SEC275 | FOUNDATIONS - COMPUTERS, TECHNOLOGY, & SECURITY
GIAC Foundational Cybersecurity Technologies (GFACT)

275.2

Foundations - Computers,
Technology, & Security
Book 2

MNY | GIAC

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

© 2021 SANS Institute. All nghts reserved to SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE "USER") AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive staiement of agreement between SANS Institute and you and that this
CLA supersedes any oral or wrilten proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BEBOUND BY THE TERMS OF THIS CLA
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE

NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distmbute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any junsdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software andfor wols, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remate Deskiop, Apple TV, App Nap, Back o My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch,
ITunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Sin, Spaces, Spotlight,
There's an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and iCloud are
registered trademarks of Apple Inc.

PMP® and PMBOK® are registered rademarks of PMI.
SOF-ELK® s a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SANS Foundations - Book 2

Pan,r 1

Table of Contents

1. Programming 1coveievaresererarsnass R e bRl e R T P T nesiisnsiisass
e OIS . e om0 T S N 2 W 1. N
1. 2.What is a Computer Program? cocivncis v siiadnn aiaas aas 1 30 R
1. 3.Programming Languages.ccuoce vt verenerennnnncncsonanss 1T | 1 (.
1. 4.Git & Version Control Systemscoiiiiviiinisiinennnsanensasas = B Jy
[@2 S R B e e G R e S e S s Eif [o
1. 6.RUNNINg Python Programscuven et i i ca i cannas p-14........
17 PANENG I PYIRON oo s cnvmma s i ves e oailemonns o oo e ssie s 2 i £
VB NVanables ;e mriiinassiresmmnn e s idnavrassTaan P.-16. . e
1. D NAAES T PYEGN oo vrin i s e wars spranmne s ms e nrs: sy [+ 10 L2
1 TEManipUlating SIINGS .o v i aevinmimice e vs s s e s R § e
1. 115tring Manipulation Practice.oviivrnnnnnnnrsononanons P-24.........
1. T2Maniptlating NUMBETS . . v e o s hsmmsmmaasnswe s s sa s i o T R
L T3 INP e COMNVOPSIOR i b S e s 5 S i T a e B dBiiaarias
1. 14 Listsand TUupleso e = 5 [————
T I5DICHONARIeS . unionns s v s o ERE S e e e <
TV aDichonary Practice oo i sss s S S b S R S s [AT ARy
1. 17 COOR COIMMIBIES oo v oo ain eonre asemmmainmn e o awceares: o ammne e s e P.48
1. 18.BrINGING R TOGONGY ... v oo v e et e e e BBl i

-
2? ng'ammlnsz FEFERFEFREEF RN R RN F PR F RN R R PR PR FE R FE R RN PR FEF RN FRFEFFFEFFFEEFFERRFE W p! 51###*###*###*#'

2 DAPETOOUERION o o v cowanemm s i e s e e e e B
AR R e | e | S S L e e s e P L ST O T [+ B Gt
2 O LD L v v i0000mm w000 0050 0 000 0500 00 A 0 L ——
A NSRRI i s A S T b R S 5 - By £ SRS
2. 5. FUNCLIONS | .\ oveevninveneessen s aasssncsnsnsnsnsnansnssssannns p.79%
e A TP POINRYIIES: s o0 . R S B8 oI i ——
e N O ey R o e s e S T S R p.88.........
2. 8. Why you should always use raw_input() and neverinput().......... p.89.........
2. 3. User Input via the Command LINe ..o vivvvinvvasssiviienss i e B K S
ZI0.CLTUSer Input Lab ... civscvivirnissosainsossosssassssnsarsose P98 s
2. 11185568 3N0 ODJeCS v v o vnvvensppuesseamsnsesssmenassasenmess (I
2. 12.C1ass and Objects Lab crinassiuus e i P 185 s
B B 8 5 (= o [3 p.10&.........
0oL T T - R T T T T — P09 an i
B T COTTREIYES v w0 om0 5 0 5 SO A NS S M SIS [y
3. 2.Reading and WAtIng FIleS ... iuiusin it s se v e o'a [« 1 [SRR e
3.3.50ckets iNPYtRONo vn i it p-115........

o VDRI o i s v e i S e i iy e e A S i T ok iy Lo S

B S U EIR SETEN i bl 00 om0 0.0 0l B B e W0 b e b s (7.) I
32 00 TIORES i pimimimonsioe o o 0 o 6 0 04 T T T 58 P T 2Y ceenmnenn
3 FAreate a POrSCaNNe oo @ o ey T S R TSR T T S s Zif B i
TSP EMENTTN TR REREE R s m0m 0000005 6t O N A O R A S PR denvanusunen
G VORI £y i vy acsmnsa o i S T S W e T S AR ST P Y28 e
4. 2.Using Python Documentationc.ccv e e vevnnnnnnnnnnnanas [+ 781 [.
4. 3. The PEPE SIYIe BUITR ..o v snemnisenns wumsmmmsemvessms seas b s 1 3 .
4.4, Defensive Programming vt vt iinneiianvanisssssnnnvns P 133 minns
4.5 UnitTestsinPythono i cc i anann p-136.........
4. 6.Programming Paradigmsot ii i = i e 7
& T Programming TIPS .. o ss s aiaadanisaniiniismssdavs s p-132.........
A S COEE SITIOMS .. oorvvmn mwmmesny wr e area s e s 2 . 7. ——
G S EBBUOGING - v a s R A R R e e p.148.........

5. LEOMEAMES s s raEE s T s s s R R e R | K £ S
SiZEWRhat B € cciniiiiiinmais v ainnniioamddsidn s [E 1.2 TeRppoxpiny:
0. RUNNING € PrOOYaINIS ..oovvin e sre aeimmnsmmn o misesre s o masmsee uneeses [+ 7%, T
5 G PARRIDG - A R s e e R 5 B
5.5.5tring Handlingand printf{)o oo vieieie i i cnir e p.158.........
5.6.WelcometotheDangerZone.ocuvevssannssssssnnnensas (o 0 | -, ¢ .
T L5 S S N B SR Sy Yo PP o Sy S NP P o 78 § -7 (RFEER
TR - B0 = 1 p.166.........
0. S RUINEEIONIS i s aw sraii s 56 e AR e T 2 K [7 S
B Vi COPIONES oo cicovonzicire s b oo b a6 G o S0 i e s [D eca ecamonarics
B O I o o A I B e S R e A S R p.170.........
6. 3.CoNditionals. viii i i i e p.171.........
el R DI i oo R 0 A 0V wivarnian
R i D Y D i A T R T P T YT
0. 0L RISET ITIDUE . v mimin recesnm s msnsmm i e 5 S W < R L S
6. 7. Pointers . and MemOry . . wmiee e i ibas Sauasisee i s meieias e Pt Rheesaess
6. 8. Object Oriented ProgramminginC..............coiiiinnnnann. p.186.........
6. 9. Programming: In Practiceovvevvnisnnisnnsnssssosnsnsnans P: 187 iuiss
TAraductionIn S0 it ssesiirs s raeid Pl st
1 LAR INTOHUCION 10 S« vy n 6 wivcwais wimmmims o somn wimucssns nsassrsaeas T 0 [
7. 2.Relational vs Non-Relational Databases.......................... P- 190 i
7.3.InstallingMariaDBcov i i p.193.........

Bi msul Baﬂ'c statements s REdERAERRREERREERRRERREERREREREERERERdEREREEREEEREREREE pi 1”¢¢iiiiiiiiiii-
8. ntroguction o MSQIL oo R A e S R e P 1985 aaaas

6.:2: SELECT - 30d FROMN i e i eats o o i i i P98 e
B ORDER BY o it st v o bbb siste s 8 oo nd bbb raseetdss e P.201.....cc..
B4 WHERE ... o o oo s pon s mimiioi s s 8 sie s 6 Sa e S0 688 B 203 voviinns
B 5 DEISTINC T st i e e S e P T R R e T e p.205.........
B B A e aa e eeae e p.207
9. MySOL oINS ... P D L D Pt AL LIt L Ty LA RSTaTe [% ¢ R
S 3] e S S SR R R S Y s Pk [S
9. ZINNERJOIN < i viimmmnnwminsmm mmacsmm o s i i o s s e P21 e
B LERT JOIN oo i o e S i R T R T R e pdlcaiaias
9. 4 RIGHT JOIN . .ottt it e e et e i et e e e e e nnaeans p.226.........
10: MYSEN BTEROTS coiiviiviviinismmnisssa s s e sl v s s Ry i e
O Y R BIRTRIDII & 6. o i B B = 17 5 [N
VO, 2 SUIBTOUIBTN & - iechncmomacasosis 606 e a6 60 wom om0 63 6 N i e 454 B3R e
LETE H 2 4 e e e L e e R e o e R P35 i
10, 4 UNION . Lttt it e et ie it it p.23%.........
11 MySOL: Database AdmINcoiiimimniminmssnivsnsssvissivssives P DM vasiisiis
11, 18ettingupadatabasecovvvrrrnnnnnarennnnnnnnnns p.247.........
11 2 D BERIYIIRS o icoesiaoinn e e o fimomore s N hoe a8 R e e B 65 Hec p.249.........
U A EONEEFIIRIS . s s b e G e T P i e R B T P e Pk i
1. 4InsertingData.ovin it i ittt ie i e p.253.........
11.55cripting TableCreationcciivvicivianrasiiiniovanacnss p.254.........
1. 6DelatingaTable. .. icveiiiiceiviovivenssvissseonsnsssaseasn P 250 .. 0000
12 WINA S DUBRUEOIN o o oo sssenssnssonsssusninssonssonsinnisnnssanssonnsnnninassagssnnnss: e @bhnseessnnnsuss
12. 1Llearning Objectivescccciiiiiiciiiiiinnnnnansnnnnss P. 299, vviuiaai
12.2ModuleContentccovvrivenniinnnnnerernvnnnennnsnnseae . P.200.
12 3What B WINAOWS? vias vveeaiiideares s wees s dsssies dias s P26 e iann
T2 Windows Desktop s rvisismuismeniiniiinnaiasisee - A7 S
1 D IWHIOOWS SOIVET . 0. vinims 0 mie 600000000 0 0 01000 6 e 0 s e L L —
12. 6. Windows IoT (Embedded) i vaviinasivisdiine e e D20
12. 7Windows on MobileDevices.o iiiinnennnnnnn. p.265...... .
T2 BB - oo R 6 6 BB 0 8 BB a0
12, 9.Windows 10 Install Walkthrougho cvveaiinnaisuianiisave o [20 L7
12. TONetworlkdng WINdowscccnavvin e iamnessosssnnesesssannen p.268.........
12Z.11Windows Defender........cciiieiiiiiiiieinscnenvsassiiiases Eh A acisivivani i
Nds LMo FIRBWEN -0 0 e R S [Y Iy o L
1L TIRRGISEY « v vvnvvnmnmpumus s msses s sy s sete e oo [17 4 R,
T2 TREOT PSS e S e e W R A B i e B g PP
13. Windows PermisSSionsocvvievsiernisnisnmsssssessnssnssnsssssssssnssnssnsssssses P 20%iuuennernrss.
T3 TICOVVEOINES ' avvaraics oo L7 0 L i A P28 s
13 2 USRr ACCOUNES v v v s v e s R p e e e e e P 2B ima

XS BRI RIENS oo a0 S S e 8 S e P28

13 4. Creating NEW GIoUPS .« .. courreronosoncnonosssonsssssassssenss p-288..........
13, SUSerAcCOUntLOMTO) . . o v v mmimvnmmecsm s mmsssinraemsssns s s es P 289 nins
T3 G:URE PromMPls oo i e o i B iy T s S P-290.....::..
L 0 = p.292.........
13 B.Fle POIMISSIONS & oaas v v s smemane s e we s e e onssaes s e e P93 icvanniaan
13- 9 Hdaden Fles ;oo asanm it sanienishanaaniisya e [L Ry
D W n, DR T L o ———— R A B AN AN AR AR AR A [., —
T OIS oo o R L i S B T G R s BF.L]
14. 2WhatistheCommand Prompt. ii i i i iann s p.298.........
14. 3.Accessingthe Command Prompto iin i iiiiiiananens D99 o
144 Changing directonY . iiiva ciiine sesasnsssonn s sesaonnsssensas [+ 36 |1 1 RENr
1, S ENANGING BIIVES oeevvnvr comemmmmm e e s ps e s e m e s da a e P02 o
14. 6.Viewing directory contentsccoiciiinnnncnennannsesassann . 303 e
14. 7.Common Command Promptcommandsouvvnnnnssas p.304..........
T B ITURRIIT « o o o cmnmoseoingon e e o o R 30 R R S P 308 e
I o o T N B e T R R R R P-300 .
B T o p.307
Tl T ROV s o o B e e P.30B: s
7 S S D o R A e D D e gy R p.-30%.........
B B ETNTET 10w im0 v o o RSN AN M RO 1 0 2 | ¢ ——
A D IIOPR v i e R e h e R R R R e B3N cvcain
T TEERIEIE v v oo mim i ety B ey e B BB i pi312.........
T VOMIURER ¢ .o iiconnnomasaaneiomin o1 500w S A60m N S S R TR TN B30 a0 [« T § - ——
14. 17Command line networkingottt iiiinanannnnns p.314.........
14. 18.Command line usermanagement.coceemeeeiraenannns p.317........

=T Lo 11 3] p.322........
Lt T T T —— o . .
15. 3. PowerShellCmdlets...........c.ciiiiiiiiiiiiiinenennnnnnnss P-324.........
15. 4. PowerShell ISEo e ie i p.325.........
15: 5. PowerShell CoOMMEaNGS o v vimemnees e s s o s P BB i
15. 6.PowerShell Objects . .. covvviiireriiisnnosnnianssossasssnssne p.330.........
10y TEEOrNG DDOELS . o v v o0 inmmon s acnmmmsms oo sisce s ommmmsn e s - M £ 3 S
16: CPU B BROTNOVY iiisiviviisnidonivinsvonsvonsissaissivssivssissvsssvsssvssssesssocsve Po I Nbirsosssosaaes
LT I e T 5T =T | I 1
T P DT PO i i i s o BB RSP WA R A L] S
TE3.CPY Memony RemISIers o on i m i b s iR e i S s d i aeda B335, e eeinis
16. 4.The Fetch - Decode -ExecuteCyclecoviivvriiiiinnnns. (2 B 7 ——
T DA it i S T e R o e e e ittt S E R
16. 6. The STacKo oo i iieieie e nsne e s nnns p.339.........
18 7. ThE HEap .. «.vv v sseis e sais sisees da vsasnas e P340 .iaaaais
1 B ISR NSNS DAL o S G S RV e e S [-y A A

17 MONItORNE EXOCUEION s i iisviiivisavissvisaviisviiavivaviiaviveviiavivoviiaviivs PR s vivaviiavii

17.1Tracking EXecUtiono et i it ie i i e ieiaieaen e p.343.........
VL G0 SO oo avsioiminieonssnmse o vim aiaammenin o oiae @0 o i o SRR IR A0S B AU p.344
17. 3 Debugging 'PasswWord’. ... s ieiiinaaaaans se sas siinissanaasss se P-353.........
17.4.0ebugging challenge sovsssvvsrvessrmmsssssse eves sreess [+ JE 127 -
18 MVARCEH STOMRER ciiiiiliiiiiiiiiviiiniiiecvieirie e inie shinirse shissbbw sHiw sl o4 P.360....000 00000
R L T = p.361.........
18 2. Expigioing BAID . i ismsssiasvemms s rsss s dassnge s [
18. 3.Cloud StorageMechanisSmsccciiiii it cinnnrnnnnnanans p.363.........
19, COMERIDBNS o o sssunsnsrisssnssssisrssisassssssnnsrumrssossiosikosispiimurnsssssrbesoive Do TODebesntesssans
T8 T RO TYaTS oo s S i s S T i B R T P-366 .o
19. 2.Containersvsvirtualizationt cii e i a s p.367.........
19. 3DockerIntrodudlon cussvrss s ssssanssanns s s s s s e nnes [J5E | 1L TR
19 4. Docker CLIBasies . o vsiiiimmdiisaininiioessdidisves P-369. ...
19, 5.BUIOMG COTERMBTS . « v v evarsaomunmme s am e ns e sunmmsee s P.37 . cnnannns

Pa* &

Programming 1

Pagf 7

Contents

This module is a basic introduction to programming in Python, a high-level language. We
will first cover what a computer program is and how it works, before delving into writing
basic programs. The content we will cover includes:

What is a computer program?

What different kinds of programming languages are there?
What is Python?

Running Python programs

Printing text to the screen

Variables

Manipulating string variables

Manipulating number variables

How to convert types of variables to other types
Lists, and how to modify them

Dictionaries, and how to modify them

Code comments

ng a

What is a Computer Program?

A computer program is a series of instructions to the processor of a computer. When you
run a computer program, the instructions contained in the program are loaded into
memory and then read by the processor. The processor performs each instruction in turn
while the program runs.

Think of a computer program a bit like a shopping list. When you write the shopping list,
it's a list of things you need to buy at the supermarket. When you are in the supermarket,
you go through the listitem by item, picking up each item in turn and placing it in your
shopping basket.

Programming Languages

Computer programs aren't written in plain English like a shopping list would be. They are
written in a programming language. Computers cannot understand English, but they also
cannot understand programming languages. Programming languages exist for the benefit
of humans, making it easier for us to write computer programs. Before a processor can
understand the code that you've written, it first must be converted to a format that the
processor understands. If you recall, the processor only understands binary, meaning all
code that is 'native’ to the processor is pure binary.

Compiled vs Interpreted

Depending on the programming language used, the process of converting that code into
something the processor can understand is either ‘compiling’ or 'interpreting’ that code.
The difference being, when a programming language is compiled, it is converted into
machine code and then saved that way as an executable file. When a programming
language is interpreted, the code is converted and executed at the time the user runs the
program, and the converted instructions are not saved. Programs written in interpreted
languages are often just text files with the code in them. To execute a computer program
written in an interpreted language, you have to feed the text file into the programming
language’s interpreter.

Computer programs that have been compiled are faster to execute because the
conversion process has already happened. The downside is that you have to compile a
version of the program for every different processor architecture. So if you wanted to run
a program compiled for an intel x86_64 processor on an intel x86 processor, it would fail.
Computer programs that are interpreted aren't limited by the processor architecture, but
on the other hand, they are slower to execute because every time you run the program,
the conversion process has to take place.

Pmy 9

Programming Languages

Programming languages are often separated into the categories of high-level and low-
level languages. A low-level programming language is closer to how the processor thinks,
meaning low-level languages are quite difficult to learn. A high-level programming
language, on the other hand, is just the opposite. It's a language where the code you write
is more abstract from the machine code that it produces. By using high-level languages,
much of the complexity of programming is removed, with the hard parts being done
automatically by the compiler or interpreter.

So why would we use low-level programming languages when we have high-level ones?
High-level programming languages remove a lot of the complexity, but that complexity
still exists, it's just hidden from the programmer. That means there is a cost in efficiency. A
programmer using a low-level language has more control over how the processor does
things, which a programmer using a high-level language could never achieve.

That isn't to say there is no place for high-level programming languages either; it's just
that each type of language has its place and its uses. If you want to write a program
quickly and have it work and you don't care about the performance, use a high-level
language. If you want to write a program that needs to maximise performance (such as an
operating system, like Windows or Linux), then use a low-level language.

In this course, we are going to focus on two programming languages. We are going to look
at Python and C.

Python

Python is a high-level programming language. While Python can be compiled, it is usually
used as an interpreted language. It is considered very easy to use and very powerful as a
programming language. It's very popular in the cyber security community because of its
ease of use, and many security tools are written in this language.

C

C isn't strictly a low-level programming language, but it's close, Many people consider C to
be the mother of all programming languages because a lot of other languages
(particularly high-level languages) are written in C. For example, the Python interpreter is
written in C, C is an important language to understand, even if you aren't very good at
writing in it, because it allows us to explore aspects of programming that high-level
languages hide from us, such as memory management.

PH%ID

Git & Version Control Systems

We can't really talk about programming without first briefiy touching on version control
systems. Version control systems are powerful tools that enable you to track changes to
programming projects. Using version control will enable you to look back at your code at
any point in time in the past, collaborate with other developers and merge the work of
many into a working product. The most prominent version control system at the moment
is Git, and there are many services out there that can host Git projects. One of the most
prominent is GitHub.

The Repository

A repository (or repo) is the place where a project lives. You can ‘clone’ a repository to
your computer - taking a copy of it at that point in time. After you make changes, you can
then add your changes to a ‘commit’ and give the commit a descriptive name. Once you
have a commit, you can ‘push’ your changes up to the remote repository.

Commits

A commit is an incremental change to the repository. Every commit has a unique
identifier and you can browse each commit to see what was changed and even revert the
repository to how it was at the time of a particular commit.

Origin & Master

In Git terminology, the origin is the location of the remote repository and the master is
the name of the default branch in the git repository. When you are ready to push a
commit, you must tell git which location and which branch you wish to push your changes
to. You do not necessarily have to push to master, you can use any other branch name.

Branches

Branches in Git allow you to work on specific features independently, without touching the
code in master. Then, at a future date, you could merge the branch back into master when
you are ready. A typical workfiow may be:

« The master branch is the production state of your application.

* The dev branch is the testing state of your application, which would be what you test
on.

« Feature branches, one for each new feature in development.

Feature branches might then be merged into the dev branch for testing, and then the dev
branch may then be merged into master once it is ready for production.

Paqalll

Of course, you are not obliged to use this workfiow, this is just one of many examples of
whatis possible.

Merging & Pull Requests

Once you have branches, you would usually want to merge them at some point to
consolidate all the new code. Typically, this would be done through a pull request (pr). A
pull request will allow you to review all the code that would be changed in the merge and
either approve or reject it. Typically, development teams would have rules in place
surrounding pull requests. One example of a rule might be that two developers must
review the request before it can be merged.

Pull requests on public repositories allow strangers to collaborate with you on your
project. Anyone could contribute to your project, and then create a pull reguest, leaving it
up to you to decide if you want to incorporate their code or not. This is the foundation of
the open source movement.

Paqﬁzll

Git Hands On

In this |lab exercise you are going to be working with a project calledest-projectona
git server running inside your demo environment. This is very similar to using GitHub or a
similar service. You will step through some of the major functionality developers use day
to day.

Note this |lab is tough, there are |lots of commands you can mis-type and it is worth doing
a few times until you can achieve the following without having to follow the instructions:

Clone a repository

Modify and push changes to master

Create a development branch or two

Modify and push changes to those branches
Merge a branch in to master

Tidy up a no longer needed branch

Revert commits and push, preserving history
Resetlocal changes and use git clean

Treat this as a challenge and try making some of our own files, folders and branches. If you
get stuck do not be afraid to use the git man page, or search on the web!

PaqEBl:!

Running Python Programs

We'll provide you with an online editor for running Python programs throughout this
course, but it's also important to know how you would run these programs on your own.
First, you'll need the Python interpreter, which you can find here: https://www.python.org/.
Alternatively, Linux users can install Python using their package manager, and a version of
Python comes with Mac OS X by default.

You'll notice that there are two versions of Python: Python 2 and Python 3. Which one you
use is very important, because there are minor differences, which could cause problems.
We'll be teaching you in Python 3, so make sure you get the correct version of the
interpreter. Python 3 is newer than Python 2, though there is still significant fragmentation
with some projects that have not been updated to Python 3.

Once you have the interpreter installed, you can open up your command line and run a
Python script using:

$ python script.py
Where script.py is the filename of the Python program you want to run. Notice the file
extension for Python scripts is .py'.
Note: It can be useful to first determine which version of Python is installed on your
system as the default using:

% python —versian

No matter which version is the default, there can sometimes be both Python 2 and Python
3 available on a system. You could find out by typing either:

$ python2 —version
or:

$ python3 —version

Paﬁld

Printing in Python

Let's get to writing our first Python program. On most programming courses, the very first
program you write tends to just output 'Hello, World!' to the screen. Let's not break with

tradition.

Remember, computer programming is all about accuracy. One missing semi-colon, or
using a lower-case letter where a capital letter is expected, will cause the entire program

to fail. Pay attention to detail!

Paqele-

Variables
What are Variables?

That last section wasn't so interesting. That's because you can't really do anything cool in
any programming language without using variables. A variable is a way of storing data in
programs.

Think of a variable like a box with a label on it Let's say your box has a label that says
"Box A". Then you put a whole bunch of socks in the box. If someone asks you for some
socks, you can just say "Oh, you'll want to look in Box A". But if, one day, you decide to
remove all the socks and store some shoes in that box instead, you would still refer to
that box as "Box A". The contents may have changed, but the label or the way of referring
to the box remains the same.

Assigning values to a variable

In most programming languages, to assign a value to a variable, we use the equals (=)
operator. Python follows this standard, so in Python, assigning a message to our variable
looks like this:

user_text="james was hera."
print{user_text)

At any time later in my program, I can change the value of theser_text variable again
like so:

user_text="Emily was hera"
print(user_text)

User_text = "Have you seen james |ately?"
print{user_text)

The above code will create the below output.

Emily was here,
Have you seen jJames lately?

Naming Variables

Pa%m

You can name a variable almost anything you want, but there are a few guidelines you
should follow to prevent errors, and to make your program easier for humans to read and
understand. After all, programming languages are for people, not for computers, so we
should always be thinking about the people trying to understand our code when we
create variables.

« Variable names can contain only letters, numbers, and underscores.

* You can start a variable name with a letter or an underscore, but not with a number.
Sovariable_1 and_variablel are both ok, butl_variable won't work.

« Variable names are case sensitive:James and james are two different variables to
a computer.

« You shouldn't use Python's built-in keywords or functions as variable names, such as
print orbreak.

* Keep your variable names short but descriptive. A variable called
this_1is a really_long_and_pointlessly verbose_variable name is
probably a bit long in most contexts, but likewise a variable calleda doesn't tell us
much about what the variable's purpose is. Something short but also descriptive
like username is much better.

Variable Types

Every variable has its own "type" that decides what kind of data it can store. Some of the
most common data types are:

« string: A series of characters (basically, text). Note that these are always surrounded
by quotes. If it isn't in quotes, it isn't a string. (In Python, it doesn't matter if you use
single or double quotes, butin some programming languages it matters! You'll see
more of this later when we talk about C.)

* integer: Awhole number (could be positive or negative), e.g.:-2,-1,0,1, 2, 3...

+ float: A number with a decimal point, eq: 3.14, 56.99998

 boolean: A True or False value. In some programming languages, booleans can be
represented as 1 (True) and 0 (False).

Python is a dynamically typed programming language. This means you don't have to
specify what type a variable is when you create it: it will shift its type depending on the
context of the program. Other programming languages, like C, are statically typed.
Statically typed languages require you to tell the program what type of data you want to
store in the variable when you create it

Here it an example of storing an integer variable in Python:

solved_cases =42

PBW?

In Python, if you're not sure what type your variable is at any given moment in your
program, you can always check using theype() method.

variable 1 ="42
variable 2 =42
variable 3=4.2
variable 4=True

print{type(variable_1))
print{type({variable 2}
print{type(variable_3))
print{type{variable_4j)

The above should output:

<class 'str'=
<class 'int’=
<class 'float'=
<class 'bool'>

Notice the capital "T" in "True" for the boolean we have assigned asariable_4? If you

don't use an uppercase "T", the program will error because in Python boolean values are
case sensitive, You must use "True” or "False”, not "true” or "false".

PEWE

Variables in Python

You should know quite a bit about variables from the last chapter. Remember, a string is
surrounded by double quotes or single quotes (in Python anyway, in some languages it
matters when you use a single or double quote). An integer, fioat or boolean doesn't need

quotes. In Python, a boolean value must be written with a capital in the first letter, i.e.
True or False.

Paqq;lg

Manipulating Strings

Strings are quite simple, but you can do a lot with this type of data. A string is a series of
characters, such as a word or a sentence.

« thisis a string.

« So is this is also a string.

« <p>Text inside a paragraph tag</p=>is also a string if we want it to be.
« lu3hd6h3309&%34 -6+ is - you guessed it - a string.

You get the idea.
Strings, quotes, and escaping

In Python, anything inside quotes (" ") or (") is a string. The ability to use either a single or
double quote gives us some fiexibility in Python, for instance:

sentence 1 ="Bob and Bill met for coffee at Starbucks.”
sentence_2 = "James rushed by and accidentally knocked Bill's coffee on the floor”
sentence_3 = "Oops, let me buy you a new coffee!” said James.'

Insentence_2 we needed to use a single quote as an apostrophe inside the string, so we
wrapped the string in double quotes. Isentence_3 however, we needed to use the
double quotes in the string, so we wrapped the string in single quotes.

But what would we do if we need to us#othsingle and double quotes in our string?

sentence 4 =" spilled Bill's coffee,” said James.’
print(sentence_4)

If we run the above, we'll get an error:

$ python program.py
File "program.py”, line 1
sentence 4 = " spilled Bill's coffee," said James.
A

SyntaxError; invalid syntax

The string stored in sentence_4 uses both double quotes and single quotes as partof the
string. In situations like this, we need to escape the quote within the string that's used as
an apostrophe, otherwise the program will think our string is finished after the "I" in

Pa%!ﬂ

"Bill's", and that causes an error because there are more characters the computer doesn't
understand after what it thinks is the closing (').

sentence_4 = "I spilled BillV's coffee,” said James.!

We escape a character by using the backward slash (\). The backslash tells our program
that the character immediately following it should be interpreted as part of the string
rather than a signifier that the string has ended.

But what if we need to escape a backslash?

sentence_5 = '"The backslash character "' escapes things."

If we try printing out the above, it will print The backslash character " escapes things.
which isn't quite what we meant. In this case, we need another backslash.

sentence 5 = "The backslash character "\ escapes things."

Printing the above will now do as we wanThe backslash character '\' escapes
things.

Be careful when using backslashes, as it's easy to cause an error if you don't pay attention
to when your backslashes need to be escaped:

print("This can happens if you use a \")
The above gives you the below error.

$ python program.
File "program.py”, line 1
print{"This can happens if you use a \")
I

SyntaxError: EOL while scanning string literal
Combining strings

Python lets us combine multiple strings together into one. In programming, combining
strings is usually called "concatenating” strings.

Pag(ﬁ.‘-!l

first_ name ="Adg’
last_ name = 'Lovelace’
full name = first_name + ' ' + last_name

print(full_name)

The above example will outputAda Love lace by concatenating 3 strings together: "Ada”,
the string held in thefirst_name variable; "Lovelace”, the string held in thelast_name
variable; and a space, which we insert manually between these two strings.

This can be very helpful for us when programming as we can use variables as placeholders
for data when the exact data is unknown, for example if we're asking for user input.

user_name = "sarah"

print"Hello " + user_name + "}

The above will outputHello Sarah!
Adding and stripping whitespace

A "whitespace" refers to a type of character that doesn't print anything out, but adds
some sort of spacing formatting to the output. The spacebar, tab key, and return key on
your computer all create a different kind of "whitespace".

We can add whitespace to our programs to format our output. Let's output our list of well-
known agents so that each agent appears on a different line using tha character
combination to tell the program where we want our line breaks.

user_list = "Bill\nBob\nSarah\nMike"

print{user_list)

The above will print:

Bill
Bob
Sarah
Mike

We can add tabs to our output using th&t character combination, and we can even
combine the new line and tabs together to create more complex layouts using

Pag‘pzu

whitespace.

user_list = "User ListAmBilhnitBob\n\tSarahinitMike"

print{user_list)

The above code will output as:

User List:
Eill
Bob
carah
Mike

On Windows systems, you'll need a combination of character sequences to create a new
line, \r\n, while on Linux and Madn is enough on its own. This is why if you open a text
file that someone originally wrote on a Mac on a Windows machine, the formatting will be
messed up. (Thanks Bill!)

Sometimes we want to remove whitespace rather than add it in. For example, if we are
copying an email address jane@email.com from our contact book and grab an extra
space so the string is 'jane@email.com ', the program will see that email with a space
tacked onto the end as a different string than just the email address without the space. So
if we tried to compare 'jane@email.com’ and jane@email.com " in a program, they
wouldn’t match.

Python has built-in tools for helping us strip out these whitespaces when we don't want to
consider them. We can strip whitespace off the |eft side of a string usirkgtrip() and

off the right side of a string usingstrip(). And if we want to strip both sides at the

same time, we can usestrip().

email =' jane@email.com '

print("" + emailIstrip() + "\n"' + email.rstrip() + "\n"" + email.strip() + ")

The above example prints out the email with our different stripping methods, with the
addition of some concatenated quotes and newline characters so we can better see what
whitespace characters are being removed and which are being left.

The above will output like this:

"jane@email.com "
" jane@®email.com”
"jane@email.com"

Pag‘pjlli

String Manipulation Practice

Being able to manipulate strings is a key skill, which we will take advantage of when we
get to more cyber security focused examples. Imagine a password guessing tool where we

have a dictionary of words and want to try variations of them together -- our string
manipulation skills would enable us to build this!

Pa ﬁza

Manipulating Numbers

When programming, numbers are very useful to us. We use them to perform mathematical
comparisons of data, track our score in games, count things, and so on. Python treats
numbers in a few different ways depending on how we use them.

Integers

Integers are whole numbers, and don't have a decimal in them. They can be positive or
negative. Just like on a calculator, you can add (+), subtract (-), multiply (*) and divide (/)
integers in Python.

print(4 + 2
print{4 - 2)
print{4 * 3)
print(4 / 2)

For eachprint () function above, the program will output the result of the mathematical
operation we putin. This will output:

Pl OB fod i

That's pretty straightforward.

We can also use exponential operations, like 10 to the power of 4:
print(10 ** 4)

This will give us:
10000

We can also get the modulus, which allows us to return the remainder left over after we
divide.

print(10 % 3)

Paq.‘ﬂ'-:lﬁ

This will divide 10 by 3, then print out the remainder leftover from that arithmetic.

Python allows us to specify the order we'd like to do our calculation in as well, using
parenthesis to prioritise what operations we want done first.

print(8 + 4 * 10)
print{{8 + 4 * 10)

The above will output:

120

Dividing Integers

Now let's take a closer look at dividing integers, because Python 2 does something a little
bit unintuitive in some situations. Let's look at another division example. Remember this
is python2 syntax! If you want to run it in the code editor and terminal you will need to
run it as follows:

python2 output.py
print 5/2

If we run this, we get:

But that's not quite what we expect! There's a remainder missing there, since 5 doesn't
divide neatly by 2. If we were doing this same operation on a calculator, we'd expect to
get "2.5". In Python 2, when we divide integers it always gives us an integer back and
truncates (removes) everything after the decimal.

If we want to get a decimal number back from our operation, we'll need to make sure we
give it at least one decimal value to start.

Pa %25

print 5.0/ 2
print5/ 2.0
print 5.0/ 2.0

All three of the above will print the same thing2.5.

Python 3 is comparatively much more sensible here, for example:
print(5/2)

This returns2 . 5, which is far more sensible. Be aware of versions and rounding results.
Floats

Floats are decimal numbers. For the most part, you can perform calculations with them
similar to how we do with integers.

When we work with fioats, Python provides us with the useful functiosund() to
manipulate and manage them.

print(round(42.12345, 2))
print(round(42.99912, 2j)

Theround() function does exactly what you'd expect: it rounds decimal numbers up or
down, to a given preferred decimal place.

The sample code above will output:

422
43.0

We've asked for our fioats to be rounded to the nearest 2 decimal places. Notice in the
second example, we're giverd3. @ because with the rounding, to 2 decimal places we'd
end up with43. 00, but Python will remove the unnecessary second "0" in this case.

PHW?

Type Conversion

Remember that each variable has its own datatype Since Python is dynamically typed
the type of the variable depends on the data we assigned to it

Sometimes you need to convert one type of data to another. For example, consider a case
where our program asks the user to input a number, but we want to use this number to
create an output that is a string.

If we do:

solved cases =14

print({"Sarah has closed " + solved_cases + " cases this week!")

We'll get the following error:

Error(s), warning(s):
Traceback (most recent call last);

File "program.py”, line 3, in <module>

print("Sarah has closed " + solved_cases + " cases this week!")
TypeError: cannot concatenate 'str' and 'int’ objects

Concatenating only works with strings; we can't concatenate a string and an int together.
In order to get the output we want without triggering an error, we need to modify the

variable type using thestr () function like so:

solved cases= 14
solved cases str= strisolved _cases)

print("Sarah has closed " + solved_cases_str + " cases this weekl")

Running this gives us what we're looking for:

Sarah has closed 14 cases this week!

And just like we can change an integer to a string, we can also change a string to an
integer (as long as the string only contains numbers).

Pa ﬁ!ﬂ

morning coffee =3
afterncon_coffes =2
total_coffee = int{morning_coffee) + afternoon_coffes

print{total_coffee)

By using theint () function, we changed the type ofiorning_cof fee which was a string
(note the quotation marks) to an integer so that we could add the day's coffee totals
together.

You can also convert to a fioat using th&loat () method:
pocket_money =5

coffee_price = '3.50'
money_left = float{pocket_money) - floaticoffee_price)

print{money_left)

The above code will turn both the integepocket_money and the stringcoffee_price
into fioats that we can then do some arithmetic on.

Next, let's look at a more interesting type conversion, an integer to a boolean:

flag found =1
is_flag_found = bool(flag_found)

print(is_flag_found)

Notice this one is a bit different: when we printis_flag_found, which has been turned
from the integer 1 into a boolean value, we gétrue. If we setf lag_found to 0, the
value ofis_flag_found when printed would beFalse.

What happens if we use any numbewotherthan 1 or 07

In Python, any number that isn't a 0 will convert to 3rue usingbool(). Even a negative
number will convert toTrue.

Additionally, when we uséboo 1() on a string value, like so:

ﬂaﬂ_afuund ='yes'
is_flag_found = bool{flag_found)

print{is_flag found)

Pawg

This will always printTrue except in a couple of notable circumstances. If we make
flag found = Noneorflag_found = "' thenbool() will make these valuesFalse
instead. Give it a try in the editor.

F‘a%}ﬂ

Lists and Tuples

A list is exactly what it sounds like; a list of things stored in a particular order. It could be
anything: the numbers from 1 - 10; a list of animals; all the nail polish colours you could
name... for example:

fav_linux_distros = ['Mint!, 'Debian’, 'Ubunty', 'Manjaro’, 'Fedora’, 'Arch’]

print(fav_linux_distros)
If we print a list like we have above, we'll get the whole list returned to us like so:
['Mint, 'Debian', 'Ubuntu', 'Manjaro’, 'Fedora, 'Arch’]

We probably won't find too much use for this listin this form: it will be more useful for us
to be able to access individual items within this list using itsindex positiorwithin the
list.

fav linux_distros = ['Mint!, 'Debian’, 'Ubunty', 'Manjaro’, ‘Fedora’, 'Arch’]
print{fav_linux_distros[0])

print(fav_linux_distros[1])
print(fav_linux_distros[2])

The above example will output:

Mint
Debian
Ubintu

Note that when we want to access the very first item in the list, we use 0 instead of 1. This
is true of most programming languages: whenever you're counting "things" in computer
code, we always start with 0. So if we're looking for the fifth item in Mike's Linux
distributions list, we'd usefav_linux_distros[4].

What happens if we try to use an index outside the number of items in the list?

fav_linux_distros = ['Mint', 'Debian’, 'Ubuntu', 'Manjaro’, 'Fedora’, "Arch']

print(fav_linux_distros[7])

Pa%ﬂ

Here we've asked for the item in the list at inde)7... but we only have 6 items in the list. If
nothing exists at the index we've requested, we'll get AndexError error back instead.

% python program.py

Traceback (most recent call last);
File "program.py”, line 3, in <module=
print{fav_linux_distros[7])

IndexError list index out of range

Python also gives us a shortcut way of getting the very last item in a list.

fav_linux_distros = [Mint!, 'Debian’, 'Ubunty', '"Manjaro’, 'Fedora’, "Arch]

print{fav_linue distros[-1])

By asking for an item at theindexof -1, Python will always return the last item in the list.
This is helpful because we don't always know how long our list will be. This syntax extends
to other negative index methods as well, letting you count backward from the end of the
list rather than forward from the front. Let's try it out.

fav_linux_distros = ['Mint', 'Debian’, 'Ubunty’, 'Manjaro’, ‘Fedora’, "Arch']

print{fav_linux distros[4])
print(fav_linux_distros[-2])

This code will output:

Fedora
Fedora

When we pluck an item from a list like this, we also get its individual item type. In the
Linux distributions example we get a string, which we can then manipulate as a string
using our various string manipulation tools.

fav_linux_distros = ['Mint!, 'Debian’, 'Ubunty', 'Manjaro’, 'Fedara’, 'Arch’]
top_fav_distro = fav_linux_distros[0)

print("Mike's favourite Linux distro is " + top_fav_distro.upper() + ")

This gives us a string where we've modified an item from our list to appear in all
uppercase, to best communicate how much Mike loves Mint.

Pagz‘:ll

Mike's favourite Linux distro is MINTI

We can also get a quick count of the things in our list by using tHen () function.

fav_linux_distros = ['Mint!, 'Debian’, 'Ubunty', 'Manjaro’, 'Fedora’, "Arch’]

printlen({fav_linux_distros))

This will print out6 which is indeed the number of items in Mike's list.
Mixed type lists

Python lets us create mixed-type lists, incorporating all different types of data into a
single list.

misc = [purple’, 99, 3.14, False]

print{misc[0])
printmisc[1]}
print{ misc[2])
print(misc[3])

And the result;

purple
99

3.14
False

We can even put lists inside of other lists, like this:

misc = ['purple’, 99, 3.14, False, ['apple’, ‘orange’, 'pearT]

print{misc[0])
pringmisc1])
print{misc[2])
printmiscf3])
printmisc[4])
printmisc[4][0])
print{miscf4][1])
printmiscf41[2])

Pa?‘_}HH

Which outputs as:

purple
99

314

False

[apple', 'orange’, 'pear’]
apple

orange

pear

Notice how we access the individual items "apple”, "orange" and "pear” inside the inner
list? The inner list is at index 4 of the primary list, and "apple” is at index 0 of the inner
list. So to get the first item inside the inner list, we usaiisc[4][0].

Modifying a list

What happens when Agent M wants to update the list of Linux distributions? How do we
modify the list we have with new information?

fav linux_distros = ['Mint!, 'Debian’, 'Ubunty', 'Manjaro’, ‘Fedora’, 'Arch]
print{fav_linux _distros)

fav_linux_distros[0] = 'Elementary’
print{fav_linux distros)

We've created a list and saved it to the variablefav_1linux_distros, withMint as the
first item in the list. Then we've changed the value of the first item tBlementary.

We've printed the list out before and after we've made the change so you can see what it
looks like at both stages. Only the first item in the list has changed; everything else
remains the same.

['Mint', 'Debian’, 'Ubuntu’, 'Manjaro', 'Fedora’, 'Arch']
['Elementary’, 'Debian’, 'Ubuntu', 'Manjaro’, Fedora’, 'Arch']

We can also modify a list by applying a sort to it. Mike likes things to be nice and orderly,
so let's sort this list of Linux distros alphabetically.

fav_linux_distros = ['Mint', 'Debian’, 'Ubuntu', 'Manjaro’, 'Fedora’, "Arch’]
fav_linux_distros,sort()

print(fav_linux_distros)

F!ﬁlll

As we hoped, this gives us:
['Arch’, 'Debian', 'Fedora’, 'Manjara’, 'Mint!, 'Ubuntu’
And afterwards, if we want to frustrate Agent M we can always reverse this list.

fav_limwe_distros =['Mint', 'Debian’, 'Ubuntu', 'Manjam’, ‘Fedora’, 'Arch’]
fav_linux_distros.sorti)

print(fav_linux_distros)

fav linux_distros.reversa()
print{fav_linux_distros)

Our output from the above code would be:

['Arch’, 'Debian’, 'Fedora’, 'Manjaro’, 'Mint’, ‘Ubuntu’
['Ubuntu', 'Mint’, 'Manjaro!, 'Fedora', 'Debian’, 'Arch’]

Adding items to lists

There are a few different ways to add things to lists. Let's start by simply adding things
onto the end of our list.

travel_bucket_list = [Tokyo', 'Hawaii', 'London’]
travel_bucket_list append('New York')
travel_bucket_list. append(‘Berin')

print{travel_bucket_list)

Here we use theappend () method, which allows us to stick items onto the end of a list.
When we print out our list after appending our new items, we can indeed see they've been
added.

['Tekyo', 'Hawaii', 'London’, 'New York', 'Berlin']
We can even start with an empty list.

travel_bucket_list =[]
travel bucket_list.append(Toronto')

Paggﬁ

travel_bucket _list.append{Barcelona’)
travel_bucket_list append(Dubai')

print{travel_budcet_list)

As expected, we've taken an empty list in line 1, and turned it into a list with 3 items, by
appending them one by one.

[Toronto', 'Barcelona’, 'Dubai]

We can also add items into an existing list at any position we want. Let's try adding a new
item to the front of our travel bucket list.

travel_bucket_list = [Tokyo', ‘Hawaii', 'London’]
travel bucket list.insert{0, "New York')

print{travel_bucket_list)

Now we've put New York to the front of our list, and bumped everything else down one.
Our output shows us our new list:

['New York', Tokyo', 'Hawaii, 'London’]

Removing items from lists

Sometimes we want to remove an item from our list, for instance, if we travelled to one of
the places on our travel bucket list. Let's remove ‘London’ from our list.

travel_bucket_list = [Tokyo', 'Hawaii', 'London’]
visited = travel_bucket_list.pop()

printtravel_bucket_list)
print{visited)

We can see how we've changed our list, and also that we've been able to "pop" London
put of the list into the variablevisited so that we can continue to use it later in our

program if we want.

[Tokyo', 'Hawaii']
Lnngn

F‘a%ﬂi

Thepop() method has taken the last item from the list and "popped"” it off. If we wanted
to remove a different item from the list, we can uspop() with an index to specify which
iterm we want popped out

travel_bucket_list = [Tokyo', 'Hawaii', 'London’]
visited = travel_bucket_listpop(1)

print{"I recently went to " + visited)
print{travel bucket_list)

This outputs:

1 recently went to Hawaii
[Tokya', 'London']

What if we don't know what the position is of the thing we want to remove? Perhaps we
wrote our list a long time ago, and can't remember what index position "Hawaii" is at.
How do we remove Hawaii from our list then? Voila:

travel_bucket_list = [Tokyo', 'Hawail', 'London’]
travel bucket list.remove{'Hawali')

print{travel_bucket_|ist)

Theremove() method will allow us to remove an item from our list without specifying an
index. A very handy method to remember. As expected, the above code gets us the
following output:

['Tokyo', 'London']

Tuples

Tuples are very similar to lists, except for 1 important qualitythey are immutable.
"Immutable” means the content items in the list can't be changed once they are set. This
can sometimes be useful to a programmer if we want to ensure a piece of data can't be
changed. The use of a tuple forces us to copy the information and modify that copy,
leaving the original intact and unchanged.

Here's an example of how a tuple is declared and used.

Pa??!?

stoneh enge ={'531.1739726374', "-1.82237671048)
print('Stonehenge latitude: ' + stonehenge[0)
print|'Stonehenge longitude: ' + stonehengel 1]}

We've used a tuple for the coordinates of Stonehenge, since we don't want anyone to be
able to change them: they're immutable, because Stonehenge isn't going anywhere (at
least not anytime soon). Notice how we've used round bracke(s) instead of square
brackets [] when we created our tuple? That's how Python knows it's a tuple we want
instead of a list.

We can access the individual items in our tuple exactly the same way we access itemsin
a list. The output of our code above is shown below.

Stonehenge latitude: 51.1739726374
Stonehenge longitude: -1.82237671048

What happens if we try to modify one of our values?

stonehenge = {'51.1739726374', '-1.82237671048)
stonehenge[0] = 'something else'

Here's the output we get when we try to run this code:

$ python program.py
Traceback (most recent call last):
File "program.py”, line 2, in <module>
stonehenge[0] = 'something else’
TypeError: 'tuple' object does not support item assignment

Are lists just arrays?

If you're familiar with other high-level programming languages, you've probably played
with a data structure called an "array” before. A list looks an awful lot like an array, and
for most use cases it will more or less act like one. In this course, you can think of a "list”
and an "array" as being the same thing.

However, there are some subtle differences in Python between a list and an actual array,
which you can import and use. We'll leave you to Google for the difference if you're
interested to dig into the details.

F!mBE

Dictionaries

A dictionary in Python is similar to a list in that it's a collection of "things” we can store
together. Where it differs from a list is the format in which that information is stored and
retrieved.

If we wanted to represent some closed and open case statistics, in a list we'd probably
store it like this:

case stats=[21, 12, 8]

print(Total cases: ' + stricase_stats[O]))
print('Solved cases. ' + stricase stats[1]))
print{'Unsolved cases: ' + str{case_stats[2]))

This code generates the following output:

Total cases: 21
Solved cases: 12
Unsolved cases: 8

This seems straightforward enough, but it's pretty fragile code. What if the list gets
reordered or reversed? Or if a new stat gets added into the list? Then we'd have to update
all our print functions that call on a specific index of our list for their data.

This is the kind of problem a dictionary is made for. It allows us to associate information
together in helpful pairs called "key-value pairs", which helps in making our data more
understandable as well as making it easier for us to get precisely the information we want
from it without worrying abouwherdt is in the list.

