
THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

FOR710 | REVERSE-ENGINEERING MALWARE: ADVANCED CODE ANALYSIS

710.4

Correlating Malware
and Building Rules

Technet24

�������$QXM�6RQL���$OO�ULJKWV�UHVHUYHG�WR�$QXM�6RQL�DQG�RU�6$16�,QVWLWXWH��

3/($6(�5($'�7+(�7(506�$1'�&21',7,216�2)�7+,6�&2856(:$5(�/,&(16(�$*5((0(17�
��&/$���&$5()8//<�%()25(�86,1*�$1<�2)�7+(�&2856(:$5(�$662&,$7('�:,7+�7+(�6$16�
&2856(��7+,6�,6�$�/(*$/�$1'�(1)25&($%/(�&2175$&7�%(7:((1�<28��7+(�³86(5´��$1'�
6$16�,167,787(�)25�7+(�&2856(:$5(��<28�$*5((�7+$7�7+,6�$*5((0(17�,6�
(1)25&($%/(�/,.(�$1<�:5,77(1�1(*27,$7('�$*5((0(17�6,*1('�%<�<28��

:LWK�WKLV�&/$��6$16�,QVWLWXWH�KHUHE\�JUDQWV�8VHU�D�SHUVRQDO��QRQ�H[FOXVLYH�OLFHQVH�WR�XVH�WKH�&RXUVHZDUH�
VXEMHFW�WR�WKH�WHUPV�RI�WKLV�DJUHHPHQW��&RXUVHZDUH�LQFOXGHV�DOO�SULQWHG�PDWHULDOV��LQFOXGLQJ�FRXUVH�ERRNV�
DQG�ODE�ZRUNERRNV��DV�ZHOO�DV�DQ\�GLJLWDO�RU�RWKHU�PHGLD��YLUWXDO�PDFKLQHV��DQG�RU�GDWD�VHWV�GLVWULEXWHG�E\�
6$16�,QVWLWXWH�WR�8VHU�IRU�XVH�LQ�WKH�6$16�FODVV�DVVRFLDWHG�ZLWK�WKH�&RXUVHZDUH��8VHU�DJUHHV�WKDW�WKH�
&/$�LV�WKH�FRPSOHWH�DQG�H[FOXVLYH�VWDWHPHQW�RI�DJUHHPHQW�EHWZHHQ�6$16�,QVWLWXWH�DQG�\RX�DQG�WKDW�WKLV�
&/$�VXSHUVHGHV�DQ\�RUDO�RU�ZULWWHQ�SURSRVDO��DJUHHPHQW�RU�RWKHU�FRPPXQLFDWLRQ�UHODWLQJ�WR�WKH�VXEMHFW�
PDWWHU�RI�WKLV�&/$����

%<�$&&(37,1*�7+,6�&2856(:$5(��86(5�$*5((6�72�%(�%281'�%<�7+(�7(506�2)�7+,6�&/$��
%<�$&&(37,1*�7+,6�62)7:$5(��86(5�$*5((6�7+$7�$1<�%5($&+�2)�7+(�7(506�2)�7+,6�&/$�
0$<�&$86(�,55(3$5$%/(�+$50�$1'�6,*1,),&$17�,1-85<�72�6$16�,167,787(��$1'�7+$7�
6$16�,167,787(�0$<�(1)25&(�7+(6(�3529,6,216�%<�,1-81&7,21��:,7+287�7+(�
1(&(66,7<�2)�3267,1*�%21'��63(&,),&�3(5)250$1&(��25�27+(5�(48,7$%/(�5(/,()���

,I�8VHU�GRHV�QRW�DJUHH��8VHU�PD\�UHWXUQ�WKH�&RXUVHZDUH�WR�6$16�,QVWLWXWH�IRU�D�IXOO�UHIXQG��LI�DSSOLFDEOH��

8VHU�PD\�QRW�FRS\��UHSURGXFH��UH�SXEOLVK��GLVWULEXWH��GLVSOD\��PRGLI\�RU�FUHDWH�GHULYDWLYH�ZRUNV�EDVHG�XSRQ�
DOO�RU�DQ\�SRUWLRQ�RI�WKH�&RXUVHZDUH��LQ�DQ\�PHGLXP�ZKHWKHU�SULQWHG��HOHFWURQLF�RU�RWKHUZLVH��IRU�DQ\�
SXUSRVH��ZLWKRXW�WKH�H[SUHVV�SULRU�ZULWWHQ�FRQVHQW�RI�6$16�,QVWLWXWH��$GGLWLRQDOO\��8VHU�PD\�QRW�VHOO��UHQW��
OHDVH��WUDGH��RU�RWKHUZLVH�WUDQVIHU�WKH�&RXUVHZDUH�LQ�DQ\�ZD\��VKDSH��RU�IRUP�ZLWKRXW�WKH�H[SUHVV�ZULWWHQ�
FRQVHQW�RI�6$16�,QVWLWXWH��

,I�DQ\�SURYLVLRQ�RI�WKLV�&/$�LV�GHFODUHG�XQHQIRUFHDEOH�LQ�DQ\�MXULVGLFWLRQ��WKHQ�VXFK�SURYLVLRQ�VKDOO�EH�
GHHPHG�WR�EH�VHYHUDEOH�IURP�WKLV�&/$�DQG�VKDOO�QRW�DIIHFW�WKH�UHPDLQGHU�WKHUHRI��$Q�DPHQGPHQW�RU�
DGGHQGXP�WR�WKLV�&/$�PD\�DFFRPSDQ\�WKLV�&RXUVHZDUH��

6$16�DFNQRZOHGJHV�WKDW�DQ\�DQG�DOO�VRIWZDUH�DQG�RU�WRROV��JUDSKLFV��LPDJHV��WDEOHV��FKDUWV�RU�JUDSKV�
SUHVHQWHG�LQ�WKLV�&RXUVHZDUH�DUH�WKH�VROH�SURSHUW\�RI�WKHLU�UHVSHFWLYH�WUDGHPDUN�UHJLVWHUHG�FRS\ULJKW�
RZQHUV��LQFOXGLQJ��

$LU'URS��$LU3RUW��$LU3RUW�7LPH�&DSVXOH��$SSOH��$SSOH�5HPRWH�'HVNWRS��$SSOH�79��$SS�1DS��%DFN�WR�0\�
0DF��%RRW�&DPS��&RFRD��)DFH7LPH��)LOH9DXOW��)LQGHU��)LUH:LUH��)LUH:LUH�ORJR��L&DO��L&KDW��L/LIH��L0DF��
L0HVVDJH��L3DG��L3DG�$LU��L3DG�0LQL��L3KRQH��L3KRWR��L3RG��L3RG�FODVVLF��L3RG�VKXIIOH��L3RG�QDQR��L3RG�
WRXFK��L7XQHV��L7XQHV�ORJR��L:RUN��.H\FKDLQ��.H\QRWH��0DF��0DF�/RJR��0DF%RRN��0DF%RRN�$LU��0DF%RRN�
3UR��0DFLQWRVK��0DF�26��0DF�3UR��1XPEHUV��26�;��3DJHV��3DVVERRN��5HWLQD��6DIDUL��6LUL��6SDFHV��
6SRWOLJKW��7KHUH¶V�DQ�DSS�IRU�WKDW��7LPH�&DSVXOH��7LPH�0DFKLQH��7RXFK�,'��;FRGH��;VHUYH��$SS�6WRUH��DQG�
L&ORXG�DUH�UHJLVWHUHG�WUDGHPDUNV�RI�$SSOH�,QF��

303��DQG�30%2.��DUH�UHJLVWHUHG�WUDGHPDUNV�RI�30,�

62)�(/.��LV�D�UHJLVWHUHG�WUDGHPDUN�RI�/HZHV�7HFKQRORJ\�&RQVXOWLQJ��//&��8VHG�ZLWK�SHUPLVVLRQ�

6,)7��LV�D�UHJLVWHUHG�WUDGHPDUN�RI�+DUELQJHUV��//&��8VHG�ZLWK�SHUPLVVLRQ�

*RYHUQLQJ�/DZ��7KLV�$JUHHPHQW�VKDOO�EH�JRYHUQHG�E\�WKH�ODZV�RI�WKH�6WDWH�RI�0DU\ODQG��86$��

$OO�UHIHUHQFH�OLQNV�DUH�RSHUDWLRQDO�LQ�WKH�EURZVHU�EDVHG�GHOLYHU\�RI�WKH�HOHFWURQLF�ZRUNERRN�

)25���B�B+��B��

FOR710 Advanced Malware Reverse-EngineeringFOR710.4 Reverse-Engineering Malware: Advanced Code Analysis

© 2022 Anuj Soni | All Rights Reserved | Version H02_05

Correlating Malware
and Building Rules

Section FOR710.4, also known as Section 4 of the FOR710 course, explores approaches to correlating
malware and writing rules to expedite future analysis.

FOR710.4 materials are created and maintained by Anuj Soni. To learn about Anuj's background and
expertise, please see https://www.sans.org/instructors/anuj-soni. You can visit his blog at
https://malwology.com/ and follow him on Twitter at https://twitter.com/asoni.

© 2022 Anuj Soni 1

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 2

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Correlating Malware
• Lab 4.1: Correlating Malware

• Building YARA Rules
• Lab 4.2: Writing YARA Rules

• Building capa Rules
• Lab 4.3: Writing capa Rules

• Advanced Malware Analysis Tournament

S E C T I O N 4

2 © 2022 Anuj Soni

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Correlating Malware

3

© 2022 Anuj Soni 3

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 4

Correlating Malware: Module Objectives

• Understand the benefits of comparing malware samples.

• Use Python scripts to identify similarities and differences in malware.

• Apply BinDiff to compare functions, identify changes to function code,
and highlight added/removed functions.

• Use Ghidra’s Program Diff feature to compare similar programs at the
instruction level.

This slide describes the objectives of this module.

4 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 5

Benefits of Correlation Analysis

• Identify similarities and differences between programs to find malware
variants and new or removed features.

• Pinpoint similar code and data across samples to identify relationships.

• Recognize code reuse to reduce time spent performing code analysis.

• Use identified similarities and differences to build effective YARA rules.

• Outputs from correlation analysis help build threat intelligence.

Understanding how to compare malware samples is important for several reasons. For example, you can
expedite your analysis if you identify code reuse between new malware and malware you reviewed in the
past. Correlation analysis might also lead to the discovery of new variants of a malware family. In
addition, the successful identification of similarities and differences across malware samples can help built
effective YARA rules, a topic we will discuss in the next module.

© 2022 Anuj Soni 5

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 6

Effective Approaches to Compare Malware

• Mathematical calculations:
• File and section hashes
• Fuzzy hashes (i.e., ssdeep)
• Import Table Hash (i.e., imphash)
• Mathematical models

• Data: embedded strings and APIs
• Code:
• Call graphs: Relationship of all calls to one another
• Control flow graphs: Basic blocks and the links between them
• Basic block instructions

In general, any output of static file
analysis, behavioral analysis, or code
analysis can be used for comparison.

There are a variety of approaches to consider when comparing programs. In general, we could use any
output from our static file analysis, behavioral analysis, or code analysis as a data point for comparison.
However, this module will focus on static approaches for file comparison. For example, calculations such
as file, section, and fuzzy hashes are a relatively simple and quick output to use for comparison. Another
approach is to compare embedded strings and imports—these are characteristics we often discover during
static file analysis. Finally, we could perform a more detailed comparison by looking at each program’s
code. Thankfully, there are freely available tools like BinDiff that can help with this process. BinDiff
reviews call graphs, control flow graphs, and the contents of basic blocks.

6 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 7

Call Graphs Describe the Relationship between Functions

Call graphs are an abstraction of a program that represents the relationship between function calls within a
program. Comparing call graphs is one way to assess the similarities and differences between programs.
This type of analysis is difficult to do manually, so we rely on programs like BinDiff to perform this sort
of analysis.

© 2022 Anuj Soni 7

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 8

Control Flow Graphs (CFG) Depict the Flow of Execution

• Each node is a basic block.
• A basic block is a sequence of

instructions that does not include
a jump.
• Each edge is a jump.
• Comparing CFGs is another way

to compare programs.

A control flow graph (CFG) describes the overall flow of execution. Examples of CFGs are shown on this
slide. In a CFG, each node is a basic block, and each edge represents a control transfer between blocks.

8 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 9

Tools for Correlation Analysis

• pestats.py: Basic static file information

• pecompare.py: Strings and imports

• BinDiff: Detailed function-level differences

• Ghidra’s Program Diff feature: Instruction level differences

This slide lists the key tools we will use to perform correlation analysis. In the upcoming slides, we will
discuss each capability in more detail.

© 2022 Anuj Soni 9

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 10

Use pestats.py to Generate Information about Target Files

Pestats.py is a Python script developed by Anuj Soni. You can find it inside Malware\Section4\scripts.zip.
It is a simple script that collects basic information about an individual file or group of files and writes them
to a CSV file. Data collected includes the columns shown on this slide. The purpose of this script is to
quickly compare files at a high level. This helps direct more detailed correlation analysis efforts.

To view the generated CSV file, try TimeLine Explorer. A shortcut to this program is located on your VM
desktop. This tool allows you easily view, sort, and filter CSV files.

10 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 11

Use pecompare.py to Compare String and Imported Functions

Pecompare.py is a Python script that compares two files. Specifically, this script compares embedded
strings and imported functions. You can find this script inside Malware\Section4\scripts.zip.

© 2022 Anuj Soni 11

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 12

BinDiff: Function-Level Differences

BinDiff is a powerful tool for understanding function-level differences. It provides a percentage value that
describes how similar functions are between two samples and allows the analyst to compare functions
side-by-side. The upcoming exercise includes step-by-step instructions for generating output like what you
see on this slide.

For more details on how BinDiff matches functions, browse to https://for710.com/bindiff-matching.

12 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 14

BinDiff: Matched Function Details

Clicking on a matched function provides a comparison of basic blocks, and we can zoom in for additional
detail.

14 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 15

BinDiff: Unmatched Functions

View the “Unmatched Functions” views to display functions which appear in only one program.

© 2022 Anuj Soni 15

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 18

Correlation Analysis Challenges

• Samples that are packed or obfuscated may have very different file
characteristics but include the same functionality.

• Programs may have many uninteresting differences that are byproducts
of minor changes in code or compiler settings.

• Correlation analysis can take a lot of time—we’ll discuss ways to speed
up this process in upcoming modules.

Correlation analysis can yield powerful results, but there are several challenges you may encounter. This
slide lists caveats to keep in mind.

18 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 19

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Correlating Malware
• Lab 4.1: Correlating Malware

• Building YARA Rules
• Lab 4.2: Writing YARA Rules

• Building capa Rules
• Lab 4.3: Writing capa Rules

• Advanced Malware Analysis Tournament

S E C T I O N 4

This page intentionally left blank.

© 2022 Anuj Soni 19

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Lab 4.1

20

Correlating Malware

Please begin Lab 4.1 now.

20 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 21

Correlating Malware: Module Objectives, Revisited

9Understand the benefits of comparing malware samples.

9Explore Python scripts to identify similarities and differences between
programs.

9Use BinDiff to compare functions, identify changes to function code, and
highlight added/removed functions.

9Use Ghidra’s Program Diff feature to compare similar programs at the
instruction level.

This slide describes the objectives of the module we just completed.

© 2022 Anuj Soni 21

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 22

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Correlating Malware
• Lab 4.1: Correlating Malware

• Building YARA Rules
• Lab 4.2: Writing YARA Rules

• Building capa Rules
• Lab 4.3: Writing capa Rules

• Advanced Malware Analysis Tournament

S E C T I O N 4

22 © 2022 Anuj Soni

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Building YARA Rules

23

© 2022 Anuj Soni 23

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 25

YARA Background

• YARA rules use text and hex strings to identify strings, code, and data in
suspect programs.

• Incorporating YARA into your workflow can help:
• Triage executables.

• Classify malware.

• Identify common malware characteristics.

• Group malware by variant and family.

• Hunt for related samples.

• YARA rules are a critical output of the RE process.

YARA is a tool developed to help malware analysts identify, classify, and group malware based on the
presence of text or hexadecimal strings. These strings are placed into “rules”, which can be run against
other files to identify matches. YARA can be applied to files on disk or content in memory, but this course
will focus on developing rules for static files on disk.

YARA can help triage executables, identify common malware characteristics, and cluster malware into
groups. It is considered a key output of the reverse engineering process because it often documents key
functionality or unique characteristics associated with an individual file or malware family.

To learn more about YARA, browse to the official website located at https://for710.com/yara.

© 2022 Anuj Soni 25

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 26

Inputs to YARA Rule Generation (1)

• Writing effective YARA rules requires that we use all the malware
analysis tools and techniques we have access to.

• Outputs from static file analysis, behavioral analysis, and code analysis
can all feed into the YARA rule development process.

• Key inputs for YARA rule development include:
• Static file characteristics (pestats.py).

• Embedded strings (PeStudio, strings64.exe, pecompare.py).

• Code analysis results (Ghidra).

• Binary comparison results (Ghidra, BinDiff).

Creating effective YARA rules requires that we consider the results of all phases of our analysis process:
static file analysis, behavioral analysis, and code analysis.

26 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 28

YARA Rule Example

rule rand_loader {
meta:

description = "Detects code similar to the rand()-based PE and
shellcode loader described in the referenced article."

author = "Anuj Soni"
reference1 = "https://for710.com/blackberryblog"
date = "2020-07-16"
hash1 = "DA581A5507923F5B990FE5935A00931D8CD80215BF588ABEC425114025377BB1"
hash2 = "843CD23B0D32CB3A36B545B07787AC9DA516D20DB6504F9CDFFA806D725D57F0"
hash3 = "7CAB7C0B3017C0830B7F518A133906E6EF7E04CE7BE83166FA6F6039474DB3F6"

strings:
$s1 = “D:\source\mining\wavPayloadPlayer\x64\Release\wavPayloadPlayer.pdb” ascii wide nocase
//Loop that decodes bytes by subtracting rand() output from the encoded byte.
$hex_rand = { E8 ?? ?? ?? ?? 25 FF 00 00 80 7D 09 FF C8 0d 00 FF FF FF FF C0 28 03 48 FF C3 48 83 EF 01 75 E0 }

condition:
uint16be(0) == 0x4d5a
and filesize < 2MB
and ($s1 or $hex_rand)

}

This rule includes metadata, a text string, a hex string with wild cards, and
several conditions.

The best way to understand YARA rules is to review an example, as shown on this slide. Key components
of a YARA rule include:

Meta data: This section includes background information about the rule author, references, and example
hashes. This section is optional but highly recommended.

Comments: Use double forward slashes (“//”) for single line comments. For multiline comments, enclose
the text between “/*” and “*/”.

Strings: This section includes text and hexadecimal strings. For text strings, consider these modifiers:
ascii, wide, nocase, and fullword. The “fullword” modifier matches only when the specified
text is delimited by non-alphanumeric characters. For example, if the fullword modifier is applied to the
string “evil”, it will match “/evil/” but not “devilish”. Also, note that the text string includes the escape
sequence “\\” to represent a single backslash. Escape sequences are necessary if a text string includes
double quotes (\"), carriage returns (\r), tabs (\t) or new lines (\n).
When crafting hexadecimal strings, consider wild cards for bytes that may vary between similar programs
(“??”). The hexadecimal string used in this example is based on the code shown on the top-right of this
slide. This code is from the sample with SHA-256 hash
DA581A5507923F5B990FE5935A00931D8CD80215BF588ABEC425114025377BB1. The rand()
function called in this loop appears at different relative offsets across the three files referenced in the rule
metadata. To accommodate this variation across samples, we use a hex string with wild card bytes.

Condition: This section includes the conditions to evaluate in a potential match. The first condition listed
on this slide reads a 16-bit big-endian integer at the beginning of the assessed file to check for the bytes
0x4d5a (i.e., “MZ”) that indicate a Windows Executable. The second condition assesses the target file’s
size. The third condition considers the presence of the text and hexadecimal strings referenced in the
strings section.

For the official documentation on writing YARA rules, see https://for710.com/yara-writing.

28 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 29

Launch YARA Using yara64

yara64 <rules_file> <file or directory>

Your Windows VM includes the official yara64.exe program. Use the command-line format at the top of
this slide to run a rule against a file or directory of files.

In the examples on this slide, the rule discussed in the previous slide is run against a directory “samples”
that contains the files referenced in the meta data section of the YARA rule. The first command-line output
indicates all three files match the rule. In the second command-line, the “-s” argument is added to print
matching strings.

© 2022 Anuj Soni 29

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 30

Writing YARA Rules Takes Time and Practice

• Writing a rule is easy; writing an effective rule can be extremely difficult.

• Reducing false positives and false negatives can be challenging.

• A careful review of string output and robust code analysis looking for
unique content goes a long way.

• Crafting YARA rules involves writing, testing, hunting, and iterating.

• Patience, practice, and persistence are paramount.

This slide lists key caveats associated with developing YARA rules.

30 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 31

YARA Modules

Modules extend YARA features, and the PE module provides access to the
fields and features of a PE file:
• number_of_sections

• sections

• overlay

• number_of_resources

• version_info

• imports

• exports

• imphash

import ”pe”
…
condition:

uint16be(0) == 0x4D5A and
filesize < 1MB and
pe.imphash() == "DA687DAE353481FEBE9B9720AA9AB4BD”

Modules extend YARA’s capabilities. One important module for PE file analysis is the PE module. This
module provides access to the structure of a portable executable, including its imports, exports, and
sections.

For more information on the YARA pe module, see https://for710.com/yara-pe.

© 2022 Anuj Soni 31

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 32

yarGen for Rule Generation

• Sifting through hundreds or thousands of strings to find those unique to
one sample or group of malware can be time-consuming and tedious.

• yarGen automates some of the work involved in generating effective
YARA rules.

• Performing code analysis across multiple files looking for common
opcodes can also be challenging.

• yarGen uses a database of goodware strings and opcodes (optional) to
highlight values that might be unique to the target samples.

• A human analyst is still required to review the output.

yarGen is created and maintained by Florian Roth (https://twitter.com/cyb3rops). To visit the GitHub page
for yarGen, browse to https://for710.com/yargen.

32 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 34

Run yarGen against an Individual File or Directory

yarGen can be run against an individual file or group of files. In the example on this slide, yarGen is
executed against a directory of files.

34 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 36

Super Rules Target Multiple Files

yarGen rules that identify multiple files are referred to as “super rules”.

Note that yarGen output is helpful and often saves time in generating an appropriate YARA rule, but it is
just one step in the rule development process. Analysts should always review yarGen output, add/remove
strings as needed, and test the rules.

36 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 37

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Correlating Malware
• Lab 4.1: Correlating Malware

• Building YARA Rules
• Lab 4.2: Writing YARA Rules

• Building capa Rules
• Lab 4.3: Writing capa Rules

• Advanced Malware Analysis Tournament

S E C T I O N 4

This page intentionally left blank.

© 2022 Anuj Soni 37

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Lab 4.2

38

Writing YARA Rules

Please begin Lab 4.2 now.

38 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 39

Building YARA Rules: Module Objectives, Revisited

9Describe common use cases for using YARA.

9Understand best practices for writing YARA rules.

9Learn how to write an effective YARA rule.

9Gain exposure to automation options for writing YARA rules.

This slide describes the objectives of the module we just completed.

© 2022 Anuj Soni 39

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 40

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Correlating Malware
• Lab 4.1: Correlating Malware

• Building YARA Rules
• Lab 4.2: Writing YARA Rules

• Building capa Rules
• Lab 4.3: Writing capa Rules

• Advanced Malware Analysis Tournament

S E C T I O N 4

40 © 2022 Anuj Soni

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Building capa Rules

41

© 2022 Anuj Soni 41

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 42

Building capa Rules: Module Objectives

• Introduce capa for triage and rule development.

• Discuss key aspects of capa rule formatting.

• Explain rule development best practices.

• Write a capa rule.

This slide describes the objectives of this module.

42 © 2022 Anuj Soni

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 43

Capa: An Open-Source Tool That Assesses Program Capabilities

• capa extracts strings and disassembles code and combines this output
with a logic engine to identify key functionality.

• capa supports analysis of PE, ELF, or shellcode files.

• It is a powerful triage tool, and it also provides a robust framework to
document and share common malware characteristics.

• capa uses text-based, human-readable rules to identify program features,
and these rules are relatively easy to write.

• capa rules are actively maintained and shared at
https://github.com/mandiant/capa-rules.

FOR610 discusses how to use capa for triage; in this course, we discuss how to create capa rules to
structure our knowledge and automate analysis.

For more information on capa, see https://for710.com/capa. To review existing rules, see
https://for710.com/capa-rules.

© 2022 Anuj Soni 43

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 45

CapaVerbose Output

When executing capa, we can specify command line options to provide more detail on matches. With the
-v and -vv command line options, capa details why it detected a capability and where the code or data
resides.

© 2022 Anuj Soni 45

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 46

Capa and Obfuscated Programs

Capa runs against files on disk, and it does not execute the target. As a result, this capability is less useful
if the suspect file is heavily obfuscated. However, this is expected based upon how capa works, and the
output clearly indicates when this is an issue.

46 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 47

Capa Uses YAML Files for Its Rules Engine

rule:
meta:

name: Identify functions with ARX operations.
namespace: test_rules
author: Anuj Soni
scope: basic block
examples:

- eecc969ba17e924093821a7c862da03f8668abe833042b6bd023fbe75fa2e0e8:0x4035C0
features:

- and:
- mnemonic: add
- mnemonic: xor
- or:

- mnemonic: rol
- mnemonic: ror

This slide includes an example that targets techniques we discussed in class. Let’s discuss key aspects of a
capa rule.

First, use the meta block to name the rule, identify its scope, and provide examples. As described in the
rule format documentation (https://for710.com/capa-format), the rule name should complete the sentence
"The program/function may…”. The namespace is used to organize rules and should specify the folder
where the rule resides. There are three options for scope: basic block, function, and file. Finally, examples
should specify file hashes and virtual addresses where an analyst can find the identified capability. Note
that in addition to the hash, the rule writer should specify a function or basic block address.

The features block specifies the rule logic. Acceptable expressions include and, or, not, and optional,
among others.

The logic can specify a variety of features, including:

• API
• Number
• String
• Bytes
• Offset
• Mnemonic
• Characteristic

© 2022 Anuj Soni 47

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 48

Capa Sample Output

On this slide, we run the rule described on the previous slide against system32.exe (discussed earlier in this
course). The “-r” argument specifies the path to a custom rules file or directory. If a rule path is not
included, the embedded rules are used.

Capa successfully identifies a basic block with ARX operations.

48 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 49

This Public Rule Example Involves Constants and Windows APIs

This example rule is available at https://for710.com/capa-aes-winapi.

© 2022 Anuj Soni 49

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Lab 4.3

52

Writing capa Rules

Please begin Lab 4.3 now.

52 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 53

Building capa Rules: Module Objectives, Revisited

9Introduce capa for triage and rule development.

9Discuss key aspects of capa rule formatting.

9Explain rule development best practices.

9Write a capa rule.

This slide describes the objectives of the module we just completed.

© 2022 Anuj Soni 53

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 54

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Correlating Malware
• Lab 4.1: Correlating Malware

• Building YARA Rules
• Lab 4.2: Writing YARA Rules

• Building capa Rules
• Lab 4.3: Writing capa Rules

• Advanced Malware Analysis Tournament

S E C T I O N 4

54 © 2022 Anuj Soni

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Advanced Malware
Analysis Tournament

55

© 2022 Anuj Soni 55

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 56

Welcome to the Advanced Malware Analysis Tournament

• The final section of this course gives you an opportunity to flex your new
knowledge and skills in a more independent, competitive environment.

• You must recall key concepts and perform workflows we discussed in
class to successfully navigate the tournament and accumulate points.

• This is an excellent opportunity to analyze real-world, complex malware
samples and reinforce your new advanced analysis skills.

• You will log onto a CTF platform and be presented with a combination of
multiple choice and short answer challenges.

• To access the game, you will need to create an account at
https://www.ranges.io/sign-up or use an existing account.

This page intentionally left blank.

56 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 57

Playing the Game in a Live or Hybrid Class

• The game will begin soon and end in two weeks (no extensions/exceptions).

• The highest scorer wins a FOR710 Challenge Coin.

• To access the game, log in and enter the “Event code” provided by the
instructor.

• If you have questions or encounter issues
while playing, e-mail for710@sans.org.

• Be sure to specify the relevant question.

• Allow up to 12 hours for an initial response.

• After play, submit an eval at
https://for710.com/ctfeval.

This page intentionally left blank.

© 2022 Anuj Soni 57

Technet24

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 58

Playing the Game via OnDemand

• You will have extended access to the game for four months.

• There is no challenge coin awarded when playing via OnDemand.

• For the event code, access MyLabs through your SANS Portal account.

