
THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

SEC549 | ENTERPRISE CLOUD SECURITY ARCHITECTURE

549.1

Cloud Account Management
and Identity Foundations

É 2022 SANS Institute. All rights reserved to SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE ñUSERò) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, Thereôs an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMPÈ and PMBOKÈ are registered trademarks of PMI.

SOF-ELKÈ is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFTÈ is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

All reference links are operational in the browser-based delivery of the electronic workbook.

SEC549_1_H03_01

This page intentionally left blank.

© 2022 SANS Institute 1

The SANS Institute, established in 1989 as a cooperative research and education organization, is the most
trusted and by far the largest source for information security training and security certification in the world.
It also develops, maintains, and makes available at no cost the largest collection of research documents
about various aspects of information security, and it operates the internet's early warning systemðthe
Internet Storm Center. Its programs now reach more than 165,000 security professionals around the world.

SANS offers a number of courses that teach developers, architects, testers, security professionals, and
managers how to build more secure applications. Anyone involved in developing, securing, and defending
applications can benefit from the following courses in the SANS Cloud Security Curriculum:

SEC388: Introduction to Cloud Computing and Security | 3 Sections
Advise and speak about a wide range of cloud security topics and help your organization successfully
navigate both the security challenges as well as the opportunities presented by cloud services.

SEC488: Cloud Security Essentials | GCLD | 6 Sections
Advise and speak about a wide range of cloud security topics and help your organization successfully
navigate both the security challenges as well as the opportunities presented by cloud services.

SEC510: Public Cloud Security: AWS, Azure, and GCP | GPCS | 5 Sections + Extended Lab Hours
Perform multicloud security assessments across AWS, Azure, and GCP clouds identifying key weaknesses
and hardened configurations in core cloud services.

SEC540: Cloud Security & DevSecOps Automation | GCSA | 5 Sections + Extended Lab Hours
Provides development, operations, and security professionals with a methodology to build and deliver
secure infrastructure and software using cloud services and DevSecOps workflows.

2 © 2022 SANS Institute

SEC541: Cloud Security, Attacker Techniques, Monitoring, and Threat Detection | 5 Sections
Leverage cloud security tools and services to monitor your environment and look for adversaries.

SEC549: Enterprise Cloud Security Architecture | 2 Sections
Ensure you have the necessary foundation, tools, and skills to utilize cloud services in architectural design
and can use them in a real-world example.

SEC522: Application Security: Securing Web Apps, APIs, and Microservices | GWEB | 6 Sections
For anyone who wants to get up to speed on web application security issues and the best ways to prevent
common web application vulnerabilities.

SEC557: Continuous Automation for Enterprise and Cloud Compliance | 5 Sections
Teaching professionals tasked with ensuring security and compliance how to stop being a roadblock and
work at the speed of the modern enterprise.

SEC588: Cloud Penetration Testing | GCPN | 6 Sections
Prepares penetration testers to assess infrastructure and applications hosted in the public using platforms
such as AWS, Azure, and Kubernetes.

FOR509: Enterprise Cloud Forensics and Incident Response | 4 Sections
Designed to address today's need to bring examiners up to speed with the rapidly changing world of
enterprise cloud environments.

MGT520: Leading Cloud Security Design & Implementation | 3 Sections
Learn to build your cloud security program and roadmap.

MGT516: Managing Security Vulnerabilities: Enterprise and Cloud | 5 Sections
Highlights why organizations struggle with enterprise and cloud vulnerability management and shows how
to solve these challenges.

Review our Job Role Flight Plan sans.org/cloud-security

© 2022 SANS Institute 3

In this section, students will be introduced to security architecture as it applies to the cloud. We begin by
looking at how one should ideally approach security architecture in the first place and then study how basic
security architecture principles also apply to building enterprises in the cloud. The most important takeaway in
this section is the understanding of the strategic nature of cloud security architecture. Through proactive
strategy, security architects can build systems inherently resilient and better resistant to threats from the outset.

4 © 2022 SANS Institute

Warning! This course will be overflowing with architectural patterns and design philosophies in the cloud.

We wonôt be limited to conceptual discussions, however. In this course, you will be logging into a prebuild
AWS environment of a fictional Enterprise, Delos, Inc., as it migrates from a traditional on-premises
organization to the Cloud. You will need to navigate the AWS console and identify the the individual
resources that are components of larger, architectural designs. Getting your hands dirty in the AWS console
will give you practical experience with the nuts and bolts of cloud resources, giving you more confidence to
work with them in the future.

In the upcoming module, you will be introduced to security architecture and how it translates to the Cloud.
The most important takeaway in this section is the understanding of the strategic nature of cloud security
architecture. Through proactive strategy, security architects can build inherently resilient systems and those
that are better resistant to threats (both internal and external) from the outset.

© 2022 SANS Institute 5

óSolutionô versus óSecurityô Architecture
Letôs take a moment to address the differences (and similarities) between Solution Architecture and Security
Architecture and see where the concepts between the two practices diverge. Contrasting the definitions in a
workman-like fashion can reveal some insights into the similarities and differences between Security
Architecture and Solution Architecture.

Solution Architecture
Our starting point in this examination underscores the concept of an Architect; that is, a person who guides and
plans. Therefore, a Solution Architect is a person who is creating a plan to bring an end to a state of
discontinuity. This is a rather amorphous concept, but if anyone has practiced Solution Architecture, this
compound definition might have some truth to it. The needs Solution Architecture must fill are very diverse.
A successful Solution Architect has ingested the requirements for all stakeholders in the business and crafted a
plan that takes into account usability and cost control.

Security Architecture
A Security Architect also consumes business-specific requirements, but their directive is more focused than
open-ended. If we take our definitions of óSecurityô and óArchitectô and put them together, we arrive at a
definition of a person who creates plans to guard against espionage or sabotage, crime, attack, or escape. More
simply, this is an architect who designs security. This is entirely on track with a Security Architectôs day-to-
day work, which might be consumed with designing access control patterns and network controls or
prescribing sufficient logging levels across their organization.

As we all know, ósecurityô is a relative term. There is no absolute scale of insecure or secure, so one of the
cornerstones of a Security Architectôs role is to determine óhow much securityô any one asset needs. This is
measured by the value of the asset you are looking to secure, and the risk presented should that asset be
infiltrated by a bad actor.

6 © 2022 SANS Institute

References:
[1]: https://sec549.com/id106
[2]: https://sec549.com/id107
[3]: https://sec549.com/id108

© 2022 SANS Institute 7

What is Security Architecture?
Ask 10 people in the security industry this question and you will get 10 different answers ï especially if you
ask for a 100-word synopsis of the topic. Rather than be dismayed that this is a topic that no one can define (or
that it is too complex to be simply defined), focus instead on the person you hear the response from. What you
will see is that each will define it clearly but will provide an answer that is true from their own perspective. As
with most complex topics, perspective matters in security architecture.

There are a few things in each brief synopsis on security architecture that you will be the same in comparing
one personôs definition to another. These similarities are your take-home message to the question of what
security architecture really is.

ϊ It is a framework to build upon
ϊ It has a tangible purpose
ϊ It offers measurable results
ϊ It is cost-effective
ϊ It offers a flexible/resilient solution to security issues
ϊ It aligns itself with the vision, goals, and strategy of the organization
ϊ It offers a clear return on investment

Examples of Security Architecture Frameworks:
ϊ TOGAF (The Open Group Architecture Framework) looks at business problems and their

solutions in the area of enterprise architecture with some direction for meeting security goals. The
primary focus is on the early stages of designing technical solutions, when the organizationôs
vision, goals, and objectives are defined and the problems it wants to solve are teased out and
addressed. The nuts and bolts of how to address security are not outlined in this framework as it is
primarily used to to build solutions architectures.2

8 © 2022 SANS Institute

ϊ SABSA (Sherwood Applied Business Security Architecture) is a framework that aids the security
architect in answering key questions about a system (who, what, when, where, and why). The
organization defines the SABSA framework as a structured systematic approach to solving
complex problems in strategy, planning, and operation. The goal is to ensure that the design,
delivery, and support of security services are integral to every enterpriseôs IT management
strategy. SABSA doesnôt dictate the specific technical components of security architecture (the
óhowô of the process), rather it provides a framework for threat modeling a system and designing
policy-driven controls.3

ϊ OSA (Open Security Architecture) is a framework that looks at the technical aspects of the
security architecture and is more comprehensive and specific to security needs as opposed to
TOGAF. OSA looks at the key components of security architecture ï the principles, threats,
components, and concepts ï needed to design an effective security architecture. OSA can be used
once a system has already been designed by benchmarking existing systems against published
patterns.4

ϊ DODAF 2.0 (Department of Defense Architecture Framework 2.0) was designed for the US
Department of Defense, so it isnôt commonly used by businesses. It takes an integrative approach
to security architecture so that their primary focus in Enterprise Architecture, for example, is to
have a common language, no matter what architectural framework is being used. According to the
DODAF 2.0 Architects Guide, related architectural features should have identical names,
numbers, and meanings so that components of different models are more easily compared and
integrated into a custom-fit design.5

The nuts and bolts of security architecture will look different if you are talking to someone architecting a
system for the US Department of Defense (DoD) or someone doing the ósame thingô for an online retail
company. No one would argue here that the security needs (and therefore the security architecture) of these
two organizations differ ï mostly because of vast differences in their quantified operational risk.

The heads of each organization, however, would agree they want a ósecureô system, even if it is for very
different reasons. The DoD uses its own security architecture framework that, by necessity, looks very
different from the framework used by those architecting a security strategy for the retail company. As you
look at each framework, it is easy to be tempted to wonder, ñWhich is better?ò This temptation is not practical,
however, when discussing security architecture. Instead ask, ñWhy does this framework work better for one
organization and not the other?ò or ñWhich framework works best for where we are at in the process of
designing a secure system for an organization, business, or other entity?ò

References:
[1]: Enterprise Security Architecture: A Business-Driven Approach - By Nicholas Sherwood
[2]: https://sec549.com/id7
[3]: https://sec549.com/id9
[4]: https://sec549.com/id8
[5]:https://sec549.com/id10
John Sherwood. SALSA: A method for developing the enterprise security architecture and strategy.
Computers & Security,
Volume 15, Issue 6, 1996, Pages 501-506.
Image by FelixMittermeier from Pixabay

© 2022 SANS Institute 9

Good Architectural Design helps manage Complexity
Complexity is a natural outgrowth of the evolution of technology. At times, complexity is a symptom of
disorder or disarray in the way systems are interconnected. Other times, complexity emerges when a
systematic, orderly approach is taken to address the management of scale. In either case, complexity means an
ever-expanding attack surface and increased opportunity for error.

The security architectôs goal is to tease out security flaws that appear at all layers when information systems
interconnect, and complexity naturally forms. The next step then is to preemptively manage them, ideally
before the system is put into use. Fixing security flaws in the early stages of the development of any system is
extremely time-saving and cost-saving, especially considering the high cost associated with fixing flaws after
deployment.

Reference:
Image by OpenClipart-Vectors from Pixabay: https://sec549.com/id131

10 © 2022 SANS Institute

Security Architecture Must Meet the Needs of Business
The security architects goal isnôt to solely pursue an ever more secure system. Security organizations
embedded within a larger organizations exist first to meet the needs of the business by 1) evaluating what its
needs are, 2) uncovering inherent risks, and 3) designing controls to mitigate those risks.

The security teamôs real goal isnôt to say óno, it canôt be done,ô but to think óhow can we securely aid the
business in its desired operations?ô This begins with developing and applying the needed secure patterns to
meet the businessô goals, objectives, and vision. While the security architect might want to implement these
patterns with a top-down approach, often their organization wonôt sit still long enough to achieve overly long-
winded transformations. Many times, the best way to help your organization achieve a set of long-term
objectives is with a phased approach where interim architectures and milestones are celebrated.

Step 1: Define the businessô objectives, goals, and vision. What is the business used for? What data does it
generate and therefore need to protect? Who uses it and how? What are its main objectives (security
requirements, convenient UX, rapid access, remote working environment, etc.)

Step 2: Begin to think about the risks associated with the implementation of strategy that could hinder the
achievement of the businessôs goals. Document these risks and socialize with stakeholders.

Step 3: Crystalize a plan to design and implement the needed controls to manage the risk undertaken by the
business. Here the operative word is ómanageô. Not all risks can or should be completely eliminated. Some
risk is inherant.

Step 4: Begin to answer the question of óhowô the design of security controls can be realized.

Reference:
Image by StockSnap from Pixabay: https://sec549.com/id132

© 2022 SANS Institute 11

Security Architecture in the Cloud
The security architect designing in the Cloud must first determine what constraints are placed upon them. You
need to recognize that, in certain circumstances, there is an innate loss of control of certain aspects of the tech
stack. Your visibility and the approach needed depends greatly on the cloud service module being used:

Å Infrastructure as a Service (IaaS) ï these systems require security controls that consider the
likelihood of threats to the storage layer, operating system, application layer, and virtual network
components.

ÅPlatform as a Service (PaaS) ï the security architect must consider any security threats to the
applications deployed to the cloud. The underlying cloud infrastructure is not within your sphere of
influence, so it will not be a particular concern of the architect designing the security of a PaaS-based
system. However, configurations of the service can be a frequently abused attack surface.

Å Software as a Service (SaaS) ï the architect will be concerned with how the SaaS application is
integrated with the existing technology of the system. The primary focus of security in a SaaS system
is the configuration of access control. The apps and infrastructure are not within your sphere of
influence but, just like PaaS systems, misconfigurations can lead to an unsecure state of the
deployment.

To address these needs, this course offers the Security Architect the ability to adapt and adjust their threat
models to be specific to the cloud landscape. This involves the mitigation of threats through effective design
strategies, allowing cloud-based businesses to expand and grow in sustainable ways in this unique
environment.

Reference:
Image by jeferrb from Pixabay: https://sec549.com/id133

12 © 2022 SANS Institute

In any type of cloud service model, the priority measure is to engage in a security strategy that considers
threats targeting Identity and Access Management (IAM). Without network limitations placed on cloud
services, IAM becomes THE MAJOR WAY to prevent unauthorized access to the system. The challenge for the
cloud security architect is that each Cloud Service Provider and SaaS vendor has developed their own IAM
model. This leads to a complex IAM ecosystem and attack surfaces that are remarkably different from on-
premises systems.

Success in thwarting Identity-based attacks has come a long way since the inception of Active Directory (AD).
There are now cloud-based Identity-as-a-Service (IDaaS) and identity directory providers (IdPs), but these
come with their own unique methods for implementing RBAC and their own unique jargon. IAM systems are
now so different that separately defined security controls, security policies, and standards may be necessary.

Reference:
Image by PublicDomainPictures from Pixabay https://sec549.com/id182

© 2022 SANS Institute 13

A Secure Design follows these Principles:
ϊ Least privilege ï this means you intend from the beginning to set up a system where no program or user

gets privileges they do not absolutely need. By limiting privilege, you may not automatically eliminate
attacks; however, you are limiting the impact or óblast radiusô when they happen.

ϊ Simplicity ï even if the system itself is complex, its security design should strive for simplicity.
Complexity is often called the enemy of security, one reason being that complexity makes it more
difficult to reason about a system.

ϊ Open design ï do not rely on black-box secrecy to maintain the security of a system. In short, security
through obscurity is generally not a foundation of good design.

ϊ Safe defaults that fail closed ï ensure that configurations, whether in an application, network, or cloud
control-plane, are set by default in their most secure setting. Should errors or an unexpected event
occur in the system, the configured setting should default to its most secure state.

An overriding factor for any secure system is that it is easy to use. The human interfaces must be designed so
that routine use will be simple enough for users to be incentivized to use systems securely.

14 © 2022 SANS Institute

By definition, Threat Modeling3 is a systematic approach to undercovering and documenting threats to your
systems. The process can help your organization shift from being reactive to becoming more proactive to
threats. Over the years, several approaches to Threat Modeling have emerged, along with tools to help either
an individual architect or a broader team collaborate in the threat modeling process.

Threat Modeling Approaches
The STRIDE4 methodology might be the most well known of the documented processes for threat modeling.
STRIDE is an acronym for the various categories of threats which can be enumerated when modeling the risk
posture of a system:

Å Spoofing - a category of threats related to authentication
Å Tampering - threats affecting integrity
Å Repudiation ï threats related to non-repudiation of actions
Å Information disclosure - threats affecting confidentiality
Å Denial of service (DoS) - threats affecting availability
Å Elevation of privilege - a category of threats related to authorization

DREAD5 is often used in conjunction with STRIDE to help understand the risk associated from a threat
identified during the STRIDE process. The following factors are considered to analyze and ultimately score
the identified threat:

Å Damage: How big would the damage be if the attack succeeded?
Å Reproducibility: How easy is it to reproduce an attack?
Å Exploitability: How much time, effort, and expertise is needed to exploit the threat?
Å Affected Users: If a threat were exploited, what percentage of users would be affected?
Å Discoverability: How easy is it for an attacker to discover this threat?

As with all models that attempt to quantify risk, the risk rating scoring will be subjective. One can attempt to
systematize risk scoring by asking questions like ñis the identified gap exploitable externally or would the
attacker require a privileged position to access?ò Even with a system in place to objectify risk, the ultimate
rating of impact can vary greatly dependent on the background of the practitioner and the context of the
broader organization the system resides in.

© 2022 SANS Institute 15

The LINDDUN6 approach is an acronym representing the various threats which are cataloged in the process:
Å Linkability
Å Identifiability
Å Non-Repudiation
Å Detectability
Å Disclosure of Information
Å Unawareness
Å Non-Compliance

OWASP Threat Modeling Manifesto7 is not a full blow methodology as in STRIDE, DREAD or
LINDDUN. Rather it provides core principals to follow when threat modeling, irrespective of the
methodology you are following.

With these foundational truths in place, it is believed that more stringent methodologies can be iterated on or
even adapted to fit your circumstances. The 5 values of the Threat Modeling Manifesto speak to a culture of
an active, collaborative process, rather than a passive activity:
Å A culture of finding and fixing design issues over checkbox compliance.
Å People and collaboration over processes, methodologies, and tools.
Å A journey of understanding over a security or privacy snapshot.
Å Doing threat modeling over talking about it.
Å Continuous refinement over a single delivery.

