SEC275 | FOUNDATIONS - COMPUTERS, TECHNOLOGY, & SECURITY
GIAC Foundational Cybersecurity Technologies (GFACT)

275.1

Foundations - Computers,
Technology, & Security
Book 1

MNY | GIAC

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

© 2021 SANS Institute. All nghts reserved to SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE "USER") AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive staiement of agreement between SANS Institute and you and that this
CLA supersedes any oral or wrilten proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BEBOUND BY THE TERMS OF THIS CLA
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE

NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distmbute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any junsdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software andfor wols, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remate Deskiop, Apple TV, App Nap, Back o My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch,
ITunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Sin, Spaces, Spotlight,
There's an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and iCloud are
registered trademarks of Apple Inc.

PMP® and PMBOK® are registered rademarks of PMI.
SOF-ELK® s a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SANS Foundations - Book 1

P‘at}‘d 1

Table of Contents

1 Eearmng the FOUNGALIONSiciiiiiirtbiossinissenssetsssansssnsesrsserinansasnsonnbe | N5 |- BAEPsfr
1. 1L.Welcome to'SANS Foundations ccosrmrennsnvssn sovs smavanes ey o e [R —
1. 2.Videos, Audio and eBook . . . cuiincicis i siiiiiin s s Potdiacuivass
R s R R W R S SR R Y S ST [+) i A
Vi CIRINETOS ot i o i g oo S i o o 4 T = TE &SR
T« 5 Your Lab Environment . o raiirsiiia as s s e s s e s 5 |, T
T.0HowtogetHelpo ittt p.17.........
2. Intro to Computer Hardwarecc.eevveenns S AR Wi
2. 1.learning Objectivesccvv v vnmnnrvrvensnsnssnsnsnansnonas p.20..........
2o 8 VOO CIOIVERINE o ocovaiwns v e e s o oo e a8 e 0 R T 5 & [2 357 3 G
B IO R T DO i R A S S T T v e P v
B e (o TS o p.24.........
3 AN s o o s R R W R R R M R s AL R
2. 0. Types ol Slorage . i svsniiivemssis i s anisaase 4 | Ry
i TIEPLY - o 0. 0r0rm mimm a0 oo o s o B | H——
2. BUANPUHEDBVICRS o e R RS S e e T N e (B) G
2. 9.0Utput Devices.ovverrnrnnesasrersrssssnensananssssnenss 1 . S
20 VO HBAE SINKS o 00 o ommonmmmnnimio e g0 0o momee (i mas: el s N i, .
2. VT POWRE-SUPBNY v it e asies de s s e e s wee e s e [« 5. & (T S
2. 12.Walkthrough: Let's BuildaComputer!.coiiniiiniiinnnnn. p.41.........

3‘ Data Stumse and Repmﬂmtiu“ LR R R R A R R A R R R A pi iz‘#ii‘#iiiiiii

. J0 a1 | PR p.43.........
b L L p— P s can i
3. A ARSI Mate NUMbDer BaSRS o i o s e s i e s e i Rl e
11 7= T p.48.........
.S XML o wivae: i e e i e A A R A e e « B0 S
B S N S S D50, oo
B T ENCOBIEHE » vcv o 0w n0m 0 m m 00 0 0 2 S
3. 8. Automatically DecodingEncodingcooiiiii il PO
TR N | = == T = p.ol.........
&. Logic and Data Manipulationcccevssessssssssvssvssarssnissasssssssansensssasssse Po Oesesseronvans
S AT 0 5 o R e e PR (b P oy S P g S N o 3 L AR O
4. -2, BOBIGAN LIOGIC « o oon v nivs wimninimssbom mince e, p: s e e wa s e-soe o, s1as Y S
83 LOGICAN AR i i it o s o NS R et e et P-86.... .0
4.4, 10gicalORo i et i p.68.........
4.5 LOGICHINOTY o ovvvvins-oarammimunsmmuin i resre s ewase s imas e @ P-69..eoviins
0 O R NN e s e S S T e R e [+ 5 | RIER

A T OGIEAE DR i ama e e e st v s e Sy e e Tl 1 20 7~
s B LOBHC JOEMY 5 6 & e o 00 e BB B B e b e B B R 6ty i P.-74.........
4.9, ENCIyPLon WIRE MO o« voinevwmmsnm b mmseesimmesmn s s o 4 wmses s s esm 1B | - SR
4 HEThe LIENgUage-of LOgIC o v Sy sl i T rd i e aseade P18 scrsaais
I IS I N TN T RIS ... o g 000wt 80 MO O O 0RO RS [l —
e g . R e T BB s
WL BT i N R R S S S PR T 1 [
2 B FATIZ B GHFAT . i v e emm o mmmemessisre e seoes e aaaree P-B3 i
S NTED o s o S R R S S R SRR S e p.84.........
T T 1 - o p.85.........
2 B RS B APIES ovvsmmana v smms s e amalmmmae s wa wes s e e R e Pi BB v
B Cload COMPURINE. .o s ianiisimnniniinsiasinsinie O AR R T SR O S | 5 . AR e
0: TEIOUE COMPERITIG. . 600w o6 mmeie wasmimnmee s 8 s smmn-eamses &3 45 1 7L
G.:2.5885; 1835 BN Paab v s i S S SRR e e 3 P
6. 3. WhatYouGettoManageooiiiininririineiinnnnnnannenns 2)8 3 EN——
T ODOMRUING SUStRINE T .. | P Bl s
7. 1.0perating SYstemscuvivrennnserrrrasrnsnsnnannnnreannsns 1 <
7. 2Whatis.an Operating System?c.ccveratssusnsssnnnensnsnssas a0 7
Z.3WhatistheKernel? ieeiiiisiiivinnsnsanaaiissaiannsana P96 ...
7. AWhat IS aProCess?ttt it i ieieaee it ie et i aa e an p.97.........
2o S WAL IS s IHRITUDED oo vivavvmsmns s i sesnwmmnans § o wee e i 9B e
7.6.Hardware INtermupts vivvvntvenensssssssssssnnnsannsssnssos [|
e LSO TONGTE INEOFTUPTS oo vovie o minincs aew s wmmasinm e e i amce are e apm asa e e P. 100 v evnnss
Lo What IS e BoODRARK o i i e o e e e [« il 1§ (RP Py
D TREBIOS . .0 vn e e oo oymymim oo mmm o oo) w1y ey B p.102.........
8. VIRUBLZAHON «.voccisciisssssnmisasisnnsonssssisncssssnsssrssivisersosncacnsvercsansncis Po TR esicsssasanes
B LN IR EalON & & 4 S R T s e o i 1 S
8. 2. What B VILBIZEHON? ... o svvnusssamnase s e nmmnmsae e s sess e o [+ e 1
B3 TNE IRYDOINVISON & i el s A S e o WS4 S 0 i Bl { | 7 P
B.4. UsesofVirtualizationtiirneeninnnenannnnnnnn p.108.........
B SO RUTITVG D O WML i i o v 0 00 0 B o100 1 ¢ ——
8. Intraduction bO EIDE: .o inisiiisssiassisshisspins s snsrsrsaens P e
0 T NI gm0 S 9 A < [oh i 1 O
9. Z:Learning ODPRONGS . o.uvvvriiiassussineiseesiesnaire s e il < 2 fy A
9. 3.Module Content.vvu e uuenenennsnensnsnensnnnnnnnnsnsnsas p-113.........
5. A WAt B LIDUNT o o v wownimam i s weoce i smwa s e ss s o6 e 3 1) | S——
O I D ISERIRILIRIONS o o s i Ta o iamataal o o o v e e erara e o) [-G AT
9. 6. Instaling LINUX . ..coevnnnpmnnmsnsspanessssnrrvnessnsssesssnns P-11&........
9. 7.Installing a LINUK SAIVRF . w.a o aneavii seaas o i s di s aee P- 119 vinniia
9. 8. Navigating the LImee Ul . - v s s s e ins o ' M b, | (RSP

9. 9.Configuring Networkingwiththe GUI 4 2 7.7 SR
S VLI TETTEIEA . o bvvoniioiiotvroin bbbt bbbt bomms o8 dobrdo: Rt b oncs p-124.........
10. i Lintix EYNHOIDEBIE .. issvissvinsiinsiinviniasiis s vy inn s i siiswinavinaiise [W . T
M1 Contents s ks e s e T e [+ 20 [SRR
TE 2 SUPBTRISBT + v v o0 wmwm e 4000 w0 0 0,0 0 F e '« i 1.7 —
10. 3.NavigationintheTerminal i iiiiiiiiiiiasn. p-13Q.........
10 FORIBr BIUCHEINE ... o o v vvvviion vrrrsssrenos ions soresossess ses p-134.........
10, 5.0 POETDISSIONS o000 vn o mousamn 4 wamsario mimsn e 0w s mor o awesecao s 3 i I |- R
106 HRIGON FlIOE .~ o e s i s e S e S S e 2 =) . F A
10. 7.Environment Variables. i p.144.
L LURDE NOEIRRON voisiiiaiiviviinisaievibisaiesmiis i sl sasvatssieuis it P WMiviisviisais
Y O i e B B ST B S B 1 - .
11, 2030 COMPIOLIOT o e 0 0 mmmme emsimmng e e 6 essemms e emanees 68 4§55 = i £ o TR,
11 3Tab Completion Practice o o coai suvasiisaiiiaves dsveniasd o s 7 [S
11. 4. Previous Commandso ii it inincnnniiianeiennnnnanans p.153.........
11.5ReverseCommand Searchc.coceiiinnaiiiiniaiananess ¢ TR PR
N1 GMIstory o s inimiiinaai s dnrmiivohm i siinindsisivia: 253 H Tpdcorpntoon
Tl S BEEUITIERRTS o oavan o mrw:nvopnimsnsimwsie o n:n s s m a6 S e A B
T B ITORTTEIES oo i o s o T e B T e p.160.........
11,9ClearingtheTerminalcoviiiiiiiirinnnnarnrnsnannnnns p.162.........
12. LNt COMMANAS L sviusvasssnsnvsnsnssnonssssisisssvissvinsosnsonssonsssisnvisninins Po W hassvsouavonss
U A B | g v SR e e RS O O A S p.164.........
14 2.The CD COMMBIE . «.oonmevevaonnmyesmmmsnese s onummsss ey [+ R, 1 - T
V& BRI s R A R R R R R A e 2 |5 R
12.4ThemvCommandc.ocvvvernnnnnnerarsnsnnsnnnnnnsansnnns p.167.........
B2 Bl oo i oo ok e e R R e e ek [VIO e i
e O s e e e S e e i T vve s p.169........
L - SRR 170, .o v. ...
T2 8 The TN ComMMIBNE oo i wweien s e o e we e o el - By g PP
15 LI CommMAnas 2 <. s s s s e pies pes s nessnivsmsnmsnasinsr IR e danndianiss
VRIS : i o o D 0 8 M 8 R - i 2 e
2 VIR R O I o o o e T e N e S N Y p.174........
L T X {5 = X . A
L O D DTN, i A R R A A B R A A ' B [, TSR
I S b oo G e LR R PR e SR S Rt 'y [PO
B BT oo v o 5 0 0 4 T < R SN
I s i S o e e o A ST P I8 casiii
13.8.Thestrings Commandcvevrernrnnnernnrnnannnsnnnnnns p.183
T SINGEE & -w s i N R T R R BB B R R AR R o 5 L.
13 TOChAamRG TOMMAIIS 4.0t v e el s el s e i s e e e o A | L AR
13. 11Chaining Commands Demo ovvuiiniiuieerenannnnanas P-187...00000.

PanEd

14. Linux Architecture and COMPONeNtScccvuieriureiameinrerneinresnnsnasans, P IR sviiavivic

B O L T < p-190.........
1 2 PIOCOSSEE . v o s wimenm s s s Eame o 5o e SEHa s T EEF S5 fe T e B G o
14 3. Pipes & Redirects: o savaiivihidsanaany o5 v v siamande e o 2 L2 e
T A PasSWIE I .o oovnvemme s ommn e o w0, W 000 4 A P. 198 .. vonaan
14, 5.SEhaduiag Tasks . rmm i m smm s e e R e s p-200.........
14.6.PackageManagers........c.oovevnvuvncnnroncncanssnsnsnsnnas p.203.........
T L PACICRTIOS i o voeicain om0 s o oo i a0 o 6 BT e e 1 Bt 7 R
14, 8.apt-get Installation Walkthrougho iiaiiian P s
14. 9.BuildingFrom Sourceot i p-21%. .. co vt
14 TOUSING S5 oo siinammemme e gsmwe se s asmmnn e e e e ese s e e pP.214.........
14. 11 CustomisingYourShellciiiiiiiiiiiiiiiiiiiinnnnans [+ 7 o b
A5 BEATEN SUDBTD NS «.vonnssinsnisninssmissinssaissinssiissisasavss ssasassnasunisss] P S a0k ssnessasudn
13 TRRNCEITES v o S B S L S TS R R s P2V wimw
15. 2ZHow Search Works oo oo i, p.218.........
15. 3.Constructing a propersearchquerycoeiiieneeannns B2 W e
15.4.Commandsand Colonsvvieiiiiieninnnnanasannasannns p.220.........
15 D.G00IE DAIMKS ..o.ooroaremmanmmmie i wie e ssammasmmee mn us s s s s 2 M 7.7
15 D MWHEACAIDS - cvvinsram r R es R R P: 223 i
T EUIORES | o oo v enn pimerm s e o)0 8B B) 8 8 B p.224.........
15:.8.5600010 25 3 CAICUIDROTL . s e wueimn e ne memmsemmneain: e &8 e 0. 220 i cociciian
15 TroutieSOotING . o v il vanesdvdisras it s snaaassiansass p-228.........
15. 10Alternative Search Engines.coiii it iiiiiinnnnnannnan p.230.........
15. 11G00gie: INPractte o v v vaummnns s v imes ses aisaons & e = B [
15. WWW ANE SIIVINE s niinn i mi s P B s
10, O PTRRINES o i B 8. N MR B 68 U DO 2 B 3 L
16 2. W8l BBPUBIS (i e ids s sves s s i e s as Dl s wwie p-234.........
16. 3.HTTP Protocol inDepthcveine e i iiiieeeiean s P.230i.uirevws
0 BTN v 0 B st A R D238 i
g T BT ey o A e S P o D i e g O R P. 23X i
10, BPHP s v vonnvoinnmm e s pynnsssasns sam s e s s s seees s oo 17 L.) PR,
10. T.Cookies & LOCaI SIOFRQe ... criinaniiinnaiive s s wieiii v B85 s
17. NEtWOIKINE T ..vvuviiniinninnanrarsnissssrsssnssnrsnsssssssssnssnssnssssssassnssnssns o 208 iiiiiiiianns
17. 1Learning OBJECtVES .« vuie v vwiwsaa i i wis asis sie s e e e P-245 i
17. 2ZModule Content .. ., cocovreerieversnsissonsasssosssorsssssnns P-246.........
BT VIS OF INOOIWDEIS . o x v w001 ases s s s o i A 2 I L i (A
T8 T DOEOIES wovara it s ol i b S T e S M R S R M e it L R
17, SMAC AdOresses . ..o e ieienenanaessssssnn s nnanannnsnsaen, p.253........
P GPREREIS v v i S e S A aaweee eaa [L
P AT, e e A o N B R e e e e e T o [B2 &0 -
17. 8 TCPProtocolot ie ittt i iiiae e it is s na s anans R L

R ORI Protoeol o oe.c s et pame b h b oo b o b s 8 8 i 80 i P. 258
T 3 6 e P.299 i vennn
18 NEUWOTKINE 2 . i s sivaiisiaismmisna s v sk don by sisnad anad e dia P 26000 e
EB VT OTTERITES v s v oo 0w 00, W0 T MW A NS 3 101, [
18. 2Z.InternetProtocol Version 4 i P8 i
18. 3.Network Address Translationcciviriinnnnnrnenannnn 0. 208 i s
18. 4. Internet Protocal Version 6.« v veessnsmnemmaaemn wans s ¢ saeeas p.264.........
T8 S SUDREE o SE E S T T ST T P 265 caaan
18. 6.Classless Inter-Domain Routing (CIDR) oot p.266.........
18, T PIIMEIRIP RANGES cau iivessmeniemnnne s i ses se s s aes e e T
T8 S TCP Profocol (iiina s ddiismnbiniisnsddads £ p.268.........
18, 9. TCP Hanashake ... ««vc vvvmmmesenwrsnssmmmmness oo ss e vmms L
15 TOMDP PIOOCOE s i i o i e e s 3 i [3 i R
R I POIREIREING: o o o s B By sy B 5wy . B RN, = Ao £ S
T FRIIT TR o o chmmmiorioronoios 0 0 68 e N 0 W e e 658 D278 iiaaiiin o
B TR s R T o O i i T 7 S | et e,
18. 14 Walkthrough with Wiresharko i i ittt p.277.........
19 NODWOTIIRE 3 v iimimiisiiiiisiisiiusviues p.278.......
) OTTRETES . .o o o - o 028 3 7m0) 28 B B0 B B B8 -9 [« e . .
PR Z BB o inamasonsiimem i wm ok wow oo S E he €68 R NN B SRR P B0 o v
T2 ZEMTE BIOIOCOE i v e i s v s s s v v s s e ca s i s s ne s [+ 1 | 3 [
19. 4. POP3, IMAP & Exchangecoviiniiininiiiiiinncneannsans p.283........
19. 5.Email Spoofing. SPF&DKIMovvviiiiiivirinassasssnisas D285 e
19, CHOWSPFWOTKS i i sviviiiiinaiaii seene bevisemaiens veve sios p.286.........
19, THOW DICIM WOTKSov0im anmorswa pmenmme s amos s son e s [+ 74
20, NOTWOERIDE A i nmihiavinviiinisiminiminmsiisisivsiviimvissvissviserieve D 388 ciaiiiaiiia
B0 e T 5 | (= 3| N p.289.........
0 BN i i i i A e B e D290 i iiinan
R T S T S R T R R R R R (2 504 3 g e
20. 4. Authoritative Name Servers. ccvivine v ieesnsncassonnsas B 29 e
20 D EACIMING o e Al B S R T e e Pod o nsnias
20. 6. Forward & Reverse LOOKUPS v v iiiniiniicanennnnennns p.29%.........
20, 7. Kecursive & Rerative LOOKUPS .« «av i suns saaissssssansssamasaass 0295 iauasaias
2R RS RO o S e R S e R e e D296 0
o BT L RSOy || .- .\ B
21 VOIS s v T e e R R R e B e
8 (0 p.299.........
B BRI o o i R A B BT A P-300....ov0e
2V L WIBIBL . oo s 3T aiiete e o o e i e ate o o e e 0 e e et [+ BC {1y RN et
21. 5. Application Layerot et it e - 1 T

21D Presentalion Layer . ..o vievimn amnmaiia s wwieeis i e i v P304

iy e = S B T T RSO o YOS O o e P Ny S B30 ook e
21 BT TS POTLLAVOT . oipwomwieemiminis s sms s wonses sismesi o S48 6 4 wases a0 B 300 s ssnsnn
2 ENEIWORK LAl o i e L Tt S R R e T S R P30T s
21.10Data link Layer v v it i i e p.308..........
2F: TEPRYSICAL VT : oo snnmanas s sisms s sies snesines does s sms anosanae 0309 o
1 T2TERIP Mbdel . conni sasnaibiieiyssam e ivasai o B L ¢ S,
21 T3 APDHCITION LAYEE oo v wmnmsamscneamimmessse s eaes nases e e i R
21 TR TraNSPOTE LaVOY . o iea e s i vsca s v s e e w e e |+ § A e
IR ACT (313 =Tg 0 d B S SR U SR A SRR p.313.........
21 TONEBWOrK ACCESS LAVEE . o v wwmae s wmmmsemm e amnme sa s # sateeisee [[I
2 T Packet Heaoars o oo S S e S O3 S S TR s L § L
= 7 p.316.........
BV PRI vi i oo o A S R A A O P3N aiannaas
2L 2PN s G st R S p.318.........
2. 21 Building an SMENEIWOTKovavnermmasnnsssss s o [« 30 5 L —
22, INtrodUCtion 10 SEIVEISciviuuiiiniinriianasnresasssnsesnsssnsesnnssnsssnnssnnes D320 ieviiviiia
22.1.5erversand ServiCesottt it it i p.321.........
2L L 5ovRr HaroWare . i cussvnsswiives ss sasnans e e sie s dide R
22, F.Sorver SofWare . .o i il sedisniivsssdisiviesennvsaaiee p.324.........
22. 4. What types of serversexXist? . .. cocavvsvssssnsnssssasanssssssns 2 I 7 L
22 5.CNallenges O SeIVRrS . vaiinves s s s s i m i es e s 4 aais .320. oo
22. 6.How are they connected to the outsideworld? [« . .7
23, Moh SBINBIS i csivssissinsvisninissuississviinvisvissoiisssunviiavissuiismisanvssuis oot ssseeinisnevs
23. 1.Introductionto Web Servers.covviiiinnnnnrsrosssnensas P. 329 i
23 2 What Sre Weby SBOVEIST .. v.oo vy ans s e e sy s e s oo R K1
23. 3. Howdoweb serverswork ii i e e P33 i
23. 4. ANalyticS ONMWeD SBIVerS . .. oo vve v mnansnsnaanannnnnns p.335.........
23 BN SNADE o caa e naaa s R R A A A e e DD e e
22 R (e) R O S At L S A L Y Y U TR R e Ay p.338.........
23, 7Ngint and Lt S ENCIYPEDEMIO . . oo 00 nnnmse e mmnannoe sanneee v N
23. 8. Web Server Practice Checklistcovivvaiivvvras simvaies as PR i
2h; DELEDASS SOTVRDS i e R DR e
24, 1.Introduction to Database Servers......cccoviveniiniiiicnnanss o = 1 C——
o ORI A R RO L e R S R S S S R P i
24, 3.PHPMyAdmin & Adminerfunctions..........ccvvvvieninnrnnne. P.345. .vvveans
A A SN D P INIOI D IVNED i oo s 0 i R R R [+ B2 7 TP
24. 5:S0L Server Setup Conslderatlons .. ., .csmesenssssssssssssesnns 213 L T e
25, IS SHOBIE Lo isdsunmsinssunassnasssisiisssasstiaianasenaRtasENaTRARssnaannaannannnns e Moty dns nann oh
25. 1.Introduction to:DINS 5arvers.. .. uu e vas e vaaiiinasnanssassaas v B30k v aseaas
25, 2. Theory VS Practise . .. v.vu e inine it innnenansssnaansennnnns Lo ——

25, A AFEYOUSBOUTET . . oo cvrne s osntins s sssens sy ssmesssnssssss B3B8 wootis
259, D.DNS over HEIPS VE TES . o wvnmmbmmmeenimmesmnssonm 6 5 mwseiesissraeines 2 M L
2o INREE IS DINSSEL. &rrssmmn ey ol e e S e e Lo et
25, LOR SBTVATE cocorniusmsasmsusnsnsntasassssterasnsssnsasns st snsusatesnsasasnensasaensnts - I —
20, T LO0 BRTWOES (o iimsil et sl covesei e aveSa o A e T p. 3060
26, 2. Basit Log ServerSettpP o venerenosoacacs orosssoesesnssss p.361.........
20 . SIMNS SEMNVSSIEM ..o oo v i smme mmmesmn waiess s mmesmimaassse & B 382 e
20: 4. Frea tools vs commercial. oo w minnarisssan S S iieasii e p.364.........
26. 5.5eCUrity VS PrIVAGY . . oo ot it it ittt it et a e p.365.........
26. b.Llogserver best practiCesc..vuveivssivissssvanssnss sass P-366 ..iiaaaas
2L EMBIL SEIVOIS i i e e e S SRR S o P 308 ciesiinn
27. 1Introduction to Email Servers cosovvivess i nnennnsanessssss 0. 309 e o
LT ZSNITR, IMAR; POPI and olNers: wososssrnm ava porasviderii suvis 325 ¥) | et
27. 3.What happenswhenyoucdicksendccooviiiiiiniiinnnn. p.372.........
L A SPa MRS s o i Vs R R e e AT (2 b 2,
2. S NESPORSE COMRE i i aaas s s e e s s e s s e B 3T vviaian
P L L —————— [J5 | .. : R
27, 7 Baslc Emaill Server SEtUD:. .. o vvvaniinnanse e v e m e 0. 382 v
28, Synchronisation SEIVErSccccvvisnrsesrasnrssssassssssrasssssssasssssssnsssssss Po 383 iiuinnnsnnns
28. 1.Introduction to synchronisation servers.cociiiannnn p.384.........
28. 2 HoOWdotheyWOrK? ... iisiiisisessonnnosansissos e snsnsseas P.385.. .0

ng a

Introduction

Pa rﬁ 9

Learning the Foundations

Pa:;ﬁjllj

Welcome to SANS Foundations

Welcome to the course! This syllabus was curated and the platform architected to provide
you with a fast track to learning the foundations. Whether you plan to go on to study
offensive security, forensics - or perhaps a related profession such as development or
engineering, SANS Foundations provides you with the background knowledge you need to
enter the profession and accelerate your learming.

From the basics of networking, familiarisation with programming and scripting, through to

basic security concepts, you will learn the language and meaning of terms that get you
started within these roles.

Every day, as a security practitioner and a developer, I make use of my Linux command
line skills, and the ability to pop together a tool using Python has solved so many
problems. In this platform, you will learn the theory, and get the chance to practise until
you are a master of the foundations, and ready to springboard into your future career.

Good luck, and have a wonderful learning journey!

James Lyne, SANS CTO.

Pa;ﬁll

Videos, Audio and eBook

The course platform provides you with a number of different formats to engage with the
content. You will get videos, audio to listen to, and examples to read. Some videos are in
lecture format where we share stories and examples, but there are also lots of
dermonstration modules where you can watch how it is done. Please note that subtitles
and speed controls are available in the player for you to customise your experience:

it's not one size fits all. And it tends to involve

As you step through the course you will be exposed to different formats of video, styles of
study and material. Each of these will layer together to help you learn the foundations,
and then supply you with lots of opportunities to practise!

Pav,ﬁzll‘

Lab System

The integrated lab system provides you with the opportunity to apply the theory and try
for yourself. Using your browser, you will be provided with access to a personalised Linux
system. Simply click into it and start typing! The user interface looks like this:

There are often lab steps provided, which can be navigated through step-by-step.
Alternatively you can treat the lab as a challenge and try to make it on your own. You can
always reset your lab environment if it goes wrong! Lab steps look like this:

Lab Instructions

Lt s vl gt o L G directary (o ST grappng,

In some modules, you will find you need to code solutions, not just use the command line.
In this case, you will be provided with an editor and a terminal. You can switch between
them to write, then run, your code. The interface looks like this:

Paﬁa

Your connection will need to be reliable to use the lab system, but if anything goes wrong
you can always re-load and get access to the system again. Also, please remembaou

are welcome to go off the rails in the labs, and try things you are interested in! Practice
sharpens your skills!

Pa :;Iehl-i

Quizzes

The quizzes are designed for you to challenge your knowledge, and check whether you
understood the material from a module. They are not an examination, and the scores are
not used as part of a final grading. You can take the quiz as many times as you would like,
and you should treat it as a useful measure of whether you need to do more work. When
you provide an answer, you are given feedback to help you learn. Here is an example:

Quiz Questions
PackaEes can e installed using 'rpm’ With rpm | pacxkage.rpm

® True

® False

Incorrect answer

The -i' parameter is for dplg, With rpm you mist use “Lvh

You can go back to a module, section, or a quiz at any time.

PaqulE

Your Lab Environment

As you study the SANS Foundations course, you are going to get plenty of opportunities to
practice hands on. This section introduces you to the lab environment, and how to write
code, execute programs, and make the most of your learning systems. Worry not, you will

get plenty of practice using these features, and you can always jump back here and watch
the video again if you get stuck!

Pa%m

How to get Help

If you get stuck, confused or find an error, then there are multiple ways you can let us
know. Firstly, on every page in the platform, there is a feedback tab on the right hand side
of your screen:

Introduction

An introduction to what you will learn, and the
purpose of the course, from James Lyne.

© Feedback

[Mark section complete

You can click this to let us know how you are doing. You can even use it to tell us that
something just clicked and you feel fantastic!

You can write a comment about the page or the content. If you want, you can also click
and select a particular element on the page, for example highlighting that a particular
paragraph of text left you confused.

Pﬂqn?l?

Lab System

ifrhe imtegrated lab sy<tern provides you with the opportunity to apply the theary &nd try for
L.murs&[[Using your browser, you will be provided with atesss 1o & personatised Linu

wstem, Simply click into it and start typing! The user interface looks (e this *

Tarminal

ﬁ Feedback details

dbewi') vl aisl e jiarage

Send feedback

These comments will be sent to our team and used to address content improvements and
roadmap. If you need more active help and support, for example, if your browser is not
allowing you to complete the labs, or you are experiencing a technical error, you can
contact our support team.

support@sans-foundations.com

You will receive a notification that your ticket has been logged, and the support team will
review your query and respond to you. In the interim, we suggest you keep on reviewing
the material and working with modules in the platform - there is a lot to learn!

Pat,i%lﬂ

Intro to Computer Hardware

Pa:,f;;lg

Learning Objectives
After completing this module, you should be capable of:

Identifying computer hardware components.

Replacing damaged components in a desktop computer.

Assembling a computer from individual parts.

Understanding what each component does, and how they work together as a whole.

Pawl:r

Module Content

This module will provide a brief overview of each hardware component that goes into a
functioning computer. The description of each element will indude information on the
role of the component in the operation of the computer, along with technical details that
could help a student assemble a computer from parts.

We will be covering the following components:

Motherboard

Processor

Random Access Memory (RAM)
Storage

Graphics Processing Unit (GPU)
Input Devices

Output Devices

Power Supply Unit (PSU)
Connectors

Heat Sink

Thermal Paste

Pagf,l.'-!l

Motherboard

The motherboard is the central piece to which all other components connect.

g

ME—=iji=—ll=—==l==3l
W

L]]1] | | sssasisiiss

This image shows the front of a typical motherboard. We can see there are clear spaces
for other components to slot into the board.

Sizes

Motherboards typically come in different, but standard, sizes. PC cases usually come with
holes pre-drilled for motherboards to attach to with screws.

The various sizes of a motherboard are:

« E-ATX:The largest size, known as 'extended ATX'.
« ATX: The 'standard' size.

« micro-ATX: Smaller than ATX.

* mini-ITX: Even smaller still.

Most desktop computers use an ATX or E-ATX motherboard, with micro-ATX and below
usually used in laptops or other small form-factor applications.

Paﬁz}

Here we have an image showing the differences between motherboard sizes. If you are
building your first computer, make sure you select a motherboard size that is compatible
with your case!

Sockets

Motherboards are often classified based on the 'socket type with which they are
compatible. The socket is just a name given to the kind of connector that the CPU
processor has. The CPU processor must have a socket that is compatible with the
motherboard, otherwise it simply will not fit!

For example, say you have a processor with a socket type of LGA 2011. If you want to
connect it to a motherboard, that motherboard should also have a socket type of LGA
2011,

Buses

In the images of motherboards above, you can see the locations in which hardware will
eventually slot. These components naturally need to be able to communicate, and the
motherboard is the component which enables this. The motherboard does this by using
buses. Think of them as physical connections between the components that connect to
the motherboard. The buses are responsible for moving data between components,
similar to how buses are used to move people between locations in a city.

Paq-‘psZB

Processor

The processor, or 'Central Processing Unit (CPU)’, is the ‘brain’ of the computer. The
processor is responsible for executing the instructions contained in computer programs.

This image shows a modern processor's front and back view. The front is the piece with
the silver 'lid' on it, while the back view is the section with the gold connectors. The
connectors are laid out according to the 'socket’ specification. The socket configuration of
a processor allows the processor to be used in motherboards that have a compatible
socket type.

Cores

Each processor contains at least one processing 'core’. The core is responsible for
executing instructions. Modern processors often contain more than one core, allowing
them to perform multiple tasks simultaneously. Older processors only had a single core,
meaning they could only execute a single instruction at a time.

Even in an older processor with only a single core, computers seem to give us the ability
to perform many tasks simultaneously. For example, you might be writing a document in
Microsoft Word, and have your email open in the background. While you are typing away,
you might see a new email come into your inbox. If a computer can only perform one task
at a time, how did you receive the email while you were typing? To solve this mystery, we
will first need to learn about clock speed.

Clock Speed

A computer program is broken up into a series of small instructions, which a processor can
understand and execute very quickly. In fact, we often measure a processor's speed by
how many instructions it can execute in one second. A processor that can execute one

Pa ﬁza

instruction per second has a clock speed of 1 Hz (hertz). It is not unusual to find modern
processors which run at a clock speed of 4 GHz (Gigahertz). A computer with a clock speed
of 4 GHz can execute 4 billion instructions per second.

Context Switching
A single core processor does not perform multiple tasks simultaneously; it merely feels
that way to the user. This capability is achieved using a process called ‘context switching’,

whereby the processor shares processor time between multiple applications, swapping
back and forth between them at a speed that the human mind cannot discern.

Pa%l!-

RAM

RAM is short for Random Access Memory. RAM can also be referred to as simply 'memory’.
RAM is often confused with "storage’, which is something else entirely.

Erm, not that ram...

This is RAM:

Here we have a 'stick' of RAM. The gold connector at the bottom of the RAM 'stick’ slots
into the RAM slots on the motherboard. The 'stick’ in the image above is 8GB of RAM. Think
of RAM as the number of things you can have open on your computer at once. So with 8GB
of RAM, you can have 8GB of software running all at once. Part of that will be taken up with
the operating system (e.g. Windows), but the rest will be for whichever programs, images
etc. you have open at once.

Pa ﬁza

That isn't to say there is a direct correlation between storage and RAM. If you purchase
and download a video game that is 40GB in size, you don't need 40GB of RAM to run the
game. A lot of that storage will be resources such as models and textures which are only
loaded and unloaded as they are needed. They won't all be loaded into RAM at once.

One of the most common ways to speed up a slow computer is to upgrade the RAM,
although you should make sure that the lack of RAM is the bottleneck first. If you already
have plenty of RAM, upgrading it won't make much of a difference. Typically, performing a
RAM upgrade is easy. You just need to pluck out the existing sticks of RAM and replace
them with new ones with a higher capacity. Of course, you must make sure that the RAM
you buy as a replacement is compatible with your motherboard.

Speed

The benefit of RAM is its speed. It is much faster to read data stored in RAM than itis fo
read data stored on a hard disk, for example. This is why data is often read from storage
and then kept in RAM while the processor is actively using it. The processor will then refer
to that data from its position in memory, rather than on disk.

Volatility

Since RAM is so fast, why don't we use it for storing everything? The simple answer is that
RAM isvolatile. This means that the data stored in RAM exists only temporarily. As soon as
the computer is switched off, any data stored in RAM will begin to degrade. Can you
imagine storing your documents on your computer, but having all those files deleted after
the computer restarts?

Compatibility

There are two factors to pay attention to with RAM. The first is the type of RAM. For
example, DDR4 (double data rate fourth generation) RAM is relatively new, and only some
motherboards support it. DDR3 RAM was first introduced in 2007 and most motherboards
will happily support it.

The other factor to pay attention to is the speed. Obviously, faster RAM is better. The
speed of RAM is measured in MHz, so, for example, DDR3-2133 RAM is DDR3 RAM with a
maximum speed of 2133 MHz.

Many motherboards will explicitly state what type of RAM they accept. For instance, a
motherboard manufacturer may say that the motherboard accepts RAM up to DDR3-2133,
meaning any DDR3 RAM module with a frequency of 2133 MHz or less.

PHW?

Types of Storage

Storage is a component that provides data storage. Typically this is a hard drive or S5D
(solid state drive). Again, this is often confused with RAM or memory and the terms are
used interchangeably in many technical contexts - but the difference in speed and
persistence of data are vast!

Here we have a 4 TeraByte 3.5 inch hard drive. At this size, this is a hard drive for use in
desktop computers.

Size

The physical size of the hard drive is important. 3.5 inch hard drives, as in the picture
above, are frequently used in desktop computers, however they are rarely seen in laptops
due to the amount of space they take up.

Laptops more commonly use the smaller form-factor 2.5 inch hard drives for storage
instead. These tend to have a lower maximum capacity than their desktop counterparts.
Make sure you pick the right size for your use case if you are purchasing parts!

Capacity

Aside from the physical size of the drive, each drive has a maximum capacity, the largest
amount of data that can be stored on the drive itself. Drives usually have a maximum
capacity that is slightly lower than their advertised value, For example, a 4 TB drive
cannot actually store 4 TB of data. Usually, the capacity will be about 3.8 TB, so keep this
in mind.

Mechanical vs Solid State

Pa ﬁza

For a long time, the only type of hard drives we had was mechanical drives. These drives
contain moving parts and therefore they can be quite unreliable over longer periods of
time, or if they are jolted while in use. They are also comparatively slower than their solid
state counterparts.

Solid state drives contain no moving parts and therefore they are both more reliable and
faster than mechanical drives. However, they are still significantly more expensive than
their mechanical counterparts.

Solid state drives include firmware and services to enable their fast operation with a
modern computer, but as we will talk about later this can present interesting
opportunities and challenges with forensic recovery of data, or secure destruction of
data.

Pawg

GPU

The GPU, or Graphics Processing Unit, is an optional component Not every computer has
one, because a GPU is just another kind of processor that excels at number crunching. In
computers without a dedicated GPU, the CPU performs the same function, albeit less
efficiently than a computer with a dedicated GPU.

Where a computer has a GPU, the processor offioads the calculations necessary for
displaying graphics on a monitor to the GPU, providing a performance benefit to the
processor. The GPU usually resides on a card called a 'graphics card'. This card contains
not just the GPU, but also its own dedicated RAM where computer graphics are stored for
use by the GPU.

Here we have a relatively modern graphics card. The bulk of the card is taken up by a
heat sink and fan, used for redirecting heat away from the sensitive components.

Number Crunching

Don't be fooled by the name 'Graphics Processing Unit’; the GPU excels in all tasks that
involve mathematical calculation. Often, GPUs are used in other mathematically
demanding tasks, such as 3D rendering, or encryption. In cyber security, we often use
graphics cards such as these to crack passwords.

Pagt.’alj

Input Devices

Input devices are devices which, when connected to computers, can send data to them.
These are used to control the computer. For example, a mouse is an input device, as is a
keyboard. These devices are also known as 'Human Interface Devices', or HIDs, because
they provide humans with a way to interface with the computer.

UsB

These days, the most common way of connecting an input device is over USB (Universal
Serial Bus). Here is an image of a USB port:

Of course, not all USB connectors are the same. There are different types. You may be
familiar with these other connection types:

Pa?.lil].

There is also a newer connection type known as Type-C', which looks like this:

As well as the differences in connectors, not all USB ports are the same either. There have
been several upgrades to the USB standard in the past.

« USB 1- Transfer Speed: 1.5 Mbit/s

« USB 2 - Transfer Speed: 480 Mbit/s

* USB 3 - Transfer Speed: 4.8 Gbit/s (You can usually tell if a port is USB 3 compatible
because the port will be coloured blue)

» USB 3.1 - Transfer Speed: 10 Gbit/s (You can usually tell if a port is USB 3.1
compatible because the port will be coloured teal)

PS/2

Of course, before USB, there was the PS/2 port, which many older peripherals support.

Paﬁil‘

Output Devices

Output devices are devices that accept data from the computer. An output device could
be a monitor, printer, or any such device. A monitor accepts data from the computer and
displays an image. A printer accepts data from the computer and prints a document. We
classify any other device that functions similarly as an output device.

Output devices such as printers are often connected over USB, whereas monitors might
use VGA, or HDMI. More and more systems are tending towards using USB-C for 'everything’
given the powerful range of capabilities of this port - from power to display or user input.

VGA

VGA is the oldest standard for A/V output that we are going to cover. The port looks like
this:

On either side of the port, there are two slots into which thumb screws on the connector
connect, These need to be tightened to provide stability to the connection.

DviI

DVI is more modern than VGA. However, it is still old by modern standards. Here is what a
DVI port looks like:

PaﬁHEl

Once again, note the area for two thumb screws which need to be tightened after the
connection is plugged in.

HDMI

The HDMI connection is more modern and more widely used than DVI or VGA these days. It
can transmit not only video but audio also.

Here are some examples of HDMI connectors:

Display Port

Even more modern than HDMI is a display port.

P:sg.a}i

uUsB-C

A powerful connector with a wide range of capabilities. Some modern monitors support
video output over USB-C, whilst also enabling hub capabilities for you to chain together
large numbers of devices. Power can also be transferred, enabling 'one port' to rule them
all! This is undeniably an attractive proposition to avoid the complexities of different
ports, but this is far from universally used as yet.

Pauﬂlﬁ

Heat Sinks

One of the primary considerations when building a computer has to be heat build-up.
Computers can generate a lot of heat, and the components are often placed into a small
space such as a case. They need to have a way to deal with the build-up of heat
efficiently, otherwise the components may overheat and be damaged.

Many cases deal with this problem by having room for a lot of case fans, butfans alone
are not enough. Heat sinks are used to move heat away from sensitive components.

Here we have an image of a heat sink attached to a processor. The heat sink is the metal
block with many fins. A heat sink is made of a thermally conductive material. The purpose
of the heat sink is to move heat away from the critical component, in this case the
processor. The fins are designed to create more surface area for the air to cool it more
efficiently.

To attach the heat sink to a component, we use thermal paste. Thermal paste is spread
onto one of the components before the heat sink is attached. Thermal paste helps to
conduct heat from one surface to another by filling in minute imperfections in the
surfaces, which can trap air (which is a good insulator).

