
THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

670.2

Getting to Know Your Target

SEC670 I RED TEAMING TOOLS: DEVELOPING WINDOWS IMPLANTS, SHELLCODE,
COMMAND AND CONTROL

© 2024 Jonathan Reiter. All rights reserved to Jonathan Reiter and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT ("CLA") CAREFULLY
BEFORE USING ANY OF THE COURSEWARE (DEFINED BELOW) ASSOCIATED WITH THE SANS INSTITUTE COURSE.
THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND THE ESCAL INSTITUTE OF
ADVANCED TECHNOLOGIES, INC. /DBA SANS INSTITUTE (“SANS INSTITUTE”) FOR THE COURSEWARE. BY
ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware subject to the
terms of this CLA. Courseware means all printed materials, including course books and lab workbooks, slides or notes, as well
as any digital or other media, audio and video recordings, virtual machines, software, technology, or data sets distributed by
SANS Institute to User for use in the SANS Institute course associated with the Courseware. User agrees that the CLA is the
complete and exclusive statement of agreement between SANS Institute and User and that this CLA supersedes any oral or
written proposal, agreement or other communication relating to the subject matter of this CLA.

BY ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA. USER FURTHER
AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT
INJURY TO SANS INSTITUTE, AND THAT SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION
(WITHOUT THE NECESSITY OF POSTING BOND), SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree to the terms of this CLA, User should not access the Courseware. User may return the Courseware to
SANS Institute for a refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon all or any portion
of the Courseware, in any medium, whether printed, electronic or otherwise, for any purpose, without the express prior written
consent of SANS Institute. User may not sell, rent, lease, trade, share, or otherwise transfer the Courseware in any way,
shape, or form to any person or entity without the express written consent of SANS Institute. Additionally, User may not
upload, submit, or otherwise transmit Courseware to any artificial intelligence system, platform, or service for any purpose,
regardless of whether the intended use is commercial, educational, or personal, without the express written consent of SANS
Institute. User agrees that the failure to abide by this provision would cause irreparable harm to SANS Institute that is
impossible to quantify. User therefore agrees to a base liquidated damages amount of $5000.00 USD per item of Courseware
infringed upon or fraction thereof. In addition, the base liquidated damages amount shall be doubled for any Courseware less
than a year old as a reasonable estimation of the anticipated or actual harm caused by User’s breach of the CLA. Both parties
acknowledge and agree that the stipulated amount of liquidated damages is not intended as a penalty, but as a reasonable
estimate of damages suffered by SANS Institute due to User’s breach of the CLA.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be deemed to be severable
from this CLA and shall not affect the remainder thereof. A written amendment or addendum to this CLA that is executed by
SANS Institute and User may accompany this Courseware.

SANS Institute may suspend and/or terminate User’s access to and require immediate return of any Courseware in connection
with any (i) material breaches or material violation of this CLA or general terms and conditions of use agreed to by User, (ii)
technical or security issues or problems caused by User that materially impact the business operations of SANS Institute or
other SANS Institute customers, or (iii) requests by law enforcement or government agencies.

SANS Institute acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs presented in
this Courseware are the sole property of their respective trademark/registered/copyright owners, including:

The Apple® logo and any names of Apple products displayed or discussed in this book are registered trademarks of Apple,
Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

VMware Workstation Pro®, VMWare Workstation Player®, VMWare Fusion®, and VMware Fusion Pro® are registered
trademarks of VMware, Inc. Used with permission.

Governing Law: This CLA shall be governed by the laws of the State of Maryland, USA.

Courseware licensed to User under this CLA may be subject to export laws and regulations of the United States of America
and other jurisdictions. User warrants he or she is not listed (i) on any sanction programs list maintained by the U.S. Office of
Foreign Assets Control within the U.S. Treasury Department (“OFAC”), or (ii) denied party list maintained by the U.S. Bureau
of Industry and Security within the U.S. Department of Commerce (“BIS”). User agrees to not allow access to any Courseware
to any person or entity in a U.S. embargoed country or in violation of a U.S. export control law or regulation. User agrees to
cooperate with SANS Institute as necessary for SANS Institute to comply with export requirements and recordkeeping required
by OFAC, BIS or other governmental agency.

All reference links are operational in the browser-based delivery of the electronic workbook.
SEC670_2_J01_05

Technet24

Getting to Know Your
Target

© 2024 Jonathan Reiter | All Rights Reserved | Version J01_05

Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control SEC670.2

Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control: 670.2
Welcome to Section 2 of SEC670. In this section, we will be getting to know the target very well by creating
various tools to obtain detailed information.

1

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

P a g eTable of Contents (1)

4Gathering Operating System Information

14Lab 2.1: OS Info

19Service Packs/Hotfixes/Patches

36Process Enumeration

45Lab 2.2: ProcEnum

49Lab 2.3: CreateToolhelp

53Lab 2.4: WTSEnum

65Installed Software

73Directory Walks

83Lab 2.5: FileFinder

88User Information

101Services and Tasks

2

This page intentionally left blank.

2

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

P a g eTable of Contents (2)

115Network Information

130Registry Information

157Bootcamp

161Lab 2.6: Ipconfig

162Lab 2.7: Arp

163Lab 2.8: Netstat

164Lab 2.9: ShadowCraft

3

This page intentionally left blank.

3

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

4

In this module, we will dive into how to gather OS specific information and why it is important.

4

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

Our objectives for this module are:

Discuss the importance of determining OS information

Explore public methods to retrieve information about the system

Explore undocumented method to retrieve information about the system

5

Objectives
The objectives for this module are to understand how important it is to determine what OS version your target
is running and/or what service pack your target has, explore a few public methods for retrieving system
information, as well as explore some undocumented methods. There are some methods that are more reliable
than others, as well as some methods that might return inaccurate information.

5

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Survey Script

Survey the host and determine where you are.Survey the host and determine where you are.

Knowing the system that you are on is vital to the success of your operation. A host
survey tool can query various components and report back its findings that can then
be used to determine the next action.

6

Survey Script
If you are a red teamer, or a penetration tester, or have taken SEC560, then you may already know that one of
the first tasks that you would typically perform is some recon. Recon is such a broad term that can encompass
many things, like users, networks, shares, etc. The focus at this point is to learn more about the system. The
more detailed information you can gather, the more informed decisions can be made, like what the next action
you would take next is. Privilege escalation could be an example of one such action to take after you have
gained some insight into what that system is being used for and what value it might be for you. There are
several tools that exist today that make this task trivial. There should be some questions coming to mind here.
How do they get that information? What APIs are they using? What logs, if any, are generated from calling
certain APIs? Since this is a developer-focused course, you will be creating a recon capability.

One of the tools you could create would be a tool that would execute on the target and query several pieces of
information about the target. There can be a standard set of information that you might want to gather, like
applications installed, especially any AV/EDR solutions. There can also be specific information that could
directly relate to the primary goal of an operation, like looking for a specific folder or file. If that folder or file
is not there, then the tool can clean itself off target and be done.

6

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

OS Information

Windows 7 x86 or Windows 10 x86_64?Windows 7 x86 or Windows 10 x86_64?

Service PackService Pack Kernel VersionKernel Version

A collection of updates to be
applied as patches for bugs or
vulnerabilities. Also provide
features to the OS.

The ntoskrnl.exe is the kernel
file itself. The file is typically
located under
C:\Windows\System32.

7

OS Information
Perhaps one of the most important pieces of information to gather first would be the exact version of the
operating system, if that is not known already. Typically, you would know at least some basic information
about the target beforehand, like if it is a Windows 7 or Windows 10 target, but you might not know the exact
service pack or what version of ntoskrnl.exe is on the target. The more details you can gather the better,
because Windows 10 is not good enough, especially if someone would want to bring in additional payloads
that would be specific to the target. If your tool incorrectly said the target was x64 when it was in fact x86,
well, let us just hope a process crashes instead of the target system being bug checked, a.k.a. blue screen
(BSOD). To aid us in gathering some of this information, there are a number of APIs that we can call.
However, certain APIs might not be available on older versions of Windows. Just because an API is available
to use on Windows 10 does not automatically mean that it will be available to use on an older version like
Windows XP Service Pack 1. The Windows terminal services (WTS) API family is one such example and
some of the WTS APIs will be used later for process enumeration.

7

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Windows Versions

Windows releases and their respective version numbersWindows releases and their respective version numbers

Windows XP
Windows Server 2003
Windows Vista / Server 2008
Windows 7 / Server 2008 R2
Windows 8 / Server 2012
Windows 8.1 / Server 2012 R2
Windows 10 / Server 2016

5.1
5.2
6.0
6.1
6.2
6.3
10

8

Windows Versions
When you are querying the target to determine the specific version of the OS, you will not find something that
tells you that the target is a Windows Vista system. Instead, you would be given back something like 6.1 to
indicate Windows 7. The table is simply here for an easy reference when you are going about gathering
information about the OS.

8

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GetVersionEx

GetVersionExA/WGetVersionExA/W

Gathers the OS version numberGathers the OS version number

BOOL GetVersionExA(
InOut LPOSVERSIONINFOA lpSystemInfo

);

BOOL GetVersionExW(
InOut LPOSVERSIONINFOW lpSystemInfo

);

typedef struct _OSVERSIONINFOA {
DWORD dwOSVersionInfoSize;
DWORD dwMajorVersion;
DWORD dwMinorVersion;
DWORD dwBuildNumber;
DWORD dwPlatformId;
CHAR szCSDVersion[128];

} OSVERSIONINFOA, *POSVERSIONINFOA,
*LPOSVERSIONINFOA;

Has BOOL return typeHas BOOL return type

9

GetVersionEx
The GetVersionEx API can be used in gathering the Operating System’s version number, such as one of the
ones listed on the previous slide. Here on this slide are two versions of this API, the ANSI and the Unicode
versions. The function takes a single argument for a pointer to an OSVERSIONINFO struct. Before we look at
the struct, there is some interesting behavior that we need to understand. By default, if you were to call this
API on your Windows 10 Dev VM, you would not get back version number 10. The highest you might get
back is version 6.2, which would indicate Windows 8.

The reason for this behavior is mainly compatibility. Back in the day, programs written for XP and Vista
would check the version numbers and if they were higher than 5 and 1 (5.1), then the application knew they
were on something beyond XP. The check would fail, though when version 6.0 was released as the minor
version number of 0 is not >= 1. Windows came up with a solution to never increase the major version
number, only the minor. This obviously ended when Windows 10 was released because they are not using
version 6.4, they are indeed using version 10.0. The only way for this function to return the correct version
number is to account for a possible higher operating system that would be declared in its manifest file. The
manifest file is purely XML data and nothing more.

Please note that Windows recently deprecated this API and would really like for you to use the newer version
helper functions like IsWindows7OrGreater, or IsWindows10OrGreater, etc.

dwOSVersionInfoSize; the size of the struct and should be set using size of (OSVERSIONINFO)
dwMajorVersion; the major version number
dwMinorVersion; the minor version number
dwBuildNumber; the build number
dwPlatformId; the OS platform
szCSDVersion[128]; if there is a service pack installed, then this would the value for it, like “Service Pack 1”.

9

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GetNativeSystemInfo

GetNativeSystemInfoGetNativeSystemInfo

Gathers current system
information
Gathers current system
information

VOID
GetNativeSystemInfo(
Out LPSYSTEM_INFO lpSystemInfo

);

typedef struct _SYSTEM_INFO {
[..SNIP..]
DWORD dwPageSize;
LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
DWORD_PTR dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
WORD wProcessorLevel;
WORD wProcessorRevision;

} SYSTEM_INFO, *LPSYSTEM_INFO;

Has VOID return typeHas VOID return type

10

GetNativeSystemInfo
The GetNativeSystemInfo API can be used in gathering some specific information about the target system for
WoW64 applications. This will also work for x64 applications, but the results will be noticeably different.
Since the function has a VOID return type, it will not return anything to the caller, so there would be no point
in trying to assign its return value to a variable. What the API needs is a pointer to a structure that the API will
fill out according to the information it queries. This is very common behavior for Windows APIs. In fact, most
Windows APIs expect to be given a properly initialized structure to fill out for you. Here is a breakdown of the
one and only argument to GetNativeSystemInfo.

lpSystemInfo, as annotated by the SAL markup, it is an out parameter meaning the function requires write
permissions to the variable. The variable, or pointer, must be of type LPSYSTEM_INFO, which is a structure
that holds around 10 or so members.

Let us take a more detailed look at the SYSTEM_INFO struct.

dwOemId; is no longer being used but is simply maintained for compatibility. We need to use
wProcessorArchitecture instead.
wProcessorArchitecture; the installed architecture of the process that is installed on the target. This field will
have one of the values listed below:

9 - PROCESSOR_ARCHITECTURE_AMD64 (x64 AMD or Intel)
5 - PROCESSOR_ARCHITECTURE_ARM (ARM)
12 - PROCESSOR_ARCHITECTURE_ARM64 (ARM64)
6 - PROCESSOR_ARCHITECTURE_IA64 (Intel Itanium-based)
0 - PROCESSOR_ARCHITECTURE_INTEL (x86)
0xffff - PROCESSOR_ARCHITECTURE_UNKNOWN

10

Technet24

wReserved; reserved for supposedly something amazing in the future? Who knows?
dwPageSize; the page size along with the granularity of page protection and the commitment. VirtualAlloc
relies on this value for its operations.
lpMinimumApplicationAddress; this is a pointer to the lowest memory address that will be made accessible to
programs and their DLLs.
lpMaximumApplicationAddress; the exact opposite as the previous member.
dwActiveProcessorMask; the set of processors that are configured on the system in the form of a mask, 0-31
bits each one indicating the processor.
dwNumberOfProcessors; how many logical processors are in the current group.
GetLogicalProcessorInformation relies on this value.
dwProcessorType; this is obsolete so do not rely on it.
dwAllocationGranularity; for virtual memory allocations, this is the granularity for the starting address.
wProcessorLevel; the processor level that is dependent on the architecture.
wProcessorRevision; the processor revision that is dependent on the architecture.

11

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Undocumented Method

KUSER_SHARED_DATAKUSER_SHARED_DATA

Same VA in almost every processSame VA in almost every process

typedef struct _KUSER_SHARED_DATA {
ULONG TickCountLowDeprecated;
ULONG TickCountMultiplier;
KSYSTEM_TIME InterruptTime;
KSYSTEM_TIME SystemTime;
KSYSTEM_TIME TimeZoneBias;
USHORT ImageNumberLow;
USHORT ImageNumberHigh;
WCHAR NtSystemRoot[260];
ULONG MaxStackTraceDepth;
ULONG CryptoExponent;
ULONG TimeZoneId;
ULONG LargePageMinimum;
ULONG AitSamplingValue;
ULONG AppCompatFlag;
ULONGLONG RNGSeedVersion;

[....SNIP....]

Holds large number of elementsHolds large number of elements

12

Undocumented Method
The undocumented method of retrieving system information is to query the KUSER_SHARED_DATA struct
that is present in virtually every single process at the same Virtual Address: 0x7FFE0000.
KUSER_SHARED_DATA is a massive structure that is defined in the ntddk.h header file. The structure stores
an enormous amount of information that we can leverage for our needs of gathering system information and
then some. However, this is not the recommended method of doing so, but we do not really care too much
about that. Implant developers and malware authors tend to favor the undocumented methods more than
anything else. Knowing the correct offsets for what information you need can be very useful instead of
copying everything over from this structure. Currently, the offsets for the Major Version and Minor Version
have been offsets 0x26C and 0x270, respectively. The Build Number can be found at offset 0x260. For more
details about this structure, check out the header files and various online resources like Geoff Chappell’s
documentation.

References:
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntexapi_x/kuser_shared_data/index.htm
https://www.vergiliusproject.com/kernels/x64/Windows%2010%20|%202016/2004%2020H1%20(May%2020
20%20Update)/_KUSER_SHARED_DATA

12

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Source Code Review

Source code review!

13

Source Code Review
Time to jump into the source code and understand it.

13

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Lab 2.1: OS Info

Gathering information about the OS and targetGathering information about the OS and target

Please refer to the eWorkbook for the details of this lab.

14

Lab 2.1: OS Info
Please refer to the eWorkbook for the details of the lab.

14

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

What’s the Point?

What’s the point?

15

What’s the Point?
The point of this lab was to understand how you can retrieve various information about the OS of your target.

15

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

Discussed how obtaining accurate system information is keyDiscussed how obtaining accurate system information is key

Covered documented and recommended methods to obtain the informationCovered documented and recommended methods to obtain the information

Covered undocumented methods to obtain the informationCovered undocumented methods to obtain the information

16

Module Summary
In this module, we discussed why you would want to know the exact details of your target’s OS version and
architecture, we also explored a few Windows APIs that enable us to do so, and finally, we took a look at an
undocumented method by means of KUSER_SHARED_DATA.

16

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What structure can be found at VA 0x7FFE0000?What structure can be found at VA 0x7FFE0000?

A EPROCESSA EPROCESS

B KPROCESSB KPROCESS

C KUSER_SHARED_DATAC KUSER_SHARED_DATA

17

Unit Review Questions
Q: What structure can be found at VA 0x7FFE0000?

A: EPROCESS

B: KPROCESS

C: KUSER_SHARED_DATA

17

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What structure can be found at VA 0x7FFE0000?What structure can be found at VA 0x7FFE0000?

A EPROCESSA EPROCESS

B KPROCESSB KPROCESS

C KUSER_SHARED_DATAC KUSER_SHARED_DATA

18

Unit Review Answers
Q: What structure can be found at VA 0x7FFE0000?