Threat Modeling Tools
Several tool exist in the marketplace to aide in the process of collaborative threat modeling. Some are open
source such as OWASPs Threat Dragon and Mozilla Sea Sponge, while others are more integrated, pay-to-
play platforms such as ThreatModeler, which operates on a subscription basis. Whichever tool you use should
be flexible enough to allow you to adapt to the complex nature of the threats in the cloud.

References:
[1]: https://sec549.com/id183
[4]: https://sec549.com/id186
[7]: https://sec549.com/id189
[2]: https://sec549.com/id184
[3]: https://sec549.com/id185
[5]: https://sec549.com/id187
[6]: https://sec549.com/id188

16 © 2022 SANS Institute

Optimizing Threat Modeling
IT systems are now so highly complex and need to account for such high numbers of use cases
that an unstructured approach to threat modeling enterprise workloads is simply not the best place to begin
planning for adequate security threat mitigation. The time to look at threats is from the outset of any project,
when the relative costs are lower (but it is never too late to start somewhere).

Threat modeling belongs in the design phase of any project. It needs to happen before any code review, code
analysis, and pen-testing. When architecting a solution, your threat model helps you consider threats to the
system and build controls into the design when you are in the early planning of any system. Just because a
threat model will likely be updated and revised along the way, doesnôt mean you donôt consider threats to your
system as early as possible.

Getting Started with Threat Modeling
Step 1: Assume this is a team ñsportò. Assemble a cross-disciplinary team of app developers, security experts,
members of the Ops team, site reliability engineers, and owners ï all brainstorming possible threats in a
collaborative effort. Anyone who knows the ins and outs of a system is potentially a good member of this
team.

Within the team, ask yourselves who plays which roles. Who on the team understands the businessôs
objectives and which team members understand how the workloads are designed? Encourage each of the
threat modelers (irrespective of their backgrounds) to play the part of the ñadversaryò, searching for every
possible design flaw in the workload, and play the ñdefenderò, devising the needed security controls.

Step 2: Create a model of the system. Consider a model that encompasses a large-enough boundary without
becoming too wieldy to threat model. In your model, look at these factors:

ÅWhat are the trust boundaries surrounding the system (and within it)?
ÅWho are the actors that must cross the various trust boundaries?

© 2022 SANS Institute 17

ÅHow does information flow inside and out of the trust boundaries?
ÅIdentify locations in the system where information has persisted.
ÅWhat impact would a successful exploitation of the system have on the business?

Step 3: Plan how to mitigate each threat. Are there obvious fixes or large security gaps that must be
addressed within the architecture? While security misconfigurations are common, they often can be
mitigated if identified early. Rank the severity of each threat you have identified before planning a larger
strategy.

There are many options for brainstorming threats. You can use the STRIDE model (Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege) or refer to an internal
threat catalog to get ideas and see if any fit your current system.

Step 4: Document risks and assign individuals as ñrisk ownersò. This enhances accountability as the team
identifies which operations or automated security processes can prevent further vulnerabilities down the road.
For example, processes like public key authentication and role-based access control keep more of the system
secure with the greatest efficiency (and least resource expenditure).

Maintaining a central ñrisk ownerò is problematic in many ways, mostly because it creates its own innate
person-centered vulnerability. By empowering every team member AND giving them ownership of a threat,
bottlenecks are less likely to occur. Ownership is best given to those who understand the workload features,
are already part of the design team, and become empowered to mitigate risks.

Tips for Success in Threat Modeling
1.Have a consistent and scalable approach to threat modeling. Use the same systematic approach for
every threat. The first step to consistency is being uniform in how each threat is identified and ranked.

2. Make use of existing collaboration tools. Donôt reinvent the wheel when developers are already using an
agreed-on productivity suite. Having threat modeling documentation treated as living documents within
existing tools makes it far easier to track, review, and work asynchronously. This is analogous to having an
agreed-upon official language for any international team of experts.

3. Where possible, break the system into separate features that are evaluated with each threat modeling
exercise. Detailed threat models on smaller workloads are more successful in identifying mitigating strategies.
The process also becomes more scalable and reusable on other similar features. It is more likely that
mitigations identified will be reusable across the board when the system is subdivided into its component
parts.

18 © 2022 SANS Institute

Failure To Recognize a Threat: The Apple Air Tag Debacle
Threat assessment involves looking at the possible areas of software and hardware threats from óevery angleô.
Sometimes the angle is closer to the perspective of the villain than everyone imagines. The tech giant Apple
made that error recently when it debuted its Apple Air Tags in the spring of 2021.

Apple Air Tags are small coin-shaped Bluetooth beacons using broadband technology1. They have been
marketed as anti-theft accessories. The idea is simple: attach an Air Tag to anything you might lose ï your
luggage, dog collar, keychain, or childôs backpack. Techies everywhere quickly expanded the deviceôs anti-
theft message writing blogs, including all sorts of creative ways to use them for entertainment.

Soon after launch, the more criminal elements of our modern culture found them to be equally helpful2. While
iPhone users could be notified that the tracker belonging to someone else was moving with them (even if they
couldnôt find it), Android users would be unable to do so. This left people vulnerable to stalkers who could
more easily track them. Instead of protecting your car against theft, some carjackers instead made use of them
for their own purposes, hiding them somewhere on the vehicle.

The óintimate threat modelô was completely missed by Apple threat modelers. Insufficient controls and
guidance to consumers at the time of deployment led to damaging to Appleôs reputation, among other things.
There is no evidence to date that anyone died as a result of this failure to threat model adequately but certainly
some victims have been harmed.

Apple itself incurred damage to its brand, simply because its design engineers had a failure of imagination.
This debacle has since resulted in a ópatchô of sorts. Android users can now download an app called óTracker
Detectô so that air tags can be scanned for in the individualôs proximity3. The company also provides
information on how to stay safe in the era of Apple Air Tags4.

© 2022 SANS Institute 19

References:
[1]: https://sec549.com/id1
[2]: https://sec549.com/id2
[3]: https://sec549.com/id3
[4]: https://sec549.com/id4

20 © 2022 SANS Institute

What is a Trust Boundary?
Trust Boundaries: Trust boundaries in computer systems represent a change in the level of trust as pieces of
data flow between different trust zones.1

Trust Zones: Trust Zones are components within a bounded area where all resources in the zone are implicitly
trusted and whose perimeter is policed with some form of access control.

Itôs at trust boundaries where attackers are likely to exploit weaknesses and vulnerabilities, such as flaws in
access-control logic. This is why it is so important to identify these boundaries on any system as they indicate
a likely attack surface.

There are several types of Trust Boundaries, including the physical boundary between machines and more
abstract boundaries, such as privilege boundaries, integrity boundaries, and network segmentation boundaries.

Reference:
[1]: https://sec549.com/id5

© 2022 SANS Institute 21

Trust Boundaries in the Cloud
While classic on-premise systems might only need to be designed for access-control around their network
perimeter, in the Cloud, systems are abstracted and access curated by the CSP. This results in more boundaries
to be aware of, including the network layer, data access layer. and the identity layer.

Network Layer
In all of the major clouds, private networking blocks can be created that mimic your on-premise network.
Traffic within cloud networks originates from or is destined for applications running on classic Infrastructure-
as-a-Service (IaaS) products such as AWS EC2, GCP Compute, or Azure Virtual Machines. Policing the
network layer in the cloud will feel very similar to access controls in on-premises systems. Network Firewalls,
Web Application Firewalls (WAFs) and Network Access Controls all have cloud-native cognates to apply at
this trust boundary.

Data Access Layer
Data warehouses that rely on primary network boundaries for access control are being traded in. As more data
is migrated to serverless, distributed cloud-hosted repositories, the need to architect for a data boundary has
emerged. Data moving in and out of cloud-hosted repositories can traverse the open internet or can be
architected to be accessed over your CSP óback-boneô network, adding a layer of security to otherwise public
services.

Identity Layer
CRUD operations (Create, Read, Update and Delete) are performed on your cloud-hosted resources through
curated APIs exposed by your cloud provider, all of which require the end user be authorized for the action.
As such, the identity layer plays an outsized role in cloud access control. In contrast with on-premise systems
that might have some inherent trust when within a trust boundary, all cloud APIs operate by default in a zero-
trust model, requiring authentication and authorization by all callers.

22 © 2022 SANS Institute

The complexity involved in policing the identity layer in the cloud has been a contributing factor to many
cloud breaches, including the famous Capital One's data breach incident that exposed the records of almost
106 million customers1 It's no surprise that architecting for a defensive identity layer is a core topic of this
course.

Reference:
[1]: https://sec549.com/id6

© 2022 SANS Institute 23

Cloud Accounts Are Trust Zones
When working with the Big-Three Cloud Providers, you automatically have built-in Trust Zones in the
Identity Plane. In the slide image shown, trust boundaries can be drawn around several different larger-scale
Cloud Resources (e.g., GCP Projects, AWS Cloud Accounts, and Azure Subscriptions). These larger-scale
resources in the Cloud create their own natural identity boundaries.

In a GCP-based cloud system, for example, you can assume that a Project boundary is primarily an IAM
boundary.

Projects in GCP, Accounts in AWS, Subscriptions in Azure - these are not simply high-level billing
containers. They house resources within a context-bound trust zone, surrounded by a unique trust boundary,
and separate from other larger scale resources.

Crossing the trust boundaries surrounding large scale resources is accomplished on the cloud identity plane. In
an AWS-based system, an IAM User with access to Account A can assume a role in Account B, crossing the
natural trust boundary between accounts. In Azure, a Function in Subscription X can access a Function in
Subscription Y. These natural trust boundaries are easy to see and name; they are also areas where you have
some control over who crosses the boundary.

24 © 2022 SANS Institute

Rethinking Threat Models in the Cloud
The security risks within a cloud environment are unique to the highly networked, concentrated, and shared
cloud system. The responsibility for the security of any cloud-based system is inherently shared by the
customers and the cloud service providers.

It is insufficient for organizations to think that migration to the Cloud requires no further thought on changing
security practices. Cloud Services Providers go to great lengths to ensure that those things they are responsible
for are secure. Breaches tend to occur because the customer has misconfigured some aspect of their
contribution to the cloud-based system ï most often related to failure to encrypt data and a lack of identity
control measures or privileged access security within the company.

Ultimately, it is the customer and the architects of their cloud-based system who must know the intricacies of
what they send into the cloud and how it is protected. Only through good IAM practices and data encryption
can the customer responsibly utilize the services of the CSPs in ways that make their cloud experience both
safe and user-friendly. In general, cloud breaches have capitalized on some error or weakness in the
configuration of interfaces not protected as they were designed to be.

Reference:
Image Source: https://www.cisecurity.org/insights/blog/shared-responsibility-cloud-security-what-you-need-
to-know

© 2022 SANS Institute 25

The Traditional On-premises Security Approach
The traditional approach to network security will be familiar to any tenured security specialist. It has been
relatively inflexible and narrowly focused, mainly because security was based on threats confronted by an on-
premises network.

Most enterprises have now recognized the value of some migration to the cloud. Cloud migration ï even in a
hybrid fashion ï leads to improved user experience, enhanced customer market analytics, and/or greater
excellence in operations and management. The value added by cloud migration has led to an increase in at
least ódipping oneôs toesô into the cloud-native environment by many businesses and organizations.

Reference:
Image by mohamed_hassan from Pixabay: https://pixabay.com/vectors/big-data-server-rack-data-center-
6100853/

26 © 2022 SANS Institute

Transitioning to Cloud-Native Security Approaches
The cloud environment has led to an opening up of new attack surfaces; however, there are many more
portions of the tech stack that do not require the businessôs attention because the responsibility for these falls
on the CSP.

Increasing, because so much of the plumbing of a cloud-hosted solution is based on external API calls to the
cloud control-plane, the shift is increasingly toward identity-centric and workload-centric security controls.
The old óSteady-Eddieô network controls are still relevant to the larger cloud-native picture, but they must be
accompanied by identity-based controls.

This new landscape of cloud-native architecture means that the security and compliance frameworks must be
network-independent. In this new world, perimeters have become fragmented, encompassing smaller and
smaller workloads rather than one large perimeter around a monolithic application. The natural consequence
of this is the necessity for identity-based security, where controls are far more granular, defined in policy, and
enforced nearest to the workload.

In short, this is what people mean when they say that the new perimeter in the cloud environment is identity.

Reference:
Image by WilliamsCreativity from Pixabay: https://pixabay.com/vectors/big-data-server-rack-data-center-
6100853/

© 2022 SANS Institute 27

Best Practice Guides From the Cloud Vendors
All three major cloud service providers have included a set of standards or ópillars of architectural excellenceô.
The idea is to have a framework to build high-performing, secure, resilient, and efficient infrastructures for all
apps deployed using their services.

The published frameworks involve various aspects of designing a cloud-native infrastructure ï security,
operational excellence, performance efficiency, cost optimization, sustainability, and reliability. No one would
argue that these are all good things to have on your side in any venture. BUT how do these best practice
guidelines help inform us on their use of cloud-native technologies?

When used properly, these frameworks can help you determine how well your current cloud architecture
deployment is measuring up against best practices. As with AWS, review tools are provided allow for more
systematic design reviews against industry standards. This AWS Well-Architected Tool1 is intended to be used
in conjunction with an AWS technical account manager or 3rd party auditor to benchmark a cloud migration in
progress.

Azure has its own tool called Azure Well-Architected Review2. While not providing an interactive tool,
Google hosts a Cloud Architecture Community Forum with answers posted by on-staff GCP Cloud
Architecture3 experts working for Google.

Google also came out with a collection of security foundations blueprints4 in 2021 consisting of terraform
code repositories that may be leveraged to deployed, secure-by-default, highly opinionated GCP cloud
deployments for those end users needing specific insight into each security decision made in the blueprint
design.

The concept to understand here is that all three providers do pay attention to best practices albeit with a focus
on single-cloud, greenfield deployments. They each have standards and frameworks of óexcellenceô. These
frameworks help developers using their cloud know where they are going in any design and offer options for
sorting out the ógrayer areasô along the way.

28 © 2022 SANS Institute

Technet24

References:
[1]: https://sec549.com/id11
[2]: https://sec549.com/id12
[3]: https://sec549.com/id13
[4]: https://sec549.com/id14

© 2022 SANS Institute 29

AWS Well-Architected Framework Pillars
The AWS Well-Architected Framework1 is broken into 6 pillars providing a mechanism to categorize the key
elements of AWS infrastructure design. Emphasized in this course are the security implications of design
however the Security Pillar is only one aspect of the Well-Architected Framework. AWS expands on
guidance within each of the pillars with an accompanied whitepaper, resources and best practices.

Security Pillar
Of interest to the Cloud Security Architect is the Security Pillar of the Well-Architected Framework where
AWS provides high-level guidance on identity solutions in the cloud, ensuring traceability, implementing
monitoring, automaton, compliance and separation of duties. Becoming familiar with the Security Pillar
guidance and its seven design principals is a good ófirst stepô if you are new to the cloud or AWS design
patters as a whole.

Reliability
Also of note is the Reliability pillar which AWS describes as encompassing ñthe ability of a workload to
perform its intended function correctly and consistently when itôs expected to.ò2 The principals covered in this
pillar are of particular interest when designing resiliency in systems and backup strategies.

Conclusion
The AWS Well-Architected Framework is a foundational guide for architectural best practices that is more
description, rather than perspective. Most organizations will find the best practices outlined in the Well-
Architected Framework to be aspirational goal posts but are not helpful in road-mapping a phased evolution of
their current state.

References:
[1]: https://sec549.com/id15
[2]: https://sec549.com/id16

30 © 2022 SANS Institute

Technet24

The Cloud Architectôs Visualization Toolbox
Cloud environments have challenged architects to look beyond their tried-and-true tools like Visio and look to
more fully featured tools ï ones specifically designed for the cloud when documenting the topology of their
environment. Most are sold as a SaaS solution; however, others are self-hosted. The goal is to represent
resources and their relationship in simple and clear-cut graphical formats.

Those that have live loading capabilities offer the architect a head start in the diagramming process by pre-
populating certain resources and pre-drawing the blueprints. Most also allow the creation of diagrams though a
designer interface or through live inventory pulled in from AWS (through a Read-Only Role).

Among the SaaS tools available for visualizing cloud architecture in the design phase:
ϊ Inviz ï a personal subscription is free and allows up to 500 renderings per month. Live resources can be

loaded from an AWS account or from cloud formation templates. It does not provide a cost estimation,
however.

ϊ Hava ï supports AWS, Azure, and GCP. Your resources are visible through a ósecurity viewô so you
can be aware of Ingress Points into VPCs. It has no free options, however.

ϊ Draw.io ï A free version is available and is hosted at https://app.diagrams.net/. There is paid integration
with Confluence, and it works with AWS, Azure, and GCP. There is no option for live load resources.

ϊ LucidScale ï it has all the bells and whistles but is not free. You can export diagrams as terraform code
and it works with AWS, Azure, and GCP. Like most of the paid services, it provides cost estimates
based on the diagrams.

ϊ CloudSkew ï a free option is available for beginners, and it works with AWS, Azure, and GCP. The
downside is that there are no live-loading capabilities. You need to use the icon-sets of the Big-Three to
manually craft diagrams.

ϊ CloudCraft ï this option allows you to export diagrams as draw.io files and can combine blueprints that
have been seeded with live resources. It only works with AWS, however.

ϊ Cloudockit ï this works with AWS, Azure, and GCP, and additionally supports O365, Kubernetes, and
VMWare resources. It does not have a free version, however.

© 2022 SANS Institute 31

The main self-hosted visualization tool is AWS-Perspective1. This is AWSôs version of an open-source
project. There are infrastructure costs involved that add to approximately $400 per month. The tool is fully
compatible with all AWS Resources that are supported with the AWS Config Service. It allows for
visualizations based on live data from AWS.

The Downside of Most Options: With most SaaS tools offering live loading capabilities, only a limited set of
resources is available ï generally only networking resources, like IaaS, VPCs, and storage resources. You will
not have reasonable access to identity-based resources. Users, Roles, Policies, and Accounts are not depicted
on auto-generated diagrams.

Reference:
[1]: https://sec549.com/id17

32 © 2022 SANS Institute

Technet24

Draw.io Tutorial
The open-source software, Draw.io1 can be accessed at the URL, https://app.diagrams.net/.

1. If youôve never visited draw.io before, you will be asked where you want to store your diagrams and then
if you want to begin a new diagram or continue a preexisting one.