• If you have any questions while playing, contact OnDemand support.

This page intentionally left blank.

58 © 2022 Anuj Soni

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 60

Tournament Notes (1)

• Analysis environment:
• Keep your virtual machines configured using “host-only” networking.

• In addition to your Static and Dynamic VMs, use REMnux as needed.

• Challenge questions:
• You will find a combination of multiple choice and short answer questions.

• Incorrect answers will cost you.

• If you believe a question is poorly written, or an answer is incorrect,
please let the instructor know.

This page intentionally left blank.

60 © 2022 Anuj Soni

Technet24

This page intentionally left blank.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 62

Course Roadmap
• FOR710.1: Code

Deobfuscation and Execution
• FOR710.2: Encryption in

Malware
• FOR710.3: Automating

Malware Analysis
• FOR710.4: Correlating

Malware and Building Rules

• Correlating Malware
• Lab 4.1: Correlating Malware

• Building YARA Rules
• Lab 4.2: Writing YARA Rules

• Building capa Rules
• Lab 4.3: Writing capa Rules

• Advanced Malware Analysis Tournament

S E C T I O N 4

62 © 2022 Anuj Soni

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

FOR710 | REVERSE-ENGINEERING MALWARE: ADVANCED CODE ANALYSIS

Workbook

Technet24

�������$QXM�6RQL���$OO�ULJKWV�UHVHUYHG�WR�$QXM�6RQL�DQG�RU�6$16�,QVWLWXWH��

3/($6(�5($'�7+(�7(506�$1'�&21',7,216�2)�7+,6�&2856(:$5(�/,&(16(�$*5((0(17�
��&/$���&$5()8//<�%()25(�86,1*�$1<�2)�7+(�&2856(:$5(�$662&,$7('�:,7+�7+(�6$16�
&2856(��7+,6�,6�$�/(*$/�$1'�(1)25&($%/(�&2175$&7�%(7:((1�<28��7+(�³86(5´��$1'�
6$16�,167,787(�)25�7+(�&2856(:$5(��<28�$*5((�7+$7�7+,6�$*5((0(17�,6�
(1)25&($%/(�/,.(�$1<�:5,77(1�1(*27,$7('�$*5((0(17�6,*1('�%<�<28��

:LWK�WKLV�&/$��6$16�,QVWLWXWH�KHUHE\�JUDQWV�8VHU�D�SHUVRQDO��QRQ�H[FOXVLYH�OLFHQVH�WR�XVH�WKH�&RXUVHZDUH�
VXEMHFW�WR�WKH�WHUPV�RI�WKLV�DJUHHPHQW��&RXUVHZDUH�LQFOXGHV�DOO�SULQWHG�PDWHULDOV��LQFOXGLQJ�FRXUVH�ERRNV�
DQG�ODE�ZRUNERRNV��DV�ZHOO�DV�DQ\�GLJLWDO�RU�RWKHU�PHGLD��YLUWXDO�PDFKLQHV��DQG�RU�GDWD�VHWV�GLVWULEXWHG�E\�
6$16�,QVWLWXWH�WR�8VHU�IRU�XVH�LQ�WKH�6$16�FODVV�DVVRFLDWHG�ZLWK�WKH�&RXUVHZDUH��8VHU�DJUHHV�WKDW�WKH�
&/$�LV�WKH�FRPSOHWH�DQG�H[FOXVLYH�VWDWHPHQW�RI�DJUHHPHQW�EHWZHHQ�6$16�,QVWLWXWH�DQG�\RX�DQG�WKDW�WKLV�
&/$�VXSHUVHGHV�DQ\�RUDO�RU�ZULWWHQ�SURSRVDO��DJUHHPHQW�RU�RWKHU�FRPPXQLFDWLRQ�UHODWLQJ�WR�WKH�VXEMHFW�
PDWWHU�RI�WKLV�&/$����

%<�$&&(37,1*�7+,6�&2856(:$5(��86(5�$*5((6�72�%(�%281'�%<�7+(�7(506�2)�7+,6�&/$��
%<�$&&(37,1*�7+,6�62)7:$5(��86(5�$*5((6�7+$7�$1<�%5($&+�2)�7+(�7(506�2)�7+,6�&/$�
0$<�&$86(�,55(3$5$%/(�+$50�$1'�6,*1,),&$17�,1-85<�72�6$16�,167,787(��$1'�7+$7�
6$16�,167,787(�0$<�(1)25&(�7+(6(�3529,6,216�%<�,1-81&7,21��:,7+287�7+(�
1(&(66,7<�2)�3267,1*�%21'��63(&,),&�3(5)250$1&(��25�27+(5�(48,7$%/(�5(/,()���

,I�8VHU�GRHV�QRW�DJUHH��8VHU�PD\�UHWXUQ�WKH�&RXUVHZDUH�WR�6$16�,QVWLWXWH�IRU�D�IXOO�UHIXQG��LI�DSSOLFDEOH��

8VHU�PD\�QRW�FRS\��UHSURGXFH��UH�SXEOLVK��GLVWULEXWH��GLVSOD\��PRGLI\�RU�FUHDWH�GHULYDWLYH�ZRUNV�EDVHG�XSRQ�
DOO�RU�DQ\�SRUWLRQ�RI�WKH�&RXUVHZDUH��LQ�DQ\�PHGLXP�ZKHWKHU�SULQWHG��HOHFWURQLF�RU�RWKHUZLVH��IRU�DQ\�
SXUSRVH��ZLWKRXW�WKH�H[SUHVV�SULRU�ZULWWHQ�FRQVHQW�RI�6$16�,QVWLWXWH��$GGLWLRQDOO\��8VHU�PD\�QRW�VHOO��UHQW��
OHDVH��WUDGH��RU�RWKHUZLVH�WUDQVIHU�WKH�&RXUVHZDUH�LQ�DQ\�ZD\��VKDSH��RU�IRUP�ZLWKRXW�WKH�H[SUHVV�ZULWWHQ�
FRQVHQW�RI�6$16�,QVWLWXWH��

,I�DQ\�SURYLVLRQ�RI�WKLV�&/$�LV�GHFODUHG�XQHQIRUFHDEOH�LQ�DQ\�MXULVGLFWLRQ��WKHQ�VXFK�SURYLVLRQ�VKDOO�EH�
GHHPHG�WR�EH�VHYHUDEOH�IURP�WKLV�&/$�DQG�VKDOO�QRW�DIIHFW�WKH�UHPDLQGHU�WKHUHRI��$Q�DPHQGPHQW�RU�
DGGHQGXP�WR�WKLV�&/$�PD\�DFFRPSDQ\�WKLV�&RXUVHZDUH��

6$16�DFNQRZOHGJHV�WKDW�DQ\�DQG�DOO�VRIWZDUH�DQG�RU�WRROV��JUDSKLFV��LPDJHV��WDEOHV��FKDUWV�RU�JUDSKV�
SUHVHQWHG�LQ�WKLV�&RXUVHZDUH�DUH�WKH�VROH�SURSHUW\�RI�WKHLU�UHVSHFWLYH�WUDGHPDUN�UHJLVWHUHG�FRS\ULJKW�
RZQHUV��LQFOXGLQJ��

$LU'URS��$LU3RUW��$LU3RUW�7LPH�&DSVXOH��$SSOH��$SSOH�5HPRWH�'HVNWRS��$SSOH�79��$SS�1DS��%DFN�WR�0\�
0DF��%RRW�&DPS��&RFRD��)DFH7LPH��)LOH9DXOW��)LQGHU��)LUH:LUH��)LUH:LUH�ORJR��L&DO��L&KDW��L/LIH��L0DF��
L0HVVDJH��L3DG��L3DG�$LU��L3DG�0LQL��L3KRQH��L3KRWR��L3RG��L3RG�FODVVLF��L3RG�VKXIIOH��L3RG�QDQR��L3RG�
WRXFK��L7XQHV��L7XQHV�ORJR��L:RUN��.H\FKDLQ��.H\QRWH��0DF��0DF�/RJR��0DF%RRN��0DF%RRN�$LU��0DF%RRN�
3UR��0DFLQWRVK��0DF�26��0DF�3UR��1XPEHUV��26�;��3DJHV��3DVVERRN��5HWLQD��6DIDUL��6LUL��6SDFHV��
6SRWOLJKW��7KHUH¶V�DQ�DSS�IRU�WKDW��7LPH�&DSVXOH��7LPH�0DFKLQH��7RXFK�,'��;FRGH��;VHUYH��$SS�6WRUH��DQG�
L&ORXG�DUH�UHJLVWHUHG�WUDGHPDUNV�RI�$SSOH�,QF��

303��DQG�30%2.��DUH�UHJLVWHUHG�WUDGHPDUNV�RI�30,�

62)�(/.��LV�D�UHJLVWHUHG�WUDGHPDUN�RI�/HZHV�7HFKQRORJ\�&RQVXOWLQJ��//&��8VHG�ZLWK�SHUPLVVLRQ�

6,)7��LV�D�UHJLVWHUHG�WUDGHPDUN�RI�+DUELQJHUV��//&��8VHG�ZLWK�SHUPLVVLRQ�

*RYHUQLQJ�/DZ��7KLV�$JUHHPHQW�VKDOO�EH�JRYHUQHG�E\�WKH�ODZV�RI�WKH�6WDWH�RI�0DU\ODQG��86$��

$OO�UHIHUHQFH�OLQNV�DUH�RSHUDWLRQDO�LQ�WKH�EURZVHU�EDVHG�GHOLYHU\�RI�WKH�HOHFWURQLF�ZRUNERRN�

)25���B:B+��B��

Welcome to the FOR710 Electronic Workbook

E-Workbook Overview

This electronic workbook contains all lab materials for SANS FOR710, Reverse-Engineering Malware: Advanced Code Analysis. Each lab is

designed to address a hands-on application of concepts covered in the corresponding courseware and help students achieve the learning

objectives the course and lab authors have established.

Some of the key features of this electronic workbook include the following:

Inline drop-down solutions, command lines, and results for easy validation and reference

Integrated keyword searching across the entire site at the top of each page

Full-workbook navigation is displayed on the left and per-page navigation is on the right of each page

Many images can be clicked to enlarge when necessary

Updating the E-Workbook

The electronic workbook site is stored locally in the VM so that it is always available. However, course authors may update the source content

with minor fixes, such as correcting typos or clarifying explanations, or add new content such as updated bonus labs. You can pull down any

available updates into the VM by temporarily connecting the VM to the internet (i.e., update the VM's network configuration from host-only to

Bridged or NAT) and running the following command in a bash window:

In a Windows VM, open an Ubuntu bash window using the shortcut in the taskbar. Then, type workbook-update and press Enter . The script will

indicate whether there were available updates. If so, be sure to refresh any pages you are currently viewing (or restart the browser) to make sure

you are seeing the latest content.

After completing the e-workbook update, be sure to change the VM's network configuration back to host-only.

Using the E-Workbook

The FOR710 electronic workbook should be the home page for the browsers inside all virtual machines where it is maintained. Simply open a

browser or click the home page button to immediately access it in the VMs.

You can also access the workbook from your host system by connecting to the IP address of your VM. Run ip a in Linux or in the Ubuntu bash

shell in Windows to get the IP address of your VM. Next, in a browser on your host machine, connect to the URL using that IP address (i.e.

http://<%VM-IP-ADDRESS%>). You should see this main page appear on your host. This method could be especially helpful when using multiple

screens.

We hope you enjoy the FOR710 class and workbook!

•

•

•

•

Tip

We recommend performing the update process at the start of the first day of class to ensure you have the latest content.

keyboard

workbook-update

© 2022 Anuj Soni 1

Technet24

Lab 0: Completing Lab Setup

Background

The purpose of this lab is to set up your VM environment for the FOR710 course.

Lab Objectives

Unzip FOR710-Windows.7z , which contains the primary analysis virtual machine (VM) for this course.

Clone the 710 VM.

Rename one VM to specify it will only be used for static analysis (i.e., static file analysis, static code analysis).

Rename the cloned VM to specify it will only be used for dynamic analysis (i.e., behavioral analysis, debugging).

Take baseline snapshots for both VMs.

Lab Preparation

Log in to your SANS portal account and download the class materials for FOR710. This should include an ISO that contains the file FOR710-

Windows.7z .

Lab Steps

Unzip FOR710-Windows.7z to a location of your choosing on your host.

Within the unzipped folder, double-click the .vmx file to load the VM in VMware Workstation or Fusion. If prompted to upgrade the virtual

machine, choose Upgrade.

After the VM boots, perform a log off/log on as needed until the resolution is acceptable. You may also modify the VMware Display settings

for the virtual machine as needed and rearrange desktop icons as desired.

Next, we will update the electronic workbook associated with this course. The electronic workbook site is stored locally and it is accessible

via the Firefox homepage (see Desktop shortcut). However, course authors may update the source content with minor fixes, such as

correcting typos or clarifying explanations. To download updates, first change the VM's network configuration from host-only to Bridged or

NAT. Then, launch a bash shell from the taskbar and run the command workbook-update . The command output will indicate whether there

were available updates. If so, refresh any pages you are currently viewing (or restart the browser) to make sure you are seeing the latest

content. After completing the e-workbook update, be sure to change the VM's network configuration back to host-only.

Gracefully shut down Windows (right-click on the Windows logo on the bottom left, and browse to Shut down or sign out > Shut down).

Within VMware Workstation or Fusion, view the list of VMs. Find the VM with name FOR710-Windows and choose to rename the VM. Use the

new name FOR710-Windows-Static .

•

•

•

•

•

Note

A REMnux VM (https://remnux.org/) is provided in the class materials for convenience, but its use is not required for this course. For this reason,

unzipping this VM is not explicitly covered in this lab.

�

1.

2.

3.

4.

5.

6.

2 © 2022 Anuj Soni

Right-click on the recently renamed VM and choose to create a full clone. Place the cloned VM at a location of your choosing. If prompted for

a file name, use the name FOR710-Windows-Dynamic (do not modify the default extension).

After the VM is cloned, launch the new VM in VMware.

Within the list of available VMs listed in VMware Workstation or Fusion, find the VM clone (i.e., the new VM). Confirm that it is named

FOR710-Windows-Dynamic . If this is not the current name, right-click on the clone and rename the VM FOR710-Windows-Dynamic .

Within the Windows OS of FOR710-Windows-Dynamic , right-click on the desktop and choose Personalize. You should arrive at the

Background settings page. Under Choose your background color, choose a background other than black. The purpose is to visually

differentiate this Dynamic VM from the Static VM. For consistency with the instructor's screen, click on Custom color. Then, click on More

and insert the follow values: Red: 225 , Green: 115 , Blue: 30 . If you use these color values, the background should change to an orange

color.

Launch the FOR710 Static VM again. Once this is complete, both VMs should be up and running. You should now have two FOR710 VMs

running. One VM should be named FOR710-Windows-Static , and a second VM should be named FOR710-Windows-Dynamic . Keep both VMs

in host-only networking mode.

Take a baseline snapshot of the Static VM. Name this initial snapshot Static Baseline .

Take a baseline snapshot of the Dynamic VM. Name this initial snapshot Dynamic Baseline .

Lab Objectives, Revisited

After completing this lab, you now have the following analysis environment set up:

One VM named FOR710-Windows-Static for static analysis.

A second VM named FOR710-Windows-Dynamic for dynamic analysis.

The FOR710-Windows-Dynamic VM has a different color background when compared to the FOR710-Windows-Static VM.

Both VMs are configured to use host-only networking.

Both VMs have an initial snapshot representing a baseline state.

7.

8.

9.

10.

11.

12.

13.

•

•

•

•

•

© 2022 Anuj Soni 3

Technet24

Add player.exe to the new project.

Drag and drop player.exe into the project window so Ghidra can begin processing the file.

An Import window will soon appear, prompting you to confirm various import settings. We can accept the defaults and click OK. The

remainder of the import process will take some time to complete.

After the import is finished, a Import Results Summary window will appear and provide an overview of the file and brief log of the

loading process. Click OK or hit Enter to close the window.

Launch the CodeBrowser and begin the auto�analysis.

Return to the project window and double�click player.exe .

Ghidra will generate a prompt asking if it should analyze the file; click Yes to configure the analysis options.

In the next window, we need to make one change: uncheck Decompiler Switch Analysis . For unknown reasons, enabling this option

negatively impacts Ghidra's ability to identify functions.

Finally, click Analyze to kick off the analysis. You will see a progress bar on the bottom right of the CodeBrowser. If this bar is not

visible, it means the window is too low on the screen-simply drag the window higher for better visibility or maximize the window to full

screen.

4.

•

•

•

5.

•

•

•

•

© 2022 Anuj Soni 5

Once Ghidra’s auto�analysis is complete, it is a good idea to save our state to ensure we do not need to perform this time�intensive

processing again. Save the project from the menu bar via File > Save player.exe .

Within the Dynamic VM, load player.exe into a debugger so we are prepared to use both dynamic and static code analysis skills to

investigate this sample. Simply drag and drop the executable to the x64dbg shortcut on your Dynamic VM desktop.

Lab Questions

If you performed some behavioral analysis with Process Monitor or debugging with x�4dbg, you would discover that player.exe accesses

film.wav . Let's investigate how and why player.exe interacts with a WAV audio file.

Note

You can begin analyzing the code while the auto�analysis continues, but Ghidra’s performance may lag until the file is processed. Once the

analysis is complete, Ghidra may warn you that the file does not contain debug information. This is a common message and is not indicative

of a serious issue.

�

6.

7.

Note

We disabled ASLR for player.exe so the virtual addresses in the solutions will match those in your environment.

�

1. As stated above, we know player.exe accesses film.wav , but we need to understand how the WAV file's content is used. A review of

the player.exe Import Address Table shows it imports ReadFile. Can you investigate if player.exe calls this Windows API to read in

the contents of film.wav ? If this is the case, what is the name and address of the function that calls ReadFile (i.e., the function name

given within Ghidra)?

�

�

Notes

The question asks about the first ReadFile call that accesses film.wav .

The question is asking for the function that calls ReadFile-not the instruction that calls ReadFile.

Consider using a debugger (within the Dynamic VM) first to find the CALL instruction and then use Ghidra (within the Static VM) to

identify the function name and address.

�

•

•

•

6 © 2022 Anuj Soni

Technet24

6.
Let's now focus on the multiple CALLs to fread within FUN_1400011f0-you will notice a total of five CALLs to fread . What is the

content of the data read by the fourth CALL to fread , and what is its relevance in the context of the WAV file format?

�

�

Notes

Consider viewing FUN_1400011f0 in the decompile window.

Although the focus of this question is the fourth fread CALL, you will need to consider the first, and third fread CALLs to answer this

question. You can ignore the second CALL to fread (it is not called for reasons that are out of scope of this lab).

As described in the Microsoft documentation, each call to fread will increment the file pointer by the number of bytes read. The file

pointer is simply a pointer to a location within the file.

Consult this table for more information on the WAV file format, derived from this resource:

�

•

•

•

•

Offset

(Decimal)

Size Name Desciption

0 4 ChunkID "RIFF" header in ASCII form

4 4 ChunkSize Size of the rest of the file

� 4 Format Contains the letters "WAVE"

12 4 Subchunk1ID Contains the letters "fmt. This is the beginning of the "fmt" subchunk, which describes the sound data's

format.

1� 4 Subchunk1Size Size of the rest of the subchunk

20 2 AudioFormat Values other than 1 indicate some form of compression

22 2 NumChannels Mono = 1, Stereo = 2, etc.

24 4 SampleRate �000, 44100, etc.

2� 4 ByteRate == SampleRate * NumChannels * BitsPerSample/�

32 2 BlockAlign Number of bytes for one sample including all channels

34 2 BitsPerSample � bits = �, 1� bits = 1�, etc.

3� 4 Subchunk2ID Contains the letters "data". This is the beginning of the "data" subchunk.

40 4 Subchunk2Size Number of bytes in the data

44 * Data Actual sound data

7. How is the value read by the fourth CALL to fread used?

�

�

8 © 2022 Anuj Soni

Soon after the multiple calls to fread , we encounter a loop that begins at 1400012e� and ends at 1400012fd. Let's investigate this loop and

how it processes WAV audio data within film.wav .

8. In the context of the WAV file format, what content appears at the starting address of the allocated memory discussed in the previous

question?

�

�

Note

Attempt to answer this question via static code analysis only. Then, you may confirm your answer via debugging.

�

Important

You've reached Checkpoint #1 in this lab. In a live class, the instructor will use checkpoints to gauge progress with this lab.

�

Notes

Attempt to answer the following questions based on static code analysis of the disassembly only, unless stated otherwise (i.e., debugging is

not required). You may use the decompiler output and debugging to confirm your conclusions. Consider closing your decompile window for

now to avoid the temptation.

Consider commenting each line of the disassembly with your findings to assist with your analysis.

�

•

•

9. At 1400012e9, observe the TEST and JZ instructions. What is evaluated by these instructions? Be as specific as possible.

�

�

Note

MOVSXD (Microsoft reference) moves the 32-bit value in the source operand to the �4-bit value in the destination operand. It signs

extends the value during the move, which means that the negative/positive characteristic of the source operand will remain.

DIL refers to the lower � bits of EDI .

�

•

•

10. Under what conditions is the BTS instruction at 1400012ef executed?

�

�

11. If the first byte evaluated by the TEST instruction at 1400012e9 is 0x3, is the BTS instruction at 1400012ef executed? If so, how would

you describe the result of executing the BTS instruction?
�

�

© 2022 Anuj Soni 9

Technet24

12. How does R8D change with each iteration of the loop, and how does this impact the BTS instruction?

�

�

13. What does the ADD instruction at 1400012f5 contribute to the overall functioning of the loop?

�

�

Note

You may need to debug the executable to identify the value stored in ESI.

�

14. How many bytes of WAV audio data does the loop evaluate?

�

�

Notes

As described in this resource, The JC (Jump if Carry) instruction is identical to the JB (Jump if Below) instruction. View the link for a good

description of conditional jump instructions, including which ones are identical in functionality.

�

15. Please summarize the functionality and purpose of the loop beginning at 1400012e6.

�

�

16. What is the final 32-bit value that includes all extracted LSBs from the loop just analyzed? Provide the hexadecimal representation.

�

�

Note

Debug the program to answer this question.

�

Important

You've reached Checkpoint #2 in this lab.

�

10 © 2022 Anuj Soni

17.
How is the 32-bit value from the previous question used?

�

�

18. What type of content later appears in the allocated memory?

�

�

Note

Perform brief static analysis of the disassembly, but rely primarily on debugging to answer this question.

This question may involve some trial and error as you continue executing code to see what content appears in the newly allocated

memory.

Allocated memory may be freed later. Note the function j_j_free called at 1400014�e. This function may free memory so consider

running the program until this call.

�

•

•

•

19. Dump the memory region identified in the previous question to disk and load it into the HxD hex editor (see the HxD Desktop shortcut).

Carve the file using HxD to create a valid file format of the appropriate size with no overlay (i.e., no data after the end of the file). Save

the modified file to disk.

�

�

Note

Note that the content within the x�4dbg dump window is not located at the beginning of the memory region, so the "MZ" bytes will not

appear at the start of the dumped file.

To search for the "MZ" bytes within HxD, browse to Search > Find from the menu bar and search for the appropriate text.

To identify overlay content, recall that the call to operator_new at 14000132d allocated B3200 bytes of data.

To carve a file within HxD browse to Edit > Select block... and choose the appropriate start offset and end offset or length.

�

•

•

•

•

20. After you modify the dumped content, perform a few minutes of static file properties analysis (i.e., do not execute anything) and

document a theory about the file's functionality.

�

�

Important

You've reached Checkpoint #3 in this lab.

�

© 2022 Anuj Soni 11

Technet24

We extracted the underlying content, but we want to understand the specific technique used to embed a program in a WAV file. The following

questions will help you investigate this level of detail.

Recall that after the instruction CALL operator_new at 14000132d, the starting address of the allocated memory is stored in RAX. The value

in RAX is then referenced at 140001335 with the instruction MOV R14, RAX and at 140001344 with the instruction MOV RCX, RAX . By

looking at upcoming references to R14 and RCX, we can observe when content is placed in the newly allocated memory. The R14 register is

referenced a few times near the end of the function, but not as a pointer (i.e., data is not read from or written to the location specified in

R14). RCX, however, is referenced many times as a pointer in the destination operand, indicating that the current function does contain code

to place content in the allocated memory.

21. As discussed above, the instruction MOV RCX, RAX at 140001344 places the starting address of the allocated region into RCX.

Continue reviewing the code and identify the loop that modifies content at the address stored in RCX. Specifically, what addresses

encompass the loop?

�

�

22. How many times will this loop be executed, and how is that number related to the analysis we've performed thus far?

�

�

Note

Answer this question based on static code analysis-debugging is not necessary.

�

23. Let's begin understanding the purpose of the loop. At 1400013d3, we see the instruction. TEST byte ptr [RDX + R9 * 0x1], DIL .

Debugging this code would reveal the first operand points to a byte of WAV audio data. With this in mind, what is the likely purpose of

this TEST instruction and the other TEST instructions in this loop?

�

�

24. In the first loop we analyzed at 1400012e6, the code extracted LSBs from every other byte of WAV audio data (i.e., it skipped one byte

in between LSB evaluations). Does this loop operate similarly?

�

�

Note

Performing static code analysis to answer this question is time consuming. Try a debugger to observe what happens when the TEST

instructions in this loop are executed.

�

25. How many bytes of WAV audio data does each iteration of the loop traverse (this includes "skipped" bytes, not just the ones assessed

by the conditional statements)?
�

�

12 © 2022 Anuj Soni

Handle value (you may have to right-click and choose Refresh to display Handles). Return to user code via the menu option Debug > Run to user

code. You should arrive at 000000014000E3F9 , and you'll see the CALL to ReadFile is the previous instruction at 000000014000E3F3 .

Locate the above address in Ghidra (type g to jump to an address). Scroll up to the beginning of the function, where you'll see its name is

_read_nolock and it begins at 14000e104 .

2. Is the function you identified in the previous question likely one written by the developer, or is it library code?

Answer: _read_nolock at 14000e104 is library code.

Explanation: _read_nolock at 14000e104 is library code identified by Ghidra's Function ID (FID) analyzer. This feature can identify statically

linked libraries, and it runs as part of the initial auto-analysis. Ghidra clearly identifies _read_nolock as a library function in the metadata provided

above the function's starting address.

� �

3. We do not want to spend time analyzing library code, so it is important that we locate the user-defined function (i.e., not library code)

that makes calls to read the contents of film.wav . What is the name of the user-defined function that calls ReadFile?

Answer FUN_1400011f0

Explanation: To identify which user-defined function reads film.wav , we need to review functions that call _read_nolock . Using static code

analysis, there are two potential approaches to consider: we can access the Function Call Trees or the Function Call Graph. The latter approach

turns out to be challenging when reviewing a large number of function calls, so we will view the Function Call Trees.

Browse to Window > Function Call Trees, turn your attention to the Incoming Calls on the left side, and expand all incoming references. You will

see sequences of function calls from the entry point to _read_nolock ; in total, there are four sequences, where the entry point is located at the

bottom of each expanded tree. The function we seek is between the entry point and calls to library functions identified by Ghidra. In the first two

cases, if we work our way backward from the _read_nolock reference and skip over library function calls, we encounter FUN_1400011f0 . In the

bottom two cases, we also encounter FUN_140006f34 along the way, but these paths seem to include more library code used to open a file (i.e.,

calls to _wopenfile), which is not our area of interest at this time (we'll come back to that function shortly).

We can confirm FUN_1400011f0 is the user-defined function that performs reads by jumping to it to view the disassembly. Scrolling down just a

bit reveals multiple calls to fread , the C/C++ function for reading data from a file stream (https://for710.com/fread).

� �

Note

To answer this question, you may want to open the Function Call Tree window and view Incoming Calls.

�

14 © 2022 Anuj Soni

Technet24

We just pivoted into code based on a Windows API. A complimentary approach, discussed in the following two questions, is to begin our

analysis at the user-defined entry point.

When compiled for the Windows operating system, calls to fread will call the Windows API ReadFile . To confirm this using x�4dbg, run the

program until the first call to fread, set a breakpoint on ReadFile , and then step over the call to fread; you will hit the ReadFile breakpoint.

4. Is the user-defined entry point for this program called main or WinMain ?

Answer: WinMain

Explanation: You can use PeStudio or ExeInfo to determine if the program is a GUI or console application (see below). Both tools indicate this is a

GUI application, which means the user-defined entry point is called WinMain .

� �

Notes

Use PeStudio to determine the type of program.

Code analysis is not required to answer this question.

�

•

•

© 2022 Anuj Soni 15

You'll notice there are only a few instructions at the entry point, including a call to __security_init_cookie (see https://for710.com/security-init-

cookie for more information). This function is associated with buffer overrun protection, but more importantly, this function is called by the C Run-

time Library (CRT) during program initialization; this is not likely to be user-defined code.