The fan attached to the top of the heat sink blows air away from the heat sink, therefore
moving the heat from the heat sink out through the vents on the case.

The processor isn't always the only item cooled with a heat sink. The graphics card, if the
computer has one, often has a heat sink and fan built into it as standard. Many
motherboards incorporate small heat sinks into the motherboard design, although these
are usually too small to be cooled by dedicated fans. The case fans usually take care of
cooling the heat sinks on the motherboard.

Pa 35535

Power Supply

The final component we will cover is the power supply or PSU (Power Supply Unit). The
power supply is responsible for taking power from either the mains power supply or a
battery (in the case of laptops) and converting then delivering it to the computer
components.

The power supply usually connects to the motherboard, the graphics card(s), the hard
drive(s) and the fans. All other components, such as the processor, are usually powered by
the motherboard.

Each power supply will be rated to provide a certain amount of power. You must make
sure the power supply you are using will be enough to power all of the components in your
computer, otherwise the computer may not turn on or may turn off randomly when the
components require more power.

Here we have a power supply. Notice it has a built-in fan to cool it down during operation.
Cables are running out of the unit, which will connect to the computer components.

Connectors

We will briefiy cover some of the connectors that power supplies use.

PaW?

The above image shows a four pin peripheral connector. This type of connection is usually
used for powering fans.

The above image shows a SATA (Serial ATA) power connector, which is used for powering
hard drives.

P::g.BEEI

The above image shows the main ATX connection that runs to the motherboard. Some
motherboards require 20 pins, some require 24, and therefore most modern connectors
provide a 20 pin connector with an optional extra four pins.

The above image shows a 12V power connector which runs to the motherboard. Again,
some motherboards require four pins, and some require eight, so commonly you will find
connections with four pins and an optional extra four.

Pa%ig

The above image shows a PCI-E power connector, which usually runs to a graphics card.

Again, some cards need six pins and some need eight, and therefore you will commonly
find cables with an optional extra two pins.

Pa ﬂrbd 0

Walkthrough: Let's Build a Computer!

James Lyne walks through the full build process of a desktop PC, showcasing all the
components we have looked at so far in this module.

Paf’ldl

Data Storage and Representation

Pa ﬂ“

Contents

This module will cover how data is stored on a computer. The topics covered are:

Bits

Bytes

Alternate number bases

Binary

Hexadecimal

ASCII

Encoding

Automatically Decoding Encoding
File Headers

Note: As you can see, there will be maths in this module. DONT PANIC! As long as you can
add, subtract, multiply and divide, this will all be very basic.

Paagﬁ:!

Bits

A bit is the smallest unit of data that can be stored on a computer system. There can only
be two possible values stored in a single bit: a"1" or a '0'. This is known as a 'boolean’
value. A 'boolean’, or 'bool’ for short, can only have two values. Think of it as a switch: a
switch can have one of two positions: 'on’ or 'off".

All data in a computer system is made up of bits:

Oh, and 4 bits (half a byte) is called a nibble...

1 byte is 8 bits.

1 kilobyte (kB) is 1000 bytes.

1 megabyte (MB) is 1000 kilobytes.
1 gigabyte (GB) is 1000 megabytes.
1 terabyte (TB) is 1000 gigabytes.

Get it?
10242

Some of you may have read all this and gone, hey wait! Isn't 1 kilobyte, 1024 bytes?! Isn't 1
MB, 1024 kB?!

The answer is yes, and also no...
I hope that cleared things up for you!
Seriously though, the truth is, we started off using kB to denote 1024 bytes (The next few

chapters will explain why it's 1024). The problem is that the prefix 'kilo' already means
something. Scientifically, the prefix kilo means 1000 (10A3). This caused a lot of confusion

Pa %-M

all around, so the IEC (International Electro-technical Commission) introduced KiB
instead.

That's a kibibyte. There are also mebibytes, gibibytes and tebibytes and so on...

1 byte is 8 bits.
1 kibibyte (KiB) is 1024 bytes.

1 mebibyte (MiB) is 1024 kibibytes.
1 gibibyte (GiB) is 1024 mebibytes.
1 tebibyte (TiB) is 1024 gibibytes.

And so on...

However, this didn't really clear things up for most people. A lot of technical people went
on thinking that 1 kB is 1024 bytes, without ever knowing that kibibytes existed.

To this day, it isn't always clear when someone writes kB if they mean 1000 bytes or 1024
bytes.

Paagd!-

Alternate Number Bases

To understand the format that computers use to store data, we first have to re-learn how
to count. Counting is such a simple task that we learn from a very young age. It comes as
naturally to most of us as breathing, and just like breathing we don't have to think about it
very hard.

We usually count in 'base 10', also known as 'decimal’ or 'denary’. The denary numbering
system starts from 0 and runs through to 9. Those are all the digits that are available.

Counting in Denary

If we want to count higher than 9, we need to start using more digits. The number "12'
consists of two digits: a 1 and a 2. Written together, it's a twelve. Why is that?

Here we have a base 10 number, so think about it like this:

‘maaa‘maﬂ 100 10 f‘

‘n ‘n 0 |12
There is one 10.

There are two 1s.
10+2=12.

Let's look at a larger number: 1337

| Tﬂﬂﬂﬂ} Tﬂﬂﬂ.‘ Tﬂﬂ‘ Tﬂi f:

o 1 |3 37
There is one 1000.
There are three 100s.
There are three 10s.
There are seven 1s.
1000 + 300+ 30+ 7 =1337

Makes sense, right? But you might be wondering about the table headings...

Table Headings

Paa%&ﬁ

So why are the table headings 10000, 1000, 100, 10, and 1?7 The easy answer is that they are
powers of 10. See here:

(M is the 'power of' symbol. For example, 423 is '4 to the power of 3' which is 4 x4 x4 or 64)

« 1040 = 1 (Anything to the power of 0 is always 1, them's the rules!)
1071 =10 (Anything to the power of 1 is itself, them's also the rules!)
1042 =100 (10 x 10)

10A3 =1000 (10x10x10)

1074 =10000 (10x 10x 10 x 10)

Now check out the table headings above again. See the pattern here? Remember, we call
denary "base 10" because the base number is 10. The ‘power of" is called the exponent. So
1043 is base 10, with an exponent of 3.

Alternate Number Bases

You've guessed it; there are other number bases out there than just base 10. Base 10 is the
one we all know and love (despite some people arguing we should switch to a base 12
numbering system because 12 has more factors).

Computers make use of base 2, which is also known as binary. Working with computers, we
often convert binary numbers to base 16 (known as hexadecimal) because, frankly, binary
numbers get long. Although they aren‘t much shorter in base 10, base 16 just makes them
much more readable.

Notation

Now, this bit is really important. Since we're using all sorts of different number bases, we
need a way to tell which number is written on what base. The number 10 is the perfect
example.

The binary number 10 in denary is 2. The hexadecimal number 10in denary is 16.

So if we just write 10, you'll probably assume I mean 10 in denary. But what if we actually
meant 10 in binary?

This problem can be solved using notation. Specifically, you put the notation in front of
the number to specify the number base it uses.

Od is for denary. Ob is for binary. Ox is for hexadecimal.

So 0d10is 10 in denary. Ob10 is 10 in binary and 0x10 is 10 in hexadecimal.

Paau)d?

Binary
Counting in binary is very similar to counting in denary. First, let's calculate the headings:

270 =1 (Remember, it's the rules: anything to the power of 0 is 1.)

271 = 2 (Again, anything to the power of 1 is itself!)

272 =4(2x2=4, no thisisn't primary school...)

2A3=8(2x2x2=8)

2/ =16(2x2x2x2=16)

2A5 =32 (I'm not writing it out anymore, it's starting to get very long!)
206 =64

2N7 =128

278 = 256

Remember a few sections ago, we mentioned that 1 KiB being 1024 bytes? Well, the why of
it will probably make sense when I write it out like this:

« 2M0=1024
Binary to Denary

Now that we've calculated the headings, let's write out some binary numbers in long form
and turn them back into denary.

Ob11001

'512"255”123"54}32'} ”“ﬂ‘izi'i
0 [u 0 [o ’_n ’_1 {1]:}[0[1!
So here we have:

1x16

1x8

1x1

So16+8+1=25

That means 0b11001 = 0d25

Not too hard, right?

Here's another example:

PBWE

0b101010101

512 256 128 64 | 32 16 8 4 2 1

& Y S I+ N SO G = SO O e M 52 O O

1x 256

1x 64

1x 16

x4

1x1

So256+64+16+4+1 =341
That means 0b101010101 = 0d341

Denary to Binary

Okay, now to reverse the process, we'll take some numbers in denary and turn them into
binary. This processis a little bit more complicated, but not by much.

0d666

512 256 | 128 64 32 16 8 4 2 1

© (0 ([0 |O |0 O |O(D|D|O

We'll start with a table above like so, with 0's in every column.

First of all, what is the largest table heading that goes into 6667 It's 512, because larger
than 512 is 1024, which is too big. So put a 1 in the 512 column:

512 256 128 64|32 16 8 4|2 1
1 |0 |0 |0 ‘0 ‘0 D‘D'D‘G‘
Okay so we have 1 512, which means we need to subtract 512 from 666: 0d154

So what is the largest heading that goes into 1547 It's 128, so put a 1 in the 128 column, and
subtract 128 from 154:

Paagﬂg

512 256 | 128 | 64 32 16 8 4 2|1

1 (0 |1 |0 (OO (O|0(0|O0

154 -128 = 26

What is the largest heading that goes into 26? It's 16, so puta 1 in the 16 column and
subtract 16 from 26:

512 256 | 128 64 32 16 8 4 2 1

1 19 |1 | |01 |0/0|0|06

26-16=10

What is the largest heading that goes into 107 It's 8, so put a 1 in the 8 column, and
subtract 8 from 10.

512 256 | 128 | 64 | 32| 16 8 4 2|1
1 (0 (1 (0 |0 (1T [(1](]0]|0]0

10-8=2

What is the largest heading that goes into 2? It's 2, so puta 1 in the 2 column and then
subtract 2 from 2:

5122551235432153421‘

1n1un11n1u‘

2 -2 =0, that means we're done with the conversion!

0d666 =0b1010011010

Here is one more example, faster this time:

0d1023

512, 256 128 54‘ 216 8 _4|;‘_1'
1 |1 |1 1’1 1 11[1[1

512+256+128+64+32+16+8+4+2+1=1023.

PHSbED

Notice how we can't make 1024 without adding an extra digit. With just 10 digits, we can
only make 1023 or less.

Pagc,IEl

Hexadecimal

Hexadecimal is base 16; it's the same process as counting in denary and binary. But there
is a unique problem to solve first. In denary, we have ten possible digits, 0 through to 9. In
hexadecimal, we have 16 possible digits, but how do we represent them? Beyond 9, we
use letters.

So counting in Hexadecimal goes like so:

0,1,2 3,4,5,6,7,89,ABCDEF

That's 16 possible digits, so there is nothing beyond F.
Let's calculate the table headings first:

1670 =1

16M1 =16

1642 = 256

1673 = 4096
1674 = 65536

Wow, that produced some massive numbers pretty quickly! That's the exact reason we use
hexadecimal: it can represent large numbers in a smaller space.

Hexadecimal to Denary

Let's convert hexadecimal to denary using the same process as we did for Binary.

Ox2A

65536 | 4096 25&‘ 16 F

_.D .D | ; ‘.2 ‘.A.

There are:

2x16s

10 x 1s (remember A is 10 in denary)
32+ 10=42

Ox2A =0d42

Here's another:

PB?ZEJ

OxFADE

65536 | 4096 256 | 16 | 1

0 F A D|E

There are:

15 x 4096s (remember F is 15)
10 x 256s (remember A is 10)
13 x 16s (remember D is 13)
14 x 1s (remember E is 14)

61440 + 2560 + 208 + 14 = 64222
Denary to Hexadecimal

Now let's do some conversion between denary and hexadecimal. The process is the same
as for binary:

0d1337

55535|4ays 255‘15‘!
- |_D = ‘_n ‘,_n_

Okay, so what is the largest heading that goes into 13377 It's 256. How many times does 256
go into 1337? 5 times. 5o put a 5 in the 256 column. Then subtract (5 * 256) from 1337:

e T ‘ . ‘ -
0 0 |5 |o ‘n

1337 - (5 * 256) = 57

What is the largest heading that goes into 577 It's 16. How many times does it go into 577 3
times. So put a 3 in the 16 column and then subtract (3 * 16) from 57:

sms‘-am 255‘15‘1'
0 |o 5 ‘3}0

PH%S!

57-(3*16)=9

What is the largest heading that goes into 97 It's 1. How many times does 1 go into 97 It's 9
times so put a 9 in the 1 column, then subtract (9 * 1) from 9:

65536 | 4096 256 16 | 1

0 0 5 3 |3

9-(9 *1)=0, so we're done with the conversion!

0d1337 = 0x539

Let's try another:
0des78

65536 | 4096 256 16 | 1

0 0 0 0 |0

What is the largest heading that goes into 68787 It's 4096. How many times does it go into
it? 1:

65536 | 4096 | 256 |16 | 1

0 1 0 0 |0

6878 - (1 * 4096) = 2782

What is the largest heading that goes into 27827 [t's 256. How many times does it go into
it? 10:

65536 | mys’ 256 \ 16 \ 1
0 1.1 _‘A Ln F

2782 - (10 * 256) = 222

What is the largest heading that goes into 2227 It's 16. How many times does it go into it?
132

‘65ﬂﬁ‘4ﬂ95|255‘ 15‘ f‘

"“S‘ir"‘

O|1|A|D|D

222-(13*16)=14

What is the largest heading that goes into 147 It's 1. How many times does it go into it? 14:

65536 | 4096 256 16 | 1

0 1 A D |E

14-(14%*1)=0, so we're done with the conversion:

0de878 = Ox1ADE

PH%!':E

ASCII

If you've been following along, you probably have a very good question right now. If all
data on a computer is represented as binary, then isn't everything a number? But what
about text? We all read text on computers every day, don't we?

The text that is drawn on the computer screen by a computer is read from storage as a
binary number. The binary number correlates to a character, which is drawn on the screen.
The exact correlations depend on the type of encoding that is used by the computer.

One of the most common types of character encoding is ASCII, which stands for 'American
Standard Code for Information Interchange'. It is simply a table that maps binary to
characters. So, for example, the capital letter ‘A’ is Ox41, or 0b01000001. When the
computer wants to display some text to you, if it sees a Ox41, it will draw a capital A on

the screen.

The original ASCII was 7 bits wide, so it supported only 127 characters ((2/7) -1 =127).
These days we actually use extended ASCII which is 8 bits and therefore supports 255
characters.

ASCIl Table

Here is the reqular ASCII table:

PB%EE

AN WL LS

Other Standards

There are other standards than ASCII, such as Unicode; however, ASCII is the simplest.
Unicode supports a much larger character set so that languages which don't use the Latin
alphabet can also be supported. Of course, Unicode encoding uses up more data because
you can't support the Chinese, Latin, Arabic, and Russian alphabets all in a mere 255

spaces.

PH?PT

Why do we care?

ASCII and other such representation methods are incredibly frequently used within cyber
security. If you are doing penetration testing in the future, you will likely be manipulating
values like this to try and solicit unexpected or undesirable responses from computers.

Pag%ﬁﬂ

Encoding

Encoding is a mechanism enabling us to take data in one format, e.g. binary and then
'‘package'itin another, e.g. ASCIL. This is useful when you have a medium that only allows
a specific type of data transfer. For example, you might have text data that needs to be
sent as a series of electrical 'blips’ or 1s and 0s. That would be converting your data into
binary. Equally, you might need to take a wider character space and send it through
something that is happy with ASCII only. Base64 is a common mechanism to do that

A great example of this is with images, which contain an array of numerical data points
and structure. Base64 can make this a string of ASCII characters only using an encoding
scheme.

Let's do a basic example with some simple information. We are going to run a command
on our system that prints data. [tis:

echo -e '\x254 Hey folks how goes'

This prints out a non-ASCII byte of data, and then an easy-to-read string. We can't send
this as we are only allowed to use ASCII values. We will now encode it with base64.

echo -e '\x254 Hey Tolks how goes' | base64

This produces the result]TQg5GV51GZvbGtzIGhvdyBnb2VzCg== . This is the base64 encoded
data. We can send it over the network and no sign of that pesky non-ASCII character.

When we want to get it back, we can use base64 decode:
echo -e "JTQgSGV5IGZvbGtzIGhvdyBnb2VzCg==" | base64 -d

This returns back our weird data from before, "%4 Hey folks how goes”. Encoding! Think of
it as packaging.

There are lots of schemes for encoding out there, base64 is just one example. There is also
base32, for example, which uses fewer characters and has a smaller range to express data.
If you are following along on your own system, you may have to install additional software
to perform the encoding.

Fawg

Automatically Decoding Encoding

The purpose of encoding is to enable us to fit data that we need to store or transmit
within a set of constraints that are suitable to the storage or transmission medium. For
example, we might have text that we need to fit into a protocol that supports a subset of
characters, like base64. We might alternatively need to encode it and presentitas a
binary sequence or similar. Encoding is widely used for data storage and transfer, but
does not mean strong security. Encoding is unfortunately sometimes mistaken for
encryption, which has very different goals. That being said, encoding is often used with
encryption to make the results transmissible.

In this walkthrough, we use a tool to automaticaily detect and reverse encoding to get
back to the original data. Don't worry about how the tool is run for now, and the use of the
command line; we will cover this in much greater depth later in the course. Of course, this
process can be done by hand, but it is interesting that computers can use a clever search
process to revert the data even when they are not provided with any prior details of how
the data was encoded.

PEE%ED

File Headers

When most people want to know what kind of file something is, they look at the file
extension. Naturally, a .txt file is a text file, and a .zip file is a zip archive, right? Not
necessarily. What about files that don't have an extension, or what if someone changes the
extension for an existing file?

The truth is, most file types have a header at the beginning of the file that tells us what
kind of file it is. Even if you change the file extension, the file header will stay the same, so
it's often more accurate than just looking at the file extension. File headers are often also
called 'magic numbers’ or ‘magic bytes' or 'file signatures'.

A plain text file doesn't have a file header, but let's look at a zip file. A zip file can have
the file headers:

50 4B 03 04 (for a normal zip archive)
50 4B 05 06 (for an empty zip archive)
50 4B 07 08 (for a spanned zip archive)
jpg files have the file headers:

FF D8 FF DB

or

FF D8 FF EO

or

FF D8 FF E1

Notice that these are all hex values. On disk, they are of course binary, but we use
hexadecimal when writing binary would be too long. We write them in pairs, because
every two hex characters equals one byte of data. Don't believe me? Let's work it out...

* 0b11111111 - Here we have 8 bits (1 byte), which works out to a maximum value of 255
in denary.

» OXFF - Here we have the largest value two hex characters can make; this is also 255 in
denary.

Pam&l

Logic and Data Manipulation

Pam&)

Contents

In this module, we will be covering:

Logic

Truth Tables
Logical AND
Logical OR
Logical NOT
Logical NAND
Logical NOR
Logical XOR

Pa 8353

Boolean Logic

When we talk about logic in computer science, we usually mean Boolean logic.
Remember, a boolean value is a value that can be either true or false. This kind of value is
perfect for computers, which talk in bits: either a 1 or a 0. In other words, bits are Boolean
values, like a switch they can be either on or off.

Logic is calculated in the logic unit of the processor through a series of logic gates. These
gates are circuits which usually take two inputs and produce one output. Every input to
the circuit is in one of two states, depending on the voltage fiowing along it at the time:
either O (low voltage, approx 0 volts) or 1 (high voltage, approx 5 volts). The circuit then
produces an output, again, either 0 or 1 depending on the voltage. There are different
types of logic circuits, which behave in different ways, but together they allow the
processor to function.

Boolean logic is important because programs use it all the time. You may need to use it in
your own programs, and programmers are often tripped up by logic since it isn't always
intuitive. It's common to see bugs in computer programs which stem from incorrect usage
of Boolean logic.

The language of logic

There are a number of terms surrounding logic which you should know. The concepts are
of course more important but knowing the language will allow you to communicate with
your peers about the topic.

A boolean statement - one which can only be true or false is known asproposition. For
example: Tomorrow is Friday. This can either be true or false and is therefore a
proposition.

Truth Tables

When we look at Boolean logic, we usually use logic tables or truth tables to show all
possible outcomes from inputs to that gate. Here is an example:

A .B. AANDB”
.D.ﬂ.
0 .1.
1 i}.
111

Paﬁ&d

We haven't filled in the answers in this case because we haven't explained an AND gate
yet, but the concept is the same. The two inputs are represented by A and B. Together this
table shows every possible combination of inputs. You'll be seeing a lot of these truth
tables in this module, so get comfortable with them!

PaEgEnS

Logical AND

The AND logic gate checks if the two inputs are both true. If they are both true, the output
is 'true’ and if one or more is false, the output is 'false’. Have a look at the truth table:

A B AANDB
c(0|0
v Iy e
1100
o O T

The two inputsmust be true for the output to be true. In programming, you might see
something like:

string1 = "demo"
string2 = "demo”
intt =42
int2 =33

if {stringl == string2 && int1 == int2):
dostufi()

This is a logical ANDstringl == string2 is a comparison, and the result will be true if
they are both the same, and false if they are not. In this case, it is true.

intl == int2is another comparison and the result will be true if they are both the
same and false if they are not. In this case, itis false.

The result we have is:

True AND False = False

Therefore, ourdostuff() function is never called, because the condition has not been
met.

The language of logic

An AND is considered to be xonnective. A connective is used to connect two or more
propositions. The ANDconnective specifically is called a conjunction.

There are other forms of connectives which we will be covering in this module such as:

PEE%EE

OR
NOT
NAND
NOR
XOR

Pa E}B?

Logical OR

The OR logic gate checks if at least one of the inputs is true. If it is, then the output is also
true. Here is the truth table:

A B ADRB.
c(0|0
v 1
1101
1 1.1

As long as one of the two inputs is true, then the result is true. If neither of the inputs is
true, then the result is false. In programming, you might see something like:

string1 = "demo"
string2 = "dema"

int1 =42
int2 =33

if {(string1 == string2 | | int1 == int2):
dostuff()
Let's break this down:

stringl doesequal string2, so the resultis true.intl does not equalint2, so the
result is false, so that works out as:

True OR False = True
In this case, ourdostuff() function will run, because the condition has been met.
The language of logic

As you already know an OR is a type ofonnective and the OR connective itself is known
as a disjunction.

PEEEEE

Logical NOT

The logical NOT gate is a bit of an oddity because it only takes one input. It has the effect
of inverting whatever input it receives, so true becomes false and false becomes true.
Here is the truth table:

A NOTA

01

110

You might see it in programming, like so:

string1 = "demo"
string2 = "demao"

if Ystringl == string2};
dostuff{)
In the example above, NOT is represented by the exclamation mark ('!'). Let's calculate it:

Doesstringl equal string2? Yes, so the result is true. The NOT causes that to become
false, sodostuff() will not run because the condition hasn't been met

You could also see not written like so:

if (stringl != string2):

In English, thisis: "if string1 does NOT equal string2".
The language of logic

As you already know a NOT is a type adonnective and the NOTconnective itself is known
as a negation.

PaEQjEQ

Logical NAND

The NAND gate is just an AND circuit followed by a NOT circuit, so this one should be very

easy. Just invert the result of an AND gate, and you'll have your answer. Take a look at the
truth table:

A B ANANDB
0(0 |1
0111
1101
1 T 0

Compare that to the AND truth table:

A ; AANDB“
0|0|0
0 1- 0
1 E 0
1 T 1

It's just the AND truth table inverted.

In programming, you might see:

string 1 = "demo"
string2 = "demo"

int1=42
int2 = 33

if l{stringl == string2 && int1 == int2):
dostuff()

Let's break it down:

Doesstringl equal string2? Yes, so it's true. Doesint1 equal int2? No, so it's false.
So far we have:

PHWD

I (True AND False)
True AND false is false, so we now have:
I (False) = True

So ourdostuff() function is going to run because the condition has been met

The language of logic

As you already know a NAND is a type adonnective and the NANDconnective itself is
known as aralternative denial.

Paqﬁ?l

Logical NOR

The NOR logic gate is just the OR circuit followed by a NOT circuit, similar to how NAND
works. You just take the results of an OR truth table and invert the output. Here is the
truth table:

B ANORB

0|1

L= I S 4

—i
o
o | o | O

Compare that with an OR truth table:

A B AORB
0|0|0
0111
1 E 1
1 1_-1

You can see this is just the same table with the output inverted. In programming you
might see it like this:

string1 = "demo"
string2 = "demo"

int1=42
int2 =33

if l{stringl == string2 | | int1 == int2);
dostuff()

Let's break it down:

Doesstringl equal string2? Yes, so it is true. Doesint1 equal int2? No, so it is false.
We now have:

I(True OR False)

Nwz

True OR false is true (remember, with OR just one of the inputs being true makes it true).
We now have:

I(True) = False

So ourdostuff() function is not going to run because the condition has not been met.

The language of logic

As you already know a NOR is a type ofonnective and the NORconnective itself is known
as a joint denial.

Paﬁ'!

Logical XOR

The XOR gate stands for Exclusive-OR. This gate checks if only one side or the other is true
but not both. If only one input is true, then the outputis true. Here is the truth table:

B AXORB

0|0

O | O ™

Yl

1101

o OO I e

Notice when A and B are both true, then the output is false? This is the difference between
XOR and OR. Remember, XOR is exclusive, it doesn't like both inputs being true. Unlike
the others, you won't see this one a lot in conditionals, but you will see ita LOT in

cryptography.

XOR is really cool, in that:

AXORB=C

AXORC=B

BXORC=A

Take a look:

11,00
00T

11001
So 1100 XOR 0101 =1001

If you treat 1100 as your data, and 0101 as your encryption key, then 1001 is your
encrypted data.

If you have your encrypted data, you can XOR it with your key to get your decrypted data
back:

11001
0(1]0]|1

pﬂiﬁf‘

1‘1‘5 0

1001 XOR 0101 =1100

1100 was our initial piece of data. This is a very basic form of encryption on its own. It isn't
a very strong form of encryption, but it is used in a lot of cryptographic algorithms as part
of the process, including AES which is the current industry standard.

The language of logic

As you already know a XOR is a type ofonnective and the XORconnective itself is known
as anexclusive disjunction.

Paq;.is?E

Encryption with XOR

XOR is a crucial concept in encrypting data and one of the most simple forms of
encryption/decryption. It is used in many real world implementations, though often as a
stage of the process. With XOR you iterate through text using XOR bit by bit to produce the
new result, this is the encrypted text. For example in python3:

First we define a function to XOR two strings. We will cover the code much later in the
class, just trust it works for now!

def sxors1,52)
return ".join{chr{ord{a) » ord|b}) for a,b in zip{s1,52))

Now we will use this to populate plaintext, key and then encrypt.

Efa intext="Hey how goes?"
ey="adhnawdagjswb" # Note the key is equal in length to the plaintext.
ciphertext=sxor{plaintext,key)

If we print each of these as binary values:

bin(int.from_bytes(plaintext.encode(),'big")
bin(int.from_bytesikey.encodef),'big’)
bin{int.from_bytes(ciphertext.encod&),'big'))

Producing (in order):

0b100100001100101011110010010000001 10100001 1011111
1100100000011001110110111101100101011 1001100111111

0b1100001011001000110710000110111001100001011101110
110010001 10000101100111011010100111001101110111011
00010

0b0101001000000010001000101001110000010010001
10000001001101000001000000000000010100010110000001
0oo1011101

Pa%?ﬁ

If you take the very first values after the Ob (denoting binary) they are 0 from plaintext
and 1 from the key. XOR 0 and 1 produces a 1 as the values are not identical, so as
expected the third sequence shows a 1 straight after the Ob. Continue down the sequence
and you will find they are simply XOR transformations.

Note: If you try running the Python above the ciphertext may give you
0b1610010000000100010001010011100000100100011000

0001600110100000100000000000001010001011000000100016011161 instead. This is
actually one bit shorter than it should be because a preceding is optional in Python and
not displayed. If you didn't try it yourself don't worry about it for now.

The resulting data?

»>> ciphertext
x0T TN BN SARDOARD S T N0 4]

That data looks pretty darn unreadable, and it is!

You can XOR plaintext with the key and you get the ciphertext. This is encryption. You can
XOR the ciphertext with the key and get the plaintext. This is decryption. You can XOR the
plaintext with the ciphertext and get the key, which might be re-used elsewhere and
enable further decryption. This is key recovery.

PEW?

The Language of Logic

There are still a few important terms that you don't know so in this section we will go over
them.

Tautology

A tautology is an assertion or formula which is always true no matter the inputs. If you
craft a logical statement that no matter the inputs is always true then this is a tautology.

Another way of saying this would be if you have a logical statement where the truth table
for it always produces only true results then this is a tautology.

Contradiction

A contradiction is the opposite of a tautology. This is where all the results of a logical
statement are always false no matter the inputs. If your truth table only produces false
results then you have crafted a contradiction.

Contingency

A contingency is essentially anything that isn't a tautology or contradiction. In other words
a logical statement where the outcomes could be true or falseontingent on the inputs.

Pa%’?ﬂ

Storing Data and Files

Pardfg"g

Contents

In this module you will learn:

File Systems

How Files are Stored
FAT32 & ExFAT

NTFS

EXT3 & EXT4

HFS & AFS

Pa %BU

File Systems

Let's now consider how files are stored on storage media, such as a hard drive or 55D
(solid state drive). Each drive must be formatted with a file system. The file system
determines how files are stored on the device, and what features the file system offers.
The operating system usually has a list of file systems which are supported; not all file
systems will be supported by every operating system.

Think of the file system as something like a protocol for accessing files on and saving files
to the physical storage media. The operating system needs to understand the protocol to
use a particular file system, therefore if the operating system doesn't understand the
protocol, it cannot use drives that are formatted using that file system.

Every storage device is broken down into a series of clusters. The size of each cluster is
determined by the file system. A cluster is the smallest section of the disk that can be
used to store a file. So if you have a file system with a cluster size of 32kb, and save a file
that is 64kb in size, then that file will be spread across two clusters.

Likewise, if you have a file of size 1kb and you save it to the disk, it will take up one whole
cluster and actually use up 32kb of space on the disk. That's because two files can't use
the same cluster, so the minimum file size on a file system with a cluster size of 32kb is
32kb. If you have a smaller file than 32kb, the remaining space in the cluster will be
wasted. This wasted space is known as 'slack space'.

Similar to how memory is addressed in RAM, each cluster on a disk has an address.

Every file system stores at least two pieces of information per file. The first is the data in
the file, in other words, the contents of the file. The nextis metadata (data which
describes other data). This information is usually at least the name of the file and the
address where the contents of the file can be found. Some file systems will store more
metadata like the user who created the file, and the last modified time and so on.

The metadata is stored in an index which provides a list of files and the locations where
they can be found on the disk. The exact method for doing this varies from file system to
file system, but the concept remains the same.

If a file is deleted, then the index entry is removed, but the content of the file isn't
removed from the disk. Instead, that cluster is marked as overwritable, meaning the
contents of a new file could overwrite the data there. The reason for this is simply
efficiency. It is pointless to overwrite the data of a deleted file with Os and then allow the
contents of a new file to overwrite those Os. Instead, we just mark that cluster as
overwritable and allow a new file to overwrite the contents of the previous file. That's one
overwrite procedure instead of two, and the result is the same.

This is the reason why you can sometimes recover deleted files from a hard drive; the
contents of the file remains even if the metadata has been removed. Of course, there is a
chance that deleted file's contents had been overwritten by a new file and the old

Pag.-,lsl

deleted file will not be recoverable. When we talk about securely deleting files, the data
is written over the contents of the file when the file is deleted, instead of just marking the
cluster as overwritable.

Multiple Clusters

So the real question is, how are files tracked over multiple clusters? If you have a file of
size 64kb on a file system with a 32kb cluster size, then that file will take up two clusters
on the disk.

« If the first cluster the file is stored in has a cluster immediately after it that is free,
then the rest of the file will be placed there.

« [f there is no cluster free immediately after the first cluster, then the rest of the file
will be put into a different cluster, and the address of the next cluster will be added
to the end of the first cluster.

« Some file systems will use a file allocation table to map each cluster, so the first
cluster will point to the table entry, which contains the addresses of the next cluster.
And that cluster will also have an entry in the table, which points to the next cluster
and so on until the file has been read.

Paguﬂ!

FAT32 & exFAT
FAT32

The FAT32 file system was introduced with Windows 95. It uses a File Allocation Table to
map each cluster, which is where the name FAT comes from. The FAT32 file systemn doesn't
support files larger than 4 GB, which seemed a huge amount back in 1995, but these days
is hardly anything. It doesn't support file permissions because it doesn't store metadata
such as who created a file; therefore it was primarily used in USB drives, which could be
connected to any computer. Think about it, if you use a file system which supports
permissions, you can't guarantee the com puter you connect the device to will have the
same user account on it, so a lack of permissions support is actuaily a bonus for a file
system designed for USB drives and other removable media.

The FAT32 file system is not as common in USB drives as it used to be just a few years ago
because of the new kid on the block, exFAT.

exFAT

The exFAT file system is a file system designed for USB drives and other removable media,
so it doesn't support permissions. It was introduced in 2006, but it took a few years to
gain enough traction for USB drive manufacturers to start loading it by default. It is based
on FAT32, however it has been completely modernised. The file size [imit is so large that it
effectively has no maximum file size. It supports Windows, Mac and Linux, however be
careful using it on very old operating systems such as Windows 95. (If you still have a
Windows 95 computer then you have bigger issues.)

PaglsEr!

NTFS

The NTFS (New Technology File System) is the file system used by modern versions of
Windows. It is an advanced file system with many features, including permissions support
(what usernames can access a file), encryption support and shadow copies (effectively
backups of files). There is also a file size limit that is so large, it is effectively meaningless.
The NTFS file system is also more reliable than older file systems; to a limited extent, it is
capable of healing from data corruption.

The downside is that there is limited support for the NTFS file system amongst non-
Windows operating systems. For example, if you connect an NTFS formatted drive to a Mac
computer, you'll find that you can read files on the drive but not write to the drive.

Paﬁﬁd

EXT3 & EXT4
EXT3

The EXT3 (extended file system 3) is an older file system often used in Linux. It was
introduced in 2001 and supports permissions and encryption, although no shadow copy
(which is strictly a Microsoft thing). The EXT3 file system features a maximum file size of
2TB. It is a 'journaling' file system, which means that changes to the disk are tracked in a
separate part of the file system known as the 'journal’. This can help to recover the drive in
the event of a disk corruption that might result from a sudden shutdown or jolt.

EXT4

The EXT4 (extended file system 4) is the modern file system that is used in Linux. It was
introduced in 2008 and supports permissions and encryption, although, again, no shadow
copy. The EXT4 file system has a maximum file size so large that, in practical terms, there
is no maximum file size. Other than that, the EXT4 file system allows you to optionally turn
off the journal, and features a faster disk check process. Generally speaking, this is the file
system you want to be using on Linux.

PaggBS

HFS+ & APFS
HFS+

The HFS+ (Hierarchical File System Plus) was, until very recently (as of the time of writing),
the file system that Apple used in Mac OS X. It is a proprietary file system that Apple
produced, only compatible with the Mac OS operating system. It supports files so large
that there are effectively no file size limitations, and it also has a journal similar to EXT3
and EXT4. As with most modern file systems, it supports permissions and encryption,
amongst other features.

APFS

Recently, Apple has introduced APFS: the Apple File System, which is another proprietary
file system. The APFS debuts on Mac OS5 High Sierra. It supports permissions and
encryption, and duplicate files can be stored without using additional space, with
changes to one copy of a file being saved as a delta (the difference between the old file
and the new file) to lower space requirements. This is a modern and robust file system
designed with resilience and security in mind. It is now the default on most Mac systems.

PESBBE

Cloud Computing

Pa??ﬁ'}

Cloud Computing

In this module we will review the concept of cloud computing and the various models that
are growing increasingly popular for hosting applications and services. This is very much a
default for most businesses going forwards, so we want to make sure we are familiar with

it.

All your skills in the Linux section of the course will be invaluable when it comes to
driving cloud platforms.

Pa%%ﬂﬂ

Saas, laaS and PaaS

In this module we will review the models of service that cloud providers make available
to use today. We will review them one by one, and the major definitions and benefits of
each of them. Some providers are even in the business of offering multiples of these
models!

Saas - Software as a Service

Saas is fundamentally software that is available via a third party over the internet. Take,
for example, a business reporting application that you use to report on the metrics of
your business moment to moment, day to day. This application could be installed locally
at your office, or it can be hosted by the provider of the software so that you do not need
to maintain the server, OS and application - you just configure and use it. The major
benefit of this is that you can focus on using the application and benefiting from the
‘'service' without getting into having to operationalise it. This usually comes at a cost
though. Whilst you get less hassle and ownership, two things are typically true: * SaaSis
often more expensive in the licence/service sense, as you are handing off responsibility
for lots of tasks. That doesn't mean the 'true cost’ is not better, but this should be
evaluated. * You need to fit the shape and size of the service the provider gives you - you
can't go and modify as much as if you owned the installation, so need to be confident you
fit what they provide.

Ultimately, think of Saas as renting a finished house. You move in and use it, but you are
welcome to move some of the furniture around or customise it within reason. You don't
own it though, so you can't do whatever you want!

A few examples of SaasS are Slack, ZenDesk or SalesForce.
laas - Infrastructure as a Service

Iaas gives you cloud-based services, typically delivered with a pay-as-you-go and based-
on-what-you-use model. You might pay for storage, networking, compute, containers and
other such components, which you can use to deliver your own applications or services. It
is, in many ways, like buying parts of a data centre, except someone else deals with the
power, connectivity and availability. The major business benefit of 1aaS$ is that you get to
give the task of managing physical hardware and data centre space to someone else, and
instead benefit from professional and scaled infrastructure, likely more credible than
your own. The other major benefit is that you get what you need, and can buy more as your
business grows. [aaS is: * Flexible, scalable and adaptable to your needs. * Cost-effective
when used right - but pay-as-you-go models with unlimited scalability can quickly
explode if filppancy is exercised with use. You want 50 computers to crack passwords for
48 hours? No problem! It will cost you though... * Like renting the foundations of a house.
You know the foundations are firm, the power and utilities are installed, but you need to
do everything else to your specification,

Paggﬂg

A good example of 1aaS is Amazon Web Services EC2. EC2 provides you with an instance
that you can connect to and do (largely) whatever you want with. Unlike Saa$, you build
your OS, configuration and software as you need on top of it. You never own the server, you
are renting the capacity, but it "feels’ like yours. You can deliver traditional applications

and on-premise services via Iaas by lifting and shifting them to the cloud.

Paas - Platform as a Service

Paas is where a vendor provides hardware and software designed to enable you to deliver
applications. The typical users of these services are integrators and developers. 1aa5

gives you very basic components, kind of like renting a server, but often when you build
applications you want much more than a server. You want a way to manage your code, test
your application, build staging environments, manage production and focus on building
better applications - not having to manage systems. If you are in the business of building

a really great accounting app, you ideally do not want to have to be a true expert in
database operations, or load balancing web servers. PaaS$ takes [aaS components and
packages up capabilities for application and service delivery, so you can focus on the
creative side of development rather than managing things.

A really good example of Paa$ is AWS Elastic Beanstalk. This service from AWS Paa$s
offering enables you to supply code, and it does the work of stitching together
infrastructure components with sensible defaults to deliver it. For many use cases, you
can provide your application and 'forget the infrastructure. There is, however,
configuration to enable you to modify the behaviours and settings. There are lots of PaaS
providers now like Symfony Cloud, which is designed to enable framework applications to
be delivered where you can 'ask' for a database with code rather than having to know how
to set one up. These offerings come in various shapes, sizes and costs, depending on your
level of expertise and requirements.

Think of Paa5 as like renting a house that has solid foundations and utilities. Much of the
function of the house has been designed and some rooms are setup for you, but you can
decorate as you need using what is there. It's quicker than building your own house from
the foundations up!

Paw?ﬂ

What You Get to Manage

Different cloud providers use different models, and sometimes offer more than one. At
different ends of the spectrum you get more or less control, and with that can come
savings in operations as you outsource management to a third party. This stack is not
entirely complete, but may help you identify the portions of control you typically get with
each provider. Note, there are always variations, and for example, some Paa5 services are
built to be very turnkey where others provide a degree of control across more layers. The
definitions still largely hold true however.

On-Premises Infrastructure Plarform Sofoware
L a Samiad s Seraive] s @ Sira
[A g D o | [Applacitimns | E |_ LT (BRI | Apalatiang
e e L) e}] e =
[tn | fiatn ; Data Oatn
| & |
] 1
| Faugutlom .1 | Exariitiom Ewucutlon Ewai it |om
& 1 A w ' g
i I Middisware - | Middlwware Middlwmars Widdlemare |
= —— + =] B
E] e
3 | ais | oy afs | als
] e——— . a &
LEruTY | i P L] el = oy
| - -
$) 2 4
| Stovage Starnye :_| Srarage Starage
BbasaEng Fiwbarsiang = Mrimnhing Feriweneiing

You should carefully evaluate as a business what is most suitable for your project. You
might want to leverage all of these models for different parts of your infrastructure - itis

rarely one size fits all.

Pﬂ%&l

Operating Systems 1

Pag.zﬂj!‘

Operating Systems

In this module we are going to dive into the basic terminology and functions of an
operating system. These huge pieces of software are what enable your computer and your
applications to do all the things you are used to. Understanding the lower levels of your
'OS" will help you immensely when it comes to troubleshooting, advanced configuration or
cyber security fundamentals.

