SEC670 | RED TEAMING TOOLS: DEVELOPING WINDOWS IMPLANTS, SHELLCODE,
COMMAND AND CONTROL

670.3

Operational Actions

GIAC

CERTIFICATIONS

MNS

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

© 2024 Jonathan Reiter. All rights reserved to Jonathan Reiter and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT ("CLA") CAREFULLY
BEFORE USING ANY OF THE COURSEWARE (DEFINED BELOW) ASSOCIATED WITH THE SANS INSTITUTE COURSE.
THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND THE ESCAL INSTITUTE OF
ADVANCED TECHNOLOGIES, INC. /DBA SANS INSTITUTE (“SANS INSTITUTE”) FOR THE COURSEWARE. BY
ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware subject to the
terms of this CLA. Courseware means all printed materials, including course books and lab workbooks, slides or notes, as well
as any digital or other media, audio and video recordings, virtual machines, software, technology, or data sets distributed by
SANS Institute to User for use in the SANS Institute course associated with the Courseware. User agrees that the CLA is the
complete and exclusive statement of agreement between SANS Institute and User and that this CLA supersedes any oral or
written proposal, agreement or other communication relating to the subject matter of this CLA.

BY ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA. USER FURTHER
AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT
INJURY TO SANS INSTITUTE, AND THAT SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION
(WITHOUT THE NECESSITY OF POSTING BOND), SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree to the terms of this CLA, User should not access the Courseware. User may return the Courseware to
SANS Institute for a refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon all or any portion
of the Courseware, in any medium, whether printed, electronic or otherwise, for any purpose, without the express prior written
consent of SANS Institute. User may not sell, rent, lease, trade, share, or otherwise transfer the Courseware in any way,
shape, or form to any person or entity without the express written consent of SANS Institute. Additionally, User may not
upload, submit, or otherwise transmit Courseware to any artificial intelligence system, platform, or service for any purpose,
regardless of whether the intended use is commercial, educational, or personal, without the express written consent of SANS
Institute. User agrees that the failure to abide by this provision would cause irreparable harm to SANS Institute that is
impossible to quantify. User therefore agrees to a base liquidated damages amount of $5000.00 USD per item of Courseware
infringed upon or fraction thereof. In addition, the base liquidated damages amount shall be doubled for any Courseware less
than a year old as a reasonable estimation of the anticipated or actual harm caused by User’s breach of the CLA. Both parties
acknowledge and agree that the stipulated amount of liquidated damages is not intended as a penalty, but as a reasonable
estimate of damages suffered by SANS Institute due to User’s breach of the CLA.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be deemed to be severable
from this CLA and shall not affect the remainder thereof. A written amendment or addendum to this CLA that is executed by
SANS Institute and User may accompany this Courseware.

SANS Institute may suspend and/or terminate User’s access to and require immediate return of any Courseware in connection
with any (i) material breaches or material violation of this CLA or general terms and conditions of use agreed to by User, (ii)
technical or security issues or problems caused by User that materially impact the business operations of SANS Institute or
other SANS Institute customers, or (iii) requests by law enforcement or government agencies.

SANS Institute acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs presented in
this Courseware are the sole property of their respective trademark/registered/copyright owners, including:

The Apple® logo and any names of Apple products displayed or discussed in this book are registered trademarks of Apple,
Inc.

PMP® and PMBOK® are registered trademarks of PMI.
SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

VMware Workstation Pro®, VMWare Workstation Player®, VMWare Fusion®, and VMware Fusion Pro® are registered
trademarks of VMware, Inc. Used with permission.

Governing Law: This CLA shall be governed by the laws of the State of Maryland, USA.

Courseware licensed to User under this CLA may be subject to export laws and regulations of the United States of America
and other jurisdictions. User warrants he or she is not listed (i) on any sanction programs list maintained by the U.S. Office of
Foreign Assets Control within the U.S. Treasury Department (“OFAC”), or (ii) denied party list maintained by the U.S. Bureau
of Industry and Security within the U.S. Department of Commerce (“BIS”). User agrees to not allow access to any Courseware
to any person or entity in a U.S. embargoed country or in violation of a U.S. export control law or regulation. User agrees to
cooperate with SANS Institute as necessary for SANS Institute to comply with export requirements and recordkeeping required
by OFAC, BIS or other governmental agency.

All reference links are operational in the browser-based delivery of the electronic workbook.
SEC670_3_J01_03

Technet24

Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

SANS | Operational Actions

© 2024 Jonathan Reiter | All Rights Reserved | Version JOI_03

Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control: 670.3
Welcome to Section 3 of SEC670. This section is all about what you could do locally against the target. Let’s
get started.

© 2024 Jonathan Reiter 1

Table of Contents (1) Page

PE Format 4
.. Lab 3|Get|:unct,onAddress .. 26 ..
Th,.eads .. 33
.. |nlect,ons ... 49 .
.. Lab 32c|ass ,cDLun]ect,on ... 55 ..
.. Lab 33APC |ncept ,on ... 60 ..
.. Lab 34Thread|_|,] ;C.k.e.r ... 66 ..
.. Esca|at,°ns .. él. ..
.. Lab 35TokenTh|ef ... |00 ..
.. BOOtcamP .. |33 ..
.. Lab 3 6 SOYOU Thm k You Can Type ... |40 ..

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 2

This page intentionally left blank.

2 © 2024 Jonathan Reiter

Technet24

Lab 3.7: UACBypass-Research 141
Lab 3.8: ShadowCraft 142
SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 3

This page intentionally left blank.

© 2024 Jonathan Reiter 3

PE Format
Course Roadmap Lab 3.1: GetFunctionAddress
. Threads
» Windows Tool Development Injections
* Getting to Know Your Target Lab 3.2: ClassicDLLInjection
o Operational Actions Lab 3.3: APClnjection
« Persistence: Die Another Day Lab 34: ThreadHijacker
. Escalations
* Enhancing Your Implant: T E——
Shellcode, Evasion, and C2
Bootcamp
¢ Capture the Flag Challenge Lab 3.6: So, You Think You Can Type
Lab 3.7: UACBypass-Research
Lab 3.8: ShadowCraft

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 4

PE Format

In this module, we will discuss in detail the format of PE files. Knowing the structure of various headers is
vital for carrying out a few injection methods, as well as retrieving other information to leverage like walking
exported functions.

4 © 2024 Jonathan Reiter

Technet24

Our objectives for this module are:

I Tear into the PE format
I Use winnt.h as a guide

I Build a lightweight PE parser

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 5

Objectives

The objectives for this module are to tear into the anatomy of a PE file using the winnt header file as a guide.
At the end, you will be armed with enough knowledge that you should be able to build a lightweight PE file
parser.

© 2024 Jonathan Reiter 5

I Portable executable: the format is architecture agnostic

PE files, or executables, are complex in design due to the many structures that are
involved under the hood.

I Executable images (PE) I Object files (COFF)

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 6

PE Format

The internal structure of a PE file is very complex, even if you are using the MSDN documentation as a guide
to go through it. There are several structures that you will need to understand and most, if not all of them are
defined in the winnt.h header file. There is some very important information that is held in some of the struct
fields, like what type of application it is (GUI or console), what architecture is it supposed to execute on, what
functions are being imported, if any, and what functions are being exported, if any. When an image is in the
process of being loaded into memory by the system loader, the system loader will parse every inch of the PE
format to ensure the image is properly loaded into memory.

According to the MSDN page for PE Format, it will take you 127 minutes to read everything they have
documented. To truly grasp everything documented and implement a highly detailed parser, it could perhaps
take a week if it were your full-time job. For this reason, we will only be creating a lightweight parser for the
lab at the end of this module.

6 © 2024 Jonathan Reiter

Technet24

Basic Terminology

I Some basic terminology that will show itself repeatedly

I Reserved I RVA I Section I VA
Ay R i Relative virtual A small unit, or Virtual address:
are marked address of an

“reserved” must
be 0

address: the
address of an
item subtracted
from the image
base address

chunk, of
code/data within
the image. There
can be several
sections.

item within the
virtual address
space but not
subtracted from

image base

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 7

Basic Terminology

Whether you are browsing MSDN pages or blog posts related to the PE format, there are several terms that
will show up repeatedly, so it is good to know them by heart. First up is Reserved. There are many structures
that Windows will refer to as opaque, meaning they will not provide the full definition of a structure. Because
of this, there might be several fields in a structure that are labeled Reserved. It is best to leave those alone
unless you are absolutely certain you know what you are doing. Next, is RVA, which is the acronym for
relative virtual address. This one should not be new to you because it was discussed in detail during Section 1
when we covered DLLs. However, it is relevant here as well, so it is provided for completeness. Next is
Section, or a small segment of code or data within the image. Some of you might already be familiar with
some of the section names like TEXT, DATA, BSS, PDATA, etc. In theory, there is no limit to the number of
sections that a PE can have. The sections can be named anything a developer would like as the system loader
could care less about section names. If you are in the field for long enough, you will come across this at some
point. The last one worth mentioning is VA, or virtual address. The Virtual address is the address as it looks in
memory, contained within the confines of the image’s (now process) virtual address space.

© 2024 Jonathan Reiter 7

Bird’s Eye View

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Bird’s Eye View

If you were to look at the PE format from a bird’s eye view, this is what it might look like. This is straight
from the MSDN page for the PE format but represented in a graphic to make it more digestible. The first item
is the infamous EXE header that is marked with “MZ”, which are the initials for the person who was a primary
developer for MS-DOS, Mark Zbikowski. The more important item in that header is how to get to the PE
header. The other major players here are the DOS stub, and PE header, and the next several slides will go into
each one of these sections and break them down in more detail.

© 2024 Jonathan Reiter

8

Technet24

MS-DOS 2.0 EXE Header

typedef struct _IMAGE_DOS_HEADER {

WORD [ETERS; /1

WORD e_cblp; // 02: Bytes on last page of file

WORD e_cp; // 04: Pages in file

WORD e_crlc; // 06: Relocations

WORD e_cparhdr; // 08: Size of header in paragraphs

WORD e_minalloc; // ©@a: Minimum extra paragraphs needed

WORD e_maxalloc; // @c: Maximum extra paragraphs needed

WORD e_ss; // @e: Initial (relative) Stack Segment value
WORD e_sp; // 10: Initial Stack Pointer value

WORD e_csum; // 12: Checksum

WORD e_ip; // 14: Initial Instruction Pointer value

WORD e_cs; // 16: Initial (relative) Code Segment value
WORD e_lfarlc; // 18: File address for the relocation table
WORD e_ovno; // 1a: Overlay number

WORD e_res[4]; // 1c: Reserved

WORD e_oemid; // 24: OEM identifier

WORD e_oeminfo; // 26: OEM information

WORD e_res2[10]; // 28: Reserved

DWORD FNEETEY; /7

} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

SAN.S SEC670 | Red Teaming Tools: Developing Vindows Implants, Shellcode, Command and Control 9

MS-DOS 2.0 EXE Header

This is the structure of the DOS header as defined in the winnt.h header file. The comments include the field
offsets for the various members and a short description of what each field is for. The main areas of interest for
our purposes are the first and last fields: ¢ magic and e_lfanew. The ¢ _magic is a 2-byte field that holds the
magic signature of PE files: MZ. Typically, when you would see this in memory, you could assume that it is
part of an executable. The other field of importance found at offset 0x3C is e_lfanew, which is rumored to
stand for the Long File Address for the New Executable header. This new executable header is what we are
after because it sends us to the NT headers.

The winnt.h header file has a nice definition for the DOS signature: #define IMAGE DOS SIGNATURE
0x544D /* MZ */.

If you were developing a PE parsing tool, the other fields could be shown to the user just to give them a
detailed view of the file.

© 2024 Jonathan Reiter 9

SANS

MS-DOS 2.0 EXE Header: kernelbase.dll

e_cparhdr;
e_minallo

e_ovno,;

e_res

e_oemid;
e_oeminfo;
e res2(10];

_1fane

|poeaoale 0o oo oo

leceoase 69 73 20 7@ 72 6F 67 72
|p0000E60 74 20 62 65 20 72 75 6E

loeeeoase A1 BF 23 03 ES DE 4D,

loeeeease F1 BS 49 51,65 DA 4D 5@
leaceoace F1 85 4041 E4 DE 4D S
B854 50 E4 DE 4D 50

) Base Relocat
 Debug
Load Cos
AT 0000130 OA ¢
lpacoo140 00 80 2C O
loecea1se oo oo 04 o
|peeea160 oo o
0000170 ©
foaceo180
jp0600190 ¢
[|padoR148 0o 0o
jp0ee0180 6o
00001C0 ¢
|P08001D0 00 20 08 0 60
foacoo1c0 96 2¢ 27
foacea1ro ¢ &
_»|jpeeoa2e0 6D @8 11 o

MS-DOS 2.0 EXE Header: kernelbase.dll

Now that you know the structure of the DOS header, we can start to make sense of the hexdump of
kernelbase.dll. The screenshot is from Visual Studio Code to see the structures and Total PE, a tool written by
Pavel Yosifovich. A side-by-side layout like this can help make your way through the various PE headers and
the fields inside each structure. For this IMAGE DOS HEADER structure, almost each field is a WORD size.
Now that you know this, it is easier to identify each field and move on to the next field, you just jump two (2)
bytes at a time to the end. The main hexdump inside Total PE has offsets to the left of the hexdump to easily

locate the various fields.

Starting with the first field, e_magic, we can see the famous magic value of 4D 5A for MZ. One thing to note
here is the NOP (0x90) immediately following the magic header. You will see several tools that do signature
scanning while only looking for a match for MZ, but this can generate some false positives. To reduce a
number of false positives, check to make sure that the 3rd byte is 0x90 and the 4th byte is 00 since they rarely
change. There is no 100% guarantee the bytes following MZ will always be \x90\x00, so just keep that in the
back of your mind. The second field that is important to locate and understand is the e_Ifanew field, which is
traditionally found at offset 0x3C. Whatever value found there will lead you to the next header.

10

© 2024 Jonathan Reiter

20 €0 E7 16

|p0000040 OF 1F BA OF 00 B4 @9 (D

@ E5 DE 4D 50

F1 85 48 51
E5 DE 4C 50
F1 B5 4E 51
F1 85 40 51
F1 85 4F 51

5 63 68 E5 DE 4D 50 00 o
32 D4 F2 33 8 00
@B 02 OF 14

61 6E 6E 6F i

44 4F 53 20

¢ $
ES DE 4D 50 ..d...MP..MP..
F6 DE 4D 58 ...P..MP..HQ..}
750D 4D 50 ..LQ..
E1 DE 4D 50 ..IQ..
62 DD 4D S0 ..

E4 DE 4D 50

en 11
20 10 o

20 00 02 o

03 &

%0 oC EE 00
00 48 05
0 78 85
0 78 00

48 E6 1B 0¢

2 2E 74 65 78
50 8A 11 8¢

o 18 o1

36 16 00
74
@0 84 20 o6

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 10

Technet24

NT Headers

typedef struct _IMAGE_NT_HEADERS {
DWORD Signature; // 0x00 "PE”\0\O

IMAGE_FILE_HEADER [FIEI5EEGE; // 0x04
IMAGE_OPTIONAL_HEADER32 (o) JilsiEV s FELEYS; // 0x18

}IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

typedef struct _IMAGE_NT_HEADERS64 {
DWORD Signature;

IMAGE_FILE_HEADER [FIEIZEELE;
IMAGE_OPTIONAL_HEADER64 [OJJilelyEYISEETe (g

} IMAGE_NT_HEADERS64, *PIMAGE_NT_HEADERS64;

#ifdef WIN64

typedef IMAGE_NT_HEADERS64 IMAGE_NT_HEADERS;
typedef PIMAGE_NT_HEADERS64 PIMAGE_NT_HEADERS;
ttelse

typedef IMAGE_NT_HEADERS32 IMAGE_NT_HEADERS;
typedef PIMAGE_NT_HEADERS32 PIMAGE_NT_HEADERS;
#endif

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 1!

NT Headers

The next important structure to know is the IMAGE NT HEADERS struct. You will note that there is one for
32-bit applications and one for 64-bit applications. You do not need to specify one struct over the other
because there is a check that happens to see if WIN64 is defined. If it is, then the structure names for 64-bit
applications are typdef’d as IMAGE NT HEADERS. The same goes for 32-bit applications. For the moment,
we will disregard that and just focus on the contents. The first field is the 4-byte signature, which is PE\O\O.
The next field is the FileHeader, which is of struct type IMAGE FILE HEADER. The next slide will break
down that structure, but while we are on it here there are some important fields, like the
SizeOfOptionalHeader and NumberOfSections. The NumberOfSections is literally just that, the number of
sections the executable holds: .text, .data, .bss, etc.

Following the FileHeader field is the OptionalHeader field, which is of struct type

IMAGE_OPTIONAL HEADER. This struct has a decent number of fields and several are important to us,
like the DataDirectory. More on that one later.

© 2024 Jonathan Reiter 11

NT Headers: kernelbase.dll

S 380080 0323bfal S@4ddee5 504ddee5 S@4ddeeS
880090 S@deabec 504ddee3 5148b5f1 504ddefs
=1 8800a@ 514cb5fl 504ddeed 5e4cdee5 504ddd75
DER FileHeader; 3800b0 5149b5f1 504ddac8 514eb5fl Sedddeel
- arnelbase 140
380000 0O9P5a4d 0PPARPO3 BEEPORRA BRABTFFf
380016 ©0PPPOELS 0OPRPOD GAPOR4O PBEEABOR
380020 ©PAPOERE GPPEAPED GEAPPRRD BPEEARLD
380030 0OEPOOEE VPPARPEO ©0ERE0R. [cevseafe] .. R
, 380048 Oebalf@e cdP9Ib40O 4cO1b823 685421cd!..L.!Th
FileHeader; * 3%pe5Se 70207369 72676f72 63206061 6f6e6e61 is program canno
OptionalHeader; 380060 65622074 62757220 2p6e6920 20534f44 t be run in DOS
GE_NT_HEADEF “ 3300%0 6564676d Papdod2c-0pPAARR24 EPEEEERR mode....$
c 380088, ©323bfal 504dde€5 504ddee5 504ddee5 . .#...MP..

)| Signature;

HEADER! 880090 \ 50deabec 504ddee3 5148b5f1 504ddef6 ...P..MP..
: 3800a@ '§14cb5fl 564ddeed Sedcdee5 504ddd75 ..LQ..MP..

FAEEEGIER, 3300b0 5249b554 504ddac8 514eb5f1 504ddeel ..IQ..MP..

