SEC670 | RED TEAMING TOOLS: DEVELOPING WINDOWS IMPLANTS, SHELLCODE,
COMMAND AND CONTROL

670.4

Persistence: Die Another Day

GIAC

CERTIFICATIONS

MNS

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

© 2023 Jonathan Reiter. All rights reserved to Jonathan Reiter and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT ("CLA") CAREFULLY
BEFORE USING ANY OF THE COURSEWARE (DEFINED BELOW) ASSOCIATED WITH THE SANS INSTITUTE COURSE.
THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND THE ESCAL INSTITUTE OF
ADVANCED TECHNOLOGIES, INC. /DBA SANS INSTITUTE (“SANS INSTITUTE”) FOR THE COURSEWARE. BY
ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA.

With this CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware subject to the
terms of this agreement. Courseware means all printed materials, including course books and lab workbooks, slides or notes,
as well as any digital or other media, audio and video recordings, virtual machines, software, technology, or data sets
distributed by SANS Institute to User for use in the SANS Institute course associated with the Courseware. User agrees that
the CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this CLA supersedes
any oral or written proposal, agreement or other communication relating to the subject matter of this CLA.

BY ACCESSING THE COURSEWARE, USER AGREES TO BE BOUND BY THE TERMS OF THIS CLA. USER FURTHER
AGREES THAT ANY BREACH OF THE TERMS OF THIS CLA MAY CAUSE IRREPARABLE HARM AND SIGNIFICANT
INJURY TO SANS INSTITUTE, AND THAT SANS INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION
(WITHOUT THE NECESSITY OF POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If User does not agree to the terms of this CLA, User should not access the Courseware. User may return the Courseware to
SANS Institute for a refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon all or any portion of
the Courseware, in any medium whether printed, electronic or otherwise, for any purpose, without the express prior written
consent of SANS Institute. Additionally, User may not sell, rent, lease, trade, or otherwise transfer the Courseware in any way,
shape, or form to any person or entity without the express written consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be deemed to be severable
from this CLA and shall not affect the remainder thereof. An amendment or addendum to this CLA may accompany this
Courseware.

SANS Institute may suspend and/or terminate User’s access to and require immediate return of any Courseware in connection
with any (i) material breaches or material violation of this CLA or general terms and conditions of use agreed to by User; (ii)
technical or security issues or problems caused by User that materially impact the business operations of SANS Institute or
other SANS Institute customers, or (iii) requests by law enforcement or government agencies.

SANS Institute acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs presented in
this Courseware are the sole property of their respective trademark/registered/copyright owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My Mac, Boot Camp,
Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini,
iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac,
Mac Logo, MacBook, MacBook Air, MacBook Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina,
Safari, Siri, Spaces, Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP® and PMBOK® are registered trademarks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.
SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

REMnux® is a registered trademark of Zeltser Security Crop. Used with permission.

VMware Workstation Pro®, VMWare Workstation Player®, VMWare Fusion®, and VMware Fusion Pro® are registered
trademarks of VMware, Inc. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

Courseware licensed to User under this Agreement may be subject to export laws and regulations of the United States of
America and other jurisdictions. User warrants he or she is not listed (i) on any sanction programs list maintained by the U.S.
Office of Foreign Assets Control within the U.S. Treasury Department (“OFAC”), or (ii) denied party list maintained by the U.S.
Bureau of Industry and Security within the U.S. Department of Commerce (“BIS”). User agrees to not allow access to any
Courseware to any person or entity in a U.S. embargoed country or in violation of a U.S. export control law or regulations.
User agrees to cooperate with SANS Institute as necessary for SANS Institute to comply with export requirements and
recordkeeping required by OFAC, BIS or other governmental agency.

All reference links are operational in the browser-based delivery of the electronic workbook.

SEC670_4_J01_03

Technet24

SEC670.4 Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Persistence: Die Another

MNS Day

© 2024 Jonathan Reiter | All Rights Reserved | Version JOI_03

Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control: 670.4
Welcome to Section 4 of SEC670. In this section, we will discuss a number of ways that you could persist on
target.

© 2024 Jonathan Reiter 1

Table of Contents (1) Page

In Memory Execution 4
.. Droppmg toD,sk ... |3 ..
.. Bmary PatCh mg .. 20 .
Reg,stryKeys .. 26
.. Serwces Rew s,ted .. 39 ..
.. Lab 4| pers,stentsemce ... 47 ..
.. po,.t Mon,to,.s ... 67 ..
.. Lab 4zsaum .n .. 74 ..
.. ||:Eo ... 79 ..
.. Lab 43||:Eoper-s,st° ... 90 ..
.. WM| EventSUbsmptlons .. 97 ..
BOOtcamP .. I. |4

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 2

This page intentionally left blank.

2 © 2024 Jonathan Reiter

Technet24

Lab 4.4: NotInService 116
Lab 4.5: InitToWinit 17
Lab 4.6: OhMyWMI 118
Lab 4.7: CustomShell 119
SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 3

This page intentionally left blank.

© 2024 Jonathan Reiter 3

Course Roadmap

« Windows Tool Development

* Getting to Know Your Target

* Operational Actions

+ Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

SANS

In Memory Execution

In Memory Execution
Dropping to Disk
Binary Patching
Registry Keys
Services Revisited

Lab 4.1: Persistent Service
Port Monitors

Lab 4.2: Sauron
IFEO

Lab 4.3: IFEOPersisto
WMI Event Subscriptions

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 4

In this module, we will discuss what in memory execution is and how it can benefit us. We will also look at
some disadvantages with only living in memory. Hint: it is volatile.

4 © 2024 Jonathan Reiter

Technet24

Our objectives for this module are:

Describe in-memory execution
Discuss advantages and disadvantages

Discuss memory forensics

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 5

Objectives
The objectives for this module are to describe what in-memory execution is, discuss some advantages of it, as
well as a few disadvantages, before wrapping it all up with a brief note on memory forensics.

© 2024 Jonathan Reiter 5

In Memory Execution

Code execution not backed by a file on disk

In memory means exactly that—code is running in memory. For our purposes,
however, we are going to define it as having an image in memory that is not backed by
a file residing on the target’s disk. Perhaps you have heard of fileless malware?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 6

In Memory Execution

We could say that in-memory execution is when an executable image is mapped into memory and then a main
thread is created to kick off the instructions located at the address of entry point, but we are not going to say
that. Instead, we are going to say that in-memory execution is the execution of code, like shellcode or an
executable image, executing in memory that is not backed by anything on the disk. Effectively, this is fileless
malware. Fileless malware is malware that only exists in memory without ever leaving a single file on disk.
Fileless code execution is very beneficial for the attacker. It is also more difficult to detect, which is another
reason why fileless malware has been and is so popular. There have been many vulnerabilities in the past that
attackers have been able to take advantage of for fileless execution. A prime situation for fileless code
execution comes in the form of specially crafted packets that hit the NIC first and foremost. Kernel drivers,
such as tcpip.sys, http.sys, netio.sys and others, are responsible for making sense of the data the NIC is holding
in its buffers. That process presents an opportunity for kernel-level execution. Let us look a few examples.

6 © 2024 Jonathan Reiter

Technet24

There are plenty of examples of fileless malware.

I Reflective injection I EternalBlue I Malicious Firmware
Reflectively load an Exploit comes in BIOS manipulation,
image like a DLL into packets and never BadUSB, HardDrive
memory for touches disk. Allows firmware
execution DoublePulsar manipulation, etc.

backdoor in kernel
memory.
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 7
Examples

When it comes to examples of fileless malware and methods to achieve fileless execution, there is no shortage.
Perhaps one of the more famous examples is WannaCry with its usage of EternalBlue. If you recall,
EternalBlue came in the form of specially crafted network packets taking advantage of a 2017 SMB
vulnerability. The nice thing about packets is they do not touch disk at all unless someone is saving them off
using a packet capture tool like Wireshark. The backdoor that followed up with the exploit was dubbed
DoublePulsar, which resided in the kernel. Another example of fileless malware or implants could come in the
form of manipulating the BIOS. Not many EDR/AV solutions are built to check the BIOS. Same goes for
performing a malicious firmware update to the controller of a hard drive. Going that low is incredibly stealthy
and can provide amazing persistence and hiding capabilities. Red Balloon Security offers a unique hard drive
challenge for its applicants, and it is quite the challenge! Also, you can reflectively inject an executable image
into another process to achieve fileless execution. We will take a deeper look at Reflective DLL Injection
during Section 5.

References:

https://awakesecurity.com/glossary/fileless-malware/
https://gbhackers.com/fileless-malware-wmi-eternalblue/

© 2024 Jonathan Reiter 7

It sure is great to not be on disk.

I No files to be analyzed I Bypass static detection

Files on disk are prone to static

analysis before execution. By not
being on disk, there is no risk of
static detection.

Since files are not dropped to
disk, there is nothing for an
analyst to retrieve.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Advantages

The biggest advantage for fileless malware is the fact that nothing is dropped to disk. The fact that certain
programs, system files, tools, etc. cannot be blocked by IT staff without hindering support keeps enabling
fileless attacks. Have you seen an organization that has completely blocked and/or removed PowerShell? Even
without PowerShell you can still execute PowerShell; PowerShell without PowerShell. A forensic analyst or a
reverse engineer would have nothing to do without files or without a memory dump. Another advantage is that
by not having anything on disk, you will not be the victim of static analysis by some AV/EDR solution. There
is nothing to hash, no bytes on disk to scan, nothing. The fact that fileless techniques are so powerful has
forced EDRs and AV solutions to step up their game with behavior detection, memory scanning, and
leveraging machine learning for their next-gen products. Even still, there is no single product out there that
will always catch everything 100% of the time. It would be too resource intensive for products to constantly
scan all memory regions of every process all the time.

8 © 2024 Jonathan Reiter

Technet24

Disadvantages

It sure is terrible to not be on disk.

I Reboots flush RAM I Initial access is lost
Living in RAM is only good until When the system powers on
a reboot flushes you out! What again, how is your access to the
kicks off your execution now? target regained?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Disadvantages

How do you persist if you are only living in memory? Spoiler alert: you really cannot. This is arguably the
biggest disadvantage when it comes to fileless malware. Machines are rebooted from time to time for various
reasons: installing updates, power failure, hardware upgrades, scheduled downtime, etc. If you are someone
who really enjoys bragging about system uptime, then fileless malware thanks you. Bottom line, though—a
system will be rebooted at some point, so you must be prepared for this event. If you are not prepared, then
your initial access is gone in a cloud of smoke. How do you get back on the target? Do you attempt to throw
your exploit again to get you back on the system? The risks of getting caught go up much more significantly
by throwing another exploit at the target. If the target is of no real importance to you, then you just move on
and chalk it up as a temporary setback. However, if that system is of high value, then you need to maintain
access to it, and that could mean dropping something to disk. It is often said that having two methods of
persistence is just one method. Having just one method of persistence is really not having any at all.

© 2024 Jonathan Reiter 9

9

Where on Disk?

- * Deskto
— p
—] The Desktop? * Documents
[—
e Downloads
* Pictures
* Temp
Blend in with your surroundings * App Data
* Program Files
* SysWowé64
e System*
Do not be the first/last file in a * System32*
folder * OneDrive

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Where on Disk?

Imagine this scenario: you are running only in memory at the moment and your implant is monitoring for
system shutdown events or changes to the power status, like if a laptop is no longer being charged. The system
notifies you that a shutdown is pending, and you must maintain your access to this system because there is still
intel on it that you have yet to collect. You make the decision to drop to disk so when the system powers back
on, your file is triggered, and your access is renewed. The question you need to ask yourself is: Where do 1
drop to disk? This is a vulnerable moment for your implant, but it is also a necessity, so we must choose a
smart location. The location could be entirely dependent on the system’s environment, like what third party
applications are present, what folders do you have write access to, and if there is cloud storage attached that
you can drop into?

There are some general tactics and criteria you could use when looking for a possible location. Find a folder
with a decent number of files in it. This would allow you to hide in plain sight somewhere past the halfway
point in the listing. You do not necessarily want to be first, nor do you want to be last. You should avoid
locations that are frequently browsed by the user like the Desktop, Documents, or Downloads locations. There
is one caveat to the Desktop: some users like to store everything on the Desktop. They can be so cluttered that
you can hardly see the user’s background wallpaper. If that is the case, you could consider that as a possible
location.

10 © 2024 Jonathan Reiter

Technet24

Memory Forensics

Being in memory is not a get out of jail free card.

I Volatility I PE-sieve I Moneta
From the Volatility From Hasherzade, From forrest-orr,
Foundation, ingests scans a process and user-mode Windows
memory dumps with can dump implants memory analysis
numerous plug-ins detecting all kinds of tool, similar to PE-
injection methods sieve
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 11

Memory Forensics

Almost everything you do on a Windows system can be logged by something. Even if a certain Windows tool
does not catch your activity, highly motivated memory analysts with time on their hands will. There are
several tools that can run live on a system, like PE-sieve and Moneta. They are both amazing tools and hiding
from them has been seen as a challenge by researchers and developers alike. Only recently was Moneta
bypassed by the awesome work of the MDSecLabs crew with their C2 Framework Nighthawk. Both PE-sieve
and Moneta can scan processes and report suspicious findings, if any. Volatility is a Python framework geared
at finding practically anything that was still resident in memory at the time of capture. They also host plug-in
contests and some truly amazing plug-ins come from that. There are many more tools out there that offer
similar capabilities to the ones noted on the slide. Bottom line, it is only a matter of time before you get
caught. One great advantage here is that security products that are performing memory scanning simply cannot
scan all regions of memory of every process every second of the day. It must be targeted and done in such a
way so that it does not cause a performance hit for the user. There is nothing users hate more than a slow
system. If a security product is causing high levels of degradation on system performance, odds are the user
will remove it or ask that it be removed.

