SEC670 | RED TEAMING TOOLS: DEVELOPING WINDOWS IMPLANTS, SHELLCODE,
COMMAND AND CONTROL

670.2

Getting to Know Your Target

GIAC

CERTIFICATIONS

MNS

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

© 2024 Jonathan Reiter. All rights reserved to Jonathan Reiter and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT ("CLA") CAREFULLY
BEFORE USING ANY OF THE COURSEWARE (DEFINED BELOW) ASSOCIATED WITH THE SANS INSTITUTE COURSE.
THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND THE ESCAL INSTITUTE OF
ADVANCED TECHNOLOGIES, INC. /DBA SANS INSTITUTE (“SANS INSTITUTE”) FOR THE COURSEWARE. BY
ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware subject to the
terms of this CLA. Courseware means all printed materials, including course books and lab workbooks, slides or notes, as well
as any digital or other media, audio and video recordings, virtual machines, software, technology, or data sets distributed by
SANS Institute to User for use in the SANS Institute course associated with the Courseware. User agrees that the CLA is the
complete and exclusive statement of agreement between SANS Institute and User and that this CLA supersedes any oral or
written proposal, agreement or other communication relating to the subject matter of this CLA.

BY ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA. USER FURTHER
AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT
INJURY TO SANS INSTITUTE, AND THAT SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION
(WITHOUT THE NECESSITY OF POSTING BOND), SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree to the terms of this CLA, User should not access the Courseware. User may return the Courseware to
SANS Institute for a refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon all or any portion
of the Courseware, in any medium, whether printed, electronic or otherwise, for any purpose, without the express prior written
consent of SANS Institute. User may not sell, rent, lease, trade, share, or otherwise transfer the Courseware in any way,
shape, or form to any person or entity without the express written consent of SANS Institute. Additionally, User may not
upload, submit, or otherwise transmit Courseware to any artificial intelligence system, platform, or service for any purpose,
regardless of whether the intended use is commercial, educational, or personal, without the express written consent of SANS
Institute. User agrees that the failure to abide by this provision would cause irreparable harm to SANS Institute that is
impossible to quantify. User therefore agrees to a base liquidated damages amount of $5000.00 USD per item of Courseware
infringed upon or fraction thereof. In addition, the base liquidated damages amount shall be doubled for any Courseware less
than a year old as a reasonable estimation of the anticipated or actual harm caused by User’s breach of the CLA. Both parties
acknowledge and agree that the stipulated amount of liquidated damages is not intended as a penalty, but as a reasonable
estimate of damages suffered by SANS Institute due to User’s breach of the CLA.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be deemed to be severable
from this CLA and shall not affect the remainder thereof. A written amendment or addendum to this CLA that is executed by
SANS Institute and User may accompany this Courseware.

SANS Institute may suspend and/or terminate User’s access to and require immediate return of any Courseware in connection
with any (i) material breaches or material violation of this CLA or general terms and conditions of use agreed to by User, (ii)
technical or security issues or problems caused by User that materially impact the business operations of SANS Institute or
other SANS Institute customers, or (iii) requests by law enforcement or government agencies.

SANS Institute acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs presented in
this Courseware are the sole property of their respective trademark/registered/copyright owners, including:

The Apple® logo and any names of Apple products displayed or discussed in this book are registered trademarks of Apple,
Inc.

PMP® and PMBOK® are registered trademarks of PMI.
SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

VMware Workstation Pro®, VMWare Workstation Player®, VMWare Fusion®, and VMware Fusion Pro® are registered
trademarks of VMware, Inc. Used with permission.

Governing Law: This CLA shall be governed by the laws of the State of Maryland, USA.

Courseware licensed to User under this CLA may be subject to export laws and regulations of the United States of America
and other jurisdictions. User warrants he or she is not listed (i) on any sanction programs list maintained by the U.S. Office of
Foreign Assets Control within the U.S. Treasury Department (“OFAC”), or (ii) denied party list maintained by the U.S. Bureau
of Industry and Security within the U.S. Department of Commerce (“BIS”). User agrees to not allow access to any Courseware
to any person or entity in a U.S. embargoed country or in violation of a U.S. export control law or regulation. User agrees to
cooperate with SANS Institute as necessary for SANS Institute to comply with export requirements and recordkeeping required
by OFAC, BIS or other governmental agency.

All reference links are operational in the browser-based delivery of the electronic workbook.
SEC670_2_J01_05

Technet24

s E c 6 70. 2 Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Getting to Know Your

e Target

© 2024 Jonathan Reiter | All Rights Reserved | Version JOI_05

Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control: 670.2
Welcome to Section 2 of SEC670. In this section, we will be getting to know the target very well by creating
various tools to obtain detailed information.

Table of Contents (1) Page

Gathering Operating System Information 4
.. Lab 2|os I.n.f(.) ... |4 ..
.. se,.v,ce PaCk S /HOtﬁxes/ '.Dz.lt.c.h.e s .. |9 ..
.. Pmcess Enumerat,on .. 36 ..
.. Lab 22 p,.ocEnum ... 45 ..
.. Lab 2 3 CreateTOOIheIP .. 49 ..
.. Lab 24W-|-SEnum ... 53 ..
.. Insta "ed 5 oftware .. 65 ..
.. D,,.ecto .r.y.v.v.a.lk.s .. 73 ..
.. Lab 25 |:||e|:mder ... 83 ..
.. .U.S.e ,. |nfo,.mat,on ... 38 .
.. Semces .a ndTas ks ... I.(; I. ..

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 2

This page intentionally left blank.

Technet24

Network Information 115
.. Re g,st ,.y Informatlon ... |30 ..
. BOOtcamP .. |57 .
.. Lab 2 6 [I;c;n.ﬁ.g .. I.(; I. ..
.. Lab 27A,.p ... |62 ..
.. Lab 28Netsm .. |63 ..
.. Lab 29Shadowcra& .. |64 ..
SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 3

This page intentionally left blank.

Course Roadmap

» Windows Tool Development

* Getting to Know Your Target
 Operational Actions

* Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 4

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

In this module, we will dive into how to gather OS specific information and why it is important.

Technet24

Our objectives for this module are:

Discuss the importance of determining OS information
Explore public methods to retrieve information about the system

Explore undocumented method to retrieve information about the system

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 5

Objectives

The objectives for this module are to understand how important it is to determine what OS version your target
is running and/or what service pack your target has, explore a few public methods for retrieving system
information, as well as explore some undocumented methods. There are some methods that are more reliable
than others, as well as some methods that might return inaccurate information.

Survey Script

A I Survey the host and determine where you are.

Knowing the system that you are on is vital to the success of your operation.A host
survey tool can query various components and report back its findings that can then
be used to determine the next action.

:' >
: 17 = ()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Survey Script

If you are a red teamer, or a penetration tester, or have taken SEC560, then you may already know that one of
the first tasks that you would typically perform is some recon. Recon is such a broad term that can encompass
many things, like users, networks, shares, etc. The focus at this point is to learn more about the system. The
more detailed information you can gather, the more informed decisions can be made, like what the next action
you would take next is. Privilege escalation could be an example of one such action to take after you have
gained some insight into what that system is being used for and what value it might be for you. There are
several tools that exist today that make this task trivial. There should be some questions coming to mind here.
How do they get that information? What APIs are they using? What logs, if any, are generated from calling
certain APIs? Since this is a developer-focused course, you will be creating a recon capability.

One of the tools you could create would be a tool that would execute on the target and query several pieces of
information about the target. There can be a standard set of information that you might want to gather, like
applications installed, especially any AV/EDR solutions. There can also be specific information that could
directly relate to the primary goal of an operation, like looking for a specific folder or file. If that folder or file
is not there, then the tool can clean itself off target and be done.

Technet24

OS Information

o I Windows 7 x86 or Windows 10 x86_64?

I Service Pack I Kernel Version
A collection of updates to be The ntoskrnl.exe is the kernel
applied as patches for bugs or file itself. The file is typically
vulnerabilities. Also provide located under
features to the OS. C:\Windows\System32.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

OS Information

Perhaps one of the most important pieces of information to gather first would be the exact version of the
operating system, if that is not known already. Typically, you would know at least some basic information
about the target beforehand, like if it is a Windows 7 or Windows 10 target, but you might not know the exact
service pack or what version of ntoskrnl.exe is on the target. The more details you can gather the better,
because Windows 10 is not good enough, especially if someone would want to bring in additional payloads
that would be specific to the target. If your tool incorrectly said the target was x64 when it was in fact x86,
well, let us just hope a process crashes instead of the target system being bug checked, a.k.a. blue screen
(BSOD). To aid us in gathering some of this information, there are a number of APIs that we can call.
However, certain APIs might not be available on older versions of Windows. Just because an API is available
to use on Windows 10 does not automatically mean that it will be available to use on an older version like
Windows XP Service Pack 1. The Windows terminal services (WTS) API family is one such example and
some of the WTS APIs will be used later for process enumeration.

Windows Versions

o I Windows releases and their respective version numbers

Windows XP 5.1
Windows Server 2003 5.2
Windows Vista / Server 2008 6.0
Windows 7 / Server 2008 R2 6.1
Windows 8 / Server 2012 6.2
Windows 8.1 / Server 2012 R2 6.3
Windows 10/ Server 2016 10

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Windows Versions
When you are querying the target to determine the specific version of the OS, you will not find something that
tells you that the target is a Windows Vista system. Instead, you would be given back something like 6.1 to

indicate Windows 7. The table is simply here for an easy reference when you are going about gathering
information about the OS.

Technet24

GetVersionEx

BOOL GetVersionExA (
GetVersionExA/W _InOut_ LPOSVERSIONINFOA lpSystemInfo

)

BOOL GetVersionExW (

_InOut LPOSVERSIONINFOW lpSystemInfo
)5

Gathers the OS version number
typedef struct OSVERSIONINFOA {
DWORD dwOSVersionInfoSize;

DWORD dwMajorVersion;

DWORD dwMinorVersion;

DWORD dwBuildNumber ;

Has BOOL return type DWORD dwPlatformId;

CHAR szCSDVersion[128];

} OSVERSIONINFOA, *POSVERSIONINFOA,
*LPOSVERSIONINFOA ;

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 9

GetVersionEx

The GetVersionEx API can be used in gathering the Operating System’s version number, such as one of the
ones listed on the previous slide. Here on this slide are two versions of this API, the ANSI and the Unicode
versions. The function takes a single argument for a pointer to an OSVERSIONINFO struct. Before we look at
the struct, there is some interesting behavior that we need to understand. By default, if you were to call this
API on your Windows 10 Dev VM, you would not get back version number 10. The highest you might get
back is version 6.2, which would indicate Windows 8.

The reason for this behavior is mainly compatibility. Back in the day, programs written for XP and Vista
would check the version numbers and if they were higher than 5 and 1 (5.1), then the application knew they
were on something beyond XP. The check would fail, though when version 6.0 was released as the minor
version number of 0 is not >= 1. Windows came up with a solution to never increase the major version
number, only the minor. This obviously ended when Windows 10 was released because they are not using
version 6.4, they are indeed using version 10.0. The only way for this function to return the correct version
number is to account for a possible higher operating system that would be declared in its manifest file. The
manifest file is purely XML data and nothing more.

Please note that Windows recently deprecated this API and would really like for you to use the newer version
helper functions like IsWindows7OrGreater, or IsWindows100rGreater, etc.

dwOSVersionInfoSize; the size of the struct and should be set using size of (OSVERSIONINFO)
dwMajorVersion; the major version number

dwMinorVersion; the minor version number

dwBuildNumber; the build number

dwPlatformld; the OS platform

szCSDVersion[128]; if there is a service pack installed, then this would the value for it, like “Service Pack 1.

GetNativeSysteminfo

o I GetNativeSystemlInfo

Gathers current system
information

HasVOID return type

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 10

GetNativeSystemInfo

The GetNativeSystemInfo API can be used in gathering some specific information about the target system for
WoWo64 applications. This will also work for x64 applications, but the results will be noticeably different.
Since the function has a VOID return type, it will not return anything to the caller, so there would be no point
in trying to assign its return value to a variable. What the API needs is a pointer to a structure that the API will
fill out according to the information it queries. This is very common behavior for Windows APIs. In fact, most
Windows APIs expect to be given a properly initialized structure to fill out for you. Here is a breakdown of the
one and only argument to GetNativeSystemInfo.

IpSystemInfo, as annotated by the SAL markup, it is an out parameter meaning the function requires write
permissions to the variable. The variable, or pointer, must be of type LPSYSTEM_INFO, which is a structure

that holds around 10 or so members.

VOID
GetNativeSystemInfo (
Out_ LPSYSTEM INFO lpSystemInfo

)

typedef struct _SYSTEM INFO {
[..SNIP..]

DWORD dwPageSize;

LPVOID IlpMinimumApplicationAddress;
LPVOID IlpMaximumApplicationAddress;
DWORD_ PTR dwActiveProcessorMask;
DWORD dwNumberOfProcessors;

DWORD dwProcessorType;

DWORD dwAllocationGranularity;
WORD wProcessorLevel ;

WORD wProcessorRevision;

} SYSTEM INFO, *LPSYSTEM INFO;

Let us take a more detailed look at the SYSTEM_INFO struct.

dwQOemld; is no longer being used but is simply maintained for compatibility. We need to use

wProcessorArchitecture instead.

wProcessorArchitecture; the installed architecture of the process that is installed on the target. This field will

have one of the values listed below:

9 - PROCESSOR_ARCHITECTURE_AMD64 (x64 AMD or Intel)
5 - PROCESSOR_ARCHITECTURE_ARM (ARM)

12 - PROCESSOR_ARCHITECTURE ARM64 (ARM64)

6 - PROCESSOR _ARCHITECTURE 1A64 (Intel Itanium-based)
0 - PROCESSOR_ARCHITECTURE_INTEL (x86)

0xffff - PROCESSOR_ARCHITECTURE UNKNOWN

Technet24

wReserved; reserved for supposedly something amazing in the future? Who knows?

dwPageSize; the page size along with the granularity of page protection and the commitment. VirtualAlloc
relies on this value for its operations.

IpMinimumApplicationAddress; this is a pointer to the lowest memory address that will be made accessible to
programs and their DLLs.

IpMaximumApplicationAddress; the exact opposite as the previous member.

dwActiveProcessorMask; the set of processors that are configured on the system in the form of a mask, 0-31
bits each one indicating the processor.

dwNumberOfProcessors; how many logical processors are in the current group.
GetLogicalProcessorInformation relies on this value.

dwProcessorType; this is obsolete so do not rely on it.

dwAllocationGranularity; for virtual memory allocations, this is the granularity for the starting address.
wProcessorLevel; the processor level that is dependent on the architecture.

wProcessorRevision; the processor revision that is dependent on the architecture.

1"

Undocumented Method

typedef struct _ KUSER_SHARED_DATA {
KUSER SHARED DATA ULONG TickCountLowDeprecated;
- - ULONG TickCountMultiplier;
KSYSTEM_TIME InterruptTime;

KSYSTEM_TIME SystemTime;
KSYSTEM_TIME TimeZoneBias;

USHORT ImageNumberLow;

Same VA in almost every process USHORT ImageNumberHigh;
WCHAR NtSystemRoot[260];
ULONG MaxStackTraceDepth;
ULONG CryptoExponent;
ULONG TimeZoneld;
ULONG LargePageMinimum;

Holds large number of elements ULONG AitSamplingValue;
ULONG AppCompatFlag;
ULONGLONG RNGSeedVersion;
[....SNIP..]]

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Undocumented Method

The undocumented method of retrieving system information is to query the KUSER_ SHARED DATA struct
that is present in virtually every single process at the same Virtual Address: 0x7FFE0000.

KUSER SHARED DATA is a massive structure that is defined in the ntddk.h header file. The structure stores
an enormous amount of information that we can leverage for our needs of gathering system information and
then some. However, this is not the recommended method of doing so, but we do not really care too much
about that. Implant developers and malware authors tend to favor the undocumented methods more than
anything else. Knowing the correct offsets for what information you need can be very useful instead of
copying everything over from this structure. Currently, the offsets for the Major Version and Minor Version
have been offsets 0x26C and 0x270, respectively. The Build Number can be found at offset 0x260. For more
details about this structure, check out the header files and various online resources like Geoff Chappell’s
documentation.

References:
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntexapi_x/kuser shared data/index.htm
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20/%202016/2004%2020H1%20(May%2020
20%20Update)) KUSER SHARED DATA

12

12

Technet24

Source Code Review

Source code review!

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 13

Source Code Review
Time to jump into the source code and understand it.

Lab 2.1: OS Info

®
q I Gathering information about the OS and target

Please refer to the eWorkbook for the details of this lab.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 14

Lab 2.1: OS Info
Please refer to the eWorkbook for the details of the lab.

14

Technet24

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 15

What’s the Point?
The point of this lab was to understand how you can retrieve various information about the OS of your target.

15

Module Summary

r
:g; I Discussed how obtaining accurate system information is key

I Covered documented and recommended methods to obtain the information

I Covered undocumented methods to obtain the information

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

In this module, we discussed why you would want to know the exact details of your target’s OS version and
architecture, we also explored a few Windows APIs that enable us to do so, and finally, we took a look at an
undocumented method by means of KUSER SHARED DATA.

16

16

Technet24

Unit Review Questions

10r
:g; I What structure can be found at VA Ox7FFE0000?

EPROCESS
n KPROCESS

KUSER_SHARED_DATA

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 17

Unit Review Questions
Q: What structure can be found at VA 0x7FFE0000?

A: EPROCESS
B: KPROCESS

C: KUSER_SHARED DATA

17

Unit Review Answers

10r
:g; I What structure can be found at VA Ox7FFE0000?