Pa%g:!

What is an Operating System?

An operating system is software that runs on the computer, which manages how the
computer operates. The operating system provides useful functionality such as window
management, which allows us to drag programs around the screen, as well as copy and
paste, the ability to plug in peripherals such as mice and keyboards, and many other
useful things.

Different Operating Systems

There are dozens of different operating systems available for installation today, the most
common of which is Windows.

Other operating systems include:

* Ubuntu Linux
* Mac 0OS
* Android

Which operating system one chooses to use depends almost entirely on personal
preference, however, practically speaking, each Operating System has its own strengths
and weaknesses, and the user must evaluate the practicality of the operating system for
themselves.

The most notable differences lie in the way the operating system itself looks.

Here are some examples of the desktops of different operating system:

Windows Desktop:

Ubuntu Linux Desktop:

Pa 9&94

&

=
ﬁ
B

=]
13
®

o
B
L]
-]

Mac OS X Desktop:

. -il o 'glIEEgv!ﬂ-:ﬂ"ﬁ";l = 'H" I:frl = _. ! p :' =

Pa %95

What is the Kernel?

The kernel is the first part of the operating system code to be loaded, and has complete
control over the computer. It is responsible for controlling access to the computer’'s most
sensitive information and functionality, and is loaded into a protected region of memory
to prevent accidental or malicious corruption by other programs.

The kernel is responsible for the loading of new programs, handling input and output

between peripherals, and managing access to the hardware's shared resources, such as
the RAM and hard drive.

-
—
e

PH%Q‘E

What is a Process?

The definition of a process is: "A series of actions or steps taken in order to achieve a
particular end". In the context of computers, this is much the same. A process is created
on a computer when a program is requested to be loaded. The computer will load the
code in the program, such as Google’'s Chrome browser, and will create a process that
contains all of the necessary information for execution by the processor.

Each time you run a program on your computer, a new process will be created in order for
the program to serve the purpose you intend, which, in this case, would be surfing the
internet. Some programs even create many processes in order to get more work done.

PEW?

What is an Interrupt?

An interrupt is a signal that is sent to the CPU, which alerts the CPU to a task requiring its
immediate attention. An interrupt will halt the CPU and cause it to begin executing the
corresponding interrupt handler.

Interrupts are used in situations where immediate processing is required, such aswhen a

peripheral is plugged in, like a mouse. A user would not be happy if it took 10 seconds for
the mouse to be recognised.

Pagesgﬂ

Hardware Interrupts

A hardware interrupt is generated by some sort of hardware either inside or outside of the
computer. This includes a keyboard or mouse, which will send interrupts when new input
is available. The interrupt handler will then be executed, and the window which is
currently in focus will receive the keyboard input via the operating system.

Pa%gg

Software Interrupts

A software interrupt is an interrupt which is generated by software. A program may want to
generate an interrupt when it wants to open a file for example. The program has to do this
because the act of opening a file is a privileged operation, and as such the kernel has to

be consulted before the operation takes place. Software interrupts act as an interface
between the kernel and the program. In short, the program can use a specific interrupt to
ask the kernel to perform an operation on its behalf.

i

What is the Bootloader

The bootloader is a program that is loaded by the BIOS when a computer is first turned
on, and is responsible for loading the operating system. A bootloader is necessary due to
the complexity that would be involved in creating a BIOS capable of loading hundreds of
different operating systems. Due to this, the bootloader is usually installed at the same

time as the operating system, and is loaded from a known place on the hard drive by the
BIOS.

F‘qutﬁﬂl

The BIOS

A BIOS, or "Basic Input Output System”, is a program stored on the motherboard of your
computer. When the computer is first turned on, it is the first program that is loaded, and
prepares, or initialises the hardware ready to load the bootloader.

Nowadays, modern computers almost exclusively use UEFI (Unified Extensible Firmware
Interface). UEFI is the successor to BIOS; however, the term BIOS is commonly used as an
umbrella term for both, due to the similarities between them. UEFI achieves the same
functionality as BIOS, in a more versatile and secure manner.

e

Virtualization

"oy

Virtualization

Virtualization is arguably one of the most instrumental technology architecture changes

to occurin a long time. It has changed the way we deploy systems, test systems, and the
cost of ownership of services and applications.

It comes in many shapes and sizes, and herein we will learn more about how it works and

what it can be used for. You will be getting lots of practice with virtualization, and it
powers this very course’'s |lab system!

Pnibhﬂd

What is Virtualization?

Virtualization is where we create a virtual computer or 'virtual machine’ out of software
that behaves like a separate computer. All the hardware components of that virtual
machine are actually software. The software that is the virtual machine uses the hardware
resources of the computer it is running on. This is achieved using a hypervisor, which
creates a thin layer that breaks the traditional 1:1 relationship between an operating
system and the hardware. There are various types of hypervisors we will cover in more
depth later.

Put simply, we can build a virtual computer out of software, and use that to run a different
operating system on top of our main operating system. Imagine running Windows at the
same time as running Mac OS X for example. Or even running Windows while running
Linux. All this and more is possible with virtualization.

@
=
"
]
=]
B
&
a
2
=

Here we have a Linux system running VMware (a popular virtualization software); the
operating system inside the virtual machine is Windows 10.

Host Operating System

We call the operating system that runs the virtualization software the host operating
system. It is the master, the operating system that loads when you first turn on your
physical computer.

Guest Operating System

We call the operating system that runs inside the virtual machine the 'guest operating

system'. The guest operating system is separate from the host operating system, and
cannot directly access the resources on the host. For example, if you were running

s

Windows as the host operating system and Linux as the guest, the Linux guest is not able
to access files on your Windows desktop directly. This separation is a key use case for
virtualization. If you are analysing a computer virus, you will want to be doing itin a
virtual machine to prevent it from spreading to your host operating system and
potentially escaping out onto the internet from there.

108"

The Hypervisor

Before we talk about the different types of virtualization, we have to talk about the
hypervisor. The hypervisor is the layer of code that allows multiple operating systems to
share the same hardware resources. Essentially, it's the bit of code that directs traffic,
deciding which bits of memory are used for which virtual machines, where the hard disk
for that virtual machine is kept in storage, and so on.

Type 2 Hypervisor

The first type of virtualization we'll talk about is the type 2 hypervisor. This type of
virtualization is where the virtualization is done by a software program that runs on an
operating system. This is the kind of virtualization we'll be using throughout this course.
Several software programs can be used to perform this; the most popular ones are
VMware Workstation and Virtualbox.

Type 1 Hypervisor

The second type of virtualization is the type 1 hypervisor. This type of virtualization is
where the virtualization occurs at the firmware level. This is still software, but there is no
host operating system. The virtualization software in effeds the host operating system.
This is commonly used in server environments such as data centres, particularly ones that
form 'the cloud'. It is a more efficient setup than a type 2 hypervisor, but itisn't
convenient for people to use on their personal computers.

Some examples are VMware vSphere and Proxmox.

F‘qu?

Uses of Virtualization

Virtualization sounds pretty niche, so why is it so important? Well, you might be surprised
to learn that a large proportion of the internet runs on virtualised servers. Ever heard of
the cloud? Well, most of that is run off of Type 1 hypervisors. The fact of the matter is
virtualization offers huge efficiency improvements for large-scale applications.

Imagine if you have a website which is usually quiet, but often it will suddenly get a huge
deluge of users accessing it all at once. You need a server that can handle the maximum
number of users, but that will leave your server doing nothing most of the time when it's
quiet, With virtualization, you can run the site off of one small virtual machine, and have
new virtual machines come online during peak times to load balance your traffic across
the multiple servers. When it becomes quiet again, you can delete some of the virtual
machines and go back to having only one serving the website. Cloud hosting providers
such as Amazon AWS offer this functionality using virtualization.

Uses in Security

In cyber security, we make extensive use of virtualization. Usually, we run a type 2
hypervisor (remember this one is the software that runs as an application on your host
operating system). We do this because we often have to use multiple operating systems
all at once; because some tools will only run on Windows, and some will only run on Linux.
Before virtualization, we would have to install two operating systems on one hard drive
and reboot to swap between them. With virtualization, we can run Windows as the host
operating system and run Linux as the guest operating system, or vice versa. Working this
way is a lot more efficient.

Beyond simply having access to all our tools, virtualization offers separation. The
applications running in the guest operating system cannot interfere with the host
operating system. That means we can work on dangerous tasks such as analysing the latest
malware without risking infecting our host operating system.

Disclaimer: If you do any malware analysis, make sure you disable all virtual machine
communication methods, such as the virtual network adapter.

Uses in Development

Many programmers make use of virtual machines to test their programs in different
environments. If you were making a program in Windows and you wanted to see if it would
run on Linux, you could just spin up a new virtual machine quickly and test it out.

108"

Setting up aVM

In this section we will review the procedure to set up a virtual machine and some of the
key configuration parameters. Different virtualization solutions use different terminology,
but essentially have very similar features. Whether you use VirtualBox, VMware, Hyper-V
or another product you will find a great deal of these concepts transferable.

Being able to build a virtual machine is an incredible useful skill when it comes to
practice and sharpening your skills. It is also invaluable when you want to replicate real
networks and scenarios - for example building your own mini network of a web server,
database server and log server. Using virtualization we can test and replicate
complicated setups on just one device!

It is strongly recommended that you take the time to setup your own virtual sydfsing
VMware, VirtualBox or Hyper-V take the challenge to install a copy of Ubuntu. This is a
widely documented procedure, so seek help online if you need it and treatitas a
challienge!

"oy

Introduction to Linux

0

Linux

There are Linux distributions for almost every specialist task in cyber security, but Linux
is also incredibly modular and a powerful platform from which to chain together tools for

complex tasks. In this module we will introduce you to Linux and how to get your own
system up and running for test purposes.

Poge

Learning Objectives
After completing this module, you should be able to:

Know the difference between server and desktop versions of Linux.

Know the difference between different fiavours (distributions) of Linux.
Install Linux.

Set up networking on Linux.

Navigate the GUI on Ubuntu Budgie. Many Linux distributions have common
features.

» Access the terminal.

o

Module Content

This module will provide a basic introduction to Linux, focusing on familiarising you with
the desktop interface.

We will be covering the following components:

What is Linux?

How to install Linux.

Navigating the Linux desktop GUL

How to set up networking on Linux from the GUL
What is the Terminal?

Accessing the Terminal.

ik

What is Linux?

When we talk about Linux, we are really talking about the Linux kermnel. The kernel is the
core of an operating system, the part that interfaces directly with the hardware
components. Linux is more of a class of operating systems than one single operating
system. The common aspect that all of these operating systems share is they all use the
Linux kernel. We call all the operating systems that use the Linux kernel, ‘'distributions’.

g

Linux Distributions
Linux distributions come in all shapes and sizes. Linux is ultimately an incredibly

powerful and customisable operating system, and we can see this refiected in the variety
of distributions available.

Desktop Distributions

Linux desktop distributions come with a GUI (Graphical User Interface). Historically the
GUI on Linux has been terrible; more of a bolted on afterthought than a real usable
product. More recently, that has been changing, and there has been a real push to make
Linux accessible to more people.

Here we have a screenshot from Elementary OS, a Linux distribution which focuses on
providing an operating system that is as easy as possible for non-technical people to use
as a replacement for Windows or OS X. Compare that with this older Linux GUI, and you
can see the difference right away:

Sl

There are distributions with other focuses too, such as Kali Linux which is a distribution
built for cyber security professionals. It comes customised with most of the cyber security
tools you might need pre-installed:

Server Distributions

Just as with Windows, Linux distributions that are specialised for use on servers exist also.
These don't come with any GUI installed at all; everything must be done using text-based
commands in the ‘terminal’. In fact, Linux was originally command line only and didn't
have a GUI at all. To this day, the most powerful way to get something done on Linux is to
use the terminal, even on desktop distributions.

g

lrootfSerwver
Shutt 1 THEf
Shitl ng
Bring ing
B 1 g 1 (I

[rootPSe |-|_-|.--|-
+thiA

Although this may look intimidating, by the end of this course you will be comfortable
with the Linux terminal.

o

Installing Linux

In this walkthrough we will install a new Linux virtual machine from scratch. We will be
focusing on the desktop installation process here and some sensible defaulits, as well as
looking at how to enable rudimentary encryption for the system. Options will vary
depending on the system you are installing on and the distribution, but this will actas a
robust framework for most installation processes.

There are huge numbers of resources available online to help you setup Linux in all

shapes and sizes, and it is well worth the time setting up a few different systems and
getting used to what often goes right, and wrong.

gyt

Installing a Linux server

In this walkthrough we take a look at the installation process for a Linux server and how it
differs from a typical Desktop. The user interface is typically built for compatibility with
remote access systems and technologies as it is likely you may be doing this installation
remotely, or you may be installing to a server that has limited graphics capabilities -
focusing its resources instead on the computational tasks it is likely to perform. The
processis a little different but once you know how to navigate the options using the
keyboard, such as toggling with the space bar, it is ostensibly the same.

Downloading a Linux server and trying this in your own virtualisation software is a really
good way to practice and build familiarity, that will aid you in later portions of the course.

il

Navigating the Linux GUI

There is no single GUI or layout for Linux. Every distribution will have its own layout, and
even the software used to display the GUI can be different from distribution to
distribution. A lot of the time, you will be left to explore for yourself. However, there are
plenty of common features that are available across distributions, even if the locations
may change.

Here is an example of an Ubuntu installation. After installing, the desktop will look like
this:

At position 1 we have the 'dock’. The dock is where you can save your frequently used
applications, and any running applications can also be accessed from here, It's like the
Dock on OS X or the taskbar on Windows.

At position 2 we have the start menu, by clicking it we can bring up a Windows-like start
menu, which lists all applications. It is also searchable if you type after clicking on it.

g

@

o |

All

Accessories FA Plank Preferences
Cames
Ldimes % T‘:_‘.-":{ E':’:Et::."_

Graphics
Software

Internet
Al Books

OfFice

+ 0 i
= = Calculator
Science

Sound & Video ﬁ Documents
System Tools & Files

Administration 9

Maps

Preferences _
. Menu Editor

Utilities

EA plank

‘ Weather

At position 3 we have the system tray, which is similar to the system tray on Windows.
From here you can shut down, reboot, update or access other settings such as volume,
Bluetooth, notifications and network settings.

At position 4 is the terminal application icon. This application allows you to use the Linux
command line even from a desktop distribution. By default, it occupies the first position
on the dock, which should give you an idea of its importance.

At position 5 is the file browser application, which works just like Explorer does in
Windows. You can navigate through the folder structure of your installation.

At position 6 is the web browser which is installed by default; in this case, it's Chromium,
a version of Google Chrome. Just above it, you will see a blue and green icon. These are
icons for LibreOffice Writer and LibreOffice Calc, just as they sound they are basically
copies of Microsoft Office, except Open Source and free. They work with normal Microsoft
Office files also.

Paqﬁl

Configuring Networking with the GUI

The best way to configure networking on a Linux system is actually to do it from the
command line. You'll learn to do that in a later module, but for now, we'll show you how
it's done through the GUI.

The first step is to find the Network Settings Preferences page. There are two obvious ways
to getto it. The first is to right-click on the network icon in the system tray and go to 'Edit
Connections”.

o B i

Enable Networking
Enable Notifications

Connection Information

gt =
o
=

¢ Edit Connections...

About

The second way to get to the Network Preferences page is to go via the 'Start' menu and
select 'Settings', before selecting ‘Network':

EE N 'l

Once you have the network settings open, you can select the connection you wish to edit
and click on the 'gear' icon in the bottom right:

Pﬂlﬁz

From here you can selectIPv4 (or IPv6 if that is what you use) and change it from DHCP
(which is automatic) to 'manual’ and assign custom settings if you wish.

If you do make some changes, don't forget to hit 'Apply’, of course.

PaqﬁB

Linux Terminal

We already covered the Linux terminal briefiy. Originally, Linux did not have a GUI, and
everything was done from the command line. Eventually, a GUI was written and
incorporated into many desktop distributions, but uitimately the GUI is still just a thin
facade over the command line. This structure is the opposite to Windows where the GULis
the core of the operating system, and some things can't be done from the Windows
command prompt at all. Ultimately, this means that on Linux the terminal is incredibly
powerful.

When you open the Terminal you are first met with something like the following:
Lser@SANS:~S

This is called the 'prompt’. In other words, you type your commands in there, as it's
'‘prompting' you for input.

On this installation, the user account is called "user’, since we pride ourselves on our
creativity here. The name (hostname) of the computer (thatis the name that identifies the
computer on the network), is 'SANS'. On Linux, the tilde character (~) is shorthand for the
home folder of the current user. So this prompt gives us quite a lot of information. We

know our username, we know the name of the computer, and we also know where we are in
the file system. As the root user (the highest privilege level) this prompt will typically

change from a $ to a # to signify the shift.

The prompt can be customized, as almost everything can on Linux, so it won't necessarily
always look like this, however this style of prompt is a very common default. We will
customize it later in the course.

Shell

When you open the terminal, it runs a program automatically. The program that it runs is
called the 'shell'. The shell is responsible for displaying the prompt, interpreting the
commands you type, running programs and displaying the output to you. There are many
different shell programs, but by far the most common currentiy is the 'bash’ shell.

Bash stands for Bourne Again Shell; it's a clever play on words. One of the earlier shell
programs was the Bourne shell, and Bash was written as a modern shell program to
replace it. The default path for bash is /bin/bash. The first '/ means the root of the file
system, from the root of the file system, in the 'bin’ folder is the 'bash’ program.

You can select a different shell and customize this heavily, introducing powerful new
functionality but this setup is the most common starting point you will find.

y2re

The Linux Environment

Faqﬁ?ﬁ

Contents

In this module, we will be covering:

Superuser

Navigation in the Terminal
Folder Structure

File Permissions

Hidden Files

Environment Variables
PATH

This will start to build your knowledge of Linux and the concepts that help you secure it.

"928°

Superuser

The superuser account on a Linux system is effectively the administrative account. It's the
account with total control over the operating system and has permissions to do anything
and everything. There is always at least one superuser account on every Linux system, and
the account name is usually called 'root'. I've yet to see a Linux system where the
superuser account was called anything other than 'root’, although given how customisable
Linux is, it's possible there could be one distribution of Linux that doesn't follow
convention.

On a Windows system, the administrative account isn't actually capable of doing anything
it wants on the system. There are some things the administrator isn't qualified to do,
typically things that would break the operating system irrevocably. On Linux, the root
account can do absolutely anything it likes, even up to and including breaking the
operating system.

On Windows, anything you do is usually followed by, "Are you sure you want to do this?",
After you answer yes, you get another prompt "Are you really really sure you want to do
this?". Alright, that's something of an exaggeration, but the point remains. Linux likes to
keep things interesting though; it doesn't like to prompt you about anything, particularly
if you are root. Typically, you'll type in a command, and the operating system will just do
it. Delete the whole file system? Sure, all gone. You're root, so you're allowed to do that.

Using the root account for daily activities is a bad practice. You should always log into a
system as a normal user account. From there, you can switch user to root if you need to.
Here is the procedure in action:

user@sans:~/Desktop$ whoami
user

user@sans:~/Desktop$ su root
Password:

Faqﬁl?’z?

root@sans:~/home/user/Deskiop# whoami
root

root@sans~/home/user/Desktop# exit
exit

user@sans:~/Deskiop$ whoami

LisEr

user@sans:~/Deskiop®

You can see we start as the 'user’ account. We then used 'su’ to switch user (that's what "su’
stands for) to root. After entering the password (you can't see the characters as they are
typed, as it's secure input) we successfully become root. After we're finished doing root-y
things, we can drop back to being a normal user by typing "exit’.

Alternatively, you can use a program called 'sudo’ if it is installed on your system. The
‘sudo’ program will allow you to temporarily take on the privileges of the root account to
run a command and then it will drop your privilege level back down to your normal
account levels after the command runs.

The way 'sudo’ works is there is a configuration file called the 'sudoers’ file, which is
basically a list of which accounts are allowed to do what with superuser privileges (and

only root can edit it). When you want to run a command with privileges, you append 'sudo’
before the command. You will then be prompted for your normal account password (not
the root password), and then the command will run with superuser privileges. Many
distributions that come with 'sudo’ installed will not tell you the root password (it will be
randomly generated and thrown away). This is to encourage you always to use 'sudo’, which
is good practice.

Take a look:

user@sans:~/Desktop$ whoami

user

user@sans:~/Desktop$ sudo whoami
root

user@sans:~/Desktop$ whoami

user

user@sansi~/Desktop$

You may have noticed that we weren't prompted for a password this time. That's because
we entered the password a few moments before taking the screenshot, and it caches for a
short period of time after you enter it once.

And here is an example of the 'sudoers’ file:

i

It's not as complicated as it looks, although we haven't covered groups yet. In Linux, a
user account can belong to groups. For example, our user account is a member of the
‘'sudo’ group. And we can see in the sudoers file here that the 'sudo’ group is allowed to
execute any command as root. The most important piece is a section labeled user
privilege specification. It has lines that define user rights such as %sudo ALL={ALL:ALL) ALL
allowing sudo group users to run any command.

Just to prove it, here are the groups our user account is a member of:

user@sans:~/Desktop$ groups
user adm cdrom sudo dip plugdey |padmin sambashare
user@sans:~/Deskiop$

Note: Beware editing the sudoers file yourself. You could lock yourself out of the superuser
account entirely! If you must edit the sudoers file, use the 'visudo' command, which is a
command line text editor that will check your sudoers file for any errors before it saves it.
That doesn't make it impossible to lock yourself out, but it lowers the chances of a typo
locking you out.

Faqﬁgg

Navigation in the Terminal

We're going to be using the terminal quite extensively from now on, because it's the only
thing you are guaranteed to have access to, no matter which Linux system you are working
on. The first step to using the terminal is figuring out how to navigate the file system.

When you first startthe terminal, you will usually be in your user's home folder. The
shorthand display for your home folder in Linux is the tilde character-). You can see it
here:

1. USEerf@SANS: ~

user@SANS(: ~¢

\\-.-" F

The circled bit is the area of the prompt that tells you where in the file system you are.
Listing Files

We can list files and folders with the 'Is’ command. The 'lIs' command stands for 'list":

We can see here that folders are listed in a teal colour, while files are in white. The colour
scheme may differ on your system, or you may not have one at all, so I'm not a fan of this
default view.

You can pass in the '-|I' parameter to the 'ls' command to get it to print in long form (-
stands for long'):

nyo°

user@sSANS ;-5
total 232

drwxr-xr-x
drwxr-xr-x

:35 Desktop

:47 Documents

:47 Downloads

109 examplefile

+47 Music

:47 Pictures
Public

:47 Templates

+47 Videos

(= E:l

drwxr-xr-x
afe=

m o

Xr-X

R = syl
17, DT, I TV I Ty

4096
4096
4096

SH SN N NESE SR W]

=
ey
ot i ek o (T i i S0
bt i e it ol]

o Mmmom

X=X

user@SANS ;=%

=
]

I find this view to be a lot clearer. The information here is: permissions, user, group, file
size, creation timestamp, file/folder name.

We haven't covered file permissions yet, so don't worry too much about them, but you'll
notice that for the permissions, every folder starts with a 'd’, but the files start with a '-'.
The 'd’ stands for 'directory’, so it explicitly tells us that this is a folder, or this isn't a
folder. On a system where you don't have any colour coding, this can make your life a lot
easier.

By default, 'Is’ will list the files and folders in your current working directory. In this case,
this is our home folder for now. You can also passin a path to 'Is’ and get it to list the files
and folders in a different directory, like so:

user 4096 Sep

user i 4096 Aug

User us 4096 Aug

user user 8 Sep

user user 4096 Aug
drwxr-xr-x user user 4096 Aug
drwxr-xr-x 2 user user 4096 Aug
drwxr-xr 2 user user 4096 Aug
drwxr-xr 2 User user 4096 Aug
5 1s -1 Desktop

examplefile

Pictures
Public
Templates

Videos

(CRSENYSERENYSREE.

P R e . T R

total @
-fW-F--F-- user user 8 Sep 26 &
user@sANS:~$ |

We first asked it to list the files and folders in the current working directory. We saw the
'Desktop’ folder was interesting, so we then asked it for the files and folders in the

Fan;ieBJ.IBI

'Desktop’ folder.
Changing Directory

So far, we've been trapped in our home folder without the ability to move around the file
system. Let's fix that. The "cd’ command allows us to change directory into a different
folder. Yes, you guessed it, 'cd’ stands for 'change directory’. Let's see how it works:

user@sANS:~%

total 32

drwxr-xr-)
Xr-Xr-%

user user 4096 Sep 2 Desktop
user user 4096 Aug 2 Documents
user user 4096 Aug Downloads
UsSer user 0@ Sep 26 examplefile
user user 4096 Aug 2 Music
user user 4096 Aug 2 Pictures
user user 4096 Aug Public
user user 4096 Aug Templates
user user 4096 Aug 2 Videos
user@sANS:~$ cd Desktop

user@SANS:~/Desktops$ 1s -1

total @

-rw-r--r-- 1 user user @ Sep 26 87:17 myfile
user@SANS:-/Desktop$

drwxr-x

drwxr-x

AR B R B R B B RS

We found the 'Desktop’ folder; this time, we change directory into it (notice how the
prompt updates to show us where we are), and then we list the files and folders in the
current directory again, and we see we are now in the 'Desktop’ folder.

Now, to get back to the home folder, we could do one of three things. We could type:

cd /homel/user

or we could type:

cd ~ (remember the tilde s shorthand for the current user's home folder)

or we could type:

cd ..

Faqwi

In this last case, the '.." is another kind of shorthand; it stands for the directory one level
above the current directory, also known as the parent directory (not to be confused with
the single ', which is shorthand for the current directory). Since we are in
fhome/user/Desktop, the directory one level up would be /home/user, which is where we
want to go. This shorthand will save you a metric tonne of time; make sure you drill it into
your head.

Let's see how it works:

user@sans:~/Deskiop$ cd fhome/user
user@sans:/'homefuser$ pwd
/homeluser

user@sans:y homefusers cd Desktop
user@sans:~/Desktop$ cd ~
user@sans:~% pwd

/homeiuser

user@sans:~% cd Desktop
user®@sans:~/Desktop$ cd ..
user@sans:~% pwd

/homefuser

user@sans:~%

You may have noticed our use of the ‘pwd' command. The 'pwd’' command stands for
‘print working directory’, so it will show us the path of our current working directory.

F‘HWB

Folder Structure

Now that we know how to get around in the terminal, we need to know where we are going.

The Linux file system starts at the root of the file system (known as '/'):

initrd. img
initrd.img.old ound : wapfile wmlinuz
Lib i u vmlinuz.old

From the root of the file system, you can get anywhere. For example, '/home/user’' was our
home folder. Notice how the first /' indicates the root of the file system? So it could be
read as, go to the root of the file system, then go to the home folder and then go to the
user folder.

Let's go over how the folders in the root of the file system are typically used (if we don't
mention a folder, then it doesn't exist on every typical Linux system):

» bin: The bin folder is typically used to store executable files (binary files). These will
usually be system files, as opposed to ones the user installed.

* boot: The boot folder holds the files that Linux uses during the boot up process.
Better not mess around in here unless you know what you are doing.

» cdrom: The cdrom tray will usually be mapped to this folder, so if you have a cdrom
plugged in you can usually access the files on it from here.

« dev: The dev folder will contain a folder and associated files for every hardware
component on the system. For example, there is /dev/cpu, and there are even
entries for your hard drives. Usually, you don't want to mess around in here.

« etc: The etc folder will usually contain configuration files for installed programs. If
you need to change a setting for a program you've installed (for example, a web
server), then this is the first place you'll want to look.

« home: The home folder contains the user directories for every user on the system
(that a user can log into) with the exception of the root user. Our user is called 'user’,
so you can find our home directory in /home/user.

« lib: The lib folder contains shared libraries and kernel modules. These are resources
that the system uses to function, usually best not to mess around in here either.

+ lost+found: If your hard drive has errors and files get lost, the 'orphaned’ files may
get placed here.

« media: The folders here can be used for mounting USB keys and fioppy disks (if
anyone can still use one). To mount one is basically to load the file system that
exists on it so you can access the files.

Pﬁqghaﬁ

« mnt: The folders here can also be used for mounting external drives, USB keys and
fioppy disks. It's up to you if you want to mount stuff here or in media.

« opt: The opt folder is usually empty to start with; any user-installed programs can go
here (if you want). It stands for 'optional’.

« proc: The proc folder stands for ‘process’. Every running program will have an entry
in the proc folder along with associated files.

= root: The root folder is the home folder for the root user. Remember, it isn'tin
/home.

« run: The run folder is a temporary file system which stores runtime information for
programs that start early during the boot up process.

« sbin: The sbin folder is used to store binary executables (similar to /bin), but the
programs stored here are typically used for administrative purposes.

« srv: The srv folder usually holds data used by services running on the system (such as
a web server, or an FTP server).

« sys: The sys folder contains information about devices on the system (as seen by the
Linux kernel). Usually, you don't want to mess around in here.

« tmp: The tmp folder is a temporary file system. The files in there are temporary and
will be deleted periodically, and after reboot. Programs will usually use it
frequently. Just don't use it to store your important files!

« usr: The usr folder is the folder for user-controlled files. It has its own folder
structure, which maps to the root folder structure. For example, there is a /usr/bin
folder which is for user-installed binary executables.

» var: The var folder contains system files which tend to increase in size over time
(hence it's a variable size folder). Things like log files, the mail directory, and so on,
go here.

Now, these are just thetypical uses of these folders. We're talking about Linux, so if you
want to put your user-installed binary executables in /var, no one is going to stop you. Itis
good to know where you can expect to find things, though, and if you can't find the
configuration files for that program that you installed in /etc, you can always refer to the
documentation for that program.

F‘uwﬁ

File Permissions

File permissions in Linux is a topic that many people refuse to learn, but they only look
intimidating. The truth is, they are guite easy and logical.

The first thing you need to know is that each file and folder is owned by a user and also by
a group:

-rw=r==r+= I{us ats 20 Sep 26 09:58 permissions example

userdsANS =~/

At position one is the user that the permissions example file is owned by. In this case, the
file is owned by our user account which is called 'user'. At position two is the group this file
is owned by. In our example, this file is owned by the www-data group, which is typically
used by web servers.

Now, there are three permission modes which can be set for each owner of the file.

« 1:Read Permissions
« w: Write Permissions
« X Execute Permissions (if it's an executable, then you can execute it)

Simple, right?

yrmissionss ls -1

" wew-data 20 Sep 26 09:58 permissions example

grmisslonss

The place where the permissions for this file are listed is circled in the image above. Each
owner of the file gets their own set of permissions.

The first -'is reserved for special permissions or to indicate if this is a directory or a file.
If it is a directory the first'-' will be a 'd'. Other than that, ignore this first ' for now.

The next 3 -'s are reserved for the user permissions. This file is owned by our user, the
creatively named 'user’ account. Currently, the user owner of this file has no permissions
at all, so it can't do anything with this file.

The 3 '-'s after the user permissions are for the group permissions. The file is owned by the
group 'www-data', so any account that is a member of that group will have the

4

permissions shown there to access this file. Currently, no permission to do anything with
this file at all.

Finally, the last 3 '-'s are for anyone else. If you aren't the user owner, and you aren't the
group owner, then what access do you get to this file? Currently again, no permissions at
all.

Here we've changed the permissions to show you what that looks like. This file now has the
following permissions:

The user owner, 'user' can: Read, Write and Execute this file (because the permissions are
rwix).

The group owner, 'www-data' can: Read and Execute, but NOT Write (because the
permissions are r-x).

Anyone else can: Write, but not Read or Execute (because the permissions are -w-).

Notice how the file name is now in green? That's colour-coding showing us the file is
executable because we are the user owner, and the user owner has permission to execute
this file.

Setting File Permissions

So we can all read file permissions now, right? Setting them is slightly trickier, but not
much!

In order to change permissions you need to have the rights to do so. If you own the file
that means you can. Sometimes you need to override this with higher permissions, by
using sudo. It is possible to change permissions to a file so you can no longer access it,
and in this scenario the root user is the last line of defence to be able to make changes. In
the examples below, sudo is used because the "user@SANS" does not have right to
change the file permissions.

We can use the 'chown' command to change the owner of a file to a different user account:

Paq?}?ﬂ

6 99:58 permissions example

As you can see, we changed the account that owns this file from 'user’ to 'root’. Notice the
syntax of the 'chown' command takes the account you want to change the owner to first,
and then the file you want to affect next.

You can also change the group owner with ‘chgrp':

s% sudo chgrp sudo permissions example

=fWKr=xX-w=- 1 root sudo 2 26 09:)ermissions example
usergsANS : ~/permissionss I

Now we changed the group owner from "www-data' to 'sudo’. The syntax is very similar to
the 'chown' command.

We're going to reset the permissions on our example file before showing you how to
change the file permissions themselves:

user@saNs;-/permissionss ls -1

1 user www-data 20 Sep 26 09:58 permissions example

user@sans :-/pernissionss |

Here we go: the user and group have been changed back, and we have a blank set of
permissions. Now, we can set the file permissions themselves using the 'chmod’
command.

You can add read permissions usinghmod +r filename for example:

gope

1 user
user@sANS ; -/ permissl

Notice we added read permissions to every set of permissions, including the everyone
set. This is a really quick and easy way to set permissions (it also works as +w or +x), but it
isn't very safe, because it sets all three at once. You can also remove them with -, asin -r
or-wor -x'.

A far better way of setting permissions is to use a numerical value to explicitly set every
permission at once. For example:

s example

wW-data 20 Sep 26 89:58 permissions example

So the question is, how did we get from 755 to those particular permissions? Actually, as
long as you can count in binary, the answer is pretty easy. You just have to treat the
permissions like a three-digit binary number:

aw‘x
]

Here we have three bits, one bit for read, one for write, and one for execute. If they are all
on, then by converting the binary number 111 to denary, you get 7. So a 7 will set read,
write and execute permissions.

R W X
10 |1

Faq%ﬂfg

Similarly, 5 in denary is 101 in binary, so that will set read and execute, but not write
permissions.

We used 755 in our chmod command, so that means the user can read, write and execute.
The group can read and execute, and everyone else can also read and execute.

Let's say we want to set a file to:
User: r-x Group: —-x Other: -w-

This is a weird set of permissions, but let's calculate it anyway.

User:

R|W X
101
Ob101 =5
Group:

R W J{|
".D”D .1‘
0b001 =1
Other:

"R|_W_J(
_.O.I_1 .U
0b010 =2

So the permissions we need to use are 512:

ey

S:~/permissionss 1ls -1

ata 20 Sep 26 69
chmod 512 permissions e

ls -1

ata 28 Sep 26 89:58 permissions example

That worked perfectly.
The Short Way

There is a shorter way than counting in binary every time. You just have to remember:
Read = 4 Write = 2 Execute = 1

Then just add them up to get your final permissions.

Setting read and execute? Thats4+ 1 =5.

What about read and write? That's 4 + 2 = 6.

Py

Hidden Files

In just about every operating system, there is a way of designating files and folders as
'hidden' and therefore hiding them from the user. In Linux, the method is simply adding a
"." to the start of the filename. For example: ".myfile’ is a hidden file:

user@sans—/hidden$ |5
user@sans:~‘hidden$ touch myfile
user@sans:=/hiddent Is

myfile
user@sans:~/hidden$ touch .myfile

user@sans:~/ hiddens Is

myfile

user@sans:~/hidden$ Is -a

+oo Jmiyfile myfile

user@sans:~/hidden®

You haven't seen the "touch’ command before. Without going into specifically what it is
used for, if you use the touch command on a file that doesn't exist, it will create a file with
that name, which is empty.

We start with an empty directory, then we touch a new file called 'myfile’ and then using
'Is" we can see that the file has been created.

Then we create another file called .myfile’ and when we use 'Is’ again, we can't see it.
However, if we use 'ls -a’ we can see both files, including the hidden one. That's because
the -a' parameter for 'ls' stands for 'all' and it will show you all files in the directory,
including hidden ones.

Did you notice that we also have .' and '.." in the listing when we use 'Is -a'? Remember,
these are the representations of the current directory and the directory one level above
the current directory.

You can use the '-a' parameter alongside '-I' like so: 'Is -la' being executed and the
resulting files and organised in a list with columns, and showing hidden files too.

1: user@SANS - hidden w

user@SANS:~/hiddens 1ls -la

total B
drwxr-xr-x 2 user user 4096 Sep 26 B3
drwxr-xr-x 16 user user 4096 Sep 26 +31
sMW=r==T== 1 UsSer user B Sep 26 :31 myfile
-MwW=-r--r-- 1 user user B Sep 26 *31 .myfile

user@SANS :~/hiddens

"ofo?

You can actually string together multiple parameters using just a single -, the order
doesn’t matter.

gy

Environment Variables

The Linux terminal can store data that can be used by many programs. This data is
ephemeral, meaning it doesn't last after you close the terminal window, and this data is
all stored in environment variables.

You can print an environment variable using the ‘echo’ command like so:

user@sans;~% echo $HOME
Mhomeduser
user@sans:~%

We can see the 'HOME' environment variable stores the value 'Yhome/user'. Environment
variables are denoted by a '$' symbol.

We can also set or modify an environment variable by using 'export”

user@sans:-$ export HOME=/tmp
user@sans:~$/home/ users pwd
fhomeluser
user@sans:~%/home/user$ cd ~
user@sans—§ pwd

ftmp

user@sans:~5/home/user$

There are a few things that happened here. First of all, we changed the value in the
$HOME variable. Notice you don't use a $ symbol when you are using export to set the
value.

Now that the terminal believes our home folder is /tmp, the prompt changed. It no longer
shows a~ because the terminal no longer believes our home folder is /nome/user. To
validate that theory, we change the directory to the home folder (~) and use 'pwd’ to find
where we are. We can see we are in /tmp. Of course, our home folder hasn't changed; the
home folder for our user account is still in /home/user, it's just that the terminal believes
the home folder is now /tmp.

If we close the terminal window and open a new one, our $HOME environment variable is
re-set back to /home/user when the terminal launches. Why? Because every time the
terminal opens, it sets up the environment variables as it expects it to be. Remember, the
environment variables don't exist when the terminal isn't open; they are created fresh
every time.,

So what environment variables are there? Well, you can print them all out with the
'printenv' command if you like. Here are mine:

PnTwJ

There are more, but they are too many for one screenshot to capture.
PATH

Really, you don't have to worry aboumost of these environment variables. The one that
you'll usually need to use most is the $PATH environment variable:

Think about what these commands that we've been using are. They are programs, binary
executables. The PATH environment variable contains a list of directory paths separated
by a colon (:) which tells the terminal where to look for the equivalent binary executable
when you type that command. The terminal will look in the first path first, and if it doesn't
find the executable in there, it continues down the list checking every directory in the list.

Let's find where the 'ls' program is:

g

The 'which' command can show us where a program is installed on our system. In this
case, it tells usthat 'Is'isin /bin/ls'. We can also see that '/bin’ is one of the directories in
our PATH, so that is why typing 'Is' on its own in the terminal works.

It's a much better system than having to type the full path to every executable. Imagine if
you had to go around typing /bin/Is’ just to list the files and folders in your current
directory. Hey, it could be worse: 'Is' could be in '/usr/local/bin' which would make the
command you'd have to type: '/usr/local/bin/ls’. No thank you!

If you install a program on Linux and typing the command isn't working, it's quite likely
that executable was installed into a directory which isn't in your PATH environment
variable. In this case, you have to either move the executable to a folder in your PATH or
update the PATH environment variable to add the directory it was installed in. The
problem is, environment variables aren't saved so you'd have to update the PATH
environment variable every time you launch a new terminal. There is a better way,
though.

If you are running a 'bash’ shell, which most people are (you can check with echo $SHELL),
you can edit the .bashrc file in your home folder. This is a bash script (essentially just a

list of terminal commands), which will get executed every time a new terminal window is
opened. Notice it is a hidden file (the . at the start of it).

You can just scroll down the file (it can be rather intimidating, but it's quite easy,
promise!) and add this line:

export PATH=3PATH:<your custom path here>

Like so:

g

Then simply save the file and close the terminal window. Open a new terminal window
and echo $PATH to prove your modification worked:

Why does that work? Well, let's say your normal path is just '/bin’, for brevity's sake.

If you do:

export PATH=$PATH:/mycustom folder

then for all intents and purposes, you are doing:

export PATH=/bin/mycustomfolder

el

Linux Navigation

Fa?ﬁkﬂi

Contents

In this module, we will be covering:

Tab Completion

Previous Commands
Reverse Command Search
Bash History

Parameters

Interrupts

Clearing the Terminal

A lot of things that will make your life using the terminal much more comfortable!

P9y

Tab Completion

The modern terminal has a lot of 'quality of life’ features designed to make it easier to
use. One of the most useful is tab completion. Most modern terminal shells support some
form of tab completion.

user@sans:~$ Is
Desktop Documents Downloads Music Pictures Public Templates Videos
user@sans:~§

Let's say we have these folders in our current directory, and say we wanted to cd into the
"Templates’ folder. We could type out:

$ cd Templates

But we don't have to. Tab completion can do most of the typing for us! Instead, let's try:

SedT

and then pressing tab. The terminal will autornatically look in the current folder, and it
will know you mean to type 'Templates’, because it is the only folder there that starts with
a capital 'T".

This doesn't just work with 'cd’. Tab completion can also fill in the names of terminal
commands you are trying to execute, or any files or folders you are trying to access. There
is one snag though. Using the directory structure in the image above, what if we wanted to
cd into 'Documents’ and tried to use tab completion?