© 2024 Jonathan Reiter 1

Module Summary

)r
:g; I Defined and described in memory execution fileless malware

I Discussed advantages and disadvantages of being fileless

Discussed fileless malware and methods

I Discussed memory forensics

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 12

Module Summary

In this module we covered what in memory execution is as it relates to implant development. We also
discussed fileless malware and some popular examples, like WannaCry and EternalBlue SMB vulnerability.
We also took a brief look at some advantages and disadvantages of only being in RAM. Are you ready for a
shutdown/reboot?

12 © 2024 Jonathan Reiter

Technet24

Course Roadmap

» Windows Tool Development

Getting to Know Your Target

Operational Actions
+ Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

In Memory Execution
Dropping to Disk
Binary Patching
Registry Keys
Services Revisited

Lab 4.1: Persistent Service
Port Monitors

Lab 4.2: Sauron
IFEO

Lab 4.3: IFEOPersisto
WMI Event Subscriptions

Bootcamp

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 13

In this module, we will discuss why you would need to drop something to disk, where to drop, cleaning up,

and more.

© 2024 Jonathan Reiter 13

Our objectives for this module are:

Discuss the need to drop to disk
Discuss the risks of being on disk

Cover how to protect yourself and your data

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 14

Objectives

The objectives for this module are to discuss the need to drop to disk and when to do it. Being on disk brings
some risk and we will discuss those risks. If we must be on disk, then we should try to protect ourselves as best
as possible if our files become discovered.

14 © 2024 Jonathan Reiter

Technet24

Dropping to Disk

U- There is almost no escaping the need to be on disk.

Once your implant is on disk, it will be scanned and/or captured. It is only a matter of
time.What is more important for your operation: access or your implant? If you get
burned once, you are arguably burned everywhere if using the same tool.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Dropping to Disk

There will come a moment during the lifetime of your implant that something will have to touch disk.
Dropping to disk is practically unavoidable these days when you are trying to survive across reboots. There are
several risk factors that must be taken into consideration when dropping to disk, and the following is a non-
exhaustive list of questions that should be answered before dropping to disk:

* Where should I drop to disk?

* Where do I have read/write permissions?

* What binary should I drop?

* How should I blend in with other items in the same folder?

» Isitacceptable to be scanned by AV solution?

The listing of considerations/questions should be answered with the data retrieved during the host survey
phase. It would not be wise to blindly drop to some random folder and hope for the best. A location should be
chosen strategically, one that would not indicate your presence to the user or sysadmin too quickly. If you are
not elevated to at least a local Admin, you will not be able to drop your binary to some locations like
System32, for example. System32 has many entries in it, and it would be easier to blend in there versus the
current user’s Downloads folder. Also, being on disk might mean that the installed AV solution might scan
your binary. Is that okay? Perhaps the binary you drop only has basic features like your persistence/callback
feature and that is it. This way, your entire capability is not discovered, and you do not have to spend months
retooling your entire implant.

© 2024 Jonathan Reiter 15

Blending In

On this Windows 10
VM, there are over
4,200 items in the
System32 folder.
Plenty of options to
blend in with files
around you.

SANS

Blending In

[[= | System32

« A
| Documents
= Pictures

lab
DEV
scripts
APClnject
Day3-Labs
Includes
PEParserApi
OneDrive
[This PC
I Desktop
|5| Documents
& Downloads
D Music
&= Pictures
B videos

‘e Local Disk (C3)
4,290 items

View

~

*
+
<
g
g

v

> ThisPC » Local Disk (C) » Windows » System32 >

~
Name

2 Spacefigent.exe
[4] spaceControl.dll
[spaceman.exe
[4] spatializer&spo.dil
|4 SpatialStore.dil

|5 spbed.dil

[spcompat.dil
[Spectrum.exe

4] spectrumSyncClient.dil
[] speechPal.di

14 spfilequ.dil

_,' spinf.dll

[spmpm.dil

|%] spnet.dil

_, spoolss.dll

= spoolsv.exe

1% spopk.dil

[spp.ait

4] sppe.di

Date modified

m]

X
L)

v & SearchSy. P

Type

Application
Application extens...
Application
Application extens..,
Application extens...

Application exte

Application extens...
Application

Application extens...
Application extens...
Application extens...
Application extens...
Application extens...

Application ext

Application extens..

Application

Application extens...

Application extens...

Size

127K
605 K
34K
302K
754k
92 &
2k
871k
37K
1,574 ¢
99K
97K
1k
12k
S0k
740K
50K
266 ¢

132K,

>

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 16

When it comes to blending in, it can be somewhat easy with the proper level of permissions. As one possible
example, a prime spot could be the System32 folder where there are well over 4,200 items to surround
yourself. You would not necessarily want to be the first or the last entry in the folder but pick a spot that would
require the user to scroll down for quite some time. Users are notorious for scrolling right past something
unless they are specifically looking for it. Even then, most users still go past what they are looking for at least
once or twice. Once your location has been determined, a filename would have to be chosen. The screenshot
above shows several files that start with the letter “s.” If there are more s-named files, then perhaps naming

your binary something that starts with

331
S

might be a good idea. The screenshot also shows dates for the

folder’s files. The dates should be taken into consideration and your binary should reflect something close to
them. If none of the files in the folder are beyond a certain year, like 2019, then you would not want to be the
only binary reflecting the current year. Regardless of location, the bottom line is this, the more care you take
with trying to blend in with your surroundings, the longer you might maintain a presence on that target.

© 2024 Jonathan Reiter

Technet24

Being Scanned
I If you get scanned, what will they find out?

I All tool capabilities I Bare minimum for access

Or will the functionality required
to maintain access across
reboots be the only thing
discovered?

Will you lose months or years of
effort if your binary gets picked
up by an AV solution?

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 17

Being Scanned

Another risk you must consider is should there be some AV solution installed like Defender, will that deter
you from dropping to disk? If not, are you okay with it possibly being scanned? Some AV solutions require the
submission to be sent to its cloud-based analysis engine if it has not seen it before. Most Windows system
binaries and files are common, and their hashes/signatures are known. As such, cloud AV solutions do not
need to upload them for analysis. The one-off binary, though, like yours, hopefully has never been seen or
even scanned before. All of that could change when the solution detects that a new file has been created on the
file system. What will the vendor find out if your implant is scanned? Will all your trade secrets be swept up
and sent to the cloud or perhaps only the required features to maintain your access to the target? I cannot
answer these questions for you as they are questions that can be ever changing even between operations.

© 2024 Jonathan Reiter 17

Protecting Yourself

U- I What can you do to protect your implant?

You could get extremely creative and DRM your implant like the PoC Skrull did.
According to the author, the malware launchers are anti-copy and are thus broken if,
and when, they are submitted for analysis.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 18

Protecting Yourself

There are several public techniques and tools that are out there today that aid your efforts to protect yourself.
There are commercial tools like packers and encryptors that do a tremendous job annoying reverse engineers.
One such tool is Themida, which is made by the company Oreans. Themida is labeled as Advanced Windows
software protection system and does so by protecting each code block, as well as adding an overall level of
protection. You can read more on their website when you have a moment. Another interesting technique and
perhaps the most interesting one that has recently surfaced, as of this writing, is Skrull. According to the
author, Sheng-Hao Ma, “Skrull is a malware DRM, that prevents Automatic Sample Submission by AV/EDR
and Signature Scanning from Kernel. It generates launchers that can run malware on the victim using the
Process Ghosting technique. Also, launchers are totally anti-copy and naturally broken when got submitted.”
Seems very interesting and clever. The source code for Skrull is hosted on GitHub for your viewing pleasure.

References:

https://www.oreans.com/themida.php
https://github.com/aaaddress1/Skrull

18 © 2024 Jonathan Reiter

Technet24

Module Summary

r
:g; I Discussed why we drop to disk to persist

I Discussed where to drop
I Learned the risks of being on disk

I Covered the various methods for protecting your work

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 19

Module Summary
In this module, we discussed why we would even drop to disk, where to drop, the risk(s) of being on disk, and
how to protect what we have on disk.

© 2024 Jonathan Reiter 19

SANS

20

Course Roadmap

« Windows Tool Development

* Getting to Know Your Target

* Operational Actions

+ Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

In Memory Execution
Dropping to Disk
Binary Patching
Registry Keys
Services Revisited

Lab 4.1: Persistent Service
Port Monitors

Lab 4.2: Sauron
IFEO

Lab 4.3: IFEOPersisto
WMI Event Subscriptions

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 20

In this module, we will discuss what binary patching is and how we can leverage it for persistence on target.

© 2024 Jonathan Reiter

Technet24

Our objectives for this module are:

Define binary patching

Discuss benefits of binary patching

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 2!

Objectives
The objectives for this module are to define what binary patching is and discuss some of the benefits that
binary patching has to offer.

© 2024 Jonathan Reiter 21

What Is Binary Patching?
/ I Modifying binaries to achieve results

What would happen if you patch a system file like NTDLL where it sits in System32?
Your hooks would be implemented all over the place and it could draw way too much
attention to you. Instead, you could patch a secondary or tertiary DLL that NTDLL
loads.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 22

What Is Binary Patching?

Binary patching is often referred to as modifying a binary as it resides on disk or in memory with the intention
of changing how it executes. In memory patching is often done by AV/EDR solutions to change how functions
of interest behave. What they implement is function hooking, which will be covered in detail in Section 5.
Regardless, they are still modifying bytes of a file in memory. Patching files on disk can be challenging and
could have damaging effects. Take for example an attempt to patch ntdll.dll: the file resides in the System32
folder and as such, you must have at least local Admin privileges. Because ntdll.dll is so heavily utilized, you
could cause the system to become unstable and crash. Another common tactic is to patch the AV/EDR solution
itself. Identifying a weakness in a solution can yield incredible results for not only persistence but also for
protecting your toolset.

22 © 2024 Jonathan Reiter

Technet24

In-Memory Patching

/ I The patch is not permanent; will not survive reboots

Once you are injected into a process, how do you find what it is you are trying to
patch? How about walking the Import Address Table? How about enumerating
processes and obtaining handles to a process of concern? These are valid questions
that could be answered either during your op or beforehand.

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 23

In-Memory Patching

Patching an image as it sits in memory is often referred to as in-memory patching. This is relatively safe since
no changes are made to the binary on disk, so if the computer were to ever reboot, the changes would be
flushed out of memory as if nothing ever happened. The big question you might have is, how do we find
images in memory if we were just injected into a process? This is where process enumeration would come into
play. If there is a process that you know about ahead of time based on gathered intel, then you can look for that
process specifically. Otherwise, enumerate all processes and pick one from that newly collected information.
Once you have found a process you want to patch, you need to obtain a process handle to it. If you recall, the
handle is really the base address of the executable's image in memory, so if you were to read the first three
bytes of memory you should find the famous MZ (\x4d\x5a) signature followed by a NOP, \x90. When
conducting memory scanning and looking for the start of an image, it is always best to be as specific as
possible so looking for \x4d\x5a\x90\x00 would possibly lower false positives. Now that you found the start of
the PE header, it is simply a matter of parsing the rest of the PE headers to get to what you want. Often, you
would be looking to patch out calls to certain functions like AmsiScanBuffer or AmsiScanString APIs from
the Amsi.dll if you are trying to bypass AMSI. You could also decide to patch specific functions to change
how they behave. You will see later how we can change how AmsiScanBuffer behaves.

© 2024 Jonathan Reiter 23

On-Disk Patching

l I Should survive reboots; cascading effect

Are files on disk better protected from patching than their memory mapped image? Is
there a way to undo your changes if you accidentally break something with your patch?
Could you render a system unstable if you patch system files? Could you get caught
faster by patching files on disk?

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 24

On-Disk Patching

There might come a time when you would have to patch the file as it resides on the file system. If you have the
proper permissions, you might be able to patch the binaries that offer signature scanning for the AV that might
be installed on the system. Perhaps you found a way to get your tool added to some whitelist and you
implement a patch to make sure you remain on the whitelist. System files might be able to be patched too, with
the right permissions, of course. Take for an example patching Ntdll.dll. How many processes rely on
Ntdll.dll? Practically all of them because the system loader is implemented in Ntdll.dll and it is the first
module that is present in the process. Whatever patch you do on disk, each process is going to be affected by
that change at some point in time, like after a reboot. This could make a system unstable and would require
rigorous testing ahead of time. My recommendation is to avoid patching critical system DLLs unless there is a
dire need that requires it. Until that time, stick to patching third party binaries.

24 © 2024 Jonathan Reiter

Technet24

Module Summary

r
:g; I Discussed how patching can be incredibly useful

I Learned that in-memory patching is only temporary
I Learned that in-memory patching only effects one process

I Learned that on-disk patching is more permanent and could have cascading effects

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary
In this module, we discussed two types of patching: in-memory and on-disk. Both have certain tradeoffs and
which one you choose would be dependent on what your end goal is for your operation.

© 2024 Jonathan Reiter 25

25

SANS

26

Course Roadmap

« Windows Tool Development
* Getting to Know Your Target

Operational Actions
+ Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

Registry Keys

In Memory Execution
Dropping to Disk
Binary Patching
Registry Keys
Services Revisited

Lab 4.1: Persistent Service
Port Monitors

Lab 4.2: Sauron
IFEO

Lab 4.3: IFEOPersisto
WMI Event Subscriptions

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 26

In this module, we will discuss how to persist using the Windows Registry.