A: EPROCESS

B: KPROCESS

C: KUSER_SHARED_DATA

18

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

19

In this module, we will discuss how to gather information about service packs, hotfixes, and patches, as well
as why the information might be important.

19

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

Our objectives for this module are:

Determine what patches, hotfixes, etc. might be present

Discuss the importance of patches

20

Objectives
The objectives are to determine what patches or hotfixes a system might have and how they might affect an
operation.

20

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Windows Hotfixes

Used to fix critical issues in softwareUsed to fix critical issues in software

Also referred to as Quick Fix Engineering (QFE) updates, hotfixes are used to apply a
vital fix to software applications. Users that have Windows updates set to automatic
will have hotfixes downloaded without much user intervention. The only exception
would be a reboot.

21

Windows Hotfixes
Windows updates bring with them any number of things, but the emphasis here would be hotfixes. The term
“hot fix” traditionally would mean that a patch to a software program can be applied while the system was still
running. You may have heard the phrases ”hot swappable,” “hot patching,” etc. which all mean similar things,
but the common component is “hot” where the system or device does not have to go through a shutdown
procedure; hot swapping hard drives when one drive becomes full, or in our case, issuing a quick fix to a
certain application while the system is still running, and the user is presumably performing work. Some
Windows updates do, however, require a reboot for a change to come into effect, but there are times when a
reboot is not required to be performed. It is important for us to know what hotfixes have been applied so that
time is not wasted attempting to execute an exploit against something that has already been patched. Doing so
could tip off the user/admin to our presence on the system along with generating unnecessary logs.

21

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Service Packs

Bundled hotfixesBundled hotfixes

Each service pack brings with it a grouping of one or more hotfixes that will be applied
to the OS. Each service pack that targets a particular OS version will have all previous
hotfixes that former service packs brought with it so that a user can jump straight to
the most recent service pack without installing each one sequentially.

22

Service Packs
It really would not make much sense for Windows to push down hotfixes by themselves one at a time, but to
rather bundle them up in what is called a service pack. Bundling the hotfixes together is pretty great because it
makes updating a lot more efficient. Each OS version can have any number of service packs issued, like
Windows XP had three of them: SP1, SP2, and SP3. Each service pack might also mean that exploits might
have to be adjusted depending on the target’s SP level. Within the Metasploit Framework, the option to choose
a specific target is made available. An exploit targeting a vulnerable FTP server might need to have the target
be specified, say for Windows XP SP3 versus XP SP1. The same considerations must be taken if your implant
is going to exploit anything from local privilege escalation to persistence, etc.

22

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Querying Hotfixes and Service Packs

How do you go about finding hotfixes and service packs?How do you go about finding hotfixes and service packs?

Get‐HotFixGet‐HotFix

PowerShell
cmdlet that lists
updates seen by
Quick Fix
Engineering class.

WMICWMIC C/C++C/C++

WMIC command
line utility offers
the qfe argument.
E.g., wmic qfe

list.

Construct our
own WMI query
or explore
Windows
Update Agent
APIs.

23

Querying Hotfixes and Service Packs
Windows provides users and admins with a number of options to go about querying patches, or hotfixes,
which have been applied to a system. Perhaps the easiest method would be to drop into a PowerShell instance
and run the Get-HotFix cmdlet. The downside is that the cmdlet does not return everything because on the
back end it only queries the WMI Win32_QuickFixEngineering class. Knowing that, we can easily craft our
own WMI (Windows Management Instrumentation) query and completely avoid using PowerShell. Another
alternative is to use the wmic qfe list command. The QFE part of the command gives away what it is querying,
and it also indicates that it will show the same results as Get-Hotfix. Lastly, it will have the same downside
that the Get-HotFix cmdlet does. If you were to look at the Windows Programs and Features listing, you might
notice a difference in the listing. This is because the QFE WMI class only sees certain types of updates. We
want a more complete view and as such, we must utilize the Windows Update Agent APIs. We can use them
as a standalone or in combination with what the QFE class returns.

23

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Windows Update Agent (WUA) APIs

Introduced with Windows XP, designed for system admins and developersIntroduced with Windows XP, designed for system admins and developers

Windows UpdateWindows Update

Scripts and/or programs can be developed to determine what updates are available to
be installed on a system, what updates have been installed, or to remove any installed
updates.

Windows Server Update
Services (WSUS)
Windows Server Update
Services (WSUS)

24

Windows Update Agent (WUA) APIs
Programmatically creating a solution is often more complicated than using pre-built programs or tools like the
wmic tool. We turn to this option when existing tools fail or do not show us the entire picture we are hoping to
see. Enter the WUA API family. Since its debut with Windows XP, it has been used by system administrators
and developers alike, to determine what updates computers in their organization require. What we want to use
it for is to determine what updates have already been applied because we like to go after the lowest hanging
fruit. WUA is a set of COM interfaces, and we must create instances of whichever interface we need. Before
the WUA APIs are made available to us, we must reference the proper header file and its respecting lib file;
Wuapi.h and Wuguid.lib, respectively. To create the correct interface, we need to choose the COM object that
is most suited for our needs, and that could be the UpdateSession, UpdateSearcher, and SearchResult WUA
objects.

24

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

WUA UpdateSession Object

IUpdateSessionIUpdateSession

Represents update session objectRepresents update session object

#include <wuapi.h>

HRESULT res = CoInitialize(NULL);

IUpdateSession* upSsn;

CoCreateInstance(
...,
(PVOID*)&upSsn

);
Search, download, install, uninstallSearch, download, install, uninstall

25

WUA UpdateSession Object
Because the WUA APIs are all COM-based, the calling thread must initialize the COM library by calling the
CoInitialize API. The WUA UpdateSession object is a COM interface, hence the naming convention of adding
the letter “I” to the API name. Before we can do anything useful, we must create an instance of the object by
calling the CoCreateInstance API and passing in the address to our pointer variable IUpdateSession. The
pointer variable is going to receive the pointer to the interface if the function call succeeds. We use the
CoCreateInstance API because it will create and initialize the object of whatever class we are passing in for
the CLSID parameter. It is from this newly created object that we will then be able to create other objects
using methods provided by the UpdateSession object.

25

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

WUA UpdateSearcher Object

IUpdateSearcherIUpdateSearcher

Created by the UpdateSearcher
coclass
Created by the UpdateSearcher
coclass

#include <wuapi.h>

...
IUpdateSession* upSsn;
IUpdateSearcher* upSearch;
ISearchResult* results;

upSsn->CreateUpdateSearcher(&upSearch);
...
upSearch->Search(criteria, &results);

Used to search for updates on
the target system
Used to search for updates on
the target system

26

WUA UpdateSearcher Object
The previous slide showed how to create the UpdateSession object and now that it is created, we can call its
CreateUpdateSearcher method to make the UpdateSearcher object. We need to create the UpdateSearcher
object because it provides a method that we need to start conducting a search of updates that have been applied
to the system. The method of interest for us is the Search method. The Search method requires two
arguments: the criteria and a pointer to the UpdateSearcher pointer variable. The criteria argument is where
we can specify our search criteria—think of it like a filter of sorts. The criteria can be created as a string like
the following: “IsInstalled=1”. The criteria string can contain several filters using the “or” operator so you
could expand the string to be “IsHidden=1 or IsInstalled=1”. There are (sometimes) updates that are marked as
hidden on the computer, but we want to see them anyway, so we set that variant to true. The collection of
results that match the specified criteria will be stored in the results ISearchResult pointer variable. It is from
this object that you can start to process the results from the search as it exposes several methods of interest to
us.

26

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

WUA SearchResult Object

ISearchResultISearchResult

Used to represent search resultsUsed to represent search results

// interface collection of updates from a
resulting search

ISearchResult* results;
IUpdateCollection* upList;
LONG upSize;

upSsn‐>CreateUpdateSearcher(&upSearch);
upSearch‐>Search(criteria, &results);

results‐>get_Updates(&upList);
upList‐>get_Count(&upSize);

Has methods that can query
updates from a resulting search
Has methods that can query
updates from a resulting search

27

WUA SearchResult Object
The SearchResult WUA object represents the collection of updates that matched the search criteria. To get the
collection interface of those updates from the search, we will need to call get_Updates method from the
SearchResult object. The argument we pass to the method is the address to the pointer variable of an
IUpdateCollection pointer. The UpdateCollection object is used to represent the list of updates, which is an
ordered list of updates. We can then use this ordered list and iterate over it based on the size of the list that can
be gathered after calling the get_Count method. We pass the get_Count method the address to a LONG
variable to store the size of the update list. Finally, we can gather the details of the updates we found on the
system and either print them out to the terminal window or write the results to a log file somewhere on disk.

27

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Sample Code

...
IUpdate* upItem;
BSTR upName;

results‐>get_Updates(&upList);
upList‐>get_Count(&upSize);

LONG index = 0;
for (; index < upSize; index++)
{
upList‐>get_Item(index, &upItem);
upItem‐>get_Title(&upName);
...

}

28

Sample Code
This slide just holds some pseudo code for how one could possibly iterate over a collection of results. Some
new variables here are the pointer variable for the IUpdate collection object, which is used to obtain whatever
properties and methods an update might have. The next variable is a basic string variable named upName that
is short for the update name. As we iterate over the collection, the upName will be updated to the one at the
proper index in the collection. The IUpdate collection object exposes other methods too, like get_Type, to get
the type of the update; get_Title, to get the title of the update; or get_KBArticleIDs, to get the collection of KB
article IDs that are tied to the update.

Specifically, the code on the slide will get the current update item at the index specified, update the upItem
variable so we can get the title of the current update, and move on with the iteration process after that. To be
even more detailed and thorough, you could do more during this loop by calling some of the other IUpdate
methods, but this is enough to get you started.

28

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

Discussed the importance of updates and patchesDiscussed the importance of updates and patches

Learned how to obtain information about patchesLearned how to obtain information about patches

Used the WUA APIsUsed the WUA APIs

29

Module Summary
In this module, we discussed hotfixes, service packs, and how to get information about them using the WUA
APIs.

29

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What PowerShell cmdlet queries the Quick Fix Engineering class?What PowerShell cmdlet queries the Quick Fix Engineering class?

A Get-HotFixA Get-HotFix

B Get-UpdatesB Get-Updates

C Get-ServicePackC Get-ServicePack

30

Unit Review Questions
Q: What PowerShell cmdlet queries the Quick Fix Engineering class?

A: Get-HotFix

B: Get-Updates

C: Get-ServicePack

30

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What PowerShell cmdlet queries the Quick Fix Engineering class?What PowerShell cmdlet queries the Quick Fix Engineering class?

A Get-HotFixA Get-HotFix

B Get-UpdatesB Get-Updates

C Get-ServicePackC Get-ServicePack

31

Unit Review Answers
Q: What PowerShell cmdlet queries the Quick Fix Engineering class?

A: Get-HotFix

B: Get-Updates

C: Get-ServicePack

31

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What is the update family of APIs used to query hotfixes?What is the update family of APIs used to query hotfixes?

A WUAA WUA

B LUAB LUA

C FUAC FUA

32

Unit Review Questions
Q: What is the update family of APIs used to query hotfixes?

A: WUA

B: LUA

C: FUA

32

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What is the update family of APIs used to query hotfixes?What is the update family of APIs used to query hotfixes?

A WUAA WUA

B LUAB LUA

C FUAC FUA

33

Unit Review Answers
Q: What is the update family of APIs used to query hotfixes?

A: WUA (Windows Update Agent)

B: LUA

C: FUA

33

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What WUA object is used to find updates on a system?What WUA object is used to find updates on a system?

A SearchResultA SearchResult

B UpdateSearcherB UpdateSearcher

C UpdateSessionC UpdateSession

34

Unit Review Questions
Q: What WUA object is used to find updates on a system?

A: SearchResult

B: UpdateSearcher

C: UpdateSession

34

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What WUA object is used to find updates on a system?What WUA object is used to find updates on a system?

A SearchResultA SearchResult

B UpdateSearcherB UpdateSearcher

C UpdateSessionC UpdateSession

35

Unit Review Answers
Q: What WUA object is used to find updates on a system?

A: SearchResult

B: UpdateSearcher

C: UpdateSession

35

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

36

In this module, we will look at the how and why when it comes to process enumeration.

36

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

Our objectives for this module are:

Understand the need for process enumeration

Take a deeper look at processes

Explore the various methods to enumerate processes

37

Objectives
The objectives for this module are to understand the need for enumerating processes. Furthermore, to
understand processes even more, we will look at what processes are, how they are created, different process
states, and the several methods involved with enumeration. Let’s get to it.

37

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Why Enumerate Processes?

Must find out what applications are runningMust find out what applications are running

An important part of conducting a survey is gathering a list of running processes.
Depending on what processes you find, your operation may come to a halt, or you
might deem the target safe for further operations.

38

Why Enumerate Processes?
One of the features that implants often have is the ability to enumerate processes. If you are familiar with
Metasploit’s Meterpreter session, you might know that it can enumerate processes. There are several reasons
why a red team operator might want to gather a list of running processes. One reason could be to find a
suitable target process for shellcode injection. Another reason could be to find out if the target has a vulnerable
application that could then be matched to an exploit to aid in escalation of privileges, should your initial access
not be elevated already. Yet another reason to enumerate processes would be to determine if there is any
security product present on the system. Depending on the security product installed on the system, you might
decide to halt or suspend operating on that target. Many solutions have a cloud-based portion that will take
your tooling and conduct analysis in its cloud engine. If you do not want your tooling to be siphoned off to
their cloud, then perhaps you need to clean off the target.

38

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

How Are Processes Created?

The main method to create a process is an API call.

The CreateProcess API is one of the main drivers for creating a process on a system.
The API is complex, it has many arguments, and requires the kernel to kick in and make
the system object in system space. The kernel tracks all processes and keeps the
process objects organized in a linked list.

Explorer.exeExplorer.exe Notepad.exeNotepad.exe Winword.exeWinword.exe

39

How Are Processes Created?
Process creation can be kicked off by calling the CreateProcess API. User programs can easily make calls to
CreateProcess, but they do not have to do any heavy lifting. The kernel will eventually take over and it is up
to the kernel to create a process object in system space, inject the main thread into the process, and append the
process object to the existing linked list of process objects. There is more that the kernel does for process
creation, but those items hit the general responsibilities. There are two types of process objects that are linked
together: the _EPROCESS object and the _KPROCESS object. Both objects, together, represent a single
process and each one holds different information about a process that is important for various Windows
subsystems. The KPROCESS object is the first member of the EPROCESS object and is intentionally designed
this way. If you have the address of the EPROCESS object, you also have the KPROCESS as well since it is at
offset 0x00.

39

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

_EPROCESS

EPROCESSEPROCESS

Kernel object representing
processes
Kernel object representing
processes

kd> dt nt!_EPROCESS

//0xa40 bytes (sizeof)
struct _EPROCESS
{
struct _KPROCESS Pcb; //0x0
struct _EX_PUSH_LOCK ProcessLock; //0x438
VOID* UniqueProcessId; //0x440
struct _LIST_ENTRY ActiveProcessLinks; //0x448
struct _EX_RUNDOWN_REF RundownProtect; //0x458

[..snip..]

}

DKOM attacks can unlink
processes
DKOM attacks can unlink
processes

40

_EPROCESS
The _EPROCESS object is one of the structures that Microsoft determines to be opaque to user mode apps and
to developers. The EPROCESS object belongs to the Windows Executive subsystem since it needs to have
access to all information to manage the process. From the small snippet on the slide, you can see some of the
information stored in it. One of the best methods to peeking inside of opaque structures is to look at them
during a kernel debugging session. KDNET makes getting kernel debugging working with minimal effort.
Another way is to look at the Vergilius Project, which has done an amazing job at documenting various kernel
structures from many Windows versions. Check out their site here: https://www.vergiliusproject.com.

The ActiveProcessLinks is an interesting one because its type is _LIST_ENTRY, indicating that it is used to link
to other objects. Windows uses this type to make a doubly linked list. The LIST_ENTRY’s FLINK would take
us to the next EPROCESS struct in the list. Many programs indirectly walk this list when enumerating
processes like the PowerShell cmdlet Get-Process or executing tasklist at the command line. When an attacker
can get into the kernel, these objects can be directly manipulated, and a process can be unlinked from the chain
and therefore hidden from users.

40

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

_KPROCESS

KPROCESSKPROCESS

Kernel object representing
processes
Kernel object representing
processes

//0x438 bytes (sizeof)
struct _KPROCESS
{
struct _DISPATCHER_HEADER Header; //0x0
struct _LIST_ENTRY ProfileListHead; //0x18
ULONGLONG DirectoryTableBase; //0x28
struct _LIST_ENTRY ThreadListHead; //0x30
ULONG ProcessLock; //0x40
ULONG ProcessTimerDelay; //0x44
ULONGLONG DeepFreezeStartTime; //0x48
struct _KAFFINITY_EX Affinity; //0x50
ULONGLONG AffinityPadding[12]; //0xf8
struct _LIST_ENTRY ReadyListHead; //0x158
[..snip..]

}

Used by the lower layer of the
Kernel
Used by the lower layer of the
Kernel

41

_KPROCESS
The _KPROCESS object is important to the core of the kernel and is not exposed via the Object Manager like
the EPROCESS object is. Some of the members of the KPROCESS object are important for thread scheduling,
like what threads are ready to run (ReadyListHead), tracking quantum, priorities, CPU affinity, linking of
threads, etc. For example, the ThreadListHead is of type _LIST_ENTRY so we know it is part of a doubly
linked list. The list is a chain of Threads that have been created in the process which is represented by the
KPROCESS object. Another important member is the DirectoryTableBase of type ULONGLONG, which will
hold the physical address of the process’ Page Directory Table, an important item for Virtual Address
Translation.