You'll find that using:

$cdD

and then hitting tab doesn’t work. Why? Because we have multiple matches; the terminal
doesn't know if we want to go into Desktop, Documents, or Downloads. You'll have to add a
few more characters:

% cd Doc

IS

and then hitting tab will do the trick in this case.

If you want to list all possible matches so far, you can hit tab twice in quick succession,
and it will list all possible matches for you, so you know what the clash is and how to
make it more specific. Like so:

user@sans:~$ cd D
Desktop/ Documents/ Downloads!
user@sans:~$cd D

Here, we entered:

$cdD

and then hit tab twice, and it printed out a list of all possible matches. Again, this also
works for terminal commands:

user@sans:~% wh
whatis whereis which while whiptail whe whoami whoopsie
user@sans:~§ wh

Here, we entered:

twh

but then couldn't remember the exact command. By using double tab, we can see a list of
all possible commands that are installed on this system (in the PATH) that start with ‘wh'.

F‘uﬁlfsl

Tab Completion Practice

Being able to navigate the file system and find files and binaries you need very quickly
will accelerate your operations significantly. Tab completion is a powerful way to find files
where you aren't perfectly sure of the name, or to resolve confiicts. Let's give it a go!

)

Previous Commands

Another great feature for usability that you can find in most terminals is the ability to
scroll back through previously typed commands. Just use the arrow keys on the keyboard
for this. For example, to access the last command you typed, just hit the 'up arrow’ key.
You can keep pressing it multiple times to go further and further back through your
command history. You can also use the 'down arrow’ key to come back to your more
recently typed commands if you went past what you needed.

You will inevitably come to rely on the previous commands history a lot if you spend any
amount of time working in the terminal. Be careful though; it can be tempting to spend
thirty seconds scrolling through your command history to avoid typing a command that

would take a few seconds to type out. Everyone finds themselves doing that at some
point.

F‘uﬁ?]

Reverse Command Search

Instead of using the arrow keys to navigate through your command history, you can
actually perform a search. Ifind this is something that not many peopie know about, but
in most terminals pressing CTRL + R in the terminal will bring up a search prompt. You can
then enter your search term at the prompt and it will auto-complete with the most recent
command that matches the search. For example:

(reverse--search)whi': which Is

We typed 'whi' at the search, and the search found "which Is'. At this point, we could hit
'‘enter' to re-run the cornmand, If this isn't the command we need, and we want to go
through other matches further back in the history, we can do that too. Just press CTRL+R
again, and every time you do it will go further back in your history repeating the same
search:

(reverse4-searchwhi': which print

Make sure to use both the arrow keys and reverse command search liberally and you'll
find using the terminal can be faster (even significantly faster) than using a GUL

F‘aqghsd

History

Since you now know about previous commands and the reverse command search, you
may be wondering where all your previously typed commands are stored. Every user on a
Linux system has their own "history’ file which keeps track of every command run by that
user in the terminal. Every terminal shell has a different name for the history file, butin
the BASH shell, the file is stored in the user's home folder, and it's called '.bash_history’.
Yep, it's a hidden file.

I USHrEnsAaAMNS — -

user@sANsS ;=5
total 112
drwxr-xr-x 14 4096

drwxr-xr-x 3 4096 T

“FWe === 6858 Sep : .bash history

PN = 2208 : .bash logout
- rW-F--F-- 3887 Sep 2: bashrc

sudo apt install gcc gecc-multilib g++-multilib
sudp apt update

sudo apt update

sudo apt install gcc gcc-multilib g++-multilib
nano hello.c

gce -0 hello hello.c

.Jhello

nano hello.c

gce -0 hello hello.c

Jhello

Alternatively, there is a 'history' command that is available, which will let you read the
history file. Just do:

% history

And you'll get:

Faqqsgss

user@ANS:~$ history
1 sudo apt update && sudo apt upgrade
2 sudo apt install open-vm-tools-desktop
3 reboot
4 1s

This is a little better because it numbers the commands.
You can also clear the history:

fi. Delete the .bash_history file (a new one will be created the next time you run a
command)
fi. Then use the command$ history -c

By using 'history -¢' you are telling the history program to clear (-c is for clear) the history
file thatis stored in memory:

1: user@sANS: ~ =

user@SANS:~$ history -c
user@SANS:~$ history

1 history
user@sAnNS:~$

At the end of the terminal session, the file in memory is written to the .bash_history file in
the user's home folder. To cover your tracks, you must clear both.

The history file is something that is easy to forget about. That means hackers sometimes
get careless and forget to cover their tracks after they've been on a system too, so this is
something worth knowing about.

F'm;IBESE

Parameters

We've already used a few Linux commands so far, and even some that have needed
parameters, however, there are several different forms that parameters can take and we
need to know all of them.

The first form is single |letter parameters. These are like 'Is -a’, where the single letter
follows a dash (-). If you have multiple parameters, you can chain them together with a
single dash, or use one dash for each parameter, like so:

user@sANS :-/parameterss$
total 12

drwxr-xr-x 2 user user 4096
drwxr-xr-x 15 user user

]

b
wwn

“TWslF==F== 1 user user
user@sAnNS : ~/parameters$ 1
total 12

drwxr-xr-x 2 user user
drwxr-xr-x 15 user user

-TwW-r--r-- 1 user user
user@SANS:~/parameters$

The next form parameters can take is full word parameters. These usually require a
double dash (=), such as:

user@SANS:~/parameterss |s -all
...a file
user@SANS: ~/parametersh

In this case, '-all' is the same as '-a'. Some commands only take a long form or a short
form, some take both; it depends on the person who wrote the program in the first place,
which can be annoying.

There are even cases where no dash at all is required (or accepted), such as with the 'ps'
command, which you'll see later. So, I'm sure the burning question is: how do we know
what the parameters are?

You can use Google to look up the commands, sure, butthere is often a faster way. Most
commands come with a built-in help page, which is usually accessed with either -h' or -
help'. For example:

Faqqslf?

WHEN can be

Most tools also come with a manual page which gets installed when the tool is installed.
You can view manual pages with the 'man’' command. That works like so:

% man s

To pull up the manual page for 'ls"

TNOFEES

EASCHIFTION

In this case, the manual page for 'Is' is almost identical to the '--help’ page, but don't
dismiss it! Formost tools, the help page will give you a limited breakdown of available

oyl

parameters, while the man page will give you the full listing. You can scroll around the
man page with the arrow keys, and to quit you have to press 'q’ on your keyboard, as it
tells you.

F‘uﬁgg

Interrupts

A lot of Linux commands will run and give you a result right away, but some of them will
keep running until you quit them. Some programs, such as 'man’, have a specific way of
quitting the program. Usually, it will tell you how in those cases, such as press 'q’ to quit. If
the program doesn’t tell you how to quit, there usually isn't a special method; it just uses
the method that is there by default. That method is to send an interrupt to the program,
which tells it to quit. You can do this by pressing CTRL + C in the terminal.

We'll demonstrate using the 'top’ command. ‘top’ is a command that shows you
information about the system you are on, a bit like the task manager in Windows. You can
see how busy the CPU is, how much memory is in use, and which processes are running.
The view constantly updates with new information. This is what it looks like:

7 ous, 8.2
2027078 total 223044 T
2007148 total, 1998448 fres

18434 root
38453 user

2827078 total 222980 Tree
2097148 totel, 1998448 free

IO LISER P NI WVINT SHIL § SLPL SMEN I IME+ LOMMANL
1A ot A & BhA i] ads 5 1 ¥.) 1201, 19 Nafs
IBA5T user 2 0.5 0.2 0:00.10 top

1 root 3 g 3 N a8 1% sy teml

Fa*gb&ﬂ

You can see at the bottom that we have been dropped to a prompt again, and you'll
notice the information above has stopped being updated (well, you would if it wasn'ta
still image).

This is just one kind of interrupt.

The next kind of interrupt is one you may well stumble upon by accident. A lot of people
hit this key combination when they are trying to hit CTRL + C. The next interrupt is to
suspend a running program, which pauses the program's execution. You can do that with
CTRL+ Z:

27 root 39 19
28 root 0 -20

[1]+ Stopped
user@SANS:~/parameters$

Once the program is suspended, you have a choice in terms of how to proceed. You can
resume it, by typing 'fg' which stands for 'foreground'. That will bring ‘top' back up and
show it to you again. You could also type 'bg’ which will allow the process to keep running,
except it will run in the background. You will be able to do something eise in the terminal
while the process continues executing in the background. If you want to bring a
backgrounded task back to the foreground, you can just type 'fg'.

If you hit CTRL + Z by accident and you were trying to hit CTRL + C, just type 'fg’ and then
use CTRL + C to exit.

Pyp!

Clearing the Terminal

Sometimes we just want to clear the terminal of the output that was on there already, so
that we can start afresh. An example of where you might want to do this is after you quit
'top’; the last output of top remains on the screen, which can clutter your window.

There are two ways to clear the text on the terminal; the first is just to type:
$ clear

There is an even faster way, however. Just hit CTRL + L which has the same function as
‘clear’.

Pi%2?

Linux Commands 1

Pog

Contents
In this module, we will be covering:

p
mkdir
mv
rm
cat
less
find

PaTBHM

The cp Command

The cp command is short for 'copy’; it allows us to copy a file from one location to another
(keeping the original intact).

Take a look:

user@SANS:~fcps s

myfile

user@SANS:~/cp$ cp myfile mycopiedfile
User@SAMNS: ~fcps s

mycapiedfile myfile
Lser@SANS:~/cps

The first parameter is the path to the file you wish to copy. The second parameter is the
path where you want to save the copied file to.

You can also specify a full path to copy the file to, for example:

$ cp myfile fhome/user/Desktop/mycopiedfile

You can also copy folders from one place to another, but it doesn't work by default. You
have to use the -r or -R parameter. Take a look:

user@SANS:~/cps Is

myfolder

user@SANS:~/cp$ cp myfolder mycopiedfolder
cp: -+ not specified; omitting directory 'myfolder’
user@SANS:~/cp$ cp myn%tdﬂ' mycopiedfolder
user@SANS:~/cp$ |s

mycopledfolder myfolder

user@SANS:~/cp$

The -r parameter stands for 'recursive’; basically, it just means 'look inside any folders
and copy those files too', It also copies folders within that folder, so watch out for that if
that isn't what you intend. For those times you forget about '-r’, the error message shown
above is helpful.

Don't forget about cp —help if you want to look at the options. There are a bunch that

might be useful, depending on what you need to do, but for the most part cp on its own
and cp -r are the only two you'll need 90% of the time.

b5

mkdir

The 'mkdir' command is used to create a directory (folder). It's easy enough:

User@SANS: ~/mhkdirs Is
user@SANS:~/mkdirs mkdir mynewfolder
User@SANS: ~/mkdirs Is

mynewfolder

user@SANS: ~/mkdirs

You can also use a full path like so:

$ mkdir /home/users/mynewfolder
You can also make multiple directories at once using the "-p’ parameter, which is useful:

user@SANS:~/mkdirs |s

mynewfolder

user@SANS:~/mkdir$ mkdir -p afolder/asecondfolder/athirdfolder
user@SANS: ~/mkdir$ Is

afolder mynewfolder

Lser@SANS:~/mkdirs Is afolder

asecondfolder

user@SANS: ~/mkdird [s afolder/asecondfolder

athirdfolder

Liser@SANS:~/mkdirs

And don't forget to use --help to view a more complete listing of parameters, but -p is by
far the most useful one,

T

The mv Command

The 'mv' command stands for ‘'move’, and it's used for moving files and folders from one
location to another. Unlike copy, a move copies the files and folders from one location to
another, removing the original.

Take a look:

User@SANS ~/ms |5

afile firstFolder

user@SANS~/mvE myv afile firstFolder/afile
user@SANS ~/mvE Is firstFolder/

afile

user@SANS: ~/mvs s

firstFolder

user@SANS~/mvE

You can see here we moved 'afile’ into firstFolder’ and there is no longer "afile’ in the
current directory. Unlike the 'cp' command, you can move folders without having to use
any parameters.

There are some useful parameters for 'mv’, however, such as -n for no-clobber which
prevents the move from overwriting a file that already exists at that location. Or -u
(update), which only overwrites a file if the timestamp on the file you are moving is newer.
Check out —-help for more information.

The 'mv' command is also commonly used for renaming files. There is no rename
command, so you have to use 'mv' to move a file to the same location but with a new
name. Take a look:

user@SANS ~/mvs s

afile

Liser@SANS:~/mv$ mv afile arenamedfile
user@SANS: ~/mvs s

arenamedfile

Lser@SANS ~/mvE

Y%

rm

The 'rm' command stands for ‘remove’ (actually it's the initials of the author, but it's
easier to remember it as remove). It is used for deleting files and folders. Take a look:

User@SANS~/rm$ Is

afile

UsSer@SAMS: ~frm% rm afile
user@SANS~/rm$ Is
user@SANS~/rm%

That's all it takes to delete a file. Did you notice, it never asked if you were sure about
deleting the file? Yep, this is Linux after all. You are allowed to delete the file, so it just
assumed you knew what you were doing. If you made a typo and deleted the wrong file?
Tough luck, it's gone. Be particularly careful if you are using 'rm’ as root because you
could delete everything on the file systermn and corrupt the operating system.

Once again, you can delete folders with 'rm’, but like with 'cp' you need to provide the "-r'
parameter for recursive:

user@SANS ~/rm$ rm afolder

rm: cannot remove ‘afolder’; Is a directory
Lser@SANS~/rm$ rm -+ afolder
User@SANS:~frm$ |s

user@SANS: ~/irm3

And don't forget to look at --help for more options.

168"

cat

The 'cat’ command stands for 'concatenate’. It's used for joining the contents of several
files together and then printing the result to the terminal.

See;

user@SANS: ~/cats Is

file firstFile secondFile

user@SANS: ~fcat$ cat secondFile firstFile
The only things on youtube are

kittens...

User@SANS ~/cats

Most commonly it is used on just a single file to print the contents to the screen quickly.
For example:

user@SANS ~fcats Is

file

Userm@SANS:~/cat$ cat file
kittens...

user@SANS: ~fcat$

But you can give it as many files as you want to concatenate. Again, look at —-help for a
more complete list of options.

By

less

The 'less’ command is used for reading long files. It will open the file in an interactive
program where you can use the arrow keys to scroll through the file. This program cannot
be quit using CTRL + C as usual; instead, you must hit the 'q’ key to exit from it.

Take a look:

1: User@sANS ~ -

test

file (END)

At this point, hitting 'q" will exit the reading of the file.

There is an older version of the 'less' command which was called ‘more’, which is
sometimes installed on older systems. You can generally use either. The geeky joke is,
'less is better than more’, which should tell you which to use if you have both installed.

The good part about less is that it doesn't load the whole file into memory at once, it only
loads a portion of the file at a time. This is good if you want to read a text file that is
several gigabytes in size, because if you try to open that in a normal text editor the whole
file will try to get loaded into memaory, and if you don't have enough RAM your text editor
will crash. With 'less’, however, you can read a text file of any size, no matter how large.

Paqu?ﬁﬂ

The find Command

The 'find' command is used to find files on a system. There are a lot of options with this
command, too many to cover them all here. However the most commonly used method is
to find a file by filename, so we'll show you this one:

user@SANS:~/Hfind$ Is

onefile threefiles twofiles
user@sANS:~find$ find . -name onefile
Jonefile

user@SANS:~/find$ find . -name "*files"
Jthreefiles

JStwofiles

user@sANS ~Mind$ find . -name “*file*"
Jthreefiles

Jonefile

JStwofiles

The find command's first parameter is the directory you want to search in (it will include
all subfolders). If you want to search the whole file system, you can direct it to searchin /',
or if you want to search in the current folder and all subfolders you can direct it to search
in "' (remember, this is a shortcut for the current directory).

The next parameter is the search method; in our example, we are searching by filename.
The third parameter is the search term. If we know the full name of the file, we can just
throw it in as we did with "onefile”.

If you want to match based on a partial name, you need to use the wildcard character,
which is the asterisk ". The wildcard represents an unknown part of the name, so in our
second search we searched fdiés' which would find any files with a name that ends in
'files'. In our third example, we went one step further and searched for any files with 'file’
somewhere in the filename.

The find command has a huge amount of options. You can also search by date the file was
created, or the owner of the file, or by which files have what permissions. The
combinations are endless, which is why we won't be covering them here. Do find out more
in the 'find' man page (remember, 'man find').

F‘uqa]ll'.-'l

Linux Commands 2

Faqu?b'ﬂ

Contents
In this module, we will be covering:

grep
which
apropos
nano
vim

file
strings
wget

These are some of the most useful and powerful commands on your Linux system for
editing files, downloading data and even getting in to security use cases. These
commands will teach you how to use more powerful commands, but also will be
invaluable every day in your career!

p“'il’;‘_i’:*

The grep Command

The 'grep’ command is used for searching for text within files. Take a look:

Here we have a block of sample text, and with our grep command, we found the line that
contains the word 'room’. The first parameter to grep is the search term, and the second is
the file to search in. Similar to the 'find' command, you can use a wildcard (*) operator

like sor

us SANS:=% grep Greg* afile
One morning, wWnen or Samsa woke from troubled dreams, he found
in.

or then turned to look out the window at the dull weather.
User@asANS ; =%

Keep in mind that, by default, grep is case-sensitive. You can make it case insensitive
using the -i' parameter:

S5:=% grep gregor atile
5:=% grep -1 gregor aflle
when Samsa woke from troubled dreams, he fou

One morning
in.

then turned to look out the window at the dull weather.

Userd@saANS ;=5

Don't forget to look at more options with 'grep -help'.

Pagesly 4

which

The 'which' command can show you where in your PATH a tool is installed. For example:

User@SAMNS: -5 which Is
/bindls
User@SANG ~%

If you try to run which on a command which doesn't exist in your PATH, then you will get no
results. This is a good indication that you need to either:

» Move the program you installed into a folder in your PATH

or

« Add the foider that the program was installed into to your PATH.

user@SANS~% which foo
USEr@sANS -

F‘an‘-’gﬁ

apropos

You already know about the 'man’ command. This is the command used to pull up a
manual page on tools installed on your Linux system. Similar to 'man’ is 'apropos’. The
‘apropos’ tool is used to search man pages for keywords, usually to find the ‘appropriate’
tool to use in a particular situation.

For example, 'which tool could I use to display the manual for a tool?™:

We searched all the available man pages for 'manual’, and got the results above. One of
them is 'man’, which is the tool you want to use to view man pages. You could then do:

% man man

...to view the manual page of the man program. The 'apropos command is used to find the
‘appropriate’ tool for a particular job. It's particularly useful when you don't have access
to the internet for some reason, such as if you are working on a long fiight.

Paqu?ga

nano

The 'nano’ tool is a command-line based text editor. It is installed on most modern Linux
distributions by default, and it's nice and easy to use.

To edit a file, you just run ‘nano’ on the filename that exists.

To create a new file, you just run nano on a filename that doesn't exist, like so:

% nano afile

It even gives you a nice prompt to show you how to search and exit, amongst other
options:

1 userimSANS: ~/nar - o

GNU nano 2.7.4 File: anewfile Modified

I am writing a new file...

Get Help HE Write Out g% Where Is i Cut Text
! Exit 4§ Read File @ Replace Uncut Text

And you can see here, to exit we just hit CTRL + X. If we have made changes, we will be
prompted to save and then put in the filename to save as. The default option is to
overwrite the existing file:

Gave modified buffer? (Answering "No" will DISCARD c

Cancel

then:

Faqa?'l.f?

File Name to Write: anewfile
@¢ Get Help |

Backup File
To Files

It's a really nice and easy text editor. You'll see why we're emphasising it's ease of use
when we get to the next text editor, Vim.

F'aqel?h?ﬂ

vim

The 'vim' command is another text editor, similar to 'nano’ exceptitis a lot more
powerful. The downside is, it is also a lot harder to use than 'nano’.

vim is actually a modern version of the original program ‘vi', which you might end up with
on some systems. Usually, on newer systems, typing 'vi' will getyou 'vim’, but sometimes
you might still have the older version. We'll be talking specifically about 'vim' here and
not its predecessor.

Similar to 'nanao’, if you launch vim' and pass it a file name, it will open that file, or create
it if it doesn't already exist.

"afile" [New File]

Here we have 'vim' when we ran it on a file that doesn't exist. It has created 'afile’, and it's
telling us it is a 'New File'. At this point, you might be expecting to just start typing, but
first you need to enter into 'insert’ mode by hitting 'i' on your keyboard:

Faqa?gﬂ

You can see here we are now in 'INSERT' mode and we can begin adding text to our file.
Once we're finished adding text to the file, we have to exit from INSERT mode by hitting
CTRL + C. This will dump us back to the default mode:

You intta remember to be in 'INSERT' mode to type in V
IM..

From here, we have a few possibilities. If you want to quit, then you just type:

Fa?ﬁbﬂﬂ

and then press return. However, if you have unsaved changes, it will not quit and will
instead throw an error. If you want to force it to quit even though you have unsaved
changes, you have to type:

:ql
If you want to save and quit you can either do:
wq

or:

You may have guessed that 'q’ stands for quit, and 'wq’ stands for write-quit. 'x"is just a
shortcut for 'wq’, in case you prefer to type a single character instead of two (what
amazing efficiency savings!).

There are a lot of commands in vim, which you can go ahead and leamn if you want.
Although vim may seem complicated (and we don't really have time even to scratch the
surface of it in this course), once you know the commands you can fiy around text files
much faster than with 'nano’. It's also worth being familiar with both 'vim' and 'vi' because
you don't always get a choice as to what is installed on a system. Particularly in the world
of work, where you may end up with access to a system where you can't install 'nano’ just
because it's the only text editor you know how to use.

F‘qul

file

The 'file’ command can tell us the filetype of a file. You may have noticed that Linux isn't
keen on using file extensions, instead what matters is the contents of the file. Specifically,
every filetype has its own file header which is something like a signature identifying it
The file header is universal, even files created on Windows use them, it's just that Linux
uses them to tell the type of file, while Windows relies more on file extensions (which, let's
face it, are basically just part of the file name).

The way the file command works is by reading the file header of the file and comparing it
against a database of file headers to tell you what type of file something is. Take a look:

azip Zip archive data, at least v1.0 to extract

user@ ;=% file /bin/ls
: ELF 64-bit LSB shared object, xB6-64, ve
Jlib64/1d-1inux-xB6-64.50.2, for GNU/Linux 2.6.32,
3lae8fad9, stripped

Here we ran 'file' on two files. The first file is a zip file, which we removed the file extension
from. The 'file' command accurately tells us that it is a zip file.

The second time we ran it on the 'ls' command, which is a binary executable file, and 'file'
tells us that it is an "ELF' file (which is the Linux version of an EXE on Windows: an
executable file).

Altogether, this is a very useful command and one you should use often.

g2

The strings Command

The 'strings’ command is used for pulling text sequences out of binary files. To
demonstrate, here is a C program that doesn't do anything:

int mair) {
char *password = "thisistotallynotmypassword";
returnid);

}

Here we have the password stored in the program. If we compile the program and print it
with 'cat’, we get a bunch of junk alongside some valid text:

2 sgistert
[® [§% 158 (1% (08 W Kb
Hilit | G g0
[T]
[l
30 =1 H b HEREP T LB HE

ey
b=
g
LIH) b e
Higr |eB7D |8THT . TRee=1
HB50
LI it Tl 7 Wit T |
T
| BT G T . ([

Although there are some valid ASCII characters here, a lot of it is junk. If we use 'strings' on
the same file, however:

gy

userasANs : -, T
/11b64,/1d- Linux-xB6
libc.so.6
_cxa finalize
__libc start main
ITM deregisterTMCloneTable
gmon start
Jv RegisterClasses
ITM registerTHCloneTable
GLIRC 2.2.5
AWAVA
ALUATL
[JAVA]A™A
thisistotallynotmypassword
i
GCC: (Ubuntu 6.3.08-12ubuntu?) 6.3.0 206178406
cristuff.c
__JCR LIST
deregister tm clones
do global dtors aux
completed. 7561
do global dtors aux fini array entry

We only get sequences of ASCII characters that are 3 or more characters long. This is far
more readable, and you can even see the password that was stored in the program.

You may want to check out the man page of the strings command for more options,
including encoding and length of search options. It is very powerful and frequently used
in cyber security.

Fa?wd

wget

The 'wget’' command stands for 'web get'. It allows us to download files from the internet
from the command line. Take a look:

index . html

2817-18-084 18:57:13 (28.0 MBS

And the result is:

Sk g Y e w— 1 L

o I TS TP

It looks like Google's homepage, but take a look at the URL. It's actually the file we just
downloaded.

gy

Chaining Commands

This module is not huge, but it provides a very useful concept for us in our future
scripting. Chaining commands and basic scripting. Let us take a look at an example:

Is; sleep 5; Is
This little snippet lists files, waits 5 seconds and then runs Is again. We can chain
commands together to run one after the other on one line.
We can also use pipes and redirects if we want to. For example:

cat fetc/passwd | grep root; sleep 2; ps aux | grep root

This command will search /etc/passwd for details of the root user, and then sleep for 2
seconds, before listing running processes that reference root.

186"

Chaining Commands Demo

In this section we walk through an example of how to chain commands together. We will
use some commands that you may not yet be intimately familiar with, but the ability to
pass information between commands and build up your desired capabilities is the real
point.

Firstly we will use theps aux command. We then layer this together with grep to filter for
a specific set of processes that match the namembd. This is done as follows:

ps aux | grep smbd

This produces a list of the corresponding processes, but unfortunately also matches the
grep itself! We want to remove this from the list as a false match, which we can do with
another grep and the negation option!

ps aux | grepsmbd | grep v grep

Now we want to filter for the PID field, which is the second field (defined by tabs between
data by default). We can useawk to do this. Please note thatawk has a remarkable set of
capabilities - it is a whole language designed to filter and manipulate data. Adding@wk

we now have:

psaux | grepsmbd | grep + grep | awk '{ print $2 ¥

This gives us a list of PIDs that we can now process, using the xargs command. Xargs
enables us to take items delimited by spaces, other characters or returns. The defauit
handles new lines which is exactly the format of our data! It will pass the command as an
argument to any command that we specify.

ps aux | grepsmbd | grep v grep | awk {print $2 ¥ | kill 9

Thekill -9which hard terminates a process will be executed for each of the lines,
terminating the processes one by one. Running one of our earlips aux | grep smbd
commands against will demonstrate these have been terminated.

The power of this system is that each command you learn, such as awk, python, tee, cat,
grep (and many more), can be tied together to form new combinations. You can use each
command as a part of the jigsaw puzzle you assemble to solve your specific issue. It takes

F‘HW?

practice, but this is extremely powerful and will supercharge the velocity with which you
complete tasks in the future.

it o

Linux Architecture and Components

By

Contents

In this module, we will be covering:

Processes

Pipes

Redirects

The passwd file

Scheduled tasks

Package managers

Packages

Building a program from source code
SSH

These skills will set you up as a power user of Linux with practice!

o

Processes

A process is just a running program of some kind. You previously saw one method of
viewing running processes by using ‘top’, however top is not a complete list of all
processes running on the system, just the ones that are using the most resources. To see a
full list, we can use the 'ps’ command:

1+ + [T &

1: User@SANS: ~

user@sANS:~$ ps

PID TTY TIME CMD
24092 pts/0 00:00:00 bash
43165 pts/0 00:00:00 ps
user@SANS:~$%

By default, 'ps' will only show you processes running under your current user. If you want
to view a more complete list, you'll have to add some parameters. There are two ways to
pass parameters to the 'ps’' command: Linux syntax or BSD syntax. Which you use is up to
you, but most people end up using BSD syntax.

To see a full list of processes running on the system:

BSD Syntax:

Notice the parameters don't have a dash ('-') as a prefix? This is BSD syntax.

The equivalent in Linux syntax would be:

Fal;;lqgllgl

1
1
14
1
|
15

Another thing you might find useful is to get a full list of processes along with
subprocesses and more detail on the parameters the processes were launched with. In
BSD syntax:

$ ps aunf

MNotice the extra 'f at the end?

The result looks like this:

Faqwz

The number of options in the 'ps’' command is extensive, so be sure to look them up for
yourselves to find which ones you prefer to use. My go-to is:

§ ps aux
and if I need more information:

$ ps auxf
It can be useful to pick your own go-to and memorise the command, if you need slightly
different behaviour from time to time, you can still look at the man page.
Killing It
Now that you know how to find the running process, let's show you how to kill one.

We'll open two terminal windows. In one we'll run 'top' and in the other terminal window
we'll kill the top process and watch it exit.

First, we'll run 'top":

Faqqalss]

Now to find the 'top’ process in ps:

Notice 'top' is the second one from the bottom? There is a number in the second column
from the left, 43630. This is the process ID, also known as the PID. We can use this number
to Kill the process with the 'kill' command, like so:

Notice how "top' in the first window exits and dumps us back to the command prompt
after we run the 'kill' command against the top process’ PID?

Sometimes you may try to kill a process, and nothing will happen. If that is the case, the
process may be unresponsive. You can force-quit a process using:

$ kill -9 <<PID=>

where <> is your PID number.

Py

Pipes & Redirects
Pipes

The Linux terminal offers us an excellent way of combining two or more programs to
achieve a complicated task that couldn’t be done with just one program alone. This is the
pipe '|' character, which can be used to send the output of one command and feed itin as
the input to another command. In this way, we can chain commands together.

Since we just learned about the 'ps’ command, let's use that in our example. The 'ps’
command can produce a long output, so what about combining it with 'less’ so we can
scroll through the output at our leisure?

$ ps auxf | less

This will run the 'ps auxf' command and then take the output it would produce and use
that as input to the 'less' command. Running it, we get:

You can see we are at the start of the output and we can use the arrow keys to scroll
through. It's very convenient for working with long command output.
What about if you want to search for a particular process? Let's combine 'ps’ with 'grep”:

% ps aux | grep bash

And that produces:

Faqqagas

Notice the second instance is our grep command running to search for 'bash'? We can
safely ignore that, or if you don't want it to appear in your output at all:

% ps aux | grep bash | grep-vgrep

In this case, take the output of 'ps aux', feed it into grep to produce a list of matches, then
feed that list of matches into grep again to remove any lines containing 'grep’.

We can keep going, if you like, How about opening the result of all of that in 'less'?
$ ps aux | grep bash | grep-vgrep | less

The possibilities are endless! It's extremely useful, and you'll want to get familiar with
this.

Redirects

Redirects take the output of a command and write it to a file. Similar to a pipe, but think
output to a file instead of to another program.

There are two forms of redirects: the first is overwrite, which uses a single ‘greater-than’
sign (*>'). The overwrite will create a file for the output if it doesn't already exist, but if a
file does already exist it will overwrite it entirely:

user@SANS: ~fredirects Is
user@sANS:~fredirectd echo "hello onel” = afile
Lser@SANS: ~/redirect$ |s

afile

user@SANS ~/redirects cat afile

hello one|

user@sANS: ~/redirect$ echo "hello twol" > afile
Lser@SANS:~/redirectd cat afile

hello twol

user@SANS ~fredirect$

You can see the first time we ran the command the file didn't exist, so it was created. The
second time we ran the command, the contents of the file were replaced completely. Be

goe

careful using the single redirect! It is very easy to overwrite the contents of an important
file!

The second type of redirect is the append or double redirect, which uses two 'greater-
than'signs (*>>'). The append will create the file if it doesn't exist, but if the file does
already exist it will add the output to the end of the file instead:

user@sANS ~fredirect$ |s

user@SAMS: ~/redirect® echo "hello onel" == afile
user@SANS ~/redirectt Is

afile

User@SANS ~fredirects cat afile

hello onel

user@SANS ~/redirect? echo "hello two!" >= afile
cat afile

hello one!

hello two!

user@SANS ~/redirect®

The first time we ran the command, the file didn't exist so it was created. The second time
we ran the command, the output of the command was appended to the end of the file.
This is the safer redirect for obvious reasons, but there is a time and place for each.

F‘HW?

Passwd File

The 'passwd' file is a key file on any Linux system; it holds information aboutwhat user
accounts exist on the system. On older Linux systems, it also stores each user’s password
hash (remember a hash is a type of one-way encryption). On modern systems password
information is no longer stored in the 'passwd’ file, it is instead held in the 'shadow’ file.

The passwd file is located at '/etc/passwd' and looks something like this:

See that 'x' by every user account? That is where the password hash used to be, but an 'x’
means the password hash isin the shadow file instead.

The shadow file is in 'fetc/shadow’ and looks like this:

go°

See that big random string by the 'root’ account? That is the password hash. The other
accounts don't have one because if you look them up in /etd/passwd, you'll see they are
all set to 'nologin’, which means they are accounts that can't be logged into. These
accounts are for software that is installed on the system. For example, www-data’' is used
by web servers.

So why the split? Well, it's for security reasons. In the old days, the passwd file used to
store the password hash, but the problem is that all account data is also stored in the
'passwd’ file, so a lot of programs need to access it That meant the passwd had to be
readable by any user on the system, which means anyone with an account on that system
could steal your password hash and take it home to try to crack it

This problem was solved by creating a 'shadow’ file, which stores only the password hash
for every account. The 'shadow’ file is readable only by "root’, because the root’ user is
the only one that needs to be able to read the password hashes. All other programs that
need access to other account information continue to use the 'passwd’ file, which is still
readable by anyone, but no longer contains password hashes.

Watch what happens if a non-root user tries to read /etc/shadow:

user@SANS =% less fero/shadow
fetcishadow: Permission denied
USEr@SANS ~$

F‘HWQ

Scheduled Tasks

Every operating system has some way of scheduling tasks so they can be performed
sometime in the future, and Linux is no different. The Linux version of scheduled tasks is
called 'cron’, and the place that all the scheduled tasks are stored is called the ‘crontab’.

To view all the scheduled tasks for your user, you can use:

% crontab -|

and the result is:

User@SANS ~% crontab -
no crontab for user
User@saNS -5

In this case, we don't have any cron jobs set up for our user yet, so let's add one by editing
the crontab. We can edit the crontab with:

% crontab -e

user@SANS:-% crontab -e
no crontab for user using an empty one

ect an editor. To change later, run 'select-editor’'.
/bin/ed

Jbin/nano <-=-=+ @aslest

fusr/bin/vim, basic

Jusr/bin/vim. tiny

Sel
1
2.
3
4

Choose 1-4 [2]: 2

So, here it is asking us which text editor we want to use to edit the crontab. It correctly
tells us nano is the easiest, so we'll just use that by entering '2'.

P30’

Gl nano 7.7.4

¢ manual pages o

Here we have a blank crontab file, we just have to add an entry. We'll use the 'date’
command to append the date to a file so we can see the command running over and over.
This is the exact command we are going to set up in cron to run:

user@sAnS ~% date => thome/user/test
user@SANS: ~% cat /home/useritest
Sun Oct 8121237 POT 2017
user@SANS: -5 date => /homeifuser/test
user@sANS =% cat /homefuser/test

Sun Oct 8121237 POT 2017

Sun Oct 8 12:12:50 PDOT 2017
User@SANS: =%

So, our expected resultis to get an entry in the 'test’ file every time the cron runs.

Each entry in the crontab must use the following structure:

Minute Hour DayOfMenth Month DayOfWeek Command

You can use a wildcard operator (*) to specify 'every’, such as every minute, or every hour.
You can also use a comma separated list, for example:

1,7,14,22 for the DayOfMonth would run the command on the 1st, 7th, 14th, and 22nd day of
every month.

You can also use a dash (-') to specify a range of dates, so for Month you could use 1-7,
which would run the command on the 1st through to the 7th month.

Pa ?DJID 1

For the command, you should use the absolute path to the command wherever possible,
which means finding where the ‘'date’ command is installed using ‘which'.

Which tells us that the 'date' command is installed in '/bin/date’ so we'll use that and
add an entry, like so:

31,59 *** ¥ jhin/date == /home/user/test

Therefore, our command will run on the 31st and 59th minute of every hour, on every day
of the month, on every month and every day of the week. Now we just have to wait until
the appointed time to see if our file is updated.

We cleared the file and then waited for the 31st and 59th minute to pass, and we get:

user@SAMNS:~$ cat test
Sun Oct 81231:071 POT 2007
SunOct 8125501 PDT 2017

It looks like it is working as expected. The date was printed 1 second past the 31st minute
and the 59th minute like clockwork.

P30

Package Managers

Package managers are programs that are designed to simplify the instaliation of new
software on Linux. They are present on most modern Linux distributions, and they make
installing software easy. There are two common package managers; you'll mostly have
access to one or the other.

apt-get

The 'apt’ package manager is present on most Linux distributions that have been based
on 'Debian’. Debian is a popular distribution that many other distributions are built on
top of. The popular and user-friendly '"Ubuntu’ distribution has also been based on
Debian, so it has the 'apt’ package manager.

To access it, you can use either "apt-get’ or 'apt’. Either will usually work. Take a look:

usErBsANS:~§ o
apt 1.4 [amdbd
lzage: apt [options] command

Fut L-upgrac
cdil-sources

cee apti{B) for more informa
Configuration options and synt
Informat bout

Package and ver

cecurlty details are

FET g pTele

The way 'apt' works is by having a list of 'sources’; these are servers which contain
information about available packages, download links and version information. The first
thing you should do is make sure your sources list is up to date. You can do this by using
the 'update' parameter, remembering to run 'apt’ as root:

$ sudo apt update

3%

You can see the new sources are being downloaded. It's important to note; thisis just
updating the list of available packages and versions. It isn't updating any software that is
already installed.

If you do want to update software that has already been installed on your system, you'll
have to use the 'upgrade’ parameter, like so:

% sudo apt upgrade

Here we have 34 software packages which can be upgraded. By entering 'y’ and then
hitting return, they will all be automatically upgraded to the latest version available in
our sources list.

The upgrade process is automatic and seamless.

You can also use the package manager to install new software. We'll install the ‘cowsay’
program now:

Faibﬁm

$ sudo apt install cowsay

Bui lding
Reading
The foll

newly install, @ to remove and @ not to upgrade
Need t ; B o1 ’
After th | additional disk space will be used
Do you want to l_nnTJHH f

Once we agree, the 'cowsay' package and any additional packages that 'cowsay’ needs to
function will automatically be installed for us:

user@SANS:-$ cowsay "This is a terribly useless program...'

< This 1s a terribly useless program...

UserigsANS : -5

And yes, that is all the 'cowsay' program does. Once we realise it's a useless (but mildly
amusing) program, we can remove it with:

F:‘sibgﬂs

$ sudo apt remove cowsay

Don't forget to take a look at the man page for more information on ‘apt’.
yum
The next package manager on the list is 'yum', which is a package manager found in
'Fedora’ and Fedora-based distributions. The idea is similar to 'apt’ except you don't need
to update the sources list yourseif. It gets updated automatically whenever you run a
command that involves looking up sources.
To upgrade all your installed software:

$ sudo yum update
Or if you'd prefer to upgrade just one specific package:

$ sudo yum update cowsay
To install a package:

$ sudo yum install cowsay

And to remove a package:

$ sudo yum remove cowsay

P308™

Packages

Sometimes you'll find a piece of software that isn't available in your package manager.
You might be able to find it 'packaged’ for your Linux distribution, however. A package
usually ends in either ".deb’ or “.rpm’, depending on which type of distribution it was
packaged for.

dpkg

A'.deb’ file is a package that was generated for the 'Debian’ distribution or a Debian-
based distribution, such as Ubuntu. You can install these packages with a program called

'dpkg’.

user@sans:~$ Is
cowsay.deb Desktop Documents Downloads
Lser@sans:~$

Here we have the 'cowsay' Debian package downloaded from the internet. We'll now
install it with 'dpkg":

$ sudo dpkg -4 /home/user/cowsay.deb

Now we can run ‘cowsay’ as per usual. Unlike with a package manager, however, dpkg
doesn't take care of installing dependencies. So, if you install a program that requires
several other packages to be installed, you'll have to read which ones are required and
make sure they are installed yourself,

You can list installed packages with:

§ dpkg -|

Pa ilb;ﬂp?

And also remove a package using:

% sudo dpkg -r cowsay

rpm

An "rpm'’ file is a package generated for the Fedora distribution and Fedora-based
distributions. You can install these packages with the 'rpm' command, like so:

$ rpm -Uvh /home/user/cowsay.rpm
You can list installed packages with:
% rpm -ga

And once you have the package name you want to remove with the above step, you can
remove it with:

$ rpm -e cowsay

P38’

Like ‘"dpkg’, 'rpm' won't automatically install any dependencies, so you'll be responsible
for finding and installing any software that the software you installed requires in order to
function.

ol

apt-get Installation Walkthrough

The apt command is one of the most popular package managers, and in this module we
walk over finding, installing and then removing software. The ability to use apt enables
quick resolution of missing software and satisfying dependencies.

F‘aialblr_'r

Building From Source

Sometimes you may not be able to find a package in your package manager, and there
might not be a pre-made package for your distribution available. Don't panic, though,
because you can still install it as long as you can find the source code for the program.
You'll just have to compile it from scratch.

Sometimes this process can be quite smooth, but sometimes it can be quite troublesome,
and you'll end up searching on Google for answers and fixes. The process can vary
depending on the software you are trying to install, so it's best if you check the
documentation before trying to install it. Sometimes the source code folder will contain a
text file called 'INSTALL', which provides installation instructions that you should also

read.