© 2024 Jonathan Reiter

Technet24

Our objectives for this module are:

Discuss most used persistence key

MITRE ATT&CK autostart locations

Implement a few techniques

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 27

Objectives

The objectives for this module are to discuss what the most used key was for persistence. We will also explore
several possible keys that can be leveraged for autostart entries. Lastly, we will reinforce the topics with
source code review and a lab.

© 2024 Jonathan Reiter 27

Most Used Key

h I Run key is the most used by several APTs

The Run key exists for the current user (HKCU) and for all users (HKLM). Naturally,
for HKLM, you would need elevated access, but not for HKCU.There is nothing novel
about this method and yet many APTs and their malware families use it. The method is
probably the easiest to implement.

I HKCU\...\CurrentVersion\Run I HKLM\...\CurrentVersion\Run

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Most Used Key

If you were to study all of the publicly available malware samples that have a persistence mechanism, you
might find that perhaps the most used method is the Registry. More specifically, the Registry Key chosen for
persistence is the Run key. Red Canary, Cynet, and a few other companies that specialize in malware analysis

have noted that the Run key is most commonly used by malware authors. The interpretation is that they do not

get caught right away, so why waste valuable time and effort trying to discover a novel method? APT28

(SOFACY), APT30, DarkComet, Emotet, FIN7, Gazer, Lazarus Group and more have all used this key as one

of their persistence methods.

One could operate based on the concept of one is none, and two is one” where having only one method of
persistence as your only lifeline is really not having any persistence at all. If you have two methods, then
should one of the methods get burned or simply fail to trigger, you still maintain your foothold.

References:

https://attack.mitre.org/techniques/T1547/001/
https://www.cynet.com/attack-techniques-hands-on/the-art-of-persistence/

28 © 2024 Jonathan Reiter

28

Technet24

Run vs. RunOnce

P I What is in a name?

I Run key I RunOnce/RunOnceEx key

HKLM version runs as Admin.
The HKCU version is great to
be your downloader and initial
method until you can find a
better one.

Run the process once and delete
the entry from the key. Good if
trying to minimize artifacts. Bad
if you need to stay on long term.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 29

Run vs. RunOnce

There are several Registry keys that a person could use for persistence, but for this slide we will just focus on
two of them. The keys under HKLM require Admin privileges and without them we would be forced to use a
key under HKCU, which could expose our presence on the system quickly. The HKCU versions would require
the user to log on to the workstation, whereas the HKLM versions kick off when the system boots up
regardless of anyone logging on to the workstation. Sticking with the most used key among APTs, we have
Run and RunOnce. The two keys do offer a means to accomplish your persistence, but they are definitely not
equal. Despite the Run key being the most used method of persistence, the RunOnce key gets used as well, but
is perhaps not always fully understood by everyone. The RunOnce key will do exactly what is sounds like it
will do: it will run your application just once and be done. The difference is that after the one-time execution,
your persistence mechanism has gone up in a cloud of smoke because your RunOnce entry will be deleted. Of
course, it is not hard to make another entry after it has been deleted, just annoying is all.

© 2024 Jonathan Reiter 29

Applinit DLLs

h I Forcing a user process to load certain DLLs

When enabled, each newly created user mode process that is linked against User32.dll
will load the DLLs annotated a list stored in the Applnit_DLLs Registry key.The list can
be comma separated should there be a need to load more than one DLL.

I LoadAppInit DLLs (REG _DWORD) I AppInit DLLs (REG _SZ)

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 30

AppInit DLLs

Windows provides users the flexibility to allow a pre-determined list of customized DLLs to be loaded into
practically each user process. The catch is that the process must be linked against the User32.dll, and
thankfully most, if not all GUI applications will be linked against it. The AppInit DLLs Registry key is the
key that dictates if the feature should be enabled or disabled for a system. The key is located under the
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows key for x64-bit processes and under
HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows NT\CurrentVersion\windows key for 32-bit
processes. Under this key, a few items and values are looked for by User32.dl1l. User32.dll imports a function
called LoadAppInitDlls, which is implemented in Kernel32.dll. The module will perform a check to see if the
LoadApplInit DLLs key is set (1) or cleared (0). If it is set, then it is enabled system wide, and the list of DLLs
specified in the Applnit DLLs key will be loaded into the processes. Since this is under the HKLLM hive, we
would of course need to have Administrator privileges.

After our privilege escalation is done, we can create our list of DLLs with just one entry; the absolute path to
our malicious DLL. After we do that, we enable the loading of Applnit DLLs by setting the
LoadAppInit DLLs key. A question that you may have had is what kind of DLLs can we use for this.
Practically any DLL can be used with this technique so as long as it does not create a new process via the
CreateProcess APL. The resulting effect would cause an infinite loop of sorts because each time your DLL is
loaded, it creates a new process, which will load your DLL, which creates a new process. One method to solve
the infinite loop issue is to register a global namespace mutex that could be checked, and if it already exists,
you know you have been triggered before so no need to execute again. The action of having our DLL creating
a new process might not always be desired, so perhaps you could create some sort of check to see what
process should be the one to load your malicious DLL.

This technique has been used by APTs such as APT39, CherryPicker, and T9000.

Reference:
https://attack.mitre.org/techniques/T1546/010/

30 © 2024 Jonathan Reiter

Technet24

AppCert DLLs

h I Certain Create* API calls look for AppCert.

Like Applnit, Windows will investigate the Registry for DLLs that must be loaded into a
process. The AppCert key will be queried when the CreateProcess,
CreateProcessAsUser, CreateProcessWithLogin, CreateProcessWithToken, or
WinExec functions are called.

I CreateProcess I WinExec

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 31

AppCert DLLs

Almost as a compliment to Applnit, there is AppCert, which is extremely similar in the sense that a Registry
key will be queried to find a list of DLLs a process must load. The AppCert key would be under the
HKLM\SYSTEM\CurrentControlSet\Current\Session Manager\AppCertDlls key, which means Administrator
privileges are required. The key is queried whenever a process makes its first call to one of the following
APIs: CreateProcess, CreateProcessAsUser, CreateProcessWithLogin, CreateProcessWithToken, or
WinExec. The major difference with AppCert is the format of the DLL being used. The DLL must export a
specific function called CreateProcessNotify that will be called when the system is loading your DLL. One
major drawback to this method is that the target computer must be rebooted before any of the changes you
made are implemented. As such, AppCert is not stealthy and is easily detected by tools such as AutoRuns from
SysInternals. We would never force a reboot live on a target even more so when a user is actively logged on to
it. The best thing could be to wait for a corporate reboot policy to kick in and reboot the target for you.

This technique has been used by APTs such as Honeybee and PUNCHBUGGY.

Reference:
https://attack.mitre.org/techniques/T1546/009/

© 2024 Jonathan Reiter 31

Module Summary

r
:g; I Covered the most used persistence key

I Discussed MITRE ATT&CK autostart locations

I Discussed programmatic persistence

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary

In this module, we covered current trends for registry persistence and what the most used key was. We also
discussed the differences between the HKLM and the HKCU versions of keys like the Run key. We also hit on
a few other keys, like Applnit and AppCert, along with the differences between them. All of these methods
should be easily detected using tools like AutoRuns from SysInternals.

32 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

h|

r
:g; I What is the most commonly used key for persistence?

n runonce

runtwice

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 33

Unit Review Questions
Q: What is the most commonly used key for persistence?

A:run
B: runonce

C: runtwice

© 2024 Jonathan Reiter 33

Unit Review Answers

r
:g; I What is the most commonly used key for persistence?

n runonce

runtwice

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 34

Unit Review Answers
Q: What is the most commonly used key for persistence?

A: run
B: runonce

C: runtwice

34 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

)r
:g; I What permissions are needed to modify keys in the HKLM hive?

User
n Admin
Guest

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 35

Unit Review Questions
Q: What permissions are needed to modify keys in the HKLM hive?

A: User
B: Admin

C: Guest

© 2024 Jonathan Reiter 35

Unit Review Answers

)r
:g; I What permissions are needed to modify keys in the HKLM hive?

User
n Admin
Guest

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 36

Unit Review Answers
Q: What permissions are needed to modify keys in the HKLM hive?

A: User
B: Admin

C: Guest

36 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I What technique should be used for processes linked against User32.dII?

AppCert
“ Applnit
RunOnce

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 37

Unit Review Questions
Q: What technique should be used for processes linked against User32.dl1?

A: AppCert
B: Applnit

C: RunOnce

© 2024 Jonathan Reiter 37

Unit Review Answers

r
:g; I What technique should be used for processes linked against User32.dII?

AppCert
n Applnit
RunOnce

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 38

Unit Review Answers
Q: What technique should be used for processes linked against User32.dl1?

A: AppCert
B: Applnit

C: RunOnce

38 © 2024 Jonathan Reiter

Technet24

Course Roadmap

« Windows Tool Development

* Getting to Know Your Target

* Operational Actions

+ Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

In Memory Execution
Dropping to Disk
Binary Patching
Registry Keys
Services Revisited

Lab 4.1: Persistent Service
Port Monitors

Lab 4.2: Sauron
IFEO

Lab 4.3: IFEOPersisto
WMI Event Subscriptions

Bootcamp

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 39

In this module, we will discuss how to persist using services. This includes services that we take advantage of

or services that we create ourselves.

© 2024 Jonathan Reiter 39

Our objectives for this module are:

Discuss how services can aid in persistence
Understand the service-related Win32 APIs
Create new services and/or modify existing ones

Discuss methods for how to hide a service

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 40

Objectives

The objectives for this module are to revisit services, but this time around the focus is on persistence. We will
spend some more time understanding how services are created by first understanding the Win32 APIs specific
to Windows services. We will also explore how we could modify existing services to give us our persistence.
Lastly, we will cover how services can be hidden from view and from tools that query services.

40 © 2024 Jonathan Reiter

Technet24

Services
I To be, or not to be, a service?

Windows services are ripe for attackers for several reasons: commonly misconfigured,
incorrect permissions, automatic starts, run as SYSTEM, etc. Most users do not even
pay attention to new services or ones that have been modified.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 41

Services

This is not the first time that Windows services have been mentioned, so they must be important, and they are.
Services are not just important to the operating system, but they are also critical for red teamers. Earlier in the
course we saw how they play a role for our enumeration and for privilege escalation. Now we can change our
perspective to that of persistence. Red teamers, penetration testers, hackers, malware authors, etc. all look for
services to use for their advantage. Services, especially third-party ones, might have been created with
misconfigurations. A service’s binary path, if it has spaces in it, must have quotes around it. The Registry key
ImagePath can be targeted along with the service’s Failure Command. We can either fire off our persistence
binary when the target service starts, when it terminates improperly, or even if it fails to start properly. Of
course, we can also create our own service for persistence instead of hijacking an existing one.

© 2024 Jonathan Reiter 41

What to Change?

I Existing services can be modified in several areas.

I ImagePath I binPath I FailureCommand
A Registry key that The absolute path Indicates what
holds absolute path to the service should happen if
to the service binary on disk. the service does
binary on disk Typically matches not start or gets
ImagePath. terminated
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 42

What to Change?

The ImagePath is a Registry key for the service. Most of the time, the value held is the path to the service
executable on disk. The value, or arguments, in the key are passed to the service’s main function—the
service’s entry point. When a program calls the CreateService API, the IpBinaryPathName argument indicates
what the value will be for this key.

The binPath is the path of the service binary and the value typically will match that of the ImagePath Registry
key. The system does not provide a default value for you, so this is a mandatory item. Many penetration testers
or red teamers will forget to fulfill this requirement when making a service for their persistence only to see it
fail within a few seconds. If we change the binPath to point to an executable that we dropped to disk, then we
could achieve persistence. The FailureCommand is a command-line command that should be executed if the
service fails for whatever reason. This change can also help us maintain our access to a system; but the service
needs to fail, or our command will never kick off.

All of these could be manipulated via the command-line utility sc.exe.

42 © 2024 Jonathan Reiter

Technet24

Service Failure

I Failure is an option.

The Service Control Manager considers a service to have failed when a service
terminates but does not report the SERVICE_STOPPED status to it. Furthermore, if
the Win32ExitCode member of the SERVICE STATUS structure does not indicate
success (ERROR_SUCCESS), then it is also considered to have failed.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 43

Service Failure

When does a service really fail and by whose standard? In the world of Windows services, the Service Control
Manager (SCM) is the end-all-be-all. Services must answer to the SCM and if they do not, they are promptly
terminated. If that terminated service is yours—well, there goes your persistence. Services are deemed as a
failure when it does not start up properly, and starting up properly means sending the correct status to the SCM
in time. When it comes to service termination, services must also send a status to the SCM. The

SERVICE STOPPED status must be sent before its function returns or else the SCM will follow any failure
actions that have been registered for the service. Even more so, when a service exits but fails to set an
ERROR_SUCCESS, or NO_ERROR (0) inside the SERVICE STATUS structure, it is deemed a failure. It is
very critical that services inform the SCM of what is happening and in a timely fashion because the SCM is
not very forgiving. The failure actions the SCM looks for are defined in the

SERVICE FAILURE ACTIONSA structure.

