FOR710 | REVERSE-ENGINEERING MALWARE: ADVANCED CODE ANALYSIS

710.4

Correlating Malware
and Building Rules

GIAC

CERTIFICATIONS

MNS

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

Technet24

© 2022 Anuj Soni. All rights reserved to Anuj Soni and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

All reference links are operational in the browser-based delivery of the electronic workbook.

FOR710.4 Reverse-Engineering Malware: Advanced Code Analysis

Correlating Malware
DR e e

© 2022 Anuj Soni | All Rights Reserved | Version H02_05

Section FOR710.4, also known as Section 4 of the FOR710 course, explores approaches to correlating
malware and writing rules to expedite future analysis.

FOR710.4 materials are created and maintained by Anuj Soni. To learn about Anuj's background and
expertise, please see https://www.sans.org/instructors/anuj-soni. You can visit his blog at
https://malwology.com/ and follow him on Twitter at https://twitter.com/asoni.

© 2022 Anuj Soni 1

Technet24

Course Roadmap

FOR710.1: Code
Deobfuscation and Execution

FOR710.2: Encryption in
Malware

FOR710.3: Automating
Malware Analysis

FOR710.4: Correlating
Malware and Building Rules

SECTION 4

Correlating Malware

* Lab 4.1: Correlating Malware

Building YARA Rules

* Lab 4.2: Writing YARA Rules

Building capa Rules

* Lab 4.3: Writing capa Rules

Advanced Malware Analysis Tournament

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

This page intentionally left blank.

© 2022 Anuj Soni

Correlating Malware

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 3

This page intentionally left blank.

© 2022 Anuj Soni 3

Technet24

Correlating Malware: Module Objectives

» Understand the benefits of comparing malware samples.
* Use Python scripts to identify similarities and differences in malware.

* Apply BinDiff to compare functions, identify changes to function code,
and highlight added/removed functions.

* Use Ghidra’s Program Diff feature to compare similar programs at the
instruction level.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

This slide describes the objectives of this module.

4 © 2022 Anuj Soni

Benefits of Correlation Analysis

* Identify similarities and differences between programs to find malware
variants and new or removed features.

* Pinpoint similar code and data across samples to identify relationships.
* Recognize code reuse to reduce time spent performing code analysis.
* Use identified similarities and differences to build effective YARA rules.

* Outputs from correlation analysis help build threat intelligence.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Understanding how to compare malware samples is important for several reasons. For example, you can
expedite your analysis if you identify code reuse between new malware and malware you reviewed in the
past. Correlation analysis might also lead to the discovery of new variants of a malware family. In
addition, the successful identification of similarities and differences across malware samples can help built
effective YARA rules, a topic we will discuss in the next module.

© 2022 Anuj Soni

5

Technet24

Effective Approaches to Compare Malware

» Mathematical calculations:

« File and section hashes In general, any output of static file
analysis, behavioral analysis, or code

* Fuzzy hashes (i.e., ssdeep) i _
analysis can be used for comparison.

* Import Table Hash (i.e., imphash)
» Mathematical models
 Data: embedded strings and APIs
* Code:
» Call graphs: Relationship of all calls to one another
* Control flow graphs: Basic blocks and the links between them
* Basic block instructions

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

There are a variety of approaches to consider when comparing programs. In general, we could use any
output from our static file analysis, behavioral analysis, or code analysis as a data point for comparison.
However, this module will focus on static approaches for file comparison. For example, calculations such
as file, section, and fuzzy hashes are a relatively simple and quick output to use for comparison. Another
approach is to compare embedded strings and imports—these are characteristics we often discover during
static file analysis. Finally, we could perform a more detailed comparison by looking at each program’s
code. Thankfully, there are freely available tools like BinDiff that can help with this process. BinDiff
reviews call graphs, control flow graphs, and the contents of basic blocks.

6 © 2022 Anuj Soni

Call Graphs Describe the Relationship between Functions

st iy O,

00405628 ___isa_available_init]—>®

004015A0 sub_004015A0
004018C0 sub_004018CO

00401240 sub_080401240

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Call graphs are an abstraction of a program that represents the relationship between function calls within a
program. Comparing call graphs is one way to assess the similarities and differences between programs.
This type of analysis is difficult to do manually, so we rely on programs like BinDiff to perform this sort
of analysis.

© 2022 Anuj Soni 7

Technet24

Control Flow Graphs (CFG) Depict the Flow of Execution

* Each node is a basic block.

* A basic block is a sequence of
instructions that does not include
a jump.

» Each edge is a jump.

» Comparing CFGs is another way
to compare programs.

i
I

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 8

A control flow graph (CFG) describes the overall flow of execution. Examples of CFGs are shown on this
slide. In a CFG, each node is a basic block, and each edge represents a control transfer between blocks.

8 © 2022 Anuj Soni

Tools for Correlation Analysis

* pestats.py: Basic static file information
» pecompare.py: Strings and imports
* BinDiff: Detailed function-level differences

* Ghidra’s Program Diff feature: Instruction level differences

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 9

This slide lists the key tools we will use to perform correlation analysis. In the upcoming slides, we will
discuss each capability in more detail.

© 2022 Anuj Soni 9

Technet24

Use pestats.py to Generate Information about Target Files

C:\Users\REM\Desktop\Malware\Sectiond>python pestats.py
Usage: python pestats <file|directory>

C:\Users\REM\Desktop\Malware\Sectionud>python pestats.py destiny

File name Sha-256 Hash Architecture |Size(bytes) |Compile Time Imphash Section Hashes

L3 L 3 e L 3 L0

destiny\@4f7 ©4F76D44DBAC3A8D810348F65ES... 32-Bit 130048 Fri Jun 18 20:16:46 2021 UTC AA4E67D3CC88.. .text:638F5F1CFE6E68EEDS559F01471455B94, . rdata: 768D0348CA59)
destiny\124f 124F3ASCAF6EBA64027F2865225.. 32-Bit 129992 Sat Jun 19 20:48:52 2021 UTC 36231B97F6B1.. .text:D78EE82AF5B7217FDCE@I70D41012BE7, . rdata:3090CE8201FF|
destiny\1941 19417COA38A1206007ABCC82COF... 32-Bit 121856 Sat Jun 19 20:55:23 2021 UTC 36231B97F6B1.. .text:BD1AF2DDBADB2EBSC3D913E332782877, .rdata:20A6A20DA552)
destiny\a639 A63937D94BADO576CO83398497F... 32-Bit 16896 Mon Jun 21 18:50:53 2021 UTC 716A67383034.. .text:3E8B6E1087137AA52B65F17CAED99339, . rdata:B9I74E73C6EET|
destiny\ad84 AD841882052C3F9D856ADIA3932.. 32-Bit 16896 Mon Jun 21 18:54:13 2021 UTC 716A67383034.. .text:3E8B6E1087137AA52B65F17CAED99339, . rdata: 7C18A67466F§
destiny\3462 34629751D8202BE456DCF149B51... 32-Bit 18944 Thu Jun 24 ©0:08:43 2021 UTC 6@@EF9C591D4... .text:6F167AEA6DBFDBDFEIBA79BSSABFDI1A, . rdata: BO2ESODCD2AS|
destiny\@de3 @De37EE@252E4F26800BCF7C750.. 32-Bit 18944 Thu Jun 24 ©0:10:43 2021 UTC 6@@EF9C591D4... .text:268DIES81BDB3BO3DB3EBO6964020CSF , . rdata: 6F32F85F5A3C]
destiny\3ff1 3FF1B9@DBAD5D78397FDC731C3A.. 32-Bit 18944 Fri Jun 25 16:59:29 2021 UTC 6@@EF9C591D4.. .text:E6E40445F0275DDA859F8B861DFA1051, . rdata: 995526CC244D)|
destiny\6c98 6C98D424AB1BIBFBAGS3EDA340F... 32-Bit 17920 Tue Sep 21 ©3:13:50 2021 UTC DA687DAE3534.. .text:ESE78D7352CCBA@DSO1A594F96A59A3E, . rdata:B5402E3CA3EE]
destiny\1c41 1C41ACDC2E9D8B89522EBBS1D6S... 32-Bit 17928 Tue Sep 21 ©3:16:56 2021 UTC DA687DAE3534.. .text:C@600A50195160CEE353FDIA3FEEAL33, . rdata:A42E5A495014)
destiny\84d2 84D24A16949B5A89162411ABIS8A.. 32-Bit 17920 Tue Sep 21 ©3:16:56 2021 UTC DA687DAE3534.. .text:C@600A50195160CEE353FDIA3FEEAL33, . rdata:A42E5A495014)

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 10

Pestats.py is a Python script developed by Anuj Soni. You can find it inside Malware\Section4\scripts.zip.
It is a simple script that collects basic information about an individual file or group of files and writes them
to a CSV file. Data collected includes the columns shown on this slide. The purpose of this script is to
quickly compare files at a high level. This helps direct more detailed correlation analysis efforts.

To view the generated CSV file, try TimeLine Explorer. A shortcut to this program is located on your VM
desktop. This tool allows you easily view, sort, and filter CSV files.

10 © 2022 Anuj Soni

Use pecompare.py to Compare String and Imported Functions

C:\Users\REM\Desktop\Malware\Sectiond>python pecompare.py destiny\1941 destiny\a639 | Stri in File #1: 791
File #1: destiny\1941
Imports: 83
Strings: 831 H
<requestedExecutionLevel level='asInvoker' uiAccess='false' />
File #2: destiny\a639 </requestedPrivileges>
Imports: 29 <requestedPrivileges>
Strings: 81 </security>
. X <security>
Strings in common:4@ </trustInfo>
<trustInfo xmlns="urn:schemas-microsoft—com:asm.v3">
. . 1"4#$%8&' ()*+,—. /0123456789 ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]1"_"
!This program cannot be run in DOS mode. 14#$%8 " ()*+,—. /0123456789 : ; <=>?@abcdefghijklmnopqrstuvwxyz[\]"_"
.}data$2 (2)\cypher_wc\Release\cypher.pdb
-idata$3 Base Class Array'
v Base Class Descriptor at (

Findpigstpilew Strings ONLY in File #2: 41
FindNextFileW

GetCommandLineW [-1 Argument
GetDriveTypeW i35 1X

GetFileSizeEx $recycle.bin

GetLastError —ENCRYPTED. txt

GetProcAddress alilalalalitalal

GetProcessHeap <MeQ@

GetStdHandle <MHD@

HeapAlloc @[+] Checking if already started...
HeapFree BCryptGenRandom

KARMA C$~o0q6

KERNEL32.d11 CreateMutexA

LoadLibraryA CryptStringToBinaryw

MoveFileW D$UPh

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 11

Pecompare.py is a Python script that compares two files. Specifically, this script compares embedded
strings and imported functions. You can find this script inside Malware\Section4\scripts.zip.

© 2022 Anuj Soni 11

Technet24

BinDiff: Function-Level Differences

@ C:\Users\REM\BinDiff Workspace_karma\BinDiff Workspace_karma.BinDiffWorkspace - BinDiff - a X
‘Eile Diffs Settings Help

‘ =7 Workspace

|| Single Function Diff Views (0) : Overview
4 karma_a639 vs karma_1941 : A
v X L
4 karma_3462 vs karma_a639 | Functions 77.8% : Similarity 0.60
7 karma_84d2 vs karma_3462. | . B w 12
12 Call Graph (22/26) 1 5 10
T3 Matched Functions (21) | N 3
< Primary Unmatched Functions (1/22) : = 8
PreY Secondary Unmatched Functions (5/26) = 6
“ karma_84d2 vs karma_6c98 3 5 4
) karma_124f vs karma_04f7 Led, s 2 1
4 karma_1941 vs karma_124f 0
%) karma_1941 vs karma_04f7 DN Y M b B A D 9D
S e S MRS TS L S
Diff Info
| | Diff Path C:\Users\REM\BInDiff Workspa...rma\karma_84d2 vs karma_3462\karma_84d2_vs_karma_3462.BinDiff
: File Date Oct 31,2021 2:53:28 AM
| Primary Image Secondary Image
‘| | IDB Name karma_84d2 IDB Name karma_3462
‘| |Image Name 84d24a16949b5a89162411ab98ab223012| |Image Name 34629751d8202be456dcf149b516afefc98
/| |Hash 84d24a16949b5a89162411ab98ab223012| |Hash 34629751d8202be456dcf149b516afefc98
| | Architecture x86-32 Architecture x86-32
| |Functions [21 (95.5%) 22 (45%)1]| |Functions [21 (80.8%) 26 (19.2%) 5]

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

BinDiff is a powerful tool for understanding function-level differences. It provides a percentage value that
describes how similar functions are between two samples and allows the analyst to compare functions

side-by-side. The upcoming exercise includes step-by-step instructions for generating output like what you
see on this slide.

For more details on how BinDiff matches functions, browse to https://for710.com/bindiff-matching.

12 © 2022 Anuj Soni

BinDiff: Matched Function Details

| 3 Workspace J T, entry vs entry X I

CEEREE

o <

sne @ o~ \

00401B70 entry

primary

L

Tentry(17/17)
11 00401870
111 00401896
111 00401BAS
111 00401880
111 00401888
111 00401BCO
11 004018D1
111 00401BDC
111 00401BEQ
L1 00401BEC
111 0040127
111 00401C55
11 00401C6E
11 00401CAE
111 00401CCA
L1 00401CED
1.1 00401CE0

hod

a8 Selection History

%

entry 00401870

secondary

7

[——
-

/

AN

l —

00401870 entry

00401CE0 CALL FUN_00462320

00401CE5 PUSH 0x@
E 00401CE7 CALL

dword ptr [PTR_ExitProcess_864046a8]

00401870

00401CEQ
00401CE2

entry

PUSH
CALL

0x8
dword ptr [PTR_ExitProcess_86464604]

[
.

=

I

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 14

Clicking on a matched function provides a comparison of basic blocks, and we can zoom in for additional

detail.

14

© 2022 Anuj Soni

Technet24

BinDiff: Unmatched Functions

=7 Workspace

[Single Function Diff Views (0) :: 1/ 1 Primary Unmatched Functions
) karma_a639 vs karma_1941 : [
4 karma_3462 vs karma_a639]
) karma_84d2 vs karma_3462 || Address. | Name | Type: |
2 Call Graph (22/26) | 00463880 |__alloca_probe | Normal |4

<% Matched Functions (21) :
<Zs[Primary Unmatched Functions (1/22)|
Zx Secondary Unmatched Functions (5/26)
%) karma_84d2 vs karma_6c98]
“) karma_124f vs karma_04f7
“1) karma_1941 vs karma_124f
“)) karma_1941 vs karma_04f7

MEIE]
Basic Blocks] Jumps‘ Instructions‘ Callers ‘
s[4 [1 [o

Callees

7 Workspace 1

[Single Function Diff Views (0) : 5/ 5 Secondary Unmatched Functions

41 karma_a639 vs karma_1941] | v‘ | & |

) karma_3462 vs karma_a639 A

“l) karma_84d2 vs karma_3462 Address Name
2 Call Graph (22/26) || 004021B0 sub_004021B0 Normal |15 22 15
é’ﬁ "‘)"?tChedUF“”C"‘;“Z(g” ons (1/22) 00402760 | sub_00402760 Normal |68 113 68

:Ix Primary Unmatched Functions

% [Secondary Unmatched Functions (5/26) - 00402D30 sub_00402D30 Normal | 140 214 140

arma_84d2 vs karma_6c98 004035A0 1pStartAddress_004035a0

“ karma_124f vs karma_04f7 004035D0 sub_004035D0

Type / Basic Blocks | Jumps | Instructions Callers Callees

Normal |1 0 1

ole|nv|o|e
o|l=|=a]=]e

Normal |10 14 10

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 15

View the “Unmatched Functions” views to display functions which appear in only one program.

© 2022 Anuj Soni 15

Correlation Analysis Challenges

 Samples that are packed or obfuscated may have very different file
characteristics but include the same functionality.

* Programs may have many uninteresting differences that are byproducts
of minor changes in code or compiler settings.

* Correlation analysis can take a lot of time—we’ll discuss ways to speed
up this process in upcoming modules.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Correlation analysis can yield powerful results, but there are several challenges you may encounter. This
slide lists caveats to keep in mind.

18 © 2022 Anuj Soni

Technet24

Course Roadmap

« FOR710.1: Code * Correlating Malware
Deobfuscation and Execution * Lab 4.1: Correlating Malware
* Building YARA Rules
* Lab 4.2: Writing YARA Rules
* Building capa Rules
* Lab 4.3: Writing capa Rules
Advanced Malware Analysis Tournament

* FOR710.2: Encryption in
Malware

FOR710.3: Automating
Malware Analysis .

FOR710.4: Correlating
Malware and Building Rules

SA.N.S FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 19

This page intentionally left blank.

© 2022 Anuj Soni 19

SANS DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

Lab 4.1

Correlating Malware

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 20

Please begin Lab 4.1 now.

20 © 2022 Anuj Soni

Technet24

Correlating Malware: Module Objectives, Revisited

v'Understand the benefits of comparing malware samples.

v'Explore Python scripts to identify similarities and differences between
programes.

v'Use BinDiff to compare functions, identify changes to function code, and
highlight added/removed functions.

v'Use Ghidra’s Program Diff feature to compare similar programs at the
instruction level.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 21

This slide describes the objectives of the module we just completed.

© 2022 Anuj Soni 21

MM

22

Course Roadmap

FOR710.1: Code
Deobfuscation and Execution

FOR710.2: Encryption in
Malware

FOR710.3: Automating
Malware Analysis

FOR710.4: Correlating
Malware and Building Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 22

This page intentionally left blank.

SECTION 4

Correlating Malware

* Lab 4.1: Correlating Malware
Building YARA Rules

* Lab 4.2: Writing YARA Rules

Building capa Rules

* Lab 4.3: Writing capa Rules

Advanced Malware Analysis Tournament

© 2022 Anuj Soni

Technet24

Building YARA Rules

FOR?710 | Reverse-Engineering Malware: Advanced Code Analysis 23

This page intentionally left blank.

© 2022 Anuj Soni 23

YARA Background

* YARA rules use text and hex strings to identify strings, code, and data in
suspect programs.

* Incorporating YARA into your workflow can help:
» Triage executables.
* Classify malware.
* Identify common malware characteristics.
* Group malware by variant and family.
* Hunt for related samples.

* YARA rules are a critical output of the RE process.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

YARA is a tool developed to help malware analysts identify, classify, and group malware based on the
presence of text or hexadecimal strings. These strings are placed into “rules”, which can be run against
other files to identify matches. YARA can be applied to files on disk or content in memory, but this course
will focus on developing rules for static files on disk.

YARA can help triage executables, identify common malware characteristics, and cluster malware into
groups. It is considered a key output of the reverse engineering process because it often documents key

functionality or unique characteristics associated with an individual file or malware family.

To learn more about YARA, browse to the official website located at https://for710.com/yara.

© 2022 Anuj Soni 25

Technet24

Inputs to YARA Rule Generation (1)

* Writing effective YARA rules requires that we use all the malware
analysis tools and techniques we have access to.

 Outputs from static file analysis, behavioral analysis, and code analysis
can all feed into the YARA rule development process.

* Key inputs for YARA rule development include:
» Static file characteristics (pestats.py).
* Embedded strings (PeStudio, strings64.exe, pecompare.py).
* Code analysis results (Ghidra).
* Binary comparison results (Ghidra, BinDiff).

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 26

Creating effective YARA rules requires that we consider the results of all phases of our analysis process:
static file analysis, behavioral analysis, and code analysis.

26 © 2022 Anuj Soni

YARA Rule Example

This rule includes metadata, a text string, a hex string with wild cards, and

//Loop that decodes bytes by subtracting rand() output from the encoded byte.
$hex _rand = (E8 ?? ?? ?? ?? 25 FF 00 00 80 7D 09 FF C8 0d 00 FF FF FF FF CO 28 03 48 FF C3 48 83 EF 01 75 EO }

condition:
uintlébe (0) == 0x4d5a
and filesize < 2MB
and ($sl or $hex rand)

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

The best way to understand YARA rules is to review an example, as shown on this slide. Key components
of a YARA rule include:

Meta data: This section includes background information about the rule author, references, and example
hashes. This section is optional but highly recommended.

Comments: Use double forward slashes (“//””) for single line comments. For multiline comments, enclose
the text between “/*” and “*/”.

Strings: This section includes text and hexadecimal strings. For text strings, consider these modifiers:
ascii, wide, nocase, and fullword. The “fullword” modifier matches only when the specified
text is delimited by non-alphanumeric characters. For example, if the fullword modifier is applied to the
string “evil”, it will match “/evil/” but not “devilish”. Also, note that the text string includes the escape
sequence “\\” to represent a single backslash. Escape sequences are necessary if a text string includes
double quotes (\"), carriage returns (\r), tabs (\t) or new lines (\n).

When crafting hexadecimal strings, consider wild cards for bytes that may vary between similar programs
(““??”). The hexadecimal string used in this example is based on the code shown on the top-right of this
slide. This code is from the sample with SHA-256 hash
DAS581A5507923F5B990FES935A00931D8CD80215BFS88ABEC425114025377BB1. The rand()
function called in this loop appears at different relative offsets across the three files referenced in the rule
metadata. To accommodate this variation across samples, we use a hex string with wild card bytes.

Condition: This section includes the conditions to evaluate in a potential match. The first condition listed
on this slide reads a 16-bit big-endian integer at the beginning of the assessed file to check for the bytes
0x4d5a (i.e., “MZ”) that indicate a Windows Executable. The second condition assesses the target file’s
size. The third condition considers the presence of the text and hexadecimal strings referenced in the
strings section.

For the official documentation on writing Y ARA rules, see https://for710.com/yara-writing.

28 © 2022 Anuj Soni

several conditions. 1 5_L40001120
140001120 e8 a3 1f 00 00 CALL rand
rule rand loader { 140001125 25 £f 00 00 80 AND EAX, 0x800000ff
meta: -| 140001122 7d 09 JGE LAB_140001135
description = "Detects code similar to the rand()-based PE and 14000112¢c ££f c8 DEC ERX
shellcode loader described in the referenced article." 14000112e 0d 00 £f £f ££f OR EAX, OXfffff£00
author = "Anuj Soni" 140001133 ££ cO INC EAX
referencel = "https://for710.com/blackberryblog"
date = "2020-07-16" > LAB 140001135
hashl = "DA581A5507923F5B990FE5935A00931D8CD80215BF588ABEC425114025377BB1" 140001135 28 03 SuB byte ptr [RBX], AL
hash2 = "843CD23B0D32CB3A36B545B07787ACIDA516D20DB6504F9CDFFA806D725D57F0" 140001137 48 £f c3 INC RBX
hash3 = "7CAB7C0B3017C0830B7F518A133906E6EF7E04CE7BE83166FA6F6039474DB3F6" 14000113a 48 83 ef 01 SUB RDI, Ox1
—| 14000113e 75 e0 JNZ ~ LAB_140001120
strings:
$s1 = “D:\source\mining\wavPayloadPlayer\x64\Release\wavPayloadPlayer.pdb” ascii wide nocase
g Y. Yy Y. Yy b

28

Technet24

Launch YARA Using yara64

yara64 <rules file> <file or directory>

C:\Users\REM\Desktop>yara64 rand_loader.yar samples
rand_loader samples\843c.exe
rand_loader samples\7cab.exe
rand_loader samples\da58.exe

C:\Users\REM\Desktop>yaraé6l.exe rand_loader.yar -s samples

rand_loader samples\843c.exe

0xf20:$hex_rand: E8 OB 4l 00 00 25 FF 00 00 80 7D 09 FF C8 OD 00 FF FF FF FF CO 28 03 48 FF C3 48 83 EF 01 75 EO
rand_loader samples\7cab.exe

0x1323:$hex_rand: E8 F8 22 00 00 25 FF 00 00 80 7D 09 FF C8 OD 00 FF FF FF FF CO 28 03 48 FF C3 48 83 EF 01 75 EO

rand_loader samples\da58.exe
0x1lddc:$s1: D:\source\mining\wavPayloadPlayer\x6U4\Release\wavPayloadPlayer.pdb
0x520:$hex_rand: E8 A3 1F 00 00 25 FF 00 00 80 7D 09 FF C8 ©D 00 FF FF FF FF CO 28 03 u48 FF C3 48 83 EF 01 75 EO

SAN.S FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 29

Your Windows VM includes the official yara64.exe program. Use the command-line format at the top of
this slide to run a rule against a file or directory of files.

In the examples on this slide, the rule discussed in the previous slide is run against a directory “samples”
that contains the files referenced in the meta data section of the YARA rule. The first command-line output
indicates all three files match the rule. In the second command-line, the “-s” argument is added to print
matching strings.

© 2022 Anuj Soni 29

Writing YARA Rules Takes Time and Practice

» Writing a rule is easy; writing an effective rule can be extremely difficult.
* Reducing false positives and false negatives can be challenging.

* A careful review of string output and robust code analysis looking for
unique content goes a long way.

* Crafting YARA rules involves writing, testing, hunting, and iterating.

* Patience, practice, and persistence are paramount.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 30

This slide lists key caveats associated with developing YARA rules.

30 © 2022 Anuj Soni

Technet24

YARA Modules

Modules extend YARA features, and the PE module provides access to the
fields and features of a PE file:

e number_of sections * version_ info
* sections - imports
* overlay « exports
e number_of resources .
» imphash
import “pe”
;ondition:
uintlé6be (0) == 0x4D5A and
filesize < 1MB and
pe.imphash() == "DA687DAE353481FEBE9B9720AA9AB4BD”

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

Modules extend YARA’s capabilities. One important module for PE file analysis is the PE module. This
module provides access to the structure of a portable executable, including its imports, exports, and
sections.

For more information on the YARA pe module, see https://for710.com/yara-pe.

© 2022 Anuj Soni 31

yarGen for Rule Generation

» Sifting through hundreds or thousands of strings to find those unique to
one sample or group of malware can be time-consuming and tedious.

» yarGen automates some of the work involved in generating effective
YARA rules.

* Performing code analysis across multiple files looking for common
opcodes can also be challenging.

* yarGen uses a database of goodware strings and opcodes (optional) to
highlight values that might be unique to the target samples.

* A human analyst is still required to review the output.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

yarGen is created and maintained by Florian Roth (https://twitter.com/cyb3rops). To visit the GitHub page
for yarGen, browse to https://for710.com/yargen.

32 © 2022 Anuj Soni

32

Technet24

Run yarGen against an Individual File or Directory

C:\Users\REM\Desktop\Malware\Section4>python C:\Tools\yarGen-0.23.4\yarGen.py —m destiny —o destiny_yargen.yar

/ _—
VAVY A Ay S A Gy A R
\oy N\ /o) NN/
/___/ Yara Rule Generator
Florian Roth, July 2020, Version 0.23.3

Note: Rules have to be post—processed
See this post for details: https://medium.com/@cyb3rops/121d29322282

Using identifier 'destiny'
[+] Using reference 'https://github.com/Neo23x0/yarGen'
[+] Using prefix 'destiny'
[+] Processing PEStudio strings ...
Reading goodware strings from database 'good-strings.db'
(This could take some time and uses several Gigabytes of RAM depending on your db size)
Loading ./dbs/good-exports-partl.db ...

Generating Super Rules ...

Generated 11 SIMPLE rules.

Generated 5 SUPER rules.

All rules written to destiny_yargen.yar
yarGen run finished

SAN.S FOR?710 | Reverse-Engineeri alware: Advanced Code Analysis

yarGen can be run against an individual file or group of files. In the example on this slide, yarGen is
executed against a directory of files.

34 © 2022 Anuj Soni

34

Super Rules Target Multiple Files

rule _0de3_1c4l 3462 3ffl _6c98 84d2 2 {
meta:
description = "destiny - from files @de3, 1c41, 3462, 3ffl, 6c98, 84d2"
author = "yarGen Rule Generator"
reference = "https://github.com/Neo23x@/yarGen"
date = "2021-11-05"
hashl = "@d037ee0252e4f26800bcf7c750f61d0c549b7baka522c75e8d96dcf4f689e27"
hash2 = "1c4lacdc2e9d8b89522ebb51d65b4c41d7fd130al4ce9d449edbO5F53bbb8d59"
hash3 = "34629751d8202be456dcf149b516afefc980a9128dd6096fd6286fee530a0d20"
hash4 "3ff1b9edbad5d78397fdc731c3a3c080d91fc488ac9152793b538b74ale2d8f3"
hash5 "6c98d424ablb9bfba683eda340fef6540ffedecd634f4b95cf9c70fedab2de90™
hash6é "84d24a16949b5a89162411ab98ab2230128d8f01a3d3695874394733ac2aldbd”
strings:
$s1 "PLEASE, READ KARMA-ENCRYPTED" fullword wide
$s2 "background.jpg" fullword wide
$s3 = "default user" fullword wide
"system volume insformation"” fullword wide
= "searches" fullword wide
"default" fullword wide /* Goodware String - occured 1159 times */

) or (all of them)

FOR710 | Reverse-Engineeri alware: Advanced Code Analysis

yarGen rules that identify multiple files are referred to as “super rules”.
Note that yarGen output is helpful and often saves time in generating an appropriate YARA rule, but it is

just one step in the rule development process. Analysts should always review yarGen output, add/remove
strings as needed, and test the rules.

36 © 2022 Anuj Soni

Technet24

Course Roadmap

« FOR710.1: Code * Correlating Malware
Deobfuscation and Execution * Lab 4.1: Correlating Malware
* Building YARA Rules
* Lab 4.2: Writing YARA Rules
* Building capa Rules
* Lab 4.3: Writing capa Rules
Advanced Malware Analysis Tournament

* FOR710.2: Encryption in
Malware

FOR710.3: Automating
Malware Analysis .

FOR710.4: Correlating
Malware and Building Rules

SA.N.S FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 37

This page intentionally left blank.

© 2022 Anuj Soni 37

SANS DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

Lab 4.2

Writing YARA Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 38

Please begin Lab 4.2 now.

38 © 2022 Anuj Soni

Technet24

Building YARA Rules: Module Objectives, Revisited

v'Describe common use cases for using YARA.
v'Understand best practices for writing YARA rules.
v'Learn how to write an effective YARA rule.

v'Gain exposure to automation options for writing YARA rules.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 39

This slide describes the objectives of the module we just completed.

© 2022 Anuj Soni 39

Course Roadmap

« FOR710.1: Code * Correlating Malware
Deobfuscation and Execution * Lab 4.1: Correlating Malware
* Building YARA Rules
* Lab 4.2:Writing YARA Rules
* Building capa Rules
* Lab 4.3: Writing capa Rules
Advanced Malware Analysis Tournament

* FOR710.2: Encryption in
Malware

* FOR710.3: Automating
Malware Analysis .

* FOR710.4: Correlating
Malware and Building Rules

SA.N.S FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 40

This page intentionally left blank.

40 © 2022 Anuj Soni

Technet24

Building capa Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 41

This page intentionally left blank.

© 2022 Anuj Soni 41

Building capa Rules: Module Objectives

* Introduce capa for triage and rule development.
* Discuss key aspects of capa rule formatting.
 Explain rule development best practices.

* Write a capa rule.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 42

This slide describes the objectives of this module.

42 © 2022 Anuj Soni

Technet24

Capa: An Open-Source Tool That Assesses Program Capabilities

* capa extracts strings and disassembles code and combines this output
with a logic engine to identify key functionality.

* capa supports analysis of PE, ELF, or shellcode files.

* It is a powerful triage tool, and it also provides a robust framework to
document and share common malware characteristics.

* capa uses text-based, human-readable rules to identify program features,
and these rules are relatively easy to write.

* capa rules are actively maintained and shared at
https://github.com/mandiant/capa-rules.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 43

FORG610 discusses how to use capa for triage; in this course, we discuss how to create capa rules to
structure our knowledge and automate analysis.

For more information on capa, see https://for710.com/capa. To review existing rules, see
https://for710.com/capa-rules.

© 2022 Anuj Soni 43

Capa Verbose Output

C:\Users\REM\Desktop\Malware\Section2>c:\Tools\capa.exe -v file.exe
loading : 100%]| | 639/639 [00:00<00:00, 2115.75 rules/s]

matching: 100%]| | 254/254 [00:05<00:00, U6.98 functions/s, skipped 6 lerary functlons (2%)]
md5 9e758f927e897el11buoc5bbedabb9381

shal ael60cdla828b2695b027ebdcd9b2ucb3cba3527

sha256 6b212864731c131bd095¢c2537callel0338d3ebf997dda59u65¢c5f1ce73dul18b

namespace data-manipulation/checksum/crc32

scope function
matches oxues58u6

namespace data-manipulation/checksum/crc32

author moritz.raabe@mandiant.com

scope function

mbc Data: :Checksum: :CRC32 [C0032.001]

examples 2D3EDC218A90F03089CCO1715A9FOUTF : ©xU403CBD

87E6B3EF38AB: 0x10008UA6 FuRIONA05546

function @ ©xu4058U6
or: 00405846

namespace data-manip
scope function
matches OXUBAUBE

PUSH
and:
mnemonic: @ 0xues5866

number: @ Oxue586E
number: @ OxUe585E 0040586e 25 20 83 bS... AX, 0xedb88320

characteristic: CRCPOCEE M POCE:y 00405873 33 cB XOR 2CX,

MM

Iware: Advanced Code Analysis

When executing capa, we can specify command line options to provide more detail on matches. With the
-v and -vv command line options, capa details why it detected a capability and where the code or data
resides.

© 2022 Anuj Soni

45

45

Technet24

Capa and Obfuscated Programs

C:\Users\REM\Desktop\Malware\Section2>c:\Tools\capa.exe 1582.exe

100% | I | 639/639 [00:06<00:00, 1834.71 rules/s]

matching: 100%|[j| 462/462 [00:05<00:00, 71.17 functions/s, skipped 279 library functions (69

loading

WARNING:

:capa:
:capa:
capa:
capa:

WARNING
WARNING

WARNING:
WARNING:
r incomplete.
WARNING:

capa.

WARNING:

WARNING

WARNING:
WARNING:
WARNING:

MM

capa:

capa:
:capa:
capa:
capa:

This sample appears to be packed.