2. To create a new diagram, click óFileô -> óNewéô. Your page will pop up. Name the document.
3. Use the icons available on the left-hand side of the screen to select the icon you wish. Drag, drop, and

resize it if needed. Move by clicking it and dragging it.
4. If a connector is desired, select from the connector list at the top. You can drag and drop an arrow, for

example, to the edges of the two icons you want to connect. That connection will remain, even if you
move one of the icons.

5. You can select a grouping by drawing a box around the items you wish to group. Right-click on the
selected grouping and click óGroupô. They will move together unless you Ungroup the selection.

6. You can copy any icon you wish and can use the text section on the right. Images and boxes around them
can be filled with any color.

7. All your changes are saved automatically to the storage site you chose. You can also export your diagram
in other formats, including png, html, jpg, and pdf. You can turn off the grid to make a professional-
looking diagram.

Reference:
[1]: https://sec549.com/id18

© 2022 SANS Institute 33

Delos is a multinational robotics company with large research and development investments. The C-Suite has
just announced its intention to move the majority of Delosô operations to the AWS cloud over the next few
years. Groups of cross-functional leaders are collaborating on the initial planning steps including the design of
their future AWS Organizations resources.

Reference:
Image Source: Pixaby user geralt: https://sec549.com/id51

34 © 2022 SANS Institute

Technet24

This page intentionally left blank.

© 2022 SANS Institute 35

This page intentionally left blank.

36 © 2022 SANS Institute

Technet24

You've successfully threat modeled your first cloud architecture!

Many traditional threats seen in on-premise architectures are not applicable, such as those relating to Denial of
Service and those mitigated by encryption-in-transit. Some risks involving the access keys are mitigated given
the limited (write-only) access provisioned to third-parties. However, there is still a possibility that threats
could manifest in the bucket the AWS account is housed in.

An attacker (or someone negligent) could escalate their permissions and gain access to the bucket, affecting
the logging of actions taken and/or the confidentiality of the objects stored in S3. We haven't been made aware
of any input validation or data schema being enforced on ingestion, and as identified in the threat modeling
exercise, there is the possibility for malicious or corrupted data to affect downstream, on-premise systems.

© 2022 SANS Institute 37

This page intentionally left blank.

38 © 2022 SANS Institute

Technet24

This page intentionally left blank.

© 2022 SANS Institute 39

Identity Federation is one of the few technologies where security and ease-of-use exist in the same pattern.
Without Identity Federation, all authenticated applications would require a username and password,
encouraging password reuse. When applications delegate their authentication to a centralized system, the end
user experience is consistent and allows for fewer, hopefully stronger, passwords.

All Identity Federation systems consist of two parties. A typical federation system involves 1) a Service
Provider that is configured to trust a 2) centralized Identity Provider (IdP).

Identity Provider (IdP) ð a system that provides the primary authentication for an application. An IdP can
provide a user with identifying information and serve that information to services when the user requests
access.

An IdP requires a basic set of capabilities. At the highest level, these include:
Å Authenticating end users
Å Communicating the authenticated state of end users to replying applications, formally called

Service Providers

An IdP often includes many more directory and user management features, such as:
Å User and group directories, including provisioning and deprovisioning
Å MFA options
Å Access Request and Approval workflows
Å Password Management

Service Providers (SP) ð applications configured to rely on an IdP for authentication. In some cases, SPs are
referred to as Relying Parties but in this course, weôll stick to the term Service Provider. Signed
authentication credentials are passed to the SPs from the Identity Provider. It is an SPôs responsibility to
verify the authenticity of the credentials provided by validating the signature in the provided credentials.

40 © 2022 SANS Institute

Technet24

Single Sign On (SSO) is an authentication process that transparently authenticates end users to multiple
systems based on previous authentications. Single sign-on requires a centralized identity provider to maintain a
view of the authenticated state of the end users and convey that authentication to service providers.

Single Sign-On in the Enterprise
An enterprise might have hundreds of internal workforce applications. Instead of having employees log in
every time they need to access an application, the apps can be grouped together and configured to trust one
another. When grouping applications together, be sure they have a consistent trust level.
Å Example: If one application in an SSO group requires MFA to authenticate, all applications in the group

should have the same requirement. Otherwise, lower risk applications could enable an unintentional Multi-
Factor Authentication (MFA) bypass when coupled with applications with more stringent requirements.

© 2022 SANS Institute 41

Identity Federation Versus Single Sign-On
Although Single Sign-On and Identity Federation are often used together, they do not mean the same thing.

Federation ï Identity Delegation
Federation is a contract between an Identity Provider and a relying application, formally called a Service
Provider. This contract establishes trust between the application and the Identity Provider, which allows
authentication to be delegated. How the Identity Provider authenticates end users is delegated as well. End
users might be required to submit a username and password, MFA could be required, or they could be
transparently authenticated (SSO). Authentication options are configured in the IdP.

Single Sign-On ï Transparent Application Grouping
SSO is often coupled with a Federated Identity implementation. As a result, the difference is not always
clearce.

SSO is the configuration of trust between applications who share an Identity Provider. SSO grouping has a
powerful shared authentication effect, where the Identity provider can transparently authenticate end users to
all applications in a group when theyôve authenticated one end user in that group.

42 © 2022 SANS Institute

Technet24

What Is SAML?
Security Assertion Markup Language (SAML) is a protocol designed to create security assertions. It provides
a framework for exchanging identity information between providers. It is one of the primary protocols used to
enable identity federation and authentication on the internet.

Benefits of using SAML include:
Å Open standard, designed to work with any transport protocol (HTTP, SMTP or FTP)
Å Provides interoperability between identity providers and service providers without these two parties

needing to exchange secrets
Å Allows applications (designated as service providers) to delegate authentication to a centralized identity

provider

SAML Token
Signed XML document consisting of the assertion of the authenticated state of the end user along with any
additional attributes of the end user. Optionally, the SAML Token may be encrypted; however, this does not
add to the security posture of the document.

Establishing Trust
During configuration, the Service Provider is provided with the public certificate of the Identity Provider,
which is later used to validate the signed SAML token. It is through the establishment of trust between the
Identity Provider and the Service Provider that the SAML token can provide security guarantees.

© 2022 SANS Institute 43

The Perils of Fragmented Identity
Implementing a full IAM stack in every environment requiring authentication and authorization systems leads
to siloed identity repositories. There are many problems that can arise when doing this:

Å End Users who need access to multiple target systems need to register separately in each environment,
multiplying the amount of administration work needed to handle registrations and increasing the
administration burden and costs.

Å End Users with multiple registrations may be granted inconsistent privilege levels in the different
environments. When systems remain siloed, there is no way to check for these types of inconsistencies.

Å End Users who have access needing maintenance, such as during a change in job role, must have their
access level updated across multiple environments, introducing the risk of error and further inconsistency.

Å End Users who are terminated need their registration deleted across multiple environments, creating the
risk that at least one will be missed.

To avoid each of these problems and more, a centralized approach to identity and access management is
needed.

44 © 2022 SANS Institute

Technet24

Benefits of Centralizing Identity
Centralized identity management means IAM all happens in one environment. In a workplace setting, this
looks like the user signing into a single workspace to access all the applications and tools they need.
Deprovisioning a user that has been centrally provisioned requires an action requiring only a single, central
directory.

Decentralized identity management means IAM is spread out across multiple environments. In this instance,
a user would sign into a single workspace, then continue on to sign into each individual application and tool
separately. Deprovisioning this user after separation would require deactivating and removing them from
multiple systems simultaneously.

With protocols like SAML, we can house users and groups in a centrally managed location and avoid the
operational and security risks that identity silos create.

© 2022 SANS Institute 45

Centralizing Workforce Attributes and Roles
Not only should identities be housed in a central source, but so should the roles and attributes governing
authorization policy. This is one of the key points in this course: the centralized view of roles, groups, or
attributes translating to access rights in the cloud.

How can you ensure your entitlements are not maintained in siloed systems? This can be a challenge for
both cloud service providers and integrated SaaS applications, particularly as the fine-grained permission
management of these systems are internal constructs.

What youôll see is that these are ensured by enforcing the same centralization principles we saw with the
User to Groups and Attributes.

Depicted in the slide is an architectural pattern which depicts how you might centrally house user and group
attributes in your Identity Provider and pass identifiers downstream. Make note of the features underpinning
this pattern:

Å Groups and group memberships are maintained in the Identity Provider; in this case, Azure Active
Directory (AAD)

Å Groups and memberships in AWS are not manually created; rather, they defer to their upstream directory
for the source of truth

Å Entitlements in AWS take the form of IAM permissions. Here, the assignment of groups to permissions
lives as a policy assignment in AWS

Å What groups are assigned to which collections of permissions must be a function of AWS and not an
upstream identity provider

46 © 2022 SANS Institute

Technet24

1. Clear Assignment Patterns
Encouraged is a one-to-one pattern where every group is assigned exactly one collection of permissions. This
one-to-one mapping helps us overcome the challenges of siloed cloud access rights by making the provisioned
permissions more auditable.

It will be clear if Group-Prod-A is assigned anything other than the collection of permissions called óProd-A-
Permissionsô

2. Leverage Automation and Policy as Code
Policies and permissions used to grant access to your resources should be defined as code. This will allow you
to take advantage of automation, track changes to permissions, and layer on governance. When making
changes to permissions, delegate that task to a well-monitored, automated system. Ideally, individual teams or
users should not have the ability to grant or revoke access rights. Neither should the collections of permissions
be updated or modified manually.

© 2022 SANS Institute 47

What Is AWS Identity Center?
AWS Identity Center1 (IdC) is intended as AWSôs identity product for the enterprise workforce and was
formerly called AWS Single Sign-On (AWS SSO). Why is it marketed as a solution specifically for
workforce identities?

The capabilities of AWS specifically lend itself to solving problems a typical enterprise might encounter when
their cloud presence grows and expands.

With Identity Center, you can break free of the access patterns which constrain end user identity into a single
AWS Account. You can manage all attributes of a User or Group and assign permissions to each of them
using Identity Center, across multiple accounts. Sticking with the theme of breaking free of the single
account, by using AWS Identity Center, you can now gather collections of permissions that can now be
managed outside of the context of the Account. Without leveraging Identity Center, a customer-managed
policy might need to be recreated and therefore managed across dozens or hundreds of accounts. With
Permission Sets in AWS Identity Center, the growing enterprise can be managed using these Permission Sets
which are used to populate Roles into member accounts using a consistent version of the policy.

In this module, we will focus on the capabilities of AWS Identity Center and see how it might be used to
centralize a workforce identity and provision access to AWS resources.

Reference:
[1]: https://sec549.com/id94

48 © 2022 SANS Institute

Technet24

User Identity Storage Options in AWS Identity Center (IdC)
There are only a couple of prerequisites for using AWS Identity Center. First, due to its tight integration with
AWS Organization, you cannot use Identity Center and its capabilities without also having enabled AWS
Organization. Second, an Identity Source must be specified; this will define where Identity Center users and
groups are managed and, in turn, where they will authenticate.

By default, the Identity Center built-in directory1 is created and enabled from which you can manually create
IdC Users and Groups, just as you would create a native IAM User or Group housed within an AWS Account.

Maintaining all AWS end user identities in Identity Center eliminates the problem of having to create unique
users for every account; however, it still leaves AWS with its own unique bunker for identity, siloôd from
other cloud identity systems or your on-premises active directory. End users who log into AWS leveraging the
built-in directory do so using a unique username and password for their AWS registration.

An organizationôs goal when scaling operations in the Cloud should be to unify identity into a single source of
truth. As such, configuring AWS Identity Center with an external identity provider should be any
organizationsô desired end state. Identity Centerôs native, built-in directory should only be used when
bootstrapping the environment or for break-glass accounts.

Reference:
[1]: https://sec549.com/id190

© 2022 SANS Institute 49

Federation Capabilities of AWS Identity Center (IdC)
AWS Identity Center is extremely versatile and can be configured to serve as both an identity provider and
service provider in the federation workflow. How would this work?

Workforce identities needing to log into your AWS environment can have their access federated against an
external provider, such as Azure AD, Okta, or any other SAML-compliant IdP. In the scenario depicted here,
AWS is acting as the Service Provider. It has been configured to delegate authentication to another entity and
relies on the Identity Provider to assert the callerôs identity.

Identity Center can also be configured to play the role of the Identity Provider. Applications can be
configured to use AWS Identity Center as their external Identity Provider (IdP).

So, what happens if AWS Identity Center both federates authentication against an IdP AND serves as an IdP
for applications as depicted in this diagram? While the service is completely capable of handling such a
scenario, the end user experience might be less than desirable. Upon attempting to access the application, the
end-user will find themselves first redirected to AWS Identity Center and then redirected to the core,
external IdP as is seen in the depicted scenario. Ensuring that the authenticated userôs context is accurately
convened between the two federation points can be an operational headache.

Whenever possible, avoid chaining identity providers together and stick to a single IdP with hub-and-spoke
patterns. Allowing AWS Identity Center to serve as an IdP may be appropriate when federating within the
AWS ecosystem1 such as to AWS Workspaces, but it rarely makes sense as an IdP for third-party applications.

Reference:
[1]: https://sec549.com/id95

50 © 2022 SANS Institute

Technet24

Provisioning the Managed Identities User Base
AWS Identity Center allows you to provision a user and group population collectively called IdC Users and
Groups. In these upcoming slides weôll cover how to provision IdC Users and Groups into AWS Identity
Center and how differently provisioned user populations (manual and automatic) are incompatible.

IdC Users
Built into AWS Identity Center is a user directory, not unlike the native user directory that comes with every
AWS Account. Whether users are housed in AWS Identity Center (IdC Users) or in an individual account
(Native IAM Users), they are both configured with the following minimum attributes:

Å Username: User uses this value to login.
Å Password: The password a non-federated user uses to authenticate to AWS. One-time use, temporary

passwords can be generated for users who are then forced to change them upon initial login. When you
create a user with AWS Identity Center, AWS sends an email to the user by default so that they can set
their own password.

The advantage of AWS IdC users over native IAM users is clear ï AWS IdC users cannot be assigned Access
Keys, eliminating an all-to-often source of initial compromise in the cloud.

Manual Provisioning of IdC Users and Groups
Within AWS Identity Center, users and groups can be manually created. When they are, the source of truth
for users, groups, and group assignments resides in AWS Identity Center. Manually provisioned AWS
Identity Center users use a bespoken password for AWS for authentication and are not federated.

Automatic Provisioning of IdC Users and Groups
When users and groups are automatically provisioned, their source of truth resides in the upstream system.
Automatically provisioned IdC users are also federated against an external identity provider, meaning they
authenticate against another system. Automatic provisioned users ARE NOT assigned passwords.

© 2022 SANS Institute 51

Manually provisioned AWS Managed Identities cannot be active alongside automatically provisioned users.
Once an external source for Managed Identities is configured, any previously created manual AWS Managed
Identities users will be deactivated and will no longer be able to log in with their AWS-specific passwords.

52 © 2022 SANS Institute

Technet24

SCIM for Automatic User and Group Provisioning
Using the System for Cross-domain Identity Management (SCIM) protocol, you can sync users, their
attributes, groups and group memberships to downstream directories from your primarily ósource of truthô
directory. When you configure users to be provisioned via SCIM in lieu of manual creation, you create a
mapping of your identity provider (IdP) user attributes to the named attributes in AWS Identity Center. This
causes the expected attributes to synchronize between AWS Identity Center and your IdP.

To enabled this synchronization, trust is established between the source directory and the downstream
directory through a configured shared secret. In AWS Identity Center1, that secret is generated for you and
consists of an Oauth bearer token. The bearer token is then shared with the upstream directory to authenticate
requests to the AWS Identity Center published SCIM endpoint. The shared secret used in SCIM provisioning
in AWS Identity Center is issued with an expiry date of 1 year. Set yourself a reminder to rotate this secret
before it expires or provisioning via SCIM will silently break2.

References:
[1]: https://sec549.com/id96
[2]: https://sec549.com/id97

© 2022 SANS Institute 53

Provisioning Users and Groups from Azure Active Directory
Mapping your user base from Azure Active Directory to AWS Identity Center is fairly straightforward,
although there are a few design considerations and one or two gotchas that are important to review.

Considerations at your source directory ï Azure Active Directory (AAD)
It's unlikely you will want to sync your entire AAD user population to AWS Identity Center1. Fortunately, you
can be selective about who is provisioned into AWS. In Azure AD, provisioning can be scoped based on
assignment to the enterprise application used for federation and provisioning, based on attributes of the user or
by group membership.

Another consideration within AAD is group membership. Only your top level groups from Azure Active
Directory are replicated to the AWS Identity Center directory. Nested groups and their memberships will not
be available in AWS Identity Center.

Finally, consider your requirements for timely consistency between the two directories. Out-of-the-Box,
provisioning a user base between Azure and AWS Identity is not Just-In-Time(JIT) and does suffer from a
delay. The delay can be upwards of 40 minutes between a change in AAD and its populating in AWS Identity
Center. There are, however, PowerShell scripts and third-party solutions which can force AAD to provision in
a more timely basis if you need stronger consistency2.

Requirements by your downstream directory ï AWS Identity Center
When looking to enable automatic user and group provisioning into AWS Identity, only a handful of hard
requirements are in place. First, SAML federation must be configured between AWS Identity Center and the
external Identity Provider, which will allow your provisioned users to authenticate externally. Lastly, AWS
Identity requires just three attributes be minimally configured for the user object for acceptance into the
directory. Those are óFirst Nameô, óLast Nameô and óDisplay Nameô3.

54 © 2022 SANS Institute

Technet24

References:
[1]: https://sec549.com/id98
[2]: https://sec549.com/id99
[3]: https://sec549.com/id100

© 2022 SANS Institute 55

Managing User Assignments Across all AWS Accounts
Now that users and groups have been automatically populated into AWS Identity Center, it's time to turn our
sights to assigning them permissions to cloud resources.

Managing User Permissions Across All AWS Accounts
Permission sets are a way to define permissions centrally in AWS Identity Center, so that they can be applied
consistently across all of your AWS accounts. Permission sets are bundled collections of policies. Within
AWS Identity Center, you can maintain groupings of policies and assign IdC users and groups these
permission sets. When a group is assigned a permission set to a specific AWS Account, the permission set is
provisioned to the targeted AWS account as an IAM role with an accompanied Identity-Based Policy. AWS
Identity Center configures a trust policy on the role, allowing members of the group to assume the IAM Role
into the target account.