For most programs, the procedure is as follows:

fi. Change directory into the folder that contains the source code. In our example, well
be installing the program ‘cmatrix’.

fi. Run the '‘configure' executable script; this will generate a ‘'makefile’, which is buiit for
your system. Basically, all the compiler options that will generate a working
executable for your system and processor architecture will be stored in the

makefile.

Pa?ﬁllll

fconfigure

reating cache ./config.ca
checking r a B5D compati stall... fusr/bin/install -c
checking w her build envi ent 1s sane... yes
checking

ng a
Ta working a .». missing
checking autaheader... missing
checking fo < makeinfo... missing
checking
checking whethe (5. ..
checking whether the C iier) 15 a cross-compller... no
checking whe 3
checking e :
checking for a compat nstakl... Jusrfbinfinstall -c
checking whether make se \KE}. .. (cached) no
g for main in -1 [
g how to run the (
for ANST C
for
g To 34 ; P
checking for unistd.h... ¥
g for termios.h.
g for termio.h..
g return type of ;e WOLE
for putenv,..

fi. Once the makefile has been generated, run 'make’ to compile the source code into
an executable.

You can see we have a warning, but it isn't an error, so it will have run successfully
nevertheless. A warning means the program compiled, but there might be unexpected
behaviour when running it. Typically, thisis up to the programmer to fix, and we won't be
able to do anything about it without editing the code, We can ignore it, assuming the
programmer tested their code and it works as intended. At this point, we have the
‘cmatrix’ binary in our current folder:

Fa%ﬁ%fﬂ

fi. However, it isn't installed in a folder in the PATH just yet. To do that, we have to run
sudo make install:

sudo make install
m a di ' thome/fuser/cmatrix-1.2a"

1 'fusr/local/share/man/manl
ser/cmatrix-1.2a

This will take the ‘cmatrix’ binary and any other required files and instail them in system
folders, so that cmatrix can be accessed by typing the command no matter which foider
you are currently in. Let's leave the ‘cmatrix’ folder and try the command ‘cmatrix’:

That's right; it is another useless program which just makes the terminal window look like
something out of the cult movie 'The Matrix'.

Altogether, this was a fairly smooth installation, however we did run into an error in
running 'make’ the first time. We were missing the 'libncurses-dev' package which caused
'make' to throw an error at us. After installing 'libncurses-dev' with ‘apt’, we were able to
progress. You may well have your own issues installing software this way. Unfortunately,
the only way to solve these issues is to either Google search for them or find the cause
yourself,

Another potential issue is ‘'dependency hell' where the software you are trying to install
requires several more pieces of software to be installed. You go to install those, and they
require even more software to be installed and so on. There is no real fix for this unless
the software is available from a package manager. If it isn't then all you can do is keep
installing software until everything you need is finally installed.

Fa:_f‘l.'lv.’,},j

Using SSH

When it comes to Linux, one service is more important than them all (arguably). That
service is SSH. 5SH stands for Secure SHell; it's a way of letting people log into a Linux
computer over the internet. It's terminal only, so you won't be able to get a GUI, but
having been through this course and become familiar with the text-only way of doing
things, I'm sure that doesn't phase you at all.

Most Linux distributions come with S5H enabled by default. All you need is the username
and password to your Linux computer (and of course you'll need to set up port forwarding
on your router if you are behind NAT.), along with the IP address. To log in to an SSH server,
you'll want to use the 'ssh’ command if you are on Linux or Mac OS. If you are on Windows,
you can download an SSH client such as PuTTY.

The command to log in to SSH is:

$ ssh username®ipaddress

Once you connect, you'll be asked for the password to that account. Submitting the
password will get you to a prompt, similar to if you were sitting at that computer.

Some S5H servers are configured to use a keyfile (a keyfile is just a text file that contains
an encryption key) instead of or as well as a password to log in. If a keyfile is required, you
have to specify the location of the file when you connect with:

% ssh -i /path/to/keyfile username®@ipaddress

F‘aialyd

Customising Your Shell

You can modify your user experience of the command line in a simple remarkable
number of ways. In this video we will:

Explore command completion to expand tab functionality

Explore thezsh shell as an alternative tobash

Install a plug in manager to expand the functionality with community capabilities
Configure the look and feel with themes, using powerlevel10k and pure

Modify the intelligence provided on the command line to be aware of version
control capabilities like git, and command exit codes

Configure the vim text editor with plugins, including syntax highlighting

Get a custom version of cat called ccat that colorises output

Explore shortcuts for executing commands with sudo

DO NOT PANKYyou find this video a lot to take in. We cover concepts and commands like
git in lots more depth in the programming section. If you have not used a command line
interface extensively before you will likely find this walkthrough fast - but it is built up
from what you have been practicing in the Linux modules. Take your time to go back over
them and watch this video carefully.

You should try this yourself on your own system, and use the community and Google as a
tool to customise plugins to your liking. If you use a virtual machine you can take
snapshots and experiment, reverting whenever you make a change you do not like!

F‘Biﬁgﬁ

Search Superpowers

Flg'sanl ﬁl&

Contents

This module will provide a look into how search engines work, and the most efficient way
to use them.

We will be covering the following components:

How search engines work

The best way to construct a Google search
Keywords and colons in Google

Wildcard operators

Quotes

Google as a calculator

Troubleshooting simple problems using Google
Alternative search engines

After completing this module you will be able to search Google with style and efficiency;
perform advanced searches using keywords to narrow results by filetype; and
troubleshoot basic computer problems using Google and other search engines.

F‘aiﬁ)}l?

How Search Works

Search engines are a key aspect of life in the digital age. We use them all the time, but
how many people can really get the most out of a search engine? The problem is that not
many people understand them.

Search engines run software called crawlers. They will start by visiting a page, then
looking at all the links on that page, making an index of all the words on that page. The
crawler will then follow the links on the page to the next page and do the same there.
Eventually, the crawler will have indexed every publicly accessible page on the internet,
or at least that is the idea.

The actual algorithm that search engine providers use to display relevant search results
to usissecret (a bit like KFC's secret sauce), but we do know a few generalities. To
continue with our food theme, imagine you search for ‘pizza’. The first search result you
see will be the page that most other pages that contain the keyword 'pizza’ link to. The
idea is, if many pages that contain the keyword all link to one page, that page is most
likely to be an authority on that search term.

F‘aialhla

Constructing a proper search query

The average internet user might conduct a search query as follows:

What should I doif my computer can't cennect to the intemet?

The above example is the wrong way to perform a search using a search engine. It will
work, but you'll actually get lower quality results this way.

What should | do It my compuler can't connect 1o the internet? L Q

Here is the bad search. Notice the huge number of results we are seeing? It's going to be a
problem filtering the good results from the bad.

Google is a keyword-based search engine, meaning each word is taken on its own, and not
as part of a sentence. Google is going to look for pages which contain all of those words
and rank them in priority order. The more keywords you have, the broader your search
and thus the less relevant your search results will be.

In fact, to make it work better, Google will try to strip out some of the unnecessary words
automatically, such as 'T', 'we’, 'the' and so on. Of course, Google isn't perfect, and it won't
catch everything, so a well-constructed search is key.

troubleshoot internet computer

This is a far better search term, likely to get you more relevant results, Notice how it
doesn't make sense as a sentence though. The key is, we identified the words that are
most relevant to the search. The order doesn't matter either.

troubieshaot infemet computer

o -

&l (g W) Shapping e BAng S imng

You can see with the proper search term we've cut down the number of results
significantly, and the pages we do get are ones that are relevant to what we want to know.

F‘ugﬁgg

Commands and Colons

Now that we know how to make effective Google searches, let's take it a step further.
Google actually has a series of commands which can be used to refine searches.

Did you know you can restrict a Google search to a particular site using tisd.te:

keyword? Say 1 wanted to search https://bbc.co.uk for the word ‘hacker’. I would construct
my search like so:

site:bbc.oo.uk hacker

sltebbc.co .Uk hacker L
All ImiaGes b s r s Mokl AT SEftirge =
Abpalil 55 008 reaulls (0 4% secanos

Hacker Time - CBBC - BBC

wharw Libe oo ul/tlabolishows/iacker-lime =
FoBcy (g conbnuing atventes of Hagker T Cog on RS Qrest e Wi show slardom. Each dag e
IEKR & Nayy cERArTy furil M s s i e nEe

Teenage cyber hacker Adam Mudd jalled for glnhal attacks - BBC News
wish b £ ukmewsrul-england-beds-tnicks-he i s-J0T050DEH »

25 Apr Uy - & computer hacker nes toen @ed for fwo joars for masemmnding globsl onime atar
AZ 3 TRANAGRET Mam his badreo (n Henfomshine

NHS cyber-atiack: Formar hacker on how ransomware works - BBC .
werw bl co ukinews/ | nhs-cyber-ateck-former-haclker-gn- how-ransomware-wotkes »
19 Wy 3T Ronant Sekifresn aaplaing how SHacEs I6E Me ans on MHS 1=ics spress

Motice how all the search results are from bbc.co.uk?

There are plenty more keywords like this. Amongst the most useful is filetype which can
narrow down a search to files of a particular type.

P35

filetypa:pd! fun 4 09

an IAgES Videns ME WMaEps Ko S=aings Toos

Al 104 00AS GOO reeufiy (0 54 pedonds)

™1 Fun Activities Catalogue - Centre for Clinical | fions
W ool health wa gov aufdocs/Fun®e2 DActiviies a2 0C =tslog
Conbe fou Clinical inberyentions. -Peychedherapy-Roseanc-Tramng. Arinies Tatalogue_ 1

GO By @ QUi o rivia nighl 2 Spending mea in nature_ 3

weew oo haalth wa gy awdnes AGTFTDS
IrlErventEns *FE';{HMHEITIPV-REEEETEt-':H Fum AZTNIBES EEHI'IJlan 1 Saal.ng i Ta BarrEh
2. Prannang my, sasver, 3_Collecing (hings {coms, shefs

FUIEyn Activities Catalogue.pub - gentra for Clinical Intervantions

"1 Package fun'- R

Frtipes ! cram, £ projecl. nrgfwszaciagz’sﬂuh"ﬁ.l@
Packige fun' Felsuay 19, 20015 Type Packige se R fod Fun. Yersion 001-0 Date 20910812

Alihor Yl Xle, Talun YWel and Yiduen Gig, kMamiainse

In this exampile, I searched for files of type 'pdf which contain the word 'fun’. Notice the
links all end in .pdf here.

You can find Google's full list of commands here.

Panllﬂ

Google Dorks

You may laugh at some of these, thinking they are pointless, but you would be shocked at
some of the content that Google has indexed. Clever Google searches that can be used to
find content that people never intended to be put online are called 'Google Dorks'. You
can use Google to find:

« Unsecured security cameras

» Passwords (yes, people put files with passwords in them online)

* Vulnerable software

* Documents that were obviously never supposed to be shared with people

And much more...

F‘Hnifll

Wildcards

Imagine the following scenario: you need to perform a search, but you don't know one of
the words you need to search for. For this, you can use a wildcard operator. A wildcard will
match any word.

The wildcard operator is the humble asterisk (*).

So let's try it out:

"The internet is a series of *

"the internel s & sernes of ™ L Q
all Mews s [L Shoppmg Mo Sohmgs oot
AL Ay, SR DO remuls (1 30 secomdy

Sanas of tubes - Wikipedia

hitps.\ien vnxpedia orglwikySenes_of ubes »

"hienes aftubes” 5 2 phrass coines angmaty 35 an Spalkegy by ihen-Unted Sofes Senatnr TThe
prtarnad |8 9 Barles of Tubes® spavened 5 NSy seman tRal bacarme & Eilying ery for per ety
WiTOCAES Slsveard' dueily sETflsiic

Partal text of Stevans Mets commentan' Pap cuture rEflemnces - THoue

The intermet IS a series of tubes. Kinda: A Reg 101 gulde to cabling ...
hirpa: oy Iheraginter oo k010N Vcablmg_and_yous =

W A 08 - Thars are =6 many Iepes of cabiles and connecion & cam be-comflsing whon youl ang
Buikding i Oata contre. 1've Luken @ ook b ihe pros &

The Internet IS a sanes of fubes = TechnoLlama
'.l.l'.'\"n'-"l-i‘-l'.h-'\-.‘n'lil'l'li e uking etEemet e 5 seres of lubes »
23 - 2007 - (ke DoingBoing) This & an arazing irage: Chacing 1hes Wen &e W fncow | (el 2007

Liwng the Toryo undengioand s a referenoe

Notice here all the search results are for The internet is a series of tubes', even though [
didn’t include tubes in the search term. Oh, by the way, the internet ot a series of
tubes, it's a geek joke. But geeks are cool these days, right?

Pungﬂ

Quotes
We've said earlier that Google is a keyword search engine, so each word is taken on its

own. Well, what if you don't want that to happen? What if you care about the order of the
words?

using quotes in google

This search term, without quotes, gives us different results to the search term with quotes.
Here it is without quotes:

using guetesin google 4 Q
&’ b [[y & NEwE MAJES ATOEEEH] fiare ':‘—:":".'lg:' Tiaoin
A e 20 100 000 (el (T RS sl)

Here's an overview of soma of the most useful Google search tricks, from
basic tips to new features just recently refeased.

1. L. quotes o search for an exact phiase, ...
2 Uze an asterisk within guotes (o specily unknown or variable words. ...
3. Uze the minus sign 1o eliminate resulls containing certain words,

Milire i

11 Google Tricks Thatll Change the Way Yeou Search - Molto

muoiby time comdd 1182559 google-woarch!

B A0ina e cwsll B v asbecs

People also ask

How do you axclude a word from a Google search?
How do you use Google search?

How do quotation marks halp your search?

What do quotation marks do in a Google ssarch?

VX

11 Google Tricks That'll Change the Way You Search - Mollo

mofls ime enmdd VTR S vgoagie - eaaErciy «

Y D T . A AT EA v, A o I Irosd ||f\.%rﬂ i trickea, fream Bsic fipa e
Irh [T RE s T P TR II_-.@I 1 heaan Rl WITEACT pihiine Llse i slei sk wilhin
'|-

sl ke of vithabile Wi Line fhet rmonani sign fa sliminate reacits coplaimeng cesn

Notice that in the result, the bold words are what Google matched the result to. The words
are spread out in the text.

The same search with quotes:

o vl

"Lsing quotes in googie” L}

Al Yigees Maws brdges SRapping MerE Zattings Tocs

—

Aboul 6870 Fesuls (15 pecands)

Gnugle Search Results with Quoles - How to find the real # of resulls ...
htpsim youlybe comiwaich wekeouwAgksbaE

19 Dec 2041 - Uphsndes By Crasg Saih
! Saarh Resuls with Quoles - How 1o ng Mersal# of resoy ﬁnc@

Gat Control of Search: Using Quotes - YouTube
- hitpa:inanaw yourtuine comwatch fy=hi 200masnE
23 Maw 201 |.|:II|'I.1'1IhTﬁ'| MIF‘""\'.'I'H
(apogie Seaich Fesumh win CunfEs - o o ind me mal £ of e unm@
[t

precebacitarins godgle fmrln'nn'liu'd:quﬂrh'-i
W0 U 2090 < e conlacied Coogle™ enlgiprese suDpint ind they baid me B afure doesnt curenlly
st In Googee Docs - bl 1 has tar tne @sf 2 years jup

Google .ﬁ.:lvannnd Saan:h How To Find Anything - Life Hacks

I'|I".H.1 wEamhl v

redEvaEnT. T [ETDRE e St 100 agr

Notice here the exact phrase is used on the pages and the words are kept in the right
order.

g i

Google as a Calculator

Google can be used in place of a calculator too. Just enter your calculation in Google. For
example:

256" 88 L Q
All [AET Shopng Imanes Bfpmiass [Zefings Tt
Aboul 510000000 rouuils (0 18 seconds

B o { i U M

Inw ain I T il o =

it cos log 4 5 f x

-] tan | 1 2 3 o

A EXP bl i — -

or

go vl

Abain 7550 D00 resiits (024 saranes)

or just get to the blank calculator by searching on "caic’.

e v o

Troubleshooting

One of the most common uses for Google in the IT industry is to troubleshoot problems.
Unless you are on the absolute cutting edge of research, you are bound to have a problem
that someone else has already solved. The problem is, you may not know how to approach
getting the answer you need. In this section, we will take you through the process of
troubleshooting a problem with a (fake) piece of software on a computer.

Let's say we're using Macrosoft Letters (a fake word processing application) to write an
important document. It's late, your boss needs it tomorrow first thing, but the application
keeps crashing every time you try to open it.

The first search term will be quite generic, as you don't know much by this point.

macrosoft letters crash open

This search might lead you to some forums where someone is complaining that this is
happening to them. Someone responds, saying "What does the error message in the log
file say?", but there are no more posts on that forum thread.

The key piece of information here is that there should be a log file where the error
message is written. So the next step is to find that log file.

macrosoft letters log location

This search term might lead you to the official Macrosoft Letters documentation which
tells you the file is located in the 'My Documents' folder in a folder called '"Macrosoft
Letters' and the log file is called 'logfile’.

Opening the log file in your text editor, you see the error message says: "Error 42.
Application quit unexpectedly.”

That isn't a very useful error message, butyou can at least search for it:

macrosoft |etters error 42

That search term might lead you to another help forum where someone claims to have
solved the issue by deleting a preference file located in "My Documents' then ‘"Macrosoft
Letters' and then 'prefs.ini'.

Because you don't want to risk anything, you make a copy of the preference file to your
desktop before deleting it from the Macrosoft Letters folder. Then you launch Macrosoft

ol o

Letters again, and it opens!

F‘Ewg

Alternative Search Engines

No two search engines are the same. They all have their own search algorithms for
displaying search results, which they won't share with others. This means that the same
search with two different search engines will undoubtedly produce different results. That
can be a good thing; you may be struggling to find a piece of information you need with
your normal search engine. Why not try a different one?

Here are some that you might want to try:

Google

Bing

Yahoo
DuckDuckGo
archive.org

P338%

Google: In Practice

James Lyne shares some real-world examples of how cyber security practitioners can use
Google to their advantage.

Paﬁi!til

WWW and Serving

Pa %i,] 2

Contents

Web applications and websites represent a huge volume of modern business and
consumer applications.

In this module, we will be covering:

Web Servers

HTTP Protocol in Depth
HTML

JavaScript

PHP

Client Side vs Server Side
Cookies & Local Storage

F‘Hnﬁﬂ

Web Servers

To understand what happens when you visit a web page, we first need to talk about web
servers. Web servers are software applications that accept and process requests
according to the HTTP protocol. At the simplest level, a web server will send HTML back to
the browser, which will use that HTML to render the web page.

There are two main types of web servers. The first is the generic web server: these are
multi-purpose applications that serve files that exist in a certain folder on the operating
system. The second type is the custom web server: these are typically programs that are
purpose-built to serve a particular site. Something like Node]S falis into this custom
category.

Generic Web Servers

The two most popular web server products that fall under the generic category are
currently Apache and Nginx (pronounced engine-ex). Both of these products are
configured to use a folder as the 'web root’; that folder will contain the files needed to run
the website. The folder should include an index file, named either index.htmi or
index.php: this is the file that is sent when a request is made to '/'. For example, if you
visit https://www.google.com/ you will get the index page at the top level of the web root
directory.

Generic web servers are easy to set up and require no programming knowledge. Most of
the internet still runs on them, and that is unlikely to change. All the files in the web root
folder are accessible by visiting the site that the web server is configured to serve.

Custom Web Servers

Custom web servers are purpose-built programs designed to run one specific site. Instead
of serving files directly out of a folder, the routes usually need to be programmed into the
software. In other words, the code of the web server will define what happens when a user
tries to access a certain path or route. The code may say, if the user is browsing to '/help’,
then send this HTML as a response, for example.

These types of web servers are often used by large or complex web applications because
they grant more freedom than generic web servers. Features that are needed can be
added, while features that are unnecessary can be ignored. The downside is that you
need to be a programmer to serve even a simple website using this method.

Port
Typically web servers will listen on either port 80 (HTTP Unencrypted), or 443 (HTTPS

Encrypted). These are the default ports, so if you go to your browser and access a site with
http:// or https:// you will automatically be assumed to be using these ports. Web servers

gocl o

can be configured to listen on non-standard ports, but that means anyone who needs to
access them will need to put the port number at the end of the domain, like so:

https://some-fake-domain.fake:8008

In the above example, 8008 is the port number that our web server is listening in on.

F‘Hﬁéﬁﬁ

HTTP Protocol in Depth

The HTTP protocol comes down to a series of requests and responses. The browser makes
a request to the web server, which returns some kind of response. This is what is powering
your web browser when you connect to web sites and interact with them.

An HTTP response consists of two parts: the response header and the response body. The
response header contains metadata (data about other data) such as a timestamp of the
response, the web server software that sent the response and other factors, which we will
cover later.

Requests

There are several different kinds of requests which are supported by the HTTP protocol:

« GET: A GET request asks to retrieve a specified resource. When you visit a page such
as 'https://some-fake-domain.fake/about.html’ you are asking to retrieve the
‘about.html' file from the web root.

» HEAD: A HEAD request asks to retrieve a specified resource, but without the response
body. In other words, retrieve only the metadata without the data. This type of
reguest is not common and is more often used when developers are testing their
site.

« POST: A POST request is used to send data to the web server without expecting
anything back. This is commonly used by HTML forms, for example.

* PUT: A PUT request is used to ask the web server to store the data sent in the request
at the path requested. So for example, a PUT request to "https://some-fake-
domain.fake/about.html’ would add the data sent to the web server in the PUT
request as 'about.html’ (if authorised). If 'about.html’ already exists, it is overwritten
with the new data. This one is also not common.

« DELETE: A DELETE request deletes the resource specified in the request (if
authorised). Again, this one is not commonly seen.

There are others, but they are even less frequently used. For the most part, the ones you
should pay most attention to are the GET and POST requests.

Requests can also contain other information than just the page being requested. For
example, the user agent (an identification string used by the browser to tell the site which
browser is being used to view the page), the date, the content type (in the case of POST or
PUT requests), etc. The list is really very large, so it is best to look it up.

Response
The HTTP response is split into the response header and the response body. The response
body contains the data that was retrieved. For example, if you send a GET request to

'hitps://some-fake-domain.fake/about.html’ then the response body would contain the
contents of 'about.html’. The response header, on the other hand, will contain metadata

o=

about the request, including usually valid request types for that page, the response
length, date, name of the server, type of web server being used and so on. Once again the
full list is very large so if you need it, it is best to look it up.

One very useful fact to remember is the definition of HTTP response codes. There are
many of these but as we start to dissect web traffic and protocols in depth later being
able to recognise a web request that 'worked' vs failed is invaluable. A key example is:

200: OK, Iwill provide you with the answer to this request.

302: Found, but redirect over here as this resource has moved.

404: File not found, this request doesn't match something I can serve.

500: Whoah, something went wrong! Internal server error. This commaonly happens if
you are trying to run server-side code and a fiaw was triggered that was not handled;
these can be interesting if you run in to them in a security test!

You can find exhaustive lists online and explanations by searching for HTTP response
codes.

HTTP/1.0 or HTTP 2.0

HTTP/1.0 has been around for a really long time and has a number of arguable
inefficiencies. For example, it is a text-based protocol so you can read it. This is not the
most efficient way for computers to communicate where a binary protocol can yield much
more information packed into a short space. The design goal of HTTP/2 is to reduce
latency. It achieves this with a number of enhancements:

Fundamental re-work of the protocol

HTTP header compression

Pipelining of requests

Multiplexing multiple requests over a TCP connection

Fixing the head of line blocking issue with HTTP/1.0 (this is where you have to wait for
the first part of the communication to complete before you can do more)

Itis, therefore, harder to jjust read’ but with the right tools does not present significant
difficulty. HTTP/3 is just around the corner too, with the proposal and some active
implementations turning up, but at the time of writing it has not shifted to default or
widely available in browsers.

F‘!w?

HTML

We've mentioned HTML a few times so far, but we haven't explained it, really. HTML is a
markup language, rather than a programming language. In other wordes, it is a way of
describing data. HTML uses tags, which are enclosed in "less than" and "greater than"
signs, such ascshtml></html>

The first tag is opening the HTML tag. The second tag is closing the tag: notice the forward
slash at the start of the tag name ('/). An HTML page is usually formatted like so:

<html=
<head=>
<title>This is the site's title tag. <ftitle>
</head>
<body>
<h1=This is a heading=/h1=
=p>This is a paragraph of text.. </p=>
<p>The second paragraph goes here.</p>
</body>
</htmi>

And the result is:

C | ® filey///E/testhtml

This is a heading

This 1s a paragraph of text...

The second paragraph goes here.

At its most basic, this is all HTML is. Of course, if you want to make things look pretty,
there is significantly more to it than that. We won't be covering that in this course.

It isimportant to note that HTML on its own is static, which means it doesn't change based
on user input. If you want a system where a user signs in to see their account settings, you
need more than HTML. You'll need something that generates HTML individually for that
user and sends it. We'll get to that later when we talk about PHP.

o

JavaScript

HTML is not a programming language, but JavaScript is. JavaScript is a programming
language that is designed to run inside a browser. It can be used to make changes to HTML
even after it has been loaded onto the page. Take a look:

<html>
<head=
<title>This is the site's title tag. </title>
<script=
alert{"Hello, World!");
</script>
</head>

<body>
<h1>This is a heading</h1>
<p>This is a paragraph of text...</p>
<p=The second paragraph goes here.</p>
</body>
<fhtmi=>

Notice the script tags above; here is where the JavaScript code goes. You can also leave it
in an external file and reference it, which is neater. In this case, we are just instructing the
page to pop up with an alert box like so:

¥ | (D e/ B fresthomi

This is a hea¢ Meress

Haalio, Woekaht

Thus is a paragraph of text.. n

The second puragraph goes

It isimportant to realise that you can see JavaScript if you view the page source:

F‘aﬁb‘m

C | () view-scurce:file;///E:/test. html

{| <htmls
<heads

Essite’'s title page.</title>

Escript}
alert("Hallo, World!™);
ws/scripty

R Y —

b O~ R < T

[1x]

-} <body>

10 ¢h1>This is a heading</hi>

1" <p>This is a paragraph of text...</p>
12 <p>The second paragraph goes here.</p>»
13 </body>

14| </html>

This is why it isn't suitable for password protecting pages, because inevitably the
password will be visible on the page even if you try to make it as obscure as possible.

324"

PHP

If we want truly interactive pages, we need to use a server-side programming language,
which generates HTML and sends it to the clients browsing the page. This is where PHP
comes in, although there are other server-side programming languages which you could
also use.

The difference between PHP and JavaScript is that PHP is executed by the web server and
then the result of that execution (usually HTML) is sent as a response to an HTTP request.
The user never gets to see the PHP even if they view the source code of the page. With
JavaScript, the code is executed in the user's browser. In other words, JavaScript is client-
side, and the user is ultimately in control of it. PHP is server-side, and the user doesn't get
a choice as to what happens, it just happens, and the result is sent to them.

To run PHP, we need the web server to support it. Up until now, in our tests we have just
been opening the HTML file in our browser, and that has worked, but from now on we need
to load the page through a web server. Let's see how it works:

<htm/l>
<head=>
<title=This is the site's title page </title>
</head=

<body=>
<h1>This is a heading</h1>
<p>This is a paragraph of text...</p>
<p>The second paragraph goes here </p>
<p>The resultof 2 + 2 is <7php echof2 + 2); ></p>

</bady>

</html=

Take a look now:

<« Cc {D 127.0.0.1:8000/test.php

This is a heading

This 1s a paragraph of text...
The second paragraph goes here.

Theresultof 2+21s 4

Notice the output is "The result of 2 + 2 is 4"? We asked PHP to print the resuit of 2 + 2, and
so it printed 4 to the page. If we view the source code, however:

F‘Bﬁzldl

1] <html>

2 <head>»

3 <title»This is the site's title pape.«</title>
4| <fhead>

& <hody>»

¥ ¢h1»This is a headinge/hi»

& <p»This is a paragraph of text...</p»

g <p>The second paragraph goes here.</p>

10 <p>»The result of 2 + 2 is 4</p>

11 </body»

12| </hEml>

There is no sign of any PHP in our page source. That is because the PHP code was executed
on the web server and the resulting HTML was sent to us in the request. Server-side
languages are the real heavy lifters of the internet; they are the reason we can have e-
commerce and a variety of other interactive sites.

Think about a simple login and registration process. Once you submit the registration
form, your account details will be saved by a server-side language into a database. When
you go to log in, you will submit your account details, and the server-side language will
look in the database to see if your username and password match. If they do match, the
server-side language will send you to your account page which has your username on it,
and various other things which are unique to your account. The page is not the same for
every user. Thisis all done by server-side languages, such as PHP.

o

Cookies & Local Storage
Cookies

Now, we have to talk about cookies, but this is not as delicious as it initially seems. In the
context of web browsing, a cookie is a tiny file that a web server can create on a visitor's
computer. The file can hold any small amount of data, depending on what the developers
of that site want to store.

The most common use of cookies is to save a unique identifier, called a session ID, after
the login process is complete. Every page you visit on that site after logging in will cause
your browser to transmit that session cookie to the site, which will tell the site not just
that you are logged in, but which account you are logged in as.

Cookies have an expiry date, which is set by the site when it creates the cookie. This is the
reason why you can log into a site and then close the browser and come back to the site,
and you'll find you are still logged in, providing you didn't leave it too long. Unfortunately,
cookies are also commonly used to track you, although not in the way most people
imagine.

Only the domain that gave you a cookie can ask for that cookie back, so for the most part,
sites can't know which other sites you commonly visit. There is one exception to this rule,
though, and that is advertising. The reason is that adverts on websites are not usually
served by that web server; instead, they are embedded from the advertising company's
web server. This means that the advertising company's server can give you a cookie
through the ad to identify you as if you had visited their site directly. The ads embedded
in sites can also ask for that cookie back from your browser, and since the advertising
company knows which site the ad you saw was embedded on, they know which sites you
commonly visit. This is why if you start searching for a t-shirt to buy, a lot of the ads you
will see after that will be for t-shirts.

Local Storage

Sites can also store files on your computer (to a 5MB total file size) in the browser's local
storage. This can be a sneakier way for sites to track users as most people have heard that
they can clear their cookies to stop being tracked, but a lot of people still don't know
about local storage, so they don't know that they should clear it too.

Local storage is intended to provide much more powerful and sizeable storage to
applications based on how the internet and web applications have developed. Whilst it
can be used to track and store data that might be undesirable to you, it is also often used
in powering many of the richer web application interactions you might have. Modern web
browsers really are incredibly feature-rich and complicated!

323"

Networking 1

Faiw-i

Learning Objectives
After completing this module, you should be able to:

Name common pieces of network hardware and explain their purpose.
Explain the purpose of different types of network addresses.

Explain the purpose of packets and protocols.

Explain the differences between TCP and UDP.

"398

Module Content

This module will provide a brief overview of the inner workings of a network, and will aid
you in understanding how computers communicate with each other, and for what reasons.

We will be covering the following components:

Network Hardware
IP Addresses

MAC Addresses
Packets

Protocols

TCP Protocol

UDP Protocol

"398

Types of Networks

A computer network is a set of computers that are connected (or networked) together. The
largest network in the world is, of course, the internet. In fact, the internet is an example
of a WAN (Wide Area Network), which is a network covering a large geographical area.
Smaller networks, such as office or school networks are called LANs (Local Area Networks).

When we talk about computers, we mean anything with a processor in it. That means
desktop computers, laptops, phones and many others. Even some ketties now connect to
the internet. And yes, that does mean a kettle that can connect to the internet has a
processor.

Typically we connect computers over a LAN using an Ethernet cable or radio signals (WiFi).
The LAN will have a router, which connects to the internet.

This is what an Ethernet cable looks like. The colour of the cable may differ, but it's only
cosmetic and doesn't indicate anything about the cable.

i bl

Topologies

The way a network is physically laid out is called the network "topology’. There are several
types of network topology; we'll cover a small subset of these.

Perhaps the most common network topology seen in LANs is the 'star’ topology. Thisis
where each computer in a network connects to a central point, such as a switch. This is
what is most likely to be present in your home network.

Here is an image of a star network topology:

B HEH HEHH HEH L HHE

The benefit of the star topology is that it is easy to maintain, any computer or cable in the
network could fail, and the others would not be affected. Of course, if the central point
fails then that is a different story.

Another notable topology is the "bus” topology, in which all computers are connected by
the same Ethernet cable. At the ends of the Ethernet cable lie line terminators, which
discard any data that has not been read by a computer. This topology is not very common
as only one computer can communicate at any one time.

Here is an image of a bus network topology:

£y

There are many other topologies, such as the ‘token ring’ and 'ring’ topologies. We won't
go into them in too much detail. If you are setting up your home network, we suggest you

use the star topology!

Switches

A switch is a device that connects computers on a network together. A switch is the device
that sits in the middle of a star network topology. Many computers can be connected to
the switch, and the switch will receive all data on the network and decide which cable to
send the data through, based on which computer the information is destined for.

Here is an image of a switch:

Hubs

"5y

A hub is similar in function to a switch, in that it connects computers on a network
together. Unlike a switch, itisn't 'smart’. It receives data, but it doesn't know which
computer to send it to, so it sends it to every computer connected to the hub. Itis then up
to the computer to receive that data and decide if it was intended to receive that data or
if it should discard it.

Hubs were used before switches became commonplace, but they are still used today in
one very particular capacity. When we talk about wireless access points (sometimes the
functionality is built into the router, and we call them wireless routers), we are talking
aboutwireless hubs. Unlike a switch where data can be sent over wires, a wireless hub
can only broadcast data over radio waves, so there is no way to direct data to only one
device. That means all wireless access points are actually hubs.

Here is an image of a hub:

Routers

A router is a device that connects two networks together. Most commonly this will be
connecting the LAN to the internet, but it can be used to connect any networks together.
The router will make the decision about which piece of data needs to go to which network.

Here is an image of a router:

Pse

Note that most routers these days include the functionality of a switch, but the number of
ports they offer is limited. If you need more ports, you can buy a switch and plug it into
one of the LAN ports on the router.

NICs

A NIC, or a Network Interface Card, is a piece of hardware attached to a computer (usually
internally), which allows the computer to interface with a network. A computer with an
Ethernet port has a NIC inside of it, which provides the means to connect to a network.

Computers which have wireless built-in will have a NIC inside of the computer that
provides the appropriate hardware for connecting to a wireless network. Computers that
can use both wireless and Ethernet will have 2 NICs.

It is also possible to connect an external NIC to your computer via USB; this can be useful
when your computer does not have Ethernet or wireless capability.

Here is an image of an Ethernet NIC:

Pa ?52|5 1

And an image of a WiFi NIC for a laptop:

Pa ﬁﬁs 2

MAC Addresses

A MAC address, or Media Access Control address (also known as a hardware address), is an
address that is burned into the NIC when it is produced. MAC addresses are meant to be
globally unique; no two NICs are supposed to have the same MAC address. In practice, it's
hard to verify the claim, but the likelihood of two computers on the same local network
having the same MAC address is so small it's almost irrelevant. If there are two computers
on the same network with the same MAC address, connectivity issues may occur, however.

MAC addresses are used to identify computers on a local network. They enable a switch to
know which cable to send information down, in order to send data to a particular
computer, They are used together with private IP addresses, but the difference is that
private IP addresses can change, while MAC addresses are meant to stay the same.

Here is an example of a MAC address: 34:13:65:76:09:86.
IP Addresses

An IP address is similar to a street address, in that it identifies your computer on the
network and allows other computers on the network to find your computer. Each NIC
(Network Interface Card) is assigned an IP address when it connects to a network. There
are two types of IP addresses that we are going to look at for this module: public and
private, sometimes called external and internal.

An example of an IP address is: 192.168.0.77
Private IP Addresses

A private IP address is one assigned to your computer on the local network (LAN). Private
IP addresses have to fall within certain ranges and are only accessible to computers on
the same LAN. People on a different LAN cannot access your computer using the private IP
address. Each private IP address must be unique on the local network; if two computers
share the same private IP address then things will start going wrong. Typically, one
computer will be unable to access the network, but other problems may manifest.

Public IP Addresses
A public IP address is internet facing. In most home and small business network setups,
the entire LAN will have only a single public IP address, which is shared by all computers

on the LAN. The ability to share an IP address is handled by something called Network
Address Translation (NAT), which we will cover in a later module.

F‘Eﬁé’i!

Packets

A data packet is a unit of data, which can be transmitted over the network. All data must
be placed into (encapsulated into) packets before it can be transmitted. The packet
contains not just the data (the payload), but also other information, such as the
destination IP address and MAC address.

Think of it like sending a letter. You write the |etter and place it into an envelope, putting
the recipient’s address on the envelope before posting it. Data packets are much the
same; they contain data to be transmitted over the network, and the packet headers
include other data such as where the data is going, amongst other things.

Packets are typically quite small pieces of data, so any large piece of data must be split
up into several packets before it can be transmitted over the network. The maximum
packet size depends on several factors, such as the protocol used in the packet, but
typically you will see a maximum packet size of about 1500 bytes - 65535 bytes (64 KiB).

Protocols

A protocol is a set of rules, which governs how two or more parties interact with one
another. For example, diplomatic protocol applies to how nations interact with one

another. Language is also a type of protocol; there is an agreed upon sentence structure,
and an understanding of which words mean what.

Interaction between computers also requires protocols; these are rules which define the
format of data. Additionally, some protocols have checks in place to make sure the data
was transmitted successfully, to make sure the data was not corrupted in transit, and
other such rules.

In this module, we will cover two key protocols: TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol).

F‘EilngE

TCP Protocol

The TCP (Transmission Control Protocol) is widely used on the internet. It's a protocol
designed with thereliable delivery of data in mind. That makes it perfect for the majority
of common tasks on the internet (such as web browsing).

The protocol involves a connection setup, called the 'TCP handshake', which prepares two
computers to talk to each other. Once the handshake is performed, the data is sent
between computers. After the TCP connection is done, the TCP teardown closes the
connection. The TCP protocol includes measures to re-transmit data that was lostin
transit, or corrupted en route to the destination. Of course, the downside of such
measures is that TCP is comparatively slow to transmit data.

PesEe

Ports

A port is a communications channel for applications running on the operating system to
listen to. For example, a web server will typically listen on port 80 and port 443. When you
connect to a website, you send the web request to the IP address of the server, and the
port that the web server is listening on. The port is needed to separate communications
destined for the web server application from other communications that the server might
also need to receive.

Ports are numbered, between 0 and 65535 (notice how 2416 is 65536, which if you count
the 0O, gives you a maximum value of 65535). No two applications on the computer can
listen to the same port. Once an application is listening on that port, it is known as being
boundo that port.

The TCP protocol has its own port range, which is separate from other protocols. For
example, if you have TCP port 80 and UDP port 80, they may have the same number, but
they are different ports altogether. You could have one application listening on TCP port
80 and a different one listening to UDP port 80, and there would be no confiict.

F‘!ﬁ?

UDP Protocol

The UDP (User Datagram Protocol) is key to many applications that require fast data
transmission at the expense of reliability. That's because, unlike TCP, UDP does not need a
connection handshake. It also does not detect if a data packet is missing, it never asks
aboutre-transmission, and if the data it gets is corrupt, it will just ignore it instead of
asking for it to be re-sent.

You will frequently see it being used in video chats, for example, when it doesn't make
sense to wait on a single dropped frame to be re-transmitted when the user will not
notice 1 out of 30 frames missing in that one second. Other applications where UDP is
commonly used are VOIP (Voice over Internet Protocol, aka voice chat), online video
games, and generally any other application that cares more about speedy data
transmission than reliability.

P

Ports

Just like with TCP, UDP has 0 - 65535 ports. [important to note that these ports donot
confiict with TCP ports; they are entirely separate.

Pailsgg

Networking 2

PIbe

Contents

In this module, we will be covering:

Different types of I[P Addresses
Network Address Translation
Subnetting and Subnet Masks
TCP Protocol in more depth
UDP Protocol in more depth
Protocols in more depth

This will lay the foundations for abuse and attack later in your studies.

F‘B%JIEI

Internet Protocol Version &

The version of IP addresses most people are familiar with is Intermnet Protocol version 4 or
IPv4. These are written in the format: xot.xxx. xxx.xxx, for example: 192.168.0.1. IPv4
addresses are 4 bytes long, between each period (.) is one byte. Why is this important?
Well, IPv4 is old; so old that when it was conceived no one thought computers would be as
popular as they eventually became. When IPv4 was conceived, no one ever thought that
four bytes wouldn't be enough, but that is the reality we are facing today.

Think back to our data-1 module where you learned about counting in binary. 4 bytes is 32
bits of data, so 232 or 4,294,967,296 possible IPv4 addresses. That's a lot of addresses,
but frankly, we've used them all. In fact, we knew this problem was coming a while ago.

P35

Network Address Translation

Network Address Translation or NAT was designed as a way to delay the problem of
running out of IPv4 addresses. If you recall from the last module about public and private
IP addresses, NAT is the reason we have a distinction at all. Someone thought, ‘'what if we
took a whole bunch of IP addresses and designated them as private?. That means
everyone in the world can use the same bunch of IP addresses on their local network and
never have to worry about confiicts. You can have your IP address set to 192.168.0.1 and
someone halfway across the world on a different network could also have the IP address
of 192.168.0.1, and you would never clash. The problem with that is, you could never talk to
each other either, so you need at least one 'public’ IP address for the network. That public
IP address can be shared across every computer on the network. The router is responsible
for converting the packets that come in from public IP addresses to private IP addresses
and vice versa.