Let's keep following code execution to locate WinMain ; double-click on LAB_140002d1c to take the jump. When you arrive at address 140002d1c

and scroll down, you'll see many CALLs to functions that start with __scrt_ , which all refer to CRT library functions. Scrolling down some more

we eventually arrive at a CALL to _get_wide_winmain_command_line . While this is not a call to WinMain , it appears related. Notice that

immediately after the CALL, the value in RAX (the return register) is placed into R8 in preparation for the upcoming CALL FUN_140001120 . Could

this be a CALL to WinMain ?

We can research WinMain on microsoft.com, to learn more about it.

Note

The function labelled __security_init_cookie shows Ghidra's Function ID (FID) feature at work. This built-in analyzer can identify statically

linked libraries, including those used by Microsoft Visual Studio. Ghidra also has a Function ID Plug-in that allows users to create their own

databases to identify functions of their choice.

�

© 2022 Anuj Soni 17

Technet24

View WinMain code and observe the CALL instructions. Notice that the first two CALLs reference Windows APIs, and the last CALL

references the same function we identified in Question #3. In this case, beginning our analysis at the user-defined entry point quickly brings

us to the same function that reads in content from film.wav . Let's take a closer look at FUN_1400011f0.

The first CALL within FUN_1400011f0 executes FUN_14000�f34. Additional code analysis or debugging reveals this function opens

film.wav and returns a pointer to the file (we're skipping this basic analysis to focus our attention on code deobufscation). The file pointer

is then passed as the fourth argument to fread in upcoming function calls.

WinMain's first parameter is a pointer to the executable in memory. Looking at our example, the LEA instruction at 140002e27 populates ECX with

a pointer to the binary's MZ header. WinMain's third parameter is a pointer to the command line, which corresponds to R8 in our case. Both these

observations allow us to conclude FUN_140001120 (located at 140001120) is likely WinMain . To rename this function accordingly, click on

FUN_140001120 and type L on the keyboard. Then, enter the new name WinMain and click OK.

Note

Identifying main and WinMain may require some trial and error and may not always involve a CALL to _get_wide_winmain_command_line

prior to the user-defined entry point.

�

6. Let's now focus on the multiple CALLs to fread within FUN_1400011f0-you will notice a total of five CALLs to fread . What is the

content of the data read by the fourth CALL to fread , and what is its relevance in the context of the WAV file format?
� �

18 © 2022 Anuj Soni

Answer: The fourth CALL to fread reads 4 bytes at offset 40 (decimal) within film.wav . A description of the WAV file format indicates that the

value at this offset represents the size of sound data within the file. In this case, the data size is E79F20.

Explanation: The easiest way to identify the content of the fourth CALL to fread is to debug the program. The fourth call to fread occurs at

140001286 , so we can set a breakpoint at this address and run the program to identify the buffer used to store the read data.

Notes

Consider viewing FUN_1400011f0 in the decompile window.

Although the focus of this question is the fourth fread CALL, you will need to consider the first, and third fread CALLs to answer this

question. You can ignore the second CALL to fread (it is not called for reasons that are out of scope of this lab).

As described in the Microsoft documentation, each call to fread will increment the file pointer by the number of bytes read. The file

pointer is simply a pointer to a location within the file.

Consult this table for more information on the WAV file format, derived from this resource:

�

•

•

•

•

Offset

(Decimal)

Size Name Description

0 4 ChunkID "RIFF" header in ASCII form

4 4 ChunkSize Size of the rest of the file

� 4 Format Contains the letters "WAVE"

12 4 Subchunk1ID Contains the letters "fmt. This is the beginning of the "fmt" subchunk, which describes the sound data's

format.

1� 4 Subchunk1Size Size of the rest of the subchunk

20 2 AudioFormat Values other than 1 indicate some form of compression

22 2 NumChannels Mono = 1, Stereo = 2, etc.

24 4 SampleRate �000, 44100, etc.

2� 4 ByteRate == SampleRate * NumChannels * BitsPerSample/�

32 2 BlockAlign Number of bytes for one sample including all channels

34 2 BitsPerSample � bits = �, 1� bits = 1�, etc.

3� 4 Subchunk2ID Contains the letters "data". This is the beginning of the "data" subchunk.

40 4 Subchunk2Size Number of bytes in the data

44 * Data Actual sound data

© 2022 Anuj Soni 19

Technet24

According to Microsoft documentation for fread, the buffer address is specified in the first argument passed to the function. Above, we look at the

contents of RCX to identify the address of the buffer- 14FE60 .

Next, we right-click RCX and choose Follow in Dump to keep an eye on what data gets populated at this address (note that the address within

RCX may be different in your debugging session).

Then, from the Debug menu, we choose Step over and review the dump window to find four bytes read.

The bytes are displayed in little-endian, so the value read is E79F20 . What is the significance of these bytes within the context of the WAV file

format? First, let's determine the offset of this data within film.wav . Microsoft documentation indicates that the second argument of fread is

the number of bytes to read. Reviewing this argument for the prior calls to fread can help us determine the offset. We'll briefly consult the

decompiler output since it is easier to read in this case:

The prior three calls read in 0x24 (decimal 3�), 2, and 4 bytes, respectively. However, the second call to fread is only executed if a condition is

met, and additional debugging reveals this condition is not met (more on this shortly). As a result, the fourth fread call begins reading at offset

3� + 4 = 40. Researching the WAVE file format reveals that the 4 bytes at offset 40 specifies the number of bytes of data within the file (i.e., the

size of the actual sound data).

20 © 2022 Anuj Soni

For additional detail on the condition for the third reference to fread , see this additional resource. You'll find that the condition evaluates if the

WAVE file stores compressed data, and if so, accommodates the slightly different header.

7. How is the value read by the fourth CALL to fread used?

Answer: The value is used to allocate memory with the operator_new function, called at 1400012ae.

Explanation: The first argument passed to fread is the buffer address, and we expect this address will be moved into RCX before fread is

executed. At address 140001279 in the screenshot below, the address of a local variable with the label local_88 is placed into RCX before

fread is called.

At 14000128b , the value stored in local_88 is moved into RAX .

At 1400012a3 , this value in RAX is moved to RCX before operator new is called. This is the only argument passed to operator new , and it

specifies the size in bytes to allocate.

� �

8. In the context of the WAV file format, what content appears at the starting address of the allocated memory discussed in the previous

question?

Answer: The sound data contained within the WAV file.

Explanation: The operator_new function call referenced in this question is at 1400012ae . operator_new (see Microsoft documentation) returns

the starting address of the allocated region in memory. At 1400012be , the value stored in RAX is moved into RCX . This occurs shortly before

fread is executed at 1400012c4 , indicating read data will be placed at the recently allocated location.

� �

Note

Attempt to answer this question via static code analysis only. Then, you may confirm your answer via debugging.

�

© 2022 Anuj Soni 21

Technet24

instruction places the contents of RAX into RBP. At this address, RAX contains the return value of operator_new . This same value in RAX is

moved into RCX at 1400012be, shortly before the CALL to fread at 1400012c4. We reviewed this fread reference earlier and concluded it reads in

the WAV audio data and stores it at the address specified in RCX (i.e., the first argument):

Therefore, RBP in the first operand of the TEST instruction points to the beginning of film.wav audio data when the loop executes for the first

time. The second operand of the TEST instruction is DIL, the lower � bits of EDI . Highlight DIL with a single mouse click and scroll up to locate

an instruction where the EDI register is in the destination operand. At 14000122f , we see MOV EDI, 0x1 . Therefore, DIL contains the value 1.

A TEST performs a logical AND. Performing an AND operation between a value and 0x1 (00000001 in binary) is an approach to evaluating the

least significant bit of the value.

10. Under what conditions is the BTS instruction at 1400012ef executed?

Answer: The BTS instruction is executed if the LSB evaluated in the TEST instruction at 1400012e9 is 1.

Explanation: If the LSB evaluated in the TEST instruction at 1400012e9 is 1, the zero flag is not set (i.e., it is zero). Otherwise, the zero flag is set

(i.e., it is 1). The BTS instruction is only executed if the JZ at 1400012ed is not taken. The jump is not taken if the zero flag is not set, which

means the LSB evaluated is 1.

� �

11. If the first byte evaluated by the TEST instruction at 1400012e9 is 0x3, is the BTS instruction at 1400012ef executed? If so, how would

you describe the result of executing the BTS instruction?

Answer: If the first byte evaluated is 0x3 , the BTS instruction is executed. It sets the 31 (left-most) bit in EBX to 1.

Explanation: The BTS (Bit Test and Set) instruction sets a specified bit in a bit string to 1. For more information on this instruction, see this

resource. In the instruction BTS EBX, R8D , the bit string is located in EBX and the position set to 1 is located in R8D (the lower 32 bits of R8).

The position number uses an index where the right-most (i.e., least significant) bit is 0, and the left-most (i.e., most significant) bit is 31.

Let's consider the instruction TEST byte ptr [RAX + RBP * 0x1], DIL at 1400012e9 . The question assumes the first operand points to 0x3 ,

which is represented as 00000011 in binary. We know DIL contains the number 1, represented as 00000001 in binary. The TEST instruction

performs an AND operation of 00000011 and 00000001 , resulting in 00000001 , a non-zero value. This means the conditional jump at 1400012ed

is not taken, and the BTS instruction is executed.

Now's let's consider the BTS instruction. In the first operand, EBX is zero. As previously discussed, the register is zeroed out at 1400012dc with

the instruction XOR EBX, EBX . In the second operand, R�D contains 0x1f (decimal 31). Highlight the operand to identify content placed into this

register via the instruction LEA R8D, [RBX + 0x1f] at 1400012e2. In that instruction, RBX is zero, so 0x1f is placed intro R8D . This means the

BTS instruction sets the bit at position 31 (i.e., the left-most bit) in EBX to 1.

� �

st

12. How does R8D change with each iteration of the loop, and how does this impact the BTS instruction?

Answer: At 1400012f7 , we see the instruction DEC R8D , which decrements this register by 1. This changes the bit position set by the BTS

instruction. It begins with bit position 31 and eventually decrements to 0.

� �

© 2022 Anuj Soni 23

13.
What does the ADD instruction at 1400012f5 contribute to the overall functioning of the loop?

Answer: ESI contains 2. Incrementing ECX by 2 with each run of the loop shifts the pointer to the audio data in the TEST instruction by 2 as well.

Since the TEST instruction evaluates the LSB of a byte of audio data, the loop evaluates the LSB of every other byte (i.e., it skips a byte).

Explanation: The second operand of the ADD instruction is ESI. To identify the value of ESI, we highlight the register with a single mouse click and

locate earlier instructions where this register is in the destination operand. At 1400012d9, we see SHR ESI, 0x3 .

This shift right operation shifts the bits in ESI to the right by the value specified in the second operand (3). However, it's not clear what value ESI

holds at this instruction, and brief static code analysis will not reveal this information. If we set a breakpoint at 1400012d9 within x�4dbg and run

the program, we see ESI contains the value 0x10, which is 00010000 in binary. Shifting these bits to the right by 3 results in 00000010 , or decimal

2.

The ADD instruction at 1400012f5 adds 2 to ECX wth each iteration of the loop. The only other place ECX is referenced is in the MOVSXD

instruction at 1400012e�, where ECX is placed into RAX. RAX is then used in the first operand of the TEST instruction as an offset from RBP,

which we determined is the starting address where the film.wav audio data is stored. Incrementing ECX by 2 with each iteration of the loop

increments the pointer to the audio data in the TEST instruction by 2. Since the TEST instruction evaluates the LSB of an individual byte of audio

data, the loop assesses every other byte (i.e., it skips a byte).

� �

Note

You may need to debug the executable to identify the value stored in ESI.

�

14. How many bytes of WAV audio data does the loop evaluate?� �

24 © 2022 Anuj Soni

Technet24

15. Please summarize the functionality and purpose of the loop beginning at 1400012e6.

Answer: The loop iterates over every other byte of audio data to extract LSBs. Each LSB is assigned to a bit position within a 32-bit value, starting

with the left-most bit (position 31). In total, the loop spans �4 bytes of audio data and extracts 32 LSBs since it skips a byte with each run of the

loop.

� �

16. What is the final 32-bit value that includes all extracted LSBs from the loop just analyzed? Provide the hexadecimal representation.

Answer: B3200

Explanation: EBX is the destination operand of the BTS instruction, so it will contain all LSBs once the loop is complete. Set a breakpoint on the

instruction after the loop at 1400012ff . Then, run the program and observe the value of RBX . It is B3200 .

� �

Note

Debug the program to answer this question.

�

Important

You've reached Checkpoint #2 in this lab.

�

17. How is the 32-bit value from the previous question used?� �

26 © 2022 Anuj Soni

Answer: At 14000132d , a CALL to operator_new allocates memory of size B3200 .

Explanation: Within Ghidra, highlight EBX at 1400012ff with a single left-click. As discussed in the previous question, this register contains

B3200 after the loop is complete. At 140001322 , the value in EBX is moved into R15 , and the next instruction moves the value in R15 into RCX .

This serves as the single argument passed to operator_new at 14000132d , and the argument specifies the size of memory to allocate.

18. What type of content later appears in the allocated memory?

Answer: The content begins with the ascii bytes MZ . The recently allocated memory likely contains a Windows executable.

Explanation: After the CALL to operator_new at 14000132d , the starting address of the allocated memory is stored in RAX . The value in RAX is

then referenced at 140001335 with the instruction MOV R14, RAX and 140001344 with the instruction MOV RCX, RAX . By looking at upcoming

references to R14 and RCX , we can observe when content is placed in the newly allocated memory. The R14 register is referenced a few times

near the end of the function, but not has a pointer (i.e., data is not read from or written to the location specified in R14). RCX , however, is

referenced many times as a pointer in the destination operand, indicating this function does contain code to place content in the allocated

memory.

To identify the content placed in the allocated memory, we can keep an eye on its starting address in a dump window and continue executing the

function FUN_1400011f0 . Within x�4dbg, set a breakpoint at 140001332 , immediately after operator_new is called. Run the program to arrive at

the breakpoint and dump the address within RAX to a dump window.

� �

Note

Perform brief static analysis of the disassembly, but rely primarily on debugging to answer this question.

This question may involve some trial and error as you continue executing code to see what content appears in the newly allocated

memory.

Allocated memory may be freed later. Note the function j_j_free called at 1400014�e. This function may free memory so consider

running the program until this call.

�

•

•

•

© 2022 Anuj Soni 27

Technet24

Then, continue executing the program by setting a breakpoint later in the function. This part might involve some trial and error, so the Notes

provided a hint-set a breakpoint on the CALL to j_j_free at 14000146e . Alternatively, you may have noticed the loop that writes content to the

allocated memory and decided to set a breakpoint after the loop is complete at 140001456 . When you hit either breakpoint and observe the dump

window, you should see content beginning with an MZ header. This appears to be a Windows executable. In the next step, we'll confirm this

theory.

Note

The virtual addresses shown below may differ from your environment.

�

19. Dump the memory region identified in the previous question to disk and load it into the HxD hex editor (see the HxD Desktop shortcut).

Carve the file using HxD to create a valid file format of the appropriate size with no overlay (i.e., no data after the end of the file). Save

the modified file to disk.

� �

28 © 2022 Anuj Soni

Answer: To dump the content from the dump window, right-click in the dump window and choose Follow in Memory Map. Then, right-click on the

appropriate memory region and choose Dump Memory To File. Open the dumped content in a hex editor. The first bytes of this data do not

contain MZ because that content appears later in the dumped content. As mentioned in the Notes for this question, the dump window content

was not located at the beginning of the memory region.

We must carve out the Windows executable from the dumped memory region. Using the HxD hex editor, you can manually delete bytes before the

MZ signature as well as the overlay.

To carve out the executable from the dumped region in memory, first locate the MZ signature. Search for MZ (Search > Find), and the first hit will

arrive at the appropriate offset.

To remove any overlay, create a file of size B3200 . One way to do this within HxD is to first browse to Edit > Select block.... The Start-offset field

should already be populated with the offset of the MZ signature. Recall that the size of memory allocated was B3200 . Type this value into the

Length field and click OK.

Then, browse to File > Save selection... and save the carved file to disk.

Note

Note that the content within the x�4dbg dump window is not located at the beginning of the memory region, so the "MZ" bytes will not

appear at the start of the dumped file.

To search for the "MZ" bytes within HxD, browse to Search > Find from the menu bar and search for the appropriate text.

To identify overlay content, recall that the call to operator_new at 14000132d allocated B3200 bytes of data.

To carve a file within HxD browse to Edit > Select block... and choose the appropriate start offset and end offset or length.

�

•

•

•

•

20. After you modify the dumped content, perform a few minutes of static file properties analysis (i.e., do not execute anything) and

document a theory about the file's functionality.

Answer: Based on the available strings and version information, this DLL may be an XMRig Monero CPU miner.

Explanation: If we load the binary into PeStudio, the available information suggests this DLL is a XMRig Monero CPU miner.

� �

© 2022 Anuj Soni 29

Technet24

We extracted the underlying content, but we want to understand the specific technique used to embed a program in a WAV file. The following

questions will help you investigate this level of detail.

Recall that after the instruction CALL operator_new at 14000132d, the starting address of the allocated memory is stored in RAX. The value

in RAX is then referenced at 140001335 with the instruction MOV R14, RAX and at 140001344 with the instruction MOV RCX, RAX . By

looking at upcoming references to R14 and RCX, we can observe when content is placed in the newly allocated memory. The R14 register is

referenced a few times near the end of the function, but not as a pointer (i.e., data is not read from or written to the location specified in

R14). RCX, however, is referenced many times as a pointer in the destination operand, indicating that the current function does contain code

to place content in the allocated memory.

Important

You've reached Checkpoint #3 in this lab.

�

21. As discussed above, the instruction MOV RCX, RAX at 140001344 places the starting address of the allocated region into RCX.

Continue reviewing the code and identify the loop that modifies content at the address stored in RCX. Specifically, what addresses

encompass the loop?

Answer: The loop begins at 1400013d0 and ends at 140001450 .

Explanation: This question refers to the loop that places content into the address pointed to by RCX -the location of the recently allocated

memory. The loop begins with the following code at 1400013d0 :

� �

30 © 2022 Anuj Soni

Answer: B3200 (733,�9� decimal). This is the size, in bytes, of the memory allocated by the instruction CALL operator_new at 14000132d .

Explanation: The stopping condition occurs at 14000144d with the following two instructions:

We know RDI is 1 from earlier analysis.

To identify the value stored in R8 , we highlight the register and scroll up to find instructions that contain R8 in the destination register.

At 1400013c4 , we find the instruction MOV, R8D, EBX . We then highlight EBX to identify references to this register. This brings us to the following

code:

At 140001322 , the value in EBX is moved into R15 , and that value is then moved into RCX in the very next instruction. Only a couple instructions

later at 14000132d , we see the instruction CALL operator_new . We already reviewed this instruction and determined it is passed the value

B3200 . Therefore, R8 contains this same value when the loop at 1400013d0 executes for the first time.

With the above information in mind, we can assess that the loop under evaluation will iterate B3200 or 733,�9� times. R8 will store this value and

decrement by one with each iteration until it reaches zero. The loop executes once for each byte allocated.

Note

Answer this question based on static code analysis-debugging is not necessary.

�

23. Let's begin understanding the purpose of the loop. At 1400013d3, we see the instruction. TEST byte ptr [RDX + R9 * 0x1], DIL .

Debugging this code would reveal the first operand points to a byte of WAV audio data. With this in mind, what is the likely purpose of

this TEST instruction and the other TEST instructions in this loop?

Answer: The eight TEST instructions in this loop assesses the LSBs of eight bytes of WAV audio data.

Explanation: We saw a TEST instruction similar to this one when evaluating the smaller loop at 1400012e�. In that case, the instruction TEST

byte ptr [RAX + RBP*0x1], DIL at 1400012e9 assessed the LSB of one byte of WAV audio data.

� �

24. In the first loop we analyzed at 1400012e6, the code extracted LSBs from every other byte of WAV audio data (i.e., it skipped one byte

in between LSB evaluations). Does this loop operate similarly?
� �

32 © 2022 Anuj Soni

Technet24

Answer: Yes, this loop evaluates the LSB of every other byte, skipping one byte in between.

Explanation: Within x�4dbg, set a breakpoint on several TEST instructions within the larger loop. Run the program and observe that the first

operand in each successive TEST instruction increments by two. This means a byte is skipped in between each LSB evaluation.

Note

Performing static code analysis to answer this question is time consuming. Try a debugger to observe what happens when the TEST

instructions in this loop are executed.

�

25. How many bytes of WAV audio data does each iteration of the loop traverse (this includes "skipped" bytes, not just the ones assessed

by the conditional statements)?

Answer: 1� bytes.

Explanation: There are eight TEST instructions in the loop, and each one assesses one byte, skipping a byte in between. � x 2 = 1� bytes per loop

iteration.

� �

26. In the first loop we analyzed at 1400012e6, each loop iteration set one bit at the appropriate bit position within a 32-bit decoded value

beginning with the left-most bit (position 31). In this larger loop beginning at 1400013d0 1) How many bits of decoded content does

each iteration of the loop create? and 2) In what order does it set the appropriate bits in the decoded value?

Answer: The loop beginning at 1400013d0 creates � bits (1 byte) of decoded data with each iteration. Each iteration also begins work at bit

position 0 until it reaches bit position 7.

Explanation: To identify the number of decoded bits created by this loop, observe the single CMOVNZ instruction and seven BTS instructions.

These eight instructions have the same destination operand, EAX, and each instruction works on one bit of data. � bits of data equal one byte of

decoded content.

Also observe the instruction MOV byte ptr [RCX], AL at 140001445. This instruction occurs near the end of the loop, and it places the lower �
bits of data in EAX (the destination operand for the CMOVNZ and BTS instructions) at the address contained within RCX, where the decoded

executable eventually resides. At 14000144a, RCX is incremented by 1 before each loop iteration in preparation for the next decoded byte. This

further supports our theory that each loop iteration decodes one byte.

The BTS instructions set bits at lower bit positions up to bit position 7. As suggested in the Note for this question, the CMOVNZ instruction at

1400013da can set EAX (which contains zero when the loop first executes) to 1. This is equivalent to setting the bit at bit position 0. The last BTS

instruction in the loop, BTS EAX, 0x7 , sets a bit at bit position 7.

� �

Note

At 1400013da, observe the instruction CMOVNZ EAX, EDI . A CMOVNZ instruction means "conditional move if not zero". Since EDI in this

instruction contains 1, executing this code places 1 in EAX if the recent TEST instruction did not result in zero. If the TEST instruction result is

zero, EAX is intouched (in this case, it maintains a zero value). In this way, the CMOVNZ instruction achieves a similar result as using the BTS

instruction to set a value to 1.

�

27. Summarize the purpose of this loop and how it decodes content.

This loop extracts the LSB of every other byte of WAV data to produce a Windows executable in memory. Each iteration of the loop extracts � bits

of decoded content (1 byte) from 1� bytes of encoded data, including skipped bytes. Each iteration also begins work at bit position 0 until it

reaches bit position 7. The loop produces a Windows executable of size 0xB3200 (733,�9� bytes).

� �

© 2022 Anuj Soni 33

Lab 1.2: Analyzing Malicious Program Execution

Background

In the previous lab, we began analyzing malware that extracted code from a WAV audio file using steganography techniques. We identified the

decoding algorithm, described its inner workings, and extracted the underlying binary. Next, the program must prepare this decoded binary for

execution and then launch the program. We'll explore the key steps necessary to accomplish this task.

Lab Objectives

Identify code that checks for a valid Windows Executable.

Identify code that maps an executable into memory in preparation for execution.

Identify code that applies relocations, if needed.

Identify code that that loads dependent DLLs and resolves APIs.

Identify code that updates section permissions in memory.

Identify code that locates the entry point for execution.

Lab Preparation

Complete all steps described in the Lab Preparation for lab 1.1. player.exe should still be loaded within Ghidra in the Static VM, and both

player.exe and film.wav should be unzipped and located in the same directory within both the Static and Dynamic VMs.

Within the Static VM, load the dumped executable into CFF explorer so we can review its structure as needed. Simply drag-and-drop the dumped

executable to the CFF Explorer shortcut on the 710 VM desktop. Lastly, load the dumped DLL into the Section1 project within Ghidra and initiate

the auto-analysis with the same configuration we used in Lab 1.1: uncheck the box for Decompiler Switch Analysis .

If you do not have access to the dumped DLL from the last lab for some reason, you can unzip the dumped_dll.zip file in the

Malware\Section1 folder (password: malware).

•

•

•

•

•

•

© 2022 Anuj Soni 35

Technet24

Lab Questions

In the previous lab, we identified a deobfuscated malicious DLL. Now, let's review what happens next to execute this DLL in memory. The first

function call that occurs after the deobfuscation loop is at 1400014�e-however, it is a call to a library function associated with deallocating

memory and is not worthy of further investigation. At 14000147e, we see a CALL to FUN_140001b10.

Let's examine FUN_140001b10 to assess its purpose. Enter this function within Ghidra.

The code includes additional checks for a valid PE format. This includes going through the tedious process of validating each section's size

to make sure the PE header accurately describes the file. We won't explore every attempt to validate the file format. Instead, let's review what

happens next.

1. Examine the arguments passed to FUN_140001b10? How many arguments are passed to the function, and what is their significance?

Rename the arguments in the Decompile window.

�

�

Note

Static code analysis is sufficient to answer this question, but use a debugger if this becomes too time consuming.

�

2. What does the check at 140001b44 evaluate?

�

�

Note

Be sure to add comments to your disassembly and/or decompiler output as you answer these questions.

�

3. What check is performed at 140001b70?

�

�

Note

When answering this question, you will encounter the MOVSXD instruction. This instruction performs a move but also preserves the positive/

negative (i.e., signed) nature of the source. For this lab, you can interpret this instruction as an ordinary move.

�

4. What check is performed at 140001b88?

�

�

36 © 2022 Anuj Soni

In the listing view, highlight the CALL to HeapAlloc and identify the corresponding pseudocode in the decompile window. In the decompile

window, click on the variable that contains the return value of HeapAlloc. You will see multiple references to elements within the allocated

memory as various values are assigned. This variable might be better characterized as a structure. Let's take advantage of Ghidra'a feature

to automatically create a structure. Right-click on the variable that contains the return value of HeapAlloc and choose Auto Create Structure.

Right-click again on the same variable and choose Rename Variable. Rename the variable to info_struct . Your decompile window should

look similar to the excerpt pictured below:

5.
After the various file format checks are complete, we see a call to VirtualAlloc at 140001c59. Shortly before the CALL, RCX is

populated with qword ptr [RSI + 0x30] . What field in the decoded PE header is this referring to, and what does this tell you about the

purpose of this call to VirtualAlloc?

�

�

Note

View the dumped DLL within CFF Explorer to identify the appropriate field.

�

6. What is the difference between the call to VirtualAlloc at 140001c59 and the one at 140001c76? Under what conditions does the

second call to VirtualAlloc get executed?

�

�

Important

You've reached Checkpoint #1 in this lab.

�

7. After VirtualAlloc successfully executes, the program encounters a CALL to HeapAlloc at 140001c96. How many bytes does this

function attempt to allocate?

�

�

Notes

Debugging is not necessary to answer this question.

Consult https://for710.com/heapalloc as needed.

�

•

•

© 2022 Anuj Soni 37

Technet24

Within the Data Type Manager, locate the target executable, expand it (i.e., click the +) and browse to auto_structs > astruct. This is the

default name of the structure we just created. We will keep this default name, but you could right-click and choose Edit to modify the name.

8. For now, let's focus on the structure member assignments that reference a label name beginning with "DAT_". Ghidra did not interpret

the DAT_ locations during its initial pre-processing, but it's possible there is meaningful code or data at this location. 1) Can you

determine what content resides at each DAT_ location? 2) Rename each DAT_ location in the decompiler output with a more

meaningful label after you reinterpret the bytes at these locations. 3) Lastly, rename the corresponding info_struct members using

the same names you chose for the DAT_ locations.

�
�

Note

Try answering this question using static code analysis, but if this becomes too time consuming, use a debugger.

�

9. Find the reference to info_struct->field_0x8 in the Decompile window. What information is stored in that structure member?

Describe the content; you do not need to provide the specific value. Then, rename the structure member.

�

�

10. At 140001d61, what is the purpose of the CALL to VirtualAlloc?�

�

38 © 2022 Anuj Soni

What is the name of the control variable?:

What is the initial value of the control variable?:

How is the control variable updated?:

What does the while condition assess, and what does this tell you about the loop?:

Note

Within the decompile window, remember that an asterisk (*) means the address stored in the specified variable is dereferenced.

