboard shortcut Ctrl+S. A common mistake is to run the code without
saving, which will run the code last saved to the file.

To run the code, you can click on the Play symbol on the top-right of the window. Alternatively, you can
execute the code via the context menu with a right-click > Run Code. Within the context menu, notice the
keyboard shortcut Ctrl + Alt + N (on a Mac this translates to Ctrl + Option + N). This shortcut is provided
by the third-party Code Runner extension installed in VS Code. We will use shortcuts often in this class to
save time and clicks.

10 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 11

• We use variables to store data:
• Use descriptive variable names (case-sensitive).

• Add an underscore (“_”) between words.

• Strings are within double or single quotes—we will use double quotes.
• print(): built-in function to output content (default stdout).

• Use # for a single-line comment and place multi-line comments between
triple quotes (“““).

Python Basics

#My first Python script
text1 = “Hello”
text2 = “ malware!”
print(text1 + text2)

The next few slides introduce some basic concepts in Python programming.

We will use variables to store data temporarily. The code snipped at the bottom-right of this slide shows
two examples of variable assignments. When specifying a variable name, choose terms that are concise
and descriptive. If the variable name includes two words, separate those words using an underscore.

In Python, strings are enclosed in quotes. You can use single or double quotes. In this class, we will only
use double quotes for consistency.

The built-in print() function prints content. We will use print() to output content to the terminal.
When using print(), we can use the add (“+”) operator to concatenate strings.

When writing comments, use the pound symbol (“#”) for single-line comments and enclose multiple lines
between triple quotes.

© 2022 Anuj Soni 11

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 12

Three Basic Data Types Are Strings, Numbers, and Booleans

#My first Python script

#String example
output_text = “Hello malware!”
print(output_text)

#Number and integer example
num = 1

#Number and float example
num_float = 1.1

#Boolean example
is_dll = True

Three basic types in Python you should be familiar with are strings, numbers, and Booleans. We already
have a good understanding of what a string is.

The numbers category can be broken down into integers and floats. Floats are numbers with decimal
places included.

Booleans are True or False (they must begin with a capital letter).

12 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 14

• Use a dot (“.”) after an object to view available methods.

• VS Code provides helpful background about a function’s purpose, its
parameters, and return value.

A String Is an Object, and Objects Have Methods (i.e., Functions)

A string is an object, and Python provides certain functions that are specific to strings. Functions specific
to a certain type of object are called “methods.” You can call a method by typing the object followed by a
dot (“.”). VS Code will automatically provide a list of available methods to choose from.

For more additional detail on a method, choose one and type “(”. VS Code will pop up a box with details
on the method, its parameters, and return value.

14 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 16

Mathematical, Bitwise, Comparison, and Logical Operations

Mathematical Operators

Operator Description

+ Add

- Subtract

/ Division

* Multiplication

** Exponent

% Modulus

Comparison Operators

Operator Description

== Equal

!= Not equal

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Bitwise Operators

Operator Description

& AND

| OR

^ XOR

~ NOT

<< Left shift

>> Right shift

Logical Operators

Operator Description

and True if both statements true

or True if at least one statement true

not Reverse the result

This slide lists Python operators that you are likely to encounter and use. This is not a comprehensive list
of all operators. See https://for710.com/pyoperators for more information.

Note that when using the bitwise shift operators, any gaps created by shifting bits are replaced with zero
bits (i.e., bits do not wrap around from one side to the other).

16 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 17

Use Mathematical Comparison and Logical Operators with “if”
Statements to Evaluate a Condition

• Parentheses are only
used in an if-statement to
force an order of
operations.
• Append a colon (“:”) at

the end of the if-
statement.
• Indentation creates

blocks of code (i.e., no
{}).

The code on this slide shows an example of how operators are used in Python. The first example involves
numbers while the second example involves strings.

This slide also uses an if-statement in Python, which allows us to assess a condition. When using an if-
statement in Python, there is no need for parenthesis unless you want to force an order of operations. Also,
there are no curly braces to delineate code blocks as is common in other programming languages. Instead,
indentation is used. If the assessed condition is true, the indented code block below the if-statement is
executed.

© 2022 Anuj Soni 17

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 18

A List Is a Flexible Data Type That Includes Multiple Values

• Lists are mutable, so values can be
modified, added, and removed.
• Use bracket notation to access

items.
• Use the colon (“:”) slicing operator

to access part of a list.
• Use the in operator:
• With for to iterate through a list.
• With if to check if an item is in the list.

Lists are commonly used to store multiple values. For more information on lists and available methods, see
https://for710.com/python-lists.

We can iterate over a list to assess its multiple values. The code on this slide demonstrates the use of a
for loop to iterate over a list. In the example, “day” is considered a loop variable.

To check if a list contains a certain value, we can use an if-statement and the “in” keyword:

To access a subset of values within a list, we can use the colon (“:”) slicing operator. The general format
for list slicing is:
• sample_list[start:stop] # includes first element through stop-1
• sample_list[start:] # includes first element through the entire array
• sample_list[:stop] # includes first element through stop-

18 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 19

Specify Command Line Inputs and Outputs with argparse

The argparse module allows us to specify command line arguments for a script. The argparse functionality
is not built-in, so the module must be imported. The example on this slide demonstrates how to specify
command line arguments.

When using the argparse module, we first create an ArgumentParser object:
parser = argparse.ArgumentParser(description=“My script.”).

We populate the ArgumentParser object with information about relevant arguments using the
add_argument() method.

Calling parse_args() provides access to the supplied command-line arguments. For example, the
code on this slide adds an argument called “output”. The script then includes the statement:
args = parser.parse_args()

After parse_args() is executed, we can access the “output” command-line argument as an attribute
of args via args.output.

The code on this slide uses the command-line argument to write text to the specified file. The with
keyword is often used for file access because it ensures the file is properly closed without explicitly
including code to do so.

For more information on argparse, see https://for710.com/argparse. For more information on reading and
writing files in Python, see https://for710.com/pythonfiles.

© 2022 Anuj Soni 19

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 20

• In Section 2, we analyzed file.exe and determined that the function at
004059fc implements RC4 and decrypts configuration data.

Creating a Configuration Extractor for file.exe

• The encrypted data resided in a
section with an unusual name.

Now that we understand some Python basics, let’s focus on automating a task. Our goal is to extract the
encrypted, embedded configuration from file.exe, an executable we discussed in Section 2. As a reminder,
this malware sample has SHA-256 hash
6b212864731c131bd095c2537ca14e10338d3ebf997dda59465c5f1ce73d418b. You can find file.exe and
other executables referred to during this walk-through within Malware\Section3\file_and_more.zip.

When we performed some initial static file analysis of file.exe, we observed a section with an unusual
name that contained unreadable data. This led us to perform some additional debugging, and eventually we
arrived at the conclusion that this content was RC4 decrypted to reveal configuration data.

How could we automate this decryption outside of a debugger? Could we create a python script to run
against this and similar executables to extract the configuration content?

20 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 21

Our script must:
• Accept a target file and output file on the command line.

• Parse a PE file.

• Find the section that contains the obfuscated configuration data.

• Extract data from that section.

• Parse the section data and identify the RC4 key, encrypted data, and any
related information based on our understanding of how the data is structured.

• RC4-decrypt the encrypted configuration data.

• Write the decrypted configuration to a file.

Document the Script’s Requirements before Writing Any Code

The target file must
be unpacked.