41

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Documented Methods

Using documented Windows APIs is safe and reliable. Using documented Windows APIs is safe and reliable.

EnumProcessesEnumProcesses

Arguably the
easiest API to use
for enumeration.
Does not return
detailed process
information.

CreateToolhelp32SnapshotCreateToolhelp32Snapshot WTSEnumerateProcessesWTSEnumerateProcesses

Perhaps one of the more
common APIs used in
malwarez for process
enumeration. Returns more
detailed process information
than EnumProcesses.

Can query remote
systems and over multiple
sessions on the local
computer. Returns
relevant process
information.

42

Documented Methods
When it comes to reliability and stability, using officially supported and documented APIs is great because
you know the API should work as advertised. For the documented methods of enumerating processes, we have
three options. The first option is the EnumProcesses API, which is a very simple API to understand and
implement. One of the major drawbacks about EnumProcesses is the lack of detailed information about each
enumerated process. If you wanted to get more information with this API, then you could attempt to open a
handle to the process via its ProcessId. The second option is to use the CreateToolhelp32Snapshot API, which
offers much more information about each process. The downside to this API is that because it only takes a
snapshot of the currently mapped processes, you will miss any new processes after the snapshot is taken. The
last one we will cover is WTSEnumerateProcesses, which offers a nice feature of remote process
enumeration. Some of the above APIs might not be available for every version of Windows, so you must be
sure to find out and test.

42

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

EnumProcesses API

EnumProcesses()EnumProcesses()

Used to obtain the process IDs
on the system
Used to obtain the process IDs
on the system

BOOL EnumProcesses(
Out DWORD *lpidProcess,
In DWORD cb,
Out LPDWORD lpcbNeeded

);

Has BOOL return typeHas BOOL return type

43

EnumProcesses API
As mentioned on the previous slide, the EnumProcesses API is incredibly easy to use when it comes to
process enumeration. The API can be chosen over the other options if you do not care about getting detailed
information about the processes on the system. The API will only return the process IDs of each process object
that the kernel has created at the time the API is called. There are three arguments required: two out
parameters and a single in parameter. Let us break down some of these arguments.

lpidProcess, is an out DWORD pointer to the array that will hold the process IDs.

Cb, is an in DWORD that indicates the size, in bytes, of the array.

lpcbNeded, is an out LPDWORD that will indicate how many bytes were placed in the array.

Because the function requires a buffer, the array, it needs to be large enough to hold all the PIDs. The function
will not indicate beforehand how large the buffer needs to be, so we can just make a large one to err on the
side of caution and avoid the need of having to call the API twice.

43

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: EnumProcesses

44

if (!EnumProcesses(dwProcList, sizeof(dwProcList), &dwRealSize))
{

// fail and bail code here
goto fail_and_bail;

}

// iterate over the results
for (DWORD i = 0; i < dwCount; i++)
{

HANDLE hProc = OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION, FALSE,
dwProcList[i]);

// do something with the handle if OpenProcess succeeds
}

Example: EnumProcesses
This example of EnumProcesses is a small snippet for how to call this API. There is not a lot of code here to
make this work because it is a very simple API to use, and it does not return a lot of information. The API will
fill out a list that will hold the PIDs of the processes that are currently mapped into memory. The API does not
tell us how many processes were found, so we must do that on our own. We can use some simple math and
figure out how many entries there are in the array of PIDs. To determine the number of processes, divide the
dwRealSize by the size of the DWORD data type. Now that the count has been calculated, we can use that
value in a for loop so we can iterate over the array. Each iteration will execute the wprintf statement showing
the user the PID that is currently being processed. Though, your implant would not be making printf type of
function calls because there would be no terminal to see the results. Instead, it would be more beneficial to
create a log file or place the results in a memory buffer to later be sent back to your C2 infrastructure. You can
also gather more information about each PID by calling OpenProcess against each one. If you are successful
with that operation, you could then get more details about that process via the handle.

44

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Lab 2.2: ProcEnum

Using EnumProcesses, enumerate the processes on the system.Using EnumProcesses, enumerate the processes on the system.

Please refer to the eWorkbook for the details of the lab.

45

Lab 2.2: ProcEnum
Please refer to the eWorkbook for the details of the lab.

45

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

What’s the Point?

What’s the point?

46

What’s the Point?
The point of the lab was to explore the ease of use for this API. It does have a few drawbacks, like the limited
information, but that can be accounted for by opening a process handle to each PID returned by the API.

46

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

CreateToolhelp32Snapshot API

CreateToolhelp32Snapshot()CreateToolhelp32Snapshot()

Creates a snapshot of a processCreates a snapshot of a process

HANDLE CreateToolhelp32Snapshot(
In DWORD dwFlags,
In DWORD th32ProcessID

);

BOOL Process32First(
In HANDLE hSnapshot,
Out LPPROCESSENTRY32 lppe

);

BOOL Process32Next(
In HANDLE hSnapshot,
Out LPPROCESSENTRY32 lppe

);

Can take snapshots of heaps and
threads as well
Can take snapshots of heaps and
threads as well

47

CreateToolhelp32Snapshot API
The CreateToolhelp32Snapshot API was discussed during the Create APIs module during Section 1, but it is
being included again here as it specifically relates to enumerating processes. The API will create a snapshot of
the specified processes, if any, and return a handle to that snapshot. Emphasis must be placed on the
“snapshot” since you could easily miss a new process being created as this is not a dynamic view. You can use
the handle to perform your queries and extract the information you are looking for like a specific process name
or module name the process has loaded. The function is relatively easy to call since it only takes two
parameters which are of the same type. The dwFlags parameter is the most important as it dictates what data
should be collected in the snapshot. There are seven flags that can be passed here, but the most interesting flag
for us in this use case is TH32CS_SNAPPROCESS because, as the name implies, will grab all processes that
have been mapped into memory. There are other flags that can be used to capture other useful information,
like modules and threads if you need to enumerate those items.

After the snapshot has been taken, you can perform our process enumeration using the Process32First
function. The Process32First function will gather information about the first process in the snapshot. The
function requires two parameters: the handle to the snapshot and a pointer to a variable of type
PROCESSENTRY32 structure. Typically, what you would see is a call to Process32First and then a loop that
uses the Process32Next function to determine when to break out of the loop. Process32Next requires the same
arguments as the Process32First function. The next slide will show a small snippet of code of what this could
look like.

47

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: CreateToolhelp32Snapshot

48

Example: CreateToolhelp32Snapshot
The example here intentionally omits error checking and the call to Process32First, due to size limitations on
the slide. Regardless, the main points are represented here, starting with the call to the
CreateToolhelp32Snapshot function on the second line. We are only interested in capturing processes in this
snapshot and we are not specifying a process ID as indicated by NULL. The function returns a handle value
which is saved off in the snapShot variable. In the full code, this would be error checked against
INVALID_HANDLE_VALUE to ensure the snapshot was created successfully. The next couple of lines
create the pe32 variable of struct type PROCESSENTRY32 and since it has a size field, it should be set to the
size of the struct. The next important part in this code snippet is the do while loop. The body of the loop is
simply printing out the name of the executable and the corresponding process ID. The exit condition is met
when the Process32Next function returns FALSE since it is a BOOL return type. To understand the process
even more and what other information is available, research the PROCESSENTRY32 definition in the
TlHelp32.h header file.

48

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Lab 2.3: CreateToolhelp

Using CreateToolhelp32Snapshot, enumerate the processes on the system.Using CreateToolhelp32Snapshot, enumerate the processes on the system.

Please refer to the eWorkbook for the details of the lab.

49

Lab 2.3: CeateToolhelp
Please refer to the eWorkbook for the details of the lab.

49

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

What’s the Point?

What’s the point?

50

What’s the Point?
The point of the lab was to explore one of the more popular methods of enumerating processes. The major
downside to this method is you can miss newly created processes after the snapshot has been taken.

50

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

WTSEnumerateProcessesEx API

WTSEnumerateProcessesEx()WTSEnumerateProcessesEx()

Windows Terminal ServicesWindows Terminal Services

BOOL WTSEnumerateProcessesExA(
In HANDLE hServer,
Inout WORD *pLevel,
In DWORD SessionId,
Out LPSTR *ppProcessInfo,
Out DWORD *pCount

);

typedef struct _WTS_PROCESS_INFO_EXA {
[..SNIP..]
DWORD NumberOfThreads;
DWORD HandleCount;
DWORD PagefileUsage;
DWORD PeakPagefileUsage;
DWORD WorkingSetSize;
DWORD PeakWorkingSetSize;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;

Has BOOL return typeHas BOOL return type

51

WTSEnumerateProcessesEx API
There is an entire family of WTS APIs that are defined in the wtsapi32.h header file. The WTS prefix is the
abbreviation for Windows Terminal Services, so think Remote Desktop. With that being said, a big advantage
of using the WTS APIs for enumerating processes is that we could do so against remote systems that are
configured for it. Specifically, there is a registry key that must be configured to enable the remote
interrogation, but if it is there then remote process queries are possible. The API will return very detailed
information about each process that is running on a local or remote system. The information about each
process is returned via the ppProcInfo parameter, which is a pointer to a WTS_PROCESS_INFO struct. This
will be an array of WTS_PROCESS_INFO struct entries. Let us go ahead and break down the API’s
parameters.

hServer, a handle returned by the WTSOpenServer API. The handle can be for a local or remote system.

pLevel, used to determine what level of information you would like returned. Passing 1 would give the
extended version of the WTS_PROCESS_INFO struct.

SessionId, used when you would want to query a different session on the system. You can, of course, query all
sessions, just pass in WTS_ANY_SESSION.

ppProcInfo, the out parameter so the function can file out the WTS_PROCESS_INFO(Ex) structure with the
detailed information for the process.

pCount, the out parameter that will indicate how many structures were created by the API, in other words, the
number of processes.

When you are done processing the information in the returned buffer, we must free it using the
WTSFreeMemoryEx API.

51

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: WTSEnumerateProcessesEx

52

Example: WTSEnumerateProcessesEx
The example here shows how to use the API to make a local query. The amazing part about this API is that it
provides detailed information about each process. We can even query the session to see what session is tied to
a certain process. This can lead down a path of injecting into processes that are in a different session. This
method is called cross-session process injection. Unlike the EnumProceses API, this one can return the count
to you, which is a nice touch. Just like the other API, once the count is known, we can iterate over the array
and process the structures that the API created to represent each process. Inside the body of the for loop, you
can see some of the processing of this information. It is inside the loop body that you can decide to perform
other operations, like writing the output to a log file or getting the data ready to send back to your C2 server.

52

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Lab 2.4: WTSEnum

Using WTSEnumerateProcesses, enumerate processes on the system.Using WTSEnumerateProcesses, enumerate processes on the system.

Please refer to the eWorkbook for the details of the lab.

53

Lab 2.4: WTSEnum
Please refer to the eWorkbook for the details of the lab.

53

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

What’s the Point?

What’s the point?

54

What’s the Point?
The point of the lab was to explore another method to enumerate processes. Using the Windows Terminal
Services is nice because you have the potential to query remote targets.

54

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Undocumented Methods

There are more stealthy methods to enumerate processes.There are more stealthy methods to enumerate processes.

NtQuerySystemInformationNtQuerySystemInformation

A native API that offers
incredible detail about
processes and so much more.
Native APIs are risky but might
be worth the risk due to what
they return.

SYSTEM_INFORMATION_CLASSSYSTEM_INFORMATION_CLASS

The enum that determines
what information the native API
is going to retrieve for us. It is
not officially documented, but
many have researched and
documented it on their own.

55

Undocumented Methods
Native APIs tend to be very risky to use as they are not officially documented by Windows. The APIs could
change without Microsoft making an announcement of any kind, so your tool could work just fine on one
version of Windows and then come time for an update, the native API you were using breaks, rendering your
tool useless. When it comes to process enumeration, there is an amazing native API that we can use called
NtQuerySystemInformation. MSDN does have some documentation on it and the main description for it says,
“NtQuerySystemInformation may be altered or unavailable in future versions of Windows. Applications
should use the alternate functions listed in this topic.” Despite that warning, we are going to use it anyway
because we do not have to heed to their warning; we are creating an implant after all.

The NtQuerySystemInformation API relies heavily on the SYSTEM_INFORMATION_CLASS enum, which is
not formally documented. In this undocumented enum are entries that we can use to specify what type of
system information we are interested in seeing. The enum entry that would be of interest for process
enumeration would be SystemProcessInformation. MSDN does not list every entry for the enum, but several
GitHub projects, like the one for the x64dbg debugger, have kindly posted their hard efforts for us.

References:
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation
https://github.com/x64dbg/x64dbg/blob/development/src/dbg/ntdll/ntdll.h

55

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

NtQuerySystemInformation API

NtQuerySystemInformationNtQuerySystemInformation

Grabs specific information about
the system
Grabs specific information about
the system

NTSTATUS
NtQuerySystemInformation(
In SYSTEM_INFORMATION_CLASS InfoCls,
Inout PVOID SystemInformation,
In ULONG SystemInformationLength,
_Out_opt_ PULONG ReturnLength

);

// enum entry SystemProcessInformation

// SYSTEM_PROCESS_INFORMATION struct
Has NTSTATUS return typeHas NTSTATUS return type

56

NtQuerySystemInformation API
As mentioned on the previous slide, the NtQuerySystemInformation function is a native function as annotated
by the Nt prefix in the function name. Even though MSDN has documentation online for this function, they do
not recommend we use it. Instead, alternate functions are listed as suggestions to use to retrieve information
about the system. The reasoning behind this is that the function could “break” or be removed from any future
version release. This is not likely to happen, so we use this function anyway because it can return some very
rich information not only about processes but also about the system. The function is extremely useful, and its
true power comes from what SYSTEM_INFORMATION_CLASS is passed into it. To better understand how
to use this function, we can break down the parameters in detail.

InfoCls is an abbreviation for SystemInformationClass, of type SYSTEM_INFORMATION_CLASS, which is
a massive enum. Since we are talking about process information, we will be using the
SystemProcessInformation enum entry. Each enum entry has a corresponding structure and ours will be the
SYSTEM_PROCESS_INFORMATION struct. What will be returned to use is an array of these structures
where each entry represents a process that has been mapped into memory.

SystemInformation, of type PVOID, is the pointer to the buffer to hold the information to be returned from the
function. The size of this buffer must be known ahead of time, and it can also vary based on the information
that is being requested. To get this information, the function will need to be called twice with the first call used
just to get the size of the buffer. Then you can allocate a buffer of the correct size for the second call.

SystemInformationLength, of type ULONG, is the size of the buffer that the SystemInformation parameter
points.

ReturnLength, of type PULONG, is not required to be passed, but if used, it will hold the actual size of the
requested information.

56

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

SYSTEM_PROCESS_INFORMATION Struct

typedef struct _SYSTEM_PROCESS_INFORMATION {
ULONG NextEntryOffset;
ULONG NumberOfThreads;
LARGE_INTEGER WorkingSetPrivateSize; // Since Vista
ULONG HardFaultCount; // Since Windows 7
ULONG NumberOfThreadsHighWatermark; // Since Windows 7
ULONGLONG CycleTime; // Since Windows 7
LARGE_INTEGER CreateTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;
UNICODE_STRING ImageName;

[..SNIP..]
HANDLE UniqueProcessId;
HANDLE InheritedFromUniqueProcessId;
SYSTEM_THREAD_INFORMATION Threads[1];

[..SNIP..]

57

SYSTEM_PROCESS_INFORMATION Struct
Here is the struct as documented by the researchers and developers of x64dbg.

typedef struct _SYSTEM_PROCESS_INFORMATION
{
ULONG NextEntryOffset;
ULONG NumberOfThreads;
LARGE_INTEGER WorkingSetPrivateSize; // Since Vista
ULONG HardFaultCount; // Since Windows 7
ULONG NumberOfThreadsHighWatermark; // Since Windows 7
ULONGLONG CycleTime; // Since Windows 7
LARGE_INTEGER CreateTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;
UNICODE_STRING ImageName;
KPRIORITY BasePriority;
HANDLE UniqueProcessId;
HANDLE InheritedFromUniqueProcessId;
ULONG HandleCount;
ULONG SessionId;
ULONG_PTR UniqueProcessKey; // Since Vista (requires SystemExtendedProcessInformation)
SIZE_T PeakVirtualSize;
SIZE_T VirtualSize;
ULONG PageFaultCount;
SIZE_T PeakWorkingSetSize;
SIZE_T WorkingSetSize;
SIZE_T QuotaPeakPagedPoolUsage;
SIZE_T QuotaPagedPoolUsage;

57

SIZE_T QuotaPeakNonPagedPoolUsage;
SIZE_T QuotaNonPagedPoolUsage;
SIZE_T PagefileUsage;
SIZE_T PeakPagefileUsage;
SIZE_T PrivatePageCount;
LARGE_INTEGER ReadOperationCount;
LARGE_INTEGER WriteOperationCount;
LARGE_INTEGER OtherOperationCount;
LARGE_INTEGER ReadTransferCount;
LARGE_INTEGER WriteTransferCount;
LARGE_INTEGER OtherTransferCount;
SYSTEM_THREAD_INFORMATION Threads[1];

} SYSTEM_PROCESS_INFORMATION, *PSYSTEM_PROCESS_INFORMATION;

58

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: NtQuerySystemInformation

59

Example: NtQuerySystemInformation
Whenever you decide to use native APIs, you are also deciding whether to accept the risk that comes with the
usage. They do offer amazing benefits, like increasing your chances of bypassing AV/EDR detection and
being able to obtain more detailed information like what this example shows. Hackers take risks all the time
and developers must take risks too to increase the chances of a red team operator being successful for the
operation at hand. Once the API call has been made, we have a linked list that we can iterate over. Each entry
in the list is of type PSYSTEM_PROCESS_INFORMATION, and we can use it and some of its members to
keep advancing to the next entry until there are no more entries. There is so much information that it will not
fit on the slide, but the best way to see all this information is online using the MSDN documentation and some
of the third party sources, like x64dbg’s GitHub repo.