�

16. We are still reviewing FUN_1400014f0. Within Ghidra's Listing view, identify the two CALLs to VirtualAlloc. Using x64dbg, set a

breakpoint on those two CALLs (consider disabling other breakpoints to reduce confusion) and run the program. You'll find that the

program only reaches one of the CALLs during execution. Based on your evaluation of that function call and the nearby call to

memmove, how would you characterize the purpose of the do-while loop? Rename the function based on your analysis.

�

�

Note

To assist with your analysis, compare the size of each requested memory allocation with the section header content for the decoded DLL.

�

Important

You've reached Checkpoint #2 in this lab.

�

17. Let's return to FUN_140001b10. At 140001dac, we see a call to FUN_140001870. Under what conditions is this function executed

(review the nearby conditional jump at 140001da7)?

�

�

18. What is the purpose of FUN_140001870? Using static code analysis only, review the function's arguments and the beginning of the

function's disassembly. Rename the function.
�

�

40 © 2022 Anuj Soni

Technet24

While we will not perform a comprehensive analysis of FUN_140001930, we will explore a few additional aspects of this code.

Let's confirm our knowledge of Imports-related terminology and its associated structure. Within Ghidra, open the dumped DLL from the

project view. You should already have the dumped DLL loaded into CFF Explorer.

Notes

Consider the answer to the previous question when performing your analysis.

Recall that the first member of info_struct is the virtual address of the mapped DLL's PE header.

An investigation of the function's first seven instructions should be sufficient to determine what this function is likely responsible for.

Remember, this program has work left to do before it can execute the decoded DLL. We are trying to identify what code is responsible for

each step in this preparation process, but this does not require us to analyze every line of code.

�

•

•

•

•

19. At 140001dc0, we see a CALL to FUN_140001930. Based on performing static code analysis of the first 10 instructions of this function,

what is it likely responsible for?

�

�

20. At 1400019a4, what function is called?

�

�

Note

Attempt to answer this question without debugging the program.

�

21. At 140001a30, we see another CALL instruction. What function is called? How does the presence of this CALL and the one in the

previous question support our theory about the purpose of FUN_140001930? Rename the function.

�

�

22. First, what is the virtual address (not relative virtual address) of the Import Directory table for this sample (assuming it is loaded at its

preferred image base)?

�

�

23. Access the Listing view for the dumped DLL within Ghidra and jump to the address identified in the previous question. This is the

location of the Import Directory Table, which includes an IMAGE_IMPORT_DESCRIPTOR structure for each imported DLL. Ghidra did not
�

© 2022 Anuj Soni 41

The next function call within player.exe occurs at 140001dd0, where we see a CALL to FUN_140001�20. Let's explore the body of this

function.

We've completed our review of FUN_140001b10. We can rename it to check_prep_dll , or something similar. Now, let's return to the parent

function, which we renamed desteg .

At 1400014�e we have another CALL , which executes FUN_140001e�0. Let's jump to this function and investigate its purpose.

correctly interpret the 32-bit relative virtual addresses within this structure. First, modify the data types for the non-zero elements in

the first IMAGE_IMPORT_DESCRIPTOR structure. Then, answer the following questions about this first structure.

VA of Import Name Table:

Name of imported DLL (not the address, the actual name):

VA of Import Address Table section that corresponds to the specified DLL:

�

Important

You've reached Checkpoint #3 in this lab.

�

24. Within player.exe , what two Windows APIs are called inside FUN_140001620? Static code analysis should be sufficient to answer this

question.

�

�

25. Using x64dbg, set breakpoints on the CALLs to VirtualProtect discussed in the previous question and evaluate these calls. Based on

your analysis, what is the likely purpose of FUN_140001620 overall? Rename the function based on your analysis.

�

�

26. The CALL at 140001e37 within player.exe executes a function in the decoded DLL. What function within the decoded DLL is called?

�

�

Note

Debug player.exe to assess the contents of RAX at 140001e37.

�

42 © 2022 Anuj Soni

Technet24

1. Examine the arguments passed to FUN_140001b10? How many arguments are passed to the function, and what is their significance?

Rename the arguments in the Decompile window.

Answer: FUN_140001b10 takes two arguments. The first argument is a pointer to the deobfuscated DLL (the specific address will vary). The

second argument is the size of the decoded DLL: 0xB3200 . We can rename the first argument to addr_decoded_dll and the second argument to

size_decoded_dll .

Explanation: To determine the number of arguments passed to FUN_140001b10 , view the function metadata that Ghidra provides. It specifies two

arguments. Alternatively, view the instructions leading up to the function call, and you will notice only RCX and RDX are modified nearby (i.e., R8

and R9 are not updated in close proximity to the function call).

To assess the values and significance with a debugger, set a breakpoint within x�4 at 14000147e and run the program. Observe RCX and RDX to

answer this question.

Static analysis reveals the same information with just a bit more work. First, observe how RCX and RDX are populated before FUN_140001b10 is

called:

RCX is populated with the value stored in R14 and RDX is populated with the value stored in R15 . If we highlight R14 with a single click and

scroll up, we see it contains the return value of the CALL to operator_new at 14000132d :

Based on our work in lab 1.1, this means R14 will contain the address of the decoded DLL.

To investigate the second argument passed to FUN_140001b10 , we must identify what is stored in R15 . Just a few instructions earlier, we see an

instruction where R15 is populated:

To identify the value stored in the second operand, we highlight it and scroll up to see when it is referenced. This bring us once again to the CALL

to operator_new at 14000132d :

� �

Note

Static code analysis is sufficient to answer this question, but use a debugger if this becomes too time consuming.

�

44 © 2022 Anuj Soni

Let's examine FUN_140001b10 to assess its purpose. Enter this function within Ghidra.

We see that the value in R15 is moved into both the variable of interest and RCX , the first argument passed to operator_new . The first argument

to operator_new specifies the size of memory to allocate, and we already reviewed this function call in lab 1.1. Our earlier analysis indicated the

specified size was 0xB3200 , which is the second argument passed to FUN_140001b10 .

To rename the arguments in the Decompile window, right-click each one and choose Rename Variable. We can rename the first argument to

addr_decoded_dll and the second argument to size_decoded_dll .

2. What does the check at 140001b44 evaluate?

Answer: The CMP instruction at 140001b44 checks if the first argument passed to FUN_140001b10 points to 0x4D5A to help determine if the

decoded DLL is a valid Windows executable.

Explanation: To answer this question, we need to evaluate two instructions:

The CMP instruction evaluates AX (the lower 2 bytes of EAX) against the 2 bytes pointed to by the first argument passed to FUN_140001b10 . As

discussed in the previous question, the function's first argument points to the decoded DLL. The code checks for the ascii MZ bytes located at the

beginning of a valid Windows executable. Note that the value moved into EAX at 140001b3f is 0x5a4d and not 0x4d5a because the two bytes

read from the decoded DLL are read as little-endian data.

� �

Note

Be sure to add comments to your disassembly and/or decompiler output as you answer these questions.

�

3. What check is performed at 140001b70?

Answer: The check at 140001b70 checks if the decoded DLL has a valid PE header (i.e., it checks if the DLL has the ascii characters "PE" at the

expected offset).

Explanation: The relevant instructions for the check at 140001b70 include:

The CMP instruction at 140001b70 performs the comparison of interest. The right operand is 0x4550 with an ascii representation of EP . Similar

to the MZ check earlier, this value likely refers to the little endian representation of the characters PE that occur at the beginning of the PE header

for a valid Windows executable.

� �

Note

When answering this question, you will encounter the MOVSXD instruction. This instruction performs a move but also preserves the positive/

negative (i.e., signed) nature of the source. For this lab, you can interpret this instruction as an ordinary move.

�

© 2022 Anuj Soni 45

Technet24

The code includes additional checks for a valid PE format. This includes going through the tedious process of validating each section's size

to make sure the PE header accurately describes the file. We won't explore every attempt to validate the file format. Instead, let's review what

happens next.

Let's asses the left operand dword ptr [RCX + R14*0x1] . If we highlight R14 and scroll up to identify references, we see the instruction MOV

R14, RCX at 140001b1f . Since RCX contains the first argument to the function when this instruction is executed (i.e., the pointer to the decoded

DLL), R14 will store this same address when the move is completed.

RCX in the CMP instruction at 140001b70 is most recently populated at 140001b60 with a MOVSXD instruction. This operation moves the value at

the 0x3c offset from the beginning of the decoded DLL into RCX . This is the offset of the e_lfanew field which specifies the offset to the PE

header. Therefore, the CMP instruction at 140001b70 checks if the PE header of the decoded DLL begins with the expected bytes 0x4550 (little

endian).

4. What check is performed at 140001b88?

Answer: The check at 140001b88 evaluates if the decoded DLL is a �4-bit binary based on the appropriate field in the Windows executable

header.

Explanation: The relevant instructions for the check at 140001b88 include:

Let's review the CMP instruction at 140001b88 . The right operand, AX , is populated in the previous instruction with the value 0x8664 . To

understand the left operand, we need to determine the value stored in RSI . This register is in the destination operand at 140001b7d in the

instruction LEA RSI, [RCX + R14 * 0x1] . Based on the previous question in this lab, we know the source operand is the virtual address of the

decoded DLL's PE header. This means the CMP instruction dereferences the address at 4 bytes after the PE header. If we view the dumped DLL in

CFF Explorer, we find the PE header signature at hex offset 0x120. If we view the field at 4 bytes after the header at 0x124, we arrive at the

Machine type. The CMP instruction checks for the Machine type 0x8664 (i.e., a �4-bit executable), which matches our dumped DLL. For all

machine type values, see https://for710.com/machinetype.

� �

5. After the various file format checks are complete, we see a call to VirtualAlloc at 140001c59. Shortly before the CALL, RCX is

populated with qword ptr [RSI + 0x30] . What field in the decoded PE header is this referring to, and what does this tell you about the

purpose of this call to VirtualAlloc?

� �

Note

View the dumped DLL within CFF Explorer to identify the appropriate field.

�

46 © 2022 Anuj Soni

Answer: As discussed in earlier questions, RSI is the address of the decoded DLL's PE header. At 0x30 offset from the start of the PE header is

the Imagebase field. This call to VirtualAlloc is attempting to allocate memory at the preferred address specified in the header. This is likely to

create space for the mapped executable.

6. What is the difference between the call to VirtualAlloc at 140001c59 and the one at 140001c76? Under what conditions does the

second call to VirtualAlloc get executed?

Answer: The only difference between the two CALLs is that the first specifies a starting address for the region to allocate (i.e., 0x1�0000000). If

this fails because that region in memory is already reserved, the second CALL to VirtualAlloc executes with no starting address specified. In this

later case, the system will determine where to allocate memory.

� �

Important

You've reached Checkpoint #1 in this lab.

�

7. After VirtualAlloc successfully executes, the program encounters a CALL to HeapAlloc at 140001c96. How many bytes does this

function attempt to allocate?

Answer: 0x��, or decimal 104 bytes

Explanation: The relevant instructions include:

As described in the Microsoft documentation, HeapAlloc's third argument specifies the number of bytes to allocate. This will be stored in R8 ,

which gets populated at 140001c92 with an LEA instruction. This instructions adds RDX and 0x�0, and RDX is populated with 0x� at 140001c�a.

Therefore, this call to HeapAlloc allocates 0x�0 + 0x� = 0x��, or 104 bytes.

� �

Notes

Debugging is not necessary to answer this question.

Consult https://for710.com/heapalloc as needed.

�

•

•

© 2022 Anuj Soni 47

Technet24

This means the address of an instruction that calls VirtualAlloc is placed into the info_struct structure. We can rename LAB_140001ac0 to

addr_VirtualAlloc and perform similar steps to resolve the other DAT_ references. We can then rename the corresponding structure members

by right-clicking on each field and choosing Rename Field. The resulting decompiled code is:

info

9. Find the reference to info_struct->field_0x8 in the Decompile window. What information is stored in that structure member?

Describe the content; you do not need to provide the specific value. Then, rename the structure member.

Answer: The image base address of the mapped executable. We can rename field_0x8 to mapped_imagebase .

Explanation: You can use the decompile output and/or disassembly to answer this question. In the decompile window, observe the code

info_struct->field_0x8 = lpAddress; (the corresponding disassembly is at 140001cc2).If we highlight lpAddress with a single click and

scroll up, we see it contains the return value of the recent call to VirtualAlloc that attempts to allocate memory using the decoded DLL's

ImageBase. This means info_struct->field_0x8 contains the base address of the mapped decoded DLL. We can rename field_0x8 to

mapped_imagebase .

� �

10. At 140001d61, what is the purpose of the CALL to VirtualAlloc?

Answer: It commits space for the header of the mapped decoded DLL.

Explanation: The relevant instructions include:

� �

Notes

Review the next CALL to memmove at 140001d74 as part of your analysis (https://for710.com/memmove). If the function called at

140001d74 is not labelled memmove , it means you forgot to uncheck the box for Decompiler Switch Analysis when configuring

Ghidra's initial auto-analysis. In this case, simply rename the function to memmove so you can proceed with the lab.

Static code analysis is sufficient to answer this question, but use a debugger if this becomes too time consuming.

If you choose to use x�4dbg, note that when you view the CALL at 140001d74, the debugger will not identify the function name memmove .

Only Ghidra provides this additional information based on its Function ID (FID) capability.

�

•

•

•

© 2022 Anuj Soni 49

At 140001d6e , the return value of VirtualAlloc is moved into RCX . This serves as the first argument passed to memmove, which copies a

specified number of bytes from one location to another (https://for710.com/memmove). As specified in the Microsoft documentation, the first

argument points to the destination, the second argument points to the source, and the third specifies the number of bytes to copy. Focusing on

the third argument (moved into R�) provides a clue. At 140001d�7, RSI contains the address of the decoded DLL's PE header. At offset 0x54 from

this location is the SizeOfHeaders field, indicating PE header content will be moved into the recently allocated memory region.

We can confirm this answer if we review the CALL to memmove in a debugger, we will observe that it copies 0x400 (1024) bytes from the

beginning of the decoded DLL to the starting address of the memory region allocated for the mapped binary. This is the entire header of the

decoded DLL.

11. At 140001d86, what does the MOV instruction accomplish? (i.e., what is the significance of the value that is copied?) Rename the

corresponding member in the info_struct structure within the Decompile window.

Answer: The MOV instruction places the virtual address (VA) of the mapped DLL's PE header into the first member of the info_struct structure.

We can rename field_0x0 in the Decompile window to mapped_pe_header .

Explanation: We are evaluating the instruction MOV qword ptr [RDI], RAX at 140001d��. First, what is RDI? Immediately after the CALL to

HeapAlloc at 140001c9�, the contents of EAX are moved into RDI. This means RDI contains the starting address for the allocated memory. As

previously discussed, this is the address of the info_struct structure, so the MOV instruction populates the structure's first member.

Next, let's turn our attention to EAX. At 140001d79, a MOV instruction dereferences R14 + 0x3c . We encountered this location reference in a

previous question-it refers to the e_lfanew field within the decoded DLL, which specifies the offset to the PE header. At 140001d�0, RBX is added

to this value. If we highlight this register with a single click, we can see it contains the return value of the CALL to VirtualAlloc we reviewed earlier-

this committed memory to copy the header of the decoded DLL. Adding this return value to the offset of the PE header equals the virtual address

of the mapped PE header.

If we highlight the MOV instruction at 140001d��, the corresponding code in the Decompile window references info_struct->field_0x0 . Given

the analysis described above, we can rename field_0x0 in the Decompile window to mapped_pe_header .

� �

12. At 140001d8f, what does the MOV instruction accomplish?

Answer: It updates the ImageBase field of the mapped DLL to match the actual starting address of the DLL in memory. However, if the DLL was

loaded at its preferred base address, this operation results in no change.

Explanation: The relevant instruction is MOV qword ptr [RAX + 0x30], RBP . First, let's assess the destination operand. Based on the analysis in

the previous question, we know RAX is the virtual address of the mapped DLL's PE header. If we use CFF Explorer to view the offset of the PE

header, we see it occurs at 0x120. Adding 0x30 to that offset equals 0x150, which is the location of the ImageBase field.

Now, let's review the second operand. If we highlight RBP with a single click and scroll up, we see it contains the return value of the recent call to

VirtualAlloc that attempts to allocate memory using the decoded DLL's ImageBase. This means RBP contains the base address of the mapped

decoded DLL.

� �

50 © 2022 Anuj Soni

Technet24

Therefore, the MOV instruction updates the ImageBase field of the mapped DLL to reflect the starting address of the mapped DLL in memory.

13. At 140001d93 we see a call to function FUN_1400014f0. Jump to this function and view the decompile window. How many arguments

does this function take, and what is the significance of each argument? Rename each argument in the decompile window so the labels

are more meaningful.

Answer: This function accepts four arguments:

First: The starting address of the unmapped DLL.

Second: The size of the decoded DLL (0xB3200).

Third: The address of the unmapped DLL's PE header.

Fourth: The address of the info_struct structure.

One approach to renaming these arguments in the decompile window results in the following:

� �

Notes

Use a combination of static and dynamic code analysis to speed up your analysis.

When renaming arguments and variables in the decompile window, consider using the same labels you used in earlier questions if

appropriate. Good terms to include in your names are "mapped", "unmapped", "decoded", "dll", "size", and "header", separated by

underscores (e.g., size_decoded).

�

•

•

•

•

•

•

14. We know that the fourth argument passed to FUN_1400014f0 is info_struct . Apply the astruct data type to this argument. What

Windows API does FUN_1400014f0 call using info_struct ?

Answer: FUN_1400014f0 calls VirtualAlloc using the address of this API stored within info_struct .

Explanation: If you single-click info_struct within FUN_1400014f0 in the decompile window, you will see multiple references. To apply the

astruct structure, right-click on info_struct and choose Retype Variable. Then, type astruct , choose the first option, and click OK. This

question focuses on function calls, and only two references within FUN_1400014f0 use info_struct to call a function. In both cases the

reference is info_struct->addr_VirtualAlloc .

� �

15. Notice that most of FUN_1400014f0 is actually a do-while loop. Using the decompile window, answer the questions below.

Answers: This decompiled code excerpt includes the information necessary to answer these questions.

� �

Note

Within the decompile window, remember that an asterisk (*) means the address stored in the specified variable is dereferenced.

�

© 2022 Anuj Soni 51

Answer: The do-while loop maps each section of the unmapped decoded DLL into memory. We can rename FUN_1400014f0 to map_sections , or

something similar.

Explanation: Although the do-while loop includes two CALLs to VirtualAlloc, only the second CALL at 1400015b0 is encountered during execution.

The first CALL to VirtualAlloc at 140001569 is only executed if a section has a zero raw size. This does not apply to our decoded DLL, so we will

not explore this further.

If we set a breakpoint at 1400015b0 and run the program, we'll see it hits this breakpoint with each iteration of the loop. Each time VirtualAlloc is

called, the first argument (i.e., the starting address of the region to allocate) is in close proximity to the image base value of the mapped DLL-this

is the first indication that this code is performing additional mapping activities. In addition, each call specifies a 0x00001000 memory allocation

type, which represents MEM_COMMIT . This means the memory has already been reserved-we previously reviewed the VirtualAlloc CALL that

reserved the necessary space in memory. If we look at the size of each requested memory allocation and compare them with the section header

content for the decoded DLL, we'll find that the numbers match the Raw Size for each section.

If we include the CALL to memmove at 1400015cb into our analysis and review the source and destination each time memmove is called, we find

that this code copies content from each section in the unmapped DLL to the memory allocated for the mapped DLL. This is further evidence that

the do-while loop is responsible for mapping each section of the decoded DLL into memory in preparation for execution. Rename FUN_1400014f0

to map_sections , or something similar.

Note

To assist with your analysis, compare the size of each requested memory allocation with the section header content for the decoded DLL.

�

Important

You've reached Checkpoint #2 in this lab.

�

17. Let's return to FUN_140001b10. At 140001dac, we see a call to FUN_140001870. Under what conditions is this function executed

(review the nearby conditional jump at 140001da7)?

Answer: FUN_140001870 is executed if the image base of the mapped DLL is not equal to the ImageBase value within the unmapped DLL. In other

words, this function is executed if the DLL was mapped to an address that is different from its preferred address.

Explanation: The relevant instructions for this question include:

At 140001d9c , RDI contains the address of info_struct (see the decompiler output to confirm this). Dereferencing this value places the virtual

address of the mapped DLL's PE header into RAX .

At 140001d9f , the ImageBase value of the mapped DLL is placed into RDX .

At 140001da3 , the second operand dereferences [RSI + 0x30] . RSI contains the address of the unmapped DLL's PE header (static code

analysis, debugging, and the decompiler output can all confirm this), so adding 0x30 points to the unmapped DLL's ImageBase.

Therefore, the SUB instruction subtracts the unmapped DLL's ImageBase value from the mapped DLL's ImageBase value. If the result is zero (i.e.,

the image bases are the same) this means the DLL was loaded at its preferred address. In this case, the jump at 140001da7 is taken, and

� �

© 2022 Anuj Soni 53

Technet24

FUN_140001870 is not executed. If the result of the subtraction is not zero (i.e., the image bases are different), the jump at 140001da7 is not

taken, and FUN_140001870 is executed.

18. What is the purpose of FUN_140001870? Using static code analysis only, review the function's arguments and the beginning of the

function's disassembly. Rename the function.

Answer: Based on our analysis in the previous question, FUN_140001870 's first argument is the address of info_struct , and the second

argument is the difference between the mapped DLL and unmapped DLL image base values. This function processes the DLL's .reloc section to

perform any address fix ups. We can rename the function to apply_base_relocations , or something similar.

Explanation: If we jump to FUN_140001870 the initial instructions include:

At 140001�7a, the first argument (i.e., the address of info_struct) is dereferenced, which places the address of the mapped DLL's PE header

into RAX . At 140001884 , [RAX + 0xb4] takes us to the 0xb4 offset from the PE header-this is the location of the Relocation Directory Size. The

CMP instruction evaluates if this size is zero, and if so, the functions returns. Based only on these instructions, it is likely this function processes

the DLL's relocation table to perform the necessary fixups.

� �

Notes

Consider the answer to the previous question when performing your analysis.

Recall that the first member of info_struct is the virtual address of the mapped DLL's PE header.

An investigation of the function's first seven instructions should be sufficient to determine what this function is likely responsible for.

Remember, this program has work left to do before it can execute the decoded DLL. We are trying to identify what code is responsible for

each step in this preparation process, but this does not require us to analyze every line of code.

�

•

•

•

•

54 © 2022 Anuj Soni

While we will not perform a comprehensive analysis of FUN_140001930, we will explore a few additional aspects of this code.

19.
At 140001dc0, we see a CALL to FUN_140001930. Based on performing static code analysis of the first 10 instructions of this function,

what is it likely responsible for?

Answer: Based on the reviewing the CMP instruction at the beginning of the function, it is likely responsible for processing the mapped DLL's

import table to resolve dependencies.

Explanation: The first 10 instructions are:

After typical function prologue activities, the MOV instruction at 14000193a dereferences RCX and places the value in RAX . Static code analysis

and debugging will both confirm RCX contains the address of info_struct , so the first element of the array is placed into RAX . We know the first

element is the address of the mapped DLL's PE header.

At 14000194a , the CMP instruction evaluates the value stored at [RAX + 0x94] . To identify what resides at this offset, view the dumped DLL in

CFF Explorer and first find the offset of the PE header (0x120). Adding 0x94 results in 0x1B4. If we navigate to this offset with CFF Explorer, we

find the Import Directory Size field:

This function likely parses the import table to resolve dependencies.

� �

20. At 1400019a4, what function is called?

Answer: The address of info_struct is the only argument passed to FUN_140001930. If we retype (right-click > Retype Variable) the argument

to a structure of type astruct within the Decompile window, we find that the CALL at 1400019a4 executes LoadLibraryA:

� �

Note

Attempt to answer this question without debugging the program.

�

© 2022 Anuj Soni 55

Technet24

Let's confirm our knowledge of Imports-related terminology and its associated structure. Within Ghidra, open the dumped DLL from the

project view. You should already have the dumped DLL loaded into CFF Explorer.

21. At 140001a30, we see another CALL instruction. What function is called? How does the presence of this CALL and the one in the

previous question support our theory about the purpose of FUN_140001930? Rename the function.

Answer: Using a similar approach to the previous question, you can determine this is a call to GetProcAddress. LoadLibrary and GetProcAddress

are commonly used to load a module and resolve a function within the module. This supports our theory that the overall function is responsible

for loading DLLs and resolving APIs. We can rename FUN_140001930 to resolve_imports .

� �

22. First, what is the virtual address (not relative virtual address) of the Import Directory table for this sample (assuming it is loaded at its

preferred image base)?

Answer: 0x1800A68B4 . The preferred image base is 0x180000000 , and the Import Directory RVA is 0xA68B4 . Adding these values results in

0x1800A68B4 .

� �

23. Access the Listing view for the dumped DLL within Ghidra and jump to the address identified in the previous question. This is the

location of the Import Directory Table, which includes an IMAGE_IMPORT_DESCRIPTOR structure for each imported DLL. Ghidra did not

correctly interpret the 32-bit relative virtual addresses within this structure. First, modify the data types for the non-zero elements in

the first IMAGE_IMPORT_DESCRIPTOR structure. Then, answer the following questions about this first structure.

Answer: First, jump to 0x1800A68B4 within the Listing view for the dumped DLL. You should see the following:

� �

56 © 2022 Anuj Soni

We can rename FUN_140001620 to update_section_protections .

26. The CALL at 140001e37 within player.exe executes a function in the decoded DLL. What function within the decoded DLL is called?

Answer: The CALL at 140001e37 executes the mapped DLL's entry point located at 1�004AFE0. This is an optional step when loading a DLL for

execution.

Explanation: If we set a breakpoint at 140001e37 and run the program, we see RAX contains 1�004AFE0:

Within Ghidra's Listing view, we can jump to this location in the decoded DLL. It is clear this is the DLL's entry point:

� �

Note

Debug player.exe to assess the contents of RAX at 140001e37.

�

58 © 2022 Anuj Soni

Technet24

We've completed our review of FUN_140001b10. We can rename it to check_prep_dll , or something similar. Now, let's return to the parent

function, which we renamed desteg .

At 1400014�e we have another CALL , which executes FUN_140001e�0. Let's jump to this function and investigate its purpose.

More information about a DLL's entry point can be found here: https://for710.com/dll-ep.

Debugging also reveals the second argument passed to the entry point is 1:

The second argument specifies the reason code, which describes why the DLL entry point is called. In this case, the value is 1 or

DLL_PROCESS_ATTACH. This means the DLL is being initialized in preparation for execution.

27. Within player.exe , what does the instruction at 140001e96 evaluate, and what does this tell you about the likely purpose of this

function?
� �

© 2022 Anuj Soni 59

Let's explore a few more instructions within FUN_140001e80 . We will focus on the instructions between 140001f73 and 140001f�4:

Answer: The CMP instruction checks if the Export Directory Size is zero. If the size is zero, the code calls SetLastError and returns. Based on this

brief analysis, FUN_140001e80 probably resolves the DLL's export(s) for execution.

Explanation: As we've seen several times during this lab, FUN_140001e80 takes only one argument, and it is the address of info_struct . If we

retype (right-click > Retype Variable) the argument to a structure of type astruct within the Decompile window, we find that the instruction at

140001e9� accesses the info_struct member that contains the address of the mapped DLL's PE header. Looking at the decoded DLL in CFF

Explorer, we know that the PE header begins at 0x120, and adding 0x�c equals 0x1ac. At this offset we find the Export Directory Size field:

If the Export Directory Size is zero, the function returns:

Based on this review, FUN_140001e80 probably resolves the mapped DLL's exports in preparation for execution.

28. The instruction at 140001f73 is MOV EDX, dword ptr [RBX + 0x1c] . RBX contains the address of an export-related structure. What

structure resides at the address, and what specific field within the structure does RBX + 0x1c point to?

Answer: RBX contains the virtual address of the DLL's Export Directory Table. RBX + 0x1c is the location of the AddressOfFunctions field, which

specifies the RVA of the Export Address Table.

Explanation: The instruction at 140001f73 is MOV EDX, dword ptr [RBX + 0x1c] . We can identify the contents of RBX via static code analysis.

Earlier in the function, RBX is populated:

� �

60 © 2022 Anuj Soni

Technet24

We'll stop our analysis of this sample here. With additional time and effort, you would identify that the remaining functions in desteg free loaded

libraries and perform routine security checks.

In the MOV instruction at 140001eba RAX contains the virtual address of the mapped DLL's PE header (this is evident in the Decompile window if

you retyped the argument, as discussed in the previous question). The 0x�� offset from the PE header is the Export Directory RVA:

R14 contains the image base of the mapped DLL, so the ADD instruction at 140001ec0 populates RBX with the virtual address of the Export

Directory Table. The structure for this table is referred to as IMAGE_EXPORT_DIRECTORY (Ghidra refers to it as

IMAGE_DIRECTORY_ENTRY_EXPORT).