This slide lists the requirements for the Python script we want to write.

Note that we are creating a static config extractor intended to be run against a target file on disk. This
means the encrypted content is embedded somewhere in the file, and we can extract it for processing. If
the encrypted data were only available in memory after an initial executable unpacked itself, we would
need to unpack that executable first.

© 2022 Anuj Soni 21

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 23

Explore pefile Usage with a Legitimate Program, notepad.exe

Since we are exploring a new PE file parsing capability, it’s a good idea to use a legitimate program to
learn more about the Python module. Malicious programs often have an unusual characteristics and these
anomalies may confuse our initial attempts to understand pefile’s capabilities.

Within the terminal screen in the lower part of VS Code, type python to launch the interactive shell. Then,
load the pefile module with the command import pefile. In Python, the “import” statement finds
the specified module and provides access to the module’s functionality.

Let’s explore this module by viewing its help information. Type help(pefile), as shown on this slide.
In addition to an overview of the module, we see a description of classes contained within the module.
Scrolling down (hit the spacebar) provides information about each class. For now, we will only focus on
the PE class. The description tells us that this class will give us access to the structure of a PE file, which is
precisely what we need for our Windows file analysis. The output also explains how to create an instance
of the PE class and read in a file.

© 2022 Anuj Soni 23

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 24

• Then target = pefile.PE(“file.exe”): screenshot

The dir() Command Provides a Glimpse of Methods

We can return to the help menu to read more about the methods and attributes of the PE class.
Alternatively, we can view a summary of this information by typing dir(pefile.PE). An excerpt of
this output is shown on this slide.

The dir() command output is a bit cluttered, but a quick scan of the text hints at the module’s capabilities.
For example, we see references to get_impash, get_overlay, and is_exe. If we want more information
about a specific method, we can use the help() function.

By the way, functions that begin and end with double underscores are considered “magic methods”. They
are basically reserved and can be safely ignored for now.

24 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 25

• Within a Python interactive shell, type these commands to get started:

• When an executable is loaded, we can begin calling methods to learn
about the target program and explore its structure.

• It’s helpful to have an interactive shell open while writing a script to test
code and review any available documentation.

Pefile: Load a Program

This slide demonstrates how to use the pefile module to load an executable and begin using available
methods.

© 2022 Anuj Soni 25

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 26

help(pefile.PE) output describes how to access the various
directories entries, including one associated with the program’s imports.

Extract Information about Imported DLLs and Functions

Although the pefile module includes several function to quickly extract information like an import table
hash, obtaining other information may require a bit more work.

For example, let’s discuss how to extract an executable’s imported DLLs and functions. This is useful data
we often consult when performing static file analysis.

The screenshots on this slide show how we can navigate pefile documentation and perform testing to get
access to the list of imported DLLs. In this case, we learn that the imports are accessible via the
DIRECTORY_ENTRY_IMPORT attribute, which is a list of ImportDescData instances. Reviewing
documentation on the ImportDescData class reveals that the “dll” attribute contains the name of the
imported DLL.

The code on the right iterates over the DIRECTORY_ENTRY_IMPORT list and prints out the ”dll”
attribute for each ImportDescData object. The output is a list of imported DLLs.

26 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 27

Iterate over ImportData Instances to Print DLLs and Functions

We can supplement the output on the previous slide by adding the names of functions imported by each
DLL. To obtain this additional detail, observe that each ImportDescData object contains an attribute
“imports” that is a list of ImportData instances. Documentation on ImportData shows a “name”
attribute that specifies the function name.

The code on the right makes use of this detail to iterate over the list of function names to print each one to
the terminal.

With a brief introduction to pefile behind us, let’s return to building our configuration extractor.

© 2022 Anuj Soni 27

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 28

This organization allows us to both run our script and interactively explore
pefile as needed to parse our target file.

VS Code: Include a Text Editor, Terminal, and Python Shell

Let’s get started with building our config extractor. We will also take some time to get more familiar with
the pefile Python module. Within VS Code, create a new file and call it extract_config.py. We will also
use two terminal windows below the script file. On the left, we have our terminal prompt where we can
view the output of running our script. This will help us check for errors and assess if our script produces
the expected output. On the right, launch a Python interactive shell. Rather than diving straight into
creating a script, the interactive shell is a great way to learn about available modules and perform quick
testing.

Within the interactive shell, load pefile with the command import pefile. As a reminder, pefile is not
included with a default Python install. It was installed within your Windows VMs with the command
pip3 install pefile.

28 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 29

• We need to import several libraries:

• The pycryptodome module implements many cryptographic algorithms
including RC4, Salsa20, ChaCha20, and various ECC curves.

• Our script must extract the key and data.

Our Script Will Import Several Python Modules

cipher = ARC4.new(key)
decrypted_data = cipher.decrypt(data)
print(decrypted_data)

import pefile
import argparse
from Crypto.Cipher import ARC4

Our script needs to import several Python modules to perform its work, including pefile, argparse, and
pycryptodome.

As a reminder, the “import” statement in Python finds the specified module and provides access to the
module’s functionality. The “import” statement allows access to all functions within a specified module. If
you only need access to a subset of functions within a module, consider the “from” statement. As shown
on this slide, our script will include the statement:

from Crypto.Cipher import ARC4

This statement imports functions from ARC4.py located in the Crypto (i.e., pycryptodome) package under
the Cipher subdirectory. A “package” is a collection of related modules. You can find ARC4.py within
your VM at C:\Users\REM\AppData\Local\Programs\Python\Python39\Lib\site-
packages\Crypto\Cipher\ARC4.py.

© 2022 Anuj Soni 29

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 30

• Arguments will specify the target executable and an optional output file
for the extracted config:

• Then, we can load the specified target program.

Next, We Specify Arguments and Load the Target Program

parser = argparse.ArgumentParser(description="Config extractor")
parser.add_argument("-f","--file", help="File for config
extraction.", required=True)
parser.add_argument("-o","--output", help="Output file for
config.", required=False)
args = parser.parse_args()

target = pefile.PE(args.file)

Next, we will use argparse to specify our command line arguments. As a reminder, we want to include
arguments to specify the input file (i.e., the target binary) and an output file. We can make the output file
option by including required=False when we call parser.add_argument().

30 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 32

The Sections Attribute Is a List of IMAGE_SECTION_HEADER
Structures That Contain the “Name” Attribute

• The initial outputs show byte strings.

• We convert to UTF-8 with decode()
and remove null bytes with rstrip(). Run the script from the command

line to specify arguments.

To execute the script on the previous slide and pass arguments, you will need to run it from the command
line within the terminal window. The output lists IMAGE_SECTION_HEADER structures. Each structure
includes, among other attributes, the “Name” of the section. Let’s update our script to print out these
names (see top-right screenshot).

The new output prints out the section names as expected, but the format requires explanation. Each section
is preceded by “b” because the data is a “binary string”. If you printed the type for these values using the
built-in type() function, the output describes the values as <class 'bytes’>. To convert this data to
a string type, we can apply the decode() function. When using decode(), you can specify the
appropriate encoding. UTF-8 is the default, so we do not need to specify the encoding in this case. An
alternative to using the decode() function is to convert the type with the code
str(section.Name,'utf-8’). However, decode() is more common when operating on byte
data. For more information on the decode() method, see https://for710.com/decode.