EPROCESS
n KPROCESS

KUSER_SHARED_DATA

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 18

Unit Review Answers
Q: What structure can be found at VA 0x7FFE0000?

A: EPROCESS
B: KPROCESS

C: KUSER SHARED DATA

18

Technet24

Course Roadmap

* Windows Tool Development

Getting to Know Your Target

Operational Actions
* Persistence: Die Another Day

Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

In this module, we will discuss how to gather information about service packs, hotfixes, and patches, as well

as why the information might be important.

19

Our objectives for this module are:

I Determine what patches, hotfixes, etc. might be present
I Discuss the importance of patches

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 20
Objectives
The objectives are to determine what patches or hotfixes a system might have and how they might affect an
operation.

Technet24

Windows Hotfixes
/ I Used to fix critical issues in software

Also referred to as Quick Fix Engineering (QFE) updates, hotfixes are used to apply a
vital fix to software applications. Users that have Windows updates set to automatic
will have hotfixes downloaded without much user intervention. The only exception
would be a reboot.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 21

Windows Hotfixes

Windows updates bring with them any number of things, but the emphasis here would be hotfixes. The term
“hot fix” traditionally would mean that a patch to a software program can be applied while the system was still
running. You may have heard the phrases ’hot swappable,” “hot patching,” etc. which all mean similar things,
but the common component is “hot” where the system or device does not have to go through a shutdown
procedure; hot swapping hard drives when one drive becomes full, or in our case, issuing a quick fix to a
certain application while the system is still running, and the user is presumably performing work. Some
Windows updates do, however, require a reboot for a change to come into effect, but there are times when a
reboot is not required to be performed. It is important for us to know what hotfixes have been applied so that
time is not wasted attempting to execute an exploit against something that has already been patched. Doing so
could tip off the user/admin to our presence on the system along with generating unnecessary logs.

/ I Bundled hotfixes

Each service pack brings with it a grouping of one or more hotfixes that will be applied
to the OS. Each service pack that targets a particular OS version will have all previous
hotfixes that former service packs brought with it so that a user can jump straight to
the most recent service pack without installing each one sequentially.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 22

Service Packs
It really would not make much sense for Windows to push down hotfixes by themselves one at a time, but to

rather bundle them up in what is called a service pack. Bundling the hotfixes together is pretty great because it
makes updating a lot more efficient. Each OS version can have any number of service packs issued, like
Windows XP had three of them: SP1, SP2, and SP3. Each service pack might also mean that exploits might
have to be adjusted depending on the target’s SP level. Within the Metasploit Framework, the option to choose
a specific target is made available. An exploit targeting a vulnerable FTP server might need to have the target
be specified, say for Windows XP SP3 versus XP SP1. The same considerations must be taken if your implant
is going to exploit anything from local privilege escalation to persistence, etc.

Technet24

Querying Hotfixes and Service Packs

I Get-HotFix

0 I How do you go about finding hotfixes and service packs?

I WMIC

I C/C++

PowerShell
cmdlet that lists
updates seen by
Quick Fix
Engineering class.

WMIC command
line utility offers
the gfe argument.
E.g.,wmic gfe
list.

Construct our
own WMI query
or explore
Windows
Update Agent
APIs.

SANS

Querying Hotfixes and Service Packs

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 23

Windows provides users and admins with a number of options to go about querying patches, or hotfixes,
which have been applied to a system. Perhaps the ecasiest method would be to drop into a PowerShell instance
and run the Get-HotFix cmdlet. The downside is that the cmdlet does not return everything because on the
back end it only queries the WMI Win32_ QuickFixEngineering class. Knowing that, we can easily craft our
own WMI (Windows Management Instrumentation) query and completely avoid using PowerShell. Another
alternative is to use the wmic gfe list command. The QFE part of the command gives away what it is querying,
and it also indicates that it will show the same results as Get-Hotfix. Lastly, it will have the same downside
that the Get-HotFix cmdlet does. If you were to look at the Windows Programs and Features listing, you might
notice a difference in the listing. This is because the QFE WMI class only sees certain types of updates. We
want a more complete view and as such, we must utilize the Windows Update Agent APIs. We can use them

as a standalone or in combination with what the QFE class returns.

Windows Update Agent (WUA) APlIs

‘9 Introduced with Windows XP, designed for system admins and developers

Scripts and/or programs can be developed to determine what updates are available to
be installed on a system, what updates have been installed, or to remove any installed
updates.

Windows Server Update

I Windows Update Services (WSUS)

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 24

Windows Update Agent (WUA) APIs

Programmatically creating a solution is often more complicated than using pre-built programs or tools like the
wmic tool. We turn to this option when existing tools fail or do not show us the entire picture we are hoping to
see. Enter the WUA API family. Since its debut with Windows XP, it has been used by system administrators
and developers alike, to determine what updates computers in their organization require. What we want to use
it for is to determine what updates have already been applied because we like to go after the lowest hanging
fruit. WUA is a set of COM interfaces, and we must create instances of whichever interface we need. Before
the WUA APIs are made available to us, we must reference the proper header file and its respecting lib file;
Wuapi.h and Wuguid.lib, respectively. To create the correct interface, we need to choose the COM object that
is most suited for our needs, and that could be the UpdateSession, UpdateSearcher, and SearchResult WUA
objects.

Technet24

WUA UpdateSession Object

#include <wuapi.h>

‘9 IUpdateSession
Represents update session object

Search, download, install, uninstall

HRESULT res = ColInitialize (NULL) ;
IUpdateSession* upSsn;

CoCreateInstance (

(PVOID*) &upSsn
I

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

WUA UpdateSession Object

Because the WUA APIs are all COM-based, the calling thread must initialize the COM library by calling the
Colnitialize AP1. The WUA UpdateSession object is a COM interface, hence the naming convention of adding
the letter “I” to the API name. Before we can do anything useful, we must create an instance of the object by
calling the CoCreatelnstance API and passing in the address to our pointer variable /UpdateSession. The
pointer variable is going to receive the pointer to the interface if the function call succeeds. We use the
CoCreatelnstance API because it will create and initialize the object of whatever class we are passing in for
the CLSID parameter. It is from this newly created object that we will then be able to create other objects
using methods provided by the UpdateSession object.

25

WUA UpdateSearcher Object

#include <wuapi.h>

‘9 IUpdateSearcher

IUpdateSession* upSsn;
IUpdateSearcher* upSearch;
ISearchResult* results;

Created by the UpdateSearcher

coclass upSsn->CreateUpdateSearcher (&upSearch) ;

upSearch->Search (criteria, &results) ;

Used to search for updates on
the target system

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 26

WUA UpdateSearcher Object

The previous slide showed how to create the UpdateSession object and now that it is created, we can call its
CreateUpdateSearcher method to make the UpdateSearcher object. We need to create the UpdateSearcher
object because it provides a method that we need to start conducting a search of updates that have been applied
to the system. The method of interest for us is the Search method. The Search method requires two
arguments: the criteria and a pointer to the UpdateSearcher pointer variable. The criteria argument is where
we can specify our search criteria—think of it like a filter of sorts. The criteria can be created as a string like
the following: “IsInstalled=1". The criteria string can contain several filters using the “or”” operator so you
could expand the string to be “IsHidden=1 or IsInstalled=1". There are (sometimes) updates that are marked as
hidden on the computer, but we want to see them anyway, so we set that variant to true. The collection of
results that match the specified criteria will be stored in the results ISearchResult pointer variable. It is from
this object that you can start to process the results from the search as it exposes several methods of interest to
us.

Technet24

WUA SearchResult Object

r // interface collection of updates from a
J ISearchResult resulting search

ISearchResult* results;
IUpdateCollection* upList;
LONG upSize;

Used to represent search results
upSsn->CreateUpdateSearcher (&upSearch);
upSearch->Search(criteria, &results);

results->get Updates(&uplList);

Has methods that can query 3 :
upList->get_Count(&upSize);

updates from a resulting search

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 27

WUA SearchResult Object

The SearchResult WUA object represents the collection of updates that matched the search criteria. To get the
collection interface of those updates from the search, we will need to call get Updates method from the
SearchResult object. The argument we pass to the method is the address to the pointer variable of an
1UpdateCollection pointer. The UpdateCollection object is used to represent the list of updates, which is an
ordered list of updates. We can then use this ordered list and iterate over it based on the size of the list that can
be gathered after calling the get Count method. We pass the get Count method the address to a LONG
variable to store the size of the update list. Finally, we can gather the details of the updates we found on the
system and either print them out to the terminal window or write the results to a log file somewhere on disk.

Sample Code

IUpdate* upItem;
BSTR upName;

results->get Updates(&upList);
upList->get Count(&upSize);

LONG index = 0;

for (; index < upSize; index++)

{

upList->get Item(index, &upItem);
upItem->get Title(&upName);

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Sample Code

This slide just holds some pseudo code for how one could possibly iterate over a collection of results. Some
new variables here are the pointer variable for the /Update collection object, which is used to obtain whatever
properties and methods an update might have. The next variable is a basic string variable named upName that
is short for the update name. As we iterate over the collection, the upName will be updated to the one at the
proper index in the collection. The /Update collection object exposes other methods too, like get_Type, to get
the type of the update; get Title, to get the title of the update; or get KBArticlelDs, to get the collection of KB
article IDs that are tied to the update.

Specifically, the code on the slide will get the current update item at the index specified, update the upltem
variable so we can get the title of the current update, and move on with the iteration process after that. To be
even more detailed and thorough, you could do more during this loop by calling some of the other /Update
methods, but this is enough to get you started.

28

28

Technet24

Module Summary

r
:g; I Discussed the importance of updates and patches

I Learned how to obtain information about patches

I Used the WUA APIs

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary
In this module, we discussed hotfixes, service packs, and how to get information about them using the WUA
APIs.

29

29

Unit Review Questions

War
:g; I What PowerShell cmdlet queries the Quick Fix Engineering class?

Get-HotFix
ﬂ Get-Updates

Get-ServicePack

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 30

Unit Review Questions
Q: What PowerShell cmdlet queries the Quick Fix Engineering class?

A: Get-HotFix
B: Get-Updates

C: Get-ServicePack

30

Technet24

Unit Review Answers

War
:g; I What PowerShell cmdlet queries the Quick Fix Engineering class?

Get-HotFix
ﬂ Get-Updates

Get-ServicePack

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 31

Unit Review Answers
Q: What PowerShell cmdlet queries the Quick Fix Engineering class?

A: Get-HotFix
B: Get-Updates

C: Get-ServicePack

31

Unit Review Questions

r
:g; I What is the update family of APIs used to query hotfixes?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

Q: What is the update family of APIs used to query hotfixes?

A: WUA

B: LUA

C: FUA

32

32

Technet24

Unit Review Answers

r
:g; I What is the update family of APIs used to query hotfixes?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 33

Unit Review Answers
Q: What is the update family of APIs used to query hotfixes?

A: WUA (Windows Update Agent)
B: LUA

C: FUA

33

Unit Review Questions

r
:g; I What WUA object is used to find updates on a system?

SearchResult
ﬂ UpdateSearcher

UpdateSession

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 34

Unit Review Questions
Q: What WUA object is used to find updates on a system?

A: SearchResult
B: UpdateSearcher

C: UpdateSession

34

Technet24

Unit Review Answers

r
:g; I What WUA object is used to find updates on a system?

SearchResult
n UpdateSearcher

UpdateSession

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 35

Unit Review Answers
Q: What WUA object is used to find updates on a system?

A: SearchResult
B: UpdateSearcher

C: UpdateSession

35

Course Roadmap

» Windows Tool Development

* Getting to Know Your Target
 Operational Actions

* Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

In this module, we will look at the how and why when it comes to process enumeration.

36

Technet24

Our objectives for this module are:

Understand the need for process enumeration

Take a deeper look at processes

I Explore the various methods to enumerate processes

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 37

Objectives

The objectives for this module are to understand the need for enumerating processes. Furthermore, to
understand processes even more, we will look at what processes are, how they are created, different process
states, and the several methods involved with enumeration. Let’s get to it.

Why Enumerate Processes?

Must find out what applications are running

An important part of conducting a survey is gathering a list of running processes.
Depending on what processes you find, your operation may come to a halt, or you
might deem the target safe for further operations.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 38

Why Enumerate Processes?

One of the features that implants often have is the ability to enumerate processes. If you are familiar with
Metasploit’s Meterpreter session, you might know that it can enumerate processes. There are several reasons
why a red team operator might want to gather a list of running processes. One reason could be to find a
suitable target process for shellcode injection. Another reason could be to find out if the target has a vulnerable
application that could then be matched to an exploit to aid in escalation of privileges, should your initial access
not be elevated already. Yet another reason to enumerate processes would be to determine if there is any
security product present on the system. Depending on the security product installed on the system, you might
decide to halt or suspend operating on that target. Many solutions have a cloud-based portion that will take
your tooling and conduct analysis in its cloud engine. If you do not want your tooling to be siphoned off to
their cloud, then perhaps you need to clean off the target.

Technet24

How Are Processes Created?

The main method to create a process is an API call.

The CreateProcess APl is one of the main drivers for creating a process on a system.
The APl is complex, it has many arguments, and requires the kernel to kick in and make
the system object in system space. The kernel tracks all processes and keeps the
process objects organized in a linked list.

I Explorer.exe —'I Notepad.exe —>I Winword.exe

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 39

How Are Processes Created?

Process creation can be kicked off by calling the CreateProcess API. User programs can easily make calls to
CreateProcess, but they do not have to do any heavy lifting. The kernel will eventually take over and it is up
to the kernel to create a process object in system space, inject the main thread into the process, and append the
process object to the existing linked list of process objects. There is more that the kernel does for process
creation, but those items hit the general responsibilities. There are two types of process objects that are linked
together: the EPROCESS object and the KPROCESS object. Both objects, together, represent a single
process and each one holds different information about a process that is important for various Windows
subsystems. The KPROCESS object is the first member of the EPROCESS object and is intentionally designed
this way. If you have the address of the EPROCESS object, you also have the KPROCESS as well since it is at
offset 0x00.

_EPROCESS
kd> dt nt!_EPROCESS

//0xa40 bytes (sizeof)
struct _EPROCESS

{
Kernel object representing Sileiles (GLd s [y o
struct _EX _PUSH_LOCK ProcessLock; //0x438
processes VOID* UniqueProcessId; //0x440

struct _LIST _ENTRY ActiveProcessLinks; //0x448
struct _EX_RUNDOWN_REF RundownProtect; //©x458

DKOM attacks can unlink [..snip..]
processes }
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 40
_EPROCESS

The EPROCESS object is one of the structures that Microsoft determines to be opaque to user mode apps and
to developers. The EPROCESS object belongs to the Windows Executive subsystem since it needs to have
access to all information to manage the process. From the small snippet on the slide, you can see some of the
information stored in it. One of the best methods to peeking inside of opaque structures is to look at them
during a kernel debugging session. KDNET makes getting kernel debugging working with minimal effort.
Another way is to look at the Vergilius Project, which has done an amazing job at documenting various kernel
structures from many Windows versions. Check out their site here: https://www.vergiliusproject.com.

The ActiveProcessLinks is an interesting one because its type is LIST ENTRY, indicating that it is used to link
to other objects. Windows uses this type to make a doubly linked list. The LIST ENTRY’s FLINK would take
us to the next EPROCESS struct in the list. Many programs indirectly walk this list when enumerating
processes like the PowerShell cmdlet Get-Process or executing fasklist at the command line. When an attacker
can get into the kernel, these objects can be directly manipulated, and a process can be unlinked from the chain
and therefore hidden from users.

Technet24

_KPROCESS

//0x438 bytes (sizeof)
® KPROCESS struct _KPROCESS
{
struct _DISPATCHER_HEADER Header; //0x0
struct _LIST_ENTRY ProfileListHead; //0x18
ULONGLONG DirectoryTableBase; //0x28
Kernel object representing struct _LIST_ENTRY ThreadlListHead; //0x30
ULONG ProcesslLock; //0x40
processes ULONG ProcessTimerDelay; //0x44
ULONGLONG DeepFreezeStartTime; //0x48
struct _KAFFINITY_EX Affinity; //0x50
ULONGLONG AffinityPadding[12]; //0xf8
Used b)l the lower |ayer of the struct _LIST_ENTRY ReadylListHead; //@x158
Kernel [..snip..]
}
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 41
_KPROCESS

The KPROCESS object is important to the core of the kernel and is not exposed via the Object Manager like
the EPROCESS object is. Some of the members of the KPROCESS object are important for thread scheduling,
like what threads are ready to run (ReadyListHead), tracking quantum, priorities, CPU affinity, linking of
threads, etc. For example, the ThreadListHead is of type LIST ENTRY so we know it is part of a doubly
linked list. The list is a chain of Threads that have been created in the process which is represented by the
KPROCESS object. Another important member is the DirectoryTableBase of type ULONGLONG, which will
hold the physical address of the process’ Page Directory Table, an important item for Virtual Address
Translation.

Documented Methods

f I Using documented Windows APlIs is safe and reliable.

