556.2

Exploiting IoT Hardware
Interfaces and Analyzing
Firmware

eeeeeeeee

© 2021 SANS Institute. Ali rights reserved to SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.
BY ACCEPTING THIS SOFTWARE, USER AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA
MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT
SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE
NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree, User may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch,
iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces, Spotlight,
There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and iCloud are
registered trademarks of Apple Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SEC556_2_G02_02

SEC556.2 loT Penetration Testing

Exploiting IoT Hardware
SANS Interfaces and Analyzing
Firmware

© 2021 SANS Institute | All Rights Reserved | Version G02_02

Welcome to SANS Security SEC556, [oT Penetration Testing. In this course, we'll take a deep look at the
threats as well as the attack and defense opportunities surrounding wireless networks. Our primary focus in the
course will be on evaluating [oT devices but we’ll take a more holistic approach and examine much of the IoT
ecosystem, including the hardware, networks, popular wireless protocols, and messaging services.

Let's keep this session interactive. If you have a question, please let the instructor know. Discussions about
relevant topics are incredibly important in a class like this, as we have numerous attendees with various levels of
skill coming into the class. Share your insights and ask questions. The instructor does reserve the right, however,
to take a conversation offline during a break or outside of class in the interest of time and the applicability of the
topic.

As the course author, we welcome any comments, questions, or suggestions pertaining to the course material:

Larry Pesce
larry.pesce.556@gmail..com
Twitter: @haxorthematrix

James Leyte-Vidal
jameslvsec556@gmail.com
Twitter: @jamesleytevidal

© 2021 SANS Institute 1

Technet24

TABLE OF CONTENTS PAGE

Background and Importance

Table of Contents

SEC556 | loT Penetration Testing 2

Each course book includes a table of contents for each of the major topics and exercises that we'll cover.

© 2021 SANS Institute

Course Roadmap

Introduction to IoT Network
Traffic and Web Services

Exploiting IoT Hardware
Interfaces and Analyzing
Firmware

Exploiting Wireless IoT: Wi-Fi,
BLE, Zigbee, LoRa, and SDR

MM

Course Roadmap

SECTION 2

I. Background and Importance

B

Opening the Device

3. Examining and Identifying Components
Exercise: Obtaining and Analyzing Specification Sheets

4. Discovering and Identifying Ports

5. A Soldering Primer

6. Sniffing, Interaction, and Exploitation of
Hardware Ports

Exercise: Sniffing Serial and SPI
7. Other Ways of Recovering Firmware
Exercise: Recovering Firmware from PCAP
8. Firmware Analysis
Exercise: Recovering Filesystems with Binwalk
9. Pillaging the Firmware
Exercise: Pillaging the Filesystem

SEC556 | loT Penetration Testing k]

In addition to the table of contents, each course book includes a course roadmap to show our progress as we
work through each topic and its exercises. The current topic will be underlined. Previous topics will be shown in

a light gray typeface to indicate completion.

© 2021 SANS Institute

Technet24

Why Do We Care about Hardware?

IoT ecosystems are full of various components
 Software, mobile, web...
» ...hardware

Hardware devices in the field for
* Human interaction
* Sensing
* Display
* System control

Hardware influencing behavior of humans and systems

SANS SEC556 | loT Penetration Testing 4

Why Do We Care about Hardware?
In the IoT ecosystem we find a wide array of components from front and backend end software, mobile

applications across multiple platforms, web applications on the devices itself and at the manufacturer or cloud
services.

The IoT ecosystem is depended on hardware components for interaction with networks and humans. We also
see them as interactive displays or interacting with other network and system components. The hardware
platforms serve as essential parts of the IoT ecosystem affecting both the behavior of the users, or the networks
or systems to which they are interfacing with.

4 © 2021 SANS Institute

In the Hands of Many...

IoT hardware sold to consumers,
enterprise, manufacturing...

Hundreds of thousands, if not millions of
devices

Placed in the hands of millions of humans ,

MIGHT

Sink Ships

Once sold and in the hands of a consumer,
all control of the device by the
manufacturer is lost

SANS SEC556 | loT Penetration Testing 5

In the Hands of Many...
As soon as the devices are sold and placed in the hands of consumer any secrets that they hold are likely
compromised, as the devices are now in an untrusted environment.

Millions of these devices placed in the wild, means that some percentage will be investigated for functionality,
across all industries.

© 2021 SANS Institute 5

Technet24

Physical Access to Pivot

In the hands of humans, they have
physical access.

Physical access is game over for
security implementation.
Starting point for determining

* Physical tampering.

* Software abuse.

» Repurposing for other applications.
With access, attackers can gain

enough knowledge to turn the devices
into network pivots.

S AN.S SEC556 | IoT Penetration Testing 6

Physical Access to Pivot

One of the tenets of computer security is that physical access is key, or a “game over” situation. When an
individual has physical access to a computing device, the only thing that is a restrictive to eventually
compromising the device is time. Given enough time, every device will fall victim and secrets will be
recovered, and the device will be compromised.

This compromise often is the result of physical tampering (or “hardware hacking”), or local software abuse
looking for command injection or OS manipulation. Once compromised the hardware can be repurposed for
other uses, some with minor changes, others with a massive overhaul and complete switch of overall
functionality.

With successful attacks and device changes, attackers can leverage the compromised IoT devices as network

pivots into other sensitive networks, exploring them for options for physical control of other devices, or access
to other sensitive network resources.

6 © 2021 SANS Institute

Linksys Case Study

Linksys WRT54G in hands of consumer

4 FREE BOOKLETS 1*1
e

Discovered command injection via web

interface Linksys

ot 03 components ¥ WRTH4G

Ultimate Hacking

Turned into a huge industry for device

hacking, network implants, attack oty e
platforms and huge attack surface e s

Paul Asadoorian

Larry Pesce

Rl Shen Wt br

SANS SEC556 | loT Penetration Testing 7

Linksys Case Study
One of the most famous stories of hardware hacking, repurposing, and the advent of the hardware/IoT implant
comes from the Linksys WRT54G line of routers, later acquired by Cisco.

The initial devices were found to be vulnerable to command injection on the built-in web interface, ultimately
allowing access to the underlying operating system. Initially, much of the complaint was over the use of OSS
components, but this turned onto a renaissance of device repurposing, modification.

This ultimately inspired an industry of device hacking, modification and turing devices into dedicated network
pivots, forever expanding the attack surface for IoT devices.

An amazing history of the Linksys WRT54G story can be found at https://tedium.co/2021/01/13/linksys-wrt54g-
router-history/.

© 2021 SANS Institute 7

Technet24

Hardware is essential to the IoT ecosystem
Placing the device in the market grants physical access to attackers
Huge attack surface, industry changes

SANS SEC556 | loT Penetration Testing 8

Summary

In this module we learned about the importance of hardware devices to the IoT ecosystem, and how once they
are out of the manufacturers control, they can reveal secrets and be used as an attack platform for physical
control, or other network access. These forays created industries for creating attack devices, as well as creating
a huge attack surface for adversaries.

8 © 2021 SANS Institute

Course Roadmap

Introduction to IoT Network
Traffic and Web Services

Exploiting IoT Hardware
Interfaces and Analyzing
Firmware

Exploiting Wireless IoT: Wi-Fi,
BLE, Zigbee, LoRa, and SDR

MM

This page intentionally left blank.

SECTION 2

I. Background and Importance

Opening the Device
3. Examining and Identifying Components

B

Exercise: Obtaining and Analyzing Specification Sheets
4. Discovering and Identifying Ports
5. A Soldering Primer

6. Sniffing, Interaction, and Exploitation of
Hardware Ports

Exercise: Sniffing Serial and SPI
7. Other Ways of Recovering Firmware
Exercise: Recovering Firmware from PCAP
8. Firmware Analysis
Exercise: Recovering Filesystems with Binwalk
9. Pillaging the Firmware
Exercise: Pillaging the Filesystem

SEC556 | loT Penetration Testing 9

© 2021 SANS Institute

Technet24

Opening the Device

IoT/I10T features hardware; lots and lots of
hardware.

Each device is enclosed in pretty packaging. w ARN I N G

The inside electronics are where the magic
WARRANTY IS VOID

happens.
PP) IF SEAL IS BROKEN
* Operating systems

» Radios

» Storage

Opening your device WILL void your warranty, but it is so much fun!

SANS SEC556 | loT Penetration Testing 10

Opening the Device

IoT is reliant on hardware devices deployed across the globe in the millions. Each one of these devices has an
attempt ads some “packaging” to be aesthetically pleasing, or functional in an attempt to protect the inner
workings and circuit boards.

Those inner electronics components are what make the loT/IloT devices function and can reveal a lot about the
functionality, purpose, secrets about function and the overall security implementation of the device itself and
how it interacts with backend cloud services. If we can inspect the magic inner workings, we can gain access to
the device Operating System, various storage components, radio chipsets and others depending on device
function.

In order to access them, we need to open the device. In almost all cases, opening the device will void our
warranty. With expensive devices, this is potentially terrifying! However, many distributed IoT devices are
relatively inexpensive.

Components are where the ecosystem we find a wide array of components from front and backend end software,
mobile applications across multiple platforms, web applications on the devices itself and at the manufacturer or
cloud services.

The IoT ecosystem is depended on hardware components for interaction with networks and humans. We also
see them as interactive displays or interacting with other network and system components. The hardware
platforms serve as essential parts of the IoT ecosystem affecting both the behavior of the users, or the networks
or systems to which they are interfacing with.

10 © 2021 SANS Institute

Tools of the Trade

Strength!

Blade, knife, X-acto
Spudger, prying tools
Screwdrivers

For the advanced deconstruction
* Drill and bits
* Rotary tool with cutoff wheel
* Files/sandpaper
* Chemicals

MM

SEC556 | IoT Penetration Testing 11

Tools of the Trade

Opening the device often requires the use of some simple tools, the simplest being our hands and some brute
strength. There are many opportunities where the cases are simple enough, and friction fit with just a small
manipulation.

Other simple tools include some sharp blade for cutting labels, and even for removal of some epoxy, glue, or
conformal coating. Prying tools, and “spudgers” are helpful for separating case components, and it is good to
use the right tools for the right job, as to not damage the device, or yourself! We also will find that many cases
are fastened together with screws of various sizes and types, so having a robust set of screwdrivers is important.

For advanced disassembly, additional tools may be needed for more difficult to open devices with cutting tools,
such as a drill with set of drill bits, a rotary tool with cutoff wheel, and even some abrasion with files and
sandpaper. The most advanced disassembly can require the use of dangerous chemicals to dissolve potting or
epoxy but is a method that is not for the faint of heart (not to mention dangerous!).

The spudgers featured on this slide can be found at https://www.amazon.com/gp/product/BO6XNPRL42/ and
https://www.amazon.com/gp/product/BOIDGNCNRO/.

© 2021 SANS Institute 11

Technet24

Most commonly found are Phillips

screws of all sizes

Also common, Torx and security
Torx, multiple sizes

Plenty of other security screws
* Tri-wing
* Snake eyes
* Triangle
* ..many others

Keep honest users honest

MM

Screws

00000000008
10090020200
0L000QP0L0%
81000000000
00000000
00QBOO+ O
@OOR0O O
*2Q0000%0
OO#0060
0000000080

0O

A

\\

)
V./

0@0
00O#0OO
SO00O

SEC556 | loT Penetration Testing

Screws are very common for fastening our cases together, the most common variety being the standard Phillips
head screws of various sizes (typically #1, #2 and smaller). Torx and security Torx (Torx with a post in the

center) are also quite common.

There are easily 50 different security screws available, but most are note seen in all but the extremely high end,
or security conscious manufacturers. Security bits are well documented, and in most cases readily available in
kits or individual for reasonable costs. As a result of the availability, the security screws only provide a
temporary barriers to keep unmotivated adversaries out. As a final resort, drilling out screws is always an.

(albeit destructive) option.

A simple set of security bits can be found at https://www.amazon.com/gp/product/BOOBTKFFAU/.

12 © 2021 SANS Institute

Sometimes no obvious opening methods

Common in
« ICS/IIoT
» Automotive
» Weatherproof devices

Sealants
Potting/conformal coating
Bonded/welded metal and plastics

SANS SEC556 | loT Penetration Testing 13

Destruction!

Sometimes the most fun part of doing a teardown to gain access to the magic insides is some destructive access
techniques. Sometimes there is no other way to gain access, than to fold, spindle or mutilate the casing to get
inside.

Destructive disassembly is most often found where devices are installed in harsh environments, or where there is
an interest in keeping casual observers out. This can be done by permanently bonding all parts of the case
together through metal or plastic “welding”, application of sealants for wet weather, or encasing in epoxy or
non-conductive conformal for weather and dustproofing.

In the example photographs on this slide, the author has used a rotary tool with cutoff wheel to remove two

welded halves of a proprietary RFID tag meant to be exposed to the elements as part of heavy equipment or fleet
management.

© 2021 SANS Institute 13

Technet24

Tamper Detection

Uncommon, limited use
Self-destruct jumpers
Light sensors
Magnetic/reed switches
Accelerometers

SANS SEC556 | loT Penetration Testing 14

Tamper Detection

In rare cases, the manufacturers will include some tamper detection and prevention techniques, but they are
typically few and far between/ Depending on the level of sophistication, and device application we may observe
the use of light sensors to trigger when the case is opened, or even magnetic/reed and tilt switches, to detect
opening or manipulation for a device to be installed in a fixed location such as a power meter.

In extreme cases we can encounter “self-destruct” jumpers, as shown on the example images on this slide. The
jumpers are placed in a random pattern into a holder affixed to the side of the case, so that when the case is
opened the jumpers are unplugged and the original order cannot be determined. Without the jumpers present in
the correct order, the device fails to function. Some additional reading for a case study on self-destruct jumpers
found in “the wild” can be found at https://www.edn.com/teardown-inside-a-3g-microcell/.