Bottom line: certain native functions are well worth the risk based solely on what they can offer.

59

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

Discussed the reason for enumerating processesDiscussed the reason for enumerating processes

Explored the structures the kernel uses to represent processesExplored the structures the kernel uses to represent processes

Explored various methods for process enumerationExplored various methods for process enumeration

60

Module Summary
In this module, we discussed why it is important to enumerate processes on a system, the structures the kernel
uses to represent processes in system address space, and several methods to enumerate processes on local and
remote systems.

60

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What undocumented API can be used to enumerate processes?What undocumented API can be used to enumerate processes?

A EnumProcesses()A EnumProcesses()

B WTSEnumerateProcessesEx()B WTSEnumerateProcessesEx()

C NtQuerySystemInformation()C NtQuerySystemInformation()

61

Unit Review Questions
Q: What undocumented API can be used to enumerate processes?

A: EnumProcesses()

B: WTSEnumerateProcessEx()

C: NtQuerySystemInformation()

61

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What undocumented API can be used to enumerate processes?What undocumented API can be used to enumerate processes?

A EnumProcesses()A EnumProcesses()

B WTSEnumerateProcessesEx()B WTSEnumerateProcessesEx()

C NtQuerySystemInformation()C NtQuerySystemInformation()

62

Unit Review Answers
Q: What undocumented API can be used to enumerate processes?

A: EnumProcesses()

B: WTSEnumerateProcessEx()

C: NtQuerySystemInformation()

62

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What API could be used to obtain more information about a process given
only its PID?
What API could be used to obtain more information about a process given
only its PID?

A OpenProcess()A OpenProcess()

B WTSEnumerateProcessesEx()B WTSEnumerateProcessesEx()

C NtQuerySystemInformation()C NtQuerySystemInformation()

63

Unit Review Questions
Q: What API could be used to obtain more information about a process given only its PID?

A: OpenProcess()

B: WTSEnumerateProcessEx()

C: NtQuerySystemInformation()

63

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What API could be used to obtain more information about a process given
only its PID?
What API could be used to obtain more information about a process given
only its PID?

A OpenProcess()A OpenProcess()

B WTSEnumerateProcessesEx()B WTSEnumerateProcessesEx()

C NtQuerySystemInformation()C NtQuerySystemInformation()

64

Unit Review Questions
Q: What API could be used to obtain more information about a process given only its PID?

A: OpenProcess()

B: WTSEnumerateProcessEx()

C: NtQuerySystemInformation()

64

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

65

Finding installed software can tell you a great deal about a target. Let us dive in, shall we?

65

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

Our objectives for this module are:

Look at where installed software is located

Compile a listing of installed software

Determine if an operation should continue

66

Objectives
The objectives for this module are to know where to look for installed software, compile a listing of all
installed programs, and determine if an operation should continue given the presence, or absence, of software.

66

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Where to Look?

Where can you find 32-bit and 64-bit applications? Where can you find 32-bit and 64-bit applications?

C:\Program FilesC:\Program Files

It should be safe to
assume that entries
found in this folder
are 64-bit
applications

C:\Program Files (x86)C:\Program Files (x86) C:\C:\

A similar assumption
can be made for entries
found in this location;
that they will be 32-bit
applications

Some apps, like
Python, install at
the root system
drive, although
not very
common

67

Where to Look?
One of the goals of recon is to determine what applications are installed on your target. Maybe you want to see
if an already known vulnerable application is there, or perhaps you want to make sure a certain application is
not installed. In either case, it is good to know where to find the installation folders. The assumption here is
that the target is a 64-bit Windows installation. Based on that assumption, 64-bit applications will be located at
the “C:\Program Files” directory or the C:\Progra~1 for using the 8.3 short name convention that NTFS
supports. The next folder name really gives away what the purpose is: “C:\Program Files (x86)”. The x86
portion in the folder name indicates that 32-bit applications are in this folder. The root of the system drive,
typically represented by the letter C:\, does contain some entries of applications that have been installed there.
Python 2.7 used to be one such example, among others. With all this being said, users that are going through
an installation process typically can choose where to install the application. If your survey tool is only
checking these three locations, you might miss one if a user decided to install an application in their
Documents or Downloads folder.

67

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

C:\

68

C:\
The system’s root drive is typically annotated by the drive letter C, but it can be another letter. Because it can
be any letter, it is best to not hard code file paths until you have determined the system root drive. Once done,
you can append your file paths to that returned value. Back to the current topic, as you can see from the
screenshot, there is not a lot being listed here as far as figuring out what software might be installed. We do
have Python27 as a dead giveaway, but beyond that we would have to look elsewhere for our information.

One thing to note with folders like these would be permissions, because not everyone can write to these
folders without the proper permissions.

68

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

C:\Program Files

69

C:\Program Files
This screenshot shows the contents of the Program Files directory. The directory contains 29 entries, which
could be a possible indicator that there are at least 29 applications that have been installed on this system; at
least 29 items because some folders could easily hold other programs. If your tool was collecting this
information then it would allow a red team operator to get a glimpse as to what 64-bit applications are here,
and based on the applications, a guess could be made as to what the system’s purpose is. Seeing applications
like Notepad++, Process Hacker, VMware, etc. could indicate that this machine could be a research VM. This
screenshot was taken from a Windows 10 Dev VM.

69

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

C:\Program Files (x86)

70

C:\Program Files (x86)
This screenshot shows the contents of the Program Files x86 directory. This directory contains 34 entries,
which could indicate that there are at least 34 applications installed on this system that are 32-bit. An operator
might be able to make a better educated guess as to what this system is being used for after seeing several
entries for development software.

70

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Should Operations Continue?

When should you abort an operation?When should you abort an operation?

Aborting an operation based solely on a single application being installed is quite the
decision to make. If you have no idea what the application does or what it would do if
you drop more tools on the system, it could be a good decision to back off. This would
allow you more time to conduct some research and hit the target later, possibly.

71

Should Operations Continue?
When deciding if you should continue with an operation, there is not always a clear yes or no answer. The
more enumeration you do, the more informed your decision could be and the more confident you can feel
about the decision. In a makeshift scenario, let us say you have gathered the following information: OS
info/version, service pack/hotfixes, processes, and installed software. You might have enough information to
make an informed decision. If you noticed that there was an application that detects your tool, then perhaps it
would be a good idea to back off and find a different system to target. For the applications that you have never
heard of before and have not had any time to research, you might have to decide if the risk of bringing more
tools down is worth the reward. All of this should be done ahead of time, as much as possible. That way, when
you come to a decision point, you already know what to do. The discussions could happen in an operational
pre-brief where your team has a chance to brainstorm together. GO and NOGO criteria can be made during
these pre-briefs where you know if it is okay to continue or if you have to back off right away.

71

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

Explored where applications can be installed Explored where applications can be installed

Learned to make a decision to continue or abort based on the listing of softwareLearned to make a decision to continue or abort based on the listing of software

72

Module Summary
In this module, we explored where some applications might be installed, and we also discussed how GO/NO-
GO decisions can be made based on gathered information.

72

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

73

In this module, we will discuss a feature for enumerating directories. Many implants today already implement
a directory listing feature, so we should put one in ours.

73

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

Our objectives for this module are:

Understand how to enumerate files in a directory

Understand how to implement a recursive directory walk; dirwalk

Learn how to locate a specific file of interest

74

Objectives
The objectives for this module are to understand how to enumerate files in a directory, understand how to
implement a recursive directory walk, and learn how to locate a specific file of interest.

74

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Directory Enumeration

Directory listings is nothing new.Directory listings is nothing new.

Many popular frameworks have implants that can perform directory listings. The
famous Meterpreter session from the Metasploit Framework offers operators the
ability for perform a directory listing. Native Windows binaries also perform directory
listings, so it is not a behavior that should be categorized as malicious or suspicious.

75

Directory Enumeration
Directory enumeration is a very simple feature to implement programmatically, and it can be done in a number of
different ways. MSDN provides a few simple examples of using the primary APIs involved and it is easy to build
upon those examples. If you are familiar with the Metasploit Framework and its Meterpreter session, you might be
familiar with its ls command to list the contents of a directory. Of course, ls is a native Linux command, but
Meterpreter implements this as a platform agnostic function for Windows or Linux in their source code. The C
source code for Meterpreter’s ls command uses the exact same Windows APIs that we will be discussing in this
module and for our lab. You can browse to their GitHub page to look at the code to get an idea of what is happening
behind the scenes.

Enumerating directories is an important feature to implement because you would want to give your operators the
ability to see what is in a certain directory. Perhaps the operator will want to download a file of interest or want to
see what files are currently in a folder before making the decision to drop a file of their own in that same folder. The
operator will do whatever in the end, but we must at least give an operator the ability to perform a directory listing.

Here is the URL to Raymond Chen's article for BFS: https://devblogs.microsoft.com/oldnewthing/20050203-
00/?p=36533.

75

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

NTFS Directory Entries

NTFS, the design for directories and files and the links between themNTFS, the design for directories and files and the links between them

CreateDirectoryCreateDirectory

The NT File System keeps track of the directories and any child directories that might
exist on the file system in a directory tree. Each directory has a table that is used to
keep track of what is held in that directory. The table holds entries with names of files.

CreateDirectoryExCreateDirectoryEx

CreateDirectoryTransactedCreateDirectoryTransacted

76

NTFS Directory Entries
You might already be familiar with how Explorer shows directories and the files in them, but what really
makes that happen? When a directory is created via one of the three APIs listed on the slide—
CreateDirectory, CreateDirectoryEx, or CreateDirectoryTransacted—it will have a corresponding directory
table made for it. Whenever a file is created or moved into this directory, an entry will be placed into the table,
and the entry will have the name of the file. There can be multiple entries for the same file in the directory
table called links. A hard link is created when there is another entry in the table that is made for the same file.
Trying to view the table itself is not important to us as that starts to dive down into the world of forensics. We
will simply be using the APIs to do the querying of the tables for us.

76

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Main APIs

The root of directory enumeration uses three simple APIs.The root of directory enumeration uses three simple APIs.

FindFirstFileFindFirstFile

Sole purpose is
to locate a file, or
a subdirectory, in
the specified
directory. Wild
cards are
allowed.

FindNextFileFindNextFile FindCloseFindClose

Sole purpose is
to continue the
search that
FindFirstFile
kicked off. Great
for using in
loops.

When all the
searching has
been completed,
this will close the
handle from
FindFirstFile.

77

The Main APIs
The act of enumerating directories is not malicious, nor should it even be deemed as suspicious. There are
several native Windows applications that have this functionality built into it. Explorer must do this very same
thing; in fact, we could search through many executables in the System32 folder to determine how many of
them import these functions. CTF players could whip up a directory enumeration script to locate flag files or
whatever their objective is. Nation State actors might enumerate directories to see if any files are worth
downloading for further analysis. Actors that might be interested in espionage might conduct recursive
directory walks looking for blueprints of engine designs for fighter jets, ships, stealth technology, etc. To get
this done, there are two primary APIs that do the bulk of the work: FindFirstFile and FindNextFile.
FindClose is simply to clean things up when the search is done. The APIs also have extended versions like
FindFirstFileEx, so we could pass in extra attributes that the file should have. There is also a transacted API
like FindFirstFileTransacted, though it is not recommended to be used.

77

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

FindFirstFile API

FindFirstFileA()FindFirstFileA()

Used to obtain a search handleUsed to obtain a search handle

HANDLE FindFirstFileA(
In LPCSTR lpFileName,
In LPWIN32_FIND_DATAA pFindFData
);

// example
HANDLE hSearch = INVALID_HANDLE_VALUE;
WIN32_FIND_DATA FindData;

hSearch = FindFirstFileA(Dir, FindData);

Has HANDLE return typeHas HANDLE return type

78

FindFirstFile API
The first API that we need to use to kick of the directory walk is none other than the FindFirstFile API. Like
most other APIs that have string arguments, it is just a macro that is expanded to support Unicode or ANSI
depending on your project settings. The example on the slide is using the ANSI version. Should you have to
deal with non-English characters, like Chinese, you better use the Unicode versions. The main purpose of the
API is to return a search handle that the FindNextFile API would then use to continue searching for a file in a
directory. The FindFirstFileA function has just two parameters, which are broken down below.

lpFileName, of type LPCSTR, is the directory and filename that should be searched. The filename can have
wildcards in it too, which is nice when you do not know an extension for a file.

pFindFData, of type LPWIN32_FIND_DATAA, is the pointer to a WIN32_FIND_DATA structure that will
be filled out by the API as it retrieves the information about a file or subdirectory.

If the function succeeds, a file search handle will be returned and the WIN32_FIND_DATA structure will start
to be filled out as you progress. On failure, it will return INVALID_HANDLE_VALUE, so you would have to
call GetLastError to determine what really was the cause.

78

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

WIN32_FIND_DATA Struct

typedef struct _WIN32_FIND_DATAA {
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD dwReserved0;
DWORD dwReserved1;
CHAR cFileName[MAX_PATH];
CHAR cAlternateFileName[14];
DWORD dwFileType;
DWORD dwCreatorType;
WORD wFinderFlags;

} WIN32_FIND_DATAA, *PWIN32_FIND_DATAA, *LPWIN32_FIND_DATAA;

79

WIN32_FIND_DATA Struct
The WIN32_FIND_DATA structure is filled with useful information. Many of the struct members do not need
any explanation, like FileAttributes, CreationTime, LastAccessTime, LastWriteTime, etc. One that might need
some explaining is the AlternateFileName with the fixed size of 14. This is for the short file naming
conventions that NTFS supports. Specifically, it is an 8.3 convention with the filename containing 8 letters,
then the dot, then the 3-letter extension. As an example, if you have a long file name, like backup-picture.jpg,
it could look like this: BACKUP~1.JPG. The other members are not that interesting to us, so we can simply
ignore them.

79

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

FindNextFile API

FindNextFileA()FindNextFileA()

Used to continue a search Used to continue a search

BOOL FindNextFileA(
In HANDLE hFindFile,
In LPWIN32_FIND_DATAA pFindFileData

);

// example

do {

// do stuff with the info

} while (
FindNextFileA(hSearch, FindData) != 0

);

Has BOOL return typeHas BOOL return type

80

FindNextFile API
The next API we need to use to implement our directory walk is the FindNextFile API, which is really a
macro that expands to FindNextFileA for ANSI, or FindNextFileW for Unicode. For this example, we will be
using the ANSI version of the macro. The FindNextFileA function will not work on its own—it must have the
file search handle that the FindFirstFileA function returns. Just like FindFirstFileA, this function has two
parameters: a handle to a valid file search handle, and a pointer to a WIN32_FIND_DATAA structure. Since
handles are nothing new to us at this point and since the structure is the same one that is used in the
FindFirstFileA function, there is no need to break down the parameters. Because the return type is BOOL, it
is perfect to use in a loop like a while loop. Each iteration of the loop for each file found in a directory would
have the structure filled out for the respective file. When the function returns false, the loop would break and
be done.

If the function fails for whatever reason, the structure may not have been filled out properly, so it would be
best to call GetLastError to see what really happened.

80

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

FindClose API

FindClose()FindClose()

Used to close a file search handleUsed to close a file search handle

BOOL FindClose(
Inout HANDLE hFindFile
);

// example

FindClose(hsearch);

Has BOOL return typeHas BOOL return type

81

FindClose API
After you are done searching for files or performing your directory walk, the file search handle should be
closed out. The FindClose API can do this for us, and it is a very simple API to understand and implement in
code. FindClose only takes one argument and that is a valid file search handle. The return type is BOOL so
you could check to see if the function was successful or not, and if it was not successful, you would call
GetLastError to see the details.

81

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: FindFirstFile, FindNextFile, FindClose

82

Example: FindFirstFile, FindNextFile, FindClose
The short example on the slide shows very basic usage for the two main APIs that are involved in enumerating
a directory. The FindFirstFileW API is used to kick off the process of enumeration. The first argument being
passed to the API is a CString type that has a method GetBuffer() to get a pointer to the buffer. This is done to
satisfy the requirement of the API. The function can fail, so be sure to check for success for failure. The next
part is the do/while loop that will continue as long as the FindNextFileW function keeps returning TRUE or 1.
In the body of the do/while loop is where your processing of each entry would be done. You can do matching
if you are looking for a certain file name, extension type, skip directories, etc. If you are keeping a list of
everything being discovered, this is where you would be appending to that list.

82

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Lab 2.5: FileFinder

Enumerating directories is an important feature to create.Enumerating directories is an important feature to create.

Please refer to the eWorkbook for the details of the lab.

83

Lab 2.5: FileFinder
Please refer to the eWorkbook for the details of the lab.

83

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

What’s the Point?

What’s the point?