I EnumProcesses I CreateToolhelp32Snapshot I WTSEnumerateProcesses

Arguably the Perhaps one of the more Can query remote
easiest APl to use common APIs used in systems and over multiple
for enumeration. malwarez for process sessions on the local
Does not return enumeration. Returns more computer. Returns
detailed process detailed process information relevant process
information. than EnumProcesses. information.
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 42
Documented Methods

When it comes to reliability and stability, using officially supported and documented APIs is great because
you know the API should work as advertised. For the documented methods of enumerating processes, we have
three options. The first option is the EnumProcesses API, which is a very simple API to understand and
implement. One of the major drawbacks about EnumProcesses is the lack of detailed information about each
enumerated process. If you wanted to get more information with this API, then you could attempt to open a
handle to the process via its Processld. The second option is to use the CreateToolhelp32Snapshot AP1, which
offers much more information about each process. The downside to this API is that because it only takes a
snapshot of the currently mapped processes, you will miss any new processes after the snapshot is taken. The
last one we will cover is WTSEnumerateProcesses, which offers a nice feature of remote process
enumeration. Some of the above APIs might not be available for every version of Windows, so you must be
sure to find out and test.

Technet24

EnumProcesses API

BOOL EnumProcesses(
® EnumProcesses() _Out_ DWORD *1pidProcess,
In DWORD cb,
Out LPDWORD lpcbNeeded
)5
Used to obtain the process IDs
on the system
Has BOOL return type
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 43

EnumProcesses API

As mentioned on the previous slide, the EnumProcesses API is incredibly easy to use when it comes to
process enumeration. The API can be chosen over the other options if you do not care about getting detailed
information about the processes on the system. The API will only return the process IDs of each process object
that the kernel has created at the time the API is called. There are three arguments required: two out
parameters and a single in parameter. Let us break down some of these arguments.

IpidProcess, is an out DWORD pointer to the array that will hold the process IDs.

Cb, is an in DWORD that indicates the size, in bytes, of the array.

IpcbNeded, is an out LPDWORD that will indicate how many bytes were placed in the array.

Because the function requires a buffer, the array, it needs to be large enough to hold all the PIDs. The function

will not indicate beforehand how large the buffer needs to be, so we can just make a large one to err on the
side of caution and avoid the need of having to call the API twice.

Example: EnumProcesses

if (!EnumProcesses(dwProcList, sizeof(dwProcList), &dwRealSize))
{

// fail and bail code here

goto fail_and_bail;
}

// iterate over the results
for (DWORD i = @; i < dwCount; i++)
{
HANDLE hProc = OpenProcess(PROCESS QUERY_LIMITED INFORMATION, FALSE,
dwProcList[i]);
// do something with the handle if OpenProcess succeeds

}

SANS

Example: EnumProcesses

This example of EnumProcesses is a small snippet for how to call this API. There is not a lot of code here to
make this work because it is a very simple API to use, and it does not return a lot of information. The API will
fill out a list that will hold the PIDs of the processes that are currently mapped into memory. The API does not
tell us how many processes were found, so we must do that on our own. We can use some simple math and
figure out how many entries there are in the array of PIDs. To determine the number of processes, divide the
dwRealSize by the size of the DWORD data type. Now that the count has been calculated, we can use that
value in a for loop so we can iterate over the array. Each iteration will execute the wprintf'statement showing
the user the PID that is currently being processed. Though, your implant would not be making printftype of
function calls because there would be no terminal to see the results. Instead, it would be more beneficial to
create a log file or place the results in a memory buffer to later be sent back to your C2 infrastructure. You can
also gather more information about each PID by calling OpenProcess against each one. If you are successful
with that operation, you could then get more details about that process via the handle.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 44

Technet24

Lab 2.2: ProcEnum

®
q I Using EnumProcesses, enumerate the processes on the system.

Please refer to the eVWorkbook for the details of the lab.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 45

Lab 2.2: ProcEnum
Please refer to the eWorkbook for the details of the lab.

45

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 46

What’s the Point?
The point of the lab was to explore the ease of use for this API. It does have a few drawbacks, like the limited
information, but that can be accounted for by opening a process handle to each PID returned by the API.

46

Technet24

CreateToolhelp32Snapshot API

. I HANDLE CreateToolhelp32Snapshot(
® CreateToolhelp32Snapshot() _In_ DWORD dwFlags,
In DWORD th32ProcessID
)
BOOL Process32First(
Creates a snapshot of a process _In_ HANDLE hSnapshot,
Out LPPROCESSENTRY32 lppe
)

BOOL Process32Next (
hread I _In_ HANDLE hSnapshot,
threads as we _Out_ LPPROCESSENTRY32 lppe

);

Can take snapshots of heaps and

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 47

CreateToolhelp32Snapshot API

The CreateToolhelp32Snapshot AP1 was discussed during the Create APIs module during Section 1, but it is
being included again here as it specifically relates to enumerating processes. The API will create a snapshot of
the specified processes, if any, and return a handle to that snapshot. Emphasis must be placed on the
“snapshot” since you could easily miss a new process being created as this is not a dynamic view. You can use
the handle to perform your queries and extract the information you are looking for like a specific process name
or module name the process has loaded. The function is relatively easy to call since it only takes two
parameters which are of the same type. The dwFlags parameter is the most important as it dictates what data
should be collected in the snapshot. There are seven flags that can be passed here, but the most interesting flag
for us in this use case is TH32CS_SNAPPROCESS because, as the name implies, will grab all processes that
have been mapped into memory. There are other flags that can be used to capture other useful information,
like modules and threads if you need to enumerate those items.

After the snapshot has been taken, you can perform our process enumeration using the Process32First
function. The Process32First function will gather information about the first process in the snapshot. The
function requires two parameters: the handle to the snapshot and a pointer to a variable of type
PROCESSENTRY32 structure. Typically, what you would see is a call to Process32First and then a loop that
uses the Process32Next function to determine when to break out of the loop. Process32Next requires the same
arguments as the Process32First function. The next slide will show a small snippet of code of what this could
look like.

Example: CreateToolhelp32Snapshot

)RD lastError 0;
E snapShot CreateToolhelp32Snapshot(TH32CS SNAPPROCESS, NULL);

PROCESSENTRY32 pe32 = { @ };
pe32.dwSize = sizeof PROCESSENTRY32;

printf(" s %7s\n", "Process Name", "
printf(
do {
printf("%20ws", pe32.szExeFile);
printf(d\n", pe32.th32ProcessID);
} while (Process32Next(snapShot, &pe32));

CloseHandle(snapShot);
return ERROR_SUCCESS;

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: CreateToolhelp32Snapshot

The example here intentionally omits error checking and the call to Process32First, due to size limitations on
the slide. Regardless, the main points are represented here, starting with the call to the
CreateToolhelp32Snapshot function on the second line. We are only interested in capturing processes in this
snapshot and we are not specifying a process ID as indicated by NULL. The function returns a handle value
which is saved off in the snapShot variable. In the full code, this would be error checked against

INVALID HANDLE_ VALUE to ensure the snapshot was created successfully. The next couple of lines
create the pe32 variable of struct type PROCESSENTRY32 and since it has a size field, it should be set to the
size of the struct. The next important part in this code snippet is the do while loop. The body of the loop is
simply printing out the name of the executable and the corresponding process ID. The exit condition is met
when the Process32Next function returns FALSE since it is a BOOL return type. To understand the process
even more and what other information is available, research the PROCESSENTRY?32 definition in the
TIHelp32.h header file.

48

Technet24

Lab 2.3: CreateToolhelp

®
q I Using CreateToolhelp32Snapshot, enumerate the processes on the system.

Please refer to the eVWorkbook for the details of the lab.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 49

Lab 2.3: CeateToolhelp
Please refer to the eWorkbook for the details of the lab.

49

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

What’s the Point?
The point of the lab was to explore one of the more popular methods of enumerating processes. The major
downside to this method is you can miss newly created processes after the snapshot has been taken.

50

Technet24

WTSEnumerateProcessesEx API

BOOL WTSEnumerateProcessesExA(
® WTSEnumerateProcessesEx() _In_ HANDLE hServer,
Inout WORD *plLevel,

In DWORD SessionId,

Out LPSTR *ppProcessInfo,

Out DWORD *pCount

)

typedef struct _WTS_PROCESS_INFO_EXA {

I Windows Terminal Services

[..SNIP..]
DWORD NumberOfThreads;
DWORD HandleCount;
DWORD PagefileUsage;

Has BOOL return type DWORD PeakPagefileUsage;
DWORD WorkingSetSize;
DWORD PeakWorkingSetSize;

LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 51

WTSEnumerateProcessesEx API

There is an entire family of WTS APIs that are defined in the wtsapi32.h header file. The WTS prefix is the
abbreviation for Windows Terminal Services, so think Remote Desktop. With that being said, a big advantage
of using the WTS APIs for enumerating processes is that we could do so against remote systems that are
configured for it. Specifically, there is a registry key that must be configured to enable the remote
interrogation, but if it is there then remote process queries are possible. The API will return very detailed
information about each process that is running on a local or remote system. The information about each
process is returned via the ppProclnfo parameter, which is a pointer to a WIS _PROCESS INFO struct. This
will be an array of WTS PROCESS INFO struct entries. Let us go ahead and break down the API’s
parameters.

hServer, a handle returned by the WTSOpenServer API. The handle can be for a local or remote system.

pLevel, used to determine what level of information you would like returned. Passing 1 would give the
extended version of the WTS PROCESS INFO struct.

Sessionld, used when you would want to query a different session on the system. You can, of course, query all
sessions, just pass in WTS_ANY_ SESSION.

ppProclnfo, the out parameter so the function can file out the WT7.S PROCESS INFO(EXx) structure with the
detailed information for the process.

pCount, the out parameter that will indicate how many structures were created by the API, in other words, the
number of processes.

When you are done processing the information in the returned buffer, we must free it using the
WTSFreeMemoryEx APIL

Example: WTSEnumerateProcessesEx

if (IWTSEnumerateProce SEx(WTS CURRENT SERVER HANDLE, &dwlevel, WTS ANY SION, (F *)&procInfoEx wCount))

d
wprintf S Pr failed with e %d\n", GetLastError());
return

if (NULL procInfoEx)

wprintf(L"% ; | 3 %6s] Os]\n", L"In e", L"PID", L"Thr
wprintf(L"

dwIndex = @;
dwIndex < dwCount; dwIndex++)

pProcInfo = procInfoEx +
wprintf .19s 5d] [%

->pProcessName,
>ProcessId,

pProcInfo->Number0fThreads,

pProcInf HandleCount,

pProcInfo

¢ R)GetUserNameFromSid(pProcInfo->pUserSid));

SEC670 | Red Teaming Tools: Developing Wind Implants, Shellcode, Command and Control 52

Example: WTSEnumerateProcessesEx

The example here shows how to use the API to make a local query. The amazing part about this API is that it
provides detailed information about each process. We can even query the session to see what session is tied to
a certain process. This can lead down a path of injecting into processes that are in a different session. This
method is called cross-session process injection. Unlike the EnumProceses API, this one can return the count
to you, which is a nice touch. Just like the other API, once the count is known, we can iterate over the array
and process the structures that the API created to represent each process. Inside the body of the for loop, you
can see some of the processing of this information. It is inside the loop body that you can decide to perform
other operations, like writing the output to a log file or getting the data ready to send back to your C2 server.

52

Technet24

Lab 2.4: WTSEnum

®
q I Using WTSEnumerateProcesses, enumerate processes on the system.

Please refer to the eVWorkbook for the details of the lab.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 53

Lab 2.4: WTSEnum
Please refer to the eWorkbook for the details of the lab.

53

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 54

What’s the Point?
The point of the lab was to explore another method to enumerate processes. Using the Windows Terminal
Services is nice because you have the potential to query remote targets.

54

Technet24

Undocumented Methods

f I There are more stealthy methods to enumerate processes.
-

I NtQuerySystemInformation I SYSTEM_INFORMATION_CLASS
A native API that offers The enum that determines
incredible detail about what information the native API
processes and so much more. is going to retrieve for us. It is
Native APIs are risky but might not officially documented, but
be worth the risk due to what many have researched and
they return. documented it on their own.

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 55

Undocumented Methods

Native APIs tend to be very risky to use as they are not officially documented by Windows. The APIs could
change without Microsoft making an announcement of any kind, so your tool could work just fine on one
version of Windows and then come time for an update, the native API you were using breaks, rendering your
tool useless. When it comes to process enumeration, there is an amazing native API that we can use called
NtQuerySystemInformation. MSDN does have some documentation on it and the main description for it says,
“NtQuerySystemInformation may be altered or unavailable in future versions of Windows. Applications
should use the alternate functions listed in this topic.” Despite that warning, we are going to use it anyway
because we do not have to heed to their warning; we are creating an implant after all.

The NtQuerySystemInformation API relies heavily on the SYSTEM INFORMATION CLASS enum, which is
not formally documented. In this undocumented enum are entries that we can use to specify what type of
system information we are interested in seeing. The enum entry that would be of interest for process
enumeration would be SystemProcessInformation. MSDN does not list every entry for the enum, but several
GitHub projects, like the one for the x64dbg debugger, have kindly posted their hard efforts for us.

References:
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation
https://github.com/x64dbg/x64dbg/blob/development/src/dbg/ntdll/ntdll.h

NtQuerySystemInformation API
I NtQuerySystemInformation

Grabs specific information about
the system

Has NTSTATUS return type

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 56

NtQuerySystemInformation API

As mentioned on the previous slide, the NeQuerySystemInformation function is a native function as annotated
by the Nt prefix in the function name. Even though MSDN has documentation online for this function, they do

NTSTATUS

NtQuerySystemInformation(

In SYSTEM_INFORMATION_CLASS InfoCls,
Inout PVOID SystemInformation,
In ULONG SystemInformationLength,
_Out_opt_ PULONG ReturnLength

)s
// enum entry SystemProcessInformation

// SYSTEM_PROCESS_INFORMATION struct

not recommend we use it. Instead, alternate functions are listed as suggestions to use to retrieve information

about the system. The reasoning behind this is that the function could “break” or be removed from any future

version release. This is not likely to happen, so we use this function anyway because it can return some very

rich information not only about processes but also about the system. The function is extremely useful, and its
true power comes from what SYSTEM_INFORMATION_ CLASS is passed into it. To better understand how

to use this function, we can break down the parameters in detail.

InfoCls is an abbreviation for SystemInformationClass, of type SYSTEM_INFORMATION_CLASS, which is

a massive enum. Since we are talking about process information, we will be using the
SystemProcessInformation enum entry. Each enum entry has a corresponding structure and ours will be the
SYSTEM_PROCESS INFORMATION struct. What will be returned to use is an array of these structures
where each entry represents a process that has been mapped into memory.

SystemInformation, of type PVOID, is the pointer to the buffer to hold the information to be returned from the

function. The size of this buffer must be known ahead of time, and it can also vary based on the information

that is being requested. To get this information, the function will need to be called twice with the first call used

just to get the size of the buffer. Then you can allocate a buffer of the correct size for the second call.

SystemInformationLength, of type ULONG, is the size of the buffer that the SystemInformation parameter

points.

ReturnLength, of type PULONG, is not required to be passed, but if used, it will hold the actual size of the

requested information.

Technet24

SYSTEM_PROCESS_INFORMATION Struct

typedef struct SYSTEM PROCESS INFORMATION {
ULONG NextEntryOffset;
ULONG NumberOfThreads;
LARGE_INTEGER WorkingSetPrivateSize; // Since Vista

ULONG HardFaultCount; // Since Windows 7
ULONG NumberOfThreadsHighWatermark; // Since Windows 7
ULONGLONG CycleTime; // Since Windows 7

LARGE_INTEGER CreateTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;
UNICODE_STRING ImageName;

[..SNIP..]
HANDLE UniqueProcessId;
HANDLE InheritedFromUniqueProcessId;
SYSTEM_THREAD_INFORMATION Threads[1];

[..SNIP..]

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

SYSTEM_PROCESS INFORMATION Struct
Here is the struct as documented by the researchers and developers of x64dbg.

typedef struct SYSTEM_PROCESS INFORMATION
{
ULONG NextEntryOffset;
ULONG NumberOfThreads;
LARGE INTEGER WorkingSetPrivateSize; / Since Vista
ULONG HardFaultCount; // Since Windows 7
ULONG NumberOfThreadsHighWatermark; // Since Windows 7
ULONGLONG CycleTime; / Since Windows 7
LARGE INTEGER CreateTime;
LARGE INTEGER UserTime;
LARGE INTEGER KernelTime;
UNICODE_STRING ImageName;
KPRIORITY BasePriority;
HANDLE UniqueProcessld,
HANDLE InheritedFromUniqueProcessld;
ULONG HandleCount;
ULONG Sessionld;
ULONG_PTR UniqueProcessKey; // Since Vista (requires SystemExtendedProcessInformation)
SIZE T PeakVirtualSize;
SIZE T VirtualSize;
ULONG PageFaultCount;
SIZE T PeakWorkingSetSize;
SIZE T WorkingSetSize;
SIZE T QuotaPeakPagedPoolUsage;
SIZE T QuotaPagedPoolUsage;

57

57

SIZE T QuotaPeakNonPagedPoolUsage;
SIZE T QuotaNonPagedPoolUsage;
SIZE T PagefileUsage;

SIZE T PeakPagefileUsage;

SIZE T PrivatePageCount;
LARGE_INTEGER ReadOperationCount;
LARGE INTEGER WriteOperationCount;
LARGE_INTEGER OtherOperationCount;
LARGE INTEGER ReadTransferCount;
LARGE INTEGER WriteTransferCount;
LARGE INTEGER OtherTransferCount;

SYSTEM_THREAD INFORMATION Threads[1];
} SYSTEM_PROCESS_INFORMATION, *PSYSTEM_PROCESS_INFORMATION;

58

Technet24

Example: NtQuerySystemInformation

Status = NtQuerySystemInformation(
SystemProcessInformation,
Sys mInformation,
Sy nInformationLength,
&ReturnLength);

f (INT_SUCCESS(Status))
SystemProcess = ROCESS ION)SystemInformation;

dwIndex Q;
; dwIndex)

Pid = HandleToULong(SystemProcess->UniqueProcessId);

Name = Pid == @ ? L"[Idle]" : CS (SystemProcess->ImageName.Buffer, SystemProcess->ImageName.Length /

ionId = SystemProcess->Sessionld;
SystemProc >HandleCount;
ThreadCount = SystemProcess->NumberOfThreads;
NPP = SystemProcess->QuotaNonPagedPoolUsage;

wprintf(L % 9s : %7 ¢ 11d]\n", Pid, € Name, SessionId, HandleCount, ThreadCount, NPP)

SEC670 | Red Teaming Tools: Developing Wind Implants, Shellcode, Command and Control 59

Example: NtQuerySystemInformation

Whenever you decide to use native APIs, you are also deciding whether to accept the risk that comes with the
usage. They do offer amazing benefits, like increasing your chances of bypassing AV/EDR detection and
being able to obtain more detailed information like what this example shows. Hackers take risks all the time
and developers must take risks too to increase the chances of a red team operator being successful for the
operation at hand. Once the API call has been made, we have a linked list that we can iterate over. Each entry
in the list is of type PSYSTEM_PROCESS INFORMATION, and we can use it and some of its members to
keep advancing to the next entry until there are no more entries. There is so much information that it will not
fit on the slide, but the best way to see all this information is online using the MSDN documentation and some
of the third party sources, like x64dbg’s GitHub repo.