14 © 2021 SANS Institute

Opening our device can be tricky
Simple tools, some specialty
Be careful of tamper detection!

SANS SEC556 | loT Penetration Testing 15

Summary

In this module we learned some of the various tools and methods for opening out devices to begin our internal
exploration. Most tools are readily available, and have common substitutions, but more robustly secured
devices may require the use of specialized tools, also affordable in cost. Each model of device opening will be
different with varying levels of complexity, including limited cases where tamper detection is found.

© 2021 SANS Institute 15

Technet24

Course Roadmap

I. Background and Importance
Introduction to IoT Network
Traffic and Web Services 3. Examining and Identifying Components
Exercise: Obtaining and Analyzing Specification Sheets
4. Discovering and Identifying Ports

b=

Opening the Device

Exploiting IoT Hardvv.are 5. A Soldering Primer
Interfaces and AnalyZlng 6. Sniffing, Interaction, and Exploitation of
Firmware Hardware Ports

Exercise: Sniffing Serial and SPI
. . L 7. Other Ways of Recovering Firmware
EXp]Oltll’lg Wireless IoT: Wi-Fi, Exercise: Recovering Firmware from PCAP

BLE, Zigbee, LoRa, and SDR 8. Firmware Analysis
Exercise: Recovering Filesystems with Binwalk
9. Pillaging the Firmware
Exercise: Pillaging the Filesystem

SANS SEC556 | loT Penetration Testing 16

This page intentionally left blank.

16 © 2021 SANS Institute

Examining and ldentifying Components

Starting point for determining

* Device functionality

* Operating voltage

» Components for appropriate interaction
After opening device, inventory, and
record IC identifiers

* Pictures, lots, and lots of pictures!

What is their purpose?

What is their connectivity to the other
devices?

SANS SEC556 | loT Penetration Testing 17

Discovering and Identifying Components
In order to understand how we can interact with a device and determine some if its’s operating capabilities, we
need to examine the various components on the board, record and perform an inventory if the chipsets.

This inspection process will assist us in understanding device functionality and capabilities, including those
cases where the device is equipped with components that are not yet implemented in the operating system or
device feature set; as an example, first generation Nest thermostats included a ZigBee radio on the board, but at
time of release to the marketplace it did not support any use of ZigBee, where later software updates made use
of the feature.

Some other helpful things we can learn from the board and chip/Integrated circuit (IC) inspection of the overall
device functionality, feature sets, and how the components communicate together. We can also learn about the
operating voltage, which can be helpful in tuning some of our tools and performing interaction with the device:
powering a 3.3V device with 5v can let the magic smoke out!

© 2021 SANS Institute 17

Technet24

Getting up Close

Many ICs with labeling

Labeling often subdued coloring, viewable in
certain lighting condition —

Small, small text / <

Use magnification! 4 P
3 \M‘ ‘/
* Modern cell phone camera with post capture :) \

Zoom J [A »\Jﬂ »
s

» DSLR with macro lens
» USB connected microscope
» Head mounted magnification) /

SANS SEC556 | loT Penetration Testing 18

Getting up Close

After disassembly we are going to find that there are several components that bear identification. We are going
to find that the dark colored ICs are often embossed or printed with some very muted colors and tiny text.
Depending on the overall size, these markings can be difficult to read especially with poor lighting conditions.
It is best to examine the components in a well-lit area, with even some additional focused lighting, paired with
some magnification.

Magnification can come in many flavors, including the use of a cellphone camera and zooming in after the fact,
or even a good DSLR camera with a macro lens. an inexpensive USB connected microscope ($20-$120) is also
an option, and with a real time video feed, it us also useful for soldering and other manipulation. Finally, if we
don’t need to document with photographs, a head mounted magnifier is also a great solution. Even if you look
slightly nerdy while using it.

The Head mounted magnification featured on this slide can be found at

https://www.amazon.com/gp/product/B07WJ36XBZ/ and a reasonably priced USB connected microscope can
be found at https://www.amazon.com/gp/product/BOSK7FGY9Q)/.

18 © 2021 SANS Institute

Inventory

YL [®5Ro Home Cavnera

Capture photo of whole board, print

Document all numbers
* Not all are important!
» Do we know which ones are not?

Realtek
&g qFvV

J94¢G 31
GTHle

Document logos e s
. | [o4HI®

Label the whole board and document whatis = .. ™

where! s

Capture and document both sides of all

boards 5

Now to find the spec sheets for each o :

component... Qosingp

SANS SEC556 | loT Penetration Testing 19

Inventory
One approach to thorough documentation and inventory is to photograph both sides of the device printed circuit
board (PCB), print them out and label. This provides a quick, readable visual guide to help with investigation.

With our documentation, it is important to document as much of the text on each chip as possible as we don’t

know which will be important for our lookup and unique model number during out datasheet lookups.
Document the logos; we don’t need to be master artists, we just need enough to compare to some images.

© 2021 SANS Institute

Technet24

Finding Specification Sheets (1)

v I ©
Google

SANS SEC556 | loT Penetration Testing 20

altavista

Finding Specification Sheets (1)
These notes intentionally left blank. No, seriously, just Google it.

20 © 2021 SANS Institute

MM

Finding Specification Sheets (2)

Reauy, Google is your friend! MicrocHip _ 25AA640A/25LC640A
64K SPI Bus Serial EEPROM

Search for partial part numbers, e

manufacturer (if you have it) ===

Compare logos on image searches R

Many sites will have them for free iz SRS
« Straight from the manufacturer T ERENREEET
- Distributors both domestic and foreign B

ted;
40Clo +85°C
- Automolive (E): -40°C to +125°C

What happens when we can’t find one...?

Name Function

cs Chip Select Input

SO | serial Data Output
W | write-Protect
Vss | Ground
SI___|serial Data Input
SCK | Seral Clock Input
HOLD _[Hold Input
Voo [supply Votage

~25XXB40A i used in this document a a generic part numbor

Finding Specification Sheets (2)
The best way to find our specification sheets is to use a search engine of our choosing. Google happens to be the
author’s search engine of choice and usually a result can be found within the first page of results.

Begin your search with the first portion of the IC identifier and the manufacturer if it is available. Text searches
will often find PDFs from one of the large US electronics distributors, as well as some of the large non-U.S.
ones. Image searches can also give us the opportunity to compare logos for manufacturers.

We will also find that even the manufacturers of the individual chips will also provide them: This author finds
that there is often much more documentation direct from the manufacturer, and the spec sheet we are looking for
is much harder to find.

What happens when we can’t find a specification sheet? Typically, one of a few things have happened: We
mis-identified the chip read with similar or hard to read characters, meaning we should search for character
variants. Also, it is entirely possible that the chip was a specific design for the device (often in ICS equipment),
and the specification sheets are not available to the general public. In these cases, if we can identify the
manufacturer, we can reach out to them to ask for it; or work with the implementer (especially If we are under
contract and an NDA) to obtain a copy.

© 2021 SANS Institute 21

SEC556 | loT Penetration Testing 21

Technet24

A Brief Case Study

We observe an alleged flash chip
Labeled as Winbond 25Q128JVSQ 1504

Spec sheet, right in the title gives us some
great information!

Additional read will give us commands for
read/write, pinout

w25Q128 ‘Winbond Winbond SparkFun
-~ W25Q32JVSSsiQ. Electronics. 'W25Q128JV Ser. Electronics COM.
VA winbond [4
— Mouser Electronics Digi-Key TECHDesign Mouser Electronics
5] ®
5-prfla5h s mmsvinbontcom rodit s
W25Q128JV - Serial NOR Flash - Code Storage ... - Winbond
Density, 128Mb, Status, Mass Production. Vec, 2.7V - 3.6V, Frequency, 133MHz. Package, 8-pin
3V 128M BIT 'SOIC 208-mil, 16-pin SOIC 300-mil, 24-ball TFBGA 8x6-mm
SERIAL FLASH MEMORY WITH ko, v .
W25Q128JV Datasheet - Winbond Electronics | DigiKey
DUAL/QUAD SPI e o o it s
SANS SEC556 | loT Penetration Testing 22

A Brief Case Study

In this example, disassembling a device we find several ICs of interest. One of our chips looks to be labeled as a
Winbond 25Q128JVSQ 1504. A search at Google for “25Q128JVSQ”, with some pretty immediate results!
The second link at DigiKey, one of the large US based electronics distributors, has a direct link to the PDF of
the specification sheet (https://www.digikey.com/en/datasheets/winbond-electronics/winbond-
electronicsw25q128jv20spi20revc2011162016).

Loading up the PDF we can get a bunch of information right on the title page! Looking at the title we can see
that it operates at 3V (likely 3.3V) is a Serial Flash Memory” module with SPI. We can now interact with the
memory chip at 3.3V, with the SPI protocol.

Further reading will reveal pinout (which should be standard), any needs for read/write locking including trigger

of pins or software commands as well as erase commands that can allow us to read protected portions of
memory. In just a few minutes, we’ve had a huge success.

22 © 2021 SANS Institute

Chips/ICs all have specific function, not obvious
External markings helpful for discovery
Google (and others) are your friend!

Reading specification sheets detail functionality, protocols, pinout
* This will help guide our attack path

SANS SEC556 | loT Penetration Testing 23

Summary

In this module we learned the value of obtaining specification sheets to determine chip functionality in order to
determine additional attack path. Google or other search engines become our friends for locating the
specification sheets, after performing an inventory of the chip labelling.

© 2021 SANS Institute 23

Technet24

Exercise: Obtaining and Analyzing Specification Sheets

Using your lab book, complete the exercise, Obtaining and

Analyzing Specification Sheets.

MM

This page intentionally left blank.

24

© 2021 SANS Institute

SEC556 | loT Penetration Testing 24

Course Roadmap

Introduction to IoT Network
Traffic and Web Services

Exploiting IoT Hardware
Interfaces and Analyzing
Firmware

Exploiting Wireless IoT: Wi-Fi,
BLE, Zigbee, LoRa, and SDR

MM

This page intentionally left blank.

SECTION 2

I. Background and Importance

B

Opening the Device

3. Examining and Identifying Components
Exercise: Obtaining and Analyzing Specification Sheets

4. Discovering and Identifying Ports

5. A Soldering Primer

6. Sniffing, Interaction, and Exploitation of
Hardware Ports

Exercise: Sniffing Serial and SPI
7. Other Ways of Recovering Firmware
Exercise: Recovering Firmware from PCAP
8. Firmware Analysis
Exercise: Recovering Filesystems with Binwalk
9. Pillaging the Firmware
Exercise: Pillaging the Filesystem

SEC556 | loT Penetration Testing 25

© 2021 SANS Institute 25

Technet24

Discovering and Identifying Ports

Many devices have pads available for
interaction

Typically for manufacturer troubleshooting,
factory programming, device access

Not all just “ports”, some are access paths
between components

* Possible interaction and sniffing data in transit

How do we find these access paths?

SANS SEC556 | loT Penetration Testing 26

Discovering and Identifying Ports

In order to start interacting with the device, we need to start finding places on the PCBs where we can connect
after opening the device. We’ll be looking for connection points, or pads, which we can to interesting points of
the chipsets identified earlier.

Typically, the connection points that we are looking for are broken out into some nicely formatted groups.
These groups are most commonly used for the manufacturers for troubleshooting, debug, and initial
programming of the device. We can use these same connection points in the same way (and better) than the
manufacturers do!

Sometimes it isn’t as easy as just finding a collection of well labeled pads. Sometimes we’re following access
paths looking for transitions in the circuit (vias) or points where they connect to other ICs. Tracing these paths
can even give us the opportunity to sniff inter-chip interactions, recovering configuration information, or even
sensitive data.

26 © 2021 SANS Institute

Visual Analysis

We can get lucky with easily identifiable, labeled circuit boards!
* Observable grouping of connection points on boards
* Observable grouping with silkscreen labeling

Some connection points labeled, but scattered
Typically, JTAG, Serial/UART, limited for others

Dear EEs: Stop labeling pads. Make us work for it!

Even better, no connector pads at all: build more complex

test/programming rigs!

SANS SEC556 | loT Penetration Testing 27

Visual Analysis

We will often get lucky with groupings of connection points right on the board, sometimes conveniently labeled
with their function right on the labelling silkscreen! It is great when they are conveniently grouped together in
“standard” formats, but they can also be spread out across the PCB. It still is easy when they are labeled, but
they may not be!

Most often we find connection pads (nicely grouped or otherwise) for JTAG and Serial/ UART, as they are most
commonly used for the manufacturer for programming the device before it leaves the factory, or for various
levels of debugging. These test connections are used with a specialized test fixture, where the populated PCB
can be placed in, powered on, and interacted with without the need for solder and wire every time, reducing the
time to interact.

Our advice to make it more difficult to interact with the devices, is to stop leaving grouped and/or labeled test
pads, intended for use with the programming test fixtures. Remove them and make us sped hours hunting for
them! The manufacturers can build new, more complex test fixtures to utilize non-traditional test points along
the path of transmission or direct to the IC mounting pads.

© 2021 SANS Institute 27

Technet24

Visual Analysis: JTAG

MM

28

Many JTAG interfaces have
recognizable sizes and layout.

Several common layout formats

Common 2x7 layout

Visual Analysis: JTAG

Not typical, but nicely

labeled!

ARM 10-PIN Interface ST 14-PIN Interface

Sy
o
2
5

o

RESET
10 BRKOUT
12 GND

14 0CDSE
16 GND

SEC556 | loT Penetration Testing 28

In the left-hand example of this device PCB, we see that there is a well-defined grouping of pads available
matching a common, standard 2x7, 14-pin JTAG layout, with the square pad indicating pin 1. There are several
common layouts for JTAG, depending on the application, chipsets used, and available space on the board.

On the right-hand side we can see JTAG broken out for us, and easily identifiable by the specific labels

provided, even if they are not in a standard layout.