Reference:
[1]: https://sec549.com/id101

56 © 2022 SANS Institute

Technet24

In the previous slide, we examined granting access to resources using a Role-based Access Control (RBAC)
paradigm. A complementary system for access control is supported in AWS ï Attribute-Based Access Control
(ABAC)1.

When you use ABAC, you define permissions based on matching attributes, rather than exclusively group
membership. Attributes are then used as conditional arguments in policies.
Å Example:

Å IF a user attribute == manager THEN they can access the resources having been tagged as
== confidential

Å IF a user attribute == Dept123 THEN they can access the resources having been tagged as
== Dept123

Passing Attributes to AWS Identity Center (IdC)
Attributes of a user can be leveraged by AWS ABAC by either sync-ing the user attributes as a part of your
SCIM provisioning process or they can be passed to AWS Identity Center during authentication as a
component of the SAML identity assertion. In either case, these attributes need to be flagged in AWS Identity
Center as the ones to be used in access control decisions. Once configured, these attributes are passed
as session tags with the end users authenticated session and can be used to conditionally allow or deny access
to particular resources or entire roles2.

Using an ABAC strategy, defining access based on matching attributes to resource tags instead of purely
group membership, helps to reduce the number of roles you must create and manage in your AWS
environment.

Consideration when using AAD as the source of attributes
If an attribute is removed from a user in Azure AD, that attribute will not be removed from the corresponding
IdC user in AWS Identity Center . The work-around? Instead of removing attributes from users, they should
be changed to a different (non-empty) value. That change will be synchronized to AWS Identity Center
appropriately.

© 2022 SANS Institute 57

References:
[1]: https://sec549.com/id102
[2]: https://sec549.com/id103
Image source: New for Identity Federation ï Use Employee Attributes for Access Control in AWS | AWS
News Blog https://sec549.com/id104

58 © 2022 SANS Institute

Technet24

Identity Center Delegation
As the cloud footprint grows, it becomes increasingly important to integrate the management of the cloud
identity lifecycle into your organizations broader Identity and Access Management (IAM) capability. Instead
of granting members of the IAM team access to your all-powerful AWS Management Account, delegate
portions Identity Center to a child AWS Account.

Delegate to a child account
The functionality you can delegate from Identity Center in the Management Account includes the maintaining
of Permission Sets, creation and provisioning of Permission Sets and granting permissions to end users by
attaching Permission Sets to Accounts. Users, Groups and SSO configurations will still reside in the
Management Account, however assigning permissions will additionally be possible in the delegated account.
Delegated functionality can be allowed on all child accounts or only a subset of child accounts depending on
your desired delegation model.

Do Not Delegate
As a security best practice, access to the AWS Management Account should be limited, therefore its important
when delegating the identity capabilities of AWS Identity Center to withhold access to the Management
Account. When crafting a delegation policy, ensure the Identity Delegation Account and Management
Account are excluded, only allowing permission management on child accounts. This can be accomplished by
leveraging a Resource Tag applied to the Management Account1 and Identity Delegation Account by
referencing it with the ResourceTag2 global condition key.

References:
[1]: https://sec549.com/id201
[2]: https://sec549.com/id202

© 2022 SANS Institute 59

End User Experience on the Console
Having accessed the student lab infrastructure via AWS Identity Center, you have gotten a glimpse at what an
end users experience is when authenticating with AWS Identity Center .

After authenticating with the external identity provider, the end user is navigated to the Identity Center home
page. Here, every account that they have been provisioned access to is presented. All AWS Accounts, and the
name of every permission set is listed for the end user, allowing them to chose which account to drop into and
which role to use when in that Account.

60 © 2022 SANS Institute

Technet24

AWS Identity Center User Experience using the Command Line
AWS Identity Center is compatible both with accessing resources through the console and programmatically
via the AWS command-line interface (CLI).

1. In this scenario, the end user requests to login to AWS on the command-line, indicating which AWS
account they wish to access. In the AWS CLI, the account id and role an end user requests is called a
óprofileô.

2. A browser is launched where the end user authenticates and is asked to authorize the AWS command-line
interface (CLI). Authorizing the request generates an authorization code for use in the OAuth2 Authorization
Code flow.

3. Finally, the authorization code is populated into the terminal. Using the one-time use authorization code, the
AWS command-line interface (CLI) requests and stores temporary session credentials which are subsequently
used when authenticating to AWS APIs.

Reference:
[1]: https://sec549.com/id105

© 2022 SANS Institute 61

Reference:
Image Source: Pixaby user geralt: https://sec549.com/id51

62 © 2022 SANS Institute

Technet24

Lab 1.2 Instructions:
1. Observe the the depiction of your 'student user' on the diagram. Identify this user in the AWS Identity

Center console page.
2. On the AWS Identity Center console page, discover which groups the 'student user' is a member of. On the

diagram, drag and drop the correlating groups.
3. Drag and drop the AWSReadOnlyAccess Permission Set Icon into the yellow box which will depict the

group being assigned the Permission Set.
4. Drag and drop the AAD Groups and Users into the Delos tenant, which need to be automatically

provisioned into AWS Identity Center via SCIM.

© 2022 SANS Institute 63

This page intentionally left blank.

64 © 2022 SANS Institute

Technet24

This page intentionally left blank.

© 2022 SANS Institute 65

In this module, students will learn about the different resource containers available to them in AWS, Azure,
and GCP and the best practices for leveraging them to segregate workloads. They will learn how to take
advantage of each cloud's unique inheritance model to apply policies across swaths of resources. Using native
policy enforcement, students will learn what tools they have available to enforce consistency across resources
in an organization.

66 © 2022 SANS Institute

Technet24

This page intentionally left blank.

© 2022 SANS Institute 67

Building an Identity Plane using the Major Cloud Providers
While called by different names, the highest-level resources from which the identity plane is built are similar
in the Big Three CSPs. Breaking them down, you have these:

Å The AWS Management Accountï despite being the oldest of the three, AWS only added this
concept later as an option for customers to help manage accounts. The AWS Management
Account is just like any other AWS Account except that it is the Account from which other
Accounts can be members. However, the Management Account is not the top node for applying
policy. In AWS, the top node which you can apply policy is called simply óThe Rootô which is a
construct that encompasses all member accounts.

Å Azure Root Management Group ï this is a specifically designated Management Group which
itself can contain child Management Groups. Associated to every Root Management Group is
exactly one Azure Active Directory (AAD) Tenant. An Azure Tenant is an unique instance of
Azure AD. A new Azure Tenant is transparency created in the background whenever a customer
signs up for a new Office 365, Dynamics 365 or Azure Subscription

Å GCP Organization ï this top-tier node marks the initial container into which you can attach
Roles. No Resources are housed in your GCP Organization; rather, from the Organization, you
create smaller containers like Folders and Projects.

All IAM planning in the cloud begins with these the top-level resources. This is important because:
Å The top-tier resources allow for centralizing the authority for the rest of the cloud, allowing for the creation

of lower-level accounts, projects, or subscriptions.
Å In the case of Azure and GCP, permissions applied at the top-tier resource convey permission in all

child/subordinate resources, as they are inherited down the hierarchy.
Å The AWS Management Account has unique ósuper-adminô capabilities including the ability to apply

guardrail policies which can be enforced Organization-wide.

68 © 2022 SANS Institute

Technet24

Hierarchical Cloud Account Structure
The concept of a resource hierarchy refers to the way resources are organized inside a cloud platform account,
e.g., is the structure flat or is it possible to build hierarchies. A core concept of a hierarchy is inheritance. This
is where youôll see that child resources down the line can inherit the same upstream policies, whether those
policies grant permissions or restrict actions.

The essential features of hierarchical cloud account structures are:
Å Direct ownership of resources between the parent level to the child level (a one-way ownership)
Å The possibility of one-to-one relationships or one-to-many relationships within the different levels
Å Inheritance of policy down the hierarchy but never up the hierarchy
Å Resources in the Cloud Account Structure become policy attachment points

Expect differences between the Big-Three Cloud Providers:
Å AWS ï Organizational Units (OUs) can be created to organize accounts. You can attach a restrictive

Service Control Policy to an OU so that all accounts within the OU have that inherited policy. Multiple
OUs are allowed within the Organization and OUs can be nested within one another. Unlike Azure and
GCP, policies granting permissions to Users cannot be applied to higher-level resources, such as at the
Management Account, OU or Root Node. Instead, the Management Account is used to centrally organize
and push down permissions that grant policies to member accounts.

In contrast to AWS which has a weak hierarchy, Azure and GCP have built their clouds to have a strong
hierarchy.

Å Azure ï organizes itself into Management Groups, Subscriptions, and Resource Groups. Both restrictive
policy (Azure Policy assignments) and policy granting permissions (role definitions) can be applied to
higher-level nodes in Azure and will take advantage of the concept of inheritance. Deletion of higher-level
resources deletes child resources.

© 2022 SANS Institute 69

Å GCP ï divides itself into the Organization, Folders, Projects, and resources within the Projects. Both
restrictive policy (Org Policy Constraints) and policy granting permissions (Role Bindings) can be
applied to higher-level nodes in GCP and have the concept of inheritance be in effect. Deletion of
higher-level resources deletes child resources.

70 © 2022 SANS Institute

Technet24

AWS Organizations Ÿ AWS Organizational Units Ÿ Member Accounts
An AWS Organization is a service that can be enabled in AWS to consolidate a collection of AWS accounts
so they can be managed as a single unit. The point of an AWS Organization is to enforce consistency in
policies and rules in ways that help manage the Organizational Units (OUs) and Accounts beneath it.

The AWS Account from which you initially enable Organizations is called several things, depending on what
era of AWS documentation you refer to. Sometimes this Account is called the Payer Account or Root
Account. More recently, it is referred to as the óOrganizational Accountô or the óManagement Accountô. In
this course, you will see this Account referred to as the Management Account for consistency and to keep
inline with the most recent AWS nomenclature. The Management Account is like any other AWS Account in
that it can house resources like PaaS and IaaS Services. It should be noted however that this is against best
practices. The Management Account should never contain infrastructure.

In all AWS Organizations, you will have a single Management Account. Everything else (member accounts,
OUs, and policies) are additional/optional aspects of the Organization. The Management Account is at the
óhelmô and is where the rest of the cloud estate is managed from. Even so, you would need cross-account
AWS IAM roles to enable the Management Account to have access to each member account in the
Organization. We will touch on this in the next slide.

What are the features of the Management Account?
ϊ It allows for policy-based management of multiple AWS accounts at once
ϊ It helps automate the creation and/or management of new AWS accounts
ϊ It facilitates a consolidated billing process
ϊ It is a free service as part of AWS

The AWS Organizations Service helps with:
ϊ Centrally provisioning accounts and resources
ϊ Creating shared resources between Accounts

© 2022 SANS Institute 71

ϊ Leveraging integrated services to audit the environment for compliance
ϊ Controlling access to accounts, regions, and services
ϊ Simplifying billing and optimize costs
ϊ Centralizing management of backups and tagging in multi-account environments

Organizational Units (OUs) can be thought of as a folder structure. They are created and managed from the
Management Account. OUs themselves are strictly for grouping accounts with similar operational needs and
security policies. You can organize OUs into a manageable hierarchy reflecting a companyôs structure or
design OUs in an effort to group Accounts which are likely to have similar policy constraints.

Itôs best practice to use OUs to help organize member accounts according to common policies, as we will
cover in an upcoming slide on Service Control Policies.

72 © 2022 SANS Institute

Technet24

Accessing AWS Member Accounts From the Organizational Account
The Management Account wields a lot of power over the downstream accounts in the Organization. How is
this accomplished? AWS Organizations leverages the following access to manage downstream accounts:

Å When an Organization is created, an IAM Role is automatically created by the AWS Organizations Service
in each Member Account called óOrganizationAccountAccessRoleô. With this access, the Organizations
Service has full access to child accounts, as the AdministrativeAccess Managed Policy is attached to the
Role.

Å If you invite an existing AWS Account to join your organization, that invited Account needs to accept the
invitation to join the AWS Organization. Access from the Management Account into an invited Account is
not automatically configured. In this case, an ôOrganizationAccountAccessRoleô IAM Role needs to be
manually created allowing the Organizational Account to access the invited member.

© 2022 SANS Institute 73

GCP Organization Ÿ Folders Ÿ Projects
Resources in GCP are organized hierarchically where each Resource has exactly one parent. It is important to
keep in mind that the term óResourceô in GCP both refers to the Nodes of the organizational structure and the
collection of assets in a Project, such as a Compute Instance or Cloud Bucket.1

The top-level Resource in GCP is the Organization2,3. Below the Organization, Folders can be created as
generic containers. Folders are a mechanism to organize Projects and create IAM policy attachment points in
order to refine access control4. An Organization can have zero Folders up to 300 and nested up to 10 deep.

Projects in GCP can be thought of as analogous to the Account in AWS. A Project is the container which
houses all of Resources your team may utilize from GCP4.

At the bottom of the hierarchy, a Project is made of a collection of Resources, fundamental components that
make up all Google Cloud services. Examples of Resources include Compute Engine Virtual Machines
(VMs), Pub/Sub topics, Cloud Storage buckets, App Engine instances. All of these lower-level Resources can
only be owned by projects6.

Inheritance
IAM Policy can be attached or bound to an Organization, Folder, Project, or to a specific Resource. Each of
the Nodes in the Resource Hierarchy is a policy attachment point. For example, a User could have the Role
Bigquery.Tables.Viewer applied at the Project Level. This would allow the User the ability to view all
BigQuery Tables in the Project, present and future. Conversely, if the Role was instead bound at the Resource
level, to a specific BigQuery Table, the User would only be able to view the content of that specific Table7.
GCP, has over a 100 types of Resources to which an IAM Policy can be attached8. IAM Policy should be
attached at the lowest resource level possible to limit the scope of permissions9.

References:
[1] https://sec549.com/id19
[2] https://sec549.com/id20

74 © 2022 SANS Institute

Technet24

[3] https://sec549.com/id21
[4] https://sec549.com/id22
[5] https://sec549.com/id23
[6] https://sec549.com/id24
[7] https://sec549.com/id25
[8] https://sec549.com/id26
[9] https://sec549.com/id27
Image Source: http://www.jumsoft.com/toolbox-for-keynote/

© 2022 SANS Institute 75

Azure Tenant Ÿ Management Groups Ÿ Subscriptions Ÿ Resource Groups
The Azure hierarchy can be even denser than GCP in that it introduces an additional node type that can be
used to organize resources.

Nodes within the Azure hierarchy include the root management group, one or more child management groups,
one or more subscriptions, resource groups, and the resources within them. At least one subscription must be
enabled to work within Azure (along with the root management group). Subscriptions are organized into
containers called management groups1. Management Groups, Subscriptions, and Resource Groups are all
policy attachment places and IAM isolation boundaries, allowing them to be governed as a single entities.

Subscriptions2 in Azure is the most ubiquitous resource container, analogous to AWS Accounts and GCP
Projects. All new resources must be linked to a resource group which, in turn, is a member of a Subscription.

If a Subscription is moved to a different management group, the policies that it previous inherited are no
longer in effect; it is now governed by any new policies applied to the new Management Group. While
policies are inherited in a top-down manner, you can apply them at any level. In other words, you can apply
them to a Subscription only, knowing that all resources within it are also affected by the same policy. While
Azure Policy assignments used for creating guardrails in Azure cannot be overridden at a lower level, policy
definitions can be created with exclusions.

References:
[1]: https://sec549.com/id28
[2]: https://sec549.com/id31
Image Source: Organize your Azure resources effectively: https://sec549.com/id29

76 © 2022 SANS Institute

Technet24

Two Motivations Driving Your Hierarchy Design
Every organizationôs hierarchical cloud design should be bespoken and unique to the businessôs stated
objectives and internal structure. Laying out a cloud estate involves taking a close look at the key
characteristics of the hierarchies. Once you see how these work, the answer as to the órightô choice should
become clearer.

Hierarchy Design Considerations
1. IAM Inheritance ï Consider what points in the hierarchy IAM policy will be attached, giving particular

attention to how permissions will be inherited by downstream resources.
2. Clear Resource Ownership ï Consider if a cloud hierarchy structure can be leveraged to manage the

lifecycle of resources. Ask if resources be organized into OUs, Folders, or Management Groups to help
clarify resource ownership.

In any architectural design using the Big Three CSPs, you will want to keep their respective hierarchies in
mind; take advantage of the inheritance model when applying the various policies within the structure.

Resource ownership also matters to the hierarchy design1. There are many practicalities to consider
regarding resource ownership:

ϊ When you delete a parent resource, the child resource(s) are automatically deleted as well.
ϊ If you keep tightly scoped accounts (in any of the three CSPs), you will be better able to clean up

resources when projects become decommissioned or transferred.
ϊ Clear resource ownership in the Cloud helps give the business more visibility regarding costs. The more

tightly scoped you keep the size of the accounts within the business, the better able is the business to
attribute costs to specific initiatives and projects.

Reference:
[1]: https://sec549.com/id30

© 2022 SANS Institute 77

Leveraging A Resource Hierarchy
Azure and GCP built strong hierarchy models into their design from the outset. You can begin at the top and
create nodes, with descendants or child resources beneath them in any necessary combination in order to
leverage the inheritance of policy as it flows in a downward direction. In Azure and GCP both restrictive,
guardrail policies and permissive, permission granting polices abide by the hierarchy inheritance model.

AWS didnôt begin with a strong concept of hierarchy but has added some aspects of it in recent years. They
introduced AWS Organizations Service, which provides the customer with the experience of central
management of IAM policymaking along with the ability to attach restrictive, guardrail policies. The
construction of OUs become convenient attachment points at which to apply a broad stroke of restrictive
policies, similar to the way GCP Folders and Azure Management Groups are utilized.

Leverage The Resource Hierarchy To Reduce Permission Scope
In GCP and Azure Clouds, the scope which permissions and entitlements apply is dictated by which node in
the resource hierarchy the role is applied. AWS does not have the concept of applying permissive policies at
different levels of a resource hierarchy. Instead, to restrict the scope of granted permissions, the ñResourcesò1

field in IAM Policy document is used to limit which resources the permission applies to.