The MOV instruction at 140001f73, which this question refers to, dereferences the 0x1c offset from the address in RBX . The 0x1c offset within the

Export Directory Table is the location of the AddressOfFunctions field. This field contains the RVA of the array of addresses for exported

functions, and this value is placed into EDX . EDX will therefore contain the RVA of the Export Address Table. Ghidra refers to this area as Export

Function Pointers.

29. What do the remaining instructions (140001f73-140001f84) within player.exe accomplish, and how does this confirm our suspicions

about this function's purpose? Rename the function.

Answer: The remaining instructions set up the return value for this function. Specifically, they identify the virtual address of the decoded DLL's

single export named Start , and place this address into RAX . We can rename FUN_140001e80 to get_export_address .

Explanation: Based on the analysis we performed in the previous question, we know RDX contains the RVA of the Export Address Table. At

140001f7d, the image base value stored in R14 is added to RDX , and the result is placed into RAX . Therefore, RAX contains the VA of the Export

Address Table.

At 140001f�1, the MOV instruction places the only RVA in the Export Address Table into EAX (RCX is zero in this instruction, and you can confirm

this via debugging). As a result, EAX will store the RVA of the exported function named Start .

Finally, at 140001f�4 the ADD instruction adds the mapped DLL's image base to the RVA of the Start function. This means, the return value of

FUN_140001e�0 is the VA of the Start function.

We can rename FUN_140001e80 to get_export_address .

� �

Note

Use a combination of both static and dynamic code analysis to answer this question.

�

30. Return to the calling function desteg and view the next instruction at 140001493. What does this instruction accomplish?

Answer: It executes the DLL's exported function Start . The address of Start is retrieved from the Export Address Table, as discussed in the

previous question.

� �

© 2022 Anuj Soni 61

Lab Objectives, Revisited

After completing this lab, you now have experience performing the following:

Identifying code that checks for a valid Windows Executable.

Identifying code that maps an executable into memory in preparation for execution.

Identifying code that applies relocations, if needed.

Identifying code that loads dependent DLLs and resolves APIs.

Identifying code that updates section permissions in memory.

Identifying code that locates the entry point for execution.

•

•

•

•

•

•

62 © 2022 Anuj Soni

Technet24

Lab 1.3: Analyzing Shellcode Execution

Background

In this lab, we will extend our knowledge of program execution to malicious shellcode execution. We will extract shellcode from memory and

perform a combination of static and dynamic code analysis to understand the executable content. We will make use of x32dbg, WinDbg, and

Ghidra to support our analysis.

Lab Objectives

Extract shellcode from a running process.

Perform static code analysis of shellcode.

Analyze code that accesses the Process Environment Block (PEB).

Identify code that resolves Windows APIs.

Identify the hashing algorithm used to obfuscated imported DLLs and API names.

Use WinDBG to interrogate various data structures and members.

Experience an analysis workflow that involves Ghidra, x32dbg, and WinDbg.

Lab Preparation

First, extract host32.exe from Malware/Section1/host32.zip within both the Static and Dynamic VMs (password: malware).

Within the Dynamic VM, load host32.exe into x32dbg.

In addition, load host32.exe into WinDbg Preview. To accomplish this task, first double-click the WinDbgX shortcut on the desktop. Then,

browse to File > Start debugging > Launch executable and navigate to host32.exe . If you do not see any code, it means you need to change the

window layout within WinDbg. Click on the View tab and choose Layouts > Disassembly. Then, return to the Home tab and choose Restart. You

should now see some content, including disassembly. To rearrange windows within the interface, drag and drop each title bar as desired. To

access the Breakpoints window, browse to the View tab and choose Breakpoints.

Lab Questions

In the first part of this lab, we will use x32dbg to extract shellcode from memory when host32.exe is executed.

•

•

•

•

•

•

•

Note

We disabled ALSR for host32.exe so the virtual addresses in the solutions will match those in your environment.

�

1. During execution, host32.exe allocates space for shellcode using the VirtualAlloc API. At what address within host32.exe is

VirtualAlloc called?
�

�

© 2022 Anuj Soni 63

Note

Answer this question using x32dbg within the Dynamic VM.

�

2. Identify the starting address for the newly allocated region, and dump the address into a Dump window. Continue stepping over the

code (i.e, use the keyboard shortcut F8). At what address within host32.exe does a CALL instruction produce content in the Dump

window that is likely shellcode?

�

�

3. Dump the shellcode to disk within the Dynamic VM. Then, copy and paste the dumped shellcode file to the Static VM and load it into

Ghidra. Specifically, add the file to the Section1 project, disassemble all bytes, and perform the auto-analysis.

�

�

Notes

Do not exit the debugger in the Dynamic VM.

Give the dumped file a descriptive name such as host32_sc.bin .

When loading the dumped shellcode into Ghidra within the Static VM, choose the Language listed as x86-default-32-little-Visual Studio

(see Explanation for a screenshot).

�

•

•

•

4. At offset 00000001 within Ghidra, we see the instruction CALL FUN_0000008f . Jump to 0000008f and observe four PUSH instructions

leading up to a CALL EBP at offset 000000a0. Highlight the EBP operand with a single-click, and scroll down to observe other

CALL EBP instructions throughout the shellcode. Based on a brief review of the argument pushed onto the stack before each CALL,

what can you say about the likely purpose of these function calls?

�

�

5. Return to the instruction CALL EBP at offset 000000a0 within Ghidra. Relying on static code analysis only, at what address is the

function that will be called?

�

�

Note

This question asks for the offset of the function within Ghidra, not the address of the function if you debugged the shellcode.

�

64 © 2022 Anuj Soni

Technet24

We just discussed the structure referenced by the source operand in the MOV instruction at 0000000b. In the subsequent instructions, we

see other offsets that are likely related to this structure and its members. To accurately identify what structures and members the upcoming

operands point to, we will use WinDbg within the Dynamic VM. However, keep Ghidra open within the Static VM as it continues to be our

primary tool for static code analysis, and we will use its interface to add comments and document our work.

You should now be looking at the shellcode within WinDbg.

As we discussed earlier, the MOV instruction at offset 0000000b (from the beginning of the allocated memory region) includes fs:

[edx+30h] in the source operand. We believe this source operand references the address of the PEB-let's confirm this.

6.
Let's review the function beginning at offset 00000006. First, observe the instruction at 0000000b. What data structure is likely

referenced by the source operand?

�

�

7. You should already have host32.exe loaded into WinDbg within the Dynamic VM. Set a breakpoint and run the program so that it

arrives at the entry point.

�

�

Important

You've reached Checkpoint #1 in this exercise.

�

8. Identify the starting address of the memory region allocated via VirtualAlloc.

�

�
Note

This question asks you to accomplish the same task we performed in x32dbg, but this time using WinDbg Preview.

�

9. Within WinDbg, set an access breakpoint on the starting address of the allocated memory region. Then, run the program so we arrive at

the first instruction of the shellcode.

�

�

Warning

When referring to an instruction address in WinDbg, this exercise will use offsets instead of addresses. This is because the starting address of

the region allocated will vary.

�

© 2022 Anuj Soni 65

Important

You've reached Checkpoint #2 in this exercise.

�

15. The InMemoryOrderModuleList member is comprised of two pointers, and the first points to the head of a double-linked list of other

LIST_ENTRY structures. These LIST_ENTRY structures reside in yet another larger data structure. What type of data structure is the

larger structure?

�

�

Note

To answer this question, it may be helpful to review the slides for this module. Specifically, see the slide with a title that begins with "Each

Module List Contains Two Pointers"

�

16. The pointers that comprise the InMemoryOrderModuleList LIST_ENTRY structure point to a member within LDR_DATA_TABLE_ENTRY.

What is the name of the member within LDR_DATA_TABLE_ENTRY?

�

�

17. When execution arrives at offset 00000015, EDX will contain the address of the InMemoryOrderLinks member within the first

LDR_DATA_TABLE_ENTRY structure. With this in mind, how would you describe the value placed into ESI in the instruction at offset

00000015?

�

�

© 2022 Anuj Soni 67

Technet24

Note

This question is asking for a description of the value placed into ESI, not the exact value. As a reminder, this is the LDR_DATA_TABLE_ENTRY

structure:

�

18. Within WinDbg, allow the MOV instruction at offset 00000015 to execute. Confirm that the first module name resides at the instruction

in ESI.

�

�

19. Within Ghidra in the Static VM, review the loop beginning at 0000001e. What is the likely purpose of this loop? After your analysis is

complete, use Ghidra to rename the label associated with this loop.
�

�

68 © 2022 Anuj Soni

Before moving forward, observe the instruction PUSH EDI at offset 0000002f. This pushes the output from the loop just discussed onto the

stack. Make a comment in Ghidra, and we will return to this observation later.

Notes

The LODSB (load single byte) operation at offset 00000020 places one byte (in this case, a character) from the buffer in ESI into AL.

You can ignore the CMP, JL, and SUB instructions between offsets 00000021 and 00000025 when answering this question. These

instructions simply convert each character placed into AL to uppercase.

Static code analysis should be sufficient, but you can debug the code with x32dbg or WinDbg if you prefer.

�

•

•

•

20. Let us continue reviewing key components of the shellcode. At offset 00000030 within Ghidra, we have the instruction MOV EDX,

dword ptr [EDX + 0x10] . Before this instruction is executed, EDX still contains the address of the InMemoryOrderLinks member

within an LDR_DATA_TABLE_ENTRY structure. With this in mind, describe the value placed into EDX in this instruction.

�

�

Note

This question is asking for a description of the value placed into ESI, not the exact value. As a reminder, this is the LDR_DATA_TABLE_ENTRY

structure:

�

© 2022 Anuj Soni 69

Technet24

Lab Solutions

In the first part of this lab, we will use x32dbg to extract shellcode from memory when host32.exe is executed.

28. Review all remaining calls to resolved functions. How would you summarize the purpose of this shellcode? Again, use a debugger to

answer this question.

�

�

1. During execution, host32.exe allocates space for shellcode using the VirtualAlloc API. At what address within host32.exe is

VirtualAlloc called?

Answer: VirtuallAlloc is called at 0040�453.

Explanation: Within x32dbg, set a breakpoint on VirtualAlloc by typing bp VirtualAlloc in the command window. Then, run the program. When

the breakpoint is hit, allow the function to Debug > Execute till return and step into the calling function. Scroll up and you will observe a CALL ECX

at 0040�453. This instruction calls VirtualAlloc.

� �

Note

Answer this question using x32dbg within the Dynamic VM.

�

2. Identify the starting address for the newly allocated region, and dump the address into a Dump window. Continue stepping over the

code (i.e, use the keyboard shortcut F8). At what address within host32.exe does a CALL instruction produce content in the Dump

window that is likely shellcode?

Answer: At 0040�4�0, the CALL instruction places shellcode in the allocated memory region.

Explanation: After VirtualAlloc is called at 0040�453, the starting address for the newly allocated memory region is stored in EAX. Right-click >

Follow in Dump on the register value to observe the memory region and continue stepping over the code. At 0040�4�0, a function is called that

produces shellcode in the dump window:

Notice the opcodes FC E8 , which represent the instructions CLD and CALL. This instruction is commonly seen at the beginning of shellcode.

� �

3. Dump the shellcode to disk within the Dynamic VM. Then, copy and paste the dumped shellcode file to the Static VM and load it into

Ghidra. Specifically, add the file to the Section1 project, disassemble all bytes, and perform the auto-analysis.
� �

72 © 2022 Anuj Soni

Explanation: To dump the shellcode, right-click on the first byte in the dump window and choose Follow in Memory Map. Then, right-click on the

memory region highlighted in gray and choose Dump Memory To File. Give the dumped file a descriptive name such as host32_sc.bin .

Copy and paste host32_sc.bin from the Dynamic VM to the Static VM. Load the file into the Section1 project within Ghidra. When prompted to

start the import, choose the following language:

Then, double-click file in the project window and choose not to analyze the file. Next, click on the first byte of shellcode and type D on the

keyboard to disassembly the bytes. Finally, browse to Analysis > Auto Analyze and click Analyze to begin processing.

Notes

Do not exit the debugger in the Dynamic VM.

Give the dumped file a descriptive name such as host32_sc.bin .

When loading the dumped shellcode into Ghidra within the Static VM, choose the Language listed as x86-default-32-little-Visual Studio

(see Explanation for a screenshot).

�

•

•

•

4. At offset 00000001 within Ghidra, we see the instruction CALL FUN_0000008f . Jump to 0000008f and observe four PUSH instructions

leading up to a CALL EBP at offset 000000a0. Highlight the EBP operand with a single-click, and scroll down to observe other

CALL EBP instructions throughout the shellcode. Based on a brief review of the argument pushed onto the stack before each CALL,

what can you say about the likely purpose of these function calls?

Answer: In all cases, a CALL EBP instruction is preceded by a PUSH instruction that places a hexadecimal value onto the stack. When analyzing

shellcode, this is a good indication that the function called is responsible for resolving APIs based on a provided hash.

� �

5. Return to the instruction CALL EBP at offset 000000a0 within Ghidra. Relying on static code analysis only, at what address is the

function that will be called?
� �

© 2022 Anuj Soni 73

Technet24

We just discussed the structure referenced by the source operand in the MOV instruction at 0000000b. In the subsequent instructions, we

see other offsets that are likely related to this structure and its members. To accurately identify what structures and members the upcoming

operands point to, we will use WinDbg within the Dynamic VM. However, keep Ghidra open within the Static VM as it continues to be our

primary tool for static code analysis, and we will use its interface to add comments and document our work.

Answer: The CALL instruction at offset 000000a0 will execute the function beginning at offset 0000000�.

Explanation: To investigate what value EBP will contain when the instruction CALL EBP is executed, we look for other references to EBP. Several

instructions earlier, observe the POP EBP at 000000�f. Since this is the first instruction in function FUN_0000008f , the value popped into EBP will

be the return value pushed onto the stack when the function is called. If we return to the beginning of the shellcode, we can see that the offset of

the instruction after the CALL to FUN_0000008f is 0000000�.

Note

This question asks for the offset of the function within Ghidra, not the address of the function if you debugged the shellcode.

�

6. Let's review the function beginning at offset 00000006. First, observe the instruction at 0000000b. What data structure is likely

referenced by the source operand?

Answer: The Process Environment Block (PEB).

Explanation: At address 00000009, EDX is zeroed out. At 0000000b, FS:[EDX + 0x30] refers to FS:[30]. This is the location of the pointer to the

PEB in 32-bit code.

� �

7. You should already have host32.exe loaded into WinDbg within the Dynamic VM. Set a breakpoint and run the program so that it

arrives at the entry point.

Explanation: In the command window, type bp $exentry . As a reminder, $exentry is a pseudo-register (https://for710.com/pseudo-register).

Then, run the program by clicking Go on the top left of the WinDBG GUI, or type the F5 key. Alternatively, type g in the command window and

press Enter . You should arrive at address 004094E0.

� �

Important

You've reached Checkpoint #1 in this exercise.

�

8. Within WinDbg, identify the starting address of the memory region allocated via VirtualAlloc.

Explanation: There are multiple approaches to accomplishing this task.

One option is to use the command bp 00408453 to set a breakpoint where VirtualAlloc is called (we identified this address in the first question of

this lab). Stepping over this instruction reveals the appropriate return value in EAX.

Alternatively, you could set a breakpoint on VirtualAlloc using the command bp KERNEL32!VirtualAllocStub and then run the program. When

the breakpoint is hit, click the Step Out button located on the top-left of the WinDbg Preview GUI or type gu to return to the calling function.

� �

Note

This question asks you to accomplish the same task we performed in x32dbg, but this time using WinDbg Preview.

�

74 © 2022 Anuj Soni

Explanation: Within the WinDbg GUI, click Step Over six times until the MOV instruction at offset 0b is executed. Then, print the value stored

within EDX with the command r edx . This should match your output from the previous question.

Note

As mentioned in the Warning above "0000000b" refers to the offset from the beginning of the allocated region.

Once you confirm the addresses match, write a comment next to the instruction in Ghidra. Remember, we are using WinDBG to

investigate structures in memory, but Ghidra is still our main interface for static code analysis.

�

•

•

12. Within WinDBG, you should now be at offset 0000000f. Type a command to print out the contents of the PEB, including its members

and values.

Explanation: Type the command dt ntdll!_PEB @$peb . You can also simply type dt _PEB @$peb , though the former command is more precise.

In addition, you could use the PEB address output from the previous question in the following format: dt _PEB <PEB address> , where <PEB

address> is the hexadecimal address of the PEB. This outputs the PEB structure and values without using an automatic pseudo register.

Your output should resemble the following:

� �

Note

Your command should include the automatic pseudo register that corresponds to the PEB or the PEB's address.

�

13. Review the MOV instruction at offset 0000000f in the shellcode (you can use Ghidra or WinDbg to view this code). What member within

the PEB is referenced in the source operand (i.e., EDX + 0xc), and what type of data structure does the value of that member point to?

Review the output from the previous question to answer this question, and write an appropriate comment next to the instruction in

Ghidra.

Answer: The source operand references the Ldr member, and this member's value is a pointer to a data structure of type PEB_LDR_DATA. The

MOV instruction places the address of the PEB_LDR_DATA data structure into EDX.

Explanation: The source operand in the instruction at 0000000f is dword ptr [EDX + 0xc] . EDX contains the address of the PEB. View the PEB

structure output from the previous question and find the member located at 0ffset 0xc - it is Ldr . The Ldr member's value is a pointer to a

structure of type PEB_LDR_DATA (see https://for710.com/peb). This structure has information about a process's loaded modules.

� �

76 © 2022 Anuj Soni

Technet24

Using WinDbg, review the MOV instruction at offset 00000012 and answer the following three questions.

14. What member within the PEB_LDR_DATA structure does the source operand reference (i.e., edx+14h), and what type of structure is this

member? Make an appropriate comment for this instruction in Ghidra.

Answer: InMemoryOrderModuleList is a structure of type LIST_ENTRY.

Explanation: EDX contains the address of the PEB_LDR_DATA structure, so we need to understand what member is located at its 0x14 offset. To

view the appropriate PEB_LDR_DATA structure, you can click on the Ldr link in the previously generated PEB output. Alternatively, you can

observe the Ldr value in the previously generated PEB output (i.e., the address of the PEB_LDR_DATA structure) and type a command using the

format dt ntdll!_PEB_LDR_DATA <address> . For example, using the values in the PEB output shown earlier, the command is dt ntdll!

_PEB_LDR_DATA 0x77007be0 . Whichever approach you take, printing the PEB_LDR_DATA structure should display similar output:

At the 0x14 output we find the InMemoryOrderModuleList member (i.e., PEB->Ldr->InMemoryOrderModuleList). As shown in the WinDbg

output, this member is of type LIST_ENTRY.

� �

Important

You've reached Checkpoint #2 in this exercise.

�

15. The InMemoryOrderModuleList member is comprised of two pointers, and the first points to the head of a double-linked list of other

LIST_ENTRY structures. These LIST_ENTRY structures reside in yet another larger data structure. What type of data structure is the

larger structure?

Answer: The pointers that comprise the InMemoryOrderModuleList member point to other LIST_ENTRY structures within a data structure of type

LDR_DATA_TABLE_ENTRY.

� �

Note

To answer this question, it may be helpful to review the slides for this module. Specifically, see the slide with a title that begins with "Each

Module List Contains Two Pointers".

�

16. The pointers that comprise the InMemoryOrderModuleList LIST_ENTRY structure point to a member within LDR_DATA_TABLE_ENTRY.

What is the name of the member within LDR_DATA_TABLE_ENTRY?

Answer: Each pointer in the InMemoryOrderModuleList LIST_ENTRY structure points to an InMemoryOrderLinks member within a

LDR_DATA_TABLE_ENTRY structure. As a reminder, this member is a structure of type LIST_ENTRY.

� �

© 2022 Anuj Soni 77

Before moving forward, observe the instruction PUSH EDI at offset 0000002f. This pushes the output from the loop just discussed onto the

stack. Make a comment in Ghidra, and we will return to this observation later.

19.
Within Ghidra in the Static VM, review the loop beginning at 0000001e. What is the likely purpose of this loop? After your analysis is

complete, use Ghidra to rename the label associated with this loop.

Answer: This loop calculates the ROR 13 hash of a module name. Within Ghidra, we could rename the label at offset 0000001e to

hash_filename .

Explanation: At offset 00000020, each byte of a module name is placed into AL (i.e., EAX). The ROR instruction at offset 00000027 rotates the

existing value of EDI by 13 bits (EDI is initialized to zero at offset 0000001c). At 0000002a a single character from the module name (previously

placed into EAX at offset 00000020) is added to EDI. This process continues for each character in the module file name.

� �

Notes

The LODSB (load single byte) operation at offset 00000020 places one byte (in this case, a character) from the buffer in ESI into AL.

You can ignore the CMP, JL, and SUB instructions between offsets 00000021 and 00000025 when answering this question. These

instructions simply convert each character placed into AL to uppercase.

Static code analysis should be sufficient, but you can debug the code with x32dbg or WinDbg if you prefer.

�

•

•

•

20. Let us continue reviewing key components of the shellcode. At offset 00000030 within Ghidra, we have the instruction MOV EDX,

dword ptr [EDX + 0x10] . Before this instruction is executed, EDX still contains the address of the InMemoryOrderLinks member

within an LDR_DATA_TABLE_ENTRY structure. With this in mind, describe the value placed into EDX in this instruction.

� �

© 2022 Anuj Soni 79

Technet24

Within Ghidra, view the instructions at offsets 00000033 through 0000003�:

Answer: The MOV instruction at offset 00000030 places the base address of a loaded module into EDX.

Explanation: EDX contains the address of the InMemoryOrderLinks member, which is at offset 0x� within an LDR_DATA_TABLE_ENTRY data

structure. Adding 0x10 to this offset equals 0x1�, which brings us to the DllBase member. This member's value specifies the base address of the

module (i.e., the starting address of the executable in memory).

Note

This question is asking for a description of the value placed into ESI, not the exact value. As a reminder, this is the LDR_DATA_TABLE_ENTRY

structure:

�

Important

You've reached Checkpoint #3 in this exercise.

�

80 © 2022 Anuj Soni

Observe that the ADD instruction at offset 0000003f adds the Export Directory RVA (first operand) to the base address of the module

(second operand) to calculate the Export Directory VA. At 00000041 this VA is pushed onto the stack. Make a comment in Ghidra with this

information. We will revisit this observation later.

21.
At offset 00000033, consider the contents of EDX discussed in the previous question. With this in mind, what field within a 32-bit

Windows executable header is dereferenced in the source operand of the MOV instruction at offset 00000038? Why would shellcode

need to access this field? After performing your analysis, insert appropriate comments within Ghidra for each instruction.

Answer: The MOV instruction at offset 0000003� places the Export Directory RVA of a loaded module into EAX. Shellcode commonly accesses

the export directory of loaded modules to iterate over the module's exported functions and resolve APIs required by the shellcode.

Explanation: The MOV instruction at offset 00000033 dereferences EDX + 0x3c and places the value into EAX. Based on our analysis in the

previous question, we know EDX contains the base address of a loaded module. Within a 32-bit Windows executable, the e_lfanew field is

located at offset 0x3c. Dereferencing this value places the RVA of the PE header into EAX.

The ADD instruction at offset 0000003� adds the base address of a module to the PE header RVA to place the VA of the PE header into EAX.

The MOV instruction at offset 0000003� adds 0x7� to the starting address of the PE header. To identify what field this refers to, we can open

host32.exe (or any 32-bit executable) within CFF Explorer. Within host32.exe , the PE header begins at offset 0x7�. Adding 0x7� to this value

equals 0xF0, and browsing to this offset within CFF Explorer leads us to the Export Directory RVA.

� �

Notes

Static analysis should be sufficient to answer this question.

For a reminder of what fields appear at various offsets within a 32-bit executable, open any 32-bit program in CFF explorer (e.g.,

host32.exe)

�

•

•

22. Review the loop beginning at offset 00000054 in the shellcode. What is its likely purpose? After your analysis is complete, use Ghidra

to rename the label associated with this loop.

Answer: This loop calculates the ROR 13 hash of an exported function name from a loaded module and places the resulting value in EDI. Within

Ghidra, we could rename the label at offset 00000054 to hash_exportname .

Explanation: This loop includes ROR and ADD operations that are identical to instructions within the loop at offset 0000001e. We concluded that

earlier loop hashes the file name of a loaded module. This suggests a similar hash algorithm is being used in the current loop under analysis, but

what content is this loop hashing? Our analysis from the previous question suggests it is probably hashing a module's exported function names.

Let's confirm this.

To investigate, we will debug the shellcode in x32dbg. First, restart the host32.exe process. Then, allow the memory region to be allocated via

VirtualAlloc. When VirtualAlloc returns, dump the address in EAX to the dump window to view the allocated memory region. Next, set a hardware

execution breakpoint on the first byte of the allocated region (i.e., right-click > Breakpoint > Hardware, Execute). Finally, run the program and you

should arrive at the beginning of the shellcode.

� �

Notes

Consider using x32dbg to set a breakpoint on the LODSB instruction at offset 0000005�. When the breakpoint is hit, view the address

contained in ESI in the dump window (as a reminder, ESI specifies the address of the byte to load). For additional context, right-click on a

byte in the dump window and Follow in Memory Map.

To arrive at the shellcode within x32dbg, allow the VirtualAlloc API to execute and set a hardware execution breakpoint on the first byte of

the newly allocated memory.

You do not need to evaluate each instruction in the loop to determine the purpose of this code with high confidence.

�

•

•

•

© 2022 Anuj Soni 81

Technet24

Next, set a breakpoint on the LODSB instruction at offset 0000005�. As a reminder, the LODSB instruction loads one byte from ESI into EAX. Since

EAX is manipulated by the ADD instruction with each iteration of the loop, ESI likely contains the content that is hashed.

Within x32dbg, continue running the shellcode. Each time execution hits the LODSB instruction at 0000005�, ESI points to a function name. If we

dump the address in ESI to the dump window, you will observe multiple function names nearby. For additional context, we can pivot from the

dump window to the memory map, and it will be clear these function names are stored in a loaded DLL-specifically, the function names list each

module's exported functions.

23. What does the ADD instruction at offset 00000060 accomplish?

Answer: It adds the hash of a module name (right operand) to the hash of an exported function name (left operand).

Explanation: We're focused on the instruction ADD EDI, dword ptr [EBP + -0x8] at offset 000000�0. EDI contains a hashed exported function

name, as discussed in the previous question. The second operand references the hashed value of a module file name that was pushed onto the

stack at offset 0000002f. The ADD instruction calculates the sum of both hashes and places the result in EDI.

� �

Note

Recall the instruction PUSH EDI at offset 0000002f, which pushed the output from the loop at offset 0000001e onto the stack.

�

24. Beginning at 00000063, we see CMP and JNZ instructions. What is evaluated, and under what conditions is the jump taken?

Answer: The CMP instruction evaluates if the hash provided as an argument (the first argument) matches the calculated hash. The jump is taken

if there is not a match.

Explanation: First, let's review the instruction CMP EDI, dword ptr [EBP + 0x24] at 000000�3. We know EDI contains the sum of a module and

export function hashes. The pointer references EBP plus a value, which often refers to an argument in 32-bit code. If we highlight EBP and observe

other references within the current function, we will find only one in the function prologue. This means EBP is being used as a base pointer,

supporting our theory that the second operand in the CMP instruction references an argument passed to the function beginning at offset

0000000�.

To confirm our theory, first set a breakpoint on the CMP instruction at offset 000000�3 within x32dbg. Then, run the program and view what the

second operand points to:

As we can see in the information window below the disassembly, the second operand points to 72�774C. If we look at the first CALL to the

function beginning at offset 0000000�, we can see this matches the first argument passed (i.e., the last value pushed before the CALL):

� �

Notes

Recall that, in 32-bit code, EBP plus a value often refers to an argument.

Consider using x32dbg to investigate the CMP and JNZ instructions.

�

•

•

82 © 2022 Anuj Soni

Analyze code that accesses the Process Environment Block (PEB).

Identify code that resolves Windows APIs.

Identify the hashing algorithm used to obfuscated imported DLLs and API names.

Use WinDBG to interrogate various data structures and members.

Use an analysis workflow that involves Ghidra, x32dbg, and WinDbg.

•

•

•

•

•

84 © 2022 Anuj Soni

Technet24

Lab 2.1: Encryption Essentials: Quiz

Background

In this brief lab, the goal is to reinforce and recall essential information necessary to understand encryption in malware.

Lab Objectives

Confirm your understanding of basic cryptography terminology.

Differentiate symmetric and asymmetric cryptography.

Compare cryptography modes of operation.

Differentiate similar ciphers.