Using a dictionary, we'd represent the case statistics like this:
case_stats = {"total’; 21, 'solved"; 12, 'unsolved" B}

Notice the difference between a list and a dictionary? The list uses square bracket
notation [] whereas a dictionary uses curly bracket notatior{ }. The dictionary also uses
a "key: value" notation:' total’', 'solved', and 'unsolved’' are all keys, and 21, 12,
and 8 are all values.

The format for dictionaries is always the samekey: value.In the example above, since

our key is a string, we've also wrapped our key in quotes (') while the values here are
integers so they don't need quotes. Strings are always in quotes, even in dictionaries.

Fawg

You can also use an integer as the key and a string as the value: this is a completely valid
dictionary as well, though perhaps not as useful for us in this case (and we'll see why later
in this section). But the below example won't cause an error. Keys and values are pretty
fiexible parts of a dictionary.

case stats ={21: 'total’, 12: 'solved’, 8; 'unsolved’}
So how do we get data from our dictionary into our output?

case stats = {'total': 21, 'solved" 12, 'unsolved': 8

print{ Total cases: ' + stricase stats[total])
print{'Solved @ses: ' + stricase stats['solved']))
print{'Unsolved cases: ' + sir(case stats[unsolved]))

Instead of using the index number to find an item in our dictionary, we tell our output
what keyto look for, and it will output thevalueit finds associated with that key.

This is great, because now it doesn't matter what order our items are stored in: as long as
it has the same key, we'll always get the value we're looking for.

These kinds of data structures are used in a lot of programming languages, especially
high-level ones. Sometimes they go by different names: in PHP these are called
"associative arrays”, in Ruby theyre known as "hashes”, and in Java they're known as
"maps". But they all behave more or less the same, and follow a similar structure of key-
value pairing in the syntax.

Lists inside dictionaries

Like with lists, we can store different types of data within a dictionary. Let's add some
more information to our dictionary to describe Agent Q's case statistics and try out using
a few more different data types.

tase stats = {'total’: 21, 'solved": 12, 'unsolved': B, 'month’; 'june’,
'percent_solved': 57.14, types" [forensics', 'cryptography’, ‘web app'l}

print('Month: ' + str(case_stats['month']))

print{ Total cases: ' + str{case_stats[total'])

print('Solved cases: ' + stricase_stats['solved']))
print('Unsolved cases: ' + stricase_stats['unsolvedT))
print('Percent solved: ' + str{case_stats['percent solved']) + ‘%)
print(Types of cases: ')

print(\t' + str{case_stats['types'][0])

print(\t' + strcase_stats['types'][1])

print(\t' + str{case_stats['types'l[2]})

Paab&D

The above code gives us the following output:

Month: june

Total casas: 21

Solved cases:; 12

Unsolved cases: 8

Percent solved: 57.14%

Types of cases:
forensics

cryptography
web app

Notice how we've embedded a list inside our dictionary linked to the key ypes? We can
access the individual items in this list using the list index, which we've done here where
we've called case_stats['types'][@]. This tells the computer to look for the variable
called 'case_stats' which is a dictionary, and within that dictionary look for the key 'types’,
and within that list look for the item at index 0, which is "forensics’ in our example above.

Dictionaries inside dictionaries

Unsurprisingly, we can also put dictionaries inside our dictionaries, like so:

case stats = {'month’: 'June’, 'stats: {total’: 21, solved" 12, 'unsalved® 8,
'percent solved': 57.14}, 'types": ['forensics’, 'cryptography’, 'web app'T}

print{'Month: ' + str{case_stats['month'l))

print{ Total cases: ' + stricase_stats['stats')['total']))

print(‘Solved cases: ' + stricase_stats['stats']['solved1))
print'Unsolved cases: ' + stricase_stats['stats['unsolved']))
print('Percent solved: ' + str{case_stats['stats|['percent_solvedT) + '%’)
print{ Types of cases: ')

print(\t' + str{case_stats['types'][0]))

print(\t' + str{case_stats['types')[1]))

print{\t' + str(case_stats['types'[2]))

This code will give us the exact same output we saw in our previous example, but gives
our dictionary more structure. We can start to see how powerful dictionaries can be when
it comes to organizing our data. But we can also see how quickly dictionaries can get large
and difficult to read. Since programming languages are for humans, let's use some
formatting to make our code easier for us to read so we can see the structure of our
dictionary data more clearly.

case stats = |
'month’; 'june’,
'stats’ {
'total': 21,
'solved': 12,

Pa%rﬂ

‘percent_solved’: 57.14
}r
‘types": ['forensics', 'cryptography’, 'web app']

print{'Month: ' + str{case_stats['monthj)

print{ Total cases: '+ sir{case_stats['stas['motal’])

print('Solved cases: '+ stricase stats[stats']['solved?))

print{'Unsolved cases: ' + str{case_stats['stats7['unsolved'T)
print{'Percent solved: ' + stricase_stats['stats['percent_solvedT) + '%")
print{ Types of cases: ')

print{\t' + str{case_stats['types[0]))

pr'rn f\t + str{case stats['types'][11))

print{\t' + stricase_stats['typesI[2]))

There we go, that's aloteasier for us to read. Any time you're building a dictionary that's
more than a few key-value pairs long, it's helpful to format it like this to better
understand what you're building.

Dictionaries inside lists

We can also create a list of dictionaries. Let's create a list with some simple case stats for
Bill, Susan, and James.

case_stats = [
{'employee’: Bill', 'solved': 12, 'unsolved’; 8},
{'employee’: 'Susan’, 'solved"; 15, 'unsolved': 5},
{'employee: jJames', 'solved" 8, 'unsolved': 3}

]

print('Bill:")
print(\t Solved cases:'+ stricase_stats[0]['solved]))
print{"t Unsolved cases:' + str{case_staws[0][unsolved]))

print{'Susan:')
print("\t Solved cases:'+ stricase_stats[1]['solved]))
print("\t Unsolved cases:' + stricase_stats[1][unsolved']))

print(james:")
print(\t Solved cases:'+ strcase_stats[2]['solved"]))
print{\t Unsolved cases:' + str{case_stats[2]['unsolved']))

This code gives us the below output:

Bill:
Solved cases:12
Unsolved cases:8
Susan:
Solved cases:15
Unsolved cases:5
lames:
Solved cases:8
Unsolved cases:3

PHWI

Mixing dictionaries and lists in different ways is incredibly powerful for us. For now, let's
concentrate on how we can modify and build dictionaries on the fiy.

Modifying dictionaries

So what happens when Bill solves another case? Now we need to update his stats. Let’'s
modify our dictionary.

case stats = {'month’;: June’, ‘total': 21, 'solved': 12, 'unsolved'; 8}

print('Stats for ' + case_stats['month’] +)
print(\tTotal cases: '+ stricase_stats['totalT))
print\tSolved cases: '+ stricase_stats['solved']))
print("tUnsolved cases: ' + sir{case_stats['unsolved]))

case _stats['month'] = "July’
case stats['total'l =22
case stats['solved'] =13

print('Stats for ' + case_statsI'month'] + ')
print("tTotal cases: '+ stricase_stats'totalT))
print(\tSolved cases: '+ stricase_stats['solved'T))
print{\tUnsolved cases: ' + str(case_stats['unsolvedT))

It's a new month, so we need to update a few pieces of information in Bill's stats. The first
is, of course, the month itself. We do that by calling on theonth key in case_stats with
case_stats['month'] and giving it a new value, 'July'case_stats['month'] =
'July'. Then we also update 2 more pieces of information in our dictionary following the
same technique: the total case number needs to go up by 1, which makes it 22, and the
total number of solved cases also needs to go up by 1, which is 13. Agent Q's unsolved
cases number didn't change in July, so we can leave that one as it is.

The above code will output:

Stats for June:
Total cases: 21
Solved cases: 12
Unsolved cases: 8
Stats for July:
Total cases; 22
Solved cases: 13
Unsolved cases: 8

There's another way to update the numbers here that will prove very useful to us later,
because it means we don't have to do the math ourselves. We might as well let the
computer do the arithmetic, and sometimes we don't actually know what the original
number was. We just know we want to increase whatever it was by a specific value. In the

Paagﬁ:!

example above, we want to increase Bill's total cases and solved cases both by 1. Let's
modify our code to get the computer to do this addition for us.

case stats = {'month': 'June’, ‘total’: 21, 'solved': 12, 'unsolved': 8}

print{'Stats for ' + case_stats['month'] +'7)
print(\tTotal cases: '+ stricase stats['totall))
print{\tSolved cases: '+ stricase_stats['solvedT))
print{\tUnsolved cases: ' + str{case_stats['unsolved']))

case stas['month’] = "July’
case_stats['total’] = case stats{total]+ 1
case stats['solved'] = case stats['solved'] + 1

print{'Stats for' + case_stats['month'] + ")
print(\tTotal cases: '+ stricase_stats['total]))
print{\tSolved cases: '+ stricase_stats['solved'))
print{(\tUnsolved cases: ' + str{case_stats['unsolved']))

This will give us exactly the same output as before, but notice how we've modified lines 9
and 10. In line 9 we're settingase_stats['total'] to itself plus 1The computer will
first retrieve the current value ofcase_stats|['total'], which is 21, then it will add 1

to that value to get 22, and finally it will set the new value ofase_stats['total']to

be 22.

There's actually a useful short-hand way of specifying exactly this kind of 'self-
incrementing' behaviour so we don't have to write owtase_stats['total'] + 1,
which is a bit wordy. We can use the= notation in Python to help us out here.

case_stats = {'month’; June’, 'total’: 21, 'solved’: 12, 'unsolved': 8}

print{'Stats for ' + case_stats['month'] +':')
print(\tTotal cases: '+ stricase_stats['total]))
print{‘tSolved cases: '+ stricase_stats['solved?))
print{\tUnsolved cases: ' + str(case_stats[unsolved’]))

case_stats['month'] = ‘July’
case_stats['total'] += 1
case_stats['solved’] += 1

print('Stats for ' + case_stats['month’] + ')
print(tTotal cases: '+ stricase stats['totalT))
print(\tSolved cases: '+ stricase_stats['solved']))
print{\tUnsolved cases: ' + str{case stats['unsolved'))

We've changed lines 9 and 10 to use the= notation, so now instead of the longer
statementcase_stats['total'] = case_stats['total'] + 1 we can use our
short handcase_stats['total’'] += 1 which does exactly the same thing.

Adding things to dictionaries

Paa*

Like we did with lists before, we can add things to our dictionary and even start with an
empty one if we want. Let's build Bill's stats dictionary from the ground up. We'll build up
our dictionary slowly and output it at different states so we can watch how it's built.

case stars={}

case stats['month'] = 'junge’
print{case stats)

case_stats['total] = 21
print{case_stats)

case stats['solved] =12
print{case_stats)

case stats['unsolved =8
print{case_stats)

The above code will output:

{'month';: june'}

{‘total': 21, 'month’: june"}

{'solved’ 12, 'total’: 21, 'month" June’}

{'solved"; 12, 'unsolved'; 8 ‘'total’; 21, 'month’; june'}

Adding a new key-value pair to our dictionary is exactly the same as updating an existing
key-value pair. If the computer finds the key in the dictionary, it will update the value. If it
doesn't, it will add the key and value to the front of the dictionary. And since order
doesn't matter in dictionaries (because we access everything we need with the key) we
don't mind what order things are in.

Removing things from dictionaries

If you want to remove information from a dictionary, you can udel:

case_stats = {'month’: June', 'total’; 21, 'solved" 12, 'unsolved': 8}
print{case_stats)

del case_stats['unsolved']

print{case_stats)

In this example, we've printed out oucase_stats dictionary before and after we've
useddel to remove the 'unsolved’ key and its corresponding value, which you can see in
the output:

Paagd!-

{'solved® 12, 'unsolved": B 'total’s 21, 'menth® June’}
{'solved" 12, 'total: 21, 'month" June'}

Pretty straightforward, but remember: once you've deleted a key-value pair from a
dictionary it's gone for good!

Paat&ﬁ

Dictionary Practice

Paﬁarﬂ'

Code Comments

Code comments are a prime example of how programming languages are mostly for us
humans, as they are entirelyforhumans alone. Code comments are pieces of information
you put in the code that the computer ignores. This allows us to add notes and narration
into our code without having to worry about syntax, to help make it clear to ourselves -
and to others - what our program is intended to do.

Here's an example of how to add a comment to your code.

Say hello to the user
print{"Hello User!")

You can also add a commentinlinenext to the greeting like this:

print("Hello User!") # Say hello to the user

In the output of both the above examples, we see just the printed "Hello User!" statement
and no indication of our commented line above it, or the commented text next to i

Hello User!

Comments can be very useful to us when our code starts to get complicated, or during the
"building"” stages when we're still figuring out how to get our program to work.

If you need to add several lines of comments in a block, you can use thenotation before
each new line.

One comment line

Second comment line
Third comment line
print"Hello!")

When to use comments
Comments are particularly helpful in 3 situations:

When you're building a new program.

PEWE

As we're trying to build out code to complete a series of tasks - especially if that task is a
complicated one - using comments as a way to think through the logic can be extremely
helpful. We can remind ourselves what the goal is of a particularly tricky bit of code, and
if we have to come back to work on our program again later, comments can help remind
us what we're building, and where we got to when last we worked on it.

Documenting your program for others.

Later on in this course we'll talk more about programming style and how to write clean,
organised, well-structured code that shouldn't need lots of comments, but all programs
benefit from an amount of inline documentation that code comments can provide. In
particular, if you're working with other programmers, or if your program will need to be
maintained by others in the future, code comments can help them understand what your
program is doing, and the broader context for why you built the program the way you did
if it's important.

When you want to temporarily "turn off" parts of your code.

Sometimes while building or debugging, it can be helpful to quickly turn on or off smaller
chunks of our code. Instead of deleting the code, or copy-pasting it somewhere else, then
having to re-write it or remember where in the program it was meant to go, we can simply
comment the code out inline.

print"Hello Bill.")
i# print{"Hello Susan.")
print{"Hello Mike.")

In the example above, we've commented out therint ("Hello Susan") line, which
means when we run this program, the computer will skip over that entire line and only
print the "Hello Bill" and "Hello Mike" lines.

Pa&gﬂg

Bringing it Together

Use the skills from this module to correct the broken code. Debugging and methodically
fixing, with trial and improvement, is a key skill in IT and cyber security.

PagﬁEEr

Programming 2

Parg:,ls 1

Introduction

In this module we will be covering a plethora of new programming concepts in Python,
and putting them to practice too. We will use them to start to write more resilient code,
and to solve our problems more elegantly. Again, the goal of this course’ programming
section is not to train to be a staff developer or full time engineer, but to have the
understanding and skills to create solution scripts in cyber security. These concepts are
also invaluable in understanding how mistakes made during development can lead to
security issues. In this module we will cover:

Conditionals (if statements)

Loops, including for loops and while loops
Functions

Getting and using user input

Classes and objects

Exceptions

PH?ZEI

Conditionals

The previous module gave us a solid foundation in how to manipulate data, create and
manage different data types, and how to store those bits of data to variables where we
can use this data elsewhere in our program. This module builds on that foundation and
allows us to start making decisions about what to do with our data and when to change it
in more complex ways.

A conditional allows us to check if certain conditions are being met before we run certain
parts of the program. They're often referred to more casually as "if statements” or "if
tests" and there's a very good reason for that: in most every programming language
conditionals usually start out with an "if", as in "if coffee is available, then Agent | will
have a coffee"”. Let's see our simple "if statement” coffee example in Python.

coffee_available = True

if coffee_available == True;
print{"Agent | will have coffee.")

In this example, since we've set thecoffee_available variable to True, our test
passes, so the program prints out "Agent | will have coffee.". If we change the
coffee_availlable variable to False and run the program again, nothing will be
printed to the screen: since the conditions of our if statement aren’t met, the code inside
the if statement never runs.

Notice here when we write our if statement, we use a double equal sign (==) instead of a
single equals sign. The single one is reserved for assigning values to variables, like we did
inline 1. So when we want to say X =Y in a conditional if statement, we use the double
equals syntax X ==Y.

Note also the indentation in our conditional if statement: the lin@rint ("Agent J
will have coffee.") is indented from the line above it. This indentation structure is
enforced by Python, and it's how Python knows which code below the if statement is
withirit and which code is outsidait.

If we try to run this code without indentation, we get the following error:

Error(s), warning(s):
File "program.py”, line 4
print("Agent | will have coffee.”)
A

IndentationError: expected an indented block

We can see this inside vs outside structure more clearly when we run the following code,
which includes 2 conditional statements one after the other, as well as some printed

Paﬁ'ﬂ

output outside the conditionals.

print{"Agent] arrives at HQ in the morning.")
coffee available = True

if coffee_available == True:
print{"Agent] will have coffea.”)

print{"In the afternoon, Agent | goes to the HQ cafe.”)
coffee_available = False

if coffee_available == False:
print{"Agent | is shocked to discover the cafeis out of coffee!")

print{"Agent | goes home.")
In this example, when we run our program, we get the following output.

Agent | arrives at HQ in the morning.

Agent | will have coffee.

In the afternoon, Agent | goes to the HQ cafe.

Agent] is shocked to discover the cafe is out of coffee!
Agent] goes home,

But what happens when we switch owrof fee_available assignments around the other
way, so that the first one if¥alse and the second one isTrue?

print{"Agent | arrives at HQ in the morning.")
coffee_available = False

if coffee_available == True:
print{"Agent] will have coffee.”)

print("In the afternoon, Agent | goes to the HQ cafe.”)
coffee_available = True

if coffee_available == False:
print{"Agent] is shocked to discover the cafe is out of coffee!”)

print("Agent | goes home.")

In this example, neither of the if statement conditions are met, so the print methods
inside those statements never run. But the print statements outside the conditions aren't
affected, so they still output to the screen as expected.

Paﬁ!.d

Agent] arrives at HQ in the morning.
In the afterncon, Agent | goes to the HO cafe.
Agent | goes home,

At their heart, all if statements can be evaluated as eitherTrue orFalse. That doesn't
mean we can only test a boolean variable, but it does mean that when the testis run it
must result in either aTrue orFalse outcome.

So we can create tests to see if 2 strings are the same, for example.

drink_available = ‘coffes’

if drink_available == 'coffee":
print{"Agent | will have coffes)

This example checks to see if thedrink_avai lable variable contains a string that
matches 'coffee’. If it is, the statement evaluates tdrue and the print method inside the
statement is executed. If thedrink_available variable doesn't match, everything
inside the if statement is skipped over, so nothing would be printed.

It's important to remember that case matters to computers! We may think of 'coffee’,
'Coffee’, and 'COFFEE' as being all the same thing in everyday language, but to a computer
all these strings are different. If we don't know what kind of letter case we'll get, but we
want our conditional to consider ‘coffee' and 'COFFEE' as a match, we need to tweak our
code slightly.

drink_available = 'COFFEE'

if drink_availablelower() == 'coffee":
print("Agent | will have coffee.”)

Now we're transforming the value afrink_available to its lowercase version using the
lower () method, which takes a string and changes any uppercase letters it finds within
the string to their lowercase counterparts. Now our 2 strings match, so the statement
evaluates to True, and our sentence will print out.

Let's look at another example.

coffee_available =4
coffee_needed= 4

if coffee_needed == coffee_available:
print{"There is enough coffee.”)

PBEEE

Here we're comparing the values of 2 different variableg,of fee_available and
coffee_needed. If they are the same, then we print the sentencZhere is enough
coffee. and if there isn't, then we don't print anything. In this example, 4 and 4 match,
so the statement evaluates as true, printing out our sentence.

But what happens here:

coffee_available = "4"
coffee_needed=4

if coffee_needed == coffee_available:
print{"Thera is enough coffee,")

We've setcoffee_available to a string value of 4, andcof fee_needed as an integer
value of 4. They're both 4 so we might expect the statement would evaluate Brue, but
when we run this program we find it doesn’t, nothing gets printed out, telling us our if
statement evaluated to beFalse.

When comparing values, an if statement takes the type of the variable into account. If
they're different types, then they won't match in a conditional. It's important to keep this
in mind when we're programming - in particular with numbers - because often numbers
can be stored somewhere as string data, but will need to be evaluated as integers or
fioats. This is where theint () and str () functions we saw in the last module can come
in very handy.

coffee_available = "4"
coffee_needed = 4

if coffee_needed == int{coffee_available):
print{"There is enough coffee.”)

Now our conditional will evaluate toTrue and print our sentence for us, because we're
turning our stringoffee_available value into an integer, so now they'll match.

Comparison operators

There are several different ways of comparing things in conditionals. These are called
comparison operatoand they include:

* Equalto==

Not equalto!=

Less than<

Greater than>

Less than or equal to<=

PE%EE

* Greater than or equal to>=

Let's run a few examples to get a feel for how these different operators work.

if "string 1" == "string 1":
print{"These strings are equal.”)

if "string 1" I="string 2"
print("String 1 does not equal string 2.")

if2<4
print{"The first number is less than the second number.")

if4>2
print{"The first number is greater than the second number.")

ifd==d:
print{"The first number is less than or equal to the second number.")

if4>=4:
print{"The first number is greater than or equal to the second number.")

If we run this code, all 6 statements will print out to the screen because all 6 statements
will evaluate to True.

Conditionals and lists

Lists are an important kind of data while programming, and conditionals also allow us to
check if a value is in a list, or not in a list.

available_drinks = ['coffee, 'tea’, 'water', 'orange juice']

if 'coffee’ in available_drinks:
print(*fou may have that drink.')

Here, we're usingin within our if statement to see if a string exists in our
available_drinks list. If we can find an exact match somewhere in our list - in this
example we can - then the statement evaluates tdl rue and our sentence will print. If, on
the other hand, it can't find our string, then the statement evaluates false, the print
method is skipped over, and nothing outputs to the screen.

We can also usenot 1in to create a test that works in the opposite way.

available_drinks = ['coffee’, 'tea’, 'water', 'orange juice’]

if ‘apple juice’ not in available_drinks:
print{That drink is not available,')

Paﬁ?

Here, we're checking to seeipple juiceisntinouravailable drinks list. Ifit's
not found in the list, then the statement evaluates td rue and our sentence "That drink
is not available" will print to the screen.

Checking multiple conditions

Let's revisit our original example code again.

coffes_available = True

if coffee_available == True:
printl"Agent | will have coffee.”)

It doesn't seem quite fair to force Agent] to have coffee just because it's available, he
might not want one, or perhaps already has one.

We could do it like this, by nesting if statements:

coffee_available = True
has_coffee_already = False

if coffee_available == True:
if has_coffee_already == False:
print{"Agent] will have coffee.”)

In this example we've put one if statement inside the other. First, thef
coffee_available == True check will run. If this evaluates toTrue, then the inner if
statementif has_coffee_already == False will run. If this alsoevaluates to True
then, finally, our "Agent | will have coffee" sentence will print to the screen.

This works... but it's a bit untidy, and if we had to check 3 or 4 things it quickly becomes
very difficult for us humans to read and understand. There's a much nicer way to write this
conditional without all that nesting.

coffee_avallable = True
has_coffee_already = False

If coffee_available == True and has_coffee_already == False:
print("Agent | will have coffee.”)

Here we're using the keywordnd to connect our two conditions in a single if statement. If
bothcoffee_available equals True and has_coffee_already equals False, then
print our sentence. If neither check passes, or if only 1 of them does, don't print the
sentence. Both mustbe true for our code inside the if statement to execute.

PESEEB

We can also use theor keyword, which allows us to check if aiat least onef our
conditions are met. Let's do a slightly different version of our coffee example.

had_coffee_already = False
is_tired = False

if had_coffee_already == False or is_tired = True
print{"Agent | will have coffee.”)

Let's walk through this example. We have 2 tests we need to run before we can decide if
Agent] is going to have coffee. The first thing to consider is whether or not he's already
had his morming coffee: if he has, he probably doesn't want another one. But then again, if
he had a late night working on a particularly tricky case and is feeling tired, he may want

a second cup of coffee to help wake him up. So, in plain English: if Agent | has not had
coffee already orif Agent] is very tired, then he will have coffee.

In the example above,had_coffee_already is setto False,and is_tired is also set
to False. Our conditional only needs one of these to be set t6alse to succeed, so as
soon as one of our conditions is met our if statement passes and the code inside it will
run.

It's important to note that the code inside an if statement that contains aor like this

will run as soon as one condition is mdt won't bother to check the others, because it
doesn't matter what they are. This can leave our code with some hidden errors if we're not
diligent. Let's see how.

Consider this example:

had_coffee_already = False
is_tired = False

if nope == True or had _coffee_already == False:
print{"Agent | will have coffee.")

What happens when we run this? We get an error.

Traceback (most recent call |ast):

File "program.py”, line 4, in <module>

if nope == True or had_coffee_already == False:
NameError: name 'nope’ is not defined

We get this error because we tried to check the value of a variable we haven't yet created,
nope. Obviously we can't check the value of a variable if it doesn't exist.

Pawg

But what happens if we reverse the order of the checks in this example? Let's find out.

had_coffee already = False
is_tired = False

if had_coffee_already == False or nope == True:
print{"Agent | will have coffea.")

And, to our surprise, even though we still haven't created the variableope anywhere, our
program runs and we get:

Agent | will have coffee,

This is because the computer is trying to be efficient: it will do the absolute minimum
work it needs to in order to get to the next step. In this case, if the first condition checks
out, then it doesn't matter what the second one is because the condition only needs one
to pass. So the computer immediately jumps from the first check passing to executing the
code inside the if statement.

Our code still has an error in it, and if the first check fails, then our error message will
return because the computer is forced to also test ifiope == True.

Order of precedence

Now let's examine how we can use combinations afhd and or in our conditionals to
create more complex if statements. We'll keep building out our coffee example to try and
consider all the relevant factors.

Let's examine the different checks we want to use to evaluate whether or not Agent | gets
a coffee at the HQ cafe. Here's what we want our program to do:

» The cafe has to have coffee available for him to have. If there is no coffee, then it
doesn't really matter what the other tests are, because even if they pass there's no
coffee to provide.

« Agent] has eithemot already had his morning coffeeoris tired enough to want a
second coffee. Either being true is enough to convince Agent] h@antxoffee.

Now that we understand what we want to create, |et's write this up in code.

coffee_available = True
had_coffee_already = False
Is_tired = False

PEE%BD

f coffee_available = True and had coffee_already == False or is_tired = True:
print{"Agent | will have coffea)

When we run this code we get what we expect, the output "Agent | will have coffeBither
had coffee_alreadyis False oris_tired is True, while at the same time wemust
alwayshave coffee_available be True. Our variables are setin a way that should
allow this conditional the pass - which it does.

Let's do one more scenario. We're going to start by assuming HQ always has plenty of
coffee and never runs out. But in addition to whether or not Agent | has already had coffee
or is tired, he also needs to consider how much time he has to wait for coffee. The cafe is

pretty popular, and sometimes the line is long: if he's in a hurry, he may not have time to
wait no matter how much he wants coffee.

So in this situation, we need to consider:

« Combination A: the line must be shortorAgent] must have lots of time to wait
« Combination B: he must not yet have had coffesrhe must be tired.

In order for our check to pass, we need one check from combinationaadone check from
combination B to pass.

Combination A
line_is_short = True
in_hurry =True

Combination B
had_coffee_already = False
is_tired = False

if line_js_short == True or in_hurry = False and had_coffee_already == False or
Is tired == True:
print{"Agent] will have coffee.")

This seems to work. We'd expectto get our sentence printed out in this case -

line_is shortis True and had_coffee_already is False, which satisfies our needs.
But it's always good to check our code with a variety of inputs to see if it works as we
expect in all situations. What happens if we chang&ad_coffee_already to True?

We'd expect no sentence to be printed out in this case, becausds_tired is False

which means both checks in Combination B would fail, so we want our if statement to fail.

But that's not what happens!

Combination A
line_is_short = True
in_hurry = True

Combination B

Pagulal

‘had_coffee already = True
is_tired = False
if line_is_short == True or in_hurry = False and had_coffee already == False or

is_tired == True:
print{"Agent | will have coffea")

This code will alsoprint out the sentence, even though we don't want it to. What's going on
here?

All these and's and or’s are confusing our computer. It's not executing them in the way we
expect. In situations like this where there are and’s and or's mixed together, there are
rules about which are evaluated first. Amnd is always executed before anor.

So in our check above, this is what's happening, in order:

= in_hurry == False and had_coffee_already == Falseis evaluated. This
evaluates to False.

* line is_short == True or (False) or is_tired == Trueis evaluated.
Since we now only have 2 or's, only 1 has to pass before the entire check is
considered to have passed. Sinceline_is short == True passes, the checks
immediately stop at that point and the computer moves on to execute what is
inside the if statement.

But that's not what we want! We've found a bug in our program: now it's time to squash it

We can use round bracketq) to give the computer clearer instructions on the order in
which we want it to execute the checks. This works the same way as round brackets in
mathematics does: if we see them in an equation, we always do what's inside them first.
In Python, round brackets have a higher precedence than amd and so anything inside
them will be checked first.

Let's add some round brackets to our code.

i Combination A
line_is_short = True
in_hurry = True

Combination B

had_coffee_already = True

fs_tired = False

if{line_ls_short == True or in_hurry == False) and (had_coffee_already == False or

fs_tired == True):
print{"Agent | will have coffee")

In this revised code, we're telling the computer in what order it should resolve our checks.

Pam&!

* Firstit checksline_is_short == True or in_hurry == False which
evaluates to True.

* Second, it checkshad_coffee_already == False or is_tired == True
which evaluates toFalse.

» |ast, it evaluates True and False, which is the result of the first check and the
result of the second. In order for this last check to pass, both must Berue. Since
they aren't in this case, this last check fails.

Now our code is doing what we want it to in this situation: our sentence doesn't get
printed because the check doesn't pass. And if we try different combinations of values in
our variables, we can see we get what we expect in every combination. Success!

Expanding conditionals with 'else' and 'elif’

Currently, our Agent | coffee check program is printing out a sentence only if the if
statement passes, and if it fails we don't get any feedback. What we really wantis to get
differentfeedback depending on whether or not our test passes or fails.

To do this, we can use anif-else block This allows us to create a diverging path of
instructions, depending on the outcome of our check.

Let's go back to one of our simplest examples to see how this works.

coffee_available = True

if coffee_available == True:
print{"Agent | will have coffee.”)
elsel
print{"Sorry Agent |, our coffee has run out!”)

Here we've created a case for when the check passes, and a case for when it fails. In this
example, wherecoffee_available = True then we'll get "Agent) will have coffee”
printed to the screen. If we change line 1 tooffee_available = False, then our
check fails and the computer moves to execute the code in the lse portion of our code,
which means "Sorry Agent J, our coffee has run out!” gets printed to the screen instead.

But what happens if we have more than 2 possible paths we want our program to be able
to follow?

coffee_available = True
had_coffee_already = False
is_tired = False

if coffee_available == True and (had_coffee_already == False or is_tired == True):
print{"Agent | will have coffee.”)

elif coffee_available == False
print(*Sorry Agent), our coffee has run out!™)

Pam&!

else;
print{"Agent | doesn't want any more coffea."”)

In this example, we have cases that cover any combination of values that might enter our
conditional. We've done this using are Lif check, which allows us to have a second set of
checks we run if the first checks fail. And finally, we finish with ailse that catches the
other possible cases not caught by thelf and elif above.

It's important to remember when we construct if-elif chains that it will execute the
condition in order, and stop when it finds a condition it meets. So if the firsif check is

true, then we get the "Agent | will have coffee” statement printed, and the conditional is
finished executing: it won'talsothen check thee lif. Think of an if-elif chain as a valve:
there can only be 1 path, and the computer will take the first path it finds. In complicated
programs with if-elif chains that are a few elif's long, you can get bugs that have to do with
how you order your conditions.

Paﬁ&d

For Loops

In the previous module, we learned about lists and dictionaries, including how to add,
remove, and generally modify the information in them. But so far we've done it very
slowly, one item at a time. If we had a very long list we'd end up having to write a lotof
repetitive code if we needed to update everything at once.

Loopsare another tool that let us manage lists and dictionaries more efficiently, with just
a few lines of code. We can run the same operation on multiple items in a list

Looping through a list

Let's have another look at Agent M's favourite Linux distributions again.

fav_linwe_distros =['Mint', 'Debian’, 'Ubunty', 'Manjam’, 'Fedora’, 'Arch’]

print{fav_linux_distros[0])
print{fav_linux_distros[1])
printlfav_linux_distros[2])

In order to print out each item in the list before, we had to put in a new
print(fav_linux_distros[0]). We'd need 6 in all to print out the entire list, and if
Agent M added or removed one later we'd have to manually modify our code. This is a
perfect use case for a for loop

fav_linux_distros = ['Mint', 'Debian’, 'Ubunty’, 'Manjaro’, 'Fedora’, "Arch'’]

for distroin fav_linux_distros:
printdistro)

And our output:

Mint
Debian
Wbty
Manjaro
Fedora
Arch

Let's break ourfor loop down to make sure we understand how it's working.

First, we create our list of Linux distributions as normal in line 1. In line 3, we define our
for loop:for distro in fav_linux_distros:.Thisline is asking for an item to be
pulled from the list fav_linux_distros and assigned to the variabledistro for use

PaEgEnS

within our for loop. On line 4, we're novinsidethe loop - notice the indention! - and we
have asked for the item stored in the variabledistro we created to be printed to the
screen. The computer will go through the list, one by one, and follow the instructions
we've given it for each item.

It might help to think of it like this, in plain English: for every distribution in the list of
Linux distributions, print the distribution's name.

As you can see, loops allow us to work with lists in a powerful and very efficient way. They
don't care how many items are in a list, or if you've added some or removed some. They
take the list as it is, and do something over and over for each item until it runs out of
itemns. Handy!

A for loop can contain as many lines of code as you like. As with our if statements, the
level of indention is how Python understands what code belongs inside the for loop and
what code belongs outside the for loop.

fav_linux_distros = ['Mint’, 'Debian’, Ubuntu', 'Manjary’, ‘Fedora’, "Arch]
print{’Here is Agent M\V's list of favourite Linux distributions.\n')

for distro in fav_linux_distros:
print{distro)
print\t' + distro+ ' is an excellent Linux distribution.”)
print{\tWouldnVt you agree that ' + distro +' is an excellent distro?')

print("\nThose are Agent M\'s top ' + strflen{fav_linux_distros)) + * Linux
distributions.')

Here we have a multi-line for loop example, where some of our print statements are
inside the loop - so they get repeated for each item in the list - while other print
statements are outside the list, so they only print once.

Here's the output this code generates:

Here Is Agent M's list of favourite Linux distnbutions.

Mint

Mint is an excellent Linux distribution.

Wouldn't you agree that Mint is an excellent distro?
Debian

Debian is an excellent Linux distribution.

Wouldn't you agree that Debian is an excellent distro?
Ubuntu

Ubuntu is an excellent Linux distribution.

Wouldn't you agree that Ubuntu is an excellent distro?
Manjaro

Manjaro is an excellent Linux distribution.

Wouldn't you agree that Manjaro is an excellent distro?

ra
Fedora is an excellent Linux distribution.
Wouldn't you agree that Fedora is an excellent distro?

PEE%EE

Arch
Arch is an excellent Linux distribution.
Wouldn't you agree that Arch is an excellent distro?

Those are Agent M's top 6 Linux distributions.

The range() function in for loops

For loops can be useful to us even if we don't have a pre-existing list to loop through. The
range() function allows us to create a temporary 'list' of numbers within a specified
range, which we can then loop through similar to a normal for loop.

Let's take a look at a simple use of therange () function in a for loop by creating a
simple counting program.

for counter in range(1,5}
print{counter)

This code will create the following printed output.

bl bl =

Hmm... that seems strange. Ourange () function looks like it should count from 1 o 5,
but it stops at 4. Why is this?

Therange() function starts counting at the first value you specify, in this case the 1. It
will run the first loop, then when it hits the end it will increment that value by 1. If that
newly incremented value is the second one specified in therange () function - in this
case 5 - then it will stop without running the code within the loop.

So if we want our program to count to 5, we instead need to specify a range of 1 to 6, so
that our loop will run through the 5Sth iteration and stop when it hits 6.

for counter in range(1,6};
print{counter)

The range() function is useful for doing more than just counting numbers. Agent S likes
to be able to visualize progress of the forensic team'’s solved case statistics. Let's build a
little progress bar to help Agent S see how the team is doing.

PBF}E?

total cases =10
total solved =7
total unsolved = total cases - total solved

for x in range(1, total_unsolved+1):
print‘| |

for % in range(1,total_solved+1):
print{’| X|7)

This code will generate us a nice little thermometer-style progress bar so Agent S can see
the team's progress at a glance. Notice we've had to add 1 to oumotal_unsolved and
total_solved variable values in ourrange() function, like in our previous example
where we wanted to count to 5 but had to useange(1, 6).

i

Any time we want to get an updated status thermometer, all we have to change is the
values of thetotal cases and total solved variables. Nice!

Looping through a dictionary

We can also loop through a dictionary. Because a dictionary stores information in a
variety of ways, we have several different techniques to loop through the content of a
dictionary and its key-value pairs.

Let's start with the simplest loop: all we want to do is loop through every key-value pair in
the dictionary and print out what we find, creating a nice list of everything we have stored
in our dictionary.

user_profile = {
'name". ‘Agent M',
'fav_distro 'Mint',
fav_drink': ‘Tea'
i

for key, value in user_profile.items();
prinlI'KaEr: ' + key)
print{Value: ' + value + "\n')

PEE%EB

Our for loop has a few different components here than it did when we were looping
through a list. In oufor key, value in user_profile.items(): opening
statement, we create 2 variables key and value, which the loop will assign the key and
value to for each item it finds in our dictionary. We've named therkey and value here
in this example for clarity, but you can name them anything you want: 'label' and
‘contents’, 'x' and y’, 'beeble’ and 'brox’, etc. We then give the loop the name of the
dictionary we'd like it to loop through, in this casaiser_profile. Finally, we include the
method items () with our dictionary, which tells the loop to return a list of key-value

pairs.

The above code gets us the following output:

Key: fav_drink
Value: Tea

Key. name
Value: Agent M

Kei,'.' fav_distro
Value: Mint

Note our output isn't in the same order that we originally stored them in the dictionary.
That's because dictionaries are by default orderless as far as Python is concerned: it
doesn't care what order the stored items are in, because it finds information using the
key.

Let's look at another quick example.

fav distros ={
'g" 'Mint’,
Ijl: 1Kalilr
'm'; 'Ubunm,
's’; ‘Elementary’
}

for agent, distro in fav_distros.items():
printAgent ' + agent.upper() + ;' + distro)

And our output:

Agent Q: Mint
Agent 5: Elementary
Agent J: Kall

Agent M: Ubuntu

PEE%EQ

We can modify our dictionary loop to tailor it to our particular needs. For example,
maybe we just want to know which distributions have been called out as favourites in our
dictionary, and we don't particularly care who each favourite belongs to.

fav distros ={
'g's 'Mint’,
i 'Kali,
'm'": 'Ubunfu’,
's": '‘Elementary’
}

for distro in fav_distros.values():
print{distro)

Here we use thevalues () method in our for loop, so we only need to create 1 variable
distro because we are only asking the computer to grab the values it finds for each key,
and to not worry about what the key is.

We can also fiip this around and ask Python to give us just the keys. [bet you can guess
what this method will look like now that you've seen how we ask for just the values.

fav_distros ={
'q't 'Mint',
IJ'I: IKﬂ[ill
'm'": ‘Ubuntu’,
's": Elementary'

}

for agent in fav_distros. keys():
print{agent)

The output of the above code is below. Remember, dictionaries are orderless so the order
our for loop runs through the dictionary isn’t necessarily the order in which we originally
defined it

q
P
]
m

Nested loops

We can of course also get combinations of dictionaries and lists inside each other, so
sometimes we'll want to loop through a list or dictionary, and if the values we get back
are also sets of data, we might want to loop through those too.

Pa%?ﬂ

We're not going to go through each of the variations one-by-one, but let's look at one
quick example of how these loops can nest one inside the other in order to extract
complex data efficiently.

Create our 4 agents as their own dictionaries.
agent m=q

‘name’ ',

'distro’; 'Ubuniu’,

'drink': 'Earl Grey Tea'

Immel: IJII
'distro': "Kali',
'drink'; 'Espresso’

name; 's’,

'distro”: 'Elementary’,
'drink"; 'Coffes’

}

agent g={
‘name’ 'Y,
'distro’; 'Kali',
‘drink'; 'Decaf Coffee’
}

Combine our agent dictionaries into a single list of agents.
agents = [agent_m, agent_|, agent_s, agent_g]

Loop through the list of agents so that we get the
dictionary belonging to each individual agent
for agentin agents:
For each individual agent, get each key-value pair and
print it to the screen
for key, value in agent.items():
print{key.title) + ;' + value)

Add an extra return space for visual clarity:
note this is inside our first loop, but not the second one
print(n')

We've added some comments into this code so you can follow what it's doing. This code
will produce the following output.

Drink: Earl Grey Tea
Name: M
Distro: Ubuntu

Drrink: Espresso
Name: |
Distro: Kali

Drink: Coffee

Paq.ﬂ?l

Name: §
Distro: Elementary

Drink: Decaf Coffee
MName: Q
Distro: Kali

Combining loops and conditionals

Our example above is ok, but still a bit untidy. Ideally we'd like the name of the agent at
the top of each list.

Create our 4 agents as their own dictionaries.
agent_m={

'mame" "M,

"distro’: 'Ubuntu’,

‘drink"; 'Earl Grey Tea'

}

agent j={
‘name’ 'J',
'distro'; 'Kali',
'drink'; 'Espresso’
}

agent s ={
'mame’; 'S,
'distro'; 'Elementary’,
‘drink'; 'Coffes’
}

agent.g={
‘name’ '@,
‘distro’; 'Kali',
‘drink'; 'Decaf Coffee’
}

Combine our agent dictionaries into a single list of agents.
agents = [agent_m, agent_j, agent_s, agent_q]

Loop through the list of agents so that we get the dictionary
belonging to each individual agent
for agent in agents:
Get the agent's name and print that to the screen
print{/Agent ' + agent['name’] + ')

Loop through that agent's dictionary items
for key, value in agent.items():

If the key isn't the agent's name, print the key and value
ifkey 1= 'name":
print(\t' + key.ttle() + ' + value)

Add an extra return space after an agent's info
print(\n')

Paqrf!

Here we've continue to use our 2 nested loops, but in the first loop we've printed out the
agent name specifically by calling for the keyagent ['name '] which allows us to print it
to the screen like a header for our list. In the second loop, because we've already printed
the agent's name we don't need to see it again, so we use a conditional if statement
within this loop to exclude this key-value pair from being printed.

The code above creates the below output.

Agent M:
Drink: Earl Grey Tea
Distro: Ubuntu

Agent |:
Drink: Espresso
Distro: Kali

Agent S
Drink: Coffee
Distro: Elementary

Agent Q;
Drink: Decaf Coffee
Distro; Kali

As you can see, we're starting to be able to do more complex things by combining our
tools together. Here we've incorporated lists, dictionaries, loops, and conditionals in just
one way, but there arelotsof ways that these tools can work together. It's when we start
combining our tools together that the potential power of programming becomes more
clear to us. With the right tools we can do basically anything!

Paqﬁ':!

While Loops

In the previous section, we saw the for loop, which takes a collection of items and loops
through them one by one, executing the same block of code on each of those items, until
it runs out of items.

But there's another kind of useful loop we can use: the while loop. Instead of giving the
while loop a predetermined set of things to work through, we give it a condition: as long
as that condition is true, the while loop will keep running.

The simplest kind of while loop usually contains some kind of counter, so let's have a look
at this first.

counter=1

while counter == 3:
print{counter)
counter += 1

print{’Loop completel’)

We start by creating the variablecounter and assigning in the integer value of 1. Then we
declare our while loop, and give it the conditiorwhile counter <= 3, which means

the loop will run as long as the value of the variableounter is less than or equal to 3.
Inside our while loop, we print theeounter value for our reference, and then just before

we leave our loop, we ask it to increment our counter variable by 1, which if you
remember is the same as sayingcounter = counter + 1.

After this, we've reached the end of our while loop, so we start again by checking to see if
the conditioncounter <= 3is still true. Qurcounter value is now 2, but since 2 is less

than or equal to 3 our condition is still true so our while loop runs the code block again.

Once again, at the end of the block we increment ourounter again, so now it's 3, and we
start again by checking if our condition is still true. It is, because 3 = 3, so the code block
within the loop runs a third time, incrementing ourounter to 4 at the end.

Now when we check our condition for the forth time, because we've incremented our
counter variable to 4, the conditioncounter <= 3 evaluates to False. Our while loop will
only continue to run if the condition is true, so now that it's false, our while loop closes
and allows the computer to move on to the next block of code outside the while loop,
which is our printed statement "Loop complete!”.

So our final output would be;

Paq‘ﬁ,fd

= 5
Loop complete!

Using a flag to stop a while loop

The previous example is a simple one where we just want to run the while loop a certain
number of times. But programs can be complicated, with lots of different branching logic.
There might be many different conditions where we'd want our while loop to stop,
depending on many different factors and considerations. In these situations, it's often
helpful to use a fiag to control your while loop.

Here's a slightly contrived example, but it gives you a reasonable idea how a fiag can
work.

active = True
countdown =3

while active == True:
if countdown =0:
countdown = 'Gol'
active = False
else;
print{countdown)
countdown =1

print{countdown)

Let's walk through this code.

First, we set and assign 2 variablesactive = True, which we'll use as our fiag to control
the while loop, andcountdown = 3 which we'll use elsewhere in our code.

Next we create our while loop usinwhile active == True which will force our while
loop to keep running over and over until thactive variable is set to something other
thanTrue.

Inside our while loop, we have a conditional if statement. Here's where ogountdown
variable comes into play. If our countdown variable is equal to 0, then we'll change its
value to the string 'Go!" and set theactive fiag to False. Otherwise we follow thelse
pathway, where we'll print the current value of ourountdown variable first before we
reassign its value to itself - 1. (This works like the += we saw in the previous example,
where we incremented the value of a variable by 1. This time we're decreasing the value
of a variable by 1 instead.)

If the countdown variable is equal to anything except 0, the while loop will keep running
over and over, printing the value o€ountdown then decreasing its value by 1 each time
until it reaches 0. When it reaches 0, then we follow the other branch of our if statement,

Paq’fS?E

which sets ourcountdown variable to the string 'Go!' and - most importantly - sets the
active variable to False. This means, when the while loop checks agaiactive does not
equal True. Our while loop has finished running, and we move outside the loop to the last
bit of code that needs to execute outside the loop, which is print{countdown), outputting
the final end value of ourcountdown variable.

The output of this program is below.

Y = b2 L

Using break to exit a loop

The above example can be written slightly more efficiently using the break keyword. This
keyword allows us to immediately break out of a loop without executing any more code
inside it, or requiring us to check the condition. It's kind of like slamming down on the
brakes in a car: stop this while loop immediately instead of when this particular loop is
complete.

Here's our revised code using the break keyword.

countdown =3

while True:
if countdown == 0
countdown = 'Gal’
break

print{countdown)
countdown =1

printcountdown)

Notice we don't use a fiag in this code: we simply writehile True as our while loop
condition. True is always true, so this loop is set to run forever - a potential infinite loop,
which we'll talk about in greater detail below. But in this loop, we use thereak keyword
inourif countdown == @ conditional. As soon as this if statement is true - as soon as
countdown == 0, we set thecountdown variable to 'Go!' and then immediately break
out of the loop without executing the other code inside the loop or checking to see if the
while True condition is still true (which it is). This allows us to escape our loop.

Infinite loops

What happens if we create a loop like the one below?

Pa%?ﬁ

counter=1

while True:
print{counter)
counter+=1

This is an infinite loop. Since there's no way to get out of this loop - no condition that can
ever be anything except true, and no break to get us out of the loop - this while loop will
run... forever! (Or until your computer crashes.) I tried running this on my machine, and
before I cancelled it just a few seconds later my printed counter had counted all the way
up to 1080308!

Every programmer writes an occasional accidental infinite loop once in a while. It's

always good to know how to cancel your program's execution manually in case you find
yourself trapped in an infinite loop. If you're executing Python via the command line, like
in the editors we provide below, you can use control-C to cancel the execution. If you're
using a local code editor to run your Python, you should know what your specific editor or
tool uses to cancel code execution.

Manipulating lists with while loops

After you've been programming for a while you'll find that while loops are useful in lots of
different ways - it would take us a long time to definitively go through all the many
different ways we can use them.

But here are a couple of quick examples of ways we can use while loops to manipulate
lists.

invited = [Agent @', 'Agent M', 'Agent |', '‘Agent §', 'Agent M]

while 'Agent M' in invited:
invited.remove({'Agent M’)

invited.append(‘Agent M')

Here we have a list of people invited to attend an important meeting, but we see AgentM
has been accidentally added twice.

This while loop first checks to see if the stringgent Mcan be found inside the list

invited. As soon as it finds one, it removes it, then starts the while loop again. This
repeats twice - because Agent M is listed twice in this list - and then the third time the
while loop runs the check, Agent M is no longer anywhere in the list, so the loop is finished.

Finally, since we do still want Agent M to come to our meeting, we add her back to the list,
knowing now she'll only be on there once.

PEW?