Bottom line: certain native functions are well worth the risk based solely on what they can offer.

59

Module Summary

r
:g; I Discussed the reason for enumerating processes

I Explored the structures the kernel uses to represent processes

I Explored various methods for process enumeration

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary
In this module, we discussed why it is important to enumerate processes on a system, the structures the kernel

uses to represent processes in system address space, and several methods to enumerate processes on local and
remote systems.

60

60

Technet24

Unit Review Questions

)r
:g; I What undocumented API can be used to enumerate processes?

EnumProcesses()

ﬂ WTSEnumerateProcessesEx()

NtQuerySystemInformation()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 6l

Unit Review Questions
Q: What undocumented API can be used to enumerate processes?

A: EnumProcesses()
B: WTSEnumerateProcessEx()

C: NtQuerySystemInformation()

61

Unit Review Answers

r
:g; I What undocumented API can be used to enumerate processes?

EnumProcesses()

ﬂ WTSEnumerateProcessesEx()

NtQuerySystemInformation()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 62

Unit Review Answers
Q: What undocumented API can be used to enumerate processes?

A: EnumProcesses()
B: WTSEnumerateProcessEx()

C: NtQuerySystemInformation()

62

Technet24

Unit Review Questions

:g; What API could be used to obtain more information about a process given
Qyr only its PID?

OpenProcess()

ﬂ WTSEnumerateProcessesEx()

NtQuerySystemInformation()

SAN-S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 63

Unit Review Questions
Q: What API could be used to obtain more information about a process given only its PID?

A: OpenProcess()
B: WTSEnumerateProcessEx()

C: NtQuerySystemInformation()

Unit Review Answers

:g; What API could be used to obtain more information about a process given
Qyr only its PID?

OpenProcess()

ﬂ WTSEnumerateProcessesEx()

NtQuerySystemInformation()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 64

Unit Review Questions
Q: What API could be used to obtain more information about a process given only its PID?

A: OpenProcess()
B: WTSEnumerateProcessEx()

C: NtQuerySystemInformation()

64

Technet24

Course Roadmap

Windows Tool Development

Getting to Know Your Target

Operational Actions
* Persistence: Die Another Day

Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 65

Finding installed software can tell you a great deal about a target. Let us dive in, shall we?

65

Our objectives for this module are:

I Look at where installed software is located

I Compile a listing of installed software

Determine if an operation should continue

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 66

Objectives
The objectives for this module are to know where to look for installed software, compile a listing of all
installed programs, and determine if an operation should continue given the presence, or absence, of software.

Technet24

Where to Loolk?

9,0 I Where can you find 32-bit and 64-bit applications?

I C:\Program Files I C:\Program Files (x86) I C:\
It should be safe to A similar assumption ISDotmhz:F:E::c:III(eat
assume that entries can be made for entries Y ’

o o . the root system
found in this folder found in this location; drive. althoush
are 64-bit that they will be 32-bit ot v’er 8
applications applications commo);

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 67

Where to Look?

One of the goals of recon is to determine what applications are installed on your target. Maybe you want to see
if an already known vulnerable application is there, or perhaps you want to make sure a certain application is
not installed. In either case, it is good to know where to find the installation folders. The assumption here is
that the target is a 64-bit Windows installation. Based on that assumption, 64-bit applications will be located at
the “C:\Program Files” directory or the C:\Progra~1 for using the 8.3 short name convention that NTFS
supports. The next folder name really gives away what the purpose is: “C:\Program Files (x86)”. The x86
portion in the folder name indicates that 32-bit applications are in this folder. The root of the system drive,
typically represented by the letter C:\, does contain some entries of applications that have been installed there.
Python 2.7 used to be one such example, among others. With all this being said, users that are going through
an installation process typically can choose where to install the application. If your survey tool is only
checking these three locations, you might miss one if a user decided to install an application in their
Documents or Downloads folder.

67

ia = | Local Disk (C) - o X
Home Share View (]
« v A i > ThisPC > Local Disk (C) » v @ Search Lo.. 0O
A Name . Date modified Type Size
o Quick access
B Deskop . DEV File folder
lab File folder
& Downloads * fnona_output File folde:
[Documents + PerfLogs -
&= Pictures + Program Files File folder
lab * Program Files (x86) File fo
DEV + ProgramData File folder
sripts . Python?2? File folder
on2 TG4 File folder
Days-Bootcamp xp::l:ts 5 File folder
HelloDLL sre 2/8/2021 624AM File folder
Lab-CreateFile Symbols 2/13/2021 251PM File folder
PEParseripi mp
OneDrive Users File folder
Windows File folder
I This PC SWINRE_BACKUP_PARTITION.MARKER MARKER File ok
I Desktop
5 Documents
4 Downloads
b Music
= Pictures
B videos
i Local Disk (C)
o Network v
6items 1 item selected

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

C:\

The system’s root drive is typically annotated by the drive letter C, but it can be another letter. Because it can
be any letter, it is best to not hard code file paths until you have determined the system root drive. Once done,
you can append your file paths to that returned value. Back to the current topic, as you can see from the
screenshot, there is not a lot being listed here as far as figuring out what software might be installed. We do
have Python27 as a dead giveaway, but beyond that we would have to look elsewhere for our information.

One thing to note with folders like these would be permissions, because not everyone can write to these
folders without the proper permissions.

68

Technet24

C:\Program Files

4 = | Program Files - [m] x
Home Share View (7]
<« v 4 » This PC » Local Disk (C:) > Program Files » v O Search Pr... @
A Name Date modified Type Size A
st Quick access
T-Zi 11/15/2017 2:03 PM File folder
[Desktop » - " N
Application Verifier 8/8/20211217PM File folder
* Downlosds * Commaon Files 1/17/2018558PM File folder
] Documents * dotnet 8/8/202112:32PM File folder
&= Pictures * Git 2/8/2021 €21 AM File folder
lab * Google 2/20/2021 3:59 AM File folder
DEV . IDA Demo 7.0 1/15/2017 6:43 AM File folder
scrpts + Internet Explorer 1/18/2018 153 M File folder
Microsoft SQL Server 2/9/2021 4:42 AM File folder
Day3-Bootcamp
Notepad++ 2/7/2021 1114 4M File folder
HelloDLL NTCore 12/15/20195:45 PM File folder
Lab-CreateFile OpenVPN /18/201910:34 AM File folder
PEParserfipi Process Hacke 5/16/2021 10:50AM File folder
OneDrive rempl 117/20182:48PM File folder
TAP-Windows 4/18/201910:34 AM File folder
B8 ThisPC Uninstall Information 2/2/201710:25PM File folder
I Desktop Whware 21220171033 PM File folder
B Documpels Windows Defender /2017 141 &AM File folder
o v Windows Defender Advanced Threat Pro., 3/18/2017 1049 PM File folder v
20 items) =

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

C:\Program Files

This screenshot shows the contents of the Program Files directory. The directory contains 29 entries, which
could be a possible indicator that there are at least 29 applications that have been installed on this system; at
least 29 items because some folders could easily hold other programs. If your tool was collecting this
information then it would allow a red team operator to get a glimpse as to what 64-bit applications are here,
and based on the applications, a guess could be made as to what the system’s purpose is. Seeing applications
like Notepad++, Process Hacker, VMware, etc. could indicate that this machine could be a research VM. This
screenshot was taken from a Windows 10 Dev VM.

69

C:\Program Files (x86)

I = | Program Files (x86) - m] X
Home Share View 0
« © A s ThisPC 5 Local Disk (C:) > Program Files (:86) » v & | SearchPr.. ©
=] Pictures # A Name . Date modified Type Size L)
fab o Adobe 7/5/201710:208M File folder
DEV * Application Verifier B/B/20211217PM File folder
scripts » BlazeVideo 11/5/201912:51 PM File folder
Day3-Bootcamp Cain 3/3/2021 4:00 AM File folder
HelloDLL Common Files 8/8/202112:22 PM File folder

dotnet 8/8/200112:32PM File folder
Lab-CreateFile
oep Google 11/24/2021 1:02 AM File folder
&y
arserepl HTML Help Workshop 8/8/2021 12:24PM File folder
OneDrive IDA Demo 695 11/15/2017 140PM File folder
- Immunity Inc 7/5/2017 11:59AM File folder
= This PC Intemet Explorer 1/16/20181:53 AM File folder
I Desktop Microsoft 10/17/2021 11:57 .. File folder
2] Documents Micrasoft SDKs 8/8/202112:32PM File folder
‘ Downloads Microsoft SQL Server 2/9/20214:42 AM File folder
J1 Music Microsoft Visual C++ Build Tools T/12017 5:36 PM - File folder
S Microsoft Visual Studio 8/8/2001 1:23PM File folder
&= Pictures
- Vid Micrasoft Visual Studio 14.0 11/11/2017 5:07PM File folder
10e0s,
g Microsoft NET 8/6/202112:33PM File folder
e Locy/Disk (C) MSBuild 8/8/200112:22 PM File folder

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 70

C:\Program Files (x86)

This screenshot shows the contents of the Program Files x86 directory. This directory contains 34 entries,
which could indicate that there are at least 34 applications installed on this system that are 32-bit. An operator
might be able to make a better educated guess as to what this system is being used for after seeing several
entries for development software.

70

Technet24

Should Operations Continue?

I When should you abort an operation?

Aborting an operation based solely on a single application being installed is quite the
decision to make. If you have no idea what the application does or what it would do if
you drop more tools on the system, it could be a good decision to back off. This would
allow you more time to conduct some research and hit the target later, possibly.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 71

Should Operations Continue?

When deciding if you should continue with an operation, there is not always a clear yes or no answer. The
more enumeration you do, the more informed your decision could be and the more confident you can feel
about the decision. In a makeshift scenario, let us say you have gathered the following information: OS
info/version, service pack/hotfixes, processes, and installed software. You might have enough information to
make an informed decision. If you noticed that there was an application that detects your tool, then perhaps it
would be a good idea to back off and find a different system to target. For the applications that you have never
heard of before and have not had any time to research, you might have to decide if the risk of bringing more
tools down is worth the reward. All of this should be done ahead of time, as much as possible. That way, when
you come to a decision point, you already know what to do. The discussions could happen in an operational
pre-brief where your team has a chance to brainstorm together. GO and NOGO criteria can be made during
these pre-briefs where you know if it is okay to continue or if you have to back off right away.

Module Summary

r
:g; I Explored where applications can be installed

I Learned to make a decision to continue or abort based on the listing of software

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary
In this module, we explored where some applications might be installed, and we also discussed how GO/NO-
GO decisions can be made based on gathered information.

72

72

Technet24

Course Roadmap

Windows Tool Development

Getting to Know Your Target

Operational Actions
* Persistence: Die Another Day

Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 73

In this module, we will discuss a feature for enumerating directories. Many implants today already implement
a directory listing feature, so we should put one in ours.

73

Our objectives for this module are:

Understand how to enumerate files in a directory

Understand how to implement a recursive directory walk; dirwalk

I Learn how to locate a specific file of interest

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 74

Objectives
The objectives for this module are to understand how to enumerate files in a directory, understand how to
implement a recursive directory walk, and learn how to locate a specific file of interest.

Technet24

Directory Enumeration
I Directory listings is nothing new.

Many popular frameworks have implants that can perform directory listings. The
famous Meterpreter session from the Metasploit Framework offers operators the
ability for perform a directory listing. Native Windows binaries also perform directory
listings, so it is not a behavior that should be categorized as malicious or suspicious.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Directory Enumeration

Directory enumeration is a very simple feature to implement programmatically, and it can be done in a number of
different ways. MSDN provides a few simple examples of using the primary APIs involved and it is easy to build
upon those examples. If you are familiar with the Metasploit Framework and its Meterpreter session, you might be
familiar with its /s command to list the contents of a directory. Of course, Is is a native Linux command, but
Meterpreter implements this as a platform agnostic function for Windows or Linux in their source code. The C
source code for Meterpreter’s Is command uses the exact same Windows APIs that we will be discussing in this
module and for our lab. You can browse to their GitHub page to look at the code to get an idea of what is happening
behind the scenes.

Enumerating directories is an important feature to implement because you would want to give your operators the
ability to see what is in a certain directory. Perhaps the operator will want to download a file of interest or want to
see what files are currently in a folder before making the decision to drop a file of their own in that same folder. The
operator will do whatever in the end, but we must at least give an operator the ability to perform a directory listing.

Here is the URL to Raymond Chen's article for BFS: https://devblogs.microsoft.com/oldnewthing/20050203-
00/?7p=36533.

75

75

NTFS Directory Entries

I NTFS, the design for directories and files and the links between them

The NT File System keeps track of the directories and any child directories that might
exist on the file system in a directory tree. Each directory has a table that is used to
keep track of what is held in that directory. The table holds entries with names of files.

I CreateDirectory I CreateDirectoryEx

I CreateDirectoryTransacted

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 76

NTFS Directory Entries

You might already be familiar with how Explorer shows directories and the files in them, but what really
makes that happen? When a directory is created via one of the three APIs listed on the slide—
CreateDirectory, CreateDirectoryEx, or CreateDirectoryTransacted—it will have a corresponding directory
table made for it. Whenever a file is created or moved into this directory, an entry will be placed into the table,
and the entry will have the name of the file. There can be multiple entries for the same file in the directory
table called links. A hard link is created when there is another entry in the table that is made for the same file.
Trying to view the table itself is not important to us as that starts to dive down into the world of forensics. We
will simply be using the APIs to do the querying of the tables for us.

Technet24

The Main APIs
I The root of directory enumeration uses three simple APIs.

I FindFirstFile

Sole purpose is
to locate a file, or
a subdirectory, in

I FindNextFile

Sole purpose is
to continue the
search that

I FindClose

When all the
searching has
been completed,

the specified FindFirstFile this will close the
directory. Wild kicked off. Great
L handle from
cards are for using in e
FindFirstFile.
allowed. loops.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 77

The Main APIs

The act of enumerating directories is not malicious, nor should it even be deemed as suspicious. There are
several native Windows applications that have this functionality built into it. Explorer must do this very same
thing; in fact, we could search through many executables in the System32 folder to determine how many of
them import these functions. CTF players could whip up a directory enumeration script to locate flag files or
whatever their objective is. Nation State actors might enumerate directories to see if any files are worth
downloading for further analysis. Actors that might be interested in espionage might conduct recursive
directory walks looking for blueprints of engine designs for fighter jets, ships, stealth technology, etc. To get
this done, there are two primary APIs that do the bulk of the work: FindFirstFile and FindNextFile.
FindClose is simply to clean things up when the search is done. The APIs also have extended versions like
FindFirstFileEx, so we could pass in extra attributes that the file should have. There is also a transacted API
like FindFirstFileTransacted, though it is not recommended to be used.

77

FindFirstFile API

- HANDLE FindFirstFileA(
® FindFirstFileA() _In_ LPCSTR lpFileName,

In LPWIN32_FIND DATAA pFindFData
s

// example
HANDLE hSearch = INVALID_HANDLE_VALUE;
WIN32 FIND DATA FindData;

Used to obtain a search handle

hSearch = FindFirstFileA(Dir, FindData);
Has HANDLE return type

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

FindFirstFile API

The first API that we need to use to kick of the directory walk is none other than the FindFirstFile AP1. Like
most other APIs that have string arguments, it is just a macro that is expanded to support Unicode or ANSI
depending on your project settings. The example on the slide is using the ANSI version. Should you have to
deal with non-English characters, like Chinese, you better use the Unicode versions. The main purpose of the
API is to return a search handle that the FindNextFile API would then use to continue searching for a file in a
directory. The FindFirstFileA function has just two parameters, which are broken down below.

IpFileName, of type LPCSTR, is the directory and filename that should be searched. The filename can have
wildcards in it too, which is nice when you do not know an extension for a file.

pFindFData, of type LPWIN32 FIND DATAA, is the pointer to a WIN32 FIND DATA structure that will
be filled out by the API as it retrieves the information about a file or subdirectory.

If the function succeeds, a file search handle will be returned and the WIN32 FIND DATA structure will start

to be filled out as you progress. On failure, it will return INVALID HANDLE VALUE, so you would have to
call GetLastError to determine what really was the cause.