Because the byte data includes null bytes, it is necessary to remove those values. We can accomplish this
with the string rstrip() method (see https://for710.com/rstrip).

32 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 33

• Brief static analysis indicates all files have a section with an unusual
section name, but the name varies.

• In our script, we could check for section names that are non-standard.

Compare Similar Executables to Identify the Section of Interest

Our script must identify the appropriate section within the target PE file to extract the encrypted
configuration data. We know the encrypted content is in the section named ".s7bz”. One approach is to
iterate over the sections within the target file (i.e., file.exe) until we find a section named “.s7bz”.
However, this section name may change across similar samples, and if the name changes, our script will
not work.

The best-case scenario is that our script successfully extracts the configuration data from file.exe and
similar files (we will discuss how to find similar files more in the next section). Therefore, when deciding
how to identify the anomalous section, it is helpful to collect several similar malware samples. This slide
shows section data for file.exe and two samples that have similar functionality when compared to file.exe.
All three examples have a single anomalous section, but the section name varies. Within our script,
perhaps we could iterate over sections and identify the one with an uncommon section name. Let’s try this
approach.

© 2022 Anuj Soni 33

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 34

• To identify the anomalous section, we define a list that includes multiple
string values.

• If a section name is not in the list, identify it for further processing.

• Our updated script correctly identifies the single unusual section.

Create a List of “Good” Sections to Compare Against

In the code on this slide, we first define a list of standard Windows executable section names. Then, when
we iterate over the list of sections, we check each section name against our list. If a section name is not in
the list, it must be the anomalous section that contains the encrypted configuration data.

34 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 35

If we browse to the section name .s7bz within Ghidra, we find several
labeled locations including one that corresponds to the encrypted config.

Clarify Where the RC4 Key and Encrypted Data are Located

FUN_00401a73 calls
the RC4 function

Before proceeding with our script, we must understand the structure of the anomalous PE section and
where the encrypted data resides. Within Ghidra, when we jump to the PE section of interest, we find
several labeled locations. One labeled location corresponds to the encrypted data. There are three more
labeled locations, which we will discuss shortly.

© 2022 Anuj Soni 35

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 36

Associate Two Other Labeled Locations with the RC4 Key and
Encrypted Data Size

Based on our analysis in Section 2 (see the slide in Section 2 titled “The HW Breakpoint Is Hit within the
RC4 Decryption Function”), we can associate two of the remaining three labeled locations with the RC4
key and the encrypted data size.

36 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 37

Rename Labels for Clarity, Leaving One Unknown Label

Some code analysis is necessary to
understand the remaining labeled data.

Within the PE section of interest, there is one remaining labeled data location. To investigate, let’s review
the code that references this location.

At 401a8a, the data is compared to the contents of EAX. If the value in EAX is not equal to the 32-bit
value at 41e020, the function returns. We know EAX often stores the return value of a function, and we
see a function call shortly before this function: at 401a82, FUN_00405846 is executed. Interestingly,
arguments passed to FUN_00405846 include the encrypted data size and a pointer to the encrypted data.
Let’s jump to FUN_00405846 for a closer look.

© 2022 Anuj Soni 37

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 38

A Hexadecimal Value within FUN_00405846 Suggests CRC32

Within FUN_00405846 we see code that is not immediately identifiable. It includes XOR, SUB, and AND
instructions, which may indicate the function implements an algorithm. Within the function, also observe
the value 0xedb88320. Online research of this hexadecimal value reveals it is associated with the CRC32
algorithm. Considering the arguments passed to the function, FUN_00405846 likely performs an integrity
check of the encrypted data before proceeding with decryption. Using CyberChef, we can confirm the
four-byte value located at 41e020 is the CRC32 checksum of the encrypted data.

38 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 39

Use the Slice Operator for Data Extraction

RC4 Key (32 bytes)
Encrypted Data CRC32 Checksum (4 bytes)
Encrypted Data Size (4 bytes, little endian)
Encrypted Data (variable)

• data[start:stop] #start through stop-1
• data[start:] #start through end of array
• Data[:stop] #beginning through stop-1

Based on our recent static code analysis, we can now accurately identify the structure of the PE section
where the encrypted configuration resides. This section also contains the RC4 key, a CRC32 checksum of
the encrypted data, and the size of the encrypted data.

In our Python script, we can use the slice operator to extract these individual components as shown in the
code snippet. Another approach to parsing binary data is to use the Python struct library. While we will not
use this approach in class, you can read more about this library here: https://for710.com/pystruct.

The code on this slide also demonstrates the use of the get_data() method. When run against a
section, this method returns the data contained within the section. This is the data we slice as needed to
specify the key, data size, and encrypted data.

This slide also uses the integer method from_bytes(). This function returns the integer represented by an
array of bytes (for more information, see https://for710.com/frombytes).

© 2022 Anuj Soni 39

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 41

Use the Python json Module for Beautification

As mentioned on the previous slide, the configuration is in JSON format. We can use the Python json
module to beautify the output and add indentation as shown on the right side of this slide.

The json.load() method converts the decrypted content to a Python object. The json.dump()
method generates a JSON formatted string with the specified indentation.

To view the complete config extractor script, see the file section3.1_extract_config.py in the
Malware\Section3 folder in your Windows VMs.

To learn more about the Python json module, see https://for710.com/python-json.

© 2022 Anuj Soni 41

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

42

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction

with Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

This page intentionally left blank.

42 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 43

Lab 3.1: Background Topics: pefile.PE.dump_info()

The next few slides provide additional background that is helpful for Lab 3.1.

The walk-through in this module discussed malware that embeds an encrypted configuration in a section.
If the encrypted configuration is stored as a resource, however, accessing this data programmatically is a
bit more complicated due to the structure of the resource section.

We can use the pefile dump_info() method to learn more about the structure of the resource
section. This method prints all PE header information. This volume of data is best reviewed in a text
editor, so the commands on this slide write the output to a file.

Our goal is to access the IMAGE_RESOURCE_DATA_ENTRY structure, which contains an offset to the
resource data in winbio.exe.

© 2022 Anuj Soni 43

Technet24

Similar to the approach we used to access a program’s IAT, our journey to access resource data begins
with a directory entry. On the top-left of this slide, the screenshot shows an excerpt of output from
help(pefile.PE). This explains that resources are accessible through the
DIRECTORY_ENTRY_RESOURCE attribute. This attribute is an instance of a ResourceDirData
object.

If we query help() to understand the ResourceDirData class, we find it includes an attribute
named “entries” that is a list of ResourceDirEntryData instances.

If we query help() to understand the ResourceDirEntryData class, we see it includes four
attributes. The data attribute points to the actual resource data, but only if there are no lower directories. If
there are subdirectories, those are accessible via the directory attribute, which points to additional
ResourceDirData objects. This means we must traverse any subdirectories before accessing the
resource data. As highlighted on this slide, only one of the directory or data attributes may exist.

When we finally reach the resource data, it will be an instance of the ResourceDataEntryData class.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 44

Lab 3.1: Background Topics: Access Resources with pefile (1)

44 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 45

Lab 3.1: Background Topics: Access Resources with pefile (2)

Continuing our analysis from the previous slide, we can query help() for more information on the
ResourceDataEntryData class. There, we observe a “struct” attribute. This attribute contains the
IMAGE_RESOURCE_DATA_ENTRY structure we saw in our earlier dump_info() output
(highlighted on the slide). This structure contains OffsetToData and Size fields. Passing these values
to get_data() will return the resource data we desire.