Reference:
[1]: https://sec549.com/id196

78 © 2022 SANS Institute

Technet24

Blocking Permission Inheritance
The GCP and Azure Hierarchy models allow permissive, permission granting policies to be applied to higher
level resources and cascade downwards to affect child resources. This is a powerful tool but there will be
occasions when the IAM policy inheritance needs to be overridden. Letôs take a look at the two approaches to
blocking the inheritance model in both GCP and Azure.

Strategies for Blocking Inheritance
When mixing both permissive, permission granting policies with restrictive deny policies, two strategies are
used to achieve different goals.

1. Broad, sweeping rules are often applied towards the top of a hierarchy. Examples include denying the
assignment of GCP Roles to principals outside of the organization or preventing the creation of AWS
IAM Users.

2. Conversely, restrictive Deny Policies can also be applied lower in the hierarchy to carve out exceptions or
protect Projects which shouldnôt inherit IAM policy from its parent resources.

© 2022 SANS Institute 79

Denying Actions
Each of these mechanisms the Big Three CSP offers are implemented differently but have one thing in
common: they all are evaluated inline during the authorization of cloud control-plane APIs. Each mechanism
will override any explicitly granted permissions

GCP Deny Policies1

Contrary to GCP Roles which grant permissions, GCP Deny Policies explicitly disallow permissions. They are
evaluated by the GCP IAM service whenever a request is made to cloud control-plane API. Since Deny
Policies are evaluated first, even if a Role grants permissions, Deny Policies will always take precedence.
 Examples of a Deny Policy you might create and apply at the Organization-level:

o Prevent the creation of GCP Projects except if the caller is in the cloud administratorsô group or
your Project automation Service Account.

o Prevent the deletion of GCP Projects except if the caller is in the cloud administratorsô group or
your Project automation Service Account under the condition that the project is not tagged as
ñdevò.

Azure Deny Assignments2

Deny Assignments might seem similar to GCP Deny Policies. They are policies which can be applied to a
scope to prevent a particular principal (or all principals) from performing specified actions. When a Deny
Assignment is in effect, it will block a principal from performing an action in the cloud environment. The key
difference between GCP Deny Policies and Azure Deny Assignments is the ability for cloud administrators to
independently craft these custom, restrictive policies. At this time, Deny Assignments are not an independent
feature of Azure RBAC. They are only used when resources are defined and deployed within the context of an
Azure Blueprint.3

AWS
There is no 1-to-1 equivalent in AWS since there is no concept of a policy inheritance model. Instead, when
granted permissions need to be overridden, IAM policies leverage theò Effectò4 field to deny actions in the
environment. In the AWS policy evaluation logic, policies which have the effect set to deny always override
any allow policies which might grant permissions.
80 © 2022 SANS Institute

Technet24

References:
[1]: https://sec549.com/id917
[2]: https://sec549.com/id198
[3]: https://sec549.com/id199
[4]: https://sec549.com/id199

© 2022 SANS Institute 81

Centralization Versus Decentralization
One of the main course ótakeawaysô is that centralization of controls is highly beneficial to the architected
cloud ecosystem. When you centralize policy enforcement in AWS, for example, you are exerting the only
rational mechanism for maintaining security controls, especially as the business scales up in the cloud and
wants to do it rapidly.

There are drawbacks, however, to centralization. These are summarized best in one word: óFRICTIONô.

Migrating to the cloud is complex, no matter how well it is done. When engineers and management get
together to discuss which regions to operate in, which services should be allowed, and which WAF rules to
enforce, the security team may feel siloed and frustrated. Research and development can drag at a slower pace,
leading to an increase in shadow accounts or the misuse of sandbox accounts by those wanting to circumvent
the process.

In most compliance-focused organizations, it isnôt possible to bargain out of centralized policy enforcement.
Still, policy development should be collaborative. Before placing restrictive enforcement mechanisms upon
swaths of cloud accounts, those responsible for the process must clearly communicate the critical impact of
making these policy decisions. Published methods should be available for impacted teams who might want to
request an exception.

The root node of the cloud estate may be owned by the Operations Team, Cloud Operations Team, or Security
Team. Regardless of ownership, however, the decisions around centralized policy must take the needs of the
internal customers into account prior to enforcing those decisions.

Reference:
Image Source: Pixaby user DeHaasbe: https://sec549.com/id32

82 © 2022 SANS Institute

Technet24

Cloud Policies As Guardrails
Each of the Big-Three CSPs offer the opportunity to effectively use policies as high-level guardrails ensuring
improved overall security of the organizationôs cloud presence. The key to successfully using guardrails in the
Cloud is to leverage the policy inheritance principles in order to enforce restrictions across your environment.
In the upcoming slides, weôll cover the mechanisms each cloud makes available for placing constraints on
your cloud estate.

AWS
Available in AWS are a guardrail policy type called Service Control Policies (SCPs)3: These allow an
administrator to define custom deny policies affecting actions taken in your Organization. When evaluating a
principals authorization context, AWS always checks SCP first to determine if a particular action is denied,
prior to determining if it is allowed. Using SCP requires AWS Organizations be enabled in full-feature mode.

GCP5

Google Cloud Platform has two mechanisms for placing restrictions on an environment. The first, GCP
Organization Policy Constraints, is less comprehensive than AWS SCP. The guardrail elements of
Organization Policy Constraints are not custom policies like AWS SCP. Instead, GCP defines Organization
Policy Constraints centrally for all its customers. GCP is responsible for the structure of them; the impact they
have on your infrastructure is only partially defined by you (the customer).
Contrary to Organization Policy Constraints, GCP Deny Policies4 are crafted as custom policies by the
customer. The format of Deny Policies allows the cloud administrator to restrict access to sensitive
functionality while providing exceptions for designated teams.

Azure
Azureôs guardrail policy offering is the most comprehensive of the three major clouds. Azure Policy is both a
mechanism for enforcement of resource restrictions and a configuration assessment tool. Azure Policy can be
used to assess resource state, deny resource creation and auto-remediate resources. Unlike GCP and AWS,
Azure Policy can be used as a configuration management tool on new and existing resources. The policy
engine that fuels Azure Policy will assess existing resources for non-compliance, reporting on their status in
the Azure Security Center.

© 2022 SANS Institute 83

References:
[1]: https://sec549.com/id33
[2]: https://sec549.com/id34
[3]: https://sec549.com/id35
[4]: https://sec549.com/id195
[5]: https://sec549.com/id37

84 © 2022 SANS Institute

Technet24

AWS | Service Control Policies (SCP)
AWS SCPs are a feature of the AWS Organization administered by the Management Account. The goal of
using them is to restrict the actions that can be taken on any AWS account. No User or Role in the affect
Account (not even the root user) can perform an action denied by a SCP. SCPs do not grant permissions; they
simply apply effective guardrails on IAM permissions granted to principals. This is accomplished by writing
SCP documents defining actions which are explicitly denied under certain conditions.

IAM Policy Evaluation with SCP
What happens when an SCP prohibits an action by a user, but an IAM policy explicitly allows it? The action
is denied. All actions on the platform are first passed through the SCP filter to see if they are allowed. Any
deny within an SCP will result in a failed call to the AWS API. Keep in mind, SCP only apply to the principals
in the same Organization. Actions taken by an external principal will not be restricted due to an SCP.

SCP Rules of the Road:
Å SCPs cannot restrict the Management Account of the Organization.
Å SCPs cannot restrict principals outside of the Organization.
Å SCPs do not grant any permissions, they only deny or allow actions
Å Unlike Azure Policy, there is no audit mode for SCP.
Å Details of SCPs are invisible to principals in member accounts.

Limitations to SCPs:
Å An SCP document can only be 5120 bytes in length
Å Only 5 SCPs can be attached to any given node; the root, an OU, or an Account. This limitation makes it

advantageous to collapse ólikeô SCP restrictions into a single policy document.
Å Because AWS Accounts inherit SCP from óaboveô, these arenôt counted against the total limit applicable to

an Account or OU.

© 2022 SANS Institute 85

AWS | óStarterô Service Control Policies (SCPs)
AWS Organizations service does not come with automatically enabled SCPs. It is completely up to the
customer to first enable Service Control Policy and then decide when and where to apply them in the
organizationôs hierarchy1. To get customers going, AWS has described a number of óstarterô SCPs to utilize
with a relative degree of safety. The purpose of these óstarterô SCPs2 is to provide predictable guardrails that
you can apply early on to safeguard the organization during the initial growth phases of a cloud migration.

You can select and apply an SCP crafted to deny resource creation in specific AWS region or regions, helpful
to maintaining compliance or regulation agreements as you migrate into the cloud. One SCP restricts IAM
users and roles from changing a specified IAM role you created. Another can keep AWS accounts from
leaving the Organization. Still another SCP can be used to require MFA before any user or role can perform a
specified action.

References:
[1]: https://sec549.com/id38
[2]: https://sec549.com/id39

86 © 2022 SANS Institute

Technet24

GCP | Org Policy Constraints
Organization Policy Constraints is a type of guardrail policy which helps to enforce minimum standards across
a GCP environment.
Constraints cannot be crafted by the customer. Instead, there is a suite of predefined Constraints by GCP that
can be applied at the Organization, Folder, or Project Level.

Just like IAM Policy, Organization Policy Constraints are also inherited. Constraints are applied on a resource
hierarchy node in order to enforce the restrictions on that node and each of its descendants.

Organization Policy Constraint Types
Constraints come in two varieties: Boolean-based and list-based Constraints. An Org Policy Constraint which
is list-based allows the customer to list or enumerate a set of allowed values. In the case of the Constraint
"constraints/iam.allowedPolicyMemberDomainsò1, the Org Policy Admin can define the set of members by
domain that can be added to Cloud IAM policies. This constraint would prevent an external User from being
included in an IAM policy in your Organization. By default, all user identities can be added to Cloud IAM
policies.

Organization Policy Constraint Use Cases2

Imagine a scenario where you would want to turn off the creation of Service Accounts except in a handful of
designated Projects. You would achieve this by segregating your Projects into Folders and applying an Org
Policy at the Folder in which you want to affect its descendants. With this pattern you could effectively
exclude some Projects from restrictive Policy, either because they are considered Sandbox Projects with looser
controls, or you have corralled a dangerous functionality like Service Account creation into a designed Project
managed by your Security or Operations teams. When relying on Folder-applied Org Policy Constraints for
security guarantees, the permission to move Projects between Folders becomes a potentially lucrative
permission for an attacker and one to monitor for its use.

References:
[1] https://sec549.com/id42
[2] https://sec549.com/id40

© 2022 SANS Institute 87

Azure Policy
In Azure, the ability to enforce top-down guardrails is bundled with a tool granting the administrator a larger
scope of control of resources. As youôll see, the capabilities of Azure Policy is broader than GCP Org Policy
Constraints and AWS Service Control Policy (SCP). In this module, weôll focus how to use Azure Policies for
preventive guardrails, which involves a comparatively similar capability to GCP Org Policy Constraints and
AWS SCP.

Azure ï Azure Policy
Azure Policy is a configuration management tool in Azure that allows you to create policies that
enforce/control the properties of a resource. It is used to evaluate any and all changes made to an Azure
environment, regardless of how they are enacted. Even if end users make changes to the environment through
the Azure Portal, Azure Console, PowerShell, or Azure CLI, all API calls pass through the Azure Resource
Manager. Itôs at this control plane that Azure can consistently enforce Azure Policy.

What can Azure Policy do?
Azure policy documents support multiple effects in order to respond to a non-compliant resource.

Remediate non-compliance
Å ñDeployIfNotExistsò deploys a companion resource defined in an ARM template when a non-compliant

resource is created.
Å ñModifyò modifies a setting when a resource is deployed missing the required configuration.
Å ñAppendò effect adds additional fields to a resource when it is deployed (updated or created).

Audit for non-compliance
Å ñAuditò mode allows a non-compliant resource to be created, but flags it as non-compliant.
Å ñAuditIfNotExistsò mode reports on the absence of a resource of a configuration.

88 © 2022 SANS Institute

Technet24

Prevent non-compliance
Å ñDenyò blocks the resource creation or update.

Policy Definition Templates
Azure Policy is extremely powerful from a security perspective because now we can start to enforce
configurations using templates. When policies are written, the rules are written in JSON using deployable
components described in Azure Resource Manager (ARM) templates. If an automation can be done with an
ARM template, it can be enforced with Azure Policy.

ARM templates are powerful by themselves. With these, you can create and deploy entire Azure
infrastructures in declarative form. You can deploy a VM, for example, and it will provide the means for the
storage systems, network infrastructure, and any other resources needed.

Because of this power, it is strongly recommended to roll out all new policies in Audit Mode first. This way,
all potentially non-compliant resources are reviewed first before any ódeny actionsô impact live resources. In
addition, it is crucial to protect your Policy definitions and decide who can assign Polices or edit your Policy
definitions.

Reference:
[1]: https://sec549.com/id43

© 2022 SANS Institute 89

Azure Built-in Policy
One of the main differentiators for Azure is their óôPre-builtô or Built-Inô Policy.

The Azure Policy is a service in Azure that permits you to define custom policies that enforce and manage the
properties of a resource. But Azure customers do not need to produce the all policies from scratch. Hundreds
of pre-built policy definitions are available for customers in the Azure Portal. These pre-built policies cover
common scenarios for every service on the Azure Platform including guardrails for Compute, API
Management, Key Vault, and Network.

References:
[1]: https://sec549.com/id44
[2]: https://sec549.com/id45
[3]: https://sec549.com/id46
[4]: https://sec549.com/id47

90 © 2022 SANS Institute

Technet24

What would it look like if you could design an AWS Ecosystem from scratch, with no legacy dependency,
taking advantage of Organizations, OUs, and tightly-scoped Accounts for each business purpose?

In this section, we will talk you through what a óstarter frameworkô might look like for a newly constructed
AWS Organization.

© 2022 SANS Institute 91

AWS Multi-Account Strategy
The concept of the óAccountô in AWS is one to solidify into your thinking as a compartment for a defined
function. Accounts are AWSôs answer to the ónatural resource boundaryô needed to segregate workloads of
different types. By segregating different functions into different accounts, you gain the ability to apply
different policies where appropriate.

With the advantages of Accounts and the ability to combine them in various ways, having one large account
with all your workloads piled into it is neither necessary nor a good idea. One wrong move, even by someone
experienced, can upset or destroy the nest with all the AWS eggs inside. Most cloud security professionals
would argue against taking such an unnecessary risk.

Why have a Multi-Account Strategy?
The main reason to have a multi-account strategy from an architectural aspect is isolation, isolation, isolation.
Having many accounts with natural resource boundaries automatically limits the blast radius in situations of
unauthorized activity or unwanted access to any part of your organization.

Other good reasons to have multiple accounts are these:

ϊ Cost allocation ï you can simplify your billing structure and will have more transparency into when and
where charges are incurred

ϊ Support diverse team needs ï you can segregate groups of accounts in ways that allow the people who
will work together remain in the same cluster. This also simplifies your ability to set policies on
accounts that will need them as a unit.

ϊ Audit and compliance ï regulatory requirements for HIPAA, for example, include the need to make
sure each account is in compliance. This is easier to do when you have multiple small auditable
accounts.

ϊ You also extend AWS API exhaustion when you use multiple small accounts

92 © 2022 SANS Institute

Technet24

Are there trade-offs to consider as you scale from a single account toward what may be hundreds or
thousands of accounts?
Anytime you are managing thousands of AWS accounts, the upkeep will be challenging, even when you have
them well organized. For this reason, the only realistic way to do this at the speed needed by most businesses
is through automation. An excellent 5-day deep dive course into automating security controls in the cloud can
be found in SEC540: Cloud Security and DevSecOps Automation.

Management Account
Your management account is the AWS account used to begin managing your business at the hub of your
landing zone. This account can manage your entire organization by itself and will innately contain those things
needed to manage the Organization. Your Management Account should never contain compute resources.
This top-level account has taken many names over the years. The terms ñRoot Accountò, ñPayer Accountò,
Master Accountò and ñOrganizational Accountò all refer to the same Management Account.

Reference:
Image Credit: Template for Keynote

© 2022 SANS Institute 93

Principles for organizing Accounts, creating Organizational Units (OUs), and applying Service Control
Policy (SCP)
AWS has designed best practices for scoping account AWS accounts, organization those accounts into
Organizational Units (OUs), and applying policy as guardrails.

ϊ Segregate your OUs based on function or a common set of controls rather than the organizationôs
reporting structure.

ϊ SCPs are best applied to OUs rather than Accounts. You can apply policies more easily when all
Accounts in an entire OU can benefit from a single set of policies. This helps you efficiently manage
guardrails across similar accounts.

ϊ Avoid architectures with deep OUs. AWS Organization supports a 5-level depth structure with regard to
OUs, but you should know when it is valuable or not to use all of these levels.

ϊ Start small. There is a subset of foundational OUs that everyone should have. In the upcoming slides,
we will cover foundational OUs in an AWS Organization and the common types of Accounts which
might organize them.

ϊ No workloads should ever live in the management Account!
ϊ Non-production and production workloads should have separate Accounts and be further segmented

into separate OUs.
ϊ Tightly scope the resources which live in any single Account, assigning to them single workloads or a

small, related set of workloads

94 © 2022 SANS Institute

Technet24

AWS Foundational OUs | Segregation of Workloads by SDLC
The Workloads OU is intended to organize those Accounts that house applications, resources and data. In
accordance with a well-segmented Software Development Lifecyle (SDLC), separate environments are
maintained for each stage of the SDLC. Separate Accounts are maintained to to allow continuous deployment
/ continuous integration / continuous testing (CD/CI/CT) activities to occur without impacting production
builds, allowing for speed while increasing scale.

When workloads move to the Cloud, it is important to maintain the same segregation of environments by
keeping each deployment in its own Account. Since these Accounts will often have different security
restrictions, its recommended to organize them into separate OUs to allow for different policies to be attached
to each stage of the SDLC environments.

Maintaining Separate Environments for Non-Workload Accounts
Maintaining separate Accounts for production and non-production isnôt only a necessity for the Accounts
containing transactional workloads; it is also a consideration for Accounts that do not house classic
application-like resources. Separate Prod/Non-Prod Accounts might be maintained for CI/CD Pipelines,
Infrastructure Accounts, and Security Accounts.

© 2022 SANS Institute 95

AWS Foundational OUs | Security and Infrastructure
Once your organization is up and running, you will possibly have thousands of accounts and numerous OUs.
Rather than create all of these possible Accounts in a flat structure, you would begin by first identifying what
your foundational OUs should look like.