OptionalHeader 3800c0 514gH5f1 504ddeed 5140b5F1 504ddde2
|_HEADERS;; 3800de 50h2n5f1 504ddeed 514fb5fl 5e4ddeed
3800e0/268636552 504ddecs GBARPARO GORARAARE

380070 | [00004550| 00R78664 ©833F2d4 ©EEEAARA

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 12

NT Headers: kernelbase.dll

For this side-by-side screenshot, the purple is coming from the IMAGE DOS HEADER->¢ Ifanew. That
value there is used as an RVA that is then added to the base address of kernelbase.dll to give us the location of
the first field in the IMAGE NT HEADERS struct, the Signature. The ASCII on the right hand side of the
screenshot shows the signature being PE. Also, take note the size of the Signature is not two (2) bytes like it is
for the IMAGE DOS _HEADER->e magic. This one is a DWORD, or 4 (4) bytes, so the next two (2) NULL
bytes are part of it. Do not forget your endianness! Now, let us take a look at the next field, FileHeader.

12 © 2024 Jonathan Reiter

Technet24

File Header

typedef struct _IMAGE_FILE_HEADER {
WORD Machine;

\WeXDBNumberOfSectionsh

DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;

\""[e]:pMSize OfOptionalHeaderg

WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 13

File Header
The file header holds just a few fields, but the ones that are of interest when building a PE parsing tool would

be the NumberOfSections and the SizeOfOptionalHeader. The number of sections can be used in a loop to
iterate over the sections, grabbing data from each one. These values also come into play when creating your
own loader since each section will have to be parsed and loaded into an allocated region of memory. The
header size is important because there is no direct pointer to the section headers. Therefore, once you
determine the size of the optional header, you can jump directly to the section headers and start parsing those.
There will be a SECTION_HEADER struct for every section in the file. The Characteristics field is simply
some flags that are used to indicate if the file is a system file, user program, or DLL.

© 2024 Jonathan Reiter 13

File Header: kernelbase.dll

|peoo@eBa F1 BS 49 51 C8 DA 4D 58 0 IQ..MP..NQ. .MP
[pee@@ece F1 B5 4D 51 E4 DE 4D 5@

FILE HEADEF [peooeeDe F1 BS B2 50 E4 DE 4D 58
= - =) - [p@00@0E@ 52 69 63 68 ES5 DE 4D 58

Machine;] [paen

NumberOfSections; leoo0110
. [peeea12e
TimeDateStamp; leeeee13e
. [eeeee142
PointerToSymbolTable; leeeee1se

NumberOfSymbols ; ‘ 23222}5

SizeOfOptionalHeader; Eggggg 5(:; i:

Characteristics; port | lagpea14e 24 0

[ree201B80

HEADER PIMAGE_FILE_HEADER; levea1ce

leoaoa100
RARAATIFA Qa 20 27 OF

- "1

47 21 L0 UA 4U 20 FL D2 G0 24 CL UD GU 20 .. iy..FF..Hg. .rF

& pdata p@@eeace F1 85 4D 51 E4 DE 4D 50 F1 BS 40 51 62 DD 4D 50 ..MQ..MP..
-) &« didst F1 BS B2 5@ E4 DE 4D 50 F1 B5 4F 51 E4 DE 4D 58 ...P..MP..
FILE_HEADEF @& o oo o0 0o »

& [0000RAED 52 69 63 68
i . reloc [00e00aFe 50 45 4 86087
Machine - - %) DataDirectories | 9gapp100 0 22 20
NumberOfSections; 28 Expon lpeoee110 o
- 83 Import 20000120 0
TimeDateStamp; 5 Resource loaeeo130 o
. @ Ecception | lbogpe140 ©
PointerToSymbolTable; [’;’3 s;cw-ry locano150 o
ase
NumberOfSymbols; & Debug o8 00
s s Lead Config | baop@180 6C 41 28
SizeOfOptionalHeade AT Bo000190 o0 £6 28 0
Characteristics;

4 F2 33 @8

49 DelayImport |lanpe1ap 24
o5 Resources [eeeee18e o

[

! FILE_HEADER, *PIM FILE_HEADER; e MU [peaeo1Ce ©
- Vession p@ee108 o

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 14

File Header: kernelbase.dll

The file header is one of the two structs inside of the NT headers struct. The upper screenshot is another side-
by-side of the structure itself and the raw hexdump with Total PE. The entire IMAGE FILE HEADER struct
is highlight in blue in Total PE so you can better see visually what it looks like. The lower side-by-side
screenshot is simply highlighting the more important fields to know in the IMAGE FILE HEADER struct.
The three (3) highlighted fields are important for us because they can be further used with our PE parsing
efforts. Let us take the NumberOfSections field, this one indicates how many sections a binary has in it and
there can be one (1) or more sections in a binary. This value can then be used to make a loop that iterates over
each section until you have enumerated them all. The SizeOfOptionalHeader is useful because with it, we can
effectively jump over the optional header and land at the first section of the binary. Typically, this first section
is the .TEXT section, but that is not guaranteed. Once we have those 2 (values) we can continue with PE
parsing.

14 © 2024 Jonathan Reiter

Technet24

Optional Header

typedef struct _IMAGE_OPTIONAL_HEADER64 {

WORD [VETElS //0x20b

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;

DWORD SizeOfCode; SizeOflnitializedData; SizeOfUninitializedData;
DWORD AddressOfEntryPoint;

ULONGLONG ImageBase;

WORD DllICharacteristics;

ULONGLONG SizeOfStackReserve; SizeOfStackCommit;

IYVXI YN/ M)l H@ o)A dDataDirectory[IMAGE_ NUMBEROF_DIRECTORY_ENTRIES]]
} IMAGE_OPTIONAL_HEADER64, *PIMAGE_OPTIONAL_HEADER64;

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD \YIgVEINe o [{=1;
DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Optional Header
First off, there are several fields that are not being shown here simply because they would not all fit on the
slide. Let us break down the optional header.

The optional header, despite its name, is not optional at all for executables; it is required. First up is the Magic
field, which is used to indicate the state of the image file. The comment annotated on the slide (0x20b)
indicates a 64-bit executable image (PE32+). On the other hand, if this were a 32-bit executable image (PE32),
you would see 0x10b. The next several fields on the slide (SizeOfCode, SizeOfInitializedData,
SizeOfUnitializedData) were placed on a single line because they are all DWORD types. These indicate the
sizes for the various sections, like the .text (code), .data (initialized), and .bss (uninitialized) sections. There is
also the entry point address for the program followed by the ImageBase field, which is the preferred address.
For the ImageBase address, you would typically see 0x400000 for EXEs and 0x10000 for DLLs. For
DlICharacteristics, these indicate various attributes for the image like if the image can be relocated when it is
loaded, if it will be compatible with DEP, or if it will use SEH. The next two fields, SizeOfStackReserve and
SizeOfStackCommit, deal with the stack. The reserve size will be set aside and only made available one page at
a time when it is needed. Not all of the memory set aside for a thread’s stack is committed right up front as this
would just be wasteful. Rather, as stack consumption increases, more pages of reserved memory would then
be committed.

The last field in the struct, and perhaps the most important one to us, is the DataDirectory field, which is of
type IMAGE DATA_DIRECTORY. This is a pointer to an array of data directory entries and as the comment
on the slide indicates, there are 16 entries. The array entries that we care about the most are the first two,
which are for the import and export entries. Inside the IMAGE DATA DIRECTORY struct, the field we care
most about is VirtualAdddress as it will be key for parsing the table.

© 2024 Jonathan Reiter 15

Optional Header: kernelbase.dll

o 7 b
i eeee7ffb
& 80807ffD 6
o o

10160
0:0008> dc 00007ffb
00007ffb

000
80600
0000

0028416¢

11 00 3 b 00 00 00 00
f 80 00
00

ols: Developing Windows Implants, Shellcode, Command and Control 16

Optional Header: kernelbase.dll

This is the optional header from kernelbase.dll. The optional header is not as easy to parse because not all
fields are the same size. As mentioned on the previous slide, there are a few places you can check to make
sure you might be in the right place. The magic field can hold several values, but typically it will either be
0x10B or 0x20B for 32-bit (PE32) or 64-bit (PE32+), respectively. It would be very uncommon these days to
see a different magic value for Windows binaries, but it could happen. The section and file alignment fields
are interesting because they dictate how the sections will be aligned on disk or in memory. The section
alignment value of 0x1000 indicates to the loader that the sections should be aligned on page boundaries. This
is important because not every section will have the same permissions and page permissions can only be
applied at single page granularity. For example, the . TEXT section of a PE32+ binary should have the
characteristics of R/X. Naturally it would make sense for those same permissions be applied when mapped
into pages of memory. The file alignment would be much closer together and seeing sections right next to
other sections is common. Let us jump into the DataDirectory with a bit more detail.

16 © 2024 Jonathan Reiter

Technet24

Optional Header: kernelbase.dll - data directory

DataDirectory typedef struct _IMAGE_EXPORT_DIRECTORY {
DWORD Characteristics;

VirtualAddress 0 WORD Vaevercom
_|MAG E_DATA_D| RECTORY WORD MinorVersion';

Size DWORD Name;

DWORD Base;
VirtualAddress 1 DD RmberOfunctions;
umberOfNames;

_I MAG E_DATA_DI RECTORY . DWORD AddressOfFunctions;

Size DWORD AddressOfNames;

DWORD AddressOfNameOrdinals;
}IMAGE_EXPORT_DIRECTORY,
*PIMAGE_EXPORT_DIRECTORY;

typedef struct _IMAGE_IMPORT_DESCRIPTOR {
union {
DWORD Characteristics; // 0 here indicates end of array
DWORD OriginalFirstThunk; // Import Lookup Table (ILT)
} DUMMYUNIONNAME;

DWORD TimeDateStamp; ~ // 0 = not bound, -1 = bound
DWORD ForwarderChain; // -1 = no forwarders

DWORD Name;

DWORD FirstThunk;

}IMAGE_IMPORT_DESCRIPTOR, *PIMAGE_IMPORT_DESCRIPTOR;

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Optional Header: kernelbase.dll — data directory

The last field of the optional header is arguably the most important because this is where you find the imports
and exports for the image. For the most EXE binaries, there are no exports, so the value might be 0. For almost
every single Windows DLL, there should be something that is being exported. You can absolutely make a
DLL that does not export anything at all. Remember, the DataDirectory field can hold 16 arrays, or tables,
which must be indexed before enumerating over them. Each entry in this table is another table of information.
Inside the DataDirectory, you can pick apart each entry and dive into those tables to access what is need. At
index 0 in the DataDirectory table is the entry for all exports. Each entry in the export table must be treated
with the type of IMAGE _EXPORT DIRECTORY. Then, at index 1 in the DataDirectory table is the entry
for all imports where each entry here must be treated with the type of IMAGE IMPORT DESCRIPTOR.

Also, as you are using winnt.h as a guide for your PE parsing, you may have noticed several #define entries
that tie into specific indexes for the DataDirectory table. The #define for exports is

IMAGE DIRECTORY ENTRY EXPORT with a value of 0. Then, there is #define

IMAGE DIRECTORY ENTRY IMPORT with a value of 1. This is a nice way to avoid the usage of what is
typically called magic numbers. Magic numbers in code are just random values that can be confusing as to
their meaning. Simply making a #define for them would make the code so much easier to read. Pro tip: avoid
using magic numbers in your own code; just make a few #defines for them.

© 2024 Jonathan Reiter 17

Exports: kernelbase.dll

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;
0:000> dx -r1 (*((combase!_IMAGE_DATA_DIRECTORY (*)[16])0x7ffb60310178))
[0] [Type: _IMAGE_DATA_DIRECTORY] // exports
6] [Type: _IMAGE_DATA_DIRECTORY]
21 [Type: _IMAGE_DATA_DIRECTORY]
3] [Type: _IMAGE_DATA_DIRECTORY]
[4] [Type: _IMAGE_DATA_DIRECTORY]
5] [Type: _IMAGE_DATA_DIRECTORY]
6] [Type: _IMAGE_DATA_DIRECTORY]
(7] [Type: _IMAGE_DATA_DIRECTORY]
8] [Type: _IMAGE_DATA_DIRECTORY]
0] [Type: _IMAGE_DATA_DIRECTORY]
[10] [Type: _IMAGE_DATA_DIRECTORY]
[11] [Type: _IMAGE_DATA_DIRECTORY]
[12] [Type: _IMAGE_DATA_DIRECTORY]
[13] [Type: _IMAGE_DATA_DIRECTORY]
[14] [Type: _IMAGE_DATA_DIRECTORY]
[15] [Type: _IMAGE_DATA_DIRECTORY]
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 18

Exports: kernelbase.dll

The DataDirectory field was located at offset F8 and since we know that it holds entries in the format of
IMAGE_DATA_DIRECTORY structs, we can parse it pretty easily without using a tool.

The VirtualAddress of the imports entry is highlighted green, and the size of that same entry is highlighted

black. When building out parsing logic, you need to remember what the data types are because they indicate
how far to advance.

© 2024 Jonathan Reiter

Technet24

Exports (1)

AddressOfFunctions[NumberOfFunctions] = {
RVA[O], RVA[1], RVA[2], RVA[3], RVA[4]
I

typedef struct _IMAGE_EXPORT_DIRECTORY

{

DWORD Characteristics;

DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion; AddressOfNames[NumberOfNames] = {

DWORD Name; “AddAtomA”, “AddAtomW”, ...
DWORD Base; I

} IMAGE_EXPORT_DIRECTORY, AddressOfNameOrdinals[NumberOfNames] = {
*PIMAGE_EXPORT_DIRECTORY; 0,1,2,6,9,10
b2
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 19
Exports (1)

Following the exports is probably the most difficult one of all because of the added layers of complexity. The
IMAGE_EXPORT DIRECTORY struct has several important fields to us, which have been highlighted for
you on the slide. The first field is the NumberOfFunctions and as you might have guessed, this is the number
of functions that are being exported by that module (DLL). The next field, NumberOfNames, is the number of
entries in the AddressOfNames and AddressOfNameOrdinals arrays. The last three fields are all pointers to
arrays. The AddressOfFunctions points to an array of addresses, the AddressOfNames points to an array of
addresses to function names, and the AddressOfNameOrdinals points to an array of ordinal numbers that are
used as indexes into the AddressOfFunctions array. Multiple tools and APIs rely on these arrays for populating
lists of modules and their exports, and one such API is GetProcAddress.

The GetProcAddress, at a high level, works by looping over the AddressOfNames and the
AddressOfNameOrdinals arrays at the same time looking for a match for whatever function name you
specified. Once it finds a match it can use the ordinal value as an index into the AddressOfFunctions array and

grab the address. Later, you will be implementing your own version of GetProcAddress, so be sure to know
the overall logic.

© 2024 Jonathan Reiter 19

Exports (2)

NumOfFunctions: 10

AddressOfFunctions —bl addr0 I addrl I addr2 I addr3 | addr4 I addrS | addr6 I addr7 | addrgé | addr9 I
A

NumOfFunctions: S l

AddressOfNames 4>I name0Q I namel I name2 I name3 I name4 I

\ A

A Y r Y

MdressOfNameOrdmals]—)I 0 I 1 | 2 | 4 I 8 I

SANS

Exports (2)

This slide shows another way to visualize the flow and structure of the exports. At the top is the array holding
the addresses for all of the imported functions. There happens to be 10 of them for this example, so the
NumberOfFunctions reflects 10. If you were to only traverse the address of functions array, you would have
no idea what function did what. For example, you would not know if the first entry is the address for
GetProcAddress or TerminateProcess. Not much can be done with that array just yet since we have not tied it
to anything yet. In the middle of the graphic is the AddressOfNames array, which holds the addresses to the
names of the imported functions. This is what is needed when creating your own version of GetProcAddress.
Lastly, there is the AddressOfNameOrdinals, which is the ordinal number that aligns with an entry in the
address of names array.

The logic here is to loop over the address of names array while at the same time keeping track of your index in
the array. Once you find a string match, the index you happen to be on at that time is used as an index into the
address of ordinals array to obtain the ordinal number for that function name. Armed with the ordinal number,
you can go right into the address of functions array and pull out that index and assign it to your function. At
this point, you now have a function name, its address, and its ordinal value.

If a function is only exported by ordinal, you can simply take that ordinal and index directly into the address of
functions array to grab the address. For OPSEC considerations, it is not common for a DLL to only export

functions by ordinal, so keep that in mind when crafting a malicious DLL.

Reference:
resources.infosecinstitute.com/topic/the-export-directory

© 2024 Jonathan Reiter

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 20

Technet24

Exports (3)

for (DWORD x = OUL; x < NumberOfNames; x++) {
// magical code goes here
x=0 x=1 x=2 X=n

stremp(AccessCheck AccessCheckAndAuditAlarmwW AccessCheckByType _

// found a match? Take x as an index into AddressOfNameOrdinals
x=0 x=1 x=2 X=n

od- [N ER PR

// take the ordinal value and use it as an index into AddressOfFunctions
ord=0 ord=1 ord=2 ord=n

rva = 1420 1430 1440 _

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Exports (3)

For the programmatic part of it all, here is what you will have to keep in mind. Let us say you make a for loop
like the pseudo code above. As you loop over the names of each function, you will be looking for a match and
once you find the function of interest, the current index value of the for loop will be used as a lookup into the
AddressOfNameOrdinals table. The ordinal value that is found at that current index is what is needed to serve
as a lookup into the AddressOfFunctions table. Each entry in that table is an RVA so once you use the ordinal
value as an index into this table, the RVA must be added to the module’s base address. It might look like there
is a lot going on with this slide, but there really is nothing too complicated about this. Once you start diving
into the code of it all, you will see how relatively straightforward it is.

© 2024 Jonathan Reiter 21

DWORD Characteristics;
DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

DWORD Name;

DWORD Base;

b ilNumberofFunctionsk
DINeDANUmberOfNamesH
bl ddressOfFunctions
pIeL WA d dres sOfNarmesh
b A ddressOfNameOrdinal sh

} IMAGE_EXPORT_DIRECTORY,
*PIMAGE_EXPORT_DIRECTORY;

Exports: kernel32.dll

00 01 02 03 04 05 06 07 08 09 OA OB OC @D OE OF

t-ENIZIO00 00 00 00 DF 43 FA F5 00 00 00 00 58 00 09 00
EEPIZO] 00 00 00 50 06 00 00 50 06 00 00 38 Cl 08 00

8B330 LNl 0 s=h i sN7D 00 09 00 B3 00 09 00

typedef struct _IMAGE_EXPORT_DIRECTORY {/*sizeof: 40 bytes*/

090058 -> KERNEL32.DLL

1

650

650

08C138 -> 9007D, 900B3, 1E310, ETC.