© 2021 SANS Institute

Visual Analysis: UART/Serial

Many UART have recognizable
layout with common formats.

Common |x4 layout but
in dual configuration

SEC556 | loT Penetration Testing 29

Visual Analysis: UART/Serial

In these examples, we have some commonly observed Seria/lUART connectivity, again with pin 1 with a square
pad or labeled in the silkscreen. Serial/UART doesn’t typically have a standard format, but limited pins for
interactivity is often a giveaway. On the common 2x5 layout on the left-hand example, often indicates two
Serial/lUART ports available; of course, the right-hand example may also feature two serial ports, from the
observation of two sets of 1x4 connectors.

© 2021 SANS Institute 29

Technet24

Visual Analysis: SPI Inspection

Typically, not exposed to a header

Sometimes we get lucky... This example has SPI
; mapped to the

header along with
other functionality.
Isolating SPI in this
example requires

following
paths/traces on the
board.

SEC556 | loT Penetration Testing 30

Visual Analysis: SPI Inspection

In this case, we have SPI broken out into a large header, which doesn't match the typical JTAG variants. In this
example, we know that SPI exists at this header, because the work was done for us; some unidentified individual
figures out IC functionality and followed the electrical paths (traces) to discover that they were populated at this
header.

It is unusual to find SPI broken out to a header, much less labeled.

30 © 2021 SANS Institute

Visual Analysis: 12C
I2C also not typically
broken out to headers
More tracing paths,
deciphering chip
pinouts, spec sheet
analysis
— 2 >
.
ik
¥s
SANS SEC556 | loT Penetration Testing 31

Visual Analysis: 12C

In this case, we have 12C broken out into a small, but labeled header, which doesn't match the typical
Serial/UART variants. Under normal circumstances, we’d be left to determining IC functionality and following
the electrical paths to discover that they were populated at this header.

It is unusual to find 12C broken out to a header, much less labeled. The labelling has helped us determine the
functionality.

© 2021 SANS Institute 31

Technet24

Spec Sheet Analysis

If no access ports are observed, spec sheet analysis is our only hope.
Identify component functionality, pinout.

Observe paths on boards.
» Multi-layer boards make this more difficult
* Vias for board transition
+ Continuity testing for tracing paths

Helpful for identifying JTAG, Serial/UART, SPI, 12C, ...

* Direct access and sniffing as a result

SANS SEC556 | loT Penetration Testing 32

Spec Sheet Analysis

It is quite common that devices that we want to interact with may not have any headers at all, with “randomly”
places test pads. This leaves us to do some heavy lifting through identifying each IC on the board, their
functionality, and the pinout in use of each IC. Once the functionality and pinouts have been determined, we are
left to tracing the paths on the board for electrical continuity to determine use, connectivity and points to
interact.

This operation is made more difficult with the advent of multi-layer (more than two) that hide the paths as part
of the sandwiched layers, as well as the layer transitions (known as vias).

When we are successful, we set ourselves up for direct action to the device components, as well as sniffing of
the various protocols in transit.

32 © 2021 SANS Institute

Common layout formats lead to port discovery
Standard layouts can have several forms for the same functionality
Obscured inclusion requires deep analysis

SANS SEC556 | loT Penetration Testing 33

Summary

In this module we observed that in many cases the ports that we want to interact with are nicely laid out, and are
easily recognizable, making out job of interfacing easy; on the converse, when they are not nicely laid out or
labeled, figuring them out can be a time-consuming task.

© 2021 SANS Institute 33

Technet24

Course Roadmap

Introduction to IoT Network
Traffic and Web Services

Exploiting IoT Hardware
Interfaces and Analyzing
Firmware

Exploiting Wireless IoT: Wi-Fi,
BLE, Zigbee, LoRa, and SDR

MM

This page intentionally left blank.

34

SECTION 2

I. Background and Importance

B

Opening the Device

3. Examining and Identifying Components
Exercise: Obtaining and Analyzing Specification Sheets

4. Discovering and Identifying Ports

5. A Soldering Primer

6. Sniffing, Interaction, and Exploitation of
Hardware Ports

Exercise: Sniffing Serial and SPI
7. Other Ways of Recovering Firmware
Exercise: Recovering Firmware from PCAP
8. Firmware Analysis
Exercise: Recovering Filesystems with Binwalk
9. Pillaging the Firmware
Exercise: Pillaging the Filesystem

SEC556 | loT Penetration Testing 34

© 2021 SANS Institute

A Soldering Primer

In many cases, our access to ports is not
already enabled with header pins

* Empty through hole connectors
» Exposed test points
* Directly to surface mount or though hole IC
pins
Soldering, or bonding pins and wires to
these places grants us access

Soldering can be dangerous! It uses high heat, molten metal, and potentially
dangerous supplies and fumes. Use appropriate safety gear, safe supplies,
and fume extraction.

SANS SEC556 | loT Penetration Testing 35

A Soldering Primer

We will often find, as observed in our port identification section, there were no header pins soldered into the
headers. While this makes it easy for the manufacturer to access with the custom test fixtures through use of
spring loaded, pointed pogo pins, it is not so easy for us to connect to them. If we solder some header pins to the
headers, we have multiple reliable options for connectivity, from, test leads of various types, to Dupont wires.

We may need to access these test points that take several forms:

* Empty (or filled) through hole connectors in exposed headers

* Other exposed test points, which resemble a flat test point

* Directly connecting to IC pins, either those that are through hole (like a header), or surface mount pads (like
flat test pads)

By soldering wires or header pins to these connection points gives us the ability to interact with the components
and protocols.

Soldering is potentially dangerous stuff! It has several way sin which it can hurt us, so be careful and use

appropriate safety precautions. Learn from one author’s experience, getting burned and accidentally dropping a
hot soldering iron in their lap while wearing pants made of synthetic materials.

© 2021 SANS Institute 35

Technet24

Soldering Types

Through hole
* An actual hole through the circuit board!
» Wire, pin, or IC pin placed through hole
* Solder used to bind from the reverse

Surface mount
» Component and board mated surface to surface
* Solder used to bind on the obverse

We'll focus our efforts on soldering on exploitation as opposed to circuit
construction. The overall techniques are the same!

SANS SEC556 | loT Penetration Testing 36

Soldering Types
There are two variants of soldering that we can engage in: through hole or surface mount.

With through hole there is an actual hole through the PCB in which a wire or component pin is placed through

and soldered on the reverse side of the board. Surface mount is a flat pad where the components is mated surface
to surface, often on a much smaller scale. In this case, the solder is used to bon on the facing, or obverse side.

36 © 2021 SANS Institute

Soldering Technique: Through Hole

Heat the pad, pin/wire, and
solder at the same time.

* Flux or flux core solder helps draw
melted solder in

* No need to overdo it!

MM

SEC556 | loT Penetration Testing 37

Soldering Technique: Through Hole

With through hole soldering, we are applying the tip of the soldering iron to the pin on the obverse of the board
as well as the connective pad, while feeding solder to the top of the iron, effectively heating all 3 at the same
time, in the shape of a triangle.

Application of flux, or flux core solder helps break the surface tension, and draw the melted solder to the

components for proper bonding. We don’t need to overdo it with tons of solder, as this is an electrical
connection and not a mechanical one.

© 2021 SANS Institute 37

Technet24

Soldering Technique: Surface Mount

Tin the attaching wire first!

Apply wire to top of pin/pad and
heat from the top

SANS SEC556 | loT Penetration Testing 38

Soldering Technique: Surface Mount

With surface mount we are creating more of a mechanical connection. As the solder is physically holding the
component to the PCB. We use a different technique in that we apply solder to our wire (called tinning) and
some solder to the pad or surface mount IC pin. We’re not applying solder to the connection, but merely re-
melting solder we’ve already added to the pad. This is most effective when heating the wire, we intend to bond
from the top, passing the heat down to the pad.

38 © 2021 SANS Institute

Through hole soldering
Surface mount soldering
Soldering can be dangerous and requires patience

SANS SEC556 | loT Penetration Testing 39

Summary

In this module we learned about some various soldering types for both through hoes and surface mount, both
are relevant to our tasks for interacting with hardware.

Finally, we’re dealing with hot, molten metal and dangerous fumes. Soldering can be dangerous!

© 2021 SANS Institute 39

Technet24

Course Roadmap

I. Background and Importance
Introduction to IoT Network Opening the Device

Traffic and Web Services 3. Examining and Identifying Components
Exercise: Obtaining and Analyzing Specification Sheets

B

4. Discovering and Identifying Ports

Exploiting IoT Hardware 5. A Soldering Primer
Interfaces and Analyzmg 6. Sniffing, Interaction, and Exploitation of
Firmware Hardware Ports

Exercise: Sniffing Serial and SPI

. . L 7. Other Ways of Recovering Firmware
EXp]Oltll’lg Wireless IoT: Wi-Fi, Exercise: Recovering Firmware from PCAP

BLE, Zigbee, LoRa, and SDR 8. Firmware Analysis

Exercise: Recovering Filesystems with Binwalk
9. Pillaging the Firmware
Exercise: Pillaging the Filesystem

SANS SEC556 | loT Penetration Testing 40

This page intentionally left blank.

40 © 2021 SANS Institute

JTAG

Joint Test Action Group (JTAG) names the group that standardized
the interface
Typically used for debugging, reading, and writing firmware
» Recovery of boot options
« Direct control of components, processor
* Set watchpoints, direct memory modification
* A great way to recover firmware from a running device!
Typical 4 pin interaction 5% optional
« TCK, TMS, TDI, TDO, optional TRST
Finding the appropriate connection pads is challenging...

SANS SEC556 | loT Penetration Testing 41

JTAG

JTAG is colloquially used as a term for the debug connectivity to a processor for debug purposes and flash
memory read/write operations. JTAG refers to the group that standardized the interface, which is multi-purpose
and multi-protocol.

As a penetration tester JTAG interfaces can give us a wealth of knowledge specifically for halting the processor
and downloading a firmware image from the device for additional analysis, as well as writing modified
firmware back to the device outside of normal user space upgrade options. In some more complex analysis
JTAG can allow us to debug the running programs and kernel, directly control the processor and connected
peripherals, debugging applications, and modifying registers in RAM, and even recovery of boot options.

Often, the hardest part of interacting with JTAG is finding the appropriate 4 pins of interaction with an optional
reset line:

TCK: Test Clock - The Clock sets the timing for communications.

TMS: Test Mode Select - Voltage on TMS determines the instructions that JTAG performs.
TDI: Test Data-In - Data into the IC.

TDO: Test Data-Out - Data out from the IC.

TRST: Test Reset (Optional) - This optional signal is used to reset JTAG to a known good state, effectively a
”JTAG reboot”.

© 2021 SANS Institute 41

Technet24

JTAGulator

JTAGulator from Grand Idea Studios to the rescue!
Connect JTAGulator pins to unlabeled, possible JTAG ports

Interact with JTAGulator over USB serial
* Pick the pins in use on the JTAGulator
* Trigger fuzzing
* Observe responses to determine pinout for JTAG port

Not just for JTAG: ARM SWD and Serial/UART as well!

SANS SEC556 | loT Penetration Testing 42

JTAGulator

An amazing tool from Joe Grand at Grand Idea studios in order to assist in JTAG connectivity discovery is the
JTAGulator. It discovers JTAG pins by fuzzing/brute forcing signals to connect to the JTAGulator pins, in
attempt to identify the responses. It is simple as connecting a bunch of unknown test points or headers and set
the JTAGulator to do its job. However, the more test points that are connected, the more combinations that need
to be tested, the longer the process will take.

To kick off the JTAGulator discovery process, after test points are connected, we interact with it over the
USB/Serial port to access the interactive menu. In the menu we select JTAG discovery, and indicate the number
of connected pins, start the discovery and wait.

Because the JTAGulator sends signals, and observes responses, it is useful for more than just JTAG discovery.

It can also discovery ARM SWD (ARM’s JTAG equivalent) as well as UART/Serial ports too. It won’t perform
these tests in tandem but require a separate operation to perform.

42 © 2021 SANS Institute

JTAGulator Example (1)

...<trimmed for brevity>

Welcome to JTAGulator. Press 'H'
Warning: Use of this tool may affect target system behavior!

> H

Target Interfaces:
J JTAG

U UART
G GPIO
S SWD

General Commands:

Y Set target I/O voltage

I Display version information
H Display available commands

> I
JTAGulator FW 1.11

Designed by Joe Grand, Grand Idea Studio, Inc.

MW

JTAGulator Example (1)

for available commands.

SEC556 | loT Penetration Testing 43

In this example, we have connected channels (pins) 0 through 8 to a header on a board and the JTAGulator
ground pin to a known ground, and then powered on the victim device. Accessing the JTAGUlator over the
USB ports as a serial device with 115200 baud, 8N 1, we are presented with an ASCII art logo.

Entering H at the menu lists the available commands. Examining the running version of the JTAGulator
software with the I command, we can see that we are running version 1.11, the latest available version as of this

writing.

© 2021 SANS Institute 43

Technet24

JTAGulator Example (2)

...<continued>
>V JTAGulating! Press any key to
Current target I/0 voltage: Undefined abort. ..
Enter new target I/O voltage (1.4 - 3.3, 0 for e
Off): 3.3 TDI: 6
New target I/O voltage set: 3.3 TDO: 7
Warning: Ensure VADJ is NOT connected to target! TCK: 8
TMS: 3
> Jd . Device ID #1: 0000 0000000000000000
Enter starting channel [0]: O 00000000000 1 (0x00000001)
Enter ending channel [0]: 8 TRST#: 0
Possible permutations: 3024 TRST#: 1
TRST#: 2
Bring channels LOW before each permutation? [y/N]: TRSTH#: 4
Press spacebar to begin (any other key to abort) TRST#: 5
JTAG scan complete.
SANS SEC556 | loT Penetration Testing 44
JTAGulator Example (2)

Continuing with the JTAGulator interface, we need to set the operating voltage of the device so that the
JTAGulator can send and interpret responses appropriately. We set the voltage with the V command, and in this
case, set the voltage to 3.3 volts based on the capabilities of the victim device.