Ultimately, NAT was only ever meant to be a stop-gap solution, but it was very effective at
delaying the coming problem. It meant that many computers could access the internet
with only a single IPv4 address used up. It was so effective that even when a new internet
protocol standard was released, which solved the IP address shortage problem, many
people refused to switch to it and stuck with IPv4 and NAT.

ok o

Internet Protocol Version 6

The new internet protocol standard, which was designed to solve the IP address shortage,
was released as IPv6. IPvb addresses are really long, and so they have rules about how
they can be shortened, which frankly just increases the complexity. Thatis one of the
reasons why there has been so much resistance to switching to the new protocol.

An IPvb address, without any shortening rules, looks like this:
2001:0db8:0000:0000:0000:ff00:0042:8329

After applying shortening rules, it looks like this: 2001:db8::ff00:42:8329.
We'll show you how the shortening rules work in subsequent modules.

IPvE addresses are 16 bytes long, two bytes between each: 16 bytes is 128 bits (compared
with IPv4's 32 bits), which means there are 24128 possible IPv6 addresses, or 3.4 x 10438
possible addresses. To give you an idea of how many this is, that is enough IPv6 addresses
for every atom on the surface of the earth to have one, and we still wouldn't run out.

There are still a few challenges to be worked out with IPv6, but it is genuinely being used
out on the internet now, particularly in many countries that were late to the internet

party and therefore didn't get assigned many IPv4 addresses. For the rest of us, IPv6
seems like it's always just around the comer, but there's always one reason or another not
to make the switch. Eventually, it will be forced on us by necessity if nothing else.

One of the most interesting things to consider is the lack of NAT. In an IPv6 world, each
computer could have its own public IP address, and would not need to do NAT anymore,
but NAT somewhat by accident is also a decent firewall. If you are behind NAT, computers
on the outside cannot connect directly to you, unless you set up a NAT forwarding rule at
the router to allow it (if you ever hosted an online game server, you're probably familiar
with this particular task). Think about it, if someone on the internet wants to connect to
your computer, they have to use your public IP address, which is also shared by the other
computers on the network. When the router receives the connection request, it has no
idea which computer on the local network that connection was intended for, so itdrops it.
Once we stop doing NAT, many computers that were protected pretty much by accident
will suddenly be exposed to the internet.

el

Subnets

A subnet is, just as it sounds, a sub-network. It's a way of splitting up a network into
segments. You often see it on local networks inside larger organisations, where one subnet
might be assigned to one department and a different subnet to another. You always need
at least one subnet, even if it spans the entire network.

An IP address actually consists of two parts. One part is the network identifier, and one
part is the host identifier. The network identifier identifies the network, and the host
identifier identifies the individual computer connected to that network. The problem is,
in the internet protocol, the part that is the network identifier and the part that is the
host identifier are variable. We therefore need something to tell us how big the network
identifier is and how big the host identifier is. The subnet mask is what tells us this:

Take 192.168.0.1 for example, and let's say the computer with this IP address has a subnet
mask of 255.255.0.0. That means the first two bytes (192.168) are the network identifier and
the rest is the host identifier(0.1). So if the last two bytes are the host identifier, this local
network can theoretically have 2416 (65,536) computers connected to it before running

out of space.

If you need to connect more computers to the network than that, you need to change the
subnet. If you used the subnet mask of 255.0.0.0 instead, the network identifier becomes
192, and the rest is for the host identifier. That means you could theoretically have 2424
(16,777,216) computers connected to the network.

If you wish to connect fewer computers, you could use a subnet mask of 255.255.255.0, in
which case the network identifier becomes 192.168.0, and the host identifier becomes .1.
That means a possible maximum of 254 computers could theoretically join that network
(with .0 and .255 being reserved).

Of course, the trade-off is in the network identifier. If you need more hosts, you can have
fewer networks, and if you need more networks, you can have fewer hosts on each one.

You can have other subnet masks than just the ones listed above, such as 255.128.0.0. We
won't cover how to calculate them here, but you should know they exist. You can calculate
the number of networks and hosts using a subnet calculator, which you should be able to
find with a simple Google search.

P358°°

Classless Inter-Domain Routing (CIDR)

Before we begin, yes CIDR is pronounced 'cider’, like the drink. CIDR is a shorthand way of
writing a subnet mask. Let's take the example from above; to show the network 192.168.0.0
with a subnet mask of 255.255.0.0 then in CIDR notation that would be: 192.168.0.0/16. The
/16 is the number of bits that is the network identifier. In this case, 192.168 is the network
identifier, that is 2 bytes or 16 bits. The same IP with the subnet mask of 255.0.0.0 (network
identifier is 192.) would be written 192.168.0.0/8, and with a subnet mask of 255.255.255.0
(network identifier is 192.168.0), it would be 192.168.0.0/24.

358

Private IP Ranges
IPvé

In IPv4, by common agreement, there are certain IP addresses which are private and
should never be routed to the internet. The reserved address space is:

« 10.0.0.0/8
o [P addresses: 10.0.0.0 - 10.255.255.255
« 172.16.0.0/12
o IP addresses: 172.16.0.0 - 172.31.255.255
* 192.168.0.0/16
o IP addresses: 192.168.0.0 - 192.168.255.255

Anyone can use these [P addresses on their local network without any issues (because of
NAT).

There is also 127.0.0.1 which always points back to the computer you are sending data
from. In other wordes, it's a way for the computer to send data to itself. This is also known
as 'localhost, or the ‘loopback’ address.

IPv6

Although IPv6 does not need NAT and therefore doesn't need reserved addresses in the
same way that IPv4 does, there are still a handful. The only one you need to know at this
stage is the loopback address:

i:1is the localhost or loopback address on IPvé.

Actually, IPv6 presents an interesting problem relating to subnets. Simply put, if we use
the same subnets that we do on IPv4, then some subnets could have more potential
addresses in them than the whole of the IPv4 address range. That means, if you're looking
for something on a network, you better have some idea of where to find it because, while
on IPv4 you could scan the entire address range of your subnet looking for a device, that
isn't practical on IPv6.

F‘ailb%ﬁ?

TCP Protocol

As you learned in the previous networking module, TCP is all about the reliable
transmission of data. Now we'll show you how the protocol actually achieves that.

ol

TCP Handshake

The initial connection setup is called the TCP handshake.

The computer that initiates the connection (Computer A) sends a packet with the 'SYN'
(synchronise) fiag enabled to the computer it wishes to connect to (Computer B). This
packet contains a sequence number, which is initially randomly generated. For our
example, let'ssayitis 0.

Source Destination Prot | Info

Computer A| Computer B| TCP | 63418 > 1337 [SYN] Seg=0 Len=0

Computer B will respond with a packet with the 'SYN' and 'ACK’ fiags set
(synchronise/acknowledge). This packet will contain a new sequence number that is
randomly generated, for our example let's call it 0. It also contains an acknowledgement
number, which is the sequence number that Computer A sent, incremented by 1.

Source Destination | Prot Info

CDITIFILII:EFB Cﬂmput&rA TCP - 1337 > 63418 [SYN, ACK] Seq=0 Ack=1 Len=0

Computer A will respond with a packet with just the 'ACK’ fiag (acknowledge), and this
packet will contain the sequence number that Computer B sent, incremented by 1.

Source Destination @Prot Info

Cnmputer Al Cnmputerﬁ TCP | 63410 > 1337 [ACK] Seg=1 Ack=1 Len=8

After this, the connection between the two computers has been established, and they can
send data to each other. By monitoring the sequence and acknowledgement numbers,
either side can tell if any data is missing and can ask for it to be re-transmitted.

TCP Transmission

Once the connection is set up, data can be sent

" Source ‘.Desﬁnaﬁan.} H'ar| Info

Computer
A

Computer
B

63410 > 1337 [PSH, ACK] Seq=1 Ack=1 Len=12 [Data =

TCP Hello World]

ol

Notice how the acknowledgement number here jumps from 1 to 13 all of a sudden. Well,
the length of the data in the packetis 12 (Hello World is 12 characters (if you count the
space and the invisible \n newline character at the end), so in ASCII encoding that is 1
byte per character.) And 12 + 1 is 13. The reason the acknowledgement number is
incremented by the length of the previous packet is to say, "I received 12 bytes of data, if
that wasn't correct then we have a problem and you should re-transmit that packet.”

Of course, in the handshake and the teardown, no data is being sent (length=0), but we
increment it by one, even so, to show we received the packet, even though it didn't
contain any data.

TCP Teardown

When the connection ends, this is called the teardown. The process is as follows:

The computer that wants to destroy the connection sends a 'fin' packet (finish) with the
current sequence number. Note, even though it says it is a FIN/ACK packet below, the ACK
is acknowledging the previous transmission, itisn't required to terminate the connection.

Source Destination Prot Info

Computer A| Computer B| TCP . 63410 > 1337 [FIN, ACK] Seg=13 Ack=1 Len:E}.

Computer B will respond with an 'ack’ packet (acknowledge), the packet will contain a
sequence number and an acknowledgement number which is Computer A's sequence
number incremented by 1.

Source ‘ ﬂeﬂinaﬁmi Pmt. Info

Computer B! Cnmput&rh‘ TCP 1337 > 63410 [ACK] Seg=1 Ack=14 Lan:B.

Computer B will send a 'finfack’ packet (finish/acknowledge). The packet will contain a
sequence number and an acknowledgement number which is Computer A's sequence
number incremented by 1 (still 14 because Computer A's sequence number didn't
change).

Source Destination ‘ Prot Info
Cnmputer8| Computer A| TCP | 1337 > 63410 [FIN, ACK] Seg=1 Ack=14 Len=0
L ! | |

Computer A will respond with an 'ack’ packet (acknowledge). The packet will contain an
acknowledgement number which is Computer B's sequence number incremented by 1.

‘ S:Iurre‘ Destinatian] Fmtl mfal

F‘EWD

Computer A| Computer B| TCP | 63418 > 1337 [ACK] Seg=14 Ack=2 Len=0 |

Reset
If for some reason, the connection cannot be torn down gracefully using the protocol

above, one part of the connection can terminate abruptly by sending an ‘rst’ (reset)
packet, which will terminate the connection immediately.

Puip‘?]l?l

UDP Protocol

If the last section on TCP gave you a headache, then this one will be a blessed relief. UDP
is an incredibly simple protocol. There is no connection handshake, and no teardown,
simply because UDP does not care if the data gets to the intended party or not. There are
no sequence or acknowledgement numbers. The data is sent, and that is the end of it

Here is a UDP packet being sent between two computers, with the data "stuff” in it

Source Destination Prot | Info

Cnmputer Al CnmputerB UDP | 58183 > 1337 Len=6 [data = stuff]

That's all there is to UDP. If the packet never reaches Computer B, then nothing happens
and neither side knows the packet never got there. As far as Computer A knows, the packet
was sent, and as far as Computer B knows, it never received anything and didn't know to
expect any data.

It's the lack of any of these additional features that TCP has that makes UDP so much
faster and therefore ideal for real-time applications such as video chat. Realistically, you
don't care if a single frame in a video never reaches the destination, you wouldn't want to
pause the whole video to wait for the data for that single frame to be re-transmitted,
since most people wouldn't notice the missing frame. At worst, the video quality may
degrade for a short time as a result of dropped packets, which ultimately is a better
experience than waiting for missing frames or frames appearing out of order in the video.

F‘HWE

Protocols

We already covered what protocols are in the Networking 1 Module. To review, briefiy; a
protocol is an agreed-upon standard that governs how two parties interact.

Computers use protocols extensively to communicate with each other. TCP, UDP and IP are
all protocols. There are other types of protocols. The simplest to look at are application-
level protocols such as HTTP (Hyper Text Transfer Protocol), used in browsing websites;
and FTP (File Transfer Protocol), used for uploading and downloading files to and from an

FTP server.

F‘Bﬁl‘i

HTTP

Let's look at what happens when you visit a webpage on the internet over the HTTP
protocol.

Computer A -> Webserver

Computer A sends a request to GET the file /test from the web server:
GET /test HTTP/1.1

As part of the request, computer A sends some headers to give additional information to
the web server:

Host: 127.0.0,1:8000

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Wing4; x64) AppleWebKit/537 36 (KHTML, like
Gecko) Chrome/60.0.3112.101 5afari/537.36

Accept:
tamfmml,appchatEunthuntrrxmI,app{i:at'mrnmmF;qm.Q,imagHmhp,imagefapng,*f*;q:ﬂ.ﬂ
DNT: 1

Accept-Encoding: gzip, deflate, br

Acept-Language: en-US.eng=0.8

Cookie: csritoken=DExRW] 14K4g)4BjCWnAEIQT pYDywit]DIeMQ Sq4ZTIVExbuFkeebg SwRoufcTkGa

Webserver -> Computer A

The web server responds with a code 200 OK (meaning the file exists and can be
displayed).

HTTP/1.6 200 OK

The web server also sends some headers of its own, giving the web browser some extra
information:

Server: SimpleHTTP/0.6 Pythorn/2.7.8
Date: Mon, 28 Aug 2017 14:43:57 GMT
Content-type: application/octet-stream
Content-Length: 11

And finally, the data in the file is sent (in this example, the file 'test’ only contained the
word "testing..."):

testing...

F‘!ﬁd

We will be covering protocols in more depth in later modules, including the specifics of
the HTTP protocol. For now, let's look at FTP:

F‘Bﬁﬁ

FTP

Here is an example of logging into an FTP server, don't worry too much about the specific
commands. We'll look at it in more detail in later modules:

FTP Server: 220 pyftpdlib based ftpd ready.
Computer A: OPTS UTF8 ON

FTP Server: 530 Log in with USER and PASS first.
Computer A: USER someguy

FTP Server: 331 Username ok, send password.
Computer A: PASS somepass

FTP Server: 230 Login successful.

You can see this is slightly different to the HTTP protocol; the HTTP protocol tries to put
everything necessary for the request together and send it all in one go. The FTP protocol is
more of a back and forth conversation. You'll also note that the password was justsent in
clear-text without any encryption. This is one of the downfalls of FTP and also why many
people are using SFTP and other variants now.

F‘HME

Walkthrough with Wireshark

In this walkthrough, we will see first-hand the differences between TCP and UDP using
Wireshark as a tool to monitor the network connections. We will observe how TCP has
states and fiags that enable it to identify if data transfers were successful or not, where
UDP is much simpler and lighter-weight. We will also touch on the use of the follow
functionality in Wireshark to reconstruct a network connection between two parties.

This is a great way to be able to study networking ‘live’ with real systems and to dissect
protocols you may be less familiar with.

F‘BW?

Networking 3

Fa%ﬁ

Contents

In this module, we will be covering:

Email

Email Servers

SMTP Protocol

POP3, IMAP and Exchange
Email Spoofing & SPF, DKIM

Pawg

Email

Let's now look at how email works. At its most basic, an email is just text which is sent
from one email server to another and placed in a folder called your inbox. That inbox
then syncs with your computer (or is accessed through a webmail client like the Gmail
web interface). The fact that it is text is important; there is no kind of encryption when the
email is sitting in your inbox. Until recently, there was no kind of encryption when the
email was in transit either. These days most modern email servers support STARTTLS,
which uses a similar kind of encryption used to secure HTTP, to encrypt the email while it
is in transit over the network.

The process of sending an email is as follows:

fi. You create the email on your computer and hit send.

fi. Your email is transmitted to your mail server (known as the outgoing mail server,
because it is sending the email).

fi. The outgoing mail server will look up the mail server responsible for handling email
for the domain you are sending the mail to (known as the incoming mail server,
because it is receiving the email).

fi. The outgoing mail server will transmit the email to the incoming mail server.

fi. The incoming mail server will look up the email account and save the email in the
correct inbox, in the correct format.

fi. The recipient’'s email client will sync their inbox, and they will see the unread email
come into their inbox.

There are two protocols at work here, the first is SMTP (Simple Mail Transfer Protocol), and
the next is the protocol responsible for syncing the inbox (usually POP3, IMAP or
Exchange). Some email servers support all three protocols used for syncing the inbox, but
it depends on the mail server's setup.

For the SMTP protocol, the most common mail server software includes:

* Microsoft Exchange
* Postfix

« Sendmail

* Qmail

They each have different features, but the same ultimate responsibility: to send and
receive email messages between mail servers.

oo

SMTP Protocol

The SMTP protocol is ancient, it can trace its roots practically back to the start of the
internet, but it only started becoming widely used in the 1980s. As with all older
protocols, it has its foibles, and there have been several attempts to switch to a more
modemn alternative, but SMTP is simply too deeply entrenched to change to a different
protocol now.

SMTP is a connection-oriented (TCP, remember?) text-based protocol, similar to the way
HTTP is a text-based protocol. Each connection can be re-used to send multiple emails,
called SMTP transactions. An SMTP transaction consists of just three commands:

= MAIL: The MAIL command establishes the return path (return address), bounce
address (where to send an error message if the mail delivery fails), sender, amongst
other things.

« RCPT: The RCPT command establishes the address of the recipient. You can use the
RCPT command multiple times to establish multiple recipients.

« DATA: The DATA command signifies the start of the message text. The DATA section of
an email consists of an email header and an email body. The email header contains
metadata about the email, and the email body is the contents of the email itself.

Here is an example of the SMTP protocol:

5:220 smtp.areallyfakedomain.fake ESMTP Postfix

C: HELO smitp.areallyfakedomain.fake

S: 250 smtp.areallyfakedomain fake, 1 am glad to meet you
C: MAIL FROM:<someone@areallyfakedomain.fake>

5: 250 Ok

C; RCPT TO:<accounts@asecondfakedomainfake>

5:250 Ok

C: RCPT TO:<bossman@asecondfakedomain.fake>

5250 Ok

C: DATA

5:354 End data with <CR=<LF> <CR><LF>

C: From: "Someone" <someone@areallyfakedomain.fake>
C: To: Accounts Dept <accounts@asecondfakedomain.fake>
C: Cc: bossman@asecondfakedomain, fake

C: Date: Tue, 15 January 2015 12:02:00 -0200

C: Subject: Test message

G

C: Blah blah blah,

C: Here I am, sending you an email, for no apparent reason.
2308
5; 250 Ok: queued as 12345
C: QUIT

5:221 Bye

If you've been following this, you'll have noticed that we never had to log in to send this
email. Authentication is not part of the SMTP protocol, but that wasn't very practical as
computers and the internet started to become more widespread. These days every SMTP

F‘Eﬁiﬂl

server supports some form of authentication, however, once you have logged in there is
nothing to stop you from putting whatever you wantin the MAIL FROM. That means anyone
with an email server can send an email pretending to be anyone else with no

consequences. There are ways to detect when things like this happen, which we will be
going over later in this module.

P38

POP3, IMAP & Exchange

These three protocols are responsible for syncing an email folder from the email server to
your computer.

POP3

The POP3 (Post Office Protocol 3) protocol is the oldest protocol that we are going to talk
about. With the POP3 protocol, your email is stored on the email servantil you sync with
the email server. After you have synced with the email server, then the email will be
deleted from the email server. This is the same concept as picking up a letter from the
post office. Once you collect it, the letter is no longer at the post office. POP3 was
important because of limited space available on email servers at the time. These days it
has mostly been superseded by IMAP and Exchange.

The downsides of POP3 are numerous in this modern age, including:

* You risk losing emails if the computer you download them to loses a hard drive and
you don't have a backup.

« It doesn't play nice with having an email account on multiple devices because you'll
end up with some emails on your phone and some on your computer (for example)
and they won't be on both.

These are all reasons POP3 is not particularly useful these days, although it is still used by
some people (for reasons that are beyond me).

IMAP

The IMAP (Internet Message Access Protocol) protocol came after POP3, and it also solves
most of the problems with POP3. It is the most common protocol in use today for
accessing email on an email server. The messages remain on the server until the user
specifically deletes them, and in addition, the IMAP server can track state on each email
(whether it has been read, or unread for example).

IMAP also plays nicely with multiple devices connecting at once, and will even sync
message state across devices (for example, if you read a message on your phone, and go
back to your computer you will find the message has been marked as read in your inbox
there also). It also supports server-side search, which means you can rely on the email
server to perform a search for messages that meet certain criteria. You don't have to do
the search on your computer.

Microsoft Exchange

Microsoft Exchange isn't strictly a protocol, rather it is a server software. However, it is
worth talking about here because it implements so many different protocols. Originally,

ot o

Exchange only supported the MAPI protocol, which was a proprietary protocol developed
by Microsoft. These days, Microsoft Exchange also supports IMAP, POP3 and EAS (Exchange
Active Sync). Generally speaking, its feature set is similar to that of any other server
software thatimplements the IMAP protocol, if not slightly better. The downside is that it

is restricted to Windows Server, so you can't run an exchange server on Linux.

Email Spoofing, SPF & DKIM
Email Spoofing

SMTP is an old protocol, and so there are some things that we need in the modern day
that were never considered when the protocol was designed. The most serious problem is
that of email spoofing (forging). Anyone with access to an SMTP server (even one they set
up themselves) is capable of sending an email with any FROM address. Even though there
is authentication on all modern SMTP servers, that only controls whether you are allowed
to send emails through that SMTP server. Once you are allowed access, you can set any
FROM address you like.

There have been several attempts to solve this problem over the years. The ones that are
currently in use are SPF and DKIM.

SPF

SPF stands for Sender Policy Framework. The idea is that in the DNS configuration for your
domain, you put in a textrecord that is a list of all the IP addresses of mail servers
allowed to send emails from your domain. When a mail server receives an email that says
it is from your domain, it will look up the SPF record for your domain and compare the IP
address of the mail server that delivered the email with the list of valid IP addresses in

the SPF record. If the IP address is not on the list, then the receiving mail server knows the
email is a forgery.

There is a glaring problem with this method, however. Many organisations no longer host
their own email, they rather outsource it to a company like Google, soif you specify in
your 5PF record that Google is allowed to send emails from your domain, then anyone
with a Gmail account can bypass your SPF protection.

DKIM

DKIM, or Domain Keys Identified Mail, is similar to SPF, but it is one level more advanced.
The idea with DKIM is that you put a public key (remember, asymmetrical cryptography
has two keys: a public and private key) in your text record in your DNS settings for that
domain. When your email server sends an email legitimately, it will sign that email with
your private key. When the receiving server gets the email, it will validate that signature
using the public key in your DNS records. If the signature is valid, then that email comes
from a legitimate source, and if the email is not signed or the signature is not valid, then
the email is a forgery.

This is better than SPF because most email hosts are able to have separate private keys
for every domain they host email for. This bypasses the main problem with SPF, which is
that anyone on the same server can impersonate you.

P984

How SPF Works

Paigﬁﬂ &

How DKIM Works

In this section we walk through how DKIM (DomainKeys Identified Mail) works. When e-mail
is sent, a private key held by the sending server is used to sign the message, and a hash
generated for the header and a portion (or all) of the message body. The header of the
message contains header values like: - d: The domain signing the message, e.g. sans.org -
b: The signature of the message, produced using the private key of the sending server.
Unique to the message. - bh: The hash of the message that can be validated.

When the message arrives at the recipient server, the headers can be extracted for
verification. The server needs a way to verify this information out of band for the domain
and to validate that the signed data was not provided by any old server pretending to be
responsible for the domain. This is done by using an out of band check.

The systemn will query over DNS to get the public key to verify the signature. The domain
key selector is a value that enables multiple DKIM entries to exist for a domain, for
example for different senders like SES, your own mail server or 0365. A query is made to:

selector._domainkey.domain

This returns a TXT record that contains a 'p' value. This is the public key that can be used
to validate the signer of the message. Using this DNS check with the authoritative DNS
server means that out of band verification of the message headers in DKIM is complete.
Unless an attacker has compromised the sending server, a random mail server popping
up on the Internet would struggle to achieve these header results. That being said, if an
attacker controls DNS for your domain they would be able to inject their own DKIM values.

DKIM combined with 5PF, and integrated to DMARC as a framewaork significantly reduces
the chances of spoofing when sending and receiving e-mail.

F‘EEIBR‘-IB?

Networking 4

PR

Contents

In this module, we will be covering:

DNS (Domain Name System)
TLD (Top Level Domain)
Authoritative Name Servers
Forward & Reverse Lookup
Recursive & Iterative Lookup
DNS Records

o

DNS

DNS or the Domain Name System is the glue that holds the internet together. DNS is
responsible for translating a domain name, such as 'google.com’, into an IP address, which
computers can understand. This is important, because humans aren't very good at
remembering long strings of numbers; we're much better at remembering words. Thisis
doubly so for the IPv6 standard, which on a bad day can look like this:

fid15:611d:d0dd: 0209000 X000 OO

Every computer must have a DNS server configured in their network settings. Often your
internet service provider will give you one, or even pre-setup your router to use it. Your
router, in turn, will use DHCP (Dynamic Host Configuration Protocol) to tell every computer
on your network to use that DNS server. In some cases, you may not have a router that
supports DHCP, in which case you'll need to find a DNS server to use (Google has one, and
so does OpenDNS) and configure your network settings for every device on the network. In
some business environments, you may have a separate server that provides DHCP, in
which case the DHCP server on the router should be disabled to avoid a clash.

Once you type a domain name into your browser, your computer will send a request to the
DNS server in your network settings for that domain, and your DNS server will give your
browser the matching IP address. Your browser can then happily send the HTTP request to
that IP address on port 80 or 443 (remember, these are ports for HTTP).

P35G™

TLD

The DNS system is hierarchical; no one server has all the answers about every domain on
the internet. The system relies on one server giving more information on the next DNS
server to query, all the way down to the name server which does know the answer for that
specific domain. This makes for a robust system which can deal with outages without
bringing the entire internet down.

The Top Level Domain is the bit at the end of the domain name. So for ‘google.com’, the
TLD is 'com’'. For 'google.co.uk’, the TLD would be 'co.uk’. The TLD indicates which DNS
server to query first, so if you do a DNS lookup for google.com, you will query the name
server(s) for ‘com’ first. That name server won't know the IP address for ‘google.com’, but it
will know which name server you can ask to get your answer.

F‘Bﬁilﬁl

Authoritative Name Servers

A name server that is authoritative for a domain is one that controls the mapping
between the domain name and the IP address. For example:

Say we have a domain called "thisisnotarealdomain.fake’ and we want to map it to the IP
address 192.168.0.6.

We go to the name server which is authoritative for that domain (the one that the .fake
TLD name server directs us to, let's call it 192.168.0.100) and we edit the configuration of
the name server to add the mapping thisisnotarealdomain.fake > 192.168.0.6.

Every other name server on the internet must now query our authoritative name server to
find which IP address 'thisisnotarealdomain.fake’ points to. Our name server is
authoritative for 'thisisnotarealdomain.fake' because it has the final say on where the
domain points.

F‘le

Caching

We simplified the explanation above to state that every name server must query the
authoritative name server to find out the IP address for that domain. This isn't strictly true
because of caching. If a name server makes a query and discovers the IP address a
domain points to, it can cache the result for a time. Future requests for that domain will
use the saved value, to save from the name server having to make the request every time.
Of course, it will still periodically erase the cache so that if the name server configuration
is updated, it will refiect the new address in a reasonable time, but caching provides a
measure of efficiency so that not every request to a domain has to be sent to the
authoritative name server each and every time.

F‘Eﬁl‘l

Forward & Reverse Lookups

The most common usage of a DNS lookup is a forward lookup; in other words, translating a
domain name into an IP address. It is also possible to do a reverse lookup; translating an

IP address into a domain name. A reverse lookup is something of an oddity, because there
is no authoritative name server for IP addresses.

The way we get around that is by converting the IP address to a domain name in the
format: 1.0.168.192.in-addr.arpa (notice this is the reverse of the IP address 192.168.0.1). By
performing a DNS query on this domain, we can look up any domains which are linked to
that IP address. Of course, generally speaking, each domain must have reverse DNS
configured by adding a particular DNS pointer record to the authoritative name server.

goil o

Recursive & Iterative Lookups

DNS is a hierarchical protocol, which means you almost never get the answer you are
looking for on the first query. Each query gives you more information until you have the
complete answer. There are two ways that DNS servers handle this. With a recursive
lookup, you ask the DNS server a question, and if the DNS server doesn't know, it will ask
another DNS server, and so on, until it has the answer, and then it will pass on the answer
to you. This method is not commonly seen anymore, because it uses up a lot more server
resources than the alternative. Internet standards call for iterative lookups these days
instead.

With an iterative lookup, you ask a DNS server a question. If it doesn't know the answer, it
will respond with the IP address of a DNS server that does know. It is then your
responsibility to ask the next DNS server in line the question, and then it will either
answer, or send you to yet another DNS server to ask the question. This places more of a
burden on the host asking the question, but it is much easier on the DNS servers.

F‘HME

DNS Records

When you are configuring the authoritative DNS server for a particular domain, you will
need to add DNS records for that domain. There are many different types of DNS records,
so we'll only be covering the most commonly used types.

A Record: The A record is the 'Address Mapping’ record. This is the key record that
maps a domain name to an IPv4 address.

AAAA Record: The AAAA record is the 'IPv6 Address Mapping' record. The equivalent
of an A record, but for IPv6 addresses.

CNAME Record: The CNAME or 'Canonical Name' record is used for creating an alias
of a domain name. For example, if you wanted your domain to redirectto
google.com, you would use a CNAME.

MX Record: The MX record or 'Mail Exchange' record specifies the mail server which
is responsible for handling email for that domain. When an external user sends an
email to your domain, their mail server will perform a DNS lookup for the 'MX’
record to find the IP address of the mail server to send the email to.

NS Record: The NS record or 'Name Server’ record points to the authoritative name
server for the domain in question. Usually, the NS records are configured separately
on the domain registrar's systems to point to the DNS server of your choice.

PTR Record; The PTR or 'Pointer' record is used for reverse DNS lookups. It ties an IP
address to a domain name in the format: 1.0.168.192.in-addr.arpa PTR
notarealdomain.fake

TXT Record: The TXT or ‘Text' record is used for storing any other textual data
associated with the domain name. This is used a lot in SPF and DKIM, for mail
servers where a list of IP addresses, which can be used for sending mail from that
domain (in the case of SPF), or a public key (in the case of DKIM), is stored as a TXT
record.

F‘Bﬁsgﬁ

Networking 5

Faw:?

Contents

In this module, we will be covering:

ICMP (Internet Control Message Protocol)
DHCP (Dynamic Host Configuration Protocol)
OSI Model

TCP/IP Model

Packet Headers

ARP (Address Resolution Protocol)

Denial of Service

ol o

ICMP

ICMP stands for Internet Control Message Protocol. It is a protocol designed to transmit
error messages and operational information between hosts on a network. While ICMP is
technically in a class with TCP and UDP, it differs in that it does not communicate data
and isn't typically used in end-user applications. For the most part, ICMP is used almost
exclusively by network devices such as routers. There are a few exceptions, such as the
ping application, which uses ICMP packets to get information about if a host is online or
not.

Each ICMP packet consists of a 'type’ and a 'code’. Used together they describe the
packet's purpose. For example, the 'ping’ program which is used to determine if a host on
the network is available uses an ICMP type 8 code 0 packet. An ICMP packet with the type
set to 8 and the code set to 0 is an ICMP echo request packet, in other words, once the
host receives that packet, it will respond with an ICMP echo response packet, which is an
ICMP Type 0, Code 0 packet. The response will allow the 'ping' program to determine that
the host is alive, and the time it takes to receive the response is the latency.

Another example of an ICMP packet is the ICMP type 11 code O packet, or the ICMP time
exceeded packet. This packet is usually sent by a gateway (router) to a system that sent a
packet, where the TTL (the number of hops the packet can travel before it is considered
lost and gets discarded) of that packet has expired.

There are many ICMP types and codes available. We won't cover all of them, but you'll be
able to find them easily with a simple internet search.

F‘Ewg

DHCP

DHCP stands for Dynamic Host Configuration Protocol. DHCP allows a DHCP server present
on the network to assign network configuration settings to each host automatically when
they join the network. This makes joining a network seamless to the end user while
removing the possibility of IP address confiicts (because the DHCP server knows which IP
addresses it has already assigned and can avoid assigning two computers the same
address). Only one DHCP server should be used on any network, otherwise there is the
possibility of confiicts where one DHCP server doesn't know the other has already

assigned an IP address. Most home routers have a DHCP server built in, but for businesses
they typically have a separate computer to use as a DHCP server,

Itis not uncommon for DHCP to be configured with static IP addresses for specific devices
which keep those devices at a predictable IP address on the network. From an attack
perspective DHCP is also very interesting as controlling the networking details of clients
opens up the possibility of intercepting their traffic.

F‘ugbbuu

0S| Model

The OSI (Open Systems Interconnection) model is a way of describing the way computers
communicate with each other over a network. The OS5I model is a theoretical model, so
not all protocols will fit neatly into the seven layers. Some will span layers, for example,
TCP is a layer four protocol, butit also handles sessions, which is in layer five.

The OSI model consists of seven layers:

» Layer 7 - Application
Layer 6 - Presentation
Layer 5 - Session
Layer 4 - Transport
Layer 3 - Network
Layer 2 - Data Link
Layer 1 - Physical

The idea is that you start at the top and work your way down the model. Each layer
transforms the data somehow until at the physical layer the data is converted into
electrical signals, which are transmitted over the network. The computer receiving that
information receives it at the physical layer and then works up to the application layer
again until the user sees it in its original form on the receiving computer.

Here is an example of this in action:

Pngtﬁnl

The 7 Layers of 051

Pkt (Frotool Oata Unit)
luniis of dama paywns babawen B

v R - =

Teem For a unes of Claar Term fur wwnt of
dia ot thix layer Sinnatime] el Tayer i dtn - this layper

LEll7] s [FK]
[)] e []
(e I e =1

r
| Sagmam &

Tromspart lzyer [. | | e _J

-

e 5 T T | —
'y

oo JG] s][]

» L]
[[] e (W] Thew)

I vl el e Wbaming iy - SioTwsiimats, raleil Laar 0 - s unit b W I

i v

Application Layer
An example of an application layer protocol is something like HTTP or FTP. For example,

an HTTP GET request is an application layer protocol because the web browser will form
the request necessary for displaying a page or submitting a form.

PngbinB

Presentation Layer

An example of a presentation layer protocol is XML or |[SON. The presentation layer deals
with formatting data in a way that the intended recipient can understand. Encryption also
happens in the presentation layer, if the data is meant to be encrypted. An example
might be a file transfer, where the file must be converted to binary data before it can be

sent.

F‘Hgbaﬂd

Session Layer

The session layer handles opening, closing and managing connections between
computers. The session layer is a bit of an oddity because these days most people think
TCP when they think connections. TCP is actually a transport layer protocol, which doesn't
respect the OSI model, so it doesNOT fall under the session layer.

F‘thglﬁ

Transport Layer
The transport layer is responsible for end-to-end connections between computerson a

network. The TCP and UDP protocols fall into the transport layer, and it is at this point that
the TCP or UDP header gets added to the packet.

Pngbénﬁ

Network Layer

The network layer is responsible for routing the packet over the internet. The IP (Internet
Protocol) falls into the network layer. At this point, the IP header is added to the packet

Paghi{.ﬂ?

Data Link Layer

The data link layer is responsible for encoding and decoding packets into bits. At this
point the destination and source MAC address is added to the packet (in the form of the
Ethernet frame, or wireless, or Bluetooth), indicating which network card on the network

the packet is going to next

Pagtﬂ:ra

Physical Layer

The physical layer is responsible for converting the packet into electrical signals, which
are sent over the network.

Of course, once the packet arrives at the destination, the reverse happens.

« The physical layer converts electrical signals into bits.

« The data link layer removes the Ethernet frame (for example).
* The network layer removes the IP header.

« The transport layer removes the TCP or UDP header.

And so on, up until the application layer where the data is received by the application in
a form it can understand.

If you stick around long enough in security or forensics you may hear a joke about it being
a layer 8 issue. Whilst layer 8 is not formally included in the OSI reference model, the

idea is that layer 8 is the user. Therefore if you hear the phrase "layer 8 issue” you may
well be hearing a reference to the user of said technology stack having made a mistake.

F‘ugbgla

TCP/IP Model

The TCP/IP model is another theoretical model designed to show how computers
communicate over the network. The TCP/IP model has only four layers, but ultimately
everything the OSI model covers is also covered by the TCP/IP model, it is merely the case
that several layers have been joined into one in places.

The layers of the TCP/IP model are:

Layer 4 - Application
Layer 3 - Transport
Layer 2 - Internet

Layer 1 - Network Access

Pamtllﬂ

Application Layer

The application layer is basically the same as the application layer in the OSI model,
except it also includes the responsibilities of the presentation and session layers from

the OSI model. Examples of protocols in the application layer are HTTP and FTP, basically
any protocol that applications define and use.

PB?IJIII

Transport Layer

The transport layer is a direct copy of the transport layer of the OSI model, in other words,
the TCP and UDP protocols are implemented here.

PB?IJZIE

Internet Layer

The internet layer is effectively the network layer from the OSI model, responsible for
routing traffic over the network.

PB?IJ‘-:,IB

Network Access Layer

The network access layer is a combination of the data link and physical layers from the
OSI model.

Pagal al-i

Packet Headers

Starting with application-level data, we encapsulate that data into a packet ready for
transmission over the network. The process of encapsulation occurs by adding headers to
the data. Take for example an HTTP request made by a browser:

GET / HTTP/.1

This is a request for the index page of a site made by a browser. To transmit this request
to the site in question, the first thing that happens is a TCP header is added to the data.
The TCP header consists of a source port, a destination port (80, or 443 usually), a
sequence number, an acknowledgement number and anything else the TCP protocol
implements. The original data, the GET / HTTP/1.1 is still there, but the TCP header now sits
in front of it.

The next stage is to add the IP header. The IP header consists of information such as the
version (4 or 6), the source IP address, the destination IP address, the size of the packet
and anything else the IP protocol implements.

The next stage after that is to add the data link layer protocol (let's say we're using
Ethernet to transmit the data in this case). The Ethernet frame (it isn't a header because it
consists of a header AND a footer, so it frames the packet) consists of the source MAC
address, destination MAC address and anything else the Ethernet protocol implements.

Finally, the packet is converted into a series of electrical impulses, which are transmitted
over the network. On the receiving end, the packet works its way back up through the
layers, first being converted from electrical impulses into data.

Then the Ethernet frame is removed, the IP header is removed, and the TCP header is
removed until the application (the web server) receives the GET request. The web server
will respond with the contents of the index page in HTML form, and that data will then be
encapsulated into a packet and transmitted over the network in response.

F‘um?ﬁ

ARP

If you've been paying close attention, you may have noticed something a little funky. An
Ethernet frame requires a source MAC address and a destination MAC address, but how do
we know the destination MAC address?

Computer A
192.168.0.5

Computer B
192.168.0.10

Computer A wants to send some data to Computer B, but remember the Ethernet protocol
requires a destination MAC address for Computer B. How does Computer A know what to
write on the envelope (packet header)?

The answer is ARP or Address Resolution Protocol.

Computer A will send a broadcast request (a request to everyone on the local network)
asking for the MAC address of 192.168.0.10. Computer B will respond with its MAC address.
Computer A will then store that mapping in an ARP table which caches results (so it

doesn't have to keep asking the same question over and over).

Keep in mind ARP is only for the local network. If you are sending data to the internet,
then your computer should know that the IP address in question is not in your local
network (because of the subnet mask). So your computer will send the data to the router
and will need the router's MAC address (it will already know the IP of the router/gateway
because it will be in the network settings on that computer). If your computer doesn't
have it stored in the ARP table, then it will ask for the router's MAC address using ARP.

F‘Hmtlﬁ

DoS

Denial of Service or Do$S attacks consume resources and prevent real customers from
connecting. They come in many shapes and sizes — for example, using just a sheer number
of packets and huge bandwidth to saturate the internet connection of a server.

They can also be more application layer, for example finding a website request at
flogin.php that causes the server greater 'expense’ in processing. The attacker then
repeatedly calls and uses this thousands of times per second, overloading the system in

processing terms.

F‘u&all;’u

DDoS

Denial of service is problematic, but DDoS (Distributed Denial of Service) is significantly
more painful. This is where attackers use a huge number of systems, for example a large
bot network they control, and attack a system all at once. They can also ‘take tums’ and
pulse. These can disrupt even the most well-connected businesses!

In some instances DDoS attacks will be protocol layer, such as just having a huge number
of bot systems connecting over TCP to fiood the connection table. In other instances they
may be application layer, such as having a huge number of bots turn up and interact over
HTTP to post to a login form.

James Lyne shares some real-world examples of using networking in cyber security work.

an hlﬂ

Building an SME Network

In this section we will build our very own SME network using common business grade
hardware. The process is very similar across a multitude of vendors and over time these
devices are becoming much simpler to configure. All the process we undertake here can

be executed with a smart phone, or from a web browser. Older routers and integrated
network devices like this required hundreds of hours of study of command line
configuration before you would be able to even get packet routing working! As you can see
from this walkthrough all of this can now be achieved with relative simplicity.

Pa&alﬁg

Introduction to Servers

Faiib?ﬂ

Servers and Services

Servers are a crucial part of any network and a key location where lots of data is held,
which makes them a tempting target for attackers. In the upcoming modules we will take
a look at some common server types, their basic setup and installation procedure. We
will also cover some basic server hardening and configuration, though you can find rich
guides online to help you build secure servers.

Servers receive connections from client devices, which effectively means they talk to
computers and not humans. It is a computer to computer interaction rather than a human
to computer interaction.

The definition of a server from the Cambridge dictionary is "a central computer from
which other computers get information.”

The CIS benchmarks and guides provide fantastic resources for you to configure and
secure common server types. They are an invaluable guide and are scaled from the more
basic and unobtrusive configuration, to rigid and secure but likely to disrupt features.
Take some time after the course to try applying them in your own lab environment!