Å What must you have?

Å Operating from the initial management account you started with, where will your first foundational OUs
begin to take structure?

Security OU
An Organizational Unit (OU) should be created to house activities from your Security, Operations, and
Incident Response capabilities. Examples of these accounts could include:

ϊ Log Archive Account ï this is where all log data is gathered from each Account in the organization.
ϊ Security Tooling Account ï this is where security services, supporting data, and other tools are housed.

If your Organization utilized cloud-native tooling such as AWS Security Hub, AWS Config, and
Amazon GuardDuty, they are recommended to be operationalized in a unique account, under the
control of your in-house security team.

ϊ Security Read-only Access Account ï a Read-Only Access Account might be needed for a Security
Organization to perform investigations if Organization-wide SSO is not enabled. A Read-Only Access
Account is a hub-and-spoke pattern for access into all other AWS Accounts and follows the Identity-
Bastion Account pattern, which is covered in depth in a later slide.

ϊ Security Break-glass Account ï this is a rarely-to-be-accessed account in case an incident needs urgent
resolution and administrative access into an account is required. Access should be temporary, related
only to a specific incident and result in an alert generated in your central SIEM.

96 © 2022 SANS Institute

Technet24

Infrastructure OU
The Infrastructure OU is managed by your infrastructure teams, who will also manage all child OUs and their
associated accounts. This is the place for centralized management of shared networking resources, such as
AWS Direct Connect Integrations, DNS services, VPC endpoints, AWS Site-to-Site VPN connections, and
shared VPCs. Any networking services that are centrally created and shared among consuming accounts might
go into this OU.

As with security accounts, you will want to separate each segment into pre-prod and prod accounts. Your
Network-Prod Account contains stable network capabilities that can be shared among relying development
and deployment teams.

There will be pre-prod accounts used for testing and validating changes to network configurations. Keep in
mind, networks maintained for development workload Accounts in the Network OU might still be considered
a production network. A development Account in the Network OU might strictly be used by the infrastructure
team. Dev network accounts are useful for maintaining stability in the production services while testing
upgrades.

© 2022 SANS Institute 97

AWS Foundational OUs | Supporting Development Teams
Now that the foundational OUs have been created, your new organization needs supporting structures to
enable development activities.

Deployment OU Accounts
Most development teams will find value in having access to sandbox accounts, accounts with limited network
and data access, and accounts for CI/CD.

CI/CD pipeline accounts are also isolated from the rest of the organizationôs resources to be able to develop
and test code before deploying anything for your organization. These accounts may become the location where
cloud-native tools are leveraged for continuous deployment and testing such as AWS CodeDeploy or Amplify.
Alternatively, a CI/CD Pipeline Account could be a landing zone for ingesting builds from external systems,
such as Github or an on-premises Jenkins server.

Sandbox OU and Experimental Accounts
A Sandbox OU is the perfect place for your builders to safely experiment and test their code in an isolated
environment.

Each builder or team should have their own sandbox accounts and a capped spending budget. Recycling
sandbox accounts is an important hygiene practice, not only to keep costs in check but to ensure shadow
infrastructure is not built into these accounts, which often operate outside of governance which more lax
controls.

98 © 2022 SANS Institute

Technet24

AWS Foundational OUs | Transitional and Exceptions OUs
Transitional OU1

Unless you are truly starting from scratch, you may need a Transitional OU to handle existing workloads and
accounts not yet fully integrated into your Organization. If you acquire accounts through an acquisition or
merger, for example, some accounts can be óparkedô here until they can be integrated into AWS. Some of
these Accounts might later be dissolved as functionality is rebuilt into more compliant Accounts and placed
into an appropriate part of the Workloads OU.

Exceptions OU2

You may need an Exceptions OU to house accounts that are workloads needing an exception to the typical
security policies already applied to the Workloads OU. You should have as few of these as possible and good
reasons for these accounts to need an exception. SCPs are applied not at the OU but at individual accounts
residing in it. You should periodically reevaluate the need for an account needing a security exception.

A good example of an Exceptions OU account is one that contains a top-secret project. The SCPs applied to it
depend on what the account is used for and whether compliance issues are involved. The outcome of these
accounts might be that they remain in the Exceptions OU, become part of the Workload OU, or spin off into a
new initiative and Organization by themselves.

References:
[1]: https://sec549.com/id48
[2]: https://sec549.com/id49

© 2022 SANS Institute 99

AWS Foundational OUs | Suspended OU
Starting an AWS Organization is easy. Anyone can create an AWS Account simply by clicking a button and
naming it. Closing these accounts, however, is not as simple. It involves several steps and cannot be
automated. Once an account is closed, it takes 30 additional days to fully terminate it. One option is to put
these accounts into the Suspended OU, restricting all inbound and outbound traffic and applying an SCP that
denies all API access.

Options for accounts to include in this OU include sandbox accounts that are normally transiently but have
reached the end of their lifecycle and are simply waiting to be officially terminated. If there is an active
investigation on an account and it needs to be retained, the account can be frozen until its fate has been
decided on.

Accounts are not generally kept here indefinitely. It is often a placeholder OU after a person has left the
company or the accountôs resources have migrated elsewhere. You still need to officially close your unused
accounts; however, they can be safely held in this OU until they finish the termination process.

100 © 2022 SANS Institute

Technet24

Reference:
Image Source: Pixaby user geralt: https://sec549.com/id51

© 2022 SANS Institute 101

Lab 1.3 ï Creating Effective Hierarchies: Current State Architecture
Delos, Inc. has created their first Organization. After creating the Organization, IT invited the existing AWS
Accounts and integrated them into the new Org.

With phased cloud migration pending, the new Delos AWS Organization needs to be configured to support
capabilities that will be built out, such as centralized networks, customer-facing workloads, and security
services.

102 © 2022 SANS Institute

Technet24

This page intentionally left blank.

© 2022 SANS Institute 103

This page intentionally left blank.

104 © 2022 SANS Institute

Technet24

Lab 1.3 ï Creating Effective Hierarchies: End State Architecture
Hereôs what a completed Lab 1.3 might look like. Of course, some of the placements of the SCP could be
considered subjective.

There is a set of SCPs that probably will be appropriate to apply at the AWS Root. These include:

Å Preventing a member account from leaving the organization
Å Preventing users from disabling CloudTrail
Å Restricting the use of the Root User

Remember, none of these policies will apply to the Organization Account when applied at the Root, only to
the member accounts.

In addition to a handful of ubiquitous SCPs to apply at the Root, Iôve also depicted the default SCP which
allows all actions.

Using an SCP, weôve required all S3 objects be encrypted with specified KMS keys at the Infrastructure OU,
Transitional OU, Workload OU, and Security OU. Only at the Sandbox OU have we omitted applying an
SCP. Perhaps Sandbox Accounts will not require as prescriptive security controls, since we have assurances
that only test-related or mock data will reside in these accounts.

We are requiring the Workloads OU via SCP to use only VPCs hosted from our Networking Accounts. Within
the Infrastructure OU, Security OU, and Workloads OU, weôve prevented any Access Keys or AWS IAM
Users from being created. This SCP was omitted from the Sandbox OU, Transitional OU, and Exceptions OU.
The Transitional OU and accounts below it are still relying on older access patterns and cannot conform to this
restriction yet.

© 2022 SANS Institute 105

No Sandbox OU-specific SCPs are applied. This OU generally holds time-boxed accounts which only live 30-
60 days and are considered playgrounds used in early phase testing.

No SCPs are applied to the Exceptions OU directly. In general, the few accounts which will be housed in this
container will need bespoken SCPs, if any. You will often find yourself applying policy to the accounts
directly rather than on the OU.

106 © 2022 SANS Institute

Technet24

This is a foundational module where we cover the basic building blocks that make up cloud identity. Students
will learn about the unique characteristics of cloud native users in all three major clouds, where they are
housed, and how they are granted permissions. They will come away being about to articulate how
Users/Roles/Groups are granted access to resources via IAM with a special emphasis on the AWS Role. We
will expand upon the use of Roles as the gateway for access to resources is covered along with best practices
for centrally managing Roles.

© 2022 SANS Institute 107

This page intentionally left blank.

108 © 2022 SANS Institute

Technet24

Identity and Access Management (IAM)
An Identity and Access Management system should describe WHO has access to WHAT. When access is
judiciously applied to identities, the impact of a compromised identity is reduced. This is the cornerstone of
the principal of least privilege, granting the minimal set of permissions required, as every person, device,
application, etc., is considered a potential threat to the enterprise.

What can be an Identity? End Users, Machine Accounts, Devices, Resources. Anything that must require
the assignment of permissions is an Identity. An Identity in a computer system is simply the assertion of said
Identity, where that assertion is proven with credentials; passwords, tokens, or device heuristics.

An IAM program in the Enterprise is often a capability managed under the broader Security Organization or it
can be the responsibility of a Technology-focused Organization alongside the management of networks and
on-premises infrastructure. At its core, any identity and access management (IAM) program should be
constructed to solve a business problem. Components of such programs can include:

Å Self-Service Access Request Catalogs
Å Group and Role Management
Å Entitlement Management
Å Login Portals
Å MFA Options
Å Password Reset Functions
Å Credential Rotation
Å Password Complexity Requirements

In the cloud, many of these IAM program components are provided as Cloud-Native Services by the cloud
providers. When migrating workloads to the cloud, these IAM components can simply be another cloud
service you consume, or you may rely on your existing IAM systems as the sources of truth, federating
identity and passing attributes to your cloud systems.

© 2022 SANS Institute 109

Comparing Identity Directories Among the Different CSPs
While each Big-Three Cloud Service Provider has identities that can be assigned permissions, comparing
where they óliveô or are housed is sometimes like comparing apples and oranges. Each has their own approach
to Users and where they are managed.

GCP
GCP has no real concept of a User. Users of this platform reside in two other Identity-as-a-Service (IDaaS)
Providers offered by Google: Google Workspace or Google Cloud Identity. Google Workspace, in addition to
providing a Cloud Identity Directory, supplies users with Gmail accounts, Google Calendar, and features such
as Google Drive and Meet. It offers SSO and 2-step verification features.

Google Cloud Identity is more expansive, offering access across an entire domain. Devices can be more
securely managed; admin roles and privileges can be assigned and managed; security features can be fine-
tuned; user provisioning can be provisioned across cloud apps.

Google Cloud Identity and Google Workspace involve an Identity management approach that is inherently not
designed for on-premises Systems.

AWS
AWS has a built-in User Directory. AWS User is a resource in an AWS Account. Each account has the
responsibility for maintaining that directory for their own organizational account.

Azure
Azure offers their own Identity-as-a-Service (IDaaS) Directory called Azure Active Directory. AAD operates
similarly to GCP with a separate product that has its own attack surface to be concerned with.

110 © 2022 SANS Institute

Technet24

Common Characteristics of the Big-Three IaaS Directories include:
ϊ Federation capabilities via SAML and OIDC
ϊ Ability to configure SSO for users and federated applications
ϊ Enforcement of MFA
ϊ User Lifecycle Management
ϊ Programmatic Management

The choice of cloud-based identity services is less important than the concept that the choice should be the
primary centralized and authoritative source used for managing user identities and their authentication.

© 2022 SANS Institute 111

Origins of Opinionated IAM
It can be helpful to reflect on the origin stories of each of the cloud providers to help intuit why they have

different approaches to Identity.

AWS began as part of Amazon and its monolithic online retail stature. The platform began to solve the
companyôs own internal needs and eventually turned the internal tech platforms into consumer-facing
products. This might be why, in AWS, the account was and still is the highest-level resource in AWS. Users
in AWS are natively housed in the account and are assigned permissions to resources using identity-based
policies. This means the policies are attached to the User. Answering the question, óWhat does Bob have
access toô is as simple as reading the policy attached to his User or Group.

Microsoftôs Azure and Googleôs GCP are both Cloud Platforms, business units of a larger company that had
a big footprint in B2B software and services prior their expansion into cloud service offerings. In the case of
Microsoft, the company was already dominating enterprise software with Windows when, in 2001, it evolved
its business to offer a Software-as-a-Service model for its Microsoft Office Products, called Office 365. In
2008, Microsoft unveiled its Identity-As-A-Service Product, Azure Active Directory.

Google has a longstanding image as primarily an ads business with their product, Google Ads, as the dominant
player in search engines. However, Googleôs reach includes a suite of tools for small businesses called G
Suite, launched in 2006 and recently re-branded as Google Workspace.

Azure Active Directory (AAD) and Google Workspace are both cloud-based identity directory products. As
such, when Microsoft and Google launched their respective Cloud Service Offerings, neither included User
Directories.

Unlike AWS, neither Azure nor GCP house identities in their cloud platform. Naturally, they are housed in
their respective Identity-As-A-Service Products. This type of Identity architecture has led to a resource-based
permission assignment. When resource-based policies are assigned, itôs easier to describe, ñWho has access to
this objectò, rather than, ñWhat access does Bob have.ò

112 © 2022 SANS Institute

Technet24

AWS IAM Definitions

Principal
This is a generic term for several entities in AWS. A Principal can be a user, role, service principal, group or
account.

Root User
The first AWS user is an entity called the ñroot userò. Itôs a special kind of user in that it inherently has access
to all services and resources in its AWS account. The best practice is to use the credentials for the Root User
once when initially opening the account, enable MFA, and lock away the credentials, using them for the barest
minimum of account-related tasks. 1

Tasks Requiring the Root User
Å Changing certain high-level AWS Account settings
Å Restoring administrator IAM User permissions
Å Activating IAM access to billing and cost management console
Å Closing the account2

Å Configuring MFA Delete on an S3 Bucket
Å Editing or deleting an S3 Bucket Policy restricted by an invalid VPC IP
Å Signing up for GovCloud

IAM User
Every other user in an AWS Account is called an IAM User. An IAM User is an entity that resides in the
native directory in an AWS Account. IAM Users can sign into the ASW Console to interact with AWS or
make programmatic requests (using the AWS CLI or SDK).

IAM Groups
User Groups are collections of IAM Users and can be given the same permissions. Similar to the IAM User,
IAM Groups are resources that can reside in the native directory in any AWS Account.

© 2022 SANS Institute 113

IAM Role
An AWS Role is a transient identity often scoped around a job or task. Roles cannot be assigned usernames or
passwords, instead they are assumed by another entity who needs to exercise the permissions attached to it.

References:
[1]: https://sec549.com/id52
[2]: https://sec549.com/id53

114 © 2022 SANS Institute

Technet24

Root User Management
You wonôt find the Root User listed as a user resource in the IAM console nor will you be able to inspect
permissions attached to it, but this User is all powerful. It inherently has full admin access to all resources in
the AWS Account it created.

Every AWS Account has a Root User so how do you manage the Root Users when you have hundreds or
thousands of AWS Accounts?

Root Users Tied to Manually Created AWS Accounts
During the manual account creation process, the email address used to open the account is used as the Root
username and a password for this account is set. Once the email address is verified and the AWS Account is
open, its strongly advisable to configure MFA for the Root User1.

Root Users Tied to Accounts Created by AWS Organizations
Even AWS Accounts created with AWS Organizations Service have a Root User. During the process of
Account creation, you are prompted for an email, which becomes the Root User for that member Account. The
Organizations Service will set an initial password for the created member Account Root User that can't be
retrieved. In order to login as the Root User for an AWS Account that has been created by AWS
Organizations, you must follow the óforgot my passwordô flow2 from the AWS Login Console Page. A
password reset link is sent to the email address associated with the Root User.

Root User Email Addresses
When an AWS Account is opened, whether manually or provisioned with AWS Organizations, you are
prompted to supply an email address. This email address becomes the username for the Root User and its root
of trust. Avoiding personal email addresses or unauthorized email addresses becoming Root Users is
paramount. Access to the Root User email inbox allows for the retrieval of temporary passwords during the
password reset process, even if MFA is enabled on the Root User.

© 2022 SANS Institute 115

One operational challenge is that no two AWS Accounts can be tied to the same email address. Once an email
address is used as the Root user, it cannot be used again for another account, even if that account is closed.

Managing Root Users
So how should you manage potentially thousands of Root Users tied to child accounts created by your
organization? The short answer is, you shouldnôt. The password for these accounts is automatically set by
AWS and should not be retrieved. Administrative management of this account should be performed from the
Management Account that created it. The Root User password should never be retrieved or used. The only
Root User which you should need to manage is the one associated with your Management Account.

Management Account - Root User MFA
Configuring MFA for your Root User is only necessary for the one associated with your Management
Account.
Options for MFA Devices include a virtual device used for generating a Time-Based One-Time Passcode
(TOTP), a Yubikey, or other U2F Compliant Device or a Gemalto Hardware Token. Avoiding MFA tokens
residing on an employeeôs personal devices is a critical task. A common strategy that organizations use is to
have a single hardware MFA device authorized to use for Root User credentials. This device should be stored
in a safe or in an accessible yet monitored area for the operations or security teams, considering the need for
both availability of the Root User credentials and the need to restrict access.

116 © 2022 SANS Institute

Technet24

GCP Cloud IAM
With Google Cloud IAM, you manage access control by defining who (identity) has what access (role)
for which resource. Resources are organized in a hierarchical manner and permissions are inherited.1

Identity ï a Google umbrella term for any Identity that can be a member in a policy. An Identity can be a
Google Account (when the entity is an end user), a service account (when the entity is an app or virtual
machine), a Google group, or a domain.

Group ï a named collection of end users. It can be a convenient method of applying one or more Roles to a
collection of Users. Identities added to a group inherit the policies linked to the group. Groups are not assigned
credentials of their own.

Role ï a collection of permissions. It defines what operations are allowed on a resource. A role can be
assigned to a Principal and once done, all permissions connected to the role go with it. You canôt randomly
give permissions without using a role. Roles can be primitive, predefined, or custom.

Ṋ Basic or primitive roles ï Owner, Editor, and Viewer
Ṋ Predefined roles ï allow finer-grained access to a resource (e.g., Pub/Sub Publisher)
Ṋ Custom role ï a method of tailoring permissions when predefined roles are not satisfactory.

Policy ï this is a document. It helps you define and enforce which members have specific types of access
(role) to what resources. In GCP, policies are attached to resources. A Policy binds one or more Identities to a
Role. When you want to define who (identity) has what type of access (role) on a resource, you create a policy
and attach it to the resource.