© 2022 Anuj Soni 45

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Lab 3.1

46

Automating Config Extraction with Python

Please begin Lab 3.1 now.

46 © 2022 Anuj Soni

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 48

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

48 © 2022 Anuj Soni

Technet24

This module discusses how to use Dynamic Binary Instrumentation (DBI) frameworks to help automate
malware analysis.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Malware Analysis with
DBI Frameworks

49

© 2022 Anuj Soni 49

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 50

• Gain familiarity with the concept of DBI frameworks.

• Understand how DBI-based tools can help automate reverse engineering.

• Use a DBI-based tool to monitor API calls.

• Use a DBI framework’s Python bindings to script a common malware
analysis workflow.

Malware Analysis with DBI Frameworks: Module Objectives

This slide describes the objectives of this module.

50 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 51

• This includes hooking functions, observing API calls, assessing function
inputs/outputs, and modifying instructions and data during execution.

• DBI-based tools are often used to assess proprietary programs, evaluate
performance, and discover vulnerabilities.

• DBI frameworks are available for both desktop and mobile OSs and most
include well documented APIs to facilitate tool development.

DBI Frameworks: Run a Program and Interact with Its Internals

Malware reverse engineers perform dynamic code analysis to inspect a program during execution. This
typically involves using a debugger to monitor a suspect process. A complementary approach is to
interrogate a running process using Dynamic Binary Instrumentation (DBI) frameworks. While a debugger
allows you to attach to a process, DBI techniques allow you to inject and execute code within a process to
examine its internals.

Well-known DBI frameworks include DynamoRIO, Intel’s Pin, and Frida. These frameworks are often
used to assess proprietary programs and evaluate program performance, but they can also be applied to
accelerate malware analysis. They allow analysts to hook functions to observe API calls, assess their
inputs and outputs, and even modify instructions and data during execution. DBI frameworks target both
desktop and mobile operating systems (i.e., Windows, macOS, GNU/Linux, iOS, Android™, and QNX)
and provide well-documented APIs to facilitate tool development.

© 2022 Anuj Soni 51

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 52

• Malware reverse engineers debug programs to inspect code and data
during execution.

• DBI frameworks can help automate the debugging process.

• With DBI-based tools, we can monitor APIs of interest and automatically
extract argument and return values.

• We can use DBI framework capabilities to automate common RE tasks
including deobfuscating code, dumping payloads, and decrypting data.

DBI Framework Capabilities Complement the RE Process

DBI frameworks are versatile, and one application is to automate common malware analysis tasks.
Reverse engineers often find themselves monitoring functions, observing their inputs and outputs, and
taking further action based on what is discovered. DBI-based tools can play a key role in automating these
tasks, including deobufscating code, dumping payloads, and decrypting data.

52 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 53

• While there are several options to choose from, we will pursue the Frida
DBI framework to automate our reverse engineering efforts.

• Frida is a free and open-source DBI framework we can use to rapidly
automate malware analysis workflows.

• Frida injects JavaScript into a running program to monitor and/or
modify function arguments and return values.

• Frida includes helpful command line tools to get started immediately, but
the framework’s power is best experienced using its Python bindings.

• The framework is available in your VM, but in another environment you
would install Frida with the command: pip3 install frida-tools.

Frida Background

This module demonstrates how to use Frida to automate reverse engineering workflows. We will discuss
Frida’s key features and explain the core components of a Frida Python script. With this knowledge,
analysts can rapidly build custom tools to perform binary analysis.

Frida is a free and open-source software created by Ole André V. Ravnås. It allows analysts to inject
JavaScript into programs to observe, intercept, and modify the inputs and outputs of function calls during
execution. It works on a variety of desktop and mobile operating systems. Frida provides command line
tools for those who want immediate access to its benefits, but the framework’s functionality and flexibility
are best experienced using the available Python bindings.

Frida requires a Python 3 install on a Windows, macOS, or GNU/Linux operating system. To install Frida,
run the following command from an internet-connected machine: pip3 install frida-tools.

Python 3 and Frida are already installed within your VMs.

© 2022 Anuj Soni 53

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 54

Frida-Trace Provides Benefits of the Frida Framework with
Minimal Coding

• With frida-trace, you can quickly intercept APIs of interest.

• Use this command line format:

• frida-trace -f <target> -i <module Name>!<functions(s)>

• Example: frida-trace -f run.exe -i KERNEL32.DLL!CreateFile*

• -f: Target file to execute

• -i: Function(s) to intercept

• *: Wildcard to monitor multiple APIs, but this may include too many

• Including the module name is optional but recommended.

Frida-trace is one of several command-line tools in the Frida framework that has clear benefits for
malware analysis. Malware analysts often spend time tracing API calls; this tool helps automate tracing by
allowing analysts to display and process the inputs and outputs of a specified function. Frida is not an
emulator framework, which means it executes the target program. For this reason, frida-trace should be
used in an isolated environment when performing malware analysis.

To spawn a process and begin tracing function calls, use the following command line format: frida-trace -f
<program name> -i <MODULE NAME>!<Function(s) to monitor>.

To view the help output, use the “-h” command line flag. You can also visit https://for710.com/fridatrace
for more information.

There are numerous APIs worth tracing for malware analysis. For example, consider this command:
frida-trace -f run.exe -i KERNEL32.DLL!CreateFile*

This command line will launch run.exe and monitor calls to any API that begins with “CreateFile” in
kernel32.dll. Key details about this command line to note are:
• The -f flag specifies the target file to spawn.
• Use -i flag specifies the function to monitor.
• Including the module name is optional but yields more concise and targeted output. The module name

must be typed in all capital letters.
• The asterisk (*) is a wildcard, and this is helpful to monitor both the wide character and ANSI versions

of Windows APIs (e.g., CreateFileW and CreateFileA) or groups of APIs (e.g., all APIs that begin with
“Crypto”). However, it is generally best to be as specific as possible to avoid an overwhelming amount
of information from too many API calls.

54 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 55

Example: Use frida-trace to Assess Libraries Loaded at Runtime

When crafting frida-trace commands, specify
APIs of interest to reduce noise.

Let’s use frida-trace to take a closer look at a malware sample. The screenshots on this slide show analysis
of a sample named bacon.exe with SHA-256 hash
866b2c7dc08682cc174c58bf5cfc6ca44af7696b28b8191e7ff003d97639934c. You can find this file in the
Malware\Section3 folder within your VMs.

Brief behavioral analysis of bacon.exe indicates an HTTP request. However, looking at the imports, we
see only two imported DLL with functions that have no obvious capability to communicate across a
network. For example, we might expect to see ws2_32.dll or wininet.dll in the list of imported DLLs, two
modules that provide networking functionality. This likely indicates additional libraries are loaded at
runtime with APIs resolved during execution. We can use frida-trace to quickly evaluate if
LoadLibrary variants (i.e., LoadLibraryW or LoadLibraryA) are called to load additional DLLs.
We could monitor a larger group of LoadLibrary API variants using “LoadLibrary*”, but this
results in too much noise. Some trial and error is involved in writing targeted commands, but in general, it
is best to be as specific as possible when choosing APIs of interest.

The command line from this screen is run from the PowerShell command prompt, but you can use the
traditional command prompt as well.