08DA78 -> 90065 -> AcquireSRWLockExclusive
08F3B8 -> @0, 01, 02, ETC.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Exports: kernel32.dll

The example here is from a module that is a bit more mature, Kernel32.dll, which exports a larger number of
functions than that of a traditional EXE. This library seemed like a perfect choice since it is loaded into almost
every process. Kernel32.dll is also one that is relied upon very heavily by implant developers like us and by
malware authors for the use of functions like GetProcAddress and LoadLibrary. You might often see position
independent shellcode rely on these two APIs and that is to give the malware the ability to load modules and
find the addresses of other important APIs.

Let us break down this hexdump and jump straight to the NumberOfFunctions field and obtain that value;
0x650. Immediately following that is the NumberOfNames; 0x650. Next, in red, is the AddressOfFunctions
with RVA 0x08C138. AddressOfNames follows with RVA 0x08DA78, and then last field is
AddressOfNameOrdinals with RVA 0x08F3B8. Armed with the RV As, you can then follow them to start
diving into each of the arrays like the AddressOfNames array. Comments on the slide have already begun
following the RV As to their values. Feel free to follow along on your Windows 10 Dev VM using a tool like

PE-bear or PE Explorer.

22

© 2024 Jonathan Reiter

Technet24

Imports: kernelbase.dll

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

0:000> dx -r1 (*((combase!_IMAGE_DATA_DIRECTORY (*)[16])0x7ffb60310178))

[0] [Type: _IMAGE_DATA_DIRECTORY]
[1] [Type: _IMAGE_DATA_DIRECTORY] // imports
2] [Type: _IMAGE_DATA_DIRECTORY]
[.. SNIP..]
[15] [Type: _IMAGE_DATA_DIRECTORY]

0:000> dx -r1 (*((combase!_IMAGE_DATA_DIRECTORY *)(0x7ffb60310178 + 8)))
[+0x000] VirtualAddress : 0x28416c
[+0x004] Size : 0x64

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 23

Imports: kernelbase.dll

The DataDirectory field of the IMAGE OPTIONAL HEADERG64 was located at offset 0x70 and since we
know that it holds entries in the format of IMAGE DATA DIRECTORY structs, we can parse it pretty easily
without using a tool, or we can just use WinDbg! The address used in the WinDbg command on the side was
calculated after adding the base address to the RVA found for the DataDirectory field. We simply cast it to the
proper type needed to see the results, but we also must do something different here because we are dealing
with an array. We use the [16] in the command because we want the 16 entries to be displayed. Since we also
know the size of each IMAGE DATA DIRECTORY entry is 8 bytes, we can manually calculate the next
entry just like you see in the command on the slide. Please note, just because it says VirtualAddress, does not
mean the actual virtual address because it is still very much an RVA that must be added to the base address of
the module. Before going any further into the imports part of the PE header, let us take a look at the definition
ofthe IMAGE IMPORT DESCRIPTOR.

© 2024 Jonathan Reiter 23

Imports Structure

typedef struct _IMAGE_IMPORT_DESCRIPTOR {
union {
DWORD Characteristics; // 0 here indicates end of array

DWORD (ol EIIFIISaIPIS; // Import Lookup Table (ILT)
} DUMMYUNIONNAME;

DWORD TimeDateStamp; // 0 = not bound, -1 = bound
DWORD ForwarderChain; // -1 = no forwarders

DWORD ;

DWORD ;

} IMAGE_IMPORT_DESCRIPTOR,*PIMAGE_IMPORT_DESCRIPTOR;

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Imports Structure

The imported libraries (DLLs) and their functions are stored in this array of

IMAGE IMPORT DESCRIPTORS, which is index 1 of the DataDirectory array. Remember, index 0 is for
the exports, which we will cover later. Highlighted on the slide are some important fields, the first one being
OriginalFirstThunk. As the comment indicates, this is simply the RVA to get to the ILT; Import Lookup
Table. Keep in mind that this is only temporary until the loader is done processing the imports and locating
addresses for the imported functions. On disk, it is the RVA to the IAT; Import Address Table. Sometimes,
imported functions are simply jump entries in a table that jumps program code to another DLL where the
function is defined. These are called forwarded functions and there is a field called ForwarderChain to
indicate it. If there are no functions that are forwarded, then this field will be set to -1. The next field is Name,
which is the RVA to the name of the DLL. After that is the FirstThunk field, which is the RVA of the IAT. On
disk, before the EXE is loaded, the OriginalFirstThunk and the FirstThunk should be pointing to the same
location or have the same RV A and what they are both pointing to is another array. This array holds

IMAGE _THUNK DATA entries that represent each imported DLL. To indicate to the system loader that
there are no more entries in the list, one last entry of type IMAGE _THUNK DATA will be made but all fields
will be NULL. So, if a program has 18 imported DLLs, then there will be 19 IMAGE _THUNK DATA entries
and the last one will be all NULLSs to indicate the end of the array.

24 © 2024 Jonathan Reiter

Technet24

Imports: kernelbase.dll

0:000> dx -r1 (*((combase!_IMAGE_DATA_DIRECTORY *)0x7ffb60310180))
[+0x000] VirtualAddress :0x28416c

[+0x004] Size - Ox64 /
0:000> ? kernelbase + 0x28416¢

Evaluate expression: 140717629981036 = 00007ffb"6059416¢

0:000> dt combase!IMAGE_IMPORT_DESCRIPTOR 00007ffb"6059416¢
+0x000 Characteristics : 0x284220
+0x000 OriginalFirstThunk : 0x284220 // import lookup table
+0x004 TimeDateStamp : 0 // 0=not bound, -1 = bound
+0x008 ForwarderChain :0 // -1 = no forwarders
+0x00c Name : 0x286a0a // name of the impgrted DLL
+0x010 FirstThunk : Ox1be698

0:000> ? kernelbase + 0x286a0a
Evaluate expression: 140717629991434 = 00007ffb’60596a0a
0:000> dc 00007ffb’60596a0a
00007ffb’60596a0a 6c64746e 6¢642e6¢ 0547006¢ 516¢7452 ntdll.dll.G.RtIQ

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Imports: kernelbase.dll

There is a lot happening on this slide, but do not worry, we will break it down a step at a time. The output here
is from the DataDirectory array focusing on the imports entry. In code, it could look something like the
following: OptionalHeader.DataDirectory] IMAGE DIRECTORY ENTRY IMPORT]. Even though we
went over the IMAGE IMPORT DESCRIPTOR on the previous slide, it is included here for easy reference
while making sense of the hexdump. The size of the struct is 0x10 bytes with each field being a DWORD (4
bytes), which makes parsing it pretty easy. Remember, the first field is really a union so that is why the output
in the debugger shows both at offset 0x00. The first field is the OriginalFirstThunk, which holds the value
0x284220. If you would follow that RVA, it would lead you to another RVA. Skipping down to the FirstThunk
field, you can see the RVA of 0x1be698, which when followed shows you yet another RVA to find your data.
The Name field is the name of the imported module, and it also is an RV A that can be followed. In WinDbyg it
is easy to follow RV As. You can see on the slide that the Name RVA, when added to the base address of the
module, is: ntdll.dll. The next 20 bytes would be specific for the next entry and so on and so on until you find a
NULL entry. Also, you should start to see the pattern of finding your data when RV As are given to you.
Simply take the RVA value and add it to the module’s base address and there you have your data. Here is a
WinDbg way of getting to the next import entry.

0:000> dt combase!IMAGE_IMPORT DESCRIPTOR 00007ffb'6059416¢ + 0x14
+0x00c Name : 0x286da4

0:000> ? kernelbase + 0x286da4
Evaluate expression: 140717629992356 = 00007{fb’60596da4

0:000> dc 00007ffb’60596da4
00007ffb*60596da4 2d697061 772d736d 652d6e69 746€6576 api-ms-win-event
00007ffb*60596db4 2d676¢69 76617270 72656469 2d316¢2d ing-provider-11-
00007ffb*60596dc4 2e302d31 006c6c64 7369091e 68706¢61 1-0.d11

© 2024 Jonathan Reiter 25

Lab 3.1: GetFunctionAddress

®
q I Parse a PE file to obtain the address of a given function

Please refer to the eVWorkbook for the details of the lab.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 26

Lab 3.1: GetFunctionAddress
Please refer to the eWorkbook for the details of the lab.

26 © 2024 Jonathan Reiter

Technet24

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

What’s the Point?

The point of this lab was to help you become intimately familiar with the format that PE files use. You should
have been able to see the important information that the loader requires to properly load a file on disk and into
memory. This will not be the last time you do some PE parsing. Keep this tool handy for later.

© 2024 Jonathan Reiter 27

Module Summary

r
:g; I Learned the PE structure is complicated at first

Covered that understanding the key components aids in future techniques

I Discussed how messing with the PE structure can yield interesting results

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 28

Module Summary

In this module, we covered the PE header in depth and many of the important structures that make up the PE
header. Armed with this knowledge, you can proceed to experiment with adding additional headers to see what
the loader does when it comes across, let us say, two valid PE headers. The results can be interesting, to say
the least.

28 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I What is typically the next byte that comes after the MS-DOS header?

O ~

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 29

Unit Review Questions
Q: What is typically the next byte that comes after the MS-DOS header?

A: 0x00
B: 0x90

C: 0x5A

© 2024 Jonathan Reiter 29

Unit Review Answers

r
:g; I What is typically the next byte that comes after the MS-DOS header?

O

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 30

Unit Review Answers
Q: What is typically the next byte that comes after the MS-DOS header?

A: 0x00
B: 0x90

C: 0x5A

30 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I In the optional header, what magic value indicates a PE32+ binary?

“ 0x10B

0x00B

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 31

Unit Review Questions
Q: In the optional header, what magic value indicates a PE32+ binary?

A: 0x20B
B: 0x10B

C: 0x00B

© 2024 Jonathan Reiter 31

Unit Review Answers

r
:g; I In the optional header, what magic value indicates a PE32+ binary?

“ 0x10B

0x00B

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 32

Unit Review Answers
Q: In the optional header, what magic value indicates a PE32+ binary?

A: 0x20B
B: 0x10B

C: 0x00B

32 © 2024 Jonathan Reiter

Technet24

PE Format
Course Roadmap Lab 3.1: GetFunctionAddress
. Threads
» Windows Tool Development Injections
* Getting to Know Your Target Lab 3.2: ClassicDLLInjection
D Operational Actions Lab 3.3: APClnjection
« Persistence: Die Another Day Lab 34: ThreadHijacker
Enh . Y I lant Escalations
nhancing rour lmplant. Lab 3.5: TokenThief
Shellcode, Evasion, and C2
Bootcamp
° Capture the Flag Challenge Lab 3.6: So, You Think You Can Type
Lab 3.7: UACBypass-Research
Lab 3.8: ShadowCraft

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 33
Threads
Before we move into injections, we need to continue learning some of the internals of the system, particularly
threads.

© 2024 Jonathan Reiter 33

Our objectives for this module are:

Define a thread

Understand various thread states
Understand thread contexts
Explore the structure of a thread

Create a thread

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 34

Objectives

The objectives for this module are to define what a thread is. We will explore the various states a thread can be
in and what state we need a thread to be in for a certain injection method. Each thread will have its own
context that becomes relevant when a thread enters its quantum. We will also look at how a thread is
structured in the system and the components of them. Lastly, we will get some hands-on practice with creating
threads.

34 © 2024 Jonathan Reiter

Technet24

I What is a thread?

According to MSDN:“A thread is an entity within a process that can be scheduled for
execution.”

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 35

Definition

MSDN provides us with a definition of a thread: “A thread is an entity within a process that can be scheduled
for execution.” What does that really mean? Well, first things first, threads are what execute the instructions
of a program and they are to be eventually executed by the CPU. Think of a thread as the smallest unit of
execution that is tied to a process. Each process will have at least one thread that kicks off the image’s code at
its AddressOfEntryPoint. This is done after the system loader finished mapping an executable image into
memory and that first is injected into the process by the kernel. This routine is how a program’s main function
is eventually called and inside of main’s function body, more threads can be created to accomplish various
tasks.

Remember, threads run and execute on a system, and processes are just mapped sections of an executable
image in memory.

© 2024 Jonathan Reiter 35

Thread States

I There are a number a thread states, but these will be our focus.

I Ready I Running I Waiting
A thread is
Currently "
Ready and . waiting for some
o executing
waiting for . . event to happen;
execution on a nstructions on to be signaled
the CPU during s
processor) some operation
its quantum
has completed
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 36
Thread States

There are at nine states a thread can be in at any given moment, but the focus here will only be on three states
as noted on the slide: Ready, Running, and Waiting. A thread is said to be in the Ready state when it is waiting
for execution and the Windows dispatcher will only schedule threads to run when they are in the Ready state.
Running is the state for when a thread has officially entered its quantum on the processor and the processor
has completed its switch to it. Waiting is a state where a thread is hanging around waiting for a specific event
to happen. Most of the time, a thread enters the Waiting state on a voluntary basis, meaning the thread called a
function like WaitForSingleObject, which will make the thread become alertable. The thread then waits for
that object to sync up with its execution, and a great tool to use when debugging a multithreaded program is
Performance Monitor. Of course, you cannot go wrong with the best tool of all time, WinDbg Preview.

36 © 2024 Jonathan Reiter

Technet24

Thread Scheduling
I The Windows dispatcher

Because Windows is a preemptive, and priority-based system, threads can be selected
for execution but never execute because it gets preempted by a thread with a higher
priority. Threads run for a certain number of clock cycles during their quantum.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 37

Thread Scheduling

Threads can be assigned higher levels of priority that enable them to run before threads with a lower priority.
When a thread with a high priority leaves its waiting state and becomes ready to run, it will preempt any other
thread that is currently in its quantum if it has a lower priority. There are caveats with this, but this is the
typical scheduling operation. There are a few events that might trigger the dispatcher to wake up and do its
job, so let us discuss a few. One such event is the one previously mentioned: a thread leaving its waiting state.
Another event is a newly created thread that is ready to run and must be scheduled. Thread priorities can be
changed by system services or when it is about to hit a service call. With all the scheduling happening with
threads, context switching becomes vital.

For completeness, a quantum is the time that is allotted for a thread to run on a CPU. Servers typically have a

default quantum of 12 clock intervals while traditional endpoints have a quantum of 2 clock intervals. Of
course, the quantum values can be changed but again, those are typically the defaults.

© 2024 Jonathan Reiter 37

Thread Context

I Context is unique to each thread

I Legitimate use I Malicious use
Processor does a context switch A thread is suspended, and the
to a new thread that is selected context is manipulated to gain
to run shellcode execution
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 38
Thread Context

Before a different thread executes, the current state of the registers must be saved. Each thread has a context
that is saved when its quantum is over or is preempted by a thread with a higher priority. These saved context
states are swapped in and out each time a thread is entering its quantum. This is called context switching. The
CR3 CPU control register plays a very important role when it comes to context switching because it holds the
physical address of the PML4 table for x86 64 and the Page Directory Table for x86. Whatever is in the CR3
register represents the current context for the CPU. When it comes to contexts, Windows has a few APIs to
deal with them: GetThreadContext and SetThreadContext. We can leverage these two APIs to redirect
execution to our shellcode by grabbing the context of a thread, manipulating it, then later resuming the thread.
We will be doing some thread context manipulation later in this section.

For more detailed information about threads, the Windows Internals books are a great resources as well as the
book What Makes It Page? for more of a memory manager perspective.

38 © 2024 Jonathan Reiter

Technet24

Thread Structure

struct _ETHREAD {
® ETHREAD/KTHREAD/TEB _KTHREAD Tcb; // thread control block

_LARGE_INTEGER CreateTime;
PVOID SartAddress;
[... SNIP ...]

};

. . struct _TEB {
All reside in system address space _NT_TIB NtTib;
_CLIENT_ID ClientId;
except the TEB ProcessEnvironmentBlock; // PEB

%

struct _NT_TIB {

ExceptionList; // EXCEPTION_REGISTRATION_RECORD
StackBase;

StackLimit;

b

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 39

Thread Structure

The kernel holds the ETHREAD and KTHREAD objects in system space, but not the TEB. The structure of a
thread and its environment block are important to know, but because the ETHREAD and KTHREAD objects
reside in system space, we will only be concerned with the TEB. Each thread will have its own environment
block called the Thread Environment Block, or the TEB. The process and the loader must be able to read
information in this structure, so that is why it resides in the process address space. You can see that the first
field of the TEB is the TIB, which was originally used for Win9X applications and has remained for
backwards compatibility. The TIB holds information relevant to the list of exceptions, and the size limitations
of a thread’s stack. For those who have taken SEC660 or FOR610, SEH should be familiar to you. For those
who did not, there is a list comprised of addresses that will be called in an attempt to handle an exception.
There is an entire chain of these that are linked together and the mechanism driving this is structured exception
handling.

Back to the TEB, another important field is the pointer to the Process Environment Block of the parent
process. The PEB, as mentioned earlier, is unique per process, and it holds valuable information we need to

leverage to accomplish certain tasks, like finding loaded modules and function addresses.

In a kernel debugging session, dt nt!_ethread or _kthread will show you the structures and dt nt!_teb will
should you the TEB struct.

© 2024 Jonathan Reiter 39

CreateThread / CreateRemoteThread

(:> CreateThread
CreateRemoteThread

SANS

Used to create a local/remote
thread

Has a HANDLE return type

CreateThread / CreateRemoteThread

HANDLE CreateThread (

LPSECURITY_ ATTRIBUTES lpThreadAttributes,
SIZE T dwStackSize,

LPTHREAD START ROUTINE lpStartAddress,
LPVOID lpParameter,

DWORD dwCreationFlags,

LPDWORD 1lpThreadId

) 5

HANDLE CreateRemoteThread (

HANDLE hProcess

LPSECURITY ATTRIBUTES lpThreadAttributes,
SIZE_T dwStackSize,

LPTHREAD START ROUTINE lpStartAddress,
LPVOID lpParameter,

DWORD dwCreationFlags,

LPDWORD lpThreadId

)5

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 40

Arguably the easiest way to create a local thread is to call the CreateThread AP1. When the API successfully
returns, it will provide a valid handle to the newly created thread. Let us break down the arguments to better

understand what this function needs.