Packed samples have often been obfuscated to hide their logic.
capa cannot handle obfuscation well. This means the results may be misleading o

If possible, you should try to unpack this input file before analyzing it with

Identified via rule: (internal) packer file limitation

Use -v or -vv if you really want to see the capabilities identified by capa.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 46

Capa runs against files on disk, and it does not execute the target. As a result, this capability is less useful
if the suspect file is heavily obfuscated. However, this is expected based upon how capa works, and the
output clearly indicates when this is an issue.

46

© 2022 Anuj Soni

Capa Uses YAML Files for Its Rules Engine

rule:
meta:
name: Identify functions with ARX operations.
namespace: test rules
author: Anuj Soni
scope: basic block
examples:
- eecc969bal7e924093821a7c862da03£8668abe833042b6bd023fbe75fa2e0e8:0x4035C0
features:
- and:
- mnemonic: add
- mnemonic: xor
- or:
- mnemonic: rol
- mnemonic: ror

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

This slide includes an example that targets techniques we discussed in class. Let’s discuss key aspects of a
capa rule.

First, use the meta block to name the rule, identify its scope, and provide examples. As described in the
rule format documentation (https://for710.com/capa-format), the rule name should complete the sentence
"The program/function may...”. The namespace is used to organize rules and should specify the folder
where the rule resides. There are three options for scope: basic block, function, and file. Finally, examples
should specify file hashes and virtual addresses where an analyst can find the identified capability. Note
that in addition to the hash, the rule writer should specify a function or basic block address.

The features block specifies the rule logic. Acceptable expressions include and, or, not, and optional,
among others.

The logic can specify a variety of features, including:

* API

* Number
» String

* Bytes

* Offset

* Mnemonic
* Characteristic

© 2022 Anuj Soni 47

Technet24

Capa Sample Output

C:\Users\REM\Desk
loading : 100%]|

md5

shal

sha256

path

timestamp

capa version

os

format

arch

extractor

base address

rules

function count
library function count
total feature count

test_rules
basic block
0x4035C0o

namespace
scope
matches

\Malware\Section2>C:\Tools\capa.exe

perform_arx_operations.yml system32.exe

| 1/1 [00:00<00:00, 934.14 rules/s]
matching: 100% ||| 281/281 [00:00<00:00, 667.64 functions/s, skipped 187 library functions (66%)]

896576de0813cf79998c56fa28886a6e
b6053ddeb2cUle08905476a269e9b80eel7c526e
eecc969bal7e924093821a7c¢862da03f8668abe833042b6bd023fbe75fa2e0e8
system32.exe

2021-11-16T19:22:59.969614

v3.0.3-0-g29%e61le2

windows

pe

i386

VivisectFeatureExtractor

0x400000
C:\Users\REM\Desktop\Malware\Section2\perform_arx_operations.yml
ou

187

6135

004035c0
004035c2
004035c5
004035c8
004035cb
004035ce
004035d1
004035d4
00403547
004035da
004035dd
004035e0
004035e2
004035e5
004035e7
004035ea
004035ed
004035f0
004035£3
004035€f6

LAB_004035c0

EAX, EDI

EDI, dword ptr
EAX, 0x7

dword ptr [EEP
EAX, dword ptr
EAX, dword ptr
EAX, 0x9

dword ptr [EBP
EAX
EAX
EAX,
EDI,
EAX
EAX,
dword ptr [EBP
EAX, Oxe

dword ptr [EEP
EAX, dword ptr
EAX, dword ptr
EAX, O0x7

dword ptr
dword ptr
0xd
EAX
dword ptr
EDI

[EBP + local_38]

+ local 10], EAX
[EBP + local_10]
[EBP + local c]

+ local_14], EAX
[EBP + local_14]
[EBP + local_10]
[EBP + local_14]
+ local_38], EDI
+ local_c], EAX

[EBP + local_ 18]
[EBP + local_20]

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

On this slide, we run the rule described on the previous slide against system32.exe (discussed earlier in this
course). The “-r”” argument specifies the path to a custom rules file or directory. If a rule path is not
included, the embedded rules are used.

Capa successfully identifies a basic block with ARX operations.

48

© 2022 Anuj Soni

48

This Public Rule Example Involves Constants and Windows APls

encrypt data using AES via WinAPI
ace: data-manipulation/encryption/aes
author: moritz.raabe@mandiant.com
unction
atts&
- Defense Evasion::Obfuscated Files or Information [T1027]
mbc:
- Defense Evasion::Obfuscated Files or Information::Encryption-Standard Algorithm [E1027.m@5]
- Cryptography: :Encrypt Data::AES [C0027.001]
examples:
- BC577119D1A5B7DA489E7B5817D3CC38: 0x10002FAC

features

number: @x6611 = CALG_AES
number: @x660E = CALG_AES_128
number: @x660F = CALG_AES_192
number: 0x6610 = CALG_AES_256
- or:
- api: CryptGenKey
- api: CryptDeriveKey
- api: CryptImportKey
- optional:
- or:
- number: 1 = PROV_RSA_FULL
- api: CryptAcquireContext
- api: CryptEncrypt
- api: CryptDecrypt

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis

This example rule is available at https://for710.com/capa-aes-winapi.

© 2022 Anuj Soni 49

49

Technet24

SANS DFIR

DIGITAL FORENSICS & INCIDENT RESPONSE

Lab 4.3

Writing capa Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 52

Please begin Lab 4.3 now.

52 © 2022 Anuj Soni

Building capa Rules: Module Objectives, Revisited

v'Introduce capa for triage and rule development.
v'Discuss key aspects of capa rule formatting.
v'Explain rule development best practices.

v'Write a capa rule.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 53

This slide describes the objectives of the module we just completed.

© 2022 Anuj Soni 53

Technet24

Course Roadmap

« FOR710.1: Code * Correlating Malware
Deobfuscation and Execution * Lab 4.I: Correlating Malware
* Building YARA Rules
* Lab 4.2:Writing YARA Rules
* Building capa Rules
* Lab 4.3:Writing capa Rules
* Advanced Malware Analysis Tournament

* FOR710.2: Encryption in
Malware

* FOR710.3: Automating
Malware Analysis

* FOR710.4: Correlating
Malware and Building Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 54

This page intentionally left blank.

54 © 2022 Anuj Soni

Advanced Malware
Analysis Tournament

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 55

This page intentionally left blank.

© 2022 Anuj Soni 55

eeeeeeeee

Welcome to the Advanced Malware Analysis Tournament

* The final section of this course gives you an opportunity to flex your new
knowledge and skills in a more independent, competitive environment.

* You must recall key concepts and perform workflows we discussed in
class to successfully navigate the tournament and accumulate points.

* This is an excellent opportunity to analyze real-world, complex malware
samples and reinforce your new advanced analysis skills.

* You will log onto a CTF platform and be presented with a combination of
multiple choice and short answer challenges.

* To access the game, you will need to create an account at
https://www.ranges.io/sign-up or use an existing account.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 56

This page intentionally left blank.

56 © 2022 Anuj Soni

Playing the Game in a Live or Hybrid Class

* The game will begin soon and end in two weeks (no extensions/exceptions).

* The highest scorer wins a FOR710 Challenge Coin.

* To access the game, log in and enter the “Event code” provided by the
instructor.

« If you have questions or encounter issues
while playing, e-mail for710@sans.org.
* Be sure to specify the relevant question.
* Allow up to 12 hours for an initial response.

* After play, submit an eval at
https://for710.com/ctfeval.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 57

This page intentionally left blank.

© 2022 Anuj Soni 57

Technet24

Playing the Game via OnDemand

* You will have extended access to the game for four months.
* There is no challenge coin awarded when playing via OnDemand.
* For the event code, access MyLabs through your SANS Portal account.

* If you have any questions while playing, contact OnDemand support.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 58

This page intentionally left blank.

58 © 2022 Anuj Soni

Tournament Notes (1)

* Analysis environment:
* Keep your virtual machines configured using “host-only” networking.
* In addition to your Static and Dynamic VMs, use REMnux as needed.
* Challenge questions:
* You will find a combination of multiple choice and short answer questions.
* Incorrect answers will cost you.

* If you believe a question is poorly written, or an answer is incorrect,
please let the instructor know.

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 60

This page intentionally left blank.

60 © 2022 Anuj Soni

Technet24

Course Roadmap

« FOR710.1: Code * Correlating Malware
Deobfuscation and Execution * Lab 4.1: Correlating Malware
* Building YARA Rules
* Lab 4.2:Writing YARA Rules
* Building capa Rules
* Lab 4.3:Writing capa Rules
* Advanced Malware Analysis Tournament

* FOR710.2: Encryption in
Malware

* FOR710.3: Automating
Malware Analysis

* FOR710.4: Correlating
Malware and Building Rules

FOR710 | Reverse-Engineering Malware: Advanced Code Analysis 62

This page intentionally left blank.

62 © 2022 Anuj Soni

FOR710 | REVERSE-ENGINEERING MALWARE: ADVANCED CODE ANALYSIS

Workbook

GIAC

CERTIFICATIONS

MNS

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

Technet24

© 2022 Anuj Soni. All rights reserved to Anuj Soni and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

All reference links are operational in the browser-based delivery of the electronic workbook.

Welcome to the FOR710 Electronic Workbook

E-Workbook Overview

This electronic workbook contains all lab materials for SANS FOR710, Reverse-Engineering Malware: Advanced Code Analysis. Each lab is
designed to address a hands-on application of concepts covered in the corresponding courseware and help students achieve the learning
objectives the course and lab authors have established.

Some of the key features of this electronic workbook include the following:

* Inline drop-down solutions, command lines, and results for easy validation and reference
« Integrated keyword searching across the entire site at the top of each page
« Full-workbook navigation is displayed on the left and per-page navigation is on the right of each page

+ Many images can be clicked to enlarge when necessary

Updating the E-Workbook

E Tip

We recommend performing the update process at the start of the first day of class to ensure you have the latest content.

The electronic workbook site is stored locally in the VM so that it is always available. However, course authors may update the source content
with minor fixes, such as correcting typos or clarifying explanations, or add new content such as updated bonus labs. You can pull down any
available updates into the VM by temporarily connecting the VM to the internet (i.e., update the VM's network configuration from host-only to
Bridged or NAT) and running the following command in a bash window:

workbook-update

In a Windows VM, open an Ubuntu bash window using the shortcut in the taskbar. Then, type workbook-update and press Enter . The script will
indicate whether there were available updates. If so, be sure to refresh any pages you are currently viewing (or restart the browser) to make sure
you are seeing the latest content.

After completing the e-workbook update, be sure to change the VM's network configuration back to host-only.

Using the E-Workbook

The FOR710 electronic workbook should be the home page for the browsers inside all virtual machines where it is maintained. Simply open a
browser or click the home page button to immediately access it in the VMs.

You can also access the workbook from your host system by connecting to the IP address of your VM. Run 4p a in Linux or in the Ubuntu bash
shell in Windows to get the IP address of your VM. Next, in a browser on your host machine, connect to the URL using that IP address (i.e.
http://<%VM-IP-ADDRESS%>). You should see this main page appear on your host. This method could be especially helpful when using multiple
screens.

We hope you enjoy the FOR710 class and workbook!

© 2022 Anuj Soni 1

Technet24

Lab 0: Completing Lab Setup

Background

The purpose of this lab is to set up your VM environment for the FOR710 course.

Lab Objectives

+Unzip FoR71e-Windows.7z, which contains the primary analysis virtual machine (VM) for this course.

+ Clone the 710 VM.

+ Rename one VM to specify it will only be used for static analysis (i.e., static file analysis, static code analysis).

+ Rename the cloned VM to specify it will only be used for dynamic analysis (i.e., behavioral analysis, debugging).

* Take baseline snapshots for both VMs.

/" Note

A REMnux VM (https://remnux.org/) is provided in the class materials for convenience, but its use is not required for this course. For this reason,
unzipping this VM is not explicitly covered in this lab.

Lab Preparation

Log in to your SANS portal account and download the class materials for FOR710. This should include an ISO that contains the file For71e-

Windows.7z .

Lab Steps

1. Unzip FOR710-Windows.7z to a location of your choosing on your host.

2. Within the unzipped folder, double-click the .vmx file to load the VM in VMware Workstation or Fusion. If prompted to upgrade the virtual
machine, choose Upgrade.

3. After the VM boots, perform a log off/log on as needed until the resolution is acceptable. You may also modify the VMware Display settings
for the virtual machine as needed and rearrange desktop icons as desired.

4. Next, we will update the electronic workbook associated with this course. The electronic workbook site is stored locally and it is accessible
via the Firefox homepage (see Desktop shortcut). However, course authors may update the source content with minor fixes, such as
correcting typos or clarifying explanations. To download updates, first change the VM's network configuration from host-only to Bridged or
NAT. Then, launch a bash shell from the taskbar and run the command workbook-update . The command output will indicate whether there
were available updates. If so, refresh any pages you are currently viewing (or restart the browser) to make sure you are seeing the latest
content. After completing the e-workbook update, be sure to change the VM's network configuration back to host-only.

5. Gracefully shut down Windows (right-click on the Windows logo on the bottom left, and browse to Shut down or sign out > Shut down).

6. Within VMware Workstation or Fusion, view the list of VMs. Find the VM with name FOR71e-windows and choose to rename the VM. Use the
new name FOR710-Windows-Static.

2 © 2022 Anuj Soni

7 Right-click on the recently renamed VM and choose to create a full clone. Place the cloned VM at a location of your choosing. If prompted for
a file name, use the name FOR71e-Windows-Dynamic (do not modify the default extension).

8. After the VM is cloned, launch the new VM in VMware.

9. Within the list of available VMs listed in VMware Workstation or Fusion, find the VM clone (i.e., the new VM). Confirm that it is named
FOR710-Windows-Dynamic . If this is not the current name, right-click on the clone and rename the VM FOR710-Windows-Dynamic .

10. Within the Windows OS of ForR71e-windows-Dynamic, right-click on the desktop and choose Personalize. You should arrive at the
Background settings page. Under Choose your background color, choose a background other than black. The purpose is to visually
differentiate this Dynamic VM from the Static VM. For consistency with the instructor's screen, click on Custom color. Then, click on More
and insert the follow values: Red: 225, Green: 115, Blue: 30 . If you use these color values, the background should change to an orange
color.

11. Launch the FOR710 Static VM again. Once this is complete, both VMs should be up and running. You should now have two FOR710 VMs
running. One VM should be named FoR710-Windows-Static,and a second VM should be named FoR710-Windows-Dynamic . Keep both VMs
in host-only networking mode.

12. Take a baseline snapshot of the Static VM. Name this initial snapshot static Baseline.

13. Take a baseline snapshot of the Dynamic VM. Name this initial snapshot bynamic Baseline.

Lab Objectives, Revisited

After completing this lab, you now have the following analysis environment set up:

+ One VM named FOR710-Windows-Static for static analysis.

* A second VM named FOR716-Windows-Dynamic for dynamic analysis.

+ The FOR710-Windows-Dynamic VM has a different color background when compared to the FOR710-Windows-Static VM.
+ Both VMs are configured to use host-only networking.

+ Both VMs have an initial snapshot representing a baseline state.

© 2022 Anuj Soni 3

Technet24

Project Directory: | C:\Users\REM
e Project Name: |Section1

@ Ghidra: NO ACTIVE PROJECT
File Edit Debugger Project Tools
a New Project... Ctrl+N
Open Project... Cirl+0)
@ New Project X
Close Project
|_g Select Project Type
Save Project
Delete Project...
@ New Project
Archive Current Project.
. |_g Select Project Location
Restore Project...
Conriney e (® Non-Shared Project
Install Extensions... O Shared Project
Import File...
Batch Import...
Open File System...
<< Back Next >> Finish
Export Program... o
Exit Ghidra Ctrl+Q

<< Back Next >>

4. Add player.exe tothe new project.

+ Drag and drop player.exe into the project window so Ghidra can begin processing the file.

+ An Import window will soon appear, prompting you to confirm various import settings. We can accept the defaults and click OK. The
remainder of the import process will take some time to complete.

« After the import is finished, a Import Results Summary window will appear and provide an overview of the file and brief log of the

loading process. Click OK or hit Enter to close the window.

| x86:LE:64: ind

e L4 '

Destination Folder: | player:/
Active Project: player

(7 player
(1
e

¢ Link

Program Name: | player.exe

e oK

D 1

Eil it P Hel @Import /C:/Users/REM/Desktop/player.exe X

File Edit Project Tools Help

LREER LIRS 7
Format: ~ Portable Executable (PE) —

Tool Chest

Cancel

@ Import Results Summary

Project File Name:
0 Last Modified:
Readonly:
Program Name:
Language ID:
Compiler ID:
Processor:

Endian:

ddress Size:
T

player.exe

Mon Oct 19 13:02:01 EDT 2020
false

player.exe

X86:LE: 64:default (2.9)
windows

x86

Little

64

5. Launch the CodeBrowser and begin the auto-analysis.

« Return to the project window and double-click player.exe.

+ Ghidra will generate a prompt asking if it should analyze the file; click ves to configure the analysis options.

+ In the next window, we need to make one change: uncheck becompiler Switch Analysis.For unknown reasons, enabling this option

negatively impacts Ghidra's ability to identify functions.

« Finally, click Anatlyze to kick off the analysis. You will see a progress bar on the bottom right of the CodeBrowser. If this bar is not
visible, it means the window is too low on the screen-simply drag the window higher for better visibility or maximize the window to full

screen.

© 2022 Anuj Soni

/" Note

You can begin analyzing the code while the auto-analysis continues, but Ghidra's performance may lag until the file is processed. Once the
analysis is complete, Ghidra may warn you that the file does not contain debug information. This is a common message and is not indicative
of a serious issue.

6. Once Ghidra’s auto-analysis is complete, it is a good idea to save our state to ensure we do not need to perform this time-intensive
processing again. Save the project from the menu bar via File > Save player.exe.

@CodeBrowsen player:/player.exe
File Edit Analysis Navigation S¢

Open... Ctrl+O
Close 'player.exe’
Close Others

Close All

@ Save 'player.exe’ Ctrl+S

Save ‘player.exe’ As...

7. Within the Dynamic VM, load player.exe into a debugger so we are prepared to use both dynamic and static code analysis skills to
investigate this sample. Simply drag and drop the executable to the x64dbg shortcut on your Dynamic VM desktop.

/" Note

We disabled ASLR for player.exe so the virtual addresses in the solutions will match those in your environment.

Lab Questions

If you performed some behavioral analysis with Process Monitor or debugging with x64dbg, you would discover that player.exe accesses
film.wav . Let's investigate how and why player.exe interacts with a WAV audio file.

As stated above, we know player.exe accesses film.wav, but we need to understand how the WAV file's content is used. A review of
the player.exe Import Address Table shows it imports ReadFile. Can you investigate if player.exe calls this Windows API to read in
the contents of film.wav ? If this is the case, what is the name and address of the function that calls ReadFile (i.e., the function name
given within Ghidra)?

/" Notes

« The question asks about the first ReadFile call that accesses film.wav .
« The question is asking for the function that calls ReadFile-not the instruction that calls ReadFile.

« Consider using a debugger (within the Dynamic VM) first to find the CALL instruction and then use Ghidra (within the Static VM) to
identify the function name and address.

6 © 2022 Anuj Soni

Technet24

@ Let's now focus on the multiple CALLs to fread within FUN_1400011f0-you will notice a total of five CALLs to fread . What is the
content of the data read by the fourth CALL to fread, and what is its relevance in the context of the WAV file format?

/" Notes

+ Consider viewing FUN_1400011f0 in the decompile window.

+ Although the focus of this question is the fourth fread CALL, you will need to consider the first, and third fread CALLs to answer this
question. You can ignore the second CALL to fread (it is not called for reasons that are out of scope of this lab).

+ As described in the Microsoft documentation, each call to fread will increment the file pointer by the number of bytes read. The file
pointer is simply a pointer to a location within the file.

+ Consult this table for more information on the WAV file format, derived from this resource:

Offset Size Name Desciption

(Decimal)

0 4 ChunkID "RIFF" header in ASCII form

4 4 ChunkSize Size of the rest of the file

8 4 Format Contains the letters "WAVE"

12 4 Subchunk1ID Contains the letters "fmt. This is the beginning of the "fmt" subchunk, which describes the sound data's
format.

16 4 Subchunk1Size Size of the rest of the subchunk

20 2 AudioFormat Values other than 1 indicate some form of compression

22 2 NumChannels Mono = 1, Stereo = 2, etc.

24 4 SampleRate 8000, 44100, etc.

28 4 ByteRate == SampleRate * NumChannels * BitsPerSample/8

32 2 BlockAlign Number of bytes for one sample including all channels

34 2 BitsPerSample 8 bits = 8, 16 bits = 16, etc.

36 4 Subchunk2ID Contains the letters "data". This is the beginning of the "data" subchunk.

40 4 Subchunk2Size Number of bytes in the data

44 * Data Actual sound data

@ How is the value read by the fourth CALL to fread used?

8 © 2022 Anuj Soni

In the context of the WAV file format, what content appears at the starting address of the allocated memory discussed in the previous
question?

/" Note

Attempt to answer this question via static code analysis only. Then, you may confirm your answer via debugging.

(o) Important

You've reached Checkpoint #1 in this lab. In a live class, the instructor will use checkpoints to gauge progress with this lab.

Soon after the multiple calls to fread, we encounter a loop that begins at 1400012e6 and ends at 1400012fd. Let's investigate this loop and
how it processes WAV audio data within film.wav .

/" Notes

« Attempt to answer the following questions based on static code analysis of the disassembly only, unless stated otherwise (i.e., debugging is
not required). You may use the decompiler output and debugging to confirm your conclusions. Consider closing your decompile window for
now to avoid the temptation.

+ Consider commenting each line of the disassembly with your findings to assist with your analysis.

9. At 1400012e9, observe the TEST and JZ instructions. What is evaluated by these instructions? Be as specific as possible.
/" Note
+ movsxp (Microsoft reference) moves the 32-bit value in the source operand to the 64-bit value in the destination operand. It signs
extends the value during the move, which means that the negative/positive characteristic of the source operand will remain.
- pIL refers to the lower 8 bits of EDI.
10. Under what conditions is the BTS instruction at 1400012ef executed?
11.

If the first byte evaluated by the TEST instruction at 1400012e9 is 0x3, is the BTS instruction at 1400012ef executed? If so, how would
you describe the result of executing the BTS instruction?

© 2022 Anuj Soni 9

Technet24

12. How does R8D change with each iteration of the loop, and how does this impact the BTS instruction?

13. What does the ADD instruction at 1400012f5 contribute to the overall functioning of the loop?
7’ Note
You may need to debug the executable to identify the value stored in ESI.
14. How many bytes of WAV audio data does the loop evaluate?
/" Notes
As described in this resource, The JC (Jump if Carry) instruction is identical to the JB (Jump if Below) instruction. View the link for a good
description of conditional jump instructions, including which ones are identical in functionality.
15. Please summarize the functionality and purpose of the loop beginning at 1400012e6.
16.

What is the final 32-bit value that includes all extracted LSBs from the loop just analyzed? Provide the hexadecimal representation.

/" Note

Debug the program to answer this question.

(o) Important

You've reached Checkpoint #2 in this lab.

10 © 2022 Anuj Soni

17.

18.

19.

20.

How is the 32-bit value from the previous question used?

What type of content later appears in the allocated memory?

/" Note

- Perform brief static analysis of the disassembly, but rely primarily on debugging to answer this question.

« This question may involve some trial and error as you continue executing code to see what content appears in the newly allocated
memory.

+ Allocated memory may be freed later. Note the function j_j_free called at 14000146e. This function may free memory so consider

running the program until this call.

Dump the memory region identified in the previous question to disk and load it into the HxD hex editor (see the HxD Desktop shortcut).
Carve the file using HxD to create a valid file format of the appropriate size with no overlay (i.e., no data after the end of the file). Save
the modified file to disk.

/" Note
+ Note that the content within the x64dbg dump window is not located at the beginning of the memory region, so the "MZ" bytes will not
appear at the start of the dumped file.
« To search for the "MZ" bytes within HxD, browse to Search > Find from the menu bar and search for the appropriate text.
« To identify overlay content, recall that the call to operator_new at 14000132d allocated B3200 bytes of data.

« To carve a file within HxD browse to Edit > Select block... and choose the appropriate start offset and end offset or length.

After you modify the dumped content, perform a few minutes of static file properties analysis (i.e., do not execute anything) and
document a theory about the file's functionality.

(o) Important

You've reached Checkpoint #3 in this lab.

© 2022 Anuj Soni 11

Technet24

We extracted the underlying content, but we want to understand the specific technique used to embed a program in a WAV file. The following
questions will help you investigate this level of detail.

Recall that after the instruction CALL operator_new at 14000132d, the starting address of the allocated memory is stored in RAX. The value
in RAX is then referenced at 140001335 with the instruction Mov R14, RAX and at 140001344 with the instruction Mov Rcx, RAX.By
looking at upcoming references to R14 and RCX, we can observe when content is placed in the newly allocated memory. The R14 register is
referenced a few times near the end of the function, but not as a pointer (i.e., data is not read from or written to the location specified in

R14). RCX, however, is referenced many times as a pointer in the destination operand, indicating that the current function does contain code
to place content in the allocated memory.

21. As discussed above, the instruction mov Rcx, RAX at 140001344 places the starting address of the allocated region into RCX.
Continue reviewing the code and identify the loop that modifies content at the address stored in RCX. Specifically, what addresses
encompass the loop?

22. How many times will this loop be executed, and how is that number related to the analysis we've performed thus far?

/" Note
Answer this question based on static code analysis-debugging is not necessary.

23. Let's begin understanding the purpose of the loop. At 1400013d3, we see the instruction. TEST byte ptr [RDX + R9 * 0x1], DIL.
Debugging this code would reveal the first operand points to a byte of WAV audio data. With this in mind, what is the likely purpose of
this TEST instruction and the other TEST instructions in this loop?

24. In the first loop we analyzed at 1400012e6, the code extracted LSBs from every other byte of WAV audio data (i.e., it skipped one byte
in between LSB evaluations). Does this loop operate similarly?

7" Note
Performing static code analysis to answer this question is time consuming. Try a debugger to observe what happens when the TEST
instructions in this loop are executed.

25.

How many bytes of WAV audio data does each iteration of the loop traverse (this includes "skipped" bytes, not just the ones assessed
by the conditional statements)?

12 © 2022 Anuj Soni

Handle value (you may have to right-click and choose Refresh to display Handles). Return to user code via the menu option Debug > Run to user
code. You should arrive at ee0000014000E3F9 , and you'll see the CALL to ReadFile is the previous instruction at 000000014000E3F3 .

Locate the above address in Ghidra (type g to jump to an address). Scroll up to the beginning of the function, where you'll see its name is
_read_nolock and it begins at 14000e104 .

v/ Is the function you identified in the previous question likely one written by the developer, or is it library code?

Answer: _read_nolock at 14000e104 is library code.

Explanation: _read_nolock at 140eee104 is library code identified by Ghidra's Function ID (FID) analyzer. This feature can identify statically

linked libraries, and it runs as part of the initial auto-analysis. Ghidra clearly identifies _read_nolock as a library function in the metadata provided

above the function's starting address.

hkhkhkkkkkhkhkkkkhkhkkkhkkkhkhkkkkkhkhkhkkkkkhkhkkkkhkhkhkkkkkhkkkkkk

* Library Function - Single Match *
* Name: _read nolock *
* Library: Visual Studio 2015 Release *

hkhkhkkhkkhkkhkkhkhkhkkhkkhkkhkhkhkhkkhkkhkkhkhkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkhkhkkhkkkkhkkhkkkkkhkkkkkk

int _ fastcall _read nolock(int _FileHandle, v..

int EAX:4 <RETURN>

int ECX:4 _FileHandle
void * RDX:8 _DstBuf

uint R8D: 4 _MaxCharCount

v/ We do not want to spend time analyzing library code, so it is important that we locate the user-defined function (i.e., not library code)
that makes calls to read the contents of film.wav . What is the name of the user-defined function that calls ReadFile?

/" Note

To answer this question, you may want to open the Function Call Tree window and view Incoming Calls.

Answer FUN_1400011f0

Explanation: To identify which user-defined function reads fitlm.wav, we need to review functions that call _read_nolock . Using static code
analysis, there are two potential approaches to consider: we can access the Function Call Trees or the Function Call Graph. The latter approach
turns out to be challenging when reviewing a large number of function calls, so we will view the Function Call Trees.

Browse to Window > Function Call Trees, turn your attention to the Incoming Calls on the left side, and expand all incoming references. You will
see sequences of function calls from the entry point to _read_nolock ;in total, there are four sequences, where the entry point is located at the
bottom of each expanded tree. The function we seek is between the entry point and calls to library functions identified by Ghidra. In the first two
cases, if we work our way backward from the _read_nolock reference and skip over library function calls, we encounter Fun_14eee11fe . Inthe
bottom two cases, we also encounter FUN_140006f34 along the way, but these paths seem to include more library code used to open a file (i.e.,
callsto _wopenfile), which is not our area of interest at this time (we'll come back to that function shortly).

We can confirm Fun_14eee11fe is the user-defined function that performs reads by jumping to it to view the disassembly. Scrolling down just a
bit reveals multiple calls to fread, the C/C++ function for reading data from a file stream (https://for710.com/fread).

14 © 2022 Anuj Soni

Technet24

FUN_1400011f0
1400011f0 PUSH RBX

1400011£2 PUSH RDI

0
14000123c MoV R8D, EDI
14000123f LEA EDX, [RDI + 0x23]
140001242 CALL fread
140001247 CMP word ptr [RSP + local 4c], DI
14000124c Jz LAB 140001261
14000124e MoV R9, RBX
140001251 LEA EDX, [RDI + O0x1]
140001254 MoV R8D, EDI
140001257 LEA RCX=>local 84, [RSP + 0x44]
14000125c¢ CALL fread

LAB_140001261

140001261 MOV R9, RBX
140001264 LEA RCX=>local_80, [RSP + 0x48]
140001269 MoV RS, RDI

14000126¢ MoV EDX, Ox4

140001271 CALL fread

When compiled for the Windows operating system, calls to fread will call the Windows API ReadFile . To confirm this using x64dbg, run the
program until the first call to fread, set a breakpoint on ReadFile, and then step over the call to fread; you will hit the rReadFitle breakpoint.

We just pivoted into code based on a Windows API. A complimentary approach, discussed in the following two questions, is to begin our
analysis at the user-defined entry point.

Vv Is the user-defined entry point for this program called main or WinMain ?

/" Notes

+ Use PeStudio to determine the type of program.

+ Code analysis is not required to answer this question.

Answer: WinMain

Explanation: You can use PeStudio or Exelnfo to determine if the program is a GUI or console application (see below). Both tools indicate this is a
GUI application, which means the user-defined entry point is called winmain.

© 2022 Anuj Soni 15

* FUNCTION *

hkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkhhkhkhkhkhkhhkhhkkhkhkkhkhkhkhhkhhkhhkhhkhik

ulonglong __ fastcall entry (void)

ulonglong RAX:8 <RETURN>
undefineds8 Stack [0x8] :8local_res8
Program Tree = undefinedl Stack [-0x1... local_18
ESymbol T. g B X entry XREFL2]:
+- | ks Imports
5B Bports 140002e88 48 83 e... SUB RSP, 0x28
SR entry | 140002e8c e8 07 O... CALL __security init_cookie
?%Ej@Fmdbm 140002e91 48 83 c... ADD RSP, 0x28
ffgzitfmg 14000295 e9 82 f.. JMP LAB_140002dlc

You'll notice there are only a few instructions at the entry point, including a call to __security_init_cookie (see https://for710.com/security-init-

cookie for more information). This function is associated with buffer overrun protection, but more importantly, this function is called by the C Run-
time Library (CRT) during program initialization; this is not likely to be user-defined code.

/7" Note

The function labelled __security_init_cookie shows Ghidra's Function ID (FID) feature at work. This built-in analyzer can identify statically
linked libraries, including those used by Microsoft Visual Studio. Ghidra also has a Function ID Plug-in that allows users to create their own
databases to identify functions of their choice.

Let's keep following code execution to locate winMain ; double-click on LAB_14eee2d1c to take the jump. When you arrive at address 140002d1c
and scroll down, you'll see many CALLs to functions that start with __scrt_, which all refer to CRT library functions. Scrolling down some more
we eventually arrive at a CALL to _get_wide_winmain_command_line . While this is not a call to winMain, it appears related. Notice that
immediately after the CALL, the value in RAX (the return register) is placed into Rs in preparation for the upcoming cALL FuN_14eee1126 . Could
thisbea cALL to WinMain?

140002e12 CALL __scrt_get show_window_mode
140002e17 MOVZX EBX, AX

140002ela CALL _get wide winmain command line
140002elf MoV R8, RAX

140002e22 MoV R9D, EBX

140002e25 XOR EDX, EDX

140002e27 LEA RCX, [IMAGE DOS_HEADER 140000000]
140002e2e CALL FUN_140001120

We can research winMain on microsoft.com, to learn more about it.

© 2022 Anuj Soni 17

Technet24

WinMain function (winbase.h)

The user-provided entry point for a graphical Windows-based application.

WinMain is the conventional name used for the application entry point. For more information, see Remarks.

Syntax

C++

__clrcall WinMain(
HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,

nShowCmd

WinMain's first parameter is a pointer to the executable in memory. Looking at our example, the LEA instruction at 140002e27 populates ECX with
a pointer to the binary's MZ header. WinMain's third parameter is a pointer to the command line, which corresponds to Rr8 in our case. Both these
observations allow us to conclude Fun_14eee112e (located at 140001120) is likely winmain . To rename this function accordingly, click on
FUN_1400011260 and type L on the keyboard. Then, enter the new name winmain and click OK.

/" Note

Identifying main and winmMain may require some trial and error and may not always involve a CALL to _get_wide_winmain_command_line
prior to the user-defined entry point.

View WinMain code and observe the CALL instructions. Notice that the first two CALLs reference Windows APls, and the last CALL
references the same function we identified in Question #3. In this case, beginning our analysis at the user-defined entry point quickly brings
us to the same function that reads in content from film.wav . Let's take a closer look at FUN_1400011f0.