© 2024 Jonathan Reiter 43

SERVICE_FAILURE_ACTIONS

typedef struct
® SERVICE_FAILURE_ACTIONS _SERVICE FAILURE ACTIONSA {

DWORD dwResetPeriod;
LPSTR 1pRebootMsg;

LPSTR lpCommand;

) DWORD cActions;

failure SC_ACTION *lpsaActions;

} SERVICE FAILURE ACTIONSA,
*LPSERVICE FAILURE ACTIONSA;

Dictates what takes place after a

Requires SCM to determine a
service failed

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 44

SERVICE_FAILURE_ACTIONS

The SERVICE FAILURE ACTIONS structure is utilized by the SCM as a representation of what must
happen when the SCM fails a service. The actions defined in the structure are executed by the SCM each time
the service enters a failure state. Existing services can have these optional configuration parameters changed
using the ChangeServiceConfig2 API and passing the SERVICE _CONFIG_FAILURE OPTIONS flag for the
dwinfoLevel parameter. The members of the structure are described below.

dwResetPeriod, is the period that must expire before the failure count is decremented to 0. The SCM maintains
a count of failures so that the correct failure actions can be executed after repeat failures. A common example
would be for critical services that may delay their restart time with each successive failure.

IpRebootMsg, is the message to be sent to the server to indicate to users that the system will be rebooted due to
the service’s failure. NULL here indicates to use the system’s default message, but if you pass empty quotes

(“’), then the default message is overridden, and no message will be displayed to the users.

IpCommand, is the command line that is passed to the CreateProcess API. The command will be executed
with the same permissions as the service.

cActions, is the number of elements that are in the I[psaActions array.
IpsaActions, is an array of SC_ACTION structures that indicate what action the SCM should take in the event

the service fails for the nth time. For example, if there are four items in the array and the service failed for the
fourth time, then that entry will be executed.

44 © 2024 Jonathan Reiter

Technet24

Implementation
I SERVICE_FAILURE_ACTIONS

Create and zero out the struct

Call the change service API

SERVICE FAILURE ACTIONSA sfa;
SecureZeroMemory (&sfa, ...);

sfa.dwResetPeriod = INFINITE;
sfa.lpRebootMsg = “”;
sfa.lpCommand = “ping C2”;
sfa.cActions = 0;
sfa.lpsaActions

NULL;

ChangeServiceConfig2 (hService,
SERVICE CONFIG FAILURE ACTIONS,
&sfa) ;

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Implementation

The pseudo code one the slide shows just one of several ways you could go about implementing a service’s
failure actions. It is best to do this after you have installed and created the service. The overall idea for this
small example is to ping the configured C2 server if the service fails. The beginning of the code starts off with
the SERVICE FAILURE ACTIONS struct. We make a variable called sfa of that type and securely zero out
the memory of that struct by the size of the struct. The struct members are modified in the order they appear in
the struct’s definition, to keep things easier to read. The reset period has an INFINITE value because we do
not care if the failure count is reset or not—for this example, anyway. For the reboot message, we pass in an
empty string because we do not want the default message or really any message at all. The empty string
overrides that and NULL does not change the reboot message. The command is the heart and soul for this
method. Our example simply pings our C2 server to demonstrate what could be done. There are no actions in
the SC_ACTION array, so 0 and NULL are used. After you are done modifying the structure, the

ChangeServiceConfig2 API can be called.

© 2024 Jonathan Reiter 45

Persistent Service

Source code review!

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 46

Persistent Service
Time to jump into the source code and explain it before you implement it on your own.

46 © 2024 Jonathan Reiter

Technet24

Lab 4.1: PersistentService

o
q I Creating your own service for persistence

Please refer to the eVWorkbook for the details of the lab.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 47

Lab 4.1: PersistentService
Please refer to the eWorkbook for the details of this lab.

© 2024 Jonathan Reiter 47

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 48

What’s the Point?
The point of this lab was to learn how to either create, install, or persist with your own service. When you have
administrative and/or SYSTEM privileges, creating a service is a perfect action to take.

48 © 2024 Jonathan Reiter

Technet24

What Else?

I Hiding a service

When the opportunity is there to hide ourselves from view, we tend to take advantage
of it. We can hide a service similar to how we can hide a process from a user and other
tools.The beauty about this is there is no need for a kernel driver of function hooking.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

What Else?

What else can we do with services? Well, one thing we can do is we can hide a service. A service that we
created for our own persistence needs can be hidden from the user and from several tools like the sc.exe
command-line utility. We hide a service for similar reasons that we hide a process; stay hidden, stay safe.
When you make it harder for users and tools to detect you, it helps you avoid detection longer. Hiding a
service that implements your persistence portion could really help you stay on a system longer. With this
technique, we do not need to hook any functions, nor do we need to install a kernel driver. Each service has a
security descriptor tied to it and we can manipulate that object. The way we do this is through a Microsoft-
specific language called SDDL, the security descriptor definition language.

© 2024 Jonathan Reiter 49

SDDL

I Security descriptor definition language

I O: Owner D: DACL I S: SACL I G: Group
/
0: owner_sid D: dacl_flags G: group_sid
S: sacl_flags
applies to the applies to the applies to the
owner of the object’s primary group for
object DACL/SACL control the object
flags
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control ~ 50

SDDL

The security descriptor definition language, or SDDL, is not really a language, per se, but something that is
specific to the definition of a string format for two APIs:
ConvertSecurityDescriptorToStringSecurityDescriptor and
ConvertStringSecurityDescriptorToSecurityDescriptor. The APIs are used to describe the security descriptor
as a string. With SDDL, we can also hit specific components of a security descriptor just using strings. There
is a specific format that must be followed for our hiding technique to work. At first, it might seem like it does
not make any sense, but after a bit of practice crafting some strings, you will get the hang of it.

A security descriptor will have four main components, such as the Owner (O:), the SACL (S:) and DACL
(D:), and the Primary Group (G:). The Owner is the owner of the object as identified by an owner sid. The
SACL has control flags as represented by sac/ flags. The DACL also has control flags as represented by
dacl flags. The Primary Group is the object’s primary group as identified by the group sid. There is also a
string_ace that is enclosed in parenthesis that is used to describe the ACE for a SACL or DACL security
descriptor. You must use an ace_string when changing the DACL or SACL of the object.

The control flags that can be used for the DACL or SACL are the following list of items:

+ “P” - SDDI_PROTECTED - SE_DACL_PROTECTED flag is set

« “AR” - SDDL_AUTO_INHERIT REQ -SE_DACL_AUTO INHERIT REQ flag is set
« “AI” -SDDL _AUTO INHERITED - SE_DACL_AUTO_INHERITED flag is set
+ “NO_ACCESS_CONTROL” - SDDL_NULL ACL - ACL is NULL

For reference, a DACL is a discretionary access control list and SACL is a system access control list.

Reference:

https://docs.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-string-format

© 2024 Jonathan Reiter

Technet24

Ace String Layout

I ace_type; ace_flags; rights; object_guid; inherit_object_guid; account_sid; (resource_attribute)

ace type ace flags generic rights registry
rights
A: access allowed CI: container inherit GA: generic all
D: access denied OI: object inherit GR: generic read KAa: all
OA: object allowed NP: no propagate GW: generic write KR: read
OD: object denied IO: inherit only GX: generic execute KW: write
AU: audit ID: inherited KX: execute
AL: alarm SA: audit success
standard rights directory rights label rights file rights
RC: read control RP: read property NR: no read up FA: all
SD: standard delete WP: write property NW: no write up FR: read
WD: write dac CC: create child NX: no execute up FW: write
WO: write owner DC: delete child FX: execute
LC: list children
SW: self write

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 5!

Ace String Layout

As mentioned on the previous slide, ace strings are used whenever we want to change the object’s DACL or
SACL. This slide details the syntax used for creating an ace_string and a short description of several of the
values. There is a lot on the slide, but there is even more documentation to be found on the MSDN site. At the
top of the slide is the syntax for how an ace_string should be formatted. The ace_type is the first field in the
string and can be any number of types that belong to that group. The simplest is to allow or deny access to an
object. The ace_flags field is typically skipped since it does not directly apply to hiding a service. We indicate
an empty field value or a skipped field like so, *“;;”. Generic access rights, standard access rights, directory
service object access rights, file access rights, registry access rights should sound somewhat familiar to you
with the APIs that have been used so far in the course. Not mentioned on the slide due to lack of room are the
account_sid values. The account sid values indicate the owner or primary group of the object. The famous
SID strings (S-1-1-0) can be used here, or you can use the equivalent constant with some of them listed below.

* AU: Authenticated users

* BA: Built-in administrators
e DU: Domain users

* LA: Local admin

* SY: Local system

© 2024 Jonathan Reiter 51

Viewing Security Descriptors

quserservice----Queries for a local instance of a user service template.
delete Deletes a service (from the registry).
create Creates a service. (adds it to the registry).
--Sends a control to a service.
--Displays a service's security descriptor.
--Sets a service's security descriptor.
Displays the service SID string corresponding to an arbitrary name.

C:\>sc sdshow bits

D: (A;CI ; CCDCLCSWRPWPDTLOCRSDRCWDNO; 5 3 SY) (A; ; CCDCLCSWRPWPDTLOCRSDRCHDWO; ; ; BA)
(A; ; CCLCSWLOCRRC; ; ; TU) (A; ; CCLCSWLOCRRC; ; 3 SU)S: (AU; SAFA; WDWO; 5 3 BA)

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 52

52

Viewing Security Descriptors

Using the sc.exe command-line utility, we can view a service’s security descriptor. Running the program with
the /? argument shows the help menu. From the help menu we can see the argument sdshow and its
description: Displays a service’s security descriptor. This is what we want. From here we can choose a service,
like BITS, and see what its security descriptor currently is. With the information we now know about SDDL
and ace_strings, we can interpret the output without too much headache.

© 2024 Jonathan Reiter

Technet24

I MSDN Example

Several field types skipped

Uses the NULL well-known SID

SDDL Example #1

"O:AO0G:DAD: (A; ; RPWPCCDCLCSWRCWDWOGA; ; ;S-1-0-0)”

Revision: 0x00000001,
Control: 0x0004, SE_DACL_PRESENT
Owner: (S-1-5-32-548)
PrimaryGroup: (S-1-5-21-397955417-626881126-
188441444-512)
DACL - Revision: 0x02, Size: 0xlc, AceCount: 0x01
Ace [00]
AceType: 0x00 (ACCESS_ALLOWED ACE_TYPE)
AceSize: 0x0014
InheritFlags: 0x00
Access Mask: 0x100e003f
READ CONTROL | WRITE DAC | WRITE OWNER |
GENERIC_ALL, Others (0x0000003f)

Ace Sid : (S-1-0-0)

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

SDDL Example #1

This first example is taken directly from MSDN documentation. The ace_string is the most interesting piece of
the string and here is the breakdown. Since the first field of the ace_string is the ace_type, this is allowing
access and more specifically the ACCESS ALLOWED ACE TYPE. The next field is ace_flags, which is
empty. The rights field is next and is where our focus is for truly understanding what is happening. We break
this down in pairs starting with “RP”, which indicates the read property (ADS_RIGHT DS READ PROP),
“WP” indicates write property (ADS_RIGHT DS WRITE PROP), “CC” indicates create child
(ADS_RIGHT DS CREATE_CHILD), “DC” indicates delete child (ADS_RIGHT DS DELETE_CHILD),
“LC” indicates list children (ADS_RIGHT ACTRL DS LIST), SW” indicates (ADS RIGHT DS SELF),
“RC” indicates read control (READ CONTROL) and is a standard access right, “WD” indicates write DAC
(WRITE_DAC), “WO” indicates write owner (WRITE_OWNER), and “GA” indicates generic all
(GENERIC_ALL). The object_gui is skipped and the inherit_object guid is also skipped. For the account_sid
we see the well-known NULL SID is used because the actual SID might not have been known at the time. To
our benefit, the interpretation of the string has been given for a full explanation of the effects.

Reference:

https://docs.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-string-format

© 2024 Jonathan Reiter 53

53

Exercise: SDDL

. "D:
a Hiding the service (D; ; DCLCWPDTSD; ; ; IU)
(D; ;DCLCWPDTSD; ; 3SU)

(D; ;DCLCWPDTSD; ; ;BA)

(A; ; CCLCSWLOCRRC; ; 3 IU)

(A; ; CCLCSWLOCRRC; ; ;SU)

From Joshua Wright (A; ; CCLCSWRPWPDTLOCRRC; ; ;SY)

(A; ; CCDCLCSWRPWPDTLOCRSDRCWDWO; 5 5 BA)

95

(AU; FA; CCDCLCSWRPWPDTLOCRSDRCWDWO; 5 ;WD) "

Applies to several SIDs

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 54

Exercise: SDDL

SANS instructor and author Joshua Wright crafted the SDDL string shown on the slide during an engagement
and used it to hide a service he created. Take 10-15 minutes to break down this real-world example piece by
piece just like we did together for the previous example from MSDN.

Reference:
https://www.sans.org/blog/red-team-tactics-hiding-windows-services/

54 © 2024 Jonathan Reiter

Technet24

Exercise: SDDL: The Solution

"D: DACL
(D; ; DCLCWPDTSD; ; 3 IU)
interactive user, deny: delete, list, write, delete tree, standard delete
(D; ; DCLCWPDTSD; ; ;SU)
service user, deny: delete, list, write, delete tree, standard delete
(D; ;DCLCWPDTSD; ; ;BA)
built-in admins, deny: delete, list, write, delete tree, standard delete
(A; ; CCLCSWLOCRRC; ; 5 IU)
interactive user, allow: create, list, selfwrite, list obj, control access, read control
(A; ; CCLCSWLOCRRC; ; ;SU)
service user, allow: create, list, selfwrite, list obj, control access, read control
(A; ; CCLCSWRPWPDTLOCRRC; ; ;SY)
local system, allow: create, list, selfwrite, read/write property, delete tree, list obj...
(A; ; CCDCLCSWRPWPDTLOCRSDRCWDWO; 5 ;BA)
built-in admins, allow: create, delete, list, selfwrite, read/write property, delete tree...
S: SACL
(AU; FA; CCDCLCSWRPWPDTLOCRSDRCWDWO; ; ;WD) >
everyone,

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 55

Exercise: SDDL: The Solution

Here is the breakdown of the string applied to their service. To make this a bit easier, we can first look at the
SIDs for which the rules will apply. Starting with the DACL portion (D:), we see “IU”, “SU”, ’BA”, and “SY”
being used for the account_sid, which apply to the logged-on interactive user, the service logon user, the built-
in administrators, and local system, respectively. The logged-on user is denied delete and list accesses to the
object, cannot write or delete the directory recursively, and cannot even use standard delete. The service logon
user is denied the same items as the logged-on user as well as the built-in admins. The SACL has an
ace_string that applies everyone’s access like so: audited, audited failure, create, delete, list, self-write,
read/write property, delete tree, list object, control read, standard delete, read control, write dac, and write
owner. If you were to apply this to a service that you created, try to query it with various tools like
PowerShell’s Get-Service cmdlet, the sc.exe utility, etc. and see what you are shown.