IpThreadAttributes, is an optional pointer to a SECURITY ATTRIBUTES struct that is used to determine
what security attributes will be applied to the returned handle. Leaving this NULL will not allow the handle to
be inherited. For our purposes, we really do not care if our thread handles are inheritable, yet.

dwStackSize, lets you determine the size of the stack in bytes. The system will automatically round up your
number to the nearest page since it must be on a page boundary. You can pass 0 here and the default stack size
will be used, which is typically 1IMB. The stack size is also stored in the executable image’s header.

IpStartAddress, is a pointer to a function the new thread should start executing. This can also be shellcode,

which is what we care about the most.

IpParameter, is a pointer to some variable that you want to be passed along to the newly created thread.

dwCreationFlags, is a thread can be created using a couple different flags, like CREATE _SUSPENDED. For
the most part, 0 will be passed here since we would want the thread to execute the function right when it is

created.

IpThreadld, is an optional pointer to some variable to store the thread’s ID. Most of the time, we do not always
care about the ID of our newly created thread, so we can just pass NULL here.

There is another variant of this function that will create a thread in a remote process: CreateRemoteThread.
Everything is the same except the first argument, which is a valid handle to the process.

© 2024 Jonathan Reiter

Technet24

Creating Threads

I What happens behind the scenes?

Parameters converted to flags; Client ID and TEB address added to an attribute list
Determine if the thread should be created in local or remote process
Call NtCreateThreadEx, initialize user-mode thread context, call PspCreateThread

Thread is initially suspended and then later resumed so it can be scheduled

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 41

Creating Threads

For this scenario of thread creation, the main thread of a process has already been created and is running.

* The main thread creates a new thread using one of the Create Thread APIs.

* The function ends up calling an extended version called CreateRemoteThreadEx even if your code only
calls CreateThread. The extended version will take the arguments that were passed in and convert them to
flags. It will also create the necessary native structures to describe the object parameters for the system to
utilize.

» Before the thread can be made, the system must know if it should make the thread in the local calling
process or another process. This determination can be done by checking the value of the handle.

* Once that is determined, it can call N¢tCreateThreadEx from Ntdll to make the jump into kernel mode with
the exact same arguments.

* The user mode thread context will be made, and the executive thread object will be suspended by calling
PspCreateThread. After the system is done initializing everything, the thread is eventually resumed and is
now ready to be scheduled for its quantum.

© 2024 Jonathan Reiter 41

Module Summary

ol Defined thread
Hr efined threads

I Covered various threads states

I Discussed thread contexts and structures

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 42

Module Summary

In this module, we discussed what threads are from an internal perspective, we explored how to create threads
using two different APIs, we looked at contexts, quantums, etc. We now have enough knowledge to
understands what happens when we inject into a thread or suspend a thread.

42 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I When a new thread is created, where does the object reside!?

User space
ﬂ System space

Process handle table

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 43

Unit Review Questions
Q: When a new thread is created, where does the object reside?

A: User space
B: System space

C: Process handle table

© 2024 Jonathan Reiter 43

Unit Review Answers

r
:g; I When a new thread is created, where does the object reside!?

User space
n System space

Process handle table

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 44

Unit Review Answers
Q: When a new thread is created, where does the object reside?

A: User space
B: System space

C: Process handle table

44 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I What state is a thread in during its quantum slice?

Running

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 45

Unit Review Questions
Q: What state is a thread in during its quantum slice?

A: Running
B: Waiting

C: Ready

© 2024 Jonathan Reiter 45

Unit Review Answers

r
:g; I What state is a thread in during its quantum slice?

Running
n Waiting
Ready

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 46

Unit Review Answers
Q: What state is a thread in during its quantum slice?

A: Running
B: Waiting

C: Ready

46 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I What is the default quantum for servers?

2 clock cycles
ﬂ 8 clock cycles

12 clock cycles

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 47

Unit Review Questions
Q: What is the default quantum for servers?

A: 2 clock cycles
B: 8 clock cycles

C: 12 clock cycles

© 2024 Jonathan Reiter 47

Unit Review Answers

r
:g; I What is the default quantum for servers?

2 clock cycles
ﬂ 8 clock cycles

12 clock cycles

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 48

Unit Review Answers
Q: What is the default quantum for servers?

A: 2 clock cycles
B: 8 clock cycles

C: 12 clock cycles

48 © 2024 Jonathan Reiter

Technet24

PE Format
Course ROadmap Lab 3.1: GetFunctionAddress
Threads
* Windows Tool Development Injections
* Getting to Know Your Target Lab 3.2: ClassicDLLInjection
. Operational Actions Lab 3.3: APClnjection
« Persistence: Die Another Day Lab 3.4: ThreadHijacker
. Escalations
* Enhancing YOLII.‘ Implant: T E———
Shellcode, Evasion, and C2 Bootcamp
¢ Capture the Flag Chauenge Lab 3.6: So, You Think You Can Type
Lab 3.7: UACBypass-Research
Lab 3.8: ShadowCraft

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 49

In this module, we will discuss several techniques centered around injection. There are a large number of
injection methods, and as you can see, we have our hands full of exercises in this section. To kick things off,
this module will start with the classic DLL injection.

© 2024 Jonathan Reiter 49

Our objectives for this module are:

Define what injection is and reasons for it
Explore several injection techniques and their mechanisms
Understand more about the PE structure

Rehash threads

Discuss some mitigations

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 50

Objectives
The objectives for this module might seem light on the surface, but they are not. We are going to be diving
deep into various methods of injection followed by a brief mention of possible mitigations.

50 © 2024 Jonathan Reiter

Technet24

Process Injection

What exactly is process injection and what are some reasons for injecting
into a process?

I Forcefully making a process execute arbitrary code

I Avoid detection by having a legit process execute your shellcode

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 5!

Process Injection

Depending on what blog post you read or what YouTube video you watch, you might get a different definition
of what process injection is. For this course, we define process injection as a method of forcing code from one
userland process, say malware, into another userland process to execute arbitrary code. We will discuss other
techniques that are not true to that definition, like Applnit, Image File Execution Options, DLL hijacking, or
other pre-execution styles. It is good to know many techniques and what some of the cons might be for a
certain technique.

There could be several reasons for injecting into a process, but what we are concerned with is trying to avoid
various levels of detection. You could easily develop a program that executes shellcode locally, meaning
inside your own process’ virtual address space. Detecting local execution could be rather trivial, but if you
could have another process, say a legitimate Windows process or third party application execute your
malicious deeds, why not have it do so. Depending on what technique you implement, this could help avoid
detection for a longer period of time.

© 2024 Jonathan Reiter 51

Types of Injection

IDJAPR Classic and reflective injection NNJO Early bird, APC bombing

} PE injection o Process hollowing
:J SetWindowsHookEx /S Thread hijacking
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 52

Types of Injection

There are several process injection methods, and this slide is not a comprehensive list of every single process
injection technique that is out there, but it is enough to get us going. At this point, a few injection methods will
be discussed at a high level and later on will be the deep dive into each one. First up is the famous DLL
injection. There are two different versions of DLL injection: classic and reflective. In this section, we will just
focus on classic and save reflective injection for later in the course. At a high level, this technique forces
another process to load and execute a DLL of your choosing.

Next is APC injection. The asynchronous procedure call is a Windows mechanism that allows functions to
execute, as the name implies, asynchronously in some thread. With this technique, we look for certain threads,
or all of them, that we can queue an APC to and have it execute our code.

PE injection is what I call PE inception because we are hiding a PE inside of another PE, a dream within a
dream. Once the attack is executed, the target process will be holding two PE images, the legitimate one and
ours.

Process hollowing creates a new process, but it does so in the suspended state so no code can execute from it.
Then it proceeds to hollow out the original image with a new one and once done, the main thread can be
resumed. In the end, it still holds the same process name, but on the inside, it is completely different.
SetWindowsHookEx is an API that can be used to inject a DLL into a GUI process. It could also be one of
many methods used to act as a key logger. This technique depends on the process having the User32 module

loaded.

Thread hijacking is the manipulation of a thread’s context so that it will wind up executing shellcode we give it.

52 © 2024 Jonathan Reiter

Technet24

Classic DLL Injection

‘-\ I The injector and the injectee
]

For DLL injection to work properly, you must obtain a handle to the target processes
to allocate memory pages, write to them, and create a new thread. This logic will be
implemented in the DLL injector. The DLL is the malicious portion of this method.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 53

Classic DLL Injection

Classic DLL injection is fairly common as it is not too complex of a method to understand. The main functions
involved with this method are OpenProcess, VirtualAllocEx, WriteProcessMemory, and
CreateRemoteThread. The main purpose of this method is to forcefully load a DLL into the address space of
the target process and then execute it. The items you must provide as the tool developer would be the injector
portion of the tool. The DLL to be injected can be provided by the operator of the tool, or even by you. You
will be creating your own at first because you need to test your tool to work out any bugs.

© 2024 Jonathan Reiter 53

Walk-through: Classic DLL Injection

I injector.exe I notepad.exe
Obtain handle to target
HANDLE hProc >
VirtualAllocEx Allocate memory ‘
CHAR Path[] = Write DLL path to memory ,
“C:\evil.dll”
thread Spawn a remote thread | LoadLibrary()
function
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 54

Walk-through: Classic DLL Injection

Classic DLL injection is arguably the easiest to perform. If you were to look at this from a 10,000-foot view of
the overall process, this is what it would look like. There are a few things that are needed for this to be
successful: the injector and the DLL. The injector has the responsibility of executing the logic for injecting the
DLL into the target process. One of the first steps of the injector is to obtain a valid process handle to the
target process via OpenProcess. The handle must have the necessary permissions to get the job done;
permissions will be discussed during the source code review. Once the handle is obtained, a chunk of memory
must be allocated in the target process via VirtualAllocEx. This newly allocated space is used to store the
absolute path to the DLL via WriteProcessMemory. The final step is to call the CreateRemoteThread API and
hope everything works as desired.

With these steps in mind, let us jump over to the source code.

54 © 2024 Jonathan Reiter

Technet24

Lab 3.2: ClassicDLLInjection

®
q I Injecting your own DLL into a target process

Please refer to the eVWorkbook for the details of the lab.

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 55

Lab 3.2: ClassicDLLInjection
Please refer to the eWorkbook for the details of the lab.

© 2024 Jonathan Reiter 55

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

What’s the Point?
The point of this lab was to get your feet wet with injecting a DLL into a target process. This also puts down
the foundation so it can be built upon later in the course when we go over reflective DLL injection.

56 © 2024 Jonathan Reiter

Technet24

APC Injection
‘-\ I GUI applications have threads too!
—_—

Synchronous and asynchronous execution: what is the difference and how does each
come into play? Asynchronous allows an operation to execute in the background while
the user application is doing something else instead of being frozen.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 57

APC Injection

Asynchronous procedure call, or APC, is a mechanism that allows an 1/O operation to be completed later.
When an I/O operation is set to complete immediately, the application will wait and ends up blocking the user
from being able to do anything else. This is said to be a synchronous operation. On the other hand,
asynchronous operations should allow the user to continue working while the operation is carried out behind
the scenes. As an example, there could be a thread running in some GUI process like Notepad and when the
user attempts to load a large file, that read operation could happen asynchronously. Should it be synchronous
instead, the GUI application might appear to be frozen or not responding. For asynchronous 1/O, the thread
that kicked off the operation will be notified, or alerted, when the operation is complete via an APC object.
The APC objects are placed into a queue properly named the APC queue. Each thread has its own APC queue
and when a thread gets its quantum time, a check is done to see if there are any items in the queue, and if there
are, they get executed. This means that APC functions, or callbacks, will execute in the context of the thread
from which they were requested, and will only be sent when that thread is in an alertable waiting state.

© 2024 Jonathan Reiter 57

Queueing an APC

I QueueUserApc
DWORD
Return value is DWORD QueueUserAPC (
PAPCFUNC pfnAPC,
HANDLE hThread,
ULONG_PTR dwData
Used to queue an APC to user) i
thread
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 58
Queueing an APC

Brought to you by the processthreadsapi.h header file, the QueueUserApc API will add an APC object to the
APC queue of the specified thread. Now, let us look at the function declaration. The function has a return type
of DWORD, or unsigned long, and has three parameters: pfnAPC, hThread, and dwData.

pfmAPC, is of type PAPCFUNC and should be a pointer to the APC-typed function, or shellcode, that you want
to be called when the thread becomes alertable or does some alertable action.

hThread, is of type HANDLE and is a valid handle to the thread of which you are attempting to queue an APC
object. The handle should, at a minimum, have the THREAD SET CONTEXT access right.

dwData, is of type ULONG_PTR and for our purposes, this can just be NULL. Other use cases, this could be
one value that gets passed to the APC function being called.

If the function ever fails, be sure to call GetLastError() to find out why.

58 © 2024 Jonathan Reiter

Technet24

Walk-through: APC Injection

I injector.exe I notepad.exe
HANDLE hProc Obtain handle to target ‘
PVOID pbuffer Allocate memory
C:\evil.dll Write DLL path to memory ,
hThread
QueueUserAPC Queue APC to each thread ‘
SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 59

Walk-through: APC Injection

The first step for APC injection is to obtain a handle with the correct permissions to the target process. Once
that is obtained, allocate a chunk of memory in the target process so the path to the DLL can be stored.
Remember, this must be the full path of the DLL on disk. Before we can queue the APC to each thread, we
need to figure out how many threads the process has running. This is when the snapshot comes into play. We
can make a list of all threads that belong to the target process and enumerate over that list later in code. If any
new threads kick off after we did our enumeration, they would not be discovered. Since the list is now
populated with thread IDs, we can iterate over it and obtain a thread handle to each thread. Using that
temporary thread handle, we can call the QueueUserApc function each iteration to queue an APC. What
exactly are we going to queue? The APC function will be the address of LoadLibraryA and the pBuffer will
be the argument passed to LoadLibraryA.

With these steps in mind, let’s jump over to the source code.

© 2024 Jonathan Reiter 59

Lab 3.3: APClnjection
®
_zd I Queue an APC to a target thread.

Please refer to the eVWorkbook for the details of the lab.

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 60

Lab 3.3: APClInjection
Please refer to the eWorkbook for the details of the lab.

60 © 2024 Jonathan Reiter

Technet24

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 6l

What’s the Point?
The point of this lab was to explore the details of the APC injection method, the APIs involved, manipulating
threads, and gaining execution for your code.

© 2024 Jonathan Reiter 61

Thread Hijacking

| ——

Taking over a process’ thread

Hijacking a thread can be useful when you do not want to target every thread or
create a new thread. Hijack the first thread of the target process and redirect its
execution to your shellcode.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 62

Thread Hijacking

Hijacking a thread means that we are going to take over and control what it is executing. Threads have a
context that the system must keep track of and that is what we are going to modify; the context. The context of
a thread cannot be modified until the thread is in a suspended state, so we will have to suspend the thread by
calling SuspendThread. Once suspended, we can obtain the context by calling GetThreadContext. When our
shellcode, or other payload, has been copied into the target process’ address space, we can redirect execution
to it and resume the thread. The CONTEXT structure is very complete in the sense that it will capture all
registers of the CPU at the state they were in right before the context switch.

62 © 2024 Jonathan Reiter

Technet24

Obtaining Context
BOOL
® GetThreadContext GetThreadContext (

HANDLE hThread,
LPCONTEXT lpContext
) 8

Return value is BOOL

typedef struct CONTEXT {

Used to obtain a thread’s context [..SNIP..]
DWORD64 Rip;
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 63
Obtaining Context

Each thread will have a context structure that is unique to each thread. The context struct is fairly large and it
must be so that the system can keep track of the context each time a different thread enters its quantum. A
prime example for obtaining a thread’s context is a debugger. When a thread is being debugged, its context
must be made known. For our purposes, we will grab the context and modify the instruction pointer so that
when we resume the thread, it will be pointing to our shellcode. Below is a larger snippet of the CONTEXT
structure for a 64-bit OS.

typedef struct CONTEXT {
[...SNIP...]
DWORD EFlags;
DWORDG64 Dr0;
DWORDG64 Drl;
DWORDG64 Dr2;
DWORDG64 Dr3;
DWORDG64 Dr6;
DWORDG64 Dr7;
DWORDG64 Rax;
DWORDO64 Rcx;
DWORDG64 Rdx;
DWORDG64 Rbx;
DWORDG64 Rsp;
DWORDG64 Rbp;
DWORDG64 Rsi;
DWORDG64 Rdi;
DWORDG64 R8;
DWORDG64 R9;
DWORDG64 R10;

© 2024 Jonathan Reiter 63

64

DWORDG64 R11;

DWORD64 R12;

DWORD64 R13;

DWORD64 R14;

DWORD64 R15;

DWORDG64 Rip;

[...SNIP...]

DWORDG64 LastExceptionToRip;

DWORDG64 LastExceptionFromRip;
} CONTEXT, *PCONTEXT;

© 2024 Jonathan Reiter

Technet24

Walk-through: Thread Hijacking

I injector.exe I notepad.exe

Obtain handle to target R

HANDLE hProc

HANDLE hThread Obtain handle to target’s thread ,

PVOID pBuffer Allocate memory ,
SuspendThread
C:\evil.dll Write DLL path / shellcode to memory .
90 90 90 90
X = e Modify thread’s context
SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 65

Walk-through: Thread Hijacking

As you perform the various injection methods, you might notice that some portions repeat or carry over from
one method to the next. You would be right because they do have very similar portions. The slide here shows a
high-level walk-through for hijacking a thread’s context. There are two handles that must be obtained: the
handle to the target process (hProc) and a handle to a thread (hThread). Both handles must have the minimum
permissions necessary to achieve our objectives. For the process, we have virtual memory operations to carry
out and we will need to write to the virtual memory. For the thread, we need to suspend it, get its context,
update the context, and set its context. The only modification we need to make is changing the instruction
pointer, which needs to point to the recently allocated memory (pBuffer). After everything has been
completed, we can resume the thread. If we did everything correctly, the shellcode will be executed, and it will
load our library.

With these steps in mind, let us jump over to the source code.

© 2024 Jonathan Reiter 65

Lab 3.4: ThreadHijacker

®
q I Hijack execution of a thread

Please refer to the eVWorkbook for the details of the lab.

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 66

Lab 3.4: ThreadHijacker
Please refer to the eWorkbook for the details of the lab.

66 © 2024 Jonathan Reiter

Technet24

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 67

What’s the Point?
The point of this lab was to explore the process of hijacking a thread’s context.