84

What’s the Point?
The point of this lab was the explore how you can programmatically enumerate a directory to find a file, and if
you had time, enumerate any subdirectories.

84

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

Discussed why we would perform a directory walkDiscussed why we would perform a directory walk

Learned how to perform a directory walk to find a fileLearned how to perform a directory walk to find a file

Discovered the main APIs involvedDiscovered the main APIs involved

85

Module Summary
In this module, we discussed the how to perform a directory walk and why we would do one in the first place.
A recursive walk from the system root could take a while, but at the same time it could yield some great
information. There were only three APIs involved with this, but there were two that did the heavy lifting:
FindFirstFile and FindNextFile.

85

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What user-mode structure holds the attributes of a file?What user-mode structure holds the attributes of a file?

A WIN32_FIND_DATAA WIN32_FIND_DATA

B KUSER_SHARED_DATAB KUSER_SHARED_DATA

C FILE_OBJECTC FILE_OBJECT

86

Unit Review Questions
Q: What user-mode structure holds the attributes of a file?

A: WIN32_FIND_DATA

B: KUSER_SHARED_DATA

C: FILE_OBJECT

86

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What user-mode structure holds the attributes of a file?What user-mode structure holds the attributes of a file?

A WIN32_FIND_DATAA WIN32_FIND_DATA

B KUSER_SHARED_DATAB KUSER_SHARED_DATA

C FILE_OBJECTC FILE_OBJECT

87

Unit Review Answers
Q: What user-mode structure holds the attributes of a file?

A: WIN32_FIND_DATA

B: KUSER_SHARED_DATA

C: FILE_OBJECT

87

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

88

This module will discuss the importance and benefits of gathering information about the users of a system.
The module will of course discuss the Windows APIs that might be involved with retrieving user information.

88

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

Our objectives for this module are:

Discuss the importance of gathering user information

Understand how to programmatically gather information about users

89

Objectives
The objectives for this module are to understand how to programmatically gather information about users and
discuss the importance behind it.

89

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

User Information

Who’s who on the systemWho’s who on the system

It is always a good idea to see what users are on the system. Limited privileged users
are one thing, but finding out if a user is part of the Administrators group is great. You
might even get lucky enough to see a Domain admin logged into a system!

90

User Information
Another part of conducting recon is gathering user account information. From the command line, there are
some common tools that can be used to do this, like the net command line utility. The net command does more
than gather user information but if you pass in the net user or the net localgroup options, it will gather user
information and groups on the system, among other things. Using the command line is nice when you have a
shell, but we can also do this programmatically. Why do we care about users in the first place? Well, if a user
is part of the Administrators group, that could give us a solid option of escalating our privileges or attempting
a UAC bypass. If the system is part of an Active Directory domain, something you would find in most mature
Windows environments, you might see a domain admin logged into the system. The hash for that account
would be great to grab and then further pivot around the domain. Dumping creds and hashes for accounts can
help with our lateral movement, or as some say our East and West movement, something that SEC565 dives
into.

90

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GetUserName API

GetUserNameA()GetUserNameA()

Used to obtain the current
username
Used to obtain the current
username

BOOL GetUserNameA(
Out LPSTR lpBuffer,
Inout LPDWORD pcbBuffer
);

// example

PSTR userName;
DWORD cbSize = 32767;

GetUserNameA(userName, &cbSize);Has BOOL return typeHas BOOL return type

91

GetUserName API
The GetUserName API is yet another macro that can expand to support ANSI or Unicode, depending on
project settings. Keeping with the trend of showing ANSI versions, we will break down the ANSI version of
this API. GetUserNameA requires two parameters: lpBuffer, and pcbBuffer. We can take a look at those in
more detail below.

lpBuffer, of type LPSTR, is a pointer to a buffer that will end up storing the username.

pcbBuffer, of type LPDWORD, is a pointer to a variable that will indicate the size of the buffer pointed to by
lpBuffer.

The function will indicate success by returning nonzero. Failures result in zero, which does not give us any
real insight as to why it may have failed. For that, we would have to call our favorite error function
GetLastError. There are a few caveats with this function in that it will not return the username that one might
expect. For example, threads have the ability to impersonate tokens/users and as such, the API would return
the username of the client that is currently being impersonated.

91

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GetUserProfileDirectory API

GetUserProfileDirectoryA()GetUserProfileDirectoryA()

Used to obtain the root directory
of the user’s profile
Used to obtain the root directory
of the user’s profile

USERENVAPI
BOOL
GetUserProfileDirectoryA(
In HANDLE hToken,
_Out_opt_ LPSTR lpProfileDir,
_In_opt_ LPDWORD lpcchSize
);

Has BOOL return typeHas BOOL return type

92

GetUserProfileDirectory API
The GetUserProfileDirectory API is useful when you would like to know the path of the root folder for the
username that was passed into the function. The GetUserProfileDirectory API is another macro, so we should
know what that means by now. The function only has one required parameter and two optional parameters.
Even though a few of the parameters are optional, we can dive into the details of each one.

hToken, of type HANDLE, is a valid handle to a token for the user that can be gathered from calling a function
like OpenProcessToken or OpenThreadToken.

lpProfileDir, of type LPSTR, is a pointer to a variable that will hold the path to the user’s profile directory.

lpcchSize, of type LPDWORD, is a pointer to the size of the buffer pointed to by lpProfileDir.

One nice thing about this function is that if your lpProfileDir buffer is not big enough, the needed size will be
placed in lpcchSize by the function. This would allow you to make the call a second time using the correct
size. On that note, your first call for functions like these should be with a zero-sized buffer. This would make
the function fail, forcing it to give us the proper size. Once you have that, you can make the second call with
the correct size. This is the preferred way and the most reliable method.

92

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

NetUserEnum API

NetUserEnum()NetUserEnum()

Used to obtain information about
all user accounts
Used to obtain information about
all user accounts

NET_API_STATUS
NET_API_FUNCTION
NetUserEnum(
In LPCWSTR servername,
In DWORD level,
In DWORD filter,
Out LPBYTE *bufptr,
In DWORD prefmaxlen,
Out LPDWORD entriesread,
Out LPDWORD totalentries,
Inout PDWORD resume_handle
);

Has NET_API_STATUS return
type
Has NET_API_STATUS return
type

93

NetUserEnum API
Getting account information about a single user account is fine, but it is also great to get account information
about all user accounts on a system. The NetUserEnum API is perfect for this because it will return
information from all user accounts on the local or remote system. The information returned from the API
might seem similar to the output you may have seen after executing the net user command. The API has
several parameters that need some explaining.

servername, of type LPCWSTR, is the pointer to a constant wide char string for the server. Passing in NULL
here would indicate the local computer.

level, of type DWORD, is the level of information you intend to see. There are seven values that can be passed
in here:
- 0 - is for user account names. There will be an array of USER_INFO_0 structures.
- 1 - is for user account details. There will be an array of USER_INFO_1 structures.
- 2 - is for account details and logon information. There will be an array of USER_INFO_2 structures.
- 3 - is for all of the above and now profile information. The array will have USER_INFO_3 structures.
- 10 - is for user account names and comments. The array will have USER_INFO_10 structures.
- 11 - is for more detailed account information. The array will have USER_INFO_11 structures.
- 20 - is for the user’s names account attributes. The array will have USER_INFO_20 structures.

filter, of type DWORD, is used to specify what accounts should be included in the search.

bufptr, of type LPBYTE, is the pointer to the buffer that will end up holding the returned information. You are
required to free this buffer using NetApiBufferFree when done, even if the API fails.

prefmaxlen, of type DWORD, is the maximum length of the data, in bytes. We do not need to specify a value
here other than MAX_PREFERRED_LENGTH so that the function makes the proper space for the data.

93

entriesread, of type LPDWORD, is a pointer to the variable that will hold the number of entries the function
queried.

totalentries, of type LPDWORD, is a pointer to the variable that will hold the number of entries that could
have been queried from a position called the resume position.

resume_handle, of type PDWORD, is a pointer to a variable that is used as the resume handle. The resume
handle can be used to continue searching user accounts and if this is what you want to do, then zero (0) should
always be used for the first call. If you do not care about this, then passing NULL here is just fine.

94

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

NetLocalGroupEnum API

NetLocalGroupEnum()NetLocalGroupEnum()

Used to obtain local group
information
Used to obtain local group
information

NET_API_STATUS
NET_API_FUNCTION
NetLocalGroupEnum(
In LPCWSTR servername,
In DWORD level,
Out LPBYTE *bufptr,
In DWORD prefmaxlen,
Out LPDWORD entriesread,
Out LPDWORD totalentries,
Inout PDWORD_PTR resumehandle
);Has NET_API_STATUS return

type
Has NET_API_STATUS return
type

95

NetLocalGroupEnum API
In addition to gathering user information, we can gather information about the groups that might be present on
a local or remote system. The NetLocalGroupEnum API is pretty much the equivalent to executing the net
localgroup command from the command line. Perhaps the API should have been named
NetLocalOrRemoteGroupEnum since it is not bound to local systems only. The API has almost the exact same
parameters to the NetUserEnum API except for the level parameter. The level parameter only has two
possible options: 0 and 1. Level 0 is for returning only the names of the local groups, which will be an array of
LOCALGROUP_INFO_0 structures. Level 1 is for requesting the group names and the comments that are tied
to them, if any. There will be an array of LOCALGROUP_INFO_1 structures for Level 1. Outside of the level
parameter, the remaining ones are the same as the NetUserEnum API.

95

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Additional Information

Additional headers and APIs that could be of interestAdditional headers and APIs that could be of interest

lmaccess.hlmaccess.h lmuse.hlmuse.h

NetGroupGetUsersNetGroupGetUsers NetUseEnumNetUseEnum

NetLocalGroupGetMembersNetLocalGroupGetMembers NetUseGetInfoNetUseGetInfo

96

Additional Information
The lmaccess and the lmuse header files offer additional APIs that might be of interest when querying user and
user group information. The listing on the slide is not an exhaustive list but merely a small sampling of what
else is out there that can be used. Depending on the information that you are wanting to gather, you can
implement the logic to get it. The more you add the more robust your survey tool will be for operators using it.

96

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Source Code Review

Source code review!

97

Source Code Review
Time to jump into the source code and understand it.

97

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

Discussed reasons to gather user informationDiscussed reasons to gather user information

Explored several APIs that allow us to retrieve user and group informationExplored several APIs that allow us to retrieve user and group information

98

Module Summary
In this module, we discussed why it might be important to gather information about the user and groups on
systems. We also took a detailed look at several of the APIs that are available for us to use.

98

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What is one API to obtain a username?What is one API to obtain a username?

A GetUserName()A GetUserName()

B NetUserEnum()B NetUserEnum()

C NetLocalGroupEnum()C NetLocalGroupEnum()

99

Unit Review Questions
Q: What is one API to obtain a username?

A: GetUserName()

B: NetUserEnum()

C: NetLocalGroupEnum()

99

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What is one API to obtain a username?What is one API to obtain a username?

A GetUserName()A GetUserName()

B NetUserEnum()B NetUserEnum()

C NetLocalGroupEnum()C NetLocalGroupEnum()

100

Unit Review Answers
Q: What is one API to obtain a username?

A: GetUserName()

B: NetUserEnum()

C: NetLocalGroupEnum()

100

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

101

In this module, we will discuss how to enumerate services and tasks during the execution of your survey tool.

101

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

Our objectives for this module are:

Understand Windows services

Compare services and processes

Understand Windows Tasks

Discuss how to enumerate services and tasks

102

Objectives
The objectives for this module are to understand what a Windows service is, compare services and processes,
understand what Windows Tasks are, and how to enumerate them all.

102

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Windows Services

What exactly is a Windows service?What exactly is a Windows service?

Special processSpecial process

Looks like any other
process except no
GUI, no direct user
interaction. It
provides a service.

Shared serviceShared service Isolated serviceIsolated service

Several services
sharing address space
in a single process
like svchost.exe. If
one crashes, they all
crash.

A service hosted in
svchost.exe that is
not sharing its
address space with
other services

103

Windows Services
Even if you are not that familiar with Windows, you might be familiar with services in general. Linux has
services too, typically called daemons, and they provide a certain set of services to users, like FTP access to
some FTP server. Windows services are not that different as they still provide a service to users. Windows
services are just special processes and they typically do not have a GUI. Most services do not have direct
configuration or interaction with users on the system. The services operate in the background and mind their
own business until a user needs whatever functionality they provide. The most interaction a user might have
with a service is to perform some action against it, like Stop or Start actions. Another interesting item with
Windows services is that they can share address spaces. The svchost.exe process acts like a container of sorts
so that several services can be hosted in a single svchost.exe process. The downside of shared services is that
if one service crashes for some abnormal reason, like exploit attempts, the other services go down with it. This
is where isolated services come to play. They are services that can be hosted in a single svchost.exe process
but they will not be sharing the address space with any other service. Later in the course, we will look at how
we can make that choice programmatically when we create our own service.

103

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Service Enumeration

Why enumerate services?Why enumerate services?

AwarenessAwareness PurposePurpose

The better awareness you have
the more successful your
operation. Detect services that
could be vulnerable or ones that
could belong to AV/EDR.

The purpose of a target will
determine how it is most likely
being used. It could also indicate
if the target is high visibility or
low.

104

Service Enumeration
We typically conduct service enumeration for similar reasons that we conduct process enumeration. Services,
just like processes, can tell us what a target’s purpose is or how it is being used. Certain services would be
specific to servers like DHCP, DNS, FTP, to name a few, and you would not expect to find those services
running on a client workstation. AV/EDR products can also have services running that handle certain portions
of its functionality like scanning, file submission, watchdog services, etc. Finding those could be beneficial in
making the decision to continue operating on that target. Again, if you did not expect that your target would
have an AV solution installed, it might not be the best idea to continue and bring down additional tools.
Another reason for service enumeration is to identify possible vulnerable services that could be exploited for
privilege escalation and/or persistence, both of which will be talked about later in the course in detail.

104

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Service Enumeration APIs

EnumServicesStatusExAEnumServicesStatusExA

BOOL EnumServicesStatusExA(
SC_HANDLE hSCManager,
SC_ENUM_TYPE InfoLevel,
DWORD dwServiceType,
DWORD dwServiceState,
LPBYTE lpServices,
DWORD cbBufSize,
LPDWORD pcbBytesNeeded,
LPDWORD lpServicesReturned,
LPDWORD lpResumeHandle,
LPCSTR pszGroupName
);

QueryServiceStatusExQueryServiceStatusEx

BOOL QueryServiceStatusEx(
SC_HANDLE hService,
SC_STATUS_TYPE InfoLevel,
LPBYTE lpBuffer,
DWORD cbBufSize,
LPDWORD pcbBytesNeeded
);

105

Service Enumeration APIs
How exactly can we go about enumerating services? You might know how to do this via the command line
using the sc.exe utility or with the PowerShell cmdlet Get-Service, but we are doing this programmatically in
C. We have two options at our disposal for getting this done. We could create WMI queries to do this or we
can use a few Win32 APIs to achieve similar results. For this instance, we will be using the service-specific
Win32 APIs instead of using wmi-specific Win32 APIs. EnumServicesStatusEx() and
QueryServiceStatusEx() are two great APIs that can help you enumerate services and gather more detailed
information about them. The first function on the slide is EnumeServicesStatusExA() and it accepts a decent
number of arguments. The function will query the Service Control Manager database of either a local target or
a remote target for services and will return the name and status of each service, at a minimum. More
information and data can possibly be gathered depending on the InfoLevel value passed in as an argument,
which the only supported InfoLevel value documented at the time of this writing is
SC_ENUM_PROCESS_INFO.

The other great service-specific API to use is QueryServiceStatusEx(). It does not enumerate services but
rather, it will obtain the status of a service that has already been enumerated. The two APIs used in
conjunction with each other can provide valuable information about services on the target. The InfoLevel for
this function, similar to EnumServicesStatusEx, only supports one value: SC_STATUS_PROCESS_INFO.

In Section 3, we will dive much deeper into services when we discuss local damage that can be inflicted
against a target.

105

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Windows Tasks

What are Windows Tasks?What are Windows Tasks?

Create new tasksCreate new tasks

Automating routine tasks is great for sysadmins and users who do not want the
headache of repeating an action over and over. Tasks are great for attackers to aid in
persistence on a target.

Hijack current tasksHijack current tasks

106

Windows Tasks
Admins, developers, hackers, etc. tend to be lazy in the sense that all would rather script something than do it
manually. Tasks are a great way to help with this because they can perform certain actions when a specific
trigger condition is met. Some of the triggers could be a user logging on to the system, the system itself
booting up, certain event logs, etc. From an attacker’s perspective, tasks would be a great option for
maintaining access to the target. Attackers can either create a new task to achieve their persistence needs or
hijack current tasks to be a bit less noisy. Hijacking currently scheduled tasks could be done by adding an
additional action after the default action. For enumeration purposes, we are interested in seeing what tasks are
currently registered and possibly already running. Perhaps we find a task that could be of interest to hijack, or
we find evidence that we are not the first ones on the target, i.e., a current task for persistence made by another
attacker. Tasks might not always be the most useful, but when conducting survey scripts, it is great to be
thorough.

Please note: when it comes to keeping a low profile—something you should try to keep—creating new tasks
could raise your profile a good amount. Create new tasks with caution.