The first CALL within FUN_1400011f0 executes FUN_140006f34. Additional code analysis or debugging reveals this function opens
film.wav and returns a pointer to the file (we're skipping this basic analysis to focus our attention on code deobufscation). The file pointer
is then passed as the fourth argument to fread in upcoming function calls.

v/ Let's now focus on the multiple CALLs to fread within FUN_1400011f0-you will notice a total of five CALLs to fread . What is the
content of the data read by the fourth CALL to fread, and what is its relevance in the context of the WAV file format?

18 © 2022 Anuj Soni

20

22

24

28

32

34

36

40

44

/" Notes

Offset

(Decimal)

ChunkID

ChunksSize

Format

Subchunk1ID

Subchunk1Size

AudioFormat

NumChannels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Data

+ Consider viewing FUN_1400011f0 in the decompile window.

+ Although the focus of this question is the fourth fread CALL, you will need to consider the first, and third fread CALLs to answer this
question. You can ignore the second CALL to fread (it is not called for reasons that are out of scope of this lab).

+ As described in the Microsoft documentation, each call to fread will increment the file pointer by the number of bytes read. The file
pointer is simply a pointer to a location within the file.

+ Consult this table for more information on the WAV file format, derived from this resource:

Description

"RIFF" header in ASCII form

Size of the rest of the file

Contains the letters "WAVE"

Contains the letters "fmt. This is the beginning of the "fmt" subchunk, which describes the sound data's
format.

Size of the rest of the subchunk

Values other than 1 indicate some form of compression

Mono = 1, Stereo = 2, etc.

8000, 44100, etc.

== SampleRate * NumChannels * BitsPerSample/8

Number of bytes for one sample including all channels

8 bits = 8, 16 bits = 16, etc.

Contains the letters "data". This is the beginning of the "data" subchunk.

Number of bytes in the data

Actual sound data

Answer: The fourth CALL to fread reads 4 bytes at offset 40 (decimal) within film.wav . A description of the WAV file format indicates that the
value at this offset represents the size of sound data within the file. In this case, the data size is E79F20.

Explanation: The easiest way to identify the content of the fourth CALL to fread is to debug the program. The fourth call to fread occurs at

140001286 , SO We can set a breakpoint at this address and run the program to identify the buffer used to store the read data.

© 2022 Anuj Soni 19

Technet24

& cru
[B—e

@ Graph

|2t Log

000000014000128B
0000000140001290
0000000140001292
0000000140001294
0000000140001296
0000000140001298B
00000001400012A3
00000001400012A6
00000001400012AE

<

|l Notes

#® Breakpoints [## Memory Map

[}V call Stack

&3 SEH

12| Script

.Jcall <pTayer.sub_1400071E4>
.|movsxd rax,dword ptr ss:[rsp+40]
.| test_eax,eax

.rig p1ayer 140001298

.|mov eax,edi

.rjmp p1ayer 1400014c7

mov qword ptr ss:[rsp+DOJ, rbp

.|mov rcx,rax)
.[mov qword ptr ss:[[rsp+D8],rsi
.|€all <player.sub_140002c00>

[rsp+40]:L" b"

[rsp+DO] L"C \\
rex:&L"

<player.

sub_1400071E4>

.text:0000000140001286 player.exe:$1286 #686 <sub_1400011F0+96>

& symbols <> Source - References ¥ Thred
Hide FPU
RAX 0000000000000001
RBX 0000000002568010
RCX 000000000014FE60 &L" b"
RDX 0000000000000004
RBP 0000000000000000
RSP 000000000014FE20
RSI 0000000000000000
Y| rRDI 0000000000000001
Default (x64 fastcall)
1: rcx 000000000014FE60 &L" b"
2: rdx 0000000000000004
3: r8 0000000000000001

According to Microsoft documentation for fread, the buffer address is specified in the first argument passed to the function. Above, we look at the
contents of Rcx to identify the address of the buffer- 14Fe6e .

Next, we right-click rRcx and choose Follow in Dump to keep an eye on what data gets populated at this address (note that the address within

RCX may be different in your debugging session).

Hide FPU

RAX 0000000000000001

RBX 0000000002608010

RCX 000000000014FE60 £1 1
RDX 0000000000000004 B8 Modify value
RBP 0000000000000000 4 Follow in Dump
RSP 000000000014FE20

Then, from the Debug menu, we choose Step over and review the dump window to find four bytes read.

Address

000000000014FE60

000000000014FE70
000000000014FE80| 00 00 00 00
000000000014FE90| 57 41 56 45

0 9F E7 00

00 00 00 00

64 61 74 61

FF 7F 00 00

00 00 00 00
00 00 00 00
66 6D 74 20

DO FE 14 00

52 49 46 46
10 00 00 00

00 00 00 00

20 9F E7 00
01 00 02 00

The bytes are displayed in little-endian, so the value read is E79F20 . What is the significance of these bytes within the context of the WAV file
format? First, let's determine the offset of this data within fiim.wav . Microsoft documentation indicates that the second argument of fread is

the number of bytes to read. Reviewing this argument for the prior calls to fread can help us determine the offset. We'll briefly consult the
decompiler output since it is easier to read in this case:

}

fread (local 60,0x24,1
if (local 4c
fread (local 84,2,1

fread (local 80,4,1

'= 1) {

, _File);

, File);

, File);

fread (&local 88,4,1
if (0 < local 88)
_DstBuf =

operator new(local 88);
fread (_DstBuf,local 88,1

, _File);
{

, _File);

The prior three calls read in 0x24 (decimal 36), 2, and 4 bytes, respectively. However, the second call to fread is only executed if a condition is

met, and additional debugging reveals this condition is not met (more on this shortly). As a result, the fourth fread call begins reading at offset
36 + 4 = 40. Researching the WAVE file format reveals that the 4 bytes at offset 40 specifies the number of bytes of data within the file (i.e., the
size of the actual sound data).

20

© 2022 Anuj Soni

For additional detail on the condition for the third reference to fread, see this additional resource. You'll find that the condition evaluates if the
WAVE file stores compressed data, and if so, accommodates the slightly different header.

~/ How is the value read by the fourth CALL to fread used?

Answer: The value is used to allocate memory with the operator_new function, called at 1400012ae.

Explanation: The first argument passed to fread is the buffer address, and we expect this address will be moved into rRcx before fread is
executed. At address 140001279 in the screenshot below, the address of a local variable with the label 1ocal_88 is placed into rcx before
fread is called.

At 14000128b , the value stored in local_s88 is moved into RAX .

At 1400012a3, this value in RAX is moved to Rcx before operator new is called. This is the only argument passed to operator new,and it
specifies the size in bytes to allocate.

140001279 LEA RCX=>local 88, [RSP + 0x40]
14000127e MoV R8, RDI

140001281 MoV EDX, Ox4

140001286 CALL fread

14000128b MOVSXD RAX, dword ptr [RSP + local 88]
140001290 TEST EAX, EAX

140001292 JG LAB 14000129

140001294 MoV EAX, EDI

140001296 JMP LAB 1400014c7

LAB 14000129

140001290 MOV qword ptr [RSP + local_res8], RBP
1400012a3 MOV RCX, RAX

1400012a6 MOV gword ptr [RSP + local_resl0], RSI
1400012ae CALL operator_ new

v/ In the context of the WAV file format, what content appears at the starting address of the allocated memory discussed in the previous
question?
/" Note

Attempt to answer this question via static code analysis only. Then, you may confirm your answer via debugging.

Answer: The sound data contained within the WAV file.

Explanation: The operator_new function call referenced in this question is at 14eee12ae . operator_new (see Microsoft documentation) returns
the starting address of the allocated region in memory. At 14e0012be, the value stored in RAX is moved into Rcx . This occurs shortly before
fread is executed at 14e00012c4, indicating read data will be placed at the recently allocated location.

© 2022 Anuj Soni 21

Technet24

10.

11.

12.

instruction places the contents of RAX into RBP. At this address, RAX contains the return value of operator_new. This same value in RAX is
moved into RCX at 1400012be, shortly before the CALL to fread at 1400012c4. We reviewed this fread reference earlier and concluded it reads in
the WAV audio data and stores it at the address specified in RCX (i.e., the first argument):

1400012ae CALL operator_ new

1400012b3 MOVSXD RDX, dword ptr [RSP + local_88]
1400012b8 MoV R9, RBX

1400012bb MoV R8, RDI

1400012be MoV RCX, RAX

1400012c1 MoV RBP, RAX

1400012c4 CALL fread

Therefore, RBP in the first operand of the TEST instruction points to the beginning of film.wav audio data when the loop executes for the first
time. The second operand of the TEST instruction is DIL, the lower 8 bits of EbI . Highlight pIL with a single mouse click and scroll up to locate
an instruction where the EDI register is in the destination operand. At 14eee122f,we see Mov EDI, ox1.Therefore, pIL contains the value 1.

A TEST performs a logical AND. Performing an AND operation between a value and 0x1 (eeeeeee1 in binary) is an approach to evaluating the
least significant bit of the value.

v/ Under what conditions is the BTS instruction at 1400012ef executed?

Answer: The BTs instruction is executed if the LSB evaluated in the TEST instruction at 14ee0012e9 is 1.

Explanation: If the LSB evaluated in the TEST instruction at 14eee12e9 is 1, the zero flag is not set (i.e., it is zero). Otherwise, the zero flag is set
(i.e., itis 1). The BTS instruction is only executed if the 3z at 14eeei2ed is not taken. The jump is not taken if the zero flag is not set, which
means the LSB evaluated is 1.

v If the first byte evaluated by the TEST instruction at 14000129 is 0x3, is the BTS instruction at 1400012ef executed? If so, how would
you describe the result of executing the BTS instruction?

Answer: If the first byte evaluated is ex3,the BTs instruction is executed. It sets the 315! (left-most) bit in EBX to 1.

Explanation: The BTS (Bit Test and Set) instruction sets a specified bit in a bit string to 1. For more information on this instruction, see this
resource. In the instruction BTS EBX, R8D, the bit string is located in EBx and the position set to 1 is located in R8b (the lower 32 bits of Rrs).
The position number uses an index where the right-most (i.e., least significant) bit is 0, and the left-most (i.e., most significant) bit is 31.

Let's consider the instruction TEST byte ptr [RAX + RBP * ©x1], DIL at 14e0e0012e9 . The question assumes the first operand points to ex3,
which is represented as eeee0011 in binary. We know DIL contains the number 1, represented as eeeeeeoe1 in binary. The TEST instruction
performs an AND operation of eeeeee11 and eeeeeee1, resulting in eeeeeee1, a non-zero value. This means the conditional jump at 14eee12ed
is not taken, and the BTs instruction is executed.

Now's let's consider the BTS instruction. In the first operand, EBx is zero. As previously discussed, the register is zeroed out at 1400012dc with
the instruction xor EBX, EBX.Inthe second operand, R8D contains 0x1f (decimal 31). Highlight the operand to identify content placed into this
register via the instruction LEA R8D, [RBX + ex1f] at 1400012e2. In that instruction, RBX is zero, so exif is placed intro Rr8D . This means the
BTS instruction sets the bit at position 31 (i.e., the left-most bit) in EBX to 1.

+ How does R8D change with each iteration of the loop, and how does this impact the BTS instruction?

Answer: At 14000127, we see the instruction bec R8D, which decrements this register by 1. This changes the bit position set by the BTs
instruction. It begins with bit position 31 and eventually decrements to 0.

© 2022 Anuj Soni 23

13.

14.

v/ What does the ADD instruction at 1400012f5 contribute to the overall functioning of the loop?

/7" Note

You may need to debug the executable to identify the value stored in ESI.

Answer: ESI contains 2. Incrementing ECX by 2 with each run of the loop shifts the pointer to the audio data in the TEST instruction by 2 as well.
Since the TEST instruction evaluates the LSB of a byte of audio data, the loop evaluates the LSB of every other byte (i.e., it skips a byte).

Explanation: The second operand of the ADD instruction is ESI. To identify the value of ESI, we highlight the register with a single mouse click and

locate earlier instructions where this register is in the destination operand. At 1400012d9, we see SHR ESI, ©x3.

140001249
1400012dc
1400012de
1400012e0
1400012e2

1400012e6
1400012e9
1400012ed
1400012ef

1400012£3
1400012£5
1400012£7

SHR
XOR
MOV
MOV
LEA

LAB 1400012e6

MOVSXD
TEST
JZ

BTS

LAB 1400012£3

INC
ADD
DEC

ESI, 0x3
EBX, EBX
EDX, EBX
ECX, EBX
R8D, [RBX + Ox1f]

RAX, ECX

byte ptr [RAX + RBP*0x1l], DIL
LAB 1400012£3

EBX, RS8D

EDX
ECX, ESI
RSD

This shift right operation shifts the bits in ESI to the right by the value specified in the second operand (3). However, it's not clear what value ESI

holds at this instruction, and brief static code analysis will not reveal this information. If we set a breakpoint at 1400012d9 within x64dbg and run
the program, we see ESI contains the value 0x10, which is eee1eeee in binary. Shifting these bits to the right by 3 results in eeeeee1e, or decimal

2.

The ADD instruction at 1400012f5 adds 2 to ECX wth each iteration of the loop. The only other place ECX is referenced is in the MOVSXD
instruction at 1400012e6, where ECX is placed into RAX. RAX is then used in the first operand of the TEST instruction as an offset from RBP,
which we determined is the starting address where the film.wav audio data is stored. Incrementing ECX by 2 with each iteration of the loop
increments the pointer to the audio data in the TEST instruction by 2. Since the TEST instruction evaluates the LSB of an individual byte of audio

data, the loop assesses every other byte (i.e., it skips a byte).

~/ How many bytes of WAV audio data does the loop evaluate?

24

© 2022 Anuj Soni

Technet24

15.

16.

17.

> LAB_1400012¢6
} 1400012e6 MOVSXD RAX, ECX
} 1400012e9 TEST byte ptr [RAX + RBP*O0x1l],
rd - 1400012ed Iz LAB 1400012£3
! 1400012e£ BTS EBX, R8D
|
N LAB_1400012£3
1 1400012£3 INC EDX
| 1400012£5 ADD ECX, ESI
i 1400012£7 DEC R8D
i 1400012fa cMp EDX, 0x20
L- 1400012£d Jc LAB 14000126

DIL

v/ Please summarize the functionality and purpose of the loop beginning at 1400012e6.

Answer: The loop iterates over every other byte of audio data to extract LSBs. Each LSB is assigned to a bit position within a 32-bit value, starting
with the left-most bit (position 31). In total, the loop spans 64 bytes of audio data and extracts 32 LSBs since it skips a byte with each run of the

loop.

+/ What is the final 32-bit value that includes all extracted LSBs from the loop just analyzed? Provide the hexadecimal representation.

/" Note

Debug the program to answer this question.

Answer: B3200

Explanation: EBx is the destination operand of the BTs instruction, so it will contain all LSBs once the loop is complete. Set a breakpoint on the

instruction after the loop at 14eee12ff . Then, run the program and observe the value of RrBX. Itis B3200 .

00000001400012DC || .| xor ebx,ebx RAX

00000001400012DE || .|mov edx,ebx RBX

00000001400012EO0 || .|mov ecx,ebx RCX

00000001400012E2 || .| Tea r8d,qword ptr ds:[rbx+1F] RDX 0000000000000020

00000001400012E6 movsxd rax,ecx RBP 000000000261B040

00000001400012E9 || .| test byte ptr ds:[rax+rbp],dil RSP 000000000014FE20
————— 00000001400012ED || .tje player.1400012F3 RSI 0000000000000002
~-——>@ 00000001400012F3 18((:1: edx

00000001400012F5 || .|a ecx,esi

00000001400012F7 || | dec r8d R8 00000000FFFFFFEF

00000001400012FA || .| cmp edx, 20 20:" R9 ~ 0000000002618040

00000001400012FD || .+jb player.1400012E6 R10 0000000000000000

. test egx’ebx Rll 000000000014FD88

6 Important

You've reached Checkpoint #2 in this lab.

~/ How is the 32-bit value from the previous question used?

26

© 2022 Anuj Soni

18.

Answer: At 14000132d,a CALL tO operator_new allocates memory of size B3260 .

Explanation: Within Ghidra, highlight EBx at 14eee12ff with a single left-click. As discussed in the previous question, this register contains
B3200 after the loop is complete. At 140001322, the value in EBX is moved into R15, and the next instruction moves the value in R15 into Rcx .

This serves as the single argument passed to operator_new at 14e00132d, and the argument specifies the size of memory to allocate.

T

|

1400012fa
1400012fd
1400012ff
140001301
140001303
140001306
14000130b
14000130d

140001312
14000131a
140001322
140001325
140001328
14000132d

CMP
Jc
TEST
JG
MOV
CALL
MOV

EDX, 0x20
LAB_1400012e6

EBX, EBX

LAB_ 140001312

RCX, RBP
thunk_FUN_140006£40
EAX, EDI
LAB_1400014b7

LAB 140001312

MOV
MOV
MOVSXD
MoV
MOV
CALL

gword ptr [RSP + local 20], R14
gword ptr [RSP + local_ 28], RI15
R15, EBX
RCX, R15
gword ptr [RSP + local_68], RI15

operator_new

+/ What type of content later appears in the allocated memory?

/" Note

Answer: The content begins with the ascii bytes mz . The recently allocated memory likely contains a Windows executable.

memory.

« Perform brief static analysis of the disassembly, but rely primarily on debugging to answer this question.

+ This question may involve some trial and error as you continue executing code to see what content appears in the newly allocated

« Allocated memory may be freed later. Note the function j_j_free called at 14000146e. This function may free memory so consider
running the program until this call.

Explanation: After the cALL to operator_new at 14000132d, the starting address of the allocated memory is stored in RAX . The value in RAX is

then referenced at 140001335 with the instruction Mov R14, RAX and 14eee1344 with the instruction Mov Rcx, RAX . By looking at upcoming
references to R14 and Rcx, we can observe when content is placed in the newly allocated memory. The R14 register is referenced a few times

near the end of the function, but not has a pointer (i.e., data is not read from or written to the location specified in R14). Rcx, however, is
referenced many times as a pointer in the destination operand, indicating this function does contain code to place content in the allocated

memory.

To identify the content placed in the allocated memory, we can keep an eye on its starting address in a dump window and continue executing the

function Fun_14eee11fe . Within x64dbg, set a breakpoint at 140001332, immediately after operator_new is called. Run the program to arrive at

the breakpoint and dump the address within rRAX to a dump window.

© 2022 Anuj Soni

27

Technet24

/" Note
The virtual addresses shown below may differ from your environment.
———® 000000014000130D || .rJmp player.1400014B7 ~ Hide FPU
0000000140001312 ||>mov gword ptr ss:[Ersp+A8l,ri4
000000014000131A || .|mov gword ptr ss:[Ersp+AOf,ri5 RAX 00000000024EAQOFC
0000000140001322 || .|movsxd rl5,ebx RBX 00000000000B320C B Modify value
0000000140001325 |] .|mov rcx,rl5 RCX 000000007FFE038(M Follow in Dum
0000000140001328 || .|mov qword ptr ss:|[irsp+60J, ri5 RDX 000000000002cc0O1 B %
000000014000132D || .|/€call <player.sub_140002C00> RBP 00000000025EF0QA(%4 Follow in Dump
RNE— .|mov rl0d,esi RSP 000000000014FE2CE# Follow in Disassembler
0000000140001335 .|mov rl4 , rax RSI 0000000000000007 mm .
0000000140001338 |] .| sh1 r10d,5 RDI 0000000000000001 % Follow in Memory Map
000000014000133C || .| test ebx,ebx [Copy value
r—---@ 000000014000133E || .rjle player.140001468 Default (x64 fastcall) .)
! 0000000140001344 || .|mov rcx,rax 1: rcx 000000007FFE038 -1 Copy all registers
3 0000000140001347 || .|mov gword ptr ss:[rsp+EON,ri2 .| 2: rdx 000000000002CCO ., Highlight
; ~SSSst i . e RS R > | 3: r8 00000000024EAQOF0 =
X, 4: r9 000000000259n301 “@ Undo
4 Dump 1 2% Dump 2 4% Dump 3 @4 Dump 4 2% Dump 5 &8 watch 1 [x=] Locals 2 struct @@ Zero
Address Hex ASCII E#l Increment
00000000024EAOF0|[0D FO AD BA[OD FO AD BA[OD FO AD BA[OD FO AD BA[.D.°.8.°.9.°.3.° B Decrement
00000000024EA100/0D FO AD BA|OD FO AD BA|OD FO AD BA|OD FO AD BA|.0.°.0.°.0.°.0.° N

Then, continue executing the program by setting a breakpoint later in the function. This part might involve some trial and error, so the Notes
provided a hint-set a breakpoint on the cALL to j_j_free at 14eee146e . Alternatively, you may have noticed the loop that writes content to the
allocated memory and decided to set a breakpoint after the loop is complete at 14eee01456 . When you hit either breakpoint and observe the dump
window, you should see content beginning with an Mz header. This appears to be a Windows executable. In the next step, we'll confirm this
theory.

4% Dump 1 44 Dump 2 @44 Dump 3 44 Dump 4 &% Dump 5 & watch 1 |x=] Locals 2 struct

Address Hex ASCII
00000000024EAOFO|{4D 5A 90 00|03 00 00 00[{04 00 00 OO|FF FF 00 00(MZ.......... VY.
00000000024EA100|/B8 00 00 00|00 00 00 00|40 00 00 00|00 00 00 OOf,....... @.......
00000000024EA110{00 00 00 00|00 00 OO0 00|00 00 00 00|00 00 00 00|cvvvuuunnn.
00000000024EA120|/00 00 00 00|00 00 00 00|00 00 00 00|20 01 00 OOf ...coouuenn. ..
00000000024EA130|OE 1F BA OE|00 B4 09 cD|21 B8 01 4cC|cD 21 54 68|..°.. .1!, .LI!Th
00000000024EA140(69 73 20 70|72 6F 67 72|61 6D 20 63|61 6E 6E 6F|is program canno
00000000024EA150(74 20 62 65|20 72 75 6E|20 69 6E 20|44 4F 53 20|t be run in DOS
00000000024EA160|6D 6F 64 65|2E OD OD OA|24 00 00 00|00 00 00 00|mode....$.......
00000000024EA170|5C FB AC 0OA |18 9A C2 59|18 9A C2 59|18 9A c2 59|\0-...AY..AY..AY
00000000024EA180|AC 06 33 59|12 9A C2 59 |AC 06 31 59(8D 9A C2 59|-.3Y..AY-.1Y..AY
00000000024EA190|AC 06 30 59|0D 9A C2 59|86 3A 05 59|1E 9A C2 59|-.0Y..AY.:.Y..AY
00000000024EALAQ| OB FC C1 58|11 9A C2 59 (0B FC C7 58|7A 9A C2 59| .UAX..AY.UCXzZ.AY
00000000024EA1BO| 0B FC €6 58 |0E 9A C2 59/24 FD C1 58|19 9A C2 59|.UAX..AY$yAX. .AY
00000000024EALCO|C5 65 09 59|17 9A C2 59|18 9A C3 59|1F 9B C2 59|Ae.Y..AY..AY..AY
00000000024EA1DO| 24 FD CB 58|51 9A C2 59|24 FD C2 58|19 9A C2 59| $yEXQ.AY$yAX..AY
00000000024EA1EOQ| 24 FD 3D 59|19 9A C2 59|18 9A 55 59(19 9A C2 59| $y=Y..AY..UY..AY
00000000024EA1F0| 24 FD €O 58|19 9A C2 59|52 69 63 68|18 9A C2 59| $yAX..AYRich..AY
00000000024EA200| 00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 OO ..vcvveeeunnnnn
00000000024EA210(50 45 00 00|64 86 06 00|71 5C OC 58|00 00 00 OO|PE..d...q\.[
00000000024EA220/00 00 00 00|FO 00 22 20|/0B 02 OE OE|00 98 08 00/®."

+ Dump the memory region identified in the previous question to disk and load it into the HxD hex editor (see the HxD Desktop shortcut).
Carve the file using HxD to create a valid file format of the appropriate size with no overlay (i.e., no data after the end of the file). Save
the modified file to disk.

28 © 2022 Anuj Soni

20.

/" Note
+ Note that the content within the x64dbg dump window is not located at the beginning of the memory region, so the "MZ" bytes will not
appear at the start of the dumped file.
+ To search for the "MZ" bytes within HxD, browse to Search > Find from the menu bar and search for the appropriate text.
« To identify overlay content, recall that the call to operator_new at 14000132d allocated B3200 bytes of data.

« To carve a file within HxD browse to Edit > Select block... and choose the appropriate start offset and end offset or length.

Answer: To dump the content from the dump window, right-click in the dump window and choose Follow in Memory Map. Then, right-click on the
appropriate memory region and choose Dump Memory To File. Open the dumped content in a hex editor. The first bytes of this data do not
contain Mz because that content appears later in the dumped content. As mentioned in the Notes for this question, the dump window content

was not located at the beginning of the memory region.

We must carve out the Windows executable from the dumped memory region. Using the HxD hex editor, you can manually delete bytes before the
MZ signature as well as the overlay.

To carve out the executable from the dumped region in memory, first locate the MZ signature. Search for mz (Search > Find), and the first hit will
arrive at the appropriate offset.

To remove any overlay, create a file of size B32ee . One way to do this within HxD is to first browse to Edit > Select block.... The Start-offset field
should already be populated with the offset of the MZ signature. Recall that the size of memory allocated was B32ee . Type this value into the

Length field and click OK.

Then, browse to File > Save selection... and save the carved file to disk.

v/ After you modify the dumped content, perform a few minutes of static file properties analysis (i.e., do not execute anything) and

document a theory about the file's functionality.

Answer: Based on the available strings and version information, this DLL may be an XMRig Monero CPU miner.

Explanation: If we load the binary into PeStudio, the available information suggests this DLL is a XMRig Monero CPU miner.

- = optional-header (console) SRR neutral

B directories (time-stamp) code-page Unicode UTF-16, little endian
N CompanyMName WWW.XMIIGL.COm

£ FileDescription AMRig CPU miner

o FileVersion 2.6.2

- % exports (Start) LegalCopyright Copyright (C) 2016-2018 xmrig.com

g exceptions (1570) OriginalFilename KIMrig.exe

e ProductMame AMRig

j‘ relocations (1326) ProductVersion 2.6.2

- resources (7)

abe

-{‘f} debug (PGO)

E‘f manifest (aslnvoker)

type (2] size (bytes) file-offset blacklist (102) hint (89) value (10242)

ascii 14 000950498 file Jminergate.com
ascii 19 Oac00096018 file miner.feexmrig.com
ascii 23 Ooc00096030 file emergency.feexmrig.com
© 2022 Anuj Soni 29

Technet24

21.

type(2) size (bytes) file-offset blacklist (102) hint (89) value (10242)

ascii 22 (0x00094C60 Usage: xmrig [OPTIONS

ascii 8 0x00094C77 Options:

ascii 55 0x00094C80 -3, --algo=ALGO specify the algorithm to use

ascii 40 0x00094CB8 cryptonight

ascii 45 0x00094CET cryptonight-lite

ascii 46 (x0D0S4DOF cryptonight-heavy

ascii 47 0x00094D3E -0, --url=URL URL of mining server

ascii 67 0x00094D6E -0, --userpass=U:P username:password pair for mining server

ascii 53 0x00094DB2 -u, --user=USERNAME __ username for mining server

ascii 53 (x0D094DES -p. --pass=PASSWORD password for mining server

ascii a7 0x000S4ETE --rig-id=|D rig identifier for pool-side statistics (needs pool support)
ascii 50 (x0D094ETH -t --threads=N number of miner threads

ascii 61 Ox00094EAT -v. --av=N algorithm variation, 0 auto select

ascii 82 (OxDD094EET -k, --keepalive send keepalived for prevent timeout (need pool support)
ascii 95 Cx00094F3A -r, --retries=N number of times to retry before switch to backup server (default: 5)
ascii 69 Cx00094F9A -R. --retry-pause=N___time to pause between retries (default: 5)

ascii 90 (0x00094FEQ --cpu-affinity set process affinity to CPU core(s). mask 0x3 for cores 0 and 1
ascii 79 0x0009503B --cpu-priority set process priority (0 idle, 2 normal to 5 highest)

ascii 53 (x0009508B --no-huge-pages disable huge pages support

ascii 49 0x000950C1 --ne-color disable colored output

ascii 48 (0x000950F3 --variant algorithm PoW variant

ascii 79 0x00095124 --donate-level=N __ donate level, default 5%:% (5 minutes in 100 minutes)
ascii 58 0x000951B3 -B. --background run the miner in the background

(o) Important

You've reached Checkpoint #3 in this lab.

We extracted the underlying content, but we want to understand the specific technique used to embed a program in a WAV file. The following
questions will help you investigate this level of detail.

Recall that after the instruction CALL operator_new at 14000132d, the starting address of the allocated memory is stored in RAX. The value
in RAX is then referenced at 140001335 with the instruction mMov R14, RAX and at 140001344 with the instruction Mov Rcx, RAX.By
looking at upcoming references to R14 and RCX, we can observe when content is placed in the newly allocated memory. The R14 register is
referenced a few times near the end of the function, but not as a pointer (i.e., data is not read from or written to the location specified in
R14). RCX, however, is referenced many times as a pointer in the destination operand, indicating that the current function does contain code
to place content in the allocated memory.

v/ As discussed above, the instruction mMov Rcx, RAX at 140001344 places the starting address of the allocated region into RCX.
Continue reviewing the code and identify the loop that modifies content at the address stored in RCX. Specifically, what addresses
encompass the loop?

Answer: The loop begins at 14e0013de and ends at 140001450 .

Explanation: This question refers to the loop that places content into the address pointed to by Rrcx -the location of the recently allocated
memory. The loop begins with the following code at 14eee13de :

30 © 2022 Anuj Soni

23.

24.

/" Note

Answer this question based on static code analysis-debugging is not necessary.

Answer: B3200 (733,696 decimal). This is the size, in bytes, of the memory allocated by the instruction CALL operator_new at 14000132d .

Explanation: The stopping condition occurs at 14eee144d with the following two instructions:

s LAB_140001447

: 140001447 ADD R9, R10

: 14000144a INC RCX

| 14000144d SUB ' R8s, RDI

i - 140001450 INZ LAB_1400013d0

| 140001456 MOV R15, qword ptr [RSP + local 68]

We know RbpI is 1 from earlier analysis.
To identify the value stored in Rg8, we highlight the register and scroll up to find instructions that contain Rrs in the destination register.

At 1400013c4, we find the instruction mov, RrR8p, EBX.We then highlight EBX to identify references to this register. This brings us to the following
code:

140001322 MOVSXD R15, EBX

140001325 MOV RCX, R15

140001328 MOV gword ptr [RSP + local 68], RI15
14000132d CALL operator_ new

140001332 MoV R10D, ESI

140001335 MOV R14, RAX

140001338 SHL R10D, O0x5

14000133c TEST EBX, EBX

At 140001322, the value in EBX is moved into R15, and that value is then moved into Rcx in the very next instruction. Only a couple instructions
later at 14e000132d, we see the instruction CALL operator_new . We already reviewed this instruction and determined it is passed the value
B3200 . Therefore, R8 contains this same value when the loop at 14eee13de executes for the first time.

With the above information in mind, we can assess that the loop under evaluation will iterate B320e or 733,696 times. r8 will store this value and
decrement by one with each iteration until it reaches zero. The loop executes once for each byte allocated.

v/ Let's begin understanding the purpose of the loop. At 1400013d3, we see the instruction. TEST byte ptr [RDX + R9 % 0x1], DIL.
Debugging this code would reveal the first operand points to a byte of WAV audio data. With this in mind, what is the likely purpose of
this TEST instruction and the other TEST instructions in this loop?

Answer: The eight TEST instructions in this loop assesses the LSBs of eight bytes of WAV audio data.

Explanation: We saw a TEST instruction similar to this one when evaluating the smaller loop at 1400012e6. In that case, the instruction TEST
byte ptr [RAX + RBPx0x1], DIL at 1400012e9 assessed the LSB of one byte of WAV audio data.

v In the first loop we analyzed at 1400012e6, the code extracted LSBs from every other byte of WAV audio data (i.e., it skipped one byte
in between LSB evaluations). Does this loop operate similarly?

32 © 2022 Anuj Soni

Technet24

25.

26.

27.

/" Note

Performing static code analysis to answer this question is time consuming. Try a debugger to observe what happens when the TEST
instructions in this loop are executed.

Answer: Yes, this loop evaluates the LSB of every other byte, skipping one byte in between.

Explanation: Within x64dbg, set a breakpoint on several TEST instructions within the larger loop. Run the program and observe that the first
operand in each successive TEST instruction increments by two. This means a byte is skipped in between each LSB evaluation.

+~/ How many bytes of WAV audio data does each iteration of the loop traverse (this includes "skipped" bytes, not just the ones assessed
by the conditional statements)?

Answer: 16 bytes.

Explanation: There are eight TEST instructions in the loop, and each one assesses one byte, skipping a byte in between. 8 x 2 = 16 bytes per loop
iteration.

v In the first loop we analyzed at 1400012e6, each loop iteration set one bit at the appropriate bit position within a 32-bit decoded value
beginning with the left-most bit (position 31). In this larger loop beginning at 1400013d0 1) How many bits of decoded content does
each iteration of the loop create? and 2) In what order does it set the appropriate bits in the decoded value?

7" Note

At 1400013da, observe the instruction cmovnz EAX, EDI.A CMOVNZ instruction means "conditional move if not zero". Since EDI in this
instruction contains 1, executing this code places 1 in EAX if the recent TEST instruction did not result in zero. If the TEST instruction result is
zero, EAX is intouched (in this case, it maintains a zero value). In this way, the CMOVNZ instruction achieves a similar result as using the BTS
instruction to set a value to 1.

Answer: The loop beginning at 1400013d0 creates 8 bits (1 byte) of decoded data with each iteration. Each iteration also begins work at bit
position 0 until it reaches bit position 7.

Explanation: To identify the number of decoded bits created by this loop, observe the single CMOVNZ instruction and seven BTS instructions.
These eight instructions have the same destination operand, EAX, and each instruction works on one bit of data. 8 bits of data equal one byte of
decoded content.

Also observe the instruction Mov byte ptr [RCX], AL at 140001445. This instruction occurs near the end of the loop, and it places the lower 8
bits of data in EAX (the destination operand for the CMOVNZ and BTS instructions) at the address contained within RCX, where the decoded
executable eventually resides. At 14000144a, RCX is incremented by 1 before each loop iteration in preparation for the next decoded byte. This
further supports our theory that each loop iteration decodes one byte.