Here's an example of how we can move our agents from one list to another after the
meeting has happened, taking them from the invited list and moving them automatically
onto the attended list.

invited = [Agent @, 'Agent M', 'Agent J', 'Agent S

attended =[]

while invited:
current_agent = invited. pop()
print{current_agent + ' attended the meeting.)
attended.append{current_agent)

print|‘Attended list: ' + str{attended))

Here, thewhile invited is checking to see if theinvited list has anything in it. As
long as it has at least 1 item in it, the while loop is true, so it will execute the code inside
it. Once we've moved everyone from the invited list to the attended list using theop ()
and append () methods, theinvited list is empty and so our while loop check is faise.
This allows us to escape our loop and print out our final attendee list.

Pa%’?ﬂ

Functions

Our tool box is nearly full of the basic tools we need to start building complex programs.
Now that we can use conditionals and loops as well as manipulate variables, lists and
dictionaries we can start to see how nearly anything is possible.

Functions are another tool in our toolbox, and an important one. Functions allow us to
split our code apart into smaller chunks that we can call on at any point in our program.
This allows us to avoid repetition and make our code more human-readable.

Defining and calling functions

Let's start with a very simple function that says 'hello’ to Agent J.

def greet_agent();
print{'Hello Agent |l

greet agent{)

When we want to create a function we use the def keyword followed by what we want to
name the function. In this case, we've named our functiopreet_agent (). Now we use
indentation to create the body of our function: in this case, we want it to print the string
"Hello Agent |!" when the function is called.

Defining the function itself doesn't actually print the text 'Hello Agent |’ to the screen. In
order to execute the code inside the function, we use a function call. To call a function, we
write the name of the function, followed by any necessary information in round brackets.
In this case there isn't any needed additional information, so we can just call the function
withgreet_agent ().

The code above will have the below output.

Hello Agent JI

It's important to remember that a function must be defined before it can be called. If we
try to do things out of order and call a function before we define it, we'll get an error.

greet_agent()

def greet_agent():
print{'Hello Agent JI')

Paq;ﬁ;?g

Running the above code will give us the following error:

% python program.py
Traceback (most recent call last):
File "program.py”, line 1, in <module>
greet_agent()
MameError: name 'greet agent' is not defined

Function parmmeters

We can modify this function to allow us to greet any of our agents by using a function
parameter. This lets us pass information into our function at the time we call it, then have
the function use that information within it when it executes.

def greet_agent{letter):
print{'Hello Agent' + letter + 17

greet_agent(]')

greet_agent('™")
greet_agent('Q")
greet_agent('s')

In this example, we define our function again, but this time we give it a parameter,
letter. Think of parameters like placeholders in our function: we use them in the body of
our function where we'd like to be able to control data at the time we call the function.

Here we've used our placeholder parameteiet ter inside our print method,
print('Hello Agent ' + letter + '!').

Then, having declared and created our function, we call it 4 times: once each for each of
our known agents. Here's how our output looks:

Hello Agent J!
Hello Agent M!
Hello Agent Q!
Hello Agent Sl

When we call a function that uses a parameter, the information we pass at the time we
call it is called an argument. So when we callgreet_agent('J') the 'J' is the
argument. In this case, the argumentd' is passed into the functiongreet_agent ()

and assigned to the parameterlet ter. The terms parameter and argument are often
used interchangeably: there are technical definitions, butif you're chatting casually with
other programmers don't be surprised if you hear arguments referred to as parameters
and parameters referred to as arguments.

PB%BD

We can declare as many parameters as we need when we define our function. For
example, here's a more complex function that accepts 3 parameters and prints out a
more complex output for our 4 agents.

def greet_agent{letier, total_cases, solved cases)
print{'Hello Agent' + letter + 1)
print{"tYou have solved' + str{solved_cases) + ' cases.)

percent_solved = solved_cases * 100 / total_cases
print\iThat\'s ' + stripercent_solved) + '% of your total cases marked as solved,
great jobhn')

greet_agent(]’, 11, B)

greet_agent(M', 15, 12)
greet_agent('Q’, 20, 12)
greet agent{'s’, 20, 15)

This code gives us the below output.

Hello Agent |!
You have solved 8 cases.
That's 72% of your total cases marked as solved, great job!

Hello Agent MI
You have solved 12 cases.
That's 80% of your total cases marked as solved, great job!

Hello Agent QI
You have solved 12 cases.
That's 60% of your total cases marked as solved, great job!

Hello Agent S
You have solved 15 cases.
That's 75% of your total cases marked as solved, great job!

Notice here that when we call our function, we put our arguments in the same order as
parameters were declared in our function definition: this is using positional arguments. If
we are using positional arguments and don't get our order correct - say if we mix up the
order oftotal_cases and solved_cases - then we get some pretty strange output.

def greet_agent(letter, total_cases, solved _cases):
print('Hello Agent ' + letter + ")
print(\tYou have solved ' + str{solved cases) + ' cases.')

percent_solved = solved_cases * 100 / total_cases
print(\tThat\'s ' + stripercent_solved) + '% of your total cases marked as solved,
great job\n')

greet_agent(]’, 8 11)

Pag.-,lsl

This will give us an incorrectly infiated percent solved rate for Agent | in the below output.

Hello Agent !
You have solved 11 cases.
That's 137 of your total cases marked as solved, great jobl

We can also use keyword arguments in our function call, where we directly associate a
value to a particular parameter. This lets us mix up our order because we're being clear
about which value we're assigning to which parameter.

def greet_agent(letter, total_cases, solved cases)
print{'Hello Agent ' + letter + 1)
print{"tYou have solved' + str{solved cases) + ' cases.)

percent_solved = solved _cases * 100/ total_cases
print{\tThat\'s ' + stripercent_solved) + '% of your total cases marked as solved,
great jobhn')

greet_agent{letter=]', solved_cases=8, total_cases=11)
This will give us our expected output and the correct percent solved number for Agent J.

Hello Agent !
You have solved B cases.
That's 72% of your total cases marked as solved, great jobl

Default parameter values

Sometimes when defining functions, it's useful to set default values for some or all of our
parameters. If there is a frequently used value as an argument, it can make sense to set it
as a default assumed value to make your function calls simpler to use.

Both Agent S and Agent Q have 20 total cases: it turns out that's the largest number of
cases any agent can get assigned in a month. Knowing that, and assuming enough agents
regularly reach the 20 cases to make it worthwhile, we might want to modify our function
to include a default value for thetotal_cases parameter.

def greet a%nmmer, solved cases, total_cases=20);
prlnt{ Hello Agent ' + letter + ')
print("tYou have solved' + str(solved_cases) +' cases.’)

percent solved = solved_cases * 100 / total_cases

print(\tThat\'s ' + str(percent_solved) + '% of your total cases marked as solved,
great jobhin')

Paguﬂ!

grest agent(s’, 15)

This code will generate the expected output below.

Hello Agent Sl
You have solved 15 cases.
That's 75% of your total cases marked as solved, great job!

Notice in the function definition fogreet_agent() in the above example that we
swapped thesolved_cases and total_cases parameters around? That's because if we
have a mixture of parameters with default values and some without, you must have the
parameters with defaultvalues at the end of the list.

Why? Because then we can use positional arguments when we call our function. If we
didn't organize our parameters this way, then the computer wouldn't know when to use
the default values and when not to.

Single Responsibility Principle

The most useful thing about functions is you can call them anywhere, even inside other
functions. This allows us to break our code apart into smaller, more readable and
reusable chunks.

A good rule of thumb for functions is they should only do 1 thing. This makes them much
more reusable, and - when we get to testing our functions - much easier to test. This is
called the Single Responsibility Principle

Let's revise our code to use a series of smaller functions called by one primary function.
When we rewrite or revise our code to do the exact same thing in a different (and
hopefully better) way, we call it refactoring our code. So let's refactor our previous code
to break it up into smaller functions, each with a single responsibility.

def greet_agent(letter):
print{'Hello Agent ' + letter + 1)

def solved _case rate(total_cases, solved cases)
percent_solved = solved _cases * 100 / total_cases
print(\tYou have solved ' + str{solved_cases) + ' cases.')
print{\tThat\'s '+ str{percent_solved) + '% of your total cases marked as solved,
great jobh\n')
def agent_status{letter, total_cases, solved_cases)
greet_agent(letter)
solved_case_ratetotal_cases, solved_cases)

agent_status(letter=]', total_cases=11, solved_cases=8)
agent_status(letter="M', total_cases=15, solved_cases=12)

PaglsEr!

“agent_status{letter="0", total_cases=20, solved_cases=12j
agent_status{letter="5', total_cases=20, solved cases=15)

Here we have 3 functions. The first igreet_agent (), a function which takes a single
parameter,letter, and prints out a nice greeting for our agent.

The second function is calledsolved_case_rate() and takes 2 parameters:
total_cases and solved_cases. This function's responsibility is to print out some text
about our agent's current case load status.

Finally we have agent_status which takes 3 parameterietter, total casesand
solved cases. This function does nothing but call our other 2 functions in the correct
order.

So when we callagent_status() for each individual agent, for each call 2 more
function calls are generated per agent, allow us to print out the information as before.

Return values

So far, we've had our functions use the print{) method to create output directly, but we
may not always want this. Fortunately, instead of generating output, we can instead use
return values to send information from inside our function to the line where the function
was called.

Here's a very simple example of how a return value works.

def addition(x, y):
total =% +y
return total

calculation = addition(31, 11)
print{calculation)

In the above example, we've created a function calledaddition() that takes 2

parameters, It adds these parameters together and saves that value in a variable called
total, and then it returns the value assigned taotal.

When we call the function later, passing in 31 and 11, our function dutifully does the
arithmetic and returns the total - in this case 42 - which we store in the variable
calculation. Finally, we print out the value stored ircalculation.

We can streamline this code even more by removing some of the work of storing
information in the variablestotal and calculation, which we don't really need here. If
we want to be really concise, we can use the below code to do exactly the same thing.

Paﬁﬁd

def addition(x, y):
return x+ y

print{addition(31, 11))

When using a return value, it's important to know that it wilmmediatelyend the
function execution, similar to how thebreakkeyword works in a loop. For example, let's
look at a variation of our code above.

def addition(x, y):
return X+ y
print('You will never know I exist!')

print{addition{31, 11})

Here we've added aprint () method to our functioraddition() but when we runit, it
doesn't print out the line "You will never know I exist!". That's because we have a return
value above it. The function finishes running before it gets rint('You will never
know I exist!'), so this line will never execute.

This can be helpful for us if a function includes an if statement or a loop, asitallows us to
leave the function execution early if certain conditions are met.

Let's create a program that determines whether or not Agent] has time to wait in line at
the cafe for a coffee, or if he has to skip his morning coffee in order to get to his first
meeting of the day. The answer depends how many people are in front of him, but also
whois in front of him. Agent Q currently owes Agent | a favour, and she'll let him swap
places with her in the coffee line if he's in a hurry just this one time.

Determine if there is enough time to wait for coffee, given

the current people Inline in front of Agent |.

def can_wait_for_coffee(minutes_available, people_in_line)
estimated wait_time = len(people_in_line) * 2

if estimated_wait_time < minutes_available:
return 'Yes, plenty of time.'
else
return can_swap_with_agent_giminutes_available, people_in_line)

Determine if Agent Q is in the line to swap with and, if so,
if she's far enough ahead in line to make a swap worthwhile
given the time available.
def can_swap_with_agent_g(minutes_available, people_in_line):
if 'Agent Q' notin people_in_line:
return 'Agent Q isn\'t in line... no coffee for Agent | today.'

position_agent_g = people_in_line.index('Agent Q')
walt_time_for_agent_q = (position_agentq+1)* 2

PaggBS

ifwait_time_for_agent g < minutes_available:
return 'Agent | can swap places with Agent Q and get his coffee.
else:
return ‘Mot even Agent) can save Agent | today... no coffee today.

Ask our question
print('Does Agent | have encugh time to get coffee this morning?’)

Get our answer
people_in_line = [Unknown Person A", 'Agent M', 'Agent @', 'Unknown Person B']
print(can_wait_for_coffee(8, people_in_line})

We won't go through this example line by line - you should give it a try with the editor
below with different values and orders of values in thpeople_in_line list aswell as a
different number of minutes Agent | can wait to make sure you understand what this
program is doing and how it's doing it.

However, let's have a look at thecan_swap_with_agent_g() function definition. Note
here how we first do a check to see if Agent Q isn't in the linef 'Agent Q' not in
people_in_line. If she's not found in thepeople_in_line list, then we immediately
return out of the function. There's no need to s@nsition_agent_qor

wait_ time for_agent_q variables or run the following checks: she's not in the line, so
the rest of the function's logic isn't needed, so we exit the function immediately.

Another thing we should look at in this example is in thean_wait_for_coffee()

function definition. Here, we have an if statement that checks if the value of
estimated_walit_time is less than theminutes_available value Agent | has

available to wait before he's late for his meeting. If this evaluates td rue, then we return

a string. But if it doesn't we return another function! (Technically, we return the return
value of another function. And if that function also returns a function, we return the return
value of that function... and on and on like a game of pass the potato.)

The ability to have functions return other functions, which can then also return other
functions, and on and on depending upon layers of logic gives you a glimpse of what's
possible with programming. We take a series of small pieces of logic and slowly build up a
complex system, piece by piece.

PESBBE

User Input Prompts

Computer programs are significantly more useful to us if they can take information
provided by the user and incorporate that input into the program. We can already start to
see where we clearly need user input in some of our previous examples, such as Agent |
deciding whether or not he has time to wait for coffee. His user input would be things like
the number of minutes he has on that particular day to wait, how badly he wants coffee
that day, and how many people are currently in line ahead of him that he would have to

wait behind.
So how do we capture this user input for use in our programs?

Before we get started on the how let's talk about how user input can be dangerous.

Pay)ﬂ?

Being wary of user input

Providing users a way of putting input into a program is a key component of what makes a
program useful, but it also represents one of the biggest security risks to our program. As
SoON as we open our program to user input, we give the user a little bit of control. That's
often exactly what we want to do - give the user the ability to control bits of the program

is probably what we've designed it to do - but it's very easy to give the user too much
control in unintended ways, and this is where security vulnerabilities often hide.

We should always approach user input with a healthy heaping of suspicion. Allow it where
your program needs it, but never fully trust it. Assume the user might be a malicious
attacker trying to exploit the system, and take precautions with the ways you allow user
data to enter and travel around your program.

Pa%%ﬂﬂ

Why you should always use raw_input() and never input()

In a lot of other courses and books that teach Python (either 2 or 3), you might have
encountered theinput () method, which allows us to incorporate user input into a
program. Both Python 2 and Python 3 have this method, but depending on which version
of Python you're using it behaves differently and - most importantly - in Python 2 the
input () method is extremely insecure and should never be used

In Python 2 we should always use theaw_input() method. Always.

Theraw_input() method will interpret everything the user feeds into it as a string, no
matter what characters are typed. So even if the user provides a number - like 42 - this
will be interpreted as the string '42'. The same goes if the user types 'False': it gets
interpreted as the string 'False’ rather than the boolean valuBalse.

However, if we use thelnput () method, it tries to figure out the intended type of the

user input: it wants to interpret 42 as the integer 42 and 'False’ as the boolean value
False. This seems like it should be helpful, but the way it does this behind the scenes is
dangerous. If we dig into the particulars of how this method works, we see it uses the very
dangerous methodeval() to figure out what type the input should be.

Why iseval() dangerous? Because it will evaluate what is passed to it as code. So a user
could hypothetically type a function definition and a function call into the space we've
provided for user input, and since that user input gets run througha L() it would

actually execute that function! As you can see, this is a terrible, terrible idea. This is why
we always useraw_input() when writing Python 2 code: we never want to send anything
a user controls to aneval() method.

This is an important thing to remember as a programmer: you should always know how
user input methods work behind the scenes so you know exactly what they're doing and
how they work, to prevent creating unintentional security vulnerabilities in your code. In
general, you should try and identify the known dangerous methods ligeal() and find
out where they might be used in other, seemingly innocent methods.

Python 3 and input()

If you have already encountered Python 3, you may already know thatw_input()

doesn't exist in Python 3. That's because in Python 3,aw_input() was renamed as

input () and behaves exactly asraw_input() doesin Python 2. The more dangerous
user input method that useeval() was removed entirely from Python 3, and for good
reason. However, this has made things a bit more confusing if you're jumping from Python
3 to Python 2 or back again. When in doubt, default to usim@w_input(). The system

will give you an error if you're using Python 3, where this method doesn't exist.

User input with rmw_input()

Paggﬂg

Let's give theraw_input() method a try by having our program ask us a simple
question.

user_name = raw_input{'Hello, what is your name? ')
print{'Hi ' + user_name + ', nice to meet youl')

When we run this code from our terminal, we get the following prompt:

% python program.py
Hello, what is your name?

The program pauses here until we give it some user input. We type our name into the
terminal after this prompt, and hit the enter key when we're done. This allows the
program to continue on to line 2, with our user inputin hand.

Here is our final output, from start to finish, including where we typed our name in.

$ python program.py
Hello, what is your name? Agent L
Hi Agent L, nice to meet youl

We've successfully taken in some user input, and used it to print out a nice greeting for
our user with their name in it.

Let's try another example, showing howaw_1input() always interprets our user input as
a string.

user_coffee_input = raw_input{How many cups of coffee have you had today? ")

if user_coffee_input=> 2;
rint{'Wow, that\'s a lot of coffee!’)
elif user_coffee_input == 0:
I print{‘Should we go grab a coffee? 1 could use one too.')
else;
print{'Sounds like the right amount of coffee to start the day.')

What happens when we run this program? Things go ok until after we enter our user input,
then we don't get quite what we expect.

$ python program.py
How many cups of coffee have you had today? 0
Wow, that's a lot of coffee!

Paw?ﬂ

But wait, our program should take the 0 and run through theif user_coffee_input
== @ branch of our conditional and print "Should we go grab a coffee? [could use one
too." but that's not what it does.

The reason why is that our user input@" is being interpreted as a string of "0" rather than
an integer®. In Python 3 we'd get a TypeError in this case where we're trying to use > to
compare a string value and an integer value, but Python 2 uses different rules and thus we
get our confusing output.

We can fix this using our tried and tested.nt () function in our program.

user_coffee_input = raw_input{How many cups of coffee have you had today? ')
user_coffee_int = int{user_coffee input)

if user coffee int=2:
print{'Wow, that\'s a lot of coffee!l’)
alif user_coffee_int==0:
print{'Should we go grab a coffee? I could use one too.')
else:
print{'Sounds like the right amount of coffee to start the day.')

In this revised code we've added a line that transforms our user input into an integer
safely, so we can now use it in our program correctly.

The output we get is below.

$ python program.py
How many cups of coffee have you had today? 0
Should we go grab a coffee? [could use one too.

Except... now what happens when the user types a string like "none" instead of a number?
We'd expect them to type a number, but an important lesson to learn when integrating
user data into our programs is to expect the unexpected. So let's not assume the user will
type a number.

$ python program.py
How many cups of coffee have you had today? None
Traceback (most recent call last):
File "prograrm.py”, line 3, in <module>
userCoffeelnt = int{userCoffeelnput)
ValueError; invalid literal for int{) with base 10: 'None’

Oops! We thought we had fixed a bug previously, and we sort of did... but by doing so, we
introduced a new one, This isn't an unusual occurrence for a programmer: often fixing one

Paﬁslgl

bug reveals another. That's ok: let's keep squashing them.

Let's make sure we can deal with any type of input our user throws at us to make our
program more resilient.

Theisdigit() method can help us out here. This method allows us to check if the string
the user provided can be turned into an integer. If it can't then we can provide a helpful
error to our user. To do this, we're also going to refactor our code to use a couple of
functions to make it easier to read and understand.

Checks if the user's answer can be used by the determineReply()
function, and if it cannot provides an error.
def get_reply(user_input):
if user_inputisdigit():
user_input_int = int{user_input)
return determine_replyluser_input_int)
alse;
return 'Sorry, [donV't understand your answer. [was looking for a number, not
a string.’

Determines the correct reply
def determine_reply{user_input_int):
if user_input_int > 2;
return "'Wow, that\'s a lot of coffee!’
elif user_input_int == 0;
return 'Should we go grab a coffee? I could use one too.'
else
return 'Sounds like the right amount of coffee to start the day.'

Ask for user input
user_coffee_input = raw_input{’How many cups of coffee have you had today? ')

Process the answer to get the right reply, and print that reply
reply = get_reply{user_coffee_input)
print(reply)

We've separated our logic into 2 function definitions. The first is callegiet _reply(),

which determines if the user's input can be used in the way we want using thedigit()
method. If the user input can be transformed into an integayet_reply() doesthis
transform, then it returns another function with this transformed user input passed as an
argument. Otherwise, if the user's string can't be turned into an integer, we return an error
to be output to the screen.

The second function definition assumes an integer, and uses an if-elif-else conditional to
return an appropriate reply string.

Now, after we ask for user input, we call thget_reply() function to sort out which of
our 4 reply options we should use, and store that returned reply string to the variable
reply, which we then print to the screen.

Payzu

User Input via the Command Line

If you've ever used a security tool that's been built in Python, you may already be familiar
with the idea that you can pass user input to a Python script at the point you choose to
run it from the command line. If you're building a program that you mostly expect people
to run from a terminal, it may make sense fo capture your user input this way.

In order to do this, we'll first have to import a separate library.
Importing a library

Python comes with a standard library of additional components we can use in our code.
They have been split out into smaller groups of functionality that we have to import in
order to make our programs more efficient. If all the possible bits of functionality were
always included, our programs would take longer to run. So the 'default’ set of Python
functionality includes only the core tools we need basically all the time, while other
useful pieces of functionality are split up into useful libraries or modules that we can
import and use at any time.

In order to allow user input to be passed via the command line at the program’s run time,
we need one of the Python Runtime Services libraries called "System-specific parameters
and functions". This is theys library, and to import and use it in our program we'll have
to start our program off witihmport sys. You should always import the libraries or
modules you intend to use in your program at the start: it's good practice to declare your
dependencies upfront.

How command line arguments are passed to the program

Let's start by just passing in some user input and seeing what kind of format we get out
the other side. When using a new function you've never used before, a good way to start
understanding the ins and outs of how it works is by outputting what you get back to the
screen. In order to access the arguments we pass in when we run our program via the
command line, we use sys.argv.

import sys

arquments = sys.argv
print{arguments)

Let's start by running our program with some test arguments and see what we get as
output when we print them, Then, we know what kind of data structure we're dealing with
when we usesys .argv.

Pa?‘_}g:!

$ python program.py test1 test2 test3
[program.py’, 'testl’, 'test2’, 'test3]

A few things we notice right away about our output:

fi. We've seen this structure before: thosg] brackets indicate this is a list. The data
we get is in a list form, so we can interact with it as a list.

fi. The first item in our list is the name of the python program we ran, in this case
program.py.

fi. The arguments we pass through are added into the list, in the order that we run
them.

Ok, that's some solid information gathering. Let's try a few more things and see what
happens.

$ python program.py 1 false this='that' x=2
['program.py’, '1", 'false’, ‘this=that, 'x=2]

We've given this another test run to see if everything we throw at it will be processed as a
list, and to see if it will take all different data types and turn them into strings. As we can
see in this example, that's exactly what it does: everything we pass in as an argument will
become available to usin our program as a list of strings, with our program filename
being the very first string in the list.

Using command line arguments in our program

Let us have fun with a contrived but useful scenario. We want to write a program that
picks code names for certain secret projects a team is working on. We'll create a list of
words suitable to be code names, and using a command line argument we'll specify the
number of words we want to use from the list to generate our random code name.

import random

Pick a random word from a provided list
def pick_random_word(list):
return random.chaice{list)

Get a code name made up of the number of words specified
def get_code_name(list, num_words)
code name ="

for x in range(1, num_words+1):

word = pick_random_word(list)
code_name += word + "'

Paﬁgd

List of words to use

word_list = [Aurord, 'Avalanche’, '‘Blizzard', 'Cyclone', 'Eagle’, ‘Edison’, 'Frost,
'Hawk', 'Hexagon', 'Hornet, '"Medusa', 'Neptune’, 'Orion’, 'Osprey’, Plato’, 'Portal’,
‘Raven’, 'Sand’, 'Shadow’, 'Storm', ‘Sunset’, Thunder', Vector', 'Vista', 'Vortex',
"“Yolcano']

Create a code name and print it to the screen
code_name = get_code name{word_list, 2)
print{code_name)

This simple little program allows us to generate code names using words picked at

random from a list we provide, and provides us a way to specify how many words we want
to use for our code name.

Now, let's add in the ability to specify the number of words from the command line,
where we run the script. Don't forget the lesson we learned from the section on user input
prompts, where we need to make sure we check the input we receive is usable by our
program: in this case, we need an integer. We've already included a default parameter in
ourget_code_name() definition, so if we don't get an input we can use, we'll use our
default number of words, which is 1.

importrandom
import sys

Pick a random word from a provided list
def pick_random_word(list):
return random.choice(list)

Get a code name made up of the number of words specified
def get_code_name{list, num_words):
if nurm_words.isdigit() == False:
return 'Error: Incorrect argument provided. You must provide an integer.'

num words = int{num_words)
code_name ="

for xin range(1, num_words+1):
word = pick_random_word(list)
code_name += word +'

return code_name.rstrip()

List of words to use

word list = [Aurord', 'Avalanche’, Blizzard', 'Cyclone’, 'Eagle’, 'Edison’, 'Frost’,
'Hawk', 'Hexagon', 'Hornet', 'Medusa', ‘Neptune', 'Orion’, 'Osprey’, Plata’, 'Portal’,
'Raven’, 'Sand', 'Shadow’, 'Storm’, 'Sunset’, Thunder', 'Wector', Vista', 'Vortex',
‘Wolcano']

Retrieve the command line argument
words_to_pick = sys.argv([1]

Create a code name and print it to the screen

code_name = get_code_name{word_list, words_to_pick)
print(code_name)

PaysEE

We've only added a couple of things to our code here to get it working with command line
arguments.

In theget_code_name () function definition, we've added a check to make sure our user
input is something we can turn into an integer using our old friend tlhedigit()

method again. If it fails this check, we immediately return with an error that gets printed
to the screen, and the rest of this function never runs. (Remember: when we return in a
function it exits the function immediately.) If this conditional passes, the first thing we do
next is change this string into an integer so we can use it in our loop as we did before.

The only other line we've added is just below where we create our list of words, which
grabs the command line argument so we can pass it through to tipet code_name()
function.

Now we can run our program via the command line and pass in our user data, which is the
number of random words we want our code name to include. Here is an example from
running the program three times, once requesting a code name with 2 words, once with 3
words, and once using a string which causes our error to appear.

$ python program.py 2

Sunset Volcano

$ python program.py 3

Shadow Blizzard Orion

$ python program.py test

Error: incorrect argument provided. You must provide an integer.

One last thing we need to take into account: what happens if the person running our
program doesn‘t know they have to add an argument?

$ python program.py

Traceback (most recent call last);
File "program.py”, line 29, in <module=
wordsToPick = sys.argv(1]

IndexError: list index out of range

Hmm... that's no good. Let's adjust our code one more time to provide a helpful error for
this case as well.

import random
import sys
Pick a random word from a provided |ist
def pick_random_word{list):
return random.choice(list)

Get a code name made up of the number of words specified

PH%QE

if num_words.isdigit{) == False:
return 'Error: incorrect argument provided. You must provide an integer.

num_words = int{num_words)
code_name ="

for xin range(1, num_words+1}):
word = pick_random_word{list)
code_name+=word + '’

return code_name.rstrip()

List of words to use

word _list = [Aurord, 'Avalanche!, ‘Blizzard', 'Cyclone', 'Eagle’, ‘Edison’, 'Frost,
'Hawk', 'Hexagon', 'Hornet', 'Medusa’, 'Neptune’, 'Orion’, 'Osprey’, Plato’, 'Portal’,
‘Raven', 'sand’, 'Shadow', 'Storm’, 'Sunset’, Thunder', 'Vector', 'Vista', 'Vortex',
"“Yolcano']

if len{sys.argv) = 1:
Retrieve the command line argument
words_to_pick = sys.argv[1]

Create a code name and print it to the screen
code_name = get_code name(word_list, sys.argv[1])
print{code_name)
Blse:
printError: You must provide the number of words as an argument.’)

And let's test our different cases one more time on the command line to make sure we get
what we expect in each situation.

$ python program.py 1

Hexagon

$ python program.py 3

Eagle Sand Cydone

$ python program.py test

Error: incorrect argument provided. You must pravide an integer.
§ python program.py

Error: You must provide the number of words as an argument.

Nice! We have succesfully handled some user input, and validated it. There are lots of
examples of this type of code online, take some time to practice and explore others code.

PHW?

CLI User Input Lab

Take some time to practice and enhance this program per the instructions provided in the
lab steps. Don't be scared to experiment and try your own variations of this program too.

Pagﬁgﬂ

Classes and Objects

There is a style of programming called object-oriented that uses a construct called a class
to create a model of a real-world thing, and then uses that as a kind of template to create
objects from. When we create a class, we define the general way an object is constructed
and how it behaves.

For example, if we think of a real world object like a car, there are some things all cars
have in common. They all have 4 wheels, doors, an engine, and a steering wheel. There are
also some ways in which all cars behave similarly: they can all move forwards and
backwards, they can turn left and right, and they have horns that make a noise in an
emergency. If we were programming a game that needed to have lots of different carsin
it, an efficient way for us to do this would be to create a class to model ail the necessary
attributes of any given car, and any actions all cars should be able to take.

In this section we aren't going to talk too much about the style of object-oriented
programming specifically, but for now let's make sure we know how to create a class, and
how to create objects from them.

Creating an Agent class

Let's create a very simple class that models our agents. In previous sections and modules
we've learned a lot about our team of agents, so let's use some of that information to
create our first class.

class Agent():
name="
hot_ drink="

def speak{self, speech):
print(self.name + ' says: " + speech + ')

def drink{self):
print{self.name + ' drinks a cup of ' + self.hot_drink +'.")
Let's go through our class line by line.

We first start by declaring our class and giving ita nam&lass Agent() :. Everything
that belongs to our class will be indented.

Next, we create 2 variables which our class will need to work properly, but we don't assign
them any values: right now, botiname and hot _drink are both set to be empty strings.

After that we create 2 functionsspeak () anddrink(). In a class, functions are called
methods. The only difference between a function and a method is that a method is part of

Pa%gg

a class, which means we need to call it in a slightly different way, which we'll see in the
next example.

As it stands now, ouAgent () class captures a model of a person who:

= Has a name

« Has a hot drink preference

« Canspeak

« Can drink their hot beverage

Now that we've created our class, how do we use it?

class Agent{):
name="
hot drink="

def speak(self, speech):
print{self.name + ' says: " + speech + '}

def drink{self):
print(self.name + ' drinks a cup of ' + self.hot_drink + ')

agent_g = Agent()
agent_g.name = 'Agent Q'
agent_g.speak("Hi, I'm Agent Q!")

After we've defined our class, once we want to start making use of it, the first thing we do
is instantiateour class withagent_q = Agent(). Here, we create an objectusing our
class as a model, and call that objectagent_q. This object is a littie self-contained

“thing" that has all the attributes and methods associated to it that we defined in our
class. As programmers, we would refer to thisbjectas an instance of a class

In the next line, we take our new objecagent_q and set a value for the variablename
that we left as an empty string when we created the classgent_qg.name = 'Agent
Q'. Notice our notation here: we usedot notatiorio set the value of a class variable.
Variables that are accessed on objects like this are called attributes

Finally, we use one of the methods we created in our class - again, we use dot notation to
access it because we are interacting with our objectagent_q. speak("Hi, I'm Agent
Q™).

Here is the output that's generated when we execute this code:
Agent Q says: "Hi, I'm Agent Q!"

Understanding self

MNotice how we refer to the attributes we created in our class? When we want to use the
name attribute within one of our methods, we useelf. name. Why do we do this? The

i

self argument in the class refers to itself - the object the class creates. By calling
self.name andself.hot_drink within our methods, we're telling the methods to look
outside the method itself, but stay within the class when trying to find the variablesme
and hot_drink. It's a way of determiningscopeit tells Python to stay within the scope

of this class.

This is also whyself is the first parameter of every method we define inside our class:
within a class, every method needs to understand the entire class it's part of. In Python,
we must declareself as the first parameter of the methods in our class, otherwise the
methods are unaware of the other methods and attributes that are also available within
the class. Sodef speak(self, speech) has 2 parametersself, by default because
all class methods haveself, and a second one,speech, which we use within just this
method. Notice that when we refer to thepeech parameter within thespeak () method
that we don't useself? That's because the scopeof this variable is inside the methody
not usingself here, Python knows when running this code that it should only look for a
variable or parameter called speech within this method.

Any time you need to reference somethingnsidethe class but outsidethe method, you'll
need self.

When we call our methodspeak () later on ouragent_g object, notice that we skip right
over the firstself argument and only add the second, in this case the text we want to
pass as ourspeech argument? Python is a bit picky: it wants us to always addelf as a
first parameter when we declare the method, but doesn't want us to add it as an
argument: it does this for us automatically every time we call the method.

Creating multiple instances

The real power of classes and objects is the ability to create more than one object at a
time. Each objectis like a copy of the original empty class, and entirely independent of
any other objects that we might have previously created using this class as our model.

class Agent():
name = "
hot_drink ="

def speak(self, speech):
Priﬂl{'.-'.ﬁlf.nama $! Sa"lll’s:' " ﬁﬂaﬁth + '"'}

def drink{self):
print(self.name + ' drinks a cup of ' + self. hot_drink +".")

agent_q = Agent()
agent_g.name = ‘Agent Q'
agent_qg.hot_drink = 'decaf coffee’

agent_m = Agenty)

agent_m.name = 'Agent M'
agent_m.hot_drink = 'Earl Grey tea’

F‘qutﬁﬂl

agent_g.speak("Hi, I'm Agent QI")
agent_m.speak{"Hi, nice to meet you. I'm Agent M.")
agent_g.drink()
agent_m.drinki)

In this example, we've created 2 different objects using our dass, 1 calledgent_gand 1
called agent_m. We've given each one an appropriatename attribute.

Then we get them to speak to each other using thepeak () method. Notice that each
object still knows its own uniquename attribute when thespeak() method is run. Setting
agent_m.name = 'Agent M' doesn't affect how we've seagent_q.name. They're
modifying different objects.

Agent Q says: "Hi, I'm Agent Q"

Agent M says: "Hi, nice to meet you. I'm Agent M."
Agent Q drinks a cup of decaf coffee.

Agent M drinks a cup of Earl Grey tea.

Object constructors

Each time we created a new instance of our clasf.gent () above, we had to first assign
its attributes. This is a little bit tedious, so let's update our class and add anobject

constructorThis will let us both instantiate our class and assign our key attributes allon 1
line.

class Agent{):
name ="
hot_ drink = "

def __init__(self, name, hot_drink}):
self.name = name
self.hot_drink = hot_drink

def speakiself, speech):
print(self.name +' says: " + speech + ")

def drink{self):
print{self.name + ' drinks a cup of ' + self.hot_drink +".")

agent_q = Agent{'Agent @', 'decaf coffee)
agent_m = Agent('Agent M', 'Earl Grey tea’)

agent_g.speak("Hi, I'm Agent Q!")
agent_m.speak("Hi, nice to meet you. I'm Agent M.")
agent_g.drink()

agent_m.drink()

We've added a new method to our class, the constructor method. This method has a
special name, and if we use it, it should be the very first method we define in our class. As

e

its name "constructor” implies, it helps us "construct” the class more quickly.

The constructor method uses a strange looking name:init__ (). That's 2 underscores,
followed by 'init’, followed by 2 more underscores. This is to make sure this special
method never confiicts with any other method you might have in your class.

We give our__init__ () method 3 parameters here. The firstiself... becauseself is
always the first parameter of a method, and this one follows that rule. Then we also give it
name andhot_drink.

Inside this method, we use these parameters to set the attributes of the object:
self.name = name andself.hot_drink = hot_drink. Here's how we see some of
our scope atworkself.name refers to the variable outsideour constructor method but
insidethe class, while name in this method refers to the parameter. This is whgelf is
important: it differentiates from thename inside the method and thename inside the
class.

Now, when we create an object, we also pass the values we want as attributes into the
object as parameters. The first thing that happens when we instantiate a class is that itis
constructedand so Python will runthe _init_ () method automatically every time we

create a new object, using the arguments we specify at this time.

The output of this new revised code is exactly the same as the output of our previous
version, but we've saved some lines and created much nicer looking code.

Modifying object attribute values

Let's add a few more attributes and methods to our class.

class Agent():
mmﬂ = "
hot_drink ="
cases_total=0
cases solved=0

def __init_ (self, name, hot_drink, cases_total, cases_solved):
self.name = name
selfhot_drink = hot_drink
self.cases_total = cases_total
self.cases_solved = cases_solved

def speak(self, speech):
prlnt{saff.name + 'wg: " 4 SFIE‘Eth + ““J:

def drink{self):
print(self.name +' drinks a cup of ' + self.hot_drink +'.')

def get_total_cases(self):
print{self.name + ' has a total of ' + str(self . cases_total) + ' cases.’)

def add_new_casa(self, number}):

PibY>

if{number > 1);
print{self.name + ' has been given ' + str{number) + ' new cases.')
else:
print{self.name + ' has been given ' + str{number) + ' new case.’)

def get_solved_cases(self):
print{self.name + ' has solved ' + str{self .cases_solved) + ' cases.)

defsolve caseself, number):
self.cases_solved += number
i (number = 1)
print{self.name + ' has solved ' + str(number) + ' cases, wowl")
else
print{self.name + ' has solved a case, great jobl')

agent_g= Agent{'Agent Q', 'decaf coffee’, 20,12)
agent_g.speak("Hi, 'm Agent QI")

agent_g.get_total_cases()
agent_gadd_new case{Z)
agent_g.get_total_cases()

agent_g.get_solved cases()
agent_g.solve casall)
agent_g.get_solved cases()

In this example, we've added 2 new attributescases_total and cases_solved. We've
also updated our constructor to automatically set those attribute values when we
construct the object.

We've also added a few new methods to work with these new attributes. We can now
request some stats about Agent Q's total and solved cases usimgpt_total _cases()
and get_solved_cases().

We've also created 2 more methods that let us update attributes of our object. Now when
Agent Q gets assigned a new case, or solves a case, we can simply caltid_new_case()
orsolve_case() on ouragent_g object, and these attributes will get updated.

anbhﬂd

Class and Objects Lab

Classes and Objects are used on object oriented programming to increase the efficiency
and speed of creating programs. Try you hand and using classes and objects.

by

Exceptions

As we've been working through learning Python, you've probably noticed a certain pattern
in the way we get errors shown to us.

Let's cause an error on purpose and take a closer look at the format of our errors.
print{5/0)

This code will create an error, because we can't divide 5 by 0: mathematically, it doesn't
make sense to divide a number by 0. That doesn't stop us from writing in code though, so
what happens when we try to run this program?

$ python program.py
Traceback (most recent call [ast):
File "program.py”, line 1, in <module>
print{5/0)
ZeroDivisionError: integer division or modulo by zero

This is a traceback errorThese are helpful to us, because they give us additional
information about what went wrong in our code. Looking at this error, here's what we
know:

* The error happened in the "program.py" file, on line 1.

« [t happened somewhere around therint(5/0) code execution.

« A particular exception was thrownZeroDivisionError, and a more friendly
message follows this to explain what went wrong.

An exceptionis a special kind of object that Python uses as part of its error management
system. Whenever an error happens, Python creates an exception object and, by default,
halts the execution of the program as soon as the exception is generated. This is great
when we're building code... but not so great when code is in production. We don't really
want our users seeing our exceptions. Also, sometimes we don't necessariganiour code
to just stop immediately: in some situations it's better to log the error, then allow the
program to keep executing. Or sometimes the detection of an exception can be built into
the program itself, using an exception as a decision point to move the user down a
different logic path.

We can use a try-catch blocko handleexceptions that we suspect might crop up in our
code.

try:
print{5/0)

108"

" except ZeroDivisionError;
print{"You can't divide by zeral")

Now, instead of seeing the exception code and traceback, when we run this the error will
still occur, but we'll see our custom message printed out.

% python program.py
You can't divide by zero!

Let's try something more complex to show how useful catching exceptions can be, by
building a program that takes 2 numbers from user input and divides them.

print{'Please give me 2 numbers and I will divide them.")
print{'Enter "g" to quit\n')

while True;

first_number = raw_input{'First Number: ")
if first_number =="q":
break

second_number = raw_input{'Second Number: ')
if second_number =='g";
break

answer = int{first_number) / int{second_number)
print{'Your answer is:' + str{answer))
print('Give me anotherfin')

print{'Ok, bye!')

This code accepts 2 numbers from the user, and then divides them and returns the

answer. After it is successful, it will go back and run again, prompting the user to start
over, until the user types "q" to quit

So now, if we enter "5" as our first number and "0" as our second number, we once again

get our exception and the program crashes. Let's add a try-catch block so our program can
keep running in this situation.

print{'Please give me 2 numbers and I will divide them.)
print{'Enter "g" to quit\n')

while True:
first_number = input({'First Number: ')
if first_number =="g":
break

second_number = input('Second Number: ']

if second_number =='g";
break

F‘m;IW?

answer = int{first_number} / int{second_number)
except ZeroDivisionError:
print{"fou canVt divide by zerol Lef\'s start again.')
elsal
print{"Your answer is: ' + strianswer})
print{'Give me anotheri\n’)

print{'Ok, byel')

Here we've added a try-catch block. First we try to do our division. If it doesn’t work and
there's a ZeroDivisionError thrown, we catch that exception and print a nicer error
message to the user, then invite them to start again. If we see this message, the while loop
will then pick up from the beginning for a fresh run.

If the division is successful, then the user moves down to theelse block, where their
answer gets printed and we see the 'Give me another! message, before the while loop
restarts.

Here's how it looks to a user now if they run this program and try to divide 5 by 0.

$python program.py

Please give me 2 numbers and I will divide them.
Enter "q" to quit.

First Mumber: 5

Second Mumber: 0

You can't divide by zero! Let's start again.
First Number:

That's a lot nicer!

108"

Exceptions Lab

Let's take some time to experiment with exceptions. Try the lab, buttry creating some of
your own exceptions too! This is a great general chance to practice programming.

"oy

Programming 3

0

Contents

Now we can build much more interesting programmes. We will use sockets to connect to
the network, write files and allow multiple tasks to occur at once.

In this module, we will be covering:

Reading and writing files

Creating and using TCP and UDP sockets

The concept of threads and how to make a program multi-threaded
How to create a port scanner

Poge

Reading and Writing Files

An extremely useful feature of Python in particular is how easily it lets us work with other
types of files, in particular files that contain textin various formats. Python is often the
programming language of choice for scientists and researchers, in part because of how
easy it is to work with other files.

Reading from a file

Here's a code sample where we print out text stored in a separate file, called file.txt. This
file isn't a Python file (note the extension .txt instead of .py) but Python still lets us open
up the file and manipulate the contents.

with open{file.n) as file;
content = fileread|)
print{content)

This 3 lines of code shows how easy it is to read the content of a file. We create a with
block: with open('file.txt’) as file: which asks Python to open the file in the same directory
as our program, which is called "file.txt", and create an object for that file which we have
called - imaginatively - "file". We didn't have to call it that, we could have called it
"unicorn” if we wanted, but since we like to use sensible names when programming "file"
seemed appropriate.

Notice the indention for the next 2 lines? Because we have opened the file with a with
statement, anything we want to do with the file has to be part of the indented block. As
soon as we go outside our indention, we lose the file: it will get closed automatically once
the indented block is finished executing.

Next, we use the read() method on the object file we created, which will go into the file
and get all the content, which we assign to a variable called content.

Then, we print the value of content to the screen, which will be a copy of the content of
the text file.

Here's what the output looks like.

$ python program.py
Hello, I'm some text inside a file,

Files as user input

o

In a previous module, we talked about 2 different ways to get user input in Python: using
the input() function, and by passing command line arguments and using sys.argv.

As you can see, files are another way of incorporating user input into our program. As a
result, we need to treat reading files with the same suspicion as we treat all forms of user
input. As soon as we let it enter our program, we must be very careful to keep it well-
controlled and assume the person who created the file might be an attacker. Always be
cautious when allowing user input of any kind into your program - and that includes
reading files.

Writing files

Python also lets us create new files and write data into them. If we wanted to create a file
called "file.txt" that has the text "Hello, I'm some textinside a file", how would we do it?
It's very simple, and follows the same pattern we used to read a file, except we use the
write{) method instead of the read() method, and need to pass one more argument to our
open() function.

with open{'newFile.oxt’, 'w') as file:
file.write("Hello, I'm some @xt inside a file.")

Here, we've passed two arguments to open() function. The first, as before when we read
the file, is a filename. Except this time, it's the name of the new file we want to write to.
We also pass aw as a second argument. This tells Python we want to "write” to the file.
More importantly, it tells Python we would like to overwrite the content of the file if it
already exists. So if that "newFile.text" file already exists and it has important
information in it... oops! It will be gone if we run this program, and overwritten with the
text string we specified.

So what if we don't want to overwrite the file contents, but rather just add our text to the
bottom? We can indicate that using a as our second argument instead of w, which stands
for "append".

with open('file.tet') as file:
content = file.read()
print{content)

print"n—in’

with openi'file.txt’, 'a') as file;
file.write("\nHello, I'm some text inside a file.")

with open('file.txt') as file:

content = file.read()
print{content)

ik

Here, we've read the content of a file and printed it out, then printed out a divider so we
can see the content of the file before and after we append to it.

Next, we append some content to the file, using a instead of w so we don't overwrite the
content that's already in the file.

Finally, we read the file after we've added our text to it, and print this content to the
screen.

$ python program.py
Don't overwrite me, I'm important!

Don't overwrite me, I'm important!
Hello, I'm some text inside a file.

There are a few other options when we're reading and writing files besides a and w. Here’s
the full list:

'r: Open the file for reading only.

'r+" Open the file for reading and writing. Any text written will overwrite the
contents of the file, starting from the beginning of the file.

‘w': Create the file if it doesn't exist. If it exists overwrite it and open for
writing.

'w+': Create the file if it doesn't exist. If it exists overwrite it and open for
reading and writing.

‘a'; Open the file for writing only (create itif it doesn't already exist) Anything
written will be appended to the end of the file.

'at+': Open the file for reading and writing (create it if it doesn't already exist),
Anything written will be appended to the end of thefile.

iy’ &

Sockets in Python

A socket allows us to make and receive network connections, which is a very useful thing
for cyber security practitioners to be able to do. In particular, it's great to be able to
quickly create a little socket that sends information or listens for specific information we
can send to it.

TCP Client

Let's create a simple TCP connection using Python and the socket library.

import socket

client_socket = socket.socket{socket AF_INET, socket.SOCK _STREAM)
client_socket.connect{('127.0.0.1', 1337))

client_socket.send(b"Do you want to play a game?n”)

received = dient_socket.recv(1024)

print(received)

client_socket.close()

First, we import the socket library, which is part of Python's standard library.

Next, we create a socket object, which we've called client_socket here. When we construct
the socket, we pass 2 arguments: socket. AF_INET and socket. SOCK_STREAM.

The argument socket.AF_INET means this socket is going to use IPv4 and not IPvé or, say,
Bluetooth. For IPv6 we would use socket.AF_INET6. If you're interested in the other types,
you can have a look through the socket library documentation to learn more. For our uses,
we typically just need an IPv4 socket, so we'll stick with that one.

The second argument we use is socket.SOCK_STREAM, which is how we tell the socket to
use the TCP protocol and not the UDP protocol. If you wanted to make a UDP connection,
you could use socket.SOCK_DGRAM instead.

After we've created the kind of socket object we want to use, we initiate a connection with
our socket using the connect() method. Here we provide a tuple - remember tuples are
similar to lists, but are immutable (notice the double round brackets) - which contains
the IP address and a port number to create our connection.

Next, now that we have a connection, we use the send() method to send some data over
the connection. In this case, we send the byte object "Do you want to play a game?" as
well as the newline character \n. We do this because the send() method doesn't
automatically add this newline character.

A byte object is just a binary representation of the string, this is what tHebefore the
quotations comes in. It means we want to convert that string into a byte object.

Sl

In order to receive information back from the connection, we use the recv() method,
storing the return value of this in the variable received. Notice we use the argument 1024
in our recv() method? This is the maximum number of bytes we'll allow at once.

After receiving any incoming response data and storing it in the received variable, we
then print this content out so0 we can see what it is.

Notice the response we receive is also a byte object You'll be able to see the response
would be for example:b"Yeah!"

Finished with our socket, we close the connection using the close() method on our socket
object. This initiates the TCP teardown process. If we don't close it like we have done here,
the socket will eventually close on its own due to a timeout, but this can take a long time.
It's more efficient to remember to close the socket.

Let's look at one in action.

malnuseraubuntu:=~% nc =nvlp 1337 <

Listening on [0.0.0.0] (family @, port 1337)
Connection from 127.6.0.1 47338 received!

Do you want to play a game?
mainuseraubuntu:-% |

malinuser{@ubuntu: ~

File Edit View Search Terminal Heip

mainuseraubuntu:-~% python tcpclient.py
b'Yeah!\n'
mainuseraubuntu:~% .

Here, we've opened two terminal windows. In one, we've used a Linux tool called 'netcat’
to create a server listening on TCP port 1337: nc -l 1337. In the other window, we've run our
python script above.

When the Python script runs, it makes the connection and sends "Do you want to play a
game?", which we pick up with the netcat server we created in the top terminal. After
seeing the message we were sent, in the netcat window we type "Yeah!”, and this was sent
back to the Python script, which was received and subsequently printed before the socket
was closed.