According to the frida-trace output, LoadLibraryA is called by the program. This is a good starting
point, but we need more detailed output. What DLL do these calls load? To answer this question, we need
to modify the “handler” referenced in the Frida output.

© 2022 Anuj Soni 55

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 57

Modify LoadLibraryA.js to Print Out the Loaded Library

The Microsoft documentation for LoadLibraryA explains that the first argument points to the file or
device to be created or opened. We can direct Frida to output this argument by modifying onEnter as
shown on this slide. The readAnsiString() method reads a null-terminated ANSI string from the
pointer passed as the first argument. Other methods to read strings from a pointer include
readCString(), readUtf8String(), and readUtf16String(). It’s worth nothing that
readAnsiString(), which is used in this example, only works within the context of the Windows
operating system. Again, browse to https://for710.com/fridanativeptr for more detail on available methods.

If we re-run the earlier frida-trace command line, the output now shows which DLLs are loaded during
execution. Among the four DLLs are wininet.dll and ws2_32.dll, two modules that contain networking
functionality. You will have an opportunity to use a similar command when monitoring calls to
GetProcAddress in the upcoming lab.

© 2022 Anuj Soni 57

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 58

Example: Monitor Crypto-Related API Calls in Ransomware

-- decorate (-d) adds the module name to the
onEnter log statement.

This slide demonstrates the use of frida-trace with a different malware sample. In the screenshots on this
slide, we analyzed a ransomware sample named proc.exe with SHA-256 hash
d0f212d9f64ed0590919966ba837beb1de95f38d88476406b18490cd4322f21e. You can find this file in the
Malware\Section3 folder within your VMs.

As we discussed in Section 2, ransomware may use the Microsoft CryptoAPI to perform encryption and
decryption. With the command on this slide, we can quickly assess if this sample uses the CryptoAPI. In
this case, we used the “--decorate” flag, which adds the name of the API module to the log output. A
review of the output confirms this malware uses the CryptoAPI, and the call to CryptDecrypt might pique
our interest. What content is decrypted?

58 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 59

Example: Modify a CryptDecrypt Handler to View Decrypted
Content (1)

Use this to reference
arguments from onLeave.

We can modify the CryptDecrypt handler file to print the decrypted content. The fifth argument
passed to CryptDecrypt specifies the location in memory of the decrypted data. To access this
argument from onLeave, we use “this” in both onEnter and onLeave when referring to the
decData (i.e., pointer to decoded data) variable.

© 2022 Anuj Soni 59

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 60

Example: Modify a CryptDecrypt Handler to View Decrypted
Content (2)

After modifying the CryptDecrypt handler, we can run frida-trace to review decrypted content. Note
the use of the “-o” command line flag to create a log file. The decrypted content includes references to
DLLs, APIs, ransom note text, and commands.

Keep in mind that, in the case of ransomware, generating an output file might be problematic if the text
file is immediately encrypted.

60 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 61

• A Python script will give us more control over execution and make it
easier to troubleshoot issues.

• We can intercept multiple APIs and store arguments and variables across
function calls to automate analysis.

• Our script will:
• Accept a target executable on the command line.

• Execute the program and attach to the spawned process.

• Include JavaScript, which includes functions to intercept and onEnter/onLeave code.

• Inject the JavaScript into the target process.

• Wait to receive any messages from the target process.

Frida-Python

Frida-trace is a great way to initially benefit from the framework. However, writing our own script using
Frida’s Python bindings provides more control and flexibility over API monitoring. In the next part of this
module, we will discuss how to harness Frida-Python to automate more complex aspects of our reverse
engineering workflow. The goal is to create a script that will perform the following items:

• Accept a target executable on the command line.
• Execute the program.
• Attach to the spawned process.
• Specify JavaScript code to inject into the target process. This will hook VirtualAlloc and

VirtualProtect and include code to send messages from within the target process to the Python
process.

• Inject the JavaScript code into the target process.
• Resume the process.
• Wait to receive any messages from the target process.

© 2022 Anuj Soni 61

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 62

A Practical Application of Frida’s Python Bindings

Let’s return to bacon.exe and continue our analysis of this file. This analysis will demonstrate an
opportunity to automate a common reverse engineering workflow using Frida’s Python bindings.

Among bacon.exe’s imports is VirtualProtect, and this API interests us malware analysis because it
is used to change the permissions (e.g., read, write, execute) of a memory region. If a region in memory is
updated to be executable, it might include code that was unpacked, decoded, and/or decrypted at runtime.
For a similar reason, VirtualAlloc is a good API to investigate. You will have an opportunity to trace
that API in the upcoming lab.

A common next step is to transition to a debugger to assess what content is present in memory when
VirtualProtect is called. To this end, we load bacon.exe into x64dbg and set a breakpoint on
VirtualProtect. Then, we run the program, and each time we encounter a call to
VirtualProtect, we view its arguments. The first of four arguments passed to VirtualProtect
specifies the starting address of the memory region whose permissions will change. The third parameter
specifies the new permission to be applied (Microsoft refers to this as the “memory protection constant”,
listed here: https://for710.com/memory-protection-constants).

The first time we encounter VirtualProtect, observe the protection constant of 0x20, which includes
executable permissions. If we dump the starting address to the dump window, we see a region beginning
with “MZ” and the string “This program cannot be run in DOS mode”, two indications that this content
might be a Windows executable.

62 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 63

Dump the Memory Region to Confirm a Windows Executable

To confirm the memory region contains a Windows executable, we follow it in the memory map and dump
it to disk. Finally, we can load the dumped binary into PeStudio, which confirms this file is a 64-bit DLL.

© 2022 Anuj Soni 63

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 64

Our script should automate our debugging workflow:
• Monitor calls to the VirtualProtect API.

• Evaluate if the memory region specified by the first argument contains a
Windows executable (e.g., “MZ”).

• Dump the data if there is a match.

• Optional: Check if the protection constant includes executable permissions.

Automate the Recent Analysis with a Frida-Python Script

This slide lists the activities we want our Frida script to automate.

64 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 66

Next, the code below specifies the JavaScript code to be injected:

Key Components to a Frida-Python Script (2)

script = session.create_script("""
Module.load('KERNEL32.DLL');
var vpFunctionAddress = Module.getExportByName("KERNEL32.DLL",
”VirtualProtect");

Interceptor.attach(vpFunctionAddress,
{

onEnter: function (args) {
console.log("\\nFunction called");

},
onLeave: function (retval) {

console.log("\\nFunction returned");
}

});
""")

After the target process is launched, we must specify the JavaScript to be injected into the target process.
In Python, we execute session.create_script() and provide the JavaScript code.

The JavaScript includes several key functions:

• Module.load(): Loads the specified module.
• Module.getExportByName (): Returns the address of the specified API, which is necessary to

intercept calls.
• Interceptor.attach (): Intercepts calls to the specified address (returned from

Module.getExportByName) and specifies the previously discussed onEnter and onLeave
functions.

• Console.log (): Logs messages to the console during execution.

66 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 67

Finally, the script injects the JavaScript into the target process, resumes
the process, and prepares to read any log messages:

Key Components to a Frida-Python Script (3)

script.load()
frida.resume(pid)
sys.stdin.read()
session.detach()

Lastly, the script loads the injected code into the target process, resumes the process, and receives any
logged messages.

© 2022 Anuj Soni 67

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 68

First, we add JavaScript try…catch statements to detect any errors.