The BTS instructions set bits at lower bit positions up to bit position 7. As suggested in the Note for this question, the CMOVNZ instruction at
1400013da can set EAX (which contains zero when the loop first executes) to 1. This is equivalent to setting the bit at bit position 0. The last BTS
instruction in the loop, BTS EAX, ex7, sets a bit at bit position 7.

v/ Summarize the purpose of this loop and how it decodes content.

This loop extracts the LSB of every other byte of WAV data to produce a Windows executable in memory. Each iteration of the loop extracts 8 bits
of decoded content (1 byte) from 16 bytes of encoded data, including skipped bytes. Each iteration also begins work at bit position 0 until it
reaches bit position 7. The loop produces a Windows executable of size 0xB3200 (733,696 bytes).

© 2022 Anuj Soni 33

Lab 1.2: Analyzing Malicious Program Execution

Background

In the previous lab, we began analyzing malware that extracted code from a WAV audio file using steganography techniques. We identified the
decoding algorithm, described its inner workings, and extracted the underlying binary. Next, the program must prepare this decoded binary for
execution and then launch the program. We'll explore the key steps necessary to accomplish this task.

Lab Objectives

« Identify code that checks for a valid Windows Executable.

« Identify code that maps an executable into memory in preparation for execution.
« Identify code that applies relocations, if needed.

« Identify code that that loads dependent DLLs and resolves APls.

« Identify code that updates section permissions in memory.

« Identify code that locates the entry point for execution.

Lab Preparation

Complete all steps described in the Lab Preparation for lab 1.1. player.exe should still be loaded within Ghidra in the Static VM, and both
player.exe and film.wav should be unzipped and located in the same directory within both the Static and Dynamic VMs.

Within the Static VM, load the dumped executable into CFF explorer so we can review its structure as needed. Simply drag-and-drop the dumped
executable to the CFF Explorer shortcut on the 710 VM desktop. Lastly, load the dumped DLL into the section1 project within Ghidra and initiate
the auto-analysis with the same configuration we used in Lab 1.1: uncheck the box for pecompiler Switch Analysis.

If you do not have access to the dumped DLL from the last lab for some reason, you can unzip the dumped_dil.zip file in the
Malware\Section1 folder (password: malware).

© 2022 Anuj Soni 35

Technet24

Lab Questions

In the previous lab, we identified a deobfuscated malicious DLL. Now, let's review what happens next to execute this DLL in memory. The first
function call that occurs after the deobfuscation loop is at 14000146e-however, it is a call to a library function associated with deallocating
memory and is not worthy of further investigation. At 14000147e, we see a CALL to FUN_140001b10.

Examine the arguments passed to FUN_140001b10? How many arguments are passed to the function, and what is their significance?
Rename the arguments in the Decompile window.

/" Note

Static code analysis is sufficient to answer this question, but use a debugger if this becomes too time consuming.

Let's examine FUN_140001b10 to assess its purpose. Enter this function within Ghidra.

What does the check at 140001b44 evaluate?

/7" Note

Be sure to add comments to your disassembly and/or decompiler output as you answer these questions.

What check is performed at 140001b707?

/" Note

When answering this question, you will encounter the movsxp instruction. This instruction performs a move but also preserves the positive/
negative (i.e., signed) nature of the source. For this lab, you can interpret this instruction as an ordinary move.

What check is performed at 140001b88?

The code includes additional checks for a valid PE format. This includes going through the tedious process of validating each section's size
to make sure the PE header accurately describes the file. We won't explore every attempt to validate the file format. Instead, let's review what
happens next.

36 © 2022 Anuj Soni

After the various file format checks are complete, we see a call to VirtualAlloc at 140001c59. Shortly before the CALL, RCX is
populated with qword ptr [RSI + ex3e] .What field in the decoded PE header is this referring to, and what does this tell you about the
purpose of this call to VirtualAlloc?

/" Note

View the dumped DLL within CFF Explorer to identify the appropriate field.

What is the difference between the call to VirtualAlloc at 140001c59 and the one at 140001c76? Under what conditions does the
second call to VirtualAlloc get executed?

(o) Important

You've reached Checkpoint #1 in this lab.

After VirtualAlloc successfully executes, the program encounters a CALL to HeapAlloc at 140001c96. How many bytes does this
function attempt to allocate?
/" Notes

- Debugging is not necessary to answer this question.

+ Consult https://for710.com/heapalloc as needed.

In the listing view, highlight the CALL to HeapAlloc and identify the corresponding pseudocode in the decompile window. In the decompile
window, click on the variable that contains the return value of HeapAlloc. You will see multiple references to elements within the allocated
memory as various values are assigned. This variable might be better characterized as a structure. Let's take advantage of Ghidra'a feature
to automatically create a structure. Right-click on the variable that contains the return value of HeapAlloc and choose Auto Create Structure.
Right-click again on the same variable and choose Rename Variable. Rename the variable to info_struct . Your decompile window should
look similar to the excerpt pictured below:

© 2022 Anuj Soni 37

Technet24

info_struct = HeapAlloc (hHeap,8,0x68) ;
if (info_struct == 0x0) {

VirtualFree (1pAddress,0,0x8000) ;

goto LAB 140001cb5;
}
info_struct->field 0x8 = 1lpAddress;
uvar3 = *(1lvar2 + 0x16) ;
info_struct->field 0x50 = 0;
info_struct->field 0x20 = uvar3 >> 0xd & 1;
info_struct->field 0x28 = &DAT_ 140001lacO;
info_struct->field 0x30 = &DAT_140001adol;
info_struct->field 0x38 = &DAT_ 140001lae0;
info_struct->field 0x40 = &DAT_140001af0;
info_struct->field 0x48 = &DAT_140001b00;
info_struct->field 0x60 = local_ 48.dwPageSize;

Within the Data Type Manager, locate the target executable, expand it (i.e., click the +) and browse to auto_structs > astruct. This is the
default name of the structure we just created. We will keep this default name, but you could right-click and choose Edit to modify the name.

8. For now, let's focus on the structure member assignments that reference a label name beginning with "DAT_". Ghidra did not interpret
the pAT_ locations during its initial pre-processing, but it's possible there is meaningful code or data at this location. 1) Can you
determine what content resides at each pAT_ location? 2) Rename each DAT_ location in the decompiler output with a more
meaningful label after you reinterpret the bytes at these locations. 3) Lastly, rename the corresponding info_struct members using
the same names you chose for the pAT_ locations.

7" Note
Try answering this question using static code analysis, but if this becomes too time consuming, use a debugger.

9. Find the reference to info_struct->field_ex8 in the Decompile window. What information is stored in that structure member?

Describe the content; you do not need to provide the specific value. Then, rename the structure member.
10.

At 140001d61, what is the purpose of the CALL to VirtualAlloc?

38 © 2022 Anuj Soni

/" Note

Within the decompile window, remember that an asterisk (*) means the address stored in the specified variable is dereferenced.

What is the name of the control variable?:

What is the initial value of the control variable?:

How is the control variable updated?:

What does the while condition assess, and what does this tell you about the loop?:

16. We are still reviewing FUN_1400014f0. Within Ghidra's Listing view, identify the two CALLSs to VirtualAlloc. Using x64dbg, set a
breakpoint on those two CALLs (consider disabling other breakpoints to reduce confusion) and run the program. You'll find that the
program only reaches one of the CALLs during execution. Based on your evaluation of that function call and the nearby call to
memmove, how would you characterize the purpose of the do-while loop? Rename the function based on your analysis.

7" Note

To assist with your analysis, compare the size of each requested memory allocation with the section header content for the decoded DLL.
(o) Important
You've reached Checkpoint #2 in this lab.

17. Let's return to FUN_140001b10. At 140001dac, we see a call to FUN_140001870. Under what conditions is this function executed
(review the nearby conditional jump at 140001da7)?

18.

What is the purpose of FUN_1400018707? Using static code analysis only, review the function's arguments and the beginning of the
function's disassembly. Rename the function.

40 © 2022 Anuj Soni

Technet24

/" Notes

+ Consider the answer to the previous question when performing your analysis.
+ Recall that the first member of info_struct is the virtual address of the mapped DLLs PE header.
+ An investigation of the function's first seven instructions should be sufficient to determine what this function is likely responsible for.

+ Remember, this program has work left to do before it can execute the decoded DLL. We are trying to identify what code is responsible for
each step in this preparation process, but this does not require us to analyze every line of code.

19. At 140001dc0, we see a CALL to FUN_140001930. Based on performing static code analysis of the first 10 instructions of this function,

what is it likely responsible for?

While we will not perform a comprehensive analysis of FUN_140001930, we will explore a few additional aspects of this code.
20. At 1400019a4, what function is called?

/" Note

Attempt to answer this question without debugging the program.

At 140001a30, we see another CALL instruction. What function is called? How does the presence of this CALL and the one in the
previous question support our theory about the purpose of FUN_140001930? Rename the function.

Let's confirm our knowledge of Imports-related terminology and its associated structure. Within Ghidra, open the dumped DLL from the
project view. You should already have the dumped DLL loaded into CFF Explorer.

22. First, what is the virtual address (not relative virtual address) of the Import Directory table for this sample (assuming it is loaded at its

preferred image base)?

23. Access the Listing view for the dumped DLL within Ghidra and jump to the address identified in the previous question. This is the

location of the Import Directory Table, which includes an IMAGE_IMPORT_DESCRIPTOR structure for each imported DLL. Ghidra did not

© 2022 Anuj Soni 41

correctly interpret the 32-bit relative virtual addresses within this structure. First, modify the data types for the non-zero elements in
the first IMAGE_IMPORT_DESCRIPTOR structure. Then, answer the following questions about this first structure.

VA of Import Name Table:

Name of imported DLL (not the address, the actual name):

VA of Import Address Table section that corresponds to the specified DLL:

() Important

You've reached Checkpoint #3 in this lab.

The next function call within player.exe occurs at 140001dd0, where we see a CALL to FUN_140001620. Let's explore the body of this
function.

24. Within player.exe , what two Windows APIs are called inside FUN_140001620? Static code analysis should be sufficient to answer this
question.

25. Using x64dbg, set breakpoints on the CALLs to VirtualProtect discussed in the previous question and evaluate these calls. Based on
your analysis, what is the likely purpose of FUN_140001620 overall? Rename the function based on your analysis.

26.

The CALL at 140001e37 within player.exe executes a function in the decoded DLL. What function within the decoded DLL is called?

/" Note

Debug player.exe to assess the contents of RAX at 140001e37.

We've completed our review of FUN_140001b10. We can rename itto check_prep_d1l1, or something similar. Now, let's return to the parent
function, which we renamed desteg .

At 14000148e we have another cALL, which executes FUN_140001e80. Let's jump to this function and investigate its purpose.

42 © 2022 Anuj Soni

Technet24

+/ Examine the arguments passed to FUN_140001b10? How many arguments are passed to the function, and what is their significance?
Rename the arguments in the Decompile window.

7" Note
Static code analysis is sufficient to answer this question, but use a debugger if this becomes too time consuming.
Answer: FUN_140001b10 takes two arguments. The first argument is a pointer to the deobfuscated DLL (the specific address will vary). The

second argument is the size of the decoded DLL: exB32ee . We can rename the first argument to addr_decoded_d11 and the second argument to

size_decoded_d11.

Explanation: To determine the number of arguments passed to FuN_14eee1b1e, view the function metadata that Ghidra provides. It specifies two
arguments. Alternatively, view the instructions leading up to the function call, and you will notice only rRcx and Rbx are modified nearby (i.e., rR8
and R9 are not updated in close proximity to the function call).

To assess the values and significance with a debugger, set a breakpoint within x64 at 14eee147e and run the program. Observe Rcx and RDX to
answer this question.

Static analysis reveals the same information with just a bit more work. First, observe how rcx and rbx are populated before Fun_14eeeibie is

called:
140001478 MOV RDX, R15
14000147b MOV RCX, R1l4
14000147e CALL FUN_140001b10

RCX is populated with the value stored in R14 and Rbx is populated with the value stored in R1s . If we highlight r14 with a single click and

scroll up, we see it contains the return value of the CALL to operator_new at 14000132d :

14000132d CALL operator new
140001332 MOV R10D, ESI
140001335 MOV R14, RAX

Based on our work in lab 1.1, this means R14 will contain the address of the decoded DLL.

To investigate the second argument passed to Fun_14eee1bie, we must identify what is stored in R15 . Just a few instructions earlier, we see an
instruction where R15 is populated:

140001450 JINZ LAB 1400013d0
140001456 MOV R15, gword ptr [RSP + local 68]
14000145b MOV R13, gqword ptr [RSP + local 18]

To identify the value stored in the second operand, we highlight it and scroll up to see when it is referenced. This bring us once again to the cALL
t0 operator_new at 14000132d:

140001325 MOV RCX, R15
140001328 MOV qword ptr [RSP + local 68], RI15
140001324 CALL operator_ new

44 © 2022 Anuj Soni

We see that the value in R15 is moved into both the variable of interest and Rrcx, the first argument passed to operator_new . The first argument
to operator_new specifies the size of memory to allocate, and we already reviewed this function call in lab 1.1. Our earlier analysis indicated the
specified size was exB32ee , which is the second argument passed to FUN_146e01b10 .

To rename the arguments in the Decompile window, right-click each one and choose Rename Variable. We can rename the first argument to
addr_decoded_d11 and the second argument to size_decoded_d11.

Let's examine FUN_140001b10 to assess its purpose. Enter this function within Ghidra.
v/ What does the check at 140001b44 evaluate?

/" Note

Be sure to add comments to your disassembly and/or decompiler output as you answer these questions.

Answer: The cMP instruction at 14eee1ba4a checks if the first argument passed to Fun_14e001b1e pointsto ex4psA to help determine if the
decoded DLL is a valid Windows executable.

Explanation: To answer this question, we need to evaluate two instructions:

140001b3f MOV EAX, Ox5a4d
140001b44 CMP word ptr [RCX], AX

The cwmp instruction evaluates Ax (the lower 2 bytes of EAx) against the 2 bytes pointed to by the first argument passed to FuN_14eee1b1e . As
discussed in the previous question, the function's first argument points to the decoded DLL. The code checks for the ascii Mz bytes located at the
beginning of a valid Windows executable. Note that the value moved into EAx at 14eee1b3f is ex5a4d and not exadsa because the two bytes
read from the decoded DLL are read as little-endian data.

+/ What check is performed at 140001b70?

/" Note

When answering this question, you will encounter the movsxp instruction. This instruction performs a move but also preserves the positive/
negative (i.e., signed) nature of the source. For this lab, you can interpret this instruction as an ordinary move.

Answer: The check at 14e001b7e checks if the decoded DLL has a valid PE header (i.e., it checks if the DLL has the ascii characters "PE" at the
expected offset).

Explanation: The relevant instructions for the check at 14eee1b7e include:

140001b60 MOVSXD RCX, dword ptr [RCX + 0x3c]
140001b64 LEA RAX, [RCX + 0x108]

140001b6b CMP R15, RAX

140001bé6e Jc LAB 140001b28

140001b70 CMP dword ptr [RCX + R14*%0x1l], 0x4550

The cmP instruction at 14eee1b7e performs the comparison of interest. The right operand is ex455e with an ascii representation of Ep . Similar
to the mz check earlier, this value likely refers to the little endian representation of the characters PE that occur at the beginning of the PE header
for a valid Windows executable.

© 2022 Anuj Soni 45

Technet24

Let's asses the left operand dword ptr [RcX + R14xexi] . If we highlight r14 and scroll up to identify references, we see the instruction mov
R14, RCX at 14ee01blf . Since Rcx contains the first argument to the function when this instruction is executed (i.e., the pointer to the decoded
DLL), r14 will store this same address when the move is completed.

RCX inthe cMP instruction at 14eee1b7e is most recently populated at 14e001b6e with a Movsxp instruction. This operation moves the value at
the ex3c offset from the beginning of the decoded DLL into Rrcx . This is the offset of the e_tifanew field which specifies the offset to the PE
header. Therefore, the cMp instruction at 14eee1b7e checks if the PE header of the decoded DLL begins with the expected bytes ex4sse (little

endian).

41 v What check is performed at 140001b88?

Answer: The check at 140001b88 evaluates if the decoded DLL is a 64-bit binary based on the appropriate field in the Windows executable

header.

Explanation: The relevant instructions for the check at 14eee1bsgsg include:

140001b7d LEA RSI, [RCX + R14%*0x1]
140001b81 JNZ LAB 140001b96

140001b83 MOV EAX, 0x8664

140001b88 CMP word ptr [RSI + 0x4], AX

Let's review the cmMp instruction at 14eee1bss . The right operand, Ax, is populated in the previous instruction with the value ex8664 . To
understand the left operand, we need to determine the value stored in Rsz . This register is in the destination operand at 14eee1b7d in the
instruction LEA RSI, [RCX + R14 x ox1] .Based on the previous question in this lab, we know the source operand is the virtual address of the
decoded DLLs PE header. This means the cmp instruction dereferences the address at 4 bytes after the PE header. If we view the dumped DLL in
CFF Explorer, we find the PE header signature at hex offset 0x120. If we view the field at 4 bytes after the header at 0x124, we arrive at the
Machine type. The cmp instruction checks for the Machine type exsee4 (i.e., a 64-bit executable), which matches our dumped DLL. For all
machine type values, see https://for710.com/machinetype.

l';]-"' @ ' dumped_dil.bin

Member Offset Size Value Meaning
File: dumped_dll bin .
2] Dos Header ﬁ Machine 00000124 | Word 8664 AMD64 (K8)
=l Mt Headers MNumberQfSections | 00000126 | Word 0006

[Z] File Header

TimeDateSt 00000128 | Dword 5B0OC5CT
[=] Optional Header ime-atestamp or

The code includes additional checks for a valid PE format. This includes going through the tedious process of validating each section's size
to make sure the PE header accurately describes the file. We won't explore every attempt to validate the file format. Instead, let's review what
happens next.

S| v After the various file format checks are complete, we see a call to VirtualAlloc at 140001¢59. Shortly before the CALL, RCX is
populated with quord ptr [RSI + 0x3e] .What field in the decoded PE header is this referring to, and what does this tell you about the
purpose of this call to VirtualAlloc?

/" Note

View the dumped DLL within CFF Explorer to identify the appropriate field.

46 © 2022 Anuj Soni

Answer: As discussed in earlier questions, RsI is the address of the decoded DLLs PE header. At 0x30 offset from the start of the PE header is
the Imagebase field. This call to VirtualAlloc is attempting to allocate memory at the preferred address specified in the header. This is likely to

create space for the mapped executable.

Bl [=] File: dumped_dil bin

| 5 Dos Header Magic 00000138 Word
[Z Nt Headers MajorLinkerVersion 0000013A Byte
‘é g:;:':;d:;a i MinorLinkerVersion 00000138 Byte
[Z] Data Directories [x] SizeOfCode 0000013C Dword
[2 Section Headers] SizeOfInitializedData 00000140 Dword
— |2 Export Directory
— \[j Import Directory SizeOfUninitializedData 00000144 Dword
— () Resource Directory AddressOfEntryPoint 00000148 Dword
|2 Exception Directory
—) Relocation Directory BaseOfCode 0000014C Dword
— | Debug Directory e
- # geBase 00000150 Qword
— |2 TLS Directory
— ’%Add’ms Converter SectionAlignment 00000158 Dword

0208 PEB4
OE

OE

00089300

0002BC00

00000000

DOD4AFED et
00001000
0000000180000000
00001000

v/ What is the difference between the call to VirtualAlloc at 140001¢59 and the one at 140001¢76? Under what conditions does the

second call to VirtualAlloc get executed?

Answer: The only difference between the two CALLs is that the first specifies a starting address for the region to allocate (i.e., 0x180000000). If
this fails because that region in memory is already reserved, the second CALL to VirtualAlloc executes with no starting address specified. In this

later case, the system will determine where to allocate memory.

(o) Important

You've reached Checkpoint #1 in this lab.

+/ After VirtualAlloc successfully executes, the program encounters a CALL to HeapAlloc at 140001c96. How many bytes does this

function attempt to allocate?

/" Notes

- Debugging is not necessary to answer this question.

« Consult https://for710.com/heapalloc as needed.

Answer: 0x68, or decimal 104 bytes

Explanation: The relevant instructions include:

140001c8a MOV
140001c8f MOV
140001c92 LEA
140001c96 CALL

EDX, 0x8

RCX, RAX

R8D, [RDX + 0x60]

gword ptr [->KERNEL32.DLL::HeapAlloc]

As described in the Microsoft documentation, HeapAlloc's third argument specifies the number of bytes to allocate. This will be stored in Rrs,
which gets populated at 140001¢92 with an LEA instruction. This instructions adds rpbx and 0x60, and Rrpx is populated with 0x8 at 140001c8a.

Therefore, this call to HeapAlloc allocates 0x60 + 0x8 = 0x68, or 104 bytes.

© 2022 Anuj Soni

47

Technet24

10.

This means the address of an instruction that calls VirtualAlloc is placed into the <info_struct structure. We can rename LAB_140001ace to
addr_virtualAlloc and perform similar steps to resolve the other pAT_ references. We can then rename the corresponding structure members
by right-clicking on each field and choosing Rename Field. The resulting decompiled code is:

info_struct->fie1d_0x8 = lpAddress;

uvar3 = *(1lvar2 + 0x16);

info_struct->field 0x50 0;

info struct->field 0x20 = uVar3 >> 0xd & 1;
'nfo_struct->addr_;irtualAlloc = &addr_VirtualAlloc;

info_struct->addr_VirtualFree = &addr VirtualFree;

info_struct->addr_LoadLibraryA = &addr LoadLibraryA;
info_struct->addr_GetProcAddress = &addr GetProcAddress;

info_struct->addr_FreelLibrary = &addr FreelLibrary;

info_struct->field 0x60 = local_48.dwPageSize;

v/ Find the reference to info_struct->field_exs in the Decompile window. What information is stored in that structure member?
Describe the content; you do not need to provide the specific value. Then, rename the structure member.

Answer: The image base address of the mapped executable. We can rename field_ox8 t0 mapped_imagebase .

Explanation: You can use the decompile output and/or disassembly to answer this question. In the decompile window, observe the code
info_struct->field_ox8 = lpAddress; (the corresponding disassembly is at 140001cc2).If we highlight 1pAddress with a single click and
scroll up, we see it contains the return value of the recent call to VirtualAlloc that attempts to allocate memory using the decoded DLLs
ImageBase. This means +info_struct->field_ex8 contains the base address of the mapped decoded DLL. We can rename field_ex8 to

mapped_imagebase .

v/ At 140001d61, what is the purpose of the CALL to VirtualAlloc?

/" Notes

+ Review the next CALL to memmove at 140001d74 as part of your analysis (https://for710.com/memmove). If the function called at
140001d74 is not labelled memmove , it means you forgot to uncheck the box for pecompiler Switch Analysis when configuring
Ghidra's initial auto-analysis. In this case, simply rename the function to memmove so you can proceed with the lab.

- Static code analysis is sufficient to answer this question, but use a debugger if this becomes too time consuming.

« If you choose to use x64dbg, note that when you view the CALL at 140001d74, the debugger will not identify the function name memmove .
Only Ghidra provides this additional information based on its Function ID (FID) capability.

Answer: It commits space for the header of the mapped decoded DLL.

Explanation: The relevant instructions include:

© 2022 Anuj Soni 49

11.

12.

140001d52 MoV RO9D, Ox4

140001d58 MOV R8D, 0x1000

140001d5e MoV RCX, RBP

140001d61 CALL gword ptr [->KERNEL32.DLL::VirtualAlloc]
140001d67 MOV R8D, dword ptr [RSI + 0x54]

140001d6b MOV RDX, R14

140001d6e MoV RCX, RAX

140001471 MoV RBX, RAX

140001474 CALL memmove

At 14ee01d6e , the return value of VirtualAlloc is moved into Rcx . This serves as the first argument passed to memmove, which copies a
specified number of bytes from one location to another (https://for710.com/memmove). As specified in the Microsoft documentation, the first
argument points to the destination, the second argument points to the source, and the third specifies the number of bytes to copy. Focusing on
the third argument (moved into R8) provides a clue. At 140001d67, RSI contains the address of the decoded DLLs PE header. At offset 0x54 from
this location is the SizeOfHeaders field, indicating PE header content will be moved into the recently allocated memory region.

We can confirm this answer if we review the CALL to memmove in a debugger, we will observe that it copies 0x400 (1024) bytes from the
beginning of the decoded DLL to the starting address of the memory region allocated for the mapped binary. This is the entire header of the
decoded DLL.

v/ At 140001d86, what does the MOV instruction accomplish? (i.e., what is the significance of the value that is copied?) Rename the
corresponding member in the info_struct structure within the Decompile window.

Answer: The MOV instruction places the virtual address (VA) of the mapped DLLs PE header into the first member of the info_struct structure.
We can rename field_oxe inthe Decompile window to mapped_pe_header .

Explanation: We are evaluating the instruction Mov qword ptr [RDI], RAX at 140001d86. First, what is RDI? Immediately after the CALL to
HeapAlloc at 140001c96, the contents of EAX are moved into RDI. This means RDI contains the starting address for the allocated memory. As
previously discussed, this is the address of the info_struct structure, so the MOV instruction populates the structure's first member.

Next, let's turn our attention to EAX. At 140001d79, a MOV instruction dereferences R14 + ex3c . We encountered this location reference in a
previous question-it refers to the e_1fanew field within the decoded DLL, which specifies the offset to the PE header. At 140001d80, RBX is added
to this value. If we highlight this register with a single click, we can see it contains the return value of the CALL to VirtualAlloc we reviewed earlier-
this committed memory to copy the header of the decoded DLL. Adding this return value to the offset of the PE header equals the virtual address
of the mapped PE header.

If we highlight the MOV instruction at 140001d86, the corresponding code in the Decompile window references <info_struct->field_exe . Given
the analysis described above, we can rename field_exe inthe Decompile window to mapped_pe_header .

v/ At 140001d8f, what does the MOV instruction accomplish?
Answer: It updates the ImageBase field of the mapped DLL to match the actual starting address of the DLL in memory. However, if the DLL was
loaded at its preferred base address, this operation results in no change.

Explanation: The relevant instruction is Mov qword ptr [RAX + ©x301, RBP. First, let's assess the destination operand. Based on the analysis in
the previous question, we know RAXx is the virtual address of the mapped DLLs PE header. If we use CFF Explorer to view the offset of the PE
header, we see it occurs at 0x120. Adding 0x30 to that offset equals 0x150, which is the location of the ImageBase field.

Now, let's review the second operand. If we highlight rBP with a single click and scroll up, we see it contains the return value of the recent call to
VirtualAlloc that attempts to allocate memory using the decoded DLL's ImageBase. This means RBP contains the base address of the mapped
decoded DLL.

50 © 2022 Anuj Soni

Technet24

13.

14.

15.

Therefore, the MOV instruction updates the ImageBase field of the mapped DLL to reflect the starting address of the mapped DLL in memory.

+/ At 140001d93 we see a call to function FUN_1400014f0. Jump to this function and view the decompile window. How many arguments
does this function take, and what is the significance of each argument? Rename each argument in the decompile window so the labels
are more meaningful.

/" Notes

+ Use a combination of static and dynamic code analysis to speed up your analysis.

» When renaming arguments and variables in the decompile window, consider using the same labels you used in earlier questions if
appropriate. Good terms to include in your names are "mapped’, "unmapped", "decoded", "dIl", "size", and "header", separated by
underscores (e.g., size_decoded).

Answer: This function accepts four arguments:
« First: The starting address of the unmapped DLL.
+ Second: The size of the decoded DLL (0xB3200).
« Third: The address of the unmapped DLLs PE header.
« Fourth: The address of the info_struct structure.

One approach to renaming these arguments in the decompile window results in the following:

FUN_1400014f£0 (longlong addr_decoded_dll,ulonglong size_decoded,longlong unmapped pe header,

longlong *info_struct)

v We know that the fourth argument passed to FUN_1400014f0 is info_struct . Apply the astruct data type to this argument. What
Windows API does FUN_1400014f0 call using info_struct ?

Answer: FUN_1400014f0 calls VirtualAlloc using the address of this API stored within info_struct .

Explanation: If you single-click info_struct within FUN_1400014f0 in the decompile window, you will see multiple references. To apply the
astruct structure, right-click on info_struct and choose Retype Variable. Then, type astruct, choose the first option, and click OK. This
question focuses on function calls, and only two references within FUN_1400014f0 use info_struct to call a function. In both cases the
reference is info_struct->addr_VirtualAlloc.

v Notice that most of FUN_1400014f0 is actually a do-while loop. Using the decompile window, answer the questions below.

/" Note

Within the decompile window, remember that an asterisk (*) means the address stored in the specified variable is dereferenced.

Answers: This decompiled code excerpt includes the information necessary to answer these questions.

© 2022 Anuj Soni 51

17.

/" Note

To assist with your analysis, compare the size of each requested memory allocation with the section header content for the decoded DLL.

Answer: The do-while loop maps each section of the unmapped decoded DLL into memory. We can rename FUN_1400014f@ t0 map_sections,Or
something similar.

Explanation: Although the do-while loop includes two CALLs to VirtualAlloc, only the second CALL at 14eee1sbe is encountered during execution.
The first CALL to VirtualAlloc at 14eee1569 is only executed if a section has a zero raw size. This does not apply to our decoded DLL, so we will
not explore this further.

If we set a breakpoint at 14eee15be and run the program, we'll see it hits this breakpoint with each iteration of the loop. Each time VirtualAlloc is
called, the first argument (i.e., the starting address of the region to allocate) is in close proximity to the image base value of the mapped DLL-this
is the first indication that this code is performing additional mapping activities. In addition, each call specifies a exeeee1000 memory allocation
type, which represents MEM_coMMIT . This means the memory has already been reserved-we previously reviewed the VirtualAlloc CALL that
reserved the necessary space in memory. If we look at the size of each requested memory allocation and compare them with the section header
content for the decoded DLL, we'll find that the numbers match the Raw Size for each section.

If we include the CALL to memmove at 14eee15cb into our analysis and review the source and destination each time memmove is called, we find
that this code copies content from each section in the unmapped DLL to the memory allocated for the mapped DLL. This is further evidence that
the do-while loop is responsible for mapping each section of the decoded DLL into memory in preparation for execution. Rename FuN_14ee014fe
to map_sections, or something similar.

6 Important

You've reached Checkpoint #2 in this lab.

Vv Let's return to FUN_140001b10. At 140001dac, we see a call to FUN_140001870. Under what conditions is this function executed
(review the nearby conditional jump at 140001da7)?

Answer: FUN_140001870 is executed if the image base of the mapped DLL is not equal to the ImageBase value within the unmapped DLL. In other
words, this function is executed if the DLL was mapped to an address that is different from its preferred address.

Explanation: The relevant instructions for this question include:

140001d9c MOV RA¥X, qword ptr [RDI]
140001d9f MOV RDX, gword ptr [RAX + 0x30]
140001da3 SUB RDX, gqword ptr [RSI + 0x30]
140001da7 JzZ LAB 140001dbé

140001da® MOV RCX, RDI

140001dac CALL FUN_140001870

At 140001d9c, RDI contains the address of info_struct (see the decompiler output to confirm this). Dereferencing this value places the virtual
address of the mapped DLLs PE header into RAX .

At 14ee001d9f , the ImageBase value of the mapped DLL is placed into RDX .

At 140001da3, the second operand dereferences [RSI + ex30] . RSI contains the address of the unmapped DLLs PE header (static code
analysis, debugging, and the decompiler output can all confirm this), so adding 0x30 points to the unmapped DLLs ImageBase.

Therefore, the SUB instruction subtracts the unmapped DLLs ImageBase value from the mapped DLLs ImageBase value. If the result is zero (i.e.,
the image bases are the same) this means the DLL was loaded at its preferred address. In this case, the jump at 14eee1da7 is taken, and

© 2022 Anuj Soni 53

Technet24

18.

FUN_140001870 is not executed. If the result of the subtraction is not zero (i.e., the image bases are different), the jump at 14eee1da7 is not
taken, and FuN_140001870 is executed.

~/ What is the purpose of FUN_140001870? Using static code analysis only, review the function's arguments and the beginning of the
function's disassembly. Rename the function.

/" Notes

« Consider the answer to the previous question when performing your analysis.
+ Recall that the first member of info_struct is the virtual address of the mapped DLL's PE header.
+ An investigation of the function's first seven instructions should be sufficient to determine what this function is likely responsible for.

» Remember, this program has work left to do before it can execute the decoded DLL. We are trying to identify what code is responsible for
each step in this preparation process, but this does not require us to analyze every line of code.

Answer: Based on our analysis in the previous question, FUN_14eee1876 's first argument is the address of info_struct, and the second
argument is the difference between the mapped DLL and unmapped DLL image base values. This function processes the DLLs .reloc section to
perform any address fix ups. We can rename the function to apply_base_relocations , or something similar.

Explanation: If we jump to Fun_14eee187e the initial instructions include:

FUN_140001870
140001870 MOV gword ptr [RSP + local res8], RBX
140001875 MOV qword ptr [RSP + local reslO], RDI
14000187a MOV RA¥X, gword ptr [RCX]
140001874 MOV R11l, RDX
140001880 MOV RDI, gword ptr [RCX + 0x8]
140001884 CMP dword ptr [RAX + O0xb4], O0xO0
14000188b JNZ LAB 1400018a2
14000188d XOR EBX, EBX
14000188f TEST RDX, RDX
140001892 SETZ BL
140001895 MoV EAX, EBX
140001897 MOV RBX, qword ptr [RSP + local_ res8]
14000189c MoV RDI, gword ptr [RSP + local_ reslO]
1400018a1 RET

LAB_1400018a2
1400018a2 MOV EDX, dword ptr [RAX + 0xb0]

At 140001874, the first argument (i.e., the address of info_struct) is dereferenced, which places the address of the mapped DLLs PE header
into RAX . At 140001884, [RAX + @xb4] takes us to the Oxb4 offset from the PE header-this is the location of the Relocation Directory Size. The
CMP instruction evaluates if this size is zero, and if so, the functions returns. Based only on these instructions, it is likely this function processes
the DLLs relocation table to perform the necessary fixups.