© 2024 Jonathan Reiter 67

Process Hollowing
‘-\ I Hollow out the current process’ image.
]

Instead of targeting threads, we can target the executable image itself by replacing it
with an image of our own. The current image is removed, or hollowed out, and an
image of our choosing is copied over.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 68

Process Hollowing

You do not always have to target a process’ thread(s) to achieve your injection needs. If you recall, an EXE is
mapped into memory where we then call it an image. Once the image is fully mapped into memory, certain
portions of the image can be removed without causing any visible changes. Process hollowing does this
removal and it removes the current process’ image directly from memory. The replacement image will be
written to the target process’ address space, including all sections, and the main thread will be resumed after
modifying its context. We have covered a few methods so far and you might already have some idea as to
what APIs might be involved with this method.

Something to think about while we discuss this method: what would happen if you were to create crss.exe,
rundll32.exe, or another seemingly legit process in a suspended state and hollow it out?

68 © 2024 Jonathan Reiter

Technet24

Walk-through: Process Hollowing

I injector.exe I notepad.exe

HANDLE hProc Create a new, suspended process

v

HANDLE hFile Open replacement file

v

I evil.exe

PVOID pBuf Create some memory

Copy over headers/sections | WHSPeLel: ;

v

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 69

Walk-through: Process Hollowing

On the slide is a very high-level overview of the steps involved for hollowing out a process. The first step is to
create a new process. This new process is going to be “hollowed out” and will soon contain the PE headers
and sections of a different image. The important note here when creating the process is to pass the

CREATE SUSPENDED flag so that the process does not continue its operations. Once the new process is
loaded and we have our handle to it, we can allocate a buffer in that process. We do not know how large the
buffer should be until we open the replacement image and determine its size. Next, we need to copy over the
replacement’s PE headers as well as its sections.

Now, even though we have done a lot of work so far, nothing has really changed within the suspended process.
If it were to resume execution, our replacement image would not be executed. We can change that by
modifying the suspended process’ Process Environment Block (PEB). We give it an updated ImageBase
address with that of our replacement image. Finally, after updating the thread’s context, we can call
ResumeThread and our replacement image should be executed.

With these steps in mind, let us jump over to the source code.

© 2024 Jonathan Reiter 69

PE Injection

‘-\ A PE injected inside another PE

| ——

Instead of replacing the PE image of the target process, or hollowing it out, this method
simply adds an additional PE image inside. The target process will literally be holding
two PE images.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 70

PE Injection

PE injection can sometimes be confused with the process hollowing method because we are injecting a PE file
in another process just like with process hollowing. However, this method does not “hollow” out the image
from the target process. So, instead of the “hollowing”, we are adding another PE image in the target process.
The main idea here is that a handle will be obtained to the target process, some virtual memory will be
allocated in the target process, our PE data will be copied into the newly allocated memory space, and finally a
remote thread will be kicked off to execute our program. The APIs that this method uses are not new, but here
they are: CreateToolhelp32Snapshot to get the PID of the target process, unless manually entering it;
OpenProcess to obtain a handle to the target process; GetModuleHandle to obtain a handle to own process;
VirtualAlloc and VirtualAllocEx to handle the allocation of memory in our own process and remote process;
WriteProcessMemory to copy the data over, and CreateRemoteThread to create a thread in the target process.

Some new ones that you have not seen yet are to enable the debug privileges: OpenProcessToken to obtain a

token handle, LookupPrivilegeValue, and AdjustTokenPrivileges. There is also some PE header parsing that
will take place.

70 © 2024 Jonathan Reiter

Technet24

Walk-through: PE Injection

I injector.exe I explorer.exe

Obtain handle to target .
HANDLE hProc
Allocate memory ,
MZooeenenns Copy over PE header info/sections R
CreateRemoteThread()
SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 71

Walk-through: PE Injection

We can try to visualize PE injection just like what we have done with the other injection methods thus far.
Again, this method is extremely similar to process hollowing with a few differences. With this method, there is
no need to have any shellcoding knowledge or experience since we can do what we need to do purely in
C/C++ and the Windows APIs. Also, unlike process hollowing, we do not have to create a new process and
place it in a suspended state.

* Breaking it down, we have a few of the same steps we have seen already, minus getting a handle to a
thread. Assuming we have the target Process ID in hand, we must obtain a handle to the target process
using an API like OpenProcess.

* With the newly acquired process handle, we must then allocate a chunk of memory in the target’s virtual
address space. To determine how much memory to allocate, we must obtain the size of the PE image we
are injecting. If you recall, this value is stored in the Size of Image member of the Optional Header
structure.

* After the memory has been allocated, we can then proceed with copying over our PE image to include all
sections. It would be a good idea to apply fixups to the .reloc section because we are not being loaded by
the system loader who normally does that for us.

* We must find the delta of where the base of our image is—basically the address returned to us from the call
to the VirtualAllocEx APl—and the preferred base address.

* The image base address is under the Optional Header, so we use that to determine the delta offset. After all
fixups or relocations have been applied, we are finally ready to kick it off with the execution of our
injected image.

* We take care of that using the CreateRemoteThread AP by passing it the address of our entry point. If
everything has gone perfectly smooth, then you will have successfully executed a PE image inside the
address space of another PE image.

© 2024 Jonathan Reiter 71

SetWindowsHookEx
‘-\ I GUI applications can be targets as well.
]

GUI applications might need to hook events so they can properly respond to certain
events like mouse clicks or keyboard events. This method requires the target process
have the User32.dIl module already loaded. This APl is very robust and using it for DLL
injection is barely scratching the surface for its capabilities.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 72

SetWindowsHookEx

The SetWindowsHookEx API is a very comprehensive API that can do more than a simple DLL injection.
Windows uses it primarily for hooking events like mouse clicks and keyboard events for GUI applications that
have focus. There can be an entire chain of events that have been hooked and each one will be iterated over to
see who needs to respond to a specific event like someone typing in a Notepad++ window. The API has both
an ANSI and Wide char (Unicode) version so you would see SetWindowsHookExA or SetWindowsHookExW
when looking at online documentation. The hook chain mentioned is what we will be injecting a hook into.
More specifically, we will be adding a hook event into an already existing hook chain. The events are system
level events, and it is up to Windows to determine what application the hook event procedure is destined. It
could be meant for a specific thread or all threads running on the system, or rather the same Desktop session as
us—the calling thread.

72 © 2024 Jonathan Reiter

Technet24

SetWindowsHookExA

HHOOK SetWindowsHookExA (
® SetWindowsHookExA . Py

HOOKPROC 1pfn,
HINSTANCE hMod,

DWORD dwThreadId
Adds a hook procedure to hook)

chain
// ... EXAMPLE

SetWindowsHookExA (WH GETMESSAGE,
EvilHookFunction,

hEvilDl1,

ThreadId) ;

Has a HHOOK return type

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 73

SetWindowsHookExA
Despite the SetWindowsHookEx API only having four parameters, they are powerful, as you will see during the lab and
via your own reading/experimentation. Let us go ahead and break down these parameters.

idHook, is an int type and is used to indicate what hook procedure type will be utilized. The possible values start with
WH_* and perhaps the WH stands for Windows Hook. Some options are CALLWNDPROC, which is used to grab
messages before the OS pushes them to the appropriate window. GETMESSAGE is used to literally get messages from a
message queue. KEYBOARD and MOUSE are the interesting ones because they monitor messages from the keyboard and
mouse. This option would give you the chance to intercept and change those messages.

Ipfn, of type HOOKPROC, is used to point to the function, or the procedure that is to be called when the message event is
generated. This should be pointing to an exported function in a DLL that you make. You could have the hook procedure in
the code tied to the current process, but only if the Thread ID is not 0.

hMod, of type HINSTANCE, is used to serve as the handle to the DLL that implements the hook procedure. Again, this
procedure would be the one that is exported by a DLL that you make and is pointed to by the previous parameter, Ipfn.

dwThreadld, of type DWORD, is used to associate the hook to a certain thread. We want to pass 0 here to be associated
with all threads that are executing in the same desktop session as us—the calling thread. Because we are using 0 here, we

must have the /pfin hook procedure in a DLL.

Upon successful execution, the API will return a handle to the hook (HHOOK) that was added to the system’s chain of
hooks.

© 2024 Jonathan Reiter 73

Module Summary

r
:g; I Learned process injection comes in many forms; results are really the same

I Discussed how some methods serve as an injection method but also offer bonus
features

Discussed how some methods have similar techniques

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 74

Module Summary

In this module, we covered several methods of injection and even tossed in something extra with the
SetWindowsHookEx API. If you are a defender taking this class, then it is great to understand how injection
is implemented programmatically. It might give you some ideas as how to create detection signatures for this
if your organization does not already have some implemented. For the offensive students, it is great to explore
the various ways to carry out injection, and as you saw, there is no single way to do anything. Perhaps there
are even more methods that are not even known by the public.

74 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I What API allows you to inject a DLL into GUI applications?

CreateRemoteThread()

n WriteProcessMemory()

SetWindowsHookEx()

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 75

Unit Review Questions
Q: What API allows you to inject a DLL into GUI applications?

A: CreateRemoteThread()
B: WriteProcessMemory()

C: SetWindowsHookEx()

© 2024 Jonathan Reiter 75

Unit Review Answers

r
:g; I What API allows you to inject a DLL into GUI applications?

CreateRemoteThread()

n WriteProcessMemory()

SetWindowsHookEx()

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 76

Unit Review Answers
Q: What API allows you to inject a DLL into GUI applications?

A: CreateRemoteThread()
B: WriteProcessMemory()

C: SetWindowsHookEXx()

76 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I When hijacking a thread, what construct must be modified?

Thread state
ﬂ Thread context

Thread priority

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 77

Unit Review Questions
Q: When hijacking a thread, what construct must be modified?

A Thread state
B: Thread context

C: Thread priority

© 2024 Jonathan Reiter 77

Unit Review Answers

r
:g; I When hijacking a thread, what construct must be modified?

Thread state
n Thread context

Thread priority

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 78

Unit Review Answers
Q: When hijacking a thread, what construct must be modified?

A Thread state
B: Thread context

C: Thread priority

78 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

:g; What mechanism allows threads to process routines when it enters its
Qyr quantum?

APC queue
ﬂ Contexts

Event objects

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 79

Unit Review Questions
Q: What mechanism allows threads to process routines when it enters its quantum?

A: APC queue
B: Context

C: Event objects

© 2024 Jonathan Reiter 79

Unit Review Answers

:g; What mechanism allows threads to process routines when it enters its
Qyr quantum?

APC queue
ﬂ Contexts

Event objects

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 80

Unit Review Answers
Q: What mechanism allows threads to process routines when it enters its quantum?

A: APC queue
B: Context

C: Event objects

80 © 2024 Jonathan Reiter

Technet24

PE Format
Course Roadmap Lab 3.1: GetFunctionAddress
. Threads
» Windows Tool Development Injections
» Getting to Know Your Target Lab 3.2: ClassicDLLInjection
. Operational Actions Lab 3.3: APClnjection
« Persistence: Die Another Day Lab 34: ThreadHijacker
. Escalations
* Enhancing Your Implant: ol B Tl
Shellcode, Evasion, and C2
Bootcamp
¢ Capture the Flag Chauenge Lab 3.6: So, You Think You Can Type
Lab 3.7: UACBypass-Research
Lab 3.8: ShadowCraft

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 81

In this module, we will discuss and implement various ways to escalate your local privileges.

© 2024 Jonathan Reiter 81

Our objectives for this module are:

Discuss the reasoning for escalating privileges
Explore several methods

Implement a few methods in code

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 82

Objectives

The objectives for this module are to talk about the reasoning for escalating your privileges. There could be
times when you do not have to operate with higher privileges than what you have already. We will also discuss
and explore several methods to programmatically elevate your current privileges.

82 © 2024 Jonathan Reiter

Technet24

Why Escalate?

,p I Is there always a requirement to escalate privileges?
L]

Knowing what you can or cannot do with your current level of privileges is important
for your tool and the operator using it.

I non-admin I admin

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 83

Why Escalate?

There is only so much that you can do with standard user permissions and accesses. Depending on what the
end goal is or what you need to accomplish on the target, you might not even need to escalate your privileges.
That might contradict from what others have said and what you might know and that is fine. All I am saying is,
why waste your time coding something to be done as Admin when it all could have been done as a regular
user. A lot of enumeration and survey tools can run without needing to be Admin and can still pull back
enough information about your target to decide if that target is worth bringing down additional tools or
capabilities.

Anyway, say you finally made the choice that you must be Admin to accomplish its needs. Now you need to
find a way to escalate or gain more privileges. In my opinion, this could be something small like enabling the
debug privilege. The debug privilege could come in handy when enumerating processes or opening process
handles to them. Some processes will not allow you to open a handle to them because they might belong to a
different user, but if you have the debug privilege (SeDebugPrivilege, SE DEBUG_NAME), then you should
not have much of a problem. What are privileges anyway?

© 2024 Jonathan Reiter 83

Windows Privileges
@ I What do privileges do for you!?

I Enabled I Disabled
Indicates a privilege is present Indicates a privilege is present
and set, or authorized, in your but not set, or authorized, in your
token. Could be disabled. token. Could be enabled.
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 84

Windows Privileges

What is a privilege and what does it do for you? According to Microsoft, “A privilege is the right of an
account, such as a user or group account, to perform various system-related operations on the local computer,
such as shutting down the system, loading device drivers, or changing the system time.” Now that we know
what a privilege is, we can discuss what can be done or cannot be done. When a target is first compromised,
you would typically find yourself in a standard user account. Very rarely are you exploiting a system and are
greeted with domain admin right out of the gate. So, as a standard user with basic privileges, what can be
done? What privileges are typically enabled for that account’s token? As mentioned previously, when
performing process enumeration, you will not be able to obtain a process handle to certain processes if you do
not have the SeDebugPrivilege enabled. The process manager is the gatekeeper for that action and will happily
reject your attempt if the access checks do not pan out. Typically, when Windows creates your token for your
user account, you cannot change the privileges that are present, in other words, the privileges that are
displayed after issuing the whoami /priv command. However, if you make the jump into the kernel, you can do
whatever you want and give yourself new privileges. What about stealing privileges in the form of tokens? Let
us get ready to dive into that.

Reference:
https://docs.microsoft.com/en-us/windows/win32/secauthz/privileges

84 © 2024 Jonathan Reiter

Technet24

Securable Objects

@ I Objects that have a corresponding security descriptor

Most objects are created at the request of the user: CreateProcess, CreateThread,
CreateFile, etc. The functions typically accept a pointer to a SECURITY_ATTRIBUTES
structure. There are several object types that can be secured.

I files I processes I reg keys I threads

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 85

Securable Objects

Remember the section where we were talking about the Create* family of Win32 APIs? It might seem like a
long time ago, so here is a refresher. The Create* API family is a way for a user-mode application to ask the
kernel to create on object. The kernel does so, after checking a few items, and gives the application a handle to
the newly created object. The handle is safe and sound, stored away in the process’ handle table. The
SECURITY ATTRIBUTES parameter for some of the Create* functions, like CreateProcess or CreateFile,
allow objects to be secured, or hardened, depending on what is passed in as an argument. If you pass in NULL
for the SECURITY ATTRIBUTES parameter, you are saying to the system that the default security descriptor
is good enough, and typically the default is good enough. So, when someone attempts to call OpenProcess on
that process, the process manager is going to check to see what the security descriptor is for that process. If
everything checks out, then your handle will be returned. If not, you will be greeted with the infamous
0xC0000005 (ERROR_ACCESS VIOLATION) error.

There are several types of objects that you can specify security descriptors for to control access to them. The

types noted on the slide are not an all-inclusive list, but rather some of the more common objects you might
create and/or come across.

© 2024 Jonathan Reiter 85

Can | Have a Token?

h I Access tokens are given after successful authentication.

Each process that you create after logging in will have a primary token, which is tied to
you, the user. The security descriptor of the token can and will be checked when
attempting to access a securable object.

I SID/logon SID I Privileges
I Default DACL I Primary or impersonation
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 86

Can I Have a Token?

Right when you log on to a system, your user account will be given a token, which holds information like what
operations you are or are not allowed to carry out. This is called your access token as it describes your level of
access. When it comes to processes that you create, whether being done programmatically or by double-
clicking an executable, it should have a primary access token tied to it, which is then tied back to you. There is
also an impersonation token, which is created when a process, like a server process, impersonates a client
thread to interact with the object using the client’s permissions. Impersonation is a way to protect access to
sensitive objects since services typically run at a higher integrity level than that of a client process connecting
to it.

What is in a token and what is inside a token? There are several items annotated on the slide that can be inside
of a token, but of course there are more items that a token holds. For starters, we have the security identifiers
(SIDs), which represent the user or group, but also in the token is where the access token originated, and the
SID for the primary group. Our favorite header file, winnt.h, defines many TOKEN _* structures, like

TOKEN USER, TOKEN ORIGIN, TOKEN PRIVILEGES, TOKEN GROUPS, and many more. The

TOKEN_ PRIVILEGES structure is an interesting one because it contains an array of privileges for a specific
access token. The array entries are of type LUID AND_ATTRIBUTES structures, which, by no surprise, holds
the LUID and attributes of a privilege. As the name eludes, privileges do have attributes.

86 © 2024 Jonathan Reiter

Technet24

Privileges and Attributes

@ I SE_PRIVILEGE_* values that describe the privilege

ENABLED = Privilege is simply enabled

ENABLED BY DEFAULT = Enabled by default

REMOVED = For removing privileges
USED FOR ACCESS = Used to obtain access to a service or to an object
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 87

Privileges and Attributes

Privileges are what determine if a user, or process, is allowed to carry out an operation within the system.
Privileges are not necessarily tied directly to an object, but rather are tied to what can be done. Debuggers like
WinDbg Preview that attach to processes must have the SeDebugPrivilege privilege, and programs that wish
to load a kernel mode driver must have the SeLoadDriverPrivilege privilege. All privileges have attributes,
and they can be any one of the attributes listed on the slide, as well as a combination of attributes. As
mentioned previously, the attributes for a privilege are stored in the TOKEN PRIVILEGES structure; more
specifically, the privileges member of the structure, which is a LUID _AND ATTRIBUTES struct. Here is how
that struct is defined.

typedef struct LUID AND ATTRIBUTES {
LUID Luid;
DWORD Attributes,
4 LUID AND ATTRIBUTES, *PLUID AND ATTRIBUTES;

The Luid is a locally unique identifier that is used for identifying privileges unique to the current boot and
system. Furthermore, they are 64-bit values, which aids in their uniqueness for that current boot. The Luid has
attributes that are comprised of bit flags; 32 of them. The LUID structure has two members: DWORD LowPart
and LONG HighPart. The members hold the unsigned low portion of the ID and the signed high portion of the
ID, respectively.