• 1

Build upon the Basic Script to Dump a Windows Executable (1)

try {
Module.load('KERNEL32.DLL');

} catch (err) {
console.log(err);

}

try {
var vpExportAddress = Module.getExportByName("KERNEL32.dll", "VirtualProtect");

} catch (err) {
console.log(err);

}

To generate a custom script that dumps a Windows executable referenced by VirtualProtect, we
must customize the basic script template we just discussed. The code discussed in the upcoming slides is
available in your Malware\Section3 folder in the file named section3.2_dump_mz_vp.py.

First, let’s add some error detection in case a module does not load properly, or a function is not
intercepted as expected. We can use JavaScript try…catch statements for this as shown on the slide above.
This is not absolutely necessary, and it does add some bloat to the code, but it helps troubleshoot issues
and can save a lot of time.

68 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 69

• Then, we capture relevant VirtualProtect arguments and log them.

• In addition, we print a hexdump of the memory region referenced.

Build upon the Basic Script to Dump a Windows Executable (2)

var vpAddress = args[0];
var vpSize = args[1].toInt32();
var vpProtect = args[2];

console.log("\\nVirtualProtect called!");
console.log("\\tAddress: " + vpAddress);
console.log("\\tSize: " + vpSize);
console.log("\\tNew Protection: " + vpProtect)

console.log("\\n" + hexdump(vpAddress));

When performing manual debugging of bacon.exe, we paused at each call to VirtualProtect and
reviewed its arguments. Specifically, we dumped the starting address to a dump window and checked the
new permissions applied. In our Frida script, we need to access and print out this information using the
code shown. We also access the size of the region, which will be useful when it comes time to dump data
to disk.

Note our use of the function toInt32(), which converts the second argument (i.e., the size of the
region) to an integer. We also take advantage of the hexdump() JavaScript function to print both
hexadecimal and ASCII output located at the specified memory region.

© 2022 Anuj Soni 69

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 70

Finally, check if the first two bytes are “MZ”; and dump the contents if a
match is found.

Build upon the Basic Script to Dump a Windows Executable (3)

if (vpAddress.readAnsiString(2) == "MZ"){

var someBinData = vpAddress.readByteArray(vpSize);

var filename = vpAddress + "_mz.bin";
var file = new File(filename, "wb");
file.write(someBinData);
file.flush();
file.close();

console.log("\\nDumped file: " + filename);
}

This code uses the Frida function readAnsiString() to read the first two bytes of the memory region
and check if they match “MZ”. If so, it uses the function readByteArray() to read the memory
contents and dump the file to disk. Note that the argument passed to readByteArray() uses the size
of the region to read in the appropriate number of bytes.

70 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 71

Script Output

This script could be modified to
search for and dump shellcode.

Running the script produces the output shown above. Loading the dumped content into PeStudio confirms
it is a 64-bit DLL. Comparing this recently dumped executable with the file we dumped using a debugger
reveals that the executable produced via Friday-Python does not have an overlay. This is because our
script uses the size passed to VirtualProtect to determine how many bytes to read and dump. The result is
that our Frida-Python script is more precise in its approach to dumping deobfuscated content.

To view the complete script, see the file section3.2_dump_mz_vp.py in the Malware\Section3
folder in your Windows VMs.

This example script could also be modified to search for and dump shellcode. Instead of searching for
“MZ” at the beginning of a memory region, the script could search for common shellcode bytes. We
discussed common shellcode bytes in Section 1 of this course.

To view a Frida script that detects and dumps shellcode, see this blog post written by Anuj Soni:
https://for710.com/bbfrida.

© 2022 Anuj Soni 71

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 72

During Malware Analysis, We Monitor Memory Regions to
Identify Interesting Content

In the last example, we identified a Windows executable when looking at analyzing calls to
VirtualProtect. Sometimes, a more productive approach is to monitor multiple regions allocated via
VirtualAlloc. For example, when we performed some initial static file analysis of bacon.exe, we
noted it imported VirtualAlloc in addition to VirtualProtect. If we reviewed calls to
VirtualAlloc within a debugger, we could dump each region allocated to a dump window and observe if
any interesting data appears at that location. Eventually, we would identify the same Windows executable.

Using VirtualAlloc as a pivot into the code instead of VirtualProtect is sometimes necessary.
The challenge with this approach, however, is that it requires us to track multiple regions in memory and
repeatedly evaluate if any execute content was placed in one of the allocated regions. Let’s explore this
approach.

72 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 73

One Approach to Tracking Multiple Allocated Regions

Module.load('KERNEL32.DLL');
var vaExportAddress = Module.getExportByName("KERNEL32.dll", "VirtualAlloc");

var memRegions = [];

Interceptor.attach(vaExportAddress,
{

onEnter: function (args) {
this.vaSize = args[1].toInt32();

for(var i = 0; i < memRegions.length; i++)
{

var firstBytes = memRegions[i].memBase.readAnsiString(2);

if (firstBytes == "MZ")
{

//Generate hexdump
//Dump content to disk

}
}

},
onLeave: function (retval) {

memRegions.push({memBase:ptr(retval), memSize:this.vaSize});
}

});

To track multiple allocated regions, we could create an array of memory regions to monitor. We could add
to this array when a new region is allocated and check previously allocated regions for evidence of code or
data. This automates the common malware analysis workflow of monitoring multiple regions in memory
during execution.

To track multiple sections, we could use the approach described on this screen. For brevity, previous
discussed code is referred to in comments but not included. Try…catch statements are also excluded.

This code declares an array memRegions that tracks allocated memory regions. Whenever
VirtualAlloc returns, it pushes (i.e., adds) to the array. Each element has two properties: the starting
address of the region allocated (memBase) and the size of the region allocated (memSize). We use
ptr() to convert the return value to a pointer because it is an address. We also refer to the size via “this”
because the size is referenced as an argument when the function is first called, and not when it returns.

With this code, anytime VirtualAlloc is called, previously allocated regions will be evaluated to
determine if they begin with the bytes “MZ”. If those bytes are found, the regions are dumped as described
earlier in this module.

You’ll have an opportunity to implement this approach in the upcoming lab.

© 2022 Anuj Soni 73

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

75

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automating Payload Extraction

with Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

This page intentionally left blank.

© 2022 Anuj Soni 75

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Lab 3.2

76

Automating Payload Extraction with Frida

Please begin Lab 3.2 now.

76 © 2022 Anuj Soni

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

78

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

78 © 2022 Anuj Soni

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Automating Analysis
with Ghidra

79

© 2022 Anuj Soni 79

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 80

• Explore how to automate code analysis workflows within Ghidra.

• Use Ghidra’s built-in Python interpreter to explore provided APIs.

• Understand best practices for developing Ghidra Python scripts.

• Write a Ghidra Python script to automate analysis.

• Our focus is on script development and not the use of third-party scripts.

Scripting with Ghidra: Module Objectives

This slide describes the objectives of this module.

80 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 81

• This course focuses on developing scripts for rapid prototyping.

• Scripts can access disassembly and decompiler output.

• Ghidra supports scripting using both Java and Python—we will continue
our focus on Python.

• Python is possible via Jython, which provides complete access to
Ghidra’s Java API.

• Jython only implements Python 2.7, but we can still accomplish our
automation goals despite this shortcoming.