54 © 2022 Anuj Soni

19.

20.

+/ At 140001dc0, we see a CALL to FUN_140001930. Based on performing static code analysis of the first 10 instructions of this function,
what is it likely responsible for?

Answer: Based on the reviewing the CMP instruction at the beginning of the function, it is likely responsible for processing the mapped DLLs
import table to resolve dependencies.

Explanation: The first 10 instructions are:

FUN_ 140001930
140001930 PUSH RDI
140001932 PUSH R12
140001934 PUSH R13
140001936 SUB RSP, 0x30
14000193a MOV RAX, qword ptr [RCX]
14000193d MoV RDI, RCX
140001940 MOV R12, gqword ptr [RCX + 0x8]
140001944 MoV R13D, Ox1
14000194a CMP dword ptr [RAX + 0x94], 0x0
140001951 JZ LAB 140001ab2

After typical function prologue activities, the MOV instruction at 14eee193a dereferences Rcx and places the value in RAX . Static code analysis
and debugging will both confirm RrRcx contains the address of info_struct, so the first element of the array is placed into rRAX . We know the first
element is the address of the mapped DLLs PE header.

At 14000194a, the CMP instruction evaluates the value stored at [RAX + 0x94] . To identify what resides at this offset, view the dumped DLL in
CFF Explorer and first find the offset of the PE header (0x120). Adding 0x94 results in 0x1B4. If we navigate to this offset with CFF Explorer, we
find the Import Directory Size field:

Member Offset Size Value Section
=l File: dumped_dll bi
5 e - " Export Directory RVA 000001A8 Dword 000ABST0 .rdata
[Z] Dos Header
(=] Mt Headers Export Directory Size 000D01AC Dword 00000044
=] File Header .
(21 Optional Header Import Directory RVA 000001BO Dword 0D0AGEB4 .rdata
[Z] Data Directories [x] * Import Directory Size 00000184 Dword 00000064
5 Section Headers [x] Resource Directory RVA 00000188 Dword 000B1000 rskc
) Export Directory

This function likely parses the import table to resolve dependencies.

While we will not perform a comprehensive analysis of FUN_140001930, we will explore a few additional aspects of this code.

v/ At 1400019a4, what function is called?

/" Note

Attempt to answer this question without debugging the program.

Answer: The address of info_struct is the only argument passed to FUN_140001930. If we retype (right-click > Retype Variable) the argument
to a structure of type astruct within the Decompile window, we find that the CALL at 1400019a4 executes LoadLibraryA:

© 2022 Anuj Soni 55

Technet24

21.

22.

23.

140001967 ADD R14, R12
CX, R14

1400019a7 MOV RBP, RAX

14000195c LEA EDX, [R13 + 0x13]
140001960 MOV R14D, dword ptr [RAX + 0x90]

LAB_ 140001990

140001990 MoV EAX, dword ptr [R14 + Oxc]
140001994 TEST EAX, EAX

140001996 Jz LAB_140001a99

14000199c¢ Mov RDX, gword ptr [RDI + 0x50]
1400019a0 LEA RCX, [R12 + RAX*0x1]

1400019a4 CALL qword ptr [RDI + 0x38]

19
20
21
22
23
24
125
26

undefined4 FUN_140001930fastruct *param_1)

{

pvvarl = param_l->mapped_imagebase;

if (*(param_l->mapped pe_header + 0x94) != 0) {
1p = *(param_l->mapped_pe header + 0x90) + pvvarl;
BVar2 = IsBadReadPtr(lp,0x14);

if (Bvar2 == 0) {
while (1p[3] != 0) {
1Var4 = (*param_l->addr_LoadLibrary) (pvVarl + 1p[3],param_1->field 0x50);
if (Lvar4 == 0) {

Let's confirm our knowledge of Imports-related terminology and its associated structure. Within Ghidra, open the dumped DLL from the

v/ At 140001a30, we see another CALL instruction. What function is called? How does the presence of this CALL and the one in the
previous question support our theory about the purpose of FUN_140001930? Rename the function.

Answer: Using a similar approach to the previous question, you can determine this is a call to GetProcAddress. LoadLibrary and GetProcAddress
are commonly used to load a module and resolve a function within the module. This supports our theory that the overall function is responsible
for loading DLLs and resolving APIs. We can rename FUN_140001930 tO resolve_imports .

project view. You should already have the dumped DLL loaded into CFF Explorer.

preferred image base)?

Ox1800A68B4 .

v/ First, what is the virtual address (not relative virtual address) of the Import Directory table for this sample (assuming it is loaded at its

Answer: 0x1800A68B4 . The preferred image base is ex18eeeeee00 , and the Import Directory RVA is exA68B4 . Adding these values results in

=] File: dumped_dil bin

[Z] Dos Header

[Z] Mt Headers

[Z] File Header

[Z] Optional Header

[Z] Data Directories [x]

Member Offset Size Value | Section
Export Directory RVA 000001A8 Dword D00ABET0 .rdata
Export Directory Size 000001AC Dword 00000044

Import Directory RVA 000001BO Dword D0DABEE4 .rdata
Import Directory Size 000001B4 Dword 00000064

v/ Access the Listing view for the dumped DLL within Ghidra and jump to the address identified in the previous question. This is the
location of the Import Directory Table, which includes an IMAGE_IMPORT_DESCRIPTOR structure for each imported DLL. Ghidra did not
correctly interpret the 32-bit relative virtual addresses within this structure. First, modify the data types for the non-zero elements in
the first IMAGE_IMPORT_DESCRIPTOR structure. Then, answer the following questions about this first structure.

Answer: First, jump to ex18eeAesB4 within the Listing view for the dumped DLL. You should see the following:

hkhkkhkkhkhkkhkhkhkkhkhkkhhkkhkhkhkhkhkhhkkhhkhhkhkhhkhhkhhkkhhkhkhhkhhkhhkhhhkhhhikh

* IMAGE IMPORT DESCRIPTOR *

hkhkkhkhkhkhkhkhhkhhhhkhhhhhhhhkhhkhhhhhhkhkhhhhhhkhkhkhkhkhhbhhhkk

DWORD_1800a68b4 XREF[1]: 1800001bO0 (*)
1800a68b4 ddw A6E68h

1800a68b8 ddw Oh

1800a68bc ddw Oh

1800a68c0 ddw A6F6Ch

1800a68c4 ddw 8B550h

56 © 2022 Anuj Soni

26.

cPu @ Graph |t Log
[EE—e

& Handles

player.00000001400217B8
&"pE"

<&CryptAcquireContextA>

<&CryptAcquirecContextA>

[1] Notes ® Breakpoints ®# Memory Map [Call Stack =% SEH |oo) script %] symbols <> Source /- References 9 Threads
.JcalTl qword ptr ds:[<&virtualProtect>] ~| Hide FPU
0000000140001792 []|. test eax,eax
0000000140001794 || .vje player.140001801 RAX 00000001400217B8
0000000140001796 mov edx,dword ptr ds:[rdi] RBX 0000000002558100
0000000140001798 || ./mov rll,rbp RCX 0000000180001000
0000000140001798 || .|mov r8,rsi RDX 0000000000089800
000000014000179E || .| mov r%o, rl4 RBP 000000018008B000
00000001400017A1 || .vjmp player.1400017BE
00000001400017A3 ||>mov ecx,dword ptr ds:[rdi] % 8888888?%83@;833
00000001400017A5 || .[mov eax,ecx RDI 0000000180000274
00000001400017A7 || ./land eax,edx
00000001400017A9 .lor edx,ecx Default (x64 fastcall)
00000001400017AR Il .|bt eax.19 “1'1: rcx 0000000180001000 s Address of mapped .text section

<

> 2:

qword ptr

[0000000140014010 <player.&VirtualProtect>]=<kernel32.virtualPr|3:

rdx 0000000000089800
rg 0000000000000020=w
4: r9 000000000014FDBO

5: [rsp+20] 00000000000B3200

We can rename FUN_140001620 tO0 update_section_protections.

v/ The CALL at 140001e37 within player.exe executes a function in the decoded DLL. What function within the decoded DLL is called?

/" Note

Debug player.exe to assess the contents of rRAXx at 140001e37.

Answer: The CALL at 140001e37 executes the mapped DLLs entry point located at 18004AFEQ. This is an optional step when loading a DLL for

execution.

Explanation: If we set a breakpoint at 140001e37 and run the program, we see RAX contains 18004AFEO:

& cru
CiE—

r
i
1
1
T
|
L.

-—=>

? Graph

|t Log

0000000140001E39
0000000140001E3B
0000000140001E3D
0000000140001E42
0000000140001E47

[l Notes
. call rax

.| test eax,eax
.vjne player.140001E47
./mov ecx,45A
.rjmp player.140001D26

® Breakpoints

E# Memory Map

mov dword ptr ds: [rdi+1c],1

[}V call Stack

&7 SEH
~ Hide FPU

le2| Script

& symbols <

RBX 000000018008B6B0
RCX 0000000180000000
RDX 0000000000000001

RAX 000000018004AFE(Q dfm

Within Ghidra's Listing view, we can jump to this location in the decoded DLL. It is clear this is the DLLs entry point:

58

© 2022 Anuj Soni

Technet24

hkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkkkkk
* FUNCTION
hkhkkhkkhkhkhkkhkhkhkhkhkhkhhhkhkhhhkhhhkhkhhhkhkhhhkhkhhhkhkhhkhkhbhhhkhhhii
ulonglong __ fastcall entrx(undefinedB param 1,

ulonglong RAX:8 <RETURN>

undefineds8 RCX:8 param 1

int EDX:4 param 2

longlong R8:8 param 3

undefineds8 Stack [0x20... local res20

undefineds8 Stack[0x18... local resl8

undefineds8 Stack [0x10... local reslO0

undefineds8 Stack[0x8] :8local res8

undefined4 Stack [-0x2... local 28
entry XREF([2]
—_—

18004afe0 MOV qgword ptr [RSP + local res8], RBX

More information about a DLLs entry point can be found here: https://for710.com/dll-ep.

Debugging also reveals the second argument passed to the entry point is 1:

& cru @ Graph | # Log |t Notes ® Breakpoints ™# Memory Map [| Call Stack =% SEH |e2| script 9] symbols < Source
(RIPESE 000000017000 =5/ IS DI ~ Hide FPU
@ 0000000140001E39 || .| test eax,eax 1ae
F"".\ 0000000140001E3B .Fjne p1ayer‘ 140001E47 RAX 000000018004AFEO
! o 0000000140001E3D || ./lmov ecx,45A RBX 000000018008B6B0O
3 o 0000000140001E42 .rjmp pl ayer‘.140001D26 RCX 0000000180000000
>0 0000000140001E47 |[>mov dword ptr ds:[rdi+1cC],1 RDX 0000000000000001
q 0000000140001E4E || . mov rax,rdi RBP 0000000180000000
® 0000000140001E51 || .rjmp player.140001D36
‘ RSP 000000000014FDBO
@ 0000000140001E56 ||>mov gword ptr ds:[rdi+58],rax
| RSI 0000000180000000
o 0000000140001E5A || .[mov rax, rdi RDT 0000000002558100 &"PE"
q 0000000140001E5D || .rjmp p'Iayer 140001D36
@ 0000000140001E62 ||>mov qword ptr ds: [rdi+58],0
o 0000000140001E6A || ./mov rax,rdi Rl EGifasteall)
@ NDNNNNNTANNNT ERN himn nlavar 140001N2A ¥|1: rcx 0000000180000000
] < > 2: rdx 0000000000000001
rax=000000018004AFEOQ 3: r8 0000000000000000

The second argument specifies the reason code, which describes why the DLL entry point is called. In this case, the value is 1 or
DLL_PROCESS_ATTACH. This means the DLL is being initialized in preparation for execution.

We've completed our review of FUN_140001b10. We can rename it to check_prep_dl1, or something similar. Now, let's return to the parent
function, which we renamed desteg .

At 14000148e we have another cALL, which executes FUN_140001e80. Let's jump to this function and investigate its purpose.

27-1 ~ within player.exe , what does the instruction at 140001e96 evaluate, and what does this tell you about the likely purpose of this

function?

© 2022 Anuj Soni 59

28.

Answer: The cmp instruction checks if the Export Directory Size is zero. If the size is zero, the code calls SetLastError and returns. Based on this
brief analysis, FuN_14e001e80 probably resolves the DLLs export(s) for execution.

Explanation: As we've seen several times during this lab, Fun_14eee1e80 takes only one argument, and it is the address of info_struct . If we
retype (right-click > Retype Variable) the argument to a structure of type astruct within the Decompile window, we find that the instruction at
140001e96 accesses the info_struct member that contains the address of the mapped DLLs PE header. Looking at the decoded DLL in CFF
Explorer, we know that the PE header begins at 0x120, and adding 0x8c equals Ox1ac. At this offset we find the Export Directory Size field:

— B Member Offset Size Value Section
= File: dumped_dll bir
e - Export Directory RVA | 000001A2 |Dword | 00DAGS70 .rdata
|Z] Dos Header
= Nt Headers s || Export Directory Size | D00D01AC | Dword | 00000044
=] File Header ;
A | 0DDDOT AB2B4
=) Optional Header Import Directory RV BO Dword | 000AGSE rdata

If the Export Directory Size is zero, the function returns:

140001e96 CMP dword ptr [RAX + 0x8c], O0xO0

140001e9d JNZ LAB 140001leb5

140001e9f MoV ECX, Ox7f

140001ea4 CALL gword ptr [->KERNEL32.DLL::SetLastError]
140001leaa XOR EAX, EAX

140001leac ADD RSP, 0x28

140001ebO POP R15

140001leb2 POP R14

140001eb4 RET

Based on this review, FuN_14eee1e80 probably resolves the mapped DLLs exports in preparation for execution.

Let's explore a few more instructions within Fun_14eee1e8e . We will focus on the instructions between 140001f73 and 14000184

140001£73 MOV EDX, dword ptr [RBX + O0Oxlc]
140001£f76 LEA ECX, [RAX*0x4]

140001£7d LEA RA¥X, [R14 + RDX*0x1l]

140001£f81 MOV EA¥X, dword ptr [RCX + RAX*0x1]
140001£84 ADD RAX, R14

v/ The instruction at 14000173 is MOV EDX, dword ptr [RBX + @xic] . RBX contains the address of an export-related structure. What
structure resides at the address, and what specific field within the structure does rBx + oxic point to?

Answer: RBX contains the virtual address of the DLLs Export Directory Table. RBX + exic is the location of the AddressOfFunctions field, which
specifies the RVA of the Export Address Table.

Explanation: The instruction at 140001f73 is Mov EDX, dword ptr [RBX + @xlc] . We can identify the contents of RBX via static code analysis.
Earlier in the function, rBX is populated:

60 © 2022 Anuj Soni

Technet24

140001leba MOV EBX, dword ptr [RAX + 0x88]
140001ecO ADD RBX, R14

Inthe mov instruction at 1400071eba RAX contains the virtual address of the mapped DLLs PE header (this is evident in the Decompile window if
you retyped the argument, as discussed in the previous question). The 0x88 offset from the PE header is the Export Directory RVA:

il - Member Offset Size Value Section
= [File: dumped_dil bin -
_ - 7 -
3 Dos Header sl || Export Directory RVA 000001A8 |Dword [0DDAGSTD .rdata
[Z) Nt Headers Export Directory Size 000001AC | Dword 00000044
=) File Header i
I rt Directory RVA 000001BO | Dword [DDDAGSB4 | .rdat
=] Optional Header mport Prectory or reata

R14 contains the image base of the mapped DLL, so the Abbp instruction at 1740001ec0 populates rBx with the virtual address of the Export
Directory Table. The structure for this table is referred to as IMAGE_EXPORT_DIRECTORY (Ghidra refers to it as
IMAGE_DIRECTORY_ENTRY_EXPORT).

The mov instruction at 14000173, which this question refers to, dereferences the 0x1c offset from the address in rBX . The 0x1c offset within the
Export Directory Table is the location of the AddressOfFunctions field. This field contains the RVA of the array of addresses for exported

functions, and this value is placed into Epbx . Epx will therefore contain the RVA of the Export Address Table. Ghidra refers to this area as Export
Function Pointers.

291 What do the remaining instructions (140001f73-140001f84) within player.exe accomplish, and how does this confirm our suspicions
about this function's purpose? Rename the function.

/" Note

Use a combination of both static and dynamic code analysis to answer this question.

Answer: The remaining instructions set up the return value for this function. Specifically, they identify the virtual address of the decoded DLLs
single export named start, and place this address into RAX . We can rename FUN_140001e80 t0 get_export_address .

Explanation: Based on the analysis we performed in the previous question, we know Rbx contains the RVA of the Export Address Table. At
140001f7d, the image base value stored in R14 is added to Rpx, and the result is placed into RAx . Therefore, RAX contains the VA of the Export
Address Table.

At 14000181, the mov instruction places the only RVA in the Export Address Table into EAX (Rcx is zero in this instruction, and you can confirm
this via debugging). As a result, EAx will store the RVA of the exported function named start .

Finally, at 140001184 the Abbp instruction adds the mapped DLL's image base to the RVA of the start function. This means, the return value of
FUN_140001e80 is the VA of the start function.

We can rename FUN_140001e80 t0 get_export_address.

30-| ' Return to the calling function desteg and view the next instruction at 140001493. What does this instruction accomplish?

Answer: It executes the DLLs exported function start . The address of start is retrieved from the Export Address Table, as discussed in the
previous question.

We'll stop our analysis of this sample here. With additional time and effort, you would identify that the remaining functions in desteg free loaded
libraries and perform routine security checks.

© 2022 Anuj Soni 61

Lab Objectives, Revisited

After completing this lab, you now have experience performing the following:

« Identifying code that checks for a valid Windows Executable.

« Identifying code that maps an executable into memory in preparation for execution.

« Identifying code that applies relocations, if needed.
« Identifying code that loads dependent DLLs and resolves APIs.
« Identifying code that updates section permissions in memory.

+ Identifying code that locates the entry point for execution.

62 © 2022 Anuj Soni

Technet24

Lab 1.3: Analyzing Shellcode Execution

Background

In this lab, we will extend our knowledge of program execution to malicious shellcode execution. We will extract shellcode from memory and
perform a combination of static and dynamic code analysis to understand the executable content. We will make use of x32dbg, WinDbg, and
Ghidra to support our analysis.

Lab Objectives

« Extract shellcode from a running process.

« Perform static code analysis of shellcode.

+ Analyze code that accesses the Process Environment Block (PEB).

« Identify code that resolves Windows APlIs.

« Identify the hashing algorithm used to obfuscated imported DLLs and APl names.
+ Use WinDBG to interrogate various data structures and members.

« Experience an analysis workflow that involves Ghidra, x32dbg, and WinDbg.

Lab Preparation

First, extract host32.exe from Malware/Sectionl/host32.zip within both the Static and Dynamic VMs (password: malware).
Within the Dynamic VM, load host32.exe into x32dbg.

In addition, load host32.exe into WinDbg Preview. To accomplish this task, first double-click the WinDbgX shortcut on the desktop. Then,
browse to File > Start debugging > Launch executable and navigate to host32.exe . If you do not see any code, it means you need to change the
window layout within WinDbg. Click on the View tab and choose Layouts > Disassembly. Then, return to the Home tab and choose Restart. You
should now see some content, including disassembly. To rearrange windows within the interface, drag and drop each title bar as desired. To
access the Breakpoints window, browse to the View tab and choose Breakpoints.

/7" Note

We disabled ALSR for host32.exe so the virtual addresses in the solutions will match those in your environment.

Lab Questions

In the first part of this lab, we will use x32dbg to extract shellcode from memory when host32.exe is executed.

During execution, host32.exe allocates space for shellcode using the VirtualAlloc API. At what address within host32.exe is
VirtualAlloc called?

© 2022 Anuj Soni 63

/" Note

Answer this question using x32dbg within the Dynamic VM.

Identify the starting address for the newly allocated region, and dump the address into a Dump window. Continue stepping over the
code (i.e, use the keyboard shortcut Fs). At what address within host32.exe does a CALL instruction produce content in the Dump
window that is likely shellcode?

Dump the shellcode to disk within the Dynamic VM. Then, copy and paste the dumped shellcode file to the Static VM and load it into
Ghidra. Specifically, add the file to the section1 project, disassemble all bytes, and perform the auto-analysis.

/" Notes

+ Do not exit the debugger in the Dynamic VM.
« Give the dumped file a descriptive name such as host32_sc.bin .

» When loading the dumped shellcode into Ghidra within the Static VM, choose the Language listed as x86-default-32-little-Visual Studio
(see Explanation for a screenshot).

At offset 00000001 within Ghidra, we see the instruction cALL FUN_eeeeeesf . Jump to 0000008f and observe four PUSH instructions
leadingup toa cALL EBP at offset 000000a0. Highlight the EBP operand with a single-click, and scroll down to observe other

CALL EBP instructions throughout the shellcode. Based on a brief review of the argument pushed onto the stack before each CALL,
what can you say about the likely purpose of these function calls?

Return to the instruction caLL EBP at offset 000000a0 within Ghidra. Relying on static code analysis only, at what address is the
function that will be called?

/" Note

This question asks for the offset of the function within Ghidra, not the address of the function if you debugged the shellcode.

64 © 2022 Anuj Soni

Technet24

Let's review the function beginning at offset 00000006. First, observe the instruction at 0000000b. What data structure is likely
referenced by the source operand?

We just discussed the structure referenced by the source operand in the MOV instruction at 0000000b. In the subsequent instructions, we
see other offsets that are likely related to this structure and its members. To accurately identify what structures and members the upcoming
operands point to, we will use WinDbg within the Dynamic VM. However, keep Ghidra open within the Static VM as it continues to be our
primary tool for static code analysis, and we will use its interface to add comments and document our work.

You should already have host32.exe loaded into WinDbg within the Dynamic VM. Set a breakpoint and run the program so that it
arrives at the entry point.

(o) Important

You've reached Checkpoint #1 in this exercise.

Identify the starting address of the memory region allocated via VirtualAlloc.

/" Note

This question asks you to accomplish the same task we performed in x32dbg, but this time using WinDbg Preview.

Within WinDbg, set an access breakpoint on the starting address of the allocated memory region. Then, run the program so we arrive at
the first instruction of the shellcode.

You should now be looking at the shellcode within WinDbg.

Warning

When referring to an instruction address in WinDbg, this exercise will use offsets instead of addresses. This is because the starting address of
the region allocated will vary.

As we discussed earlier, the MOV instruction at offset 0000000b (from the beginning of the allocated memory region) includes fs:
[edx+36h] in the source operand. We believe this source operand references the address of the PEB-let's confirm this.

© 2022 Anuj Soni 65

(o) Important

You've reached Checkpoint #2 in this exercise.

15. The InMemoryorderModuleList member is comprised of two pointers, and the first points to the head of a double-linked list of other
LIST_ENTRY structures. These LIST_ENTRY structures reside in yet another larger data structure. What type of data structure is the
larger structure?

7" Note
To answer this question, it may be helpful to review the slides for this module. Specifically, see the slide with a title that begins with "Each
Module List Contains Two Pointers"

16. The pointers that comprise the InMemoryorderModuleList LIST_ENTRY structure point to a member within LDR_DATA_TABLE_ENTRY.
What is the name of the member within LDR_DATA_TABLE_ENTRY?

17.

When execution arrives at offset 00000015, EDX will contain the address of the InMemoryorderLinks member within the first
LDR_DATA_TABLE_ENTRY structure. With this in mind, how would you describe the value placed into ESI in the instruction at offset
00000015?

© 2022 Anuj Soni 67

Technet24

/" Note

This question is asking for a description of the value placed into ESI, not the exact value. As a reminder, this is the LDR_DATA_TABLE_ENTRY

0:000> dt -r1 LDR _DATA_TABLE_ENTRY
ntdll! LDR_DATA TABLE_ENTRY

+0x000 InlLoadOrderlLinks : _LIST_ENTRY
+0x000 Flink : Ptr32 _LIST_ENTRY
+0x004 Blink : Ptr32 _LIST_ENTRY

+0x008 InMemoryOrderLinks : _LIST_ENTRY
+0x000 Flink : Ptr32 _LIST_ENTRY
+0x004 Blink : Ptr32 _LIST_ENTRY

+0x010 InInitializationOrderLinks : _LIST_ENTRY
+0x000 Flink : Ptr32 _LIST_ENTRY
+0x004 Blink : Ptr32 _LIST_ENTRY

+0x018 D11Base : Ptr32 Void

+0x01c EntryPoint : Ptr32 Void

+0x020 SizeOfImage : Uint4B

+0x024 FullDl1lName : _UNICODE_STRING
+0x000 Length : Uint2B
+0x002 MaximumLength : Uint2B
+0x004 Buffer : Ptr32 Wchar

+0x02c BaseDl11Name : _UNICODE_STRING
+0x000 Length : Uint2B
+0x002 MaximumLength : Uint2B
+0x004 Buffer : Ptr32 Wchar

tructure. +0x034 FlagGroup : [4] UChar

Within WinDbg, allow the MOV instruction at offset 00000015 to execute. Confirm that the first module name resides at the instruction
in ESI.

Within Ghidra in the Static VM, review the loop beginning at 0000001e. What is the likely purpose of this loop? After your analysis is
complete, use Ghidra to rename the label associated with this loop.

68 © 2022 Anuj Soni

/" Notes

instructions simply convert each character placed into AL to uppercase.

- Static code analysis should be sufficient, but you can debug the code with x32dbg or WinDbg if you prefer.

Before moving forward, observe the instruction push EpI at offset 0000002f. This pushes the output from the loop just discussed onto the

stack. Make a comment in Ghidra, and we will return to this observation later.

20.

Let us continue reviewing key components of the shellcode. At offset 00000030 within Ghidra, we have the instruction mMov EDX,

+ The LODSB (load single byte) operation at offset 00000020 places one byte (in this case, a character) from the buffer in ESI into AL.

+ You can ignore the CMP, JL, and SUB instructions between offsets 00000021 and 00000025 when answering this question. These

dword ptr [EDX + 0x10] . Before this instruction is executed, EDX still contains the address of the InMemoryorderLinks member

within an LDR_DATA_TABLE_ENTRY structure. With this in mind, describe the value placed into EDX in this instruction.

/7" Note

structure:

+0x000 InlLoadOrderlLinks : _LIST_ENTRY

+0x000 Flink
+0x004 Blink

Ptr32 _LIST_ENTRY
Ptr32 _LIST_ENTRY

+0x008 InMemoryOrderLinks : _LIST_ENTRY

+0x000 Flink
+0x004 Blink

Ptr32 _LIST_ENTRY
Ptr32 _LIST_ENTRY

+0x010 InInitializationOrderLinks : _LIST_ENTRY

+0x000 Flink
+0x004 Blink
+0x018 D11Base

+0x01c EntryPoint

+0x020 SizeOfImage

+0x024 FullDl1Name
+0x000 Length

Ptr32 _LIST_ENTRY
Ptr32 _LIST_ENTRY
Ptr32 Void
: Ptr32 Void
: Uint4B
_UNICODE_STRING
: Uint2B

+0x002 MaximumLength : Uint2B

+0x004 Buffer
+0x02c BaseDl1lName
+0x000 Length

Ptr32 Wchar
_UNICODE_STRING
: Uint2B

+0x002 MaximumLength : Uint2B

+0x004 Buffer
+0x034 FlagGroup

: Ptr32 Wchar
[4] UChar

© 2022 Anuj Soni

This question is asking for a description of the value placed into ESI, not the exact value. As a reminder, this is the LDR_LDATA_TABLE_ENTRY
0:000> dt -r1 LDR _DATA_TABLE_ENTRY
ntdll! LDR_DATA_TABLE_ENTRY

69

Technet24

28. Review all remaining calls to resolved functions. How would you summarize the purpose of this shellcode? Again, use a debugger to

answer this question.

Lab Solutions

In the first part of this lab, we will use x32dbg to extract shellcode from memory when host32.exe is executed.

+/ During execution, host32.exe allocates space for shellcode using the VirtualAlloc API. At what address within host32.exe is
VirtualAlloc called?

/7" Note

Answer this question using x32dbg within the Dynamic VM.

Answer: VirtuallAlloc is called at 00408453.

Explanation: Within x32dbg, set a breakpoint on VirtualAlloc by typing bp VirtualAlloc in the command window. Then, run the program. When
the breakpoint is hit, allow the function to Debug > Execute till return and step into the calling function. Scroll up and you will observe a cALL Ecx
at 00408453. This instruction calls VirtualAlloc.

v/ Identify the starting address for the newly allocated region, and dump the address into a Dump window. Continue stepping over the
code (i.e, use the keyboard shortcut Fs). At what address within host32.exe does a CALL instruction produce content in the Dump
window that is likely shellcode?

Answer: At 00408460, the CALL instruction places shellcode in the allocated memory region.

Explanation: After VirtualAlloc is called at 00408453, the starting address for the newly allocated memory region is stored in EAX. Right-click >
Follow in Dump on the register value to observe the memory region and continue stepping over the code. At 00408460, a function is called that
produces shellcode in the dump window:

gy Dump 1 #le Dump 2 @2y Dump 3 g2y Dump 4 &4 Dump 5 {'E,":* Watch 1 [x=] Locals ;—“ Struct

Address |Hex ASCII

001E0000|FC E8 89 00[00 00 60 89 |E5 31 D2 64|88 52 30 8B|Ue.... .alod.RO.
001E0010/52 OC 8B 52|14 8B 72 28 |0OF B7 4A 26|31 FF 31 CO|R..R..r(.-J&1y1A
001E0020|/AC 3C 61 7C|02 2C 20 C1l|CF OD 01 C7|E2 FO 52 57|-<al|., AI..CA0RW
001E0030(88 52 10 8B |42 3C 01 DO|8B 40 78 85|CO 74 4A 01|.R..B<.D.@x.AtJ.
001E0040/DO 50 8B 48|18 8B 58 20|01 D3 E3 3C|49 8B 34 8B|PP.H..X .0a<I.4.
001E0050/01 D6 31 FF|31 €O AC C1l|CF OD 01 Cc7|38 EO 75 F4|.01lylA-AI..Cc8aud
001E0060(03 7D F8 3B|7D 24 75 E2|58 8B 58 24|01 D3 66 8B|.}w;}$uax.x$.0f.
001E0070|0C 4B 8B 58|1C 01 D3 8B|04 8B 01 DO|89 44 24 24| .K.X..0....b.D$$

Notice the opcodes Fc E8, which represent the instructions CLD and CALL. This instruction is commonly seen at the beginning of shellcode.

+/ Dump the shellcode to disk within the Dynamic VM. Then, copy and paste the dumped shellcode file to the Static VM and load it into
Ghidra. Specifically, add the file to the section1 project, disassemble all bytes, and perform the auto-analysis.

72 © 2022 Anuj Soni

/" Notes

+ Do not exit the debugger in the Dynamic VM.

» Give the dumped file a descriptive name such as host32_sc.bin .

(see Explanation for a screenshot).

» When loading the dumped shellcode into Ghidra within the Static VM, choose the Language listed as x86-default-32-little-Visual Studio

Explanation: To dump the shellcode, right-click on the first byte in the dump window and choose Follow in Memory Map. Then, right-click on the

memory region highlighted in gray and choose Dump Memory To File. Give the dumped file a descriptive name such as host32_sc.bin.

Copy and paste host32_sc.bin from the Dynamic VM to the Static VM. Load the file into the section1 project within Ghidra. When prompted to

start the import, choose the following language:

Intel/AMD 32-bit x86

@ Language X
 Select Language and Compiler Specification

= | Variant | Size | Endian l Compiler

x86 Protected Mode 16 little default

x86 Real Mode 16 little default

x86 System Management Mode 32 little default

x86 default 32 little Borland C++

x86 default 32 little Delphi

x86 default 32 little clang

x86 default 32 little gcc

x86 default 32 little Visual Studio

x86 default 64 little clang

x86 default 64 little gcc

x86 default 64 little Visual Studio

Filter: |x86 ® lé]

~ Description

Show Only Recommended Language/Compiler Specs

Cancel

Then, double-click file in the project window and choose not to analyze the file. Next, click on the first byte of shellcode and type p on the

keyboard to disassembly the bytes. Finally, browse to Analysis > Auto Analyze and click Analyze to begin processing.

v/ At offset 00000001 within Ghidra, we see the instruction cALL FUN_oeeeeesf . Jump to 0000008f and observe four PUSH instructions

leadingup to a caLL EBP at offset 000000a0. Highlight the EBP operand with a single-click, and scroll down to observe other

cALL EBP instructions throughout the shellcode. Based on a brief review of the argument pushed onto the stack before each CALL,

what can you say about the likely purpose of these function calls?

Answer: In all cases, a cALL EBP instruction is preceded by a PUSH instruction that places a hexadecimal value onto the stack. When analyzing

shellcode, this is a good indication that the function called is responsible for resolving APIs based on a provided hash.

+/ Return to the instruction cALL EBP at offset 000000a0 within Ghidra. Relying on static code analysis only, at what address is the

function that will be called?

© 2022 Anuj Soni

73

Technet24

/" Note

This question asks for the offset of the function within Ghidra, not the address of the function if you debugged the shellcode.

Answer: The CALL instruction at offset 000000a0 will execute the function beginning at offset 00000006.

Explanation: To investigate what value EBP will contain when the instruction cALL EBP is executed, we look for other references to EBP. Several
instructions earlier, observe the pop EBP at 0000008f. Since this is the first instruction in function Fun_eeeeeesf, the value popped into EBP will
be the return value pushed onto the stack when the function is called. If we return to the beginning of the shellcode, we can see that the offset of
the instruction after the CALL to Fun_eeeeeesf is 00000006.

v/ Let's review the function beginning at offset 00000006. First, observe the instruction at 0000000b. What data structure is likely
referenced by the source operand?

Answer: The Process Environment Block (PEB).

Explanation: At address 00000009, EDX is zeroed out. At 0000000b, Fs:[EDX + ex3e] refers to FS:[30]. This is the location of the pointer to the
PEB in 32-bit code.