106

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Enumerating Tasks v. 1.0

Using COM to enumerate TasksUsing COM to enumerate Tasks

ITaskScheduler::EnumITaskScheduler::Enum IEnumWorkItems::NextIEnumWorkItems::Next

HRESULT Enum(
Out IEnumWorkItems **ppEnumWorkItems
);

HRESULT Next(
In ULONG celt,
Out LPWSTR **rgpwszNames,
Out ULONG *pceltFetched
);

107

Enumerating Tasks v. 1.0
For us to enumerate tasks on a system we must turn to COM. There is an exposed interface called
TaskScheduler, specifically ITaskScheduler, that has a method called Enum, which will allow us to create an
enumeration object. Then, with that object in hand, we can create IEnumWorkItems interface that allows us to
enumerate whatever tasks might be present at the time the code is ran. According to MSDN, here are the high-
level steps to getting this done:
- Initialize the COM library using CoInitialize.
- Use CoCreateInstance to make the Task Scheduler object.
- Call the Enum method of ITaskScheduler to create the enumeration object.
- Call the Next method of the IEnumWorkItems to enumerate tasks.
- Free the resources using CoTaskMemFree.

107

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

Discussed what Windows services areDiscussed what Windows services are

Learned about services and processesLearned about services and processes

Discussed what Windows Tasks areDiscussed what Windows Tasks are

Discussed enumerating services and tasksDiscussed enumerating services and tasks

108

Module Summary
In this module, we discussed very briefly what services and tasks are. We also discussed why we would want
to enumerate them, and the APIs involved for enumerating services and tasks.

108

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What does SERVICE_WIN32_OWN_PROCESS indicate?What does SERVICE_WIN32_OWN_PROCESS indicate?

A The service shares its address space with other processesA The service shares its address space with other processes

B The service does not share its address space with other processesB The service does not share its address space with other processes

C The service will be hidden from viewC The service will be hidden from view

109

Unit Review Questions
Q: What does SERVICE_WIN32_OWN_PROCESS indicate?

A: The service shares its address space with other processes

B: The service does not share its address space with other processes

C: The service will be hidden from view

109

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What does SERVICE_WIN32_OWN_PROCESS indicate?What does SERVICE_WIN32_OWN_PROCESS indicate?

A The service shares its address space with other processesA The service shares its address space with other processes

B The service does not share its address space with other processesB The service does not share its address space with other processes

C The service will be hidden from viewC The service will be hidden from view

110

Unit Review Answers
Q: What does SERVICE_WIN32_OWN_PROCESS indicate?

A: The service shares its address space with other processes

B: The service does not share its address space with other processes

C: The service will be hidden from view

110

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

How do you get the COM library ready for use in your process?How do you get the COM library ready for use in your process?

A CoCreateInstanceA CoCreateInstance

B CoInitializeB CoInitialize

C CoMemFreeC CoMemFree

111

Unit Review Questions
Q: How do you get the COM library ready for use in your process?

A: CoCreateInstance

B: CoInitialize

C: CoMemFree

111

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

How do you get the COM library ready for use in your process?How do you get the COM library ready for use in your process?

A CoCreateInstanceA CoCreateInstance

B CoInitializeB CoInitialize

C CoMemFreeC CoMemFree

112

Unit Review Answers
Q: How do you get the COM library ready for use in your process?

A: CoCreateInstance

B: CoInitialize

C: CoMemFree

112

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What COM interface can be called to create an enumeration object?What COM interface can be called to create an enumeration object?

A ITaskSchedulerA ITaskScheduler

B IUnknownB IUnknown

C IBelieveC IBelieve

113

Unit Review Questions
Q: What COM interface can be called to create an enumeration object?

A: ITaskScheduler

B: IUnknown

C: IBelieve

113

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What COM interface can be called to create an enumeration object?What COM interface can be called to create an enumeration object?

A ITaskSchedulerA ITaskScheduler

B IUnknownB IUnknown

C IBelieveC IBelieve

114

Unit Review Questions
Q: What COM interface can be called to create an enumeration object?

A: ITaskScheduler

B: IUnknown

C: IBelieve

114

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

115

This module will look at how to gather information about the network and the target’s network configurations.

115

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

Our objectives for this module are:

Gather network information

Gather NIC configurations

116

Objectives
The objectives for this module are to determine how to gather any network information we can, as well as the
target’s NIC configurations.

116

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Network Information

What network is the target connected to?What network is the target connected to?

Most enterprise computers will have a NIC configured with an IPv6 and an IPv4
address. IPv6 will be there even if the organization does not officially support it. Some
computers could have dual NICs and be what can be called dual homed. A dual homed
system is connected to two different networks and offers a great pivot point into a
new environment.

117

Network Information
You might not be able to determine the purpose of a system just by gathering network information, but it
definitely helps out. If your tool has network sniffing capabilities, you might get more information that way.
Aside from sniffing packets, you can still gather some useful information. Perhaps one of the most interesting
pieces of information to find out is coming across a system that has multiple NICs and is being dual homed. A
dual homed system can be connected to two different networks at the same time. Some sysadmins have done
this thinking it acts as a security boundary and that the NICs are separate, but Windows does its best to treat
them as one. In a dual homed system, one NIC could be connected to the DMZ and the other could be
connected to the trusted, internal network, or the intranet. Dual homed systems are great targets for us and
other attackers because they could enable our movement throughout a network. Stuxnet would happily move
through a dual homed system, as did the slammer worm way back in 2003.

We cannot forget about VLANs. These Virtual Local Area Networks virtually combine endpoints into a single
broadcast domain, and it might be a good idea to look for that when you get on target. SEC660 discusses
VLAN hopping and could be something of interest for developers to understand.

117

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

NIC Information/Configuration

IP Helper header file offers many great APIs for us to use.IP Helper header file offers many great APIs for us to use.

GetIpStatisticsGetIpStatistics

IPHLPAPI_DLL_LINKAGE
ULONG
GetIpStatistics(
Out PMIB_IPSTATS Statistics

);

GetAdaptersAddresses(
In ULONG Family,
In ULONG Flags,
In PVOID Reserved,
Inout PIP_ADAPTER_ADDRESSES

AdapterAddresses,
Inout PULONG SizePointer

);

GetAdapterAddressesGetAdapterAddresses

118

NIC Information/Configuration
VMs are being used more and more these days in production and if you happen to get access to a VM in
production, you might see several NICs on it. Your survey tool should gather each NIC’s configuration.
PowerShell offers some useful cmdlets for this, like Get-NetAdapter, Get-NetAdapterHardwareInfo, and
more. The Windows command line offers utilities as well, like netstat, ipconfig, and others. Other interesting
information that could be gathered would be the statistics, something that is gathered by running netstat -e.
There are several ways to get all of this done, like using WMI or the IpHlpApi. While WMI can be useful, it is
not always the easiest to work with when there are Win32 APIs like GetIpStatistics. The IP Helper header file
offers many useful APIs for us, and we will take a look at some of them, like GetIpStatistics,
GetInterfaceInfo, GetAdapterAddresses, and GetNumberOfInterfaces.

118

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GetInterfaceInfo API

GetInterfaceInfo()GetInterfaceInfo()

Gets list of IPv4 enabled devicesGets list of IPv4 enabled devices

IPHLPAPI_DLL_LINKAGE
DWORD
GetInterfaceInfo(
Out PIP_INTERFACE_INFO pIfTable,
Inout PULONG dwOutBufLen

);

typedef struct _IP_INTERFACE_INFO {
LONG NumAdapters;
IP_ADAPTER_INDEX_MAP Adapter[1];

} IP_INTERFACE_INFO, *PIP_INTERFACE_INFO;
Has DWORD return typeHas DWORD return type

119

GetInterfaceInfo API
The GetInterfaceInfo function can be used to gather a list of interfaces on the target that have IPv4 enabled.
As you can see by the SAL annotations, the function has two parameters that are written to and one that is
read. We can break down the parameters to better understand them.

pIfTable, of type PIP_INTERFACE_INFO, is used as a buffer to hold the list of interfaces that have been
found. It is up to us as developers to allocate enough space in the buffer to hold this information. The structure
holding the information is the IP_INTERFACE_INFO structure, which has two members. The first one,
NumAdapters, holds the number of adapters that will be stored in the array. The second member is the
Adapter, which is the array of IP_ADAPTER_INDEX_MAP entries. Every structure here will be tied to an
index then tied to its corresponding name.

dwOutBufLen, of type PULONG, is a pointer to some DWORD variable that will be used to give the size of
the buffer to the function. If you notice, this parameter is inout. The out portion is for when the size is not large
enough to hold the data, the function will write to the variable the correct size needed. Then you can call this
function again with the correct size and it should work just fine.

A successful call would return NO_ERROR. Failed calls can return any one of the following error codes:
- ERROR_INSUFFICIENT_BUFFER: The buffer is not large enough and the correct size has been stored in

dwOutBufLen.
- ERROR_INVALID_PARAMETER: The dwOutBufLen is NULL or the function cannot write to the

variable.
- ERROR_NO_DATA: Could not find any network adapters.
- ERROR_NOT_SUPPORTED: The function is not supported for this version of OS.

119

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GetIpStatistics API

GetIpStatistics()GetIpStatistics()

Grabs the IP statistics for the
system
Grabs the IP statistics for the
system

IPHLPAPI_DLL_LINKAGE
ULONG
GetIpStatistics(
Out PMIB_IPSTATS Statistics
);

Has ULONG return typeHas ULONG return type

120

GetIpStatistics API
The GetIpStatistics function can help us recreate familiar Windows commands like netstat. The overall IP
statistics are captured and returned to the caller of this function. The function is not very complex and accepts
a single parameter: Statistics. The Statistics parameter is of type PMIB_IPSTATS, which is a struct that gets
filled out by the function so that it has a place to store the information for any IP statistics that are gathered,
hence the reason why the Statistics parameter is an out parameter. Upon success, the function will return
NO_ERROR. When the function fails, it can return the following error code:
ERROR_INVALID_PARAMTER for when the Statistics parameter is NULL or if the function is not able to
write to the pointer. The structure the function fills out is very large, but the next slide holds a snippet of some
of its members.

120

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

MIB_IPSTATS Struct

typedef struct _MIB_IPSTATS_LH {
[..SNIP..]
DWORD dwDefaultTTL;
DWORD dwInReceives;
DWORD dwInHdrErrors;
DWORD dwInAddrErrors;
DWORD dwForwDatagrams;
DWORD dwInUnknownProtos;
DWORD dwInDiscards;
DWORD dwInDelivers;
DWORD dwOutRequests;
DWORD dwRoutingDiscards;
DWORD dwOutDiscards;
DWORD dwOutNoRoutes;

[..SNIP..]
} MIB_IPSTATS_LH, *PMIB_IPSTATS_LH;

121

MIB_IPSTATS Struct
The MIB_IPSTATS structure is the structure that is filled out by the GetIpStatistics function. Some of the
structure members are very useful and some you might not even care about other than just being extra detailed
with information for the operator.

121

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GetAdapterAddresses API

GetAdapterAddresses()GetAdapterAddresses()

Grabs the addresses tied to the
adapters
Grabs the addresses tied to the
adapters

IPHLPAPI_DLL_LINKAGE
ULONG
GetAdaptersAddresses(
In ULONG Family,
In ULONG Flags,
In PVOID Reserved,
Inout PIP_ADAPTER_ADDRESSES
AdapterAddresses,
Inout PULONG SizePointer
);Has ULONG return typeHas ULONG return type

122

GetAdapterAddresses API
The GetAdapterAddresses can be used when you need to find out what adapters have what IP address. The
function is great because not only can it do IPv4, but it can do IPv6 as well. GetAdapterAddresses has several
in parameters and a few inout ones indicating that the function will be attempting to write to those variables.
Let us break down each one of these parameters to get a better understanding of what they are.

Family, of type ULONG, is used to indicate what address family the function should get. This can be
AF_INET (6), or AF_INET6 (23). The other interesting part is that you can specify both families at the same
time with AF_UNSPEC. AF_UNSPEC indicates that any adapter that has IPv4 or IPv6 enabled, should have
its information returned to the caller.

Flags, of type ULONG, is used to indicate what type of addresses to get. There is a long list of types that can
be used for this parameter, but a few options are the following: GAA_FLAG_INCLUDE_GATEWAYS,
GAA_FLAG_INCLUDE_ALL_INTERFACES, and quite a few more.

Reserved, of type PVOID, is reserved so we do not really care about it.

AdapterAddresses, of type PIP_ADAPTER_ADDRESSES, is a pointer to some variable that will act as the
buffer filled with a linked list of IP_ADAPTER_ADDRESSES structures. The structure is a massive structure,
and it is worth browsing to the MSDN documentation to completely understand it.

SizePointer, of type PULONG, is a pointer to the variable that stores the size of the buffer.

122

Technet24

Upon success, the function will return ERROR_SUCCESS. Should the function ever fail it will return one of
the following error codes:
- ERROR_ADDRESS_NOT_ASSOCIATED: An address has yet to be associated with the device.
- ERROR_BUFFER_OVERFLOW: The buffer size indicated is not large enough to hold the requested

information.
- ERROR_INVALID_PARAMETER: SizePointer is NULL, Family was not a valid family option.
- ERROR_NOT_ENOUGH_MEMORY: Literally not enough memory to complete the function.
- ERROR_NO_DATA: No addresses found.

123

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GetNumberOfInterfaces API

GetNumberOfInterfacesGetNumberOfInterfaces

Grabs the number of interfacesGrabs the number of interfaces

IPHLPAPI_DLL_LINKAGE
DWORD
GetNumberOfInterfaces(
Out PDWORD pdwNumIf
);

// example

DWORD dwCount = 0;
GetNumberOfInterfaces(&dwCount);

// error check

Has DWORD return typeHas DWORD return type

124

GetNumberOfInterfaces API
If you wanted to run something quick and easy, the GetNumberOfInterfaces function would be it. The only
parameter you need to worry about is an out parameter. The function will write to it the number of interfaces
that have been discovered on the local machine. The pdwNumIf parameter is of type PDWORD. All interfaces
should be enumerated by the function, including the system’s loopback adapter. If you do not care about the
loopback interface, then you do not need to use this function. Other functions like GetAdaptersInfo and
GetInterfaceInfo will not return information about the loopback interface. Also, the number returned might be
higher than what you might be expecting as it does not directly relate to physical NICs on the target. Logical
interfaces will be included in the count of interfaces, so if you were expecting to see 2 and got back something
like 18, that would be the reason why.

124

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

Discussed how to gather information about the networkDiscussed how to gather information about the network

Discussed how to gather NIC information about the targetDiscussed how to gather NIC information about the target

125

Module Summary
In this module, we discussed the why and how of gathering information about a target’s NIC configuration, as
well as any other information we can gather about the network overall. The information presented in this
module can be the foundations for creating tools like arp, ipconfig, netstat, etc.

125

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What API will give you an IP address for a network adapter?What API will give you an IP address for a network adapter?

A GetAdapterAddresses()A GetAdapterAddresses()

B GetNumberOfInterfaces()B GetNumberOfInterfaces()

C GetIpStatistics()C GetIpStatistics()

126

Unit Review Questions
Q: What API will give you an IP address for a network adapter?

A: GetAdapterAddresses()

B: GetNumberOfInterfaces()

C: GetIpStatistics()

126

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What API will give you an IP address for a network adapter?What API will give you an IP address for a network adapter?

A GetAdapterAddresses()A GetAdapterAddresses()

B GetNumberOfInterfaces()B GetNumberOfInterfaces()

C GetIpStatistics()C GetIpStatistics()

127

Unit Review Answers
Q: What API will give you an IP address for a network adapter?

A: GetAdapterAddresses()

B: GetNumberOfInterfaces()

C: GetIpStatistics()

127

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Questions

What API includes logical interfaces in its results?What API includes logical interfaces in its results?

A GetAdapterAddresses()A GetAdapterAddresses()

B GetNumberOfInterfaces()B GetNumberOfInterfaces()

C GetIpStatistics()C GetIpStatistics()

128

Unit Review Questions
Q: What API includes logical interfaces in its results?

A: GetAdapterAddresses()

B: GetNumberOfInterfaces()

C: GetIpStatistics()

128

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Unit Review Answers

What API includes logical interfaces in its results?What API includes logical interfaces in its results?

A GetAdapterAddresses()A GetAdapterAddresses()

B GetNumberOfInterfaces()B GetNumberOfInterfaces()

C GetIpStatistics()C GetIpStatistics()

129

Unit Review Questions
Q: What API includes logical interfaces in its results?

A: GetAdapterAddresses()

B: GetNumberOfInterfaces()

C: GetIpStatistics()

129

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

130

This module will discuss how to enumerate the Windows Registry to find critical information about the
system.

130

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

Our objectives for this module are:

Gather registry information

131

Objectives
The objectives for this module are to understand what information can be found in the registry.

131

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Information

Troves of informationTroves of information

The Windows Registry contains troves of information that can arguably be deemed
critical to your survey tool. The registry is so important that even the system itself
relies on information found in the registry.

132

Registry Information
The registry was discussed in tremendous detail during Section 1, along with the APIs needed to enumerate
practically everything in it. It is being included here during this day as a brief reminder that it should not be
forgotten about when conducting your survey. The registry is an excellent source for collecting information
from the target. Some sections you might not be able to query unless you have Administrator privileges or
higher, but even still, you can collect useful information as a basic user.

132

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (1)

The registry API family provides most functionality for registry interaction.The registry API family provides most functionality for registry interaction.

It is has become the go-to location for developers for storing application information.It is has become the go-to location for developers for storing application information.

The Registry is a collection of five hives where each one exposes information, some
critical to the functionality of the OS. The hives have keys, which then have subkeys
with values that applications or services might need to query.