TCP Server

Now that we know how to initiate a connection with TCP, let's look at receiving
connections, which is essentially what a server does.

import socket

g

server socket = socketsocket{socketAF INET, socket SOCK STREAM)
server_socket.bind{{"0.0.0.0", 1337))
server_socket.listen{10)

while True:
conn, addr = server_socket accept{)
conn.send(b"Do you want to play a game?\n")
received = conn. recy(1024)
print{received)

server_socket.close()

Once again we need the socket library, and we also need to create a socket object: here
we've called our object server_socket. This time, we use the bind() method instead of the
connect{) method, which allows our program to take ownership of the IP address and port
number in the tuple we pass in as an argument, if it's not being used by any other
program. Here, we use 0.0.0.0 as the IP address to listen on, which here is asking the
program to listen on every IP address assigned to the computer it's running on.

Next, we use the listen() method, which does exactly what you expect: it allows the server
to listen on the port it has bound to.

The next part is interesting: here we've used an infinite loop, on purpose. Here, it means
that, once we have sent and received information, it will start over. The server will be
available for the next connection and will never quit, unless we manually quit the server
using the ctrl + ¢ keys on our keyboard.

Within our infinite loop, we use the accept() method to establish a connection with a
client. When we accept a new connection successfully, send the string "Do you want to
play a game?\n" and then wait for a reply. Once again we see the recv() method being
used to receive a response and store that response in the variable received which we
then print to the screen.

After we've received that data and printed it out, the loop finishes and re-starts, allowing
us to wait for the next connection request to come in.

Let's take a look at how this works in practice.

mainuseraubuntu:-% nc 127.6.8.1 1337
Do you want to play a game?
Nope!

malnuser@ubunktu: -

File Edit View Search Terminal Help

mainusergubuntu:~% python tcpserver.py
b'Nope!\n'

P77

Here again we have two terminal windows. This time, the bottom window is our TCP server,
which we ran first. Then we used 'netcat’ once again - this time to make a connection to
our server instead of listening for a connection, notice our command is slightly different
here: nc 127.0.0.1 1337.

Once the connection is made, the server immediately sends the query, "Do you want to

play a game?" and waits for our response. We type 'Nope! and this is sent back to the
server, which prints it out.

gyt

UDP Client

Creating a UDP socket is similar to the TCP socket we created in the previous section.

import socket

client_socket = socketsocket{socker AF_INET, socket. SOCK DGRAM)
client_socket.sendto(b"UDP is connectionless..\n", ("127.0.0.1", 1337))

Once again, we need the socket library, and the socket object needs to be created, here
called client_socket. This time, we are using socket.SOCK_DGRAM as our second argument,
which we mentioned previously is for UDP.

Notice there is no connect{) method: this is because UDP doesn't have connections. With
this protocol, we just send data and hope it gets to the other side. This is also why we use
a different method for sending, sendto(), which forces us to send the tuple containing the
IP address and port number along with every message. Because there is no connection to
re-use, we have to specify the destination every time.

Here's how it looks in practice.

mainuseraubuntu:-

mainusergubuntu:~% python udpclient.py
:]

mainus

File Edit View Search Terminal Help

mainusergubuntu:~%$ nc -u -1 1337
UDP 1is connectionless...

In the terminal window above, we've used netcat to set up a server as before, but with the
addition of -u parameter in the command: nc -u -l 1337 because we want a UDP server. In
the bottom terminal window, we've run our example script, and we see the server gets the
data we sent.

Sl

UDP Server

Setting up a UDP server is comparatively easier than setting up a TCP server.

import socket

server_socket = socketsocket{socker AF_INET, socket SOCK_DGRAM)
server socket.bind(("0.0.0.0", 1337))

while True:
data, addr = server_socketrecvfrom(1024)
print{data)

We create the UDP socket object, here called server_socket. Next, we bind to the UDP port
1337, listening on any IP address assigned to this computer - it looks very similar to how
we created the TCP server.

Again, we have an infinite loop so we can keep sending stuff to the server and it will keep
printing it. Then we receive using the recvfrom() method, which takes a maximum number
of bytes allowed to be sent: in this case, 1024 bytes.

Notice we have passed two arguments to recvfrom() here? That's because it returns two
values: data which is the contents of the UDP packet, and addr which is the address the
packet came from. So if you want to fire some packets back, you know where they should

go.

mainusergubuntu:~% python udpserver.py
b'sending mah UDP packets!\n'

File Edit View Search Terminal Help
mainuseragubuntu:~% nc -u 127.0.0.1 1337
Sending mah UDP packets!

Our top terminal window is our UDP server, in the example above. The bottom window is
using netcat to send UDP packets: nc-u 127.0.0.1 1337. We typed into netcat "Sending mah
UDP packets!" and it was received by the server, which printed it.

g

Threads

Normally when you run a program a single process is created, which is the code running in
memory. The problem is, by default, the program can then only do one thing at a time.

Let's revisit our TCP socket server example from a previous section.

import socket

server socket = socketsocket{socket AF INET, socket. SOCK_STREAM)
server_socket.bind{("0.0.0.0", 1337))
server socket.listen{10)

while True:
conn, addr = server_socket.accept])
conn.send{b"Do you want to play a game?\n")
received = conn.recy{ 1024)
print(received)

server socket.close()

Before anyone connects to the server, the code will be waiting to accept a connection on
line 8, conn, addr = server_socket.accept(). Once anyone connects to it, the code will be
waiting on line 10 at received = conn.recv(1024) to accept input from the computer that
connected to it. The recv() method is blocking, which means that the program halts at this
point and won't proceed until it receives data and is able to execute this step.

If connection A has been made, but no response has been received, and meanwhile
connection B tries to initiate a connect... connection B won't be able to proceed, because
our code is executing on 10 with connection A. Our while loop can't restart because it
hasn't completed.

Check it out in the example below.

F‘HWI

python tcpserver. py

» Nc 127.0.0.1 1337
Do you want to play a game?

» nc 127.0.0.1 1337

In the first terminal, we run our TCP server.

In the second terminal, we connect to the TCP server on port 1337, and we get the message
"Do you want to play a game?" as usual, but we don't type anything. So the server is now
executing line 10, waiting for the first user to type something.

In the third terminal, we try to connect again to the TCP server on port 1337, but we can't
because the TCP server is still stuck on line 10, waiting for a response from the second
terminal window user before the loop can complete and restart, allowing it to receive
another connection.

Making programs multi-threaded

This is the kind of problem that threads can solve. If we use threads in our program, we
are making our program multi-threaded. By using threads, we can tell our program to
create a separate process for a chunk of code that the processor will execute
independently from the main body of code.

Let's fix our TCP server to make it multi-threaded.

import socket
import _thread

Thread handler

def handlericient_sock, address):
client_sock.send(b"Do you want to play a game?\n")
data = client sock.recvi1024)
printirepriaddress) + " said: " + data.decode(})
client_sock.close()
print{repriaddress) + " connection ended.")

Set up our server
server socket = socket.socket{socket AF INET, socket. SOCK STREAM)

g7

server_socket.bind({"0.0.0.0, 1337))
server_socket.listen{10)

Run the server with threads
while True:
print{"Server listening for connections...")

client_sock, address = server_socket.accepty)
print{"Connection from: " + repriaddress))

_thread start_new thread(handler, (client seck, address))

Let's go through this line by line.

In addition to importing our socket module, we also need to import the thread module,
which is also part of the Python standard library.

Next, we create the function handler() which accepts a socket object and an address as
parameters. We create this as a separate function because it needs to be able to execute
separate from the main program in order to be threaded.

Inside this function definition we have the code that sends our message "Do you want to
play a game?" and waits to receive a response. Notice this time we are also using the
address variable to print out who we're communicating with. We use the repr{() function
with the address variable, because the information stored in address at this time will be
a tuple. In order to print out the content of a tuple, we first have to transform it into a
string, which we can do with repr().

Now to the main body of the program.

We create a socket object as before and hold it in our server_socket variable, bind it to
0.0.0.0 on port 1337, then listen for connections. This is exactly the same as when we
previously created a TCP server.

Next is our infinite loop where we can accept a new connection. Here, as soon as a
connection comes in, we create a new thread using thread.start_new_thread(). This
function accepts 2 parameters: our handler() function name, and also a tuple, which
contains the 2 variables we need to pass to our handler, client_sock and address, which
we received from accepting the connection.

That thread can now work independently from the rest of the program. With that thread
created and the connection "handed off" to our handler() function in its own thread, our
while loop can now finish, and immediately re-start, awaiting the next connection.

Let's see it in action!

F‘HWB

mailnuseraubuntu:~$ python tcpserver.py
Server listening for connections...
Connection from: ('127.0.0.1', 47460)
Server listening for connections...
Connection from: ('127.0.0.1', 47462)
Server listening for connections...
('127.0.0.1', 47460) said: yes

1', 47460) connection ended.
.8.0.1", 47462) said: no

.0.0.1°, 47462) connection ended.

mainusergubuntu:-%$ nc 127.0.60.1
Do you want to play a game?

File Edit View Search Terminal Help
mainusergubuntu:-$ nc 127.0.6.1
Do you want to play a game?

no

After running our example code in the top terminal window, the server was listening for
new connections. In the second window, we connected and received the message "Do you
want to play a game?" and the server was waiting for a response. Without providing a
response, we connected in the bottom terminal window and also received the message
"Do you want to play a game?", which is already better than what we had before.

We then went to the second terminal window and sent back 'yes' to complete the
connection, and in the bottom terminal window, we typed 'no' to complete the
connection.

Finally, we re-connected from both terminal windows at the same time and received the
"Do you want to play a game?" message on both without typing anything in response.

Our TCP server is now multi-threaded and can allow multiple people to connect to it at
the same time,

This is just scratching the surface of threads. There are many more applications and many
more restrictions on threads, but it is an immense topic that even many university
students struggle with. Unless you are writing specialised or very advanced software, it is
unlikely that you'll need to go deeper into threading than this.

Eria

Create a Portscanner

We aren't done with Python yet, but we're far enough into it that you should now be able
to create simple programs.

In cyber security, we often need to know what ports are listening on a target system. To do
that we use a tool called a port scanner. At the most basic level, a port scanner is a tool
that will try to connect to ports on a target system and report back about which ones are
open or not.

Go ahead and try to make one now. You will need to do a little research using a search
engine to learn about the connect_ex() method available for socket objects in the socket
module. We haven't used yet anywhere in this course, but it will likely be very helpful as
you try to create your own port scanner.

You can test your code by scanning the IP address 127.0.0.1. You should notice some open
ports.

Try to create your program without looking at the example solution below and see how far
you get!

Example solution:

import socket

print("Please enter an IP Address to scan.")
target = input{"> ")

print("*" * 40)
Prin“n* S:Eﬂnlng: "o target + 1 i-ﬂ}
print("*" * 40)

for port inrange(1, 10255
5 = socket.socket{socket. AF_INET, socket.SOCK STREAM)
result = s.connect_ex((target, port))
if result ==0:
print{"Port: * + str{port) + " Open")
s.close()

Taking it further

If you fiew through that problem and you want a tougher challenge, here's an extra stretch
goal for you. Don't feel obliged to do it if you struggled: if we were keeping score, this
would be for bonus points!

You may have noticed your portscanner is really slow. Why is this?

F‘HWE

If a port is closed, your portscanner has to wait for the maximum timeout on the
connection before it can say for sure that it isn't open. The problem here is that it can
only really do one port at a time, so the more open ports, the slower the whole process.

To speed things up, try using what we learned about threading. You may want to do some
research into queues and multiprocessing to solve some common threading pitfalls if you
run into problems.

Good luck!

"928°

Programming &

Faqﬁl?’z?

Contents

Now that you can build more powerful programmes we will explore conventions and
strategies to build effective, maintainable and clear programmes.

In this module, we will be covering:

Python's documentation and how to use it

The importance of style and Python's PEP 8 style guide

Defensive programming

Procedural vs object-oriented programming paradigms

Programming tips to get you started writing your own programs, to help you debug,
and to help you recognise common "code smells”.

i

Using Python Documentation

So far we've been highlighting which functions to use in our example programs, but as you
start to write your own programs, you'll need more than what we've covered in this course
to solve some of the problems you run into. Knowing which standard Python functions
exist, which to use when, and how they work is something that comes from a combination
of practice, research, and knowing where to find the common reference documents.

Python has an extensive documentation, which lists out the standard provided objects,
functions, and methods, as well as the parameters they accept and the values they return.
This documentation is very useful: experienced programmers have to look up information
all the time, in particular when they need to use some of the less-frequently used Python
tools in their work.

The first step is to look up the documentation for the version of Python you have installed.
We can find out which version we have by bringing up the Python interactive console,
accessed by running python on its own in the terminal.

mainuser@ubuntu:~$ python

Python 3.6.9 (default, jul 17 2020, 12:50:27)

[GCE 8.4.0] on linux

Type "help","copyright”, "credits” or "license” for more information.

S5 qu}ﬂl]
mainuser®@ubuntu:~%$

In the above example we are running Python 3.6.9. To exit out of the Python interactive
console, you need to use the quit() function, which is also pictured above.

So now let's find the documentation for Python 3.6 with a Google search. We quickly get a
result of: https://docs.python.org/3/

As an example, let's take a function from the math library and see if we can find out how
to use it from the documentation alone. Let's say we want to do a calculation such as 2 #
18 (2 to the power of 18).

We typed in 'power’ into the quick search in the documentation, and the third result from
the top was "math - Mathematical functions”. That sounds promising!

Clicking on it takes us to the page with a bunch of mathematical functions in it. Scrolling
down, or using your browser's find tool to find "power" on the page reveals the below text.

math,pow(x, y)
Return x raised to the power y. Exceptional cases follow Annex 'F' of the €99 standard

as far as possible, In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even
whenx is a zero or a NaN. If both x and y are finite, x is negative, and y is not an

F‘uwg

Unlike the built-in ** operator, math. pow{) converts both its arguments to type float.
Use** gr the built-in pow() function for computing exact integer powers.

That is quite a lot of information. First of all, we can see that there is a built-in ** operator
that we could use instead of this function.

E.g.2%*18

mainuser@ubuntu—~$ python

Python 3.6.9 (default, Jul 17 2020, 12:50:27)

[GCC 8.4.0] on linux

Type "help","copyright”, "credits” or "license” for more information.
e L I

262144

>3

That could work. What other options do we have?

There is also a built-in pow() function, which could also work.

mainuser@ubuntu~$ python

Python 3.6.9 (default, Jul 17 2020, 12:50:27)

[GCC B.4.0] oh linux

Type "help”,"copyright”, "credits” or "license” for more information.
>>> pow(2, 18]

262144

>

And finally, there is this math.pow() function, which is similar to pow() except it converts
both of the arguments it receives to fioats (remember, these are numbers with a decimal

point).

mainuser@ubuntu~% python

Python 3.6.9 (default, Jul 17 2020, 12:50:27)

[GCC 8.4.0] on linux

Type "help”,"co ﬂyright". "credits” or "license” for more information.
=>> |mport mat

>>> math, pow(2, 18)

2621440

i

Notice the decimal point at the end of the result in this third example. It's a small, but
subtle difference and one we would likely never have known about without reading the
documentation.

I%b°

The PEPS8 Style Guide

Different programmers often have their own styles of programming. How we decide to
name our variables, how we use comments, how long we let our lines get before we start
adding line breaks, even the epic space vs tab debates you may have seen between
programmers are all about style.

If we all only ever worked along on our own individual projects, we probably wouldn't
argue so much about style because who would care? If the only code you ever saw was
your own, and your style works for you, great! The problem is that, almost inevitably,
programs we write will be read and worked on by more than 1 person. This is when style
becomes an important - and often fought over - point.

If two programmers have a very different style of writing code, including different ways of
naming things or constructing things, and they work on the same project... the code can
quickly become a nightmare to work with. Remember: code is for humans. If the code in
your program isn't easy for humans to read, then it's not doing an important part of what
it was designed to do. The reason we don't tell computers what to do in binary or
assembly is because these languages are difficult for humans to read and understand. The
computer doesn't care what you name a variable or whether you use 2 spaces or 4 spaces.
But humans do, because humans are the ones trying to read and understand what the
program does.

PEP 8 Python Style Guide

Many programming languages have preferred style guides. Often, these style guides fiow
from the programmers who created the language, and suggest conventions that are
consistent with how the language works behind the scenes.

Python has such a style guide: the current version is the PEP 8 Python Style Guide **which
you can find at https://www.python.org/dev/peps/pep-0008

This style guide is frequently used by programmers in order to make their code accessible
and readable to a large number of other programmers. It contains conventions and style
rules that help make Python code generally more readable to humans if followed.

For example, here are some of the style conventions in the PEP 8 style guide:

Indention should use 4 spaces

Lines should be limited to a length of 79 characters

Use of whitespace in expressions and statements

When and where to use block comments vs inline comments vs documentation

strings

. 1Il.:'.aris.:;:ﬂlles and functions should be named in lowercase with words separated by
underscores

* Classes should be named with CapWords convention.

F‘HWI

These are just some of the style rules called out in the Python PEP 8 style guide.
Consistency is important

Whenever we're programming, whether it's something only we are working on alone or a
larger project we're working on with other programmers, we should always make our style
as consistent as possible. Pick a naming convention for your variables, functions,

methods, and objects and stick to it. The most important thing about style is not whether
you use camel case or underscores or tabs or spaces, it's that the program has a
consistent style. Consistent style makes the code easier to read and understand.

This is important even when we build code that will only ever be used by ourselves. It's
likely we'll write a program, and then put it away for months or even years before we have
to take it out to debug a problem or modify it for a new purpose. Months or years later
you're practically a different person: who knows what past you was thinking! Future you
will thank past you for creating code with a consistent style, making it easier to read,
understand, and modify later.

Sometimes, consistency means we have to bend or break our own personal style rules
when we work on someone else's code or work with a team. If we follow PEP 8 rules in our
own code, but join a team where they follow a different set of style guidelines when they
write Python code, we should always remain as consistent as possible with the existing
style. We might think PEP 8 is better than what's there, but what is always worse is mixing
multiple styles together. If we refuse to break our "4 spaces forever” rule when we join a "2
spaces” style team, we make the code worse and more difficult to read for everyone.

F‘HWE

Defensive Programming

Defensive programming isn't really a paradigm like procedural or object-oriented, butitis
a way of programming that tries to expect the unexpected, in order to prevent bugs and
unexpected behaviour from occurring.

Assertions

For example, let's consider a function which takes an integer value and does something
with it. When we wrote the function, we expected only positive numbers would be passed
in.

If later on we forgot about this assumption and pass in a negative integer, the function
may not break, but it might cause a subtle error in your program further down the line,
which could take a long time to notice and sort out.

Wouldn't it be better to check within your function if the value passed in was negative,
and throw an error with a useful error message at that time? The program would stop
working, but we'd know clearly why it stopped working. This is often better than
introducing a subtle bug that is difficult to spot.

def no_negativesinumber):
assert number == 0, 'negative value passed to the no_negatives) function!’
print{number)

no_negatives(s)
no_negatives(-2)

And here's the output when we run this code:

$ python program.py
5

Traceback {most recent call last):
File "program.py”, line 7, in <module>
no_negatives(-2)
File "program.py”, line Z, in no_negatives
assert number >= (, 'negative value passed to the no_negatives() function!'
AssertionError: negative value passed to the no_negatives() function!

Notice we have a useful error message here that tells us exactly why the program stopped
working. The assert function will cause the program to crash with the error message we
provided if a condition is not met. In this case, if the integer passed into the function is
not 0 or more, then the program will crash.

We can also do multiple assertions like so:

F‘HWB

def no_negatives{number):
assertisinstance{number, int), 'non-integer value passed to noMNegatives()
function!'
assert number == [, 'negative value passed to the noNegatives{) function!'
print{num ber)

no_negatives(s)
no_negatives("hello")
no_negatives("-2")

Here, we are making sure that:

« The data type passed into the function is an integer.
« The data is a positive number.

Tests

So far, we've only been making sure variables within a function are appropriate values.
How about testing if a function is working as expected overall? We can write tests for a
function to check their behaviour.

Take this function as an example:
def multix, y):
a = abs(x)

b = abs{y)
returna™ b

This function is supposed to take two parameters and multiply them together, but we've
made an error here, where any negative numbers passed into the function are positive.

If you test the function like this:
print(mulc(5, 5))
We'll get the expected result of 25, so we might miss this subtle bug.

Let's write a test for this function.
def test_mult();
assert mult(5, 5) == 25, 'mult test failed 5* 5'

assert mult(5, -5) == -25, 'mult test falled 5 * -5'
assert mult{-5, -5) == 25, 'mult test failed -5 * -5'

F‘quhad

When we run this test function, it will try a variety of possible combinations to make sure
it's getting the expected result. We can have these tests run every time you run the

program and so we can be alerted if someone makes a change in the code that breaks
some functionality down the line.

These kinds of tests can be very useful, but only as much as they are written well and

cover all possible test cases and pathways through the code. If we make a mistake in our
test, then the testis going to be useless.

F‘uwﬁ

Unit Tests in Python

James Lyne talks about the importance of unit tests when developing applications.

936"

Programming Paradigms

When we talk about programming paradigms we're talking about the different approaches
we can take in general toward how we create programs. If we look up the word "paradigm”
in the Oxford English Dictionary, the first two definitions are:

A typical example or pattern of something; a pattern or model.
A world view underlying the theories and methodology of 3 particular subject.

So when we think about programming paradigms, what we're considering is the larger way
in which we structure and organize our code, especially when trying to build complex
programs.

There are several different programming paradigms, butin this course we're only going to
talk about the 2 most common ones you're likely to hear about when writing Python
programs: procedural programming and object-oriented programming.

Procedural progmmming

Procedural programming is the paradigm that new programmers tend to gravitate toward,
and is most often represented in beginner tutorials and guides. We've regularfy seen
procedural programming in most of the Python code examples found in this very course.

When we write procedural code, we break down tasks into a series of steps. Frequently
repeated tasks are split apart into reusable functions that can be called at any time,

often by any other function. Both humans and the computer run through the program step
by step.

Another quality of procedural code is that the logic and the data are often quite
separated. Each step gets handed the specific data it needs to complete that step, and
then hands off some data to the next step.

Procedural programming is where almost every programmer starts. That's because it's
very good for creating small to medium sized programs with minimal to moderate
amounts of complexity. If you need a program to parse a CSV file and transform it into a
slightly different CSV file, or build a port scanner, or create a rock-paper-scissors game,
procedural programming will do the job very well for you.

Object-oriented programming
Object-oriented programming uses classes to model objects, capturing both their
attributes - the data that describes them - and their methods - the behaviours they have.

By thinking about programs this way, we tie together data with the functions that create
and modify that data.

F‘HW?

This style of programming thinks about most things as objects, and tries to model them as
such. If we were writing code to handle a registration system, we'd likely have a User{)
object. That object would know everything about the user, such as their name, their email
address, their account creation date and time, and their password. But it would also know
how to modify that data as well, using methods such as change_user_name() and
change_user_email().

What's useful about this is we can now move this object through our program and use it in
lots of different ways. Registering a new user is about populating all the important
attributes of the object before the data is saved. Creating a sign in form for existing users
can also make use of this same user object, accessing information about the user's
password and username. And a profile page that displays the user’s information to others
can also use this same object. The logic we build in our program centres around creating,
manipulating, and passing around objects.

Object-oriented programming tends to require more abstract thinking, and a strong
ability to spot reusable patterns that can be reasonably grouped together into objects.
But it can be very powerful, and make large, complex programs much easier to
understand and maintain. Which paradigm should you use?

Well... it depends.

Some languages don't support object-oriented programming. C, for example, doesn't have
a concept of objects or classes. But many languages do allow for the object-oriented
paradigm, and it is very popular among experienced programmers.

It also depends on your experience. If you're brand new to writing code, procedural
programming is a good way to get better at understanding the basic concepts of how to
program without having to also juggle the extra abstraction that come with building things
as objects.

Object-oriented programming is also quite a lot of setup. It can pay off big when we
create large, complex programs, but for smaller one-task problems that need solving, it's
often too much overhead given a small set of functionality. Simple programs are generally
better suited to the procedural programming style.

ki

Programming Tips

One of the most difficult transitions for a new programmer to make is switching from
following a tutorial or series of examples - like you've seen in this course - to creating
your own program. When you look at code someone else has written, it seems very
straightforward and easy as long as you know the syntax. But as soon as you have a blank
code editor open, it can be difficult to know how to get started.

Be specific about the problem you are trying to solve

Programming is mostly about solving problems. If you want to build a program to do
something, the first step is to be as specific as you can about exactly what you want your
program to do.

Perhaps we have a website that we want to ensure is always running, and if for any reason
it goes down we want to be notified.

This is definitely a problem that code can help us solve! But before we can start writing
any code, we have to make some important decisions. For example, before we can write a
single line of code, we have to decide:

How do we want to be notified? Via email? Maybe via text message?

Do we want to be notified if our website is only down for 1 minute? By the tme we get
to a computer to look at the problem, maybe itwill have already come back online.

Maybe we only want it to alert us if the site is down for at least 10 minutes.
If we can't getto a computer to look at the problem right away - perhaps it will take

us an hour to drive home to get to our computer - do we want to keep getting an email
or text message every 10 minutes?

It's helpful to start by writing down exactly what you want the program to be able to do. In
this example, we might decide on the following pieces of functionality we want our
program to have:

The program should check our site every 10 minutes. If it is down for at least 2 checks
in a row - a minimum of 10 minutes - it should send an alert.

The program should alert us via a text message.

The text message should include the date and time at which our program first detected
our site was down,

No further text message should be sent after the first indicating our site is down, but
the program should keep checking it.

If the site comes back up after we have received a text message indicating it was down,

F‘Hq?b!'?

our program should send a text message letting us know, and include the date and time
when the program detected our site was back up,

These 5 points give us a very clear idea of what we need to build, and exactly what we
wantit to do when it's finished. It always helps to think through what we want to achieve
before we start writing any code. Break down large problems into smaller ones

Ok, now we know what we want to build... but how do we know where to start?

Next, we should start breaking down our functionality into a smaller series of problems
we have to solve. A good way to do this is by writing pseudocode. Pseudocode is a way of
starting to think like a programmer but without worrying about syntax or the details
around making real code work. It's all about wrapping our head around the logic of what
has to happen in order for our program to do what we need it to.

Let's create a little bit of pseudocode to help us understand the logic we'll need to
implement for the monitoring program we want to build.

EVERY 10 MINUTES, check if my website is still up.
IF website check fails:

IF it is the first time in a row a check has failed:
THEM remember one check has failed and store the dateand time.

ELSE IF itis the second time in a row a check has failed:
THEN remem ber two checks have failed,
AND send me a text message containing the date and time
of the first check to fail,

ELSE is more than the second time in a row a check has failed:
THEN remember the number of times in a row the check has failed.

ELSE the check has passed:

IF this check has passed after previously failing a min of 2 checks in a row:
THEN send me a text message containing the date and time of this check.

ELSE this check has previously falled only 1 check in a row,
OR has not failed the previous check:
THEN do nothing

You don't have to use a specific style of pseudocode or special syntax. The idea of
pseudocode is to help us understand in our own human brains what the broad structure of
logic is, and to get an idea of what order we should start solving our problems in.

This pseudocode gives us some idea of how we probably want to tackle this project. Here

are some things we can start to understand about our unwritten program looking at this
pseudocode:

ey

We'll need some kind of loop, which we can tell because we want something to happen
every 10 minutes. In this case, it's probably going to be an infinite loop, because we
want to just keep running untl we shut it down manually.

We need to be able to count and remember how many times our check has failed. We have a
very specific action we need to take at a specific count - when the check has failed 2
times in a row - 50 we need Lo keep tradk of this,

We also need to save and keep track of the date and time of the first failed check. If
the site fails twice in a row, we want to send the date and time of the first failed

check rather than the second.

If a check passes after having previously failing 2 chedks in a row, we need to send
another text message and also reset our failed check counter back to 0, since in this
program we only care about failed checks if they happen one after the other.

These are all smaller, self-contained little problems we can solve one-by-one. Work on 1
small piece at a time

Many new programmers try to write an entire program at once, but experienced
programmers know that a better strategy is to work on 1 piece at a time, and slowly build
a program up piece by piece.

We know in this case we need a loop that will check if our website is up and responding
every 10 minutes. Forget about everything else - all the functionality around what to do if
the check succeeds or fails - and start with solving just that problem. Create a little piece
of code that just checks a website every X minutes and returns a pass or fail if that
website is up. Create a simple program that just prints PASS or FAIL at that point.

After we get that working nicely, what's next?

There are 2 paths to follow here, PASS or FAIL. Let's pick one and do the next piece of that
path. In this case, it's probably best to pick the FAIL path first. Why? Because of this bit of
pseudocode we wrote:

ELSE this check has previously failed only 1 check ina row,
OR has not failed the previous check:
THEN do nothing

In order to go down the PASS path, at some point we need information from the FAIL path
according to our pseudocode logic. That means it makes more sense to work on the FAIL
path firstin this particular case.

In the FAIL path, all our options from here require us to be able to count the number of
times a check has failed in a row. So the next problem we can solve is to add a "fail
counter” to our program that tracks the number of times in a row our program fails, and if
it passes after previously failing, we reset the counter.

After we get that bit working, we have a program that does only the following:

P!

» It checks to see if a website is up every 10 minutes.

= [f the website check fails, it increments a failed check counter, prints out the
number of failed checks, and prints the string FAIL.

« [If the website check passes, it resets the failed check counter to 0, prints out the
number of failed checks, and prints the string PASS.

Good progress!

After this, we would pick another small piece of the needed functionality and add that in.
Eventually, after we add little features one by one, we'll have our entire program.

Programming is best done iteratively. We isolate one small piece of functionality and
write code to solve just that problem, and only that problem, creating a very simple
program. Then we tackle the next small piece of functionality and add that into our
program so it is slightly more complicated. We do this again and again, slowly building up
our program piece by piece and problem by problem.

Sometimes when we add a new piece of functionality we have to modify previous things
we've built. That's ok! Refactoring is an important part of making progress in
programming.

Test your code frequently

It's tempting to try and write an entire program or feature from start to finish in code
before testing it... but this is rarely a good strategy. It's better to make small changes, then
run and test your code and see if that change is doing what you expect.

The problem with making many changes at once before testing is it becomes more
difficult to understand which change caused the error. If you test after making a small
change, you know right away that the change you made is probably the reason for the
error, so it becomes much easier to debug.

Quite a lot of the time programmers spend writing code is spent printing out variables,
arrays, and object attributes to the screen at various steps in the program so we can
understand what's going on, and if it matches what we're trying to do. It's a very rare
programmer who can write 1000 lines of code and have it work perfectly the first ime...
and if it did happen most people would consider it a fiuke. Build in small pieces, and test
frequently.

Error messages are useful

Programmers love error messages - seriously. Error messages and exceptions are great
helpers! They give us helpful information about where our program has gone wrong so we
can fix the problem more quickly. And often they expose cases we haven't considered yet:
such as when a user inputs a string like "zero" instead of the number 0. When you see an
error it doesn't mean failure, it means progress.

992

Always read your exception and error messages closely: they have helpful information to
guide you on how to fix them. They'll usually come with a traceback to show you where in
the code the error occurred, and give you some idea of what type of error it is, such as a
syntax error or a divide by 0 error. If you haven't seen the error message before, Google it
You'll almost certainly find someone who has had a similar problem before, seen that
error, and has figured out how to solve it. Revise, rebuild, refactor

As the saying goes, "Rome wasn't built in a day”. That applies to programming too.
Programming takes time, and quite often requires a lot of revisions. Sometimes we have
to start writing code that doesn't quite work in order to understand how to build code
that does work. This is entirely normal and every programmer - from the beginner to the
expert - has to regularly rewrite and refactor their code. If anything, experts probably
refactor their code more often than beginners do.

Sometimes we have to revise larger portions of our code when we add in new features.
That's ok, and also entirely normal! Adding new features often doesn't just add new
functionality, it often changes existing functionality, sometimes in subtle ways.

Because programming is iterative, we revise the same bit of code over and over again.

gy

Code Smells

If you're familiar with programming and have been writing code for a while, even as a
beginner, you may have heard the term "code smell" before. This is a term programmers
generally use to refer to visual symptoms that code has deeper underlying problems.
Often, code that "smells" is confusing to understand. And since code is for humans, that
often spells trouble. Code that is difficult to understand is hard to maintain, and difficult
to ensure is working properly, with each possible outcome fully tested.

This section will review some common code smells and why we try and avoid them.

Too much nesting

Let's consider this code:

for item in items:
if a:
ifeorf:
for thing in item:
ifgand h;
if jr
Dathis thing
else:
Do this thing slightly differently
else or
Do something else
else
Do something different
else
for other_thing in item:
Do another different thing
elif b:
for thing in item:
if i or:
Do another thing
elif g:
if h:
Do a thing
else:
Do a different thing
else:
for other_thing in lteem:
if g and h:
Do something
ifgori
Do another thing
else
Do something different

Look at all that nesting! It gets 6 layers deep in some places. This kind of nesting of loops
and if statements inside each other generates a lot of indentation, which makes code
difficult to read.

Pn‘ahﬂd

But - even more importantly - code that has been heavily nested makes it very difficult to
understand how many different paths your code has to follow, and difficult to tell if your
code covers all the cases it needs to cover.

Heavily nested code can almost always be simplified and made easier to understand and
test by breaking apart the logic into smaller functions. If your code starts to look like the
sample above, it's time to pick it apart carefully and break your code down into smaller,
easier to follow pieces.

Keep your functions small

Typically, the longer a function is, the less readable and less maintainable it is. This rule

is similar to the rule about nesting, and the 2 rules often go hand-in-hand: quite often one
of the reasons functions get long is because we have too many nested loops or
conditionals, or are trying to have one function check too many different cases. When you
create functions, try to think about them as individual bricks. If bricks were huge and had
a complicated shape that only fit together in one way that would make them a lot less
useful.

In a previous section, we wrote a little program to help James decide if he had time to get
coffee. In that example, we broke down the code into smaller functions. Here's the same
code in one larger function:

def can_agent | get _coffee(minutes_available):
print{'Does Agent | have enough time to get coffee this morning?)

people_in_line = [Unknown Person A', 'Agent M', 'Agent ', 'Unknown Person B']
estimated_wait_time = len(people_in_line) * 2

if estimated_wait_time < minutes_available:
print{'Yes, plenty of time.")
else;
if ‘Agent Q' notin people_in_line:
print'Agent @ isn\'t in line... no coffee for Agent | today.)

pasition_agent_q = people_in_line.index{'Agent Q')
wait_time_for_agent_q = (position_agent g +1)* 2

if wait_time_for_agent_q < minutes_available:
bs;:lrint{'Jﬂu_:;narlu can swap places with Agent Q and get his coffee.)
else:
print{'Not even Agent Q can save Agent | today... no coffee today.')

can_agent | get_coffee(8)

There's a lot going on in the can_agent_j_get_coffee() function, and if you have to work
your way through it to modify it, it will take extra time. Additionally, if you're trying to add
a feature, you may find it difficult to add. For example, what if we needed to add in some
additional checks to see how badly | wanted coffee? Or checks to see how important it

P9a5'"

was to be on time for his meeting? Adding these pieces of functionality into this one
function would really start to make things difficult to manage.

Here's the code broken apart into smaller bits of functionality:

def can_wait_for_coffee{minutes_available, people_in line)
estimated wait_time = len(people_in_line) * 2

if estimated wait_time < minutes_available:
return 'Yes, plenty of time.'
else;
return can_swap_with_agent_g{minutes_available, people_in_line)

def can_swap_with_agent g(minutes_available, people_in_linek
if "Agent Q' not in people_in_line:
return 'Agent Q isn\'t in line... no coffee for Agent | today.

position_agent_q = people_in_line.index('Agent Q')
wait_time_for_agent_q= (position_agent.g+1)* 2

if wait_time for_agent g < minutes available:

return 'Agent | can swap places with Agent Q and get his coffee.’
else

return ‘Mot even Agent can save Agent | today... no coffee today.

Ask our question
print{'Does Agent | have enough time to get coffee this morning?’)

Get our answer
people_in_line = ['Unknown Person A, 'Agent M', 'Agent Q', 'Unknown Person B"]
print{can_wait_for_coffee(8, people_in_line))

This is already an improvement over having one large function. And even here we can spot
another place where we can further refactor to break apart another function that checks if
Agent Q is in the line separate from the logic that checks if she's far enough ahead in line
to make the swap worth it. That would make our code even more modular, and would
later allow us to more easily allow | to check for other agents in line who owe him a favour,
not just Agent Q.

As a general rule, if your function starts to get more than 40 lines long then it's definitely
time to roll up your sleeves and start to do some refactoring, but as we can see above
sometimes even a 10 line function can be broken into smaller pieces. Break your big
functions down into smaller ones that can work together to get the job done, and can be
useful to you in a larger variety of situations.

Avoid code duplication
Let's keep looking at the above example. What if both Agent Q and Agent S owe Agent] a
favour? We have a function can_swap_with_agent_g() that checks for Agent Q in the line,

but not for anyone else, It's tempting to just copy-paste this function and call it
can_swap_with_agent_s(), change a few lines, and incorporate it into the program too.

"ias'"

Ok... but what about other agents that might owe Agent | a favour in the future? What if 20
agents owe Agent | a favour? We might have 20 different can_swap_with_agent_x()
functions in our code, all basically the same. And then what happens if we find a bug in
that code and have to fix it? We'll have to change all 20 functions! What a terrible, tedious
task!

If you find yourself tempted to copy and paste a piece of code in order to solve a
problem, stop yourself if you can. The better solution is to ask: what is the common task
we need both of these pieces of code to do, and how do we refactor our code so that if
there's a bug or a change needed later, we only have to fix itin 1 place?

et

Debugging

If there's one thing that's inevitable when you're a programmer, it's bugs. There are always
more bugs to find and fix, in particular as your program starts to get more complex. And
where there are bugs... we must debug!

Debugging is a skill like any other skill, and we get better at it with experience and
practice. It's one of the areas of programming that beginners can struggle with the most,
and it's easy to understand why: debugging can be hard! Sometimes it's a tricky
combination of detective work and research to get to the bottomn of a particularly subtle
bug.

So when something in our code is going wrong, how do we begin?

Step One: find a way to replicate the issue reliably

The first step is to figure out how to cause the bug to happen. If you can do this reliably - if
you know the exact sequence of steps that will get the bug to appear every time - that's
the first big hurdle crossed.

Until we can reliably replicate a bug, it is very, very difficult to fix it It's like trying to find
a blue dot on a wall in a dark room: if we can't see, how are we ever going to find it?

Some bugs are easy to replicate. They're usually the ones that are easy to find and easy to
troubleshoot and fix. The sneaky, intermittent bugs are more difficult. Sometimes
programmers get reports of weird bugs from other people, but if those people can't give
us a way toreplicate it and see the bug in action for ourselves, then there isn't much we
can do to fixit

Step Two: figure out where the bug is in the code

The next step when we can reliably recreate the bug is to start tracing it to the source. At
this point we're not trying to figure out why it's happening, we're more concerned with
understanding where in the code the bug is being created.

Sometimes this is straightforward: a traceback or exception may direct you to the exact
file and line number where the bug is. But sometimes it can be quite tricky to track a bug
to its source,

What makes this extra tricky is when the error or exception getting thrown is at line 200,
but it's not anything in this code block that's actually causing the bug. The bug may be
caused at line 50, and not revealing itself until 150 lines later.

Consider the example of a ZeroDivisionError exception. This is caused if the program is
asked to divide a number by 0. The exception is thrown at line 200, but it's likely the 0
was created farther back in the stack. The bug could be 10 steps before this, when a 0

i

value was assigned to a variable in an unexpected way, and then this value was passed
across several functions without causing a problem until it hit this one spotin the code,
where it was stopped in its tracks.

So how do we figure out where a bug is happening in our code? It can take some detective
work, but here are some tips to help you track it down.

= Step backward through your code. Start at the point in the code where the bug was
exposed, then slowly step backward through your program’s logic, re-reading your
code and reviewing it carefully.

« Print out variable, list, and dictionary values at each step. As you walk back through
your code, print out the values of variables, lists and dictionaries at every point
they are passed from function to function, or modified by a function, to make sure
the values are as you expect at that point.

« Comment out code to focus on and run only specific sections of your program. The
beauty of comments is that we can comment out anything: even code! We can turn
off bits of functionality without having to delete and re-write something we've
already done. By commenting out sections of code, we can "backtrack” and turn off
functionality selectively to see how our program runs without it If our bug
disappears after commenting out 1 particular line or a specific function... bingo!
There's a good chance that's the culprit.

Step Three: understand why the bug occurred

Once we've isolated exactly where the bug is happening, the next step is understanding
why the bug is happening. What's causing it, exactly? Sometimes this is very easy to see
once you find where the bug is happening, and other times the issue can be more
complicated, or related to misunderstanding how a library or function you're using works.

This is the step where you might end up having to spend a lot of time researching and
searching on Google to understand why the bug is happening. And it's important to
understand why, because if we don't then we might not fix it correctly.

Sometimes we think we're at this step, and then after some research we realize we
haven't actually found the bug yet, and it's still farther back in the stack. For tricky bugs,
we may have to bounce between step 2 and step 3 and back again a few times until we
get to the heart of the problem.

In some cases we can eliminate the bug by guessing what the fix is and making it. And if
the bug appears to go away with this fix then the problem is solved... maybe. If we don't
fully understand what went wrong in the first place, we can't really be sure the bug is
gone.

Step Four: refactor to eliminate the bug

Once we know exactly where the bug is and why it's happening, all that's left is to make
revisions to our code to eliminate the source of the bug.

P9y

Hopefully the bug you find is a relatively easy fix... but sometimes, a bug can be a bit of a
nightmare to fix, in particular if it's baked in at the most fundamental level of how your
program works.

In some situations, it may be impossible to eliminate the bug entirely in the time you

have to work on the problem. If this is a situation you find yourselfin - and all
programmers do from time to time - then do what you can to minimize the bug or create
useful error messages to get the user back on track after an error as smoothly as possible.

It's always better to fix a bug if you can, even if it means rewriting and reworking a large
chunk of your code. Otherwise, it will continue to be a thorn in your side, and will likely
cause more problems down the road. Take a break... but don't give up!

Debugging can be a frustrating exercise. Sometimes it can feel like an impossible task,
and all we want to do is throw our computer out a window and never program again.

Every developer feels this way from time to time when they hit a particularly troublesome
bug. Sometimes the best thing to do is to walk away from the problem for a little while.

Do something else, and come back to the problem the next day with a fresh outlook. Often
a debugging problem that seemed unsolvable yesterday is much easier to sort out when
we come back refreshed and relaxed.

IS

Programming 5

Faqqsll'jl

Contents

Python is a powerful and intuitive language, but sometimes you need lower level control.
In these two modules, we will introduce C and some of the fundamentals of this extremely
important language.

In this module, we will be covering:

What is C and why is it important?
Running C programs

Printing in C

Variables in C

Maths in C

Functions in C

)

What is C

C is a fairly low-level programming language, it was created in 1972, and it was based on a
programming language called B. Despite being so old, Cis still widely used today. In fact,
many higher-level programming languages are written in C. Python is one of these, the
Python interpreter (the bit that takes the Python you write and turns it into machine code
that the CPU can understand) is a program that was written in C. The list of languages that
are built on top of Cis extensive and includes JavaScript, Java, PHP and Perl amongst
others.

C is popular for a few reasons. First of all, Cis available on pretty much any system. It's
also portable, if you write it well, which means if you write a piece of C code, you can
generally compile it on any other system and have it work the same way. C is fast; if you
write a piece of C code and compile, the speed at which it runs is much faster than a
language such as Python. Finally, Cis a mature language. It has been around a long time,
and major changes to the standard are few and far between, unlike other languages such
as Python where new versions are released reqularly, and they aren't always backwards
compatible with older versions.

C does have its drawbacks though. It's a dangerous language to use for casual
programmers because there is no safety net. C will always do exactly what you tell it to do
and nothing more, and this can cause unintended bugs which can lead to exploitable
software.

So, why are we teaching you C? Well, in no way are you going to be able to write fiuent C at
the end of this course, but you should be able to at least read it to some extent. That is
going to be useful later in the course when we start looking at software fiaws and how to
take advantage of them, because most of those fiaws will come as a result of badly

written C. Additionally, because C is a lower-level programming language than Python, it
has some features which Python doesn't have, so we will be taking this opportunity to
explore those aspects of programming also.

F‘uﬁ?]

Running C Programs

C is a compiled language, so to run a C program you first have to compile it into an
executable file. The process of compilation by default generates an executable file that is
suitable for the processor architecture you are compiling the code on. If you need to
compile the program to run on a different processor architecture, you must either
compile the program on a system with that processor architecture or you need to perform
a task known as cross-compilation, where you tell the compiler about the target
architecture you are building the executable for.

There are several different compilers out there for C. On Linux the most common one is
GCC so we will be using that one in our examples.

For this example, we are going to be using the "Hello, World" example from the previous
section. Our code is in a .c file called "hello.c’. To compile it we use gcc from the command
line like so:

gce-o hello hello.c

The -0 parameter specifies the output file (the filename of the executable to generate). In
this case, we are creating an executable file called 'hello’. After that, we specify the input
file, where our C code resides.

user@SANS:~/Desktop$ gce -0 hello hello.c
user@SANS: ~/Deskiop$ /hello

Hello, Worldl

user@SANS:~/Desktop$

Remember in Linux the "./' means execute the file in the current directory and 'hello’ is
the file name.

If we run the Linux tool ‘file' on our executable, we can get some information about it:

hello: ELF 64-bit LSB shared object, xB6-64, version 1 (SYSV), dynamically linked,
interpreter /lib64/1d-linux-x86-64 s0.2, for GNU/Linux 2.6.32,
BuildID[sha]=88cd59f387301bdcBabe58360ea55b641135b5¢7, not stripped

So thisis an ELF file, which isn't to say it has pointy ears... ELF stands for Executable and
Linkable Format. It's basically the Linux equivalent of .EXE on Windows. We can also see
that this is a 64-bit executable, which means it isn't going to run on a 32-bit processor.
Remember, a 64-bit processor can run 32-bit software, but a 32-bit processor can't run 64-

F‘quhsd

bit software. So we know that this executable file won't run on Windows, and it won't run
on a 32-bit processor even if it is running Linux.

What if we want to send our friend a program, and we're on a 64-bit processor, and he is
on a 32-bit processor? We can just add the -m32 parameter to gcc

Now, to get a program that is compiled for Windows is a different story altogether, and we
actually need to use a cross-compiler such as 'MinGW'. However, that is beyond the scope
of this course.

Faqq‘:}g‘ss

Printing

Okay, let's get started on our very first C program:

#include <stdio.h=

int main{) {
puts("Hello, World!"};
returnid);

}

So, there are a few differences from Python. First of all, the include is similar to Python's
import. It's a way of including a library. In this case, the "stdio" library is a standard C
library for dealing with input and output. The name stands for "standard input output”.

The main function is the program's entry point. In Python, you could just write your code,
but in C everything has to be within a function. The function thatis run first when the
program starts is called the program's entry point, and it is the main function.

C has a slightly different way of defining functions; int main() tells us that the main
function takes no parameters and returns an integer value. Cis a strictly typed language,
unlike Python which is dynamically typed. In Python, the value determines the type of the
variable, but in C you have to determine the type of the variable first and make sure
whatever value you are storing in that variable conforms.

The curly braces are a way of determining a block of code. Remember in Python where we
used the indent to show which block of code belongs where? In C you don't use indents,
you use curly braces { }. Itis good practice to indent your code anyway, because it makes
it more readable, but you don't have to. We could just as well have written our code like
this:

#include <stdio.h>
int main{) { puts("Hello, World!"); return{0}; }

The code above is perfectly valid in C, but it's also not a good habit to get into writing it
that way. The indent is not required because curly braces show that the block of code
within belongs to the main function.

You'll also notice that we put multiple statements on one line. In Python, every statement
goes on its own line, but in C the semi-colon () is used to show when a statement ends so
you can actually string multiple statements on one line (but you shouldn't, for readability
reasons).

)l

To output text, we use the puts() function. "puts” stands for "put string”, and it takes just
one parameter: the string to output.

Finally, we return 0. Remember, the main function we defined returns an integer value, so
in this case, we are returning a 0. Why? It's common practice to make the main function
return 0 if the program finished executing successfully, and return a 1 if the program ran
unsuccessfully.

You can really see the difference between Python and C using this example. The
equivalent code in Python is just:

print("Hello, World!")

That's five lines of code in Cvs one line in Python. Thisis the difference between a
low/mid level programming language and a high-level programming language.

Your First Variable

The next section will cover variables and data types much more, but it is timely here to
introduce the idea of a char array. This is a variable with a type that can store 'strings’.
This means we can use something stored in memory once multiple times. Let us store a
string that contains 'Hello my first variable'.

char variable_1[] = "Hello my first variable”;

Note the [J? This is normally where a size would be supplied, as in maximum length of
string we can store, However in this instance [] and a string means the compiler will
calculate the required size and set it for us.

We can use this with puts if we want, as follows:
char variable_1[] = "Hello my first variable";
putsivariable_1);

puts("and a space);
puts{variable_1};

F‘uqqil;ﬁ?

String Handling and printf{)

In the last section we used puts() to print out contents. Puts is a relatively basic tool, but
let's take a moment to use a more advanced function printf().

printf() has the ability to handle multiple output streams, different data types and even
convert a given type to a different format.