Identify Microsoft APIs commonly used for encryption and decryption.

Lab Preparation

None required.

Lab Questions

•

•

•

•

•

1. Describe the primary differences between asymmetric and symmetric-key algorithms.

�

�

2. How would you characterize the difference between a block cipher and stream cipher?

�

�

3. AES uses an S-box. What does the "S" in S-box refer to?

�

�

© 2022 Anuj Soni 85

4.
When considering block ciphers, there are three modes of operation we discussed. What is the most basic mode of operation?

�

�

5. How would you characterize the difference between the ECB and CBC modes of operation?

�

�

6. Salsa and ChaCha algorithms consist of ARX operations. What do the A, R, and X represent?

�

�

7. What constant is associated with Salsa and ChaCha when a 32-bit key is used?

�

�

8. What is the most obvious visual difference between the initial state of ChaCha vs. the initial state of Salsa?

�

�

9. Curve25519 is an Elliptic Curve Cryptography (ECC) curve that generates a shared key. With two users, User A and User B, and their

corresponding public and private keys, which of the below combination of keys will produce the same shared secret when provided to

the curve algorithm? (Choose 2.)

Curve(PrivateA, PublicB)

Curve(PrivateA, PrivateB)

Curve(PublicA, PublicB)

Curve(PrivateB, PublicA)

�

�

10. If a program uses the Microsoft Crypto API, which of the following APIs is typically called first?

CryptImportKey

�

�

86 © 2022 Anuj Soni

Technet24

Lab Solutions

CryptAcquireContext

CryptGenRandom

CryptGenKey

CryptEncrypt

CryptExportKey

11. Given a CALL to CryptImportKey during a debugging session, how could you determine the algorithm associated with the imported

key?

�

�

12. Why would a program that performs encryption call the CryptGenRandom API?

�

�

1. Describe the primary differences between asymmetric and symmetric-key algorithms.

Answer: Symmetric key algorithms use the same key for encryption and decryption, while asymmetric key algorithms use different keys for

encryption and decryption. Symmetric encryption is generally faster from a performance perspective.

� �

2. How would you characterize the difference between a block cipher and stream cipher?

Answer: Block ciphers encrypt a block of plaintext data of a fixed length and output a encrypted block of data. Stream ciphers operate against

individual bytes of data, typically using the XOR operation.

� �

3. AES uses an S-box. What does the "S" in S-box refer to?

Answer: Substitution box. An S-box helps substitute bytes and contributes to the scrambling of data associated with an encryption or decryption

algorithm.

� �

4. When considering block ciphers, there are three modes of operation we discussed. What is the most basic mode of operation?� �

© 2022 Anuj Soni 87

Answer: Electronic Code Book (ECB).

5. How would you characterize the difference between the ECB and CBC modes of operation?

Answer: CBC (Cipher Block Chaining) interconnects each encrypted block with the next encrypted block. In contrast, there is no relationship

between one encrypted block and the next block when using ECB mode.

� �

6. Salsa and ChaCha algorithms consist of ARX operations. What do the A, R, and X represent?

Answer: Add, Rotate, and XOR.

� �

7. What constant is associated with Salsa and ChaCha when a 32-bit key is used?

Answer: expand 32-byte k

� �

8. What is the most obvious visual difference between the initial state of ChaCha vs. the initial state of Salsa?

Answer: In ChaCha, the "expand 32-byte k" constant characters appear consecutively. In Salsa, that same constant is split up into four four-byte

chunks and they are separated from one another (i.e., the constant is split along the top-left to bottom-right diagonal).

� �

9. Curve25519 is an Elliptic Curve Cryptography (ECC) curve that generates a shared key. With two users, User A and User B, and their

corresponding public and private keys, which combination of keys will produce the same shared secret when provided to the curve

algorithm?

Answer: Curve(PrivateA, PublicB) and Curve(PrivateB, PublicA). In other words, both combinations of one user's private key and the other user's

public key will produce the same shared key.

� �

10. If a program uses the Microsoft Crypto API, which of the following APIs is typically called first?

Answer: CryptAcquireContext

� �

11. Given a CALL to CryptImportKey during a debugging session, how could you determine the algorithm associated with the imported

key?

Answer: The second argument passed to CryptImportKey points to a BLOBHEADER structure. One member of this structure is ALG_ID, and it

specifies the algorithm associated with the key BLOB. For a comprehensive list of algorithm IDs, see https://for710.com/algid.

� �

12. Why would a program that performs encryption call the CryptGenRandom API?

Answer: CryptGenRandom generates a specified number of random bytes. In programs that perform encryption or decryption, random bytes are

often required to generate a key, nonce, or initialization vector (IV).

� �

88 © 2022 Anuj Soni

Technet24

Lab Objectives, Revisited

This lab reinforced the following knowledge:

Confirm your understanding of basic cryptography terminology.

Differentiate symmetric and asymmetric cryptography.

Compare cryptography modes of operation.

Differentiate similar ciphers.

Identify Microsoft APIs commonly used for encryption and decryption.

•

•

•

•

•

© 2022 Anuj Soni 89

Lab 2.2: Identifying File Encryption and Key Protection in Ransomware

Background

In this lab, we will analyze ransomware and evaluate how it performs file encryption and key protection.

Lab Objectives

Identify specific ciphers used in a ransomware sample.

Determine the purpose of an identified cipher (e.g., file encryption or key protection).

Recognize Windows APIs that facilitate encryption.

Summarize key aspects of how ransomware performs file encryption.

Lab Preparation

First, extract boot.dll from Malware\Section2\boot.zip within both the Static and Dynamic 710 VMs (password: malware). Place the

extracted DLLs on each desktop.

Within the Static VM, load boot.dll into Ghidra. When prompted, create a new project named 710_Section2 . Process the file and initiate auto-

analysis, but there is no need to choose WindowsPE x86 Propagate External Parameters because the DLL is �4-bit. Ensure that the

FindCrypt analyzer is checked.

Within the Dynamic VM, load boot.dll into x�4dbg in preparation for debugging. This �4-bit DLL exports a function named

DllRegisterServer , so you will need to load C:\windows\system32\regsvr32.exe into x�4dbg, and update the command line via File > Change

Command Line. The command line to use is "C:\Windows\System32\regsvr32.exe" C:\Users\REM\Desktop\boot.dll .

Within x�4dbg in the Dynamic VM, browse to Options > Preferences from the menu bar. Then, go to the Events tab and check the Dll Entry

option. Also jump to the Exceptions tab, single-click on the only Exception Filter, and click the radio button Do not break. This will ensure

exceptions are processed as Windows would normally process them without halting the debugger. Next, click Save.

Then, restart the target program by browsing to Debug > Restart.

Finally, take a VMware snapshot of the Dynamic VM and name it Lab2.2 , or something similar.

•

•

•

•

Note

We disabled ALSR for boot.dll so the virtual addresses in the solutions will match those in your environment.

�

90 © 2022 Anuj Soni

Technet24

Lab Questions

If you performed behavioral analysis with this sample, you could confirm it is ransomware and it encrypts files as expected. However, we will skip

this step to save time.

Within PeStudio, briefly review the imports. Observe that there are no CryptoAPI functions in the IAT, but it is possible these APIs are resolved

dynamically. In fact, you might observe the APIs LoadLibraryExW and GetProcAddress which are commonly used to load libraries and

resolve APIs at runtime. Also observe file interaction APIs including CreateFileW, WriteFile and SetFilePointerEx.

At this point, it makes sense to debug the program to confirm our suspicions about the function we just discussed. Within the Dynamic VM,

switch to x�4dbg where the debugger should be paused at the entrypoint for regsvr32.exe . Run the target program until boot.dll is

loaded (you should see the DLL mentioned in the title bar). Finally, enter the command bp 180004e30 to set a breakpoint on the function we

suspect implements ChaCha.

1. Within the Static VM, perform some brief static file analysis. Load boot.dll into PeStudio and view the strings output. Based on a

review of the embedded strings, what potential crypto algorithm(s) might this program use?

�

�

2. Within the Static VM, switch to Ghidra. Since we ran the FindCrypt extension during the auto-analysis, review the Symbol Tree > Labels

for any CRYPT_ prefixes. What constants did FindCrypt identify?

�

�

3. A logical next step is to identify the function that references these constants in search of the primary encryption function.

Unfortunately, Ghidra does not identify any references to these constants. We need another approach. What is one approach we can

use within Ghidra to search for functions that perform Salsa or ChaCha encryption?

�

�

4. Using the manual approach discussed in the previous question, at what address is the function that likely performs encryption? Also,

what algorithm do you suspect the function implements and why?

�

�

Important

You've reached Checkpoint #1 in this lab.

�

© 2022 Anuj Soni 91

Since the function at 1�0004e30 appears to implement the ChaCha cipher, let's update its name within Ghidra. Switch briefly to your Static

VM and update the function name to chacha_cipher .

Return to the Dynamic VM. If you continue running the program, it will pause at 1�0004e30 repeatedly. In many cases, the function is used to

process the same content discussed in the previous question as the ransomware note is placed throughout the filesystem. We want to

explore other potential uses of this cipher. Is the function at 1�0004e30 only used to decrypt the ransom note, or is it also used for common

ransomware tasks like encrypting files?

Remove the breakpoint on the 1�0004e30 for now (i.e. go to the Breakpoint tab, choose the breakpoint and hit the Delete key on your

keyboard). Set a breakpoint on the API mentioned in the answer to the previous question and continue running the program. The debugger

should arrive at the breakpoint.

5.
Continue executing the program. You should eventually arrive at 180004e30, where we set the breakpoint. Review the arguments

passed to this function. Which argument supports our theory that the function implements ChaCha and not Salsa? (e.g., first argument,

second argument) What about this argument confirms the algorithm?

�

�

6. Since we are paused at a function that implements a cipher, some content is about to be encrypted or decrypted (remember, this is a

symmetric algorithm so the function could be used to both process plaintext or ciphertext). Within the debugger, review the remaining

arguments passed to 180004e30 and allow the function to return. Does this first execution of 180004e30 encrypt or decrypt data?

What can you conclude about the content encrypted or decrypted?

�

�

Note

Consider that an encryption/decryption function has to operate against some plaintext or encrypted data and the resulting content must be

placed somewhere in memory.

�

7. To investigate how file encryption is performed, let's identify any code that takes file content as input, since this would be necessary

step to encrypt a file. What Windows API is often responsible for placing file content into a buffer?

�

�

8. At what address within boot.dll does this CALL to ReadFile occur?

�

�

92 © 2022 Anuj Soni

Technet24

We identified the function and algorithm used to encrypt file data, and we also understand how the per-file key and nonce are generated. In

order for an attacker to successfully hold files for ransom, they must be able to decrypt the data upon payment. This means the per-file

encryption keys must be stored and protected such that the attacker can gain access but the target organization cannot independently

decrypt files. Let's explore how this ransomware protects the per-file encryption key.

Recall that ransomware often uses asymmetric algorithms (e.g., RSA, Elliptic-curve cryptography) to protect symmetric keys. When we

performed static file analysis of boot.dll , recall that we observed the embedded string RSA1 . As we discussed in the module, hardcoded

RSA keys are often imported during execution using CryptImportKey. Within x�4dbg, configure a breakpoint for this API and a few additional

CryptoAPI functions we discussed with the command: bp CryptAcquireContextA; bp CryptAcquireContextW; bp CryptImportKey; bp

CryptEncrypt .

We could set breakpoints on additional CryptoAPI functions, but we will begin with this smaller set of core APIs. If you already have any of

these APIs configured as breakpoints, running the command will not remove those breakpoints. Once the breakpoints are configured, restart

the program via Debug > Restart. and execute until you arrive at the entry point for boot.dll .

14. Does this program use one key for all files or a separate key per file? How can you confirm the correct answer using the debugger?

�

�

15. Shift briefly to your static VM and jump to the body of the chacha_cipher function. We confirmed this code is likely ChaCha, but we

have not determined the number of rounds implemented. Is this ChaCha20, ChaCha12, or something else?

�

�

Note

Review the slide titled In FUN_004034f0, each loop iteration has 8 quarter-rounds... .

�

Important

You've reached Checkpoint #3 in this lab.

�

16. Run the program again and the debugger should pause at one of the configured breakpoints. Within what function is the debugger

paused, and why does it make sense that we arrived within this function first?

�

�

94 © 2022 Anuj Soni

Continue running the program and you will encounter another call to WriteFile. We do not have time to explore this reference in class, but

students are encouraged to explore this function call outside of class.

Continue running the program and the debugger will pause at 1�000E405, where the ChaCha� function is called. As previously discussed,

this will encrypt the file contents. Step over this function (i.e., Debug > Step over) and observe that the original file content in the dump

window is overwritten with the encrypted content.

26. Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

�

�

27. Continue running the program and the debugger will pause at 18000E3E7, where ReadFile is called. We already analyzed this CALL.

Dump the address of the buffer (second argument) to a dump window and document two arguments:

Address of buffer where content will be stored (second argument): __

Number of bytes read (third argument): __

�

�

28. Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

�

�

Note

For a calculator to convert signed hex values to negative decimal values, see this site.

�

29. Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

�

�

30. Summarize what you learned about how this ransomware performs file encryption and key protection. Also, what information is

required to decrypt files?

�

�

© 2022 Anuj Soni 97

Technet24

At this point, it makes sense to debug the program to confirm our suspicions about the function we just discussed. Switch to x�4dbg within

the Dynamic VM, where the debugger should be paused at the entrypoint for regsvr32.exe . Run the target program until boot.dll is

loaded (you should see the DLL mentioned in the title bar). Finally, enter the command bp 180004e30 to set a breakpoint on the function we

suspect implements ChaCha.

Since the function at 1�0004e30 appears to implement the ChaCha cipher, let's update its name within Ghidra. Switch briefly to your Static

VM and update the function name to chacha_cipher .

Return to the Dynamic VM. If you continue running the program, it will pause at 1�0004e30 repeatedly. In many cases, the function is used to

process the same content discussed in the previous question as the ransomware note is placed throughout the filesystem. We want to

explore other potential uses of this cipher. Is the function at 1�0004e30 only used to decrypt the ransom note, or is it also used for common

ransomware tasks like encrypting files?

Important

You've reached Checkpoint #1 in this lab.

�

5. Continue executing the program. You should eventually arrive at 180004e30, where we set the breakpoint. Review the arguments

passed to this function. Which argument supports our theory that the function implements ChaCha and not Salsa? (e.g., first argument,

second argument) What about this argument confirms the algorithm?

Answer: Dump the first argument to a dump window to observe the initial state passed to the function. The characters that comprise expand 32-

byte k are not fragmented. This matches the initial state of ChaCha.

� �

6. Since we are paused at a function that implements a cipher, some content is about to be encrypted or decrypted (remember, this is a

symmetric algorithm so the function could be used to both process plaintext or ciphertext). Within the debugger, review the remaining

arguments passed to 180004e30 and allow the function to return. Does this first execution of 180004e30 encrypt or decrypt data?

What can you conclude about the content encrypted or decrypted?

Answer: This first run of the function at 1�0004e30 decrypts ransom note text.

Explanation: Dump the second argument to a dump window and observe unreadable data. This may be encrypted content or simply binary data. If

we dump the third argument to a dump window, we observe a location that is zeroed out. There is a good chance some content will be placed

here

If we allow the function to return via Debug > Execute till return, we observe new content at the location that was zeroed out. The content appears

to be a ransom note. We can conclude that the first call to the ChaCha function decrypted the ransom note that will be written to disk.

� �

Note

Consider that an encryption/decryption function has to operate against some plaintext or encrypted data and the resulting content must be

placed somewhere in memory.

�

7. To investigate how file encryption is performed, let's identify any code that takes file content as input, since this would be necessary

step to encrypt a file. What Windows API is often responsible for placing file content into a buffer?

Answer: Readfile

� �

© 2022 Anuj Soni 99

Remove the breakpoint on the 1�0004e30 for now (i.e. go to the Breakpoint tab, choose the breakpoint and hit the Delete key on your

keyboard). Set a breakpoint on the API mentioned in the answer to the previous question and continue running the program. The debugger

should arrive at the breakpoint.

Before we move on, let's delete some breakpoints we no longer need and set some new breakpoints within the debugger:

Delete the breakpoint on the ReadFile API.

Set a breakpoint on the CALL to ReadFile at 1�000e3e7 (i.e., bp 18000e3e7). We will focus on this specific CALL to better understand

file encryption.

Set a breakpoint on 1�000e405, where chacha_cipher is called (i.e., bp 18000e405). There are multiple references to chacha_cipher

in this program, but we will focus on this one in class. Students are encouraged to investigate other references to chacha_cipher

outside of class.

Set a breakpoint on the CryptGenRandom API (i.e., bp CryptGenRandom), which we just discussed.

Setting the breakpoints mentioned above will help us understand how any randomly generated bytes relate to file encryption. If you have

other breakpoints configured, you can disable or delete them.

8. At what address within boot.dll does this CALL to ReadFile occur?

Answer: At address 1�000e3e7, the instruction CALL RAX calls ReadFile.

Explanation: You can identify the location of the CALL within boot.dll using two approaches. First, you can allow ReadFile to return to the user

code. Alternatively, you can view the Call Stack tab and right-click on the first entry and choose Follow To. Both these approaches will take you the

instruction immediately after the CALL, and you can scroll up to identify the address where ReadFile is executed.

� �

9. We're still reviewing the CALL to ReadFile at 18000e3e7. After a file's content is read into a buffer, what happens next? You can use a

combination of both static code analysis and debugging to determine the answer to this question.

Answer: The file is read in and then the data is encrypted via the CALL instruction at 1�000e405.

Explanation: Recall that ReadFile's second argument specifies the address of the buffer for content that is read. Static code analysis with Ghidra

shows that this address is passed as the second argument to chacha_cipher . If you debug the CALL at 1�000e405, you will observe that the first

argument passed to chacha_cipher specifies the initial state, the second argument specifies the data to encrypt or decrypt, and the third

argument specifies the address of the resulting encrypted or decrypted data. For file encryption, the third argument will point to the encrypted file

content (it actually overwrites the plaintext content).

� �

Important

You've reached Checkpoint #2 in this lab.

�

10. If 180004e30 implements ChaCha, the program must generate some random bytes for the key and nonce before data is encrypted or

decrypted. What Crypto API is often used to produce random bytes?

Answer: CryptGenRandom

� �

•

•

•

•

11. Continue executing the program until you arrive at CryptGenRandom. Within x64dbg, review the context of the function call. What does

it accomplish? Allow the function to execute until return and dump any generated data to a dump window.

Answer: This function call generates 0x20 (decimal 32) bytes of random data.

� �

100 © 2022 Anuj Soni

Technet24

Explanation: The second argument (i.e., RDX) specifies the number of random bytes to generate. The third argument (i.e., R8) passed to

CryptGenRandom is the address of a buffer that receives the random bytes. Dump this address to a dump window and allow the function to return

so you can view the returned bytes.

12. Continue executing the program. You will encounter CryptGenRandom again. How does this function call differ from the previous call to

the same function? Again, allow the function to execute until return and dump any generated data to a dump window.

Answer: This CryptGenRandom returns � bytes of random data, while the previous function call returned 20 bytes. Dump the address stored in R8

to a different dump window. Allow the function to return so you can view the returned bytes.

� �

13. Continue executing the program. When you arrive at the CALL to ReadFile, continue execution. The debugger should now pause at

18000E405, where the ChaCha function is executed. Review the initial state passed to this function (i.e., see the first argument). How

can you confirm the significance of the 32 bytes and 8 bytes of random data generated earlier?

Answer: Look at the initial state and compare it to module slide that included the format of ChaCha's initial state. You will observe that the 32

bytes of random data is the key, and the � bytes of random data is the nonce.

� �

14. Does this program use one key for all files or a separate key per file? How can you confirm the correct answer using the debugger?

Answer: This ransomware generates a new 32-byte key and �-byte nonce for each file it encrypts.

Explanation: If you continue debugging the program, you will encounter an API pattern that generally consists of two calls to CryptGenRandom

followed by a call to ReadFile and then chacha_cipher at 1�000e405. This pattern occurs again and again as individual files are processed. Each

time a new file's content is read in, the CALL to chacha_cipher shows an initial state with a new key and nonce.

� �

15. Shift briefly to your static VM and jump to the body of the chacha_cipher function. We confirmed this code is likely ChaCha, but we

have not determined the number of rounds implemented. Is this ChaCha20, ChaCha12, or something else?

Answer: ChaCha�

Explanation:

Within chacha_cipher , first identify the loop that performs rotate operations. Visually searching for ROL instructions shows the loop occurs

between addresses 1�0004fe0 and 1�00051�2. The first ROL operation occurs at 1�0004fff, and it is ROL ESI, 0X10 . Recall that each ChaCha

quarter-round includes rotate operations that shift bits 1� (0x10), 12 (0xc), � (0x�), and 7 (0x7) bit positions. If we highlight 0x10 in the

instruction ROL ESI, 0X10 at 1�0004fff, we see eight occurrences of this value within ROL operation in the loop. Each ROL operation for a

particular shift value represents one quarter-round, so there are � quarter-rounds per loop, or 2 complete rounds.

Next, we need to assess how many times the loop iterates. Scroll to the end of the loop and observe the conditional jump that determines if the

loop continues iterating. The JNZ instruction at 1�00051�2 evaluates if local_c0 is not zero. If the variable is zero, the loop is exited. If we

highlight local_c0 with a single click and scroll up, we observe it is assigned the value 4 with a MOV operation at 1�0004fcf. This means the

loop iterates 4 times, with each iteration consisting of 2 complete rounds. 4 x 2 = �, so we can refer to this ChaCha implementation as ChaCha�.

� �

Note

Review the slide titled In FUN_004034f0, each loop iteration has 8 quarter-rounds... .

�

Important

You've reached Checkpoint #3 in this lab.

�

© 2022 Anuj Soni 101

We now understand how the per-file encryption key is protected, but we still need to determine where the key is stored. One common

approach in ransomware is to add the encrypted key to each encrypted file. Before we proceed with our investigation, let's revisit our

breakpoints. We no longer need to evaluate calls to CryptAcquireContextA, CryptAcquireContextW, or CryptImportKey, because these APIs

are only called at the beginning of execution, and we understand the purpose of these functions. We also understand that CryptGenRandom

generates the key and nonce for each file. Therefore, remove breakpoints for CryptAcquireContextA, CryptAcquireContextW, CryptImportKey,

and CryptGenRandom.

At this point, you should only have breakpoints set on 1�000E3E7, 1�000E405, and CryptEncrypt. To ensure consistency with the flow of this

lab, continue executing the program until you arrive at the beginning of CryptEncrypt again. As we discussed, this API encrypts a per-file

symmetric key and nonce. You can confirm this by checking the sixth argument, which confirms that CryptEncrypt operates against 40

Observe that the first value is 0x0�, which indicates the data is a public key. The second byte is the version number, which requires no further

explanation. The next two bytes are reserved, and they are generally zeroes. The next four bytes specify the algorithm ID (i.e., ALG_ID member of

the BLOBHEADER structure) and we can see the hex value a400 (little endian). According to MS documentation (https://for710.com/algid), the

text representation of this value is CALG_RSA_KEYX .

Since what follows is an RSA public key blob, we can view the MS documentation on the RSAPUBKEY structure (https://for710.com/rsapubkey).

Based on that lookup, we are reminded that the first DWORD RSA1 confirms this is an RSA public key, and the second DWORD specifies the bit

length of the key. In this case, it is 0x1000 (decimal 409�) bits.

20. Continue executing the program. You may pause again at CryptImportKey, but observe that all calls to this function import the same

RSA key. We're seeing multiple references to this API due to the multi-threaded nature of this ransomware. Continue running the

program. When you arrive at CryptGenRandom, dump the 32 random bytes it produces as you did earlier in this lab. Run the program

again and dump the 8 random bytes produces in the next call to CryptGenRandom. Run the program again until you arrive within

CryptEncrypt. How many bytes does this call encrypt, and how would you describe the data that this function call encrypts?

Answer: CryptEncrypt encrypts 40 bytes of data that is comprised of the randomly generated 32-byte key and �-byte nonce.

Explanation: The fifth argument points to the data to encrypt, and the sixth argument points to the size of data to encrypt. To view the data to

encrypt, right-click on the fifth argument in the center window on the right within x�4dbg and dump that address to a dump window. Comparing

this data to the data generated via CryptGenRandom shows this content is a copy of the 40 bytes of random data. This API encrypts the per-file

symmetric key and nonce.

To view the size of the data to encrypt, additional steps are necessary because x�4dbg only lists the first five arguments by default. The simplest

approach to view the sixth argument is to click the up arrow on the spinner button above the list of arguments so that the numerical field

increments from 5 to 6 . Alternatively, you can right-click on the fifth argument you dumped earlier and choose Follow...in Stack. This will take

you to the fifth argument on the stack, and the sixth argument is immediately below that value.

Next, right-click on the sixth argument and dump it to a dump window. This reveals the size 0x2� or decimal 40 bytes. This makes sense because

the program first generated 32 bytes of random data followed by � bytes of random data, totaling 40 bytes.

� �

21. We are still reviewing the call to CryptEncrypt discussed in the previous question. Based on our analysis of CryptoAPI functions thus

far, what key does CryptEncrypt likely use for encryption?

Answer: The RSA public key imported by CryptImportKey. You can confirm this by comparing the imported key handles returned by

CryptImportKey (see this API's sixth argument) to the handle provided as the first argument to CryptEncrypt. However, this task is tedious due to

the multi-threaded nature of this ransomware.

� �

Important

You've reached Checkpoint #4 in this lab.

�

© 2022 Anuj Soni 103

Technet24

Continue running the program and the debugger will pause at 1�000E405, where the ChaCha� function is called. As previously discussed,

this will encrypt the file contents. Step over this function (i.e., Debug > Step over) and observe that the original file content in the dump

window is overwritten with the encrypted content.

26.
Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

Answer: The debugger pauses at SetFilePointerEx once again. This time, it moves the file pointer to the beginning of the file.

Explanation: The file handle referenced in the first argument matches the file handle in the previous SetFilePointerEx call . The second argument

(liDistanceToMove) is zero, so it does not move the file pointer. The fourth argument (dwMoveMethod) is zero, which means the file pointer is

moved to the beginning of the file.

� �

27. Continue running the program and the debugger will pause at 18000E3E7, where ReadFile is called. We already analyzed this CALL.

Dump the address of the buffer (second argument) to a dump window and document two arguments:

Address of buffer where content will be stored (second argument): This value will vary.

Number of bytes read (third argument): This value will vary depending upon the file.

� �

28. Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

Answer: The debugger pauses at SetFilePointerEx again. This time, it moves the file pointer back to the beginning of the file using a signed value

in the second argument.

Explanation: The file handle referenced in the first argument matches the file handle in the previous CreateFileW, ReadFile, and SetFilePointerEx

calls. The fourth argument (dwMoveMethod) is 1, which means this argument does not impact the file pointer. However, the second argument

(liDistanceToMove) appears signed. If you convert this value to a negative decimal value, it is the negative version of the number of bytes

ReadFile read. For example, if ReadFile read 100 bytes (which moves the file pointer forward 100 bytes), this call to SetFilePointerEx would move

the file pointer backwards 100 bytes (i.e., -100). For a calculator to convert signed hex values to negative decimal values, see https://for710.com/

hextodec.

� �

Note

For a calculator to convert signed hex values to negative decimal values, see this site.

�

29. Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

Answer: The debugger pauses at WriteFile, which writes the encrypted content to the beginning of file. In other words, it overwrites the original file

with the encrypted data.

Explanation: The second argument passed to WriteFile points to the data to write. This is the address of the encrypted data.

� �

30. Summarize what you learned about how this ransomware performs file encryption and key protection. Also, what information is

required to decrypt files?

Answer: This ransomware uses the ChaCha� algorithm and a per-file 32-byte key to encrypt file contents. Per-file encryption keys and nonce data

are encrypted with RSA 409� using an embedded RSA public key, and this encrypted content is appended to the target file. To decrypt files, the

attacker must provide the RSA private key that corresponds with the embedded RSA public key.

� �

© 2022 Anuj Soni 105

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

Identify specific ciphers used in a ransomware sample.

Determine the purpose of an identified cipher (e.g., file encryption or key protection).

Recognize Windows APIs that facilitate encryption.

Summarize key aspects of how ransomware performs file encryption.

•

•

•

•

106 © 2022 Anuj Soni

Technet24

Notes

There are actually two functions that include KSA code. List both.

When viewing search hits returned via Search > Program Text, clicking on a row jumps to the relevant assembly. To highlight the

corresponding decompiler output, use the mouse to drag across one or more lines of assembly.

Recall that there are two components to KSA code: a loop that initializes the S-box and another loop that mixes up S-box values using the

key.

�

•

•

•

3. Using Ghidra, view references to each of the two functions identified in the previous question. Based on this review, which function is

more likely used by this program for encryption and/or decryption?