© 2024 Jonathan Reiter 55

Exercise: SDDL: Unhiding the Service

sc.exe sdset SWCUEngine

D:

(A; ; CCLCSWRPWPDTLOCRRC; ; ;SY)

(A; ; CCDCLCSWRPWPDTLOCRSDRCWDWO; ; ; BA)
(A; ; CCLCSWLOCRRC; ; 5 IU)

(A; ; CCLCSWLOCRRC; 5 5SU)

S:

(AU; FA; CCDCLCSWRPWPDTLOCRSDRCWDWO; ; ;WD)

The command on a single line

sc.exe sdset SWCUEngine \

D: (A; ; CCLCSWRPWPDTLOCRRC; ; ;SY) (A; ; CCDCLCSWRPWPDTLOCRSDRCWDWO; ; ; BA) (A; ; CCLCSWLOCRRC
555IU)(A; ;CCLCSWLOCRRC; ; ;SU)S: (AU; FA; CCDCLCSWRPWPDTLOCRSDRCWDWO; ; ;WD)

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 56

Exercise: SDDL: Unhiding the Service

As professional red teamers, we need to clean up and one of the ways we can do that is to unhide the service.
The command on the slide will restore the accesses back so that users and tools can “see” the service again. As
can be seen on the slide, the command is broken out for readability. When running the command on target, it
would all be on a single line as shown on the bottom of the slide.

56 © 2024 Jonathan Reiter

Technet24

Exercise Complete: STOP

You have successfully completed the exercise.
Congratulations!

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Exercise Complete: STOP
This marks the completion of the exercise. Congratulations on successfully completing all the exercise steps!

© 2024 Jonathan Reiter 57

Programmatically Hide a Service
I Manual versus programmatically

As with almost everything you do manually in a shell like the cmd prompt, there are
Windows APIs on the back end that enable that effort. SDDL strings and ACE strings
can be daunting to hand jam in an interactive session, but perhaps using the APIs is
easier.

58

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Programmatically Hide a Service

Crafting your SDDL string to change the permissions of an object is not intuitive by any means and rather
annoying. This is largely due to the archaic SDDL syntax, but it can come in handy for those one-offs where
you do not have tool that can implement this feature, nor do you have the time to create one. Thankfully, you
are not stuck having to produce an ugly looking SDDL string. Windows has structures and APIs that can be
configured and called to effectively hide a service. Knowing the various methods of how this is done via the
various Windows APIs is important for developers—that way this feature can be added or created in our
toolset. The securitybaseapi.h header file declares a very large number of APIs that are specific to changing
the control bits of a security descriptor and then some. This is what we were doing manually with the SDDL
strings and the sc.exe sdset command-line utility. APIs such as SetSecurityDescriptorControl,
SetSecurityControlDacl, SetSecurityDescriptorSacl, SetSecurityDescriptorOwner, etc. are where you would
want to look first for this implementation in code. For the most part, they are all Boolean type functions and
are very easy to implement. Another important header file to look at would be aclapi.h and, as the name
implies, there will be APIs, such as GetNamedSecurityInfo and SetNamedSecurityInfo that directly tie to
obtaining and or modifying ACLs.

© 2024 Jonathan Reiter

58

Technet24

GetNamedSecuritylnfoA

DWORD GetNamedSecurityInfoA (
® GetNamedSecurityInfoA LPCSTR pobj ectName,

SE_OBJECT TYPE ObjectType,
SECURITY INFORMATION SecInfo,

. . . PSID *ppsidOwner,
Copies the security descriptor of BSID *ppeidcronp)

the specified object by name PACL *ppDacl,
PACL *ppSacl,
PSECURITY DESCRIPTOR *pSecDscrptr

) g
NTFS objects, services, keys,

shares, file-mapping objects

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GetNamedSecurityInfoA

The GetNamedSecurityInfoA API is used for when you would want to obtain the security descriptor of an object of interest. The great
thing about this API is that is can be used for objects that are local to the system as well as objects that might be on a remote system.
Because Windows has many object types, it can be daunting to fully understand each object type and how they can be secured. Thankfully,
we can peek into them with this API. The SAL annotations have been omitted on the slide for brevity but have been included down below
in the slide notes. There are three in parameters that are required and five out parameters that are optional. To get the most details about an
object, you can pass in pointers for each of the out parameters. Passing in pointers for those extra parameters will tell the API that you
want information about the Owner and Group SID, along with the DACL and SACL.

Here is a detailed breakdown of the API’s parameters.

In_ LPCSTR pObjectName, is the pointer to the name of the object that you are querying. Remember,
this string must be a NULL-terminated string.

In_ SE_OBJECT_TYPE ObjectType, is an enum entry from the enum SE_OBJECT_TYPE. This lets the API
know the type of the object that pObjectName should be in the system.

In SECURITY_INFORMATION SecurityInfo, is how you indicate to the API the security information set
you are querying. Many of these can be combined using a bitwise OR like
ATTRIBUTE_SECURITY_INFOMRATION | DACL_SECURITY_INFORMATION.

_Out_opt_ PSID *ppsidOwner, if desired, will hold the pointer to the owning SID if there is one, in
the security descriptor pointed to by ppSecurityDescriptor. If there isn’t one, then NULL will be
returned.

_Out_opt_ PSID *ppsidGroup, if desired, will hold the pointer to the primary group SID if there is
‘one, in the security descriptor pointed to by ppSecurityDescriptor. If there isn’t one, then NULL
will be returned.

_Out_opt_ PACL *ppDacl, if desired, will hold the pointer to the DACL if there is one, in the
security descriptor pointed to by ppSecurityDescriptor. If there isn’t one, then NULL will be
returned.

_Out_opt_ PACL *ppSacl, if desired, will hold the pointer to the SACL if there is one, in the
security descriptor pointed to by ppSecurityDescriptor. If there isn’t one, then NULL will be
returned.

Out_opt_ PSECURITY_DESCRIPTOR *ppSecurityDescriptor, will point to the security descriptor for the
requested object. The buffer the API made for you must be freed by calling LocalFree.

© 2024 Jonathan Reiter 59

SetNamedSecuritylnfoA
I SetNamedSecuritylnfoA

Applies what is in the security
descriptor for a chosen object

PACL pSacl
I g
Objects will be given by their
name
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control
SetNamedSecurityInfoA

The SetNamedSecurityInfoA API is used for when you want to confirm or apply a change to security information in an
object’s security descriptor that you previously obtained. As with the GetNamedSecurityInfo API, this can deal with many
types of objects. The objects can be local to the system or on a remote system given proper permissions or accesses to it.
Let us break down the API’s parameters. If you are modifying objects that do have existing ACEs, then you must call
SetEntriesInAcl before you can call SetNamedSecurityInfo. ACE entries will then be merged in the object’s DACL.

In LPSTR pObjectName, is the pointer to the name of the object that you are querying.

DWORD SetNamedSecurityInfoA (
LPSTR pObjectName,
SE_OBJECT TYPE ObjectType,
SECURITY INFORMATION SecInfo,
PSID psidOwner,
PSID psidGroup,
PACL pDacl,

Remember, this string must be a NULL-terminated string.

In SE OBJECT_TYPE ObjectType, is an enum entry from the enum SE_OBJECT_TYPE.

‘the API know the type of the object that pObjectName should be in the system.

_In_SECURITY_INFORMATION SecurityInfo, is the combined flags using a bitwise OR for the

information that is to be set.

In opt PSID psidOwner, is a pointer to the SID of who the owner of the object should

be. For this to take effect, you must first have WRITE_OWNER access or more like
SE_TAKE_OWNERSHIP_NAME. Must use OWNER_SECURITY_INFORMATION for this to work.

In opt PSID psidGroup, if passed, can be used to indicate who the primary group of the
object will be from here on out. Must use GROUP_SECURITY_INFORMATION for this to work.

In opt PACL pDacl, if passed, can be used to point to the new DACL of the object. Must

use DACL_SECURITY_INFORMATION for this to work.

In opt PACL pSacl, if passed, can be used to point to the new SACL of the object. Must

use SACL_SECURITY_INFORMATION, as well as a few others, for this to work.

© 2024 Jonathan Reiter

This lets

Technet24

EXPLICIT_ACCESS_A

typedef struct EXPLICIT ACCESS A
® EXPLICIT_ACCESS_A {
DWORD grfAccessPerms;
ACCESS MODE grfAccessMode;
Defi | DWORD grfInheritance;
. efines ;.1ccess contro TRUSTEE A Trustee;
information for a trustee } EXPLICIT ACCESS A,

*PEXPLICIT ACCESS A,
EXPLICIT ACCESSA,

*PEXPLICIT ACCESSA;
The user, group, program to apply

it against

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 6l

EXPLICIT_ACCESS_A

The EXPLICIT_ACCESS_A structure is heavily used whenever modifications are being made to the ACL of an object. The structure is used to describe to
the system the information in an ACE that resides in an ACL. Let’s jump right in and start to better understand the structure members and how you might
want to set them to change an object.

DWORD grfAccessPermissions, is for a combination of flags that will be used to dictate the permissions granted or denied to the object; permissions like
EVENT_ALL_ACCESS, SYNCHRONIZE, GENERIC_ALL, READ_CONTROL, and so many more.

ACCESS MODE grfAccessMode, will be for one of the enum values in the ACCESS_MODE enum and depending on if you are messing with a DACL or
SACL, this member will mean different things. For DACLS, the flag will indicate if there will be deny or allow access rights in the ACL. For SACLs, this
will indicate if audit messages for access attempts should be generated.

DWORD grflnheritance, is used to indicate if the ACE of the primary object can be inherited by other containers or objects. Setting something like
NO_INHERITANCE will indicate that the ACE cannot be inherited.

TRUSTEE_A Trustee, is a structure that is used to indicate how the ACE should apply. ACEs can be applied to a user, group, or a Windows service.
Below are some enums and structs that are used within the EXPLICIT_ACCESS struct discussed above.

typedef enum _ACCESS_MODE {
NOT_USED_ACCESS,
GRANT_ACCESS,
SET_ACCESS,
DENY_ACCESS,
REVOKE_ACCESS,
SET_AUDIT_SUCCESS,
SET_AUDIT FAILURE

} ACCESS_MODE;

typedef struct _TRUSTEE_A {
struct _TRUSTEE_A *pMultipleTrustee;
MULTIPLE_TRUSTEE_OPERATION MultipleTrusteeOperation;
TRUSTEE_FORM TrusteeForm;
TRUSTEE_TYPE TrusteeType;
union {
LPSTR ptstrName;
SID *pSid;
OBJECTS_AND_SID *pObjectsAndSid;
OBJECTS_AND_NAME_A *pObjectsAndName;

}
LﬁCH ptstrName;
TRUSTEE_A, *PTRUSTEE_A, TRUSTEEA, *PTRUSTEEA;

-

© 2024 Jonathan Reiter 61

Module Summary

r
:g; I Discussed persistence via services

Learned what APlIs are related to services

Explored how to create new services and modify existing ones

I Performed manual service hiding using SDDL

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 62

Module Summary

In this module, spent a little bit of time discussing how services can be used for our persistence needs.
Throughout that discussion, we discovered what APIs are related to services. We saw that actions can be taken
based on the service starting successfully, as well as failing. One of the final items covered was manually
changing the permissions of a service to hide it from the user.

62 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I What language can be used to describe the security of a descriptor?

|-

DACL

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 63

Unit Review Questions
Q: What language can be used to describe the security of a descriptor?

A: SDDL
B: ACL

C: DACL

© 2024 Jonathan Reiter 63

Unit Review Answers

r
:g; I What language can be used to describe the security of a descriptor?

| -

DACL

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 64

Unit Review Answers
Q: What language can be used to describe the security of a descriptor?

A: SDDL
B: ACL

C: DACL

64 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I What command-line utility lets you view an object's security descriptor?

cmd.exe
n sc.exe

tasklist.exe

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 65

Unit Review Questions
Q: What command-line utility lets you view an object’s security descriptor?

A: cmd.exe
B: sc.exe

C: tasklist.exe

© 2024 Jonathan Reiter 65

Unit Review Answers

r
:g; I What command-line utility lets you view an object's security descriptor?

cmd.exe
n sc.exe

tasklist.exe

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 66

Unit Review Answers
Q: What command-line utility lets you view an object’s security descriptor?

A: cmd.exe
B: sc.exe

C: tasklist.exe

66 © 2024 Jonathan Reiter

Technet24

Course Roadmap

« Windows Tool Development

* Getting to Know Your Target

* Operational Actions

+ Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

In Memory Execution
Dropping to Disk
Binary Patching
Registry Keys
Services Revisited

Lab 4.1: Persistent Service
Port Monitors

Lab 4.2: Sauron
IFEO

Lab 4.3: IFEOPersisto
WMI Event Subscriptions

Bootcamp

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 67

In this module, we will discuss how to persist using port monitors.