Let's take a look at printing a simple string with printf{). We will insert it in to another
string to show how it is more powerful.

#include <stdio.h>

int main() {
char username[] = "lameslyne";
printi{ "Your username Is ¥s \n", username);
returni{0);

}

Thechar username[] declares a char array that stores the string ‘jameslyne’. Printfis
asked to print the string, which is mostly self explanatory. There is however a special
couple of components to this: - '%s’' says please insert string here. printf() will grab the
first variable passed in to it and substitute whatever it finds at that location. If this is a
string it will print until a NULL byte, that is a the standard way of saying 'this string is
over'. That is simply put a 0 value, which as we know from our ASCII module is an actual 0
byte integer. The '0" in ASCII is actually 0x30 and they are not to be confused. - \n’ This
says let's print a new line return, which makes sure there is a return before the program
exits. Otherwise the prompt would appear straight after the text, which looks odd. Try it
without!

We can also bring in other types of data and format them accordingly. For example we can
declare an age value and print this too:

#include <stdio.h>

int main{) {
char username(] = "jameslyne”;
int age = 934;
printf("Your username Is %s and you are %d years old\n", username, age);
return{dy;
}

This outputs:

Your username is jameslyne and you are 934 years old

PisEe

Notice how the %d was translated to a number? This is because %d says grab a number
from this location, where we supplied an integer 934.

F‘uﬁgg

Welcome to the Danger Zone

Here we are accessing variables in memory and printing them, and we as the developer
get to specify how they should work. But mistakes can be a real issue and lead to
functional or security bugs! For example, what if we confused a number with a %s?

#include <stdio.h>

int main{) {
char username[] = “jamesiyne”;
int age = 934;
printf{"Your username is %s and you are ¥s years old\n", username, agej;
return(d);

The compiler when we try to build this will warn us we have done something potentially
stupid:

output.c: In function 'main’;
output.c:6:45: warning: format s’ expects argument of type thar ¥, butargument 3
has type 'int’ [-Wformat=]

It does however let us continue and compile anyway. We get to do what we want in C
whether it is a good idea or not!

Run this program and it will either outright crash, or print bizarre text to the screen until
it finds a null. You said to print a string and it will try to do so whether there is one there
or not. It might even leak information that is useful for security purposes! Welcome to the
subtle world of careful programming in a low level language.

T

Variables

We mentioned this briefiy in the last section, but C is a strictly typed language. That
means you need to tell it the "type’ of data to expectin a variable. Here are the data
types available in C:

Integer Types

int: An integer value
short: A short integer value
long: A long integer value

The above integer types could either be signed or unsigned. A signed integer is capable of
being a negative value, but the most significant bit is used to hold the sign, and therefore
the maximum size of the integer is reduced.

So, if you take an 8 bit signed integer:
10010001

The most significant bit is the one furthest on the left. That is the one thatis used to
indicate a negative value, ifitis a 1 then the number is negative. If it is 0 then the number
is positive. This means because one of the bits is used to hold the sign (and it's the one
with the highest value then the maximum number that the integer can represent is
reduced quite significantly).

For example:

A signed (16 bit) integer is capable of representing numbers from (at least) -32,767 to
+32,767. An unsigned integer is capable of representing numbers from (at least) 0 to
65,535. It is therefore 16 bits in size (2 16 = 65,536, and remember we count from 0 so the
maximum size is correctly 65,535).

A signed short is capable of representing numbers from (at least) -32,767 to +32,767. An
unsigned short is capable of representing numbers from (at least) 0 to 65535. (Yes this is
the same as an integer.) It is therefore 16 bitsin size (2 A 16 = 65,536, and remember we
count from 0 so the maximum size is correctly 65,535),

A signed long is capable of representing numbers from (at least) -2,147,483,647 to
+2,147,483,647. An unsigned long is capable of representing numbers from (at least) 0 to
4,294,967,295. It is therefore 32 bits in size (2 A 32 = 4,294,967,296, and remember we count
from 0 so the maximum size is correctly 4,294,967,295).

Take the values above with a pinch of salt; the actual values vary from processor
architecture to processor architecture, which is why we wrote: "at least". These are the

"y

minimum values that these types must be able to store. A good way to check them is to
simply compile a program and ask it to output the size!

Floating Point Types

float A floating point value (number with a decimal point). This one is a single-
precision floating pointvalue, e.g. 10.327000, Typically 32-bits.

Note a fioat is smaller than a double so can represent less overall decimal accuracy.

double: A floating point value (number with a deamal point). This one is a double
precision floating point value. e.g. 7.23847298343 (and morel).

Note that a double will often be 64-bits these days, and can represent a vast number of
significant digits past the decimal point.

Again, the implementation of these varies between processor architectures. As a general

rule, always use a double in C, unless you are dealing with thousands of fioating point
numbers, in which case use fioats.

Character Types

char: A character type. This s actually technically an integer type that is always 1
byte large. Practically speaking, it is used for holding characters (remember they are
just numbers that are displayed using an encoding scheme), but it could be used for
other types of numerical data if you wanted. An example would be 'A’ which is the
hexadecimal literal value of Ox41, This would fill a standard single char byte. Char
bytes can be chained to store strings, or a series of numbers,

And that's it...
Hey, wait, what about strings?!

There is no string data type in C. If you want a string, you have to make an array of
characters.

Now let’s get to writing some code. First, let's take a look at our integer types:

#include <stdio.h>

int main{) {
int anint = 42;
long along = 42;
short aShort = 42,

Pi%2?

unsigned int anUnsignedint = 42;
unsigned long anUnsignedlong = 42;
unsigned short anUnsignedShort = 42;

printf{"anint contains %d and s size:; ®lu\n", aning, sizeof{aning);
printf{"aLong contains: ¥ld and is size: Wu'n", aLong, sizeof{along));
printf{"aShort contains: %hd and is size: Wiu\n", aShort, sizeof{aShort));

printf{"antUnsignedint contains: %u and is size: ®lukn", anUnsignedint,
sizeof{anUnsignedInt));

printf{"anUnsignedLong contains: %lu and is size: %Wiu\n", anUnsignedLong,
sizeofianlnsignedLong));

printf{"antnsignedShort contains: %hu and is size: %lu\n", anUnsignedShort,
sizeof{anUnsignedShort));

returni();
s

Here we are using printf to look at our values in detail.

Notice the format string specifiers are very specific.

Uhdl is for an int

%id is for a long

%hd is for a short

Bu is for an unsigned int
%lu s for an unsigned long
Yhu is for an unsigned short

The results on my 64-bit Linux system (your results may vary by architecture) are:

user@SANS:~/Desktop$ Mvars

anint contains: 42 and is size: 4

along contains: 42 and is size: 8

ashort contains: 42 and s size: 2
anUnsignedInt contains: 42 and is size: 4
anUnsignedLong contains: 42 and is size: 8
anlinsignedshort contains: 42 and is size: 2
User@sANS: ~/Deskiop$

Now let's look at our fioating point types:

#include <stdio.h>

it main) {
float aFloat=0.1337133713371337,
double aDouble =0.1337133713371337:

printf{"aFloat is value: %20.18An", aFloat);

printf("aDouble is value; %20,18fn", aDouble);
return{0);

ik

Here we have a slightly different way of using format string specifiers with printf. Here we
are telling printf() that we want to print the fioating point values with 20 digits before the
decimal point (if there are 20 digits) and 18 digits after the decimal point (if there are 18
digits). The result is somewhat unusual:

user@SAMNS:~/Desktop$ Nars

aFloat is value 0.133713364601 135254
aDouble is value: 0.133713371337133707
User@SAMNS: ~/Deskiop$

We stored the same decimal value in each variable, so why are they different when we
print them? It's a case of accuracy, a double is more accurate than a fioat, and so you can
see that the fioat is accurate to about 7 decimal places in this example, while the double
is accurate to 16. The only reason you'd ever need to use a fioat instead of a double is if
you were calculating thousands of fioating point values, because a fioat is quicker to
calculate than a double, at the expense of accuracy.

Finally, let's look at our lonely character data type:

#include <stdio.h>

int main{) {
char character = ‘A",
printf{"character is: %c\n", character);
printf("character is also decimal; %d\n", character);
printf("character is also hexadecimal: ¥n", character);

char string[] = "Hello, World!";
printf{"A string is just an array of characters, for example: %s\n", string);

return(o);

So we have more format string specifiers here:

%c is for a character

%x Is for hexadecimal

Y%s is for a string (it expects an array of characters that is terminated with a null
byte which is hexadecimal 0x00)

WARNING: If you are saving a single character into a char variable, you MUST use single
quotes in C. Double quotes are for saving data into an array of characters. This is an easy
mistake to make, so don't fall into this trap.

When we run this code, we see:

PBTBHEJ

user@SANS:~/Desktop$ Jvars

character iz A

character |s also decimal: 65

character is also hexadedmal: 41

Astring Is just an array of characters, for example: Hello, World!

User@SAMNS: ~/Desktop$

From this, we can see that the character data type is actually just an integer. Have a look
at an ASCII table, and you'll see that decimal 65 and hexadecimal 41 corresponds to the
character 'A’. If this is unfamiliar you can jump back to ASCII earlier in the course and how

data is stored!

b5

Maths

This section is going to be a short one because mathematical operators are pretty much
the same as in Python with just a couple of additions.

You can increment (add 1 to) an integer variable using the '++' operator.

You can also decrement (subtract 1 from) an integer variable using the - operator.

They are used like this:

#include <stdio.h>

int maind) {
int value = 42;

value++:
printf{"Value is now: %din", value);

value--;
printf{"value is now: %d\n", value);
return(d);
1

And the result:

user@SANS:~/Desktop$ /maths
Value is now; 43

Value is now; 42
user@SANS:~/Desktop$

T

Functions

We already touched on some of the differences in function definitions in C, but let's ook
at them a bit more closely now.

The differences stem from C being a strictly typed language, so we need to specify what
types of data we are passing into a function and what types of data we expect to get back

from the function. Let's show this in code:

#include <stdio.h>

int addStuff(int valued, int valueB) {
returnivalueA + valueB);

}

int maind) {
int result = addStuffis, 10);
printf{"The answer is: W%d\n", result);

First, we define a function called addStuff. It's going to take two integers and assign them
to the variables valueA and valueB, which can be accessed from within the addStuff
function. It's also going to return an integer. Within the function body, we just add valueA
to valueB and return the resuit.

In the main function (remember this is the entry point of the program) we call the
add5tuff function which we already defined and pass in 5 and 10. The result is saved in
the result variable and is then printed.

We aren't going to show you how to pass strings into functions just yet. In C you have to
deal with pointers and memory allocation if you want to pass and return strings from
functions. Thatis a whole other topic, which we will be covering in the next programming
module.

Y%

Programming 6

Fa?aéﬁﬂ

Contents

In this module, we will be covering:

Commentsin C

Conditionalsin C

LoopsinC

Arraysin C

User Inputin C

Pointers & Memory in C
Object-Oriented Programming in C

By

Comments

There are two types of code comments in C. The first is the double forward-slasfr}:

#include =stdio.h=

int main{) {
This is a standard C-style code comment. The compiler will ignore it
puts("Hello, World!"};
return(d);

}

And the result, as expected:

user@SANS: ~/Deskiop$ Jcomments
Hello, World!
UsSer@SANS:~/Desktop$

The second type of comment is the multi-line commeny* */.

#include <stdio.h>

int main{) {
I* This is a multi-line comment. The comment continues unthl
it sees the closing
tag. */
puts{"Hello, Warld!");
return(0);

Once again, the result

user@SANS:~/Desktop$ Jcomments
Hello, Worldl
User@SANS: ~/Desktoph

F‘aqa;ﬁﬂ

Conditionals

Conditionals in C are almost exactly the same as in Python:

#include <stdio.h=
#include <stdlib.h=
#include <time.h>

int maind) {
srand{tme{NULL));
int r=rand() % 20;

printf{"The value of r is: %d\n", r);

if(r<5){
puts('r is less than 5");
}else if (r = 15){
puts("r is greater than 15");
}else{
puts("r is not less than 5 or greater than 15.");

returni(d);

And the result:

user@SANS: ~/Desktop$ Jfconditionals
The value of r js; 2

rislessthan 5
user@SANS:~/Desktop$ Jconditionals
The value of ris: 0

rislessthan 5
user@SANS:~/Desktop$ Jconditionals
The value of ris: 16

ris greater than 15
user@SANS:~/Desktop$ Jconditionals
The value of ris: 13

ris not less than 5 or greater than 15.

F‘uqa]ll'.-'l

Loops

Loops in C are more traditional than in Python. You'll see this pattern in most other
programming languages. Let's take a look:

#include <stdio.h=

int main{) {
While Loop
puts{"w hile Loop:");
inta=0;
while (a ==5)4
printf{"a is ¥d\n", aj;
att]

}

M For Loop

Puts:["\.nFur Loop:")

Int x;

for k=0 x <=5 %x++){
printf{"x is %d\n", x);

1

Nested Loop
puts("\nNested Loop:");
int it
int j;
for (i=0; i<=5;++){
for(j=0; j <= 5; j++) {
printf{"When | is %d, | is %d\n", |, J)
}

s
return(d);

The main difference here is the 'for’ loop.

First of all, you need to initialise the variable outside of the loop. We did int x; before the
loop toinitialise x.

Then you need to construct the loop, so you give a starting value for x. In our example, x
starts at 0. Then you provide the condition that would prevent the loop from running. In
our example, as long as x is less than or equal to 5, the loop will continue to run. Finally,
we tell the loop what happens after each iteration of the loop; in this case, x is
incremented by 1.

Also, take a look at this nested loop in our example. It's already quite difficult to predict
what the values of | and j will be at each stage of the loop. Can you imagine how much
more difficult it would be if we nested it some more? This is why you should avoid using
nested loops in your code if at all possible. Sometimes you just have to use them, though!

hq?EI

Here is the output. The nested loop ran too long to fit in the screenshot, but you get the
idea:

User@SANS: ~/Desktop$ Jloop
While Loop:

ais0

aisi

ais2

ais3

ais4

aiss

For Loop:
% is0
%is1
Xis2
%53
¥ isd
xigh

Mested Loop:

Wheniis0,|is0
Wheniiso,|is1
Wheniis0,jis2
WheniisD,jis3
Wheniis0,|is4
WheniisD,|is5
Wheniis1,jis0
Wheniis1,jis1
Wheniis1,}is2
Wheniis1,
Wheniis1,]is4
Wheniis1,jis5
Wheniis2, |is0
Wheniis2,|is1
Wheniis2,|is2
Wheniis2,|is3
Wheniis2, |is4
Wheniis2,|is5
Wheniis3,|is0
Wheniis3,|is1
Wheniis3,|is2
Wheniis3,|is3
Wheniis3,|is4
Wheniis3,|is5
Wheniis4,|is0
Wheniisd,|is1
Wheniis4,)is2
Wheniis4,|is3
Wheniisd,|isd
Wheniisd, |is5
WheniisSs,)is0
Wheniis5,|is1
Wheniis5,|is2
Wheniis5,|is3
Wheniis5,)is4
When|is5,|is5

F‘an‘?g?l

Arrays

Arrays in C are pretty easy; we've been using them to hold characters so far.

#include <stdio.h>

int main{) {
char array[] ={H, "% I, T, '0", "', W, "o, ', 'I','d'};

puts{array);

array[0] ="A";
array[1] =r’;

array[2] ="',
array[3] =’

array[4] ='r’;

puts{array);

return(0);

You can access and modify data at array positions using the square bracket notation.
Again, remember the first position in the array is at position 0 because we count from 0
onwards.

Here is our output:

user@SANS:~/Desktop$ farrays
Hello World

Arrrr World
Lser@SANS~/Desktop$

I originally wanted to use this opportunity to make a pirate joke, but frankly, I couldn’t be
bothered to change each element of the array one by one beyond changing the first word.

There are some slight differences with arrays in C compared to Python. First of all, you
can't append to an array in C as you can in Python. An array is always the same size as
when you created it. You can access data at existing positions in the array, but you can't
add more data or change the size of the array. If you need more space, your only option is
to create a new array, copy the data from the old array into the new array and then add
your new data using the square brackets notation.

The other difference is, of course, the type. In Python, you can store different types of data

in a single array. In C, you have to specify the type of the array when you create it, and it
can only ever hold that type of data. You can't mix and match within the same array.

F‘uqla‘?.Hd

User Input

Taking user input in Cis the source of a great many vulnerabilities. It is also a great
demonstration of how C doesn't hold your hand.

Here is an example of a simple C program which takes user inpUMARNING: Thisis nota
safe method of accepting user input, do not use it in practice. This is for the purposes of
demonstration only.

#include <stdio.h>

int main) {
char data[20];
puts{"Enter some data here: "};
scanf{"¥s", Rdata)
printf{"You entered: \n%s\n", data);
returni{d):

If you look at this code you can see we've defined an area of memory on the stack which
can contain 20 bytes of data. We then get some input from the user using the 'scanf{)’
function. The scanf function takes two parameters, the format of the data represented in
our example by "%s' which indicates the input will be a string and a pointer to the
memory address where the data will be stored. Then we print what the user typed.

mainuser@ubuntw:$ J/program
Enter some data here;

hello

You entered:

hello

mainuser@ubuntu:d

There is one major problem with this code. Did you spot it? At no point did we check that
what the user types will fit within 20 bytes. C will just put the data in that memory address
even if there isn't enough space. This will cause the program to crash and in the worst case
introduces an exploit known as a buffer overfiow. You'll learn how to exploit itlater in the
course, but for now let's see how the program can crash as a resulit of our data overwriting
adjacent memory addresses.

mainusar@ubuntw:$ /program

Enter some data here:
AALARAARAAALAARARAAALAAAAARAABAR

You entered:

AAAAAAAANAALAALNAAARAAAALALAAAAN

** stack smashing detected ***: <unknown> terminated
Aborted (core dumped)

mainuser@ubuntu:$

Paqa;gs

Let's fix this problem by using the fgets’ function instead.

#include <stdio.h>

int main() {
char data[20];
puts{"Enter some data hera: ");
fgets(data, sizeof data, stdin);
printf{"You entered: \n%s", data);
returnid);

¥

Here the 'fgets' function takes the variable to store the data in, the maximum number of
bytes to read (in our case we did the size of the data variable), and the place to read the
input from which in this case is standard input. Also notice a slight change in the printf
function. We removed the trailing "\n' because the fgets() function automatically adds a
newline.

The result is:

mainuser@ubuntu:$ /program
Enter some data here:

hello

You entered:

hello

mainuser@ubuntu:$

And if we try to break it we get:

mainuser@ubuntu:d J/program

Enter some data here:
ARAAAARRANARRS SRR BS SN B L PR R AN N NSRS
You entered:
AAAAAAAAAAASAARAAAAMAINUSErEUbuntLES

But notice there is now another problem here. When we enter too much data the program
doesn't crash anymore but the newline character at the end has been cut off. We should

add it back in for consistency.

#include <stdio.h>
#include <string.h>

int main() {
char data[20];
puts("Enter some data here: ");
fgetsidata, sizeof data, stdin);

F‘aqa;ﬁ'&

If (datafstrlen{data) - 171="\n'} {
data[strlen{data) - 1]="n"
: }
printf{"You entered: \n%s", data};

return{0);
}

So here we are checking first that the user has entered some data at all. Then we go on to
check if the second to last byte in the memory address is a \n' newline. This is because
the last byte will be a null byte to signify the end of the string. So the second to last byte
should be the newline. If it isn't, then we add it in.

You may have noticed that if we don't max out the input then we will still be adding a
newline character to the second to last byte of the memory space, but it doesn't matter
because it comes after the null byte so it will never be reached. When you submit a
smaller amount of data using fgets then the function will add a newline and a null byte.
Once the null byte is in the data, that is the end of the string and the rest of the memory
allocated is never accessed.

mainuser@ubuntu$ /program
Enter some data here:

You entered:

AAAAAAAALMLAARAAAAAM
mainuser@ubuntu:$

So you can see how much we have to account for in just a simple C program to read input
from the user and how easy it is to go wrong. You can imagine the difficulty with more
complex programs which also have to read data from configuration files, etc.

Arguments

In Cwe can also read in arguments from the user over the command line.

#include <stdio.h>

int main(int arge, char *argv(]) {
int i;
for (i=0 i <argc i++) {
printf("Arg ¥d: %s\n", i, argv(il);

return(0);

Here we can see the main function has been changed to add two parameters. We have
‘argc’ and "argv'. The 'argc’ variable is an integer which contains the number of arguments
passed to the program when it was executed. The 'argv' array contains the data passed in.

F‘aqaﬁ??

The first element of the array is the program name, and after that are the arguments the
user typed.

mainuser@ubuntucs fprogram Hello
Arg 0: ./program

Arg 1: Hello

mainuser@ubuntu$

Files

When it comes to reading files, it's almost identical to reading from the command line
over stdin. The reason is, stdin is actually treated as a file when the program runs.

#include <stdio.h>
#include <string.h=

int main{} {
char data[207;
FILE *file = fopen{“test.tet”, "r");

fgetsidata, sizeof data, file]
if (strien{data) = 0){
if (data[strien{data) - 1] ="\n") {
data[strlen{data) - 1] ="\n%
1

1
printf{"The file contains: \n%s", data);
feloselfile):
return();
1

There are only three changes here. First we open a file handle to the file we wish to read
using ‘fopen'. The 'fopen' function takes the path to the file and a character which
indicates what permissions to open the file with. In this case we are opening 'test.txt’ in
the same directory as our executable with read permissions.

Once we have the file handle, we use fgets to read from it as we did before with 'stdin’. In
fact 'stdin’ is treated as a file, so ‘fgets’ can be used to read from files as well as from the
command line. Finally, since we opened a file handle, we have to close it when we are
done with it with 'fclose’.

The result is:

mainuser@ubuntu$ echo "test file" » test.ixnt
mainuser@ubuntw:$ /program

The file contains:

test file

mainuser@ubuntu:$

p‘i’;h’a

Pointers and Memory

Many people find pointers in C to be troublesome, but generally, those people are self-
taught programmers with no formal training in computer science. The reason they find it
difficult is because they don't know how computer memory works. We do know how
computer memory works so this subject isn't going to be nearly as tricky as you imagine.

There are two areas of computer memory; the stack and the heap.

The stack is a very structured and orderly section of memory. When you launch a program,
the instructions for that function are loaded onto the stack, and then each function is
assigned an area of memory called a 'stack frame’. The stack frame contains the local
variables that are used by the function.The heap is much simpler. It's an unstructured

area of memory that can be used to store data. The heap is somewhat slower to access
than the stack, but the benefit is you can store whatever you like on there without knowing
beforehand what the size of the data will be. By contrast, the stack is very structured, and
you need to know how much data to reserve on the stack when you write the program.
Stacks and Heaps are discussed in more detail in a later section, Advance Computer
Hardware.

Normally when a variable is declared, that memory will exist on the stack. The downside
to using stack memory is that the program needs to know exactly how much memory to
allocate at the time the program is compiled. Say you wanted to allow a user to enter
their name, if you were to store that information on the stack you would need to have a
maximum number of characters the user could enter. On the other hand, memory on the
heap can be allocated dynamically during runtime, so if you were to store the user's
name on the heap you could allow the user to type any number of characters.

Pointers

A pointer is just a memory address that points to the contents of a variable. Think about
what happens when you save a variable in your program. The program asks the kernel for
some space in memory, the kernel provides a memory address, and then the data is
stored into memory at that location. The variable references that memory address so it
contains the data at that memory address.

It's easier to explain through code:

#include <stdioh>

int main{) {

int stuff = 42

printf{"The stuff variable contains %d and is saved in memory at address: %p\n",
stuff, &stuff)

return(0);
}

F‘uqla;gn

First we declare a variable called 'stuff’ and we assign it to the data '42". Then we are
printing both the contents and the memory address of the variable. The '&stuff’ means
‘address-of stuff'.

And the result is:

User@SANS:~/Desktop$ Jpointers
The stuff variable contains 42 and is saved in memory at address; Ox7ffcfafbd 264
user@SANS:~/Desktop$

When a variable is declared in code as we have done with the 'stuff' variable, the variable
will be placed on the stack (remember, RAM has two sections, the stack and the heap with
the stack being structured and the heap unstructured). Remember, each function in a
program has its own stack frame, so normally these kinds of variables cannot be accessed
from outside of the function they were declared in. As an example:

#include =stdio.h=

void doStuff{int stuff) {

stuff = 1337;

printf{"Within the doStuff() function, the variable stuff has the value: %d\n\n",
stuff);

].

int main() {

int stuff = 42;

printf{"Within the main function, before doStuff is called, the variable stuff has
the value: Wd\n\n", stuff);

doStuff{stuff);

printf{"Within the main function, after doStuff is called, the variable stuff has
the value %din\n", stuff}:

return(d);
}

When it runs, stuff is 42. Then it passed 'stuff’ into the doStuff() function, but what is
passed is a copy of the data at the memory address of the stuff variable. 5o a new
memory address is created in the doStuff() stack frame with 42 in it, which the doStuff()
function then modifies. That is why after doStuff() runs, the stuff variable in the main()
function is still 42.

user@SANS: ~/Desktop$ Jpointers

Within the main function, before doStwff is called, the variable stuff has the value
42

Within the doStuff{) function, the variable stuff has the value; 1337

Within the main function, after doStff is called, the variable stuff has the value 42

user@SANS: ~/Desktop$

b1

So, by passing variables to other functions, what we are actually passing is just a copy of
the data at the time the function was called. We aren't using the same memory addressin
both functions.

Let's modify our code to use pointers now:

#include <stdio.h>

void dostufiiine * stwff) {
*stuff = 1337;
printf{"Within the doStuff) function, the variable stuff has the value: ¥d\nm\n",
*stuff);
}

int main() {
int stuff = 42:
printf{"Within the main function, before doStuff is called, the vanable stuff has
the value: ®dinin", stuff);
doStuff{ &stuff);
printf{"Within the main function, after doStuff is called, the variable stuff has
the value %din\n", stuff);
return(d);
1

This code looks pretty similar, right? It's almost the same with a few key differences.

doStufi{int * stuff); This means the doStuff function expects a pointer to an
integer value. A pointer is a memory address, so it expects a memory address that is
storing an integer.

*stuff = 1337;: This means the value at the memory address 'stuff is 1337.It's a
way of accessing data at a pointer.

doStuff{&stuff);: This is calling the doStuff function, and passing in the memory
address of the stuff variable in the main function.

Now look at what happens when our program runs:

user@SANS:~/Desktop$ Jpointers

Within the main function, before doStwff is called, the variable stuff has the value
42

Within the doStuff() function, the variable stuff has the value: 1337

within the main function, after doSuuff is called, the variable stuff has the value
1337

user@SAMNS:~/Desktop$

Notice how the 'stuff’ variable is changed in the main function after it is changed in the
doStuff() function? That is because the doStuff() function modified the same piece of

F‘qul

computer memory that the stuff variable in the main{) function was referencing. The
doStuff() function was no longer working on a copy of the data in a new memory address;
it was working on the original memory address instead.

Don't use pointers where you don't need to use them, though. The code above is just an
example to illustrate how pointers work, but it isn't how pointers should be used. It would
be far quicker to write the same program without using pointers at all like so:

#include <stdio.h>

int doStuffi) {
return{1337);
}

int main) {
int stuff = 42;
printf{"Within the main function, before doStuffis called, the vanable stuff has
the value: ¥dinin", stuff);
stuff = doSwff();
printf{"Within the main function, after doStwif is called, the variable stuff has
the value Wdin\n", stuff);
return(0);
}

The effect is the same, but we didn't need to use pointers at all.

user@sANS:~/Deskiop$ Jpointers

Within the main function, before doStuff is called, the variable stuff has the value:
42

Within the doStuff{) function, the variable stuff has the value: 1337

user@SANS: ~/Desktop$

Malloc

Remember we said that variables declared in code are saved on the stack? Well, we can
also putthings on the heap if we need to. The benefit to using the heap is that we don't
need to know how much data is going to be saved there when the program compiles.

Let's see an example:

#include <stdio.h>
#include <stdlib.h=
#include tstrin%;hﬂ-
#include <time.h>

int maind) {
/! This program generates a random number between 0 and 19,

e

{f that random number of characters.
i Generate a random number betwean 0 and 19
srand (time{NULL)):

int r= rand(} % 20;
printf{"Going to save %d 'A's into memory this timehn”, r}

{f Create space for ‘'chars’ number of characters + 1 byte on the heap
/! The extra byte is for the string line terminator which is a 0x00 or a null byte
char *string = malloc({sizecf(char} * rj+ 1);

{f For loop to add 'r' number of A's to the address at the siring variable on the
heap
int i
for{i=Ci<ri+){
{f The strcat function concatenates wo strings together.
/f The first parameter is the destination where the result will go
#f The second parameter is the string to add to the destination.
strecat{string, "A");
}

i Print the result to prove it worked.
puts{string);

free(string);
return{0);

We've commented the code quite heavily this time because there are things in here that
you haven't seen before. Every time this program runs, it is going to generate a random
number between 0 and 19. It is then going to save that number of 'A's into memory and
printit.

The problem is, we don't know what the random number is going to be when the program
compiles, since it changes every time the program runs. In this case, we are using malloc()
to dynamically allocate memory at program execution instead of at compile time.

Now, this next bit is really important. Whenever you use malloc to create memory on the
heap, you have to be responsible for clearing that memory when you no longer need it
That is what free() does. If you fail to call free on memory you allocate, your program will
have a ‘'memory leak', where the memory it uses keeps going up until eventually it runs
out of memory and crashes,

Let's see it in action:

user@®SANS:~/Desktop$ /malloc

Going to save 6 'A's into memory this time!
AAAARA

user@SANS:~/Desktop$ /malloc

Going to save 5'A's into memory this timel
AARARA

User@SANS: ~/Desktop$ /malloc

Going to save 15 'A's Into memory this timel
AARAARRAAAALAAL

user@SANS ~/Desktop$ /malloc

Going to save 0 'A's into memory this time!

By

Geing to save 0 'A's into memory this time!
Going to save 15 'A's into memory this timel
AAAAAAAAAAAAAAA

Going to save 13 'A's into memory this timel
AAAAAAABAAARN

user@SANS:~/Desktop$

Remember in the programming-5 module when we said returning a string in C involves
manipulating memory? Well, here is an example showing how you would return a string.

#include <stdio.h=
#include <stdlib.h=
#include <string.h=
#include <time.h=

char *getStriint chars) {
/! Create space for 'chars' number of characters + 1 byte on the heap
The extra byte is for the string line terminator which is a 0x00 or a null byte
char *string = malloc({sizeof{char) * chars) + 1];
!/ For loop to add 'chars' number of A's to the address at the string variable on
the heap
int i;
for (i=0:i < chars; i++) {
strcat{string, "A");
}

return(string);
]
int main) {
{/ This program generates a random number between 0 and 19.
/l Then itcreates a character array in memory on the heap big enough for
{f That random number of characters.
/f Generate a random number between 0 and 19
srand (fme{NULL));
int r= rand() % 20;
printf{"Going to save %d 'A’s into memory this timehn", r}
char *res = getStr(r);
puts{res);

free(res)
return();

There is actually another benefit to using the heap. Data on the heap exists until free() is
called on it, while data on the stack only exists before that function returns.

Let's illustrate:

#include <stdio.h=

int *doStuff() {

Pniwd

return{Bstuff;
t
int-main{) {
int *stuff = doStuff();
printf{"The stuff variable contains: %d and is at memory address: %p", *stuff,
stuffy
return{d);

}

This code is not going to work properly because the stuff variable in doStuff() only exists
while the doStuff() function hasn't returned yet, so it's returning a pointer to a memaory
address that doesn't exist after it returns.

The compiler is kind enough to warn us about it, but it compiles the program anyway, and
bad stuff happens:

To solve this, you could do it one of two ways.

You could create a vanable in the main function and pass a pointer to the varnable
into the doStuff function, which will then modify the data at that memory address and
then return. This would work because the variable was created in the main() function,
which hasn't returned yet.

You could allocate memory on the heap, and return a pointer to that memaory address.
Memory on the heap exists until you call free{) on it, no matter where it was created,
s0 even if you allocate the memory inside the doStuff() function it will still exist

even when the doStuffl) function returns.

gy

Object Oriented Programming in C

After the last few sections, you can finally let your brain cool off because there is no such
thing as object oriented programming in C. C actually predates the whole concept of
object oriented programming. That is the reason C++ exists. C++ is basically just a patch on
top of C to make it work with the OOP paradigm. We aren’t going to teach you any C++in
this course, so that's all there is to this chapter.

186"

Programming: In Practice

James Lyne shares some real-world examples of how a good knowledge of programming is
invaluable in cyber security work.

Paq%l;ﬂ?

Introduction to SQL

Fa?gkaa

An Introduction to SQL
What is a database?

A database is very simply a store of data. There are two kinds of databases, relational
databases and non-relational databases. We will cover each in more depth later in this
module. However for now you can simply say a relational database is an organised store
of data. The data is stored in a structured way, in tables with data types and fixed
maximum lengths.

What is SQL

SQL or Structured Query Language (pronounced sequel or ess-que-ell) is a language
designed for managing relational databases. In a way you can think of it as a kind of
programming language for accessing relational databases.

There are many kinds of SQL database engines produced by a multitude of vendors and
while they all utilise SQL for database management, each database engine speaks a
slightly different dialect of SQL. The result is that not all SQL works on every SQL
database. Mostly if you learn SQL for one database engine, you can easily write SQL for
any other if you simply learn the minor differences. The core of SQL remains the same.

Database Management Systems

A database management system (DBMS) is the software that (as the name would suggest)
manages databases. It sits between the user and the database and the user interacts with
the DBMS using SQL. The DBMS is responsible for managing access to the databases, and
executing SQL queries. Often the terms DBMS and database are used interchangeably.

SQLite vs MySQL vs MariaDB

SQLite is a lightweight DBMS that stores data in a single file. It is often used in embedded
systems where a small database is required but where processing power is limited.

MySQL is one of the most well known and most used open source database management
systems. It is designed as a production DBMS to run at scale.

In 2010 Oracle acquired MySQL. This event was quite controversial in the open source
community and so MySQL was forked into MariaDB. MariaDB is intended to be a drop-in
replacement for MySQL, indeed even the MariaDB command line client is still called
mysql.

In this course we will be using MariaDB for all of our SQL examples, however we will use
the terms MariaDB and MySQL interchangeably given the nature of MariaDB.

iRy

Relational vs Non-Relational Databases

Relational Databases

We talked briefiy about how relational databases are a structured store of data. In a

relational database, data is stored in tables which can hold fixed types of data of a fixed

maximum size.

The name relational comes from the fact that tables in a relational database can be

linked together or related to each other. This comes in the form of primary keys and
foreign keys. Each table in a relational databasemust have a primary key. A primary key
is a value in a row that is unique to that row. At its simplest this could be a numerical and
incrementing ID for each row.

The primary keys of data in one table can be stored in another table as a foreign key. This

would essentially create a relationship between the two tables.

As an example here are two tables:

customers:
customerld | firstName lastName address city :_ country
1 Ursa Vasquez E‘Sl-asn?xsg 78,8410 Worcester | {SJtTtt:sd
2 Quyn Meyer ‘Pl'u?clgﬁitﬁgtnl 55 Price Canada
3 Orli Klein “4931 Gravida St. ES;;‘Z‘:S'" m;im
4 Tallulah | Hines | oo7s fellentasque. | omaha | el
5 Joel Ross | z;je‘sta;xﬁiﬁf:m Clwenfnrds; :("E;% -
6 Charlotte | Ramos 794-1654 A Rd. Akron ;‘L’::::
7 e wery | OSNONOwaoc |t
8 Igor Malone | 6627 Porttitor Rd. Irvine Eiﬂi;?j?: m

o

9 | Connor| Witt 5979 Vel St. ‘ Tain United Kingdom

10 | Karen | Marquez| Ap #524-1173 Metus. RnalL:IAnnapnlis Royal Canada

orders:

orderld | date currency total customerld
1 2020-11-14 | % 111 |6
2 2020-07-07 | £ 958 4
3 2021-02-18 | £ 721 |2
4 2020-05-25 | $ 834 4
5 2020-07-10 | £ 47 1
6 2021-02-27 | £ 587 |4
7 2021-03-04 | £ 198 | 10
8 2020-09-03 | $ 200 |3
9 2020-11-17 | £ 726 | 3
10 2020-12-29 | $ 200 | 5

Going by these two examples the primary key for the customers table is the customerid
column. The primary key for the orders table is the orderld column.

In the orders table, customerld is the foreign key that relates orders to customers. In this
case we would say an order has a single customer and a customer can have many orders.

Non-relational databases

Not all databases are relational. Non-relational databases are designed to hold
unstructured data where the designer may not know exactly what kind of data needs to
be stored or if the type of data that needs to be stored is constantly changing. As the
name suggests there are no relationships between data in non-relational databases.

Non-relational databases are sometimes called NoSQL databases because you do not use
SQL to query them. One of the more common types of No5SQL database is the document
data store. In this case a document would be associated with a key for example:

Puwl‘ﬂ

Key: 3
Document:
"firstName": "Orli",
"lastName";: "Klein",
"address"; "4981 Gravida SL.",
"city'": "Barrow-in-Furness”,
"country”: "United Kingdom",
"orders™ [{
"date"; "2020-09-03",
"currency”; "$",
“total"; 200,
}
{
"date"; "2020-11-17",
"currency”: "E",
“total": 726,
H

}

This is a somewhat poor example because this kind of data is far more suited to a
relational database. A good example of the type of data which would be well suited to
NoSQL databases is log messages. Log messages vary from system to system, with varying
types and sizes of messages, and there are times when new |log sources need to be added
quickly.

Which one is better?

Both types of databases have their uses, in fact it is not uncommon for applications to use
both types of databases at once. It is just a case of picking the right tool for the job. You
should know enough about their differences to be able to tell which is better for your use
case.

In this module we will be looking strictly at relational databases going forward.

F‘HWE

Installing MariaDB

Now we will cover a simple installation and configuration for MariaDB on an Ubuntu Linux
system.

Open the command line to start.

As usual we should make sure our package manager is up to date before we proceed with
the installation:

sudo apt update
sudo apt install mariadb-server

Then we will configure the DBMS:
sudo mysql_secure_installation

You will be prompted to enter a password for the root user and then you will be prompted
to answer yes or no to several options - entey at all the prompts. This is a secure default
configuration for MariaDB.

Connecting to MariaDB

Now that we have MariaDB installed we need to create a new user for ourselves.
sudo mysql -u root -p
You should be greeted with a prompt:
MariaDB [(noneg]]>
Enter the following SQL statements replacing thepasswor d> with your own password:

CREATE USER 'foundations'®'|ocalhost’ IDENTIFIED BY '<password=';
GRANT ALL PRIVILEGES ON *.* TO 'foundations'®'localhost’;

FL!.ISH PRIVILEGES;

it

F‘HMJ

NOTE: The syntax is critical. Special characters, such as semi-colons and apostrophes,
have specific meaning in SQL. The SQL commands are not case sensitive, they are
capitalized for readability purposes.

With our new user setup (called foundations) we can now login to MariaDB without using
sudo:

mysql -u foundations -p

If you've completed the setup correctly you should be once again greeted with the
prompt:

MariaDB [{none)]>

P

MySQL Basic Statements

Faqﬁ'ﬁ

Introduction to MySQL

In this module we will cover the following SQL commands to help you build your first SQL
statements:

SELECT
ORDER BY
WHERE
DISTINCT
ALIAS

Using a database

When you first connect to MySQL you will by default have no database selected. A DBEMS
can have multiple databases within it, so before you can run any queries on any tables
you must pick your database.

You can do this withUSE:

USE databasename;

Once you have done that your prompt should change from:

MariaDB [none]>

to

MariaDB [databasename]>

Structure of a SQL statement

SQL has a syntax much like programming languages do.
Without knowing what this simple statement does we can observe some requirements and
best practices:

SELECT orderld, currency FROM orders;

o8

The most important thing to note here is the at the end of the statement. If you forget
the semi-colon then the statement will not be executed because SQL will assume there is
more to come. The semi-colon is the character that indicates the statement has ended.

The next thing we can note is that SQL commands are capitalised. Although this is not a
strict requirement it makes the statement much more readable.

While the SQL commands arenot case sensitive, the names of columns and tableare
case sensitive. Therefore if we were to write:

SELECT orderld, currency FROM ORDERS;

This would be invalid unless the table was calledORDERS rather thanorders.

We can see also that where a command accepts multiple parameters when they are
separated by a comma. A space after the comma is not strictly necessary but is
recommended for readability.

This is the structure of a very basic SQL statement.

F‘HW?

SELECT and FROM

TheSELECT statement is used to retrieve data from one or more tables in a database.
The FROM command identifies which table to retrieve the data from.

The most basic syntax for SELECT statement is:

SELECT comma, separated, fields
FROM tablename:

Take thiscustomers table as an example:

PioEe

customerld | firstName lastName address | city country

1 Ursa Vasquez E‘S;aﬂn?xsg?ﬂ' 8416 Worcester gtl:tt:sd

2 Quyn Meyer ‘Fl'u?ngﬂitﬁgtn 55 Price Canada

3 orli Klein 4981 Gravida St. Ej:,'_'l':‘:"' Eﬁ;ﬂm
4 Tallulah | Hines gs;gefellentesque Omaha ;’:::sd |
5 Joel Ross E‘;‘F}zﬂ:‘hﬂf_ﬁ:y Clovenfords ;:Ji[:t;?:ldam

6 Charlotte | Ramos 794-1654 A Rd. Akron ;‘It':::: |
7 e mey | FOEOCHMaeo | el
8 Igor Malone | 6627 Porttitor Rd. | Irvine %’;i;im

9 Connor | Witt 5979 Vel St. Tain %’:;fﬂ]m
10 Karen Marquez QE:;SEM 173 Metus. az;'n;palis Canada .

If we wanted to get thefirstName and lastName of every customer in the table we
could do:

SELECT firsthame, lastName FROM customers;

The result would be:

firstName lastName

Ursa Vasquez

Quyn Meyer

Orli Klein

Tallulah Hines

Joel Ross

Charlotte | Ramos

Dennis Avery

Igor Malone

Connor Witt

Karen Marquez
Select ALL

If we wanted to extract all the data from a table without having to specify the fields we
could use the wildcard operator. In SQL the wildcard operator is the asterisk) To
retrieve all the data from thecustomers table we would do:

SELECT * FROM customers;
Producing:

customerld firstName | lastName | address | cityl r.uuntry!
1 Ursa | Vasquez | p.0,Box 878, 8416

Pquﬁ‘

Nullam United
St Worcester Cpates
P.O. Box 670, 7155 .
2 Quyn Meyer Tincidunt St. Price Canada
3 Orli Klein | 4981 Gravida St. Earroway: | Unked
Furness Kingdom
4 Tallulah | Hines | 6279 Pellentesque Street Omaha Unitad
States
P.O. Box 842, 4634 United
5 Joel Ross Egestas Avenue Clovenfords Kingdom
United
6 Charlotte | Ramos 794-1654 A Rd. Akron Sratae
: P.O. Box 506, 4804 United
¥ il s Molestie Avenue Matiock Kingdom
= . United
8 Igor Malone | 6627 Porttitor Rd. Irvine Kingdom
i . United
9 Connor Witt 5979 Vel 5t. Tain Kingdom
10 i Marquez Ap #524-1173 Metus. Annapolis | -
Road Royal

300"

ORDER BY

When you use theSELECT command the data returned is not ordered. Or more accurately
it is ordered however the SQL engine orders data by default This can change between

SQL engines and also between different versions of SQL engines so it is important to never
rely on the default sort order of data returned by th8 ELECT command.

This is where theORDER BY clause comes in.ORDER BY is used to sort data in either
ascending or descending order based on one or more fields.

Here is the syntax for theDRDER BY clause:
SELECT fields FROM tablename ORDER BY field DESC
or:

SELECT fields FROM tablename ORDER BY field ASC

depending on if you wish to sort the data in descending or ascending order.

Using the followingcustomer s table as an example:

custumerid- flrstName- lastName -address | city country

1 Ursa Vasquez E‘Sl‘aﬁx;?g' 8416 | Worcester | ;’::::

2 Quyn Meyer ‘Prlr?clgﬂitﬁgtn L Price | Canada

3 orli Klein ”4931 Gravida St. ?3:;‘:‘:5'" jgi’:;dum
4 Tallulah | Hines gf;if ellentesque Omaha rg{':::: |
B Joel Ross | E;‘Sznsxﬁ_ﬁfﬂ:m | Cluuenfards. ;Jiﬁi;im
6 Charlotte | Ramos 794-1654 A Rd. Akron | ;Jt';i::

F‘Hitﬁﬂl

Molestie United

Avenue Matlock Kingdom

8 Igor | Malone | 6627 Porttitor Rd. | Irvine unktad
Kingdom

9 Connor | Witt 5979 Vel St. Tain Hnited
Kingdom

Ap #524-1173 Annapolis
10 Karen | Marquez Metis Ribad Royal Canada

Let's retrieve the customer first and last names in ascending order of last names.

SELECT firstName, lastName FROM “customers ORDER BY lastName ASC:

The result is:
firstName | lastName
Dennis | Avery
Tallulah | Hines
Orli Klein
Igor Malone
Karen Marquez
Quyn Meyer
Charlotte | Ramos
Joel Ross
Ursa Vasquez
Connor | Witt

Notice the last names are now sorted in alphabetical order.

P30

WHERE

So far when we have been retrieving data from a table we have been retrieving every row
if not always every field. TheWHERE clause is where we start to change that. Th@HERE
clause helps us to filter records to only the ones that match a certain condition.

Here is the syntax for using th&HERE clause:

SELECT fields FROM tablename WHERE condition:

Take this exampleorders table:

orderld date currency total | customerld
1 2020-11-14 % 1M1 |6
2 2020-07-07 | £ 958 4
3 2021-02-18 | £ 21 |2
4 2020-05-25 | % 834 4
.5 .ZDZD-D?JD "£ .4? 1
6 2021-02-27 | £ 587 4
.? 2021-03-04 "£ .193 10
8 2020-09-03 | $ 200 |3
.‘3 2020-11-17 "£ .?25 3
10 2020-12-29 | $ 200 |5

If we wanted to retrieve only the orders which were fulfilled in US Dollars ($) we could
write a query like so:

SELECT * FROM orders WHERE currency = "$";
This would result in:

‘ orderld ‘ date | currency | total ‘ customerld |

303"

1 | 20201114 $ | 111 | 6
4 | 2020-05-25| % | 834 4
8 | 2020-03-03| $ | 200 | 3
10| 2020-12-29| $ | 200 | 5

Going back to the previous section we could include aORDER BY to sort the table into
ascending order by the amount paid:

SELECT * FROM orders WHERE currency = "§" ORDER BY total ASC;

Producing:

orderld | date currency total customerid
1 2020-11-14 | $ 1 |6

8 2020-09-03 % 200 |3

10 2020-12-29| $ 200 |5

4 2020-05-25 | $ 834 |4

DISTINCT

Sometimes we need to return rows of data without duplicates in them. This is where the

DISTINCT clause comesin.

Take thiscustomers table as an example:

customerld | firstName lastName address city country

1 Ursa Vasquez Eﬂl-aﬂrﬁx;m' 2416 Worcester E;E:

2 Quyn Meyer ‘Fl'u?mgﬂ:ltﬁs?tn 755 Price Canada

3 orl Klein | 4981 Gravida St. ooy %’:;im |
4 Tallulah | Hines | 027 Pellentesque | gman, | nited

5 Joel Ross E;}e-s?ausxﬁ;ﬁ?{j:y Ciovenfords ;‘I;;i;im

6 Charlotte | Ramos 794-1654 A Rd. Akron ;‘lt'::::

7 oemis | mey TSNS oo Ut
8 Igor Malone | 6627 Porttitor Rd. Irvine E;i;dum

9 Connor | Witt 5979 Vel St. Tain I‘(-';‘;f;‘um |
10 Karen Marquez ’;E:d524'1 WS MU 22;;”"5 Canada

If you were wanting to return all the countries your customers are based in you might try
something like this:

SELECT country FROM customers;

P308™

However that would get you this result:

country
United States

Canada

United Kingdom

United States

United Kingdom

United States

United Kingdom

United Kingdom

United Kingdom

Canada

The duplicates occur because every row from the country column has been selected.
If we would like a neat table with only unique countries listed, we must use tHEISTINCT
clause like so:

SELECT DISTINCT country FROM customers,

Resulting in:

country
United States

Canada

United Kingdom

P308™

AS

TheAS keyword is used to assign an alias to a table or field. An alias is simply a
temporary name which only exists for the duration of the SQL query as it is executed.

Primarily they are used to make long SQL statements more readable, more descriptive or

set the table headings for a query to make the results more descriptive.