�

�

4. Our focus is on the KSA code within the function discussed in the previous question. The loop that initializes the S-box appears to

include more than the identity permutation. What is the additional code within the loop likely responsible for, and how does it relate to

the RC4 variations we discussed in the module?

�

�
5. In the Decompiler view, view the second do-while loop after the initialization loop. What does this loop likely accomplish?

�

�

6. Which function includes the RC4 pseudo-random generation algorithm (PRGA) code?

�

�

Note

This question asks to find the PRGA code associated with the KSA code discussed in the previous question.

�

7. Next, switch to the Dynamic VM and use a debugger to execute the PRGA loop. Does it encrypt or decrypt content, and how would you

describe the plaintext data associated with this operation?
�

�

108 © 2022 Anuj Soni

We just decrypted some content, but we still need to confirm the algorithm used. If we configure CyberChef to RC4 decrypt the same content

and our results match the decrypted content in the debugger, we can be certain this malware implements RC4. To perform this test, we need

to extract the RC4 key and encrypted data.

Note

The XOR instruction at 40b2e3 places content at a location in memory. You may want to keep an eye on this location in memory when you

debug the PRGA loop.

�

Important

You've reached the Checkpoint in this lab.

�

8. What is the RC4 key length?

�

�

Notes

To locate the RC4 key length, recall that the KSA code includes a mod operation where the key length is the modulus.

Use your Static VM to perform static code analysis within Ghidra. Then, switch to your Dynamic VM to set a breakpoint and debug the

code.

�

•

•

9. What argument passed to FUN_0040b1c0 contains the key length (e.g., first argument, second argument)?

�

�

Note

Static code analysis is sufficient to answer this question.

�

10. What is the RC4 key? Provide your answer in hexadecimal format.�

�

© 2022 Anuj Soni 109

Technet24

We have a key and keylength. Now, we need encrypted data so we can test decryption.

Notes

Again, perform some static code analysis within Ghidra. Then, switch to your Dynamic VM to set a breakpoint and debug the code.

To locate the RC4 key, remember that this malware implements a variation of RC4 where the mod operation in the KSA occurs in the

same loop as the S-box initialization. Recall that the purpose of the mod operation is to identify a single byte within the key that is within

the range of the key size. Therefore, after the mod operation is executed, the remainder is likely used to access an offset within the key.

�

•

•

11. What argument passed to FUN_0040b1c0 likely points to the RC4 key (e.g., first argument, second argument)?

�

�

Note

Static code analysis is sufficient to answer this question.

�

12. What is the size of the encrypted data?

�
�

Notes

Recall that the PRGA code will execute one byte of keystream data with one byte of encrypted data. This means the PRGA loop will

iterate once for each byte of encrypted data.

Again, perform some static code analysis and then debug the program as needed.

The JC (Jump if carry) instruction is identical to JB (Jump if below).

�

•

•

•

13. What argument passed to FUN_0040b1c0 likely contains the size of the encrypted data (e.g., first argument, second argument)?

�

�

Note

Static code analysis is sufficient to answer this question.

�

14. What argument passed to FUN_0040b1c0 likely points to the encrypted data (e.g., first argument, second argument)?�

�

110 © 2022 Anuj Soni

2.
Behavioral analysis would reveal this malware likely belongs to a ransomware family. However, we will skip that phase of analysis for

this lab. Based on static file analysis, we observed crypto constants associated with the ChaCha and Salsa ciphers. Running the

FindCrypt extension during auto-analysis confirms the presence of these constants. Could other crypto algorithms be implemented in

this code as well? We know RC4 is common in malware and it does not use any constants, so we'll have to perform a manual search to

explore its presence. Within Ghidra, identify the function(s) that includes the RC4 key scheduling algorithm (KSA) code.

Answer: Functions FUN_0040b1c0 and FUN_0040b0�0 both contain RC4 KSA code.

Explanation:

Recall that the S-box initialization involves creating a 25� byte array, where each element is assigned the value of its index number. This is referred

to as the identity permutation. This assignment is typically performed within a loop that iterates over each element. One approach to identify this

loop is to search for the value 0x100 (decimal 25�), which often appears in the loop condition that determines if the loop continues executing.

Then, we can look for the identity permutation.

To search for this value, go to the menu bar and browse to Search > Search Program Text. In the Search for field, type 0x100 . Among the Fields

options on the bottom left of the window, only check Instruction Operands. Then, click Search All.

While there are numerous results, we want to focus on instructions that assess a value. Sort the results by the Preview column and observe that

there are only five CMP instructions. Jump to each CMP instruction and highlight nearby code to find the corresponding decompiler output.

Among the five CMP instructions, only two are part of loops where the control variable (i.e., the variable that is incremented with each iteration) is

assigned to an array element index that matches the control variable. This likely represents the identity permutation. The two functions that

contain KSA code are FUN_0040b1c0 and FUN_0040b0�0. The other functions that contain CMP instructions include code that is far too complex

in the loop body to be considered KSA functions.

� �

Notes

There are actually two functions that include KSA code. List both.

When viewing search hits returned via Search > Program Text, clicking on a row jumps to the relevant assembly. To highlight the

corresponding decompiler output, use the mouse to drag across one or more lines of assembly.

Recall that there are two components to KSA code: a loop that initializes the S-box and another loop that mixes up S-box values using the

key.

�

•

•

•

3. Using Ghidra, view references to each of the two functions identified in the previous question. Based on this review, which function is

more likely used by this program for encryption and/or decryption?

Answer: FUN_0040b1c0

Explanation: While both FUN_0040b1c0 and FUN_0040b0�0 contain KSA code, FUN_0040b1c0 has one reference while FUN_0040b0�0 has none

(i.e., zero references). This means FUN_0040b0�0 may be an unused function, so it is not a good target of our analysis. While not necessary in

this case, you could debug the program for further confirmation. If you set a breakpoint on 40b0�0 and executed the program, you would find that

the debugger never pauses at that address.

� �

4. Our focus is on the KSA code within the function discussed in the previous question. The loop that initializes the S-box appears to

include more than the identity permutation. What is the additional code within the loop likely responsible for, and how does it relate to

the RC4 variations we discussed in the module?

Answer: In the Decompiler view, observe the loop that initializes the S-box to the identity permutation. It includes a mod (i.e., %) operation. This is

likely a variation of the KSA where the initialization loop includes key expansion.

� �

5. In the Decompiler view, view the second do-while loop after the initialization loop. What does this loop likely accomplish?� �

112 © 2022 Anuj Soni

Technet24

We just decrypted some content, but we still need to confirm the algorithm used. If we configure CyberChef to RC4 decrypt the same content

and our results match the decrypted content in the debugger, we can be certain this malware implements RC4. To perform this test, we need

to extract the RC4 key and encrypted data.

Answer: As we discussed in the module, there are two components of the KSA code: 1) initialize the S-box and 2) mix up S-box values. We already

identified the S-box initialization code. This second loop is likely where the S-box values are mixed up.

6. Which function includes the RC4 pseudo-random generation algorithm (PRGA) code?

Answer: FUN_0040b1c0

Explanation: PRGA code is usually executed soon after the KSA code. PRGA code may be in the same function as the KSA code or in a separate

function. First, let's look at the function that contains KSA code (i.e. FUN_0040b1c0) to see if the KSA resides there.

One initial indicator we can look for is an XOR operation. If you review FUN_0040b1c0 in the decompiler view and scroll down, there is a third do-

while loop. View the body of this loop and observe an XOR (i.e., ^) operation.

We should also look for the presence of at least two mod 25� operations in the loop. The decompiler view shows two & 0xff operations, which

are equivalent to a mod 25�. This third loop in FUN_0040b1c0 is likely the PRGA, and it is contained within the same function as the KSA code.

� �

Notes

This question asks to find the PRGA code associated with the KSA code discussed in the previous question.

�

7. Next, switch to the Dynamic VM and use a debugger to execute the PRGA loop. Does it encrypt or decrypt content, and what is the

plaintext data associated with this operation?

Answer: The PRGA loop decrypts configuration information for this ransomware.

Explanation: The XOR operation in RC4 PRGA code XORs a byte of data with a byte of keystream data. Reviewing the operands of the XOR

instruction should give us insight into the data being XORed, and the result of the XOR operation should provide visibility into the encrypted or

decrypted content.

The XOR operation within the PRGA code occurs at 40b2e3. Within x32dbg, set a breakpoint at this address (bp 40b2e3). Then, run the program

until it pauses at the breakpoint. The destination operand is the only operand that points to a memory location, so let's observe what content is

placed there. Right-click on the XOR instruction and choose Follow in Dump > Address: ESI+ECX*1. Step over the XOR instruction and you should

observe a change to a single byte. To view the resulting content after the PRGA code completes all iterations of the loop, remove the breakpoint at

40b2e3 and set a new one at 40b2ef, the address immediately after the loop. Then, continue running the program. The dump window now has

additional content that looks like configuration data.

� �

Notes

The XOR instruction at 40b2e3 places content at a location in memory. You may want to keep an eye on this location in memory when you

debug the PRGA loop.

�

Important

You've reached the Checkpoint in this lab.

�

8. What is the RC4 key length?� �

© 2022 Anuj Soni 113

Answer: 5 bytes

Explanation:

View the decompiler output for FUN_0040b1c0 within Ghidra. To locate the RC4 key, identify the assembly instruction associated with the mod

operation in the KSA. Within the first do-while loop, drag and highlight the code with the mod operation. Ghidra shows that this correlates with the

DIV instruction at 40b23b. As a reminder, the DIV instruction divides EDX:EAX by the specified operand. The quotient is placed into EAX and the

remainder is placed into EDX. The DIV operand should reference the key size.

Next, use your Dynamic VM to debug the program. First, restart winbio.exe within x32dbg. Then, set a breakpoint at 40b23b and run the

program. When you arrive at the breakpoint, click on the div instruction and view the window immediately below the disassembly. There, you will

observe the value stored at esp+20. The size of the RC4 key is 5 bytes.

Notes

To locate the RC4 key length, recall that the KSA code includes a mod operation where the key length is the modulus.

Use your Static VM to perform static code analysis within Ghidra. Then, switch to your Dynamic VM to set a breakpoint and debug the

code.

�

•

•

9. What argument passed to FUN_0040b1c0 contains the key length (e.g., first argument, second argument)?

Answer: The second argument.

Explanation: In the previous question, we identified that the single operand for the DIV instruction at 40b23b is the key length. Ghidra shows this

operand as param_2 , so the second argument passed to FUN_0040b1c0 is likely the key length.

� �

Note

Static code analysis is sufficient to answer this question.

�

10. What is the RC4 key? Provide your answer in hexadecimal format.

Answer: The key is 2C 47 76 71 63 (ascii ,Gvqc).

Explanation:

In the previous question, we interpreted the DIV instruction at 40b23b. We understand this instruction divides a value by the key length, and the

remainder is placed into EDX. If we look for references to EDX after the DIV instruction, we see one at 40b240 with the instruction MOV AL, byte

ptr [EDX + EBX*0x1] . If EDX is an offset within the key, perhaps EBX contains the starting address of the key.

To test this theory, switch to the debugger. Remove all other breakpoints and restart the target program. Then, set a breakpoint at 40b240 and

continue execution. When the debugger pauses at 40b240, dump the value in EBX to a dump window. Observe a null-terminated 5 bytes

consisting of the hexadecimal values 2C 47 76 71 63 (ascii ,Gvqc). This is likely the key.

� �

Notes

Again, perform some static code analysis within Ghidra. Then, switch to your Dynamic VM to set a breakpoint and debug the code.

To locate the RC4 key, remember that this malware implements a variation of RC4 where the mod operation in the KSA occurs in the

same loop as the S-box initialization. Recall that the purpose of the mod operation is to identify a single byte within the key that is within

the range of the key size. Therefore, after the mod operation is executed, the remainder is likely used to access an offset within the key.

�

•

•

11. What argument passed to FUN_0040b1c0 likely points to the RC4 key (e.g., first argument, second argument)?� �

114 © 2022 Anuj Soni

Technet24

We have a key and keylength. Now, we need encrypted data so we can test decryption.

Answer: The first argument.

Explanation: In the previous question, we identified that when the MOV instruction at 40b240 is executed, EBX contains the address of the RC4

key. Highlight EBX in this instruction and observe earlier references. At 40b22b, param_1 is placed into EBX. This means the first argument

passed to FUN_0040b1c0 likely points to the RC4 key.

Note

Static code analysis is sufficient to answer this question.

�

12. What is the size of the encrypted data?

Answer: 0x149�, or decimal 5270 bytes.

Explanation: The third loop within FUN_0040b1c0 is the PRGA code. We need to identify how many times it will iterate, and this should equal the

size of the encrypted data. In the decompiler view, drag and highlight the while condition within the third loop. This correlates with the CMP and

JC instructions beginning at address 40b2eb. These instructions evaluate if ESI is below EBP. EBP should contain the number of bytes of

encrypted data.

To determine the size of the encrypted data, we could set a breakpoint on the CMP instruction at 40b2eb and view the contents of EBP. This

approach reveals the hex value 149�, or decimal 5270 bytes.

� �

Notes

Recall that the PRGA code will XOR one byte of keystream data with one byte of encrypted data. This means the PRGA loop will iterate

once for each byte of encrypted data.

Again, perform some static code analysis and then debug the program as needed.

The JC (Jump if carry) instruction is identical to JB (Jump if below).

�

•

•

•

13. What argument passed to FUN_0040b1c0 likely contains the size of the encrypted data (e.g., first argument, second argument)?

Answer: The fourth argument.

Explanation: Continuing our analysis from the previous question, highlight EBP with a single-click and scroll up. Observe that the fourth argument

passed to FUN_0040b1c0 is placed into EBP at 40b29b. This means the fourth argument passed to FUN_0040b1c0 is likely the size of the

encrypted content to decrypt.

� �

Note

Static code analysis is sufficient to answer this question.

�

14. What argument passed to FUN_0040b1c0 likely points to the encrypted data (e.g., first argument, second argument)?

Answer: The third argument.

� �

Note

Static code analysis is sufficient to answer this question.

�

© 2022 Anuj Soni 115

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

Gain familiarity with RC4, a common symmetric cipher for encrypting data in malware.

Identify an RC4 implementation in malware.

Debug malware to decrypt data.

Extract an RC4 key using a combination of static and dynamic code analysis.

Confirm the presence of RC4 by testing decryption outside of the target program.

•

•

•

•

•

© 2022 Anuj Soni 117

Technet24

Lab 3.1: Automating Config Extraction with Python

Background

In this lab, we will write a Python config extractor.

Lab Objectives

Develop comfort with the Python programming language for malware analysis.

Practice using the pefile Python module to parse a PE file.

Gain familiarity with other Python modules, including argparse, pycryptodome, and json.

Apply output from prior static code analysis and debugging to automate a malware analysis task.

Create a malware configuration extractor.

Lab Preparation

To prepare your Dynamic VM:

Revert your Dynamic VM to a baseline state. Then, extract Malware\Section3\winbio_and_more.zip and place the directory

winbio_and_more on the desktop. Within winbio_and_more , observe two files. Most of this lab will focus on winbio.exe , the same file we

analyzed in Lab 2.3.

If VS Code is not already open, launch the program using the desktop shortcut.

Within VS Code, create a new file by going to the menu bar and choosing File > New File.

Still within VS Code, browse to File > Save. Create the directory (if it doesn't already exist) C:\Users\REM\python_scripts and browse to it.

Then, specify the file name extract_config_lab31.py and click Save.

In the lower part of the VS code window, ensure the terminal is visible. If it is not present, go to the menu bar and choose View > Terminal.

Then, split the terminal so you have two terminal windows open. To accomplish this, mouse over the buttons on the top-right of the terminal

until you arrive at the one with the description Split Terminal . Both terminals should be at the location C:\Users\REM\python_scripts

(use the cd command to arrive there if needed).

To prepare your Static VM: Launch Ghidra and open your analysis of winbio.exe from Section 2. If you do not have access to your prior analysis

for some reason, simply create a new Section 3 project and load winbio.exe from Malware\Section2\winbio.zip . In this case, process the

file and initiate auto-analysis. Be sure to check WindowsPE x86 Propagate External Parameters because the EXE is 32-bit.

Lab Questions

Let's warm up with some basic usage of pefile within an interactive Python shell. In VS code, type python in the terminal on the bottom-right.

•

•

•

•

•

1.

2.

3.

4.

5.

1. First, import the pefile module using the appropriate command.�

�

118 © 2022 Anuj Soni

Now that we are warmed up, let's proceed to write our config extractor for winbio.exe . As a reminder, this is the executable you first

analyzed in Lab 2.3.

2.
Next, type the command to load winbio.exe using pefile. The command should assign the loaded executable to a variable so we can

use various methods to query the target file.
�

�

Note

Remember to use double slashes in the path to the target executable.

�

3. What Python code will print the name of the first section within winbio.exe ? What is the section name?

�

�

Note

Remember, we want to use Python and pefile to determine the answer to this question.

Review help(pefile.PE) to help guide how you access sections.

Consider using the built-in type() function if you are unsure how an attribute should be accessed, or if you want to clarify what type of

data a function returns. For example, typing type(target.is_exe()) outputs <class 'bool'> .

�

•

•

•

4. Type a command to calculate the SHA-256 hash of the first section within winbio.exe . What is the SHA-256 hash?�

�
Note

Consider using the dir() command for information about methods available to an object. For example, if your loaded PE file is in a variable

target , then dir(target) shows methods available for the loaded binary.

�

5. Based on your analysis in Lab 2.3, where was the encrypted configuration data stored within winbio.exe ?

�

�

6. Within the resource that contains the encrypted key data and encrypted data, what is the structure of the content? For example, in the

walkthrough we discussed in this module, the anomalous section included a 32-byte RC4 key, then a 4-byte CRC32 checksum, then 4

bytes that specified the size of the encrypted data, and finally the encrypted data.

�

�

© 2022 Anuj Soni 119

Technet24

Lab Solutions

Let's warm up with some basic usage of pefile within an interactive Python shell. In VS code, type python in the terminal on the bottom-right.

Now that we are warmed up, let's proceed to write our config extractor for winbio.exe . As a reminder, this is the executable you first

analyzed in Lab 2.3.

1. First, import the pefile module using the appropriate command.

Answer: import pefile

� �

2. Next, type the command to load winbio.exe using pefile. The command should assign the loaded executable to a variable so we can

use various methods to query the target file.

Answer: target = pefile.PE("C:\\Users\\REM\\Desktop\\winbio_and_more\\winbio.exe")

� �

Note

Remember to use double slashes in the path to the target executable.

�

3. What Python code will print the name of the first section within winbio.exe ? What is the section name?

Answer: The command is target.sections[0] , and the first section name is .text .

Explanation: As stated in the output from help(pefile.PE) , sections will be available as a list in the sections attribute . Assuming

the loaded executable is available in the target variable, we can access the first section with the command target.sections[0] . In the output,

observe this first section is named .text .

� �

Note

Remember, we want to use Python and pefile to determine the answer to this question.

Review help(pefile.PE) to help guide how you access sections.

Consider using the built-in type() function if you are unsure how an attribute should be accessed, or if you want to clarify what type of

data a function returns. For example, typing type(target.is_exe()) outputs <class 'bool'> .

�

•

•

•

4. Type a command to calculate the SHA-256 hash of the first section within winbio.exe . What is the SHA-256 hash?

Answer: The command is target.sections[0].get_hash_sha256() . The resulting hash is

9994bca758fe1ed4ca868e2e1a474b145778278ab5b4a57ac65ca9719a31f886 .

� �

Note

Consider using the dir() command for information about methods available to an object. For example, if your loaded PE file is in a variable

target , then dir(target) shows methods available for the loaded binary.

�

5. Based on your analysis in Lab 2.3, where was the encrypted configuration data stored within winbio.exe ?� �

© 2022 Anuj Soni 121

Answer: In the final question in Lab 2.3, we confirmed the encrypted configuration is embedded in winbio.exe within the resource section.

6. Within the resource that contains the encrypted key data and encrypted data, what is the structure of the content? For example, in the

walk-through we discussed in this module, the anomalous section included a 32-byte RC4 key, then a 4-byte CRC32 checksum, then 4

bytes that specified the size of the encrypted data, and finally the encrypted data.

Answer: The structure of the resource is as follows, in this order:

4 bytes: RC4 key size (little endian)

5 bytes: RC4 key

Remaining data in resource: encrypted data

� �

Note

Within Ghidra, find the appropriate resource within the .rsrc section. By default Ghidra will have the resource bytes contracted. Click the

+ button to expand its contents.

Take advantage of the Window > Bytes view if desired to view the raw bytes.

Review the final questions in Lab 2.3 as needed to remind yourself of the key, key size, and encrypted data values.

�

•

•

•

7. Let's take a brief look at dirmon.exe , located in the same directory you unzipped for this Lab. This executable belongs to the same

malware family as winbio.exe , it performs similar malicious behavior, and it implements the RC4 encryption algorithm. Load this

program into CFF Explorer (see desktop shortcut). Once loaded, click on Resource Editor on the left and expand the folder structure to

view the contents of the single resource. Notice that the first 4 bytes differ from the values in winbio.exe . What impact does this have

on your extraction script?

Answer: The extraction script must use the first four bytes of the resource data to determine the size of the RC4 key. Using the appropriate key

size, the script will then extract the RC4 key.

� �

Important

You've reached the Checkpoint in this lab.

�

8. Write a Python script that accomplishes the tasks noted below.� �

Requirements

Accept a target file (required) and output file (optional) on the command line.

Parse a PE file.

Iterate over resource directories until reaching the resource data.

Identify the RC4 key size, the RC4 key, and the encrypted data within the resource data.

RC4 decrypt the encrypted configuration data.

Write the decrypted configuration to a file.

�

•

•

•

•

•

•

import pefile
import argparse
from Crypto.Cipher import ARC4
import json

122 © 2022 Anuj Soni

Technet24

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

Develop comfort with the Python programming language for malware analysis.

Practice using the pefile Python module to parse a PE file.

Gain familiarity with other Python modules, including argparse, pycryptodome, and json.

Apply output from prior static code analysis and debugging to automate a malware analysis task.

Create a malware configuration extractor.

parser = argparse.ArgumentParser(description="Config extractor for Lab 3.1.")
parser.add_argument("-f","--file", help="Target file for config extraction.", required=True)
parser.add_argument("-o","--output", help="Config output file.", required=False)
args = parser.parse_args()

target = pefile.PE(args.file)

#Investigate resources
for resource in target.DIRECTORY_ENTRY_RESOURCE.entries:
 for entry in resource.directory.entries:
 for entry2 in entry.directory.entries:
 rsrc_data = target.get_data(entry2.data.struct.OffsetToData, entry2.data.struct.Size)

 #Get key length
 key_length = rsrc_data[:4]
 key_length_int = int.from_bytes(key_length, "little")
 print("Key length is: " + str(key_length_int))

 #Get key
 key = rsrc_data[4:4+key_length_int]
 print("Key: " + key.hex())

 #Get encrypted data
 data = rsrc_data[4+key_length_int:]

 #Decrypt data
 cipher = ARC4.new(key)
 decrypted_data = cipher.decrypt(data)

 #Output decrypted content; converting to string for consistency but not needed in this case.
 decrypted_str = decrypted_data.decode()
 config_data = json.loads(decrypted_str)

 if args.output:
 with open(args.output, "w") as f:
 f.write(json.dumps(config_data, indent=4))

•

•

•

•

•

© 2022 Anuj Soni 123

We just manually extracted a payload. Let's automate this process with Frida's python bindings.

Note

As a reminder, to debug a program that exports DllRegisterServer:

Launch x�4dbg.

Browse to File > Open and choose C:\Windows\System32\regsvr32.exe

Browse to File > Change Command Line and use the command line "C:\Windows\System32\regsvr32.exe" C:

\Users\REM\Desktop\frida_files\fcd.dll .

Browse to Options > Preferences and view the Events tab. There, check the option for DLL Entry.

Restart the target program by browsing to Debug > Restart.

Run the program, and you should arrive at the entry point for fcd.dll .

�

•

•

•

•

•

•

8. Dump the content you observed in the previous question and perform some basic static analysis. How would you characterize the

content? Do the functions listed under imports seem familiar?

___ ____________________

�

�

9. When writing a Frida python script to deobfuscate content, we need to articulate the debugging workflow that revealed the code. How

would you describe the steps we took to identify the second-stage executable in memory?

�

�

Important

You've reached the Checkpoint in this lab.

�

10. Write a Frida Python script that accomplishes the tasks noted below.�

�

126 © 2022 Anuj Soni

Technet24

Lab Solutions

After viewing frida-trace output, type Ctrl+C to exit the process. Also, launch Process Hacker from the desktop and terminate

regsvr32.exe .

Requirements

Accept arguments to run a single EXE or a DLL (with rundll32.exe or regsvr32.exe). For example, if your script is called lab32.py you will

run fcd.dll with the command python lab32.py C:\Windows\System32\regsvr32.exe fcd.dll .

Intercept calls to VirtualAlloc.

Each time VirtualAlloc returns, add the starting address for the newly allocated region to an array.

Each time VirtualAlloc is called, check if a previously noted region begins with the ascii characters MZ .

If the MZ bytes are detected at the beginning of a memory region, write the content at that location to a file on disk.

Test the script against all four files within the unzipped 'frida_files' folder.

Use the file frida_template.py located in the folder for this lab as a starting point for your script.

Consult the Frida JavaScript API as necessary (https://for710.com/fridaapi).

�

•

•

•

•

•

•

•

•

1. Within the Dynamic VM, perform some brief file analysis of fcd.dll with PeStudio. Based on PeStudio output, what approach would

be used to launch this executable?

Answers: The target file is a �4-bit DLL, and it exports DllRegisterServer . This means it should be executed using C:

\windows\system32\regsvr32.exe .

� �

2. Continue viewing PeStudio output and observe the list of imported functions. With so few imports, it is likely that additional libraries

will be resolved at runtime. We know that calling GetProcAddress is one approach to resolving functions during execution. Open a

command prompt and navigate to C:\Users\REM\Desktop . What frida-trace command line can you use to execute fcd.dll and

observe any calls to GetProcAddress?

Answer: frida-trace C:\windows\system32\regsvr32.exe frida_files\fcd.dll -i KERNEL32.DLL!GetProcAddress

� �

Notes

For this question, only focus on the GetProcAddress API exported by KERNEL32.DLL.

Remember that fcd.dll is a �4-bit DLL. This should help determine which program you use to run the DLL.

�

•

•

3. Run the command specified in the previous question. What key information is missing from the command output?

Answer: The output does not specify the name of the API that is resolved.

� �

4. Executing frida-trace created a folder named __handlers__ on the Desktop (assuming that is where you ran frida-trace from).

Modify the handler for GetProcAddress to print out the additional information we require (see the answer to the previous question if
�

© 2022 Anuj Soni 127

After modifying the GetProcAddress handler, we observe many APIs resolved at runtime. As we discussed in Section 1 of this course, one

reason malware may resolve APIs at runtime is to prepare for the next stage of execution (i.e., an underlying payload). Recall that when

malware unpacks additional code or deobfuscates data, it often needs to allocate memory for this content. One approach to allocating

memory involves using the Virtual API (e.g., VirtualAlloc, VirtualProtect). We did not see any Virtual API calls resolved using GetProcAddress,

but the malware may use other approaches to resolve APIs. Let's explore this possibility.

you need more context). The output should print the name of the API resolved. For example, if the program resolved CreateProcessA,

the relevant line of output would read GetProcAddress(): CreateProcessA .

Answer:: Modify the handler located at __handlers__\KERNEL32.DLL\GetProcAddress.js . The second argument passed to GetProcAddress is a

pointer to the API name. The updated OnEnter function is:

The new output includes the following:

�

onEnter(log, args, state) {
log('GetProcAddress(): ' + args[1].readUtf8String());
},

 GetProcAddress(): wsprintfA
 GetProcAddress(): GetUserNameA
 GetProcAddress(): LookupAccountNameW
 GetProcAddress(): SHGetFolderPathA
 GetProcAddress(): CreateProcessA
 GetProcAddress(): CreateDirectoryA
 GetProcAddress(): GetProcAddress
 GetProcAddress(): lstrcpyA
 GetProcAddress(): GetTempPathA
 GetProcAddress(): Sleep
 GetProcAddress(): CreateThread
 GetProcAddress(): ExitProcess
 GetProcAddress(): WriteFile
 GetProcAddress(): CreateFileA
 GetProcAddress(): CloseHandle
 GetProcAddress(): HeapFree
 GetProcAddress(): HeapReAlloc
 GetProcAddress(): HeapAlloc
 GetProcAddress(): GetProcessHeap
 GetProcAddress(): GetComputerNameExW
 GetProcAddress(): GetTickCount64
 GetProcAddress(): GetLastError
 GetProcAddress(): LoadLibraryA
 GetProcAddress(): SwitchToThread
 GetProcAddress(): lstrcatA
 GetProcAddress(): GetComputerNameExA
 GetProcAddress(): WinHttpQueryDataAvailable
 GetProcAddress(): WinHttpConnect
 GetProcAddress(): WinHttpSetStatusCallback
 GetProcAddress(): WinHttpSendRequest
 GetProcAddress(): WinHttpCloseHandle
 GetProcAddress(): WinHttpSetOption
 GetProcAddress(): WinHttpOpenRequest
 GetProcAddress(): WinHttpReadData
 GetProcAddress(): WinHttpQueryHeaders
 GetProcAddress(): WinHttpOpen
 GetProcAddress(): WinHttpReceiveResponse
 GetProcAddress(): WinHttpQueryOption
 GetProcAddress(): memset
 GetProcAddress(): memcpy

128 © 2022 Anuj Soni

Technet24

Answer:

We set a breakpoint on VirtualAlloc and ran the program.