F‘uh!f!l

Server Hardware

A server is simply a computer which runs software that provides services. Servers can
have specialised hardware requirements to perform their specific function.

For example:

« A Raspberry Piused as a server is sftill a server.
* An old desktop PC with VMware ESXi installed on it is still a server.
» Adual CPU Xeon Blade Server that costs 10,000 USD is a server.

Dedicated servers (computers built with the intention of using them as servers) tend to be
more powerful than your typical desktop computers. Besides having more RAM and
storage, a server will likely have one or more specialised CPUs. If we remember building
the computer, we used an i9 intel processor, a top of the range for consumer-level CPU.
However, you will likely have ranges such as Intel Xeon or AMD EPYC (or possibly
threadrippers) with servers. They may require specific motherboards that have
specialised functionality, suchs as slots for multiple CPUs. A server may have two, four or
more CPUs each having multiple cores, TeraBytes worth of RAM, several GPUs and
hundreds of TeraBytes of storage.

Datacenters are places that are designed to house many servers. As you might expect
having so many powerful computers in close proximity to one another generates a lot of
heat and so datacenters are designed to provide cooling and connectivity for all those
servers. In fact just walking into a datacenter will often require you to put on a warm
jacket.

How big servers are built and maintained

First came the computer that was just bigger, more hard drive space and more RAM, but
bear in mind they were already pretty big. Fast forwards ten years, and they were all
linked with cooling and daisy-chained together to maximise their capability. They may
utilise parallel processing, breaking down a task into segments and running it on several
CPUs simultaneously, then putting it back together to reduce the time it takes to execute.

Jump to the present day, and we mostly see blade servers. These are self-contained
servers that are thin and can be slotted into a rack. They can still be connected together
but the innovation here comes from the ability to quickly swap components. Perhaps a
hard drive fails in a particular server, The monitoring system would tell the engineers
which particular one and they would simply lift it out and clip a new one in place. So
when one component fails it can be quickly replaced. This is necessary for continuous
service, One important way of ensuring continuous service is redundancy which means
having servers ready as a fallback when another server fails. This meant at times there
were vast amounts of computing power that were not being utilised. Companies built
intelligent software to manage these extra resources which gave rise to cloud computing.
Companies realised that they could hire out unused processing power to customers. This

Pnn?l

gave rise to dedicated cdoud computing providers such as Amazon AWS and Microsoft
Azure.

Back to smaller scale

Ok, let's scale it down slightly and ask yourself if you wanted to create your own server,
what would you need.

Well, if you want to host your small website with not many visitors, then itis plausible to
have a web server on your home computer, similar to the one we saw earlier. Another
example that would require small efforts is a server on your local area network. Perhaps
you have lots of pictures on your laptop hard drive. Well, it is possible to spin up a server
for other devices connected to your network that will allow them to view the media. This
will enable you to view the pictures on your laptop hard drive on your phone. Thisisa
very basic idea of a server.

Pnn?il

Server Software

Another way we use the term server is related to the specific software running on a
computer. For the server to do its job, there needs to be some software running that will
sit and listen for connections and process the requests. This software will also create the
necessary file structures based on whatever service you are running.

Take, for example, a game server. When you log in to your multiplayer game, it will
connect to a server, and you may be on the same map with a hundred other players. Do
you think this server would be running many different applications such as internet
browsers or notepads? This kind of server will get updates as you use your input device,
mouse or controller. The command is sent through the internet and updates what you
have just done to everyone, usually positions and mathematical representations rather
than graphically. It's almost like you are playing on a game console with split-screen
multiplayer, but the screens are just far away.

Another example may be something like the syncing on your phone, tablet and laptop.
There is a central server that is sending all the data and messages to each device. Itis a
similar principle to email, where you can insert as many email addresses to send an

email to as you want. The server also allows you to sync all your devices, so they get
added to the 'send' list. Don't worry too much about the workings of these; we cover them
more extensively later on.

So the software on the server can be called a service or more casually a server, and one
computer may be running several different services. Perhaps your home computer has a
local media server and a web server, a DNS server and a proxy server for when you want to
log into your computer from around the world. While this is fine for personal use modern
day best practice for business use is to have one service running per server,

Pugzazd

What types of servers exist?

This list is not exhaustive; there are many varieties of servers, some of which we have
already mentioned. Why are there so many? Well there are many things we can do on a
computer? The principle remains the same, however. Something else to keep in mind is
that even everyday objects now connect to servers, especially with 'Internet of Things' or
IoT devices being prominent.

Note: IoT devices are classified as objects embedded with sensors and connected to a
network. You may have heard them being called smart devices. All the everyday smart
devices are a part of the Internet of Things. However, it does not just stop in your home.

For example, modern-day cars may be connected to a server, usually through 4g sim
cards. Perhaps the pressure in your vehicle changes when it is switched off and locked.
This indicates a smashed window, and this information can be sent to the car
manufacturer and forwarded to the police.

Another use of IoT devices could be to check the moisture in a bridge. These days, many
bridges have some form of loT sensors to check for various attributes relating to stability
and safety etc.

Here are a few common servers, but there are many more:

Web server

DNS server
DHCP server

Log Server
Game server
Print server
Proxy server
Streaming server

PB%E

Challenges of servers

We briefiy mentioned earlier some of the cost and environmental impacts of servers, but
how about other challenges that may arise. Perhaps a military needs a server to be
running with the best possible security, or a hospital needing a server running, for it to
remain operational. Well, now we must architect a solution with security and/or
redundancy in mind, respectively. This may be a nice thought experiment for yourself. Can
you think of all the aspects you would need to cover to ensure the security for servers
used by the military? Would you connect them to the internet? If you did, how would you
secure this? When we think of servers in extreme cases, it is easy to appreciate what an
exciting and monumental task this can be. A few things to consider for military servers, for
example, would be:

= Will the servers be air-gapped (not connected to untrusted networks such as the
internet).

« The physical security of the servers (making sure people can't simply walk up and
power down the system or take a hard drive).

* Who do we trust to build the hardware components that go in the server (would they
be tampered with before they get delivered or could components be swapped out
while the server is in transit)?

All these precautions will depend on what the purpose of the server is.
Let's assume someone will get access. What then?

Overall, this requires a considerable effort to design well enough to satisfy the needs of
the service. This should help you to appreciate the vast wealth of skills that needed to
build a server. Not to mention the facilities they are contained in.

F‘!gﬁﬁ!ﬁ

How are they connected to the outside world?

This is an exciting topic and one that is critical to servers. After all, servers are processing
connections from the outside world most of the time. Hence, we need to think about
security every step of the way. First, we need to consider how we will contain and secure it
physically. Should there be CCTV everywhere? If so, are we going to use on-site servers for
that or the cloud?

In terms of networking, imagine if website hosting companies did not connect to the
internet. That would not be very helpful now, would it? Servers that require internet
connections need to have a very carefully laid out network infrastructure. Let's think back
to the networking module. First of all, these servers would require a seriously powerful
router to process all of the connections. Things get interesting here. You see, just for the
networking alone, there would need to be several servers to run the servers. A good
thought experiment might be to think of all the types of servers required to run a network.

Let's take an example. Perhaps a firm has a website, remote workers and an intranet. The
intranet consists of several company document servers, each at different privilege levels.
This means that some employees may not have access to particular documents or
software. For example, software engineers do not need to access the accounting software.
So there needs to be considerable thought when planning servers and the networks they
are using, and who has what level of access.

Companies also require some layers of protection such as web application firewalls,
intrusion detection systems, intrusion prevention systems, and a well designed internal
network. In terms of how servers talk in the network stack, well, that will depend on what
application it is running.

F‘!?z]f?

Web Servers

F"i?ﬁm

Introduction to Web Servers

Of all of the types of server, it seems most likely that a web server is the one you'll have
heard of prior to this course. But do you actually know what a web server is, and what it
does?

The primary purpose of a web server is to satisfy client requests on the World Wide Web,
which translates to storing and processing web pages, and delivering them to clients,
using the Hypertext Transfer Protocol to communicate. If youve ever opened a web page
in a browser, the acronym HTTP will be familiar to you (although youll probably more
commonly see HTTPS these days - more on that later in the course).

The worlds first web server was created in 1990 by Tim Berners-Lee, better known for
being the inventor of WorldWideWeb itself - in fact, these two programs were written as
part of the same project while Berners-Lee was employed by CERN, with the goal of easing
the information between scientists by using a hypertext system.

This first web server ran on NeXTSTEP (a discontinued object-oriented, multitasking
operating system based on the Mach kernel), and was later known as CERN httpd. Since
then, these technologies spread rapidly, being ported to many different operating
systems and coming into common use in scientific organisations, universities, and later
industry. The World Wide Web Consortium (W3C) was constituted in 1994 to standardise
and regulate further development across this group of technologies. Fast-forward to the
present day, and web servers are integral to how we use the internet, and anything
connected to it, in our daily lives. Internet of Things devices often run web servers, and
they are growing second by second all around us!

A web server can be a piece of software, or hardware dedicated to running server
software. As well as serving popular websites, web servers are often embedded in
common home or office devices to help in the configuration of those devices. These
include printers, webcams, and routers, particularly those serving only a local network, in
schools, small offices or practically any organization. The web server can be used as part
of a system for administering or monitoring devices through a web browser, removing the
need to install additional software on the client computer.

The most used web servers on the World Wide Web are Apache and Nginx, both
standalone products, and IIS, created by Microsoft. Google also has a small percentage of
market share with its own Google Web Server (GWS), and then there are many smaller
providers out there, each of which services tiny percentages of the worlds websites. This
module includes a demonstration of setting up Nginx, configuring it to a basic level and
then configuring a certificate and HTTPS so that we can connect to it securely.

Web servers are very common of course, and anyone can set one up, but doing it correctly
without leaving doors open for attackers is a challenge! There are common mistakes, like
overly broad user permissions used to fix issues, which can allow for compromise. We will
review best practice for setup in this module.

Pngzﬁ??

What are web servers?

Web servers are highly desirable targets to hackers for many reasons. Let's explore why
they are such attractive targets.

Web servers are designed to take files or data and present them to a user over protocols
such as HTTP. A simple function, but over time web servers have grown more complex and
added support for new protocols with greater efficiency and security. For example,

HTTP/1 .1 is still widely used and has been around for a very long time. It is an ASCII based
protocol, which we understand from our earlier Foundations modules. On the other hand
web servers often now support HTTP/2.0 which enables binary based transfer. This is
harder for a human to read from the wire, but is more efficient and high speed at
transferring data - the primary useful use case of a web server.

A web server is just an application that listens to the network on a specific set of ports,
and speaks a specific set of protocols. When clients connect to it they are able to speak
this protocol and request resources, for example the infamous ' GET /' which retrieves the
base or default page at the root of a website. Remember however that web servers are
just applications running on an operating system. At their core there is little difference
between a word processor and a web server, although it is normal for web servers to
require slightly higher permissions to bind to ports like :80. On most operating systems
lower ports below 1024 require elevated permissions to bind. This presents a quandary as
the web server typically wants to minimise it's permissions on the system to avoid
allowing an attacker to compromise it further in the event it is hacked. This can result in
some interesting permissions segregation of the web server in to a higher and lower
privileged portion of the application.

In the most simple use case a web server will need permissions to read files from the web
server directory, for example /var/www/html on many Linux systems. It might serve the
file index.html and have only read permissions on it. In more advanced setups the web
server might also receive instructions to change files, and then require permissions to
write to specific files also. This has to be carefully controlled however as overly broad
permissions can make compromises simpler for attackers.

Web servers over time have grown to support dynamic applications and web sites too, not
just serving static files, for example PHP or other interpreted languages. When accessing a
file such as 'index.php’ the web server could recognise the suffix PHP and use a defined
processor, or the PHP binary, to process it and produce an output. This output is then sent
to the calling user in place of a simple static file. This is clever as it allows for dynamism
like including a users name, or responding to data provided by the client.

This dynamic functionality also allows for the very common use case of a web server
combined with a database. A database might be used to keep customer records or
usernames and passwords. The database server may reside on the same system or may

be a network based resource that the web server connects to. One of the most common
setups is referred to as the 'LAMP stack' which stands for Linux, Apache, MySQL and PHP. In

F‘ugab]n

this instance Apache is the web server which runs a PHP file that contains instructions to
connect and query a MySQL database.

You can see, I am sure, why this makes web servers an interesting target for attackers.
Let's review some high points on why they are interesting:

fi. They are exposed publicly or designed to be connected to, making them a good
place to connect through a firewall.

fi. They can have permissions to access more files than they should, and potentially
enable lateral movement

fi. They are often connected with dynamic capabilities provided by PHP or other
interpreters, which can allow an attacker to supply their own code or modify
functionality.

fi. Other users might visit the page, which means that they can be compromised and
used to target other users. This is a very popular malicious code distribution
mechanism.

fi. They are often connected with databases. Stealing a long list of usernames and
passwords, or emails, or credit card details (in the worst case) allows an attacker to
get a treasure trove from one place!

Note that it is not just about compromising the web server. An attacker may be able to
use this to get to the operating system, or other applications and slowly work their way
back in to the network. A common problem is when developers leave useful code artifacts
or code repositories keys on a web server believing they would never be found as they
reside outside /var/www/html. Being able to connect to other workstations or systems
nearby, or pivoting as we call it, is an attacker tactic we will cover more later in the

course.

There is another sneaky reason why hackers may want to gain access to your webserver. If
a third party hosts your web site, there is an excellent chance your website is not the only
one on the server. Shared web hosting providers will often run multiple websites off of
one web server. Perhaps a hacker can hack a website with little security to gain access to
the server and then compromise other websites. Imagine being able to hit a hosting
provider and compromise one system, but then get thousands of sites to serve up
malicious code! That would be quite the force magnification pay off for the attacker!

Web server security largely comes down to patching your system and being careful with
configuration. There are excellent guides for this and using mainstream practice, not
being too clever with unusual ideas, is a really strong way to up your security. We will
cover this more in the sections that follow.

F‘uﬁll

How do web servers work

Websites can be created using various programming languages; however, it's first
important to note what is meant by the front-end and back-end and client-side.

Client-Side

The client-side is the device that is being used to connect to the web site. Many things
happen here, such as inputs to be uploaded, and each time you click on a new page, you
request a download. Perhaps you click on the latest article of the day of the BEC news
web site, the moment you do, the web page you are looking at is no longer live. Don't
believe it? Well, let's do a quick check.

Quick task

You may find it is easier to use a different browser such as Firefox or Chrome here. Also, be
sure to use a desktop browser.

Note: If you are on Safari, you will need to enable the feature. Go to the top left of your
screen where the apple symbol is. Next to it should be Safari if you are currently on the
Safari browser. Click that and go to preferences. Look for the advanced section at the top
of the new window. Make sure the 'Show Develop menu in menu bar’ is ticked. Once you
have done this, it should work the same.

Step 1: Browse to sans-foundations.com and be sure to open this is a new tab so you can
continue to read the instructions. When it opens the home page, be sure to be logged in
SO you can view your name. As soon as you click on this article, your devices ask the server
to download a file thatis actually the web page.

Step 2: Whilst you are viewing the sans-foundations web site, find the titie where it says
'Good afternoor<your name>'(may say good morning instead). Right-click on the title
and find 'inspect element’ and left-click it. This should open up a little box at the bottom
of your browser. The blue highlighted line of code will be the instructions necessary to
show this title; click on the little rightward facing arrow at the beginning of this to expand
the code.

Step 3: now, this is the fun part. you will see something like

<h1>TheNameOfYourTit leHere</h1>. This simply means whatever is inside these

tags, display it with the biggest title format. In between the tags, where the title is written
usually in plain black text, change the title to whatever you like. Perhaps change the
name. NB: you may have to double click the title to allow you to type in the box.

Step 4: Hit return and check out what the title now says!

The point of this exercise was to help you appreciate that you did not just hack the
website. Once the HTML is served to the browser, it can be modified in the browser

F‘H&gﬁ]l

without you actually altering the site running on the server.

How to read a URL

Notice that when you open file explorer on a Windows machine, it will show you a path.
You may see something like this: C:\home\documents\Sans_Foundations_Doc. Itis
essential to understand what this means.

The C: is telling you which hard drive slot to go to, although these are not fixed. On that
hard drive, there is an entire file structure with folders and documents or apps etc. So the
home folder has, among other things, a documents folder and so on. Have you ever seen
the uncanny similarity between this and a web site URL?

Take this URL, for example.
https://en.wikipedia.org/wiki/Backslash

Now, because you are not simply accessing your motherboard, you cannot just put "C:"
into a URL. Clearly, the website is not on your computer. So you need a little help from
your friend, the internet. The first part, HTTPS, tells the device how to write and send the
request to get the document you are asking for (document = webpage). The next partis
en.wikipedia.org; well, this is kind of the equivalent to the "C:" part now. It is saying where
is this computer. So behind these words should be an IP address. Perhaps Wikipedia also
writes this article in a different language, which this webpage may store on a completely
different device (or hard drive). The next part is the wiki/Backslash, which is now exactly
like the home\documents\Sans_Foundations_Doc. The web page or HTML document that
is called Backslash is located in that file path.

So you see, there is nothing more to the WorldWideWeb than just file structures and
hyperlinks.

The client-side is simply the web browser and your device.
Server Side

Although this is not strictly the case, for now, let's assume that the front end is the same
as the client-side, and the back-end is the same as the server-side. There is no exact
definition of these terms, but in the profession, there are some nuances.

This is where most of the magic happens. The computation happens here, and itis usually
written in some form of scripting language. Whenever you see scripting language, you can
assume this means it does something rather than just be pretty text on a page. Common
scripting languages for web sites are:

= JavaScript

* PHP
* Python

F‘H&g&!fﬂ

JAVA
Perl
ASP
Ruby
Go

This is not a complete list by any stretch of the imagination. It simply gives you an idea of
some languages that are used to code functionality on a web site. Note: they are not
represented in any particular order.

F‘!Md

Analytics on web servers

Analytics and instrumentation is an essential part of websites and servers these days. But
how do they work? Analytics tend to be calculated and logged remotely. This means there
is another server elsewhere that is storing all this information. Data is collected about the
system, application and users interactions to be used for this purpose. There are muitiple
types of analytics and instrumentation tools. Some collect data from the system or
application automatically. In other cases programmers specifically instrument their
programs with code. Programmers use something called an API (Application Programming
Interface), which allows the programmers to write a few lines of code in their software that
will call another application with a query and receive a response. Analytics are
instrumental because they tell the website owner how many connections are being
received and potentially where they originate.

Web analytics generally measures user activity, such as how long they are on the website,
where they go, how long it takes to get there and whether they came from a link or not. It
helps a business track if marketing campaigns were successful and also helps them
understand the traffic fiow throughout the year. Imagine if a substantial online retail store
had, say, one thousand connections a day. They may find themselves with a crashed
website around black Friday or Christmas when that number could increase overnight.
However, if the website were to run analytics, it would be possible to know roughly how
many more customers to expect at peak times throughout the year based on previous
years. Their infrastructure could then be configured to handle the requests and be fiexible
during extraordinary times.

Business systems often have multiple components of infrastructure connected together to
deliver an experience to a user or customer. Today analytics and instrumentation are

used to measure all kinds of attributes between these systems, and then learning or
anomaly detection mechanisms are used to identify if something unusual is happening.
For example, you might on average find that the connection between the web server and
the database takes 124ms. You might find on average you can respond to web users
requests in 0.3s. However, for a period of time connections from users in a specific country
register at 2s. This can be used to raise alarms to create action, or in some cases drive
automated response in an elastic infrastructure.

Pnﬁglﬁ

Aw, snap!

Sometimes you will see these messages when you try to load a web page. You may well be
familiar with the '404' error message for example.

Informational response
100 Continue - Everything is looking smooth. Continue as you were.
Success

200 OK - The request has been completed with no errors. This is a good sign on weblogs. It
also varies slightly depending on what kind of HTTP method was used (GET, POST, HEAD,
TRACE)

202 Accepted - Received but have not yet done anything about it.
Redirection

301 Moved Permanently - Usually, the new URL is given in the response
Client errors

400 Bad Request - Invalid Syntax error
401 Unauthorized - You are not allowed into this site without logging in. Unauthenticated.

403 Forbidden - Same as 401, but the server knows the client’s identity. This usually
means you don't have enough privilege.

404 Not Found - Uh oh. Nobody knows where that URL is. Maybe you typed it in the wrong
way. You could try doing this now.

408 Request Timeout - The server is shutting you down for idleness
Server errors

500 Internal Server Error - The server has no idea what to do, so it took a nap instead. This
typically happens due to bad code or failure to handle data or an exception. These are
often worth investigating!

502 Bad Gateway - Issue with the servers connection.

503 Service Unavailable - Overloaded server. Most likely because everyone is trying to
buy a PS5 on the website.

F‘uggéas

504 Gateway Timeout - Sorry, your servers are too slow. Probably a connection problem
somewhere in the network.

Some of these codes are very useful for hackers to know. It can indicate whether there is a
firewall and how things are configured on the web server.

You may not necessarily see a 200 code. For example, the page would just load, but they
are still being received by the browser. Let's have a look at response headers to verify
this.

Response Headers

Response headers are a form of HTTP header that do not carry information aboutthe
content but rather the status of the request you have sent. They come from the web server
themselves. The client sends an HTTP request, and the web server replies with an HTTP
response. Instead of showing you an example response header, let's take a look at a real
one.

Quick Task

You may find it is easier to use a different browser such as Firefox or chrome here. Also, be
sure to use a desktop browser.

Note: If you are on 5afari, you will need to enable the feature. Go to the top left of your
screen where the apple symbol is. Next to it should be Safari if you are currently on the
Safari browser. Click that and go to preferences. Look for the advanced section at the top
of the new window. Make sure the 'Show Develop menu in menu bar’ is ticked. Once you
have done this, it should work the same.

Step 1: Browse to sans-foundations.com and be sure to open this is a new tab so you can
continue to read the instructions. When it opens the home page, right-click anywhere on
the page and click inspect element.

Step 2: When the inspect feature opens at the bottom of your browser, search for the tab
at the top called 'Network'. You may need to refresh to view all the requests.

Step 3: There should be a list of requests that you can click. Choose any one of them and
select it. Once you do this, you should see a new box pop up, probably on the right-hand
side of the inspect feature. In this new box, you should see the HTTP request and response
headers. Browse around them to see what information is stored in them.

After you have looked at the response headers, you should have noted that the response
codes are also shown.

If you would like to do a stretch exercise here, see if you can view these headers in the
terminal or command line. You may need to use a search engine to find out exactly how to
do this, or you can review the video above.

F‘Hﬁ]}!?

Quick Task

Note: Browser extensions for privacy and some adblockers might prevent this task from
working.

Step 1:
Go on to bing.com and search for what is my referer.
Step 2:

Scroll down until you see https://anonymiz.com/myreferer and click on this web site. At
the top of your page, it tells you where you have just been.

Step 3:

Now copy this URL https://anonymiz.com/myreferer
Step 4:

In the URL bar, type in amazon.com

Step 5:

Then, from the Amazon home page, go back to the URL bar and paste in the nullreferer
web address. What does it say this time? It does not tell you that you have come from
amazon this way.

Step 6:

Open up a private browser and repeat these steps. What happens this time?

You should have seen that even in private browser mode, it still knows from which web
site you are coming. It is essential to know what private browsing helps you with and how
all these tracking mechanisms work. You may like to try this in several browsers private
browser tabs. You may not be surprised to find out that they can still see your referer,
even on privacy browsers such as the Tor browser. Another valuable task may be to think
about why this is the case, and how do you stop them from being sent?

This is how comparing web sites pass you on to the provider. So when you click on the
insurance quote, the insurance company knows what you have searched to get there and
entitlement to benefits such as two-for-one movie tickets.

F‘ug?’éaa

Nginx and Let's Encrypt Demo

In this walkthrough, we take a look at installing a web server using nginx, and doing some
basic security configuration of it with Let's Encrypt, to get the server up and running.

Paﬁéig

Web Server Practice Checklist

Depending on which web server you are using and the exact setup of your application,
best practices can vary. That being said, there are some common failures and problems
that we see when security testing, or reviewing IT hygiene failures, that you can learn
aboutin this section. Keeping an eye out for these can help you raise the bar of
configuration and reduce the chance of attackers taking advantage of your systems. It is
advisable to regularly check with vendors of the technology too — Apache and Nginx have
new configuration options, defaults and bug advisory along with releases that should be
periodically checked.

Check over your default configuration

The default for most modern web servers is actually pretty good, and we could just as
easily write 'be wary of changing the defaults’. This was not always the case and the
defaults were pretty bad, but often the package managers and default builds on most
modermn systems will do a good job of bringing in a lower privileged user like www-data
and configuring appropriately.

That being said, scalability options like the number of workers in Apache are often set
low, Take a moment to review the defaults, and validate your setup is good out of the
gates.

Remember too that the default setup does not enable HTTPS, and so all communications
will be unencrypted when exchanging information.

Validate web server permissions

Most default setups today will create a separate user and group like www-data, which
should have overall low privileges on the system. However, as a part of troubleshooting,
we terrifyingly frequently see 'permissions sins’. One example of this is upgrading the
permissions of this user by adding them to another group on the system that has real
power. This happens because a permissions error was thrown, someone read online to
give it more power, and it fixed the problem! That means any future attack on the web
server could lead to attackers having real rights! Another example of this is where
administrators do something like:

chmod 777 ~Nvar/www/html

This indeed fixes permissions errors because now everyone can do everything. We should
see restrictive permissions set for the specific user, which should be low privilege overall.
The Linux modules in the course aid with that setup.

Disable the banner/versioning

F‘ugﬁbdu

Depending on your webserver, Apache or Nginx will output their version number and some
basic configuration information. For example, in Apache this is called the "signature’. This
information can be valuable to attackers as it can leak that you are running a specific
version that may be vulnerable to a specific exploit.

Using Checklists

Vendors publish specific information and checklists that you can use to secure their
webservers, as well as looking atresources like the CIS benchmarks to further restrict
them. It doesn't take a lot of time just to double check the configuration and validate you
have good hygiene. In fact, a lot less time will be spent checking configurations, than
handling an incident later.

F‘EWI

Database Servers

Fagﬁiﬁﬂ

Introduction to Database Servers

A database server is a computer system that provides other computers (or programs) with
services related to accessing and retrieving data from a database. As software, it is the
back-end portion of a database application, following the client-server model. Database
servers are used to store and manage the databases stored on the server, and to provide
data access for authorised users. Database management systems, or DBMSs, often provide
this server functionality. We will be using MySQL, a common DBMS, later in the module.

Different types of users will access a database server in different ways, depending on
what they're trying to achieve. The "front end” displays requested data, and will run on
the user's computer, The "back end” handles tasks such as data analysis and storage, and
runs on the server itself.

The initial conception of the Database Server started out with the introduction of Data
Structure Diagrams (DSDs) by Charles Bachman in 1969. These diagrams provided a means
to graphically represent relationships between data entities, which formed the basis of
Codd's Relational Model for database management in the 1970s - the main principle of
which is that users of a database shouldn't need to bother themselves with its inner
workings - that most databases still use today.

Further research and development in this area in the 1970s focused on this model,
culminating in Peter Chen's proposal of the Entity-relationship model, an abstract data
model defining a data or information structure that can be implemented in a database.
This model was recognised as being more applicable to the "real world" than its
predecessors, and consequently became the most frequently used model to describe
relational databases.

So, what does that mean for us? At the time of this writing, there are over 300 recognised
DBMS5s in existence, largely operating on the same basic foundations as those being
researched in the 1970s. The demo in this module will focus on MySQL, a freely available
open source Relational Database Management System that uses Structured Query
Language (SQL). 5QL is the most commonly used language for adding, accessing and
managing content in a database, and its popularity can be attributed to reliability, speed
of processing, and fiexibility.

Whilst SQL is known for being simple to use, there are many things to consider when
setting up a database server effectively and securely. This module will guide you through
the configuration, and give you the chance to try it out for yourself.

F‘!gﬁiﬂ.’l

Logic and databases

Logic is required to design databases to ensure that all statements are complete. We
need to do this for many reasons, but mostly so there is no redundancy, making them
efficient to use.

The goal is to create a database that is well structured and accurately represents the
data which it stores. Primarily, databases are used by a company to store information
about their business crucial for their day to day dealings. This is the reason why the
database needs to be a good representation of the company.

Not only will all the information be logged in these tables, but the database models the
relationships between all the data. For the company to become more efficient and to
potentially grow, the databases need to make it easy to understand relationships
between data. This means they are crucial in business development and analytics. Of
course, there would need to be some form of engineer sorting through all the data in the
first place.

An understanding of logic helps us structure databases better, helps us write more
efficient guery statements and think through the relationships. Good database design can
make for extensible business systems and easy to extract data. Bad database design can
function but make every task very difficult, and future upgrade paths painful.

F‘!WJ

PHPMyAdmin & Adminer functions

These tools provide a graphical frontend to manage the contents of a MySQL database.
For example, you may want to back up your database and with these tools this is easily
done.

Firstly note that they are written in PHP, which means they integrate nicely with a web
server.

It provides a friendly user interface to make tasks simple. It will also allow you to:

= Run SQL commands

Export the tables into different file types such as a pdf
Search the database

Create, copy and drop tables

Maintain the server

Administer multiple servers

Addminer allows the use of CS5 skins

This list is not exhaustive. The database admin can manipulate and control the entire
database through one of these tools. It should be noted that these tools should never be
used on a production database or if they must be used you should only leave them up for
as long as you need them. An exploit in one of these tools could lead to the compromise
of the database it connects to.

F‘Hgaglﬁ

SQL Server Demo

SQL servers are the most widespread form of database server, and their relational
structure and intuitive language make them compelling choices for many developers. In
this walkthrough, we step through the installation and configuration of MySQL on a Linux
system. We will undertake the following steps:

« Installation of MySQL

Basic security configuration

Create a simple database, table and query the data

Load a backup of a substantial reference database

Query and modify the database, exploring relationships
Configure a user with specific rights for a database
Configure a graphical database management tool to connect
Export a backup of selective data and tables

The procedure will vary across versions and platforms, but many of these concepts
remain unchanged over many years, and will be valuable whether you are in offensive
security and finding fiaws, or defensive security and locking down unauthorised paths to
data.

F‘ugagis

SQL Server Setup Considerations

There are, of course, a variety of different SQL servers out there, and specific best practice
and security configuration will depend on which you are using. That being said, a lot of the
guidance is standard, and you can find wonderful setup guides, like the CIS guides, to
help you lockdown appropriately. Let us review a few key considerations to get you
started:

fi.

fi.

fi.

fi.

fi.

fi.

Validate the IP connectivity ruledhis is a particularly common mistake for SQL
servers running in cloud instances, like on AWS. It is set to make them accessible to
the open Internet, allowing port 3306 (for MySQL) to be connected to by anyone in
the world. Granted, password protection should prevent anything bad from
happening, but a vulnerability or configuration error could allow for huge database
leaks. It is best that the access is locked down to those that need it, e.g. the web
server it might be powering.

Remember to run themysgl_secure_installation as we covered in our
demonstration. This will step you through removing the test database, anonymous
accounts and enforcing credentials on the root user. This improves your security
instantly.

. Validate that MySQL is running with an appropriately privileged and restricted user.

Most default setup packages on modern Linux will do this for you, but it pays to
check, as you do not want your database running as root. A specific lower privileged
mysql user is a really common and useful practice.

Consider removing the mysgl history file. Typically located at/.mysql_history
this file helpfully logs what you have typed in to the mysql di. However, it could
expose credentials or configuration to users of the system!

Ask yourself if you need remote logins at all? Is your database running with a local
web application that can connect over 127.0.0.1? Do you need it bound to 0.0.0.0 and
accessible more broadly? If not you can reduce your attack surface area generically
with this configuration change.

Conduct MySQL verb restrictions. I know this one sounds odd but here is a good
example - limit the use ofSHOW DATABASES. If an attacker has less information to
work with it is harder for them to exploit, and even more so for automated tools. You
know your database names for your applications, and have them configured in
connection strings. Attackers may not and this can make it much harder for them to
identify them depending on where they attack.

Update. Update. Update. This will help you eliminate security vulnerabilities but
remember that each patch might come with changes to how SQL works and the
language specifics, which means you might also need to make changes to your

Pngabd?

application - or update web frameworks. A good test environment where you can
validate changes really helps here.

fi. Go check the Linux file permissions! Check that my.cnf is accessible from the root
user only or your administrator user via sudo. Make sure that the MySQL data
directory (typically /usr/local/mysqgl/data)is accessible for the mysql user but
not other users on the system.

fi. Consider use of a managed SQL platform that does a lot of this for you. Amazon RDS
or services like Aurora can automatically apply updates, restrict access to the
backend system and simplify operational and security ownership. That does come
at a cost, and you still need to configure credentials and the service appropriately -
but it can reduce the work of server ownership significantly!

fifi. It is not allabout security. Have you considered the size of your database? Have you
allocated only 5GB to the virtual volume, which will shortly be exhausted by your
use case and cause the system to completely implode? Make sure you have
adequately sized your system to the requirements, and configured monitoring so
you know if disk space is getting low!

MySQL and CIS both have excellent guides of configuration you should consider, but apply
what you have learned so far. Keep permissions tight. Users and roles specific and
software updated. It really does make a difference!

F‘!g&ﬂdﬂ

DNS Servers

Fagﬁéﬂl

Introduction to DNS Servers

DNS, which stands for domain name system, is the phonebook of the internet, and a DNS
server is responsible for translating typed domain names into numeric IP address -
basically, they translate a language that humans can understand and remember into a
language that computers can understand and process.

Abstracting DNS reduces to two types, authoritative servers and client-facing servers (for
example, Google's DNS that recursively resolves requests by pivoting around the DNS
infrastructure).

DNS is needed because humans cannot remember IPv4 octet addresses. This gets even
more complex in IPv6, given the longer addresses. Therefore, a browser allows a user to
input a human-readable domain name such as microsoft.com. There is a need to resolve
this domain name and translate it into numbers for the computer to read.

We do notremember peoples phone numbers, so we store their names and look up the
numbers. We do not remember people by their numbers and look up their names.
Although in DNS, this is called reverse lookup, and there are many reasons why you would
want to do this. It may be an excellent task for yourself to think of a few of these reasons.

There are four types of DNS servers, which, in a typical DNS lookup, work in harmony to
deliver the IP address.

Recursive resolver / DNS recursor
This is the server type that is responsible for receiving queries from the client machines

via applications, such as internet browsers - this includes the input of a user typing a
domain into the URL bar.

Root nameserver

The root nameserver is the first port of call for the resolver to query. It responds to the
resolver by redirecting it to the TLD nameserver that stores the information for its
domains. There are 13 root servers distributed strategically around the world, acting as an
index, or reference, for locating the IP address for a site host.

TLD (top level domain) nameserver

The resolver then queries the provided TLD server, which will respond with the IP address
of the domain's authoritative nameserver. TLD nameservers differentiate websites that
end in .com, .net, and .org.

Authoritative nameserver

F‘uggbsu

The authoritative nameserver will retrieve the specific IP address of the origin server for
the provided web domain name, which the resolver will pass back to the client.

Once a query has been passed through all four server types, the client can initiate a query
directly to the origin server of the provided web address, that has been provided, which
will respond by sending data to be displayed in the web browser.

It's worth noting that this is the process that takes place the first ime that a particular
DNS query is made. The resolver will then store the origin server's IP address in its cache
for a certain time period (or until the cache is deliberately cleared), so that any further
requests for the same domain don't have to be sent through the same lookup process.

In this module, you'll get the chance to walk through a simple DNS configuration, setting it
up from start to finish, so you can see how this all works in practice.

F‘uﬁl

Theory vs Practise

When a user inputs the domain name into their browser, for example, microsoft.com,
there is something called a recursive resolver that will query around the global DNS
servers to determine where this website address is. The recursive resolver will go to the
hierarchy of name servers, the first one being root, and they will work backwards and pass
the resolver onto the next level down to the address. So in the example of microsoft.com,
the root server will either know the ".com” or know which sub server will know. The root
server then gives a list of servers that are the next level down in the hierarchy called top-
level domain servers. These will then know perhaps the "microsoft” part of the URL is, but
maybe not exactly where the specified resource is in that domain.

It then passes the resolver down to the next level called the bottom level domain server.
This bottom level server will know what the exact address is for the resource requested,
and it will send it to the recursive resolver, which gives the IP address back to the user. In
theory, the resolver should only require three rounds of challenge responses; root, middle
and bottom.

In practice, the recursive resolver still queries each level of the domain hierarchy and is
satisfied by the end of it. However, the crucial difference here is that when the root server
passes the records of the servers below, they will append the resolver to a handful of
records, perhaps five. The recursive resolver then sends all the top-level domains a query
simultaneously, rather than one at a time. It is already apparent that this can lead to
generating lots of traffic. Furthermore, when the TLDs respond, they also give a handful of
records for the bottom level domains, further exacerbating the problem.

The servers return a handful of addresses rather than just one because users want the
internet to be fast, so the resolver sends queries all at the same time to get back
responses as quickly as possible. However, there are other reasons, such as IP addresses
are constantly changing, and new things are continually being added. There may also be
many people using the internet simultaneously requesting from one specific server by
coincidence, so it may take longer to respond.

Here are the two crucial points. Firstly, higher-level servers send to more than one sub-
server. This means that the higher-level DNS server will send the addresses of several
lower-level DNS servers. Secondly, The recursive resolver will send all the server's queries
at the same time. This gives rise to the so-called 'amplification factor'. It is easy to
appreciate how it would be possible to attack this system effectively.

It is important to remember here that theory and practice are usually quite far apart.
When something like this happens to the global DNS system, the consequences are pretty
drastic. So as you can imagine, root DNS servers need to protect themselves well as well
as all other DNS servers. Luckily, the root servers themselves are decentralised and
distributed. It isn't just 13 root servers; although we only see 13, they are actually clusters
of servers worldwide.

Pnish'i.?

What can a DNS server do for you personally?

When you change your DNS server from the default, which is usually your ISP, all that
happens is your computer will now send requests via your ISP to the new DNS server.
However, this can give you some benefits. Your ISP may block access to specific sites using
DNS. Itis one of the most common forms of content blocking. If your ISP uses this type of
content blocking then one way to bypass this is by changing your DNS. Change to another
DNS server and you will get 'real’ answers instead.

Another major benefit of changing your DNS servers from the default is speed - often your
ISPs DNS servers are slower than other major providers such as Cloudfiare, OpenDNS or
Google DNS,

So does this mean your ISP cannot see what you are doing? Of course not. They are still
the ones that will be routing your traffic and by default, DNS traffic is unencrypted. It
takes more than just changing your DNS to give you anonymity.

On the Internet there are a number of providers such as Cloudfiare which provide DNS
infrastructure for you to use that tries to apply special rules or filtering. Some enterprises
do this too and redirect you away from known dangerous resources. Imagine you try to
accesswww.areallybadsitetobeafraidof . fake which is known to contain malicious
code? Well, if you are using one of these DNS providers that site could have an entry for a
'jail page' that warns you about the site instead of actually taking you to the IP address of
the attacker. In this sense DN5S can be customized to protect you.

You can also fiip this logic on it's head however! Think about how an attacker could
redirect you to other places if they controlled DNS. In fact, I've often said 'if you control
DNS you win'in penetration tests. Someone could access a bank website or trusted
corporate page and instead find themselves at a site packed with exploits. It is not quite
this simple as there are other controls like HTTPS and HSTS that might stand in the way.
However, these do not apply unilaterally and the owner of your DNS infrastructure
controls basically everywhere you go!

hﬁéﬂ

Walkthrough DNS Setup

Here, we're taking a look ata simple DNS configuration, and walking through the process
of setting it up from start to finish.

Pngg&ﬁd

Are you secure?

By default, DNS is not encrypted, which means anyone in a position on the network where
your traffic passes through can intercept the request and send you to the wrong website.

For example, you might be connected to the Wi-Fi at your local coffee shop. Others on the
network might be able to 'sniff' the network traffic of the wireless network, see your DNS
requests, and learn about where you are visiting. This might also leak useful information
about software you are running when it updates or phones home. Just because they can
sniff it does not necessarily mean however that they can redirect you to whichever
website they feel like.

You might also connect to that coffee shop Wi-Fi and a devious party might control the Wi-
Fi router. In this instance your traffic passes through the router and your DNS is provided
by it. That means that when you want to know where to go to find
importanttrustedsite.com it would ask the devious Wi-Fi router. They could send you
somewhere else instead. That is why connecting to random wireless networks can be
problematic, you do not know whether you can trust them to send you to authentic places
when you ask!

Typically this threat is localised as the attacker actually needs to be in the path of
communications. More on that later in the course, but for now, it should be noted there
are some forms of DNS that use encryption. This is not a panacea but it can help. Let's
explore them in the following sections.

Pniusgﬁ

DNS over HTTPS vs TLS

By default, DNS is sent in plaintext, which allows it to be monitored by anyone in the path
of transit. There are different reasons why people want to use encryption, but it is
essentially a privacy problem that leads to a security problem. Itis also a global

problem, given that governments tend to use DNS to censor the internet. Attackers can
also use this for many reasons, but predominantly, it can be used as a man-in-the-middie
attack or simply to gather information about a person or organisation.

The basics of securing DNS is to encrypt it first. Without encryption, it is like sending a
letter through the post that has no envelope. Encryption is a way to put an envelope
around the letter to stop it from being read by 'the network'. However, this is not an exact
analogy because people who intercept a letter can easily open the envelope and replace

it with a new one or use other tricks like steaming the glue to open it easily, then resealing
it. This would be hacking the post, by the way. Hacking does not only apply to electronics.