© 2024 Jonathan Reiter 87

Integrity Levels (1)

@ I There are six integrity levels the system uses for privilege separation.

I Untrusted (0) —_—
B orow) —
B redium (2) —
I High (3) —_—
I System (4) —_—
I Protected (5) R

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control ~ 88

Integrity Levels (1)

Anonymous Group started processes

AppContainer processes

Typical processes when UAC is turned on

UAC elevated processes

System services and processes; wininit, winlogon, Isass

Set via kernel-mode callers

Tokens can have an integrity level (IL) tied to them, which can be queried using the GetTokenInformation
function. There are six levels implemented by the OS and they aid in the separation of privileges, with the
lowest level being 0, the Untrusted level. It has the SID S-1-16-0x0 tied to it and this level blocks almost all
write access. Processes that are executed from the Anonymous Group typically fall into this level. Levels 1-4
are the levels you mostly read about online, even with MSDN online documentation. The Low-IL is what the
AppContainer processes will use when they start. These are the applications built for UWP, or the Universal
Windows Platform. Basically, applications that can run universally, like on Xbox and your PC are part of the
Universal Windows Platform. You could think of AppContainer as its own IL, but it really boils down to Low-
IL. Most objects cannot be written to at Low-IL, like Registry Keys. Now, when you have UAC enabled, the
default should be set to Medium-IL, which gives you a little bit more freedom. As a matter of fact, most
processes will be launched at this level. At the High-IL is where a process with Administrative rights will
show the prompt for the UAC consent box. This could be thought of as an elevated process. The highest
integrity level is System-IL where the system services like Isass operate. Many antivirus products have
components that run at this IL as well. Level 5, the Protected level, is not enabled by default and is rarely used.
The Protected level can only be set from callers in kernel-mode.

88 © 2024 Jonathan Reiter

Technet24

Integrity Levels (2)

ElEhvinlogon.exe System

Hfontdrvhost.exe AppContainer
Fldwm.exe System
5 explorer.exe Medium
vmtoolsd.exe Medium
MediaDetector.exe Medium
“eicmd.exe Medium
=i conhost.exe Medium
& procexpb4.exe High
SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 89

Integrity Levels (2)

The screenshot on the slide is from Process Explorer, which, as you can see, is running with High-IL. The
reason you see this is because I right-clicked on the executable image icon, selected “Run as Administrator”
and gave consent to the UAC prompt. You can see other processes and what their corresponding integrity
levels are, like explorer.exe and winlogon.exe.

© 2024 Jonathan Reiter 89

whoami /priv: non-admin (1)

MM

Privilege Name Description

SeShutdownPrivilege Shut down the system Disabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeUndockPrivilege Remove computer from docking station Disabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled
SeTimeZonePrivilege Change the time zone Disabled

whoami /priv: non-admin (1)

As mentioned previously, privileges are tied to your primary token. The privileges shown on the slide are from
the standard user account on the Windows Dev VM. After issuing the whoami /priv command, any privileges
that are marked as Enabled will be listed in the command’s output. The only privilege that is enabled at the
moment is SeChangeNotify, which, as the name suggests, allows you to traverse different directories to get to
files or subdirectories that you can access. The privilege does not give you the access to list contents of every

directory you navigate. This privilege should be present and enabled by default for every account. The

remainder of the privileges are disabled, but that does not mean they cannot be enabled when you need to
perform some operation that the privilege allows. Say, for example, you needed to shut down the system and
you already have the privilege to do that action, so it would become enabled. Let us look at another example

for changing the system time or the time zone.

90

© 2024 Jonathan Reiter

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 90

Technet24

whoami /priv: non-admin (2)

f*1SystemSettings.exe |Medium
Privilege Flags
SeChangeNotifyPrivilege Default Enabled
SelncreaseWorkingSetPrivilege Disabled
SeShutdownPrivilege Disabled
SeTimeZonePrivilege Enabled
SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 91

whoami /priv: non-admin (2)

While going through something as simple as changing the time zone, the SeTimeZonePrivilege has changed
from Disabled to Enabled, as shown on the slide. This was done without any prompts showing up before,
during, or after the modification. Another item to note is that the SystemSettings.exe is running with a
Medium-IL. There was no need for it to prompt the user for elevation to change the time zone.

© 2024 Jonathan Reiter 91

whoami /priv: High Integrity

Privilege Name

92

SeIncreaseQuotaPrivilege
SeSecurityPrivilege
SeTakeOwnershipPrivilege
SelLoadDriverPrivilege
SeSystemProfilePrivilege
SeSystemtimePrivilege
SeProfileSingleProcessPrivilege
SeIncreaseBasePriorityPrivilege
SeCreatePagefilePrivilege
SeBackupPrivilege
SeRestorePrivilege
SeShutdownPrivilege
SeDebugPrivilege
SeSystemEnvironmentPrivilege
SeChangeNotifyPrivilege
SeRemoteShutdownPrivilege
SeUndockPrivilege
SeManageVolumePrivilege
SeImpersonatePrivilege
SeCreateGlobalPrivilege
SeIncreaseWorkingSetPrivilege
SeTimeZonePrivilege
SeCreateSymbolicLinkPrivilege

Adjust memory quotas for a process
Manage auditing and security log
Take ownership of files or other objects
Load and unload device drivers
Profile system performance

Change the system time

Profile single process

Increase scheduling priority

Create a pagefile

Back up files and directories
Restore files and directories

Shut down the system

Debug programs

Modify firmware environment values
Bypass traverse checking

Force shutdown from a remote system
Remove computer from docking station
Perform volume maintenance tasks
Impersonate a client after authentication
Create global objects

Increase a process working set
Change the time zone

Create symbolic links

Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Enabled

Disabled
Disabled
Disabled
Enabled

Enabled

Disabled
Disabled
Disabled

SeDelegateSessionUserImpersonatePrivilege Obtain an impersonation token for another user in the same session Disabled

whoami /priv: High Integrity

Let us look at a process with the High-IL. As can be seen on the slide, a High-IL process, command prompt in
this instance, has a large increase in the number of privileges that are present. As we have seen already, even
though most of the privileges are disabled, they can be enabled on the fly on an as needed basis.

© 2024 Jonathan Reiter

loping Windows Implants, Shellcode, Command and Control 92

Technet24

Privileges and ACLs?
@ I Abuse privileges to bypass ACLs!

I SE _BACKUP_ NAME I SE RESTORE NAME
Regardless of the file’s ACL, Regardless of the file’s ACL,
granted complete read access granted complete write access
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 93

Privileges and ACLs?

There is an interesting tidbit when it comes to privileges. Most privileges allow you to perform some
operation, but still only after the system does a privilege check. Well, there are two privileges that bypass that
check: SeBackupPrivilege and SeRestorePrivilege. MSDN describes these two privileges as ones that are used
to back up files and directories, and restore files and directories, respectfully. Also, they clearly indicate that
with just the SeBackupPrivilege, you will be given all the read access you could ever want to the file system
without a single check being done. With this privilege, you will have several access rights, including

FILE GENERIC READ. You might be thinking that while it is nice to read any file, what about being able to
write? Well, the SeRestorePrivilege has you covered. The restore privilege allows system-wide access to write
to any file you would like. Again, it does not matter what the ACL says because this trumps it. As with the
backup privilege, this one comes with several access rights, including FILE GENERIC WRITE.

If you would like to explore more privilege constants, you can find them in the winnt.h header file where they
are defined.

Reference:
https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

© 2024 Jonathan Reiter 93

More Privileges

@ I There are several Se*Privileges that could be of interest.

SeTakeOwnershipPrivilege I SeDebugPrivilege

SeTcbPrivilege I SeLoadDriverPrivilege

I SeCreateTokenPrivilege

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 94

More Privileges

We talked about several privileges up to this point and what they can enable you do, but there are more that
would be of interest. The first thing you might be wondering is why none of the privileges noted on the slide
are even present for most standard user accounts, and that observation is accurate. The privileges will not be
present until you have been able to escalate your privileges. The privileges on the slide can be abused to help
you escalate from Admin to SYSTEM.

The first privilege on the slide is SeTakeOwnershipPrivilege. This is a powerful privilege because it allows
you to take ownership of any securable object you desire. The privilege even allows you to take ownership of

securable objects tied to protective processes!

SeTcbPrivilege is described as the Trusted Computing Base (TCB). With this privilege, you become a trusted
part of the computer just like how some of the Windows subsystems are.

The SeCreateTokenPrivilege allows you to do just what it sounds like it would do—create tokens. You could
abuse this to create tokens for arbitrary users on the local system.

We talked about SeDebugPrivilege previously, but one item to note is that even with this privilege enabled,
you cannot mess around with protected processes.

SeLoadDriverPrivilege does just what it sounds like it would do—Tload drivers. In the kernel, pretty much
everything is trusted, so bringing your own vulnerable driver to the game would greatly boost your efforts.

94 © 2024 Jonathan Reiter

Technet24

Privileges: Programmatically

I Privileges can be enabled/disabled programmatically.

When you have a set of privileges that are present, but listed as disabled, you can
programmatically adjust those privileges to be enabled. The opposite is also true, but
why limit yourself?

I LookupPrivilegeValue I OpenProcessToken

I AdjustTokenPrivileges

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 95

Privileges: Programmatically

With the help of the Win32 API, we can create programs that can enable or even disable privileges that are
present in our access token. Present means they are listed in the output of the whoami /priv command. If you
were able to find a UAC bypass to gain an elevated CMD prompt, you would then have many more privileges
that would be present, but just not enabled, yet. There are three main APIs involved with this process:
LookupPrivilegeValue, OpenProcesToken, and AdjustTokenPrivileges. One common privilege that can be
enabled is the SeDebugPrivilege. Of course, there are many others that you can select to use, but we will use
this one for an example. Let us take a look at the APIs involved and what arguments they will need.

© 2024 Jonathan Reiter 95

LookupPrivilegeValue

I LookupPrivilegeValue BOOL LookupPrivilegeValueA(

_In_opt_ LPCSTR 1lpSystemName,

In LPCSTR lpName,

Out PLUID 1plLuid
Gets the current LUID)

// EXAMPLE

if (!LookupPrivilegeValue(...))

Has a Boolean return type {
// code here
}
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 96
LookupPrivilegeValue

Whenever you need to retrieve the locally unique identifier for a privilege constant or privilege name like
SeDebugPrivilege, this is the function to use. It has a BOOL return type, so it is simple to error check. Simply
wrap the function call inside the condition of an if statement and add the code you want to execute inside the
body like shown on the slide. Let us take a look at the function’s parameters.

IpSystemName, indicates what system to retrieve the Luid for, which indicates that the function should use the
local system instead of a remote system. This parameter can optionally be NULL.

IpName, is a pointer to the privilege name as it is defined in the Winnt.h header file. So, you could give it a
constant like SE DEBUG_PRIVILEGE or SeDebugPrivilege.

IpLuid, will be a pointer to a variable you use to store what the function finds.

96 © 2024 Jonathan Reiter

Technet24

OpenProcessToken

I OpenProcessToken BOOL OpenProcessToken (

_In HANDLE ProcessHandle,
In DWORD DesiredAccess,
_Out PHANDLE TokenHandle

Obtains a handle to a process’)i
access token

// EXAMPLE

if (!OpenProcessToken(...))
Has a Boolean return type {

return FALSE;

}

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 97

OpenProcessToken

You cannot change any privileges in a token without having a handle to it. The OpenProcessToken gets you
that token handle, when successful, of course. As with the LookupPrivilegeValue function, it has the same
BOOL return type. One example for how to call this function has been noted on the slide. The function
arguments have been omitted for space constraints. Speaking of arguments, let us take a look at the
parameters.

ProcessHandle, is the handle to a process for which you want a token handle. Be sure that the
PROCESS QUERY_ INFORMATION permission is present.

DesiredAccess, is the access mask that you will pass to dictate, or rather ask, what type of access you wish to
have for the access token. This is what gets compared with the DACL, the discretionary access control list of
the token. This will ultimately be used to approve or deny the requested access type.

TokenHandle, is the pointer to some variable that will hold the handle to this token.

The TokenHandle can then be used for the call to AdjustTokenPrivileges.

© 2024 Jonathan Reiter 97

AdjustTokenPrivileges

BOOL AdjustTokenPrivileges(
® AdjustTokenPrivileges _In_ HANDLE TokenHandle

In BOOL DisableAllPrivileges
_In_opt_ PTOKEN_PRIVILEGES NewState
In DWORD BufferLength

_Out_opt_ PTOKEN_PRIVILEGES PreviousState
_Out_opt_ PDWORD ReturnLength

Enables or disables privileges)

// EXAMPLE
if (!AdjustTokenPrivileges(...))
Has a Boolean return type {
return FALSE;
}
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 98

AdjustTokenPrivileges

This is the function you can use to enable or disable privileges and is really the last and final step you would
have to take if you wanted to enable or even disable a token’s privileges. Compared to the previous two
functions, LookupPrivilegeValue and OpenProcessToken, there is a lot more going on with this function. It
has a BOOL return type, so we can continue to plug this into an if condition just like the previous two
functions. Depending on what you would like to do, it will require a different setup before calling the function.
We only care about enabling privileges, so that is the setup of interest.

Let us take a closer look at the function’s parameters and types.

TokenHandle, HANDLE, is used for the handle to the access token you obtained by calling
OpenProcessToken.

DisableAllPrivileges, BOOL, if set, will disable all privileges for the access token. We do not want that, so
FALSE it is.

NewState, PTOKEN_ PRIVILEGES, is a pointer to a filled-out structure that indicates the Luid and its
attributes for the privilege being enabled.

BufferLength, DWORD, should be the size of the TOKEN PRIVILEGES struct that you made somewhere
before this call; sizeof(TOKEN_ PRIVILEGES); .

PreviousState, PTOKEN_PRIVILEGES, is a parameter we do not really care about because we are making a
new state; (PTOKEN PRIVILEGES)NULL; .

ReturnLength, PDWORD, is also a parameter we do not care about; (PDWORD)NULL; .

98 © 2024 Jonathan Reiter

Technet24

Stealing Tokens

Source code review!

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 99

Stealing Tokens
Time to jump into the source code and explain it before you implement it on your own.

© 2024 Jonathan Reiter 99

Lab 3.5: TokenThief

®
q I Nothing more fun than being a token thief

Please refer to the eWorkbook for the details of the lab.

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 100

Lab 3.5: TokenThief
Please refer to the eWorkbook for the details of the lab.

100 © 2024 Jonathan Reiter

Technet24

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 101

What’s the Point?
The point of this lab was to explore the steps and APIs involved with stealing a token for escalating privileges.

© 2024 Jonathan Reiter 101

Put Our Service to the Test!

I& I Services and what they can do for your escalation needs

Services are a special kind of process that interact with the SCM. Services do not need
a user to login to start as they can be started at boot and run without any user logged
on to the system.

I schedule I EventLog I gupdate I iphlpsve I BITS

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 102

Put Our Service to the Test!

There are several services that execute behind the scenes, even when there is no user logged on to the system.
Services can be configured to start with the system at boot, shortly after boot, when a user logs on, manual
start, etc. Regardless of the start trigger, all services must answer to the Service Control Manager (SCM). The
installed drivers and services are in a database that is maintained by the SCM. The SCM database can be found
under the HKLM\SYSTEM\CurrentControlSet\Services registry key with each subkey being the name of the
service. Because the SCM acts as a Remote Procedure Call (RPC) server, services can be configured and
managed remotely. Depending on what applications your system has installed, you could see some of the
services listed on the slide: schedule for the Task Scheduler, EventLog for the Windows Event Log, gupdate
for Google Chrome’s update service, iphlpsvc for the IP Helper net service, and BITS for the Background
Intelligent Transfer Service.

102 © 2024 Jonathan Reiter

Technet24

Services: Attributes

I& I Each service will come with some attributes.

I Start Type I Service Type I Error Level
. . Indicates if the Indicates the severity
Indicates if the
. service runs in its level if the service or
service is auto-start, . .
own process or share driver fails to start,
on-demand, or . .
. one with other and what action to
disabled .
services take
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 103

Services: Attributes

There are certain pieces of information that are good to know about services that I just call service attributes.
The service’s type is used to indicate to the system, and SCM, if the service is going to execute in its own
process, or if it will share a process with some other services. The service’s start type indicates how the
service, or driver, will begin its execution. Auto-start means the service, or driver, will kick off automatically
when the system boots. On-demand means that a user must manually start it; however, if an auto-start service
depends on some on-demand service, then the SCM will happily start the on-demand service. Disabled means
the service, or driver, cannot start at all. The error control level is used to indicate how bad things will be if a
service, or driver, fails to start when it should. Perhaps the system will not boot properly if Driver A does not
start before Driver B starts. With this, a predefined action can be specified, which can simply be to attempt to
start the service again. Another attribute is the absolute or fully qualified path to the service/driver. Services
should have the EXE extension and drivers should have the SYS extension.

The SCM does a few housekeeping steps when it starts a service:

Search the SCM database for the account information.

Make sure the service account is logged on. If not, log on.

Load the user profile.

Like process hollowing, the service is started, but in a suspended state.
Give the process its logon token and resume execution.

nh e =

The service should now be ready to go on the system.

© 2024 Jonathan Reiter 103

Services: Handles

jj_& I Interacting with the SCM requires handles

There are several handles to objects that are required to be obtained when you want
to interact with, modify, delete, or create a new service.

I SCManager I Service I Database lock

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 104

Services: Handles

The SCM database can be queried, modified, etc. once you obtain a handle to it. What you really have is a
handle to the SCManager object and within that container object are the service objects. To request such a
handle, you must call the OpenSCManager AP1. With the returned handle, you can then use that to enumerate
services, delete services, install services, open services, or lock the services database lock. For those coming
from red team or penetration testing team background, enumerating services might be something you do when
looking for some low hanging fruit for privilege escalation. Searching for services with unquoted paths could
be one such method that boosts you up to SYSTEM as long as the service is running as SYSTEM, which some
of them do. Maybe you ran a command like the one below before to find those unquoted service paths. While
it is nice to be able to run a Windows command to do this, doing this programmatically would be better.

wmic service get name,pathname,displayname,startmode | findstr /i auto | findstr /i /v "C:\Windows\\" | findstr
i

104 © 2024 Jonathan Reiter

Technet24

Services: Enumeration

jf_% I You cannot find what you do not look for.