We just discussed the structure referenced by the source operand in the MOV instruction at 0000000b. In the subsequent instructions, we
see other offsets that are likely related to this structure and its members. To accurately identify what structures and members the upcoming
operands point to, we will use WinDbg within the Dynamic VM. However, keep Ghidra open within the Static VM as it continues to be our
primary tool for static code analysis, and we will use its interface to add comments and document our work.

v/ You should already have host32.exe loaded into WinDbg within the Dynamic VM. Set a breakpoint and run the program so that it
arrives at the entry point.

Explanation: In the command window, type bp $exentry . As areminder, $exentry is a pseudo-register (https:/for710.com/pseudo-register).
Then, run the program by clicking Go on the top left of the WinDBG GUI, or type the F5 key. Alternatively, type g in the command window and
press Enter . You should arrive at address 004094EO.

0 Important

You've reached Checkpoint #1 in this exercise.

~/ Within WinDbg, identify the starting address of the memory region allocated via VirtualAlloc.

/" Note

This question asks you to accomplish the same task we performed in x32dbg, but this time using WinDbg Preview.

Explanation: There are multiple approaches to accomplishing this task.

One option is to use the command bp 00408453 to set a breakpoint where VirtualAlloc is called (we identified this address in the first question of
this lab). Stepping over this instruction reveals the appropriate return value in EAX.

Alternatively, you could set a breakpoint on VirtualAlloc using the command bp KERNEL32!VirtualAllocStub and then run the program. When
the breakpoint is hit, click the Step Out button located on the top-left of the WinDbg Preview GUI or type gu to return to the calling function.

74 © 2022 Anuj Soni

12.

13.

/" Note

+ As mentioned in the Warning above "0000000b" refers to the offset from the beginning of the allocated region.

+ Once you confirm the addresses match, write a comment next to the instruction in Ghidra. Remember, we are using WinDBG to
investigate structures in memory, but Ghidra is still our main interface for static code analysis.

Explanation: Within the WinDbg GUI, click Step Over six times until the MOV instruction at offset eb is executed. Then, print the value stored
within EDX with the command r edx . This should match your output from the previous question.

~/ Within WinDBG, you should now be at offset 0000000f. Type a command to print out the contents of the PEB, including its members
and values.

/" Note

Your command should include the automatic pseudo register that corresponds to the PEB or the PEB's address.

Explanation: Type the command dt ntdll!_PEB @$peb . You can also simply type dt _PEB @$peb, though the former command is more precise.
In addition, you could use the PEB address output from the previous question in the following format: dt _PEB <PEB address>, where <PEB
address> is the hexadecimal address of the PEB. This outputs the PEB structure and values without using an automatic pseudo register.

Your output should resemble the following:

0:000> dt ntdll! PEB @$peb
+0x000 InheritedAddressSpace : @ "'
+0x001 ReadImageFileExecOptions : © "'
+0x002 BeingDebugged :ex1
+0x003 BitField 0 "
+0x003 ImageUseslLargePages : 0yo@
+0x003 IsProtectedProcess : 0Oyo
+0x003 IsImageDynamicallyRelocated : 0y®@
+0x003 SkipPatchingUser32Forwarders : 0y0
+0x003 IsPackagedProcess : 0Qyo
+0x003 IsAppContainer 1 oyo
+0x003 IsProtectedProcessLight : 0yo
+0x003 IslLongPathAwareProcess : Qy0

+0x004 Mutant . Oxffffffff Void
+0x008 ImageBaseAddress : 0©x00400000 Void
+0x00c Ldr : 9x77007be@ _PEB_LDR_DATA

+0x010 ProcessParameters : ©0x02651bf8 _RTL_USER_PROCESS_PARAMETERS

v/ Review the MOV instruction at offset 0000000f in the shellcode (you can use Ghidra or WinDbg to view this code). What member within
the PEB is referenced in the source operand (i.e., EDX + exc), and what type of data structure does the value of that member point to?
Review the output from the previous question to answer this question, and write an appropriate comment next to the instruction in
Ghidra.

Answer: The source operand references the Ldr member, and this member's value is a pointer to a data structure of type PEB_LDR_DATA. The
MOV instruction places the address of the PEB_LDR_DATA data structure into EDX.

Explanation: The source operand in the instruction at 0000000f is dword ptr [EDX + 6xc] . EDX contains the address of the PEB. View the PEB
structure output from the previous question and find the member located at Offset exc -itis Ldr.The Ldr member's value is a pointer to a
structure of type PEB_LDR_DATA (see https://for710.com/peb). This structure has information about a process's loaded modules.

76 © 2022 Anuj Soni

Technet24

14.

15.

16.

Using WinDbg, review the MOV instruction at offset 00000012 and answer the following three questions.

~/ What member within the PEB_LDR_DATA structure does the source operand reference (i.e., edx+14h), and what type of structure is this
member? Make an appropriate comment for this instruction in Ghidra.

Answer: InMemoryOrderModuleList is a structure of type LIST_ENTRY.

Explanation: EDX contains the address of the PEB_LDR_DATA structure, so we need to understand what member is located at its ex14 offset. To
view the appropriate PEB_LDR_DATA structure, you can click on the Ldr link in the previously generated PEB output. Alternatively, you can
observe the Ldr value in the previously generated PEB output (i.e., the address of the PEB_LDR_DATA structure) and type a command using the
format dt ntdll!_PEB_LDR_DATA <address> . For example, using the values in the PEB output shown earlier, the command is dt ntdit!
_PEB_LDR_DATA 0x77007be0 . Whichever approach you take, printing the PEB_LDR_DATA structure should display similar output:

0:000> dt ntdll!_PEB_LDR_DATA ©x77007be0

+0x000 Length . Ox30
+0x004 Initialized :ex1 '’
+0x008 SsHandle : (null)

+0x00c InlLoadOrderModulelist : _LIST_ENTRY [©x26534a0 - 0x265d8f0]

+0x014 InMemoryOrderModulelist : _LIST_ENTRY [©x26534a8 - 0x265d8f8]

+0x01c InInitializationOrderModulelist : _LIST_ENTRY [©x26533a8 - 0x265a268]
+0x024 EntryInProgress : (null)

+0x028 ShutdownInProgress : 0 "'

+0x02c ShutdownThreadId : (null)

At the ex14 output we find the InMemoryOrderModuleList member (i.e., PEB->Ldr->InMemoryOrderModuleList). As shown in the WinDbg
output, this member is of type LIST_ENTRY.

(o) Important

You've reached Checkpoint #2 in this exercise.

v/ The InMemoryoOrderModuleList member is comprised of two pointers, and the first points to the head of a double-linked list of other
LIST_ENTRY structures. These LIST_ENTRY structures reside in yet another larger data structure. What type of data structure is the
larger structure?

/" Note

To answer this question, it may be helpful to review the slides for this module. Specifically, see the slide with a title that begins with "Each
Module List Contains Two Pointers".

Answer: The pointers that comprise the InMemoryorderModuleList member point to other LIST_ENTRY structures within a data structure of type
LDR_DATA_TABLE_ENTRY.

v/ The pointers that comprise the InMemoryorderModuleList LIST_ENTRY structure point to a member within LDR_DATA_TABLE_ENTRY.
What is the name of the member within LDR_DATA_TABLE_ENTRY?

Answer: Each pointer in the InMemoryorderModuleList LIST_ENTRY structure points to an InMemoryorderLinks member within a
LDR_DATA_TABLE_ENTRY structure. As a reminder, this member is a structure of type LIST_ENTRY.

© 2022 Anuj Soni 77

19.

20.

+/ Within Ghidra in the Static VM, review the loop beginning at 0000001e. What is the likely purpose of this loop? After your analysis is
complete, use Ghidra to rename the label associated with this loop.

/" Notes

+ The LODSB (load single byte) operation at offset 00000020 places one byte (in this case, a character) from the buffer in ESI into AL.

+ You can ignore the CMP, JL, and SUB instructions between offsets 00000021 and 00000025 when answering this question. These
instructions simply convert each character placed into AL to uppercase.

« Static code analysis should be sufficient, but you can debug the code with x32dbg or WinDbg if you prefer.

Answer: This loop calculates the ROR 13 hash of a module name. Within Ghidra, we could rename the label at offset 0000007e to

hash_filename .

Explanation: At offset 00000020, each byte of a module name is placed into AL (i.e., EAX). The ROR instruction at offset 00000027 rotates the
existing value of EDI by 13 bits (EDI is initialized to zero at offset 0000001c). At 0000002a a single character from the module name (previously
placed into EAX at offset 00000020) is added to EDI. This process continues for each character in the module file name.

Before moving forward, observe the instruction pusH EpI at offset 0000002f. This pushes the output from the loop just discussed onto the
stack. Make a comment in Ghidra, and we will return to this observation later.

v/ Let us continue reviewing key components of the shellcode. At offset 00000030 within Ghidra, we have the instruction mMov EDX,
dword ptr [EDX + ex10] . Before this instruction is executed, EDX still contains the address of the InMemoryoOrderLinks member
within an LDR_DATA_TABLE_ENTRY structure. With this in mind, describe the value placed into EDX in this instruction.

© 2022 Anuj Soni 79

Technet24

/" Note
This question is asking for a description of the value placed into ESI, not the exact value. As a reminder, this is the LDR_DATA_TABLE_ENTRY
0:000> dt -rl _LDR_DATA_TABLE_ENTRY
ntdll! LDR_DATA_TABLE_ENTRY
+0x000 InlLoadOrderlLinks : _LIST_ENTRY
+0x000 Flink : Ptr32 _LIST_ENTRY
+0x004 Blink : Ptr32 _LIST_ENTRY
+0x008 InMemoryOrderLinks : _LIST_ENTRY
+0x000 Flink : Ptr32 _LIST_ENTRY
+0x004 Blink : Ptr32 _LIST_ENTRY
+0x010 InInitializationOrderLinks : _LIST_ENTRY
+0x000 Flink : Ptr32 _LIST_ENTRY
+0x004 Blink : Ptr32 _LIST_ENTRY
+0x018 D11Base : Ptr32 Void
+0x01c EntryPoint : Ptr32 Void
+0x020 SizeOfImage : Uint4B
+0x024 FullDl1Name : _UNICODE_STRING
+0x000 Length : Uint2B
+0x002 MaximumLength : Uint2B
+0x004 Buffer : Ptr32 Wchar
+0x02c BaseDl11Name : _UNICODE_STRING
+0x000 Length : Uint2B
+0x002 MaximumLength : Uint2B
+0x004 Buffer : Ptr32 Wchar
tructure. +0x034 FlagGroup : [4] UChar

Answer: The MOV instruction at offset 00000030 places the base address of a loaded module into EDX.

Explanation: EDX contains the address of the InMemoryorderLinks member, which is at offset 0x8 within an LDR_DATA_TABLE_ENTRY data
structure. Adding 0x10 to this offset equals 0x18, which brings us to the pl11Base member. This member's value specifies the base address of the
module (i.e., the starting address of the executable in memory).

(o) Important

You've reached Checkpoint #3 in this exercise.

Within Ghidra, view the instructions at offsets 00000033 through 00000038:

00000030 MOV EDX, dword ptr [EDX + 0x10]
00000033 MOV EA¥, dword ptr [EDX + 0x3c]
00000036 ADD EAX, EDX

00000038 MOV EA¥X, dword ptr [EAX + 0x78]

80 © 2022 Anuj Soni

v/ At offset 00000033, consider the contents of EDX discussed in the previous question. With this in mind, what field within a 32-bit
Windows executable header is dereferenced in the source operand of the MOV instruction at offset 00000038? Why would shellcode
need to access this field? After performing your analysis, insert appropriate comments within Ghidra for each instruction.

/" Notes

- Static analysis should be sufficient to answer this question.

- For a reminder of what fields appear at various offsets within a 32-bit executable, open any 32-bit program in CFF explorer (e.g.,

host32.exe)

Answer: The MOV instruction at offset 00000038 places the Export Directory RVA of a loaded module into EAX. Shellcode commonly accesses
the export directory of loaded modules to iterate over the module's exported functions and resolve APIs required by the shellcode.

Explanation: The MOV instruction at offset 00000033 dereferences Ebx + ex3c and places the value into EAX. Based on our analysis in the
previous question, we know EDX contains the base address of a loaded module. Within a 32-bit Windows executable, the e_1fanew field is
located at offset 0x3c. Dereferencing this value places the RVA of the PE header into EAX.

The ADD instruction at offset 00000036 adds the base address of a module to the PE header RVA to place the VA of the PE header into EAX.

The MOV instruction at offset 00000038 adds 0x78 to the starting address of the PE header. To identify what field this refers to, we can open
host32.exe (or any 32-bit executable) within CFF Explorer. Within host32.exe, the PE header begins at offset 0x78. Adding 0x78 to this value
equals 0xF0, and browsing to this offset within CFF Explorer leads us to the Export Directory RVA.

Observe that the ADD instruction at offset 0000003f adds the Export Directory RVA (first operand) to the base address of the module
(second operand) to calculate the Export Directory VA. At 00000041 this VA is pushed onto the stack. Make a comment in Ghidra with this
information. We will revisit this observation later.

+ Review the loop beginning at offset 00000054 in the shellcode. What is its likely purpose? After your analysis is complete, use Ghidra
to rename the label associated with this loop.

/" Notes

+ Consider using x32dbg to set a breakpoint on the LODSB instruction at offset 00000056. When the breakpoint is hit, view the address
contained in ESI in the dump window (as a reminder, ESI specifies the address of the byte to load). For additional context, right-click on a
byte in the dump window and Follow in Memory Map.

« To arrive at the shellcode within x32dbg, allow the VirtualAlloc API to execute and set a hardware execution breakpoint on the first byte of
the newly allocated memory.

+ You do not need to evaluate each instruction in the loop to determine the purpose of this code with high confidence.

Answer: This loop calculates the ROR 13 hash of an exported function name from a loaded module and places the resulting value in EDI. Within
Ghidra, we could rename the label at offset 00000054 to hash_exportname .

Explanation: This loop includes ROR and ADD operations that are identical to instructions within the loop at offset 00000071e. We concluded that
earlier loop hashes the file name of a loaded module. This suggests a similar hash algorithm is being used in the current loop under analysis, but
what content is this loop hashing? Our analysis from the previous question suggests it is probably hashing a module's exported function names.
Let's confirm this.

To investigate, we will debug the shellcode in x32dbg. First, restart the host32.exe process. Then, allow the memory region to be allocated via
VirtualAlloc. When VirtualAlloc returns, dump the address in EAX to the dump window to view the allocated memory region. Next, set a hardware
execution breakpoint on the first byte of the allocated region (i.e., right-click > Breakpoint > Hardware, Execute). Finally, run the program and you
should arrive at the beginning of the shellcode.

© 2022 Anuj Soni 81

Technet24

23.

24.

Next, set a breakpoint on the LODSB instruction at offset 00000056. As a reminder, the LODSB instruction loads one byte from ESI into EAX. Since
EAX is manipulated by the ADD instruction with each iteration of the loop, ESI likely contains the content that is hashed.

Within x32dbg, continue running the shellcode. Each time execution hits the LODSB instruction at 00000056, ESI points to a function name. If we
dump the address in ESI to the dump window, you will observe multiple function names nearby. For additional context, we can pivot from the
dump window to the memory map, and it will be clear these function names are stored in a loaded DLL-specifically, the function names list each
module's exported functions.

v/ What does the ADD instruction at offset 00000060 accomplish?

/" Note

Recall the instruction pusH EpI at offset 0000002f, which pushed the output from the loop at offset 0000001e onto the stack.

Answer: It adds the hash of a module name (right operand) to the hash of an exported function name (left operand).

Explanation: We're focused on the instruction AbD EDI, dword ptr [EBP + -0x8] at offset 00000060. EDI contains a hashed exported function
name, as discussed in the previous question. The second operand references the hashed value of a module file name that was pushed onto the
stack at offset 0000002f. The ADD instruction calculates the sum of both hashes and places the result in EDI.

+/ Beginning at 00000063, we see CMP and JNZ instructions. What is evaluated, and under what conditions is the jump taken?

/" Notes

+ Recall that, in 32-bit code, EBP plus a value often refers to an argument.

« Consider using x32dbg to investigate the CMP and JNZ instructions.

Answer: The CMP instruction evaluates if the hash provided as an argument (the first argument) matches the calculated hash. The jump is taken
if there is not a match.

Explanation: First, let's review the instruction cMP EDI, dword ptr [EBP + 0x24] at 00000063. We know EDI contains the sum of a module and
export function hashes. The pointer references EBP plus a value, which often refers to an argument in 32-bit code. If we highlight EBP and observe
other references within the current function, we will find only one in the function prologue. This means EBP is being used as a base pointer,
supporting our theory that the second operand in the CMP instruction references an argument passed to the function beginning at offset
00000006.

To confirm our theory, first set a breakpoint on the CMP instruction at offset 00000063 within x32dbg. Then, run the program and view what the
second operand points to:

001E0060

add ed1,dword ptr ss:[[ebp-8]
cmp edi,dword ptr ss:[ebp+24]

BlF——

001E0066 | ~|jne 1EO004A

001E0068 pop eax

001E0069 mov ebx,dword ptr ds:[eax+24]
N00TENORC add ehx edx

<

ed1=A18D83A9
dword ptr [ebp+24]=[0019FEBC]=726774C

As we can see in the information window below the disassembly, the second operand points to 726774C. If we look at the first CALL to the
function beginning at offset 00000006, we can see this matches the first argument passed (i.e., the last value pushed before the CALL):

82 © 2022 Anuj Soni

* Analyze code that accesses the Process Environment Block (PEB).

« Identify code that resolves Windows APlIs.

« Identify the hashing algorithm used to obfuscated imported DLLs and APl names.

+ Use WinDBG to interrogate various data structures and members.

+ Use an analysis workflow that involves Ghidra, x32dbg, and WinDbg.

84 © 2022 Anuj Soni

Technet24

Lab 2.1: Encryption Essentials: Quiz

Background

In this brief lab, the goal is to reinforce and recall essential information necessary to understand encryption in malware.

Lab Objectives

« Confirm your understanding of basic cryptography terminology.
- Differentiate symmetric and asymmetric cryptography.

» Compare cryptography modes of operation.

- Differentiate similar ciphers.

« Identify Microsoft APIs commonly used for encryption and decryption.

Lab Preparation

None required.

Lab Questions

Describe the primary differences between asymmetric and symmetric-key algorithms.

How would you characterize the difference between a block cipher and stream cipher?

AES uses an S-box. What does the "S" in S-box refer to?

© 2022 Anuj Soni 85

10.

When considering block ciphers, there are three modes of operation we discussed. What is the most basic mode of operation?

How would you characterize the difference between the ECB and CBC modes of operation?

Salsa and ChaCha algorithms consist of ARX operations. What do the A, R, and X represent?

What constant is associated with Salsa and ChaCha when a 32-bit key is used?

What is the most obvious visual difference between the initial state of ChaCha vs. the initial state of Salsa?

Curve25519 is an Elliptic Curve Cryptography (ECC) curve that generates a shared key. With two users, User A and User B, and their
corresponding public and private keys, which of the below combination of keys will produce the same shared secret when provided to
the curve algorithm? (Choose 2.)

Curve(PrivateA, PublicB)

Curve(PrivateA, PrivateB)

Curve(PublicA, PublicB)

Curve(PrivateB, PublicA)

If a program uses the Microsoft Crypto API, which of the following APIs is typically called first?

CryptimportKey

86 © 2022 Anuj Soni

Technet24

CryptAcquireContext
CryptGenRandom
CryptGenKey
CryptEncrypt
CryptExportKey

1. Given a CALL to CryptimportKey during a debugging session, how could you determine the algorithm associated with the imported

key?

12. Why would a program that performs encryption call the CryptGenRandom API?

Lab Solutions

1 v/ Describe the primary differences between asymmetric and symmetric-key algorithms.
Answer: Symmetric key algorithms use the same key for encryption and decryption, while asymmetric key algorithms use different keys for
encryption and decryption. Symmetric encryption is generally faster from a performance perspective.

2.

+~~ How would you characterize the difference between a block cipher and stream cipher?

Answer: Block ciphers encrypt a block of plaintext data of a fixed length and output a encrypted block of data. Stream ciphers operate against
individual bytes of data, typically using the XOR operation.

3 v AES uses an S-box. What does the "S" in S-box refer to?
Answer: Substitution box. An S-box helps substitute bytes and contributes to the scrambling of data associated with an encryption or decryption

algorithm.

+/ When considering block ciphers, there are three modes of operation we discussed. What is the most basic mode of operation?

© 2022 Anuj Soni 87

10.

11.

12.

Answer: Electronic Code Book (ECB).

+/ How would you characterize the difference between the ECB and CBC modes of operation?

Answer: CBC (Cipher Block Chaining) interconnects each encrypted block with the next encrypted block. In contrast, there is no relationship
between one encrypted block and the next block when using ECB mode.

v/ Salsa and ChaCha algorithms consist of ARX operations. What do the A, R, and X represent?

Answer: Add, Rotate, and XOR.

~/ What constant is associated with Salsa and ChaCha when a 32-bit key is used?

Answer: expand 32-byte k

v/ What is the most obvious visual difference between the initial state of ChaCha vs. the initial state of Salsa?

Answer: In ChaCha, the "expand 32-byte k" constant characters appear consecutively. In Salsa, that same constant is split up into four four-byte
chunks and they are separated from one another (i.e., the constant is split along the top-left to bottom-right diagonal).

+/ Curve25519 is an Elliptic Curve Cryptography (ECC) curve that generates a shared key. With two users, User A and User B, and their
corresponding public and private keys, which combination of keys will produce the same shared secret when provided to the curve
algorithm?

Answer: Curve(PrivateA, PublicB) and Curve(PrivateB, PublicA). In other words, both combinations of one user's private key and the other user's
public key will produce the same shared key.

v/ If a program uses the Microsoft Crypto API, which of the following APIs is typically called first?

Answer: CryptAcquireContext

+/ Given a CALL to CryptimportKey during a debugging session, how could you determine the algorithm associated with the imported
key?

Answer: The second argument passed to CryptimportKey points to a BLOBHEADER structure. One member of this structure is ALG_ID, and it
specifies the algorithm associated with the key BLOB. For a comprehensive list of algorithm IDs, see https://for710.com/algid.

+ Why would a program that performs encryption call the CryptGenRandom API?

Answer: CryptGenRandom generates a specified number of random bytes. In programs that perform encryption or decryption, random bytes are
often required to generate a key, nonce, or initialization vector (IV).

88 © 2022 Anuj Soni

Technet24

Lab Objectives, Revisited

This lab reinforced the following knowledge:

« Confirm your understanding of basic cryptography terminology.
- Differentiate symmetric and asymmetric cryptography.

« Compare cryptography modes of operation.

- Differentiate similar ciphers.

« Identify Microsoft APIs commonly used for encryption and decryption.

© 2022 Anuj Soni

89

Lab 2.2: Identifying File Encryption and Key Protection in Ransomware

Background

In this lab, we will analyze ransomware and evaluate how it performs file encryption and key protection.

Lab Objectives

« Identify specific ciphers used in a ransomware sample.
« Determine the purpose of an identified cipher (e.g., file encryption or key protection).
* Recognize Windows APIs that facilitate encryption.

« Summarize key aspects of how ransomware performs file encryption.

Lab Preparation

First, extract boot.dll from Malware\Section2\boot.zip within both the Static and Dynamic 710 VMs (password: malware). Place the
extracted DLLs on each desktop.

Within the Static VM, load boot.dl1 into Ghidra. When prompted, create a new project named 71e_section2 . Process the file and initiate auto-
analysis, but there is no need to choose WindowsPE x86 Propagate External Parameters because the DLL is 64-bit. Ensure that the

FindCrypt analyzer is checked.

Within the Dynamic VM, load boot.d1ll into x64dbg in preparation for debugging. This 64-bit DLL exports a function named
DllRegisterServer, SO you will need to load c:\windows\system32\regsvr32.exe into x64dbg, and update the command line via File > Change
Command Line. The command line to use is "C:\Windows\System32\regsvr32.exe" C:\Users\REM\Desktop\boot.dll.

Within x64dbg in the Dynamic VM, browse to Options > Preferences from the menu bar. Then, go to the Events tab and check the DIl Entry
option. Also jump to the Exceptions tab, single-click on the only Exception Filter, and click the radio button Do not break. This will ensure
exceptions are processed as Windows would normally process them without halting the debugger. Next, click Save.

Then, restart the target program by browsing to Debug > Restart.

Finally, take a VMware snapshot of the Dynamic VM and name it Lab2.2, or something similar.

/" Note

We disabled ALSR for boot.dll so the virtual addresses in the solutions will match those in your environment.

90 © 2022 Anuj Soni

Technet24

Lab Questions

If you performed behavioral analysis with this sample, you could confirm it is ransomware and it encrypts files as expected. However, we will skip
this step to save time.

Within the Static VM, perform some brief static file analysis. Load boot.d11 into PeStudio and view the strings output. Based on a
review of the embedded strings, what potential crypto algorithm(s) might this program use?

Within PeStudio, briefly review the imports. Observe that there are no CryptoAPI functions in the IAT, but it is possible these APIs are resolved
dynamically. In fact, you might observe the APIs LoadLibraryExW and GetProcAddress which are commonly used to load libraries and
resolve APIs at runtime. Also observe file interaction APIs including CreateFileW, WriteFile and SetFilePointerEx.

2. Within the Static VM, switch to Ghidra. Since we ran the FindCrypt extension during the auto-analysis, review the Symbol Tree > Labels
for any crypT_ prefixes. What constants did FindCrypt identify?

3. A logical next step is to identify the function that references these constants in search of the primary encryption function.
Unfortunately, Ghidra does not identify any references to these constants. We need another approach. What is one approach we can
use within Ghidra to search for functions that perform Salsa or ChaCha encryption?

4.

Using the manual approach discussed in the previous question, at what address is the function that likely performs encryption? Also,
what algorithm do you suspect the function implements and why?

(o) Important

You've reached Checkpoint #1 in this lab.

At this point, it makes sense to debug the program to confirm our suspicions about the function we just discussed. Within the Dynamic VM,
switch to x64dbg where the debugger should be paused at the entrypoint for regsvr32.exe . Run the target program until boot.dll is
loaded (you should see the DLL mentioned in the title bar). Finally, enter the command bp 18e004e360 to set a breakpoint on the function we
suspect implements ChaCha.

© 2022 Anuj Soni 91

Continue executing the program. You should eventually arrive at 180004e30, where we set the breakpoint. Review the arguments
passed to this function. Which argument supports our theory that the function implements ChaCha and not Salsa? (e.qg., first argument,
second argument) What about this argument confirms the algorithm?

Since we are paused at a function that implements a cipher, some content is about to be encrypted or decrypted (remember, this is a
symmetric algorithm so the function could be used to both process plaintext or ciphertext). Within the debugger, review the remaining
arguments passed to 180004e30 and allow the function to return. Does this first execution of 180004e30 encrypt or decrypt data?
What can you conclude about the content encrypted or decrypted?

/" Note

Consider that an encryption/decryption function has to operate against some plaintext or encrypted data and the resulting content must be
placed somewhere in memory.

Since the function at 180004e30 appears to implement the ChaCha cipher, let's update its name within Ghidra. Switch briefly to your Static
VM and update the function name to chacha_cipher .

Return to the Dynamic VM. If you continue running the program, it will pause at 180004e30 repeatedly. In many cases, the function is used to
process the same content discussed in the previous question as the ransomware note is placed throughout the filesystem. We want to
explore other potential uses of this cipher. Is the function at 18000430 only used to decrypt the ransom note, or is it also used for common
ransomware tasks like encrypting files?

To investigate how file encryption is performed, let's identify any code that takes file content as input, since this would be necessary
step to encrypt a file. What Windows API is often responsible for placing file content into a buffer?

Remove the breakpoint on the 180004e30 for now (i.e. go to the Breakpoint tab, choose the breakpoint and hit the Delete key on your
keyboard). Set a breakpoint on the APl mentioned in the answer to the previous question and continue running the program. The debugger
should arrive at the breakpoint.

At what address within boot.d11 does this CALL to ReadFile occur?

92 © 2022 Anuj Soni

Technet24

14.

15.

16.

Does this program use one key for all files or a separate key per file? How can you confirm the correct answer using the debugger?

Shift briefly to your static VM and jump to the body of the chacha_cipher function. We confirmed this code is likely ChaCha, but we
have not determined the number of rounds implemented. Is this ChaCha20, ChaCha12, or something else?

/" Note

Review the slide titled In FUN_004034f0, each loop iteration has 8 quarter-rounds... .

(o) Important

You've reached Checkpoint #3 in this lab.

We identified the function and algorithm used to encrypt file data, and we also understand how the per-file key and nonce are generated. In
order for an attacker to successfully hold files for ransom, they must be able to decrypt the data upon payment. This means the per-file
encryption keys must be stored and protected such that the attacker can gain access but the target organization cannot independently
decrypt files. Let's explore how this ransomware protects the per-file encryption key.

Recall that ransomware often uses asymmetric algorithms (e.g., RSA, Elliptic-curve cryptography) to protect symmetric keys. When we
performed static file analysis of boot.d11, recall that we observed the embedded string RsA1 . As we discussed in the module, hardcoded
RSA keys are often imported during execution using CryptimportKey. Within x64dbg, configure a breakpoint for this APl and a few additional
CryptoAPI functions we discussed with the command: bp CryptAcquireContextA; bp CryptAcquireContextW; bp CryptImportKey; bp

CryptEncrypt.

We could set breakpoints on additional CryptoAPI functions, but we will begin with this smaller set of core APIs. If you already have any of
these APIs configured as breakpoints, running the command will not remove those breakpoints. Once the breakpoints are configured, restart
the program via Debug > Restart. and execute until you arrive at the entry point for boot.d11.

Run the program again and the debugger should pause at one of the configured breakpoints. Within what function is the debugger
paused, and why does it make sense that we arrived within this function first?

94 © 2022 Anuj Soni

Continue running the program and you will encounter another call to WriteFile. We do not have time to explore this reference in class, but
students are encouraged to explore this function call outside of class.

26. Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

27. Continue running the program and the debugger will pause at 18000E3E7, where ReadFile is called. We already analyzed this CALL.

Dump the address of the buffer (second argument) to a dump window and document two arguments:

Address of buffer where content will be stored (second argument):

Number of bytes read (third argument):

Continue running the program and the debugger will pause at 18000E405, where the ChaCha8 function is called. As previously discussed,
this will encrypt the file contents. Step over this function (i.e., Debug > Step over) and observe that the original file content in the dump
window is overwritten with the encrypted content.

28. Continue running the program. What API does the debugger arrive at next, and what does it accomplish?
7" Note
For a calculator to convert signed hex values to negative decimal values, see this site.
29. Continue running the program. What API does the debugger arrive at next, and what does it accomplish?
30.

Summarize what you learned about how this ransomware performs file encryption and key protection. Also, what information is
required to decrypt files?

© 2022 Anuj Soni 97

Technet24

7.

(o) Important

You've reached Checkpoint #1 in this lab.

At this point, it makes sense to debug the program to confirm our suspicions about the function we just discussed. Switch to x64dbg within
the Dynamic VM, where the debugger should be paused at the entrypoint for regsvr32.exe . Run the target program until boot.d1l is
loaded (you should see the DLL mentioned in the title bar). Finally, enter the command bp 18eee4e30 to set a breakpoint on the function we
suspect implements ChaCha.

v/ Continue executing the program. You should eventually arrive at 180004e30, where we set the breakpoint. Review the arguments
passed to this function. Which argument supports our theory that the function implements ChaCha and not Salsa? (e.qg., first argument,
second argument) What about this argument confirms the algorithm?

Answer: Dump the first argument to a dump window to observe the initial state passed to the function. The characters that comprise expand 32-
byte k are not fragmented. This matches the initial state of ChaCha.

v/ Since we are paused at a function that implements a cipher, some content is about to be encrypted or decrypted (remember, this is a
symmetric algorithm so the function could be used to both process plaintext or ciphertext). Within the debugger, review the remaining
arguments passed to 180004e30 and allow the function to return. Does this first execution of 180004e30 encrypt or decrypt data?
What can you conclude about the content encrypted or decrypted?

/" Note

Consider that an encryption/decryption function has to operate against some plaintext or encrypted data and the resulting content must be
placed somewhere in memory.

Answer: This first run of the function at 18000430 decrypts ransom note text.

Explanation: Dump the second argument to a dump window and observe unreadable data. This may be encrypted content or simply binary data. If
we dump the third argument to a dump window, we observe a location that is zeroed out. There is a good chance some content will be placed
here

If we allow the function to return via Debug > Execute till return, we observe new content at the location that was zeroed out. The content appears
to be a ransom note. We can conclude that the first call to the ChaCha function decrypted the ransom note that will be written to disk.

Since the function at 180004e30 appears to implement the ChaCha cipher, let's update its name within Ghidra. Switch briefly to your Static
VM and update the function name to chacha_cipher .

Return to the Dynamic VM. If you continue running the program, it will pause at 180004e30 repeatedly. In many cases, the function is used to
process the same content discussed in the previous question as the ransomware note is placed throughout the filesystem. We want to
explore other potential uses of this cipher. Is the function at 18000430 only used to decrypt the ransom note, or is it also used for common
ransomware tasks like encrypting files?

v/ To investigate how file encryption is performed, let's identify any code that takes file content as input, since this would be necessary
step to encrypt a file. What Windows API is often responsible for placing file content into a buffer?

Answer: Readfile

© 2022 Anuj Soni 99

Remove the breakpoint on the 180004e30 for now (i.e. go to the Breakpoint tab, choose the breakpoint and hit the Delete key on your
keyboard). Set a breakpoint on the APl mentioned in the answer to the previous question and continue running the program. The debugger
should arrive at the breakpoint.