This is where encrypted DNS comes in.
DNS over TLS

DNS over TLS, or DoT is a way to encrypt DNS using TLS! Ha, the name is actually very
descriptive, unlike many terms in security! In DoT the DNS sits on top of UDP, which is
simply wrapped with encryption via TLS. This provides a mechanism to hide the contents
of the query and also makes tampering detectable, as the encryption will be corrupted
through modification.

DNS over HTTPS

DNS over HTTPS is an alternative to DaoT. It is known as DoH, and you can probably guess
why! In this instance DNS queries are sent over HTTP or HTTP/2 instead of over UDP. This
provides the same features as DoT and makes sure an attacker can't see inside the
reguests or responses, as well as protecting them from tampering. This has become an
increasingly default protocol for many browsers and users.

Wait, isn't HTTPS just using TLS?

Well, kind of. It is true that in the end both DoT and DoH both use TLS to encrypt. One of
the big differences here is the protocols involved and the port numbers. DoH uses port
443 which is a standard port used by most websites for secure web connections. That
means it is very often available. DoT on the other hand uses port 853, so you get a
dedicated port for visibility and network filtering, but it may be more restricted. They
both perform a very similar functional role and aid us with the issue we are describing.

What about DNSSEC?

F‘ugséss

DNSSEC is actually more related to DNS root server lookups, and how authoritative name
servers correspond with DNS resolvers. Whilst the name sounds like a full DNS security
suite, DNSSEC is more focused on problems like DNS cache poisoning. It is not used to
encrypt communications or solve the problem of interception or monitoring on a cafe wifi
connection. We will discuss it more in the next section.

Which is better?

It all comes down to firewalls. DoT uses port 853, and to a network administrator, it is self-
evident what this is, an encrypted DNS request. The plus side of this is that the network
admin can monitor DNS requests to identify malicious traffic. Aithough some companies
may want to see all the DNS requests in plain text, so in that case they can block port 853.
However, if your concern as a user is privacy, it is arguably better to use DoH because all
requests are sent using regular HTTPS traffic. If the network administrator wants to block
these requests, they would have to block all traffic on port 443. Therefore, users will blend
in with regular website traffic fiow, and the network administrators will have much less
control. There is also an extension to DoH called oblivious DoH which would effectively
route the traffic through a proxy server, so the DNS servers do not know who sent the
reguest. Hence, more privacy for the user.

Note: Although the DNS requests are encrypted in transit, you still need to trust the DNS
server because they still know what domains you are requesting. If you query an evil
attacker DNS server you will have a very secure connection to the attacker as they feed
you bad data and send you who knows where!

Pﬂﬁ]‘-ﬁ?

What is DNSSEC

DNS security issues do not stop at the cafe scenario we described previously. There are
also issues that have arisen due to the fact that DNS was designed without all of our
modem uses cases in mind. With the criticality of DNS in directing network traffic, cyber
criminals have found ways to take DNS offiine, trick DNS servers into caching and serving
bad entries, or hijacking domains. The DNS Security Extensions (DNSSEC) are a security
protocol focused on these issues.

Domain Name Systems Security Extensions verifies the DNS servers' identity in
communication with the DNS resolver. It does this by allowing them to sign the DNS
responses digitally. If this is implemented at every level of DNS, then an attacker can't
turn up in the process and try to convince you it is authoritative for something it does not
own. The signature can be used to validate that the response comes from the right server
and that it has not been tampered with.

Consistent deployment is key here, and each DNS level must sign to protect the resolver
as it communicates to a different server. This creates a parent-child chain of trust
throughout the infrastructure. Here is an example:

fi. You lookup SANS.org, and know how to validate the root
fi. Aroot DNS server signs a key for the .org name server
fi. The .org name server would sign a key for the authoritative name server

Each level must participate in this way, otherwise a fall back to traditional DNS is likely
and that opens up the possibility of attack.

As you can see this trust depends heavily on the root, and therefore at the top root level
signing, humans are there to verify it. This is known as the DNSSEC root signing ceremony
to sign the DNSKEY RRset. This makes it verifiable and trustworthy.

Note: This is a simplified version of how this process works. It is well documented and if
you are curious beyond the concepts you can go read all about this. One of the benefits of
this design is that it is transparently shared for all to read and challenge.

DNSSEC is often implemented with backwards compatibility, because achieving total
deployment and support on such a widely used service is extremely difficult. It is also
intended to be combined with DoH or DoT and in concert provide strong security for this
crucial service.

F‘ugsé'aa

Log Servers

Faggbsg

Log Servers

Being able to log events of a variety of severity levels on systems and across the network

is very important to maintaining good IT hygiene, but also cyber security incident
response. Imagine this nightmare scenario. An attacker breaks in to the network and finds
a common username and password of a service account on a selection of systems. We now
need to identify where that account was used. We know a rough time frame of the breach
and now need to evaluate hundreds of systems to identify if they were there, and what
they did. Central logging enables us to immediately start an investigation and source
potential impacted systems. Without this we could spend days trying to find out the

scope of the investigation before we even begin!

A further dimension is that logging on local systems is inherently less trustworthy. An
attacker that compromises a system could modify the logs to hide their presence or
actions. If log events are immediately sent from a system to a central log server this is
muchmore difficult to do.

This central logging capability extends into the cloud too, with a variety of products
known as logging as a service (LaaS) platforms becoming more and more popular. These
Laas platforms provide pre-built ingestion capabilities, analysis and reports so you have
to do less plumbing, and can focus on analysing of the logs instead. It is well worth taking
a look at some of the major players in this space and the latest capabilities they are
touting!

Combined with the virtualisation modules, setting up your own logging server with Rsyslog
is a wonderful exercise for you to validate your understanding. From here we can also talk
about commercial products as well as SIM, SEM and SIEM and how they are enabling
teams to respond to data in their networks about incidents and events.

F‘ugﬁbﬁu

Basic Log Server Setup

In this walk through we setup a basic Rsyslog server to receive log information from the
local system, and the broader network. There are a myriad of options to configure how you
collect data, and how you structure/store it. We demonstrate here configuration of a
network Rsyslog server and have a client send information to the remote logging server.
We also demonstrate building a database to enable easier query of the data.

Tools like Rsyslog enable very high performance ingestion of alerts, at over 1M records per
second. You can ingest the records from a variety of sources, filtering by application type
and severity. You can then store the data in all manor of databases or services, even

piping it out to Logging as a Service (LaaS) providers to ease your analysis!

A fun note on syntax and the old vs new way to declare templates. The $template
statement is the legacy way to declare a template. It works well, and if you have formed a
habit like me, you keep typing it. The new way is to type template(parameters).

Combined with the virtual machine portion of this course, this is a great opportunity to
build a small network with logging as a challenge!

F‘E%BIEI

SIM vs SEM vs SIEM

First of all, let's clear up some confusion about acronyms that you may come across. You
may have come across 5IM, SEM, and SIEM. 5IM means Security Information Management,
SEM means Security Event Management. Combine the two together, and we get SIEM
Security Information and Event Management. So what role do they play? Let's break their
value down a little further.

Simply put, they refer to a type of tool that will store and process logs or event data. The
quick difference is that SIM deals with storing log data for long term analysis, whereas
SEM is concerned with live-action processing. Combined and you get one neat tool that
deals with both, SIEM.

SIM

SIMs are tools or platforms used to collect and store all the security data that is logged
within an organisation. There is a considerable amount of data ranging across the entire IT
platform. Depending on your technology choices and how well configured the collection
process is, they would collect data from things such as:

Web servers (if in house)

Firewalls

IDS and IPS logs

Router information

Terminal commands

Changes to an employees computer
Antivirus logs

DNS servers

Authentication servers

Database access

Basically, all the information from any software and how it's being used, including
changes to the operating system. This could get very big very quickly! It is therefore not
uncommon for collection to be a little more selective. All of these stored logs amounts to
far too much data for any human to process. Enter SEM.

SEM

These tools provide real-time analysis of all the SIM data with the added benefit of
sending alerts about any security anomalies. Imagine combing and sorting through all the
data listed above and then parsing it. This would then output to a console so that a
human gets an alert to be investigated. This can be used to trip alerts, but also provide
bigger picture insights in to the network and trends. The console tends to have displays
such as charts and pictorial representation of the data to make it easy for the network
administrators to see what is happening. Log data can provide an invaluable insight into
what attackers are doing on the network. The ability to analyse this data quickly as

F‘!%iﬂ

opposed to in 30 days, could make the difference between stopping an attacker quickly,
or giving them significant dwell time in your network!

SIEM

Rather than having two separate tools that do practically the same thing, why not
combine them into one platform? This is precisely what a SIEM does and has become
quite the default. These SIEM systems automate much of this process and come pre-
packaged with rules and fiows designed to make processing data and reacting to it much
easier.

This integrated platform is useful to security, but can also be very beneficial when
auditors come and check how compliant the company has been. This is for things like
Information Security management systems and ISO 27000 certificates. Demonstrating
control over your logs and understanding of events in your network is key to such
processes.

As mentioned before you can process a huge volume of data with these systems. Simply
imagine every endpoint streaming continuous log data about a given software update or
configuration change! Retention policies to limit what matters and filtering rules that
focus on the data of consequence is key, or data can become an absolutely gigantic
monolith.

In most businesses there are pretty typical things you want to log, so there are default
setups to arrange collection for common technology or platforms. However some
configuration is often needed. SIEM tools do often come with a set of rules or triggers, but
customising them for your environment is typically required. SIEM platforms are not just
installed in the network, they can be cloud based too! In this setup you can benefit from
management by a vendor, and continual software updates or features, but there can be a
trade off of handing your event data to a third party.

These platforms include more and more clever techniques to react to data, and
baselining with machine learning or heuristic mechanisms is finding more suspicious
entries than ever before, In short, this means that if a hacker wants to get through the
network, they will have to look like regular traffic.

A great SIEM setup will help organisations react to breaches, but also understand what
happened and investigate retrospectively.

F‘!%iﬁ

Free tools vs commercial

There are many vendors out there, and if you want to take a look at a very popular
product in the commercial space take a look at Splunk. There are other projects which are
open source such as Apache Metron that evolved out of the Cisco OpenSOC platform.
Metron uses other Apache projects such as Kafka, and analysis via tools like Apache
Hadoop. It has a very extensible architecture but does not have the easy out of the box
coverage of a commercial tool.

Some platforms are available both free and as premium paid products. SIEMonster is a
popular example of this. Different products have different strengths and weaknesses and
different capabilities, so it is not a case of a clear best. There are very strong open source
options available to you, but of course a commercial product has the benefit of support,
which given the importance of this data is a path most companies elect to take.

ELKvs SIEM

This is a great moment to touch on ELK vs SIEM. ELK stack combines Elasticsearch,
Logstash and Kibana. It is a very powerful stack with massive capabilities on the
processing and querying side. This platform can grab logs, process them and store them.
There is also a query capability and you can build dashboards. At the outset you can use
ELK with some tooling to get towards an SIEM solution. However, out of the box you will
find alerting and correlation capabilities missing, which make it fall short of the broader
SIEM definition that the commercial tools offer. Whilst it may not be a full SIEM that does
not mean it is not extremely useful.

One example of the utility of this platform is SOF-ELK. This "big data analytics” platform is
optimised towards security operations and forensic investigator roles. It was developed
by Phil Hagen originally for a SANS class but has grown in to broader use. It is well worth a
look to see the power of data collection and query from the stack!

F‘!gﬁaﬁd

Security vs Privacy

So far we've been talking about collecting all this data and the benefits it has for finding
attackers and raising the alarm on potential attacks. But infinite collection of data, aside
from the size problem, also has drawbacks.

The battie is simply a trade-off in modern-day security. Heuristics based security is
extremely popular because it works very well. Think of this as a form of behavioral
analysis. Imagine you let someone into your house to watch you all the time for security
reasons. Not only would they be allowed to watch everything you do, but they would also
need to write notes and figure out all your patterns. When you come home and do
something that is out of the ordinary, the security guard would know something is wrong
straight away. Perhaps you bought your laptop five years ago and have been using it every
day during standard working hours, and then you switch it off.

Let's also assume you may be a typical user on the laptop, and you do not tend to open
up command prompt or terminal. One day your computer wants to run a program that
opens a command prompt during the early hours of the night. This behavioral based
software would block this software from running straight away since this seems like an
extreme anomaly. With 'Al' (this is really more marketing from vendors, it is essentially a
profiling and learning model!) software that learns your behavior and watches everything
on the network for your security, it is impossible to have privacy. It is important to note
that many models are not trained on the computer but require the data to be sentto a
remote server to be processed. This is an obvious cause for concern with regards to

privacy.

Whether you are using a more clever behavioral profiling approach, or just conventional
log collection, there is a balance of how much oversight and intrusion users might accept
on their devices. In the most strict trade environments this might be acceptable (though
there are other issues with the logs potentially containing sensitive data that needs to be
purged!), but what aboutif a user brings their own computer? Can you really go logging all
their website visits legally or ethically?

This problem can also extend in to tidying up data based on the rights of users. For
example you might collect web server logs of interactions with your application. Superb!
Then a user comes along and invokes their right to be forgotten under GDPR and you must
purge entries about them. This is easy in a SQL database as you can identify them and
remove the rows (at least in a well designed database). However, what about all the

entries about them in the log files? Is there an easy way to identify them? What if the log
collector accidentally grabbed a load of data about them and stored it in some other
event? It could get really difficult to comply with the law.

This can lead to a direct trade off of security vs privacy. More monitoring can lead to

better attacker prevention, but can also leave you open to legal or ethical constraints. It
is a balance, and one that has to be owned and worked on by security teams.

F‘!%%SE

Log server best practices

Logs are invaluable to investigating attacks, but also to compliance standards or forensic
investigations. There are lots of types of log servers and collectors, so truly generalising is
hard, but there are some golden rules to think about in any implementation. Naturally,
you will want to review the specific best practice from a vendor or tool you chose as well.

fi.

fi.

Do not start by logging everything! It is tempting to just start collecting as much as
possible but this can make it very difficult to size your data collection and tune your
rules. You may also identify how you want to segment your data early on, or build
multiple roles for different reviewers. Build up, not collect everything and reduce
back down.

. Consider compliance as well as security early on. You may need to change your

setup and data you collect or DO NOT collect in accordance with them. What about
GDPR, or HIPAA? You should know what impacts your organisation up front and
change your rules.

. Consider collection efficiency and safety. You do not want to get in to accidentally

logging data that contains passwords or other PII, that would generally introduce
additional risk for your systems and the users data. Make sure you are collecting
logs where this data will not be present, or specifically exciude these events.

. Consider key business and security events. Authorisation success and failure

attempts are particularly important, and do you have them being collected at the
major service boundaries that matter? What about changes in user rights, or errors
from key applications? Consider particularly high privileged users in terms of data
access or rights and how they are logged. Thinking about the attack surface area can
help you build a good checklist for your logging systems too.

Challenge yourself on the retention strategy and period. How long do you really
need all this data? Can you keep just one category for an extended period, and
archive less important data after a period of time to save storage? Are you under a
legal obligation to keep it for longer?

. Run a test! Try and create a mini incident (though ideally make sure people know it

is coming) and see if it turns up in your log process. Does an alert get generated? Are
the right people notified in the way expected? A quick run of something like the
EICAR test virus is one way to do this.

. Consider data transport security and encryption at rest. Does the data contain

sensitive information? More than likely you don't want observers on the network to
be able to casually read your log entries and events! How is the data transported
safely?

It is also important to validate your log server is operational as expected. They should be
regularly interacted with or they can sit in a corner slowly filling up with cruft. A malicious

F‘!%Eﬁﬁ

event hidden in a log server surrounded by a million other events with no alerting is not
much use, though at least more useful for retrospective incident analysis than NO logs!

Pngs?i?

Email Servers

Fagﬁé&E

Introduction to Email Servers

How does an email message make its way from a sender to a recipient in a matter of
seconds, when both parties may be on opposite sides of the world? Introducing the email
server.

An email server, also known simply as a mail server, is a computer system that sends and
receives email using standard email protocols. Generally speaking, the SMTP (Simple Mail
Transfer Protocol) deals with outgoing email messages, and the IMAP (Internet Message
Access Protocol) and POP3 (Post Office Protocol) deal with incoming email. All these
connections are dealt with by these protocols behind the scenes when you use an email
client or webmail interface.

Many businesses and individuals use web-based email clients, which don't usually
require the separate configuration of an email server, but businesses often choose to
invest in their own servers, for reasons of space or security.

We all probably use email servers multiple times most days, and it's easy todo so

without needing to know much about the processes involved. In this module, we'll walk
through setting up your own email server, as it's highly useful to have a good knowledge of
the inner workings when it comes to understanding how email servers can be
compromised in the event of a cyber attack.

An understanding of email servers is of course useful given we all use email, but it is often
the case that email is used as a delivery mechanism in attacks! You might depend on this
understanding later in your career when it comes to analysing an attack, or re-creating an
attack tactic!

A further dimension to email servers is that they are very often provided via cloud
services, such as Microsoft Office 365. These SaaS models for email can provide lots of
capabilities without having to manage hardware, but also come with an absolutely
monstrous set of policy capabilities. What you gain in simple running and reliability, as
well as functionality, can however be compromised in the ease of forensics and
investigation if you need to extract specific data to understand an incident. This is a
classic trade off of cloud services and 5aa5 versus on-site hosting. We would recommend
students go and set up a Microsoft Office365 instance and experiment with the policy
settings. They have very reasonable evaluation accounts and it can be an insightful guide
in to server management in the cloud.

F‘!gﬁ??

SMTP, IMAP, POP3 and others

What are all these acronyms, and do they make a difference? Each of them are email
protocols and you have likely interacted with them already today, but they serve different
functions in the e-mail process. Depending on your host and the client or server you use,
you might also prefer one versus the other. Let us briefiy just outline the role of each.

What does SMTP do?

Simple Mail Transfer Protocol is pretty much the industry standard for sending emails.
Notice the word sending! The important part of SMTP is the 'T' for Transfer. Itis the
protocol you use if you wantto send an email and not to retrieve it. Itis also what is most
commonly used when transferring e-mail between e-mail servers. We say most commonly
as sometimes alternatives are used within an organisational boundary, but when it comes
to transmitting across the Internet SMTP is the default.

What is IMAP?

This stands for Internet Message Access Protocol and is used for retrieving emails. IMAP
allows you to read the message from the email server itself, versus SMTP which is used to
transfer or send emails. When reading messages on the server via IMAP it is common to
download the messages on to your device and synchronise state. One of the benefits of
this in the default configuration is that multiple e-mail clients can synchronise with a
remote server, and therefore your e-mail appears the same and up to date in multiple
locations.

IMAP is greatto retrieve e-mail, but you need SMTP to send it. They work together in most
e-mail configurations and when you setup your e-mail you more often than not are
providing IMAP and SMTP server details.

What is POP3 for then?

POP 3 stands for Post Office Protocol version 3. It has a similar function to IMAP and
enables you to retrieves your email. POP3 however is not built as much around the idea of
synchronisation, so instead you tend to connect to a server and download the contents of
the mailbox and then remove it from the server. If you were to access your email from
your laptop and download all the emails, you could not sign in to your phone and retrieve
them since they are deleted after download.

Exchange, MAPI and HTTP

MAPI or the Messaging API, a proprietary Microsoft protocol, has a |ot of similarities with
IMAP. It is designed to enable the state synchronisation with a remote Exchange server so
that a number of Outlook clients can be up to date with the state of their mailbox data.
However in addition to this there are also provisions for contacts, calendar

inﬂ

synchronisation and other such features. It is built this way so that enterprises can
provide the rich workplace management features that extend beyond e-mail. Do note
that lots of e-mail providers also provide e-mail access capabilities over HTTP and there
are native mobile apps which also implement their own synchronisation protocols. We
will not dissect them all here but they often are an alternative transport for IMAP like
capabilities. Thankfully these are very well documented online, and can be fun to take to
with a network tool to observe how they work!

Which one is better?

It is not so much that one is better than the other, butthat they have different features
and you need to pick the right one for the job! IMAP and SMTP are a very common pairing,
more so than POP3 these days for the synchronisation features. That being said Exchange
and web based clients are also extremely popular these days. It is important to know
which protocol provides which capabilities, as in a later forensic scenario you might be
trying to figure out who sent an e-mail or when someone receive some malware to their
mailbox, and on which device!

hﬁ?l

What happens when you click send

Millions of emails are sent every second. So, you open your e-mail dient, write an e-mail
and then click send. What happens? Let us talk through a simple exchange, but keep in
mind there are more complex versions of this when encryption or other more advanced
sending features come in to play.

More than likely you are using an e-mail client, such as Outlook, or perhaps Mac Mail. This
client will understand the protocol and steps that need to be taken to send this e-mail.

Firstly, the e-mail contents needs to be packaged up ready to send, and encoded. We will
cover this in greater depth in a later section. The e-mail also needs to be packaged with
information to enable it's correct routing and to be decoded the other side. There is
something called an email header. That describes information about the email, such as
who it is coming from and where it is going. It also includes information about the sending
mail client, or mail contents. These headers are key to processing a message but also
used as part of authenticity checks with spam filters (more on that later). These headers
can also contain information about the origins of the message, for example where in your
local network it is being sent from. Keep in mind, the email is sent to many places before
it reaches the destination so having some information on the path it took can be helpful
for troubleshooting.

An important step in sending an e-mail is finding the recipient. If you provide an e-mail
such as supertestaccount@sans.org, the domain sans.org can be queried to find where the
responsible server is to handle e-mail. These are called MX records. Let's take a look at

one by asking DNS5 nicely for the mail servers:

nslookup
sef type=mx
5ans.org

Server; 192.168.0.1
Address: 192.168.0.1#53

Non-authoritative answer:
sans.org mail exchanger = 10 mxa-002¢1802.gslb.pphosted.com.
5ans.org mail exchanger = 10 mxb-002¢1802.gslb.pphosted.com.

These entries tell us where to send the message ultimately.

OK so let's step through this. Your e-mail client connects to your provider to send the e-
mail. It provides a packaged up version of the e-mail with these headers, and a
destination e-mail. Depending on the configuration your provider server may reject this as
it doesn't want to send e-mail for the whole Internet, and will usually rely on
authentication to validate you are one of its users. Assuming this passes, your providers
mail server will then be able to use the above information to connect to the mail server of

F‘EWE

the intended recipient. The e-mail is transferred, and then the recipient's mail server will
need to get it to the mailbox of the specific user. In effect:

E-mail client —> Your sending server -—> Recipient mail server —> Recipient mailbox

There are several protocols at play here that we will cover in more depth in the following
sections. Note however that each of these stages involves numerous protocols to validate
how to send information, and to do it securely. DNS is absolutely crucial to this otherwise
e-mails could not be routed to the right place and we would have e-mails fiying all over
the Internet being intercepted!

Summary

Email messages go through a series of transfers on their journey from sender to recipient

Compose email, hit send - your email client connects to the sending server on your
domain.

Email client shares the relevant information (your email address, recipient's email
address, and the message content, including any attachments) with your sending
Server.

Your sending server processes the email address of the recipient, paying particular
attention to whether or not it is on the same domain as that of the sender, as this
affects what happens next.

If the two email addresses are on the same domain, then no routing between servers
is needed; the message goes straight to the domain's incoming mail server (IMAP or
POP3) - this is the end of the journey for this email, and the message can be read by
the recipient.

If the recipient is on a different domain to the sender, the sending server identifies
where the recipients mail server is using DNS.

The message is usually then routed along a series of servers until it reaches the
recipients mail server.

The incoming message is scanned by the recipient’'s mail server. If it passes filters
and other checks, and the recipient mail server validates the e-mail is for one of its
users it will be forwarded to the mailbox of the user for them to download.

F‘uwl‘i

Spam Filters

An attacker sends a spam message and when it reaches the client's server, it will more
than likely pass through some security filtering services, such as a spam filter. Spam has
many forms, but in general, it is either adverts from companies or cyber criminals trying
to getyou to click links with malicious code behind it, or perhaps just a good old
credential harvester that tries to trick you in to handing over data. For example it may be
a scam that tries to get you to reveal credit card information, send money or simply hand
over your passwords or account details.

So how do spam filters work?

There is some magic behind this. Not literally, but many companies do not like the spam
filters mechanisms to get out because they don't want spam creators to know how to
avoid them. That being said, there are some prominent and well-known techniques.

At a high level spam filters may: * Examine the IP reputation data or the sender
information * Look at headers for suspect fields or odd values that don't look like real
clients * Share data between many users to find attacks that have been reported * Scan
the contents of e-mails to find common hooks or attacks * Examine attachments, links and
other parts of the e-mail to see if it identifies a suspicious next step

Scanning the e-mail contents for suspicious links or text is a fairly obvious tactic that a
spam filter will use. Scammers are very cunning and will often write emails that try to
evade these filters with just the right balance of seeming 'human’.

However, if spam filters are trying to find authentic e-mails why do spam messages often
look so weird? Why do they have stereotypical bad errors in them which make us chuckle?
Well, simply because they don't want time wasters. Some scammers write the emails so
that only a tiny minority will fall for it - the people who fall for something so overt are
much more likely to fall for the secondary phase of their scam. After all, they don't need
many people to send them money to make it worthwhile.

Spot the sender? IP reputation?

Spam messages tend to be sent from BotNets which are effectively massive networks of
computers that have been hacked. These might be desktop computers, or more exotic
and interesting devices such as Internet connected fridges, doorbells and more. If it has a
processor and is connected to the internet, it can be part of a BotNet. The MIRAI bot was
an example of this and makes for interesting historical reading. Using lots of legitimate
devices that have been compromised is actually a tactic to defeat detection in of itself.
Lots of spam filters look for suspicious IP ranges on the Internet that should not be
sending e-mail, for example if a home user pool of IP addresses for an ISP suddenly turms
in to an e-mail server it is suspicious. It may not block the e-mails but score them more
aggressively. Hijacking the computer to send a burst of spam messages makes this
reputation check harder. If the attacker has a larger number of systems they can also send

F‘de

the spam in small bursts and avoid poisoning the reputation of the compromised device
for much longer. All that being said, IP reputation is a very effective mechanism in
modern spam filters.

Evade content filters with encoding and variability

Another crafty tactic used in spam emails is that they are sometimes encoded or use
unusual characters or symbols to avoid matches. Spam filters will be looking for
particular keywords or strings of text that might be suspicious, such as 'Bank XYZ: Reset
your password'. By changing this to an unusual variation that a human might presume to
be a typo or error they could avoid this automated filter. For example 'BAnk XYZ: Re3et
your password'. Sometimes these mails have emojis and some backslashes that look like
no one would click, but remember in millions of spams it doesn't take many to make
money for the attacker. Here is an example with emojis:

Hi Th3re dceEi Y €3Y™ 0Y ce
This h@s been a wonderful day. 8Y'f

Lreally wish YOU have been 8YpadYZ*ayo'aE a™iay¥)

Wh3r3 Eva, you go... I hOpe it "s up <>

Yours sincerely
H@kr 101 xxx &i aoi aoi 8Y“z43Zi aY"YoY"

In some cases these e-mails are not actually about getting users to hand over money or
credentials. Some of these spam emails are checking to see if these symbols bypass the
spam filters. Its reconnaissance for spam email creators, V3rY Cunning@ aY™).

What about faking a sender?

Spoofing tactics are also used, such as manipulating headers to try and appear to have
come from authoritative senders, Manipulating the headers to look like a specific sender
could increase the click rate massively! If the e-mail appears to come from your bank, itis
much more trustworthy!

So how do email clients stop this from happening? They use authentication mechanisms
(such as SPF, DKIM and DMARC) on the headers to make sure they know where the header
and email just came from. These can be validated to see if the e-mail came from an
expected source. Spam filters also check if the mail links actually go to where they say
they will.

Does it work?

F‘uﬁﬁ

Spam filters find and stop millions of messages every day! They are not infallible but they
have huge value in preventing e-mail noise and allowing scammers free reign. Although
scammers are catching on to a few of these tricks, it's a very worthwhile cat and mouse
game. At the core of these filters however is a set of simple behaviours:

« Spam filters tend to get constant updates on blacklists of known bad senders

= Spam filters will get many updates a day on rules to identify text patterns
associated with known campaigns

« Spam filters will feed suspicious samples in to a lab so that systems or humans can
spot errors and update detection

The fiaw? What if the campaign is low volume and from a good reputation account? This
kind of low volume targeted spam is much more difficult to detect, and often depends on
the user or detection of the payload that follows. Spam filters really struggle with this
using the tactics above!

When spam is delivered

If a message makes it all the way through the spam filters, the email ends up waiting for
retrieval in your mailbox. The recipient logs in to check it and the spam is transferred to
your device with a protocol like IMAP. You may then click the e-mail and depending on the
configuration of your device load images, which come from the attackers server and tell
them you viewed it! Perhaps you will click the link and hand over data too!

Is it always too late once it is delivered?

If a message makes it to your mailbox, that does not mean that the spam filter job is over.
Lots of e-mail systems these days can actually identify spam campaignsafterthey have
passed in to some user mailboxes. Based on configuration they can actually go and
remove or quarantine these e-mails even though they have gone through the filter, to
prevent more users from interacting with it. Of course, this doesn't help you if you already
fell for the spam, but it is another nice step in allowing global spam filter updates to limit
the damage caused by cyber criminals.

PBWE

Response codes

An SMTP response code is made up of 3 digits, and each individual number means a
different thing. The first digit tells you what class of status itis. So, it may accept the
command or have a temporary error and so on. The second digit will explain a bit more
aboutwhat kind of problem is encountered. So, perhaps if there was a syntax error or a
connection problem. The third digit is then the specific detail about what the code is. Let
us take a look at an SMTP conversation and where the codes are used:

Server: 220 smtp.sans.org ESMTP Postfix
Client; HELO relay.sans.org

Server: 250 smtpsans.org, | amglad to meet you
Client: MAIL FROM:=bob@sans.org=

Server: 250 Ok

Client; RCPT TO:<alice@sans.org>

Server: 250 Ok

Client: RCPT TD:<jimbo@sans.org>

Server: 250 Ok

Client; DATA

Server: 354 End data with <CR><LF><CR><LF>
Client: From: "Bob Le Hacker" <bob@sans.org>
Client: To: Alice Le Hacker <alice@®@sans.org>
Client: Cc: jimboi@sans.org

Client: Date: Tue, 1 Jan 2099 10:00:12 -0400
Client: Subject: Test message

Client:

Client; Hey hey

Client: How are EUUT

Client: TTFN, Bo

Client: ,

Server: 250 Ok: queued as 19472

Client: QUIT

Server; 221 Bye

Note the numbers being used in response to client data, e.g.

Server: 250 Ok

This denotes that the requested action has been completed, and is the most common
response. The following codes are some examples but not an extensive list:

220 SMTP Service ready. This means the server can process the following command.
250 Requested action taken and completed. This is the most prevalent response,

421 The service is not available, and the connection will be closed. It probably means
your destination server is not reachable.

F‘Bw?

450 The requested command failed because the user's mailbox was unavailable. Try
again later.

451 The command has been aborted due to an error from the recipient's server.

452 The command has been aborted because the server has insufficient system storage.
Maybe you have overloaded the server by sending too many messages at once.

500 The server could not recognise the command due to a syntax error. This could be
caused by filtering issues with your security software or similar.

501 A syntax error was encountered in command arguments. Caused mainly by invalid
email addresses.

503 The server has encountered a bad sequence of commands. Usually an authentication
error. The commands are not executing in the correct order.

550 The requested command failed because the user's mailbox was unavailable. Again,
this can indicate no email address or SPAM.

551 The recipient is not local to the server. The server then gives a forward address to try.
This is commonly used as a strategy for spam prevention.

552 The action was aborted due to exceeded storage allocation. The recipient's email was
full. This could have been an attack, or simply you are sending files that are too big.

554 Delivery error: Sorry, your message cannot be delivered. This mailbox is disabled.
Either blacklisted your IP or thinks the email is SPAM.

These can all be very helpful for diagnoses but unfortunately can also help cyber
criminals identify mailboxes to spam, so some servers limit their response code range.

Enhanced Status Codes

This change was brought in to fix some of the uncontrolled growth of use cases, as denoted
by the quote from the RFC3463 "SMTP suffers some scars from history, most notably the
unfortunate damage to the reply code extension mechanism by uncontrolled use.”

This organises messages in to a structure:
Class . Subject . Detail

Class can be for example "2", "4" or "5" The subject is 1 to 3 digits The detailcanbe 1to 3
digits

These are documented rigorously online, but for example a class of 2 denotes a positive
or successful message. A class of 5 on the other hand is a permanent error, where 4 is
transient or temporary.

F‘HWB

The subject field could be X.2 XXX for the mailbox status or X.4.XXX for network and routed
related responses. Let us take a look at an example of an SMTP conversation using
enhanced error codes:

Server: 220 testmail.sans.org SMTP service ready

Client: EHLO testrelay.sans.org

Server: 250-testmail.sans.org says hello

Server: 250 ENHANCEDSTATUSCODES

Client: MAIL FROM: <test-user-jl@testrelay.sans.org>

Server: 250 2.1.0 Originator <test-user-ji@testrelay.sans.org> ok
Client: RCPT TO:<test-user-{l2@testmail.sans.org>

Server: 250 2.1.5 Recipient <test-user-|l2@testmail.sans.org> ok
Client: RCPT TO <veryfakeuser@testmail.sans.org>

Server; 550 5.1.1 Mailbox "veryfakeuser” does not exist

Client: RCPT TO:<remoteuser@helical-levity.com=

Server: 551-5.7.1 Forwarding to remote hosts disabled

Server: 551 5.7.1 Select another hest toact as your forwarder
Client DATA

server; 354 Send message, ending in CRLF.CRLF.

Client: .

Server; 250 2.6.0 Message accepted
Client: QUIT

Server: 221 2.0.0 Goodbye

Let us examine one response code:
Server: 550 5.1.1 Mailbox "veryfakeuser” does not exist

550 tells us the action was not taken. The 5.1.1 tells us that a permanent issue has been
raised (the 5). The first 1 tells us this is an addressing subject. The final 1 tells us the user is
not found or the recipient is rejected. We can look this up in the standard or just search
for it. Thankfully, we often get nice text that is quite descriptive in these conversations

too!

There you go, SMTP is actually a very human readable protocol compared to many. This
would be a ot tougher if it used a binary mechanism for example!

F‘Ewﬂ

MIME

An interesting fact about email is that the protocol is text characters only. Of course, you
are thinking, but I always send pictures through email.

Well, technically, you don't!

So what is happening behind the scenes? MIME, or the Multipurpose Internet Mail
Extension, provides a mechanism to be able to transfer non ASCII data as well as
suggesting to receiving clients whether it should be displayed inline or as an attachment.
In order to achieve this we need a set of headers to describe the content and also
encoding mechanisms to get the data to transmit over the protocol. I suppose in some
ways we had to hack the email protocol that was not designed for this use case and build
in these features. MIME provides a set of capabilities to allow you to send HTML, images,
audio and video in messages. In later times it has also become key to supporting some
security use cases too.

How does this work?

If you are looking at a MIME message you will know, as ittends to declare the version and
use of MIME overtly. There are other tell tale signs too. Firstly, it has MIME headers such as
the Content-Type header which might stipulate text/plain, or text/html. The more
interesting is multipart, which enables multiple 'parts' of messages to exist with different
encoding standards being used. This is useful if you have a message with an embedded
image, but also a ZIP file attached. Another common header is the Content-Transfer-
Encoding header which stipulates how the data will be encoded.

Since email only supports text to include files as an attachment they must be encoded.
Typically MIME attachments such as images are encoded in base64 which produces a
string of text like so:
VGhpcyBpcyBhIHJI1ZCBoZXJyaWSnLCB3aHkgYXJ1IHlvdSByZWFkawsnIHRoaXM/. The
email client then recognises this is an attachment and decodes it back into a file which

you can download through the email client. There are other schemes used such as 7bit,
8bit, printed quotable or binary. It depends on the e-mail client and transfer mechanism.
You can read all about these in the RFC for MIME, and thanks to being so widely used their
extensions and use cases are also very well documented.

What could go wrong?

One of the problems with MIME is that it has quite a few different features and headers.
Unfortunately over time some clients have handled the data differently to a given server,
despite pretty clear guidance in the standard. This can lead to occasions where a security
scanner fails to parse the MIME and allows it through, but the client then renders the
malicious content. This is becoming less common but is a constant reminder that

F‘uggb&n

protocols for exchanging data and consistency across multiple applications interacting
with a standard are not simple to achieve!

Pnglg!lﬂl

Basic Email Server Setup

In this video we walk through the basic configuration of a SMTP server, using postfix.
Postfix is one of many MTAs (Mail Transfer Agents) that has an SMTP server designed to
send and receive e-mail. Others are sendmail, Exim and Qmail (to name just a few). These
servers can be configured in a variety of modes - for example receiving e-mail and simply
forwarding it on to some other MTA - a kind of upstream forwarder. They can also be local
only, or configured to work just within a specific IP range in the local network.

In this instance we configure a functioning SMTP server that works with the network, but
that sends email between local users on the Linux system. This is the basis of more
advanced configuration where we can layer on webmail services that can be accessed
with a browser. We can also bring in POP3 and IMAP which are designed to enable clients
to get access to their e-mail, once Postfix has put it in the right place!

In this video you will also find a useful walk through of the SMTP protocol and the mail
command. We will get more practice at this in the networking portion of the course but it
is useful to see how SMTP was built up on trust. When these protocols were created there
were far fewer Internet users and the notion a server would 'lie' about identity was
unfathomable. That is sadly not the world we live in today.

Thankfully, numerous controls exist to thwart this type of behaviour. They have been

layered on top of good old SMTP. These will be explored in greater depth later in the
course.

F‘!gﬁiﬁl

Synchronisation Servers

Faitiﬂ

Introduction to synchronisation servers

This isn't as specific as some servers we have discussed, because there are so many types
of synchronisation servers. However, the concept is pretty simple. Synchronisation servers
enable us to synchronise data between one or more locations.

fi. How directional are they? Do they synchronise in one direction like a backup or
archive? Do they synchronise changes between one and many devices, like a file
system?

fi. What type of data is being synchronised? Is it files on a file system, or entriesin a
database? This could be a replica of entries in a table, or email data.

fi. What is used to identify changes to replicate the data?

fi. How does the protocol efficiently transfer information? Does the system avoid
transmitting all of the data again if just a small portion changes? Does it have a
delta capability?

fi. Is the synchronisation continuous or triggered on a schedule, such as a cron?

Perhaps this service also spans multiple device types, such as moving data between your
laptop device and your phone. This is an increasingly common capability for photos, files
and all manner of other data.

Perhaps you have been working on a Microsoft Word document online where several
people can edit at the same time with live updates? It is hard to generalise the
capabilities here given each of these implementations work in specific ways, but the most
important take away of this module is to understand the principle and common
mechanisms used by 'sync’ servers and services. We will later discuss ways in which they
can go wrong, and some of the security features are often not considered.

Take a moment and think about all the places data appears to 'synchronise’' between
multiple users, devices, or platforms and how the system might be sharing this
information efficiently. Is it a hub and spoke model where there is a central server? Or
perhaps distributed and a clever protocol identifies the changes that need to be
distributed? By this time in the course, you can likely start to piece together a picture of
how this all works, and spending some time drawing out a theory of the mechanisms at
play will benefit your ability to think architecturally. Have a go, then proceed to the next
section to learn about one reference implementation.

F‘!Md

How do they work?

So, let's say you are collaborating with your team on a Word document. Please think of
this as all the individuals simply connecting to one central device using something like
remote desktop protocol and opening the document simulitaneously. Each time they edit
the document, the changes are saved instantly. It's a little bit more complicated than
this, but this is a general principle. The sync server is the centrally located computer that
everyone works on and gets uploaded to each person's screen.

The linked device example is similar in that there is one central server processing all the
accounts and uploading any traffic to each device on that account. But let's take a look at
this further.

First, we need to look at public key infrastructure and asymmetric cryptography quickly.

Asymmetric cryptography

With symmetric cryptography, you lock and unlock the message with the same key.
Whereas with asymmetric cryptography, you have two keys, a public and a private. You
can lock the message with whichever one you would like, but you must unlock it with the
opposite key. We will cover this much more in the encryption module, but now this is most
important.

Let's say Alice and Bob want to talk to each other. There are a few instances that can
happen.

1) Bob encrypts his message with Alice's public key. Since Alice is the only person with the
private key (remember when you lock with one, you must unlock with the other), then Bob
knows Alice is the only person who can unlock and read that message. He also knows that
the reader will be Alice and not someone pretending to be Alice.

2) Bob encrypts with his private key. This would allow Alice to know that the message
definitely came from Bob. Everyone knows Bob's public key, and since Bob is the only one
that could have locked that message, then it must be Bob sending it.

3) Bob can encrypt with his public key. This means that the only person that can uniock
this message is Bob. There are a couple of uses for this, by the way, but in this scenario,
we will not need it.

Public key infrastructure

When the public and private keys are generated, the public key must get out to the world
to see. It does this by going on relevant servers usually, although you may also see a PGP
key at the bottom of some emails. Nevertheless, the distribution for these public keys is
stored on the same synchronisation servers for this particular use.

P!ngBS

So, the public key infrastructure is the service where all the public keys are stored. If you
wanted to message a friend, you would have to go to some PKI to get their key to encrypt
the message and send it to them. The important take from all of this is that depending on
how the server controls this. It is possible for the server itself to snoop on the messages or
processes happening. The fiaw is in knowing exactly whose private, and public key are
being used. If the server controls this, then there is a possibility they could forward the
message to themselves.

F‘HSBEEG