133

The Registry (1)
If you are coming from a pure Linux world, the Registry could be quite foreign to you. The Registry is simply
a collection of five hives with each one exposing various pieces of information. In all reality, there are only
two true hives, HKEY_USERS and HKEY_LOCAL_MACHINE. If you fire up regedit.exe you would see
the five hives, but the other three hives are simply a combination of some of the data that can be found in the
two main hives. The hives have keys and subkeys that hold settings and configurations that can be specific to
users or to the machine. For 64-bit Windows, there will exist a 32-bit portion of the registry that will store
information specific for 32-bit applications installed on the system. There will be a virtual redirection for 32-
bit apps implemented by a mechanism called registry virtualization. The 64-bit apps see no such portion of the
Registry as there is no need for virtual redirection.

The Registry used to be the go-to location for developers to store information for the applications they would
develop. Now, Microsoft would like it if you left the Registry well enough alone so that processes internal to
Windows are the only ones interacting with it. There are other ways to store information for your application,
such as creating configuration files like INI, YAML, JSON, DAT, XML, etc. For this class and for our
purposes, we will not be listening to that recommendation.

133

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (2)

The Registry holds configuration data that is read during four critical times.The Registry holds configuration data that is read during four critical times.

Initial boot processInitial boot process Kernel boot processKernel boot process

Logon processLogon process Application startupApplication startup

These are not the only times that the registry is read. New application
installations trigger registry access and some applications constantly
poll the registry for changes for live updates.

These are not the only times that the registry is read. New application
installations trigger registry access and some applications constantly
poll the registry for changes for live updates.

134

The Registry (2)
The configuration data held in the Registry is typically read from at four critical times.

1. The initial boot process
2. The kernel boot process
3. The logon process
4. Application startup

The Boot Configuration Database (BCD) is stored in a registry hive and the boot loader must read the
configuration data to retrieve a list of boot device drivers to load into memory. Once that happens, the kernel
can start its initialization process. The kernel will load the appropriate device drivers and determine how some
managers like the process manager and memory manager configure themselves. All of this is a way to fine
tune how the computer will behave.

The logon process starts the per-user preferences. Explorer is one of many Windows components that must
read the per-user profiles to set up various items like desktop wallpaper, screen saver, where desktop icons are
placed, and what applications must be started. This is how each user on a local system can have different
setups/preferences for their environment.

When the applications are being loaded by the system loader, they will read some systemwide settings as well
as per-user preferences, like how the window layout is for an application like Word. If the user has a custom
toolbar layout for an application, then that needs to be read and prepared when the application starts. Also, the
most recently accessed documents will be retrieved and available to view.

New application installs are another moment when the registry is being read. The application will store various
information in certain keys that are specific to it. Some of that data might be easily readable, but some might
be obfuscated. Many AV products do this in an attempt to conceal some of their internal mechanisms, like
how they communicate with their cloud engine when a suspicious file needs to be analyzed. Also, some
applications can be overly aggressive with their registry access by polling for live changes made to its
configuration data. This is not a best practice as idle systems should not have a lot of registry activity.

134

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (3)

There are five predefined root keys the system uses.There are five predefined root keys the system uses.

HKEY_USERSHKEY_USERS HKEY_CLASSES_ROOT*HKEY_CLASSES_ROOT*

HKEY_CURRENT_USER*HKEY_CURRENT_USER* HKEY_LOCAL_MACHINEHKEY_LOCAL_MACHINE

HKEY_CURRENT_CONFIG*HKEY_CURRENT_CONFIG*

An * denotes the key is a link or a merged view of keys.An * denotes the key is a link or a merged view of keys.

135

The Registry (3)
You might have noticed that each root key starts with an H. This is because the root key names are Windows
handles (H) to keys (KEY); hence the name HKEY. The key names on the slide that are annotated with an
asterisk “*” are links to other keys or a combination of two keys to provide a unique view of information. Here
is a brief breakdown of the five root keys. For more detailed information, check out the Windows Internals
books in addition to MSDN online documentation.

HKEY_USERS: Each time a new user logs in to the system, a new hive, called the user profile hive, will be
created. Here, information about all system accounts is stored.

HKEY_CURRENT_USER: Data tied to the user who is currently logged on. This is a subkey under
HKEY_USERS.

HKEY_CLASSES_ROOT: File association and Component Object Model (COM) object registrations.

HKEY_LOCAL_MACHINE: Systemwide settings.

HKEY_CURRENT_CONFIG: The current hardware profile.

135

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (4)

Deep dive: HKEY_USER (HKU)Deep dive: HKEY_USER (HKU)

ProfilesDirectoryProfilesDirectory

The HKU key will hold a subkey (HKCU) for each user profile on the local system.
There is also a profile for the system that has its own subkey, HKU\.Default. Winlogon
uses the system profile to determine various settings like the desktop background.

ProfileListProfileList

136

The Registry (4)
The HKU key holds a wealth of user information. In fact, it holds user information for every user that has
logged on to the local machine, as long as the user does not have a roaming profile with Active Directory or
similar. Each user will have their own specific subkey—even the system has its own subkey located at
HKU\.Default. The system profile is used by the Winlogon process to read information like the desktop
background to show to the user when logging into their account. The user profiles are stored in a location
determined by the registry value held in HKLM\Software\Microsoft\Windows
NT\CurrentVersion\ProfileList\ProfilesDirectory. If the value has not been modified, the default is
%SystemDrive%\Users.

If you wanted to develop some kind of user enumeration tool, then a good place to enumerate a list of profiles
that exist on the system would be the ProfileList key. From there, the subkey name will be the Security
Identifier, or SID, of the account that is tied to it.

136

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (5)

Deep dive: HKEY_CURRENT_USER (HKCU)*Deep dive: HKEY_CURRENT_USER (HKCU)*

Created for each new loginCreated for each new login

This root key holds configuration information for the locally logged-on user regarding
software configuration information and user preferences. They key points to the user
profile, which is located at \Users\<username>\Ntuser.dat.

Subkey under HKUSubkey under HKU

Subkeys: console, software, control panel, identities, printers, keyboard layout, etc.Subkeys: console, software, control panel, identities, printers, keyboard layout, etc.

137

The Registry (5)
The HKCU key exists for each locally logged-on user. Each time a new user logs on, this key is created as a
subkey under HKU. User-specific information is stored in this key located at \Users\<username>\Ntuser.dat.
In addition, software configuration information is also stored in this key since different users might have
different preferences for how their applications are laid out. In addition to this, different users could also have
different user preferences that must be stored, and this is the perfect location to store that information. Also,
any service processes that kick off under the context of a specific user will trigger their specific HKCU to be
loaded.

There are several subkeys: AppEvents for sounds/events, Console for command window settings, Control
Panel for screen saver information, Software for user-specific software preferences, Printers for printer
connection settings, Keyboard layout for what country region layout should be (US or UK), or Identities for
Windows Mail account information. This is not all the subkeys found under HKCU and to list them all, you
can write an enumeration tool to gather that information.

137

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (6)

Deep dive: HKEY_CLASSES_ROOT (HKCR)*Deep dive: HKEY_CLASSES_ROOT (HKCR)*

HKCU\SOFTWARE\ClassesHKCU\SOFTWARE\Classes

This root key holds three types of information: file extension associations, COM class
registrations, and virtualized registry root for the UAC. Every registered file extension
will have its own key that is typically the REG_SZ value type. Sometimes they simply
point to another key that holds the needed information.

HKLM\SOFTWARE\ClassesHKLM\SOFTWARE\Classes

The combination of the above Classes keys make this root key.The combination of the above Classes keys make this root key.

138

The Registry (6)
This root key is not a genuine root key like HKU or HKLM, nor is it a link or subkey of another key. It is the
combination of two Classes keys: HKCU\SOFTWARE\Classes and HKLM\SOFTWARE\Classes. It might not
make sense to have separate locations for user and system registration, but users having roaming profiles that
are configured differently creates the need for that separation.

This key also holds information regarding file extensions and what applications they are associated with. Each
registered file extension will have its own key that is simply a link to another location. Of course, the location
and layout of the Registry greatly depends on what version of Windows you are running.

138

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (7)

Deep dive: HKEY_LOCAL_MACHINE (HKLM)Deep dive: HKEY_LOCAL_MACHINE (HKLM)

BCD: boot entriesBCD: boot entries

This root key holds vital information for the system. Some of the critical information
like how the system boots is stored here. Other information is stored here, like
systemwide software configurations, installed components, user passwords, and boot
entries to name a few.

SAM: account passwords SAM: account passwords

139

The Registry (7)
The HKLM key is the root key that holds all systemwide configuration subkeys.

• BCD00000000
• COMPONENTS
• HARDWARE
• SAM
• SECURITY
• SOFTWARE
• SYSTEM

BCD00000000 subkey is the Boot Configuration Data (BCD) information that is loaded as a registry hive.
BCD is the replacements for the boot.ini file and it adds greater capabilities. There can be any number of
entries in the BCD, like one for the Windows installation itself. The entries can be found in the subkey
Objects.

COMPONENETS subkey stores information regarding the Component Based Servicing (CBS) stack. The
Windows installation has various file and resources that make up the installation image. Depending on how
many components are installed, this subkey can become very large and so it is loaded and unloaded
dynamically, as necessary.

HARDWARE subkey holds information about the hardware in the system. This is read when the Device
Manager user application is started.

SAM subkey holds user passwords, any group definitions, and associated domains. Because of the sensitive
nature of the information stored in this subkey, the security descriptor does not even allow the Administrator
account to access it.

SECURITY subkey holds policies that are systemwide; in addition, User-rights are also stored in this subkey.

139

SOFTWARE subkey holds systemwide configuration information that is not critical for booting the computer.
Any third-party application installed on the system will also store their settings here.

SYSTEM subkey holds systemwide configuration information that is critical for booting the computer.
Changing information in this subkey can render your system useless and for such occasions, Windows stores a
last known good control set under this subkey. There, a lightweight copy of the subkey, called a maintenance
copy, lets admins choose a working control set they know was good.

140

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (8)

Deep dive: HKEY_CURRENT_CONFIG (HKCC)*Deep dive: HKEY_CURRENT_CONFIG (HKCC)*

This root key is nothing more than a link to the hardware profile that is stored in
HKLM: HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\Current. It's not prevalent
today but Windows keeps it around in the name of backwards compatibility.

141

The Registry (8)
The HKEY_CURRENT_CONFIG, or HKCC for short, root key is one of the three links to other root keys.
HKCC is formally linked to the HKLM root key and since this linked key points to whatever the current
hardware profile is, the root key path is: HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\Current.
Windows does not support hardware profiles anymore, but the key is still created all in the name of backwards
combability with legacy applications that depend on it being there.

141

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (9)

Deep dive: HKEY_PERFORMANCE_DATA (HKPD)Deep dive: HKEY_PERFORMANCE_DATA (HKPD)

RegQueryValueExRegQueryValueEx

This root key is unique because it cannot be accessed directly via the Registry Editor. It
must be accessed programmatically via the Registry APIs. In it you would find
performance counters either from system components or server applications.

Technically not stored hereTechnically not stored here

142

The Registry (9)
One might think that every registry key would be accessible for viewing via a tool like regedit.exe. Well, the
HKEY_PERFORMANCE_DATA key is not one of those keys that regedit.exe can view. If you want to poll
performance specific data, then you must do so using the appropriate Registry APIs like RegQueryValueEx.

Another interesting tidbit about this key is that the performance counter information is not actually
created/stored here but rather it comes from a provider. These performance data providers actually push the
values to the key. One could, as another option for querying this information, use the Performance Data Helper
API functions that are provided by the Pdh.dll, which would be the recommended choice to use.

142

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

The Registry (10)

Registry key values can be one of 12 types, but 3 are most common.Registry key values can be one of 12 types, but 3 are most common.

REG_DWORDREG_DWORD

Used for
numbers or
Boolean values

REG_BINARYREG_BINARY REG_SZREG_SZ

Can hold >32-bit
numbers or
encrypted
password; raw
data

Unicode or ANSI
strings like
names, files
names, paths,
types, etc.

143

The Registry (10)
A registry key’s value can hold several different types, 12 types to be exact. Despite the number of value
types, there are three that you are more likely to come across.

1. REG_DWORD
2. REG_BINARY
3. REG_SZ

If you remember from the Windows data types section earlier in this section, then the DWORD type should be
familiar to you. REG_DWORD can hold 32-bit numbers or Boolean values to represent on/off or
enabled/disabled flags.

REG_BINARY, as the name suggests, store raw binary information like encrypted passwords. It can also be
used to store numbers that are larger than 32-bits.

The last of the common three types is REG_SZ. This is used to hold a string that has a null terminator. Perhaps
the SZ means String Zero indicating String\0.

143

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Keys and Values (1)

RegOpenKeyExRegOpenKeyEx

Return value is LSTATUSReturn value is LSTATUS

//declared in Winreg.h

LSTATUS RegOpenKeyExW(
In HKEY hKey,
_In_opt_ LPWCSTR lpSubkey,
_In_opt_ DWORD ulOptions,
In REGSAM samDesired,
Out PHKEY phkResult
);

Used to open a handle to
a Registry key
Used to open a handle to
a Registry key

144

Registry Keys and Values (1)
First and foremost, look at the function’s return type: LSTATUS is a 32-bit signed integer, and any errors will
be returned. The error code can be looked up using FormatMessage function passing in the
FORMAT_MESSAGE_FROM_SYSTEM flag for a description of the error. No need to call GetLastError
with NSTATUS return values. Let’s break down the parameters in detail.

hKey requires an open handle to an open registry key. If there is no handle opened yet, then one of the
predefined keys can be passed: HKEY_CLASSES_ROOT, HKEY_CURRENT_CONFIG,
HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, HKEY_USERS.

lpSubkey needs a pointer to the name of the registry subkey to open. Case sensitivity is ignored here. Because
the SAL annotation contains the _opt_ suffix, the pointer is optional; nullptr. It is important to note that NULL
can only be passed here if hKey is passed one of the predefined keys.

ulOptions should just pass NULL here. If not null, then certain options are to be applied when open the key.
The only option noted by MSDN documentation is REG_OPTION_OPEN_LINK, meaning the key is simply a
symbolic link.

samDesired is a mask indicating the desired access to the key.

phkResult, as annotated by the annotation _Out_, should be a pointer to a variable that will hold the handle to
the opened key.

144

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: RegOpenKeyEx

INT main(VOID)
{

HKEY hHKCU = HKEY();
RegOpenKeyExW(HKEY_CURRENT_USER, L”Console”, NULL, KEY_READ, &hHKCU);

}

145

Example: RegOpenKeyEx
The example here initializes a variable of type HKEY that will be used to store the handle that the function
gives upon success. Just like the function declares, the last parameter must be the address of the variable.
Afterall, it is an _Out_ parameter so the user is responsible for making that available for the function to use.

The function doesn’t “return” a handle because this function returns an LSTATUS value that could be used to
determine why it may have failed.

Error handling is left out for brevity.

145

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Keys and Values (2)

RegQueryValueExRegQueryValueEx

Return value is LSTATUSReturn value is LSTATUS

//declared in Winreg.h

LSTATUS RegQueryValueExW(
In HKEY hKey,
_In_opt_ LPCWSTR lpValueName,
Reserved LPDWORD lpReserved,
_Out_opt_ LPDWORD lpType,
Out LPBYTE lpData,
_Inout_opt_ LPDWORD lpcbData
);Used to read the type and

data of a Registry key
value

Used to read the type and
data of a Registry key
value

146

Registry Keys and Values (2)
Again, we have an LSTATUS return type, so the error code can be looked up using FormatMessage function
passing in the FORMAT_MESSAGE_FROM_SYSTEM flag for a description of the error. Let’s understand
the function’s parameters in detail.

hKey is a handle to a key, just like in the RegOpenKey function.

lpValueName is a pointer to the string holding the name of the registry value. Passing NULL or “” will make
the function grab the type and data for the key’s default or unnamed value. If the lpValueName cannot be
found, or it does not exist, the function will return ERROR_FILE_NOT_FOUND.

lpReserved must be NULL since it is reserved for internal purposes only.

lpType is a pointer to a variable that will hold a code that indicates the type of data being stored in the
mentioned value. MSDN documents the possible types that are acceptable to pass here, but some are
REG_BINARY, REG_DWORD, and REG_SZ.

lpData is a pointer to a buffer that will hold the value’s data. If there is no requirement for data, then simply
pass NULL here. This buffer can be too small to accept the data and if that is the case, the function will return
ERROR_MORE_DATA.

lpcbData is a pointer to a variable that indicates the buffer size in bytes pointed to by lpData. Upon return, the
variable will hold the size of the copied data. lpcbData is allowed to be NULL but only when lpData is also
NULL.

146

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

INT main(VOID)
{

HKEY hHKCU = HKEY();
DWORD dwType = 0;
DWORD dwSize = 0;

RegOpenKeyExW(HKEY_CURRENT_USER, L”Console”, NULL, KEY_READ, &dwSize);
auto Value = std::make_unique<BYTE[]>(dwSize);
ReqQueryValueExW(hHKCU, L”FaceName”, NULL, &dwType, Value.get(), &dwSize);

// do something with the queried value ...