Reference:
[1]: https://sec549.com/id54

© 2022 SANS Institute 117

Identity in Google Workspace and Cloud Identity
Google Workspace (nee G Suite) is a collection of product offerings from Google that include their popular
Gmail, Hangouts, Google Drive, and Google Docs. It also contains a Marketplace to integrate with 3rd-party
apps like Zoom.1 The Google Cloud Platform is considered a part of Google Workspace. If your Organization
has a presence in GCP, its possible they also have a footprint in Workspace. All Workspace products,
including GCP, use either the native Workspace directory for identity management or Cloud Identity which is
available only for GCP. Workspace deals with authentication ("who you are"), while GCP deals with
authorization ("what you can do").

A user who needs access to your GCP resources will need an Account in the Identity-as-a-Service Product
Cloud Identity (IDaaS) or Google Workspace proper. Users managed in Google Workspace may inherit access
to other Google services like Drive, Calendar, Marketplace, and Google AppScripts, depending on what type
of directory your organization has enabled (classic Google Workspace or a Cloud Identity directory)2,3,4.
Access to those services and apps can be turned off in the G Suite Admin Console using Access Groups.5

As one would expect with all modern SaaS tools, you can configure end user authentication to Google
Workspace to federate against your Identity Provider (IdP) of choice.6 When authentication is federated, if
your IdP allows supports MFA, you can challenge your Users for a second factor at the time of authentication.
Because MFA is a part of authentication and Google Workspace manages all authentication, it cannot be used
as a condition or security mechanism in GCP in the same way a second factor is often used in AWS.

References:
[1]: https://sec549.com/id55
[2] https://sec549.com/id56
[3]: https://sec549.com/id57
[4]: https://sec549.com/id58
[5]: https://sec549.com/id59
[6]: https://sec549.com/id60

118 © 2022 SANS Institute

Technet24

Azure Active Directory
Microsoft first introduced its directory service called Active Directory (AD) in 1999 for Windows 2000. It
represented a way for Windows domain networks to utilize domain controllers to keep track of users and
devices, manage credentials, and define a userôs access rights.

AD has undergone several different versions (and enhancements) since then; the term óAzure Active
Directoryô is an unfortunate victim of the tendency to rename things with similar-sounding names that are not
simply the 2.0 version of the older term. In other words, Azure Active Directory (Azure AD) is not the cloud
version of AD.

There are similarities in what AD and Azure AD are designed to do:
1. Both provision users in some fashion
2. Both provision external entities in some fashion
3. Both offer varying levels of entitlement to Admin Users and Regular Users
4. Both offer credential management
5. Both work within a Windows desktop environment

Where do they differ the most? In capabilities unique to Azure AD.
1. Azure AD offers a much larger suite of service options to help tweak IAM in a cloud-based world (e.g.,

Azure AD Connect, Azure AD B2B, Azure AD Domain Services)
2. Azure AD offers ways to tweak entitlement enhancement for certain users or groups, using workflow

and time-based criteria
3. Azure AD offers built-in roles with its Azure AD RBAC system; role management is easier to fine-tune
4. Azure AD uses intelligent password protection, MFA, and password-less technologies
5. Azure AD inherently supports SaaS apps supporting SAML OAuth2, and WS-FED
6. Azure AD natively supports mobile devices
7. Azure AD supports the ability of Linux/Unix VMs to use managed identities

© 2022 SANS Institute 119

Granting Access to End Users using Identity-based Policies
Assigning end usersô permissions to cloud resources in AWS is characterized by the relationship of the three
Pôs: Principals, Policies, and Permissions

Principals ï The following Principals can be assigned identity-based policies: Users, Groups, Roles and
Service Principals. They all can have identity-based policies attached to them and therefore, can be granted
access to resources via this mechanism.

Policies ï Collections of permissions. A policy document can contain as few a single permission or as many as
will fit in the maximum size of the policy document, which is 2,048 characters1 . Policies used in Identity-
Based permission granting come in three forms: AWS managed, Customer Managed, and Inline.

AWS Managed policies are curated by AWS and represent common collections of permissions based on job
functions. These policies tend to represent coarse-grained permission sets, are best used for testing and
development phases, and not recommended for use in a Production setting.2

Customer-Managed Policies are also collections of permissions, just as are AWS managed policies but these
are created and managed by the AWS customer. Ideally, these policies are more tightly scoped to the specific
collection of permissions required and are further restrained by the administrator by defining the resource field
in the policy document.

Inline policies are do not have versioning and cannot be managed. They are attached directly to Principals
rather than living as a manageable policy document.

Permissions ï Specified as a compound string which includes both the AWS Service and the action which can
be performed on the service. The example ós3:GetObjectô permission would allow the grantee to get objects
from the S3 service.

120 © 2022 SANS Institute

Technet24

References:
[1]: https://sec549.com/id61
[2]: https://sec549.com/id62

© 2022 SANS Institute 121

Granting Access to Resources using Resource-based Policies
Resource-based policies are the converse of an identity-based policy. Instead of describing the permissions a
Principal has, a resource-based policy enumerates the Principals which can act on a particular resource.
Resource-based policies do not give you a complete picture of the permissions any given Principal has.

Principals ï Valid Principals in resource-based policies include Users, AWS Accounts, Roles, and Service
Principals. Resource-based policies must include the Principal field, specifying who has been allowed or
denied permissions on any given resource. The Principal field can be leveraged to grant cross-account
permissions and allow access from external entities.

Policies ï Collections of permissions. A policy document can contain as few a single permission or as many as
will fit in the maximum size of the policy document, which is 2,048 characters1 . Resource-Based policies can
only be attached to resources as Inline policies and are not otherwise managed or versioned.

Resources ï Any AWS resource that is compatible with resource-based policies. Policies are attached to
these resources allowing the calling principal to invoke the specified actions.

Which AWS Resources support Resource-Based Policies? The list is extensive1 but there are a handful of the
most popular services:

Å S3 Buckets
Å KMS Keys
Å VPC Endpoints
Å SQS Queues
Å IAM Roles
Å Secrets Manager
Å Lambda Functions
Å Amazon Lex Bots

122 © 2022 SANS Institute

Technet24

Reference:
[1]: https://sec549.com/id63

© 2022 SANS Institute 123

Comparing Identity-based and Resource-based Policies
Since AWS uses a combination of identity-based applied policies and resource-based applied policies, neither
gives a complete picture of what actions a Principal is allowed to perform. Even so, sticking to one or the
other can help simplify the lens into permissions granted to end users.

Advantages of using Identity-Based Policies
Å Maintaining access from the identity perspective tends to be more familiar and easier to reason about.
Å Answering the question ñWhat does XYZ end user have access toò is simpler with identity-based policies
Å Policies attached to users can be managed (either customer-managed or AWS-managed), versioned, and

maintained as a policy document independent of its attachment.
Å Enumerating the totality of the access needed for any given resource in a single document can often lead to

a bloated policy document that challenges the 2,048-character size limit.

When might you use a resource-based policy?
When granting access to an external principal, often the most straightforward way to accomplish this is to
specify the external account ID in the principal field of the resource-based policy, allowing any principal in
the external account the ability to access your resource.

124 © 2022 SANS Institute

Technet24

Anatomy of a Policy
A policy is a set of permissions provided as a óstatementô. All statements need three mandatory components:

Effect ï what effect do you want to have? There are two options (Allow or Deny). The default condition for
any API is to deny an action, so an explicit allow is needed. An explicit deny will override an allow.

Å Example: IAM users do not automatically have permission to use any resources or API actions. All
requests will be denied unless overridden.

Action ï what specific action is being allowed or denied? There can be dozens or even hundreds of actions
contained within a policy statement.

Å Example: The action ñec2:CreateVpcEndpointò allows the grantee to create a new VPC Endpoint.

Resource ï the specified resource affected by the chosen action. The wildcard (*) indicates that the statement
applies to all resources. If an Amazon Resource Name (ARN) is specified, the policy allow or deny effect is
restricted in scope to this resource.

Å Example: Permissions to access a specific EC2 instance might be accomplished by referencing the
following ARN in a policy statement: arn:aws:ec2:us-east-1:4575734578134:instance/i-
054dsfg34gdsfg381

Principal ï these are the identities which are granted or denied the action on the resource. The Principal field
is only provided in resource-based policies. A Principal is specified as the Amazon Resource Name (ARN) of
an IAM User, IAM Role, AWS Service Principal, or AWS Account.

Å Example: A KMS Key will have a default key policy attached to it upon key creation. The following ARN
might be specified to allow the originating account full access to the key:
arn:aws:iam::123456789012:root

© 2022 SANS Institute 125

Condition2 ï Conditions are optional. Your policy does not need to be always in effect or under every
'condition'. By setting conditions, you can tweak a policy.

Å Example: If you only want the policy to be valid when invoked from a particular IP address, you can add
the statement: "Condition": { "IpAddressIfExists": {"aws:SourceIp" : ["xxx"]}

References:
[1]: https://sec549.com/id64
[2]: https://sec549.com/id65

126 © 2022 SANS Institute
Technet24

IAM Roles Versus IAM Users
Roles are used in AWS to allow other Principals to gain the ability to assume temporary permissions when
needed to perform a specific task1.

As weôve seen, an AWS Role is another Principal like an IAM User. There are some distinct similarities
between an IAM User and Role along with some clear differences.

Roles are often used by AWS to delegate access to users or services. Rather than assigning an end user all the
permissions they might need, Roles can be created to represent different job functions or tasks an end user
might perform. The permissions assigned to roles can be temporarily assumed by team members only when
needed. This pattern keeps the policies directly attached to the end user relatively minimal.

Privilege Bracketing with IAM Roles & MFA
Imagine a scenario where members of cloud development teams are assigned IAM Users. On occasion, those
Users may have to perform administrative tasks. Instead of assigning the IAM User administrative
permissions directly, an IAM Role can be provided which is assigned the required admin policy. Team
members can be allowed to use this administrative Role with the condition that MFA is provided. This pattern
is referred to as privilege bracketing.

Reference:
[1]: https://sec549.com/id66

© 2022 SANS Institute 127

AWS Role Assumption
Roles are used in AWS to allow other Principals to assume temporary permissions when needed to perform a
specific task. As a result, describing AWS Roles as óhard hatsô is a common analogy used to describe their
usage patterns1. Role Assumption is the process by which an AWS Principal óputs onô this hard hat. Who is
allowed to put on the óhard hatsô is defined in the Role Trust Policy.

AWS APIs which allow the caller to Assume Roles:
Å assume-role (standard method): An IAM User or IAM Role would use this API if their identity is already

established with AWS. The assume-role API generates temporary session credentials for the targeted role.
Å assume-role-with-saml: The method an external entity might use to authenticates to AWS with a SAML

token. Upon authentication via SAML, temporary session credentials are generated for the targeted role.
Å assume-role-with-webIdentity: The method an external entity might use to authenticates to AWS with the

OIDC protocol. Upon authentication via OIDC, temporary session credentials are generated for the
targeted role.

Reference:
[1]: https://sec549.com/id67

128 © 2022 SANS Institute

Technet24

AWS | Securing 3rd Party Access With External Ids
IAM Roles are the mechanism to allow an external entity, such as a third-party vendor, access to your AWS
Account(s) without needing to share long-term durable credentials (passwords or access keys). These third
parties can be allowed to assume a role in your account and generate temporary session credentials just as any
other internal Principal can be enabled to use a Role.

When allowing a third party to assume a Role, it is strongly recommended that you require the third-party
caller to submit an external ID when assuming the Role.

What is an external Id?1

An external ID is used to mitigate the class of vulnerabilities broadly called ñconfused deputyò issues2.
External IDs help to prevent a malicious actor from tricking the third party into unwittingly accessing your
resources.

How to use an external Id
The external ID is specified as a condition in a trust policy, meaning you write an IAM Role Trust Policy
which allows a principal to assume a Role as long as a particular string is submitted when the caller assumes
the Role.

While the external ID is not stored as a secret, there are requirements around the generation of external Id to
keep in mind. In the upcoming slides we will threat model the ñconfused deputyò vulnerability as it manifests
in AWS role assumption by external parties in order to highlight how prescriptive use of the external id closes
these risks.

References:
[1]: https://sec549.com/id68
[2]: https://sec549.com/id69

© 2022 SANS Institute 129

Threat Modeling 3rd Party Vendor Access
Role assumption is the best practice method for granting an external party access into an AWS account. As
we saw in the previous slide, when allowing an external party to assume an AWS IAM Role, an External Id
must be required to mitigate ñconfused deputyò vulnerabilities. In this slide, letôs look at what could happen
and how some malicious actors could abuse third-party vendors if an External Id is not required.

Vendor Portals as the Confused Deputy1

The vendor space is rife with offerings which commonly are brought on board to fill gaps in resource visibility
and metrics collection, or serve as cloud infrastructure orchestrators, creating and deleting resources. As it
relates to the ñconfused deputyò, it is the vendors online web portals, leveraged to configure cross-account
trust, which represent the ñdeputyò in this threat model discussion. In this abuse scenario, an attacker could
leverage a vendor web portal to assume the preconfigured IAM Role of one of the vendors existing customers.
Without requiring an External Id, anyone with knowledge of a customerôs AWS account number and role
name could leverage the vendor web portal to maliciously access the existing customers cloud account via the
externally accessible IAM Role.

Configuring Third-Party Trust
Thanks to the work of researcher Kesten Broughton, a simple, open-source tool2 is available which mimics the
functionality of a common vendor web portal. Using this mock vendor web portal, you can put the strength of
your external Id requirements to the test, vetting your own externally accessible IAM Roles for susceptibility
to ñconfused deputyò attacks.

References:
[1]: https://sec549.com/id193
[2]: https://sec549.com/id194

130 © 2022 SANS Institute

Technet24

Predictable External Ids
Simply requiring an external id for role assumption from external parties is not enough to fully mitigate the
risk of external access from a 3rd party. If the external id is guessable or predictable, a malicious actor could
leverage an available third-party web portal (the deputy) to assume a pre-configured customer IAM role,
granting the attacker access to the customer account.
An external id would be considered insecure if it could be brute-forced as a result of being too short or not
sufficiently random. If the external ids are predictable, perhaps they are always the name of the customer or
are the same value across all customers.

External Id Requirements
External Ids should be:
Å Unique, per customer
Å Random, un-guessable String
Å Long in length (UUID4)
Å Specified by the 3rd party, never defined by the customer.

© 2022 SANS Institute 131

This page intentionally left blank.

132 © 2022 SANS Institute

Technet24

Using Roles instead of Users in AWS
If you find yourself overseeing an AWS environment involved in creating and housing IAM Users specific to
every managed account, transitioning from IAM Users to IAM Roles should be your first step in simplifying
and thus securing identity in AWS.

IAM Users come with a couple of disadvantages from a security and operational perspective. IAM Users are
assigned long-term, durable credentials - passwords, access keys or both. They also are housed in the native
user directory of every AWS Account. As an enterprise grows in their number of accounts, this often results
in the same end users who must be created as multiple IAM Users with multiple passwords and access keys.

Roles, on the other hand, can be used and reused by multiple Principals. When an end user assumes a Role,
they are generating temporary session credentials representing the authenticated state of the Role. There is no
need to rotate the credentials used by IAM Roles.

© 2022 SANS Institute 133

Identity Bastion Pattern in AWS
Businesses that have a myriad of AWS Accounts, each housing siloed IAM Users, might find that moving to
an Identity-Bastion pattern is ideally the first step to take in centralizing their identity and access patterns in
the Cloud.

In this pattern, the óbastionô we are referring to is not a jumphost or EC2 instance, rather it is a dedicated AWS
account into which all users can be centralized. It is through this Identity-Bastion Account1 that your
workforce needing access to AWS resources can be assigned a single AWS IAM User, no matter which
Accounts they need to access in your Organization.

Components of an Identity Bastion Account
This Identity Bastion Account becomes the Central Identity Account in which all Users live. By creating a
solitary account that initially becomes the only one allowed to house your IAM Users, you can greatly reduce
the occurrence of Users and their associated durable credentials across your AWS estate.

Spoke Accounts
These are the AWS Accounts housing both IAM Roles and resources. The Roles are configured with trust
policies allowing IAM Users in the Identity-Bastion Account to assume the Roles to access resources housed
in óSpoke Accountsô .

Reference:
[1]: https://sec549.com/id70

134 © 2022 SANS Institute

Technet24

Remaining Edge Cases for IAM Users in AWS
Can you completely do away with AWS IAM Users all together? - Probably not.

The edge cases you will run into are:
Å External systems that need to authenticate into your AWS estate and do not support OIDC. Instead, they

need an access key to authenticate to AWS cloud control-plane APIs. This is an antiquated, less secure
method of access, but in some cases, this might be your only choice. Before allowing an external party to
be issued an access key, ask if they support OIDC authentication. AWS calls this mechanism,
óAssumeRoleWithWebIdentityô.

Å If you need to have an AWS Lambda Function generate pre-signed S3 Links, the Lambda Function will
need to have an access key assigned to an IAM User to perform this operation.1

Reference:
[1]: https://sec549.com/id71

© 2022 SANS Institute 135

Machine Identity in The Cloud
Machine identities, those used by non-human actors, typically outnumber human entities in any sufficiently
large system. Their importance in the Cloud has grown as the systems we design require resources and
services to authenticate one another. As their importance grows, so too does the risk of them being abused by
threat actors or misused due to human mistakes. In the upcoming slides, weôll review what machine identities
look like in each cloud and the strategies you can use for securing them against abuse.

Each of the 3 major cloud providers have their own opinionated designs for machine identities. Despite many
differences in architecture between them, all three clouds utilize Machine Identities as a method for assigning
entitlements, privileges, permissions to non-human entities.

There are two types of machine identities in the cloud which the CSPs draw distinction between and treat
different. First, we will address how an identity can be assigned to your own resource. Second, weôll look at
how internal services are identified on the cloud service control plane.

136 © 2022 SANS Institute

Technet24

What is a Service Principal?
A Service Principle is the named representation of AWS Services, such as EKS, CloudTrail, or Lambda.
Whenever an AWS Service operates on your behalf, it uses its respective service principal to do so.

Example:
Å When configuring CloudTrail, youôre obliged to indicate which S3 bucket CloudTrail should

deliver the logs. When CloudTrail writes logs to the specified bucket, it does so by using the
identity of its Service Principal: cloudtrail.amazonaws.com.