Once the voltage has been set, we can use the J command to begin the JTAG fuzzing, by defining the channels
(pins) on the JTAGulator that are connected to the victim device. Accepting the defaults for bringing channels
low, we hit the spacebar to start the fuzzing. This example only took a few seconds (due to the limited number
of pins tested), and the discovered pin output was returned, noting the JTAG functionality to the JTAGulator
pins.

44 © 2021 SANS Institute

JTAG Interaction

Several hardware options

« Bus Pirate In most cases access
* GreatFET to flash is easier with
* Segger J-Link direct chip interaction.
- RasperryPi JTAG is complicated

Software applications but still useful for

« Serial interface to hardware other process and

« OpenOCD, gdb, STLink kernel interaction.
« Custom application, scripts (often Linux)

SANS SEC556 | loT Penetration Testing 45

JTAG Interaction

There are many options for interacting with JTAG, some more robust, some easily obtainable. The Bus Pirate, GreatFET and
RaspberryPi are all readily available and affordable, while interaction via the Bus Pirate and GreatFET are quite mature in
their offering, the RaspberryPi is the newcomer to the game. The most mature is the Segger J-Link but you get what you pay
for as it is often perceived as the most expensive.

Depending on the platform used we’ll access them with either a separate serial interface, control with OpenOCD and gdb, or
Segger STLink. We may even perform some automation with some custom scripting.

It is possible, and highly effective for us to dump contents of flash to recover firmware over JTAG, it is admittedly slow. It
may be more effective to directly access the flash chip over SPI or 12C.

TCK: Test Clock
The drummer, or metronome that dictates the speed of the TAP controller. Voltage on this pin simply pulses up and down
in a rhythmic, steady beat. On every “beat” of the clock, the TAP controller takes a single action. The actual clock speed
is not specified in the JTAG standard. The TAP controller accepts its speed from the outside device controlling JTAG.
TMS: Test Mode Select
Voltages on the Mode Select pin control what action JTAG takes. By manipulating the voltage on this pin, you tell JTAG
what you want it to do.
TDI: Test Data-In
The pin that feeds data into the chip. The JTAG standard does not define protocols for communication over this pin. That
is left up to the manufacturer. As far as JTAG is concerned, this pin is simply an ingress method for 1s and Os to get into
the chip. What the chip does with them is irrelevant to JTAG.
TDO: Test Data-Out
The pin for data coming out of the chip. Like the Data-In pin, communication protocols are not defined by JTAG.
TRST: Test Reset (Optional)
This optional signal is used to reset JTAG to a known good state, we'll explain why this is optional in a few paragraphs.

© 2021 SANS Institute 45

Technet24

Connecting to JTAG with Bus Pirate

. NS This example shows
' the common ARM
GND TCLK | 0-pin connector.
Researching
Tbo datasheets on the
RTCK DI device processor
will determine
RST which

standard/format we

RST is often optional,and RTCK is often unused. should wire for.

SANS SEC556 | loT Penetration Testing 46

Connecting to JTAG with Bus Pirate
In this course we’ve chosen to utilize the Bus Pirate to interact with JTAG because of its maturity, ease of use for
recovering firmware and its overall availability.

The Bus Pirate is quite easy to connect to the identified JTAG ports using the color-coded Bus Pirate cable to the
appropriate JTAG pins. While the cable colors may not match, we can use Dupont wires to perform the same

connectivity.

In this case, we’ve shown the common ARM 10-pin JTAG layout, but our actual implementation may be different.

46 © 2021 SANS Institute

Flash Recovery/Dumping JTAG with Bus Pirate (1)

Requires Bus Pirate, OpenOCD and gdb

$ cat MyBuspirate.cfg

source [find interface/buspirate.cfqg]
buspirate vreg 0

buspirate mode open-drain

buspirate pullup 1

buspirate port /dev/ttyUSBO

$ sudo openocd -f MyBuspirate.cfg

Warn: Adapter driver 'buspirate' did not declare which transports it allows; assuming
legacy JTAG-only

Info : only one transport option; autoselect 'jtag'

Info : Buspirate Interface ready!

<trimmed for brevity>

$ telnet localhost 4444

SANS SEC556 | loT Penetration Testing 47

Flash Recovery/Dumping JTAG with Bus Pirate (1)

In order to dump flash via JTAG with a Bus Pirate, we need to use a combination of OpenOCD and gdb. First,
we need to provide some initial configuration for OpenOCD defining where it can find and configure the Bus
Pirate interface.

Using sudo to start OpenOCD (for access to the USB serial port), we direct it to use the previously defined

configuration. Once OpenOCD has started, we begin interaction with it via telnet, on the default port of 4444 on
our local system.

© 2021 SANS Institute 47

Technet24

Flash Recovery/Dumping JTAG with Bus Pirate (2)

$ gdb extended-remote :3333

> halt; reset init

MIPS32 with MIPS16 support implemented

target halted in MIPS32 mode due to debug-request, pc: 0x800064e0

JTAG tap: ath79.cpu tap/device found: 0x00000001 (mfg: 0x000 (<invalid>), part: 0x0000,
ver: 0x0)

> halt; flash probe 0

target halted in MIPS32 mode due to debug-request, pc: 0x800064e0
Found flash device 'win w259l28fv/jv' (ID 0x001840ef)

flash 'ath79' found at 0xb£f000000

> halt; flash info 0
#0 : ath79 at 0xbf000000, size 0x01000000, buswidth 0, chipwidth 0O

<trimmed for brevity>

> halt; dump image flashdump.bin 0x00000000 0xF90600

SANS SEC556 | loT Penetration Testing 48

Flash Recovery/Dumping JTAG with Bus Pirate (2)

In this example, we have connected our Bus Pirate to the appropriate pins of the victim device as indicated
previously. We then start the gdb debugger to connect to port 3333 on our local system (the colon by itself
preceding the port number indicates localhost). Port 3333 is an additional interface opened by OpenOCD to
provide a proxy to the JTAG bus for gdb, through the Bus Pirate physical interface.

Within the gdb interface, we then halt CPU operation and reset the device to a “known” state of a “clean” boot.

After restart, we begin discovering what flash devices are available, by first halting the CPU, probing for
connected flash modules, and then obtaining the flash memory parameters and capabilities.

Once we have determined the memory layout, we can again halt the CPU and use the dump_image command
within gdb, providing an output filename and a start and end flash memory address.

48 © 2021 SANS Institute

Serial communications, RS-232

* Typically, 5v
In IoT, mostly serial via UART

« Typically, 3.3V application of serial

* UART as hardware can do RS-232, RS-485, RS-422
Interaction with running OS as a terminal

Pre-boot process interaction/interruption
» U-boot, others

Even inter-component, on board communication

SANS SEC556 | loT Penetration Testing 49

Serial

In IoT hardware we also find a liberal application of serial communications. We typically think of serial
communications as 5-volt RS-232, most serial communications are 3 volt based in IoT, referred to as serial
UART communications.

The implementation of UART opens up options for other serial-based protocols over RS-232, including the use
of RS-485 and RS-422.

Interaction with serial UART becomes important for interacting with IoT hardware: often one of the exposed
UART ports is enabled as a OS terminal. It we are able to interact with this terminal session at boot time, we
should be able to interact with and interrupt the pre-boot process. These stages of the boot process, or boot
loaders such as U-boot, prepare the system for loading the system kernel. The boot loader also feature methods
for disk and memory debugging (including the ability to dump firmware) as well as the ability to engage failsafe
mechanisms, such as uploading known good firmware/OS.

Additional opportunities exist for us for passive observation of serial signals, in order to sniff communications

between components on the board. This on-board communication is often used by the OS to configures other
components; observing that configuration can help us interact or compromise other interfaces.

© 2021 SANS Institute 49

Technet24

Serial Architecture

Single data stream, typically un-synchronized
* No clock synchronization
 Synchronization information included in the stream
» Bits per character, start/stop bits: 8N1

T e AV P

UART: RX

lelolelnigielplblieglokolallgke OIS ISIC
warr: Rx G [0 0 0 0 0 0 0 0 0 0

SANS SEC556 | loT Penetration Testing 50

Serial Architecture
Serial/RS-232/UART uses a single, un-synchronized data stream to transfer information, between two

endpoints. There is no clock synchronization, as the timing is determined by the accuracy and timing of the data
itself. This in stream data timing is determined by signal spacing, bits per character, defined and start and stop
bits and parity. The most common variety is Identified as 8N1.

50 © 2021 SANS Institute

Serial Interaction

Serial/UART to USB adapter required
» Silicon Labs CP2104 based
« FTDI FT232RL based

Software terminal
« Windows: TeraTerm, PuTTY
» Mac: Serial (GUI), minicom, screen
 Linux: minicom, screen

Need to discover on board and communication settings
* Direct interaction
* Sniffing with UART
* Sniffing with logic analyzer

SANS SEC556 | loT Penetration Testing 51

Serial Interaction

We can start our UART interaction in two different ways: direct interaction with a terminal or sniffing existing
communications. In both cases similar hardware tools can be used, such an UART to USB adapter. Common
choices are the Silicon Labs CP2014 or FTDI FT232RL based devices, readily available for only a few dollars.

For software, there is an option for common our operating systems, either preinstalled with the base OS, easily
installed with a package manager. Under windows TerraTerm and PuTTY, both available for free are popular
choices, while Serial on macOS is $40 in the App store. On macOS and Linux, both minicom and screen are
available for free.

After we find the port and pinout on the board, we can then directly interact with the serial port (hopefully
finding a terminal already logged in), or sniffing the traffic already sent to another device. The sniffing with a
UART to USB adapter is not the most robust way to sniff due to the way it can impact the electrical
characteristics affecting the legitimate communication. For better sniffing a logic analyzer with OpenOCD may
be a better choice.

© 2021 SANS Institute 51

Technet24

Connecting to Serial with Bus Pirate

v |l ©
+3V3
ADC x |0 O If device is
i x |@ O powered, do
not connect
MOS!I 3 3v!
MISO 9 0 e
| @ ©
SANS SEC556 | loT Penetration Testing 52

Connecting to Serial with Bus Pirate
In this course we’ve chosen to utilize the Bus Pirate to interact with Serial because of its maturity, ease of use
for recovering firmware and its overall availability, and its suitability for other tasks.

The Bus Pirate is quite easy to connect to the identified serial ports using the color-coded Bus Pirate cable to the
appropriate serial pins. While the cable colors may not match, we can use Dupont wires to perform the same

connectivity.

In this case, we’ve shown a common serial port header layout, but our actual implementation may be different.

52 © 2021 SANS Institute

Connecting to Serial with Raspberry Pi

If device is
powered, do

not connect
3.3v!

MM

SEC556 | loT Penetration Testing 53

Connecting to Serial with Raspberry Pi

Additionally, the serial port on board the Raspberry Pi can be used to interact with Serial port. We do need to be
sure to disable the default terminal bound to the serial port before trying to access a device. Note, we need to
edit /boot/cmdline.txt on the Pi to remove "console=serial0,115200" or "console=ttyAMAO,115200” from the
file, save and reboot. Alternatively, we can use raspi-config menus (from
https://www.raspberrypi.org/documentation/configuration/uart.md:

Start raspi-config: sudo raspi-config.

Select option 3 - Interface Options.

Select option P6 - Serial Port.

At the prompt Would you like a login shell to be accessible over serial? answer 'No'
At the prompt Would you like the serial port hardware to be enabled? answer 'Yes'
Exit raspi-config and reboot the Pi for changes to take effect.

Note: Please do not perform these steps yet, as we be using the Raspberry Pi in our kit as a serial target and not
as a receiver.

The Raspberry Pi is quite easy to connect to the identified serial ports using the color-coded Dupont wires to the
appropriate serial pins. While the cable colors may not match, we can use Dupont wires to perform the same
connectivity. Note that the diagram has the serial port purple” connected to pin 10 on the Pi, where “brown” is

connected to pin 6 on the Pi.

In this case, we’ve shown a common serial port header layout, but our actual implementation may be different.

© 2021 SANS Institute 53

Technet24

Serial Example (1)

Bus Pirate

...<menus trimmed for brevity>...
HiZ> m <- to change the mode
1)> 3 <- for UART mode

(

(1)> 9 <- for 115200 bps

(1)> 1 <- for 8 bits of data, no parity control
(1)> 1 <- for 1 stop bit

(1)> 1 <- for Idle 1 receive polarity

(1)> 2 <- for Normal output type

UART>(0) <- to UART list macros
UART>(2) <- to start UART monitor

SANS SEC556 | loT Penetration Testing 54

Serial Example (1)
In this example, we configure the Bus Pirate to use UART mode, and set N81 with 115200 data rate, giving us
an interactive serial terminal for both sniffing and interaction.

54 © 2021 SANS Institute

Serial Example (2)

UART/RaspberryPi

$ screen /dev/ttyS0 115200 <- Select port and baud rate per system/UART adapter

Logic analyzer gui 0 _ ° co 0 L AL ar
rep LTI @ |m, ‘ e

USB PD

(BRI UART: TX
. el 1 1 1)
Or command line

$ sigrok-cli -d fx2lafw --time 10000 --channels DO=RX --config samplerate=lm -P
uart:baudrate=115200: format=ascii

SANS SEC556 | loT Penetration Testing 55

Serial Example (2)
Using the Raspberry Pi in similar fashion to the Bus Pirate is quite simple with the screen utility. We just need

to define the default Pi serial port and a speed.

For the least impactful sniffing we’d want to use a logic analyzer. With the Sigrok GUI, after capturing data (1),
we apply a decoder (2), select UART (3) and then observe the recovered data (4).