78

Technet24

WIN32_FIND_DATA Struct

typedef struct _WIN32_ FIND_DATAA {
DWORD dwFileAttributes;
FILETIME ftCreationTime;

FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;

DWORD nFileSizeHigh;

DWORD nFileSizelow;

DWORD dwReservedo;

DWORD dwReservedl;

CHAR cFileName[MAX_PATH];
CHAR cAlternateFileName[14];
DWORD dwFileType;

DWORD dwCreatorType;

WORD wFinderFlags;

} WIN32_FIND DATAA, *PWIN32_FIND DATAA, *LPWIN32 FIND DATAA;

SANS

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 79

WIN32 FIND DATA Struct

The WIN32 FIND DATA structure is filled with useful information. Many of the struct members do not need
any explanation, like FileAttributes, CreationTime, LastAccessTime, LastWriteTime, etc. One that might need
some explaining is the AlternateFileName with the fixed size of 14. This is for the short file naming
conventions that NTFS supports. Specifically, it is an 8.3 convention with the filename containing 8 letters,
then the dot, then the 3-letter extension. As an example, if you have a long file name, like backup-picture.jpg,
it could look like this: BACKUP~1.JPG. The other members are not that interesting to us, so we can simply

ignore them.

FindNextFile API

BOOL FindNextFileA (
® FindNextFileA() _In_HANDLE hFindFile,

In LPWIN32 FIND DATAA pFindFileData
) g

// example
Used to continue a search
do {

// do stuff with the info
Has BOOL return type } while (

FindNextFileA (hSearch, FindData) != 0
) 7

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

FindNextFile API

The next API we need to use to implement our directory walk is the FindNextFile AP1, which is really a
macro that expands to FindNextFileA for ANSI, or FindNextFileW for Unicode. For this example, we will be
using the ANSI version of the macro. The FindNextFileA function will not work on its own—it must have the
file search handle that the FindFirstFileA function returns. Just like FindFirstFileA, this function has two
parameters: a handle to a valid file search handle, and a pointer to a WIN32 FIND DATAA structure. Since
handles are nothing new to us at this point and since the structure is the same one that is used in the
FindFirstFileA function, there is no need to break down the parameters. Because the return type is BOOL, it
is perfect to use in a loop like a while loop. Each iteration of the loop for each file found in a directory would
have the structure filled out for the respective file. When the function returns false, the loop would break and
be done.

If the function fails for whatever reason, the structure may not have been filled out properly, so it would be
best to call GetLastError to see what really happened.

80

Technet24

FindClose API

) BOOL FindClose(
® FindClose() _Inout_ HANDLE hFindFile

)
// example

Used to close a file search handle FindClose(hsearch);

Has BOOL return type

SAN-S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 81

FindClose API

After you are done searching for files or performing your directory walk, the file search handle should be
closed out. The FindClose API can do this for us, and it is a very simple API to understand and implement in
code. FindClose only takes one argument and that is a valid file search handle. The return type is BOOL so
you could check to see if the function was successful or not, and if it was not successful, you would call
GetLastError to see the details.

Example: FindFirstFile, FindNextFile, FindClose

hFileToFind = FindFirstFileW(fileName.GetBuffer(), &findData);

if (INVALID HANDLE VALUE == hFileToFind)

else

s
L
do

I
L

} while (FindNextFileW(hFileToFind, &findData));

SANS

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 82

Example: FindFirstFile, FindNextFile, FindClose

The short example on the slide shows very basic usage for the two main APIs that are involved in enumerating
a directory. The FindFirstFileW API is used to kick off the process of enumeration. The first argument being
passed to the API is a CString type that has a method GetBuffer() to get a pointer to the buffer. This is done to
satisfy the requirement of the API. The function can fail, so be sure to check for success for failure. The next
part is the do/while loop that will continue as long as the FindNextFileW function keeps returning TRUE or 1.
In the body of the do/while loop is where your processing of each entry would be done. You can do matching
if you are looking for a certain file name, extension type, skip directories, etc. If you are keeping a list of
everything being discovered, this is where you would be appending to that list.

82

Technet24

Lab 2.5: FileFinder

o
q I Enumerating directories is an important feature to create.

Please refer to the eVWorkbook for the details of the lab.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 83

Lab 2.5: FileFinder
Please refer to the eWorkbook for the details of the lab.

83

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 84

What’s the Point?
The point of this lab was the explore how you can programmatically enumerate a directory to find a file, and if
you had time, enumerate any subdirectories.

84

Technet24

Module Summary

r
:g; I Discussed why we would perform a directory walk

I Learned how to perform a directory walk to find a file

I Discovered the main APIs involved

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

In this module, we discussed the how to perform a directory walk and why we would do one in the first place.
A recursive walk from the system root could take a while, but at the same time it could yield some great
information. There were only three APIs involved with this, but there were two that did the heavy lifting:
FindFirstFile and FindNextFile.

85

85

Unit Review Questions

h|

r
:g; I What user-mode structure holds the attributes of a file?

WIN32_FIND_DATA

n KUSER_SHARED_DATA

FILE_OBJECT

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 86

Unit Review Questions
Q: What user-mode structure holds the attributes of a file?

A: WIN32_FIND DATA
B: KUSER_SHARED DATA

C: FILE OBJECT

86

Technet24

Unit Review Answers

h|

r
:g; I What user-mode structure holds the attributes of a file?

WIN32_FIND_DATA

n KUSER_SHARED_DATA

FILE_OBJECT

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 87

Unit Review Answers
Q: What user-mode structure holds the attributes of a file?

A: WIN32_FIND_DATA
B: KUSER_SHARED DATA

C: FILE OBJECT

87

Course Roadmap

» Windows Tool Development

» Getting to Know Your Target
 Operational Actions

* Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 88

This module will discuss the importance and benefits of gathering information about the users of a system.
The module will of course discuss the Windows APIs that might be involved with retrieving user information.

88

Technet24

Our objectives for this module are:

I Discuss the importance of gathering user information

Understand how to programmatically gather information about users

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 89

Objectives
The objectives for this module are to understand how to programmatically gather information about users and
discuss the importance behind it.

User Information

I Who’s who on the system

It is always a good idea to see what users are on the system. Limited privileged users
are one thing, but finding out if a user is part of the Administrators group is great. You
might even get lucky enough to see a Domain admin logged into a system!

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 90

User Information

Another part of conducting recon is gathering user account information. From the command line, there are
some common tools that can be used to do this, like the net command line utility. The net command does more
than gather user information but if you pass in the nef user or the net localgroup options, it will gather user
information and groups on the system, among other things. Using the command line is nice when you have a
shell, but we can also do this programmatically. Why do we care about users in the first place? Well, if a user
is part of the Administrators group, that could give us a solid option of escalating our privileges or attempting
a UAC bypass. If the system is part of an Active Directory domain, something you would find in most mature
Windows environments, you might see a domain admin logged into the system. The hash for that account
would be great to grab and then further pivot around the domain. Dumping creds and hashes for accounts can
help with our lateral movement, or as some say our East and West movement, something that SEC565 dives
into.

Technet24

GetUserName API

BOOL GetUserNameA (
® GetUserNameA() _out_ LPSTR lpBuffer,
_Inout LPDWORD pcbBuffer

) 8

Used to obtain the current
username

// example

PSTR userName;
DWORD cbSize = 32767;

Has BOOL return type

GetUserNameA (userName, &cbSize) ;

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 91

GetUserName API

The GetUserName API is yet another macro that can expand to support ANSI or Unicode, depending on
project settings. Keeping with the trend of showing ANSI versions, we will break down the ANSI version of
this API. GetUserNameA requires two parameters: [pBuffer, and pcbBuffer. We can take a look at those in
more detail below.

IpBuffer, of type LPSTR, is a pointer to a buffer that will end up storing the username.

pcbBuffer, of type LPDWORD, is a pointer to a variable that will indicate the size of the buffer pointed to by
IpBuffer.

The function will indicate success by returning nonzero. Failures result in zero, which does not give us any
real insight as to why it may have failed. For that, we would have to call our favorite error function
GetLastError. There are a few caveats with this function in that it will not return the username that one might
expect. For example, threads have the ability to impersonate tokens/users and as such, the API would return
the username of the client that is currently being impersonated.

GetUserProfileDirectory API
USERENVAPI
® GetUserProfileDirectoryA() BOOL
GetUserProfileDirectoryA(
In HANDLE hToken,
_Out_opt_ LPSTR 1pProfileDir,
Used to obtain the root directory _In_opt_ LPDWORD lpcchSize
of the user’s profile)s
Has BOOL return type
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 92

GetUserProfileDirectory API

The GetUserProfileDirectory API is useful when you would like to know the path of the root folder for the
username that was passed into the function. The GetUserProfileDirectory API is another macro, so we should
know what that means by now. The function only has one required parameter and two optional parameters.
Even though a few of the parameters are optional, we can dive into the details of each one.

hToken, of type HANDLE, is a valid handle to a token for the user that can be gathered from calling a function
like OpenProcessToken or OpenThreadToken.

IpProfileDir, of type LPSTR, is a pointer to a variable that will hold the path to the user’s profile directory.
IpcchSize, of type LPDWORD, is a pointer to the size of the buffer pointed to by IpProfileDir.

One nice thing about this function is that if your IpProfileDir buffer is not big enough, the needed size will be
placed in /[pcchSize by the function. This would allow you to make the call a second time using the correct
size. On that note, your first call for functions like these should be with a zero-sized buffer. This would make

the function fail, forcing it to give us the proper size. Once you have that, you can make the second call with
the correct size. This is the preferred way and the most reliable method.

92

Technet24

NetUserEnum API

NET_API_STATUS
® NetUserEnum() NET_API_FUNCTION

NetUserEnum(
In LPCWSTR servername,
In DWORD 1level,
Used to obtain information about _In_ DWORD filter,
all user accounts _Out_ LPBYTE *bufptr,
In DWORD prefmaxlen,

Out LPDWORD entriesread,

Out LPDWORD totalentries,
Has NET_API_STATUS return _Inout_ PDWORD resume_handle

type)

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control ~ 93

NetUserEnum API

Getting account information about a single user account is fine, but it is also great to get account information
about all user accounts on a system. The NetUserEnum API is perfect for this because it will return
information from all user accounts on the local or remote system. The information returned from the API
might seem similar to the output you may have seen after executing the net user command. The API has
several parameters that need some explaining.

servername, of type LPCWSTR, is the pointer to a constant wide char string for the server. Passing in NULL
here would indicate the local computer.

level, of type DWORD, is the level of information you intend to see. There are seven values that can be passed
in here:

- 0 - is for user account names. There will be an array of USER_INFO _0 structures.

- 1 - is for user account details. There will be an array of USER_INFO 1 structures.

- 2 - is for account details and logon information. There will be an array of USER_INFO_2 structures.

- 3 - is for all of the above and now profile information. The array will have USER_INFO 3 structures.

- 10 - is for user account names and comments. The array will have USER_INFO_10 structures.

- 11 - is for more detailed account information. The array will have USER_INFO 11 structures.

- 20 - is for the user’s names account attributes. The array will have USER_INFO 20 structures.

filter, of type DWORD, is used to specify what accounts should be included in the search.

bufptr, of type LPBYTE, is the pointer to the buffer that will end up holding the returned information. You are
required to free this buffer using NetApiBuffer Free when done, even if the API fails.

prefmaxlen, of type DWORD, is the maximum length of the data, in bytes. We do not need to specify a value
here other than MAX PREFERRED LENGTH so that the function makes the proper space for the data.

entriesread, of type LPDWORD, is a pointer to the variable that will hold the number of entries the function
queried.

totalentries, of type LPDWORD, is a pointer to the variable that will hold the number of entries that could
have been queried from a position called the resume position.

resume_handle, of type PDWORD, is a pointer to a variable that is used as the resume handle. The resume

handle can be used to continue searching user accounts and if this is what you want to do, then zero (0) should
always be used for the first call. If you do not care about this, then passing NULL here is just fine.

94

Technet24

NetLocalGroupEnum API

NET_API_STATUS
® NetLocalGroupEnum() NET_API_FUNCTION

NetLocalGroupEnum(

In LPCWSTR servername,

In DWORD level,
Used to obtain local group _Out_ LPBYTE *bufptr,
information _In_ DWORD prefmaxlen,

Out LPDWORD entriesread,
Out LPDWORD totalentries,
Inout PDWORD_PTR resumehandle

Has NET_API_STATUS return)3

type

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 95

NetLocalGroupEnum API

In addition to gathering user information, we can gather information about the groups that might be present on
a local or remote system. The NetLocalGroupEnum API is pretty much the equivalent to executing the net
localgroup command from the command line. Perhaps the API should have been named
NetLocalOrRemoteGroupEnum since it is not bound to local systems only. The API has almost the exact same
parameters to the NetUserEnum API except for the level parameter. The level parameter only has two
possible options: 0 and 1. Level 0 is for returning only the names of the local groups, which will be an array of
LOCALGROUP_INFO 0 structures. Level 1 is for requesting the group names and the comments that are tied
to them, if any. There will be an array of LOCALGROUP_INFO 1 structures for Level 1. Outside of the level
parameter, the remaining ones are the same as the NetUserEnum API.

Additional Information

o I Additional headers and APIs that could be of interest

I Imaccess.h I Imuse.h
I NetGroupGetUsers I NetUseEnum
I NetLocalGroupGetMembers I NetUseGetInfo
SAN-S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 96

Additional Information

The Imaccess and the Imuse header files offer additional APIs that might be of interest when querying user and
user group information. The listing on the slide is not an exhaustive list but merely a small sampling of what
else is out there that can be used. Depending on the information that you are wanting to gather, you can
implement the logic to get it. The more you add the more robust your survey tool will be for operators using it.

Technet24

Source Code Review

Source code review!

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 97

Source Code Review
Time to jump into the source code and understand it.

Module Summary

r
:g; I Discussed reasons to gather user information

I Explored several APIs that allow us to retrieve user and group information

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary
In this module, we discussed why it might be important to gather information about the user and groups on
systems. We also took a detailed look at several of the APIs that are available for us to use.

98

98

Technet24

Unit Review Questions

10r
:g; I What is one API to obtain a username?

GetUserName()
ﬂ NetUserEnum()

NetLocalGroupEnum()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 99

Unit Review Questions
Q: What is one API to obtain a username?

A: GetUserName()
B: NetUserEnum()

C: NetLocalGroupEnum()

99

Unit Review Answers

10r
:g; I What is one API to obtain a username?

GetUserName()
ﬂ NetUserEnum()

NetLocalGroupEnum()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 100

Unit Review Answers
Q: What is one API to obtain a username?

A: GetUserName()
B: NetUserEnum()

C: NetLocalGroupEnum()

100

Technet24

Course Roadmap

» Windows Tool Development

* Getting to Know Your Target
 Operational Actions

* Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

In this module, we will discuss how to enumerate services and tasks during the execution of your survey tool.

101

Our objectives for this module are:

Understand Windows services
Compare services and processes

Understand Windows Tasks

Discuss how to enumerate services and tasks

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 102

Objectives
The objectives for this module are to understand what a Windows service is, compare services and processes,
understand what Windows Tasks are, and how to enumerate them all.

102

Technet24

Windows Services

I What exactly is a Windows service?

I Special process I Shared service I Isolated service

. Several services . ,
Looks like any other A service hosted in

sharing address space .
process except no svchost.exe that is

] in a single process .
GUI, no direct user . glep not sharing its
like svchost.exe. If

interaction. It address space with
. . one crashes, they all)
provides a service. other services
crash.
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 103

Windows Services

Even if you are not that familiar with Windows, you might be familiar with services in general. Linux has
services too, typically called daemons, and they provide a certain set of services to users, like FTP access to
some FTP server. Windows services are not that different as they still provide a service to users. Windows
services are just special processes and they typically do not have a GUI. Most services do not have direct
configuration or interaction with users on the system. The services operate in the background and mind their
own business until a user needs whatever functionality they provide. The most interaction a user might have
with a service is to perform some action against it, like Stop or Start actions. Another interesting item with
Windows services is that they can share address spaces. The svchost.exe process acts like a container of sorts
so that several services can be hosted in a single svchost.exe process. The downside of shared services is that
if one service crashes for some abnormal reason, like exploit attempts, the other services go down with it. This
is where isolated services come to play. They are services that can be hosted in a single svchost.exe process
but they will not be sharing the address space with any other service. Later in the course, we will look at how
we can make that choice programmatically when we create our own service.

103

Service Enumeration
I Why enumerate services!?

I Awareness I Purpose
The better awareness you have The purpose of a target will
the more successful your determine how it is most likely
operation. Detect services that being used. It could also indicate
could be vulnerable or ones that if the target is high visibility or
could belong to AV/EDR. low.
SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 104

Service Enumeration

We typically conduct service enumeration for similar reasons that we conduct process enumeration. Services,
just like processes, can tell us what a target’s purpose is or how it is being used. Certain services would be
specific to servers like DHCP, DNS, FTP, to name a few, and you would not expect to find those services
running on a client workstation. AV/EDR products can also have services running that handle certain portions
of its functionality like scanning, file submission, watchdog services, etc. Finding those could be beneficial in
making the decision to continue operating on that target. Again, if you did not expect that your target would
have an AV solution installed, it might not be the best idea to continue and bring down additional tools.
Another reason for service enumeration is to identify possible vulnerable services that could be exploited for
privilege escalation and/or persistence, both of which will be talked about later in the course in detail.