Enumerating services is just another part of on target recon with hopes of finding
something to exploit. Most tools that deal with Windows services enumerate and
query them to show the operator some potential LPE vectors.

I EnumServicesStatus I QueryServiceStatus

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 105

Services: Enumeration

LPE via services has been a great success for red teamers. Regardless of the tool you may have used in the
past, it probably did some form of enumeration of services. To do this, you could manually parse the subkeys
from the services registry key and then manually query each one, but a great way is to use the service-specific
Win32 APIs that are available, like EnumsServicesStatus or EnumServicesStatusEx. One of the items to look
for after enumerating the services would be an unquoted path.

As a refresher, services with an unquoted service path means you are looking for spaces to be present in the
absolute path along with missing quotation marks around that path, so something like this:
C:\Users\student\SEC 670\Labs\Day 3\Unquoted Service Paths\. That example path has spaces in it and there
are no quotations marks around it. When the system goes to find the EXE, it will stop at the first space that it
comes across and use that path to start its search. Sticking with that example path it would become
C:\Users\student\SEC.exe. Most likely, that EXE would not exist on the system, so it would have to keep
searching: C:\Users\student\SEC 670\Labs\Day.exe. The system would keep searching until the EXE is found.
The idea is to give it something to find early in the search process to force your EXE to run.

You could also take advantage of services with weak permissions. As a reminder, regular users should not be
able to modify the configuration information of services. Local administrators should be the only ones with
those permissions enabled. Say for an example there was a service with a weak configuration or incorrect
permissions—the service might be pointing to some directory where you have write access. The write access
could let you drop a DLL to that location and gain execution there. One real world example was the CVE-
2019-1322 notice with the UsoSvc service. The service’s binary path could be modified to point to your
malicious executable, like a msfvenom payload or a custom one you developed.

© 2024 Jonathan Reiter 105

EnumServicesStatusEx

& I EnumServicesStatus .
[.% BOOL EnumServicesStatusExA(
In SC_HANDLE hSCManager,
In SC_ENUM_TYPE InfolLevel,
. . _In_ DWORD dwServiceType,
Enumerates services in SCM “In_ DWORD dwServicestate,
database “Out_opt_ LPBYTE 1pServices,
In DWORD cbBufSize,
Out LPDWORD pcbBytesNeeded,
Out LPDWORD ServicesReturned,
Has a Boolean return type _Inout_opt_ LPDWORD ResumeHandle,
_In_opt_ LPCSTR pszGroupName
)s

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

EnumServicesStatusEx

Before you can query the status of a service, you must first find a service to query, which can be done using
the EnumServicesStatusEx API. All the services in the SCM database will be enumerated with this API. Let
us take a look at the parameters for it.

hSCManager is the SC_HANDLE returned from the OpenService or CreateService APIs. The handle should
at least have the SC_ MANAGER_ENUMERATE SERVICE access mask.

InfoLevel has only one option, SC_ ENUM _PROCESS INFO.

dwServiceType is a filter for a certain service type. Typically, you would pass in SERVICE WIN32 here to
indicate that you want all service types.

dwServiceState gives you the option to enable finer filtering by not only specifying the service type but also
the current state of the service. Typically, you would want to pass in SERVICE STATE ALL.

IpServices is the buffer that will wind up holding this information.
cbBufSize is the size of the buffer in bytes. Most times you might not know how many bytes to pass here, but
we can find that out. If you really wanted to save another function call, just use 256KB as the size since the

buffer cannot be larger than that.

pcbBytesNeeded will let you know if the buffer you passed in is too small to hold everything. If so, the API
will fail. Then you can call the API again with the adjust value.

IpServicesReturned is a pointer to a variable that will be used to store how many services were returned.

IpResumeHandle is optional, but it could be used if there is a need to make multiple calls since not all of the
information might be given after the first call.

106 © 2024 Jonathan Reiter

106

Technet24

pszGroupName could be used to filter the services according to their group name. NULL here means ignore
any group a service is a part of and enumerate all groups.

© 2024 Jonathan Reiter 107

QueryServiceStatusEx

I& I QueryServiceStatus

BOOL QueryServiceStatusEx(

Obtai h f . ~In_ SC _HANDLE hService,

LIS 180G SIS I SR “In_ SC_STATUS_TYPE Infolevel,

_Out_opt_ LPBYTE 1pBuffer,
In DWORD cbBufSize,
Out LPDWORD pcbBytesNeeded

Has a Boolean return type)5

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 108

QueryServiceStatusEx

After you have obtained a list of the services installed on your target, you would most likely want to query
them for more detailed information. To do that, you would call the QueryServiceStatusEx API. Let us take a
look at the five parameters.

hService is the SC_HANDLE from OpenService or CreateService APls. Regardless of the chosen API, the
handle must have SERVICE_QUERY_ STATUS at a minimum.

InfoLevel indicates the service attributes that you would like to know. The buffer you pass in for /pBuffer will
be filled out with this information. The only value supported here is SC_ STATUS PROCESS INFO. Maybe
someday in the future this will change.

IpBuffer is a pointer to a buffer that will store the status information of the service.

cbBufSize is the size of the buffer that you are pointing to via [pBuffer. This is in bytes too, by the way.

pcbBytesNeeded is a pointer to a variable that will store the number of bytes needed to hold the status
information of the service. This is useful when you do not know how many bytes you need to allocate for your

IpBuffer.

108 © 2024 Jonathan Reiter

Technet24

QueryServiceConfig

I% I QueryServiceConfig

BOOL QueryServiceConftigA(

Obtains configuration of a service _In_ SC_HANDLE hService,
_Out_opt_ LPQUERY_SERVICE_CONFIGA pSvcCfg,
In DWORD cbBufSize,
Out LPDWORD pcbBytesNeeded
)s

Has a Boolean return type

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 109

QueryServiceConfig

The QueryServiceConfig AP1 will obtain the configuration parameters for whatever service you give it. There
is also another version of this API named QueryServiceConfig2 that will obtain the configuration parameters
that are optional. This API only has four parameters, so let us dive into them.

hService is the SC_HANDLE from OpenService or CreateService APls. Regardless of the chosen API, the
handle must have SERVICE _QUERY_ STATUS at a minimum.

IpServiceConfig, pSvcCfg on the slide for brevity, is a pointer to the buffer that will be used to store the
configuration information about the service. As can be seen by the type, this will be in the format of the
QUERY_SERVICE CONFIG structure, which is made up of members like dwServiceType, dwStartType,
dwErrorControl, IpBinaryPathName, etc. The binary path name could be of interest if the path has spaces and
is missing quotes around it.

cbBufSize, just like for the other APIs mentioned thus far, is the size of the buffer that is pointed to by the
IpServiceConfig parameter, in bytes, of course. The buffer need not be larger than 8KB as this is the max size.

pcbBytesNeeded: 1f the API would ever fail with ERROR_INSUFFICIENT BUFFER, this pointer to a

variable will end up holding the number of bytes needed so that the buffer pointed to by the IpServiceConfig
parameter could be sized accordingly for a secondary call.

© 2024 Jonathan Reiter 109

ChangeServiceConfig

jj_% I ChangeServiceConfig BOOL ChangeServiceConfigA(
In SC_HANDLE hService,
In DWORD dwServiceType,
In DWORD dwStartType,
In DWORD dwErrorControl,

Modifies a service’s configuration “In opt_ LPCSTR 1pBinaryPathName,

_In _opt_ LPCSTR 1lplLoadOrderGroup,
_Out_opt_ LPDWORD 1pdwTagId,
_In_opt_ LPCSTR 1pDependencies,
Has a Boolean return type _In opt_ LPCSTR 1lpServiceStartName,
In opt LPCSTR 1lpPassword,
_In_opt_ LPCSTR 1pDisplayName

)

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 110

ChangeServiceConfig

The ChangeServiceConfig API is very similar to the CreateService API that will be introduced later. The
purpose of this API is to make a change to the configuration of an already existing service. This function can
be used to change almost any configuration except the service’s name. After you have enumerated all the
services and decided what service you would like to modify, this is the function you use to get it done. Perhaps
one example could be that you found a service that points to a writable location, and you change the binary
path for it; a simple way to gain execution. With this API you can keep everything the same and only change
the IpBinaryPathName. The parameters are, for the most part, the same as the CreateService API. The major
differences here are that if you are not going to make a change to one of the parameters, you either pass in
SERVICE NO CHANGE or NULL. The SERVICE NO_CHANGE can only be used for the first three
parameters and then NULL must be used for the remainder.

There is also the ChangeServiceConfig2 API, which allows you to change a service’s trigger. Triggers are an
interesting concept because they can be used to start or stop your service. An example trigger could be when
an IP address is first pulled to a NIC for availability or when the NIC loses its availability. Another trigger for
a service could be when the computer joins an active directory domain. Your malicious service could also
have a trigger, which is something that is up to you since you are the developer. You just have to do what
makes sense and what would meet the requirements for your end customer—say, a red team operator.

110 © 2024 Jonathan Reiter

Technet24

Services: Creation (1)

Service Process

Main Thread L @ Service Thread

@) & @)
]
]

SCM Named Pi %{Call StartServ:.ceCtrlDJ.spatcher Call RegisterServiceCtrlHandlerE

i

Wait until all services stop
]

Main function returns, process exits

t Wait for client requests]

5O Lo

Service control handler Handle client requests

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Services: Creation (1)
For us to programmatically create and eventually install a service, there are a few requirements your code
must meet.

At a high level, it must have a service entry point, a service ServiceMain function, and a service control
handler function. Our service will not be sharing its address space with other services, so it will be of type
SERVICE_WIN32 OWN_PROCESS. The ServiceMain function is the main function you might already
know. If not, the ServiceMain function has several important items to carry out when it is called by the service
control dispatcher. One item is that it must call StartServiceControlDispatcher so that we can be connected to
the SCM via a named pipe. The next item we must take care of is call the RegisterServiceCtriHandler
function so that it can register a Handler function that will be called when control requests come to the service.
Some of the control requests that could come into the service are start, stop, pause, etc. Finally, we must call
the SetServiceStatus function to report to the SCM that we are running, SERVICE RUNNING. The Handler
function is required because it is the function that is called by the control dispatcher when the service receives
a control request. The function given is executed in the context of the control dispatcher.

Reference:
Pavel Yosifovich. Windows 10 System Programming, Part 2. Pavel Yosifovich, 2022.

© 2024 Jonathan Reiter 111

Services: Creation (2)

I& I Small code snippet for a service’s main function

VOID WINAPI EvilMain(...);

INT main() {

CHAR ServiceName[] = “notEvil”;

SERVICE TABLE ENTRY table[] = {
{ serviceName, EvilMain },

{ NULL, NULL } // the end of the array
J o
if (!StartServiceCtrDispatcher (table)) { return 1;}
}
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 112

Services: Creation (2)
As mentioned previously, the main function has the responsibility of calling the StartServiceCtriDispatcher

function. If other services are going to share this process’ address space, the table is passed as an argument to
the function, so SCM knows about them. The table array holds SERVICE_ TABLE ENTRY structs that have
two members: the service name (LPSTR) and a pointer to the service’s main function

(LPSERVICE _MAIN_FUNCTION). The IpServiceName struct member is the name of the service that you
would see listed in Task Manager or in the registry. The /pServiceProc is the pointer to the ServiceMain
function that has a very specific signature, or prototype.

VOID LpServiceNameFunction(
DWORD dwNumServicesArgs, // the number of arguments that are in the IpServiceArgVectors array
LPSTR* IpServiceArgVectors // null-terminated strings that are passed into the service via the StartService

function call when the service was started.

)}.

112 © 2024 Jonathan Reiter

Technet24

Services: Creation (3)

jf_& I Code snippet for ServiceMain()

SERVICE STATUS g_ServiceStatus;
SERVICE STATUS HANDLE g ServiceStatusHandle;
HANDLE g ServiceStopEventHandle = NULL;

EvilMain(...){

g ServiceStatusHandle = RegisterServiceCtrlHandlerEx(...);
g ServiceStatus.dwServiceType = SERVICE WIN32 OWN PROCESS;
g ServiceStatus.dwServiceSpecificExitCode = 0;

g ServiceStatus.dwWaitHint = 500;

}

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 113

Services: Creation (3)

The ServiceMain function, EvilMain in our case, is where most of the service initialization takes place. There
are some global variables near the top of the slide that are filled out and set like the g_ServiceStatusHandle
and the g_ServiceStatus. Below is the function prototype for the RegisterServiceCtrlHandlerExA function.

SERVICE_STATUS HANDLE
WINAPI
RegisterServiceCtriHandlerExA(

LPCSTR IpServiceName, // the name of the service that is executed by the calling thread and the
name passed to CreateService

LPHANDLER _FUNCTION_EX IpHandlerProc, // the handler function to be registered with the SCM.
Below is the signature for the handler.

LPVOID IpContext // simply a pointer to some user-defined data that could be used to identify the service if
it is running in a shared process with other services

)i
This is the signature for a handler function:

DWORD

WINAPI

HandlerEx(

DWORD dwControl,
DWORD dwEventType,
LPVOID IpEventData,
LPVOID IpContext

)i

© 2024 Jonathan Reiter 113

If you recall, the service type of SERVICE WIN32 OWN_PROCESS indicates that we do not intend to be
part of a shared process. This is particularly important because if your malicious service is going to be shared
in a process with other services, what happens when another service crashes? Your service will crash right
along with it, thus it is best to be in your own process. As a fail-safe, you could configure your service failure
action to simply restart the service and be just fine.

114 © 2024 Jonathan Reiter

Technet24

Services: Installation

I& I sc.exe is a common tool for service installation.

It has been common for users to use the service-related PowerShell cmdlets or the
sc.exe built-in utility for installing and querying services. Regardless of the tool being
used, the underlying API for installing a service is the CreateService() API.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 115

Services: Installation

A very common tool for installing services is the sc.exe (service create) built-in utility. The name passed to
this should also be the same name passed in your code’s call to RegsiterServiceCtriHandlerEx. For example,
if your service is going to be named notevil, then at the command line you would use sc screate notevil
binPath= “c:\path\to\your\notevil.exe . Later, after successful installation, you can query your service using
sc query notevil. The sc.exe utility, along with PowerShell cmdlets, uses Windows APIs under the hood to
perform their operations. The installing a service capability of those tools utilize APIs like the CreateService
API, which has whopping 13 arguments! It is a powerful function and a complicated one behind the scenes.
Thankfully, there are no structures that must be set up and passed into it. We will go into more details about
that function next. In the meantime, it is important to know the difference between the code for your actual
service, and the service control program, or the service installer program. Typically, your program will not
install itself as a service, although it can. It would be best for your implant to install a separate binary as a
service; one that could be used for persistence, even. Metasploit’s Meterpreter’s persistent service is a good
example and is freely available for you to see on GitHub.

© 2024 Jonathan Reiter 115

CreateService

SC_HANDLE CreateServiceA(
jj_& CreateService _In_ SC_HANDLE hSCManager,

In LPCSTR 1pServiceName,
_In_opt_ LPCSTR 1pDisplayName,
In DWORD dwDesiredAccess,

. . _In_ DWORD dwServiceType,

Creates service object “Tn_ DWORD dwStartType,

In DWORD dwErrorControl,

In opt LPCSTR 1pBinaryPathName,
_In_opt_ LPCSTR 1pLoadOrderGroup,
Has a SC_HANDLE return type _Out_opt_ LPDWORD lpdwTagld,)

In opt LPCSTR 1pDependencies,
_In_opt_ LPCSTR lpServiceStartName,
In opt LPCSTR 1pPassword

I

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 116

CreateService

MSDN describes the CreateService API as one that will create a service object when called. It will also add
the service to the SCM database, which is most likely the default database for the local system. Let us tackle
some of these parameters and describe what they do.

First up is ASCManager of type SC_HANDLE, which indicates that it needs a handle—one you would have
obtained from calling the OpenSCManager AP1. The OpenSCManager API accepts three arguments, the
name of the machine to connect to, the name of the SCM database to connect, and finally, the desired access to
the database.

IpServiceName, is the unique name you would see in the registry. Here, you are limited to 256 characters.

IpDisplayName is what is known as the friendly name and is what you would normally see in the Services tab
in the Task Manager. This string is also limited to 256 characters.

dwDesiredAccess is the access the returned service handle will require. So, to start a service by calling the
StartService AP, you would need to specify the SERVICE_START mask.

dwServiceType is the type of service that will be created. For our purposes this will be
WIN32 OWN_PROCESS (0x10).

dwStartType indicates when the service should be started. Services can have AUTO _START (2),
DEMAND START (3), or DISABLED (4).

dwErrorControl dictates what is to be done when service initialization fails. It can be IGNORE (0), NORMAL
(1), SEVERE (2), or CRITICAL (3).

116 © 2024 Jonathan Reiter

Technet24

IpBinaryPathName must be the full path where the executable is located. Command-line arguments can also
be passed in here after the executable’s name.

IpLoadOrderGroup is optional, so NULL is just fine here.
IpdwTagld is only for kernel drivers and as this is not a kernel class, we do not need to worry about this one.

IpDependencies is an optional list of strings naming other services that this service depends on for successful
initialization.

IpServiceStartName is the account that this service should execute under.

IpPassword would be for the password to the given user account.

© 2024 Jonathan Reiter

117

/ I One of many method of interprocess communications (IPC)

Application data sharing and communications, together, are known as |PC. Pipes are
one such mechanism of IPC. They allow for two-way communications either with
parent-child processes, or processes with no relationship.

I Anonymous pipes I Named pipes

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 118

Pipes!

There are times when processes must communicate with each other or share some data. Windows provides a
mechanism that allows the communication and sharing to take place. Such a mechanism is called interprocess
communications, or IPC for short. Even if you have not heard of IPC before now, you have definitely used it at
least once if you have ever cut, copy, or pasted anything. The clipboard could arguably be one of the most
commonly used IPC mechanisms. Some of the other mechanisms are COM, the Component Object Model,
which is the backbone to how Excel data can be embedded in Word documents. Another mechanism is file
mapping, which has many uses! Windows Sockets are yet another example of IPC. The IPC mechanism we
are focusing on at the moment is pipes. Pipes can allow communication to flow in both directions called
duplex operations. Think of a conduit—a pipe that an electrician might use to run wires through. Windows
pipes are very similar: they have two ends, and data can flow through them. The end points of the pipes are
where the reading and writing of data takes place. A duplex pipe allows the read and write operations to take
place at the same end of the pipe. A one-way pipe is where a write operation takes place at one end and the
read operation takes place at the other end. Pipes come in two flavors: anonymous and named.