© 2024 Jonathan Reiter 67

Our objectives for this module are:

Define and discuss port monitors
Understand APIs involved

Explore its usefulness for persistence

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 68

Objectives

The objectives for this module are to define and discuss port monitors; what they are and what they are used
for. Next, we will look at the APIs involved with the implementation of this method before we move into
exploring how useful it might be for our persistence needs.

68 © 2024 Jonathan Reiter

Technet24

Port Monitors

I What are port monitors!?

Windows has two type of print monitors: language monitor and port monitor. Port
monitors do what they say by monitoring a printer port and bridging the physical
connection to the printer queue, which we see as a user.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Port Monitors

What exactly are port monitors? According to Microsoft, a port monitor acts like a bridge of sorts from user-
mode to kernel-mode. The user-mode side comes from the spoolsv.exe image and it communicates with a port
driver that resides in the kernel. The spoolsv.exe is a Windows service known as the Windows Print Spooler.
The kernel port driver is what accesses the I/O port hardware. Port monitors are utilized to configure printer
ports, and also manage them. As a user, you see the queue for a printer. The port is the physical connection
that bridges that gap between the queue and the physical printer. Ports are assigned to port monitors using a
Win32 API named AddPrinter. What we are doing, though, has nothing to do with printers or adding print job
to a printer queue.

Reference:
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/port-monitors

© 2024 Jonathan Reiter 69

Abusing Port Monitors: The Registry

View Favorites
Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Contro\Pr
v Print A

Key holds the port monitors in L2 i’“’i"’"me"“
H orms
place

I Method one: Registry B Registry Editor
File Edit Help

P v Monitars
P Appmon
lpphdon
Local Port
11 Microsoft Shared Fax Monitor
Need |oca| admin Pl o> Standard TCP/IP Port
I ThinPrint Print Port Monitar for WV
USB Monitor
WSD Port

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Abusing Port Monitors: The Registry

There are two ways that we can leverage and abuse port monitors. The first method we are going to look at is
using the Registry to modify the Print>Monitors hive. The full path to the key is
HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors and the subkeys under it should be port
monitors. We can manually view this using the regedit.exe GUI. Browsing to the key, we can select each
subkey and view the values. Each one should have a DLL that it is using to monitor the port. Depending on
your computer’s configuration, you might see several subkeys like Local Port, or USB Monitor. Via the GUI,
we can manually add a new subkey here and create our new port monitor. The new key that we create will
have a new string value that will be the name of the DLL used to “monitor” the port. The catch is, the DLL
being used for the ”Driver” key value must reside in the C:\Windows\System32 folder. For this reason, we
must have local admin privileges. The beauty behind this, though, is when the DLL gets kicked off, what
comes back is SYSTEM. Not a bad deal at all. However, another downside to this method is that the system
must be rebooted for this change to take effect. Probably not something you want to initiate on your own
unless you know the user is gone for the day and will not notice. If you can determine that there will be a
scheduled reboot to meet some corporate reboot policy, then that could work too.

70 © 2024 Jonathan Reiter

Technet24

AddMonitor

. BOOL
® AddMonitor AddMonitor (

_In LPTSTR pName,
_In DWORD Level,

. In LPBYTE pMonitors
Used to install a local port ;o P
r

monitor

typedef struct MONITOR INFO 2 (
LPTSTR pName;

Has a BOOL return type LPTSTR pEnvironment;
LPTSTR pDLLName;

} MONITOR INFO 2, *PMONITOR INFO 2;

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 71

AddMonitor

The AddMonitor AP is used when you need to create and install a port monitor on the local machine. The API
will fail if your monitor does not match the architecture of the system you are targeting. This means that for a
64-bit system, your environment would be “Windows x64”. The parameters are described below.

pName, is a pointer to a NULL-terminated string for the server that we are installing the port monitor.

Level, is for the version, but the only option the API will accept is 2, so 2 it is.

pMonitors, is a pointer to the MONITOR _INFO_2 struct that we have set up before the API call.

The MONITOR INFO_ 2 struct is used by the API to identify the monitor that we are hoping to install. Here
are the structure members.

pName is a pointer to a NULL-terminated string that will be the name of the monitor being installed.
pEnvironment is a pointer to a NULL-terminated string that indicates the environment that the monitor is being
installed against. “Windows x64” and “Windows NT x86” are some

examples of strings acceptable for the environment.

pDLLName is a pointer to a NULL-terminated string that is used to indicate the name of the monitor DLL.

© 2024 Jonathan Reiter 71

Abusing Port Monitors: AddMonitor

BOOL
I Method two:The API CreatePortMonitor (void)

{

MONITOR INFO 2 mInfo2;

// configure the struct members
Create our own DLL CHAR dllName[12]="NotEvil.dll”;
CHAR envName [12] =“Windows x64”;
CHAR name[7] = “Sauron”;
mInfo2.pName = name;
mInfo2.pEnvironment = envName;
Make it the monitor DLL mInfo2.pDLLName = dllName;

// call the function
AddMonitor (... (LPBYTE) &mInfo2) ;

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Abusing Port Monitors: AddMonitor

Let us talk about the second method for abusing port monitors, using the AddMonitor AP1. The API was
discussed in detail on the previous slide so that we can cover a snippet of pseudo code here showing a possible
implementation of it. The overall goal with the code is to bring our own DLL to the game and use it to tell
Windows that it needs to use our DLL to monitor a port. We can create a small function that can execute this
for us and just call it from main() or another function. What is happening in the code is that we prepare the
MONITOR _INFO _2 struct for use and give it a variable name. Before we start initializing each struct
member, we make a few variables that will be assigned to the appropriate struct member. The name of our
DLL will be “NotEvil.dll” because we will not be doing anything evil here. The environment this will be
installed on will be “Windows x64” because it is a 64-bit OS. Finally, the name of the port monitor itself will
be “Sauron” because it will act as the all-seeing eye for the port. With that out of the way, we can assign them
to the proper members of the struct and make our API call. Done!

A nice effect with this method is there is no reboot required since the changes made here are immediate. A

downside to this, though, is that you will still need to be a local admin to pull this off, but good thing we know
what to look for when trying to elevate our privileges.

72 © 2024 Jonathan Reiter

72

Technet24

Port Monitor Source Code

Source code review!

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 73

Port Monitor Source Code
Time to jump into the source code and explain it before you implement it on your own.

© 2024 Jonathan Reiter 73

Lab 4.2: Sauron

o
q I Implement a port monitor for persistence

Please refer to the eWorkbook for the details of the lab.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 74

Lab 4.2: Sauron
Please refer to the eWorkbook for the details of this lab.

74 © 2024 Jonathan Reiter

Technet24

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 75

What’s the Point?

The point of this lab was to introduce you to another persistence technique that can be done programmatically.
There was only one API that we needed to learn, and it was not a complicated one at all. We just had to set up
a few things inside a structure, and everything was ready to execute.

© 2024 Jonathan Reiter 75

Module Summary

)r
:g; I Defined and described port monitors

I Looked at two ways to implement the method

I Discussed the permissions required

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Module Summary
In this module, we defined port monitors and discussed how Microsoft intended for them to be used. Two

ways of leveraging port monitors for persistence were explored from a manual method to a programmatic
method. Lastly, we touched on a minor limiting factor for this method; the requirement to be a local admin.

76 © 2024 Jonathan Reiter

76

Technet24

Unit Review Questions

r
:g; I What APl is called to create a new port monitor?

CreateNewMonitor
n AddMonitor

AddNewMonitor

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 77

Unit Review Questions
Q: What API is called to create a new port monitor?

A CreateNewMonitor
B: AddMonitor

C: AddNewMonitor

© 2024 Jonathan Reiter 77

Unit Review Answers

h|

r
:g; I What APl is called to create a new port monitor?

CreateNewMonitor
n AddMonitor

AddNewMonitor

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 78

Unit Review Answers
Q: What API is called to create a new port monitor?

A CreateNewMonitor
B: AddMonitor

C: AddNewMonitor

78 © 2024 Jonathan Reiter

Technet24

Course Roadmap

* Windows Tool Development

* Getting to Know Your Target

* Operational Actions

* Persistence: Die Another Day

* Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

In Memory Execution
Dropping to Disk
Binary Patching
Registry Keys
Services Revisited

Lab 4.1: Persistent Service
Port Monitors

Lab 4.2: Sauron
IFEO

Lab 4.3: IFEOPersisto
WMI Event Subscriptions

Bootcamp

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 79

In this module, we will discuss how to persist using Image File Execution Options (IFEO).

© 2024 Jonathan Reiter 79

Our objectives for this module are:

Define what IFEO is
Abuse the feature to gain persistence

Discuss what permissions are required

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 80

Objectives
The objectives for this module are to define Image File Execution Options and abuse the feature to service our
persistence needs. We will also talk about what permissions are required for pulling this off.

80 © 2024 Jonathan Reiter

Technet24

What Is IFEO?

o I Image File Execution Options

IFEO is aWindows Registry key that enables the debugging or tracing of a process
when it is started. The IFEO key is a great for developers so their application can be
debugged, but it is also great for malware authors looking to persist on the target.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 81

What Is IFEO?

IFEO stands for Image File Execution Options and comes in the form of a Windows Registry key. The idea
behind it is to give some more options for when a process begins execution. The options can be any number of
actions, like having a debugger launch when the process does, or having your implant run when the process
does. If you are a Sysinternals fan, you can easily have Process Explorer or Process Monitor launch when the
Windows Task Manager is launched. In fact, Process Explorer gives you this option natively by choosing
Options->Replace Task Manager. As a developer, we can take advantage of this key as a method to monitor
our application. As an implant developer, we can take advantage of this key as a persistence mechanism same
as malware authors have been doing. This method really works great for EXE files, and not so much for DLLs.

© 2024 Jonathan Reiter 81

IFEO GlobalFlag
@ I A nice addition to the traditional IFEO

I Gflags.exe I Silent process exit

Bundled with the Windows SDK, VIS 20 G [FroEss

enables advanced debugging of ” »
geing Image: Process to “watch

applications . “ .y
PP Monitor:The “watching” process
SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 82
IFEO GlobalFlag

To use GlobalFlags, the SDK must be installed. After installation is completed, the gflags binary should be
located at: C:\Program Files (x86)\Windows Kits\10\Debuggers\x64. MSDN describes the binary as one
that can enable more advanced debugging and is used to turn on other indicators that other tools track. Gflags
has the power to set system-wide debugging settings under the following Registry key:
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\GlobalFlag. However, for this to take
effect you must reboot the system. With it, we can also affect settings for a specific application. To make this
setting stick, we would change the HKLM\ SOFTWARE\ Microsoft\ Windows NT\ CurrentVersion\
Image File Execution Options\ImageFileName\GlobalFlag.

But wait, there’s more! If you were to scroll down toward the bottom of the MSDN page, you would see
something called Silent Process Exit. This feature allows you to ”monitor” the silent exit of a process. This
means we get to specify what actions we want to take when a process exits. The gflags.exe utility will make
the necessary changes to this registry key: HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\ProcessName\GlobalFlag and set the
FLG_MONITOR_SILENT PROCESS EXIT flag. Simply replace “ProcessName” with the one that you want
to “monitor” and then you have your persistence kicking off when the process exits.

To summarize the relationship between the setting and the Registry Key, see the below list.

* Global settings: HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\GlobalFlag

* App-specific for all users: HKLM\ SOFTWARE\ Microsoft\ Windows NT\ CurrentVersion\ Image
File Execution Options\ImageFileName\GlobalFlag

+ Silent exit, app-specific, for all users: HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\SilentProcessExit\ImageFileName

* App debugger: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\ImageFileName\Debugger

82 © 2024 Jonathan Reiter

Technet24

Running Gflags.exe

Global Flags

r ﬁnpgngxcgm i

[~ Show loader snaps
™ Debug inttial command

[~ Enable heap tail checking

[~ Enable heap free checking

[~ Enable heap parameter checking
[~ Enable heap validation on call

| Enable application verifier

¥ Enable pool tagging
I~ Enable heap tagging
[~ Create user mode stack trace database
[~ Create kernel mode stack trace database
[~ Mairtsin & list of objects for each type
[~ Enable heap tagging by DLL
[~ Enable '60' second value for leap seconds
[~ Kernel Special Pool Tag

% Hex

 Text I

™ Verify Start & Verify End

System Registty | Kemel Flags | Image File | Silent Process Exit |

| Enable debugging of Win32 subsystem

[~ Enable loading of kernel debugger symbols
I Disable paging of kernel stacks

[~ Enable system critical breaks

[~ Disable heap coalesce on free

[Enable close exception

[Eneble exception logging

| Enable object handle type tagaing
I™ Enable page heap

I Debug WINLOGON

[~ Buffer DbgPrint output

I Early critical section event creation
[~ Stop on user mode exception

I™ Enable bad handies detection

|~ Disable protected DLL verification

~Object Tracing
[~ Enable [~ Permencrt

Pool Tags
Process

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

’TI Cancel | Apply

Running Gflags.exe

The GUI version of the gflags program looks similar to the screenshot on the slide. You can see the various
tabs at the top of the window that are specific to categories like the Kernel, Image File, and Silent Process
Exit. Feel free to explore the tool and the features that it provides. Once you have an understanding you can

programmatically implement many of these items on your own.