Alternatively, we can obtain text output from the command line, by applying a decoder as well. With the logic
analyzer it is a read only operation with no interactivity.

© 2021 SANS Institute 55

Technet24

Serial Peripheral Interface or SPI
* Developed by Motorola in the 1980’s
 Synchronous serial communication
* Full duplex

Speed determined by clock

SANS SEC556 | loT Penetration Testing 56

SPI

We’ve discussed that serial is often popular for communicating on board between components. More often than
serial, is an improved Serial Peripheral Interfaces, or SPI. Originally developed my Motorola in the 1980 in
order to support full duplex serial communication in a synchronous manner, allowing for multiple devices to be
enabled on a bus, the overall bus speed determined by built in clock timing.

We can sniff SPI and perform direct chip interaction. Interfacing with flash memory can be done over JTAG,
but it is much faster directly with SPI.

56 © 2021 SANS Institute

SPI Architecture
Independent

Daisy Chain

SCLK »| SCLK
SCLK » SCLK SPI MOS! » MOSI SPI
MOSI » MOSI SPI Master MISO « MISO Slave
SPI MISO |« MISO Slave 5 » SS
Master SS1 » SS
52
>33 —>| SCLK
mq » MOSI SPI
g D10 S MISO Slave
MISO Slave » 3s
»| 55
—»| SCLK
| scLk
» MOSI SPI » MOSI SPI
MISO Slave MISO Slave
> 55 > SS
SANS SEC556 | loT Penetration Testing 57
SPI Architecture

SPI features 2 different architectures, independent and daisy chain.

In the independent architecture, each subordinate device has a dedicated SerialSelect (SS) line to the main
device and a bus of the input output lines. If the main device needs to communicate with any particular serial
endpoint, it activates the individual line by setting it high (enabled with voltage). In the daisy chain architecture,
a single SS line is connected from the main to every serial endpoint, but the input and output lines cascade from
one serial endpoint to the next.

When possible, and enough SS pins are available, the independent architecture is the most common, and fastest.

© 2021 SANS Institute 57

Technet24

SPI Protocol

4-wire serial bus
» Master/Slave (Main/Secondary) architecture
* 2 architecture designs: Independent and Daisy chain

SCLK, MOSI, MISO, SS/CS/CE

* Serial Clock, Master(Main) Out Slave(Serial) In, Master(Main) In
Slave(Serial) Out, Slave(Serial) Select/Chip Select/Chip Enable

SANS SEC556 | loT Penetration Testing 58

SPI Protocol

Where traditional serial connections use 3 wires, in that they are point-to-point, the addition of the 4th wire
supports the selection of which chip is enabled for communication on the SPI bus. As shown in our previous
slide, the SPI bus can have two architectures; independent addressing and daisy chained.

The four lines for communication are SCLK, or the serial clock that sets the speed for the communication,

MOSI, or main out serial in (TX, MISO or main in serial out (RX), and SS/CS/CE, or serial select, for selecting
the destination from main.

58 © 2021 SANS Institute

SPI Interaction

Specialized hardware
* Bus Pirate
* RasperryPi
* GreatFET
Software
* Flashrom on RaspberryPi
* GoodFET client apps

Sniffing with Logic Analyzer

SANS SEC556 | loT Penetration Testing 59

SPI Interaction

There are many options for interacting with SPI, some more robust, some easily obtainable. The Bus Pirate,
GreatFET and RaspberryPi are all readily available and affordable, while interaction via the Bus Pirate and
GreatFET are quite mature in their offering, the RaspberryP1i is the newcomer to the game. Even though the
Raspberry Pi interaction is less mature, the flashrom utility is quite robust and easy to use!

Depending on the platform used we’ll access them with either a separate serial interface for the Bus Pirate or
control with custom apps, for the GreatFET of GoodFET, and flashrom for the Raspberry Pi.

It is possible to monitor/sniff SPI communications, with OpenOCD in similar fashion to that with serial, by
providing a different decoder.

© 2021 SANS Institute 59

Technet24

Connecting to SPI with Bus Pirate

h—

+3V3 1Cs Vee 8
ADC

250 HOLD 7
AUX
MOS! 3 wp SCK 6
MISO 4 Vss SI 5

SANS SEC556 | loT Penetration Testing 60

Connecting to SPI with Bus Pirate
In this course we’ve chosen to utilize the Bus Pirate to interact with SPI because of its maturity, ease of use for
recovering firmware and its overall availability, and its suitability for other tasks.

The Bus Pirate is quite easy to connect to the identified SPI ports using the color-coded Bus Pirate cable to the
appropriate serial pins. While the cable colors may not match, we can use Dupont wires to perform the same

connectivity.

In this case, we’ve shown a common SPI serial enabled chip pins, but our actual implementation may be
different.

60 © 2021 SANS Institute

Connecting to SPI with Raspberry Pi

MM

SEC556 | loT Penetration Testing 61

Connecting to SPI with Raspberry Pi
Additionally, the GPIO pins on the Raspberry Pi can be used to interact with SPI.

The Raspberry Pi is quite easy to connect to the identified serial ports using the color-coded Dupont wires to the
appropriate SPI pins. While the cable colors may not match, we can use Dupont wires to perform the same
connectivity. Note that the diagram has the SPI pin ”purple” connected to pin 23 on the Pi, where “brown” is

connected to pin 6 on the Pi.

In this case, we’ve shown a common SPI chipset pinout, but our actual implementation might be different.

© 2021 SANS Institute 61

Technet24

SPI Example

Bus Pi

. .<menus

[3 0
A <-
[6]

[2 0

MM

rate

trimmed for brevity>...

to change the mode

for SPI mode

set speed to 250 kHz

for clock polarity idle low (default)
output clock edge active to idle (default)
input sample phase end

/CS (default)

output type normal (H=3.3V, L=GND)

to turn power supply on

0 r:5] <- Read five bytes

set AUX to HIGH, therefore /WP to HIGH, disabling write-protect

<- Set write enable (WREN)
012 3 4 5] <- Write five bytes

SPI Example
In this example we use the Bus Pirate interface over a serial port to read a few bytes and write a few bytes. In

order to dump a full SPI chip to recover firmware, we’ll need some scripting.

© 2021 SANS Institute

SEC556 | loT Penetration Testing 62

Flash Recovery/Dumping SPI

Bus Pirate can dump using SPI flash in an
automated fashion with flashrom

Instead of individual read/write commands, 23 SCK
flashrom can dump the entire contents at once = Do
« Define driver, device, bus/read speed, and output ' o
flle 17 VCC 3.3V (+ /HOLD, /WP)

$ flashrom -p buspirate_spi:dev=/dev/ttyUSBO,spispeed=1M -r spidump.bin

SANS SEC556 | loT Penetration Testing 63

Flash Recovery/Dumping SPI
Using the Raspberry Pi and flashrom, it is quite easy to dump the entirety of the SPI flash chip. We define the
Linux SPI driver, define the device to use the appropriate GPIO pins, the speed and the output file.

In order to use SPI on the Raspberry Pi, we need to enable the functionality first using raspi-config.

sudo raspi-config

Select “Interfacing Options” :

Highlight the “SPI” option and activate “<Select>".

Select and activate “<Yes>":

Highlight and activate “<Ok>" :

When prompted to reboot highlight and activate “<Yes>" :
The Raspberry Pi will reboot, and the interface will be enabled.

Alternatively, we can add some additional configuration options to the bottom of /boot/config.txt:
dtparam=spi=onUse sudo reboot.

© 2021 SANS Institute 63

Technet24

Several common interface types, Serial, JTAG, SPI
Discovering the unknown with JTAGulator
Many interfacing options, Bus Pirate, Raspberry Pi, logic analyzer

Purpose built tools/software a robust option

SANS SEC556 | loT Penetration Testing 64

Summary

In this module we reviewed the technology behind three common hardware interfacing options, for serial, JTAG
and SPI. Of those connection types we learned about several hardware tools for connecting to them: While
there are more expensive, purpose-built tools for interfacing with many of the identified connection methods, we
also find that our arsenal can have more readily available, inexpensive options.

These common options include the multi-purpose Bus Pirate for Serial, JTAG, and SPI interaction, but we also
encountered the Raspberry Pi for the same. Additionally, we observed where the use of a logic analyzer is
helpful for observing data in transit, without an ability to interact.

64 © 2021 SANS Institute

Exercise: Sniffing Serial and SPI

Using your lab book, complete the exercise, Sniffing Serial and SPI.

SANS SEC556 | loT Penetration Testing 65

This page intentionally left blank.

© 2021 SANS Institute 65

Technet24

Course Roadmap

I. Background and Importance
Introduction to IoT Network Opening the Device

Traffic and Web Services 3. Examining and Identifying Components
Exercise: Obtaining and Analyzing Specification Sheets

B

4. Discovering and Identifying Ports

Exploiting IoT Hardware 5. A Soldering Primer
Interfaces and AnalyZlng 6. Sniffing, Interaction, and Exploitation of
Firmware Hardware Ports

Exercise: Sniffing Serial and SPI

. . L 7. Other Ways of Recovering Firmware
EXplOltll’lg Wireless IoT: Wi-Fi, Exercise: Recovering Firmware from PCAP

BLE, Zigbee, LoRa, and SDR 8. Firmware Analysis

Exercise: Recovering Filesystems with Binwalk

9. Pillaging the Firmware
Exercise: Pillaging the Filesystem

SANS SEC556 | loT Penetration Testing 66

This page intentionally left blank.

66 © 2021 SANS Institute

Firmware Delivery

Firmware for IoT devices can come in one of several ways:
* Vendor website!
* Downloads over HTTP/HTTPS
» Auto-update functions from the device
* Download plus update "push’ over telnet/tftp/other insecure protocol

When not publicly available, firmware files are often delivered in an insecure fashion

SANS SEC556 | loT Penetration Testing 67

Firmware Delivery

Accessing a fresh copy of firmware can simplify firmware analysis. In some cases, this is as simple as grabbing
a copy of the firmware from GitHub, or the vendors website.

In other cases, we may need to grab the firmware via other means. Firmware may be sent over insecure
protocols such as HTTP, FTP, TFTP, etc. which gives us an opportunity to retrieve a copy of this firmware over
the air - if we set up a capture environment in advance!

© 2021 SANS Institute 67

Technet24

Wireshark for Firmware Carving

firmware-download.pcap
File Edit View Go Capture Analy Statistics Telephony Wireless Tools Help
Al @ £t TRE a ¢ > 0« | o e o
I[A:wc:h‘ a display filter ... <Ctrl-/> =3 - Expression... +
No. Time Source Destination Protocol Length Info
1 0.6000600 5 .10.74 E 8 TLSv1.2 7493 Application lication Data, A
2 6.800055 192.168.231.136 172.217.10.74 TCP 54 58184 - 443 [ACK] Seq=1 Ack=7448 Win=59866 Len=0
3 0.001178 172.217.10.74 192.168.231.136 TLSv1.2 4308 Application Data, Application Data, Application Data
4 0.801248 192.168.231.136 172.217.18.74 TCP 54 58184 - 443 [ACK] Seq=1 Ack=11694 Win=561320 Len=0
5 0.002347 172.217.10.74 192.168.231.136 TLSv1.2 4368 Application Data, Application Data, Application Data
6 8.882373 192.168.231.136 172.217.18.74 TCP 54 58184 - 443 [ACK] Seg=1 Ack=15948 Win=58400 Len=0
7 ©.804538 172.217.10.74 192.168.231.136 TLSV1.2 378 Application Data
8 6.004573 192.168.231.136 [y 172.217.10.74 TCP 54 58184 - 443 [ACK] Seq=1 Ack=16272 Win=58460 Len=0
! 9 8.888125 192.168.231.136 172.217.18.74 upp 1399 38384 - 443 Len=1357
| 1A A _A13T712 172.217.1A4.74 192 1AR. 231 .13R TiSwl .2 1472 Annliration Data

» Frame 1: 7493 bytes on wire (59944 bits), 7493 bytes captured (59944 bits)

» Ethernet II, Src: Vmware fl:bl:ee (00:50:56:f1l:bl:ee), Dst: Vmware 76:67:13 (00:0c:29:76:07:13)
¢+ Internet Protocol Version 4, Src: 172.217.10.74, Dst: 192.168.231.136

» Transmission Control Protocol, Src Port: 443, Dst Port: 58184, Seq: 1, Ack: 1, Len: 7439

» Secure Sockets Layer

We'll find this firmware in the next lab!

SANS SEC556 | loT Penetration Testing 68

Wireshark for Firmware Carving

The amazingly capable protocol parsers in Wireshark allow for us to identify files being transmitted in a
network capture and allow us to readily extract it.

68 © 2021 SANS Institute

Tshark for Firmware Carving

Like Wireshark, its cousin Tshark can help us find objects in a pcap
as well

+ Just add —export-objects for some automation

$ tshark —-Q -r firmware-download.pcap —export-objects

We'll find this firmware in the next lab!

SANS SEC556 | loT Penetration Testing 69

Tshark for Firmware Carving

Tshark, Wireshark’s text-based cousin, can also help us extract objects from a packet capture for analysis as
well.