104

Technet24

Service Enumeration APls

EnumServicesStatusExA

BOOL EnumServicesStatusExA(
SC_HANDLE hSCManager,
SC_ENUM_TYPE Infolevel,
DWORD dwServiceType,
DWORD dwServiceState,
LPBYTE lpServices,

DWORD cbBufSize,

LPDWORD pcbBytesNeeded,
LPDWORD 1pServicesReturned,
LPDWORD 1lpResumeHandle,
LPCSTR pszGroupName

)5

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Service Enumeration APIs

How exactly can we go about enumerating services? You might know how to do this via the command line
using the sc.exe utility or with the PowerShell cmdlet Get-Service, but we are doing this programmatically in
C. We have two options at our disposal for getting this done. We could create WMI queries to do this or we
can use a few Win32 APIs to achieve similar results. For this instance, we will be using the service-specific

QueryServiceStatusEx

BOOL QueryServiceStatusEx(
SC_HANDLE hService,
SC_STATUS_TYPE Infolevel,

LPBYTE lpBuffer,
DWORD cbBufSize,
LPDWORD pcbBytesNeeded
)s

Win32 APIs instead of using wmi-specific Win32 APIs. EnumServicesStatusEx() and

QueryServiceStatusEx() are two great APIs that can help you enumerate services and gather more detailed
information about them. The first function on the slide is EnumeServicesStatusExA() and it accepts a decent
number of arguments. The function will query the Service Control Manager database of either a local target or

a remote target for services and will return the name and status of each service, at a minimum. More

information and data can possibly be gathered depending on the InfoLevel value passed in as an argument,

which the only supported InfoLevel value documented at the time of this writing is

SC_ENUM_PROCESS_INFO.

The other great service-specific API to use is QueryServiceStatusEx(). It does not enumerate services but

rather, it will obtain the status of a service that has already been enumerated. The two APIs used in

conjunction with each other can provide valuable information about services on the target. The InfoLevel for
this function, similar to EnumServicesStatusEx, only supports one value: SC_ STATUS PROCESS INFO.

In Section 3, we will dive much deeper into services when we discuss local damage that can be inflicted

against a target.

105

I What are Windows Tasks?

Automating routine tasks is great for sysadmins and users who do not want the
headache of repeating an action over and over. Tasks are great for attackers to aid in
persistence on a target.

I Create new tasks I Hijack current tasks

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 106

Windows Tasks

Admins, developers, hackers, etc. tend to be lazy in the sense that all would rather script something than do it
manually. Tasks are a great way to help with this because they can perform certain actions when a specific
trigger condition is met. Some of the triggers could be a user logging on to the system, the system itself
booting up, certain event logs, etc. From an attacker’s perspective, tasks would be a great option for
maintaining access to the target. Attackers can either create a new task to achieve their persistence needs or
hijack current tasks to be a bit less noisy. Hijacking currently scheduled tasks could be done by adding an
additional action after the default action. For enumeration purposes, we are interested in seeing what tasks are
currently registered and possibly already running. Perhaps we find a task that could be of interest to hijack, or
we find evidence that we are not the first ones on the target, i.e., a current task for persistence made by another
attacker. Tasks might not always be the most useful, but when conducting survey scripts, it is great to be
thorough.

Please note: when it comes to keeping a low profile—something you should try to keep—creating new tasks
could raise your profile a good amount. Create new tasks with caution.

106

Technet24

Enumerating Tasks v. 1.0
I Using COM to enumerate Tasks

I ITaskScheduler: : Enum I IEnumWorkItems: : Next

HRESULT Next(

HRESULT Enum(_In_ ULONG celt,

Out IEnumWorkItems **ppEnumWorkItems _Out_ LPWSTR **rgpwszNames,

); _Out_ ULONG *pceltFetched
)

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Enumerating Tasks v. 1.0

For us to enumerate tasks on a system we must turn to COM. There is an exposed interface called
TaskScheduler, specifically ITaskScheduler, that has a method called Enum, which will allow us to create an
enumeration object. Then, with that object in hand, we can create IEnumWorkltems interface that allows us to
enumerate whatever tasks might be present at the time the code is ran. According to MSDN, here are the high-
level steps to getting this done:

- Initialize the COM library using Colnitialize.

- Use CoCreatelnstance to make the Task Scheduler object.

- Call the Enum method of ITaskScheduler to create the enumeration object.

- Call the Next method of the IErnumWorkltems to enumerate tasks.

- Free the resources using CoTaskMemFree.

107

107

Module Summary

10r
:g; I Discussed what Windows services are

I Learned about services and processes
I Discussed what Windows Tasks are

I Discussed enumerating services and tasks

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 108

Module Summary
In this module, we discussed very briefly what services and tasks are. We also discussed why we would want
to enumerate them, and the APIs involved for enumerating services and tasks.

108

Technet24

Unit Review Questions

War
:g; I What does SERVICE_WIN32_OWN_PROCESS indicate?

The service shares its address space with other processes

ﬂ The service does not share its address space with other processes

The service will be hidden from view

SAN-S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 109

Unit Review Questions
Q: What does SERVICE_WIN32 OWN_PROCESS indicate?

A: The service shares its address space with other processes
B: The service does not share its address space with other processes

C: The service will be hidden from view

109

Unit Review Answers

War
:g; I What does SERVICE_WIN32_OWN_PROCESS indicate?

The service shares its address space with other processes

n The service does not share its address space with other processes

The service will be hidden from view

SAN-S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 110

Unit Review Answers
Q: What does SERVICE_WIN32 OWN_PROCESS indicate?

A: The service shares its address space with other processes
B: The service does not share its address space with other processes

C: The service will be hidden from view

110

Technet24

Unit Review Questions

r
:g; I How do you get the COM library ready for use in your process?

CoCreatelnstance
n Colnitialize

CoMemFree

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 111

Unit Review Questions
Q: How do you get the COM library ready for use in your process?

A: CoCreatelnstance
B: Colnitialize

C: CoMemfFree

111

Unit Review Answers

r
:g; I How do you get the COM library ready for use in your process?

CoCreatelnstance
n Colnitialize

CoMemFree

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 112

Unit Review Answers
Q: How do you get the COM library ready for use in your process?

A: CoCreatelnstance
B: Colnitialize

C: CoMemfFree

112

Technet24

Unit Review Questions

r
:g; I What COM interface can be called to create an enumeration object?

ITaskScheduler
“ IUnknown

IBelieve

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 113

Unit Review Questions
Q: What COM interface can be called to create an enumeration object?

A ITaskScheduler
B: IUnknown

C: IBelieve

113

Unit Review Answers

r
:g; I What COM interface can be called to create an enumeration object?

ITaskScheduler
“ IUnknown

IBelieve

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 114

Unit Review Questions
Q: What COM interface can be called to create an enumeration object?

A: ITaskScheduler
B: IUnknown

C: IBelieve

114

Technet24

Course Roadmap

Windows Tool Development

Getting to Know Your Target

Operational Actions
* Persistence: Die Another Day

Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

This module will look at how to gather information about the network and the target’s network configurations.

115

Our objectives for this module are:

I Gather network information

I Gather NIC configurations

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 116

Objectives
The objectives for this module are to determine how to gather any network information we can, as well as the
target’s NIC configurations.

116

Technet24

Network Information
I What network is the target connected to!?

Most enterprise computers will have a NIC configured with an IPvé6 and an IPv4
address. IPv6 will be there even if the organization does not officially support it. Some
computers could have dual NICs and be what can be called dual homed.A dual homed
system is connected to two different networks and offers a great pivot point into a
new environment.

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 117

Network Information

You might not be able to determine the purpose of a system just by gathering network information, but it
definitely helps out. If your tool has network sniffing capabilities, you might get more information that way.
Aside from sniffing packets, you can still gather some useful information. Perhaps one of the most interesting
pieces of information to find out is coming across a system that has multiple NICs and is being dual homed. A
dual homed system can be connected to two different networks at the same time. Some sysadmins have done
this thinking it acts as a security boundary and that the NICs are separate, but Windows does its best to treat
them as one. In a dual homed system, one NIC could be connected to the DMZ and the other could be
connected to the trusted, internal network, or the intranet. Dual homed systems are great targets for us and
other attackers because they could enable our movement throughout a network. Stuxnet would happily move
through a dual homed system, as did the slammer worm way back in 2003.

We cannot forget about VLANS. These Virtual Local Area Networks virtually combine endpoints into a single

broadcast domain, and it might be a good idea to look for that when you get on target. SEC660 discusses
VLAN hopping and could be something of interest for developers to understand.

117

NIC Information/Configuration

I IP Helper header file offers many great APIs for us to use.

I GetIpStatistics I GetAdapterAddresses

GetAdaptersAddresses(

IPHLPAPI_DLL_LINKAGE _In_ ULONG Family,

- - _In_ ULONG Flags,
ULONG
GetIpStatistics(_In_ PVOID Reserved,
Out_ PMIB_IPSTATS Statistics —Inouts BIR - ADARIERCADDRESSES

)T - - AdapterAddresses,

? _Inout_ PULONG SizePointer
)s

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 118

NIC Information/Configuration

VMs are being used more and more these days in production and if you happen to get access to a VM in
production, you might see several NICs on it. Your survey tool should gather each NIC’s configuration.
PowerShell offers some useful cmdlets for this, like Get-NetAdapter, Get-NetAdapterHardwarelnfo, and
more. The Windows command line offers utilities as well, like netstat, ipconfig, and others. Other interesting
information that could be gathered would be the statistics, something that is gathered by running netstat -e.
There are several ways to get all of this done, like using WMI or the IpHIpApi. While WMI can be useful, it is
not always the easiest to work with when there are Win32 APIs like GetIpStatistics. The IP Helper header file
offers many useful APIs for us, and we will take a look at some of them, like GetIpStatistics,
Getlnterfacelnfo, GetAdapterAddresses, and GetNumberOfinterfaces.

118

Technet24

GetiInterfacelnfo API

GetInterfaceInfo(
Out PIP_INTERFACE_INFO pIfTable,
Inout PULONG dwOutBufLen

i

typedef struct _IP_INTERFACE_INFO {

LONG NumAdapters;

IP_ADAPTER_INDEX_MAP Adapter[1];

} IP_INTERFACE_INFO, *PIP_INTERFACE_INFO;

IPHLPAPI_DLL_LINKAGE
® GetInterfaceInfo() DWORD

Gets list of IPv4 enabled devices

Has DWORD return type

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 119

GetInterfacelnfo API

The Getlnterfacelnfo function can be used to gather a list of interfaces on the target that have IPv4 enabled.
As you can see by the SAL annotations, the function has two parameters that are written to and one that is
read. We can break down the parameters to better understand them.

plfTable, of type PIP_INTERFACE INFO, is used as a buffer to hold the list of interfaces that have been
found. It is up to us as developers to allocate enough space in the buffer to hold this information. The structure
holding the information is the [P INTERFACE INFO structure, which has two members. The first one,
NumdAdapters, holds the number of adapters that will be stored in the array. The second member is the
Adapter, which is the array of IP. ADAPTER _INDEX MAP entries. Every structure here will be tied to an
index then tied to its corresponding name.

dwOutBufLen, of type PULONG, is a pointer to some DWORD variable that will be used to give the size of
the buffer to the function. If you notice, this parameter is inout. The out portion is for when the size is not large
enough to hold the data, the function will write to the variable the correct size needed. Then you can call this
function again with the correct size and it should work just fine.

A successful call would return NO_ERROR. Failed calls can return any one of the following error codes:

- ERROR_INSUFFICIENT BUFFER: The buffer is not large enough and the correct size has been stored in
dwOutBufLen.

- ERROR INVALID PARAMETER: The dwOutBufLen is NULL or the function cannot write to the
variable.

- ERROR NO_DATA: Could not find any network adapters.

- ERROR_NOT SUPPORTED: The function is not supported for this version of OS.

119

I GetIpStatistics()

Grabs the IP statistics for the
system

Has ULONG return type

GetlpStatistics API

IPHLPAPI_DLL_LINKAGE

ULONG

GetIpStatistics(

Out PMIB_IPSTATS Statistics
)

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 120

GetlpStatistics API

The GetlpStatistics function can help us recreate familiar Windows commands like netstat. The overall IP
statistics are captured and returned to the caller of this function. The function is not very complex and accepts
a single parameter: Statistics. The Statistics parameter is of type PMIB _IPSTATS, which is a struct that gets
filled out by the function so that it has a place to store the information for any IP statistics that are gathered,
hence the reason why the Statistics parameter is an out parameter. Upon success, the function will return
NO_ERROR. When the function fails, it can return the following error code:

ERROR _INVALID PARAMTER for when the Statistics parameter is NULL or if the function is not able to
write to the pointer. The structure the function fills out is very large, but the next slide holds a snippet of some

of its members.

120

Technet24

MIB_IPSTATS Struct

typedef struct _MIB_IPSTATS LH {
[..SNIP..]
DWORD dwDefaultTTL;
DWORD dwInReceives;
DWORD dwInHdrErrors;
DWORD dwInAddrErrors;
DWORD dwForwDatagrams;
DWORD dwInUnknownProtos;
DWORD dwInDiscards;
DWORD dwInDelivers;
DWORD dwOutRequests;
DWORD dwRoutingDiscards;
DWORD dwOutDiscards;
DWORD dwOutNoRoutes;
[..SNIP..]
} MIB_IPSTATS_ LH, *PMIB_IPSTATS_LH;

SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 121

MIB_IPSTATS Struct

The MIB_IPSTATS structure is the structure that is filled out by the GetlpStatistics function. Some of the
structure members are very useful and some you might not even care about other than just being extra detailed
with information for the operator.

121

GetAdapterAddresses API

IPHLPAPI DLL LINKAGE
® GetAdapterAddresses() ULONG

GetAdaptersAddresses(
In ULONG Family,
In ULONG Flags,

Grabs the addresses tied to the “In_ PVOID Reserved,

adapters _Inout_ PIP_ADAPTER_ADDRESSES
AdapterAddresses,
Inout PULONG SizePointer
Has ULONG return type)5
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 122

GetAdapterAddresses API

The GetAdapterAddresses can be used when you need to find out what adapters have what IP address. The
function is great because not only can it do IPv4, but it can do IPv6 as well. GetAdapterAddresses has several
in parameters and a few inout ones indicating that the function will be attempting to write to those variables.
Let us break down each one of these parameters to get a better understanding of what they are.

Family, of type ULONG, is used to indicate what address family the function should get. This can be
AF_INET (6), or AF_INET®6 (23). The other interesting part is that you can specify both families at the same
time with AF_ UNSPEC. AF_UNSPEC indicates that any adapter that has IPv4 or IPv6 enabled, should have
its information returned to the caller.

Flags, of type ULONG, is used to indicate what type of addresses to get. There is a long list of types that can
be used for this parameter, but a few options are the following: GAA FLAG INCLUDE GATEWAYS,
GAA FLAG INCLUDE ALL INTERFACES, and quite a few more.

Reserved, of type PVOID, is reserved so we do not really care about it.

AdapterAddresses, of type PIP._ ADAPTER ADDRESSES, is a pointer to some variable that will act as the
buffer filled with a linked list of IP. ADAPTER ADDRESSES structures. The structure is a massive structure,

and it is worth browsing to the MSDN documentation to completely understand it.

SizePointer, of type PULONG, is a pointer to the variable that stores the size of the buffer.

122

Technet24

Upon success, the function will return ERROR_SUCCESS. Should the function ever fail it will return one of

the following error codes:

- ERROR _ADDRESS NOT ASSOCIATED: An address has yet to be associated with the device.

- ERROR_BUFFER OVERFLOW: The buffer size indicated is not large enough to hold the requested
information.

- ERROR _INVALID PARAMETER: SizePointer is NULL, Family was not a valid family option.

- ERROR_NOT ENOUGH MEMORY: Literally not enough memory to complete the function.

- ERROR NO DATA: No addresses found.

123

GetNumberOfinterfaces API

IPHLPAPI DLL LINKAGE
® GetNumberOfInterfaces DWORD

GetNumberOfInterfaces(
Out PDWORD pdwNumIf

5

Grabs the number of interfaces
// example

DWORD dwCount = 0;

Has DWORD return type GetNumberOfInterfaces(&dwCount);

// error check

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 124

GetNumberOflInterfaces API

If you wanted to run something quick and easy, the GetNumberOfInterfaces function would be it. The only
parameter you need to worry about is an out parameter. The function will write to it the number of interfaces
that have been discovered on the local machine. The pdwNumlf parameter is of type PDWORD. All interfaces
should be enumerated by the function, including the system’s loopback adapter. If you do not care about the
loopback interface, then you do not need to use this function. Other functions like GetAdaptersInfo and
Getlnterfacelnfo will not return information about the loopback interface. Also, the number returned might be
higher than what you might be expecting as it does not directly relate to physical NICs on the target. Logical
interfaces will be included in the count of interfaces, so if you were expecting to see 2 and got back something
like 18, that would be the reason why.

124

Technet24

Module Summary

r
:g; I Discussed how to gather information about the network

I Discussed how to gather NIC information about the target

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

In this module, we discussed the why and how of gathering information about a target’s NIC configuration, as
well as any other information we can gather about the network overall. The information presented in this
module can be the foundations for creating tools like arp, ipconfig, netstat, etc.

125

125

Unit Review Questions

r
:g; I What API will give you an IP address for a network adapter?

GetAdapterAddresses()
ﬂ GetNumberOfinterfaces()

GetlpStatistics()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 126

Unit Review Questions
Q: What API will give you an IP address for a network adapter?

A: GetAdapterAddresses()
B: GetNumberOflnterfaces()

C: GetlpStatistics()

126

Technet24

Unit Review Answers

r
:g; I What API will give you an IP address for a network adapter?

GetAdapterAddresses()
ﬂ GetNumberOfinterfaces()

GetlpStatistics()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 127

Unit Review Answers
Q: What API will give you an IP address for a network adapter?