© 2024 Jonathan Reiter

83

@ I A modern take on the original gflags.exe utility

Pavel Yosifovich created a new version of gflags that offers a great new look to the tool.
Check out his repo for this and other awesome tools: https://github.com/zodiacon.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

GflagsX

Pavel Yosifovich has been recreating several tools with better features and a nicer looking GUI. Pavel has
been posting them publicly on his repo https://github.com/zodiacon. If you get a chance, check them out for
yourself.

84 © 2024 Jonathan Reiter

84

Technet24

Running GflagsX

by Pavel Yosifovich

@ Kemel) Image

Executables: AcroRd32.exe

User Mode

Stop on Exception

Show Loader Snaps

Enable Heap Tail Checking

Enable Heap Free Checking

Enable Heap Psrameter Checking
Enable Heap Validation on Call

Enable Application Verifier

Enable Heap Tagging

Create User Mode Stack Trace Database
Enable Heap Tagging by DLL

Disable Heap Coalesce on Free

Enable Page Heap

Early Critical Section Event Creation
Stop on Unhandled User Mode Exception
Disable Protected DLL Verification

Silent Process Exit

General

Enable System Critical Breaks

2, Configure Silent Process Exit

Flags Value: 00 o Appiy Fiags

Ay veiete (4 Newimage.. f Reload AN

MORE SETTINGS

Y pesarisgs

Debugger:

Mitigation Options (Hex): 100
DEP. Ensble
ASLR: Aways On

Heap Termination on Corruption: | Defer

Botiom Up ASLR: Defer
High Entropy ASLR: Defer
Strict Handle Checks: Defer
Disable Win32K Calls: Defer
Disable Extension Point: Defer
Disable Dynamic Code: Defer
Control Flow Guard: Defer

Block Non-Microsoft Binaries: Defer

Black Non-System Fonts: Defer
Disable Remote Loads: Defer
Disable Low Integrity Loads: Defer
Prefer System Images: Defer

(%) MITIGATION OPTIONS

X

ATLThunk | | SEHOP

Apply Settings Reload Settings

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Running GflagsX

The GUI for Pavel’s tool looks much nicer and more modern than the legacy tool. There are not as many tabs
at the top of the window, but many of those features are consolidated. For example, the Silent Process Exit tab
and its options are located under the Image tab for GflagsX.

© 2024 Jonathan Reiter

85

85

Manual Implementation

@ I reg.exe

Done with interactive shell

Could be done with APIs

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 86

Manual Implementation

reg add HKLM\...\Image File Execution
Options\ProcessName /v GlobalFlag /t
REG_DWORD /d 512

reg add
HKLM\...\SilentProcessExit\ProcessNam
e /v ReportingMode /t REG_DWORD /d 1

reg add
HKLM\...\SilentProcessExit\ProcessNam
e /v MonitorProcess /d
»C:\Path\To\implant.exe”

It is possible to manually make the Registry keys using the reg.exe command-line utility. The examples on the
slide demonstrate how we could implement this if we were using an interactive shell on the target. The other
option is to do this programmatically with the appropriate Win32 Registry APIs we covered earlier in the
course, like RegOpenKeyExA. After obtaining a handle to a key, we can then call RegCreateKeyExA so we
can create or modify a key, and then call RegSetValueEx so we can write the values to the proper keys, etc.
Needless to say, there is more than one way that we can go about getting this done.

© 2024 Jonathan Reiter

Technet24

Abusing IFEO

:g:g Take advantage of what is given.

We can take advantage of IFEO to achieve our own persistence goals.To do this, it
would be beneficial to choose an application that starts early in the boot process, or
one that we are certain will execute either by the user or the system.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Abusing IFEO

Since we are interested in persisting on the target, we are going to abuse this option. The trick is choosing the
best target process to do this against. We should choose one that kicks off when the system is starting up. A
good possibility that fits into that role would be userinit.exe as it starts when the system does. You can
leverage your knowledge of Windows internals for other options. There could also be third party applications
that start when the system does, so they can serve as good options too. Perhaps you know that a user opens a
particular process as part of their daily work routine; we can leverage that as well. In the end, pick something
that you do not have to trigger manually.

© 2024 Jonathan Reiter 87

Permissions Needed

o I What permissions are needed for IFEO persistence?

I Admin I SYSTEM
Basic users do not have The SYSTEM account can do
permission to create/edit certain pretty much anything. Never
Registry keys. hurts to have this access.
SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 88

Permissions Needed

Sadly, if we only have permissions as a basic user, then we will be denied access when trying to modify the
HKLM Registry keys needed for the IFEO persistence method. Since we have already discussed a few ways
that we can escalate our privileges, there is no need to bring that discussion here, but we can use any technique
we can to become Admin. We might be lucky and find the path to Admin and perhaps even SYSTEM is
trivial. Regardless of the path to gain higher privileges, now that we have them, we can modify the Registry as
we see fit. One thing to remember is to properly clean up should you need to get off the target. We would want
to put things back where they belong and leave the system how it was before we came on the box, so disabling
IFEO for an image would need to be done. The logic could be built into an uninstall command, or similar
command, and sent to the implant so that when sent, it will go through and reverse many of the actions taken,
like Registry key modifications.

88 © 2024 Jonathan Reiter

Technet24

IFEO Persistence

Source code review!

SA.N.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 89

IFEO Persistence
Time to jump into the source code and explain it before you implement it on your own.

© 2024 Jonathan Reiter 89

Lab 4.3: IFEOPersisto

®
q I Demonstrating persistence via IFEO keys

Please refer to the eWorkbook for the details of the lab.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 90

Lab 4.3: IFEO Persistence
Please refer to the eWorkbook for the details of this lab.

90 © 2024 Jonathan Reiter

Technet24

What’s the Point?

What’s the point?

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 91

What’s the Point?
The point of this lab was to become familiar with the persistence method of Image File Execution Options and
the two variants: process start and silent exits.

© 2024 Jonathan Reiter 91

Module Summary
: F Defined IFEO
Hr erine

I Abused IFEO manually and programmatically

I Observed limiting factors such as permissions for IFEO

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 92

Module Summary

In this module, we defined IFEO and discussed how Microsoft intended for it to be used. We also moved into
discussing another variant of IFEO, which was the SilentProcessExit option. From there we looked at how we
can abuse both variants while at the same time observing permissions issues if not being done with elevated
permissions like Admin or SYSTEM.

92 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I What registry key could be used to watch for process termination?

SilentProcessExit
ﬂ Debugger

DebuggerProcessExit

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 93

Unit Review Questions
Q: What registry key could be used to watch for process termination?

A SilentProcessExit
B: Debugger

C: DebuggerProcessExit

© 2024 Jonathan Reiter 93

Unit Review Answers

r
:g; I What registry key could be used to watch for process termination?

SilentProcessExit
ﬂ Debugger

DebuggerProcessExit

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 94

Unit Review Answers
Q: What registry key could be used to watch for process termination?

A: SilentProcessExit
B: Debugger

C: DebuggerProcessExit

94 © 2024 Jonathan Reiter

Technet24

Unit Review Questions

r
:g; I What registry key could be used to watch for process creation?

SilentProcessExit
0 -

DebuggerProcessExit

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 95

Unit Review Questions
Q: What registry key could be used to watch for process creation?

A SilentProcessExit
B: IFEO

C: DebuggerProcessExit

© 2024 Jonathan Reiter 95

Unit Review Answers

r
:g; I What registry key could be used to watch for process creation?

SilentProcessExit
0 -

DebuggerProcessExit

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 96

Unit Review Answers
Q: What registry key could be used to watch for process creation?

A SilentProcessExit

B: IFEO

C: DebuggerProcessExit

96 © 2024 Jonathan Reiter

Technet24

Course Roadmap

Windows Tool Development

Getting to Know Your Target

Operational Actions

Persistence: Die Another Day

Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

In Memory Execution
Dropping to Disk
Binary Patching
Registry Keys
Services Revisited

Lab 4.1: Persistent Service
Port Monitors

Lab 4.2: Sauron
IFEO

Lab 4.3: IFEOPersisto
WMI Event Subscriptions

Bootcamp

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 97

In this module, we will discuss why you would need to drop something to disk, where to drop, cleaning up,

and more.

© 2024 Jonathan Reiter 97

Our objectives for this module are:

Introduce WMI and its purpose

I Discuss WMI events and subscriptions
I Explore triggers for specified actions

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Objectives

The objectives for this module are to start off with an introduction to the Windows Management
Instrumentation (WMI) and its intended usage. We will also get into WMI events, filters, and subscribing to
receiving events of interest. Lastly, we will look at the triggers to kick off an event, like the creation of a new
process, a new logical drive being loaded, or a failed logon attempt. WMI abuse is an active technique still
being used by nation state actors today. WMI attacks are not new at all and yet they are still being overlooked
by cybersecurity defenders and AV/EDR solutions (although these groups are getting better at noticing these
attacks).

98 © 2024 Jonathan Reiter

98

Technet24

What Is WMI?

I The Windows Management Instrumentation (WMI)

The Windows OS must manage the data and operations not only for itself but also for
remote systems.VVMI is the method that instruments this management and is designed
for developers and administrators to use with ease via C++ development or
PowerShell scripting.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 99

What Is WMI?

Windows generates an enormous amount of data and executes many operations. Because of this, it needs
something to assist with the management of said data. Enter the Windows Management Instrumentation
(WMI). WMI enables developers and administrators to query data that might be held in the WMI database.
For administrators, WMI enables you to connect to and query large numbers of remote computers for
whatever data you might need. In addition, you can invoke WMI methods to execute something locally or
against a remote system, like creating a new process that may have crashed and did not start up again, or you
need to create some new Registry keys. WMI becomes even easier to manage with PowerShell natively
supporting WMI with several cmdlets, like Get-WmiObject for one. For developers, WMI is perfect and
catered for our C++ development. We can create WMI providers that provide data to consumers, and we can
also create our own consumers to subscribe to events, or data, that existing providers are pushing out. Before
we get into events and filters, we need to understand a bit more about the back end of WMI.

© 2024 Jonathan Reiter 99

WMI Architecture

WMI Architecture

CiC++
client

WMI consumers
(management
applications)

I Providers and Objects

II

‘ WMI COM AP/

COM/DCOM

WMI infrastructure

I WMI Infrastructure

COM [DCOM

I WMI Consumers

Wi
providers.
and Ay
SNMP Windows (Win32)
d - o managed enlity
maj::g: managed entity managed entity ‘ n)

Native GIC++

SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 100

WMI Architecture

The graphic on the slide is the representation of the architecture of WMI, according to MSDN online
documentation. You can follow this in stages starting at the very bottom with area 1. Area 1 is where WMI
providers are doing their job of providing data that can be stored in the WMI repository, and area 2 is where
data is sent to WMI consumers in area 3. One very interesting WMI provider is the Win32 provider that can
give consumers a list of processes. This could prove to be another method used for process enumeration—it's
just noisy. Area 2 houses the core of WMI, and its repo can store static data to be queried by consumers. This
data is persistent across reboots and offers an interesting persistence mechanism that we will explore. As you
might have noticed on the graphic, consumers can be created by C++ programs or scripting with PowerShell,
which makes it extremely easy to utilize. In the end they all go through COM interfaces, but regardless, they
enable us to create a consumer that can query events given by providers. Because there can be so many events,
we must filter them by creating a filter, and filters are created using a specific query language named WQL, or
the Windows Query Language. WMI adheres to a universal standard known as CIM, the Common Interface
Model.

100 © 2024 Jonathan Reiter

Technet24

What Is CIM?

I The Common Information Model (CIM)

The CIM is an industry standard that is used by WMI to represent various items, like
systems, processes, devices, and more. CIM is object oriented and gives the look and
feel of a C++ class. CIM gives us three levels of classes: Core, Common, and Extended.

SAN.S SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 101

What Is CIM?

Standards typically have models to go by and WMI is no exception because it follows the industry standard
called the Common Information Model (CIM). The CIM is used to represent data in a uniformed way, data
such as systems, processes/applications, networks, devices, and more. There are numerous existing CIM
classes, but developers can create new ones that can be used to represent completely customized products like
networked ovens or HVAC units. These classes are very similar to that of C++ classes developers would
create. At its core, CIM provides various levels of classes—three of them to be exact. The first one is Core,
which is used to represent the managed objects for managed systems. Next is the Common class. These classes
are an extension of the Core classes and are not tied down to any specific technology. Finally, we have the
Extended class, which unlike the Common class is specific to certain technologies like operating systems. One
example of a Windows Extended class is Win32_ ComputerSystem. These levels of classes make CIM cross-
platform, except for the Extended class, of course.

© 2024 Jonathan Reiter 101

WMI and CIM Schemas

I Classes can be grouped together into what are called schemas.

I CIM Schema

I Win32 Schema

Classes start with CIM__and
provide the definition for the
Core and Common classes.
Developers can create their own
as well.

SANS

WMI and CIM Schemas

Classes start with Win32_ and
provide the definitions for the
Extended CIM class specific for
the Win32 environment.
Developers can create their own
here as well.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 102

WMI and CIM classes are often grouped together to form what are called schemas, and they are typically
specific to certain managed objects. Specific to the Windows SDK, there are two schemas in place. The first
schema is the CIM schema, and its classes are easy to identify as they begin with the prefix CIM . The Core
and Common classes are defined as part of the CIM schema. There are many CIM classes, like CIM_Battery,
CIM_Memory, CIM_ComputerSystem, CIM_Directory, etc. Perhaps the more interesting schema is the
Win32 schema. It is here that the Extended class is defined that provides classes specific to the Win32
environment. Win32 is also a provider, but more on that shortly. Developers can create their own schemas,
classes, etc. in either the CIM schema or the Win32 schema.