Aliases for Columns

The syntax for an alias by column is:

SELECT field AS aliasname FROM tablename;

Let's use thecus tomer s table for our example:

hw?

customerld | firstName | lastName | address city country

1 Ursa Vasquez :llﬁlaﬂrﬁxsf 75,6416 Worcester ;‘It':::

S e o R P P
3 Orli Klein 4981 Gravida St. Ej;;i’::"' ;";i;im |
4 Tallulah | Hines EEE‘; ellentesque Omaha ;Jt?tt::

5 Joel Ross E;'s?ansxaﬁﬁfeﬁ * | lovenfords :i':;im
6 Charlotte | Ramos | 794-1654 A Rd. Akron s

7 Dennis | Avery | et avenue | MUK | Gom

8 Igor Malone 6627 Porttitor Rd. Irvine E;i;dﬂm |
9 Connor | Witt 5979 Vel St. Tain :'é;i;dom

10 | Karen | Marquez | Ap #524-1173 Metus. RnairjAnnapnlis Rnyat| Canadai

We can write some SQL to return the customers first and last names combined and alias
that as fullname:

SELECT customerid, CONCAT WS(' ', firstName, lastName]) A5 fullName FROM customers;

Which provides us with:

customerld | fullName

1 Ursa Vasquez

2 Quyn Meyer

3 Orli Klein

4 Tallulah Hines

5 Joel Ross

6 Charlotte Ramos
) Dennis Avery

8 Igor Malone

9 Connor Witt

10 Karen Marquez

Don't worry too much aboutONCAT_WS for now although if you are interested this is a
function that can concatenate two fields together with a separator of our choosing (in this
case we chose a space as the separator). Th@'S in CONCAT_WS actually stands for with
separator.

This is an example of where you would use an alias.
Aliases for Tables

The other type of aliases you can create are aliases for tables. Let's say we want to get a
list of customers and their respective orders. We are now working with both tables at once
for the first time ever.

customers:

308"

customerld | firstName lastName | address city country
P.O. Box 878, 8416 United
1 Ursa Vasquez Nullam St. Worcester States
P.O. Box 670, 7155 .
2 Quyn Meyer Tincidunt St. Price Canada
3 orl Klein | 4981 Gravida St. Farow-in- | Unked
Furness Kingdom
2 6279 Pellentesque United
4 Tallulah | Hines Street Omaha States
P.O. Box 842, 4634 United
5 Joel Ross Egestas Avenue Clovenfords Kingdom
6 Charlotte | Ramos | 794-1654 A Rd. Akron S
States
; P.O. Box 506, 4804 United
7 KR Avery Molestie Avenue Matlock Kingdom
. United
8 Igor Malone | 6627 Porttitor Rd. Irvine Kingdom
: ; United
9 Connor | Witt 5979 Vel 5t. Tain Kingdom
Ap #524-1173 Metus. | Annapolis
10 Karen Marquez Road Royal Canada
orders:
orderld date currency total | customerld
1 2020-11-14| % 111 |6
2 2020-07-07 | £ 958 |4
3 2021-02-18 | £ 721 | 2
4 2020-05-25 % 834 4
5 2020-07-10 £ 47 1
6 2021-02-27 £ 587 4

7 | 2021-03-04 | £ 198 | 10
8 | 2020-09-03| $ | 200 | 3
9 | 20201117 | £ | 726 | 3
10| 2020-12-29| $ | 200 | 5

We could write a query like so:

SELECT orders.orderld, customers.firstName, customers.lastName, orders.currency,
orders.total

FROM orders, customers

WHERE orders.customerld = customers. customerld;

We end up with:

orderld | firstName lastName currency total
1 Charlotte | Ramos $ 1
2 Tallulah | Hines £ 958
3 Quyn Meyer £ 721
4 Tallulah Hines '-'$.334
5 Ursa Vasquez | £ 47
mﬁ "Tallulah “.Hines " “£ 587
7 Karen Marquez | £ 198
".B "Drli “Klein $ 200
9 Orli Klein £ 726
---m "jar-:-l ."Rnss i $ I 200

Notice how we linked the two tables based on theus tomer Id field? This is the power of
a relational database. Since every order has a customer we can look up the name in the
customers table based on thecustomer Id stored in the orders table.

This query is kind of long though right? We can use aliases to shorten it a little bit:

PHEHCI

SELECT o.orderld, c.firstName, c.lastName, o.currency, o.total
FROM orders AS o, customers AS ©
WHERE o.customerld = ccustomerld;

Notice here how we aliased theorders table to o and thecustomers table to c?

F‘Biﬁllll

MySQL Joins

Fa?ﬁﬁﬂ

JOIN

Joins are one of the topics people tend to struggle with in SQL but they are actually quite
simple. As the name suggests d0IN clause combines (or you might say joins) results from

two or more tables.

The complexity comes with the different types of joins and exactly how and what they do.

We'll get into that in the next sections of this module but for now let’s look at a basic

JOIN.

Once again we're going to need both example tables for this:

customers:
customerld | firstName lastName | address city courtry
1 Ursa Vasquez E‘Sl'aﬂn?x;?s' 8416 Worcester ;Ig:::
3 Orli Klein 4981 Gravida St. ES:::':S'" Eiﬁi;im |
4 Tallulah | Hines | 0279 Pellentesque | gmans | Lnited :
5 Joel Ross :;ﬁ::p..ﬁ?{j: * Clovenfords :il:;ldnm
6 Charlotte | Ramos | 794-1654 A Rd. Akron disles
7 Dennis Avery :%Elﬁgz iﬂghﬁim Matlock E::.f;im
8 Igor Malone | 6627 Porttitor Rd. Irvine :':if;ﬁ,dum |
9 Connor | Witt 5979 Vel St. Tain Ei?;;::m |
10 Karen Marquez ’;g ::1524-1 s ag;;pons G |

Pugﬁi‘liﬂ

orders:

orderld = date currency total customerld
1 2020-11-14 | 3 M1 |6
2 2020-07-07 | £ 958 4
3 2021-02-18 | £ 21 | 2
4 2020-05-25 | % 834 4
5 2020-07-10 | £ 47 1
6 2021-02-27 | £ 587 4
g 2021-03-04 £ 198 | 10
8 2020-09-03 | % 200 |3
9 2020-11-17 | £ 7260 |3
10 2020-12-29 | $ 200 |5

If you recall we previously linked both tables based on theicustomer Id like so:

SELECT orders.orderld, customers.firstName, customers.lastName, orders.currency,
orders.total

FROM orders, customers

WHERE orders.customerld = customers. customerid;

Which produced:

orderld .ﬁrstﬂame .l,asthlame. currency. tutal.
1 Charlotte | Ramos $ m
-2 Tallulah | Hines | £ | 958
3 Quyn Meyer £ 721
.4 Tallulah | Hines | $ | 834
) Ursa Vasquez | £ 47

P"flh”

7 | Karen | Marquez 198

8 | Orli Klein 200

£
$

9 | Orli Klein £| 726
$

10 | Joel Ross 200

We can look a bit more at how this works by removing tERE clause:

SELECT orders.orderld, customers. firstName, customers. lastName, orders.currency,
orders.total
FROM orders, customers;

The partial result is:

orderld | firstName | lastName currency total
1 Ursa Vasquez | $ 111
2 Ursa Vasquez | £ 958
3 Ursa Vasquez | £ 721
4 Ursa Vasquez | $ 834
5 Ursa Vasquez | £ 47
6 Ursa Vasquez | £ 587
7 Ursa Vasquez | £ 198
8 Ursa Vasquez | $ 200
9 Ursa Vasquez | £ 726
10 Ursa Vasquez | $ 200
1 Quyn Meyer $ 111
2 Quyn Meyer £ 958
“3 "Quyn "Meyer .“E .-“.}'21 |
4 Quyn Meyer | $ | 834

Puiplgfk

5 | Quyn| Meyer| £ | 47
6 | Quyn| Meyer| £ | 587
7 | Quyn| Meyer| £ | 198
8 | Quyn| Meyer| $ | 200
9 | Quyn| Meyer | £ | 726
10 | Quyn | Meyer| $ | 200

Note: We have not printed the entire table of results, however every customer has an
entry for every orderld.

Notice how for everyorder Id we have every combination of customer from the
customers table. This gives us 10 * 10 = 100 results.

Only one of those results is accurate however. We only want the results where the
customerId in the orders table matches thecustomerId in the customers table.
That is the genuine customer that belongs to that order.

SELECT orders.orderld, customers.firstName, customers. [astName, orders.currency,
orders.total

FROM orders, customers
WHERE orders.custemerld = customers. customerld;

_nrderld _ﬁrsthlame _Iasthlame_ currency_ total
1 Charlotte | Ramos ”$ | 11 |
2 Tallulah .Hines | “£ mE‘fSB
3 Quyn Meyer £ 721
4 Tallulah | Hines “$ 834
5 Ursa Vasquez | £ 47
6 Tallulah | Hines £ 587
7 Karen Marquez | £ 198
8 Orli Klein $ 200

Puiﬁtlﬁ

9 | Orli | Klein | £ 726

10 | Joel | Ross | $ | 200

When we match on theustomerId you can see that we are left with an accurate list of
which customer is related to which order. This is similar to howJIN works without
actually using aJOIN. Let's now produce the same result with 30IN clause:

SELECT orders.orderld, customers.firstName, customers.lastName, orders.currency,
orders.total

FROM orders

INMER JOIN customers ON orders.customerld = customers.customerld;

Producing:

orderld | firstName lastName currency total
1 Charlotte | Ramos $ m
2 Tallulah | Hines £ 958
3 Quyn Meyer £ 721
4 Tallulah | Hines $ 834
5 Ursa Vasquez | £ 47

] Tallulah | Hines £ 587
7 Karen Marquez | £ 198
-8 Orli Klein | $ | 200
9 Orli Klein | 4 726
10 Joel Ross | $ | 200

SELECT orders.orderld, customers.firstName, customers. lastName, orders.currency,
orders.total

FROM orders

INMER JOIN customers ON orders.customerld = customers.customerld;

There are a few important points here. Notice first that in thBROM clause we only
mention one of the tables. The second table to be joined is mentioned in thENNER

Pu?ﬁljn'

JOIN clause. Then after theON clause we specify the condition for the join. In this case we
want all entries where thecustomer Id in the orders table matches thecustomerId in

the customers table.

This is an example of aJOIN. However remember there are many different types of joins
with slightly different behaviour for each which we will cover in this module.

F‘aialhla

INNER JOIN

We saw an example of arfNNER JOIN in the previous section. For a quick refresher here
are the two tables:

customers:
customerld | firstName lastName | address city country
1 Ursa Vasquez zﬂl-aﬂrﬁx;m' 2416 Worcester ;]g:::
2 Quyn Meyer ‘Fl'u?clgﬂﬁtﬁs?tn 755 Price Canada
3 orl Klein | 4981 Gravida St. ooy %‘:;im
4 Tallulah | Hines | 027 Pellentesque | gman, | nited
5 Joel Ross E;Szﬂ: Aﬁ?{j:y Ciovenfords :il;i;dnm
6 Charlotte | Ramos 794-1654 A Rd. Akron ;‘lt'::::
7 oemis | mey TSNS oo Ut
8 Igor Malone | 6627 Porttitor Rd. Irvine E;i;dum
9 Connor | Witt 5979 Vel St. Tain :(-';‘;f;‘um
10 Karen Marquez ’;g:d524'1 WS MU 22;:1"”"5 Canada
orders:
orderld | date currency | total | customerld ‘
.1 .2020-1 1-11.} "$ " “1 1 I 6 ‘

Pugﬁyg

3 | 2021-0218 | £ | 721 | 2
4 | 2020-05-25| % | 834 4
5 | 2020-07-10 | £ | 47 |1
6 | 2021-02-27 | £ | 587 4
7 | 2021-03-04 | £ | 198 | 10
8 | 2020-09-03 $ | 200 | 3
9 | 20201117 | £ | 726 | 3
10| 2020-12-29| $ | 200 | 5

And the query:

SELECT orders.orderld, customers.firstName, customers. lastName, orders.currency,
orders.total

FROM orders

INNER JOIN customers ON orders.customerld = customers.customerld;

Which produces:

[orderld | firstName | lastName currency total
1 Charlotte | Ramos $ 111
2 Tallulah | Hines £ 958
3 Quyn Meyer £ 721
4 Tallulah | Hines $ 834
5 Ursa Vasquez | £ 47
6 Tallulah | Hines £ 587
7 Karen Marquez | £ 198
8 Orli Klein $ 200
9 | Orli Klein £ 726
10 Joel Ross $ “200

P35

AnINNER JOIN is used for retrieving rows that meet a condition iboth tables.

Let's try a different query using the same tables:

SELECT customers.customerld, customers.firsth ame, customers.lastName, orders.orderld,
orders.currency, orders.total

FROM customers

INNER JOIN orders ON customers.customerld = orders.customerld;

Notice how not every customer has an order:

customerld | firstName lastName | orderld currency total
) Charlotte | Ramos 1 $ 111
4 Tallulah | Hines z £ 958
2 Quyn Meyer 3 £ 721
4 Tallulah | Hines 4 $ 834
1 Ursa Vasquez |5 £ 47
4 Tallulah | Hines 6 £ 587
10 Karen Marquez | 7 198
3 Orli Klein 8 $ 200
3 Orli Klein 9 £ 726
5 Joel Ross 10 $ 200

An INNER JOIN requires the condition to be true for both tables, in other words any

customner that doesn't have austomerId in the orders table isn't represented in the
results at all.

Puﬁ]lll

LEFT JOIN

ALEFT JOIN returns all the results from the first table and matching results from the

second table.

To demonstrate we'll use these example tables once again:

customers:
customerld | firstName lastName address | city country
1 Ursa Vasquez :l-[ﬁl-aﬂn?xss 78, 8416 Worcester ;‘It'::::
2 Quyn Meyer 'Prlr?tlgzitﬁgtn 7155 Price Canada
3 orli Klein 4981 Gravida St. Ej:;“;:"' Eif;dum
4 Tallulah | Hines Eg:eﬁefellentesque Omaha ;th'::sd
5 Joel Ross E;;_}f:: Aﬂf_;j:sd Clovenfords E;:;Eddﬂm
6 Charlotte | Ramos 794-1654 A Rd. Akron ;‘L’::::
7 s aey | DOSURE e |Gkl
8 Igor Malone | 6627 Porttitor Rd. Irvine Eil:;dum
9 Connor | Witt 5979 Vel St. Tain E::;im
10 Karen Marquez ‘;E :;524'1 T3 Metus. 22;;9”“5 Canada
orders:
‘-- orderld ‘:.date ‘ currency ‘ total ‘"custumerld-‘

hwl

2 | 2020-07-07 | £ | 958 4
3 | 2021-0218| £ | 721 | 2
4 | 2020-05-25| % | 834 4
5 | 2020-07-10 | £ | 47 |1
6 | 2021-02-27 | £ | 587 | 4
7 | 2021-03-04| £ | 198 | 10
8 | 2020-09-03| ¢ | 200 | 3
9 | 20201117 | £ | 726 | 3
10 | 2020-12-29 | $ | 200 | 5

And let's look at our last query from the previous section again:

SELECT customers.customerld, customers.firsth ame, customers.lastName, orders.orderld,
orders.currency, orders.total

FROM customers.

INNER JOIN orders ON customers.customerld = orders.customerld;

This produced:

customerld | firstName lastName orderld | currency total
6 Charlotte | Ramos 1 $ 111
4 Tallulah | Hines 2 £ 958
2 Quyn Meyer 3 £ 721
4 Tallulah | Hines 4 $ 834
1 Ursa Vasquez |5 £ 47

4 Tallulah | Hines 6 E 587
10 Karen Marquez | 7 £ 198
3 Orli Klein 8 $ 200
3 Orli Klein 9 £ 726

P&nﬁ'&

5| Joel | Ross| 10| % | 200

Which meant that some customers were not represented in the results at all because they
had never placed an order.

Let's say instead we want a list of every single customer and if they placed an order the
details of that order. We could use & EFT JOIN for this:

SELECT customers.customerld, customers firstN ame, customers.fastName, orders.orderld,
orders.currency, orders. fotal

FROM customers

LEFT JOIN orders ON customers,customerld = orders.customerld

ORDER BY customers.customerid ASC:

Notice how theINNER JOIN became aLEFT JOIN. We also added anORDER BY clause
to make it easier to see that all the customers are now represented:

o vl

customerld | firstName lastName | orderld currency total |
1 Ursa Vasquez |5 £ 47
2 Quyn Meyer 3 3 721
3 Orli Klein 8 $ 200
3 Orli Klein 9 £ 726
4 Tallulah | Hines 2 £ 958
"4 | Tallulah | Hines | 4 $ | 834
4 Tallulah | Hines 6 £ 587
"5 | Joel Ross | 10 $ | 200
6 Charlotte | Ramos 1 $ 111
"? | Dennis Avery | NULL | NULL | NULL
8 Igor Malone | NULL | NULL NULL
.9 | Connor | Witt NULL | NULL | NULL
10 Karen Marquez | 7 £ 198

An important thing to note is that since some customers have never placed an order the
values fororderId, currency and total are NULL. NULL is a keyword in SQL which
indicates some piece of information does not exist.

The first table in aLEFT JOIN will always have all of its records returned in the query no

matter what the condition of the join is. The second table only has records returned if the
condition matches the join.

F‘Hn?ﬁ

RIGHT JOIN

ARIGHT JOIN is the direct opposite ofaLEFT JOIN. While aLEFT JOIN includes all
results from the first table and matching results from the second table, RIGHT JOIN
includes matching results from the first table and all results from the second table.

customers:
customerld | firstName lastName | address city country
1 Ursa Vasquez Etﬁlaﬂn‘:x&g 78,8416 Worcester ;‘I;;it:
2 Quyn Meyer $|E:|§E;tﬁgtn 7155 Price Canada
3 orli Klein | 4981 Gravida St. PATTp k';i;‘-‘d‘im
4 Tallulah |Hines | 027 Pellentesque | gmap, | Cnited
s kel Ros | TOSNERAH | Conross Wi
§] Charlotte | Ramos 794-1654 A Rd. Akron ;‘L’:::Sd
7 Dennis Avery ;3;31 iﬂjﬂﬁiﬂd Matlock %:i;im |
8 Igor Malone | 6627 Porttitor Rd. Irvine ll(JiT'li;dam
9 Connor | Witt 5979 Vel St. Tain ::ﬁi;im |
10 Karen Marquez 22:51524'1 3RS, 22;:,'}0”5 Canada
orders:
"urderld “r.late currency"" total ‘ customerld
.1 '2n20-11-14_ $ _ m ‘5

go vl

2 | 2020-07-07 | £ | 958 4
3 | 2021-0218| £ | 721 | 2
4 | 2020-05-25| % | 834 4
5 | 2020-07-10 | £ | 47 |1
6 | 2021-02-27 | £ | 587 | 4
7 | 2021-03-04| £ | 198 | 10
8 | 2020-09-03| ¢ | 200 | 3
9 | 20201117 | £ | 726 | 3
10 | 2020-12-29 | $ | 200 | 5

This is the same query from the previous section but withRIGHT JOIN instead of a
LEFT JOIN.

SELECT customers.customerld, customers,firstName, customers.lastName, orders.orderld,
orders.currency, orders, total

FROM customers

RIGHT JOIN orders ON customers.customerld = orders.customerid

ORDER BY customers.customerld ASC;

Produces:

customerld | firstName | lastName | orderld = currency total
1 Ursa Vasquez | 5 E 47

2 Quyn Meyer 3 £ 721
3 Orli Klein 8 $ 200
3 Orli Klein 9 £ 726
4 Tallulah | Hines 2 £ 958

| 4 Tallulah | Hines 4 $ 834

4 Tallulah | Hines 6 £ 587
“5 ”jnel .Rnss | 10 ”$ ”200 [

Puw?

6 | Charlotte | REamos 1% 111

10 | Karen Marquez| 7 | £ | 198

All records from theorders table are represented and any customer with £ ustomer Id
in the orders table is also represented in this query.

If we wanted the same resuits as th&EFT JOIN from the previous section we could swap

the order of the tables in the query:

SELECT customers.customerld, customers.firsth ame, customers.lasthMame, orders.orderid,
orders.currency, crders. total

FROM orders

RIGHT JOIN customers ON customers.customerld = orders.customerld
ORDER BY customers.customerid ASC:

Producing:

customerid | firstName lastName | orderld @ currency total
1 Ursa Vasquez |5 £ 47

2 Quyn Meyer 3 £ 721

3 Orli Klein 8 $ 200
3 Orli Kiein 9 £ 726
4 Tallulah | Hines 2 £ 958
4 Tallulah Hines 4 $ 834
4 Tallulah | Hines 6 £ 587

5 Joel Ross 10 $ 200
6 Charlotte | Ramos 1 $ m

7 Dennis | Avery NULL | NULL NULL
8 Igor Malone | NULL | NULL NULL
9 Connor | Witt NULL | NULL NULL
10 | Karen Marquez | 7 | £ [198

ol o

Because we swapped the order of the tables in the query theustomers table became
the second table and so every customer is once again represented in the results no
matter if they have an order or not.

So why use aRIGHT JOIN when you could use 4 EFT JOIN and just swap the order of
the tables? Well when you have larger existing queries that you wish to add a join to it can
be inconvenient to swap the order of the tables.

F‘Hﬂ?

M
yS
QL Operato
rs

330

Operators

In a similar way to programming languages SQL also has the concept of operators.
Arithmetic operators are operators such as:

add: +
subtract: -
multiply: *
divide: /
modulus: %

Comparison operators are operators such as:

less than: <

greater than: >

equals to: =

less than or equals to: <=
greater than or equals to: >=
not equal to <>

Logical operators are operators such as:

ALL
AND
ANY
BETWEEN
EXISTS
UNION
IN

LIKE
NOT
OR
SOME

Paﬁllﬂl

Subquery

You can use subqueries as a query within a query. When you execute a query that contains
a subguery, the subquery is evaluated first and then the resuit of that query is used in the

enclosing query.

It is easier to explain with an example so we'll use our two example tables:

customers:
customerld | firstName lastName address city country
1 Ursa Vasquez E‘SI'EB;)(SE 78, 8416 Worcester ;T:::
3 Orli Klein 4981 Gravida St. ES:E:M' E{l;i;im |
4 Tallulah Hines gsr?éf ellentesque Omaha ;thf::
5 Joel Ross Eé‘i‘sz?ﬁiﬁf:y Clovenfords E;i;dum
6 Charlotte | Ramos | 794-1654 A Rd. Akron ;thitt:sd |
7 Dennis | Avery ;3;3: igi',.,ﬁgem Matlock ::*Zjit:;:ldnm
8 Igor Malone | 6627 Porttitor Rd. Irvine ‘k"iﬁi;im
9 Connor | Witt | 5979 Vel St. Tain Kesiom |
10 Karen Marquez ’;‘g ::1524-1 173 Metus. ';E;:Fﬂns Canada
orders:

orderld ‘ date ‘ currency ’ total l customerid ‘

P‘ﬁfﬂ

1 | 20201114 $ | 111 | 6
2 | 2020-07-07 | £ 958 | 4
3 | 2021-02-18 £ | 721 | 2
4 | 2020-05-25| % | 834 | 4
5 | 2020-07-10 £ | 47 |1
6 | 2021-02-27 | £ 587 | 4
7 | 2021-03-04 | £ 198 | 10
8 | 2020-09-03| $ 200 | 3
9 | 20201117 | £ | 726 | 3
10| 2020-12-29| $ | 200 | 5

Here is an example of a query that contains a subquery:

SELECT firsthame, lastName
FROM customers
WHERE customerld IN
{SELECT customerld
FROM crders
WHERE total > 300);

This query is designed to produce a list of customers who have spent more than 300 units
of currency:

firstName | lastName

Quyn Meyer
Orli Klein

Tallulah Hines

Now let's break down this query. The subquery is executed first so let's see what happens
when we run this manually:

SELECT customerld FROM orders WHERE total > 300;

P!wﬂ

customerid

These are thecustomer Ids from the orders table for any orders greater than 300. This is
the data that will be passed into the parent query.

SELECT firstName, lastName
FROM customers
WHERE customerld IN
{One of the Ids in the table above);

Since there are only three unique Ids then there are only three customers that have spent
more than 300 units of currency in the past.

In theWHERE clause we are using theIN operator. This query will go through the
customers table and check if thecustomer Id for that row is in the results of the
subquery. If it exists then it returns the first and last name for that row.

EXISTS

The EXISTS operator checks for the existence of records in a subquery.

Let's take a look at an example using our example tables:

hiﬁgﬁ

customers:

customerld | firstName lastName address city country

1 Ursa Vasquez E-Siaﬁrﬁxss?sl 2416 Worcester ;]g:::

2 Quyn Meyer ‘Pl'u?mgﬂ:l tﬁgf' 755 Price Canada

3 orl Klein | 4981 Gravida St. oy %’:;im |
4 Tallulah | Hines | 2279 Pellentesque | gman, | nited

5 Joel Ross E;}e-s?ausxhﬁ?{jfsd Ciovenfords :;:Jil:;jdom

6 Charlotte | Ramos 794-1654 A Rd. Akron ;‘lt';i:::

P oems | ney (PSSO o | Uil
8 Igor Malone | 6627 Porttitor Rd. Irvine E;i;dum

9 Connor | Witt 5979 Vel St. Tain :(-';‘;‘;“um |
10 Karen Marquez agjjszd-ﬂ?a Makus; 22;:?“"5 Canada |
orders:

orderld | date ‘ currency ‘ total customerld |

.1 .2020-11-14[$ ’ 11 ..5

2 | 2020-07-07 | £ | 958 | 4
3 | 2021-02-18 £ | 721 | 2
4 | 2020-05-25| % | 834 4
5 | 2020-07-10 | £ | 47 |1
6 | 2021-02-27 | £ | 587 | 4
7 | 2021-03-04 | £ 198 | 10
8 | 2020-09-03| ¢ | 200 | 3
9 | 20201117 | £ | 726 | 3
10 | 2020-12-29 | $ | 200 | 5

And hereis a query:

SELECT firstName, lastName
FROM customers
WHERE EXISTS
(SELECT customerld
FROM orders
WHERE customerld = customers.customerld);

This query is designed to return the first and last names of any customers who have
placed orders. Here is the result:

firstName | lastName

Ursa Vasquez

Quyn Meyer

Orli Klein

Tallulah Hines

Joel Ross

Charlotte | Ramos

Karen Marquez

o=

There are seven records which means there are three customers who have never placed
an order.

The EXISTS operator is a little unusual because instead of evaluating the subquery first,
the subquery is evaluated for every record returned from the parent query. Let's take a
look at the subquery first anyway:

SELECT customerld FROM orders WHERE customerid = customers.customerid;

This query doesn't work on its own because this subquery references thastomers
table which was a part of the parent query. This is known as a correlated query. To
simulate how theEXISTS operator works we need to tweak the query a little bit:

SELECT customerld FROM orders WHERE customerld = 1:

This query will return one or more rows for any customers that exist in the orders table
with an id of one. If no rows are returned then the customer with the id of one (1) doesn't
exist in the orders table and therefore never placed an order.

Since the EXISTS operator is evaluated for every record in the&ustomers table then the
above query is re-run with the one changing to theustomer Id of the current record that
is being evaluated.
So:

SELECT customerld FROM orders WHERE customerld = 1;
Then:

SELECT customerld FROM orders WHERE customerld = 2;
Then:

SELECT customerld FROM orders WHERE customerld = 3;

and so forth...

F‘Bﬁ?

Every time the subquery returns one or more rows, then the parent query selects the first
and last names of the row that is currently evaluating thEXISTS operator.

If the subquery returns no rows then the query moves on to the next row in the customers
table.

SELECT firsthame, lastName
FROM customers
WHERE EXISTS
(SELECT customerld
FROM orders
WHERE customerld = customers.customerld);

From this we end up with a list of customers that have placed orders before:

firstName lastName

Ursa Vasquez

Quyn Meyer

Orli Klein

Tallulah Hines

Joel Ross

Charlotte | Ramos

Karen Marquez

Note: It is worth remembering that th&€XISTS operator is quite inefficient because the
subquery has to be executed once for each record in the parent table. If your datasets are
large then this could become problematic.

o

UNION

The UNION operator allows you to combine the results of two select statements into one.

Let's use our example tables again:

111 |6

higﬁﬂ

customers:
customerld | firstName lastName address city country
1 Ursa Vasquez PN'SI'EBFTSE?E' 2416 Worcester ;]g:::
2 Quyn Meyer ‘Pl'u?:lgﬂﬁtﬁgtn 715 Price Canada
3 orl Klein | 4981 Gravida St. oy %I:;ﬁ:m
4 Tallulah | Hines | 2279 Pellentesque | gman, | nited
5 Joel Ross E;}e-s?ausxhﬁf{jfsd Ciovenfords :;:Ji!:;dom
6 Charlotte | Ramos 794-1654 A Rd. Akron ;‘lt';i:::
7 loems aey [TOSRSEO o Ul
8 Igor Malone | 6627 Porttitor Rd. Irvine E;i;dum
9 Connor | Witt 5979 Vel St. Tain :(-';‘;f;‘um
10 Karen Marquez QE::ISM-T WS MaLus, ar;;:lpuﬁs Canada
orders:
orderld | date ‘ currency total | customerld |
.1 .2020-1 1-14! $ "

2 | 2020-07-07 | £ | 958 | 4
3 | 2021-02-18 £ | 721 | 2
4 | 2020-05-25| % | 834 4
5 | 2020-07-10 | £ | 47 |1
6 | 2021-02-27 | £ | 587 | 4
7 | 2021-03-04 | £ 198 | 10
8 | 2020-09-03| ¢ | 200 | 3
9 | 20201117 | £ | 726 | 3
10 | 2020-12-29 | $ | 200 | 5

Let's say we wanted to have a list of unique countries and currencies that our customers
use in one column, we could do something like:

SELECT DISTINCT country AS "countries & currencies”" FROM customers
UNION
SELECT DISTINCT currency AS "countries & currences” FROM orders;

Which results in:

countries & currencies

United States

Canada

United Kingdom
$
£

FULL JOIN

There is one kind ofJOIN we haven't covered yet. TheFULL JOIN is not supported by
MySQL or MariaDB, however we can emulate it with the help ofiION,

324"

If you recall from the previous module alINNER JOIN produces results where both
tables meet the condition. TheLEFT JOIN and RIGHT JOIN return all the results of one
table and results from a second table which meets the condition of th80IN.

AFULL JOIN returns results from both tables. Let's look at our example tables again this
time with a slight modification:

customers:
customerld | firstName lastName | address city country
1 Ursa Vasquez E‘SI'EBH':XSE?B' 8416 Worcester ;"t?:::
2 Quyn Meyer ?Il?clgﬂﬁtﬁgf 7155 Price Canada
3 orli Klein | 4981 Gravida St. Sidisaida }{"i':;im
4 Tallulah | Hines gilr]:tPellentasque Omaha ;‘L’:t;
5 Joel Ross E;‘;:;Aﬂﬁ?:y Clovenfords ;-(J;i;qum |
6 Charlotte | Ramos 794-1654 A Rd. Akron ;jt?tt:sd
7 v aey [P0 ey |k
8 Igor Malone | 6627 Porttitor Rd. | Irvine E;‘;im
9 Connor | Witt 5979 Vel St. Tain :("';‘;ffu "
10 Karen Marquez .;E;;szs,n?a Metus. gz;:lpnlts i .
orders:
| orderld date ‘ currency ‘ total custumarld.
.'1 _2u20-11-14} i ‘ 11 | NULL

Puyﬂlldl

2 | 2020-07-07 | £ | 958 | 4
3 | 2021-02-18 £ | 721 | 2
4 | 2020-05-25| % | 834 4
5 | 2020-07-10 | £ | 47 |1
6 | 2021-02-27 | £ | 587 | 4
7 | 2021-03-04 | £ 198 | 10
8 | 2020-09-03| ¢ | 200 | 3
9 | 20201117 | £ | 726 | 3
10 | 2020-12-29 | $ | 200 | 5

There is one very important change in the orders table here. The first order has been
corrupted and is no longer associated with a customer (note this would be extremely

unusual if it were to happen but we need this for our example).

Now we have a situation where not every customer is associated with an order (not every
customer has placed an order - this would be normal) and ALSO a situation where not all
orders are associated with a customer (this would be much more unusual of course).

Remember our left join from the previous module:

SELECT customers.customerld, customers firstN ame, customers.lastName, orders.orderld,

orders.currency, orders.total
FROM customers
LEFT JOIN orders ON customers.customerld = orders.customerld
ORDER BY customers.customerd ASC:

This now produces:

o

customerld | firstName lastName orderld currency tntal-
"1 . Ursa | Vasquez | 5 £ 47
2 Quyn Meyer 3 £ 721
.3 Orli Klein 8 $ 200 |
3 Orli Klein 9 £ 726

4 | Tallulah | Hines 4 $ 834
4 | Tallulah | Hines 5] E 587
5 | Joel Ross 10 $ 200
6 | Charlotte | Ramos | NULL | NULL | NULL
7 | Dennis | Avery NULL | NULL | NULL
8 | Igor Malone | NULL | NULL | NULL
9 | Connor | Witt NULL | NULL | NULL

10 | Karen Marquez| 7 £ 198

And here is our right join from the previous module:

SELECT customers.customerld, customers.firstName, customers.lastName, orders.orderld,
orders.currency, orders.total

FROM customers

RIGHT |OIN orders ON customers.customerld = orders.customerid

ORDER BY customers.customerid ASC;

This now produces:

customerld | firstName lastName orderld currency total
NULL NULL NULL 1 $ 111

1 Ursa Vasquez |5 £ 47

2 Quyn Meyer 3 £ 721
3 Orli Kiein 8 $ 200
3 Orli Klein 9 E 726
4 Tallulah | Hines 2 £ 958
4 Tallulah | Hines 4 $ 834
4 Tallulah | Hines 6 £ 587
.5 Joel Ross 10 $ 200

P3a%"

To get theFULL JOIN we need theUNION oftheLEFT JOIN and theRIGHT JOIN:

SELECT customers.custemerld, customers. firstName, customers.lastName, orders.orderid,
orders.currency, orders.total

FROM customers

LEFT |OIM orders ON customers.customerld = orders.customerid

UMION

SELECT customers.customerld, customers firstN ame, customers.lastName, orders.orderld,
orders.currency, orders.fotal

FROM customers

RIGHT JOIN orders ON customers.customerid = orders.customerid

ORDER BY customerld;

And the result:

customerld | firstName lastName | orderld | currency | total
NULL NULL NULL 1 $ 111

1 Ursa Vasquez | 5 £ 47

2 Quyn Meyer 3 3 721
3 Orli Klein 8 $ 200
3 Orli Klein 9 £ 726
4 Tallulah | Hines 2 £ 958
“.4 Tallulah | Hines | 4 | $ | 834
4 Tallulah | Hines 6 £ 587
“.5 | Joel Ross | 10 | $ | 200
5] Charlotte | Ramos NULL | NULL NULL
---? | Dennis Avery | NULL | NULL | NULL
8 Igor Malone | NULL | NULL NULL
-"9 | Connor | Witt | NULL | NULL | NULL
10 Karen Marquez | 7 £ 198

You can see that every order has been listed even if it leads to slULL in thecustomers
table and also every customer has been listed even if it leads to aNULL in theorders

P3ax

table. This is exactly the behavior of aFULL JOIN. At the end of the day it was simply the
UNION of a LEFT JOIN and aRIGHT JOIN.

"398

MySQL Database Admin

£

Setting up a database

So far you've learned how to interact with a database that already exists but how about
setting up your own simple database? In this module we'll go through what it takes to
setup a database using SQL.

So far in this course we've been using one database consisting of two tables. Here are
those tables again:

customers:
customerld | firstName | lastName | address city country
1 Ursa Vasquez Eﬂl'aﬁn? KSE?BI 8416 Worcester ;’::::
: Orli Klein 4981 Gravida St. Ej:,:c::;:in' E‘T‘li;:l%m :
4 Tallulah | Hines gf;gef ellentesque | omaha ;thi:eesd
s e Ros | POBNERH ooy Ui
6 Charlotte | Ramos 794-1654 A Rd. Akron ;Jt':ttee:
7 Dennis | Avery E‘Egﬁ:i; iﬂghﬁim Matiock E{:;im
8 Igor Malone | 6627 Porttitor Rd. Irvine :,{J;i;dum
9 Connor | Witt 5979 Vel St. Tain Ei?;?ddum |
10 Karen Marquez Eg:;szd-l 173 Metus. ar;;;poﬁs Canada
orders:

Puﬂﬁﬂ?

1 | 20201114 $ | 111 | 6
2 | 2020-07-07 | £ 958 | 4
3 | 2021-02-18 £ | 721 | 2
4 | 2020-05-25| % | 834 | 4
5 | 2020-07-10 £ | 47 |1
6 | 2021-02-27 | £ 587 | 4
7 | 2021-03-04 | £ 198 | 10
8 | 2020-09-03| $ 200 | 3
9 | 20201117 | £ | 726 | 3
10| 2020-12-29| $ | 200 | 5

We're going to go through the SQL that was required to setup these two tables. The first
step is to connect to the DBMS and create the database itself:

mysql -u foundations -p

CREATE DATABASE foundations;
USE foundations;

This has created a database called 'foundations’ then selected the foundations database
as the active database. Keep in mind that each database on the DBMS has to have a
unique name.

o

Datatypes

Now that our database is setup we must create the tables:

CREATE TABLE customers (
“customerld” mediumint{8) unsigned NOT NULL auto_increment,
‘firstMame’ varchar(255) default NULL,
lastMame” varchar(255) default NULL,
‘address” varchar(255) default MULL,
“city” varchar{255),
‘country” varchar{100) default NULL,
PRIMARY KEY (customerId’)
JAUTO INCREMENT=1;

CREATE TABLE "orders” |
‘orderld” mediumint{8) unsigned NOT NULL auto_increment,
‘date” varchar(255),
‘currency’ varchar{255) default NULL,
‘total” mediumint default MULL,
“customerld” mediumint unsigned NOT MULL,
PRIMARY KEY { orderld’),
FOREIGN KEY (‘customerld’) REFEREN CES customers(customerld’)
) AUTO_INCREMENT=1:

Don't panic and we'll go through this line by line.

The first step is to specify the name of the table, in our case itis 'customers'. Then we
need to specify the fields.

For each field we must specify the name of the field and then a datatype. Remember SQL
is a structured database so each field has a static type. The types are very similar to
types in programming.

For integers you have the int(x) datatype: an integer that can be signed or unsigned. For a
signed integer the allowed range is from -2147483648 to 2147483647. If the integer is
unsigned the range is from 0 to 4294967 295. You can specify the number of digits to
display up to 11 (this is the number in brackets after the datatype represented by 'x').

There are several variations on the int datatype including: - tinyint(x) - smallint(x) -
mediumint(x) - bigint(x)

These are all similar to the int datatype except they have a different allowed range for
the numbers held in the fields. It is much more efficient to use a tinyint if you only need to
store small numbers in the field for example.

For fioats you have the fioat(x, y) datatype: a fioat is a fioating point number (a number
with a decimal pointin it). Thex in brackets is the number of digits to display and the
in brackets is the number of decimals allowed. The maximum number of decimals
allowed for a fioat datatype is 24 decimal places.

P394"

There are a few other variations on a fioat: - double(x, y) - decimal(x, y)

For dates you can use the date datatype: A date is in international format of YYYY-mm-dd
for example 2021-04-20. There are other variations such as:

+ datetime
« timestamp
* time

« year

Finally we have datatypes designed for storing strings. Here we use the varchar(s)
datatype. A varchar(s) is a variable length string witls being the length which must be
between 1 and 255. There are also variations of this:

= char(s)

blob
tinyblob
mediumblob
longblob
enum

For a production database it is always worth making sure you know the best datatype and
size to use for each field. Being too generous with assigning sizes can lead to problems at
scale but also being too conservative with field sizes can also cause problems at scale.

oo

Constraints

We'll continue going through the SQL statements that create our tables:

CREATE TABLE customers (
‘customerld” mediumint{8) unsigned NOT NULL auto_increment,
‘firstName’ varchan255) default NULL,
‘lastiame’ varchar{255) default MULL,
‘address’ varchar(255) default MULL,

“city” varchar{255),
‘country” varchar{100) default NULL,
PRIMARY KEY (customerId’)

) AUTO_INCREMENT=1;

CREATE TABLE orders (

‘orderld” mediumint{B8) unsigned NOT NULL auto_increment,

‘date’ varchar(255),

‘currency’ varchar{255) default NULL,

‘total” mediumint default MULL,

‘customerld” mediumint unsigned NOT NULL,

PRIMARY KEY { orderld’),

FOREIGN KEY (‘customerld’) REFERENCES customers(customerld’)
) AUTO_INCREMENT=1:

We have already gone over how to assign the table names and field names and data
types.

If we look at thefirstName field in the customers table we havaletault NULL after
the datatype. This is known as a constraint. A constraint defines the rules for that field in
the table.

Thedefault NULL constraint means that if no value is entered into this field for a row
then the value defaults toNULL.

On the other hand if we look at theus tomer Id field in the customers table we haveNOT
NULL auto_increment. In this case we are saying theustomer Id field always must

have a value in it (can never beNULL) and that it should autoincrement. This means
basically that the first row you enter will have acustomer Id of 1 and the next row will

have a customer Id of 2 and so on. This is important because theustomer Id is the
primary key for this table and therefore must always be unique. You cannot have two rows

in the customers table with the sameustomer Id.
After we have specified our datatypes we have the primary key constraint:

PRIMARY KEY (customerld’)

This indicates that our primary key for this table is theustomer Id field.

Hﬁl

Finally we end the statement withAUTO_INCREMENT=1 which simply tells us to start the
auto_increment of ids for this table from 1.

We can see very much the same thing with the orders table, however there is one extra
constraint here:

FOREIGM KEY (‘customerld’) REFERENCES customers{ customerid’)

This is a foreign key constraint which enforces the relationship on tieais tomer Id field

in the orders table and the customer1d field in the customer s table. This constraint
will prevent these links from being broken - for example you couldn’t add a row into the
orders table with a customer Id that doesn't exist in the customers table.

F‘E%ﬁ'&i

Inserting Data

The next step in building our database is inserting data into our newly formed tables.
Here is what we've done:

INSERT INTO "customers’ (firstMame', lastName’, address’, dty’, country’) VALUES
("Ursa","Vasquez","P.0. Box 878, 8416 Mullam 5t.","Worcester” "United States”),
{"Quyn","Meyer","P.0. Box 670, 7155 Tincidunt St.","Price","Canada"),
("Orli","Klein","4981 Gravida 5t.","Barrow-in-Furness","United Kingdom"),
("Tallulah","Hines","6279 Pellentesgue Street”,"Omaha”,"United States’),

("Joel" "Ross","P.0. Box 842, 4634 Egestas Avenue”, "Clovenfords”,"United Kingdom "),
{"Charlotte","Ramos","794-1654 A Rd.","Akron","United States")("Dennis","Avery”,"P.C.
Box 506, 4804 Molestie Avenue”,"Matlock","United Kingdom"),("Igor", "Malone", "6627
Porttitor Rd.","Irvine","United Kingdom"),("Connor”,"Witt","5379 Vel

5t.","Tain","United Kingdom"),("Karen","Marguez","Ap #524-1173 Metus. Road","Annapolis
Royal","Canada");

INSERT INTO "orders’ ('date’, currency’, total’, customerld’) VALUES ("2020-11-
14""%" 111,6),("2020-07-07","£" 958 4),("2021-02-18","£",721 2)("2020-05-
25","$" 834.4),("2020-07-10","E" 47 1),("2021-02-27" "E" 587 4) ["2021-03-

04" "£",198,10),("2020-09-03","$",200,3),("2020-11-17","E",726,3),("2020-12-
29":".$|| rzunlﬁx

The syntax here is very simple compared to creating the tables. First we specify the table
to insert the data into, then we list the names of the fields to insert the data into.

Finally we specify the values to enter into those fields in the same order we listed the
field names.

F‘Eﬁé’i]

Scripting Table Creation

You can combine all of this into a single script to automate the creation and insertion of
the tables. Here is the file we created for the example tables:

USE foundations:

DROP TABLE IF EXISTS ‘orders’;
DROP TABLE IF EXISTS “customers !

CREATE TABLE "customers’ (
‘customerld’ mediumint{8) unsigned NOT NULL auto_increment,
firstMame’ varchar{255) default NULL,
‘lastName’ varchar{255) default NULL,
‘address’ varchar(255) default MULL,
‘city” varchar{235],
“country” varchar{100) default NULL,
PRIMARY KEY (customerld’)
JAUTO_INCREMEMT=1:

INSERT INTO ‘customers (firstMame , lastName’, address’, city’, country’) VALUES
("Ursa""Vasquez","P.O. Box B78, B416 Nullam SL." "Worcester” "United States”),
("Quyn”,"Meyer","P.0. Box 670, 7155 Tincidunt 5t.","Price”,"Canada"),
("Orli","Klein","4981 Gravida St.","Barrow-in-Furness","United Kingdom"),

("Tallulah" "Hines" "6279 Pellentesque Street” "Omaha","United States"),
("joel","Ross","P.0. Box B42, 4634 Egestas Avenue”, "Clovenfords”,"United Kingdom"),
("Charlotte" "Ramos’,"794-1654 A Rd.","Akron","United Sl;atai“},{"llennis","ﬁu&ry",'l’.ﬂ.
Box 5060, 4804 Molestie Avenue”,"Matlock”,"United Kingdom"),("Igor”, "Malone”, 6627
Porttitor Rd.","Irvine","United Kingdom"),("Connor”,"Witt","5373 Vel

St.",'Tain","United Kingdom"),("Karen", "Marquez’,"Ap #524-1173 Metus. Road","Annapolis
Rnya|","€anill:|il"_];

CREATE TABLE "orders’ |

‘orderld” mediumint{8) unsigned NOT NULL auto_increment,

‘date’ varchar(255),

‘currency’ varchar(255) default NULL,

‘total” mediumint default NULL,

‘customerld” mediumint unsigned NOT NULL,

PRIMARY KEY (orderld’),

FOREIGN KEY (customerld’) REFERENCES customers(customerld’)
JAUTO_INCREMENT=1;

INSERT INTO "orders” (‘'date’, currency’, total, customerid’) VALUES ("2020-11-
14""§",111,6),("2020-07-07","E" 958 4),("2021-02-18","€".721 2) ("2020-05-
25""$" 834 4),("2020-07-10""£" ,47,1),("'2021-02-27" "E" 587 4) ("2021-03-

04", "%",‘I 98,10)("2020-09-03","$",200,3),("2020-11-17","£",726,3),("2020-1 2-
29","%",200.5),

A few things to note here - this script assumes that a database called 'foundations’
already exists in the DBMS.

Notice the DROP TABLE IF EXISTS - this will simply delete the table if a table by that
name already exists. This is necessary because a sSimpl€REATE TABLE will fail if a table
by that name already exists. This helps us to refresh the data by simply running the script
again, if we run some queries that mess up the data.

o o

To import the data you would simply save the script into a text file and then you can run:

mysql -u foundations -p < db.sgl

You will be prompted to enter the password for your user and once you do the data will
be in the database.

F‘EilngE

Deleting a Table

Now that we have a database setup, what do we do if we want to delete a table?

We need to be able to delete tables.

To delete a table we can use.DROP TABLE tablename; for example:

DROP TABLE customers;

If we run this however we will get an error:

ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint
fails

Remember when we setup a foreign key constraint on the orders table?

Here is a reminder for our table definition:

CREATE TABLE "customers’ |
‘customerld” mediumint(8) unsigned NOT NULL auto_increment,
firstMame” varchar255) default NULL,
lastName” varchar(255) default NULL,
‘address’ varchar{255) default MULL,
‘city” varchar(255),
‘country” varchar{100) default NULL,
PRIMARY KEY (" customerld’)
JAUTO_INCREMENT=1;

CREATE TABLE "orders (
‘orderld’ mediumint(8) unsigned NOT NULL auto_increment,
‘date’ varchar{255),
‘currency varchar(255) default NULL,
‘total” mediumint default NULL,
‘customerld” mediumint unsigned NOT NULL,
PRIMARY KEY (‘orderld’),
FOREIGN KEY ('customerld’) REFERENCES customers(customerld’)

) AUTO_INCREMENT=1;

This foreign key constaint will prevent us from breaking the relation between theders
table and the customers table by deleting thecustomers table. This means we
actually first have to delete theorders table:

DROP TABLE orders;

PesEe

This should work and now that there is no more foreign key constraint, we should be free
to delete the customers table:

DROP TABLE customers;

F‘Bﬁ?

Windows Overview

Pasge

Learning Objectives
After completing this module, you should be able to:

« Know the differences between Windows versions, and their uses in desktop, server
and mobile environments.

Install Windows 10.

Set up networking on Windows.

Configure Windows Defender.

Change settings in the registry.

Examine the log files that Windows generates.

Pa&ns@'sg

Module Content

This module will provide a basic introduction to Windows, focusing on the desktop
offering.

We will be covering the following components:

= What is Windows?
Networking
Windows Defender
The Registry

Log Files

P50

What is Windows?

Microsoft Windows (usually referred to as simply 'Windows') is an operating system
developed by Microsoft. Microsoft Windows is a graphical operating system, meaning it
has a GUI (Graphical User Interface). The earliest version of Microsoft Windows was simply

a graphical shell added on top of the existing Microsoft DOS operating system, which up
until then had been purely text based.

PB%]IBI

Windows Desktop

As of the time of writing, the most current version of Windows is known as Windows 10. This
is the version of Windows we will be focusing on in this module. Windows on the desktop
enjoys a majority market share, due mainly to its ease of use, particularly in the earlier
versions of the operating system. In addition, ubiquitous use in business settings means
around 90% of all desktop computers run one version of Microsoft Windows or another.

P35

Windows Server

Although Microsoft Windows is best known as a desktop operating system, there are many
different versions which are specialised for different uses. Microsoft Windows Server is, as
the name suggests, an operating system designed to run on servers. Itis set up to allow
administrators to easily set up file sharing, email and other such functionality. The reason
Windows Server is so common in enterprise settings, however, is mostly down to Active
Directory. Active Directory is a system that allows the server to communicate with
Windows desktops, allowing the administrator to easily configure all the connected
desktops from one location, amongst other uses which we will cover in future modules.