Service Principals are not part of your AWS organization like IAM roles or Users, but the actions they take in
an account can be affected by higher-level policy. For example, if an SCP has been applied restricting API
access to only those Principals in your AWS Organization, conditional exceptions will need to be carved out to
allow for the actions taken by Service Principals.

What is an EC2 Instance Profile?
EC2 Instance Profiles are identity containers assigned to EC2 Instances. They are:

Å Unique identifiers attached to the compute instances
Å EC2 instance profiles define ñwhoò the instance is
Å The E2 Instance Profile allows instances to assume IAM roles, which ultimately grants permissions to the

instance

In AWS, internal Services use Service Principals to identity themselves, while the EC2 instance is identified
with an EC2 Instance Profile. In both cases, these entities must be included in resource-based policy to
acquire permissions. They cannot be assigned permissions with an identity-based policy.

Reference:
[1]: https://sec549.com/id72

© 2022 SANS Institute 137

Service-Linked Roles in AWS
A Service-Linked1 role is nothing more than an IAM Role with a Trust Policy allowing an AWS Service to
assume it. Instead of the Trust Policy specifying an IAM User or another IAM Role, here the Trust Policy
indicates that an AWS Service Principal should be allowed to assume the Role and use any permissions
attached to the Role.

The Principal type óServiceô is the only type which does not allow wildcards.
Å Example: You cannot do "Service": "*.amazonaws.com" if you ever wished to do so.

Reference:
[1]: https://sec549.com/id74

138 © 2022 SANS Institute

Technet24

Cross Account Service Principal Access
In AWS, Service Principals are not necessarily unique to each AWS account or customer; rather, they are
global identities . In some cases, specifically when the service has cross-account capabilities, granting access
to a Service Principal can open a security risk1.

In the above example, a policy is applied to an S3 bucket allowing the internal AWS service, CloudTrail, to
write objects to the bucket. CloudTrail across the customerôs organizations will write log entries to this central
bucket. This policy also authorizes any trail in any AWS Account (even one external to the Organization) to
write to the bucket.

This type of cross-service interaction can be weaponized as a form of the óconfused deputyô problem2. The
confused deputy problem is a security issue where an entity (e.g., a service in an external account) that doesn't
have permission to perform an action can coerce a more-privileged entity (e.g., a service in internal account)
to perform an action.

Which services can be affected by the cross-account vulnerability? Its not yet clear. Research into this space
is very new; however, early indications suggest that any AWS service that can be benevolently used cross-
account can also be manipulated and used in a malicious manner.

References:
[1]: https://sec549.com/id72
[2]: https://sec549.com/id73

© 2022 SANS Institute 139

Securing Cross-Account Service Principals
Now that weôve seen the structural issues unique to AWS Service Principals, how should we design their
access to ensure our Accounts are not vulnerable to the class of óconfused dutyô issues inherent to the
platform?

When granting an external party access to an IAM Role, an external ID condition is used to mitigate this
issue1. When granting access to a Service Principal, different global condition keys can be leveraged to limit
exactly which Service Principal can assume the Role.

aws:SourceArn2

Set this condition key to prevent an AWS service from being manipulated during transactions between
services. Set the value of this condition key to the ARN of the resource in the request. Typically, this value
will be the ARN of the resource assuming the role. It might be the ARN of the CloudTrail trail or, in the
example, the ARN listed is that of the response plan resource from Incident Manager.

aws:SourceAccount3

Set this condition key to prevent an AWS Service from being manipulated during transactions between
services. Set the value of this condition key to the account of the resource expected in the request. Typically,
this value will be an ID of an AWS Account within your Organization.

A non-obvious strategy to help mitigate the confused deputy problem in AWS is randomization in naming.
You might already append random strings to the end of resources to help conserve global namespace (as with
S3); however, this practice has an additional security benefit. An attacker without the knowledge of your
naming convention would not be able to access any resources within your Accounts.

References:
[1]: https://sec549.com/id75
[2]: https://sec549.com/id76
[3]: https://sec549.com/id77

140 © 2022 SANS Institute

Technet24

Types of Service Accounts in GCP
Google takes a wholly different approach to machine identities than does AWS. Bound within the GCP
Service Accounts are two distinctive types, the User-managed Service Account and the Google-Managed
Service Account. As you read the specifics of these two types of service accounts, take note of their
equivalents in AWS. The Google-Managed Service Account has a clear cognate with the AWS Service
Principal. The User-managed Service Account in GCP does not have a clear one-to-one relationship to an
IAM construct in AWS. To achieve some of the same goals in AWS, customers might use the combination of
Roles and IAM Users.

GCP Service Account 101s0

Å Service Accounts do not have passwords and cannot log in via browsers.
Å Service Accounts are associated with private/public RSA key-pairs that are used for authentication to

Google. You can upload your own public key and associate it with a Service Account or have GCP
generate a key pair for you.

Cloud IAM permissions can be granted to allow other users (or other service accounts) to impersonate a
Service Account. Service Accounts are not members of your G Suite domain unlike user accounts. For
example, if you share assets with all members in your G Suite domain, they will not be shared with service
accounts.

Types of Service Accounts1

User-managed service accounts
Default Service Accounts: If in your GCP Project, you enable the Compute API, a Compute Engine Service
Account is created for you by default. It is identifiable using the email: project-number-
compute@developer.gserviceaccount.com. This Service Account identity will be used as the default Identity
for all Compute Instances created.

© 2022 SANS Institute 141

If your project contains a App Engine application, the default App Engine Service Account is created in your
project. It is identifiable using the email:

project-id@appspot.gserviceaccount.com

These Service Accounts (SAs) among other default SAôs are used as Identities for your Resources when they
interact with Google APIs. When creating Resources, you can and SHOULD create a purpose-built Service
Account, not utilizing the default Service Account. This is because the default Service Account is
automatically assigned a Role with excessive Privilege, the Editor Role.2

Default Service Accounts are associated with all GCP Resources that are backed by Compute such as Cloud
Functions, Cloud Run, DataFlow and GKE Nodes. By default, these service accounts automatically receive the
Editor role when they are created. This behavior can be altered, and the automatic granting of the Editor role
prevented with the application of a GCP Organizational Policy constraint.

Manually Created Service Accounts
Service Account can be created manually as well. With this version of a User-Managed Service Account, you
will supply a name for the Service Account and will appear in this format:

service-account-name@project-id.iam.gserviceaccount.com

You can create up to 100 Service Accounts per project (including the default Compute Engine Service
Account and the App Engine service account) using the IAM API, the Cloud Console, or the G
Cloud command-line tool. Default Service Accounts and the Service Accounts you explicitly create are both
User-Managed Service Accounts.3

With either version of User-Managed Service Accounts, you can optionally export the private key for the
Service Account. Obviously, not exporting a private key is the more secure option but this is not feasible in all
circumstances. If you have any external system like Jenkins or an application that needs to connect to Google
APIs, these entities do not have a Google Identity, often exporting the private key for a service account and
embedding where the external system can access is your only option for enabling multi-cloud or external
functionality.4

The security of Service Accounts not only depends on the security of its private key, but also who is assigned
the IAM Roles to manage and operate those Service Accounts. Google provides a host of functionalities that
enable the use of Service Account without the need to export its private keys.5 There is more on Service
Account Impersonation in upcoming slides.

Google-managed service accounts
Google-Managed Service Accounts are created and owned by Google. These accounts represent different
Google services, are created when Google APIs are created, and each account is automatically granted IAM
roles to access your Google Cloud project.

An example of a Google-Managed Service Account is a Google API Service Account identifiable using the
email:

project-number@cloudservices.gserviceaccount.com

This service account is designed specifically to run internal Google processes on your behalf and is not listed
in the Service Accounts section of the Cloud Console. Google services rely on these Google-Managed Service
Accounts having access to your project through IAM Policy. Google does not recommend you remove the
Roles assigned to these Service Accounts, although the Roles tend to be highly privileged.6

142 © 2022 SANS Institute

Technet24

Because you do not own Google-Managed Service Accounts, keys cannot be generated for them, nor can they
be impersonated. Interestingly though, when utilizing GCP services, there are scenarios where the access
token for the Google-Managed Service Account can be retrieved from the Metadata Service.7

References:
[0]: https://sec549.com/id78
[1]: https://sec549.com/id79
[2]: https://sec549.com/id80
[3]: https://sec549.com/id81
[4]: https://sec549.com/id82
[5]: https://sec549.com/id83
[6]: https://sec549.com/id84
[7]: https://sec549.com/id85

© 2022 SANS Institute 143

Service Accounts as both Identities and Resources
Service Accounts in GCP are both an Identity and a Resource.1 This concept is best illustrated by talking about
Service Account Impersonation. Without the need to export or distribute private keys, we can enable one
Service Account (serviceaccount-1) to impersonate another Service Account (serviceaccount-2). This is
accomplished with IAM Roles and the granting of permissions to generate short-lived access tokens.2

The IAM Binding shown above grants the Service Account Token Creator Role to the Identity,
serviceaccount-1. When this Policy is bound to serviceaccount-2, it would enable serviceaccount-1 to
impersonate serviceaccount-2 by generating access tokens on its behalf.3 Other Resources that can have IAM
Policy attached include Organizations, Folders, Projects, and over 100 Resource Types, Service Accounts just
being one of them. If you were to grant the Service Account Token Creator Role at the Project level, it would
give the User access to all Service Accounts in the Project, including Service Accounts that may be created in
the future.4

References:
[1]: https://sec549.com/id86
[2]: https://sec549.com/id87
[3]: https://sec549.com/id88
[4]: https://sec549.com/id89

144 © 2022 SANS Institute

Technet24

Service Principals in Azure
A Service Principal is an umbrella term for one of three types of identities in Azure: An application service
principal, managed identity, or legacy. Service Principals are nothing more than an Azure AD object
representing an application or resource that needs to be assigned Azure permissions. In these next two slides
we will cover the usage of Application Service Principals and Managed Identities.

Application Service Principals
When applications are registered in Azure Active Directory (AAD), they can be granted permissions in the
Azure Tenant through an Application Service Principal. Not only can Application Service Principals be
granted permissions, but they can also be assigned durable credentials, like passwords and certificates to be
used in authentication. Application owners inherently have permissions to add a password or certificate to the
Service Principal associated with their Application.

Unlike an AWS Service Principal, an Azure Service Principal can incur login events with their credentials.
Auditing Azure Service Principal log-ons is a good first step in understanding if Service Principal credentials
are being mishandled.

© 2022 SANS Institute 145

Managed Identities in Azure
A Managed identity is another type of Azure Service Principal. Formerly called a óManaged Service Identityô
(MSI) by Microsoft, in this course we will stick to the calling them simply managed identities.

Azure offers two types of Managed Identities:

Å System-assigned managed identities have their lifecycle tied to the resource that created them.
Å User-assigned managed identities can be used on multiple resources and are created independently from a

resource.

Common between the two types of managed identities is how they authenticate. Both types are intended to be
used programmatically by applications running on Azure resources where they can be granted temporary
access tokens used to access cloud-plane APIs. A clear benefit to managed identities is there are no long-term,
durable credentials associated them. In this sense, they can be considered analogues to EC2 Instance Profiles
in AWS.

Now letôs take a look at where these two varieties of Managed Identities differ.

System-assigned Managed Identities
On select services, Azure allows a managed identity to be created along with the creation of the resource.
These system-assigned identities uniquely identity that Azure resource. They are created and deleted with the
creation and deletion of resources and cannot be created, updated or deleted independently.

User-Assigned Managed Identities
Managed identities may be created by the end user, independent from any resource like a Virtual Machine it
might be attached to. In user-assigned managed identities the identity, its permissions and any attachments to
resources are managed separate from the lifecycle of the resource.

146 © 2022 SANS Institute

Technet24

This page intentionally left blank.

© 2022 SANS Institute 147

Authentication Across Clouds
There are few scenarios these days that do not include the possibility of having a business existing in a multi-
cloud environment. Use cases for having sprawling workloads in more than one cloud are inevitable. Some
common use cases include:

Å Enabling a background application or continuous integration/continuous delivery (CI/CD) pipeline that
runs outside of your primary cloud. A great example of this use case is authenticating GitHub Actions1.

Å Enabling users of a web application that runs outside of your primary cloud to access cloud resources such
as cloud file storage.

How can you enable secure access to cloud resources cross-cloud?

The traditional way was insecure and involved generating long-term, durable credentials for external parties to
authenticate into your Cloud estate. In AWS, for example, it meant generating an IAM User for every external
party and then creating an Access Key for the User. There are many problems with doing it the óold wayô,
particularly having to have a mature secrets rotation program for any long-term, durable credentials.

The more secure way avoids creating Access Keys for every external entity needing access and instead prefers
managed integrations that generate short-term temporary credentials, limiting the blast radius if a credential Is
compromised. This eliminates the need for secrets rotation.

In the next few slides, weôll learn about the Open Id Connect Protocol (OIDC), what credentials are generated
during authentication and how itôs used to allow external parties across cloud.

Reference:
[1]: https://sec549.com/id90

148 © 2022 SANS Institute

Technet24

Introduction to OpenID Connect (OIDC)
OpenID Connect (OIDC) is a standardized identity layer built on top of OAuth2. It is a protocol used for user
authentication, used to facilitate user federation against a centralized Identity Provider.

Letôs review some basics about the protocol first before diving into how its used in the Cloud.

ϊ OIDC allows a client to validate an authenticated state of an end user by validating the provided ID
Token.

ϊ OIDC allows a client to ñknow somethingò about the end userôs identity, which is helpful in making
authorization decisions.

OAuth 2.0 represents the framework enabling clients (apps or websites) to gain access to resources. OAuth 2.0
is a massive standard that eliminates the need for apps or websites to continually request permission to access
resources. Instead, OAuth 2.0 is a mechanism for delegating resource access.

OAuth 2.0 deals strictly with the granting of authorization to third-parties. This can be seen if youôve ever
added an authorized application to Twitter or Google Drive. The application will ask the end user to grant
permission to access the resources on their behalf. Authorizing this type of request will result in the client
(Twitter or Google Drive) being issued an access token, sometimes referred to as a bearer token.

OIDC1 adds value to this process by allowing the ability to authenticate an end user. This makes the OIDC
protocol ideal to use in scenarios in the cloud where we need to authenticate an external entity without
assigning them long-term durable credentials like access keys. OIDC is frequently used for end user
authentication in conjunction with OAuth. End-user authentication flows in Google cloud use both the OIDC
and OAuth protocols to both assert the identity of an authenticated user and allow them to access resources
they are authorized to access.2

References:
[1]: https://sec549.com/id91
[2]: https://sec549.com/id92

© 2022 SANS Institute 149

Token Types used in OIDC and OAuth2.0
The OIDC protocol involves the generation of Id Tokens. These tokens are nothing more than JSON objects
that are used for authentication and authorization of users for a resource. These four token types are important
to the process:

ϊ Identity tokens ï these verify a userôs identity, acting as the userôs passport. They assert identity,
indicate the issuing Identity Provider, and can provide information about when and how the user was
authenticated. These are digitally signed and need to be verified by the client. Id Tokens are nothing
more than JSON objects that are used for authentication and authorization of users when accessing a
resource.

Token used in OAuth2.0
ϊ Access tokens ï these tokens determine what resources the user has been granted access to, often

expressed in the scope of the token. The scope of a token determines which resources are delegated to
access token bearers. This token is submitted when a user attempts to access the resource. Sometimes
called bearer tokens, they will provide access to the bearer, regardless of who possesses it at the time.
These are short-lived tokens, so the blast-radius of a stolen token is limited.

ϊ Refresh tokens ï access tokens can be issued with a wide range of expiration dates but are often very
short lived, typically under an hour.. Without a new access token, the access to protected resources is
revoked. Refresh tokens have a much longer lifespan, sometimes on the order of many days or weeks
instead of an hour. Refresh tokens are used to acquire new, refreshed access tokens.

150 © 2022 SANS Institute

Technet24

AWS Role Assumption using óAssumeRoleWithWebIdentityô
Now that weôve seen the core components of OIDC, letôs see how the protocol can be used to allow an
external workload to assume a role in an AWS Account.

To review, there are a few mechanisms in AWS to allow Principals to assume an IAM Role: assume-role
(standard method), assume-role-with-saml, and assume-role-with-webIdentity.

Å The assume-role (standard method) API is used when the end user is an AWS IAM User and has already
been authenticated.

Å The assume-role-with-saml API is used when the end-user is authenticating with SAML against a
configured Identity Provider.

Å Finally, the assume-role-with-webIdentity API is used when the end-user is authenticating with OIDC
against a configured Identity Provider.

OIDC Providers1

Allowing an external entity to authenticate via OIDC first requires a configuration between your AWS account
and the provider. This establishes trust between your AWS account and the Identity Provider such as Google,
Salesforce, or GitHub, allowing your AWS Account to validate Id Tokens issued by the configured provider.

Role
As weôve seen, roles are collections of permissions that can be used by authorized Principals. When enabling
cross-cloud authentication via OIDC, a Role will be created with a policy attached that defines the scope of
actions the Principal is allowed to perform.

Trust Policy
The trust policy needs to allow Principals whoôve authenticated with the configured OIDC provider to assume
the Role. Additional conditional arguments should be specified to limit who from the OIDC provider can
assume the Role.

© 2022 SANS Institute 151

Reference:
[1]: https://sec549.com/id93

152 © 2022 SANS Institute

Technet24

Reference:
Image Source: Pixaby user geralt: https://sec549.com/id51

© 2022 SANS Institute 153

This page intentionally left blank.

154 © 2022 SANS Institute

Technet24

This page intentionally left blank.

© 2022 SANS Institute 155

This page intentionally left blank.

156 © 2022 SANS Institute

Technet24

Lab 1.4 ï Transitioning Access from AWS IAM Users to Roles ï End State Architecture
In the end state architecture, Usersô access patterns have been streamlined so that every individual on the AI
Research Team only has a single IAM User to manage. From this single User housed in the Identity Bastion
Account, Users are arranged into AWS-native Groups from which they are allowed to assume Roles to gain
access to their operational accounts.

Previous access into legacy accounts has been maintained but who has access to what is easier to reason about,
easier to audit, and less prone to misconfigurations.

© 2022 SANS Institute 157

This page intentionally left blank.

158 © 2022 SANS Institute

Technet24

This page is left intentionally blank.

© 2022 SANS Institute 159