Extend Ghidra’s Functionality with Plugins, Analyzers,
Extensions, and Scripts

Ghidra can be extended by developing plugins, analyzers, extensions (also referred to as “modules”), and
scripts. This module will focus on script development which is relatively lightweight and quick compared
to other options mentioned.

Ghidra supports script development using both Java and Python. Due to our focus on Python during the
last two modules and the general popularity of the language, it makes sense to build on our existing Python
knowledge and use Ghidra’s Python scripting capabilities. Python support is provided via Jython, a Java
implementation of Python. Jython implements Python 2.7, and there are no public plans for Python 3
support. As a result, any Python development within Ghidra must be supported by Python 2.

Ghidra has hundreds of built-in scripts available to use and review. Although most built-in scripts are
written in Java, the API is very similar to that provided via Python. Reading and understanding these
scripts is an excellent starting point to understand how to write your own scripts within Ghidra.

© 2022 Anuj Soni 81

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 82

Ghidra Includes Hundreds of Functional Built-In Scripts

To access Ghidra’s Script Manager, you can browse to Window > Script Manager. Alternatively, you can
click the green “Play” button located within the toolbar at the top of the Code Browser. The Script
Manager contains hundreds of built-in scripts that are ready to use and learn from as we develop our own
scripts. These scripts serve as excellent starting points for writing your own scripts. Most provided scripts
are written in Java, but as mentioned earlier, Ghidra’s scripting APIs are the same regardless of which
language you use for script development.

To search for a script, use the Filter field at the bottom of the Script Manager .For example, if we filter by
“xor” as shown on this slide, we arrive at a script that performs the XOR operation against each byte in a
specified memory location. To view or edit the script, right-click on it and choose ”Edit with basic editor”.
Do not worry if the code in the excerpt on this slide is unclear. We will cover key methods and attributes
later in this module.

If you want to try running the scripts and Python commands discussed in the upcoming slides, you will
need to load an executable for analysis. For this discussion, we will use system32.exe from Section 2
located at Malware\Section2\system32.zip in your VMs.

82 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 84

• The Python terminal defaults to an instance of the GhidraScript, which
extends the Flat Program API.

• Help is available in the API documentation.
• Also use tab completion in the interpreter, help(), dir(), and type()

Launch the Python Interpreter Via Window > Python

The best way to start learning about Python scripting within Ghidra is to dive straight in. To test command
and explore various methods, we can use the built-in Python interpreter. You can access the interpreter by
browsing to Window > Python from the menu bar.

When typing commands in the Python interpreter, you are operating within an instance of the
GhidraScript class. This class extends the FlatProgram api, which means the GhidraScript
instance has all the methods and properties of the FlatProgram API we discussed earlier.

In addition to accessing API documentation using the Firefox shortcuts discussed on the previous slide,
you can also browse to Help > Ghidra API help from the menu bar of the Python interpreter.

To learn more about the Ghidra API, use the built-in API help. In addition, take advantage of the Python
help(), dir(), and type() functions.

84 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 85

Flat Program API dir() Output

Because the built-in Python interpreter defaults to an instance of the GhidraScript class, you can
view its attributes and methods by typing the dir() command. This slide shows an excerpt of available
attributes and methods.

© 2022 Anuj Soni 85

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 86

Access the Program API with the currentProgram Object

To access the Program API, refer to the currentProgram object. The currentProgram object
refers to the target program loaded within Ghidra. Type help(currentProgram) or
dir(currentProgram) to view available methods and attributes.

86 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 87

• Functions:
• Arguments

• Return values

• Function references

• Instructions:
• Mnemonics

• Operands

When Scripting within Ghidra, Consider These Types of Content

• Addresses:

• Function location

• Instruction location

• Data location

• Address references

• Comments: Adding notes

To help script an analysis workflow, consider which of the above
components are used and in what order.

When performing an analysis workflow, we commonly work with the content listed on this slide. As we
attempt to automate an analysis workflow, these are the same components we want to reference. The
Ghidra Scripting interface provides access to each of these objects.

© 2022 Anuj Soni 87

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 88

• Flat API:
• getFirstFunction(): Returns the first function in the program.

• getFunctionContaining (address): Get the function containing an
address.

• Program API:
• Identify and iterate through all functions:

Ghidra APIs Provide Methods Associated with Functions

fm = currentProgram.getFunctionManager().getFunctions(True)
for function in fm:

ep_addr = function.getEntryPoint()
fn_body = function.getBody()
fn_name = function.getName()

Function analysis is critical to performing effective code analysis. This slide lists examples of methods in
both the Flat and Program API that allow us to interact with and learn about functions.

Two helpful functions within the Flat API include:

• getFirstFunction() returns the first function in the program. To clarify, the “first” function is
the function at the lowest virtual address, not the first function that will be executed.

• getFunctionContaining () returns the address of the function containing the address passed to
the function.

While the Flat API provides many key methods, it lacks functions to perform some common reverse
engineering workflows like reviewing function references. For this, we must use the Program API. The
code excerpt at the bottom of this slide demonstrates Program API methods we can use to iterate over
function references. Specifically,
currentProgram.getFunctionManager().getFunctions(True) returns an “iterator” that
includes functions within the program. An “iterator” is simply an object with multiple values that we can
iterate over.

The for loop in the code excerpt queries each function in the program for key information:

• getEntryPoint(): Returns the address of the first instruction in the function.
• getBody(): Returns the set of addresses that comprise the function. You can call contains()

against the returned value to determine if a specified address is contained within a function.
• getName(): Returns the name of a function.

For additional detail, search for any of these methods in the API documentation.

88 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 89

• Addresses may be passed to a function as an argument or returned from
a function after execution.
• toAddr(): converts offset (long, int, or string) to an Address object.

• This code iterates through references to an address:

Referencing Addresses in a Ghidra Python Script

decoding_fn = toAddr(0x54a3d0)
fn_refs = getReferencesTo(decoding_fn)

for ref in fn_refs:
from_addr = ref.getFromAddress()

During code analysis, we interact with addresses often. Addresses specify where an instruction, function,
or data are located in memory. Addresses are also passed to functions as arguments, and they may be
return values. For this reason, it is important we understand how to interact with addresses in a Ghidra
Python script.

To convert a value to an address, we use the toAddr() function. This function can take a long (64-bits), int
(32-bits), or a string. Examples of acceptable formats include:

toAddr(0x54a3d0)
toAddr("0x54a3d0")
toAddr("54a3d0")

During malware analysis, we often evaluate references to an address, such as the starting address of a
function. To accomplish this task, first specify the starting address of a function or obtain the address via
the Program API method getEntryPoint() shown on the previous slide. Then, use the Flat API
method getReferencesTo() to return an array of references to the specified address. Finally, use a
for loop to iterate through each reference and call getFromAddress() to acquire the address of the
reference. An example of this code is shown on the slide.

An Address is an instance of the GenericAddress class:

file:///C:/Users/REM/AppData/Local/Ghidra/GhidraAPI_javadoc/10.0.4/api/ghidra/program/model/addres
s/GenericAddress.html

© 2022 Anuj Soni 89

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 90

• The Flat API includes several methods that return an instruction:

• Using an instruction, we can get the address, mnemonic, or operand(s).

Accessing Instructions in a Ghidra Script

• getAddress(): Return the instruction address.

• getMnemonicString(): Return the mnemonic.

• getOpObjects(): Takes the index of the
operand and returns an array with the operand
value (use toString() to convert to a string).