Windows Server does also have a GUI (Graphical User Interface), however thereis a
version that strips out most of the interface. This has only been possible in the most
recent versions of Windows Server because of PowerShell, an incredibly powerful
command line (text based) interface. This version of Windows Server is known as Windows
Server Core.

ok o

Windows loT (Embedded)

Windows IoT (Internet of Things), formerly known as Windows Embedded is a version of
Windows designed to be run on low power computers, such as those found in point of sale
systems (tills), digital billboards, cash points, and so on.

el

Windows on Mobile Devices

Windows can even be found on mobile devices. Although the old Windows Phone
operating system has now been retired, the current operating system for mobile devices
such as phones and tablets is a version of Windows 10, albeit one that has been
customised for use on mobile devices.

P358°°

XBox

You might be surprised to discover that the Xbox One games console also runs a version of
Windows 10. Although this version of Windows 10 is heavily customised, its core remains
the same as the operating system you use on desktop computers.

358

Windows 10 Install Walkthrough

In this section we will run through the standard procedure to install Windows 10. In this
instance, we will use a virtual machine but the process is highly similar to a standard
hardware build. One of the big differences is that virtual devices and virtual setup almost
always 'just work' where physical hardware systems often require special drivers, or
tweaks. We cover this separately in the course.

Virtualization Tools

In this video we also cover the installation of VMware tools, though the processis similar
for other virtualization providers. These tools provide drivers for the virtually presented
devices that the system interacts with. Installing these increases the functionality and
smooth operating of the guest system, though it makes it abundantly obvious it is a virtual
system to any processes running inside the system. These drivers provide better graphics
capabilities, smoother file transfer and host to guest integration.

Patching

Windows patches are one of the most important things you can do as part of good IT
hygiene to keep a system running securely and efficiently. Windows 10 provides rich
controls over patches and the ability to install them out of working hours. There are also
bandwidth saving capabilities and peer-to-peer protocol distribution of updates where
systems nearby can share updates to avoid fiooding bandwidth of the upstream
connection to retrieve the same files from Microsoft.

All of these capabilities can also be controlled centrally by the administrator.

F‘a!ﬁ%’ﬁ?

Networking Windows

Like most operating systems, Windows can usually get you networked automatically as
soon as you connect, no matter if you are plugging in an ethernet cable or connecting to
the WiFi. Connection setup is handled by a network protocol called DHCP (Dynamic Host
Configuration Protocol), which will be covered elsewhere in this course.

If you are on a network that doesn't support DHCP, or you'd prefer to set your own settings
for whatever reason, you can change your network settings to set them manually. The first
stage is to access the Control Panel, so hit the Windows icon in the bottom left and type
'Control Panel' and click on the 'Control Panel' entry that comes up.

ol

O &
Best match

v Control Panel
= Eesxiop app

Apps
(2] Settings

& Sound Blaster Zx

Once in the Control Panel, use the search in the top right and search for 'Network'. The first
result should be 'Network and Sharing Centre’, select it.

g e

P3be”

You should see 'Connections’, and there will be a blue text link that says either ‘Ethernet’
if you are connected through a cable, or 'WiF' if you are connected over Wireless. Click on
the blue text link to bring up a status window, then dick on 'Properties’.

3 ¢ Cwmsd Panl o+ 88 Cumtest P Barm. © Figtene i, gl Somry Cenire

v walr Basic nemwars indormation and wm OIS
S g W ORIlr bas] FITRETICIN @l T i M

e poan sk sk
Crs=ge srjapee 1efiegs

Ay e
T sikaanced whany [[:
[Frvali i phamint it
rertam
bamge yaw setuken afling
W Latw i wetia i a] |
vot i & Brmadiend, d@sl-up or YN conescan, o eet B 8 AT oF sEres ot

= Tuckt

Thagnne snd mpan nrkaes pretiemy o oger rmaisnnninyg e

In the 'Properties’ window, you will have a list of items.

Gereral PnnECTons
Connecoon t
1P 4 Comechityi Int=ret Il.t-':le e——
1Pyl Cormectvey No netwark. scress ficup Pasib -
Meda St - T
Curabior L dany 154837
Speer 1.0 Shg |
(5117 1
g & roviter oF access pant
AcTiTy
- et infonmedae
et &g Hesanes |
g
B
Wyten! 7 &7, BE], 463 LA, 108, 290

| L FLEA 'qu| & b Tigroes

Select Internet Protocol Version 4 (IPv4) and then click on 'Properties’ again.

Fawu

tﬁ Ethernet Properties

Metworking Sharing

Connect using:

EF Kiler E2500 Gigabit Ethemet Cantroller

Configure...

Thia connection uses the following tems:

¥] BB Client for Microsoft Networks " |
| “E8\Mware Bridge Protocal

W " e and Printer Sharing for Microsoft Networks
Wl 9 virtiialBax NDISE Bridged Networking Driver
¥l BH005 Packet Scheduler

vl Pl Intemel Protocal Version 4 {TCF/IPed)

[5 Microsoft Netwars Adapter Multiplexer Protocal W
£ >
P
Install.. Liriratsl | pmpégﬂ |
Description

Transmission Control Protocol/intemet Protocol. The default
wide arsa network protocol that provides communication
across diverse interconnected networks

oK Cangcsl

From this window, you can swap from 'Obtain an IP Address automatically’ to 'Use the
following 1P address' to configure custom network settings. Similarly, for the DNS servers,
you can set them statically by ticking 'Use the following DNS server addresses'.

Pa??'{l?l

Internet Protocol Version 4 (TCP -"IF"-E,I Properties

General

You can get IP settings assigned sutomatically if your network supports
this capability, Otherwise, you need to ask vour network administrator
for the appropriate IP setiings,

(") Obtain an IP address automatically
(®) Use the following IP address:

IP address: [192.168. 0 . 92 |

Subnet mask: | 255.255.255. 0 |

Default gateway: | 192.168. 0 .254 |
Cibtain DNS ==rver address automatically

(®) Use the following DNS server addresses:

Preferred DNS server: | 8 .8 .8 ., 8 |
Alternative DNS server: | g .8 .4 .4 |
[]validste settings upon exit Achiannc

If you do make a change here, make sure to select 'OK' to save the settings, and don't
forget that if your network is using IPve, then you should also look at the settings in the
Internet Protocol Version 6 (IPv6) item,

Fa%?

Windows Defender

Windows Defender is the built in anti-virus solution that comes with Windows 10. It is
enabled by default, and it will also update itself with the latest virus definitions
periodically. Microsoft advises that you stick with it, instead of installing third party
antivirus solutions, however other solutions might provide more enterprise management
capabilities, or features that you need for your particular security setup. What is
important is that it provides robust malicious code prevention capabilities out of the

box. Microsoft are improving it all the time too, for example in response to ransomware
which has been prolific in the past few years.

Windows Defender can be disabled. However, Windows will automatically turn it back on
after a period of time. If you install a third party anti-virus product, Windows Defender

will be disabled automatically, and it won't turn back on until your third party anti-virus
has been uninstalled. Windows does this because running muiltiple antivirus products at
once can cause unexpected behaviour in the computer. Yoganchain together multiple

AV products if you want to in later versions of Windows, but the gains of doing this against
performance are minimal. This makes it a rare use case.

To access the settings for Windows Defender, go to the 'Windows' icon in the taskbar and
click on it, then type 'defender’. You should see 'Windows Defender Security Centre’ in the
search results. Windows Defender can be configured from that location.

F‘Bﬁl‘i

Windows Firewall

In addition to Windows Defender, Windows 10 has a built in software firewall which is also
enabled by default. The firewall will try to prevent unknown connections from coming into
your computer from the internet, and for each program that runs, and tries to connect out
to the internet, it will also ask you permission to allow it through the firewall. This only
happens the first time the program runs, and your choice is saved after that.

F‘BMJ

Registry

The Windows Registry is a database of settings for both the operating system and for any
applications which support storing data in the registry. The settings here are low-level
and are not meant to be changed or even seen by the typical end user. However, the
registry is incredibly powerful. There are settings stored in the registry that cannot be
modified through any other method.

You should not edit the registry without being confident of what you are doing. Itis
possible to destroy your Windows installation with a single error. You can also export the
registry as a backup, however if you mess up too badly there is no guarantee you could
restore the registry using the exported file. At that point, your only option would be a full
re-install of the operating system.

To view the registry, we need to use a tool called regedit’, which is installed on Windows
by default. To access it, click the 'Windows' icon in the taskbar and type ‘regedit’.

File Fri®@ Wisw Fewnn ey Help

LA B L,k RN P TR b s A e T AT e i esdi

Birbaren & | Hams Tioa N
Peligimy i lefaul} = |+t ezt vl
H"""“ W fes owoED SELO00ED (1)
sl = Alnulonsnadl , 05 DUWEHD ATV 3

Crppmgrphy
Neerlhic
Foprmn
fpvbem Cmeiriipwhey
o
(L=
Agvemmmgnio
A
BITE
(ST
Flral nbeciinn
Leiverpdptrugmlian
Lirersamning
L elAmgelieeee
L -
ILEl
el Lonn eolines
Pt kL prweze bt badabnindsc st
S e
1ifef
LT
Fyiom
WA .
‘Wil Ervi P.l[\ﬂlﬂlhg
[C S TR
Weynplaceisn
A
Wingowd aivanced vt Fiobecoon
Wit Dl prie
W i 11

As an example of what can be accomplished with the Windows Registry, we will show you
how to disable Cortana, the Windows 10 virtual assistant which pops up when you access
the Windows start menu. There is no setting to disable this in the Windows Control Panel;
however, we can accomplish it by editing the Registry directly.

In the image above, you can see we have gone into

HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\Windows
Search

PB%,‘S?S

and created a new entry in the registry called 'Allow Cortana’.

When you create a new entry in the registry (right click where you want to add it and go to
New), it will ask you for the type of entry to be added. For this use, it needs to be
DWORD(32 Bit). You will then have to give the entry a name; in this case, it must be ‘Allow
Cortana'. Finally, you have to set a value, in our case 0 (to turn Cortana off).

After the changes, you must close regedit and restart the computer; then you should be
able to access the 'Start’' menu from the task bar without Cortana appearing.

Note: This works at the time of writing, but Microsoft can and often does change the way
things work during updates. If this does not work for you, try searching online for an
updated method to disable Cortana. It will almost certainly involve using regedit. There
are other methods, such as using 'group policy’; however, the group policy editor is only
available in the Pro version of Windows 10.

F‘EME

Log Files

Like most operating systems, Windows keeps a 'log’ of events that occur on the computer.
Log files are useful in many circumstances, from determining what was responsible fora
crash occurring, to trying to trace if an attacker has compromised the system.

To view the log files, we can use the Event Viewer. The Event Viewer can be accessed by
going to the 'Windows' icon in the taskbar, and then typing ‘event viewer'. One of the
search results should be 'Event Viewer'. Click on it to open, and you should be presented
with a window that looks like this:

{

§

8
FEFTE
theke

|

From here, you can expand the 'Windows Logs' folder and pick a log file to examine:

F‘BW?

Keywords Date and Time Sowrce Event I Task Category i
'a\%‘jucc:ss 16082017 1R0L0S Microsaft Wind... AT38 Usar Azcount...
A Audd Success TROLNTT 18:56ST [_\ru[r,mm& Wi, 4798 Security Growp —
B, Auclit Success THY017 TRGEIT Micreaaft Wend... 4708 Securty Group .
O Audit Suecess. T6/8/A0T 18563T Miicresoft Wind... AT9% Secunty Groug
Q\M Sgccess 16082017 18A51] Wicresaft Wind. . ATE8 User Acoount ..
Bl Audh Suceess 16/08/2017 1839137 Mierosaft Wind... 4T Security Group
a\.ﬂuudﬂiu:cu: TRARAI01T 1Al 3T Microuoft Wind. . 4795 Security Orowp
9, Audd Success ETR201T 184137 Mheresoft Wind... AT9e Securiy Group ..
O Audin Success 1G082017 182655 Mlicrosafy Wind... JET2 Sperial Logon

* W sk Cige rpes e M7 (0S5 croafe s W Legs

Bl Auct Sugcess 15A0G/R01T 1R26IT Microaoft Wind... 4799 Security Group —
A Audst Success 18ORG01T IR2EIT Micronoft Wind... 4798 Secunty Group —
O, Audi Suecess MDA T TR 2637 Micsesoft Wind... AM8 Security Group ..
B Audit Suecess TH/08/2017 122401 Micresoft Wind... AT99 Security GROUR ..
B Audit Success T50B201T 182401 Microrsaft Wind 4795 Security Group —
"!'\Audﬂ Success TAMIBRDTT HRIHTH Micresaft Wind. ., 4877 Speciel Logon
B, Ayt Guceess TRAL017 102253 Pz rosaft Wind... 50 Logen

O, Audd Suecess 16082017 181137 Micreaoft Wind... 1798 . Security Group .
O Audit Success 1GOE01T 181137 Microsoft Wind... 4736 Security GIOUR .
LEY Aiides Coorrmer AE/NACINTT 10 14,77 BIL Er Moo ATO8 Tarimin: Comss |

Event 4624, Micresoft Windows securnity suditing, o
General [etadly
ACEEUNT WA B CERTTUlly IDgges Gn. b o
l::bmch >
Log Name: Secuarty
Source Microsoft Windows security Loggesk OEAITT 1 B3RS
Event D 4624 Task Category Logon
Leved Infeermation Keywoide Budet Succesy
Liser: Mia Computer OESETOP-DATIRFZ
OpCede: Infe
Mare information:. Bant Lag Cnling Help w

Here is an example of the 'Security’ log, where we can see a ‘logon’ event.

These logs can also be useful if you get a Blue Screen of Death and need to track down the
cause, or maybe you just wantto find out if anyone logged into your computer while you
were away.

P&WB

Windows Permissions

Fawﬂ

Contents

In this module, we will be covering:

User Accounts
Groups in Windows
User Account Control
File Permissions
Hidden Files

oo

User Accounts

A user account is what you use to sign in to your computer. Seems simple, right? Several
accounts are created automatically during installation so we'll have a look at those,
before looking at how to create and manage users on your machine.

Default Accounts

Along with any user you specify during installation, the following users are always created
when you install Windows:

» Administrator: This account has 'full’ control over the machine. There are some
things it can't do (generally something that would break the operating system), but it
can be used to manage other users and install applications.

« Guest: The Guest accountis used by people who do not have an actual account on
the computer. It is limited in what it can do, and care should be taken to ensure that
this account is not able to do anything that could cause harm.

» DefaultAccount: This is used as the template for all new accounts created on the
machine. Any changes made to this account will be carried over.

All three of the accounts will be disabled by default, which means you can't log in using
them. But they're there and can be enabled if you need.

Account Types

Windows 10 has three account types (it's actually closer to two as you'll see shortly):
Administrator, Standard and Child.

The Administrator account type is able to make changes that affect all users, including
modifying other accounts, installing applications and changing security settings on the
machine.

A user with the Standard account type can do most things that an Administrator can,
however they are prevented from doing anything that would affect other users; they can't
delete certain files or change things that affect everyone.

The third type, Child, is effectively the Standard account with parental controls enabled
automatically so things like usage time can be monitored or limited. It can only be
created as part of a family, it's not possible to create a Child type by any other method.

Creating a New User
Assuming the machine will be shared, you'll more than likely need to create additional
accounts for each user. There are many different ways to create new user accountsin

Windows. We'll have a look at two of the simplest: using the Control Panel and using the
Local Users management console,

PE!IBJIHI

Creating a User With The Control Panel

Using the Control Panel to create a new user is by far the easiest way to tackle this task. If
you hit 'Start’ and then select "Settings’ (the cog icon on the left) you'll be presented with
a screen much like the following:

Windows Settings

O
4 fie)
@)

Fritada Pdih LYKLIW A Sevdiilly

Here we want to select 'Accounts’, which will take us to a section where you can manage
not only your own account but also create and manage others. The screen will look like
this:

-]
1 8 o Your info

Wiy Wimiem bl

=y sy peish

[gr— USER

Ly R T

B, Famig i i i

L e T TR S RIS Tt A 8
T o W bimed! o ndd o @ ooien ol jiae ol o) 8] mod M a
sy

14 b wlie § LTI ClL st

Craute your pleture

@
[St

I !

This page allows you to change various aspects of your account, such as profile picture

and lock screen settings. The section we're interested in here is 'Family & other people'.

Selecting this will take us to a page where we can manage other users of this machine, so
let's do that now. We end up on this page:

P38

| = S el
p—RE =17 1R T AR

fl, Nep-monpiams

S s smeih iw whenl

| Ny i it

Family & other people
our famiy

i i T MR AT S i Rl s i i e

T AT b by fariy ety g e s o 6O

) (N S 2 Pt b 11 iy b el g vl
et e Bt i il s

T S Y L —

Other prople

Pl jemcile ler iy fart o e Pamiify D bG48 D
R T T —

A eI i b s
5t

1 b e

[gry base & mnaEron

REar Wwak o

o= b BITLE B

You can now begin to add a new account by selecting 'Add someone else to this PC'. This
will display a prompt where you set the username and password for the new account.
When creating an account this way that's all you can set; you can't choose what type of
account it will be while creating it. The screen will look like this. In this case, it has been
pre-filled to create a 'user2' account that will be modified in the next step.

ot o

AP TN o LI L AL
WRCOSOIT Actout x

(=]

Create an account for this PC
Ll
1 o il Lo wse a passaord; choose soormetberg tal will be easy for you bo rermemibier Bve
but hard far others to guess.

Wha's going o use this PC?

| USETE |

Make It seciire.

[eoswerenn 1

l Secure password hinis ae good |

You will see the new user appear where there previously was none.
Other people

Allow people who are not part of your family to sign in with their
own accounts. This won't add them to your family.

| + Add someone else to this PC

user?
Local account

This new account will, by default, be a standard user account. This means it is limited in
its abilities and can not make changes that will affect all users on the machine. To change
this select 'Change account type' and you'll be presented with a screen to choose either
'Standard User' or 'Administrator’,

ol o

Chanpe scrount type

f_—.|'|r_'-i|'||;tr-: account type

This screen also allows us to delete user accounts, this is done by selecting the 'Remove’
option. Removing an account will also delete all data that was created on the machine by
that user, so be careful to remove the correct account when doing this as recreating the
user will not bring back any files.

Creating a User with the Management Console

Now let's take a look at a less simple, but more powerful way to create users: the Local
Users Management Console. If you hit 'Start’ and type 'lusrmgr.msc’ you'll see the console
suggested. It'll look like this:

%} lusrmgr.msc
Microsoft Common Console Document

After the console has loaded, if you select 'Users’, you'll see all the users who currently
have an account on the machine. Notice you can also see the default accounts mentioned
earlier. This is where we can enable or disable these accounts.

Midime Fuill Meamm Doy i by

!u..ﬁl:lltllrl'.\f.'ﬂln'.i it account ior somunstenny e compuler domgen
B Dafadtaceount A \BET ETOUNE managen by e Wi

L st Buili-o secoiant for gusal o 10 e commipuiler/ domaen
[

Bl

Creating a user from this screen is as simple as right-clicking and selecting ‘New User". This
will display the following screen;

P984

Mew User 7 =

User nama:

Full name: |

Descnption |

Password

Confirm pazsword:

User must change password at next logon
User cannol change password
Pasgword naver eapires

[] Aceountis disabled

Halp | Croate Closa

You'll notice that this screen gives us a lot more choice when creating the account. We can
force the user to change their password when they log in for the first time, make it so they
can never change their password, or create the account as disabled. If you do not select
the 'Password never expires' box, users created using this method will be forced to
change their password every 30 days (this does not apply to users created using the
control panel method above).

P388

Groups

When managing users in Windows it can become rather unwieldy attempting to keep track
of permissions and which level of access each account should have. Groups are the
solution to this: a user can be added to one or more groups and will inherit their
permission from the group itself, no need to set the permissions for each user.

You can create your own groups if needed, however Windows comes with several built in
that are suitable for most needs initially, these are:

» Administrators: Any members of this group have full access to the computer. They
can access all files and make changes that affect all users, such as installing new
software or changing system settings. The Administrator account is a default
member of this group.

« Users: This is the default group new standard users will be assigned to. Members of
this group can perform most common tasks like running applications and using
printers, although they are not able to install any new programs or make similar
changes to the system.

» Remote Desktop Users: If you wish to be able to connect to the computer remotely,
you will need to be a member of this group. Remote desktop sessions cannot be
created unless you're a member of the group. Note that this doesn't mean you can't
use remote desktop on this machine, just that you can't connect to it.

« Guests: Any members of the Guests group do not have permanent profiles on the
machine. Each time they log in a new profile is created for them and at log off the
profile is deleted. The Guest account is a default member of this group.

F‘EEIBR‘-IB?

Creating new groups

To create a new group we need to revisit the management console. You can get there by
heading to the start menu, typing 'lusrmgr.msc' and dicking the link when it appears.

Creating a new group is as easy as right clicking on the Groups folder and selecting ‘New
Group'. You'll be prompted to enter a name and description for the group, and to add any
users, although enly the name is mandatory at this stage.

Once the group is created you can then begin to add users and use it to manage
permissions, which will be covered shortly.

o\

User Account Control

User Account Control (UAC) was introduced by Microsoft in an attempt to make the
Windows Operating System more secure. UAC works by assigning 'tokens' to the user when
they log in. All users, whether they have a standard or administrative account, are given a
standard token which is used to run applications with a limited level of access.

When an administrator wants to make changes to the system the screen is dimmed and a
prompt is shown asking them to verify the request. If this is accepted a special
administrative token is released and used to run the application with all the powers that
come with being an administrator. The tokens, and the permissions that are associated
with them, are only valid as long as the application is running and a new request is
required next time the access is needed.

o

UAC Prompts

As previously mentioned, if the user who tries to carry out a task is an administrator they
are presented with a prompt to approve the action, it looks much like this:

g Windows PowerShell

Verified publisher: Microsoft Windows

Show more details

The prompt shows which application is requesting the elevated privileges and asks the
user to confirm the action. Butwhat if the user is not a member of the Administrators
group? In that case a prompt as below will be displayed:

P35G™

E Windows PowerShell

Verified publisher: Microsoft Windows

Show more details

To continue, enter an admin user name and password.

User

}—;::‘-:a'-';-. rd

DESKTOP-3VSCDO9\User

Before the application can run with administrative access, an administrator is required to
enter their username and password. This is because a standard user does not have the

administrative token to pass to the application.

Paﬁl

UAC Levels

You can configure UAC to be more, or less, permissive. If you search 'UAC' on the start
menu and select 'Change User Account Control Settings' you will be presented with four
options.

The options, and what they mean for UAC are:

 Always notify: The UAC prompt is shown when apps try to install software or make
changes to your computer and when you try to change Windows settings. The
desktop is dimmed when a UAC prompt is shown.

* Notify me only when apps try to make changes to my computer: This is the default
setting for UAC. UAC prompts aren't shown when you try to make changes to Windows
settings, but are shown when attempting to install software or run as administrator.
The desktop is dimmed when a UAC prompt is shown.

+ Notify me only when apps try to make changes to my computer (do not dim my
desktop): This is the same as above but the desktop isn't dimmed when a UAC
prompt is shown.

« Never notify: This is the equivalent of turning off UAC. Aithough UAC will still be
active, all requests from administrators will be automatically approved while
requests from standard users will be denied without showing a prompt in either
case.

F‘HME

File Permissions

Windows has a very granular permissions system for files and folders. To manage this each
file or folder has an Access Control List (ACL) which stores who is allowed which level of
access. To access this list you need to right click the file and select 'Properties’, then once
the new window opens head to the Security tab, which will look like this:

file1 Properties p.4

General Securly Details Previous Versions
Objectname: ClUsers\UsenDemolfile] ot

Group of usar names

BR sYSTEM

& User (DESKTOP-3VSCDONUser)

BR Administrators (DESKTOP-IVSCDO%Administrators)

To change permissions, click Edit Edit

Permissions Allow Deny

Full control

Modity

Read & executs
Read

Wite

Special permissions

For special permissions or advanced settings. Advanced
click Advanced.

OK | Cancel Apply

At the top of the window we can see a list of users or groups that have been added to the
ACL for this file. Selecting one of the items from this list will populate the bottom section
with their permissions. You can also edit the users or groups in the ACL by hitting the edit
button and then when the screen below is displayed, adding or removing to the list.

PuwB

Securty
Object name: CiUsers\UserDemol\file1 bd

Group or user names:
. u SYSTEM
1 User [DESKTOP-3VSCDOY\User)

£ Administrators (DESKTOP-3VSCDO9\Administrators)

Add Remove

All permissions can either be allowed or denied. It's worth mentioning that a deny will
always override an allow. For example if a user is a member of a group that is allowed to
access a file, and also a member of another which is not, they will always be denied

access. It's worth noting that the default action when a user does not have permissions set
is to deny all.

The permissions available for files and folders are broadly the same. For files you are able
to set the following permissions:

« Full Control: gives you all available permissions for the file.

+ Modify: allows you to read, write, modify and execute the file.

« Read & Execute: allows you to display the file's contents, and run the file if it's a
program.

» Read: allows you to open the file, and view its contents.

» Write: allows you to write data to the file.

Similarly for folders, these are the options you have at your disposal:

+ Full Control: gives you all available permissions for the folder and its contents.

« Modify: allows you to read, write, modify, and execute files in the folder.

« Read & Execute: allows you to display the folder's contents, the contents of files
inside, and run any programs in the folder.

» List Folder Contents: allows you to display the folder's contents, and the contents of
files inside.

 Read: allows you to open the folder, and view any files or subfolders.

» Write: allows you to add new files or subfolders.

You might notice there's some overlap there. That's because you need both Read &
Execute and List Folder Contents to execute files within a folder. This is because files
within a folder inherit their permissions from the folder, and files can't have the List
Folder Contents permission, so must inherit Read & Execute.

goil o

Hidden Files

In Windows when we hide a file, the 'hidden’ attribute gets added, these files then no
longer show up when viewing folders. You can set a file or folder as hidden by right
clicking on it and selecting 'Properties’. Once the properties window has popped up,
check the Hidden box and hit OK. The properties window will look like this:

Accessad: 31 January 2018, 14:18:54

Atfributes: []Read-only Hidden Advanced

oK Cancel Apply

Once you have done this, unless you have set Explorer to show hidden files, you'll no
longer see this file. It will still exist, and can be edited or used as normal, you just can't
see |t.

To show hidden files you need to head into folder options, this can be found on the ribbon
at the top of the explorer window under View'. Once this is open, select the "View' tab and
change the option to show hidden files and folders like so:

Hidden files and folders
() Don't show hidden files, folders or drives
(® Show hidden files, folders and drives

Any hidden files will then show up, but with a translucent icon to show that they are
hidden. In the image below "file4.txt" is hidden, and as you can see has a different
appearance to the other files.

L] filel.txt
[file2.txt
|| file3.xt

filed.txt

PH!@%BE

The Windows CLI

F:‘s&ggﬂ 6

Contents

In this module, we will be covering:

The Windows Command Line
Command Line Navigation
Command Line Commands
Command Line Networking
Command Line User Management

Paw?

What is the Command Prompt

The Command Prompt is a command line interpreter (CLI) application available on most
Windows operating systems. We use the Command Prompt to, wait for it... execute entered
commands. Most of the time it's used to automate tasks by running scripts or batch files,
carry out administrative tasks, and troubleshoot and solve issues. The Command Prompt

is officially called the "Windows Command Processor” but is generally referred to as the
command shell or prompt, and sometimes by its filename cmd.exe. You might

occasionally hear it called "the DOS prompt” or as MS-DOS itself. Command Promptisa

Windows program that emulates much of what was available in MS-DOS but it is not
actually MS-DOS.

ol o

Accessing the Command Prompt

There are many ways to open the prompt; the easiest being to hit start and type cmd. This
will search for and suggest the Command Prompt. As below, clicking the suggestion will
open the Prompt.

& |) Filters v/

Best match

- Command Prompt
Desktop app

Search suggestions

£ emd

Notice that when we open the prompt this way, even if our user account is an
administrator, the prompt is opened as a standard user.

Microsoft Windows [Version 10.0.16299.192]
(c) 2017 Microsoft Corporation. All rights reserved,

CAallsersilUsers

If you need an administrative prompt you need to explicitly request it. You can do so by
right clicking on the suggested link:

Best match

- Command Prompt

£S5 Run as administrator

Search sugges
" Il Open file location

A cmd - se 3 Pin to Start

<3 Pin to taskbar

Fawﬂ

This will (depending on settings) trigger a User Account Control prompt, to confirm you
want administrative level access, before opening a new prompt as an administrator.
Notice that the prompt does not default to the user's home directory, but instead to
C:\Windows\System32 and the title bar of the prompt clearly labels it as being run
with administrator privileges.

Microsoft Windows [Version 10.0.16299.192]
(£) 2017 Microsoft Corporation, All rights reserved,

CAWindows\system32>

As always, you should only drop into an administrative prompt if absolutely necessary,
and once you've completed your task be sure to return to being a standard user.

F‘ugbbuu

Changing directory

The first command you're going to need i=d, this enables you to change directory (move
to a different folder). For examplecd \ will take you to the root of the file system, which
in this case isC:\.

CiWindows\System3Zcmd.exe
Microsoft Windows [Version 10.0.16299.192]
(c) 2017 Microsoft Corporation. All rights reserved.

Chllsers\User\Documents=cd \
Cih>

You can use tab completion to make typing directory names easier. Just start typing the
name you want and hittab on your keyboard. A suggestion will appear and complete your
directory. You can continue to hit tab to cycle through suggestions.

It's worth noting that Command Prompt is not case sensitive, it doesn't matter whether
you useCD, cd orCd: all are perfectly valid. The same goes for file names.

Pngtﬁnl

Changing drives

Your machine is likely to have more than one drive available, either a second hard drive

or possibly a connected USB device. To access another drive, we just type that drive's
letter, followed by ":". For instance, if you wanted to change the drive from "C:" to "D:", you
should type "d:" and then hit enter on your keyboard. You'll notice the drive letter on the
prompt change to the new drive, as below:

ChUsersiUseriDocuments=0:

Bih=

If you know the directory you need to go to on the new drive you can navigate straight to it
by usingcd with the /D switch. This allows you to go to a specific folder on the new drive,
so for example if we wanted to get from the D: drive to C:\Windows we could us# /D
C:\Windows and we'll go straight there:

Di=cd /D CAWindows
C\Windows>

F‘Hgbiﬂi

Viewing directory contents

It's all well and good being able to navigate the file system, but you probably want to be
able to see what's inside the directories. We can do this using thdir command.

Thedir command is used to show files and directories in the current directory. The
command also shows the last modification date and time, as well as the file size. When
you rundir the results will be like the following:

CAUsersiUser\Demo=dir
Volume in drive € has no label.
Volume Serial Number is DEFS-ABGE

Directory of CiUsers\User\Demo

30/01/201813:12 <DIR>
30/01/201813.12 <DIR= o
M1 201812:42 <DIR= dest_dir
3020181312 14 filel, txt
30/01/2018 12:42 <DIR> source_ dir

1 File (s) 14 bytes

4 Dir(s) 36,092.047,360 bytes free

By default dir does not show hidden files and folders. To do this we need to add a switch
to the command, we'll use the/A switch which is used to set file attributes to display.

There are filters to narrow down what's shown here but for now we're happy to be shown
everything. Running the command again, this time akir /A results in the following
output, showing the previously hidden file:

Ch\UsersiUser\Demo=dir /A
Volume in drive C has no label,
Volume Serial Number is DEFS-ABGE

Directory of C\Users\User\Demo

30/01/20181312 <DIR=>
30/01/201813:12 =<DIR> ha
30/01/201812:42 <DIR> desi dir
30/01201813:12 14 filel. =t
30/01/2018 1312 14 hidden _file txt
30/01/201812:42 <DIR> source_dir

1 File (s) 14 bytes

4 Dir(s) 36,092 047360 bytes free

F‘Hgﬁiﬁ

Common Command Prompt commands

We're going to take a look at some of the more useful commands when working in the
Windows Command Prompt. Using the commands covered here you should be able to get
by navigating and working with the Command Prompt for most day to day tasks.

Pngbaﬂ-d

mkdir

The 'mkdir' command is used to create a directory. This one is nice and straightforward,
you use it like this:

ChUsers\User\Demo=mkdir new _dir
CAUsersiUser\Demo=dir

Velume in drive C has no label.
Volume Serial Number js DEF5-ABGE

Directory of C\Users\User\Dema

30/01/201814:08 <DIR=
I 201814:08 <DIR= -
30/01/201813:07 <DIR> dest_dir
30/01/20181312 14 filel.txt
30/01/201814:08 <DIR= new_dir
30/01/201812:42 <DIR> source dir

1 File(s) 14 bytes

5Dir(s) 36,090,421,248 bytes free

You can also use a full path when creating a folder; in this case the command would look
like this:

mkdir C:\Users\User\mynewfolder

‘mkdir’ will create any missing folders along the way, so don't worry if they don't exist, you
don't need to do them one at a time.

F‘!ghgﬂﬁ

copy

Copy allows us to copy one or more files to a different location, while leaving the original
file untouched. Using copy is as simple as:

copy <source> <destination=

It looks like this:

CAUsers\User=copy filel.tut fileZ b
1 file(s) copied,

CAUsersilUser=

We can also use it to copy multiple files into a new folder, like so:

CAUsers\User=copy *.txt \copy_target dir
filet.txt
file2 txt

2 file{s) copled.

CAUsers\User=

One thing we can't do with ‘copy’ is copy a directory. Strange, right? If you attempt this
what will actually happen is the files from within the directory itself are copied, the root
folder and any subdirectories are left behind. This is because 'copy’ is not capable of
handling directories.

C\Users\User>copy copy_target_dir new_din
copy_target_dirtfile?.txt
copy_target_dirifile2.txt

2 file{s) copied.

C:\Users\User=dir new dir
Volume in drive C has no label,
Volume Serial Mumber is DEFS-AGGE

Directory of C: \Users\User\new_dir

30/01/201812:01 <DIR>
30/01/201812:01 =<DIR> o
30/01201811:51 10 file1, bt
30/01/2018 11:51 10 file2. tet

2 File(s) 20 bytes

2 Dir(s) 36,093,161,472 bytes free

To do this we need to use 'robocopy’.

F‘!gbﬁ)ﬁ

robocopy

Robocopy is a command that allows you to copy files, directories, and even entire drives
from one location to another. It's more robust than just plain old 'copy’, and allows you to
do far more.

To copy an entire directory tree, you need to use the /S’ switch. This copies the directory
and all subdirectories, excluding any empty directories. If you also want to copy empty
directories it's the /E' switch.

CAUsers\User\Demo=robocopy scurce_dir dest_dir /s

ROBOCOPY = RobustFile Copy for Windows

Started r 30 January 2018 22:34:43

Source : C\Users\Usen\Dema‘\source _dir
Dest : C\Users\UseriDemo'dest_dir
Files :**

Options :*.* /S /DCOPY:DA /COPY:DAT /R:1000000 /W:30

MNew Dir1 C \Users\User\Demo \source_dir

100% Mew File 9 filed.txt

New Dir 0 C\Users\User\Demo\source_dirsinner
NewDir 0 C \Users\User\Dema\source _dirfinner_diry

Total Copied Skipped Mismatch FAILED Extras
Pirs: 3 3 0 0 0 0

Files : 1 1 a o 0 0

H;.rzas " 9 9 0] 0 D

Times : 0:00:00 0:00:00 0:00:00 0:00:00

Speed : 600 Bytes/sec.

Speed : 0.034 MegaBytes/min.
Ended : 30 January 2018 22:34:43

You may notice that there's a lot more output about the progress of the command and the
eventual outcome. Be sure to check-obocopy /7 for all options.

in?

move

The 'move’ command is used to move one or more files from one location to another.
Unlike 'copy’ when using 'move’ we can move directories without any extra commands. We
use move with the following syntax:

move <source> <destination=

That's really all there is to it.

Ch\UsersiUser\Demo>move source_dir dest_dir
1 dir(s) moved.

C:\Users\User\Demo=dir dest dif\source_dir
Volume in drive C has ne label.
Volume Serial Mumber is DEFS-AGGE

Directory of CA\Users\User\Demotdest_dirisource dir
30/01/201812:42 <DIR=

30/01/201812:42 <DIR= +

30/012018 1241 10 file1

30/01/2018 12:42 10 file2

2 File(s) 20 bytes
2 Dir(s) 36,092,719,104 bytes free

F‘ugtﬂ:ra

del

When we want to delete a file, we use 'del’. Be careful with this one though as it does not
prompt for confirmation before removing files, and once they're gone, they're gone. Using
the del command is another nice easy one, to delete a file you just do the following:

del <filename>.
You can also use wildcards when deleting, for example:
del *.txt

This will delete all files with the .txt extension in the current folder, but again be careful
you don't delete too much by accident. It's often a good idea to use '/P' which will prompt
before deleting files unless you're absolutely sure you don't need them. The prompt for
deletion looks like this:

Ch\UsersiUser\Demo=del /P *.txt
ChUsersiUser\Demoifile.txt, Delete (Y/MN)? n

Much like the 'copy' command, we can't delete directories with this. It will delete all files
within the directory itself without removing the folder once done. To do this we need
'rmdir’.

F‘ugbgla

rmdir

To remove directories from the command line we need to use the 'rmndir command. This
command is essentially the opposite of 'mkdir’ we saw earlier, we use it like this:

rmdir <directory>

You don't get any output from this command, the only way to know that it worked isto
check the folder has gone. It's pretty safe to assume that if no errors were produced that
it worked, but let's check:

Volume in drive C has no label.
Volume Serial Number is DEF5-ABBE

Directory of C\Users\User\Demo

300120181415 <DIR=
20/01/2018 14:15 <DIR=> T
N 20181410 <DIR= a
30/01/201813:07 <DIR> dest_dir
30/01/201814:08 <DIR> new_dir
30/01/201812:42 <PIR> source dir
0 File{s) 0 bytes
6 Dir(s) 36,090,220,544 bytes free

C: \Wsers\User\Demo=rmdir new _dir

C: \Wsers\User\Demo=dir /A:D
Volume in drive C has no label.
Volume Serial Mumber is DEFS-AGBE

Directory of C\Users\User\Demo

30/01/2018 14:15 <DIR>
30/01/201814.15 <DIR= .
30/01/2018 14:10 <DIR> a
30/01/2018 13:07 <DIR> dest_dir
30/01/2018 12:42 <DIR> source dir
0 File{s) 0 bytes
5 Dir(s) 36,000,220,544 bytes free

Something to note is that if the target is not empty by default the command will fail. You
can override this by passing the '/S' switch, which will delete all files and sub-directories,
deleting an entire directory tree. Obviously, as with any deletion, this is something that
should be done with extreme caution.

C\Users\User>rmdir Demo
The directory is not empty.

Cillsers\User>rmdir /S Demo
Demo, Are you sure (Y/N]? y

CUsers\User>

Pn?ﬁtllﬂ

more

The 'more’ command is used to display the contents of a file one page at a time. It works
much the same as the more command from Linux. A good use of ‘'more’ is where a
command has a large output and you wish to page through it.

Here we have used the ‘dir' command to list a directory with a large number of things
inside: by piping the output to ‘'more’ we can page through it by hitting enter. Notice at
the bottom of the output there is "~ More —-" shown: this lets us know there is more text to
come.

ChAUsers\User\Demo=dir "c Windows" | more
Volume in drive C has no label,
Volume Serial Mumber is DEFS-AGGE

Directory of c\Windows

24/01/201810:38 <DIR>

24/01/201810:38 <DIR> .,

29/09/2017 13:46 <DIR= addins
04/01/201804.11 <DIR> appcompat
24)01/201802:09 <DIR> apppatch
30/01/201810:35 <DiR> AppReadiness

30/09/2017 1435 <DIR> Help

29/09/2017 1341 976,896 HelpPane.exe
-~ More -

F‘u?ﬁll

find

'find’ searches inside files for a specified string of text. After searching the files, find’
displays any lines of text that contain the search string. This is useful for quickly searching
the contents of files when looking for something specific. Like most commands we've seen
you can also use wildcards in your search.

Here you can see the result of:

find C:\Users\User* "hello" 2>nul

CAlsers\User\Demo=find cAUsers\Usen* "hella” 2= nul

CAUSERSVUSER\E

CAUSERSVUSERNFILEY.TXT

"hella"

CAUSERSVUSERVFILEZ. TXT
"hellg"

CAUSERS\USERVNEWDIR

"hello"
"hella”

CAUSERS\USERVNEWDIR.TXT

"hello"
"hello"

This command is looking at all files in the "User" directory and checking them for the
string "hello". You might notice th2>nul at the end, this has been used to hide error
messages, as without it any access denied messages will also be displayed. This was not
desirable in this case.

F‘B?IJZIE

where

The 'where' command is roughly equivalent to the 'which’ command in Linux, we can use
it to locate files on a computer. The command searches the current directory and any
directories listed in the PATH variable by default so can be handy when looking for the
location of an executable.

Here you can see a search for text files where the name starts with "file":

ChUsersiUseriDemo=where "file™ txt"
ChUsersiUser\Demotfile ot
CAUsers\User\Demotfile2 .ot
CAUsers\User\Demo\file 3.0t

The default behaviour can be changed by using the /R’ switch and specifying a directory;
this will cause 'where' to search this directory and all sub directories for the file. Notice
that adding the '/R' switch to the command revealed a new file missed before because it
is not in the current directory or PATH.

ChUsersiUser\Demo>where /R . "file®*.mxt"
ChUsersiUser\Demo\file .ot
Ch\UsersiUser\Demotfile2.txt
ChUsersi\Useri\Demonfile3.odt
Chlsers\User\Demorsource dirifiled. o

PE?III‘-:,IB

Command line networking

One of the great things about the Windows Command Prompt is that it makes some tasks
much quicker. A great example of this is checking the network settings for the local
machine. By opening up Command Prompt and typimgpconfig you can access the
current settings. It'll look something like this:

C\UsersiUser\Demo=>ipconfig
Windows IP Configuration
Ethernet adapter Ethernet(:
Connection-spedfic DNS Suffix : localdomain
Link-local IPv6 Address : feB0:21Bh:03cB:5647:3d61WS
IPvd Address. 1721616129
Subnet Mask +255.255.255.0
Default Gateway :
Ethernet adapter Ethernet1:

Connection-specific DNS Suffix : localdomain
Link-local IPv6 Address : feB0:4d2F4374:5c:3027%3

1Pv4 Address. $192.168.196.135
Subnet Mask +255.255.255.0
Default Gateway :192.168.196.2

Ethernet adapter Bluetooth Network Connection:

Media State : Media disconnected
Connection-specific DNS Suffix :

'ipconfig’is a command line utility that's available on all versions of Windows. This utility
allows you to retrieve your network configuration and also allows some control over active

TCP/IP connections.

Setting IP

You may encounter a situation where you are not given an IP address on a network, this
could be because the network does not automatically assign them, or possibly there's a
fault. In any case, you're going to need an IP to communicate on the network.

We can achieve this from the command line by using the ‘netsh’ utility. The ‘netsh’
command is used to start Network Shell, which can then be used to manage the network
settings of either the local, or a remote, computer.

To setthe IP of a machine, you would run the following command in an administrative
Command Prompt (the change affects all users, so that's an admin task):

an hld

netsh interface ip set address <connection name> static <IP>
<subnet> <gateway>

This looks quite daunting at first, but you'll get the hang of it. Here's what the command
will look like:

netsh interface ip set address "Ethernet" static 172.16,16.150 255.255.255.0
172.16.161

Lets just verify that worked by checking 'ipconfig' again. We should now have the IP
172.16.16.150.

C:\Windows=ipconfig
Windows IP Configuration

Ethernet adapter Ethernet(:

Connection-specific DNS Suffix :
Link-local IPv6 Address : feB0:218b:93¢B:5647: 3d61W5

1Pv4 Address. t172.16.16.150
Subnet Mask 12552552550
Default Gateway :172.16.16.1

Accessing network resources

Now that we've seen how to manage the interface on your machine, you may want to
access files stored on the network. We can mount shared folders by using the 'net’
command. This command is used to manage almost all aspects of a network and its
settings including shares, print jobs and users. Rumet /? for a list of all the commands

possible,

To mount a network drive you need to use 'net use', and you'll need to use this any time
you want to view mounted shares, add a new share or manage existing ones. We're going
to execute the following command:

net use X! “DESKTOP-3VSCDO9\Share

This will mount the share on the named machine (the bit after the '\'), to the 'X:" drive on
the local machine. We can then navigate to the X:' drive.

CAUsers\User\Demo=>net use x: WDESKTOP-3VSCD02\Share
The command completed successfully.

C: \Wsers\User\Demo=X:
X\

F‘um§5

To remove the mounted drive we use the "/delete' switch like so:
net use ¥: J/delete

This will remove the shared folder from your machine and release the X: drive to be used
for something else.

CAUsers\User\Demo=net use x: /delete
¥ was deleted successfully.

Cillsers\User\Demo=x:
The system cannot find the drive specified.

Pam EIE

Command line user management

You've already seen that using the command line can make tasks quicker. Another great
time to head to the terminal is when you need to manage users on a machine. Using the
‘net’ command seen in the previous section, it is also possible to manage just about
everything about a user account. You can view all user accounts currently on a machine by
runningnet user, which will display a table of current users.

CA\Windows\system32>net user

User accounts for ZWDESKTOP-3VSCDO9

Administrator DefaultAccount Guest
Uiser Lser WDAGUtilityAccount
The command completed successfully.

You might notice the following commands fail if you're running a standard user Command
Prompt. This is another case of system wide changes and means you'll need an
administrative session to manage users.

Adding a new user

Adding a new user is as simple as running:

net user /add <username> <password>

This command will create a new user and set the password to what you specified. You can
also use * in place of a password and you will be prompted to enter the password on a
new line (where it will not be displayed, which is good). Adding a user looks like this:

CAWindows\system32>net user /add user3 *
Type a password for the user:

Retype the password to confirm:

The command completed successfully.

You can now verify that the user was created by runnimget user again. The new user
account will be visible in the table.

C\Windows\system32>net user
User accounts for WDESKTOP-3VSCDOY

Administrator DefaultAccount Guest
User user user3

F‘a&all;’u

WDAGUtilityAccount
The command completed successfully.

Your new user account is now available to be logged in to for the first time using the
password you set during creation. You can do so much more when creating users this way,
such as configuring account expiry and setting times where the account can log on. Check
outnet user /7 for afull list of options.

Removing a user

Removing a user is just as simple as adding one, and once again you're going to use the
trusty 'net’ command to do it. Once you have identified the account to be removed, doing
so is as simple as running:

net user /delete <username>

As with all deletions, be careful here as you'll get no warnings. You're running as an
administrator so the system trusts you know what you're doing.

C\Windows\system32=net user /delete userd
The command completed successfully.

Just like adding a user, you can verify the account has been deleted by checking the list of
users innet user to ensure the account has been removed.

Changing user groups

The 'net’ utility is also where you go to manage the groups a user is a member of. To do
this you will need to usenet localgroup. When you create a new user, by default they
are just a standard user, so to gain higher privileges they need to be added to the
Administrators group.

To check current group membership run:
net user <username:>

This will print details about that account like below.

CAWindows\system32=net user user3

User name user3

Full Name

Comment

User's comment

Country/region code 000 (System Default)
Account active Yes

Pam hlﬂ

Password last set 30/01/2018 19:52:06

Password expires Mever

Password changeable 30/01/2018 19:52:06
Password required Yes

User may change password Yes
Workstations allowed All
Logon script

User profile

Home directory

Last logon Mever
Logon hours allowed All
Local Group Memberships *Users

Global Group memberships *Mone
The command completed successfully.

Looking towards the bottom of the output you can see the user is currently only a member
of the Users group. To add them to the Administrators group you need to run:

net localgroup Administrators /add user3

CAWindows\system32>net localgroup Adminstrators /add user3
The command completed successfully.

Running thenet user user3 command again shows us the user is now a member of the
Administrators group.

C:\Windows\system32=net user user3

Liser name user3d

Full Name

Comment

User's comment

Country/region code 000 (System Default)
Account active Yes

Account expires Never

Password last set 30/01/2018 19:52:06
Password expires Mever

Password changeable 30/01/2018 19:52:06
Password required Yes

User may change password Yes

Workstations allowed Al
Logon script

User profile

Haome directory

Last logan Never

Logon hours allowed All
Local Group Memberships *Administrators *Users

Global Group memberships *None
The command completed successfully.

F‘agalﬁg

As with all previous commands, runninget localgroup /? will get you more details
on possible options when managing group membership this way.

F‘HSEED

Scripting Windows

Faﬁl

Contents

PowerShell is extremely powerful and Microsoft's path forwards for a command line shell,
scripting and administration.

In this module, we will be covering:

* PowerShell
* PowerShell Commands
» PowerShell Objects

Panipl

PowerShell

As we have seen, the Windows Command Prompt is fairly powerful and we can do almost
everything we need in there, but PowerShell is a tool that's much more powerful than the
Command Prompt. One reason for this is that it's based on the .NET framework and
includes a command line shell and a scripting language all in one package.