© 2021 SANS Institute 69

Technet24

Wireshark Process for Firmware Carving

Edit View Go Capture Analyze Statistics Telephony Wire Wireshark - Export - HTTP object list V) (~
Open ctri+0 = . B
Open Recent J Dt = Packet ~ Hostname Content Type Size Filename
126 ocsp.pki.goog application/ocsp-request 84 bytes gts1olcore
Merge... 285 ocsp.pki.goog application/ocsp-response 472 bytes gts1o1core
Destination 192.168.10.68 application/octet-stream 10 MB FosIPC_N app ver2.x.2.20.bin
Import from Hex Dump... 1820 ocsp.pki.goog application/ocsp-request 84 bytes gts1c3
Close Crri+w 102.168.231 1822 ocsp.pki.goog application/ocsp-response 472 bytes gts1c3
192.168.16. 1852 ocsp.pki.goog application/ocsp-request 84 bytes gts1c3
i 102.168.231 1858 ocsp.pki.goog application/ocsp-response 472 bytes gts1c3 2
Save As... Ctrl+Shift+s . .
= 142.250.64.
File Set *l 192.168.231
Export Specified Packets... %gg ‘ izg : ggl Wireshark- Save Object As...
- i 2 . Nome: (ZEZITITRZERERE bin
Export Packet Dissections »
—
i Export Packet Bytes... Ctrl+shift+x | : :o’:: » Lt Aeecsss RS =
oo iame ~ size odified
Export PDUs to File... }, 4408 bytes c mopaps) N awayhash samytes Tu!efdiy
Iway.pcaj ki
Export 55L Session Keys... :29:76:07:13) + Other Locations : :\rm:«:rz:owv\{oad.pup T O
Export Objects oo | B pmkdd paap $26bytes wed
Print... Ctrl+p | — 1 \
Quit Ctrl+Q ' 3
’ . .
We'll find this firmware in the next lab!
SANS SEC556 | loT Penetration Testing 70

Wireshark Process for Firmware Carving

In Wireshark, once you validate the protocol used to distribute the firmware, you can use the Wireshark ‘Export
Objects’ functionality to identify the objects sent over that protocol and select the ones of interest to download.

70 © 2021 SANS Institute

Firmware is not always available as a direct download

Network capture and extraction helpful

SANS SEC556 | loT Penetration Testing 71

Summary

In this module we learned about other ways to capture firmware when it is not readily available from the
manufacturer’s website if we can observe an update. If we can observe the update and capture network traffic,
it may be possible to extract the firmware from the network capture.

© 2021 SANS Institute 71

Technet24

Exercise: Recovering Firmware from PCAP

Using your lab book, complete the exercise, Recovering Firmware
from PCAP.

SANS SEC556 | loT Penetration Testing 72

This page intentionally left blank.

72 © 2021 SANS Institute

Course Roadmap

Introduction to IoT Network
Traffic and Web Services

Exploiting IoT Hardware
Interfaces and Analyzing
Firmware

Exploiting Wireless IoT: Wi-Fi,
BLE, Zigbee, LoRa, and SDR

MM

This page intentionally left blank.

SECTION 2

I. Background and Importance

B

Opening the Device

3. Examining and Identifying Components
Exercise: Obtaining and Analyzing Specification Sheets

4. Discovering and Identifying Ports

5. A Soldering Primer

6. Sniffing, Interaction, and Exploitation of
Hardware Ports

Exercise: Sniffing Serial and SPI
7. Other Ways of Recovering Firmware
Exercise: Recovering Firmware from PCAP
8. Firmware Analysis
Exercise: Recovering Filesystems with Binwalk
9. Pillaging the Firmware
Exercise: Pillaging the Filesystem

SEC556 | loT Penetration Testing 73

© 2021 SANS Institute 73

Technet24

Every computing device needs:
* Operating instructions (OS)
» Storage for applications
* System memory

Storage and memory Xrovided by the
hardware in RAM and Flash

Storage populated with OS, Filesystem by
firmware
Bootloader provides base instruction set
¢ Initializes hardware, similar to CMOS, uEFI
* Points to location of kernel, filesystems

S AN.S SEC556 | loT Penetration Testing 74

Firmware?

Every computing device requires a few components to operate; Operating instructions in the form of an
operating system, some disk storage for the OS and applications, and system memory. In this case, [oT devices
are no exception!

The disk storage in out IoT devices is often found in the form of flash memory and it mor permanent in nature.
System memory, if found in the form of flash and is typically transient in nature. In IoT these are both found on
the board as an IC. Specifically, the static, permanent storage is populated with a bootloader, Operating System,
and a file system These are provided my one or more files, as a “firmware image”.

In this firmware image is the special bootloader, which initializes the hardware, in a similar fashion to BIOS or

uEFI on modern desktop/laptop systems. This boorloader provides basic instruction to the CPU for hardware
and to find the load points for the OS and kernel.

74 © 2021 SANS Institute

Typically, firmware is delivered as a file comprised
of one or more disk structures.

Often structured filesystem with OS, storage

A single “blob” with disk partitions, OS,
Applications

Contains everything needed for device operation

Obtaining a firmware image gives us hands on to a
device.
» Minus the hardware, but the operating environment
 “Physical” access is “game over”

SANS SEC556 | loT Penetration Testing 75

Firmware!

We find that manufacturers, regardless of [oT devices provide a single, monolithic firmware image comprised of
multiple disk structures. These disk structures are often divided into separate partitions, for OS, read/write
partitions and even bootloader.

The single file blob, with those filesystems often with different formats will contain the OS, applications for
operations and everything it needs for operation, including configuration and stored secrets.

If we can obtain copies of the firmware, it is effectively giving us access to a snapshot of a system, minus the
hardware. In the traditional IT world, this gives us physical access to the system, which is typically, game
over”, granting access to all the secrets on the system. Therefore, obtaining access to firmware from a running
device via JTAC, SPI or I12C is extremely important.

© 2021 SANS Institute 75

Technet24

Firmware Analysis

With a full OS and applications, we can discover issues in
implementation.

We don’t even need to boot up the OS.

Extract filesystems, mount, and explore ?
* Potential opportunity to modify and reload.
Discover all manner of security failures.
* Web interface authentication issues, RCE o
* Application and script failures
=
-

* Backdoor accounts
« Storage or private keys, certificates

Each device will have its own unique issues.

SANS SEC556 | loT Penetration Testing 76

Firmware Analysis

If we obtain firmware, we get access to the running system where we can observe implementation and security
issues. We can begin examining the OS without even booting up; booting, even in a virtual environment
introduces a whole host of challenges from missing hardware to CPU architecture mismatches and more.

Instead, the single blob file can be broken down into its constituent parts. If we extract the file systems, we can
mount them as a disk, examine the contents and even with the possibility of performing modification and
reinsert the modification into the firmware and reload it back to the device.

With the filesystem analysis, we are afforded the opportunity to discover all sorts of implementation failures in

the operating system, utilities, and custom application; from eeb app issues, with command execution and RCE,
to application and custom script manipulation issues, and all manner of authentication issues.

76 © 2021 SANS Institute

Extraction and Verification

After decompression, extraction

Some images are delivered as a compressed files
Z1P, LZMA, etc.
Manual extraction required l
» Many do not indicate type of compression
» Manual analysis of magic numbers needed

S file firmware.bin

firmware.bin : u-boot legacy uImage, jz fw, Linux/MIPS, Firmware Image (Not compressed),
11075584 bytes, Tue Sep 10 08:49:03 2019, Load Address: 0x00000000, Entry Point:
0x00000000, Header CRC: 0x59B3A1D8, Data CRC: 0xCD7CAB52

S AN.S SEC556 | loT Penetration Testing 77

Extraction and Verification

Some firmware images that we acquire for analysis are compressed in order to make the file transfer to the
device faster/smaller at time of flashing or update. Once uploaded to the device, the update process will extract
the firmware.

We typically don’t know that the image is compressed, and most end users don’t care. It only becomes a hurdle
in performing the analysis and extraction of the individual filesystems. The compression can be any one of the
common types, including zip/gzip, bz2, 1zma, tgz, etc.; however, we usually don’t know the type by file
extension. If we are extracting the filesystems, we are left to discover the compression time on our own. This
discovery can be performed with the file magic numbers which indicate file type. The file command knows
about whole host of magic numbers and can easily perform that analysis, giving us an indicator for tooling to
use to perform the decompression.

Once decompressed, we can extract the filesystems and begin the hunt.

© 2021 SANS Institute 77

Technet24

Zip Password Brute Force with Hashcat (1)

Hashcat with GPU acceleration is much faster than fcrackzip
(if it works at all)

Requires diligent identification of ZIP application type
Application of hashcat’s mask attack methods

Extract zip file hashes with zip2john

» Adding some command line text processing for proper hashcat
formats

$ zip2john firmware.zip | cut -d ':' -f 2 > zip hashes.txt

SANS SEC556 | loT Penetration Testing 78

Zip Password Brute Force with Hashcat (1)

On limited occasions, especially with more secrets conscious manufacturers, the zip file could be protected with
a password. This password would be known to the hardware device, in the form of the previously installed
operating system. This provides a dependency (or chicken and egg) problem: the decompression password is
stored in the firmware protected by that password.

These passwords are often not easily guessable, so some application of force is required. We can apply some
brute force with hashcat, with either GPU or CPU based password guessing. Using the power of the hashcat
mask based brute force attacks.

We do need to do a little work up front in order to guess some passwords! First, we need to extract some hashes
from the zipfile using zip2john and pass it to cut to obtain appropriate output for hashcat. Unfortunately, (?)
hashcat recognizes more than a dozen password protected zip file formats. We either need to know much more
detailed information about the zip format or perform several operations to guess.

78 © 2021 SANS Institute

Zip Password Brute Force with Hashcat (2)

Application of Hashcats’ mask attack

methods

Character Sequence

2

$ hashcat -m 17200 -a 3 zip hashes.txt "?a?a?a?a?a?a?a?a"

MM

abcdefghijkimnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
«space»!"#$%&' () +,-./;<=>1@[\]*_{|}~
22u?d?s

0123456789abcdef
0123456789ABCDEF

Zip Password Brute Force with Hashcat (2)
In order to perform mask attacks, with hashcat we need to make some educated guesses about length of the
password, as well as the character set used. In this example we’ve elected to use a common PKZIP format

(17200) with an 8-character, lower case password.

© 2021 SANS Institute

11600
17200
17220
17225
17230
17210
20500
20510
23001
23002
23003
13600

o e

7-Zip

PKZIP (Compressed)

PKZIP (Compressed Multi-File)

PKZIP (Mixed Multi-File)

PKZIP (Mixed Multi-File Checksum-Only)
PKZIP (Uncompressed)

PKZIP Master Key

PKZIP Master Key (6 byte optimization)
SecureZIP AES-128

SecureZIP AES-192

SecureZIP AES-256

WinZip

SEC556 | loT Penetration Testing 79

79

Technet24

Manual Filesystem Extraction

Unix dd used for file carving
« ifis the input file
* of is the output portion
* bs is the block size, 1 byte used for simplicity and accuracy
» skip is the start position
* count is the number of bytes to extract (end minus start)

$ dd if=firmware.bin of=jffs.bin bs=1 skip=808032656 count=17579298416239

Wouldn't it be nice if this was automated for us?

SANS SEC556 | loT Penetration Testing 80

Manual Filesystem Extraction

If we crack the password, or start with an unprotected firmware, we need to start separating the parts;
bootloader, and filesystems. We can use the dd command to perform the slicing of the firmware into its parts.
We need to specify a few options:

* if’is the input file

* ofis the output portion

* bs is the block size, 1 byte used for simplicity and accuracy
* skip is the start position

* count is the number of bytes to extract (end minus start)

I n this case we have chosen to you 1-byte block size to make out math easy, however it significantly slows
down the process. In addition, we need to know the start and end points and any built-in length indicators.

80 © 2021 SANS Institute

Manual extraction is tedious and subject to false negatives
Wouldn’t some automation and better accuracy be welcome?

Binwalk from ReFirmLabs and Craig Heffner bring the real magic!
* Blob scanning for magic numbers -
« Automatic file extraction, or manual with dd P ﬁm
» Automatic decompression (where possible)
* Filesystem extraction
 Entropy analysis
 Python API for extensibility, IDA Plugin

P

—
—

—
p—

SANS SEC556 | loT Penetration Testing 81

Binwalk

Our manual extraction of file systems if fraught with possibility for errors and omissions, aka false negatives.
Not to mention it is lots of tedious, manual work. Any improvements in speed and accuracy are welcome in this
process.

On too so drastically improve firmware filesystem extraction is Binwalk from ReFirmLabs and Craig Heffner
(aka devttys0). Binwalk is amazingly capable for improving accuracy and speed with

Automatic scanning for magic numbers.

File extraction in an automated fashion, or manual with dd.
Automatic decompression.

Extraction and separation of filesystems into individual files.
Entropy analysis to examine for encrypted blobs.

Extensibility through a Python API and integration with IDA.

© 2021 SANS Institute 81

Technet24

Signature Scan h Binwalk

Binwalk can perform basic scanning of firmware
Discovers file headers and offsets for use with dd

S binwalk camera-firmware.bin

DECIMAL HEXADECIMAL DESCRIPTION

0 0x0 ulmage header, header size: 64 bytes, header CRC:
0x59B3A1D8, created: 2019-09-10 08:49:03, image size: 11075584 bytes, Data Address: 0x0,
Entry Point: 0x0, data CRC: 0xCD7CAB52, OS: Linux, CPU: MIPS, image type: Firmware Image,

compression type: none, image name: "jz fw”
<output trimmed for brevity>
2097216 0x200040 Squashfs filesystem, little endian, version 4.0,
compression:xz, size: 3353204 bytes, 407 inodes, blocksize: 131072 bytes, created:
6225984 0x5F0040 JFFS2 filesystem, little endian
SANS SEC556 | loT Penetration Testing 82

Signature Scanning with Binwalk

Partially automating this process is the use of Binwalk without any options to perform signature scanning.
Signature scanning reveals the various components in the firmware blob. Binwalk will indicate the found “part”
and the start and end offsets.

Discovery of the offsets allows us to use dd to perform manual filesystem extraction but removes much of the
guesswork.