118 © 2024 Jonathan Reiter

Technet24

Pipes: Anonymous
/ I Less overhead than named pipes

I Local only I One-way
Anonymous pipes will always be Anonymous pipes cannot
local to the system and will perform read and write
never be able to communicate operations at the same end of
over the network. the pipe.
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 119

Pipes: Anonymous

Anonymous pipes are pipes without names, which have certain restrictions that named pipes do not have. For
instance, they cannot be used to communicate over the network, and they cannot be used to communicate with
processes that are not related to them (parent/child). Anonymous pipes come to play when you need a quick
IPC mechanism between your process and a child process. As mentioned previously, your child process could
take commands and also send the output of commands back to the parent process. This flow can happen over
anonymous pipes with the redirection of standard in and standard out. When a process creates a pipe, that
process is the pipe server. Pipe clients would then connect to it and reading and writing to the pipes can take
place.

© 2024 Jonathan Reiter 119

Creating Anonymous Pipes

/ I CreatePipe

BOOL

) CreatePipe (

Used to create anonymous pipe PHANDLE hReadPipe,

PHANDLE hWritePipe,

LPSECURITY ATTRIBUTES lpSecAttr
DWORD nSize

Has a Boolean return type)i

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 120

Creating Anonymous Pipes

Anonymous pipes are created using the CreatePipe function. The function will return handles to the read end
of the pipe as well as the write end of the pipe. The handle for the read end of the pipe will naturally only have
read access. The same thing goes for the write end of the pipe—it will only have write access. The process
calling this function is the pipe server and clients will connect to it. To do so, they will need to be allowed to
access the proper handle, which is easily done using handle inheritance. The child process, or the client, can
either be sent the handle for the read or write ends of the pipe. If the pipe server sends the read handle, the
client would have to use the ReadFile function. The ReadFile function will return as soon as data has been
written to the pipe using the WriteFile function. Inheriting handles is just one method a process can be given
pipe handles. The other method is using a function named DuplicateHandle, which basically makes a copy of
a handle that could be shared using shared memory.

120 © 2024 Jonathan Reiter

Technet24

Pipes: Named

/ I Can be used between unrelated processes

I Over the network I Duplex
With the server service running, Communications can now flow
all named pipes become back and forth through the same
accessible to remote systems. pipe.
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 121

Pipes: Named

Named pipes are pipes that have a name associated with them, and there are several advantages that named
pipes have over anonymous pipes. Named pipes can be one directional like anonymous pipes, but they can
also be duplex pipes. Duplex pipes are great for pipe servers that will communicate with one or many pipe
clients. This also means that any process could become the pipe server and the pipe client. Depending on the
security attributes you choose for your pipe, any process could be allowed to interact with your named pipe.
This is so much more convenient than having to worry about sharing handles to a pipe you created. Perhaps
one of the bigger advantages is that named pipes can be used to communicate with remote processes. Should
you have the server service running, then your named pipes will be remotely accessible.

© 2024 Jonathan Reiter 121

Creating Named Pipes
/ I CreateNamedPipe
. HANDLE

CreateNamedPipe (

LPCSTR lpName,

DWORD dwOpenMode,

Used to create named pipes DWORD dwPipeMode,

DWORD nMaxInstances,

DWORD nOutBufferSize,

DWORD nInBufferSize,

Has a HANDLE return type DWORD nDefaultTimeOut,
LPSECURITY ATTRIBUTES lpSecAttr

) 8

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 122

Creating Named Pipes

Named pipes are created using the CreateNamedPipe function. Instead of returning handles to the ends of
pipes, it will create an instance of the pipe. The process that calls CreateNamedPipe is the pipe server and can
use the function to create the first instance of the pipe or, with an existing pipe name, it can create another
instance. The pipe server can later call the ConnectNamedPipe function to wait for a pipe client to connect to
the pipe instance. The client will use the CreateFile function or the CallNamedPipe function to connect.
Clients can use the following format when connecting to a named pipe: \\ComputerName\pipe\PipeName. The
ComputerName is going to be the name of the computer you wish to connect. Of course, this can also be the
local computer. The PipeName is the unique name for the pipe and the name can contain almost any character
except a backslash.

122 © 2024 Jonathan Reiter

Technet24

Creating Pipes

Source code review!

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 123

Creating Pipes
Time to jump into the source code and explain it before you implement it on your own.

© 2024 Jonathan Reiter 123

UAC Me, Now You Don’t
@ I UAC is not a security boundary.

Processes that could lead to a
system compromise typically will
run with a Low-IL. Browsers
often do this in case you browse
to a malicious site.

Processes that typically run with
High-IL are ones that have
system-wide configurations or
operations like Lsass.exe and
Winlogon.exe.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 124

UAC Me, Now You Don’t

Many people interpret UAC as a security boundary, thinking that UAC is a mechanism that is protecting them.
UAC, to me, is really just an annoying method of protecting you from yourself but definitely not a true

security boundary. There are a couple of positive items about UAC,

so it is not all that bad. UAC gives you the

convenience of running an application as Admin without having to switch user accounts. Another convenience

is that you no longer have to issue the RunAs command if you want

to execute a command as a different user.

Perhaps one final positive note about UAC is that it can possibly mitigate how effective malware is on a

system. There are a number of UAC bypass projects out there and it
UAC, as we will see later.

124 © 2024 Jonathan Reiter

is possible to find the resources to bypass

Technet24

UAC: Elevation Prompts

User Account Centrol X User Account Control x

Do you want to allow this app to make Do you want to allow this app from an

changes to your device? unknown publisher to make changes to your
device?

or o
rocexp
ok PE-bear.exe

Verified publisher: Microsoft Corporation Publisher: Unknown
File origin: Hard drive on this computer File origin: Hard drive on this computer

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 125

UAC: Elevation Prompts

It was mentioned before that when you are performing operations as a standard user, you typically run with
Medium-IL. When you need to elevate a process because you want it to have more privileges, then you most
likely will see a UAC prompt or consent pop-up. The example on this slide is from when I right-clicked on the
Process Explorer icon and selected "Run as Administrator.” The UAC prompt with the blue title bar is an
indication that the application is trusted and signed by Microsoft. The yellow UAC title bar prompt indicates
that a process’ publisher could not be verified or was not signed. The user should proceed with caution when a
yellow UAC prompt presents itself. Since this was PE-bear.exe, I trust the application to do no harm to the
system. One other title bar color you might see is red. A red UAC elevation prompt indicates that the
application you are trying to run has a publisher that has been blocked. A block in Group Policy could also
trigger a red UAC prompt. The user should be able to click through with confidence knowing that nothing
malicious is about to happen to their system.

© 2024 Jonathan Reiter 125

UAC: Fusion

@ I Applications and their manifests

Many applications have a manifest file tied to it that is used to describe the application
itself. This XML file contains detailed information about the application’s security
context. There are several elements in the manifest.

I supportedOS I autoElevate I heapType

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 126

UAC: Fusion

When a process is being created, there are several checks that the CreateProcess API performs. One of them is
calling into the system’s Fusion database where information from an application’s manifest file is stored. .NET
applications make heavy use of manifests, but traditional Win32 applications can also use them. The manifest
file is simply an XML file that can be embedded in the EXE as a resource. Including manifests as a resource is
the Microsoft recommended method. The manifests have many case-sensitive elements in them and there are a
few that can directly apply to us when it comes to elevating privileges or simply gathering information.

When developing applications, there is a choice to make as to what OS your program will support. The
supportedOS element has an Id attribute that can indicate what OS is supported, and each OS version has a
GUID tied to it. The heapType element is used to override whatever the default heap implementation is. For
example, specifying SegmentHeap for the program will make it use the segmented heap, which tends to lower
the amount of memory your application uses. The autoElevate is the most interesting to us as it indicates that
the program can automatically elevate its privileges without prompting the user for consent via the UAC
consent prompt. When the autoElevate element is set to TRUE, it means it is enabled and there will be no
elevation prompt. Finding applications with autoElevate set to TRUE could give you a means to bypass UAC
and escalate your privileges.

126 © 2024 Jonathan Reiter

Technet24

UACMe Project

@ I GitHub repo hosts many UAC bypass methods

Inside the repo are a few files that handle parsing the manifest files, and fusion.c is one
such file. The main idea is to find files that have embedded manifests to parse and
checking to see what the autoElevate element value is. There are roughly three key

functions.
I FusionScanDirectory I FusionScanFiles I FusionCheckFile
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 127
UACMe Project

One part of the process of finding UAC bypasses is to search an application’s embedded manifest for the
autoElevate field. The applications that have this value set to TRUE would be of interest because they could
be part of a step in elevating privileges. Instead of recreating the wheel and making your own parser, UACMe
by hfirefOx has done this already. The project is hosted on GitHub and the entire project demonstrates several
bypass methods. Of particular interest, though, are the code portions that deal with parsing the embedded
manifests. If you look under Source\Yuubari\fusion.c, you will find the logic for that parsing. The header file
fusion.h holds the definitions for several custom structures, as well as function signatures. In the fusion.c
source file, it appears there are three functions that directly relate to the parsing: FusionScanDirectory,
FusionScanFiles, and FusionCheckFile. To better understand what each function is doing, we should take a
deeper look at the code being used.

The UACME project can be found here: https://github.com/hfirefOx/UACME.

© 2024 Jonathan Reiter 127

UACMe Project: FusionScanDirectory
@ I Responsible for scanning current directory

This function takes in a directory path and kicks off the file scanning process. Once that
is done, it does a directory walk looking for any other items in that folder, like
subfolders and application files. There are three functions that help get this done.

I RtlSecureZeroMemory I FindFirstFile I FindNextFile

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 128

UACMe Project: FusionScanDirectory

This function pretty much does what it sounds like—scans a directory. It will scan a directory for files, like
applications, as well as any subfolders. With any subfolders that are found, it will recursively call itself to
process any files in the subfolder. This logic is implemented by using functions like FindFirstFile and
FindNextFile. Both functions, when used in combination, enable an application to programmatically
enumerate a directory. The RtlSecureZeroMemory function is used to securely zero out items like arrays and
structures. The system guarantees that the block of memory will be zeroed out. For any files that are found, the
function FusionScanFiles is called.

128 © 2024 Jonathan Reiter

Technet24

UACMe Project: FusionScanFiles

@ I Responsible for scanning EXE files

This function takes in a directory path and will look for EXE files in the directory. Any
EXE that is found, the function will call FusionCheckFile. The file’s information is stored
in the process heap.

I HeapAlloc/HeapFree I FindFirstFile I FindNextFile

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 129

UACMe Project: FusionScanFiles

The FusionScanFiles function will scan for any EXE files in the directory path that was passed in as a
function argument. Since FindFirstFile and FindNextFile return information about a file in the form of the
WIN32 FIND DATA structure, the function allocates some space in the process heap to hold that
information. When using the HeapAlloc function to allocate your block of memory, you should also use the
HeapFree function to indicate the block is no longer being used by your program. The stored

WIN32 FIND DATA structure is passed as an argument to FusionCheckFile.

© 2024 Jonathan Reiter 129

UACMe Project: FusionCheckFile

@ I Responsible for parsing embedded manifests

The function takes in the path to the EXE, opens a file handle to it, maps it into
memory, and searches the image to see if there is an embedded manifest.

I LdrResSearchResource I NtCreateFile I NtCreateSection

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 130

UACMe Project: FusionCheckFile

The FusionCheckFile function accepts three arguments, but the ones of focus are the path of the EXE and the
WIN32 FIND DATA structure that describes the file. The function uses this information to open the file with
read access (NtCreateFile) so that it can then map the entire image into memory (NtCreateSection and
NtMapViewOfSection). Once mapped into memory, the function can then proceed to find the embedded
manifest, if there is one. Applications can have embedded resources like the application manifest, and each
one has a type associated with it. The resource type for our manifest is RT MANIFEST. The
LdrResSearchResource function will look over the mapped image and indicate if the desired resource type
was located. If one is found, a flag will be set in the IsFusion member of their custom structure,
FusionCommonData.

After locating the resource, an activation context is created. The context allows certain elements to be queried,
like the autoElevate element. The autoElevate element will have a value of TRUE or FALSE with TRUE
indicating that indeed, the application can elevate automatically without an elevate prompt. This information is
queried with the assistance of the RtIQueryActivationContextApplicationSettings function. Now, with the
foundation established, we can look at some source code.

If you're interested in other resource types, check out this URL: https://docs.microsoft.com/en-
us/windows/win32/menurc/resource-types.

130 © 2024 Jonathan Reiter

Technet24

Module Summary

r
:g; I Covered many ways to escalate your privileges

I Discussed pipes, services, tokens

I Discussed finding bypasses for UAC

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 131

Module Summary

In this module, we covered several methods for how you could programmatically escalate your privileges.
Learning how Meterpreter’s getsytem command works on the back end can lend a hand when creating your
own version of it or making a modification to it so that it would work in your target environment. The more
you understand basic services, privileges, tokens, etc., the better equipped you will be for creating your own
novel local privilege escalation (LPE) technique. Perhaps you might even discover and create a remote method
as well. In the end, persistence pays off.

© 2024 Jonathan Reiter 131

Unit Review Questions

r
:g; I What type of pipe can operate over a network?

Half pipe
ﬂ Named pipe
Anonymous pipe

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 132

Unit Review Questions
Q: What type of pipe can operate over a network?

A: Half pipe
B: Named pipe

C: Anonymous pipe

132 © 2024 Jonathan Reiter

Technet24

Unit Review Answers

r
:g; I What type of pipe can operate over a network?

Half pipe
n Named pipe
Anonymous pipe

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 133

Unit Review Answers
Q: What type of pipe can operate over a network?

A: Half pipe
B: Named pipe

C: Anonymous pipe

© 2024 Jonathan Reiter 133

Unit Review Questions

r
:g; I What API gives you a handle to a process’ token?

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 134

Unit Review Questions
Q: What API gives you a handle to a process’ token?

A: OpenProcessToken()
B: OpenToken()

C: OpenProcess()

134 © 2024 Jonathan Reiter

Technet24

Unit Review Answers

r
:g; I What API gives you a handle to a process’ token?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 135

Unit Review Answers
Q: What API gives you a handle to a process’ token?

A: OpenProcessToken()
B: OpenToken()

C: OpenProcess()

© 2024 Jonathan Reiter 135

Unit Review Questions

h|

r
:g; I What privilege gives complete write access regardless of the ACL?

SE_BACKUP_NAME

ﬂ SE_RESTORE_NAME
SE_WRITE_NAME

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 136

Unit Review Questions
Q: What privilege gives complete write access regardless of the ACL?

A: SE BACKUP _NAME
B: SE RESTORE NAME

C: SE_ WRITE NAME

136 © 2024 Jonathan Reiter

Technet24

Unit Review Answers

h|

r
:g; I What privilege gives complete write access regardless of the ACL?

SE_BACKUP_NAME

n SE_RESTORE_NAME
SE_WRITE_NAME

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 137

Unit Review Answers
Q: What privilege gives complete write access regardless of the ACL?

A: SE BACKUP _NAME
B: SE_ RESTORE NAME

C: SE_ WRITE NAME

© 2024 Jonathan Reiter 137

PE Format
Course Roadmap Lab 3.: PEParser
. Threads
» Windows Tool Development Injections
* Getting to Know Your Target Lab 3.2: ClassicDLLInjection
. Operational Actions Lab 3.3: APClnjection
« Persistence: Die Another Day Lab 34: ThreadHijacker
Enh . Y I 1 Escalations
nhancing Your implant: Lab 3.5: TokenThief
Shellcode, Evasion, and C2
Bootcamp
¢ Capture the Flag Chauenge Lab 3.6: So, You Think You Can Type
Lab 3.7: UACBypass-Research
Lab 3.8: ShadowCraft

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 138

In this module, we will discuss several techniques centered around injection. There are a large number of
injection methods and as you can see, we have our hands full of exercises today. Let’s kick this off with the
classic DLL Injection.

138 © 2024 Jonathan Reiter

Technet24

I So, You Think You Can Type
I UAC Bypass-Research

I CustomShell

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 139

Bootcamp

For this bootcamp, this is the time to put the concepts learned from this section into practice. There are several
challenges and all of them are optional. The challenges can also be done in any order since they do not depend
on each other. The first challenge is to develop a program that implements similar functionality as
GetProcAddress.

Another challenge is to figure out how to intercept keystrokes that a user types into the notepad process.
The UAC Bypass challenge gives you the skillset to find a novel UAC bypass. The lab will only take you so
far and then you must continue on your own. There is an excellent blog that heavily inspired this lab found

here: https://github.com/Yet-Zio/WusaBypassUAC.

The final challenge is to continue creating your first baby implant. It should combine all features that have
been covered so far.

© 2024 Jonathan Reiter 139

Lab 3.6: So, You Think You Can Type

I Must handle Windows messages
I Must intercept user key presses

I Must create a DLL to inject into target

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 140

Lab 3.6: So, You Think You Can Type

This challenge offers a great opportunity to explore building a keylogger. Since most keystrokes are
commonly meant for GUI applications like Notepad, we will make that our focus. The idea for this challenge
is to create a DLL that will install a Windows hook that will then be used to monitor keystrokes. Once you
have the main logic completed, you can spice it up a bit by rejecting certain keystrokes. As an example, you
can prevent the user from sending any vowels to the Notepad process. More robust keyloggers will just log
everything and write it all out to a log file that will eventually be sent out to the C2 back end for analysis.

Please refer to the eWorkbook for the details of this bootcamp challenge.

140 © 2024 Jonathan Reiter

Technet24

Lab 3.7: UACBypass-Research

I Find system binaries that have autoElevate set to true.
I Explore the process behavior using Process Monitor.

I Find a vulnerability and weaponize it to bypass UAC.

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 141

Lab 3.7: UACBypass-Research

This challenge is not for the faint of heart. There are two paths you could take with this one: you can follow
along with the lab guide that only takes you so far, or you can dive off and attempt to find a brand-new UAC
bypass! If you have time, do both. If you find a new method, please share it with the class and consider
contributing it to the UACme project on GitHub.

Please refer to the eWorkbook for the details of this bootcamp challenge.

© 2024 Jonathan Reiter 141

Lab 3.8: ShadowCraft

I Create a basic shell.
I Implement features covered in this section.

I Implement thorough error checking.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 142

Lab 3.8: ShadowCraft
Please refer to the eWorkbook for the details of this bootcamp challenge.

142 © 2024 Jonathan Reiter

Technet24