You can access PowerShell by hitting start and typing "‘powershell’. If you do this you'll be
presented with the command line interface for PowerShell, which looks a lot like
Command Prompt, and in many ways it is. The PowerShell prompt looks like this:

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.
PS ChUsers\lUser>

Pan?:i

PowerShell Cmdlets

A cmdlet is a lightweight command that is used within PowerShell. A cndlet generally
does one very small thing and then usually returns the result to you as a .NET object. You
can then continue to process the result either with more cmdlets, or by writing to a file or
the screen ifit's the final step. It's worth noting that cmdlets are not standalone
executables, so you can't run them outside of PowerShell. They are actually instances of
.NET code that is run by PowerShell itself.

Pagtazd

PowerShell ISE

The PowerShell Integrated Scripting Environment (ISE) allows you to write, test and run
PowerShell scripts. It includes tab completion for commands and a search function to
allow you to find commands if you're unsure of their name. To open the PowerShell ISE go
to start and type ‘powershell’. One of the suggestions will be PowerShell ISE, the icon will
look like this:

£ Windows PowerShell ISE

Once you click that the ISE will open and you'll be presented with a window like the one
below:

]

This is the ISE. You can begin to create your script in the blue section of the window. The
command search is shown on the right, and once you have written some commands you
can test them by hitting 'run’ on the command ribbon above.

Don't worry if you don't know any commands just yet, we're going to begin covering them
in the next section.

F:‘sgﬁ?ﬁ

PowerShell Commands

PowerShell commands use a 'verb-noun’ naming system, so each cmdlet name is made up
of two parts: a verb (Get, Start, Stop) and a noun (Service, Process, Date). This naming
convention was chosen to help cut down on difficulty when attempting to remember
commands, for example it's very clear whaGtop-Service is going to do, and because

of the common verb being used, it's fairly easy to work out whatop-Computer will do
(hint: it shuts down the computer).

In this section we're going to look at some common commands. We aren't going to come
close to covering all the available cmdlets (a standard Windows installation comes with
over 250 cmadlets installed), though by the end you should be familiar enough with them
to begin exploring PowerShell on your own. To find out more about any PowerShell
commands use the -7' argument to show the help file.

Get-Command

TheGet -Command cmdlet is a great place to start Using this command we can find all
the cmdiets that are, for example, using the 'Computer’ noun. We do this by running:

Get -Command -Noun Computer

This returns all cmdlets where the noun is 'Computer’, the output will be like below:

PS5 C\Users\User> Get-Command -Noun Computer

CommandType Name Version Source

Cmdlet Add-Computer 3.1.0.0 Microsoft PowerShell Management
Cmdlet Checkpoint-Computer 3.1.0.0 Microsoft. PowerShell. Management

Cmdlet Remove-Computer 3.1.0.0 Microsoft.PowerShell. Management
Cmdlet Rename-Computer 3.1.0.0 Microsoft. PowerShell Management

Cmdlet Restart-Computer 3.1.0.0 Microsoft PowerShell Management
Cmdlet Restore-Computer 3.1.0.0 Microsoft.PowerShell. Management

Crdlet Stop-Computer 3.1.0.0 Microsoft. PowerShell. Management

You can also search on the verb of the cmdlet, so if you wanted to know all the commands
that allow you to stop something, you would run:

Get-Command -Verb Stop

And you would receive the output as a list like this:

PS Ch\Users\User> Get-Command -Verb Stop
CommandType Name Version Source

Function Stop-DscConfiguration 1.1 PSDesiredStateConfiguration

F‘!gﬁﬁ!ﬁ

Function Stop-Dic 1.0.00 MsDite
Function Stop-DtcTransactionsTraceSession 1.0.0.0 MsDic

Function Stop-EtowTraceSession 1.0.0.0 EveniTracngManagement
Function Stop-NetEventSession 1.00.0 NetEventPacketCapiure
Get-Childitem

TheGet -ChildItem cmdlet is used to list the contents of a folder, and the output is very
similar to running 'dir' in Command Prompt. What is very different is how easy it is to filter
the output:

PS C\Wsers\User\Demo=> Get-Childlitem

Directory: C:\UserstUser\Demo
Mode LastWriteTime Length Name

d—— 30/01/2018 22:28 dest_dir

d— 30/01/2018 22:28 source_dir

-a— 30012018 1507 8 filel.ixt

-g3— 30/01/2018 15:07 8 file2.xt

-a— 307012018 1507 16 file3.txt

“O=-- 30/01/2018 16:14 10 new
Get-Content

TheGet -Content cmdlet is used to display the contents of a file. It works much the same
as 'cat’ in Linux and, in factit has 'cat’ as an alias.

PS C\Users\User\Demo> Get-Content \filel, bt
"one"

Get-Process

Get-Process is used to gather information about running processes on the machine.

PS Chlsers\User\Demo> Get-Process
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

299 18 8936 24372 0.13 3540 1 ApplicationFrameHost

236 13 43572 18416 247 3280 1 conhost
513 19 1600 4864 452 0 isrss
346 16 1636 4848 556 1 csrss

346 15 28716 12824 0.17 5280 1 ctfmon

F‘H?z'??

Start-Process

We can useStart -Process to start running, you guessed it, a new process. If you want to
start an application running on a machine at a certain point in a script, this is the cmdlet
you need. If you wanted, for example, to open notepad the command to run would be:

Start-Process -FilePath "notepad"

This is a fairly simple example and the options available are vast. You can configure the
window style, which user to run the application as and even request to run as admin.
Check out all the options by usingstart-Process -7? to display the help file.

Stop-Process

Stop-Process is what you would use to end a process. You can either stop a process

using its ID or its name. To stop a process by its ID, first you need to find it. To stop the
notepad process from the previous example, we find the ID by running:

Get-Process -Name notepad

This gives us the following output:

PS C\Users\User\Demo=> Gel-Process -Name Notepad
Handles NPM(K) PM(K] WS(K) CPUs) Id ST ProcessMName

235 14 3104 28424 0.16 6056 1 notepad

Now that we have the 1D (6056) we can stop the process. To do this we run:
Stop-Process -ID 6056

The process will be immediately terminated. The alternative, if we have a lot of processes
to stop, would be to close by name. In this case we can even use wildcards, so:

Stop-Process -Name note*
This will terminate any process that starts with "noteBe careful with this one. If stopping

by name, it's often a good idea to use the '-Confirm' argument, which will ask for
confirmation before terminating each process that matches.

Aliases

While a lot of the cmdlets above seem to have rather long names compared to their
Command Prompt or Bash alternatives, this doesn't have to be the case. PowerShell
comes with several aliases set up for common cmdlets. The most useful are probably:

F‘!gﬁﬁ!ﬂ

cat is Get -Content used to display file contents

cd is Set-Locationused to change directory

diris Get-ChildItem used to list directory contents
Isis Get -ChildItem used to list directory contents
* rmis Remove-Item used to delete files or folders

If you wantto check out what other commands have an alias set, or if you want to setyour
own, you can do so by using th@et -Alias andSet-Alias cmdlets.

RunningGet -Alias will print a list of all currently set aliases, or if you want to see which
command is behind the alias you can use the “Name' argument like this:

PS C\Users\UseriDemo= Get-Alias-Mame cat
CommandType Mame Version Source

o=t L

Alias cat->Get-Content

Setting an alias is done by using the following arguments:

Set-Alias -Name <alias name> -Value <cmdlet to run=

So if you wanted to add "list” as an alias ofiet -ChildItem the command would look
like:

Set-Alias -Name list -Value Get-ChildItem

Pan@??

PowerShell Objects

Unlike traditional command-line interface commands, Windows PowerShell cmdlets are
designed to deal with objects. These are much more than the text output you're more
likely to be used to, as they contain a bunch of information about the result, and some
functions you can call to display or manipulate that data. You'll quickly find that
command output in PowerShell always carries along extra information that you can use if
you need it.

We can check what information is stored inside the result of a command by using the
Get -Member cmdlet. You can see an example of this being run below:

PS C\Users\User\Demo> Get-Childltem | Get-Member
TypaName: System Io.Directoryinfo

Name MemberType Definition

LinkType CodeProperty System.String LinkType{get=Ge...
Mode CodeProperty System.String Mode{get=Mode;}

Target CodeProperty System.Collections.GenericIE..
Create Method void Create(), void Create(5...

CreateObjRef Method System.Runtime. Remoting.ObjRe...
Delete Method void Deletef), void Delete(b...

Notice that there are Properties and Methods. Properties contain information about the
object, in this case, as it was used againsGet -ChildI tem, we get things like time last
accessed, and the parent and root directories. The Methods allow us to manipulate the
object (and the data it represents). You can see a Delete Method in the example above,
using that Method will delete the directory that this object represents.

F‘ugabm

Storing Objects

Just as in other commandline interfaces, we can store the result of a command in a
variable. To do that in PowerShell we declare the variables using a $ symbol. Staying with
the example ofGet -ChildItem from above you can store the resultin a variable by
running the following command:

$child items = Get-ChildItem

We can then access this result using the variable, as you can see below:

PS Ch\Users\User\Demo=> $child_items = Get-Childitem
PS C\Users\Useri\Demao> Schild _items

Directory: ChlUsers\User\Demo
Mode LastWriteTime Length Mame

d— 30/01/2018 22:28 dest_dir
d—— 30/01/2018 22:28 source_dir
-d— 300712018 1507 B filet.txt
-a— 30/01/2018 1507 8 file2. txt
-a— 30/01/2018 15:07 16 file3.oxt
-a— 30/01/2018 16:14 10 new

We can also use the Methods and Properties from the object through the variable, This is
done by using a command like this:

$child_items.Name

This will produce a list containing the name of each file in the folder this object
represents. The command and its output look like this:

PS Ch\Users\User\Demo= $child_items.Name
dest dir

source_dir

file1.txt

file2.txt

filed bt

nEw

Accessing the Methods inside a variable is done in the same way; the command syntax is:

$child_items.<method_name>()

The output of the method will be displayed on the screen.

F‘Bﬁ]ﬁl

CPU & Memory

Faﬁiﬁ?

Contents

In this module, we will be looking at how the CPU and RAM work in-depth:

CPU: Components

CPU: Memory Registers

CPU: Fetch - Decode - Execute
Memory: Stack and Heap
Memory: Stack Frame
Memory: Instructions vs Data
Memory: Return Pointer

Note: This module may look intimidating, buDON'T PANIC. We will be demonstrating all
of this in detail in other modules using practical exampies.

Paﬁ??l

CPU Components
Control Unit (CU)

The Control Unit of a CPU is the part of the CPU responsible for directing electrical signals
to the computer, in order to execute program instructions. Think of it like the director of a
movie on a film set, or the conductor of an orchestra. It doesn't perform any execution of
the program instructions itself, it only directs other parts of the computer system to do so.

Arithmetic Logic Unit (ALU)

The Arithmetic Logic Unit is the part of the CPU responsible for performing arithmetic and
logical operations. The arithmetic part of the ALU can carry out four kinds of arithmetic:

= Addition

* Subtraction
* Multiplication
* Division

The logic part of the ALU carries out logical operations, typically comparisons. The logical
operations it can perform are:

« Equal-To: compares two values to see if they are equal.
* Less-Than: compares two values to see if one is less than the other.
« Greater-Than: compares two values to see if one is greater than the other.

You can combine the operations above and include others. For example, NOT can negate
the comparison. So you could test for NOT Equal To, to tell if two values don't match. You
could also use OR to test for multiple things, such as Less Than OR Equal To, which would
be true if the two values matched or if one was less than the other.

There will be more on logic in the data modules, so don't worry about it too much for now.
Registers

The CPU has its own memaory, called memory registers. These are actually even faster to
use than RAM because they are physically inside the CPU and therefore the electrical
signals have a shorter distance to travel. The downside is that there are a limited number
and they can hold an extremely limited amount of data. We will look into this more in the
section on CPU registers.

F‘!Md

CPU Memory Registers

As we mentioned in the previous section, the CPU contains several memory registers
which are even faster to access than RAM. However, they can hold an extremely limited
amount of data. The exact amount varies depending on the architecture of the CPU.

In a CPU with a 32-bit architecture, each memory register can hold 32 bits of data. That's 4
bytes of data, or enough for four characters if you use ASCII encoding. In a CPU with a 64-
bit architecture, each memory register can hold 64 bits of data or 8 bytes. That's eight
characters if you use ASCII encoding.

General Purpose Registers

On a 32-bit Intel CPU (x86), there are four memory registers which can be split up into
parts. These are called:

« EAX
« EBX
s FCX
« EDX

You can split each register up into parts. If you store something in the 'AX' register, that
refers to the lower 16 bits of the full 32-bit EAX register.

If you store something in the 'AL' register, that refers to the lower 8 bits of the 'AX' register.

You can remember it based on the middie letter in EAX (A), and 'L' stands for 'lower’. There
is also the 'AH' register, which is the higher 8 bits of the 'AX' register.

8 bits 8bits 8bits 8 bits
EAX | EAX | EAX | EAX
AX AX

AH AL

It's important to note that it's all still one register, you're just accessing different sections
of the register, The same method applies to the other general purpose registers. For
example, EBX can be addressed with: EBX, BX, BH, BL.

There are also registers that cannot be split up quite so far into parts. These are:

ESP
EBP
ESI

EDI

Pnﬁglﬁ

Although these are also called general purpose registers, they are used for very specific
purposes and using them to store data can, in some cases, cause unintended
consequences. They can be addressed as SP, BP, 51, and DI to access the lower 16 bits, but
you cannot split them further.

ESP is the Stack Pointer register. It contains a memory address, which points to the top of
the current stack frame in RAM (more on this shortly).

EBP is the Base Pointer. It contains a memory address, which points to the bottomn of the
current stack frame in RAM (again, more on this shortly).

ESI(Source Index) is typically used to hold a memory address of data when that data is
being used as a source in an operation. For example, if you are copying data from one
location to another, ESI will contain the memory address of the data you are copying.

EDI (Destination Index) is typically used to hold a destination memory address. If you
were to copy data from one location to another, EDI holds the memaory address that the
data is going to be copied into.

Special Purpose Registers

There are a few registers that cannot be used freely by programs. These are known as
special purpose registers. The best example of a special purpose register is EIP (Again on
an Intel 32-bit x86 processor). EIP, also known as the 'instruction pointer' holds the
memory address of the next instruction the CPU is going to execute.

The other special purpose registers won't be covered here, for the sake of simplicity and
your sanity.

F‘uggéas

The Fetch - Decode - Execute Cycle

The CPU's job is to execute program instructions. The way it does this is as follows:

The control unit 'fetches' the next instruction from RAM.

The control unit ‘decodes’ the instruction (translates it into a form it can
understand) and retrieves the necessary data from memory and places it into the
arithmetic logic unit (ALU) of the CPU.

The arithmetic logic unit (ALU) 'executes’ the instruction, and operates on the data
provided in the previous step.

The arithmetic logic unit stores the result of the execution either in a memory
register or RAM.

Once these four steps are complete, the cycle begins again, and the next instruction is
retrieved.

F‘Bw?

RAM

Enough about the CPU for now, let's look at the RAM. RAM as a piece of hardware is one
contiguous piece of data storage, but it is separated into sections by software. There are

two sections of RAM, the stack and the heap.

Pugg#‘:la

The Stack

The stack is a very structured and orderly section of memory. When you launch a program,
the instructions for that function are loaded onto the stack, and then each function is
assigned an area of memory called a 'stack frame’. The stack frame contains the local
variables that are used by the function.

Take, for example, a function that asks the user to type in some text and prints it to the
screen. On the stack will be the instructions for asking the user for input and printing that
text to the screen. Within the stack frame will be an area reserved for the data that will be
printed to the screen. Since at this point the function has not run yet, there will be no
data there yet, but when the function runs and the user types in the text they want to
print, that text will get saved into the reserved memory location.

Finally, right at the bottom of the stack frame will be the return pointer. When the CPU
enters a function, it will save the previous value of EIP to the bottom of the stack frame.
We call this the return pointer. When the CPU gets to a 'ret' (return) instruction, it will load
the return pointer from the bottom of the stack frame into EIP (remember, the instruction
pointer that points to the next instruction that the CPU will execute) and therefore leave
the function and the stack frame.

Pnﬁg!?

The Heap

The heap is much simpler. It's an unstructured area of memory that can be used to store
data. The heap is somewhat slower to access than the stack, but the benefit is you can
store whatever you like on there without knowing beforehand what the size of the data
will be. By contrast, the stack is very structured, and you need to know how much data to
reserve on the stack when you write the program.

F‘ugﬁﬁm

Instructions vs Data

The topicis very important in cyber security. What is the difference between instructions
and data in memory? The answer is there is no difference: to the CPU it all looks like
binary data. However, when the CPU is pointed to a memory location via the instruction
pointer, it treats whatever is at that location as an instruction, whether it makes sense as

an instruction or not

When the CPU is instructed to copy data from a memory address, it goes to the memory
address in question and the value in that memory address is treated as data. This is
because the instruction to copy data from a memory address expects data to be there.

If for some reason you manage to make the instruction pointer point to the bottom of a
stack frame (the data section), the CPU would try to execute that data as if it were
instructions (and likely crash as a result). Likewise, if you try to perform an operation on a
memory address that is high up in the stack frame (instructions), the CPU would treat it as

data rather than an instruction, because it expects to get data.

We will look at how we can take advantage of this particular fact later on in the course.

F‘EWI

Monitoring Execution

Fagaiﬁu

Tracking Execution
In this module we will introduce GDB and how to track execution in greater depth. Things

will look a little intimidating from here forwards, but these skills will be invaluable in
helping you understand lower level fiaws that attackers use, and basic architecture.

F‘Hgagu

GDB Setup

In the next few sections, we will be covering several common types of fiaws in binary
applications. When it comes to exploiting these programs, it's essential for us to be able

to see what is happening as the program executes. To do this, we can use a debugger. In
our examples, we will be using GDB, the GNU Debugger. It's a debugger that is installed on
nearly every Linux system. GDB on its own is not particularly user-friendly, unfortunately,
so we'll be using an extension for GDB which adds some extra functionality. The extension
we'll be using is called '‘pwndbg’; it's fairly easy to install.

You'll first need to install 'git"$ sudo apt install git

Then to install 'pwndbg':

git clone https:/fgithub.com/pwndbg/pwndbg
cd pwndbg
Jsetupsh

This will install ‘pwndbg’ into GDB. Now if you typ® gdb you should get apwndbg>
prompt (quit withq).

We're going to start off by looking at a very simple program so we can familiarise you with
GDB. The program source code is:

password.c

Il Compile with gce -m32 -0 password password.c

#include <stdio.h>
#include <string.h>

int main) {
char *password = "ThislsMyPassword\n”;
char input[1517;

puts('Please enter the password.");
fgets{input, 149, stdin};

if (stremp(input, password) == 0) {
puts("Success!");

}else {

puts("Faill"}

H

return{0);

Once you have the program compiled, we can look at it in GDB using:

F‘HWJ

$ gdb ./password

Running the Program

At this stage, we can run the program from within GDB by typing:

pwndbg> run

or
pwndbg=> r

If we do, the program will ask us to type the password. We can pretend we don't have the
source code, so we don't know what the password is. So we'll just type something, and the
program will tell us we failed and finish executing:

root@kali;~/Binary# gdb ./password

Type "apropos word" to search for commands related to "word”...
Loaded 113 commands, Type pwndbg [filter] for a list.
Reading symbols from /passwerd (no debugging symbols found) done

pwndbg> r

Starting program: /root/Binary/password
Please enter the password:

blah

Faill

[Inferior 1 (process 4397} exited normally]
pwndbg>

So far so good; now let's actually do something useful with GDB. Let's pause the program's
execution as soon as it starts. To do this, we'll need to set something called a 'breakpoint’
at the place where the program starts. A breakpoint is a marker that will tell GDB to pause
the program when it reaches that point. Once the program is paused, we can start looking
at things such as which instruction is currently being executed, what the next instruction

is and what the state of the CPU is.

First, let's find out what functions there are in this program. We can do this with:

pwndbg> info functions

pwndbg> info functions
All defined functions:

Nen-debugging symbols:
0x000003dB _init

0x00000410 stremp@ple
0%00000420 fgets@plt
0x00000430 puts@plt

0x00000440 _libe_start_main@®plt

F‘!gagﬁ

0x00000460 start

0x00000430 _ #86.get_pc_thunkbx
Ox000004b0 deregister_tm_clones
000000460 register_tm_dones
0x00000540 do_global_dtors_aux
000000590 frame_dummy
0x00000599 _ xB6.get pc_thunk. dx
0x000005%9d main

Ox00000650 _libc csu_init
0x000006b0 _libc_csu_fini
Ox00000604 fini

pwndbg>

Now we have a list of functions that are in the program and the memory addresses they
start at (the memory addresses are the ones that start 0x...). In a program written in C,
usually, the start of the program is the main function. To set a breakpoint there, we can
do:

pwndbg> break *main
or
pwndbg> break *0Ox0000059d

It doesn't matter if we use the symbol (the name) or the memory address, eitheris fine.
It's also possible to shorten 'break’ to just 'b":

pwndbg> b *main
or

pwndbg> b *0Ox0000059d

Once we set it, GDB will confirm it has been set successfully:

pwndbg> break *main
Breakpoint 1 at Ox59d
pwndbg>

Now if we run the program:

1

Breakpoint 1, 0x5655559d in main ()
LEGEND: STACK | HEAP | CODE | DATA |RWX | RODATA

F‘ugagis

e REGISTERS— - — -]
*BAX Oxf7f9edbe (environ) -= Dxffffd42c -> DudffifdScf <- Ox435f534c (LS. CY)

EBX OxD

*ECX 0x541be3a3

*EDX Oxfffid3b4 <- Ox0

*EDI 0xf7f9d000 <- Ox1b9db0

*EsLo

EBP Ox0

*ESP Dxffifd38c -= Dod 7dfh456 (_libc start main+246) <- add esp, Ox10

*EIP 0x5655559d (main) < lea ecx, [esp + 4]

Frrrerrr e DISASM =]
>0x5655559d <main= lea e, [esp + 4]
0x565555a1 <main+4> and esp, Oxffffffo
0x565555ad <main+7> push dword pitr [ecx - 4]
0x565555a7 <main+10> push ebp
0x565555a8 <main+11=> mav ebp, esp
0x565555aa <main+13> push ebx
0x565555ab <main+14> push Bx
0x565555ac <main+15> sub esp, Oxal
Dx565555b2 <main+21> call __x86.get_pc_thunk.bx <0x565554al>

0x565555b7 <main+26> add ebx, Ox1a49
0x565555bd <main+32> lea eax, [ebx - 0x1930]

A

STACK 1 00:0000| esp Oxffffd38c -> Oxf7dfb456 (__libc

start main+246) <- add esp, 0x10

01:0004 | Oxffffd390 <- Ox1 02:0008 | Oxffffd394 -> Oxffffd424 <- Oxffffd5b9 <- Ox6fof722f
(‘froo')

03:000c | Oxffffd398 -> Oxffffd42c -> Oxfifd5cf <- Ox435f534c ('LS_C')

‘ 04:0010 ‘ 0xffffd39c <- Ox0
‘ 07:001¢ ‘ Oxffffd3a8 -> Oxf7f9d000 <- 0x1b9dbl';l

5

--------------- 7l [q - Vo —

Pngabd?

f 0 5655559d main f 1 f7dfb456 libc start main+246 Breakpoint *main pwndbg>

There's guite a lot going on here, and all of it is important:
1. This just tells us which breakpoint caused the program execution to pause.

2. This area shows us the CPU registers. If you recall, the CPU has multiple registers,
which can store small amounts of data. It's quicker for the CPU to access these than it
is for the CPU to access RAM or storage. Data is usually stored in the registers while
the CPU acts on it.

3. Atthis position, we can see the code that is being executed. This is assembly code
and MOT C because the C compiler converts our C code to assembly, which the CPU @n
understand. Don't panic too much about this, for now, assembly is a huge topic, and
while it is a programming language werth learning, for the next few demonsirations, we
will explain any of the assembly you need.

4. At this position we have the stack, this is the data which is stored in RAM by the
program.

5. At this position is the backtrace, in other words, which functions were called to

get us to this point in the code, *_libc_start main’ is the standard function which is
called to launch a program, and that ran the main function.

As a guick reminder, EIP is the instruction pointer, so it points to the next
instruction. You can see it points to 0x5655559d in the screenshot, the code area of
GDB agreed that this is where we are. Note the instruction that is being shown at
position 3 **has not** been executed yet; this is the instruction that is about to be
execLted,

We can either continue the program at this stage using:

‘pwndbg> continue

or

‘pwndbg> ¢

1f you get to the end of the program, you can run it again, and the breakpoint will
still be there.

Moving through the program

lfl}.rﬁu instead want to step through the program instruction by instruction, you can do
either:

‘pwndbg> step”
or
‘pwndbg> next’

After doing that once, if you hit enter again without typing anything it will repeat
the last instruction you typed so that will save you surn!r;?me.

Using these two commands, we can run the next instruction before pausing the program
execution again.

F‘!g&ﬂdﬂ

Note there is one majer difference between step and nexc

- If you step through the program, if you hit any instructions that are 'll biah'

then you will step into that function. This can be useful, or it can be really

annoying. If you step into standard library functions like printf for example, this can
e terrible. On the other hand, if the function is a custom function then that might be
what you want.

- If you use next to move through the program, if you hit any fundtion calls, then you
will step over that instruction and move on to the next in your current function, The
code in the function you stepped over will be executed, so it won't be skipped, but you
won't have to go through it instruction by instruction.

Let's use 'next'in our example;

‘pwndbg> next’

pwndbg> next 0x565555a1 in main () LEGEND: STACK | HEAP | CODE | DATA |RWX | RODATA [-
-—— REGISTERS] EAX Oxf7f9edbc (environ) -> Oxffffd42c ->
Oxfffd5cf <- 0x4357534c ('LS_C)

EBX Ox0 *ECX Oxffffd390 <- Ox1 EDX Oxffffd3b4 <- 0x0 EDI Oxf7f9d000 <- Ox1b9db0 ESI 0x1
EBP Ox0 ESP Oxffffd38c -> Oxf7dfb456 (__libc_start_main+246) <- add esp, 0x10

*EIP Ox565555a1 (main+4) -> 0xfff0e483 <- Oxfff0e483 [~ DISASM ————
-] 0x5655559d

lea ecx, [esp + 4]
Ox565555a1

and esp, OxfffffffO 0x565555a4

push dword ptr [ecx - 4] 0x565555a7
push ebp 0x565555a8

mov ebp, esp 0x565555aa

push ebx 0x565555ab

push ecx 0x565555ac

sub esp, Oxal 0x565555b2

call _x86.get_pc_thunk.bx <0x565554a0>

Ox565555b7

add ebx, Ox1a49 0x565555bd
lea eax, [ebx - 0x1930] [STACK -~ e --] 00:0000| esp Oxffffd38c ->
Oxf7dfb456 (__libc_start_main+246) <- add esp, 0x10

01:0004 | ecx Oxffffd390 <- Ox1 02:0008 | Oxffffd394 -> Oxffffd424 -> Oxffffd5b9 <- Ox6f6f722f (
'/roo’)

03:000c | Oxffffd398 -> Oxffffd42c -> Oxffffd5cf <- Ox435f534c ('LS_C')
L]

F‘ugaédg

04:0010 Oxffffd39c <- Ox0

07:001c Oxffffd3a8 -> 0xf7f2d000 <- Ox1b9db0

[BACKTRACE

e

>f 0 565555a1 main+4

f 1 f7dfb456 _libc_start_main+246

pwndbg>

So at this point, we've executed the lea’ instruction, and we're paused before
executing the 'and’ instruction. If we want to run the same command again, we can just
press return without typing anything.

##E# Inspecting memory

You can inspect memory at any valid memory address using GDB.

For example:

‘pwndbg> x/i 0x565555a1

The first x here is short for examine. After the ' we say what format we want the
information to be displayed in. In this case i’ means instruction, so we get:

pwndbg> x/i 0x565555a1 => 0x565555a1
: and esp,Oxfffffffo

We can also view it as hexadecimal with;

pwndbg> x/x 0x565555a1 0x565555a1
: OxfffOed83

The second ' here s for hexadecimal. It's important to understand that assembly code
Is just numbers to the CPU. We labelled the numerical instructions that the CPU
understands to make things easier and we call that assembly language, but the truth is
it's just numbers,

We can view information at a memory address as a string with:

e o

pwndbg> x/s 0x565555a1 0x565555a1
1 "203\344\360\377q\374U\211\3455Q\201",

In this case, tha 's' stands for string, but the data atthat memory address isnT a
string, which is why we get a messed up result here. This is important to note about
GDB: it doesn't know and doesn’t care what format the data at a certain location is in,
it only cares about the format you've asked it to display it in.

You can also use the memory registers as a reference for example:

[REGISTERS 1 EAX Oxf7f9edbc (environ) -> Oxffffd42c ->
Oxffffd5cf <- 0x435f534c ('LS_C)

EBX Ox0 *ECX Oxffffd390 <- Ox1 EDX Oxffffd3b4 <- 0x0 EDI Oxf7f9d000 <- 0x1b9db0 ESI 0x1
EBP Ox0 ESP Oxffffd38c -> Oxf7dfb456 (__libc_start_main+246) <- add esp, 0x10

*EIP Ox565555a1 (main+4) -> 0xfff0e483 <- Oxfff0ed83

[STACK] 00:0000| esp Oxffffd38c -> Oxf7dfb456
(__libc_start_main+246) <- add esp, 0x10

01:0004 | ecx Oxffffd390 <- Ox1 02:0008 | Oxffffd394 -> Oxffffd424 -> Oxffffd5b9 <- Ox6f6f722f (
‘/roo’)

03:000c | OxFFffd398 -> Oxffffd42c -> OxFFFfdScF <- 0x435f534c¢ ('LS_C')

04:0010 | Oxfifid3sc <- 0x0 \

‘ 07:001c ‘ Oxffffd3a8 -> 0xf7f9d000 <- Ox]1 bgdbﬂi)

pwndbg> x/x $esp Oxffffd38c: 0xf7dfb456

Motice it has calculated the address in the 'esp’ register for us.

And if you need to show maore than just that one entry, you can put a number after the
'f'. For example, to show 20 addresses with the address of $esp as the starting point:

F‘uﬁl

pwndbg> x/20x $esp Oxffffd38c: Oxf/dfb456 0x00000001 Oxffffd424 Oxffffd42c Oxffffd39c:
0x00000000 0x00000000 0x00000000 0xf7f9d000 Oxffifd3ac: Oxf7ffdc04 Oxf7ffd000
0x00000000 0x00000001 Oxffffd3bc: Oxf7f9d000 0x00000000 0x9cf78c8b Oxdc38809b
Oxffffd3cc: Ox00000000 0x00000000 Ox00000000 0x00000001 fififi

Quitting

If you've been thoroughly traumatised by all that above and you just want to leave, type:
pwndbg> quit

or

pwndbg> q

to exit.

Paish'i.?

Debugging 'password'

Now that you are familiar with GDB, let's look at how we find the password for the
'‘password’ program we prepared in the last section. We'll load the password program into
GDB:

$ gdb ./password
Now we'll check for the main function:
pwndbg> info functions
And set the breakpoint:
pwndbg> break *main
and finally, run the program:
pwndbg> run
Now we're here:

Breakpoint 1, 0x5655559d in main [)

LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
[---=reeeme— REGISTERS -]

*EAX Oxf7f9edbe (environ) -> Oxffffd42c -> OxfifdSct <- 0x435f534¢ (LS. C')
EBX Ox0

*ECX Oxe3fa2f7b

*EDX Dxffffd3bd <- Oxd

*EDI Oxf7fod000 <- 0x1b3db0

vESI 0x1

EBP Ox0

*ESP Oxffffd38c > Ouf 7dfb4S56 (__libe start main+246) <- add esp, 0x10
*EIP 0x5655559d (main) < lea ecx, [esp + 4]

[DISASM 1

>(Dx5655559d <main> lea ecx, [esp +4]
Dx565555a1 <maintd> and esp, Dxfifffffo
0x56555534 <main+7> push dword ptr [ecx - 4]
0x565555a7 <main+10> push ebp
0x565555a8 <main+11> mov ebp,esp

0x565555aa <main+13> push ehx
0x565555ab <main+14> push eox

0x565555ac <main+15> sub esp, 0xal

0x565555b2 <main+21> call _xB6.get_pc thunk.bx <0xS565554a0>

F‘HSE%E]

0x56555567 <maint26> add ebx, Dx1349
0%565555bd <main+32> lea eax, [ebx - 0%1930]

[STACK 1

00:0000| esp Oxfiifd3Bc -= Dxf7dib456 (_libc start main+246) < add esp, 0x10
01:0004 Oxffffd390 = 0x1

02:0008| Oxffffd394 -> Oxffffd424 > OxffifdSbe < Ox6fef722f (/roo')

03:000c| Oxffffd398 = (uffiidd 2c -> OuffifdScl <- 0x435f534¢ (LS.

04:0010| Oxfffd39c <-0x0

{}?:ml‘lq Mffffd3a8 -> ufyfodD00 <- 0x1b9db0
o PBACKTRACE -~ L0]
>f 0 565555%d main
f 1 f7dfb456 _ libc start maint+246
Breakpoint *main

pwndbg>
Let's step through the program with 'next’ until we see something interesting in the code:

EBX 0x56557000 (GLOBAL OFFSET TABLE_)< Ox1ef8
ECX Oxfbad00B4
EDX Oxf7f9e870 =- 0
EDI 0xf7fod000 <- 0x1b9db0
ESI Ox1
EBP Oxffffd378 <- 0x0D
ESP Dxffffd2c0 -> Ouffffd2dS < 0x10000000
EIP 0x565555f0 (main+83) -> Oxfffe2bed <- 0x0
el) LU Y [
0x565555a0 <main+67> sub esp 4
0x565555e3 <main+70> push eax
Ox5655556e4 <main+71> push w95
0x565555€9 <main+76> lea eax, [ebp- Oxa3]
0x5655556f <main+82> push eax
> 05655550 <main+83> call fgets@plt <Mn56555420>
s: Oxffffd2d5 0x10000000
n: 085
stream: Dxf7f9d5a0 (_10_2 1 _stdin) - Oxfbad2088
0x565555f5 <main+tB8> add esp, Ox10
Ox565555f8 <main+91> sub esp, 8
0x565555fb <main+94> push dword ptr [ebp - Oxc]
0x565555fe <main+97> lea eax, [ebp - Oxa3]
0x56555604 <main+103> push eax
[STACK]
00:0000| esp Oxffifd2c0 -> 0xfiffd2d5 <- 0x 10000000
01:0004 Dxffffd2c4 <- 0x95
02:0008 Oxfffd2cB = xf7f9d5a0 (_10_2_1_stdin_) <- Oxfbad 2088
03:000c| Oxffffd 2cc -> 0x565555b7 (main+26) <- add ebx, 0x 1349
04:0010 Oxffffd2d0 -> 0xf 7ffda74 -> 0xf7fd 30e0 -> 0xF77fd918 <- ..
05:0014| eax-1 Oxffffd2d4 <- 0x1
06:0018 Dxffffd2d8 -> Oxf7fd3110 -> 0x565552db <- inc edi /* 'GLIBC 2.0' */
07:001¢c| mffffd2dc <- 01
[~ BACKTRALE ———]
> f 0 5655550 main+B3
1 f7dfb456 _ libc_start_main+246
pwnd
something

F‘!Hd

Okay so here we are, we've hit the 'call fgets’ instruction. If you look up 'fgets’ you'll see
it's function that is part of a standard C library, for receiving user input from the command
line. In other words, this is the bit where it asks us to type the password. We don't know
the password yet, so ['ve just entered 'something'.

Now we're going to continue stepping through with 'next’.

The next place I want to pause at is here:

EAX Dxffifd2ds <-'something\n’

EBX 056557000 [GLOBAL OFFSET TABLE) < Ox1ef8

ECK Oxf7faed7c <- Oxi

EDX Oxfiffd2d5 <- 'something\n’

EDI 0xf7f9d000 <- 0x1b9dbD

ESIOx1

EBP Oxffffd378 <- Ox0

ESP Oxffffd2c0 > Oxffffd2d5 <- 'something\n’

EIP D%56555605 (main+104) -= Oxfffe0Ges <- 0x0

[DISASM]

%5655555 <main+88> add esp, 0x10
0x565555f8 <maint+91= sub esp, 8

0x565555fb <main+94> push dword ptr [ebp - Oxc]

0x565555fe <main+97= lea eax, [ebp - 0xa3]
0x56555604 <main+103> push eax
>0x56555605 <main+104> call stremp@plt <0x56555410>

51; Oxffffd2d5 <- ‘something\n'
52: 0x565556d0 <- Ox73696854 [This")

0x5655560a <main+109> add esp, Ox10

0x5655560d <maint112> test eax, eax
Ox5655560f <maint114> jne main+136 <0x56555625>

0x56555611 <main+116= sub esp, Oxe

0x56555614 <main+119> lea eax, [ebx - 0x1903]
[STACK]
00:0000| esp Oxffffd 20 -> Oxffffd2d5 <- 'something\n’
01:0004 Oxffffd2cd -> 0x565556d0 <- push esp
02:0008 Oxfffd2c8 -> Oxf7f9dSal (102 1_stdin) < Oxfbad2288
03:000c Oxffffd2cc -> 0x565555b7 (main+26) < add ebx, 0x1a49
04:0010 Oxfiffd 2d0 -> Dxf7fid a74 -> 0xf7id30e0 -> i THd 918 < ..,
05:0014| eax-1 edx-1 Oxffffd2d4 < xedef7301
06:0018 Oxfiffd2d8 <- 'ething\n'
07:00%¢c Oxffffd2dc <- Oxa676e /* ngn' */
[—————— BACKTRACE ————]
> f 0 56555605 main+ 104

f1 f7dfbas6 _ libc start_main+246

pwndbg>

So, here the program is calling the 'strcmp’ function. If you look that up, you'll seeitsa C
library function for comparing two strings. In other words, this is the bit that checks if the
password we typed matches the password it expects.

Because we are using '‘pwndbg', it's showing us the two parameters that are being passed
to this function. One of these is the password we typed at the prompt, 'something’. The
other must be the password it expects. Remember, we can view a string at a memory
address with:

Pniusgﬁ

pwndbg> x/s memoryaddress

So we'll do:

pwndbg> x/s 0x565556d0

And we get:

pwndbg= x/s Dx565556d0
0x565556d0: "ThisIsMyPasswor"...

pwndbg>

Close, but that ellipsis (...) means the string is incomplete, it just doesn't all fit into one
memory address. 5o let's look at two memory addresses instead:

pwndbg> x/2s 0x565556d0
0x565556d0: "ThisIsMyPasswor"...
0x565556df. "d\n"

pwndbg>
So the password is:
ThislsMyPassword\n

That last\nis a newline character which is naturally added when you press enter to
submit the password, so we can ignore it. Now that we know the password, we can test it
out. Quit gdb with:

pwndbge quit
And then run the program and enter the password we found:

% Jpassword

F‘uggﬁss

Debugging challenge
Step 1

Navigate to the lab directory as instructed and run the binary, and try to enter a
password. Our goal is to get the password and bypass authentication using debugging.
Open the binary with gdb.

Step 2

Once GDB is open, the first command you should runiafo fTunc. As explained
previously, this will list all of the functions used by, or contained in, the binary itself. Make
sure you runinfo func before running the program, otherwise it will print all of the
functions that get loaded dynamically as well, which is a lot...

In the output ofinfo func, you will see references to several interesting functions:

* main
fgets
string_compare
string_reverse

Themain function is the entry point for the program, and is where execution begins in a
binary written in C or C++,

Step 3

Let's take a look at themain function using thalisas main command to disassemble
the code.

In the output you will see many lines of x86 Assembly code. You are not expected to

understand what every line of the code is doing, however you can pick out key bits of
functionality by looking for function calls that look like:

call Dx4a0 [fgets@ plt}{fgets@plt)

This indicates that a C function is being called by the binary.
As we know from before, thégets function allows a program to retrieve input from the

user. We can infer from the usage of this function that this is where the user's input is
taken and stored for later use by the program.

Step 4

Pﬂﬁ]‘-ﬁ?

Moving further down the output, we can also see a call to ttetring_reverse function.
The name of this function clearly shows its purpose is to reverse the string that is given to
it. If we look carefully at the way both thefgets and string_reverse functions are
called, we can identify that they are both operating on the input from the user.

Step 5

Let's take a closer look.

fgets call string_reverse call

lea eax, [ebp-8x70] lea eax, [ebp-0x78]

push eax push eax

call Bx4al fgetsfplt | call @x62d

If we compare line by line, we can see that the firstline of each call is identical. This
implies that they are both operating on the same variable. The first line loads the address
of [ebp-0x70] into the "eax” register. This is required becauségets requires the address
of a place in memory that it can store the input from the user, and thetring_reverse
function requires the address of the string that needs to be reversed.

The second line simply pushes the contents of the "eax" register onto the stack. This is
because when a function is called in C or C++, it retrieves its parameters from the stack.

The third line is the call to each function respectively. As you can see, the setup for these
calls is remarkably similar, and this is because each function is operating on the buffer
that stores the user's input.

This implies to us that the input being written to [ebp-0x70] bfgets, is also being
reversed by the call toreverse_string, and is manipulating our input. Knowing this,

the easy way to solve this lab would be to use the "strings” program to output contiguous
ASCII characters and identify the reversed password.

Step 6

Now all you need to do is reverse the string and input itinto the binary, and we have won!

You can reverse the string manually, or by using a small Python one-liner:
pythan -¢ "print ('<password_here>"::-1])"

This gives us the final password.

F‘ugsé'aa

Step 7

Alternatively, you could follow the process from the previous demonstration and place a
breakpoint onstring_compare, then find the password already reversed in the call to
that function.

PESEEQ

Advanced Storage

&

Contents
In this module, we will be looking at advanced storage mechanisms:

« Explaining RAID
« Cloud Storage Mechanisms

You will understand the different types of RAID arrays and the differences between file,
block and object storage.

PE%JIEI

Explaining RAID

RAID is an acronym which stands for Redundant Array of Independent Disks. When you
have several disk drives you can group them into what is known as a RAID array. A RAID
array appears to the Operating System as a single logical drive, although it is made up of
several physical disks.

There are several different types of RAID setups which have different benefits and
drawbacks. Below we will cover some of the common types.

RAID 0

RAID 0 is known as 'striping’. This mode is optimised for performance and maximises
read/write speed. The drawback of RAID 0 is the lack of fault tolerance. If a single drive in
the RAID array fails all the data across all drives becomes unrecoverable.

RAID1

RAID 1 is known as 'mirroring’. This mode essentially duplicates data across both drives.
The advantage here is fault tolerance. If a drive fails the data will continue to exist. The
disadvantage of this mode is your storage capacity is halved. If you have a RAID 1 array of
two 4 GB drives then your actual storage capacity is 4 GB,

RAID 5

RAID 5 is known as 'striping with parity’. This mode requires at least three drives to
function. This mode is optimised for maximum read speed but has a somewhat slower
write speed. Additionally this mode can survive the failure of a single drive in the array,
although the array will function with reduced speed until the drive is replaced.

RAID 6

RAID 6 is known as 'striping with double parity'. This mode is similar to RAID 5 but it
requires at least four drives to function. As with RAID 5 read speeds are fast, however
write speeds are slower. This mode can survive the failure of two drives simultaneously
although once again with reduced speeds until the drives are replaced.

RAID 10
RAID 10 is a combination of RAID 1 and RAID 0 and combines the benefits of both striping
and mirroring. Read and write speeds are maximised but the data is also mirrored which

enables this array to survive a disk failure, This array does maintain the same drawback as
RAID 1 in that only half of disk space is available to use for storage.

F‘!%iﬂ

Cloud Storage Mechanisms

When it comes to storing data on the cloud there are three mechanisms that we must
discuss. These are:

+ File
* Block
* Object

File Storage

File based storage is the traditional approach to storing data. Data is stored on a
filesystem with a name and some metadata and then it is organised into hierarchical
folders. Data is retrieved by knowing the path to the file. This type of storage is the kind
we are all familiar with, and itis also used commonly in Network Attached Storage (NAS)
and shared file servers. This type of storage is less common on the cloud.

Block Storage

Block storage is one of the more common forms of storage you will see on the cloud. It is
also utilised in a Storage Area Network (SAN).

Data is split up into blocks of equal size and each block is assigned a unique identifier.
The storage system controls where each block of data is stored according to what the
most efficient location is. When data is accessed on a block storage system the blocks are
reassembled by the storage system based on their identifiers and then the complete data
is presented to the user.

Block storage has the added benefit of separating data from systems. This effectively
enables access to data from any system that can request it from the storage system
without the data being tied to any one system.

A good example of block storage in the cloud is Amazon's 'Elastic Block Storage’ offering.
Object Storage

Object storage is also a common form of storage in the cloud. There is no concept of
hierarchy in object storage. Data is stored in a fiat structure as objects. Each object
contains not only the data but also metadata and a unique identifier that references that
object.

Object storage has the ability to scale infinitely by combining storage devices into storage
pools. The primary use case for object storage is for holding relatively static, unstructured
data, Object storage is most commonly accessed through the use of API calls. For example
a GET request would retrieve an object and a POST or PUT request would upload an
object.

F‘!%&E!

A good example of object storage in the cloud is Amazon's 'S3' offering.

F‘!gﬁaﬁd

Containers

Fagﬁgﬁ

Containers

Containers use virtualization, but in a much more lightweight way designed to enable low-
cost packaging of applications, libraries and configuration. They do not replicate the
whole operating system, which makes them lighter, but also limits you to architecturally
more comparable runtimes.

Containers have become crucial to modern technology practice. Developers and cloud
application deployment use them pretty much as a default!

856°°

Containers vs virtualization

We've already covered virtualization at some |length, but containers are a really powerful
concept that leverages virtualization capabilities in a different way to produce wonderful
efficiencies and fiexibility.

Containers are: * Overall less isolated * Efficient and take up less space * Implicitly
version-controlled and portable * Great for running 'n' instances of
applications/configurations with reasonable isolation on top of one host.

Virtual Machines are: * Much more isolated * Able to run diverse setups and operating
systems - Windows, Mac OS5 X and Linux all side by side * Much heavier as you need to

copy the 'entire OS and data’ * Less portable, though still much more than a traditional
server

Containers can run on top of virtual machines if you want to, say, run a Linux docker on
top of a Windows system, and indeed Docker has released capabilities like the LinuxKit to
facilitate this. That is, however, at its core, stacking virtualization capabilities with
containers, so the model and architecture holds true.

Pngs?i?

Docker Introduction

Docker containers are a hugely powerful capability that is being used in a wealth of
different use cases across IT and engineering. Containers are a lightweight form of
virtualization that use the OS-level virtualization capabilities as we have previously
discussed, but do not encapsulate the whole OS of the guest. Think of it as the host
operating system providing services to the container, which make it feel like a different
system, and isolate it - but not as thoroughly. We can, however, run a Ubuntu Linux
container on top of a Mac, bundling up the applications, library and data required to
deliver a specific app - and do it with lean resources!

Images - executable code built in layers. A read only template or recipe for a
container. The packaged requirements for app/server environment deliver.
Containers - isolated from each other, bundling configuration, software and libraries.
These are the environments we run, butthey can be started/stopped too.

Docker Daemon - does all the real work behind containers, from building to running
and delivery.

Docker Client- The component you use to issue instructions, such as the Docker CLL
Docker Hub - A registry of Docker images, plus you can roll your own! This is a
powerful concept in providing portability.

Docker has lots of use cases and you can take a quick tour of the internet, finding people
using it in creative ways, but to list a few features and use cases that are common:

Developers - replicating development, build and production environments. You can
share the recipe with other developers or systems.

Portable deployment of applications, packaging configuration.

Server consolidation! Containers are often a more efficient use of resources - why
replicate a whole operating system if you don't need to?

Empowering code pipelines from development to build, staging, and through to
production -- all with version control at the container layer, not just
application/code.

Fun, running different tool versions and research! I can, for example, run a different
version of Python, and a Linux package for it that is not as portable on a Mac build of
Python!

We will explore Docker practically, and at first it can be a little mind-bending. It looks like
a virtual machine, but less 'complete' and graphical. That being said, once you are a
container power user it will change the way to use computers fundamentally.

F‘ugﬁkﬁﬂ

Docker CLI Basics

In this walkthrough we take you through the basic use of the Docker CLI and how to grab
images, build containers and interact with them. Docker has a very rich set of
functionality and many arguments to be explored -- we could spend a week of course
content on this alone! The crucial concepts to make sure you understand are:

Containers use virtualization capabilities, but are not virtual machines that
encapsulate a whole OS.

Docker images are recipes to build containers and can be hosted in the repository.
Look how easily we pulled these images when we needed them, just by name!

Docker containers are the running instantiation of an image, they can be started and
stopped -- and eventually removed to save space if we no longer need them,

docker pull -Grabs animage from the repository for you, perhaps a specified
version like ubuntu:18.04 or ubuntu:latest

docker run -Enables you to run a container and execute something inside it,
either by default, explicitly by being passed as an argument - and both
interactively like a shell, orin the background.

docker 1images - Lists images stored locally and provides arguments for handling
them, such asdocker images rm

There are a huge number of examples online, which are worth exploring and getting
familiar with on your own system. This is a powerful technology that comes up in a huge
number of placesin modern IT!

F‘!g&??

Building Containers

Here we take a quick tour through building a container using Docker and a Dockerfile.
There are huge automation opportunities here, and more powerful capabilities like
Docker compose, but this is a good introduction to the topic and illustrates the building

in layers covered in earlier modules.

Pawﬂ