82 © 2021 SANS Institute

Extraction with Binwalk

Automatic extraction of files and filesystems
Bootloaders, filesystem images/disks
Individual files, directory reconstruction with file paths

$ binwalk --extract camera-firmware.bin

DECIMAL HEXADECIMAL DESCRIPTION

0 0x0 ulmage header, header size: 64 bytes, header CRC:
<output trimmed for brevity>

2097216 0x200040 Squashfs filesystem, little endian, version 4.0,
compression:xz, size: 3353204 bytes, 407 inodes, blocksize: 131072 bytes, created:
6225984 0x5F0040 JFFS2 filesystem, little endian

S 1s

camera-firmware.bin camera-firmware.bin.extracted

SANS SEC556 | loT Penetration Testing 83

Extraction with Binwalk

If we add the --extract option to Binwalk, it will utilize the automatic component discovery, passing the offsets
to dd in order to perform automatic extraction of all components. The resulting output is a directory ending in
.extracted with all of the extracted components, ripe for our exploration.

This action will recover bootloaders filesystems and other components. If filesystems are discovered, the
filesystems contents will also be extracted, and placed in the original directory structure from the recovered
filesystem.

© 2021 SANS Institute 83

Technet24

Binwalk Pro

Cloud-based, subscription driven version of
Binwalk

+ Supports open-source release and development
* Very affordable for additional features

Improved file detection, encryption, and
filesystem handling

Solid investment if firmware lots of analysis
is performed

Binwalk Pro is conspicuously absent after ReFirm Labs was purchased by

Microsoft in June of 2021.We eagerly await its epic return!

S AN.S SEC556 | loT Penetration Testing 84

Binwalk Pro

Binwalk Pro is a cloud hosted version of Binwalk based around a commercial subscription model. This
subscription model with enhanced features, such as improved filesystem detection, automatic decryption, and
better overall firmware file component detection, helps drive and support the open-source version.

It is the author’s opinion that the overall cost of Binwalk Pro is quite affordable, especially if one spends a lot of
time performing firmware analysis/.

84 © 2021 SANS Institute

Entropy Analysis

Entropy analysis can help reveal file types

Compressed images, encrypted files have a different distribution of
characters

Automation of certificate discovery, ssh keys, LZMA, and ZIP
compressed images

SANS SEC556 | loT Penetration Testing 85

Entropy Analysis

Entropy analysis is a valuable tool for locating all sorts of fun parts within our firmware. By performing a
statistical analysis of the character distribution encrypted, and compressed components tend to stand out! With
normal ”text” there is a character distribution that has some overly high counts; think about chat game show
where you pick words at the final challenge: N, R, S, T, L, E because they are used in higher distribution.
However, in a compressed or encrypted format, there is an even distribution of characters. This distinct change
makes it easy to identify those unusual/fun components, from ssh keys, compresses filesystems or images, and
even webserver certificates.

© 2021 SANS Institute 85

Technet24

Entropy Analysis with ENT

S ent camera-firmware.bin
Entropy = 7.403248 bits per byte.

Optimum compression would reduce the size
of this 11075648 byte file by 7 percent.

Chi square distribution for 11075648 samples is 50333367.77, and randomly
would exceed this value less than 0.01 percent of the times.

Arithmetic mean value of data bytes is 140.7984 (127.5 = random) .
Monte Carlo value for Pi is 2.714056408 (error 13.61 percent).
Serial correlation coefficient is 0.350399 (totally uncorrelated = 0.0).

SANS SEC556 | loT Penetration Testing 86

Entropy Analysis with ENT

ENT is a great tool for evaluating individual files for the statistical distribution of characters within the file. In
this fashion it is great for helping to determine the presence of encryption or compression of overall firmware
images or separated disk images. Unfortunately, ENT is not good at identifying individual files within an
overall disk image.

86 © 2021 SANS Institute

Entropy Analysis with Binwalk

S binwalk -E camera-firmware.bin

DECIMAL HEXADECIMAL
0 0x0

1859584 0x1C6000
2097152 0x200000
5451776 0x533000
5574656 0x551000
6139904 0x5DB000
6225920 0x5F0000
9670656 0x939000

MM

Entropy Analysis with Binwalk

ENTROPY

Rising entropy edge (0.994618)
Falling entropy edge (0.093710)
Rising entropy edge (0.991917)
Falling entropy edge (-0.000000)
Rising entropy edge (0.996314)
Falling entropy edge (0.638690)
Rising entropy edge (0.956936)
Falling entropy edge (0.349518)

Entropy

X 10
Offset le7

SEC556 | loT Penetration Testing 87

On the contrary to ENT, Binwalk can also perform entropy analysis, but by examining a filesystem or firmware
images, noting the points in which entropy changes as we progress through the file. Binwalk when provided the
-E flag will observe and record within our source file the points in which the entropy calculations change state.
These positions can be provided to dd, in order to split out the parts with low entropy, indicating encrypted,
compressed, or key content, so that we perform additional analysis, with other utilities such as file or a text

editor such as vi.

© 2021 SANS Institute

87

Technet24

QNX

Many analysis tools focus on Linux -based firmware.
« Binwalk, others can extract QNX filesystems so not all is lost!

QNX is Linux-like but with a microkernel.

RTOS-based operating system

Highly stable, but harder to implement

Commercial license, support from RIM/BlackBerry Limited
Filesystems can be Linux-like, or ETFS.

Extracted QNX filesystems have a different look and feel.
 The data is all there, just in a different layout.
« A little more hunting needed for what we expect under *nix

SANS SEC556 | loT Penetration Testing 88

QNX

We spend much of our focus on Linux-based firmware, but there are many others out there, including the very
common RTOS, QNX. Many of the tools we encounter do focus on Linux, largely because of the easy of entry,
and the cost (free!) and familiarity with many implementers. QNX has a higher barrier to entry, in that it is
commercially licensed, and is a quite complex build chain.

QNX can have Linux like filesystems (or ETFS, which is different altogether!), but is arguably more stable and
features a microkernel (as opposed to the Linux monolithic kernel).

QNX is easily analyzed with Binwalk! The resulting output filesystems feel different, but all of the similar type
of secret data we are often after is there. With a different layout to the filesystem than Linux, we just need to do

more digging than normal.

More information on the QNX internals can be found at the QNX developers' site at
http://www.qnx.com/developers/docs/6.5.0/index.jsp?topic=%2Fcom.qnx.doc.neutrino_sys_arch%2Ffsys.html.

88 © 2021 SANS Institute

QNX with Binwalk

$ binwalk —--extract QNX-SUV-firmware.bin

DECIMAL HEXADECIMAL DESCRIPTION

10524882 0xA098D2 gzip compressed data, has 6494 bytes of extra data, last
modified: 2017-11-10 14:05:28

239486536 0xE464648 eCos RTOS string reference: "ecos.ans"

292262475 0x116B924B MySQL ISAM index file Version 11

345045969 0x1490FBD1 MySQL ISAM compressed data file Version 3

400680632 0x17E1E6B8 ONX6 Super Block

451053654 0x1AE28856 MySQL ISAM index file Version 1

<output trimmed for brevity>...

SANS SEC556 | loT Penetration Testing 89

QNX with Binwalk

In similar fashion to a Linux based firmware, Binwalk can do automatic detection of QNX firmware. In this
example passing the --extract option to bin walk with a firmware, it can automatically extract QNX filesystems
for us to explore.

© 2021 SANS Institute 89

Technet24

Firmware analysis gives us a look at the OS of a device when we
don’t have physical hardware

Several tools for extraction, analysis, entropy analysis

SANS SEC556 | loT Penetration Testing 90

Summary

In this module we examined the value in obtaining an offline copy of the operating software in the form of
firmware either from downloaded copies or retrieved from a device from hardware hacking. We reviewed
several tools for performing amazing analysis and deep dive and extraction of file system components.

Once extracted we can use our knowledge of *nix-based systems to explore. When we encounter QNX based
systems, we have tools to extract, but we may be left needing to explore the unknown.

90 © 2021 SANS Institute

Exercise: Recovering Filesystems with Binwalk

Using your lab book, complete the exercise, Recovering Filesystems
with Binwalk.

SANS SEC556 | loT Penetration Testing 91

This page intentionally left blank.

© 2021 SANS Institute 91

Technet24

Course Roadmap

I. Background and Importance

B

Introduction to IoT Network Opening the Device

Traffic and Web Services 3. Examining and Identifying Components
Exercise: Obtaining and Analyzing Specification Sheets
4. Discovering and Identifying Ports

Exploiting IoT Hardware 5. A Soldering Primer
Interfaces and AnalyZlng 6. Sniffing, Interaction, and Exploitation of
Firmware Hardware Ports

Exercise: Sniffing Serial and SPI

. . L 7. Other Ways of Recovering Firmware
EXplOltll’lg Wireless IoT: Wi-Fi, Exercise: Recovering Firmware from PCAP

BLE, Zigbee, LoRa, and SDR 8. Firmware Analysis

Exercise: Recovering Filesystems with Binwalk

9. Pillaging the Firmware
Exercise: Pillaging the Filesystem

SANS SEC556 | loT Penetration Testing 92

This page intentionally left blank.

92 © 2021 SANS Institute

Pillaging the Firmware

With the firmware, we have filesystem(s)
Filesystems distributed far and wide reveal secrets!
We just need to investigate with some educated guesses

Every implementation will be different!
* In some cases, we know right where to look
* Others, we are left guessing

Files system digging combined with some Linux experience is
invaluable

SANS SEC556 | loT Penetration Testing 93

Pillaging the Firmware

Once we’ve been able to obtain and extract filesystems from our firmware, we need to explore to find all sorts
of goodies. The problem with firmware is, that once it is distributed, with as a file, or on a device itself, these
secrets are now “in the wind” and are there to be discovered by parties with enough time and willpower.

Drawing upon previous experience with Linux, and often how and where configuration files are stored, we can
gain knowledge about the systems configuration and the secrets often required to keep them in operation. In
most cases, we will know right where to look for the standard configuration file or do a little digging to track
them down based on individual changes made by the manufacturer. Sometimes, especially when analyzing web
applications, custom scripts, and custom applications we need to dig a lot deeper. Digging deeper may leave us
with more questions than we answer, but with enough time and persistence, (and learning along the way) we can
figure everything out.

© 2021 SANS Institute 93

Technet24

Interesting Things to Look For

Having “physical” access to the disk image off device is almost as
good as having access to a running device!

Physical access is like having full access.

We just need to look in the right places! P ILI- H

Some are “obvious”, some not so much...

Access to a running system is always better for interaction. We may not have access, or
access to the device: firmware analysis is the next best thing!

S AN.S SEC556 | loT Penetration Testing 94

Interesting Things to Look For

If we can take an extracted file system from a firmware image and mount it much like we would a normal disk,
or analyze the directory output from Binwalk, is almost as having access to a running device. While there will
be no processes running, nor the ability to start them (without some forays into emulation) it effectively gives us
full access to the files system as if we were sitting in front of a console of the devices.

We just need to think logically about where we need to explore on the filesystem based on what we know about
the manufacturer, device functionality, and observed software from both use and network reconnaissance. With
these observations we can make educated guesses as to the types of things we should look for!

Firmware analysis is incredibly valuable when we cannot get access to a running system for interaction. A
running system, or a firmware image of one used in the wild are our best scenarios for finding the most issues,
recover real-world secrets, and observe the system after first startup post user interaction) setting of passwords,
configuring Wi-Fi, etc.,) are the best, default firmware from the manufacturer is the next best thing. As an
example, with default, unused firmware, we may not be able to observe user configured Wi-Fi networks and
their stored secrets; however, we should be able to examine default partially empty configurations and follow
the interactions and tools that are used to create the storage of the credentials. It will take more work to connect
the parts, and in some cases, we may be left guessing.

94 © 2021 SANS Institute

/etc/shadow, /etc/passwd

/etc/shadow and /etc/passwd are sources for user accounts and
password hashes

« /etc/shadow should be restricted from read by a regular user
 Limited information in /etc/passwd

Undocumented backdoor accounts?
Offline password cracking with JtR, Hashcat

Hacking like it is 1980: Many loT devices use world readable /etc/passwd
for password hash storage.

SANS SEC556 | loT Penetration Testing 95

/etc/shadow, /etc/passwd

In traditional, modern Linux systems, even those used on IoT devices, we find user account password hash
storage divided between /etc/passwd and /etc/shadow. While /etc/passwd is world readable by anyone, on
running systems /etc/shadow should be restricted for read by only root users; /etc/shadow are where the super-
secret user password hashes are stored!

This is a great place to begin our investigation, especially if we are doing “offline” analysis of firmware as this
can reveal user credentials for gaining access to love systems or even observing backdoor accounts. Of course,
the passwords here should be hashed, in /et]c/shadow, but with unrestricted access to the file system, the
traditional protections don’t apply. We can capture those hashes and perform some password cracking, with
ether a dictionary-based attack with JtR, or with some liberal application of brute force with hashcat.

To prove a point about the disturbing approach to security often found in IoT devices, this author has
encountered several occasions recently where the user passwords were stored in the /etc/passwd file.
Traditional Unix systems haven’t used this approach in decades, and the implementers likely had to change the
configuration of the system intentionally to make it weaker!

© 2021 SANS Institute 95

Technet24

JtR

Using /etc/shadow and /etc/passwd together to create hashlist for
JtR with unshadow.

$ unshadow passwd shadow > passwords.txt

$ john --wordlist=/usr/share/wordlists/rockyou.txt passwords.txt
<trimmed for brevity>

Remaining 2 password hash

Press 'q' or Ctrl-C to abort, almost any other key for status

O0Og 0:00:00:51 DONE (2018-08-06 14:10) 0g/s 27478p/s 27478c/s 27478C/s
7222222)..222222222222222

Session completed

$ john —--show passwords.txt

root:admin:0:0:sys:/dev:/bin/sh
reboot:reboot:1:1:sys:/bin/reboot

SANS SEC556 | loT Penetration Testing 96

JtR

In this example we are using JtR to perform a dictionary-based attack against some recovered password hashes.
In the first step aw need to use unshadow to combine out /etc/passwd and /etc/shadow files bac into one
monolithic file for use with JtR. In the case of poorly configured systems, with a single /etc/passwd file (and no
/etc/shadow), the use of unshadow is not needed.