81 v At what address within boot.d11 does this CALL to ReadFile occur?
Answer: At address 18000e3e7, the instruction cALL RAX calls ReadFile.
Explanation: You can identify the location of the CALL within boot.d11 using two approaches. First, you can allow ReadFile to return to the user
code. Alternatively, you can view the Call Stack tab and right-click on the first entry and choose Follow To. Both these approaches will take you the
instruction immediately after the CALL, and you can scroll up to identify the address where ReadFile is executed.
o1 v We're still reviewing the CALL to ReadFile at 18000e3e7. After a file's content is read into a buffer, what happens next? You can use a
combination of both static code analysis and debugging to determine the answer to this question.
Answer: The file is read in and then the data is encrypted via the CALL instruction at 18000e405.
Explanation: Recall that ReadFile's second argument specifies the address of the buffer for content that is read. Static code analysis with Ghidra
shows that this address is passed as the second argument to chacha_cipher . If you debug the CALL at 18000e405, you will observe that the first
argument passed to chacha_cipher specifies the initial state, the second argument specifies the data to encrypt or decrypt, and the third
argument specifies the address of the resulting encrypted or decrypted data. For file encryption, the third argument will point to the encrypted file
content (it actually overwrites the plaintext content).
(o) Important
You've reached Checkpoint #2 in this lab.
0.0 o~ If 180004e30 implements ChaCha, the program must generate some random bytes for the key and nonce before data is encrypted or
decrypted. What Crypto API is often used to produce random bytes?
Answer: CryptGenRandom

Before we move on, let's delete some breakpoints we no longer need and set some new breakpoints within the debugger:
« Delete the breakpoint on the ReadFile API.

+ Set a breakpoint on the CALL to ReadFile at 18000e3e7 (i.e., bp 18000e3e7). We will focus on this specific CALL to better understand
file encryption.

+ Set a breakpoint on 18000e405, where chacha_cipher is called (i.e., bp 18000e405). There are multiple references to chacha_cipher
in this program, but we will focus on this one in class. Students are encouraged to investigate other references to chacha_cipher
outside of class.

+ Set a breakpoint on the CryptGenRandom API (i.e., bp CryptGenRandom), which we just discussed.
Setting the breakpoints mentioned above will help us understand how any randomly generated bytes relate to file encryption. If you have

other breakpoints configured, you can disable or delete them.

1.1~ continue executing the program until you arrive at CryptGenRandom. Within x64dbg, review the context of the function call. What does

it accomplish? Allow the function to execute until return and dump any generated data to a dump window.

Answer: This function call generates 0x20 (decimal 32) bytes of random data.

100 © 2022 Anuj Soni

Technet24

12.

13.

14.

15.

Explanation: The second argument (i.e., Rbx) specifies the number of random bytes to generate. The third argument (i.e., rR8) passed to
CryptGenRandom is the address of a buffer that receives the random bytes. Dump this address to a dump window and allow the function to return
so you can view the returned bytes.

+/ Continue executing the program. You will encounter CryptGenRandom again. How does this function call differ from the previous call to
the same function? Again, allow the function to execute until return and dump any generated data to a dump window.

Answer: This CryptGenRandom returns 8 bytes of random data, while the previous function call returned 20 bytes. Dump the address stored in Rrs
to a different dump window. Allow the function to return so you can view the returned bytes.

+/ Continue executing the program. When you arrive at the CALL to ReadFile, continue execution. The debugger should now pause at
18000E405, where the ChaCha function is executed. Review the initial state passed to this function (i.e., see the first argument). How
can you confirm the significance of the 32 bytes and 8 bytes of random data generated earlier?

Answer: Look at the initial state and compare it to module slide that included the format of ChaCha's initial state. You will observe that the 32
bytes of random data is the key, and the 8 bytes of random data is the nonce.

+/ Does this program use one key for all files or a separate key per file? How can you confirm the correct answer using the debugger?

Answer: This ransomware generates a new 32-byte key and 8-byte nonce for each file it encrypts.

Explanation: If you continue debugging the program, you will encounter an API pattern that generally consists of two calls to CryptGenRandom
followed by a call to ReadFile and then chacha_cipher at 18000e405. This pattern occurs again and again as individual files are processed. Each
time a new file's content is read in, the CALL to chacha_cipher shows an initial state with a new key and nonce.

v/ Shift briefly to your static VM and jump to the body of the chacha_cipher function. We confirmed this code is likely ChaCha, but we
have not determined the number of rounds implemented. Is this ChaCha20, ChaCha12, or something else?

/" Note

Review the slide titled In FUN_004034f0, each loop +iteration has 8 quarter-rounds... .

Answer: ChaCha8
Explanation:

Within chacha_cipher, first identify the loop that performs rotate operations. Visually searching for ROL instructions shows the loop occurs
between addresses 180004fe0 and 180005162. The first ROL operation occurs at 180004fff, and itis RoL ESI, exie.Recall that each ChaCha
quarter-round includes rotate operations that shift bits 16 (0x10), 12 (0xc), 8 (0x8), and 7 (0x7) bit positions. If we highlight ex1e in the
instruction RoL ESI, exie at 180004fff, we see eight occurrences of this value within ROL operation in the loop. Each ROL operation for a
particular shift value represents one quarter-round, so there are 8 quarter-rounds per loop, or 2 complete rounds.

Next, we need to assess how many times the loop iterates. Scroll to the end of the loop and observe the conditional jump that determines if the
loop continues iterating. The JNZ instruction at 180005162 evaluates if local_ce is not zero. If the variable is zero, the loop is exited. If we
highlight tocal_ce with a single click and scroll up, we observe it is assigned the value 4 with a MOV operation at 180004fcf. This means the
loop iterates 4 times, with each iteration consisting of 2 complete rounds. 4 x 2 = 8, so we can refer to this ChaCha implementation as ChaCha8.

6 Important

You've reached Checkpoint #3 in this lab.

© 2022 Anuj Soni 101

20.

21.

Observe that the first value is 0x06, which indicates the data is a public key. The second byte is the version number, which requires no further
explanation. The next two bytes are reserved, and they are generally zeroes. The next four bytes specify the algorithm ID (i.e., ALG_ID member of
the BLOBHEADER structure) and we can see the hex value a400 (little endian). According to MS documentation (https://for710.com/algid), the
text representation of this value is CALG_RSA_KEYX .

Since what follows is an RSA public key blob, we can view the MS documentation on the RSAPUBKEY structure (https://for710.com/rsapubkey).
Based on that lookup, we are reminded that the first DWORD RsA1 confirms this is an RSA public key, and the second DWORD specifies the bit
length of the key. In this case, it is 0x1000 (decimal 4096) bits.

v/ Continue executing the program. You may pause again at CryptimportKey, but observe that all calls to this function import the same
RSA key. We're seeing multiple references to this API due to the multi-threaded nature of this ransomware. Continue running the
program. When you arrive at CryptGenRandom, dump the 32 random bytes it produces as you did earlier in this lab. Run the program
again and dump the 8 random bytes produces in the next call to CryptGenRandom. Run the program again until you arrive within
CryptEncrypt. How many bytes does this call encrypt, and how would you describe the data that this function call encrypts?

Answer: CryptEncrypt encrypts 40 bytes of data that is comprised of the randomly generated 32-byte key and 8-byte nonce.

Explanation: The fifth argument points to the data to encrypt, and the sixth argument points to the size of data to encrypt. To view the data to
encrypt, right-click on the fifth argument in the center window on the right within x64dbg and dump that address to a dump window. Comparing
this data to the data generated via CryptGenRandom shows this content is a copy of the 40 bytes of random data. This API encrypts the per-file
symmetric key and nonce.

To view the size of the data to encrypt, additional steps are necessary because x64dbg only lists the first five arguments by default. The simplest
approach to view the sixth argument is to click the up arrow on the spinner button above the list of arguments so that the numerical field
increments from 5 to 6. Alternatively, you can right-click on the fifth argument you dumped earlier and choose Follow...in Stack. This will take
you to the fifth argument on the stack, and the sixth argument is immediately below that value.

Next, right-click on the sixth argument and dump it to a dump window. This reveals the size 0x28 or decimal 40 bytes. This makes sense because
the program first generated 32 bytes of random data followed by 8 bytes of random data, totaling 40 bytes.

v/ We are still reviewing the call to CryptEncrypt discussed in the previous question. Based on our analysis of CryptoAPI functions thus
far, what key does CryptEncrypt likely use for encryption?

Answer: The RSA public key imported by CryptimportKey. You can confirm this by comparing the imported key handles returned by
CryptimportKey (see this API's sixth argument) to the handle provided as the first argument to CryptEncrypt. However, this task is tedious due to
the multi-threaded nature of this ransomware.

0 Important

You've reached Checkpoint #4 in this lab.

We now understand how the per-file encryption key is protected, but we still need to determine where the key is stored. One common
approach in ransomware is to add the encrypted key to each encrypted file. Before we proceed with our investigation, let's revisit our
breakpoints. We no longer need to evaluate calls to CryptAcquireContextA, CryptAcquireContextW, or CryptimportKey, because these APIs
are only called at the beginning of execution, and we understand the purpose of these functions. We also understand that CryptGenRandom
generates the key and nonce for each file. Therefore, remove breakpoints for CryptAcquireContextA, CryptAcquireContextW, CryptimportKey,
and CryptGenRandom.

At this point, you should only have breakpoints set on 18000E3E7, 18000E405, and CryptEncrypt. To ensure consistency with the flow of this
lab, continue executing the program until you arrive at the beginning of CryptEncrypt again. As we discussed, this API encrypts a per-file
symmetric key and nonce. You can confirm this by checking the sixth argument, which confirms that CryptEncrypt operates against 40

© 2022 Anuj Soni 103

Technet24

+/ Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

Answer: The debugger pauses at SetFilePointerEx once again. This time, it moves the file pointer to the beginning of the file.

Explanation: The file handle referenced in the first argument matches the file handle in the previous SetFilePointerEx call . The second argument
(libistanceToMove) is zero, so it does not move the file pointer. The fourth argument (dwMoveMethod) is zero, which means the file pointer is
moved to the beginning of the file.

+/ Continue running the program and the debugger will pause at 18000E3E7, where ReadFile is called. We already analyzed this CALL.
Dump the address of the buffer (second argument) to a dump window and document two arguments:

Address of buffer where content will be stored (second argument): This value will vary.

Number of bytes read (third argument): This value will vary depending upon the file.

Continue running the program and the debugger will pause at 18000E405, where the ChaCha8 function is called. As previously discussed,
this will encrypt the file contents. Step over this function (i.e., Debug > Step over) and observe that the original file content in the dump

window is overwritten with the encrypted content.

28.

29.

30.

+/ Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

/" Note

For a calculator to convert signed hex values to negative decimal values, see this site.

Answer: The debugger pauses at SetFilePointerEx again. This time, it moves the file pointer back to the beginning of the file using a signed value
in the second argument.

Explanation: The file handle referenced in the first argument matches the file handle in the previous CreateFileW, ReadFile, and SetFilePointerkEx
calls. The fourth argument (dwMoveMethod) is 1, which means this argument does not impact the file pointer. However, the second argument
(liDistanceToMove) appears signed. If you convert this value to a negative decimal value, it is the negative version of the number of bytes
ReadFile read. For example, if ReadFile read 100 bytes (which moves the file pointer forward 100 bytes), this call to SetFilePointerEx would move
the file pointer backwards 100 bytes (i.e., -100). For a calculator to convert signed hex values to negative decimal values, see https://for710.com/
hextodec.

v/ Continue running the program. What API does the debugger arrive at next, and what does it accomplish?

Answer: The debugger pauses at WriteFile, which writes the encrypted content to the beginning of file. In other words, it overwrites the original file
with the encrypted data.

Explanation: The second argument passed to WriteFile points to the data to write. This is the address of the encrypted data.

+~/ Summarize what you learned about how this ransomware performs file encryption and key protection. Also, what information is
required to decrypt files?

Answer: This ransomware uses the ChaCha8 algorithm and a per-file 32-byte key to encrypt file contents. Per-file encryption keys and nonce data
are encrypted with RSA 4096 using an embedded RSA public key, and this encrypted content is appended to the target file. To decrypt files, the
attacker must provide the RSA private key that corresponds with the embedded RSA public key.

© 2022 Anuj Soni 105

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

« Identify specific ciphers used in a ransomware sample.

- Determine the purpose of an identified cipher (e.g., file encryption or key protection).

* Recognize Windows APIs that facilitate encryption.

« Summarize key aspects of how ransomware performs file encryption.

106 © 2022 Anuj Soni

Technet24

/" Notes

« There are actually two functions that include KSA code. List both.

» When viewing search hits returned via Search > Program Text, clicking on a row jumps to the relevant assembly. To highlight the
corresponding decompiler output, use the mouse to drag across one or more lines of assembly.

+ Recall that there are two components to KSA code: a loop that initializes the S-box and another loop that mixes up S-box values using the
key.

Using Ghidra, view references to each of the two functions identified in the previous question. Based on this review, which function is
more likely used by this program for encryption and/or decryption?

Our focus is on the KSA code within the function discussed in the previous question. The loop that initializes the S-box appears to
include more than the identity permutation. What is the additional code within the loop likely responsible for, and how does it relate to
the RC4 variations we discussed in the module?

In the Decompiler view, view the second do-while loop after the initialization loop. What does this loop likely accomplish?

Which function includes the RC4 pseudo-random generation algorithm (PRGA) code?

/" Note

This question asks to find the PRGA code associated with the KSA code discussed in the previous question.

Next, switch to the Dynamic VM and use a debugger to execute the PRGA loop. Does it encrypt or decrypt content, and how would you
describe the plaintext data associated with this operation?

108 © 2022 Anuj Soni

10.

/" Note

The XOR instruction at 40b2e3 places content at a location in memory. You may want to keep an eye on this location in memory when you
debug the PRGA loop.

6 Important

You've reached the Checkpoint in this lab.

We just decrypted some content, but we still need to confirm the algorithm used. If we configure CyberChef to RC4 decrypt the same content
and our results match the decrypted content in the debugger, we can be certain this malware implements RC4. To perform this test, we need
to extract the RC4 key and encrypted data.

What is the RC4 key length?

/" Notes

« To locate the RC4 key length, recall that the KSA code includes a mod operation where the key length is the modulus.

+ Use your Static VM to perform static code analysis within Ghidra. Then, switch to your Dynamic VM to set a breakpoint and debug the
code.

What argument passed to FUN_0040b1c0 contains the key length (e.g., first argument, second argument)?

/" Note

Static code analysis is sufficient to answer this question.

What is the RC4 key? Provide your answer in hexadecimal format.

© 2022 Anuj Soni 109

Technet24

/" Notes

+ Again, perform some static code analysis within Ghidra. Then, switch to your Dynamic VM to set a breakpoint and debug the code.

» To locate the RC4 key, remember that this malware implements a variation of RC4 where the mod operation in the KSA occurs in the

the range of the key size. Therefore, after the mod operation is executed, the remainder is likely used to access an offset within the key.

11. What argument passed to FUN_0040b1c0 likely points to the RC4 key (e.g., first argument, second argument)?

/" Note

Static code analysis is sufficient to answer this question.

We have a key and keylength. Now, we need encrypted data so we can test decryption.

12. What is the size of the encrypted data?
/" Notes
« Recall that the PRGA code will execute one byte of keystream data with one byte of encrypted data. This means the PRGA loop will
iterate once for each byte of encrypted data.
+ Again, perform some static code analysis and then debug the program as needed.
+ The JC (Jump if carry) instruction is identical to JB (Jump if below).
13. What argument passed to FUN_0040b1c0 likely contains the size of the encrypted data (e.g., first argument, second argument)?
/" Note
Static code analysis is sufficient to answer this question.
14. What argument passed to FUN_0040b1c0 likely points to the encrypted data (e.g., first argument, second argument)?

110 © 2022 Anuj Soni

same loop as the S-box initialization. Recall that the purpose of the mod operation is to identify a single byte within the key that is within

+/ Behavioral analysis would reveal this malware likely belongs to a ransomware family. However, we will skip that phase of analysis for
this lab. Based on static file analysis, we observed crypto constants associated with the ChaCha and Salsa ciphers. Running the
FindCrypt extension during auto-analysis confirms the presence of these constants. Could other crypto algorithms be implemented in
this code as well? We know RC4 is common in malware and it does not use any constants, so we'll have to perform a manual search to
explore its presence. Within Ghidra, identify the function(s) that includes the RC4 key scheduling algorithm (KSA) code.

/" Notes

+ There are actually two functions that include KSA code. List both.

* When viewing search hits returned via Search > Program Text, clicking on a row jumps to the relevant assembly. To highlight the
corresponding decompiler output, use the mouse to drag across one or more lines of assembly.

« Recall that there are two components to KSA code: a loop that initializes the S-box and another loop that mixes up S-box values using the
key.

Answer: Functions FUN_0040b1c0 and FUN_0040b060 both contain RC4 KSA code.
Explanation:

Recall that the S-box initialization involves creating a 256 byte array, where each element is assigned the value of its index number. This is referred
to as the identity permutation. This assignment is typically performed within a loop that iterates over each element. One approach to identify this
loop is to search for the value 0x100 (decimal 256), which often appears in the loop condition that determines if the loop continues executing.
Then, we can look for the identity permutation.

To search for this value, go to the menu bar and browse to Search > Search Program Text. In the Search for field, type ex1ee . Among the Fields
options on the bottom left of the window, only check Instruction Operands. Then, click Search All.

While there are numerous results, we want to focus on instructions that assess a value. Sort the results by the Preview column and observe that
there are only five CMP instructions. Jump to each CMP instruction and highlight nearby code to find the corresponding decompiler output.
Among the five CMP instructions, only two are part of loops where the control variable (i.e., the variable that is incremented with each iteration) is
assigned to an array element index that matches the control variable. This likely represents the identity permutation. The two functions that
contain KSA code are FUN_0040b1c0 and FUN_0040b060. The other functions that contain CMP instructions include code that is far too complex
in the loop body to be considered KSA functions.

v/ Using Ghidra, view references to each of the two functions identified in the previous question. Based on this review, which function is
more likely used by this program for encryption and/or decryption?
Answer: FUN_0040b1c0

Explanation: While both FUN_0040b1c0 and FUN_0040b060 contain KSA code, FUN_0040b1c0 has one reference while FUN_0040b060 has none
(i.e., zero references). This means FUN_0040b060 may be an unused function, so it is not a good target of our analysis. While not necessary in
this case, you could debug the program for further confirmation. If you set a breakpoint on 40b060 and executed the program, you would find that
the debugger never pauses at that address.

v/ Our focus is on the KSA code within the function discussed in the previous question. The loop that initializes the S-box appears to
include more than the identity permutation. What is the additional code within the loop likely responsible for, and how does it relate to
the RC4 variations we discussed in the module?

Answer: In the Decompiler view, observe the loop that initializes the S-box to the identity permutation. It includes a mod (i.e., %) operation. This is
likely a variation of the KSA where the initialization loop includes key expansion.

v/ In the Decompiler view, view the second do-while loop after the initialization loop. What does this loop likely accomplish?

112 © 2022 Anuj Soni

Technet24

Answer: As we discussed in the module, there are two components of the KSA code: 1) initialize the S-box and 2) mix up S-box values. We already
identified the S-box initialization code. This second loop is likely where the S-box values are mixed up.

~/ Which function includes the RC4 pseudo-random generation algorithm (PRGA) code?

/" Notes

This question asks to find the PRGA code associated with the KSA code discussed in the previous question.

Answer: FUN_0040b1c0

Explanation: PRGA code is usually executed soon after the KSA code. PRGA code may be in the same function as the KSA code or in a separate
function. First, let's look at the function that contains KSA code (i.e. FUN_0040b1c0) to see if the KSA resides there.

One initial indicator we can look for is an XOR operation. If you review FUN_0040b1c0 in the decompiler view and scroll down, there is a third do-
while loop. View the body of this loop and observe an XOR (i.e., ») operation.

We should also look for the presence of at least two mod 256 operations in the loop. The decompiler view shows two & exff operations, which
are equivalent to a mod 256. This third loop in FUN_0040b1c0 is likely the PRGA, and it is contained within the same function as the KSA code.

v/ Next, switch to the Dynamic VM and use a debugger to execute the PRGA loop. Does it encrypt or decrypt content, and what is the
plaintext data associated with this operation?

/" Notes

The XOR instruction at 40b2e3 places content at a location in memory. You may want to keep an eye on this location in memory when you
debug the PRGA loop.

Answer: The PRGA loop decrypts configuration information for this ransomware.

Explanation: The XOR operation in RC4 PRGA code XORs a byte of data with a byte of keystream data. Reviewing the operands of the XOR
instruction should give us insight into the data being XORed, and the result of the XOR operation should provide visibility into the encrypted or
decrypted content.

The XOR operation within the PRGA code occurs at 40b2e3. Within x32dbg, set a breakpoint at this address (bp 4eb2e3). Then, run the program
until it pauses at the breakpoint. The destination operand is the only operand that points to a memory location, so let's observe what content is
placed there. Right-click on the XOR instruction and choose Follow in Dump > Address: ESI+ECX*1. Step over the XOR instruction and you should
observe a change to a single byte. To view the resulting content after the PRGA code completes all iterations of the loop, remove the breakpoint at
40b2e3 and set a new one at 40b2ef, the address immediately after the loop. Then, continue running the program. The dump window now has
additional content that looks like configuration data.

0 Important

You've reached the Checkpoint in this lab.

We just decrypted some content, but we still need to confirm the algorithm used. If we configure CyberChef to RC4 decrypt the same content
and our results match the decrypted content in the debugger, we can be certain this malware implements RC4. To perform this test, we need
to extract the RC4 key and encrypted data.

8.1 ' Whatis the RC4 key length?

© 2022 Anuj Soni 113

10.

11.

/" Notes

» To locate the RC4 key length, recall that the KSA code includes a mod operation where the key length is the modulus.

+ Use your Static VM to perform static code analysis within Ghidra. Then, switch to your Dynamic VM to set a breakpoint and debug the
code.

Answer: 5 bytes
Explanation:

View the decompiler output for FUN_0040b1c0 within Ghidra. To locate the RC4 key, identify the assembly instruction associated with the mod
operation in the KSA. Within the first do-while loop, drag and highlight the code with the mod operation. Ghidra shows that this correlates with the
DIV instruction at 40b23b. As a reminder, the DIV instruction divides EDX:EAX by the specified operand. The quotient is placed into EAX and the
remainder is placed into EDX. The DIV operand should reference the key size.

Next, use your Dynamic VM to debug the program. First, restart winbio.exe within x32dbg. Then, set a breakpoint at 40b23b and run the
program. When you arrive at the breakpoint, click on the div instruction and view the window immediately below the disassembly. There, you will
observe the value stored at esp+20. The size of the RC4 key is 5 bytes.

+/ What argument passed to FUN_0040b1c0 contains the key length (e.g., first argument, second argument)?

/" Note
Static code analysis is sufficient to answer this question.

Answer: The second argument.

Explanation: In the previous question, we identified that the single operand for the DIV instruction at 40b23b is the key length. Ghidra shows this
operand as param_2, so the second argument passed to FUN_0040b1c0 is likely the key length.

~/ What is the RC4 key? Provide your answer in hexadecimal format.

/" Notes

« Again, perform some static code analysis within Ghidra. Then, switch to your Dynamic VM to set a breakpoint and debug the code.

« To locate the RC4 key, remember that this malware implements a variation of RC4 where the mod operation in the KSA occurs in the
same loop as the S-box initialization. Recall that the purpose of the mod operation is to identify a single byte within the key that is within
the range of the key size. Therefore, after the mod operation is executed, the remainder is likely used to access an offset within the key.

Answer: The key is 2¢ 47 76 71 63 (ascii ,Gvqc).
Explanation:

In the previous question, we interpreted the DIV instruction at 40b23b. We understand this instruction divides a value by the key length, and the
remainder is placed into EDX. If we look for references to EDX after the DIV instruction, we see one at 40b240 with the instruction Mov AL, byte
ptr [EDX + EBXx0x1] .If EDX is an offset within the key, perhaps EBX contains the starting address of the key.

To test this theory, switch to the debugger. Remove all other breakpoints and restart the target program. Then, set a breakpoint at 40b240 and
continue execution. When the debugger pauses at 40b240, dump the value in EBX to a dump window. Observe a null-terminated 5 bytes
consisting of the hexadecimal values 2c 47 76 71 63 (ascii ,Gvqc). This is likely the key.

+/ What argument passed to FUN_0040b1c0 likely points to the RC4 key (e.qg., first argument, second argument)?

114 © 2022 Anuj Soni

Technet24

12.

13.

14.

/" Note

Static code analysis is sufficient to answer this question.

Answer: The first argument.

Explanation: In the previous question, we identified that when the MOV instruction at 40b240 is executed, EBX contains the address of the RC4
key. Highlight EBX in this instruction and observe earlier references. At 40b22b, param_1 is placed into EBX. This means the first argument
passed to FUN_0040b1c0 likely points to the RC4 key.

We have a key and keylength. Now, we need encrypted data so we can test decryption.

v/ What is the size of the encrypted data?

/" Notes
+ Recall that the PRGA code will XOR one byte of keystream data with one byte of encrypted data. This means the PRGA loop will iterate
once for each byte of encrypted data.
+ Again, perform some static code analysis and then debug the program as needed.

+ The JC (Jump if carry) instruction is identical to JB (Jump if below).

Answer: 0x1496, or decimal 5270 bytes.

Explanation: The third loop within FUN_0040b1c0 is the PRGA code. We need to identify how many times it will iterate, and this should equal the
size of the encrypted data. In the decompiler view, drag and highlight the while condition within the third loop. This correlates with the CMP and
JC instructions beginning at address 40b2eb. These instructions evaluate if ESI is below EBP. EBP should contain the number of bytes of
encrypted data.

To determine the size of the encrypted data, we could set a breakpoint on the CMP instruction at 40b2eb and view the contents of EBP. This
approach reveals the hex value 1496, or decimal 5270 bytes.

+~/ What argument passed to FUN_0040b1c0 likely contains the size of the encrypted data (e.g., first argument, second argument)?

/" Note

Static code analysis is sufficient to answer this question.
Answer: The fourth argument.
Explanation: Continuing our analysis from the previous question, highlight EBP with a single-click and scroll up. Observe that the fourth argument

passed to FUN_0040b1c0 is placed into EBP at 40b29b. This means the fourth argument passed to FUN_0040b1c0 is likely the size of the
encrypted content to decrypt.

+~/ What argument passed to FUN_0040b1c0 likely points to the encrypted data (e.g., first argument, second argument)?

7" Note

Static code analysis is sufficient to answer this question.

Answer: The third argument.

© 2022 Anuj Soni 115

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

+ Gain familiarity with RC4, a common symmetric cipher for encrypting data in malware.

« Identify an RC4 implementation in malware.
+ Debug malware to decrypt data.
+ Extract an RC4 key using a combination of static and dynamic code analysis.

« Confirm the presence of RC4 by testing decryption outside of the target program.

© 2022 Anuj Soni

117

Technet24

Lab 3.7: Automating Config Extraction with Python

Background

In this lab, we will write a Python config extractor.

Lab Objectives

+ Develop comfort with the Python programming language for malware analysis.

« Practice using the pefile Python module to parse a PE file.

+ Gain familiarity with other Python modules, including argparse, pycryptodome, and json.

« Apply output from prior static code analysis and debugging to automate a malware analysis task.

- Create a malware configuration extractor.

Lab Preparation

To prepare your Dynamic VM:

1. Revert your Dynamic VM to a baseline state. Then, extract Malware\Section3\winbio_and_more.zip and place the directory
winbio_and_more on the desktop. Within winbio_and_more, observe two files. Most of this lab will focus on winbio.exe, the same file we
analyzed in Lab 2.3.

2. 1f VS Code is not already open, launch the program using the desktop shortcut.
3. Within VS Code, create a new file by going to the menu bar and choosing File > New File.

4. Still within VS Code, browse to File > Save. Create the directory (if it doesn't already exist) c:\Users\REM\python_scripts and browse to it.
Then, specify the file name extract_config_lab31.py and click Save.

5. In the lower part of the VS code window, ensure the terminal is visible. If it is not present, go to the menu bar and choose View > Terminal.
Then, split the terminal so you have two terminal windows open. To accomplish this, mouse over the buttons on the top-right of the terminal
until you arrive at the one with the description split Terminal . Both terminals should be at the location c:\Users\REM\python_scripts
(use the cd command to arrive there if needed).

To prepare your Static VM: Launch Ghidra and open your analysis of winbio.exe from Section 2. If you do not have access to your prior analysis
for some reason, simply create a new section 3 project and load winbio.exe from Malware\Section2\winbio.zip . In this case, process the
file and initiate auto-analysis. Be sure to check windowsPE x86 Propagate External Parameters because the EXE is 32-bit.

Lab Questions

Let's warm up with some basic usage of pefile within an interactive Python shell. In VS code, type python in the terminal on the bottom-right.

First, import the pefile module using the appropriate command.

118 © 2022 Anuj Soni

Next, type the command to load winbio.exe using pefile. The command should assign the loaded executable to a variable so we can
use various methods to query the target file.
/" Note

Remember to use double slashes in the path to the target executable.

What Python code will print the name of the first section within winbio.exe ? What is the section name?

/" Note

+ Remember, we want to use Python and pefile to determine the answer to this question.
» Review help(pefile.PE) to help guide how you access sections.

« Consider using the built-in type() function if you are unsure how an attribute should be accessed, or if you want to clarify what type of
data a function returns. For example, typing type(target.is_exe()) outputs <class 'bool'>.

Type a command to calculate the SHA-256 hash of the first section within winbio.exe . What is the SHA-256 hash?

/" Note

Consider using the dir() command for information about methods available to an object. For example, if your loaded PE file is in a variable
target, then dir(target) shows methods available for the loaded binary.

Now that we are warmed up, let's proceed to write our config extractor for winbio.exe . As a reminder, this is the executable you first
analyzed in Lab 2.3.

Based on your analysis in Lab 2.3, where was the encrypted configuration data stored within winbio.exe ?

Within the resource that contains the encrypted key data and encrypted data, what is the structure of the content? For example, in the
walkthrough we discussed in this module, the anomalous section included a 32-byte RC4 key, then a 4-byte CRC32 checksum, then 4
bytes that specified the size of the encrypted data, and finally the encrypted data.

© 2022 Anuj Soni 119

Technet24

Lab Solutions

Let's warm up with some basic usage of pefile within an interactive Python shell. In VS code, type python in the terminal on the bottom-right.

1 v/ First, import the pefile module using the appropriate command.
Answer: import pefile
20 v Next, type the command to load winbio.exe using pefile. The command should assign the loaded executable to a variable so we can
use various methods to query the target file.
/" Note
Remember to use double slashes in the path to the target executable.
Answer: target = pefile.PE("C:\\Users\\REM\\Desktop\\winbio_and_more\\winbio.exe")
3 v What Python code will print the name of the first section within winbio.exe ? What is the section name?
/" Note
» Remember, we want to use Python and pefile to determine the answer to this question.
* Review help(pefile.PE) to help guide how you access sections.
+ Consider using the built-in type() function if you are unsure how an attribute should be accessed, or if you want to clarify what type of
data a function returns. For example, typing type(target.is_exe()) outputs <class 'bool'>.
Answer: The command is target.sections[0], and the first section nameis .text.
Explanation: As stated in the output from help(pefile.PE), sections will be available as a list in the sections attribute.Assuming
the loaded executable is available in the target variable, we can access the first section with the command target.sections[e] . In the output,
observe this first section is named .text .
4l v Type a command to calculate the SHA-256 hash of the first section within winbio.exe . What is the SHA-256 hash?
/" Note
Consider using the dir() command for information about methods available to an object. For example, if your loaded PE file is in a variable
target, then dir(target) shows methods available for the loaded binary.
Answer: The command is target.sections[0].get_hash_sha256() . The resulting hash is
9994bca758feled4ca868e2e1a474b145778278ab5b4a57ac65¢ca9719a31f886 .

Now that we are warmed up, let's proceed to write our config extractor for winbio.exe . As a reminder, this is the executable you first
analyzed in Lab 2.3.

S| v Based on your analysis in Lab 2.3, where was the encrypted configuration data stored within winbio.exe ?

© 2022 Anuj Soni 121

Answer: In the final question in Lab 2.3, we confirmed the encrypted configuration is embedded in winbio.exe within the resource section.

+/ Within the resource that contains the encrypted key data and encrypted data, what is the structure of the content? For example, in the
walk-through we discussed in this module, the anomalous section included a 32-byte RC4 key, then a 4-byte CRC32 checksum, then 4
bytes that specified the size of the encrypted data, and finally the encrypted data.

/" Note
« Within Ghidra, find the appropriate resource within the .rsrc section. By default Ghidra will have the resource bytes contracted. Click the
+ button to expand its contents.
« Take advantage of the Window > Bytes view if desired to view the raw bytes.

« Review the final questions in Lab 2.3 as needed to remind yourself of the key, key size, and encrypted data values.

Answer: The structure of the resource is as follows, in this order:
4 bytes: RC4 key size (little endian)

5 bytes: RC4 key

Remaining data in resource: encrypted data

v/ Let's take a brief look at dirmon.exe, located in the same directory you unzipped for this Lab. This executable belongs to the same
malware family as winbio.exe, it performs similar malicious behavior, and it implements the RC4 encryption algorithm. Load this
program into CFF Explorer (see desktop shortcut). Once loaded, click on Resource Editor on the left and expand the folder structure to
view the contents of the single resource. Notice that the first 4 bytes differ from the values in winbio.exe . What impact does this have
on your extraction script?

Answer: The extraction script must use the first four bytes of the resource data to determine the size of the RC4 key. Using the appropriate key
size, the script will then extract the RC4 key.

6 Important

You've reached the Checkpoint in this lab.

+/ Write a Python script that accomplishes the tasks noted below.

/" Requirements

+ Accept a target file (required) and output file (optional) on the command line.

+ Parse a PE file.

- Iterate over resource directories until reaching the resource data.

« Identify the RC4 key size, the RC4 key, and the encrypted data within the resource data.
+ RC4 decrypt the encrypted configuration data.

« Write the decrypted configuration to a file.

import pefile

import argparse

from Crypto.Cipher import ARC4
import json

122 © 2022 Anuj Soni

Technet24

parser = argparse.ArgumentParser (description="Config extractor for Lab 3.1.")
parser.add_argument ("-f","--file", help="Target file for config extraction.", required=True)
parser.add_argument("-o","--output", help="Config output file.", required=False)

args = parser.parse_args()

target = pefile.PE(args.file)

#Investigate resources
for resource in target.DIRECTORY_ENTRY_RESOURCE.entries:
for entry 1in resource.directory.entries:
for entry2 in entry.directory.entries:
rsrc_data = target.get_data(entry2.data.struct.0ffsetToData, entry2.data.struct.Size)

#Get key length

key_length = rsrc_data[:4]

key_length_int = qint.from_bytes(key_length, "little")
print("Key length is: " + str(key_length_int))

#Get key
key = rsrc_data[4:4+key_length_int]
print("Key: " + key.hex())

#Get encrypted data
data = rsrc_data[4+key_length_int:]

#Decrypt data
cipher = ARC4.new(key)
decrypted_data = cipher.decrypt(data)

#Output decrypted content; converting to string for consistency but not needed 1in this case.
decrypted_str = decrypted_data.decode()
config_data = json.loads(decrypted_str)

if args.output:
with open(args.output, "w") as f:
f.write(json.dumps(config_data, indent=4))

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

+ Develop comfort with the Python programming language for malware analysis.