A: GetAdapterAddresses()
B: GetNumberOflnterfaces()

C: GetlpStatistics()

127

Unit Review Questions

r
:g; I What APl includes logical interfaces in its results?

GetAdapterAddresses()
ﬂ GetNumberOfinterfaces()

GetlpStatistics()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 128

Unit Review Questions
Q: What API includes logical interfaces in its results?

A: GetAdapterAddresses()
B: GetNumberOflnterfaces()

C: GetlpStatistics()

128

Technet24

Unit Review Answers

h|

r
:g; I What APl includes logical interfaces in its results?

GetAdapterAddresses()
n GetNumberOfinterfaces()

GetlpStatistics()

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 129

Unit Review Questions
Q: What API includes logical interfaces in its results?

A: GetAdapterAddresses()
B: GetNumberOfInterfaces()

C: GetlpStatistics()

129

Course Roadmap

» Windows Tool Development

* Getting to Know Your Target
» Operational Actions

* Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

This module will discuss how to enumerate the Windows Registry to find critical information about the

system.

130

Technet24

Our objectives for this module are:

I Gather registry information

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 131

Objectives
The objectives for this module are to understand what information can be found in the registry.

131

Registry Information

I Troves of information

The Windows Registry contains troves of information that can arguably be deemed
critical to your survey tool. The registry is so important that even the system itself
relies on information found in the registry.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Information

The registry was discussed in tremendous detail during Section 1, along with the APIs needed to enumerate
practically everything in it. It is being included here during this day as a brief reminder that it should not be
forgotten about when conducting your survey. The registry is an excellent source for collecting information
from the target. Some sections you might not be able to query unless you have Administrator privileges or
higher, but even still, you can collect useful information as a basic user.

132

132

Technet24

The Registry (1)

I The registry APl family provides most functionality for registry interaction.

The Registry is a collection of five hives where each one exposes information, some
critical to the functionality of the OS. The hives have keys, which then have subkeys
with values that applications or services might need to query.

I It is has become the go-to location for developers for storing application information.

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 133

The Registry (1)

If you are coming from a pure Linux world, the Registry could be quite foreign to you. The Registry is simply
a collection of five hives with each one exposing various pieces of information. In all reality, there are only
two true hives, HKEY USERS and HKEY_ LOCAL_MACHINE. If you fire up regedit.exe you would see
the five hives, but the other three hives are simply a combination of some of the data that can be found in the
two main hives. The hives have keys and subkeys that hold settings and configurations that can be specific to
users or to the machine. For 64-bit Windows, there will exist a 32-bit portion of the registry that will store
information specific for 32-bit applications installed on the system. There will be a virtual redirection for 32-
bit apps implemented by a mechanism called registry virtualization. The 64-bit apps see no such portion of the
Registry as there is no need for virtual redirection.

The Registry used to be the go-to location for developers to store information for the applications they would
develop. Now, Microsoft would like it if you left the Registry well enough alone so that processes internal to
Windows are the only ones interacting with it. There are other ways to store information for your application,
such as creating configuration files like INI, YAML, JSON, DAT, XML, etc. For this class and for our
purposes, we will not be listening to that recommendation.

133

The Registry (2)

I The Registry holds configuration data that is read during four critical times.

I Initial boot process I Kernel boot process

I Logon process I Application startup

These are not the only times that the registry is read. New application
installations trigger registry access and some applications constantly
poll the registry for changes for live updates.

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 134

The Registry (2)
The configuration data held in the Registry is typically read from at four critical times.

1.
2.
3.
4.

The initial boot process
The kernel boot process
The logon process
Application startup

The Boot Configuration Database (BCD) is stored in a registry hive and the boot loader must read the
configuration data to retrieve a list of boot device drivers to load into memory. Once that happens, the kernel
can start its initialization process. The kernel will load the appropriate device drivers and determine how some
managers like the process manager and memory manager configure themselves. All of this is a way to fine
tune how the computer will behave.

The logon process starts the per-user preferences. Explorer is one of many Windows components that must
read the per-user profiles to set up various items like desktop wallpaper, screen saver, where desktop icons are
placed, and what applications must be started. This is how each user on a local system can have different
setups/preferences for their environment.

When the applications are being loaded by the system loader, they will read some systemwide settings as well
as per-user preferences, like how the window layout is for an application like Word. If the user has a custom
toolbar layout for an application, then that needs to be read and prepared when the application starts. Also, the
most recently accessed documents will be retrieved and available to view.

New application installs are another moment when the registry is being read. The application will store various
information in certain keys that are specific to it. Some of that data might be easily readable, but some might
be obfuscated. Many AV products do this in an attempt to conceal some of their internal mechanisms, like
how they communicate with their cloud engine when a suspicious file needs to be analyzed. Also, some
applications can be overly aggressive with their registry access by polling for live changes made to its
configuration data. This is not a best practice as idle systems should not have a lot of registry activity.

134

Technet24

The Registry (3)

»x
‘@ I There are five predefined root keys the system uses.
»

HKEY USERS I HKEY CLASSES ROOT*

HKEY CURRENT USER* I HKEY LOCAL MACHINE

I HKEY CURRENT CONFIG*

A I An * denotes the key is a link or a merged view of keys.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 135

The Registry (3)

You might have noticed that each root key starts with an H. This is because the root key names are Windows
handles (H) to keys (KEY); hence the name HKEY. The key names on the slide that are annotated with an
asterisk “*” are links to other keys or a combination of two keys to provide a unique view of information. Here
is a brief breakdown of the five root keys. For more detailed information, check out the Windows Internals
books in addition to MSDN online documentation.

HKEY USERS: Each time a new user logs in to the system, a new hive, called the user profile hive, will be
created. Here, information about all system accounts is stored.

HKEY CURRENT USER: Data tied to the user who is currently logged on. This is a subkey under
HKEY USERS.

HKEY CLASSES ROOT: File association and Component Object Model (COM) object registrations.
HKEY LOCAL MACHINE: Systemwide settings.

HKEY CURRENT CONFIG: The current hardware profile.

135

The Registry (4)

\' Deep dive: HKEY_USER (HKU)

The HKU key will hold a subkey (HKCU) for each user profile on the local system.
There is also a profile for the system that has its own subkey, HKU\.Default. Winlogon
uses the system profile to determine various settings like the desktop background.

I ProfilesDirectory I ProfileList

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 136

The Registry (4)

The HKU key holds a wealth of user information. In fact, it holds user information for every user that has
logged on to the local machine, as long as the user does not have a roaming profile with Active Directory or
similar. Each user will have their own specific subkey—even the system has its own subkey located at
HKU\.Default. The system profile is used by the Winlogon process to read information like the desktop
background to show to the user when logging into their account. The user profiles are stored in a location
determined by the registry value held in HKLM\Sofiware\Microsoft\Windows
NT\CurrentVersion\ProfileList\ProfilesDirectory. If the value has not been modified, the default is
%SystemDrive%\Users.

If you wanted to develop some kind of user enumeration tool, then a good place to enumerate a list of profiles

that exist on the system would be the ProfileList key. From there, the subkey name will be the Security
Identifier, or SID, of the account that is tied to it.

136

Technet24

The Registry (5)

\' Deep dive: HKEY_CURRENT_USER (HKCU)*

This root key holds configuration information for the locally logged-on user regarding
software configuration information and user preferences. They key points to the user
profile, which is located at \Users\<username>\Ntuser.dat.

Created for each new login I Subkey under HKU

I Subkeys: console, software, control panel, identities, printers, keyboard layout, etc.

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 137

The Registry (5)

The HKCU key exists for each locally logged-on user. Each time a new user logs on, this key is created as a
subkey under HKU. User-specific information is stored in this key located at \Users\<username>\Ntuser.dat.
In addition, software configuration information is also stored in this key since different users might have
different preferences for how their applications are laid out. In addition to this, different users could also have
different user preferences that must be stored, and this is the perfect location to store that information. Also,
any service processes that kick off under the context of a specific user will trigger their specific HKCU to be
loaded.

There are several subkeys: AppEvents for sounds/events, Console for command window settings, Control
Panel for screen saver information, Software for user-specific software preferences, Printers for printer
connection settings, Keyboard layout for what country region layout should be (US or UK), or Identities for
Windows Mail account information. This is not all the subkeys found under HKCU and to list them all, you
can write an enumeration tool to gather that information.

137

The Registry (6)

\- Deep dive: HKEY_CLASSES_ROOT (HKCR)*

This root key holds three types of information: file extension associations, COM class
registrations, and virtualized registry root for the UAC. Every registered file extension
will have its own key that is typically the REG_SZ value type. Sometimes they simply
point to another key that holds the needed information.

I HKCU\SOFTWARE\Classes I HKLM\SOFTWARE\Classes

I The combination of the above Classes keys make this root key.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (6)

This root key is not a genuine root key like HKU or HKLM, nor is it a link or subkey of another key. It is the
combination of two Classes keys: HKCU\SOFTWARE\Classes and HKLM\SOFTWARE\Classes. It might not
make sense to have separate locations for user and system registration, but users having roaming profiles that
are configured differently creates the need for that separation.

This key also holds information regarding file extensions and what applications they are associated with. Each

registered file extension will have its own key that is simply a link to another location. Of course, the location
and layout of the Registry greatly depends on what version of Windows you are running.

138

Technet24

The Registry (7)

\' Deep dive: HKEY_LOCAL_MACHINE (HKLM)

This root key holds vital information for the system. Some of the critical information
like how the system boots is stored here. Other information is stored here, like
systemwide software configurations, installed components, user passwords, and boot
entries to name a few.

I BCD: boot entries I SAM: account passwords

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 139

The Registry (7)
The HKLM key is the root key that holds all systemwide configuration subkeys.

« BCD00000000

* COMPONENTS
« HARDWARE

+ SAM

* SECURITY

* SOFTWARE

* SYSTEM

BCD00000000 subkey is the Boot Configuration Data (BCD) information that is loaded as a registry hive.
BCD is the replacements for the boot.ini file and it adds greater capabilities. There can be any number of
entries in the BCD, like one for the Windows installation itself. The entries can be found in the subkey
Objects.

COMPONENETS subkey stores information regarding the Component Based Servicing (CBS) stack. The
Windows installation has various file and resources that make up the installation image. Depending on how
many components are installed, this subkey can become very large and so it is loaded and unloaded
dynamically, as necessary.

HARDWARE subkey holds information about the hardware in the system. This is read when the Device
Manager user application is started.

SAM subkey holds user passwords, any group definitions, and associated domains. Because of the sensitive
nature of the information stored in this subkey, the security descriptor does not even allow the Administrator

account to access it.

SECURITY subkey holds policies that are systemwide; in addition, User-rights are also stored in this subkey.

139

SOFTWARE subkey holds systemwide configuration information that is not critical for booting the computer.
Any third-party application installed on the system will also store their settings here.

SYSTEM subkey holds systemwide configuration information that is critical for booting the computer.
Changing information in this subkey can render your system useless and for such occasions, Windows stores a
last known good control set under this subkey. There, a lightweight copy of the subkey, called a maintenance
copy, lets admins choose a working control set they know was good.

140

Technet24

The Registry (8)

\' Deep dive: HKEY_CURRENT_CONFIG (HKCC)*

This root key is nothing more than a link to the hardware profile that is stored in
HKLM: HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\Current. It's not prevalent
today but Windows keeps it around in the name of backwards compatibility.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (8)

The HKEY CURRENT CONFIG, or HKCC for short, root key is one of the three links to other root keys.
HKCC is formally linked to the HKLM root key and since this linked key points to whatever the current
hardware profile is, the root key path is: HKLM\SY STEM\CurrentControlSet\Hardware Profiles\Current.
Windows does not support hardware profiles anymore, but the key is still created all in the name of backwards
combability with legacy applications that depend on it being there.

141

141

The Registry (9)

\' Deep dive: HKEY_PERFORMANCE_DATA (HKPD)

This root key is unique because it cannot be accessed directly via the Registry Editor. It
must be accessed programmatically via the Registry APIs. In it you would find
performance counters either from system components or server applications.

I RegQueryValueEx I Technically not stored here

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 142

The Registry (9)

One might think that every registry key would be accessible for viewing via a tool like regedit.exe. Well, the
HKEY PERFORMANCE DATA key is not one of those keys that regedit.exe can view. If you want to poll
performance specific data, then you must do so using the appropriate Registry APIs like RegQueryValueEx.

Another interesting tidbit about this key is that the performance counter information is not actually
created/stored here but rather it comes from a provider. These performance data providers actually push the
values to the key. One could, as another option for querying this information, use the Performance Data Helper
API functions that are provided by the Pdh.dll, which would be the recommended choice to use.

142

Technet24

The Registry (10)

I Registry key values can be one of 12 types, but 3 are most common.

I REG_DWORD I REG_BINARY I REG_SZ
Can hold >32-bit Unicode or ANSI
Used for numbers or strings like
numbers or encrypted names, files
Boolean values password; raw names, paths,
data types, etc.
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 143

The Registry (10)
A registry key’s value can hold several different types, 12 types to be exact. Despite the number of value
types, there are three that you are more likely to come across.

1. REG_DWORD
2. REG_BINARY
3. REG SZ

If you remember from the Windows data types section earlier in this section, then the DWORD type should be
familiar to you. REG_ DWORD can hold 32-bit numbers or Boolean values to represent on/off or
enabled/disabled flags.

REG_BINARY, as the name suggests, store raw binary information like encrypted passwords. It can also be
used to store numbers that are larger than 32-bits.

The last of the common three types is REG_SZ. This is used to hold a string that has a null terminator. Perhaps
the SZ means String Zero indicating String\0.

143

Registry Keys and Values (1)

//declared in Winreg.h
® RegOpenKeyEx

LSTATUS RegOpenKeyExW (

In HKEY hKey,

_In opt LPWCSTR lpSubkey,
Return value is LSTATUS _In_opt_ DWORD ulOptions,
In REGSAM samDesired,
Out PHKEY phkResult
)i

Used to open a handle to
a Registry key

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Keys and Values (1)

First and foremost, look at the function’s return type: LSTATUS is a 32-bit signed integer, and any errors will
be returned. The error code can be looked up using FormatMessage function passing in the
FORMAT_MESSAGE_FROM_SYSTEM flag for a description of the error. No need to call GetLastError
with NSTATUS return values. Let’s break down the parameters in detail.

hKey requires an open handle to an open registry key. If there is no handle opened yet, then one of the
predefined keys can be passed: HKEY CLASSES ROOT, HKEY CURRENT CONFIG,
HKEY CURRENT USER, HKEY LOCAL MACHINE, HKEY USERS.

IpSubkey needs a pointer to the name of the registry subkey to open. Case sensitivity is ignored here. Because
the SAL annotation contains the opt suffix, the pointer is optional; nullptr. It is important to note that NULL
can only be passed here if hKey is passed one of the predefined keys.

ulOptions should just pass NULL here. If not null, then certain options are to be applied when open the key.
The only option noted by MSDN documentation is REG_OPTION_OPEN_LINK, meaning the key is simply a
symbolic link.

samDesired is a mask indicating the desired access to the key.

phkResult, as annotated by the annotation Out_, should be a pointer to a variable that will hold the handle to
the opened key.

144

144

Technet24

Example: RegOpenKeyEx

INT main(VOID)

{
HKEY hHKCU = HKEY();

RegOpenKeyExW(HKEY_CURRENT_USER, L”Console”, NULL, KEY_READ, &hHKCU);

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: RegOpenKeyEx

The example here initializes a variable of type HKEY that will be used to store the handle that the function
gives upon success. Just like the function declares, the last parameter must be the address of the variable.
Afterall, itis an _Out parameter so the user is responsible for making that available for the function to use.

The function doesn’t “return” a handle because this function returns an LSTATUS value that could be used to
determine why it may have failed.

Error handling is left out for brevity.

145

Registry Keys and Values (2)
. I //declared in Winreg.h
® RegQueryValueEx

LSTATUS RegQueryValueExW (

In HKEY hKey,
_In opt LPCWSTR lpValueName,
Return value is LSTATUS _Reserved LPDWORD lpReserved,
_Out opt LPDWORD 1pType,
out LPBYTE lpData,
_Inout opt LPDWORD lpcbData
Used to read the type and)i
data of a Registry key
value

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Keys and Values (2)

Again, we have an LSTATUS return type, so the error code can be looked up using FormatMessage function
passing in the FORMAT_ MESSAGE_FROM_SYSTEM flag for a description of the error. Let’s understand
the function’s parameters in detail.

hKey is a handle to a key, just like in the RegOpenKey function.

IpValueName is a pointer to the string holding the name of the registry value. Passing NULL or “”” will make
the function grab the type and data for the key’s default or unnamed value. If the IpValueName cannot be
found, or it does not exist, the function will return ERROR_FILE NOT FOUND.

IpReserved must be NULL since it is reserved for internal purposes only.

IpType is a pointer to a variable that will hold a code that indicates the type of data being stored in the
mentioned value. MSDN documents the possible types that are acceptable to pass here, but some are
REG BINARY, REG_ DWORD, and REG_SZ.

IpData is a pointer to a buffer that will hold the value’s data. If there is no requirement for data, then simply
pass NULL here. This buffer can be too small to accept the data and if that is the case, the function will return
ERROR_MORE _DATA.

IpcbData is a pointer to a variable that indicates the buffer size in bytes pointed to by [pData. Upon return, the

variable will hold the size of the copied data. [pcbData is allowed to be NULL but only when IpData is also
NULL.