RegCloseKey(hHKCU);

return ERROR_SUCCESS;
}

Example: RegQueryValueEx

147

Example: RegQueryValueEx
The example here builds from the first snippet on the previous slide showing RegOpenKeyExW where the
handle to the key was obtained. That key handle is needed for future calls that are specific to that key.
RegQueryValueExW accepts that key handle as its first parameter. You might question the need for
consecutive calls to RegQueryValueExW and the reason for this is because at first, we do not know the size of
the data being held in the FaceName key. To determine the proper size needed, the function allows us to pass
in NULL for the lpData parameter and a non-NULL value for the lpcbData parameter. When the function does
its parameter checking, it will see this and store the size of the data, in bytes, in the variable pointed to by
lpcbData. In our case that would be size. Before we get to the second call, we take the size of the data and use
that to create a byte buffer using make_unique. Here, I am calling that value since it will hold the key’s value
when done.

Fully equipped with the information needed, the second call can be made. A buffer can now be passed into the
lpData parameter, and the size of that buffer can be passed into the lpcbData parameter.

Error handling is left out for brevity.

147

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Walking the Registry (1)

RegEnumKeyExRegEnumKeyEx

Return value is LSTATUSReturn value is LSTATUS

//declared in Winreg.h

LSTATUS RegEnumKeyEx(
In HKEY hKey,
In DWORD dwIndex,
Out LPTSTR lpName,
Inout LPDWORD lpcchName,
Reserved LPDWORD lpReserved,
Out LPTSTR lpClass,
_Inout_opt_ LPDWORD lpcchClass,
_Out_opt_ PFILETIME lpftLastWriteTime
);

Used to enumerate
subkeys under a specific
key

Used to enumerate
subkeys under a specific
key

148

Walking the Registry (1)
Again, we have an LSTATUS return type, so the error code can be looked up using FormatMessage function
passing in the FORMAT_MESSAGE_FROM_SYSTEM flag for a description of the error. This function is
great for enumerating a particular key’s subkeys. Let’s break down the function’s parameters.

hKey is a handle to a key, just like in the RegOpenKey function, but this time the handle must have been open
with the KEY_ENUMERATE_SUB_KEYS access mask or you will be denied access when you make this
call.

dwIndex will be used to keep track of loop iterations. Starting with a value of 0, we can increment this value
each iteration until we get a return value of ERROR_NO_MORE_ITEMS.

lpName is just the simple key’s name and not the root key name. If the buffer for this parameter is not large
enough to hold the key’s name, then the function will fail with ERROR_MORE_DATA. If this happens, don’t
expect lpName to have anything in it, it should be NULL.

lpcchName is the size of the lpName and should be set to the maximum number of characters that a buffer can
hold. This includes the NULL byte. The function will modify this value to reflect the correct number of
characters written, but not include the NULL byte. FYI, the max key name length is 255.

That is the bulk of the function. If a developer wished, they could grab the class name, hardly ever used or
needed, along with the last time the key was modified. The latter part could be interesting if you are looking
for something in particular.

148

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Walking the Registry (2)

RegEnumValueRegEnumValue

Return value is LSTATUSReturn value is LSTATUS

//declared in Winreg.h

WINADVAPI
LSTATUS
APIENTRY
RegEnumValueW(

In HKEY hKey,
In DWORD dwIndex,
_Out_writes_to_opt_(*lpcchValueName,*lpcchValueName +

1) LPWSTR lpValueName,
Inout LPDWORD lpcchValueName,
Reserved LPDWORD lpReserved,
_Out_opt_ LPDWORD lpType,
_Out_writes_bytes_to_opt_(*lpcbData, *lpcbData)

__out_data_source(REGISTRY) LPBYTE lpData,
_Inout_opt_ LPDWORD lpcbData
);

Used to enumerate a key’s
value
Used to enumerate a key’s
value

149

Walking the Registry (2)
Again, we have an LSTATUS return type, so the error code can be looked up using FormatMessage function
passing in the FORMAT_MESSAGE_FROM_SYSTEM flag for a description of the error.

Another observation you may have had is the addition of two SAL annotations that are describing the function.
WINADVAPI is defined as DECLSPEC_IMPORT, which is defined as __declspec(dllimport). The
APIENTRY type is one we have seen before earlier today. To refresh your memory, it’s defined as WINAPI,
which is defined as __stdcall. Now let’s understand a few of the function’s parameters in detail.

hKey is one we've talked about enough.

dwIndex is new and is used when doing a for loop while iterating over the values. When the function returns
ERROR_NO_MORE_ITEMS, you can break out of the loop and continue.

Just like RegEnumKeyEx, the buffers that you make for holding the ValueName and Data need to be large
enough. If you want, you could initialize them to the values that are returned from the RegQueryInfoKey
function described on the next slide.

lpType doesn’t need to be described again. lpData will hold the values and lpcbData is the size of it—again,
just like the other functions mentioned already.

If you run into any issues using this function, like getting ERROR_ACCESS_DENIED, then you should
check the permissions you requested when you opened the handle to the root key. You might need
KEY_QUERY_VALUE to have success.

149

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: RegEnumValue

150

Example: RegEnumValue
The example here shows the function being used in a loop with the index variable being used as the loop
iterator value, or counter. The key handle is passed followed by the dwIndex value, which is an index of the
value that is to be retrieved. It is a good idea to have this value be NULL on the first iteration. Incrementing
the value is fine for subsequent calls. The name of the key will be stored in the keyName buffer for the
lpValueName parameter.

The lpcchValueName parameter, upon return, will hold the character count stored in the buffer. Note, the
count does not take into account the NULL terminating character, so you need to do that in your program.
lpReserved is NULL followed by the address of the variable to hold the type of data being stored. The lpData
parameter was passed the address to the keyValue buffer that will be used to store the key’s value. The
lpcbData parameter is the size of the buffer but then after the function returns, will indicate the number of
bytes written to the buffer.

The loop will continue until the function indicates there are no more items by returned the
ERROR_NO_MORE_ITEMS error code.

The comments are provided for easy reference with the parameter names.

Error handling is left out for brevity.

150

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Walking the Registry (3)

RegQueryInfoKeyRegQueryInfoKey

Return value is LSTATUSReturn value is LSTATUS

//declared in Winreg.h

LSTATUS
RegQueryInfoKeyW(

In HKEY hKey,
_Out_writes_to_opt_(*lpcchClass,*lpcchClass + 1)

LPWSTR lpClass,
_Inout_opt_ LPDWORD lpcchClass,
Reserved LPDWORD lpReserved,
_Out_opt_ LPDWORD lpcSubKeys,
_Out_opt_ LPDWORD lpcbMaxSubKeyLen,
_Out_opt_ LPDWORD lpcbMaxClassLen,
_Out_opt_ LPDWORD lpcValues,
_Out_opt_ LPDWORD lpcbMaxValueNameLen,
_Out_opt_ LPDWORD lpcbMaxValueLen,
_Out_opt_ LPDWORD lpcbSecurityDescriptor,
_Out_opt_ PFILETIME lpftLastWriteTime
);

Used to gather detailed
information about a key
Used to gather detailed
information about a key

151

Walking the Registry (3)
This RegQueryInfoKey API has many parameters to understand. It might look like a complex function, but it’s
not that difficult to use compared to some of the others we have discussed today. Looking at the data types for
the parameters you can see that most of them are LPDWORD, which are simply DWORD*. Almost all of
them are optional too, so that makes it nice to use. Depending on your needs, you could make the API call like
this:

RegQueryInfoKeyW(hKey, NULL, NULL, NULL, &nKeys, NULL, NULL, &nValues,
&nMaxValNameLen, &nMaxValSize, NULL, NULL)

That small example has seven NULL parameters, leaving just five parameters for you to prep for use. Now we
can look at some of the parameters.

lpcSubKeys will hold the number of subkeys, if any, that are found to be under the queried key.

lpcValues will hold the number of—you guessed it—values that are found under the subkey. If you do not care
about this, then just pass NULL here. It is optional after all.

lpcbMaxValueNameLen will hold the size of the key’s longest value name, but it does not consider the NULL
terminating byte, so your code will have to account for that one.

lpcbMaxValueLen will hold the size of the longest data component in bytes.

For failures, unlike previous functions, the function will return a system error code that is defined in
WinError.h header file. You could also browse to the following URL for easy lookups:
https://docs.microsoft.com/en-us/windows/win32/debug/system-error-codes.

151

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Example: RegQueryInfoKey

152

Example: RegQueryInfoKey
The example here shows how RegQueryInfoKey could be called. A standard handle to a key is given followed
by three NULL values: lpClass, lpcClass, and lpReserved. Next, the address of the cSubKeys variable is passed
so the function can write the number of subkeys contained by that key. Next, the address of the cbMaxSubKey
variable is passed so the function can write the size of the key with the longest name, minus the NULL
terminating character of course. Next, the address of the cbMaxClass variable is passed to receive the size of
the longest string for a subkey class. The address of the cValues variable will hold the count of values a key
might have. The address of the cbMaxValueName variable will hold the size of the key’s longest value name.
The address of the cbMaxValueLen variable will hold the byte count of the size of the longest data component.
The address of the cbSecurityDescriptor variable will hold the size of the key’s security descriptor. The last
one is the address of the modified variable that is a FILETIME structure to hold the last write time.

The comments indicating the parameter names are left out for you to fill them in later.

Error handling is left out for brevity.

152

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Watch Dogs (1)

You can be notified about changes in the Registry.You can be notified about changes in the Registry.

Don’t poll too oftenDon’t poll too often

Perhaps it might be necessary for your code to be notified as soon as a change in the
Registry happens. Maybe you want to know if an antivirus product was just installed
after your implant was dropped. There could be several reasons you determine.

Choose your triggerChoose your trigger

153

Registry Watch Dogs (1)
At times, it might serve your program well to be notified when certain changes happen in the Registry. As
mentioned earlier, third party developers are being recommended to move away from storing items in the
Registry, but it still happens. Malware is still using the Registry too, and your implants might as well as you
develop them.

From an offensive perspective, you might want to watch certain existing keys for modification. Perhaps your
own program creates a few keys and then sets up a watch dog to ensure keys aren’t deleted. You also might
want to check a certain key’s value to see if your tool needs to delete itself or take some other action. It’s up to
you since you are the developer.

Taking a defensive and different angle, perhaps you drop your tool on a target that doesn’t have any AV
products just yet, but later the user installs one that creates a few registry keys. You might want to know this,
so it doesn’t alert the user to your implant. Seeing that a new key was created gives you the situational
awareness you might need for your survival.

Typically, applications don’t need to poll the Registry too often. The RegNotifyChangeKey is perfect for
notifications. As mentioned earlier, an idle system shouldn’t have any registry interaction. You can be too
aggressive with polling for changes and there’s just no need for that. Repetitive access to the same keys and or
values could tip your hand to the user or Admin.

All of this is great and all, but one major drawback to this function is that it doesn’t show you exactly what
changed, only that a change has occurred. It is up to you to determine the finer details. Thankfully, there is
alternative that will be discussed later in the course.

153

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Watch Dogs (2)

RegNotifyChangeKeyValueRegNotifyChangeKeyValue

Return value is LSTATUSReturn value is LSTATUS

// defined in winreg.h

WINADVAPI
LSTATUS
APIENTRY
RegNotifyChangeKeyValue(
In HKEY hKey,
In BOOL bWatchSubtree,
In DWORD dwNotifyFilter,
_In_opt_ HANDLE hEvent,
In BOOL fAsynchronous
);

Used to be notified when specific
changes happen
Used to be notified when specific
changes happen

154

Registry Watch Dogs (2)
hKey is the key to be watched and the handle should have the REG_NOTIFY access mask when the handle is
being obtained.

bWatchSubtree is a simple Boolean flag to indicate if just the one specified key should be watched (FALSE)
or if the entire tree of keys under it need to be watched (TRUE).

dwNotifyFilter specifies the filter that triggers the notification to the caller. There are several to choose from,
like watching for name changes. You can also combine flags to suit your needs using the pipe ‘|’ or the OR
operation. The filters are discussed in greater detail on the next slide.

hEvent is just a handle to an event. Depending on if the fAsynchronous flag is set, the function will return
straight away, and the change is reported by the event being signaled. If it is not set, then the function will not
return until some change takes place.

fAsynchronous is a flag to indicate when the function should return and signal an event. If it is set, TRUE, the
function returns immediately and signals the specified event. If FALSE, the function waits until a change is
made.

The function will return ERROR_SUCCESS upon success and will return a nonzero value upon failure. The
code can be queried using FormatMessage if desired.

One last note about this function: it will only wait and watch for a single change. When that change happens, it
has done its job, so if you want to keep being notified of changes then you must call the function again.
Perhaps infinite loops in a new thread could serve well in your program.

154

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Registry Watch Dogs (3)

There are several REG_NOTIFY_CHANGE_* filters that could trigger a
change to be reported.
There are several REG_NOTIFY_CHANGE_* filters that could trigger a
change to be reported.

NAMENAME

Notifies
caller if
subkey is
created or
deleted

ATTRIBUTESATTRIBUTES LAST_SETLAST_SET

Notifies
caller if
attributes
change

Notifies caller
of value
changes.
Includes
creating,
deleting,
modifying.

SECURITYSECURITY

Notifies
caller if
security
descriptor
changes

Thread
agnostic
Thread
agnostic

Notification
is not tied to
the calling
thread

155

Registry Watch Dogs (3)
REG_NOTIFY_CHANGE_NAME if specified, will alert the caller that a subkey has been added or deleted.

REG_NOTIFY_CHANGE_ATTRIBUTES filter will notify the caller if the key’s attributes have changed.
One of the attributes that could change is the security descriptor information.

REG_NOTIFY_CHANGE_LAST_SET filter will notify the caller if the value of the key has changed.
Adding, deleting, and even modifying an existing key’s value will trigger the alert.

REG_NOTIFY_CHANGE_SECURITY filter will notify the caller if the security descriptor of the key
changes.

REG_NOTIFY_THREAD_AGNOSTIC removes the notification tie to the thread that called the function. This
is great for when you want to spin up a new thread for the registration. Also, if that thread terminates, the
registration won’t die with it because the lifetime of the registration is not directly tied to the lifetime of the
calling thread.

155

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

Discussed the registry and information found within it.Discussed the registry and information found within it.

156

Module Summary
In this module, we discussed what the registry is, many of the keys, and some of the information that can be
found within the registry.

156

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Gathering Operating System Information

Lab 2.1: OS Info

Service Packs/Hotfixes/Patches

Process Enumeration

Lab 2.2: ProcEnum

Lab 2.3 CreateToolhelp

Lab 2.4 WTSEnum

Installed Software

Directory Walks

Lab 2.5: FileFinder

User Information

Services and Tasks

Network Information

Registry Information

Bootcamp

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

157

This is your time to go back and complete previous labs or move forward and complete the bootcamp
challenges.

157

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Bootcamp

OS InfoOS Info

Make your own ipconfig, arp, or netstat, and a custom shellMake your own ipconfig, arp, or netstat, and a custom shell

Complete survey toolComplete survey tool

158

Bootcamp
The bootcamp challenges will have varying degrees of difficulty. OS Info brings back something you already
learned but also tosses in some new items to see how well you can look at MSDN documentation to learn how
to implement new APIs you have not seen before.

The second challenge is to recreate one of the following utilities: ipconfig, arp, or netstat. If you have time,
then you can complete all three.

The last challenge is to complete a thorough host survey tool (CustomShell) that would enumerate all of the
information that was discussed today. In addition, combine what was learned during Section 1 and create a log
file that stores the enumerated system information.

158

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

OS Info

Obtain complete information about your target.

Use the following APIs:

GetProductInfoGetProductInfo GetWindowsDirectoryGetWindowsDirectory

GetComputerNameGetComputerName GetNativeSystemInfoGetNativeSystemInfo

BONUS: KUSER_SHARED_DATABONUS: KUSER_SHARED_DATA

159

OS Info
This bootcamp challenge is about leveraging a familiar API that you learned about earlier to gather some
information about your target. The real challenge comes in with the introduction of several new APIs that can
be called to help gather system information. You will have to teach yourself how to use these ones. As a
bonus, if you finish the challenge and want to take on another challenge, get as much information as you can
from the KUSER_SHARED_DATA struct that is available in almost every single user mode process. You can
have all of the output print out to the terminal window to make it easier for testing and debugging. When it is
all said and done, you can create a log file with all of the information in it.

Have fun!

159

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Course Roadmap
Lab 2.6: Ipconfig

Lab 2.7: Arp

Lab 2.8: Netstat

Lab 2.9: ShadowCraft

S e c t i o n 2

• Windows Tool Development

• Getting to Know Your Target

• Operational Actions

• Persistence: Die Another Day

• Enhancing Your Implant:
Shellcode, Evasion, and C2

• Capture the Flag Challenge

160

This is your time to go back and complete previous labs or move forward and complete the bootcamp
challenges.

160

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Lab 2.6: Ipconfig

Create your own version of ipconfig

161

Can add optional arguments

Can make it fancy with colored output

Lab 2.6: Ipconfig
Please refer to the eWorkbook for the details of this bootcamp challenge.

161

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Lab 2.7: Arp

Create your own version of arp.

162

Implement arguments like –a and –n.

Lab 2.7: Arp
Please refer to the eWorkbook for the details of this bootcamp challenge.

162

Technet24

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Lab 2.8: Netstat

Create your own version of netstat.

163

Implement arguments like –a, –n, and –t.

Lab 2.8: Netstat
Please refer to the eWorkbook for the details of this bootcamp challenge.

163

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Lab 2.9: ShadowCraft

Create a basic shell.

Implement features covered in this section.

Implement thorough error checking.

164

Lab 2.9: ShadowCraft
Please refer to the eWorkbook for the details of this bootcamp challenge.

164

Technet24