96 © 2021 SANS Institute

S hashcat -m 500 -a 0 -o cracked.txt shadow
/us:l:'/share/wordligts/rockyou .txt MD5CRYPT?
<trimmed for brevity>

[sltatus [plause [blypass [clheckpoint [g]uit => s

/etc/shadow and

Session..........: hashcat
Status...........: Running /etc/passwd could
Hash.Type........: md5Scrypt, MD5 (Unix), Cisco-IOS 1 (MD5) use one of several
Hésh.Target......: hashes.txt types.VVeWe
Time.Started.....: Mon Aug 6 14:18:10 2018 (30 secs) h d5
Time.Estimated...: Mon Aug 6 14:21:08 2018 (2 mins, 28 secs) chosen md>crypt
Guess.Base.......: File (/usr/share/wordlists/rockyou.txt) @YPe SOo)bUt
Guess.Queue......: 1/1 (100.00%) could also be
Speed.Dev.#1l.....: 15816 H/s (7.84ms) @ Accel:256 Loops:125 types3200,7400
Recovered........: 5/7 (71.43%) Digests, 5/7 (71.43%) Salts 1800
Progress.........: 1648627/9845703 (16.74%) or, :
Rejected.........: 3059/1648627 (0.19%)
Restore.Point....: 234929/1406529 (16.70%)
Candidates.#1....: 9dH8eJEs -> 9notenler
HWMon.Dev.#1.....: N/A

SANS SEC556 | loT Penetration Testing 97
Hashcat

Alternatively, we can perform wordlist-based attacks with hashcat (or even brute force and mask-based attacks,
discussed earlier in this course). In this case, we are using the -o flag to specify the output file of cracked. txt
and our input file of shadow.

Unix password hash methods can take several different formats, and here we’re chosen type 500 for mderypt.
We can determine the hashing type by examining the format of the stored hashes; /etc/shadow passwords are
stored in the format of idsalt$hashed; the $id is the algorithm for storing the password:

1 is MD5 or hashcat type 500

$2a$, $2y$ is Blowfish or hashcat type 3200
5 is SHA-256 or hashcat type 7400

6 is SHA-512 or hashcat type 1800

© 2021 SANS Institute 97

Technet24

Ivar/lwww Contents

With traditional Apache and nginx installs /var/www is the default
location for webserver content, but large footprint for IoT.

Many deployments utilize built-in busybox for simplicity.
Both methods deliver web content from disk.
« But from where on disk?

Examining the content offline can yield remote attack
opportunities.

Depending on the device, we may be left hunting through the file system
for web interface content.

SANS SEC556 | loT Penetration Testing 98

/var/www Contents

With access to the file system, we can gain access to the contents and scripts for any web-based configuration
utilities. On full Unix systems with Apache or Nginx the webserver content is usually found in /var/www, but
the application of these webserver technologies if often too large of a footprint for our limited processing power
and capacity IoT devices. Typically, what we find instead of a traditional webserver server software is the
highly integrated, monolithic busybox, which is significantly smaller, and performs the function of many
common Unix utilities.

While a small webserver is great for implementation in [oT, it does mean that the implementer can specify their
own unique path for pwbserver content, if not in /var/www. By doing some quick filesystem searches, we

should be able to locate the web content if in a custom place somewhere on disk.

Once we’ve located, it we can analyze all of the web and script content for implementation failures.

98 © 2021 SANS Institute

Webserver Content Analysis

Analyzing web server content can reveal
« Web page names for attempting authentication bypass.
 Opportunities for remote command injection.
* Observation of authentication mechanisms.
* Device functionality without authentication.
 Backdoor accounts.
» Failure in device settings/application.
« Commands being sent to other components/custom applications.
* cgi-bin scripts.
Depending on firmware, the ability to modify/replace content

S AN.S SEC556 | loT Penetration Testing 99

Webserver Content Analysis
Once discovered, analyzing the webserver content can lead us to several implementation failures:

* Web page names for attempting authentication bypass — by observing the filenames that are used for
configuration, we can than attempt to access these pages prior to authentication. Typically, the filenames
would not be revealed to us until after authentication.

* Opportunities for remote command injection — by examining how user submissions are handled, we can
determine if it is unfiltered and how it may be passed to Unix commands, executing our own commands too.

* Observation of authentication mechanisms — with access to the authentication mechanism we can analyze it
for failures and other processing. This may require some RE of custom binaries.

* Device functionality without authentication — by examining the contents of the page contents, we can
determine capabilities and features of the device without actually interacting with one where we may not
possess credentials.

* Backdoor accounts- in combination with analysis of the authentication mechanisms, this may lead us to
discover hidden, backdoor accounts, outside of the normal authentication channels.

* Failure in device settings/application — finding custom apps and observing their interactions can reveal
implementation failures.

* Commands being sent to other components/custom applications — Observing of commands “hidden” in web
page code can reveal functionality and use of custom manufacturer tools, possibly providing other avenues
of attack or command injection.

* cgi-bin scripts — overall scripting for command injection, use of the underlying OS and custom binaries, or
even hard coded credentials can be used to expand the attack surface, wither with command line access, or
with access to the web interface.

Depending on the type of file system we are interacting with, it may be possible to replace or modify webserver
content and repackage it back into a good firmware, allowing us to obtain additional access.

© 2021 SANS Institute 99

Technet24

System Configuration in/etc.

The /etc directory contains configuration for many system services
and functionality.

A wealth of information on system configuration!

DHCP, DNS, system components
System authentication, webserver, SSH/Telnet
Wi-Fi networks, passwords

Other wireless configuration(s)

SAN.S SEC556 | loT Penetration Testing 100

System Configuration in/etc.

The overall set of system configuration files in the .etc., directory can provide a wealth of information about the
operation and installed/used components of the system.

In a number of cases, the author has observed unusual settings in the .etc.directory for system components, such
as hardcoded DNS servers, additional DHCP scopes, and even configuration and services enabled on unusual
ports for webservers, SSH and Telnet with alternative authentication mechanisms!

Additionally, configuration and keys for Wi-Fi and other wireless networks are also stored in plaintext
configuration in the /etc/directory as well. Recovering these credentials can expose those wireless networks to
additional, network-based attacks.

100 © 2021 SANS Institute

System Logs

System logging is great for system status.
* Good status for operating services and authentication
* Great when things fail
 Even better when too much logging is enabled

Don’t forget output from dmesg!

System logs work best from a running, active system, or firmware acquired from one!

SANS SEC556 | loT Penetration Testing 101

System Logs

While often small due to limited storage space, system logging output can be a wealth of information. It will
often tell us about authentication attempts on systems and other services in either syslog output or that from
dmesg. If nothing else, it can give us information about the running system, but best when it tells us about
things failing, or when the logging is overly verbose. It has been this author’s experience observing verbose
debug log messages from custom device apps, sending all sorts if useful data in plaintext, including connection
strings, usernames and passwords, and the application that raised the offending error.

Most manufacturers sanitize and remove logs before creating the default set of firmware. This makes logs from
default firmware useless. Logs are best observed on a running, actively-used system.

© 2021 SANS Institute 101

Technet24

Webserver Configuration

Much of the configuration of IoT devices is done via a web browser.

What is the configuration of the webserver?
* Filesystem paths
* Authentication? Basic auth?
» .htaccess?
» cgi-bin? Configured languages?

SANS SEC556 | loT Penetration Testing 102

Webserver Configuration

The webserver implementation and configuration cash offer us a host of additional details, including that darned
location of the webserver content directory! Also, it can tell us about the enabled languages used for cgi scripts
(php, nodejs, etc.,) which could allow us to more accurately target attacks and find implementation issues.

Finally, observing some configuration components, we can more accurately determine authentication types, and
or obtain access to additional credentials and file restrictions though examination of ./taccess files.

102 © 2021 SANS Institute

Private Certificates

Private webserver certificates are stored on the device.

« We have access to the device.
Are the certificates the same across every installed version of the
firmware

» Generated at creation time?

Are they unique per device, created on first boot?

Possession of webserver private certs provides for MiTM and traffic
decryption opportunities.

SANS SEC556 | loT Penetration Testing 103

Private Certificates

If we consider the webserver configuration, most of the modern web interfaces with implemented with HTTPS,
which requires some public/private certificate pairs. With access to the firmware, we may be able to recover the
private certificate, allowing us to decrypt traffic to and from the webserver. This may not be an issue right away,
as we should be able to capture our own traffic in plaintext from our system. But what if we could decrypt
someone else’s? Or use that certificate chain on own web server and act as a proxy to capture credentials.

Depending on the implementation the certificates may be static and distributed with the same one across every
firmware install. Shared keys across devices in the public across diverse organizations is not a good thing. A
better choice here would be to have unique keys which is hard to implement at time of manufacture, but easy to
do as part of an initial boot process, when installed by the end user.

© 2021 SANS Institute 103

Technet24

SSH Keys

User .ssh directory contains SSH configuration, public, and private
keys

Public keys great for placing on other devices for authentication
Authentication requires the private key

Are the SSH keys unique, generated on boot?

Many devices fail to remove the private key, granting access.

Shodan can find similar devices where SSH authentication may work using
the recovered private keys.

SANS SEC556 | loT Penetration Testing 104

SSH Keys
In similar fashion to webserver certificates, we can run into the same problem with SSH public/private keypairs.

These keypairs can be more readily be abused for authentication across hundreds of devices, especially if key
trust was implemented by the manufacturer. Again, here it is best for the manufacturer to generate unique keys
on boot, but many times the fail to do this and implement static keys.

104 © 2021 SANS Institute

Custom Scripts/Apps

Custom content is where many mistakes are made.
Extra functionality on the OS, privilege
* Looking for sudo bits!
Direct control of hardware components
Scripts as text are easy to parse, dissect
Custom apps require an operating environment or RE.

RE can reveal secrets, but no interaction with real hardware

SANS SEC556 | loT Penetration Testing 105

Custom Scripts/Apps

The hardest parts for us to analyze are the individual custom scripts and binaries included by the manufacturer.
These scripts and binaries are often used to control the hardware in some fashion and are custom to the device.
The scripts are easier to follow along with and determine functionality so that we can abuse the functionality of
the hardware, the binaries become much more difficult.

We won’t have the source code for the binaries, (unless the developers are embarrassingly sloppy) so we would
need to perform reverse engineering with IDA or Ghidra. This is not an easy task without deep, specialized
knowledge.

While we are at it, we should look for tools that escalate privilege or have the sudo bits set, so that if we can
access them through other means, say the web interface we can have complete control of the device.

© 2021 SANS Institute 105

Technet24

Other Firmware?

/
Individual chipsets with unique instruction
sets, storage

ESP8266, Arduino, TI CC430, ST72324 ...

Many of these left to IDA Pro, Ghidra for

deep RE NWS LMS6 radiosonde

: : with an ST72324J6T6

Conversion from hex to binary formats orocessor, identified as

may be needed for processing CPU type ST7->ST72324J6

in IDA Pro analyzing the
hexfile directly.

S6
I;:’rluusoNDE

* objcopy converts from Intel hex to binary for
use with other tools as needed.

S objcopy -I ihex -O binary radiosonde.hex radiosonde.bin

SANS SEC556 | loT Penetration Testing 106

Other Firmware?

What about all of the rest? We discussed Linux and QNX, but there are hundreds of different chipsets that use a
multitude of RTOS systems of various flavors. The disparate device chipsets have different IDEs, languages,
language interpreters and the list goes on. We are left to having to determine the platform and do reverse
engineering with much more esoteric knowledge.

We can use our hardware hacking techniques to recover firmware, but we may need to perform some image
format conversion with objcopy to make the result compatible without reverse engineering tools.

106 © 2021 SANS Institute

Pillaging the filesystem can reveal security failures.
» Some easy to find, others require time, exploration and *nix familiarity
* QNX is only a little bit different

Unix system experience of often very helpful.
Non-Linux or QNX firmware requires a really deep dive.

SANS SEC556 | loT Penetration Testing 107

Summary

In this module we examined the value in digging into the operating system images. Once extracted we can use
our knowledge of *nix-based systems to explore. Observing the various configuration files and software
implementations can reveal configuration issues and opportunity for exploitation.

When we encounter QNX based systems, we have tools to extract, but we may be left needing to explore the
unknown.

Finally, we reviewed other IoT systems that are not Unix/Linux or QNX based, which can vary widely in their
format depending on the hundreds of possible platforms. These systems will require some deep dives, as the
RTOS based systems often require analysis with binary reverse engineering tools.

© 2021 SANS Institute 107

Technet24

Exercise: Pillaging the Filesystem

Using your lab book, complete the exercise, Pillaging the Filesystem.

SANS SECS56 | loT Penetration Testing 108

This page intentionally left blank.

108 © 2021 SANS Institute

COURSE RESOURCES AND CONTACT INFORMATION

AUTHOR CONTACT

Larry Pesce

larry.| 5561 il.

Toror: @haxorioemat SANS INSTITUTE
11200 Rockville Pike

~\
Q James Leyte-Vidal () Suite 200
jameslvsec556 @gmail.com (i):j
ll'witter: @jam(?jeytevidal North Bethesda, MD 20852
301.654.SANS(7267)
Steven Walbroehl
steven.walbroehl@halborn.com

Twitter: @HalbornSteve

SANS EMAIL

PEN TESTING RESOURCES] GENERAL INQUIRIES: info@sans.org

@ pen-testing.sans.org > 'Lig\\ REGISTRATION: registration@sans.org

Twitter: @SANSPenTest -_— TUITION: tuition@sans.org

PRESS/PR: press@sans.org
SANS SEC556 | loT Penetration Testing 109
This page intentionally left blank.
© 2021 SANS Institute 109

Technet24