102

© 2024 Jonathan Reiter

Technet24

Win32 Provider and Classes

I The provider provides all data specific to Windows.

Wing2_ Account Information about user and group accounts
Wing2_LoggedOnUser Relates to session and user accounts
Wing2_OperatingSystem The Windows OS installed on the system
Wing2_ Process A process on the system

Wing2_ Registry The system registry on the system
Wing2_Service A service on the system

Win32_Thread An executing thread in a process

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Win32 Provider and Classes

The Win32 provider is where we can fetch any data that might relate to the Windows operating system. The
data can be static or dynamic, such as a list of running processes. The classes shown on the slide are but a
small subset of classes that are defined by the Win32 provider. As you can see, there are several classes that
can be used for very specific purposes. We can use specific classes for recon about users of the system, who is
logged on like an Admin or Domain Admin, what processes are running, and more. Several classes have
methods that can be invoked like the Win32 Process class. We could use it to create a new instance of the
class, which in this case would be a new process. To narrow things down and cut out some of the noise, we
could create filters to focus on certain events from a specific class. We can filter on any number of items, like
filtering on processes using the Win32_ Process class, we can filter for account logon attempts, etc. Once a
filter is created, it can be used to trigger events if the filter criteria is met.

© 2024 Jonathan Reiter 103

103

WMI Events
I Changes with WMI data or services trigger events.

I Intrinsic Events I Extrinsic Events

Events that change in the
“standard WMI model” such as
the _InstanceCreationEvent.
These are for objects that reside
in the WMI repository.

Events that are not tied directly
to a change in the WMI model
such as the
RegistryKeyChangeEvent.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

WMI Events

Before we would ever create a subscription to an event, we need to determine what type of event we will be
receiving. WMI has intrinsic and extrinsic events with each type being quite different. The intrinsic events are
created when there is some kind of change in the WMI model. The WMI repository holds objects inside of it,
and WMI providers can create, delete, or modify the objects. An example of such objects are classes, instances
of classes, or namespaces. When WMI providers make changes to objects, an intrinsic event occurs. To these
changes, WMI conducts a polling operation like /nstanceCreationEvent for when an instance of a class is
created. Another example of an event could be _InstanceModificationEvent for when an instance is modified.

Extrinsic events are not triggered by changes to WMI repository objects. Specifically, when an event cannot
be tied directly to a change in the data model it must be an extrinsic event. One such example would be events
that are related to the Registry. The RegistryKeyChangeEvent is an extrinsic event that can notify consumers
that a certain Registry key has been changed. This could possibly be useful for protecting your Registry
persistence mechanism.

104 © 2024 Jonathan Reiter

104

Technet24

Filtering Events Using WQL

Data Query
® Windows Query Language SELECT * FROM Win32 NTLogEvent WHERE logfile

= ‘System’ AND EventCode = ‘4625’

Event Query
SELECT * FROM __ InstanceCreationEvent WITHIN
5 WHERE TargetInstace ISA “Win32 Process” AND

Extrinsic events can be queried
TargetInstance.Name = ‘notepad.exe’

normally
Schema Query

SELECT * FROM meta class WHERE _ this ISA
“Win32_ Process”

Intrinsic events must be polled at
some defined interval

SANS SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 105

Filtering Events Using WQL

How are events filtered? The Windows Query Language, WQL, might look similar to that of the Structured
Query Language, SQL, and that is because WQL is a subset of SQL. There are certain types of queries that we
can create such as Data queries, Event queries, or Schema queries. We can start off our query using the
SELECT statement. The SELECT statement will be specific to the type of query, Data, Event, or Schema. It
takes quite a bit of research to determine what classes you will need to query. The determination must also be
made if the query will be for intrinsic or extrinsic events. Remember, intrinsic events require polling like the
Event query example on the slide and polls must be done on a frequency.

The event query example on the slide is polling for _ InstanceCreationEvents every 5 seconds. The new
instance that is created must be an instance of the Win32_ Process class with a process name of notepad.exe.
These types of queries can get very complex rather quickly but yet specific for your persistence needs.

The Data query example is making a query from the Win32 NTLogEvent class. The logfile being chosen is the
System logfile and it is looking for a specific event code of 4625, the event for failed logon attempts.

The last example query is for a Schema query to better understand the Win32 Process class definition.
Schema queries are used for understanding the definition of a class. This type of query is quite different
because we do not rely on instances of a class being present. Schema queries only support the SELECT *
statement unlike the other query types. Also, by saying meta_class we indicate that this is a schema query
being executed.

© 2024 Jonathan Reiter 105

Testing WMI Queries

Get-WmiObject __ EventFilter -Namespace root\subscription
Get-WmiObject __ EventConsumer -Namespace root\subscription
Get-WmiObject __ FilterToConsumerBinding -Namespace root\subscription

Get-WmiObject -Query "select * from Win32_Process where name='notepad.exe'"
Get-WmiObject -Query "select * from win32_ntlogevent where eventcode=4625 and \
logfile="security’ and message like %alice%”

Can trigger logon events using smbclient \\\\#{target}\\C$ -U alice badpassword

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 106

Testing WMI Queries

PowerShell offers developers with perhaps the easiest method for testing WMI queries, thus saving us from
having to develop what could be hundreds of lines of code for queries that do not work. Thanks to the Get-
WmiObject cmdlet and we can pass a crafted query to the cmdlet’s -Query parameter.

106 © 2024 Jonathan Reiter

Technet24

Event Triggers

Event Query
® Events triggering actions SELECT * FROM __ InstanceCreationEvent WITHIN
5 WHERE TargetInstace ISA “Win32 Process” AND

TargetInstance.Name = ‘notepad.exe’

Event Consumer

Set-WmiInstance -Class

Filtering for notepad.exe CommandLineEventConsumer -Namespace
“root\subscription” -
Arguments@="'Consumer’ ; ExecutablePath='C:\evil
.exe’ ;CommandLineTemplate="C:\evil.exe’

Consuming the event and
triggering action

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 107

Event Triggers

When it comes to event triggers, nothing has been triggered yet. The only thing done so far is filtering out a
specific event. The next thing is to set up our Event Consumer that will contain the action we wish to execute.
When registering the consumer, there is an Action block that must be filled out. Specifically, there are five
Consumer classes that we can implement. ActiveScriptEventConsumer, CommandLineEventConsumer,
LogFileEventConsumer, NTEventLogEventConsumer, SMTPEventConsumer are the five consumers that we
could use, but perhaps the most interesting to us are the CommandLineEventConsumer and the
ActiveScriptEventConsumer classes. The CommandLineEvent is an interesting class because it will create a
process when the filter it is being bound to is triggered. One of the properties of the class is the
CommandLineTemplate that specifies the binary that is to be executed. There is also the ExecutablePath
property that is used to specify the absolute path for the executable. The filter on the slide polls from the
__InstanceCreationEvent class for the notepad.exe process every five seconds. The instance that will consume
that event is shown using PowerShell for easier readability. It will execute the evil.exe file whenever the
notepad.exe process is created.

© 2024 Jonathan Reiter 107

Detecting WMI Attacks

I Sysmon can be configured to detect WMI attacks.

The abuse that has been done with WMI can be detected using several tools, one of
them being Sysmon.The configuration can catch the Event Filters, the Event
Consumers, and our bindings of filters and consumers.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Detecting WMI Attacks

There are several methods and tools for detecting these style of attacks, so be careful before you implement
this method. One of the more popular tools today is one put out by Microsoft called Sysmon. It has proven to
be very formidable, and when configured correctly, can make our job much more challenging. One of the
configurations for Sysmon is for detecting WMI attacks, which should be on by default, making this easier for
the defenders and harder for us attackers. As an example, Sysmon would let you know when a
WmiEventConsumer event has been created. Despite the logs being created, the decision must be made to
determine if the event was malicious. Logs are one thing, but the categorization of the event is another.

108 © 2024 Jonathan Reiter

Technet24

Module Summary

r
:g; I Discovered that WMI is impressively powerful

I Saw how events can be filtered and consumed to trigger actions

I Discussed how it can be used for persistence and elevation

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 109

Module Summary

In this module, we took a deep dive into WMI, how it is designed, how events are created, how events can be
consumed, and how we can trigger process creation when a certain event is kicked off. WMI, aside from being
an amazing tool for sysadmins, is also an amazing tool for attackers. Not only can we persist, but we can
elevate from Admin to SYSTEM at the same time since our action in our consumer will kick off as SYSTEM.

© 2024 Jonathan Reiter 109

Unit Review Questions

r
:g; I What WMI class holds together the event filter and the event consumer?

FilterToConsumerBinding

ﬂ Win32_Process

CommandLineEventConsumer

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 110

Unit Review Questions
Q: What WMI class holds together the event filter and the event consumer?

A: FilterToConsumerBinding
B: Win32 Process

C: CommandLineEventConsumer

110 © 2024 Jonathan Reiter

Technet24

Unit Review Answers

r
:g; I What WMI class holds together the event filter and the event consumer?

FilterToConsumerBinding

ﬂ Win32_Process

CommandLineEventConsumer

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 111

Unit Review Answers
Q: What WMI class holds together the event filter and the event consumer?

A: FilterToConsumerBinding
B: Win32 Process

C: CommandLineEventConsumer

© 2024 Jonathan Reiter 111

Unit Review Questions

r
:g; I What types of events must be polled at some interval?

Extrinsic
“ Intrinsic
All of the above

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 112

Unit Review Questions
Q: What types of events must be polled at some interval?

A: Extrinsic
B: Intrinsic

C: All of the above

112 © 2024 Jonathan Reiter

Technet24

Unit Review Answers

r
:g; I What types of events must be polled at some internal?

Extrinsic
n Intrinsic

All of the above

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 113

Unit Review Answers
Q: What types of events must be polled at some interval?

A: Extrinsic
B: Intrinsic

C: All of the above

© 2024 Jonathan Reiter 113

114

Course Roadmap

» Windows Tool Development

Getting to Know Your Target

Operational Actions

Persistence: Die Another Day

Enhancing Your Implant:
Shellcode, Evasion, and C2

Capture the Flag Challenge

In Memory Execution
Dropping to Disk
Binary Patching
Registry Keys
Services Revisited

Lab 4.1: Persistent Service
Port Monitors

Lab 4.2: Sauron
IFEO

Lab 4.3: IFEOPersisto
WMI Event Subscriptions

Bootcamp

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control

Welcome to the bootcamp for Section 4! The challenges during the bootcamp will be very challenging but
have fun with them and do not hesitate to reach out for assistance, guidance, or if you have any questions.

© 2024 Jonathan Reiter

Technet24

I NotlInService

I InitToWinit
I OhMyWMI

I CustomShell

SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 115

Bootcamp

The bootcamp challenges today will really test your knowledge of Windows APIs. Services are important and
as such, the first challenge is about services. The “Not in service” challenge requires you to create, install, and
then hide your own service. The second challenge is about the Appinit method where you create the

Applnit DLLs key accordingly to get your DLL payload to execute without getting stuck in the infinite loop
mentioned during that section. The third challenge is about using WMI to programmatically establish your
foothold. You can use PowerShell for your initial testing or to get it going but the final product should be done
in C or C++ as a compiled binary.

The last challenge of the day is to combine everything you have learned so far into a baby implant. The baby
implant should be able to do full recon, inject into other processes, persist across reboots, create a log file, etc.

© 2024 Jonathan Reiter 115

Lab 4.4: NotlnService

I Develop the code for your service application.

I Develop the code to install your service.

I Develop the code to hide your service.

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 116

Lab 4.4: NotInService

For “Not in service,” you will be developing a custom service to be installed on the target system. Once done,
you will also create the code that will install your service. Finally, after the service has been installed, you will
create the code to hide it. There are a couple of ways to go about accomplishing this challenge, but the most
straightforward is to use the proper Win32 APIs. Your service does not have to perform anything specific as
long as it runs successfully and hidden is the main point.

Have fun!

116 © 2024 Jonathan Reiter

Technet24

Lab 4.5: InitToWinit

I Create the Applnit_DLLs key.
I Use an existing malicious DLL or build you own for this.

I Watch out for infinite loading situations.

SAN.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 117

Lab 4.5: InitToWinit

You can get carried away with this challenge quickly if you are not paying close attention to the details. If you
need to, refer back to the Registry keys section when we discussed this method and what it can be used for.
The main goal here is to become familiar with the code to implement the method, while at the same time not
getting caught in a never-ending loop situation. The DLL to use should be one that you have either created
already or one that you create specifically for this lab. Avoid using DLLs made by msfvenom, but for a
learning experience, try one out and see what happens.

© 2024 Jonathan Reiter 117

Lab 4.6: OhMyWMI

I Create a permanent subscription based on system uptime.

I The trigger should execute your persistence tool.

SA.N.S SEC670 | Red Teaming Tools: Developing VWindows Implants, Shellcode, Command and Control 118

Lab 4.6: OhMyWMI

WMI was discussed in depth earlier in this section, and now it is time to put your foundations to the test. For
this challenge, you are to create an installer that will establish your persistence based on system uptime.
PowerShell will be your friend for this challenge as you should use it to test your queries. Once you have your
query finalized, you can implement it programmatically in your code. If you finish early, you can implement
more options that change what events are being subscribed to and what the trigger is.

118 © 2024 Jonathan Reiter

Technet24

Lab 4.7: CustomShell

I Create a basic shell.
I Implement features covered in this section.

I Implement thorough error checking.

SEC670 | Red Teaming Tools: Developing Windows Implants, Shellcode, Command and Control 119

Lab 4.7: CustomShell
Please refer to the eWorkbook for the details of this bootcamp challenge.

© 2024 Jonathan Reiter 119