« Practice using the pefile Python module to parse a PE file.

+ Gain familiarity with other Python modules, including argparse, pycryptodome, and json.

+ Apply output from prior static code analysis and debugging to automate a malware analysis task.

- Create a malware configuration extractor.

© 2022 Anuj Soni 123

/" Note

As a reminder, to debug a program that exports DIIRegisterServer:
+ Launch x64dbg.
- Browse to File > Open and choose c:\Windows\System32\regsvr32.exe

- Browse to File > Change Command Line and use the command line "c:\wWindows\System32\regsvr32.exe" C:
\Users\REM\Desktop\frida_files\fcd.dll.

- Browse to Options > Preferences and view the Events tab. There, check the option for DLL Entry.
+ Restart the target program by browsing to Debug > Restart.

+ Run the program, and you should arrive at the entry point for fcd.dll.

Dump the content you observed in the previous question and perform some basic static analysis. How would you characterize the
content? Do the functions listed under imports seem familiar?

We just manually extracted a payload. Let's automate this process with Frida's python bindings.

9. When writing a Frida python script to deobfuscate content, we need to articulate the debugging workflow that revealed the code. How
would you describe the steps we took to identify the second-stage executable in memory?
(o) Important
You've reached the Checkpoint in this lab.
10.

Write a Frida Python script that accomplishes the tasks noted below.

126 © 2022 Anuj Soni

Technet24

/" Requirements
+ Accept arguments to run a single EXE or a DLL (with rundlI32.exe or regsvr32.exe). For example, if your script is called 1ab32.py you will
run fcd.dll with the command python lab32.py C:\Windows\System32\regsvr32.exe fcd.dll.
« Intercept calls to VirtualAlloc.
+ Each time VirtualAlloc returns, add the starting address for the newly allocated region to an array.
« Each time VirtualAlloc is called, check if a previously noted region begins with the ascii characters mz .
- If the mz bytes are detected at the beginning of a memory region, write the content at that location to a file on disk.
« Test the script against all four files within the unzipped 'frida_files' folder.
+ Use the file frida_template.py located in the folder for this lab as a starting point for your script.

+ Consult the Frida JavaScript API as necessary (https://for710.com/fridaapi).

Lab Solutions

1 v Within the Dynamic VM, perform some brief file analysis of fcd.d11 with PeStudio. Based on PeStudio output, what approach would
be used to launch this executable?

Answers: The target file is a 64-bit DLL, and it exports Dl1Registerserver . This means it should be executed using c:

\windows\system32\regsvr32.exe .

2.0 v Continue viewing PeStudio output and observe the list of imported functions. With so few imports, it is likely that additional libraries
will be resolved at runtime. We know that calling GetProcAddress is one approach to resolving functions during execution. Open a
command prompt and navigate to c:\Users\REM\Desktop . What frida-trace command line can you use to execute fcd.d1l and
observe any calls to GetProcAddress?

/" Notes

+ For this question, only focus on the GetProcAddress API exported by KERNEL32.DLL.

* Remember that fcd.d11 is a 64-bit DLL. This should help determine which program you use to run the DLL.

Answer: frida-trace C:\windows\system32\regsvr32.exe frida_files\fcd.dll -i KERNEL32.DLL!GetProcAddress

3 v Run the command specified in the previous question. What key information is missing from the command output?

Answer: The output does not specify the name of the API that is resolved.

After viewing frida-trace output, type ctril+c to exit the process. Also, launch Process Hacker from the desktop and terminate

regsvr32.exe.

4.

v/ Executing frida-trace created a folder named __handlers__ on the Desktop (assuming that is where you ran frida-trace from).

Modify the handler for GetProcAddress to print out the additional information we require (see the answer to the previous question if

© 2022 Anuj Soni 127

you need more context). The output should print the name of the API resolved. For example, if the program resolved CreateProcessA,
the relevant line of output would read GetProcAddress(): CreateProcessA.

Answer:: Modify the handler located at __handlers__\KERNEL32.DLL\GetProcAddress.js . The second argument passed to GetProcAddress is a
pointer to the APl name. The updated OnEnter function is:

onEnter(log, args, state) {
log('GetProcAddress(): ' + args[1].readUtf8String());
1,

The new output includes the following:

GetProcAddress(): wsprintfA
GetProcAddress(): GetUserNameA
GetProcAddress(): LookupAccountNameW
GetProcAddress(): SHGetFolderPathA
GetProcAddress(): CreateProcessA
GetProcAddress(): CreateDirectoryA
GetProcAddress(): GetProcAddress
GetProcAddress(): lstrcpyA
GetProcAddress(): GetTempPathA
GetProcAddress(): Sleep
GetProcAddress(): CreateThread
GetProcAddress(): ExitProcess
GetProcAddress(): WriteFile
GetProcAddress(): CreateFileA
GetProcAddress(): CloseHandle
GetProcAddress(): HeapFree
GetProcAddress(): HeapReAlloc
GetProcAddress(): HeapAlloc
GetProcAddress(): GetProcessHeap
GetProcAddress(): GetComputerNameExW
GetProcAddress(): GetTickCount64
GetProcAddress(): GetLastError
GetProcAddress(): LoadLibraryA
GetProcAddress(): SwitchToThread
GetProcAddress(): lstrcatA
GetProcAddress(): GetComputerNameExA
GetProcAddress(): WinHttpQueryDataAvailable
GetProcAddress(): WinHttpConnect
GetProcAddress(): WinHttpSetStatusCallback
GetProcAddress(): WinHttpSendRequest
GetProcAddress(): WinHttpCloseHandle
GetProcAddress(): WinHttpSetOption
GetProcAddress(): WinHttpOpenRequest
GetProcAddress(): WinHttpReadData
GetProcAddress(): WinHttpQueryHeaders
GetProcAddress(): WinHttpOpen
GetProcAddress(): WinHttpReceiveResponse
GetProcAddress(): WinHttpQueryOption
GetProcAddress(): memset
GetProcAddress(): memcpy

After modifying the GetProcAddress handler, we observe many APIs resolved at runtime. As we discussed in Section 1 of this course, one
reason malware may resolve APIs at runtime is to prepare for the next stage of execution (i.e., an underlying payload). Recall that when
malware unpacks additional code or deobfuscates data, it often needs to allocate memory for this content. One approach to allocating
memory involves using the Virtual API (e.g., VirtualAlloc, VirtualProtect). We did not see any Virtual API calls resolved using GetProcAddress,
but the malware may use other approaches to resolve APIs. Let's explore this possibility.

128 © 2022 Anuj Soni

Technet24

10.

Answer:
+ We set a breakpoint on VirtualAlloc and ran the program.

+ Each time we encountered this API, we allowed it to return and dumped the returned address of the newly allocated region to the dump
window.

» When we arrived at the third call to VirtualAlloc, the first region allocated now had an MZ header and appeared to contain a Windows
executable.

6 Important

You've reached the Checkpoint in this lab.

+/ Write a Frida Python script that accomplishes the tasks noted below.

/" Notes

Requirements for the script:

+ Accept arguments to run a single EXE or a DLL (with rundll32.exe or regsvr32.exe). For example, if your script is called 1ab32.py you will
run fcd.dll with the command python 1ab32.py C:\Windows\System32\regsvr32.exe fcd.dll.

+ Intercept calls to VirtualAlloc.

+ Each time VirtualAlloc returns, add the starting address for the newly allocated region to an array.

+ Each time VirtualAlloc is called, check if a previously noted region begins with the ascii characters mz .

- If the mz bytes are detected at the beginning of a memory region, write the content at that location to a file on disk.
- Test the script against all four files within the unzipped 'frida_files' folder.

+ Use the file frida_template.py located in the folder for this lab as a starting point for your script.

+ Consult the Frida JavaScript API as necessary (https://for710.com/fridaapi).

Answer: The script below is one approach to writing a payload extraction script using Frida's python bindings.

import frida
import sys
import argparse

def main():
parser = argparse.ArgumentParser(description="Dump payload.')
parser.add_argument('targets', nargs='+")
args = parser.parse_args()

pid = frida.spawn(args.targets)
session = frida.attach(pid)

script = session.create_script("""
//Load module
try {
Module.load('KERNEL32.DLL'");

} catch {
console.log(err);

}

//Get function address.
try {

130 © 2022 Anuj Soni

var vaExportAddress = Module.getExportByName ("KERNEL32.d11", "VirtualAlloc");
} catch(err) {
console.log(err);

//Array of memory regions to monitor
var memRegions = []3}

//Configure interceptor(s)
Interceptor.attach(vaExportAddress,
{
onEnter: function (args) {
this.vaSize = args[1].toInt32();
var vaProtect = args[3];

console.log("\\nVirtualAlloc called => Size: " + this.vaSize + " | Protection: "
vaProtect)

for(var i = 03 i < memRegions.length; i++)

{

console.log("\\nChecking memory at " + memRegions[i].memBase.toString());

try {

var firstBytes = memRegions[i].memBase.readAnsiString(2);
} catch(err) {

console.log(err);

if (firstBytes == "MZ")

{
console.log("\\tFound an MZ!\\n");
console.log(hexdump (memRegions[i].memBase));

//Mrite file to disk

var binContent =
memRegions[i].memBase.readByteArray(memRegions[i].memSize);

var filename = memRegions[i].memBase + "_mz.bin"}

var file = new File(filename, "wb");

file.write(binContent);

file.flush();

file.close();

console.log("\\nDumped file: " + filename);

1,

onLeave: function (retval) {
console.log("\\nVirtualAlloc returned => Address: " + retval);
memRegions.push({memBase:ptr(retval), memSize:this.vaSize});

b3

nmy

script.load()
frida.resume(pid)
sys.stdin.read()
session.detach()

if __name__ == '__main__"':
main()

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

+ Gain familiarity with frida-trace, a command line tool in the Frida framework.

© 2022 Anuj Soni

131

Technet24

« Write a script using Frida's Python bindings to automatically dump a malicious payload.

132 © 2022 Anuj Soni

Type a command to determine the entry point of the function, and assign that value to a variable named ep_addr . To verify your
answer, type ep_addr and compare the output to the address of the first instruction in the Listing view.

/" Note

Consider using the Program API for this answer. We discussed a method in the slides that can help.

Type a command to get the instruction at the entry point for this function and assign it to a variable named -instr . Again, to verify your
answer, type instr and compare your output to the instruction in the Listing view within Ghidra.

/" Note

Return to using the Flat APl when considering a command.

Type a command to print the mnemonic at this address.

Type a command to print the single operand for the instruction.

/" Note

You will need the Program API for this command. Review the slides for a method that might help.

Now, type a command to get the next instruction. Return the instruction to a variable named instr_next .

/" Note

Return to using the Flat API for this command.

Type a command to print out the second operand of the instruction in instr_next .

Write code to get references to ep_addr (i.e., the entry point of the function) and print out the address where each reference is located.

134 © 2022 Anuj Soni

Technet24

(o) Important

You've reached the Checkpoint in this lab.

Now, let's write our string decoding script. To create a new file for our code, follow these steps:
a. Open the Script Manager by clicking on the green "Play" button under the menu bar, or browse to Window > Script Manager.
b. Mouse over the buttons on the top-right and click on the one with the description Create New Script.
c. Choose the option to create a Python script and click OK.
d. Use the default directory c:\Users\REM\ghidra_scripts and enter the script file name 1ab33_string_decode.py .

e. In your new script, see the metadata template located at the top of the file. For the @category field, specify _For71e . The underscore
ensures the new category will be placed at the top of the Scripts listing located on the left side of the Script Manager window (you will
need to click the button with green arrows in the Script Manager to refresh the list of script categories).

10. Write a Ghidra Python script that deobfuscates strings processed by FUN_004093f0. For each decoded string, add an EOL comment at

the address where FUN_004093f0 is referenced. The comment should include the decoded string. Below is one approach to consider.
You may implement an alternative approach if you desire.

/" Approach

« Find references to the decoding function.

« For each reference, look up to 5 instructions before the reference for a MOV instruction where the first operand is EDX. Consider using
the range() function in a for loop to accomplish this (https://for710.com/range).

- If an instruction that satisfies the above requirement is found, get the second operand and interpret it as an address.

« For each reference to the data address identified in the previous requirement, check if the instruction has a MOV mnemonic and if the
first operand is ECX.

- If the above condition is true, go to the instruction that precedes the MOV and get the single operand. This operand should point to the
encoded data we desire.

- Get the encoded data and then get its value. When calling getValue(), consider doing so within a try/except statement. This provides an
opportunity to print an error message if the script encounters undefined data. If you have time, you can manually define strings at the
necessary locations to address all errors. Alternatively, you can explore using the Flat API's createAsciiString() method (which we did not
explicitly discuss) to define a string.

+ Then, base64 decode this data and perform the operations specified in the decoding loop. Note that when 3 is added in the loop, you
must & oxFF the result since it is placed in a single byte register.

« Print the decoded value to the console.

» Finally, add an EOL comment at the address where the decoding function is referenced. Include the decoded string.

Lab Solutions

Let's warm up by taking advantage of the Ghidra Flat and Program API within an interactive Python shell. To access the Python interpreter within
Ghidra, go to the menu bar and choose Window > Python. As you consider and type commands, remember to take advantage of tab to view

© 2022 Anuj Soni 135

suggested commands, and help() and dir() . In addition, consult the slides in this module and the APl documentation. Shortcuts to the Flat
and Program API documentation are accessible via two toolbar bookmarks in Firefox. You can launch Firefox via the Desktop shortcut.

1 v In preparation for this lab, the slides refer to the decoding loop beginning at 409490 within program.exe . Type the command to
convert this hexadecimal value to an address and assign it to a variable named 1loop_addr variable. After typing your command,
confirm success with the command type(loop_addr) . The output should be <type

'ghidra.program.model.address.GenericAddress'>

Answer: loop_addr = toAddr("409490") Or loop_addr = toAddr(0x409490)

20 v Next, type a command to determine the function where this address resides. Assign the returned value to a variable named

decoding_fn.

/" Note

Review the slides or the Flat APl documentation when considering your command.

Answer: decoding_fn = getFunctionContaining(loop_addr)

3 v Type a command to determine the entry point of the function, and assign that value to a variable named ep_addr . To verify your
answer, type ep_addr and compare the output to the address of the first instruction in the Listing view.

/" Note

Consider using the Program API for this answer. We discussed a method in the slides that can help.

Answer:

>>> ep_addr = decoding_fn.getEntryPoint()
>>> ep_addr
0040930

41 v Type a command to get the instruction at the entry point for this function and assign it to a variable named -instr . Again, to verify your
answer, type instr and compare your output to the instruction in the Listing view within Ghidra.

/7" Note

Return to using the Flat APl when considering a command.

Answer:

>>> 1dinstr = getInstructionAt(ep_addr)
>>> dnstr
PUSH EBX

136 © 2022 Anuj Soni

Technet24

/" Approach

first operand is ECX.

encoded data we desir

Answer: The script below is one approach to decoding the obfuscated strings in this sample.

#This script deobfuscate

« Find references to the decoding function.

the range() function in a for loop to accomplish this (https://for710.com/range).

(S

» Print the decoded value to the console.

s strings in sample with SHA-256 hash

0bd3eb756c9297f9be08f79fa7a93e925c08df18656b54b9e2333d4a2445a58f.

#@author Anuj Soni
#@category _FOR710
#@keybinding
#@menupath
#@toolbar

import base64

#Insert function address
decoding_fn_addr = toAdd
fn_refs = getReferencesT

for ref in fn_refs:
from_addr = ref.
instr = getInstr
for i in range(5

if dinstr.getMnemonicString() == "MOV" and str(instr.getOpObjects(0)[0]) ==

instr =
else:

print("NOTE: No data address found near decoding function reference at " +

continue

dat_refs = getRe
for ref2 1in dat_
from_add
instr =
data_str

if dinstr.getMnemonicString() == "MOV" and str(instr.getOpObjects(0)[0]) ==

below
r (0x40930)
o(decoding_fn_addr)

getFromAddress()
uctionBefore(from_addr)

):

dat_addr = toAddr(str(instr.getOpObjects(1)[0]))
break
getInstructionBefore(instr.getAddress())

ferencesTo(dat_addr)

refs:

r2 = ref2.getFromAddress()
getInstructionAt(from_addr2)

instr2 = getInstructionBefore(instr.getAddress())
addr_encoded = 1instr2.getOpObjects(0)[0]
data = getDataAt(toAddr(str(addr_encoded)))
try:
data_str = data.getValue()

© 2022 Anuj Soni

« If an instruction that satisfies the above requirement is found, get the second operand and interpret it as an address.

- Finally, add an EOL comment at the address where the decoding function is referenced. Include the decoded string.

MEDX":

str(from_addr))

MECX":

- For each reference, look up to 5 instructions before the reference for a MOV instruction where the first operand is EDX. Consider using

- For each reference to the data address identified in the previous requirement, check if the instruction has a MOV mnemonic and if the

- If the above condition is true, go to the instruction that precedes the MOV and get the single operand. This operand should point to the

- Get the encoded data and then get its value. When calling getValue(), consider doing so within a try/except statement. This provides an
opportunity to print an error message if the script encounters undefined data. If you have time, you can manually define strings at the
necessary locations to address all errors. Alternatively, you can explore using the Flat API's createAsciiString() method (which we did not
explicitly discuss) to define a string.

+ Then, base64 decode this data and perform the operations specified in the decoding loop. Note that when 3 is added in the loop, you
must & oxFF the result since it is placed in a single byte register.

139

except:
print("NOTE: No defined data at this location, see address in Ghidra: " +
addr_encoded.toString())
continue
else:
continue

b64_decoded_str = base64.b64decode(data_str)
decoded_str = ""

for i in b64_decoded_str:
decoded_val = ord(i) * 8
decoded_val = (decoded_val + 3) & OxFF
decoded_val = decoded_val A 84
decoded_str = decoded_str + chr(decoded_val)

print(decoded_str)
setEOLComment (from_addr, decoded_str)

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

+ Gain familiarity with Ghidra's available APIs.
+ Use Ghidra's built-in Python interpreter to explore available APIs.

+ Write a Python script within Ghidra that performs string deobfuscation and adds helpful comments in the Listing view.

140 © 2022 Anuj Soni

Technet24

After generating a brief overview of our target files, we will explore relationships between some of them. First, we will compare program.exe
and dns.exe.

Use the provided pecompare.py scriptto compare program.exe and dns.exe . This script will compare embedded strings and
functions listed in the IAT. Using the terminal, run the following command from c:\users\REM\Desktop\Malware\Section4 : python
pecompare.py collection\program.exe collection\dns.exe > diff_program_dns.txt . Double-click the output file to view its
contents in Notepad++. What do you learn from this comparison of program.exe and dns.exe ? Can you identify any strings that may
be unique to this malware?

Use BinDiff to assess similarities and differences between program.exe and dns.exe . What conclusions can you draw from BinDiff
output?

/" Note

To compare these programs using BinDiff, do the following:
+ Launch BinDiff using the desktop shortcut.
+ From the menu bar, browse to File > New Workspace....
+ Name the workspace workspace_collection .
« For the Location field, click on ..., browse to C:\Users\REM\Desktop\Section4\bindiff and click Open.
« In the left window pane, right-click and choose New Diff....
» For the Primary file, browse to C:\Users\REM\Desktop\Malware\Section4\bindiff and choose program.exe.BinExport .
« For the Secondary file, browse to C:\Users\REM\Desktop\Malware\Section4\bindiff and choose dns.exe.BinExport .
» Then, click Diff.
+ To view BinDiff output, view the left window pane and double-click program.exe vs. dns.exe.

Remember that we are most concerned about unlabeled functions because these are more likely to represent code developed by the malware
author.

For a more granular comparison of program.exe and dns.exe, we will try Ghidra's Program Diff feature. After performing the diff, use
the down arrow at the top of the listing view to click past the first 10 or so differences. You will eventually arrive at 409495, where

142 © 2022 Anuj Soni

Ghidra displays differences in code within a loop. You should recognize the displayed instructions from our analysis in Lab 3.3. How
would you characterize the difference in code at this location?

/" Note

To compare these programs with Ghidra's Program Diff feature, do the following:
+ Go to the Ghidra project window and open the analysis of program.exe .
« From the menu bar, choose Tools > Program Differences....
» When prompted, double-click dns.exe to provide it as the second program for comparison.
» When choosing how to assess differences between the programs, only check Bytes, Code Units, and Functions.

* Click OK.

Let's briefly explore how program.exe compares to one of the larger executables that has a different imphash. Specifically, we will compare

program.exe With save.exe.

Use pecompare.py again to compare program.exe and save.exe . What do you learn from this comparison of program.exe and
save.exe ? For example, despite the significant differences between these programs, are there any overlapping strings that may
uniquely identify this malware? Also, what can you learn from the differences in imported functions?

Finally, use BinDiff to compare program.exe and save.exe (follow the process described in the Notes for question #3). What
percentage of functions was BinDiff able to match?

Reviewing the differences and similarities in this case would be tedious and time consuming, so we will focus on one particular
difference. View the Primary Unmatched Functions and type 4226co in the input filed at the top to filter by this value. Why might this
unmatched function in program.exe be of concern?

© 2022 Anuj Soni 143

Technet24

Lab Solutions

+ Run pestats.py againstthe collection directory to generate some basic information about each file. Using the terminal, run the
following command from c:\Users\REM\Desktop\Malware\Section4 : python pestats.py collection . This will produce a file
pestats_out.csv . Drag-and-drop the output file to the Timeline Explorer shortcut, which is located on your desktop. Based on
reviewing the output, what do you learn about this group of files?

Answer: Both program.exe and dns.exe are the same size and they have the same import table hash (i.e., imphash), indicating they have similar
functionality. The .text section hashes for these two files do differ, however, indicating some differences in the code. These two executables are
also much smaller in size when compared to the others. The compile time indicates these two programs were also compiled later (2021 vs.
2020).

After generating a brief overview of our target files, we will explore relationships between some of them. First, we will compare program.exe

and dns.exe.

v/ Use the provided pecompare.py script to compare program.exe and dns.exe . This script will compare embedded strings and
functions listed in the IAT. Using the terminal, run the following command from c:\Users\REM\Desktop\Malware\Section4 : python
pecompare.py collection\program.exe collection\dns.exe > diff_program_dns.txt . Double-click the output file to view its
contents in Notepad++. What do you learn from this comparison of program.exe and dns.exe ? Can you identify any strings that may
be unique to this malware?

Answer: Your review of diff_program_dns.txt may include the following observations:
+ We know both executables have the same imphash, so there is not much to gain from viewing import related information in this output.

+ The vast majority of strings within the two programs are identical. This is not a surprise because the executables are identical in size and the
.data sections have the same hash.

- Some interesting overlapping strings that may be unique to these malware samples include:

Maxt":"
"hdd":
"'Langll H n
"namell H n
"rC'id" H n
"size':
lltypell H n

- If we scroll down to the sections that list strings unique to each sample, we observe many strings that appear to be base64 encoded (see
strings ending in =, which represents padding). We'll return to this observation later.

3 v Use BinDiff to assess similarities and differences between program.exe and dns.exe . What conclusions can you draw from BinDiff
output?

144 © 2022 Anuj Soni

/" Note

To compare these programs using BinDiff, do the following:
+ Launch BinDiff using the desktop shortcut.
+ From the menu bar, browse to File > New Workspace....
» Name the workspace workspace_collection .
« For the Location field, click on ..., browse to c:\Users\REM\Desktop\Section4\bindiff and click Open.
« In the left window pane, right-click and choose New Diff....
« For the Primary file, browse to c:\Users\REM\Desktop\Malware\Section4\bindiff and choose program.exe.BinExport .
« For the Secondary file, browse to c:\Users\REM\Desktop\Malware\Section4\bindiff and choose dns.exe.BinExport .
* Then, click Diff.
« To view BinDiff output, view the left window pane and double-click program.exe vs. dns.exe.

Remember that we are most concerned about unlabeled functions because these are more likely to represent code developed by the malware
author.

Answer: Bindiff reports that all functions match (i.e., no unmatched functions). When viewing the list of matched functions, we see some that
have a similarity of less than 1.00, but these are labelled and unlikely to be developed by the malware author.

41 ~ Foramore granular comparison of program.exe and dns.exe, we will try Ghidra's Program Diff feature. After performing the diff, use
the down arrow at the top of the listing view to click past the first 10 or so differences. You will eventually arrive at 409495, where
Ghidra displays differences in code within a loop. You should recognize the displayed instructions from our analysis in Lab 3.3. How
would you characterize the difference in code at this location?

/" Note

To compare these programs with Ghidra's Program Diff feature, do the following:
+ Go to the Ghidra project window and open the analysis of program.exe .
+ From the menu bar, choose Tools > Program Differences....
» When prompted, double-click dns.exe to provide it as the second program for comparison.
+ When choosing how to assess differences between the programs, only check Bytes, Code Units, and Functions.

+ Click OK.

Answer: When reviewing Ghidra's Program Diff output, we eventually arrive at 409495, where we see code that matches the decoding loop we
analyzed in Lab 3.3. Ghidra makes it clear that although the decoding loop still involves an XOR, ADD, and XOR operations, the numerical values
have changed. This also explains why pecompare.py showed so many base64-encoded strings that were unique to each sample-a different
decoding algorithm would require different based64 encoded content to produce the same string.

Let's briefly explore how program.exe compares to one of the larger executables that has a different imphash. Specifically, we will compare

program.exe With save.exe.

S| v Use pecompare.py again to compare program.exe and save.exe . What do you learn from this comparison of program.exe and

save.exe ? For example, despite the significant differences between these programs, are there any overlapping strings that may
uniquely identify this malware? Also, what can you learn from the differences in imported functions?

© 2022 Anuj Soni 145

Technet24

Answer: Your review of pecompare.py output may include the following observations:
+ save.exe has many more strings than program.exe , which makes sense because it is a larger file.
» Among the 1514 common strings, most appear generic. However, you might spot "rcid":" near the beginning. This could be a string unique
to these malware samples.

» Among the many strings unique to save.exe , we observe some worthy of note including:

%s.exe
%s . tmp
.\%s.exe
.\gm.exe
.\medcon.exe

+ The imphash values for these two programs do not match, and this is supported by the list of imports unique to each executable. For
example, program.exe imports APIs including LookupPrivilegeValueW and AdjustTokenPrivileges. If you are not familiar with these APIs,
some brief open-source research will indicate malware often uses these APIs to modify access permissions. save.exe has its own unique
imports, including the use of wininet.d1l to import various HTTP and Internet-related APIs. These differences are good starting points for

additional code analysis.

6.1 ~ Finally, use BinDiff to compare program.exe and save.exe (follow the process described in the Notes for question #3). What

percentage of functions was BinDiff able to match?

Answer: 88.6%.

7| v Reviewing the differences and similarities in this case would be tedious and time consuming, so we will focus on one particular
difference. View the Primary Unmatched Functions and type 4226co in the input filed at the top to filter by this value. Why might this

unmatched function in program.exe be of concern?

Answer: The function at 4226ce calls the ShellExecuteW API, which can be used to execute an arbitrary command.

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

+ Practice approaches to comparing executables.
+ Use BinDiff to compare functions in executables.

+ Use Ghidra's Program Diff feature to identify byte-level differences in code.

146 © 2022 Anuj Soni

Lab Solutions

v/ This lab has only one task-write a YARA rule within collection.yara that meets the criteria described below. Perform code analysis
and use pecompare.py as necessary to write the rule. As part of your testing, you will need to execute YARA with the command c:

\Users\REM\Desktop\Malware\Section4>yara64.exe collection.yara collection

/" Notes

Your YARA rule should meet the following criteria:
+ Only detect program.exe and dns.exe (i.e., not open.exe and save.exe)
+ Include text strings.

* Include hex strings that identify code in the string deobfuscation loop at 409495 within both program.exe and dns.exe (consider using
wildcards).

» Include a condition that checks for an 'MZ' header using this ascii string's byte values.
+ Include a condition that checks for an imphash.
+ Include a condition that checks the target file's size.

+ The rule should hit on a file if it matches the specified imphash OR if it contains all specified strings AND the specified decoding routine.

Answer: Below is one approach to writing a YARA rule that satisfies the specified criteria.

import "pe"

rule collection_rule {

meta:

description = "This rule is for lab 4.2, and it identifies the smaller sized samples."

author = "Anuj Soni"

hashl = "0BD3EB756C9297F9BEO8F79FATA93E925C08DF18656B54B9E2333D4A2445A58F"

hash2 = "BC4ES8BEFEAS8F4E3A37F24C84109CA39BB427B953BCF2FCCEC8D5BC819B83DC20"
strings:

$s1 = "\"ext\":\"" nocase ascii wide

$s2 = "\"hdd\":" nocase ascii wide

$s3 = "\"lang\":\"" nocase ascii wide

$s4 = "\"name\":\"" nocase ascii wide

$s5 = "\"rcid\":\"" nocase ascii wide

$s6 = "\"size\" nocase ascii wide

$s7 = "\"type\":\"" nocase ascii wide

$decode_add_xor = { 8a 06 8d 4d bc 34 2?2? 04 ?? 34 2?2 Of b6 cO 50 }
condition:

uintl6be(0) == Ox4D5A and
filesize < 1048576 and
(pe.imphash() == "B56503B8C4F46A3A086734C09C6BDOF3" or all of them)

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

+ Practice writing and tweaking a YARA rule.

148 © 2022 Anuj Soni

Technet24

Lab 4.3: Writing capa Rules

Background

In this lab, we will write a capa rule to identify the ChaCha encryption algorithm in code.

Lab Objectives

« Practice writing and tweaking a capa rule.

Lab Preparation

For this lab, we will only use the Static VM. Perform the following steps:

1. Browse to Malware\Section4\ .

2. Extract capa43.zip using the password malware . This should produce a folder named capa43 that contains a DLL, EXE, and an empty
folder named 1ab43_rules .

3. Within 1ab43_rules, create a text file via a right-click > New > Notepad++ Document. Rename the file to encrypt-data-using-chacha.yml
and open it in Notepad++.

4. Launch Ghidra from the desktop.

a

. Create a new project named Section4_capa

. Load and initiate auto-analysis for both boot.d11 and winfax.exe .

N o

. After processing is complete, go to the Listing view for boot.d1l and jump to 180004feb. There, you will find code we previously analyzed
associated with the ChaCha encryption algorithm.

8. Open a command prompt and browse to C:\Users\REM\Desktop\Malware\Section4\capa43 .

Lab Questions

Write a capa rule within 1ab43_rules\encrypt-data-using-chacha.yml that meets the criteria described below. Perform code analysis
as necessary to write the rule. As part of your testing, you will need to execute capa with the command c:
\Users\REM\Desktop\Malware\Section4\capa43> C:\tools\capa.exe -r lab43_rules\encrypt-data-using-chacha.yml boot.dll

/" Notes

Your capa rule should meet the following criteria:
» Use the namespace 1ab43_rules.
- Identify the ChaCha algorithm based on key instructions we have seen in implementations of this algorithm.
+ Include number and mnemonic features.

+ Use a scope such that the results indicate the location within a function where the quarter-rounds occur.

© 2022 Anuj Soni 149

Run the capa rule against the second executable, winfax.exe . At what location does capa identify the basic block that contains the

2. quarter-round operations?

/" Notes

Consider using the command line flags -v or -vv.
3.

Using Ghidra, jump to the location within winfax.exe where the identified basic block resides. What do you notice about that code and
how can we proceed to confirm the activity at this location within the program?

Lab Solutions

v/ Write a capa rule within 1ab43_rules\encrypt-data-using-chacha.yml that meets the criteria described below. Perform code analysis
as necessary to write the rule. As part of your testing, you will need to execute capa with the command c:
\Users\REM\Desktop\Malware\Section4\capa43> C:\tools\capa.exe -r lab43_rules\encrypt-data-using-chacha.yml boot.dll

/" Notes

Your capa rule should meet the following criteria:
+ Use the namespace 1ab43_rules .
+ Identify the ChaCha algorithm based on key instructions we have seen in implementations of this algorithm.
+ Include number and mnemonic features.

+ Use a scope such that the results indicate the location within a function where the quarter-rounds occur.

Answer: Below is one approach to writing a capa rule that satisfies the specified criteria.

rule:
meta:
name: encrypt data using ChaCha
namespace: lab43_rules
author: Anuj Soni
scope: basic block
examples:
- 29ed74821564be25cedc3ad0aa®91b5e7fb8ad979b8eadbb48ddech9d3013bad:0x180004e30
features:
- and:
- and:
- mnemonic: rol
- number: 0x7

150 © 2022 Anuj Soni

Technet24

- and:
- mnemonic: rol
- number: 0x8

- and:
- mnemonic: rol
- number: Oxc

- and:
- mnemonic: rol
- number: 0x10

20 v Run the capa rule against the second executable, winfax.exe . At what location does capa identify the basic block that contains the

quarter-round operations?

/" Notes
Consider using the command line flags -v or -vv.
Answer: To view more detail on capabilities that capa identifies, we can use the -v or -vv command line flags. For example, if we type c:

\Users\REM\Desktop\Malware\Section4\capa43> C:\tools\capa.exe -v -r lab43_rules\encrypt-data-using-chacha.yml winfax.dll, the
output reveals that the identified basic block is at address 4346700 within winfax.exe .

3 v Using Ghidra, jump to the location within winfax.exe where the identified basic block resides. What do you notice about that code and
how can we proceed to confirm the activity at this location within the program?

Answer: Ghidra did not disassemble this content. To view the code, click at the beginning of the code block and type b on the keyboard to

disassemble.

Lab Objectives, Revisited

This lab reinforced the following analysis activities:

« Practice writing and tweaking a capa rule.

© 2022 Anuj Soni 151