This slide discusses methods to acquire an instruction and probe the instruction for its address, mnemonic,
or operand(s).

As a reminder, we loaded the file system32.exe into Ghidra for this discussion. This file has the SHA-256
hash eecc969ba17e924093821a7c862da03f8668abe833042b6bd023fbe75fa2e0e8. You can find it in on
your VM desktop at Malware\Section2\system32.zip.

Acquiring the address and mnemonic is relatively straightforward, as shown in the example on this slide.
Using the method to acquire the operands, however, may be a bit confusing and requires further
explanation. The method that returns an instruction’s operand is getOpObjects(), and the argument
passed to it is the index of the operand (i.e., zero for the first operand, one for the second operand). This
method returns an array with only one value. Therefore, to obtain the first operand of an instruction stored
in the variable “instr”, we type instr.getOpObjects(0)[0]. Note that the returned operand value
is not a string—to convert it to a string, use the toString() method. Using the example on this slide,
we could acquire the string with the command instr.getOpObjects(0)[0].toString().

For more information on methods related to instructions, search the API documentation for
“ghidra.program.database.code.InstructionDB”.

90 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 91

Operating on Data at a Specified Address

• getDataAt(Address): Returns data at a specified address.

• getValue(): Returns the value of the data item.

• Use try and except clauses to fail gracefully if data is not defined.

try:
value = data.getValue()

except:
print("No defined data at this location")

When performing manual code analysis, we often encounter pointers to data. For example, an instruction
may have an operand that points to a string. We then double-click on the pointer to view the corresponding
data, which may be a string. How can we programmatically perform this same action?

The Ghidra API provides two helpful methods. First, use the Flat API’s getDataAt() function to
return the data at a specified address. Then, to acquire the data content in a format that is easier to work
with, call getValue() against the previously returned data. In the case that a pointer points to a
Unicode string (as shown in the example on this slide), getValue() will return the data value as a
Unicode string.

Note that if there is no defined data at a specified address, while getDataAt() will return successfully,
getValue() will generate an exception. For that reason, it is recommended to use try and except
clauses in Python. If the code in the try clause generates an error, the except clause will be executed,
where you can print a detailed message.

© 2022 Anuj Soni 91

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 93

Adding Comments and Bookmarks

During code analysis, we know it is important to document our findings. One way to log observations is to
insert comments within the Listing view. An analyst could also use Ghidra’s Bookmark feature to add
similar notes. The Flat API methods on this slide allow users to add various types of comments or a
bookmark.

© 2022 Anuj Soni 93

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 94

• The Program API’s setName() method can rename a specified function:

• This method’s second argument specifies a symbolic constant:

Renaming Functions

In addition to inserting comments, we also rename functions during code analysis to create more
meaningful function names. The Program API’s setName() method can help with this task. The first
argument passed to this method is the new function name, and the second argument is a symbolic constant.
Symbolic constant options are shown on the bottom-left of this slide. To find the documentation within
your VM, copy and paste this location into your browser within one of the Windows VMs:
file:///C:/Program Files
(x86)/Ghidra/docs/GhidraAPI_javadoc/api/ghidra/program/model/symbol/SourceType.html

To reference one of the symbolic constant options, we must import them from
ghidra.program.model.symbol.SourceType. The Python statements on the right side of this slide show a
sequence of statements that renames the first function in the target program.

94 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 96

Script Example: Identifying Functions with ARX Operations

This slide discusses an example of a complete Ghidra Python script. This purpose of this script is to identify
functions with ARX (i.e., add, rotate, xor) operations. As we discussed in Section 2, functions with ARX
operations may implement an algorithm of interest. When this script is run against system32.exe, it
identifies FUN_004034f0, and a closer look at this function’s code confirms it implements the Salsa
symmetric encryption algorithm. In fact, we discussed this same function in Section 2.

To take a closer look at the code on this slide, see the file section3.3_ghidra_arx.py in the
Malware\Section3 folder in your Windows VMs.

96 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 97

• In headless mode, you can batch process multiple files.
• Note that to output content to a log file, you must use println()

instead of print() in the Python script.

• Use the format:
• "C:\Program Files
(x86)\Ghidra\support\analyzeHeadless.bat"
<project_location> <project_name> -import <target file> -
postScript <full_path_script> -log <process_log> -
scriptlog <script_log> -overwrite

Ghidra’s Headless Mode

Ghidra provides a headless mode which allows you to control Ghidra via the command line. This may be
helpful for processing multiple files without opening each within the GUI. For example, if you are
confident in a Python script and its output, you could consider running the script against multiple files
using Ghidra’s headless mode.

To execute a script in headless mode you must launch analyzeHeadless.bat. This .bat file is located at
C:\Program Files (x86)\Ghidra\support\analyzeHeadless.bat

The format of the command line is shown on this slide. Note that the <project location> directory must
already exist.

For additional documentation on this feature, copy and paste these locations into Firefox’s address bar
within the Windows VM:

• file:///C:/Program Files (x86)/Ghidra/docs/GhidraClass/Intermediate/HeadlessAnalyzer.html
• file:///C:/Program%20Files%20(x86)/Ghidra/support/analyzeHeadlessREADME.html

To execute our ARX script on the previous slide, use the command:

"C:\Program Files (x86)\Ghidra\support\analyzeHeadless.bat" projectdir projectname -import
system32.exe -postScript C:\Users\REM\ghidra_scripts\script.py -log headlesslog.txt -scriptlog
scriptlog.txt -overwrite

© 2022 Anuj Soni 97

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

98

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

This page intentionally left blank.

98 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 99

Lab 3.3 Background: Search program.exe for Functions That
Perform XOR Operations

Earlier in this module, we created a Ghidra Python script to identify functions with add, rotate, and xor
(ARX) operations. We could generalize this script and update it to only search for xor operations given
how frequently this instruction appears in encoding and decoding functions. We might also consider
including a check to ensure one xor operand is a scalar (i.e., a number). This is another common
occurrence in functions that encode or decode data. A script that includes these updates is called
section3.3_ghidra_nonzeroXOR.py, and it is included in the Malware\Section3 folder.

If we run this script against program.exe (located in Malware\Section3), it outputs several functions of
interest. This exercise will explore just one of these functions, FUN_004093f0. If we double-click on this
function and review its code, we observe the loop shown on this slide, which contains several
mathematical operations, including two XORs.

© 2022 Anuj Soni 99

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Lab 3.3

102

Scripting with Ghidra

Please begin Lab 3.3 now.

102 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 103

9Explore how to automate code analysis workflows within Ghidra.

9Use Ghidra’s built-in Python interpreter to explore provided APIs.

9Understand best practices for developing Ghidra Python scripts.

9Write a Ghidra Python script to automate analysis.

Scripting with Ghidra: Module Objectives, Revisited

This slide describes the objectives of the module we just completed.

© 2022 Anuj Soni 103

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Python for Malware Analysis
• Lab 3.1: Automating Config Extraction with

Python
• Malware Analysis with DBI Frameworks
• Lab 3.2: Automate Payload Extraction with

Frida
• Automating Analysis with Ghidra
• Lab 3.3: Scripting with Ghidra

S E C T I O N 3

104

• FOR710.1: Code
Deobfuscation and Execution

• FOR710.2: Encryption in
Malware

• FOR710.3: Automating
Malware Analysis

• FOR710.4: Correlating
Malware and Building Rules

104 © 2022 Anuj Soni