Each time we encountered this API, we allowed it to return and dumped the returned address of the newly allocated region to the dump

window.

When we arrived at the third call to VirtualAlloc, the first region allocated now had an MZ header and appeared to contain a Windows

executable.

•

•

•

Important

You've reached the Checkpoint in this lab.

�

10. Write a Frida Python script that accomplishes the tasks noted below.

Answer: The script below is one approach to writing a payload extraction script using Frida's python bindings.

� �

Notes

Requirements for the script:

Accept arguments to run a single EXE or a DLL (with rundll32.exe or regsvr32.exe). For example, if your script is called lab32.py you will

run fcd.dll with the command python lab32.py C:\Windows\System32\regsvr32.exe fcd.dll .

Intercept calls to VirtualAlloc.

Each time VirtualAlloc returns, add the starting address for the newly allocated region to an array.

Each time VirtualAlloc is called, check if a previously noted region begins with the ascii characters MZ .

If the MZ bytes are detected at the beginning of a memory region, write the content at that location to a file on disk.

Test the script against all four files within the unzipped 'frida_files' folder.

Use the file frida_template.py located in the folder for this lab as a starting point for your script.

Consult the Frida JavaScript API as necessary (https://for710.com/fridaapi).

�

•

•

•

•

•

•

•

•

import frida
import sys
import argparse

def main():
 parser = argparse.ArgumentParser(description='Dump payload.')
 parser.add_argument('targets', nargs='+')
 args = parser.parse_args()

 pid = frida.spawn(args.targets)
 session = frida.attach(pid)

 script = session.create_script("""

 //Load module
 try {
 Module.load('KERNEL32.DLL');
 } catch {
 console.log(err);

 }

 //Get function address.
 try {

130 © 2022 Anuj Soni

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

Gain familiarity with frida-trace, a command line tool in the Frida framework.

 var vaExportAddress = Module.getExportByName("KERNEL32.dll", "VirtualAlloc");
 } catch(err) {
 console.log(err);
 }

 //Array of memory regions to monitor
 var memRegions = [];

 //Configure interceptor(s)
 Interceptor.attach(vaExportAddress,
 {
 onEnter: function (args) {
 this.vaSize = args[1].toInt32();
 var vaProtect = args[3];
 console.log("\\nVirtualAlloc called => Size: " + this.vaSize + " | Protection: " +
vaProtect);

 for(var i = 0; i < memRegions.length; i++)
 {
 console.log("\\nChecking memory at " + memRegions[i].memBase.toString());

 try {
 var firstBytes = memRegions[i].memBase.readAnsiString(2);
 } catch(err) {
 console.log(err);
 }

 if (firstBytes == "MZ")
 {
 console.log("\\tFound an MZ!\\n");
 console.log(hexdump(memRegions[i].memBase));

 //Write file to disk
 var binContent =
memRegions[i].memBase.readByteArray(memRegions[i].memSize);
 var filename = memRegions[i].memBase + "_mz.bin";
 var file = new File(filename, "wb");
 file.write(binContent);
 file.flush();
 file.close();

 console.log("\\nDumped file: " + filename);
 }
 }
 },
 onLeave: function (retval) {
 console.log("\\nVirtualAlloc returned => Address: " + retval);
 memRegions.push({memBase:ptr(retval), memSize:this.vaSize});
 }
 });
 """)

 script.load()
 frida.resume(pid)
 sys.stdin.read()
 session.detach()

if __name__ == '__main__':
 main()

•

© 2022 Anuj Soni 131

Technet24

Write a script using Frida's Python bindings to automatically dump a malicious payload.•

132 © 2022 Anuj Soni

3.
Type a command to determine the entry point of the function, and assign that value to a variable named ep_addr . To verify your

answer, type ep_addr and compare the output to the address of the first instruction in the Listing view.
�

�

Note

Consider using the Program API for this answer. We discussed a method in the slides that can help.

�

4. Type a command to get the instruction at the entry point for this function and assign it to a variable named instr . Again, to verify your

answer, type instr and compare your output to the instruction in the Listing view within Ghidra.
�

�

Note

Return to using the Flat API when considering a command.

�

5. Type a command to print the mnemonic at this address.�

�

6. Type a command to print the single operand for the instruction.�
�

Note

You will need the Program API for this command. Review the slides for a method that might help.

�

7. Now, type a command to get the next instruction. Return the instruction to a variable named instr_next .�

�

Note

Return to using the Flat API for this command.

�

8. Type a command to print out the second operand of the instruction in instr_next .�

�

9. Write code to get references to ep_addr (i.e., the entry point of the function) and print out the address where each reference is located.�

�

134 © 2022 Anuj Soni

Technet24

Now, let's write our string decoding script. To create a new file for our code, follow these steps:

Open the Script Manager by clicking on the green "Play" button under the menu bar, or browse to Window > Script Manager.

Mouse over the buttons on the top-right and click on the one with the description Create New Script.

Choose the option to create a Python script and click OK.

Use the default directory C:\Users\REM\ghidra_scripts and enter the script file name lab33_string_decode.py .

In your new script, see the metadata template located at the top of the file. For the @category field, specify _FOR710 . The underscore

ensures the new category will be placed at the top of the Scripts listing located on the left side of the Script Manager window (you will

need to click the button with green arrows in the Script Manager to refresh the list of script categories).

Lab Solutions

Let's warm up by taking advantage of the Ghidra Flat and Program API within an interactive Python shell. To access the Python interpreter within

Ghidra, go to the menu bar and choose Window > Python. As you consider and type commands, remember to take advantage of tab to view

Important

You've reached the Checkpoint in this lab.

�

a.

b.

c.

d.

e.

10. Write a Ghidra Python script that deobfuscates strings processed by FUN_004093f0. For each decoded string, add an EOL comment at

the address where FUN_004093f0 is referenced. The comment should include the decoded string. Below is one approach to consider.

You may implement an alternative approach if you desire.

�

�

Approach

Find references to the decoding function.

For each reference, look up to 5 instructions before the reference for a MOV instruction where the first operand is EDX. Consider using

the range() function in a for loop to accomplish this (https://for710.com/range).

If an instruction that satisfies the above requirement is found, get the second operand and interpret it as an address.

For each reference to the data address identified in the previous requirement, check if the instruction has a MOV mnemonic and if the

first operand is ECX.

If the above condition is true, go to the instruction that precedes the MOV and get the single operand. This operand should point to the

encoded data we desire.

Get the encoded data and then get its value. When calling getValue(), consider doing so within a try/except statement. This provides an

opportunity to print an error message if the script encounters undefined data. If you have time, you can manually define strings at the

necessary locations to address all errors. Alternatively, you can explore using the Flat API's createAsciiString() method (which we did not

explicitly discuss) to define a string.

Then, base�4 decode this data and perform the operations specified in the decoding loop. Note that when 3 is added in the loop, you

must & 0xFF the result since it is placed in a single byte register.

Print the decoded value to the console.

Finally, add an EOL comment at the address where the decoding function is referenced. Include the decoded string.

�

•

•

•

•

•

•

•

•

•

© 2022 Anuj Soni 135

suggested commands, and help() and dir() . In addition, consult the slides in this module and the API documentation. Shortcuts to the Flat

and Program API documentation are accessible via two toolbar bookmarks in Firefox. You can launch Firefox via the Desktop shortcut.

1. In preparation for this lab, the slides refer to the decoding loop beginning at 409490 within program.exe . Type the command to

convert this hexadecimal value to an address and assign it to a variable named loop_addr variable. After typing your command,

confirm success with the command type(loop_addr) . The output should be <type

'ghidra.program.model.address.GenericAddress'>

Answer: loop_addr = toAddr("409490") or loop_addr = toAddr(0x409490)

� �

2. Next, type a command to determine the function where this address resides. Assign the returned value to a variable named

decoding_fn .

Answer: decoding_fn = getFunctionContaining(loop_addr)

� �

Note

Review the slides or the Flat API documentation when considering your command.

�

3. Type a command to determine the entry point of the function, and assign that value to a variable named ep_addr . To verify your

answer, type ep_addr and compare the output to the address of the first instruction in the Listing view.

Answer:

� �

Note

Consider using the Program API for this answer. We discussed a method in the slides that can help.

�

>>> ep_addr = decoding_fn.getEntryPoint()
>>> ep_addr
004093f0

4. Type a command to get the instruction at the entry point for this function and assign it to a variable named instr . Again, to verify your

answer, type instr and compare your output to the instruction in the Listing view within Ghidra.

Answer:

� �

Note

Return to using the Flat API when considering a command.

�

>>> instr = getInstructionAt(ep_addr)
>>> instr
PUSH EBX

136 © 2022 Anuj Soni

Technet24

Answer: The script below is one approach to decoding the obfuscated strings in this sample.

Approach

Find references to the decoding function.

For each reference, look up to 5 instructions before the reference for a MOV instruction where the first operand is EDX. Consider using

the range() function in a for loop to accomplish this (https://for710.com/range).

If an instruction that satisfies the above requirement is found, get the second operand and interpret it as an address.

For each reference to the data address identified in the previous requirement, check if the instruction has a MOV mnemonic and if the

first operand is ECX.

If the above condition is true, go to the instruction that precedes the MOV and get the single operand. This operand should point to the

encoded data we desire.

Get the encoded data and then get its value. When calling getValue(), consider doing so within a try/except statement. This provides an

opportunity to print an error message if the script encounters undefined data. If you have time, you can manually define strings at the

necessary locations to address all errors. Alternatively, you can explore using the Flat API's createAsciiString() method (which we did not

explicitly discuss) to define a string.

Then, base�4 decode this data and perform the operations specified in the decoding loop. Note that when 3 is added in the loop, you

must & 0xFF the result since it is placed in a single byte register.

Print the decoded value to the console.

Finally, add an EOL comment at the address where the decoding function is referenced. Include the decoded string.

�

•

•

•

•

•

•

•

•

•

#This script deobfuscates strings in sample with SHA-256 hash
0bd3eb756c9297f9be08f79fa7a93e925c08df18656b54b9e2333d4a2445a58f.
#@author Anuj Soni
#@category _FOR710
#@keybinding
#@menupath
#@toolbar

import base64

#Insert function address below
decoding_fn_addr = toAddr(0x4093f0)
fn_refs = getReferencesTo(decoding_fn_addr)

for ref in fn_refs:
 from_addr = ref.getFromAddress()
 instr = getInstructionBefore(from_addr)
 for i in range(5):
 if instr.getMnemonicString() == "MOV" and str(instr.getOpObjects(0)[0]) == "EDX":
 dat_addr = toAddr(str(instr.getOpObjects(1)[0]))
 break
 instr = getInstructionBefore(instr.getAddress())
 else:
 print("NOTE: No data address found near decoding function reference at " + str(from_addr))
 continue

 dat_refs = getReferencesTo(dat_addr)
 for ref2 in dat_refs:
 from_addr2 = ref2.getFromAddress()
 instr = getInstructionAt(from_addr2)
 data_str = ""
 if instr.getMnemonicString() == "MOV" and str(instr.getOpObjects(0)[0]) == "ECX":
 instr2 = getInstructionBefore(instr.getAddress())
 addr_encoded = instr2.getOpObjects(0)[0]
 data = getDataAt(toAddr(str(addr_encoded)))
 try:
 data_str = data.getValue()

© 2022 Anuj Soni 139

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

Gain familiarity with Ghidra's available APIs.

Use Ghidra's built-in Python interpreter to explore available APIs.

Write a Python script within Ghidra that performs string deobfuscation and adds helpful comments in the Listing view.

 except:
 print("NOTE: No defined data at this location, see address in Ghidra: " +
addr_encoded.toString())
 continue
 else:
 continue

 b64_decoded_str = base64.b64decode(data_str)
 decoded_str = ""

 for i in b64_decoded_str:
 decoded_val = ord(i) ^ 8
 decoded_val = (decoded_val + 3) & 0xFF
 decoded_val = decoded_val ^ 84
 decoded_str = decoded_str + chr(decoded_val)

 print(decoded_str)
 setEOLComment(from_addr, decoded_str)

•

•

•

140 © 2022 Anuj Soni

Technet24

After generating a brief overview of our target files, we will explore relationships between some of them. First, we will compare program.exe

and dns.exe .

2. Use the provided pecompare.py script to compare program.exe and dns.exe . This script will compare embedded strings and

functions listed in the IAT. Using the terminal, run the following command from C:\Users\REM\Desktop\Malware\Section4 : python

pecompare.py collection\program.exe collection\dns.exe > diff_program_dns.txt . Double-click the output file to view its

contents in Notepad++. What do you learn from this comparison of program.exe and dns.exe ? Can you identify any strings that may

be unique to this malware?

�

�

3. Use BinDiff to assess similarities and differences between program.exe and dns.exe . What conclusions can you draw from BinDiff

output?

�

�

Note

To compare these programs using BinDiff, do the following:

Launch BinDiff using the desktop shortcut.

From the menu bar, browse to File > New Workspace....

Name the workspace workspace_collection .

For the Location field, click on ..., browse to C:\Users\REM\Desktop\Section4\bindiff and click Open.

In the left window pane, right-click and choose New Diff....

For the Primary file, browse to C:\Users\REM\Desktop\Malware\Section4\bindiff and choose program.exe.BinExport .

For the Secondary file, browse to C:\Users\REM\Desktop\Malware\Section4\bindiff and choose dns.exe.BinExport .

Then, click Diff.

To view BinDiff output, view the left window pane and double-click program.exe vs. dns.exe .

Remember that we are most concerned about unlabeled functions because these are more likely to represent code developed by the malware

author.

�

•

•

•

•

•

•

•

•

•

4. For a more granular comparison of program.exe and dns.exe , we will try Ghidra's Program Diff feature. After performing the diff, use

the down arrow at the top of the listing view to click past the first 10 or so differences. You will eventually arrive at 409495, where
�

142 © 2022 Anuj Soni

Let's briefly explore how program.exe compares to one of the larger executables that has a different imphash. Specifically, we will compare

program.exe with save.exe .

Ghidra displays differences in code within a loop. You should recognize the displayed instructions from our analysis in Lab 3.3. How

would you characterize the difference in code at this location?

�

Note

To compare these programs with Ghidra's Program Diff feature, do the following:

Go to the Ghidra project window and open the analysis of program.exe .

From the menu bar, choose Tools > Program Differences....

When prompted, double-click dns.exe to provide it as the second program for comparison.

When choosing how to assess differences between the programs, only check Bytes, Code Units, and Functions.

Click OK.

�

•

•

•

•

•

5. Use pecompare.py again to compare program.exe and save.exe . What do you learn from this comparison of program.exe and

save.exe ? For example, despite the significant differences between these programs, are there any overlapping strings that may

uniquely identify this malware? Also, what can you learn from the differences in imported functions?

�

�

6. Finally, use BinDiff to compare program.exe and save.exe (follow the process described in the Notes for question #3). What

percentage of functions was BinDiff able to match?

�

�

7. Reviewing the differences and similarities in this case would be tedious and time consuming, so we will focus on one particular

difference. View the Primary Unmatched Functions and type 4226c0 in the input filed at the top to filter by this value. Why might this

unmatched function in program.exe be of concern?

�

�

© 2022 Anuj Soni 143

Technet24

Lab Solutions

After generating a brief overview of our target files, we will explore relationships between some of them. First, we will compare program.exe

and dns.exe .

1. Run pestats.py against the collection directory to generate some basic information about each file. Using the terminal, run the

following command from C:\Users\REM\Desktop\Malware\Section4 : python pestats.py collection . This will produce a file

pestats_out.csv . Drag-and-drop the output file to the Timeline Explorer shortcut, which is located on your desktop. Based on

reviewing the output, what do you learn about this group of files?

Answer: Both program.exe and dns.exe are the same size and they have the same import table hash (i.e., imphash), indicating they have similar

functionality. The .text section hashes for these two files do differ, however, indicating some differences in the code. These two executables are

also much smaller in size when compared to the others. The compile time indicates these two programs were also compiled later (2021 vs.

2020).

� �

2. Use the provided pecompare.py script to compare program.exe and dns.exe . This script will compare embedded strings and

functions listed in the IAT. Using the terminal, run the following command from C:\Users\REM\Desktop\Malware\Section4 : python

pecompare.py collection\program.exe collection\dns.exe > diff_program_dns.txt . Double-click the output file to view its

contents in Notepad++. What do you learn from this comparison of program.exe and dns.exe ? Can you identify any strings that may

be unique to this malware?

Answer: Your review of diff_program_dns.txt may include the following observations:

We know both executables have the same imphash, so there is not much to gain from viewing import related information in this output.

The vast majority of strings within the two programs are identical. This is not a surprise because the executables are identical in size and the

.data sections have the same hash.

Some interesting overlapping strings that may be unique to these malware samples include:

If we scroll down to the sections that list strings unique to each sample, we observe many strings that appear to be base�4 encoded (see

strings ending in = , which represents padding). We'll return to this observation later.

� �

•

•

•

"ext":"
"hdd":
"lang":"
"name":"
"rcid":"
"size":
"type":"

•

3. Use BinDiff to assess similarities and differences between program.exe and dns.exe . What conclusions can you draw from BinDiff

output?
� �

144 © 2022 Anuj Soni

Let's briefly explore how program.exe compares to one of the larger executables that has a different imphash. Specifically, we will compare

program.exe with save.exe .

Answer: Bindiff reports that all functions match (i.e., no unmatched functions). When viewing the list of matched functions, we see some that

have a similarity of less than 1.00, but these are labelled and unlikely to be developed by the malware author.

Note

To compare these programs using BinDiff, do the following:

Launch BinDiff using the desktop shortcut.

From the menu bar, browse to File > New Workspace....

Name the workspace workspace_collection .

For the Location field, click on ..., browse to C:\Users\REM\Desktop\Section4\bindiff and click Open.

In the left window pane, right-click and choose New Diff....

For the Primary file, browse to C:\Users\REM\Desktop\Malware\Section4\bindiff and choose program.exe.BinExport .

For the Secondary file, browse to C:\Users\REM\Desktop\Malware\Section4\bindiff and choose dns.exe.BinExport .

Then, click Diff.

To view BinDiff output, view the left window pane and double-click program.exe vs. dns.exe .

Remember that we are most concerned about unlabeled functions because these are more likely to represent code developed by the malware

author.

�

•

•

•

•

•

•

•

•

•

4. For a more granular comparison of program.exe and dns.exe , we will try Ghidra's Program Diff feature. After performing the diff, use

the down arrow at the top of the listing view to click past the first 10 or so differences. You will eventually arrive at 409495, where

Ghidra displays differences in code within a loop. You should recognize the displayed instructions from our analysis in Lab 3.3. How

would you characterize the difference in code at this location?

Answer: When reviewing Ghidra's Program Diff output, we eventually arrive at 409495, where we see code that matches the decoding loop we

analyzed in Lab 3.3. Ghidra makes it clear that although the decoding loop still involves an XOR, ADD, and XOR operations, the numerical values

have changed. This also explains why pecompare.py showed so many base�4-encoded strings that were unique to each sample-a different

decoding algorithm would require different based�4 encoded content to produce the same string.

� �

Note

To compare these programs with Ghidra's Program Diff feature, do the following:

Go to the Ghidra project window and open the analysis of program.exe .

From the menu bar, choose Tools > Program Differences....

When prompted, double-click dns.exe to provide it as the second program for comparison.

When choosing how to assess differences between the programs, only check Bytes, Code Units, and Functions.

Click OK.

�

•

•

•

•

•

5. Use pecompare.py again to compare program.exe and save.exe . What do you learn from this comparison of program.exe and

save.exe ? For example, despite the significant differences between these programs, are there any overlapping strings that may

uniquely identify this malware? Also, what can you learn from the differences in imported functions?

� �

© 2022 Anuj Soni 145

Technet24

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

Practice approaches to comparing executables.

Use BinDiff to compare functions in executables.

Use Ghidra's Program Diff feature to identify byte-level differences in code.

Answer: Your review of pecompare.py output may include the following observations:

save.exe has many more strings than program.exe , which makes sense because it is a larger file.

Among the 1514 common strings, most appear generic. However, you might spot "rcid":" near the beginning. This could be a string unique

to these malware samples.

Among the many strings unique to save.exe , we observe some worthy of note including:

The imphash values for these two programs do not match, and this is supported by the list of imports unique to each executable. For

example, program.exe imports APIs including LookupPrivilegeValueW and AdjustTokenPrivileges. If you are not familiar with these APIs,

some brief open-source research will indicate malware often uses these APIs to modify access permissions. save.exe has its own unique

imports, including the use of wininet.dll to import various HTTP and Internet-related APIs. These differences are good starting points for

additional code analysis.

•

•

•

%s.exe
%s.tmp
.\%s.exe
.\gm.exe
.\medcon.exe

•

6. Finally, use BinDiff to compare program.exe and save.exe (follow the process described in the Notes for question #3). What

percentage of functions was BinDiff able to match?

Answer: ��.�%.

� �

7. Reviewing the differences and similarities in this case would be tedious and time consuming, so we will focus on one particular

difference. View the Primary Unmatched Functions and type 4226c0 in the input filed at the top to filter by this value. Why might this

unmatched function in program.exe be of concern?

Answer: The function at 4226c0 calls the ShellExecuteW API, which can be used to execute an arbitrary command.

� �

•

•

•

146 © 2022 Anuj Soni

Lab Solutions

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

Practice writing and tweaking a YARA rule.

1. This lab has only one task-write a YARA rule within collection.yara that meets the criteria described below. Perform code analysis

and use pecompare.py as necessary to write the rule. As part of your testing, you will need to execute YARA with the command C:

\Users\REM\Desktop\Malware\Section4>yara64.exe collection.yara collection

Answer: Below is one approach to writing a YARA rule that satisfies the specified criteria.

� �

Notes

Your YARA rule should meet the following criteria:

Only detect program.exe and dns.exe (i.e., not open.exe and save.exe)

Include text strings.

Include hex strings that identify code in the string deobfuscation loop at 409495 within both program.exe and dns.exe (consider using

wildcards).

Include a condition that checks for an 'MZ' header using this ascii string's byte values.

Include a condition that checks for an imphash.

Include a condition that checks the target file's size.

The rule should hit on a file if it matches the specified imphash OR if it contains all specified strings AND the specified decoding routine.

�

•

•

•

•

•

•

•

import "pe"

rule collection_rule {
 meta:
 description = "This rule is for lab 4.2, and it identifies the smaller sized samples."
 author = "Anuj Soni"
 hash1 = "0BD3EB756C9297F9BE08F79FA7A93E925C08DF18656B54B9E2333D4A2445A58F"
 hash2 = "BC4E8BEFEA8F4E3A37F24C84109CA39BB427B953BCF2FCCEC8D5BC819B83DC20"

 strings:
 $s1 = "\"ext\":\"" nocase ascii wide
 $s2 = "\"hdd\":" nocase ascii wide
 $s3 = "\"lang\":\"" nocase ascii wide
 $s4 = "\"name\":\"" nocase ascii wide
 $s5 = "\"rcid\":\"" nocase ascii wide
 $s6 = "\"size\":" nocase ascii wide
 $s7 = "\"type\":\"" nocase ascii wide

 $decode_add_xor = { 8a 06 8d 4d bc 34 ?? 04 ?? 34 ?? 0f b6 c0 50 }

 condition:
 uint16be(0) == 0x4D5A and
 filesize < 1048576 and
 (pe.imphash() == "B56503B8C4F46A3A086734C09C6BD0F3" or all of them)
}

•

148 © 2022 Anuj Soni

Technet24

Lab 4.3: Writing capa Rules

Background

In this lab, we will write a capa rule to identify the ChaCha encryption algorithm in code.

Lab Objectives

Practice writing and tweaking a capa rule.

Lab Preparation

For this lab, we will only use the Static VM. Perform the following steps:

Browse to Malware\Section4\ .

Extract capa43.zip using the password malware . This should produce a folder named capa43 that contains a DLL, EXE, and an empty

folder named lab43_rules .

Within lab43_rules , create a text file via a right-click > New > Notepad++ Document. Rename the file to encrypt-data-using-chacha.yml

and open it in Notepad++.

Launch Ghidra from the desktop.

Create a new project named Section4_capa

Load and initiate auto-analysis for both boot.dll and winfax.exe .

After processing is complete, go to the Listing view for boot.dll and jump to 1�0004feb. There, you will find code we previously analyzed

associated with the ChaCha encryption algorithm.

Open a command prompt and browse to C:\Users\REM\Desktop\Malware\Section4\capa43 .

Lab Questions

•

1.

2.

3.

4.

5.

6.

7.

8.

1. Write a capa rule within lab43_rules\encrypt-data-using-chacha.yml that meets the criteria described below. Perform code analysis

as necessary to write the rule. As part of your testing, you will need to execute capa with the command C:

\Users\REM\Desktop\Malware\Section4\capa43> C:\tools\capa.exe -r lab43_rules\encrypt-data-using-chacha.yml boot.dll

�

�

Notes

Your capa rule should meet the following criteria:

Use the namespace lab43_rules .

Identify the ChaCha algorithm based on key instructions we have seen in implementations of this algorithm.

Include number and mnemonic features.

Use a scope such that the results indicate the location within a function where the quarter-rounds occur.

�

•

•

•

•

© 2022 Anuj Soni 149

Lab Solutions

2.
Run the capa rule against the second executable, winfax.exe . At what location does capa identify the basic block that contains the

quarter-round operations?

�

�

Notes

Consider using the command line flags -v or -vv .

�

3. Using Ghidra, jump to the location within winfax.exe where the identified basic block resides. What do you notice about that code and

how can we proceed to confirm the activity at this location within the program?

�

�

1. Write a capa rule within lab43_rules\encrypt-data-using-chacha.yml that meets the criteria described below. Perform code analysis

as necessary to write the rule. As part of your testing, you will need to execute capa with the command C:

\Users\REM\Desktop\Malware\Section4\capa43> C:\tools\capa.exe -r lab43_rules\encrypt-data-using-chacha.yml boot.dll

Answer: Below is one approach to writing a capa rule that satisfies the specified criteria.

� �

Notes

Your capa rule should meet the following criteria:

Use the namespace lab43_rules .

Identify the ChaCha algorithm based on key instructions we have seen in implementations of this algorithm.

Include number and mnemonic features.

Use a scope such that the results indicate the location within a function where the quarter-rounds occur.

�

•

•

•

•

rule:
 meta:
 name: encrypt data using ChaCha
 namespace: lab43_rules
 author: Anuj Soni
 scope: basic block
 examples:
 - 29ed74821564be25cedc3ad0aa091b5e7fb8ad979b8eadbb48ddecb9d3013bad:0x180004e30
 features:
 - and:
 - and:
 - mnemonic: rol
 - number: 0x7

150 © 2022 Anuj Soni

Technet24

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

Practice writing and tweaking a capa rule.

 - and:
 - mnemonic: rol
 - number: 0x8
 - and:
 - mnemonic: rol
 - number: 0xc
 - and:
 - mnemonic: rol
 - number: 0x10

2. Run the capa rule against the second executable, winfax.exe . At what location does capa identify the basic block that contains the

quarter-round operations?

Answer: To view more detail on capabilities that capa identifies, we can use the -v or -vv command line flags. For example, if we type C:

\Users\REM\Desktop\Malware\Section4\capa43> C:\tools\capa.exe -v -r lab43_rules\encrypt-data-using-chacha.yml winfax.dll , the

output reveals that the identified basic block is at address 434�700 within winfax.exe .

� �

Notes

Consider using the command line flags -v or -vv .

�

3. Using Ghidra, jump to the location within winfax.exe where the identified basic block resides. What do you notice about that code and

how can we proceed to confirm the activity at this location within the program?

Answer: Ghidra did not disassemble this content. To view the code, click at the beginning of the code block and type D on the keyboard to

disassemble.

� �

•

© 2022 Anuj Soni 151