146

Technet24

Example: RegQueryValueEx

INT main(VOID)

{
HKEY hHKCU = HKEY();

DWORD dwType = 0;

DWORD dwSize = 0;

RegOpenKeyExW(HKEY_CURRENT_USER, L”Console”, NULL, KEY_READ, &dwSize);
auto Value = std::make_unique<BYTE[]>(dwSize);

RegqQueryValueExW(hHKCU, L”FaceName”, NULL, &dwType, Value.get(), &dwSize);
// do something with the queried value ...

RegCloseKey (hHKCU) ;

return ERROR_SUCCESS;

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: RegQueryValueEx

The example here builds from the first snippet on the previous slide showing RegOpenKeyExW where the
handle to the key was obtained. That key handle is needed for future calls that are specific to that key.
RegQueryValueExW accepts that key handle as its first parameter. You might question the need for
consecutive calls to RegQueryValueExW and the reason for this is because at first, we do not know the size of
the data being held in the FaceName key. To determine the proper size needed, the function allows us to pass
in NULL for the lpData parameter and a non-NULL value for the IpcbData parameter. When the function does
its parameter checking, it will see this and store the size of the data, in bytes, in the variable pointed to by
IpcbData. In our case that would be size. Before we get to the second call, we take the size of the data and use
that to create a byte buffer using make unique. Here, I am calling that value since it will hold the key’s value
when done.

Fully equipped with the information needed, the second call can be made. A buffer can now be passed into the
IpData parameter, and the size of that buffer can be passed into the IpcbData parameter.

Error handling is left out for brevity.

147

Walking the Registry (1)

//declared in Winreg.h
® RegEnumKeyEx

LSTATUS RegEnumKeyEx (
In HKEY hKey,
In DWORD dwIndex,

Return value is LSTATUS _Out_ LPTSTR lpName,
_Inout LPDWORD lpcchName,
_Reserved LPDWORD lpReserved,
_Out LPTSTR 1pClass,

Used to enumerate _Inout opt LPDWORD lpcchClass,

subkeys under a specific _Out_opt PFILETIME lpftLastWriteTime

key) 5

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 148

Walking the Registry (1)

Again, we have an LSTATUS return type, so the error code can be looked up using FormatMessage function
passing in the FORMAT_MESSAGE_FROM_SYSTEM flag for a description of the error. This function is
great for enumerating a particular key’s subkeys. Let’s break down the function’s parameters.

hKey is a handle to a key, just like in the RegOpenKey function, but this time the handle must have been open
with the KEY ENUMERATE SUB_KEYS access mask or you will be denied access when you make this
call.

dwindex will be used to keep track of loop iterations. Starting with a value of 0, we can increment this value
each iteration until we get a return value of ERROR_NO MORE _ITEMS.

IpName is just the simple key’s name and not the root key name. If the buffer for this parameter is not large
enough to hold the key’s name, then the function will fail with ERROR_MORE DATA. If this happens, don’t
expect [pName to have anything in it, it should be NULL.

IpcchName is the size of the IpName and should be set to the maximum number of characters that a buffer can
hold. This includes the NULL byte. The function will modify this value to reflect the correct number of
characters written, but not include the NULL byte. FYI, the max key name length is 255.

That is the bulk of the function. If a developer wished, they could grab the class name, hardly ever used or

needed, along with the last time the key was modified. The latter part could be interesting if you are looking
for something in particular.

148

Technet24

Walking the Registry (2)

//declared in Winreg.h
® RegEnumValue
WINADVAPI

LSTATUS
APIENTRY
RegEnumvValueW (
_In HKEY hKey,
~In_ DWORD dwIndex,
_Out_writes to opt (*lpcchValueName, *lpcchValueName +
1) LPWSTR lpValueName,

I Return value is LSTATUS

Inout LPDWORD lpcchValueName,
Used to enumerate a key’s _Reserved LPDWORD lpReserved,
value _Out _opt_ LPDWORD lpType,

_Out_writes bytes to opt (*lpcbData, *lpcbData)
__out_data source (REGISTRY) LPBYTE lpData,

_Inout opt LPDWORD lpcbData

)i

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Walking the Registry (2)
Again, we have an LSTATUS return type, so the error code can be looked up using FormatMessage function
passing in the FORMAT_MESSAGE_FROM_SYSTEM flag for a description of the error.

Another observation you may have had is the addition of two SAL annotations that are describing the function.
WINADVAPI is defined as DECLSPEC_IMPORT, which is defined as __ declspec(dllimport). The
APIENTRY type is one we have seen before earlier today. To refresh your memory, it’s defined as WINAPI,
which is defined as __stdcall. Now let’s understand a few of the function’s parameters in detail.

hKey is one we've talked about enough.

dwindex is new and is used when doing a for loop while iterating over the values. When the function returns
ERROR_NO_MORE_ITEMS, you can break out of the loop and continue.

Just like RegEnumKeyEx, the buffers that you make for holding the ValueName and Data need to be large
enough. If you want, you could initialize them to the values that are returned from the RegQueryInfoKey
function described on the next slide.

IpType doesn’t need to be described again. IpData will hold the values and IpcbData is the size of it—again,
just like the other functions mentioned already.

If you run into any issues using this function, like getting ERROR_ACCESS_DENIED, then you should

check the permissions you requested when you opened the handle to the root key. You might need
KEY_QUERY_VALUE to have success.

149

Example: RegEnumValue

RD index = 0; ; index++)

cbSize = cbMaxValuelen;
cchName = cbMaxValueName + 1;

&cchhame,
NULL,

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 150

Example: RegEnumValue

The example here shows the function being used in a loop with the index variable being used as the loop
iterator value, or counter. The key handle is passed followed by the dwindex value, which is an index of the
value that is to be retrieved. It is a good idea to have this value be NULL on the first iteration. Incrementing
the value is fine for subsequent calls. The name of the key will be stored in the keyName buffer for the
IpValueName parameter.

The IpcchValueName parameter, upon return, will hold the character count stored in the buffer. Note, the
count does not take into account the NULL terminating character, so you need to do that in your program.
IpReserved is NULL followed by the address of the variable to hold the type of data being stored. The IpData
parameter was passed the address to the keyValue buffer that will be used to store the key’s value. The
IpcbData parameter is the size of the buffer but then after the function returns, will indicate the number of
bytes written to the buffer.

The loop will continue until the function indicates there are no more items by returned the
ERROR_NO_MORE_ITEMS error code.

The comments are provided for easy reference with the parameter names.

Error handling is left out for brevity.

150

Technet24

Walking the Registry (3)

//declared in Winreg.h
RegQuerylnfoKey

LSTATUS

RegQueryInfoKeyW (
In HKEY hKey,
_Out_writes to opt (*lpcchClass,*lpcchClass + 1)

LPWSTR 1lpClass,

Return value is LSTATUS _Inout_opt_ LPDWORD lpcchClass,

_Reserved LPDWORD lpReserved,

_Out _opt_ LPDWORD lpcSubKeys,

_Out _opt_ LPDWORD lpcbMaxSubKeyLen,

_Out_opt_ LPDWORD lpcbMaxClassLen,

_Out _opt LPDWORD lpcValues,

Used to gather detailed _Out_opt_ LPDWORD lpcbMaxValueNameLen,

inf . b k _Out_opt_ LPDWORD lpcbMaxValueLen,
Information about a ey _Out_opt LPDWORD lpcbSecurityDescriptor,
_Out_opt PFILETIME lpftLastWriteTime

)

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Walking the Registry (3)

This RegQueryInfoKey API has many parameters to understand. It might look like a complex function, but it’s
not that difficult to use compared to some of the others we have discussed today. Looking at the data types for
the parameters you can see that most of them are LPDWORD, which are simply DWORD¥*. Almost all of
them are optional too, so that makes it nice to use. Depending on your needs, you could make the API call like
this:

RegQueryInfoKeyW(hKey, NULL, NULL, NULL, &nKeys, NULL, NULL, &nValues,
&nMaxValNameLen, &nMaxValSize, NULL, NULL)

That small example has seven NULL parameters, leaving just five parameters for you to prep for use. Now we
can look at some of the parameters.

IpcSubKeys will hold the number of subkeys, if any, that are found to be under the queried key.

IpcValues will hold the number of—you guessed it—values that are found under the subkey. If you do not care
about this, then just pass NULL here. It is optional after all.

IpcbMaxValueNameLen will hold the size of the key’s longest value name, but it does not consider the NULL
terminating byte, so your code will have to account for that one.

IpcbMaxValueLen will hold the size of the longest data component in bytes.
For failures, unlike previous functions, the function will return a system error code that is defined in

WinError.h header file. You could also browse to the following URL for easy lookups:
https://docs.microsoft.com/en-us/windows/win32/debug/system-error-codes.

151

Example: RegQuerylnfoKey

QueryInfoKeyh(
NULL, NULL, NULL,
&cSubKeys,
&cbMaxSubKey,
&cbMaxClass,
&cValues,
cbMaxValueName,

axValuelen,

&cbSecurityDescriptor,
&modified

SANS

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 152

Example: RegQueryInfoKey

The example here shows how RegQueryInfoKey could be called. A standard handle to a key is given followed
by three NULL values: 1pClass, IpcClass, and IpReserved. Next, the address of the cSubKeys variable is passed
so the function can write the number of subkeys contained by that key. Next, the address of the chbMaxSubKey
variable is passed so the function can write the size of the key with the longest name, minus the NULL
terminating character of course. Next, the address of the chMaxClass variable is passed to receive the size of
the longest string for a subkey class. The address of the c¢Values variable will hold the count of values a key
might have. The address of the chMaxValueName variable will hold the size of the key’s longest value name.
The address of the coMaxValueLen variable will hold the byte count of the size of the longest data component.
The address of the cbSecurityDescriptor variable will hold the size of the key’s security descriptor. The last
one is the address of the modified variable that is a FILETIME structure to hold the last write time.

The comments indicating the parameter names are left out for you to fill them in later.

Error handling is left out for brevity.

152

Technet24

Registry Watch Dogs (1)

I?o I You can be notified about changes in the Registry.

Perhaps it might be necessary for your code to be notified as soon as a change in the
Registry happens. Maybe you want to know if an antivirus product was just installed
after your implant was dropped. There could be several reasons you determine.

I Don’t poll too often I Choose your trigger
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 153
Registry Watch Dogs (1)

At times, it might serve your program well to be notified when certain changes happen in the Registry. As
mentioned earlier, third party developers are being recommended to move away from storing items in the
Registry, but it still happens. Malware is still using the Registry too, and your implants might as well as you
develop them.

From an offensive perspective, you might want to watch certain existing keys for modification. Perhaps your
own program creates a few keys and then sets up a watch dog to ensure keys aren’t deleted. You also might
want to check a certain key’s value to see if your tool needs to delete itself or take some other action. It’s up to
you since you are the developer.

Taking a defensive and different angle, perhaps you drop your tool on a target that doesn’t have any AV
products just yet, but later the user installs one that creates a few registry keys. You might want to know this,
so it doesn’t alert the user to your implant. Seeing that a new key was created gives you the situational
awareness you might need for your survival.

Typically, applications don’t need to poll the Registry too often. The RegNotifyChangeKey is perfect for
notifications. As mentioned earlier, an idle system shouldn’t have any registry interaction. You can be too
aggressive with polling for changes and there’s just no need for that. Repetitive access to the same keys and or
values could tip your hand to the user or Admin.

All of this is great and all, but one major drawback to this function is that it doesn’t show you exactly what

changed, only that a change has occurred. It is up to you to determine the finer details. Thankfully, there is
alternative that will be discussed later in the course.

153

I RegNotifyChangeKeyValue

Return value is LSTATUS

Used to be notified when specific
changes happen

Registry Watch Dogs (2)

// defined in winreg.h

WINADVAPI
LSTATUS
APTENTRY
RegNotifyChangeKeyValue (
In HKEY hKey,
_In BOOL bWatchSubtree,
_In DWORD dwNotifyFilter,
_In opt HANDLE hEvent,
_In BOOL fAsynchronous
) i

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Watch Dogs (2)

hKey is the key to be watched and the handle should have the REG_NOTIFY access mask when the handle is

being obtained.

bWatchSubtree is a simple Boolean flag to indicate if just the one specified key should be watched (FALSE)
or if the entire tree of keys under it need to be watched (TRUE).

dwNotifyFilter specifies the filter that triggers the notification to the caller. There are several to choose from,
like watching for name changes. You can also combine flags to suit your needs using the pipe ‘|” or the OR
operation. The filters are discussed in greater detail on the next slide.

hEvent is just a handle to an event. Depending on if the fAsynchronous flag is set, the function will return
straight away, and the change is reported by the event being signaled. If it is not set, then the function will not

return until some change takes place.

fAsynchronous is a flag to indicate when the function should return and signal an event. If it is set, TRUE, the
function returns immediately and signals the specified event. If FALSE, the function waits until a change is

made.

The function will return ERROR_SUCCESS upon success and will return a nonzero value upon failure. The
code can be queried using FormatMessage if desired.

One last note about this function: it will only wait and watch for a single change. When that change happens, it
has done its job, so if you want to keep being notified of changes then you must call the function again.
Perhaps infinite loops in a new thread could serve well in your program.

154

Technet24

Registry Watch Dogs (3)

change to be reported.

Y I There are several REG_NOTIFY_CHANGE_* filters that could trigger a

I NAME I ATTRIBUTES I LAST SET I SECURITY Thread
agnostlc
Notifi Notifies caller Notifi
t) otifies e
otiHes Notifies of value . Notification
caller if) changes. caller if . .
. caller if . is not tied to
subkey is . Includes security .
attributes . . the calling
created or change creating, descriptor thread
deleted g deleting, changes
modifying.

SANS

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 155

Registry Watch Dogs (3)
REG NOTIFY CHANGE NAME if specified, will alert the caller that a subkey has been added or deleted.

REG NOTIFY CHANGE ATTRIBUTES filter will notify the caller if the key’s attributes have changed.
One of the attributes that could change is the security descriptor information.

REG NOTIFY CHANGE LAST SET filter will notify the caller if the value of the key has changed.
Adding, deleting, and even modifying an existing key’s value will trigger the alert.

REG _NOTIFY CHANGE SECURITY filter will notify the caller if the security descriptor of the key

changes.

REG NOTIFY THREAD AGNOSTIC removes the notification tie to the thread that called the function. This
is great for when you want to spin up a new thread for the registration. Also, if that thread terminates, the
registration won’t die with it because the lifetime of the registration is not directly tied to the lifetime of the

calling thread.

155

Module Summary

)r
:g; I Discussed the registry and information found within it.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 156

Module Summary
In this module, we discussed what the registry is, many of the keys, and some of the information that can be
found within the registry.

156

Technet24

Course Roadmap

» Windows Tool Development

* Getting to Know Your Target
 Operational Actions

* Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

Gathering Operating System Information
Lab 2.1: OS Info
Service Packs/Hotfixes/Patches
Process Enumeration
Lab 2.2: ProcEnum
Lab 2.3 CreateToolhelp
Lab 2.4 WTSEnum
Installed Software
Directory Walks
Lab 2.5: FileFinder
User Information
Services and Tasks
Network Information
Registry Information

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

This is your time to go back and complete previous labs or move forward and complete the bootcamp

challenges.

157

I OS Info
I Make your own ipconfig, arp, or netstat, and a custom shell

I Complete survey tool

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 158

Bootcamp

The bootcamp challenges will have varying degrees of difficulty. OS Info brings back something you already
learned but also tosses in some new items to see how well you can look at MSDN documentation to learn how
to implement new APIs you have not seen before.

The second challenge is to recreate one of the following utilities: ipconfig, arp, or netstat. If you have time,
then you can complete all three.

The last challenge is to complete a thorough host survey tool (CustomShell) that would enumerate all of the

information that was discussed today. In addition, combine what was learned during Section 1 and create a log
file that stores the enumerated system information.

158

Technet24

OS Info

I Obtain complete information about your target.

I Use the following APIs:

I GetProductInfo I GetWindowsDirectory
I GetComputerName I GetNativeSystemInfo

I BONUS: KUSER SHARED DATA

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

OS Info

This bootcamp challenge is about leveraging a familiar API that you learned about earlier to gather some
information about your target. The real challenge comes in with the introduction of several new APIs that can
be called to help gather system information. You will have to teach yourself how to use these ones. As a
bonus, if you finish the challenge and want to take on another challenge, get as much information as you can
from the KUSER SHARED DATA struct that is available in almost every single user mode process. You can
have all of the output print out to the terminal window to make it easier for testing and debugging. When it is
all said and done, you can create a log file with all of the information in it.

Have fun!

159

159

Lab 2.6: |pconfig

Course Roadmap Lab 27 Arp
Lab 2.8: Netstat
» Windows Tool Development Lab 2.9: ShadowCraft

* Getting to Know Your Target
 Operational Actions
* Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 160

This is your time to go back and complete previous labs or move forward and complete the bootcamp
challenges.

160

Technet24

Lab 2.6: Ipconfig

I Create your own version of ipconfig

I Can add optional arguments

I Can make it fancy with colored output

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 161

Lab 2.6: Ipconfig
Please refer to the eWorkbook for the details of this bootcamp challenge.

161

Lab 2.7: Arp

I Create your own version of arp.

I Implement arguments like —a and —n.

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 162

Lab 2.7: Arp
Please refer to the eWorkbook for the details of this bootcamp challenge.

162

Technet24

Lab 2.8: Netstat

I Create your own version of netstat.

I Implement arguments like —a, —n, and —t.

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 163

Lab 2.8: Netstat
Please refer to the eWorkbook for the details of this bootcamp challenge.

163

Lab 2.9: ShadowCraft

I Create a basic shell.
I Implement features covered in this section.

I Implement thorough error checking.

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 164

Lab 2.9: ShadowCraft
Please refer to the eWorkbook for the details of this bootcamp challenge.

164

Technet24

